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Many statistical applications require an estimate of a covariance
matrix and/or its inverse. When the matrix dimension is large com-
pared to the sample size, which happens frequently, the sample co-
variance matrix is known to perform poorly and may suffer from
ill-conditioning. There already exists an extensive literature concern-
ing improved estimators in such situations. In the absence of fur-
ther knowledge about the structure of the true covariance matrix,
the most successful approach so far, arguably, has been shrinkage
estimation. Shrinking the sample covariance matrix to a multiple of
the identity, by taking a weighted average of the two, turns out to
be equivalent to linearly shrinking the sample eigenvalues to their
grand mean, while retaining the sample eigenvectors. Our paper ex-
tends this approach by considering nonlinear transformations of the
sample eigenvalues. We show how to construct an estimator that is
asymptotically equivalent to an oracle estimator suggested in pre-
vious work. As demonstrated in extensive Monte Carlo simulations,
the resulting bona fide estimator can result in sizeable improvements
over the sample covariance matrix and also over linear shrinkage.

1. Introduction. Many statistical applications require an estimate of
a covariance matrix and/or of its inverse when the matrix dimension, p,
is large compared to the sample size, n. It is well known that in such situa-
tions, the usual estimator—the sample covariance matrix—performs poorly.
It tends to be far from the population covariance matrix and ill-conditioned.
The goal then becomes to find estimators that outperform the sample co-
variance matrix, both in finite samples and asymptotically. For the purposes
of asymptotic analyses, to reflect the fact that p is large compared to n, one
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2 O. LEDOIT AND M. WOLF

has to employ large-dimensional asymptotics where p is allowed to go to
infinity together with n. In contrast, standard asymptotics would assume
that p remains fixed while n tends to infinity.

One way to come up with improved estimators is to incorporate additional
knowledge in the estimation process, such as sparseness, a graph model or
a factor model; for example, see Bickel and Levina (2008), Rohde and Tsy-
bakov (2011), Cai and Zhou (2012), Ravikumar et al. (2008), Rajaratnam,
Massam and Carvalho (2008), Khare and Rajaratnam (2011), Fan, Fan and
Lv (2008) and the references therein.

However, not always is such additional knowledge available or trustwor-
thy. In this general case, it is reasonable to require that covariance matrix
estimators be rotation-equivariant. This means that rotating the data by
some orthogonal matrix rotates the estimator in exactly the same way. In
terms of the well-known decomposition of a matrix into eigenvectors and
eigenvalues, an estimator is rotation-equivariant if and only if it has the
same eigenvectors as the sample covariance matrix. Therefore, it can only
differentiate itself by its eigenvalues.

Ledoit and Wolf (2004) demonstrate that the largest sample eigenvalues
are systematically biased upwards, and the smallest ones downwards. It is
advantageous to correct this bias by pulling down the largest eigenvalues
and pushing up the smallest ones, toward the grand mean of all sample
eigenvalues. This is an application of the general shrinkage principle, going
back to Stein (1956). Working under large-dimensional asymptotics, Ledoit
and Wolf (2004) derive the optimal linear shrinkage formula (when the loss
is defined as the Frobenius norm of the difference between the estimator and
the true covariance matrix). The same shrinkage intensity is applied to all
sample eigenvalues, regardless of their positions. For example, if the linear
shrinkage intensity is 0.5, then every sample eigenvalue is moved half-way
toward the grand mean of all sample eigenvalues. Ledoit and Wolf (2004)
both derive asymptotic optimality properties of the resulting estimator of
the covariance matrix and demonstrate that it has desirable finite-sample
properties via simulation studies.

A cursory glance at the Marčenko and Pastur (1967) equation, which
governs the relationship between sample and population eigenvalues under
large-dimensional asymptotics, shows that linear shrinkage is the first-order
approximation to a fundamentally nonlinear problem. How good is this ap-
proximation? Ledoit and Wolf (2004) are very clear about this. Depending
on the situation at hand, the improvement over the sample covariance ma-
trix can either be gigantic or minuscule. When p/n is large, and/or the
population eigenvalues are close to one another, linear shrinkage captures
most of the potential improvement over the sample covariance matrix. In
the opposite case, that is, when p/n is small and/or the population eigen-
values are dispersed, linear shrinkage hardly improves at all over the sample
covariance matrix.
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The intuition behind the present paper is that the first-order approxima-
tion does not deliver a sufficient improvement when higher-order effects are
too pronounced. The cure is to upgrade to nonlinear shrinkage estimation
of the covariance matrix. We get away from the one-size-fits-all approach by
applying an individualized shrinkage intensity to every sample eigenvalue.
This is more challenging mathematically than linear shrinkage because many
more parameters need to be estimated, but it is worth the extra effort. Such
an estimator has the potential to asymptotically at least match the linear
shrinkage estimator of Ledoit and Wolf (2004) and often do a lot better,
especially when linear shrinkage does not deliver a sufficient improvement
over the sample covariance matrix. As will be shown later in the paper,
this is indeed what we achieve here. By providing substantial improvement
over the sample covariance matrix throughout the entire parameter space,
instead of just part of it, the nonlinear shrinkage estimator is as much of
a step forward relative to linear shrinkage as linear shrinkage was relative to
the sample covariance matrix. In terms of finite-sample performance, the lin-
ear shrinkage estimator rarely performs better than the nonlinear shrinkage
estimator. This happens only when the linear shrinkage estimator is (nearly)
optimal already. However, as we show in simulations, the outperformance
over the nonlinear shrinkage estimator is very small in such cases. Most of
the time, the linear shrinkage estimator is far from optimal, and nonlinear
shrinkage then offers a considerable amount of finite-sample improvement.

A formula for nonlinear shrinkage intensities has recently been proposed
by Ledoit and Péché (2011). It is motivated by a large-dimensional asymp-
totic approximation to the optimal finite-sample rotation-equivariant shrink-
age formula under the Frobenius norm. The advantage of the formula of
Ledoit and Péché (2011) is that it does not depend on the unobservable
population covariance matrix: it only depends on the distribution of sam-
ple eigenvalues. The disadvantage is that the resulting covariance matrix
estimator is an oracle estimator in that it depends on the “limiting” distri-
bution of sample eigenvalues, not the observed one. These two objects are
very different. Most critically, the limiting empirical cumulative distribution
function (c.d.f.) of sample eigenvalues is continuously differentiable, whereas
the observed one is, by construction, a step function.

The main contribution of the present paper is to obtain a bona fide estima-
tor of the covariance matrix that is asymptotically as good as the oracle esti-
mator. This is done by consistently estimating the oracle nonlinear shrinkage
intensities of Ledoit and Péché (2011), in a uniform sense. As a by-product,
we also derive a new estimator of the limiting empirical c.d.f. of population
eigenvalues. A previous such estimator was proposed by El Karoui (2008).

Extensive Monte Carlo simulations indicate that our covariance matrix
estimator improves substantially over the sample covariance matrix, even
for matrix dimensions as low as p = 30. As expected, in some situations
the nonlinear shrinkage estimator performs as well as Ledoit and Wolf’s
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(2004) linear shrinkage estimator, while in others, where higher-order effects
are more pronounced, it does substantially better. Since the magnitude of
higher-order effects depends on the population covariance matrix, which is
unobservable, it is always safer a priori to use nonlinear shrinkage.

Many statistical applications require an estimate of the precision matrix,
which is the inverse of the covariance matrix, instead of (or in addition to)
an estimate of the covariance matrix itself. Of course, one possibility is to
simply take the inverse of the nonlinear shrinkage estimate of the covariance
matrix itself. However, this would be ad hoc. The superior approach is to
estimate the inverse covariance matrix directly by nonlinearly shrinking the
inverses of the sample eigenvalues. This gives quite different and markedly
better results. We provide a detailed, in-depth solution for this important
problem as well.

The remainder of the paper is organized as follows. Section 2 defines our
framework for large-dimensional asymptotics and reviews some fundamen-
tal results from the corresponding literature. Section 3 presents the oracle
shrinkage estimator that motivates our bona fide nonlinear shrinkage esti-
mator. Sections 4 and 5 show that the bona fide estimator is consistent for
the oracle estimator. Section 6 examines finite-sample behavior via Monte
Carlo simulations. Finally, Section 7 concludes. All mathematical proofs are
collected in the supplement [Ledoit and Wolf (2012)].

2. Large-dimensional asymptotics.

2.1. Basic framework. Let n denote the sample size and p ≡ p(n) the
number of variables, with p/n → c ∈ (0,1) as n → ∞. This framework is
known as large-dimensional asymptotics. The restriction to the case c < 1
that we make here somewhat simplifies certain mathematical results as well
as the implementation of our routines in software. The case c > 1, where the
sample covariance matrix is singular, could be handled by similar methods,
but is left to future research.

The following set of assumptions will be maintained throughout the paper.

(A1) The population covariance matrix Σn is a nonrandom p-dimensional
positive definite matrix.

(A2) Let Xn be an n × p matrix of real independent and identically dis-
tributed (i.i.d.) random variables with zero mean and unit variance.

One only observes Yn ≡XnΣ
1/2
n , so neither Xn nor Σn are observed

on their own.
(A3) Let ((τn,1, . . . , τn,p); (vn,1, . . . , vn,p)) denote a system of eigenvalues and

eigenvectors of Σn. The empirical distribution function (e.d.f.) of the
population eigenvalues is defined as ∀t ∈R,Hn(t)≡ p−1

∑p
i=1 1[τn,i,+∞)(t),

where 1 denotes the indicator function of a set. We assume Hn(t) con-
verges to some limit H(t) at all points of continuity of H .
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(A4) Supp(H), the support of H , is the union of a finite number of closed
intervals, bounded away from zero and infinity. Furthermore, there
exists a compact interval in (0,+∞) that contains Supp(Hn) for all n
large enough.

Let ((λn,1, . . . , λn,p); (un,1, . . . , un,p)) denote a system of eigenvalues and

eigenvectors of the sample covariance matrix Sn ≡ n−1Y ′
nYn = n−1Σ

1/2
n X ′

nXn×

Σ
1/2
n . We can assume that the eigenvalues are sorted in increasing order

without loss of generality (w.l.o.g.). The first subscript, n, will be omitted
when no confusion is possible. The e.d.f. of the sample eigenvalues is defined
as ∀λ∈R, Fn(λ)≡ p−1

∑p
i=1 1[λi,+∞)(λ).

In the remainder of the paper, we shall use the notation Re(z) and Im(z)
for the real and imaginary parts, respectively, of a complex number z, so
that

∀z ∈C z =Re(z) + i · Im(z).

The Stieltjes transform of a nondecreasing function G is defined by

∀z ∈C
+ mG(z)≡

∫ +∞

−∞

1

λ− z
dG(λ),(2.1)

where C
+ is the half-plane of complex numbers with strictly positive imag-

inary part. The Stieltjes transform has a well-known inversion formula,

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im[mG(ξ + iη)]dξ,

which holds if G is continuous at a and b. Thus, the Stieltjes transform of
the e.d.f. of sample eigenvalues is

∀z ∈C
+ mFn(z) =

1

p

p∑

i=1

1

λi − z
=

1

p
Tr[(Sn − zI)−1],

where I denotes a conformable identity matrix.

2.2. Marčenko–Pastur equation and reformulations. Marčenko and Pas-
tur (1967) and others have proven that Fn(λ) converges almost surely (a.s.)
to some nonrandom limit F (λ) at all points of continuity of F under certain
sets of assumptions. Furthermore, Marčenko and Pastur discovered the equa-
tion that relates mF to H . The most convenient expression of the Marčenko–
Pastur equation is the one found in Silverstein [(1995), equation (1.4)],

∀z ∈C
+ mF (z) =

∫ +∞

−∞

1

τ [1− c− czmF (z)]− z
dH(τ).(2.2)

This version of the Marčenko–Pastur equation is the one that we start out
with. In addition, Silverstein and Choi (1995) showed that

∀λ ∈R−{0} lim
z∈C+→λ

mF (z)≡ m̆F (λ)
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exists, and that F has a continuous derivative F ′ = π−1Im[m̆F ] on all of R
with F ′ ≡ 0 on (−∞,0]. For purposes that will become apparent later, it is
useful to reformulate the Marčenko–Pastur equation.

The limiting e.d.f. of the eigenvalues of n−1Y ′
nYn = n−1Σ

1/2
n X ′

nXnΣ
1/2
n

was defined as F . In addition, define the limiting e.d.f. of the eigenvalues of
n−1YnY

′
n = n−1XnΣnX

′
n as F . It then holds

∀x ∈R F (x) = (1− c)1[0,+∞)(x) + cF (x),

∀x ∈R F (x) =
c− 1

c
1[0,+∞)(x) +

1

c
F (x),

∀z ∈C
+ mF (z) =

c− 1

z
+ cmF (z),

∀z ∈C
+ mF (z) =

1− c

cz
+

1

c
mF (z).

With this notation, equation (1.3) of Silverstein and Choi (1995) rewrites
the Marčenko–Pastur equation in the following way: for each z ∈C

+, mF (z)
is the unique solution in C

+ to the equation

mF (z) =−

[
z − c

∫ +∞

−∞

τ

1 + τmF (z)
dH(τ)

]−1

.(2.3)

Now introduce uF (z) ≡ −1/mF (z). Notice that uF (z) ∈ C
+ ⇐⇒ mF (z) ∈

C
+. The mapping from uF (z) to mF (z) is one-to-one on C

+.
With this change of variable, equation (2.3) is equivalent to saying that

for each z ∈C
+, uF (z) is the unique solution in C

+ to the equation

uF (z) = z + cuF (z)

∫ +∞

−∞

τ

τ − uF (z)
dH(τ).(2.4)

Let the linear operator L transform any c.d.f. G into

LG(x)≡

∫ x

−∞
τ dG(τ).

Combining L with the Stieltjes transform, we get

mLG(z) =

∫ +∞

−∞

τ

τ − z
dG(τ) = 1+ zmG(z).

Thus, we can rewrite equation (2.4) more concisely as

uF (z) = z + cuF (z)mLH(uF (z)).(2.5)

As Silverstein and Choi [(1995), equation (1.4)] explain, the function defined
in equation (2.3) is invertible. Thus we can define the inverse function

zF (m)≡−
1

m
+ c

∫ +∞

−∞

τ

1 + τm
dH(τ).(2.6)
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We can do the same thing for equation (2.5) and define the inverse function

z̃F (u)≡ u− cumLH(u).(2.7)

Equations (2.2), (2.3), (2.5), (2.6) and (2.7) are all completely equivalent to
one another; solving any one of them means having solved them all. They
are all just reformulations of the Marčenko–Pastur equation.

As will be detailed in Section 3, the oracle nonlinear shrinkage estimator
of Σn involves the quantity m̆F (λ), for various inputs λ. Section 2.3 describes
how this quantity can be found in the hypothetical case that F and H are
actually known. This will then allow us later to discuss consistent estimation
of m̆F (λ) in the realistic case when F and H are unknown.

2.3. Solving the Marčenko–Pastur equation. Silverstein and Choi (1995)
explain how the support of F , denoted by Supp(F ), is determined. Let

B ≡ {u ∈R :u 6= 0, u ∈ Supp∁(H)}. Then plot the function z̃F (u) of (2.7) on
the set B. Find the extreme values on each interval. Delete these points and
everything in between on the real line. Do this for all increasing intervals.
What is left is just Supp(F ); see Figure 1 of Bai and Silverstein (1998) for
an illustration.

To simplify, we will assume from here on that Supp(F ) is a single com-
pact interval, bounded away from zero, with F ′ > 0 in the interior of this
interval. But if Supp(F ) is the union of a finite number of such intervals,
the arguments presented in this section as well as in the remainder of the
paper apply separately to each interval. In particular, our consistency re-
sults presented in subsequent sections can be easily extended to this more
general case. On the other hand, the even more general case of Supp(F ) be-
ing the union of an infinite number of such intervals or being a noncompact
interval is ruled out by assumption (A4). By our assumption then, Supp(F )
is given by the compact interval [z̃F (u1), z̃F (u2)] for some u1 < u2. To keep
the notation shorter in what follows, let z̃1 ≡ z̃F (u1) and z̃2 ≡ z̃F (u2).

We know that for every λ in the interior of Supp(F ), there exists a unique
v ∈C

+, denoted by vλ, such that

vλ − cvλmLH(vλ) = λ.(2.8)

We further know that

F ′(λ) =
1

c
F ′(λ) =

1

cπ
Im[m̆F (λ)] =

1

cπ
Im

[
−

1

vλ

]
.

The converse is also true. Since Supp(F ) = [z̃F (u1), z̃F (u2)], for every x ∈
(u1, u2), there exists a unique y > 0, denoted by yx, such that

(x+ iyx)− c(x+ iyx)mLH(x+ iyx) ∈R.
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In other words, yx is the unique value of y > 0 for which Im[(x+ iy)− c(x+
iy)mLH(x+ iy)] = 0. Also, if λx denotes the value of λ for which we have
(x+ iyx)− c(x+ iyx)mLH(x+ iyx) = λ, then, by definition, zλx

= x+ iyx.
Once we find a way to consistently estimate yx for any x ∈ [u1, u2], then

we have an estimate of the (asymptotic) solution to the Marčenko–Pastur
equation. For example, Im[−1/(x+ iyx)]/(cπ) is the value of the density F ′

evaluated at Re[(x + iyx) − c(x + iyx)mLH(x + iyx)] = (x + iyx) − c(x +
iyx)mLH(x+ iyx).

From the above arguments, it follows that

∀λ∈ (z̃1, z̃2) m̆F (λ) =−
1

vλ
and so m̆F (λ) =

1− c

cλ
−

1

c

1

vλ
.(2.9)

3. Oracle estimator.

3.1. Covariance matrix. In the absence of specific information about the
true covariance matrix Σn, it appears reasonable to restrict attention to the
class of estimators that are equivariant with respect to rotations of the
observed data. To be more specific, let W be an arbitrary p-dimensional or-
thogonal matrix. Let Σ̂n ≡ Σ̂n(Yn) be an estimator of Σn. Then the estimator

is said to be rotation-equivariant if it satisfies Σ̂n(YnW ) =W ′Σ̂n(Yn)W . In
other words, the estimate based on the rotated data equals the rotation of
the estimate based on the original data. The class of rotation-equivariant
estimators of the covariance matrix is constituted of all the estimators that
have the same eigenvectors as the sample covariance matrix; for example,
see Perlman [(2007), Section 5.4]. Every rotation-equivariant estimator is
thus of the form

UnDnU
′
n where Dn ≡Diag(d1, . . . , dp) is diagonal,

and where Un is the matrix whose ith column is the sample eigenvector
ui ≡ un,i. This is the class we consider.

The starting objective is to find the matrix in this class that is closest
to Σn. To measure distance, we choose the Frobenius norm defined as

‖A‖ ≡
√

Tr(AA′)/r for any matrix A of dimension r×m.(3.1)

[Dividing by the dimension of the square matrix AA′ inside the root is not
standard, but we do this for asymptotic purposes so that the Frobenius
norm remains constant equal to one for the identity matrix regardless of the
dimension; see Ledoit and Wolf (2004).] As a result, we end up with the
following minimization problem:

min
Dn

‖UnDnU
′
n −Σn‖.

Elementary matrix algebra shows that its solution is

D∗
n ≡Diag(d∗1, . . . , d

∗
p) where d∗i ≡ u′iΣnui for i= 1, . . . , p.(3.2)
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The interpretation of d∗i is that it captures how the ith sample eigenvector ui
relates to the population covariance matrix Σn as a whole. As a result, the
finite-sample optimal estimator is given by

S∗
n ≡UnD

∗
nU

′
n where D∗

n is defined as in (3.2).(3.3)

By generalizing the Marčenko–Pastur equation (2.2), Ledoit and Péché
(2011) show that d∗i can be approximated by the quantity

dori ≡
λi

|1− c− cλim̆F (λi)|2
for i= 1, . . . , p,(3.4)

from which they deduce their oracle estimator

Sor
n ≡ UnD

or
n U ′

n where Dor
n ≡Diag(dor1 , . . . , dorp ).(3.5)

The key difference between D∗
n and Dor

n is that the former depends on the
unobservable population covariance matrix, whereas the latter depends on
the limiting distribution of sample eigenvalues, which makes it amenable to
estimation, as explained below.

Note that Sor
n constitutes a nonlinear shrinkage estimator: since the value

of the denominator of dori varies with λi, the shrunken eigenvalues dori are ob-
tained by applying a nonlinear transformation to the sample eigenvalues λi;
see Figure 3 for an illustration. Ledoit and Péché (2011) also illustrate in
some (limited) simulations that this oracle estimator can provide a magni-
tude of improvement over the linear shrinkage estimator of Ledoit and Wolf
(2004).

3.2. Precision matrix. Often times an estimator of the inverse of the
covariance matrix, or the precision matrix, Σ−1

n is required. A reasonable
strategy would be to first estimate Σn, and to then simply take the inverse
of the resulting estimator. However, such a strategy will generally not be
optimal.

By arguments analogous to those leading up to (3.3), among the class of
rotation-equivariant estimators, the finite-sample optimal estimator of Σ−1

n

with respect to the Frobenius norm is given by

P ∗
n ≡UnA

∗
nU

′
n where a∗i ≡ u′iΣ

−1
n ui for i= 1, . . . , p.(3.6)

In particular, note that P ∗
n 6= (S∗

n)
−1 in general.

Studying the asymptotic behavior of the diagonal matrix A∗
n led Ledoit

and Péché (2011) to the following oracle estimator:

P or
n ≡UnA

or
n U ′

n
(3.7)

where aori ≡ λ−1
i (1− c− 2cλiRe[m̆F (λi)]) for i= 1, . . . , p.

In particular, note that P or
n 6= (Sor

n )−1 in general.
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Remark 3.1. One can see that both oracle estimators Sor
n and P or

n in-
volve the unknown quantities m̆F (λi), for i= 1, . . . , p. As a result, they are
not bona fide estimators. However, being able to consistently estimate m̆F (λ),

uniformly in λ, will allow us to construct bona fide estimators Ŝn and P̂n

that converge to their respective oracle counterparts almost surely (in the
sense that the Frobenius norm of the difference converges to zero almost
surely).

Section 4 explains how to construct a uniformly consistent estimator
of m̆F (λ) based on a consistent estimator of H , the limiting spectral distri-
bution of the population eigenvalues. Section 5 discusses how to construct
a consistent estimator of H from the data.

3.3. Further details on the results of Ledoit and Péché (2011). Ledoit
and Péché (2011) (hereafter LP) study functionals of the type

∀z ∈C
+ Θg

N (z)≡
1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj |
2 × g(τj)

(3.8)

=
1

N
Tr[(SN − zI)−1g(ΣN )],

where g is any real-valued univariate function satisfying suitable regular-
ity conditions. Comparison with equation (2.1) reveals that this family of
functionals generalizes the Stieltjes transform, with the Stieltjes transform
corresponding to the special case g ≡ 1. What is of interest is what happens
for other, nonconstant functions g.

It turns out that it is possible to generalize the Marčenko–Pastur re-
sult (2.2) to any function g with finitely many points of discontinuity. Un-
der assumptions that are usual in the Random Matrix Theory literature,
LP prove in their Theorem 2 that there exists a nonrandom function Θg

defined over C
+ such that Θg

N (z) converges a.s. to Θg(z) for all z ∈ C
+.

Furthermore, Θg is given by

∀z ∈C
+ Θg(z)≡

∫ +∞

−∞

g(τ)

τ [1− c− czmF (z)]− z
dH(τ).(3.9)

What is remarkable is that, as one moves from the constant function g ≡ 1

to any other function g(τ), the integration kernel g(τ)
τ [1−c−czmF (z)]−z remains

unchanged. Therefore equation (3.9) is a direct generalization of Marčenko
and Pastur’s foundational result.

The power and usefulness of this generalization become apparent once one
starts plugging specific, judiciously chosen functions g(τ) into equation (3.9).
For the purpose of illustration, LP work out three examples of functions g(τ).

The first example of LP is g(τ)≡ 1(−∞,τ), where 1 denotes the indicator
function of a set. It enables them to characterize the asymptotic location of
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sample eigenvectors relative to population eigenvectors. Since this result is
not directly relevant to the present paper, we will not elaborate further, and
refer the interested reader to LP’s Section 1.2.

The second example of LP is g(τ) ≡ τ . It enables them to characterize
the asymptotic behavior of the quantities dori introduced in equation (3.4).
More formally, for any u ∈ (0,1), define

∆∗
n(u)≡

1

p

⌊u·p⌋∑

i=1

d∗i and ∆or
n (u)≡

1

p

⌊u·p⌋∑

i=1

dori ,(3.10)

where ⌊·⌋ denotes the integer part. LP’s Theorem 4 proves that ∆∗
n(u) −

∆or
n (u)→ 0 a.s.
The third example of LP is g(τ) ≡ 1/τ . It enables them to characterize

the asymptotic behavior of the quantities aori introduced in equation (3.7).
For any u ∈ (0,1) define

Ψ∗
n(u)≡

1

p

⌊u·p⌋∑

i=1

a∗i and Ψor
n (u)≡

1

p

⌊u·p⌋∑

i=1

aori .(3.11)

LP’s Theorem 5 proves that Ψ∗
n(u)−Ψor

n (u)→ 0 a.s.

4. Estimation of m̆F (λ). Fix x ∈ [u1 + η,u2 − η], where η > 0 is some
small number. From the previous discussion in Section 2, it follows that the
equation

Im[x+ iy − c(x+ iy)mLH(x+ iy)] = 0

has a unique solution y ∈ (0,+∞), called yx. Since u1 < x < u2, it follows
that yx > 0; for x= u1 or x= u2, we would have yx = 0 instead. The goal is
to consistently estimate yx, uniformly in x ∈ [u1 + η,u2 − η].

Define for any c.d.f. G and for any d > 0, the real function

gG,d(y,x)≡ |Im[x+ iy − d(x+ iy)mLG(x+ iy)]|.

With this notation, yx is the unique minimizer in (0,+∞) of gH,c(y,x) then.
In particular, gH,c(yx, x) = 0.

In the remainder of the paper, the symbol ⇒ denotes weak convergence
(or convergence in distribution).

Proposition 4.1. (i) Let {Ĥn} be a sequence of probability measures

with Ĥn ⇒H . Let {ĉn} be a sequence of positive real numbers with ĉn → c.
Let K ⊆ (0,∞) be a compact interval satisfying {yx :x∈ [u1+η,u2−η]} ⊆K.
For a given x ∈ [u1 + η,u2 − η], let ŷn,x ≡miny∈K gĤn,ĉn

(y,x). It then holds

that ŷn,x → yx uniformly in x∈ [u1 + η,u2 − η].

(ii) In case of Ĥn ⇒ H a.s., it holds that ŷn,x → yx a.s. uniformly in
x ∈ [u1 + η,u2 − η].
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It should be pointed out that the assumption {yx :x ∈ [u1+η,u2−η]} ⊆K
is not really restrictive, since one can choose K ≡ [ε,1/ε], for ε arbitrarily
small.

We also need to solve the “inverse” estimation problem, namely starting
with λ and recovering the corresponding vλ. Fix λ ∈ [z̃1 + δ̃, z̃2 − δ̃], where

δ̃ > 0 is some small number. From the previous discussion, it follows that
the equation

v− cvmLH(v) = λ

has a unique solution v ∈ C
+, called vλ. The goal is to consistently esti-

mate vλ, uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃].
Define for any c.d.f. G and for any d > 0, the real function

hG,d(v,λ)≡ |v − dvmLG(v)− λ|.

With this notation, vλ is then the unique minimizer in C
+ of hH,c(v,λ). In

particular, hH,c(vλ, λ) = 0.

Proposition 4.2. (i) Let {Ĥn} be a sequence of probability measures

with Ĥn ⇒H . Let {ĉn} be a sequence of positive real numbers with ĉn → c.

Let K ⊆ C
+ be a compact set satisfying {vλ :λ ∈ [z̃1 + δ̃, z̃2 − δ̃]} ⊆K. For

a given λ ∈ [z̃1 + δ̃, z̃2 − δ̃], let v̂n,λ ≡minv∈K h
Ĥn,ĉn

(v,λ). It then holds that

v̂n,λ → vλ uniformly in λ ∈ [z̃1 + δ̃, z2 − δ̃].

(ii) In case of Ĥn ⇒ H a.s., it holds that v̂n,λ → vλ a.s. uniformly in

λ ∈ [z̃1 + δ̃, z2 − δ̃].

Being able to find consistent estimators of vλ, uniformly in λ, now allows
us to find consistent estimators of m̆F (λ), uniformly in λ, based on (2.9).
Our estimator of m̆F (λ) is given by

m̆F
Ĥn,ĉn

(λ)≡
1− ĉn
ĉnλ

−
1

ĉn

1

v̂n,λ
.(4.1)

This, in turn, provides us with a consistent estimator of Sor
n , the oracle

nonlinear shrinkage estimator of Σn. Define

Ŝn ≡UnD̂nU
′
n

(4.2)

where d̂i ≡
λi

|1− ĉn − ĉnλim̆F
Ĥn,ĉn

(λi)|2
for i= 1, . . . , p.

It also provides us with a consistent estimator of P or
n , the oracle nonlinear

shrinkage estimator of Σ−1
n . Define

P̂n ≡ UnÂnU
′
n

(4.3)
where âi ≡ λ−1

i (1− ĉn − 2ĉnλiRe[m̆F
Ĥn,ĉn

(λi)]) for i= 1, . . . , p.
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In particular, note that P̂n 6= Ŝ−1
n in general.

Proposition 4.3.

(i) Let {Ĥn} be a sequence of probability measures with Ĥn ⇒H . Let {ĉn}
be a sequence of positive real numbers with ĉn → c. It then holds that:

(a) m̆F
Ĥn,ĉn

(λ)→ m̆F (λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃];

(b) ‖Ŝn − Sor
n ‖→ 0;

(c) ‖P̂n − P or
n ‖→ 0.

(ii) In case of Ĥn ⇒H a.s., it holds that:

(a) m̆F
Ĥn,ĉn

(λ)→ m̆F (λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] a.s.;

(b) ‖Ŝn − Sor
n ‖→ 0 a.s.;

(c) ‖P̂n − P or
n ‖→ 0 a.s.

5. Estimation of H . As described before, consistent estimation of the
oracle estimators of Ledoit and Péché (2011) requires (uniformly) consis-
tent estimation of m̆F (λ). Since Im[m̆F (λ)] = πF ′(λ), one possible approach
could be to take an off-the-shelf density estimator for F ′, based on the ob-
served sample eigenvalues λi. There exists a large literature on density es-
timation; for example, see Silverman (1986). The real part of m̆F (λi) could
be estimated in a similar manner.

However, the sample eigenvalues do not satisfy any of the regularity con-
ditions usually invoked for the underlying data. It really is not clear at all
whether an off-the-shelf density estimator applied to the sample eigenvalues
would result in consistent estimation of F ′.

Even if this issue was somehow resolved, using such a generic procedure
would not exploit the specific features of the problem. Namely: F is not just
any distribution; it is a distribution of sample eigenvalues. It is the solution
to the Marčenko–Pastur equation for some H . This is valuable informa-
tion that narrows down considerably the set of possible distributions F .
Therefore an estimation procedure specifically designed to incorporate this
a priori knowledge would be better suited to the problem at hand. This is
the approach we select.

In a nutshell: our estimator of F is the c.d.f. that is closest to Fn among
the c.d.f.’s that are a solution to the Marčenko–Pastur equation for some H̃
and for c̃ ≡ ĉn ≡ p/n. The “underlying” distribution H̃ that produces the
thus obtained estimator of F is, in turn, our estimator of H . If we can show
that this estimator of H is consistent, then the results of the previous section
demonstrate that the implied estimator of m̆F (λ) is uniformly consistent.

Section 5.1 derives theoretical properties of this approach, while Sec-
tion 5.2 discusses various issues concerning the practical implementation.
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5.1. Consistency results. For a grid of real numbers Q ≡ {. . . , t−1, t0,
t1, . . .} ⊆R, with tk−1 < tk, define the corresponding grid size γ as

γ ≡ sup
k
(tk − tk−1).

A grid Q is said to cover a compact interval [a, b]⊆R if there exists at least
one tk ∈Q with tk ≤ a and at least another tk′ ∈Q with b≤ tk′ . A sequence
of grids {Qn} is said to eventually cover a compact interval [a, b] if for
every φ > 0 there exist N ≡N(φ) such that Qn covers the compact interval
[a+ φ, b− φ] for all n≥N .

For any probability measure H̃ on the real line and for any c̃ > 0, let FH̃,c̃

denote the c.d.f. on the real line induced by the corresponding solution of
the Marčenko–Pastur equation. More specifically, for each z ∈C

+, mF
H̃,c̃

(z)

is the unique solution for m ∈C
+ to the equation

m=

∫ +∞

−∞

1

τ [1− c̃− c̃zm]− z
dH̃(τ).

In this notation, we then have F = FH,c.
It follows from Silverstein and Choi (1995) again that

∀λ∈R− {0} lim
z∈C+→λ

mF
H̃,c̃

(z)≡ m̆F
H̃,c̃

(λ)

exists, and that FH̃,c̃ has a continuous derivative F ′
H̃,c̃

= π−1Im[m̆F
H̃,c̃

] on

(0,+∞). In the case c̃ < 1, FH̃,c̃ has a continuous derivative on all of R with

F ′
H̃,c̃

≡ 0 on (−∞,0].

For a grid Q on the real line and for two c.d.f.’s G1 and G2, define

‖G1 −G2‖Q ≡ sup
t∈Q

|G1(t)−G2(t)|.

The following theorem shows that both F and H can be estimated con-
sistently via an idealized algorithm.

Theorem 5.1. Let {Qn} be a sequence of grids on the real line eventu-
ally covering the support of F with corresponding grid sizes {γn} satisfying

γn → 0. Let {ĉn} be a sequence of positive real numbers with ĉn → c. Let Ĥn

be defined as

Ĥn ≡ argmin
H̃

‖F
H̃,ĉn

−Fn‖Qn ,(5.1)

where H̃ is a probability measure.
Then we have (i) F

Ĥn,ĉn
⇒ F a.s.; and (ii) Ĥn ⇒H a.s.

The algorithm used in the theorem is not practical for two reasons. First,
it is not possible to optimize over all probability measures H̃ . But simi-
larly to El Karoui (2008), we can show that it is sufficient to optimize over
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all probability measures that are sums of atoms, the location of which is
restricted to a fixed-size grid, with the grid size vanishing asymptotically.

Corollary 5.1. Let {Qn} be a sequence of grids on the real line even-
tually covering the support of F with corresponding grid sizes {γn} satisfying
γn → 0. Let {ĉn} be a sequence of positive real numbers with ĉn → c. Let Pn

denote the set of all probability measures that are sums of atoms belonging to
the grid {Jn/Tn, (Jn+1)/Tn, . . . ,Kn/Tn} with Tn →∞, Jn being the largest
integer satisfying Jn/Tn ≤ λ1, and Kn being the smallest integer satisfying

Kn/Tn ≥ λp. Let Ĥn be defined as

Ĥn ≡ argmin
H̃∈Pn

‖FH̃,ĉn
−Fn‖Qn .(5.2)

Then we have (i) FĤn,ĉn
⇒ F a.s.; and (ii) Ĥn ⇒H a.s.

But even restricting the optimization over a manageable set of proba-
bility measures is not quite practical yet for a second reason. Namely, to
compute F

H̃,ĉn
exactly for a given H̃ , one would have to (numerically)

solve the Marčenko–Pastur equation for an infinite number of points. In
practice, we can only afford to solve the equation for a finite number of
points and then approximate F

H̃,ĉn
by trapezoidal integration. Fortunately,

this approximation does not negatively affect the consistency of our estima-
tors.

Let G be a c.d.f. with continuous density g and compact support [a, b]. For
a grid Q≡ {. . . , t−1, t0, t1, . . .} covering the support of G, the approximation

to G via trapezoidal integration over the grid Q, denoted by ĜQ, is obtained
as follows. For t ∈ [a, b], let Jlo ≡max{k : tk ≤ a} and Jhi ≡min{k : t < tk}.
Then

ĜQ(t)≡

Jhi−1∑

k=Jlo

(tk+1 − tk)[g(tk) + g(tk+1)]

2
.(5.3)

Now turn to the special case G≡ FH̃,c̃ and Q≡Qn. In this case, we denote

the approximation to F
H̃,c̃

via trapezoidal integration over the grid Qn by

F̂H̃,c̃;Qn
.

Corollary 5.2. Assume the same assumptions as in Corollary 5.1.
Let Ĥn be defined as

Ĥn ≡ argmin
H̃∈Pn

‖F̂H̃,ĉn;Qn
−Fn‖Qn .(5.4)

Let m̆F
Ĥn,ĉn

(λ), Ŝn, and P̂n be defined as in (4.1), (4.2) and (4.3), respec-

tively. Then:
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(i) FĤn,ĉn
⇒ F a.s.

(ii) Ĥn ⇒H a.s.

(iii) For any δ̃ > 0, m̆F
Ĥn,ĉn

(λ) → m̆F (λ) a.s. uniformly in λ ∈ [z̃1 +

δ̃, z̃2 − δ̃].

(iv) ‖Ŝn − Sor
n ‖→ 0 a.s.

(v) ‖P̂n −P or
n ‖→ 0 a.s.

5.2. Implementation details.

Decomposition of the c.d.f. of population eigenvalues. As discussed be-
fore, it is not practical to search over the set of all possible c.d.f.’s H̃ .
Following El Karoui (2008), we project H onto a certain basis of c.d.f.’s
(Mk)k=1,...,K , where K goes to infinity along with n and p. The projection
of H onto this basis is given by the nonnegative weights w1, . . . ,wK , where

∀t ∈R H(t)≈ H̃(t)≡

K∑

k=1

wkMk(t) and

K∑

k=1

wk = 1.(5.5)

Thus, our estimator for F will be a solution to the Marčenko–Pastur equa-
tion for H̃ given by equation (5.5) for some (wk)k=1,...,K , and for c̃≡ p/n. It
is just a matter of searching over all sets of nonnegative weights summing
up to one.

Choice of basis. We base the c.d.f.’s (Mk)k=1,...,K on a grid of p equally
spaced points on the interval [λ1, λp].

xi ≡ λ1 +
i− 1

p
(λp − λ1) for i= 1, . . . , p.(5.6)

Thus x1 = λ1 and xp = λp. We then form the basis {M1, . . . ,Mk} as the
union of three families of c.d.f.’s:

(1) the indicator functions 1[xi,+∞) (i= 1, . . . , p);
(2) the c.d.f.’s whose derivatives are linearly increasing on the interval [xi−1, xi]

and zero everywhere else (i= 2, . . . , p);
(3) the c.d.f.’s whose derivatives are linearly decreasing on the interval

[xi−1, xi] and zero everywhere else (i= 2, . . . , p).

This list yields a basis (Mk)k=1,...,K of dimension K = 3p−2. Notice that by
the theoretical results of Section 5.1, it would be sufficient to use the first
family only. Including the second and third families in addition cannot make
the approximation to H any worse.

Trapezoidal integration. For a given H̃ ≡
∑K

k=1wkMk, it is computa-
tionally too expensive (in the context of an optimization procedure) to solve
the Marčenko–Pastur equation for mF (z) over all z ∈ C

+. It is more effi-
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cient to solve the Marčenko–Pastur equation only for m̆F (xi) (i= 1, . . . , p),
and to use the trapezoidal approximation formula to deduce from it F (xi)
(i= 1, . . . , p). The trapezoidal rule gives

∀i= 1, . . . , p F (xi) =

i−1∑

j=1

xj+1 − xj−1

2
F ′(xj) +

xi − xi−1

2
F ′(xi)

=

i−1∑

j=1

(xj+1 − xj−1)Im[m̆F (xj)]

2π
(5.7)

+
(xi − xi−1)Im[m̆F (xi)]

2π
,

with the convention x0 ≡ 0.

Objective function. The objective function measures the distance be-
tween Fn and the F that solves the Marčenko–Pastur equation for H̃ ≡∑K

k=1wkMk and for c̃≡ p/n. Traditionally, Fn is defined as càdlàg, that is,
Fn(λ1) = 1/p and Fn(λp) = 1. However, there is a certain degree of arbitrari-
ness in this convention: why is Fn(λp) equal to one but Fn(λ1) not equal
to zero? By symmetry, there is no a priori justification for specifying that
the largest eigenvalue is closer to the supremum of the support of F than
the smallest to its infimum. Therefore, a different convention might be more
appropriate in this case, which leads us to the following definition:

∀i= 1, . . . , p F̂n(λi)≡
i

p
−

1

2p
.(5.8)

This choice restores a certain element of symmetry to the treatment of the
smallest vs. the largest eigenvalue. From equation (5.8), we deduce F̂n(xi),
for i= 2, . . . , p− 1, by linear interpolation. With a sup-norm error penalty,
this leads to the following objective function:

max
i=1,...,p

|F (xi)− F̂n(xi)|,(5.9)

where F (xi) is given by equation (5.7) for i= 1, . . . , p. Using equation (5.7),
we can rewrite this objective function as

max
i=1,...,p

∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1)Im[m̆F (xj)]

2π
+

(xi − xi−1)Im[m̆F (xi)]

2π
− F̂n(xi)

∣∣∣∣∣.

Optimization program. We now have all the ingredients needed to state
the optimization program that will extract the estimator of m̆F (x1), . . . ,
m̆F (xp) from the observations λ1, . . . , λp. It is the following:

min
m1,...,mp

w1,...,wK

max
i=1,...,p

∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1)Im[mj ]

2π
+

(xi − xi−1)Im[mi]

2π
− F̂n(xi)

∣∣∣∣∣
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subject to

∀j = 1, . . . , p mj =

K∑

k=1

∫ +∞

−∞

wk

t[1− (p/n)− (p/n)xjmj]− xj
dMk(t),

K∑

k=1

wk = 1,

(5.10)

∀j = 1, . . . , p mj ∈ C
+,

∀k= 1, . . . ,K wk ≥ 0.

The key is to introduce the variables mj ≡ m̆F (xj), for j = 1, . . . , p. The con-
straint in equation (5.10) imposes that mj is the solution to the Marčenko–

Pastur equation evaluated as z ∈C
+ → xj when H̃ =

∑K
k=1wkMk.

Real optimization program. In practice, most optimizers only accept real
variables. Therefore it is necessary to decompose mj into its real and imag-
inary parts: aj ≡Re[mj] and bj ≡ Im[mj]. Then we can optimize separately
over the two sets of real variables aj and bj for j = 1, . . . , p. The Marčenko–
Pastur constraint in equation (5.10) splits into two constraints: one for the
real part and the other for the imaginary part. The reformulated optimiza-
tion program is

min
a1,...,ap
b1,...,bp
w1,...,wK

max
i=1,...,p

∣∣∣∣∣

i−1∑

j=1

(xj+1 − xj−1)bj
2π

+
(xi − xi−1)bi

2π
− F̂n(xi)

∣∣∣∣∣(5.11)

subject to

∀j = 1, . . . , p
(5.12)

aj =

K∑

k=1

∫ +∞

−∞
Re

{
wk

t[1− (p/n)− (p/n)xj(aj + ibj)]− xj

}
dMk(t),

∀j = 1, . . . , p
(5.13)

bj =
K∑

k=1

∫ +∞

−∞
Im

{
wk

t[1− (p/n)− (p/n)xj(aj + ibj)]− xj

}
dMk(t),

K∑

k=1

wk = 1,(5.14)

∀j = 1, . . . , p bj ≥ 0,(5.15)

∀k = 1, . . . ,K wk ≥ 0.(5.16)
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Remark 5.1. Since the theory of Sections 4 and 5.1 partly assumes
that mj belongs to a compact set in C

+ bounded away from the real line,
we might want to add to the real optimization program the constraints that
−1/ε≤ aj ≤ 1/ε and that ε≤ bj ≤ 1/ε, for some small ε > 0. Our simulations
indicate that for a small value of ε such as ε= 10−6, this makes no difference
in practice.

Sequential linear programming. While the optimization program defined
in equations (5.11)–(5.16) may appear daunting at first sight because of its
non-convexity, it is, in fact, solved quickly and efficiently by off-the-shelf opti-
mization software implementing Sequential Linear Programming (SLP). The
key is to linearize equations (5.12)–(5.13), the two constraints that embody
the Marčenko–Pastur equation, around an approximate solution point. Once
they are linearized, the optimization program (5.11)–(5.16) becomes a stan-
dard Linear Programming (LP) problem, which can be solved very quickly.
Then we linearize again equations (5.12)–(5.13) around the new point, and
this generates a new LP problem; hence the name: Sequential Linear Pro-
gramming. The software iterates until a satisfactory degree of convergence
is achieved. All of this is handled automatically by the SLP optimizer. The
user only needs to specify the problem (5.11)–(5.16), as well as some starting
point, and then launch the SLP optimizer. For our SLP optimizer, we se-
lected a standard off-the-shelf commercial software: SNOPTTM Version 7.2–
5; see Gill, Murray and Saunders (2002). While SNOPTTM was originally
designed for sequential quadratic programming, it also handles SLP, since
linear programming can be viewed as a particular case of quadratic pro-
gramming with no quadratic term.

Starting point. A neutral way to choose the starting point is to place
equal weights on all the c.d.f.’s in our basis: wk ≡ 1/K(k = 1, . . . ,K). Then it
is necessary to solve the Marčenko–Pastur equation numerically once before
launching the SLP optimizer, in order to compute the values of m̆F (xj)

(j = 1, . . . , p) that correspond to this initial choice of H̃ =
∑K

k=1Mk/K. The
initial values for aj are taken to be Re[m̆F (xj)], and Im[m̆F (xj)] for bj
(j = 1, . . . , p). If the choice of equal weights wk ≡ 1/K for the starting point
does not lead to convergence of the optimization program within a pre-
specified limit on the maximum number of iterations, we choose random
weights wk generated i.i.d. ∼ Uniform[0,1] (rescaled to sum up to one),
repeating this process until convergence finally occurs. In the vast majority
of cases, the optimization program already converges on the first try. For
example, over 1000 Monte Carlo simulations using the design of Section 6.1
with p= 100 and n= 300, the optimization program converged on the first
try 994 times and on the second try the remaining 6 times.
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Fig. 1. Mean and median CPU times (in seconds) for optimization program as function
of matrix dimension. The design is the one of Section 6.1 with n= 3p. Every point is the
result of 1000 Monte Carlo simulations.

Optimization time. Figure 1 gives some information on how the opti-
mization time increases with the matrix dimension.

The main reason for the rate at which the optimization time increases
with p is that the number of grid points in (5.6) increases linearly in p.
This linear rate is not a requirement for our asymptotic results. Therefore,
if necessary, it is possible to pick a less-than-linear rate of increase in the
number of grid points to speed up the optimization for very large matrices.

Estimating the covariance matrix. Once the SLP optimizer has con-
verged, it generates optimal values (a∗1, . . . , a

∗
p), (b

∗
1, . . . , b

∗
p) and (w∗

1, . . . ,w
∗
K).

The first two sets of variables at the optimum are used to estimate the oracle
shrinkage factors. From the reconstructed m̆∗

F (xj)≡ a∗j + ib∗j , we deduce by
linear interpolation m̆∗

F (λj), for j = 1, . . . , p. Our estimator of the covariance

matrix Ŝn is built by keeping the same eigenvectors as the sample covariance
matrix, and dividing each sample eigenvalue λj by the following correction
factor:

∣∣∣∣1−
p

n
−

p

n
λjm̆

∗
F (λj)

∣∣∣∣
2

.

Corollary 5.2 assures us that the resulting bona fide nonlinear shrinkage
estimator is asymptotically equivalent to the oracle estimator Sor

n . Also,
we can see that, as the concentration ĉn = p/n gets closer to zero, that
is, as we get closer to fixed-dimension asymptotics, the magnitude of the
correction becomes smaller. This makes sense because under fixed-dimension
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asymptotics the sample covariance matrix is a consistent estimator of the
population covariance matrix.

Estimating the precision matrix. The output of the same optimization
process can also be used to estimate the oracle shrinkage factors for the pre-
cision matrix. Our estimator of the precision matrix Σ−1

n is built by keeping
the same eigenvectors as the sample covariance matrix, and multiplying the
inverse λ−1

j of each sample eigenvalue by the following correction factor:

1−
p

n
− 2

p

n
λjRe[m̆

∗
F (λj)].

Corollary 5.2 assures us that the resulting bona fide nonlinear shrinkage
estimator is asymptotically equivalent to the oracle estimator P or

n .

Estimating H . We point out that the optimal values (w∗
1, . . . ,w

∗
K) gener-

ated from the SLP optimizer yield a consistent estimate of H in the following
fashion:

H∗ ≡
K∑

k=1

w∗
kMk.

This estimator could be considered an alternative to the estimator in-
troduced by El Karoui (2008). The most salient difference between the two
optimization algorithms is that our objective function tries to match Fn

on R, whereas his objective function tries to match (a function of) mFn

on C
+. The deeper we go into C

+, the more “smoothed-out” is the Stielt-
jes transform, as it is an analytic function; therefore, the more information
is lost. However, the approach of El Karoui (2008) cannot get too close
to the real line because mFn starts looking like a sum of Dirac functions
(which are very ill-behaved) as one gets close to the real line, since Fn is
a step function. In a sense, the approach of El Karoui (2008) is to match
a smoothed-out version of a sum of ill-behaved Diracs. In this situation,
knowing “how much to smooth” is rather delicate, and even if it is done
well, it still loses information. By contrast, we have no information loss be-
cause we operate directly on the real line, and we have no problems with
Diracs because we match Fn instead of its derivative. The price to pay is
that our optimization program is not convex, whereas the one of El Karoui
(2008) is. But extensive simulations reported in the next section show that
off-the-shelf nonconvex optimization software—as the commercial package
SNOPT—can handle this particular type of a nonconvex problem in a fast,
robust and efficient manner.

It would have been of additional interest to compare our estimator of H
to the one of El Karoui (2008) in some simulations. But when we tried to
implement his estimator according to the implementation details provided,
we were not able to match the results presented in his paper. Furthermore,
we were not able to obtain his original software. As a result, we cannot make
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any definite statements concerning the performance of our estimator of H
compared to the one of El Karoui (2008).

Remark 5.2 (Cross-validation estimator). The implementation of our
nonlinear shrinkage estimators is not trivial and also requires the use of
a third-party SLP optimizer. It is therefore of interest whether an alternative
version exists that is easier to implement and exhibits (nearly) as good finite-
sample properties.

To this end an anonymous referee suggested to estimate the quanti-
ties d∗i of (3.2) by a leave-one-out cross-validation method. In particular, let
(λi[k], . . . , λp[k]); (u1[k], . . . , up[k]) denote a system of eigenvalues and eigen-
vectors of the sample covariance matrix computed from all the observed
data, except for the kth observation. Then d∗i of (3.2) can be approximated
by

dcvi ≡
1

n

n∑

k=1

(ui[k]
′yk)

2,

where the p× 1 vector yk denotes the kth row of the matrix Yn ≡XnΣ
1/2
n .

The motivation here is that

(ui[k]
′yk)

2 = ui[k]
′yky

′
kui[k],

where yk is independent of ui[k] and E(yky
′
k) = Σn (even though yky

′
k is of

rank one only).
We are grateful for this suggestion, since the cross-validation quanti-

ties dcvi can be computed without the use of any third-party optimization
software, and the corresponding computer code is very short.

On the other hand, the cross-validation estimator has three disadvantages.
First, when p is large, it takes much longer to compute the cross-validation
estimator. The reason is that the spectral decomposition of a p×p covariance
matrix has to be computed n times as opposed to only one time. Second,
the cross-validation method only applies to the estimation of the covariance
matrix Σn itself. It is not clear how to adapt this method to the (direct)
estimation of the precision matrix Σ−1

n or any other smooth function of Σn.
Third, the performance of the cross-validation estimator cannot match the
performance of our method; see Section 6.8.

Remark 5.3. Another approach proposed recently is the one of Mestre
and Lagunas (2006). They use so-called “G-estimation,” that is, asymptotic
results that assume the sample size n and the matrix dimension p go to
infinity together, to derive minimum variance beam formers in the context
of the spatial filtering of electronic signals. There are several differences
between their paper and the present one. First, Mestre and Lagunas (2006)
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are interested in an optimal p× 1 weight vector wopt given by

wopt ≡ argmin
w

w′Σnw subject to w′sd = 1,

where sd is a p × 1 vector containing signal information. Consequently,
Mestre and Lagunas (2006) are “only” interested in a certain functional
of Σn, while we are interested in the full covariance matrix Σn and also in
the full precision matrix Σ−1

n . Second, they use the real Stieltjes transform,
which is different from the more conventional complex Stieltjes transform
used in random matrix theory and in the present paper. Third, their random
variables are complex whereas ours are real. The cumulative impact of these
differences is best exemplified by the estimation of the precision matrix:
Mestre and Lagunas [(2006), page 76] recommend (1 − p/n)S−1

n , which is
just a rescaling of the inverse of the sample covariance matrix, whereas our
Section 3.2 points to a highly nonlinear transformation of the eigenvalues of
the sample covariance matrix.

6. Monte Carlo simulations. In this section, we present the results of var-
ious sets of Monte Carlo simulations designed to illustrate the finite-sample
properties of the nonlinear shrinkage estimator Ŝn. As detailed in Section 3,
the finite-sample optimal estimator in the class of rotation-equivariant es-
timators is given by S∗

n as defined in (3.3). Thus, the improvement of the

shrinkage estimator Ŝn over the sample covariance matrix will be measured
by how closely this estimator approximates S∗

n relative to the sample covari-
ance matrix. More specifically, we report the Percentage Relative Improve-
ment in Average Loss (PRIAL), which is defined as

PRIAL≡ PRIAL(Σ̂n)≡ 100×

{
1−

E[‖Σ̂n − S∗
n‖

2]

E[‖Sn − S∗
n‖

2]

}
%,(6.1)

where Σ̂n is an arbitrary estimator of Σn. By definition, the PRIAL of Sn

is 0%, while the PRIAL of S∗
n is 100%.

Most of the simulations will be designed around a population covariance
matrix Σn that has 20% of its eigenvalues equal to 1, 40% equal to 3 and
40% equal to 10. This is a particularly interesting and difficult example
introduced and analyzed in detail by Bai and Silverstein (1998). For concen-
tration values such as c= 1/3 and below, it displays “spectral separation;”
that is, the support of the distribution of sample eigenvalues is the union
of three disjoint intervals, each one corresponding to a Dirac of population
eigenvalues. Detecting this pattern and handling it correctly is a real chal-
lenge for any covariance matrix estimation method.

6.1. Convergence. The first set of Monte Carlo simulations shows how
the nonlinear shrinkage estimator Ŝn behaves as the matrix dimension p and
the sample size n go to infinity together. We assume that the concentration
ratio ĉn = p/n remains constant and equal to 1/3. For every value of p (and
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Fig. 2. Comparison of the nonlinear vs. linear shrinkage estimators. 20% of population
eigenvalues are equal to 1, 40% are equal to 3 and 40% are equal to 10. Every point is the
result of 1000 Monte Carlo simulations.

hence n), we run 1000 simulations with normally distributed variables. The
PRIAL is plotted in Figure 2. For the sake of comparison, we also report
the PRIALs of the oracle Sor

n and the optimal linear shrinkage estimator Sn

developed by Ledoit and Wolf (2004).

One can see that the performance of the nonlinear shrinkage estimator Ŝn

converges quickly toward that of the oracle and of S∗
n. Even for relatively

small matrices of dimension p = 30, it realizes 88% of the possible gains
over the sample covariance matrix. The optimal linear shrinkage estima-
tor Sn also performs well relative to the sample covariance matrix, but the
improvement is limited: in general, it does not converge to 100% under large-
dimensional asymptotics. This is because there are strong nonlinear effects in
the optimal shrinkage of sample eigenvalues. These effects are clearly visible
in Figure 3, which plots a typical simulation result for p= 100.

One can see that the nonlinear shrinkage estimator Ŝn shrinks the eigen-
values of the sample covariance matrix almost as if it “knew” the correct
shape of the distribution of population eigenvalues. In particular, the various
curves and gaps of the oracle nonlinear shrinkage formula are well picked up
and followed by this estimator. By contrast, the linear shrinkage estimator
can only use the best linear approximation to this highly nonlinear transfor-
mation. We also plot the 45-degrees line as a visual reference to show what
would happen if no shrinkage was applied to the sample eigenvalues, that
is, if we simply used Sn.

6.2. Concentration. The next set of Monte Carlo simulations shows how
the PRIAL of the shrinkage estimators varies as a function of the concen-
tration ratio ĉn = p/n if we keep the product p× n constant and equal to
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Fig. 3. Nonlinearity of the oracle shrinkage formula. 20% of population eigenvalues are
equal to 1, 40% are equal to 3 and 40% are equal to 10. p= 100 and n= 300.

9000. We keep the same population covariance matrix Σn as in Section 6.1.
For every value of p/n, we run 1000 simulations with normally distributed

variables. The respective PRIALs of Sor
n , Ŝn and Sn are plotted in Figure 4.

One can see that the nonlinear shrinkage estimator performs well across
the board, closely in line with the oracle, and always achieves at least 90%
of the possible improvement over the sample covariance matrix. By contrast,

Fig. 4. Effect of varying the concentration ratio ĉn = p/n. 20% of population eigenvalues
are equal to 1, 40% are equal to 3 and 40% are equal to 10. Every point is the result of
1000 Monte Carlo simulations.
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the linear shrinkage estimator achieves relatively little improvement over the
sample covariance matrix when the concentration is low. This is because,
when the sample size is large relative to the matrix dimension, there is a lot
of precise information about the optimal nonlinear way to shrink the sample
eigenvalues that is waiting to be extracted by a suitable nonlinear procedure.
By contrast, when the sample size is not so large, the information about the
population covariance matrix is relatively fuzzy; therefore a simple linear
approximation can achieve up to 93% of the potential gains.

6.3. Dispersion. The third set of Monte Carlo simulations shows how
the PRIAL of the shrinkage estimators varies as a function of the dispersion
of population eigenvalues. We take a population covariance matrix Σn with
20% of its eigenvalues equal to 1, 40% equal to 1 + 2d/9 and 40% equal
to 1 + d, where the dispersion parameter d varies from 0 to 20. Thus, for
d= 0, Σn is the identity matrix and, for d= 9, Σn is the same matrix as in
Section 6.1. The sample size is n= 300 and the matrix dimension is p= 100.
For every value of d, we run 1000 simulations with normally distributed
variables. The respective PRIALs of Sor

n , Ŝn and Sn are plotted in Figure 5.
One can see that the linear shrinkage estimator Sn beats the nonlinear

shrinkage estimator Ŝn for very low dispersion levels. For example, when
d= 0, that is, when the population covariance matrix is equal to the iden-
tity matrix, Sn realizes 99.9% of the possible improvement over the sample
covariance matrix, while Ŝn realizes “only” 99.4% of the possible improve-
ment. This is because, in this case, linear shrinkage is optimal or (when d
is strictly positive but still small) nearly optimal Hence there is nothing too
little to be gained by resorting to a nonlinear shrinkage method. However, as

Fig. 5. Effect of varying the dispersion of population eigenvalues. 20% of population
eigenvalues are equal to 1, 40% equal to 1 + 2d/9 and 40% equal to 1 + d, where the
dispersion parameter d varies from 0 to 20. p= 100 and n= 300. Every point is the result
of 1000 Monte Carlo simulations.
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Table 1

Effect of nonnormality. 20% of population eigenvalues are equal to 1, 40% are equal to 3
and 40% are equal to 10. 1000 Monte Carlo simulations with p= 100 and n= 300

Average squared
PRIAL

Frobenius loss

df = 3 df =∞ df = 3 df =∞

Sample covariance matrix 5.856 5.837 0% 0%
Linear shrinkage estimator 1.883 1.883 67.84% 67.74%
Nonlinear shrinkage estimator 0.128 0.133 97.81% 97.71%
Oracle 0.043 0.041 99.27% 99.30%

dispersion increases, linear shrinkage delivers less and less improvement over
the sample covariance matrix, while nonlinear shrinkage retains a PRIAL
above 96%, and close to that of the oracle.

6.4. Fat tails. We also have some results on the effect of non-normality
on the performance of the shrinkage estimators. We take the same popula-
tion covariance matrix as in Section 6.1, that is, Σn has 20% of its eigen-
values equal to 1, 40% equal to 3 and 40% equal to 10. The sample size
is n= 300, and the matrix dimension is p= 100. We compare two types of
random variates: a Student t distribution with df = 3 degrees of freedom,
and a Student t distribution with df =∞ degrees of freedom (which is the
Gaussian distribution). For each number of degrees of freedom df, we run

1000 simulations. The respective PRIALs of Sor
n , Ŝn and Sn are summarized

in Table 1.
One can see that departure from normality does not have any noticeable

effect on performance.

6.5. Precision matrix. The next set of Monte Carlo simulations focuses
on estimating the precision matrix Σ−1

n . The definition of the PRIAL, in
this subsection only, is given by

PRIAL≡PRIAL(Π̂n)≡ 100×

{
1−

E[‖Π̂n −P ∗
n‖

2]

E[‖S−1
n −P ∗

n‖
2]

}
%,(6.2)

where Π̂n is an arbitrary estimator of Σ−1
n . By definition, the PRIAL of S−1

n
is 0% while the PRIAL of P ∗

n is 100%.
We take the same population eigenvalues as in Section 6.1. The concentra-

tion ratio ĉn = p/n is set to the value 1/3. For various values of p between
30 and 200, we run 1000 simulations with normally distributed variables.

The respective PRIALs of P or
n , P̂n, Ŝ

−1
n and S

−1
n are plotted in Figure 6.

One can see that the nonlinear shrinkage method seems to be just as
effective for the purpose of estimating the precision matrix as it is for the
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Fig. 6. Estimating the precision matrix. 20% of population eigenvalues are equal to 1,
40% are equal to 3 and 40% are equal to 10. Every point is the result of 1000 Monte Carlo
simulations.

purpose of estimating the covariance matrix itself. Moreover, there is a clear
benefit in directly estimating the precision matrix by means of P̂n as opposed
to the indirect estimation by means of Ŝ−1

n (which on its own significantly

outperforms S
−1
n ).

6.6. Shape. Next, we study how the nonlinear shrinkage estimator Ŝn

performs for a wide variety of shapes of population spectral densities. This
requires using a family of distributions with bounded support and which,
for various parameter values, can take on different shapes. The best-suited
family for this purpose is the beta distribution. The c.d.f. of the beta distri-
bution with parameters (α,β) is

∀x∈ [0,1] F(α,β)(x) =
Γ(α+ β)

Γ(α)Γ(β)

∫ x

0
tα−1(1− t)β−1 dt.

While the support of the beta distribution is [0,1], we shift it to the interval
[1,10] by applying a linear transformation. Thanks to the flexibility of the
beta family of densities, selecting different parameters (α,β) enables us to
generate eight different shapes for the population spectral density: rectan-
gular (1,1), linearly decreasing triangle (1,2), linearly increasing triangle
(2,1), circular (1.5,1.5), U-shaped (0.5,0.5), bell-shaped (5,5), left-skewed
(5,2) and right-skewed (2,5); see Figure 7 for a graphical illustration.

For every one of these eight beta densities, we take the population eigen-
values to be equal to

1 + 9F−1
(α,β)

(
i

p
−

1

2p

)
, i= 1, . . . , p.
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Fig. 7. Shape of the beta density for various parameter values. The support of the beta
density has been shifted to the interval [1,10] by a linear transformation. To enhance clar-
ity, the densities corresponding to the parameters (2,1) and (5,2) have been omitted, since
they are symmetric to (1,2) and (2,5), respectively, about the mid-point of the support.

The concentration ratio ĉn = p/n is equal to 1/3. For various values of p
between 30 and 200, we run 1000 simulations with normally distributed
variables. The PRIAL of the nonlinear shrinkage estimator Ŝn is plotted in
Figure 8.

As in all the other simulations presented above, the PRIAL of the non-
linear shrinkage estimator always exceeds 88%, and more often than not
exceeds 95%. To preserve the clarity of the picture, we do not report the

Fig. 8. Performance of the nonlinear shrinkage with beta densities. The various curves
correspond to different shapes of the population spectral density. The support of the popu-
lation spectral density is [1,10].
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PRIALs of the oracle and of the linear shrinkage estimator; but as usual,
the nonlinear shrinkage estimator ranked between them.

6.7. Fixed-dimension asymptotics. Finally, we report a set of Monte Carlo
simulations that departs from the large-dimensional asymptotics assumption
under which the nonlinear shrinkage estimator Ŝn was derived. The goal is to
compare it against the sample covariance matrix Sn in the setting where Sn

is known to have certain optimality properties (at least in the normal case):
traditional asymptotics, that is, when the number of variables p remains
fixed while the sample size n goes to infinity. This gives as much advantage
to the sample covariance matrix as it can possibly have. We fix the dimen-
sion p= 100 and let the sample size n vary from n= 125 to n= 10,000. In
practice, very few applied researchers are fortunate enough to have as many
as n= 10,000 i.i.d. observations, or a concentration ratio c= p/n as low as

0.01. The respective PRIALs of Sor
n , Ŝn and Sn are plotted in Figure 9.

One crucial difference with all the previous simulations is that the tar-
get for the PRIAL is no longer S∗

n, but instead the population covariance
matrix Σ itself, because now Σ can be consistently estimated. Note that,
since the matrix dimension is fixed, Σn does not change with n; therefore,
we can drop the subscript n. Thus, in this subsection only, the definition of
the PRIAL is given by

PRIAL≡ PRIAL(Σ̂n)≡ 100×

{
1−

E[‖Σ̂n −Σ‖2]

E[‖Sn −Σ‖2]

}
%,

where Σ̂n is an arbitrary estimator of Σ. By definition, the PRIAL of Sn is
0% while the PRIAL of Σ is 100%.

Fig. 9. Fixed-dimension asymptotics. 20% of population eigenvalues are equal to 1, 40%
are equal to 3 and 40% are equal to 10. Variables are normally distributed. Every point is
the result of 1000 Monte Carlo simulations.
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In this setting, Ledoit and Wolf (2004) acknowledge that the improve-
ment of the linear shrinkage estimator over the sample covariance matrix
vanishes asymptotically, because the optimal linear shrinkage intensity van-
ishes. Therefore it should be no surprise that the PRIAL of Sn goes to
zero in Figure 9. Perhaps more surprising is the continued ability of the
oracle and the nonlinear shrinkage estimator to improve by approximately
60% over the sample covariance matrix, even for a sample size as large as
n = 10,000, and with no sign of abating as n goes to infinity. This is an
encouraging result, as our simulation gave every possible advantage to the
sample covariance matrix by placing it in the asymptotic conditions where
it possesses well-known optimality properties, and where the earlier linear
shrinkage estimator of Ledoit and Wolf (2004) is most disadvantaged.

Intuitively, this is because the oracle shrinkage formula becomes more and
more nonlinear as n goes to infinity for fixed p. Bai and Silverstein (1998)
show that the sample covariance matrix exhibits “spectral separation” when
the concentration ratio p/n is sufficiently small. It means that the sample
eigenvalues coalesce into clusters, each cluster corresponding to a Dirac of
population eigenvalues. Within a given cluster, the smallest sample eigen-
values need to be nudged upward, and the largest ones downward, to the
average of the cluster. In other words: full shrinkage within clusters, and
no shrinkage between clusters. This is illustrated in Figure 10, which plots
a typical simulation result for n= 10,000.2

By detecting this intricate pattern automatically, that is, by discovering
where to shrink and where not to shrink, the nonlinear shrinkage estima-
tor Ŝn showcases its ability to generate substantial improvements over the
sample covariance matrix even for very low concentration ratios.

6.8. Additional Monte Carlo simulations.

6.8.1. Comparisons with other estimators. So far, we have compared the
nonlinear shrinkage estimator Ŝn only to the linear shrinkage estimator Sn

and the oracle estimator Sor
n to keep the resulting figures concise and legible.

It is of additional interest to compare the nonlinear shrinkage estimator
also to some other estimators from the literature. To this end we consider
the following set of estimators:

• The estimator of Stein (1975);
• The estimator of Haff (1980);
• The estimator recently proposed by Won et al. (2009). This estimator is

based on a maximum likelihood approach, assuming normality, with an
explicit constraint on the condition number of the covariance matrix. The

2For enhanced ability to distinguish linear shrinkage from the sample covariance matrix,
we plot the two uninterrupted lines, even though the sample eigenvalues lie in three disjoint
intervals (as can be seen from nonlinear shrinkage).
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Fig. 10. Nonlinear shrinkage under fixed-dimension aymptotics. 20% of population
eigenvalues are equal to 1, 40% are equal to 3 and 40% are equal to 10. p = 100 and
n= 10,000. The oracle is not shown because it is virtually identical to the nonlinear shrink-
age estimator.

resulting estimator turns out to be a nonlinear shrinkage estimator as
well: all “small” sample eigenvalues are brought up to a lower bound, all
“large” sample eigenvalues are brought down to an upper bound, and all
“intermediate” sample eigenvalues are left unchanged.

Therefore, the corresponding transformation from sample eigenvalues
to shrunk eigenvalues is step-wise linear: first flat, then a 45-degree line,
and then flat again. The upper and lower bounds are determined by the
desired constraint on the condition number κ. If such an explicit constraint
is not available from a priori information, a suitable constraint number κ̂
can be computed in a data-dependent fashion by a K-fold cross-validation
method, which is the method we use.3

In particular, the cross-validation method selects κ̂ by optimizing over
a finite grid {κ1, κ2, . . . , κL} that has to be supplied by the user. To
this end we choose L= 10 and the κl log-linearly spaced between 1 and
κ(Sn), for l = 1, . . . ,L; here κ(Sn) denotes the condition number of the
sample covariance matrix. More precisely, for l = 1, . . . ,L, κl ≡ exp(ωl),
where {ω1, ω2, . . . , ωL} is the equally-spaced grid with ω1 ≡ 0 and ωL ≡
log(κ(Sn)).

• The cross-validation version of the nonlinear shrinkage estimator Ŝn; see
Remark 5.2.

3We are grateful to Joong-Ho Won for supplying us with corresponding Matlab code.



NONLINEAR SHRINKAGE ESTIMATION 33

Fig. 11. Comparison of various estimators. 20% of population eigenvalues are equal to 1,
40% are equal to 3 and 40% are equal to 10. Every point is the result of 1000 Monte Carlo
simulations.

We repeat the simulation exercises of Sections 6.1–6.3, replacing the oracle
estimator and the linear shrinkage estimator with the above set of other
estimators. The respective PRIALs of the various estimators are plotted in
Figures 11–13.

One can see that the nonlinear shrinkage estimator Ŝn outperforms all
other estimators, with the cross-validation version of Ŝn in second place,
followed by the estimators of Stein (1975), Won et al. (2009) and Haff
(1980).

Fig. 12. Effect of varying the concentration ratio ĉn = p/n. 20% of population eigenval-
ues are equal to 1, 40% are equal to 3 and 40% are equal to 10. Every point is the result
of 1000 Monte Carlo simulations.



34 O. LEDOIT AND M. WOLF

Fig. 13. Effect of varying the dispersion of population eigenvalues. 20% of population
eigenvalues are equal to 1, 40% equal to 1 + 2d/9 and 40% equal to 1 + d, where the
dispersion parameter d varies from 0 to 20. p= 100 and n= 300. Every point is the result
of 1000 Monte Carlo simulations.

6.8.2. Comparisons based on a different loss function. So far, the PRIAL
has been based on the loss function

LFr(Σ̂n,Σn)≡ ‖Σ̂n −Σn‖
2.

It is of additional interest to add some comparisons based on a different loss
function. To this end we use the scale-invariant loss function proposed by
James and Stein (1961), namely

LJS(Σ̂n,Σn)≡ trace(Σ̂nΣ
−1
n )− log det(Σ̂nΣ

−1
n )− p.(6.3)

We repeat the simulation exercises of Sections 6.1–6.3, replacing LFr

with LJS . The respective PRIALs of Sor
n , Ŝn, and Sn are plotted in Fig-

ures 14–16.
One can see that the results do not change much qualitatively. If anything,

the comparisons are now even more favorable to the nonlinear shrinkage
estimator, in particular when comparing Figure 5 to Figure 16.

7. Conclusion. Estimating a large-dimensional covariance matrix is a very
important and challenging problem. In the absence of additional information
concerning the structure of the true covariance matrix, a successful approach
consists of appropriately shrinking the sample eigenvalues, while retaining
the sample eigenvectors. In particular, such shrinkage estimators enjoy the
desirable property of being rotation-equivariant.

In this paper, we have extended the linear approach of Ledoit and Wolf
(2004) by applying a nonlinear transformation to the sample eigenvalues.
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Fig. 14. Comparison of the nonlinear vs. linear shrinkage estimators. 20% of population
eigenvalues are equal to 1, 40% are equal to 3 and 40% are equal to 10. The PRIALs
are based on the James–Stein (1961) loss function (6.3). Every point is the result of 1000
Monte Carlo simulations.

The specific transformation suggested is motivated by the oracle estima-
tor of Ledoit and Péché (2011), which in turn was derived by studying
the asymptotic behavior of the finite-sample optimal rotation-equivariant
estimator (i.e., the estimator with the rotation-equivariant property that
is closest to the true covariance matrix when distance is measured by the
Frobenius norm).

Fig. 15. Effect of varying the concentration ratio ĉn = p/n. 20% of population eigenval-
ues are equal to 1, 40% are equal to 3 and 40% are equal to 10. The PRIALs are based on
the James–Stein (1961) loss function (6.3). Every point is the result of 1000 Monte Carlo
simulations.



36 O. LEDOIT AND M. WOLF

Fig. 16. Effect of varying the dispersion of population eigenvalues. 20% of population
eigenvalues are equal to 1, 40% equal to 1 + 2d/9 and 40% equal to 1 + d, where the
dispersion parameter d varies from 0 to 20. p= 100 and n= 300. The PRIALs are based
on the James and Stein (1961) loss function (6.3). Every point is the result of 1000 Monte
Carlo simulations.

The oracle estimator involves the Stieltjes transform of the limiting spec-
tral distribution of the sample eigenvalues, evaluated at various points on
the real line. By finding a way to consistently estimate these quantities,
in a uniform sense, we have been able to construct a bona fide nonlinear
shrinkage estimator that is asymptotically equivalent to the oracle.

Extensive Monte Carlo studies have demonstrated the improved finite-
sample properties of our nonlinear shrinkage estimator compared to the
sample covariance matrix and the linear shrinkage estimator of Ledoit and
Wolf (2004), as well as its fast convergence to the performance of the oracle.
In particular, when the sample size is very large compared to the dimension,
or the population eigenvalues are very dispersed, the nonlinear shrinkage
estimator still yields a significant improvement over the sample covariance
matrix, while the linear shrinkage estimator no longer does.

Many statistical applications require an estimator of the inverse of the
covariance matrix, which is called the precision matrix. We have modified
our nonlinear shrinkage approach to this alternative problem, thereby con-
structing a direct estimator of the precision matrix. Monte Carlo studies
have confirmed that this estimator yields a sizable improvement over the
indirect method of simply inverting the nonlinear shrinkage estimator of the
covariance matrix itself.

The scope of this paper is limited to the case where the matrix dimension
is smaller than the sample size. The other case, where the matrix dimension
exceeds the sample size, requires certain modifications in the mathematical
treatment, and is left for future research.
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