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Abstract. Research is often described as a problem-solving activity,
and as a result, descriptions of problems and solutions are an essential
part of the scientific discourse used to describe research activity. We
present an automatic classifier that, given a phrase that may or may not
be a description of a scientific problem or a solution, makes a binary
decision about problemhood and solutionhood of that phrase. We recast
the problem as a supervised machine learning problem, and define a
set of 8 features correlated with the target categories, and use several
machine learning algorithms on this task. We also create our own corpus
of 2000 positive and negative examples of problems and solutions. We find
that we can distinguish problems from non-problems with an accuracy of
82.4%, and solutions from non-solutions with an accuracy of 81.5%. Our
two most helpful features for the task are syntactic information (POS
tags) and document and word embeddings.

1 Introduction

Problem solving is generally regarded as the most important cognitive activity in
everyday and professional contexts [1]. Many studies on formalising the cognitive
process behind problem-solving exist, for instance [2]. [3] argues that we all share
knowledge of the thought/action problem-solution process involved in real life,
and so our writings will often reflect this order. There is general agreement
amongst theorists that state that the nature of the research process can be
viewed as a problem-solving activity [4–7].

One of the best-documented problem-solving patterns was established by
Winter [8]. Winter analysed thousands of examples of technical texts, and noted
that these texts can largely be described in terms of a four-part pattern con-
sisting of Situation, Problem, Solution and Evaluation. This is very similar to
the pattern described by [5], which consists of Introduction-Theory, Problem-
Experiment-Comment and Conclusion. The difference is that in Winter’s view,
a solution only becomes a solution after it has been evaluated positively. Hoey
changes Winter’s pattern by introducing the concept of Response in place of
Solution [9]. This seems to describe the situation in science better, where eval-
uation is mandatory for research solutions to be accepted by the community. In
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Hoey’s pattern, the Situation (which is generally treated as optional) provides
background information; the Problem describes an issue which requires atten-
tion; the Response provides a way to deal with the issue, and the Evaluation
assesses how effective the response is.

An example of this pattern in the context of the Goldilocks story can be seen
in Figure 1. In this text, there is a preamble providing the setting of the story (i.e.
Goldilocks is lost in the woods), which is called the Situation in Hoey’s system.
A Problem in encountered when Goldilocks becomes hungry. Her first Response
is to try the porridge in big bear’s bowl, but she gives this a negative Evaluation
(“too hot!”) and so the pattern returns to the Problem. This continues in a cyclic
fashion until the Problem is finally resolved by Goldilocks giving a particular
Response a positive Evaluation of baby bear’s porridge (“it’s just right”).

Fig. 1: Example of problem-solving pattern when applied to the Goldilocks story,
from [9].

It would be attractive to detect problem and solution statements automati-
cally in text. This holds true both from a theoretical and a practical viewpoint.
Theoretically, we know that sentiment detection is related to problem-solving
activity, because of the perception that “bad” situations are transformed into
“better” ones via problem-solving. The exact mechanism of how this can be
detected would advance the state of the art in text understanding. In terms of
linguistic realisation, problem and solution statements come in many variants
and reformulations, often in the form of positive or negated statements about
the conditions, results and causes of problem–solution pairs. Detecting and in-
terpreting those would give us a reasonably objective manner to test a system’s
understanding capacity. Practically, being able to detect any mention of a prob-
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lem is a first step towards detecting a paper’s specific research goal. Being able
to do this has been a goal for scientific information retrieval for some time, and
if successful, it would improve the effectiveness of scientific search immensely.
Detecting problem and solution statements of papers would also enable us to
compare similar papers and eventually even lead to automatic generation of
review articles in a field.

There has been some computational effort on the task of identifying problem-
solving patterns in text. However, most of the prior work has not gone beyond
the usage of keyword analysis and some simple contextual examination of the
pattern. [10] presents a corpus-based analysis of lexio-grammatical patterns for
problem and solution clauses using articles from professional and student reports.
Problem and solution keywords were used to search their corpora, and each
occurrence was analysed to determine grammatical usage of the keyword. More
interestingly, the causal category associated with each keyword in their context
was also analysed. For example, Reason-Result or Means-Purpose were common
causal categories found to be associated with problem keywords.

The goal of the work by [11] was to determine words which are semantically
similar to problem and solution, and to determine how these words are used to
signal problem-solution patterns. However, their corpus-based analysis used ar-
ticles from the Guardian newspaper. Since the domain of newspaper text is very
different from that of scientific text, we decided not to consider those keywords
associated with problem-solving patterns for use in our work.

Instead of a keyword-based approach, [12] used discourse markers to exam-
ine how the problem-solution pattern was signalled in text. In particular, they
examined how adverbials associated with a result such as “thus, therefore, then,
hence” are used to signal a problem-solving pattern. Problem solving also has
been studied in the framework of discourse theories such as Rhetorical Structure
Theory [13] and Argumentative Zoning [14]. RST uses a solutionhood relation as
one of the 23 relations that can hold between elementary discourse units. How-
ever, the definition of problemhood used in RST differs too much from ours to be
of direct use here. Argumentative Zoning [14] contains zones such as Gap/Weak
which have a close relation to our definition of problemhood, and so knowledge
from this particular zone may prove beneficial in the future, although we do not
study this effect in the current paper.

In this work, we approach the task of identifying problem-solving patterns
in scientific text. We choose to use the model of problem-solving described by
Hoey [9]. This pattern comprises four parts: Situation, Problem, Response and
Evaluation. The Situation element is considered optional to the pattern, and so
our focus centres on the core pattern elements.

2 Goal statement and task

Many surface features in the text offer themselves up as potential signals for de-
tecting problem-solving patterns in text. However, since Situation is an optional
element, we decided to focus on either Problem or Response and Evaluation as
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signals of the pattern. Moreover, we decide to look for each type in isolation.
Our reasons for this are as follows: It is quite rare for an author to introduce a
problem without resolving it using some sort of response, and so this is a good
starting point in identifying the pattern. There are exceptions to this, as authors
will sometimes introduce a problem and then leave it to future work, but overall
there should be enough signal in the Problem element to make our method of
looking for it in isolation worthwhile. The second signal we look for is the use of
Response and Evaluation within the same sentence. Similar to Problem elements,
we hypothesise that this formulation is well enough signalled externally to help
us in detecting the pattern. For example, consider the following Response and
Evaluation: “One solution is to use smoothing.” In this statement, the author
is explicitly stating that smoothing is a solution to a problem which must have
been mentioned in a prior statement. In scientific text, we often observe that
solutions implicitly contain both Response and Evaluation (positive) elements.
Therefore, due to these reasons there should be sufficient external signals for the
two pattern elements we concentrate on here.

When attempting to find Problem elements in text, we run into the issue
that the word “problem” actually has at least two word senses that need to be
distinguished. There is a word sense of “problem” that means something which
must be undertaken (i.e. task), while another sense is the core sense of the word,
something that is problematic and negative. Only the latter sense is aligned
with our sense of problemhood. This is because the simple description of a task
does not predispose problemhood, just a wish to perform some act. Consider the
following examples, where the non-desired word sense is being used:

– “Das and Petrov (2011) also consider the problem of unsupervised bilingual
POS induction.” [15].

– “In this paper, we describe advances on the problem of NER in Arabic
Wikipedia.” [16].

Here, the author explicitly states that the phrases in orange are problems,
they align with our definition of research tasks and not with what we call here
‘problematic problems’. We will now give some examples from our corpus for the
desired, core word sense:

– “The major limitation of supervised approaches is that they require annota-
tions for example sentences.” [17].

– “To solve the problem of high dimensionality we use clustering to group the
words present in the corpus into much smaller number of clusters.” [18].

When creating our corpus of positive and negative examples, we took care to
select only problem strings that satisfy our definition of problemhood; section 3
will explain how we did that.
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3 Corpus creation

Our new corpus is a subset of the latest version of the ACL anthology released
in March, 20161 which contains 22,878 articles in the form of PDFs and OCRed
text.2 The 2016 version was also parsed using ParsCit [19]. ParsCit recognises
not only document structure, but also bibliography lists as well as references
within running text. A random subset of 2,500 papers was collected covering
the entire ACL timeline. In order to disregard non-article publications such as
introductions to conference proceedings or letters to the editor, only documents
containing abstracts were considered. The corpus was preprocessed using tokeni-
sation, lemmatisation and dependency parsing with the Rasp Parser [20].

Our goal was to define a ground truth for problem and solution strings, while
covering as wide a range as possible of syntactic variations in which such strings
naturally occur. However, to simplify the task, we only consider here problem
and solution descriptions that are at most one sentence long. In reality, of course,
many problem descriptions and solution descriptions go beyond single sentence,
and require for instance an entire paragraph. However, we also know that short
summaries of problems and solutions are very prevalent in science, and also that
these tend to occur in the most prominent places in a paper. This is because
scientists are trained to express their contribution and the obstacles possibly
hindering their success, in an informative, succinct manner. That is the reason
why we can afford to only look for shorter problem and solution descriptions,
ignoring those that cross sentence boundaries.

Fig. 2: Example of our extraction method for problems using dependencies.

To define our ground truth, we examined the parsed dependencies and looked
for a target word (“problem/solution”) in subject position, and then chose its
syntactic argument as our candidate problem or solution phrase. To increase the
variation, i.e., to find as many different-worded problem and solution descriptions
as possible, we additionally used semantically similar words (near-synonyms) of
the target words “problem” or “solution” for the search. Semantic similarity

1 http://acl-arc.comp.nus.edu.sg/
2 The corpus comprises 3,391,198 sentences, 71,149,169 words and 451,996,332 char-

acters.
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was defined as cosine in a deep learning distributional vector space, trained us-
ing Word2Vec [21] on 18,753,472 sentences from a biomedical corpus based on
all full-text Pubmed articles [22]. From the 200 words which were semantically
closest to “problem”, we manually selected 28 clear synonyms. From the 200
semantically closest words to “solution” we similarly chose 19. Of the sentences
matching our dependency search, a subset of problem and solution candidate
sentences were randomly selected. An example of this is shown in Figure 2.
Here, the target word “drawback” is in subject position (highlighted in red),
and its clausal argument (ccomp) is “(that) it achieves low performance” (high-
lighted in purple). Examples of other arguments we searched for included copula
constructions and direct/indirect objects.

If more than one candidate was found in a sentence, one was chosen at
random. Non-grammatical sentences were excluded; these might appear in the
corpus as a result of its source being OCRed text.

The potential phrases expressing problems and solutions, respectively, were
then independently checked for correctness by two annotators (the two authors
of this paper). Correctness was defined by two criteria:

– The sentence must unambiguously and clearly state the phrase’s status as
either a problem or a solution. For problems, the guidelines state that the
phrase has to represent one of the following:

1. an unexplained phenomenon or a problematic state in science; or
2. a research question; or
3. an artifact that does not fulfil its stated specification.

For solutions, the phrase had to represent a response to a problem with a
positive evaluation. Implicit solutions were also allowed.

– The phrase must not lexically give away its status as problem or solution
phrase.

The second criterion saves us from machine learning cues that are too obvi-
ous. If for instance, the phrase itself contained the words “lack of” or “problem-
atic” or “drawback”, our manual check rejected it, because it would be too easy
for the machine learner to learn such cues, at the expense of many other, more
generally occurring cues.

We next needed to find negative examples for both cases. We wanted them
not to stand out on the surface as negative examples, so we chose them so as to
mimic the obvious characteristics of the positive examples as closely as possible.
We call the negative examples ‘non-problems’ and ‘non-solutions’ respectively.
We wanted the only differences between problems and non-problems to be of
a semantic nature, nothing that could be read off on the surface. We therefore
sampled a population of phrases that obey the same statistical distribution as
our problem and solution strings while making sure they really are negative ex-
amples. We started from sentences not containing any problem/solution words
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(i.e. those used as target words). From each such sentence, we at random se-
lected one syntactic subtree contained in it. From these, we randomly selected a
subset of negative examples of problems and solutions that satisfy the following
conditions:

– The distribution of the head POS tags of the negative strings should per-
fectly match the head POS tags3 of the positive strings. This has the purpose
of achieving the same proportion of surface syntactic constructions as ob-
served in the positive cases.

– The average lengths of the negative strings must be within a tolerance of the
average length of their respective positive candidates e.g., non-solutions must
have an average length very similar (i.e. +/- small tolerance) to solutions.
We chose a tolerance value of 3 characters.

Again, a human quality check was performed on non-problems and non-
solutions. For each candidate non-problem statement, the candidate was ac-
cepted if it did not contain a phenomenon, a problematic state, a research ques-
tion or a non-functioning artefact. If the string expressed a research task, without
explicit statement that there was anything problematic about it (i.e., the ‘wrong’
sense of “problem”, as described above), it was allowed as a non-problem. A
clause was confirmed as a non-solution if the string did not represent both a
response and positive evaluation.

If the annotator found that the sentence had been slightly mis-parsed, but did
contain a candidate, they were allowed to move the boundaries for the candidate
clause. This resulted in cleaner text, e.g., in the frequent case of coordination,
when non-relevant constituents could be removed.

From the set of sentences which passed the quality-test for both indepen-
dent assessors, 500 instances of positive and negative problems/solutions were
randomly chosen (i.e. 2000 instances in total).

4 Method

4.1 Experimental design

In our experiments, we used three classifiers, namely Näıve Bayes, Logistic Re-
gression and a Support Vector Machine. For all classifiers an implementation
from the WEKA machine learning library [24] was chosen. Given that our dataset
is small, 10-fold cross-validation was used instead of a held out test set. All sig-
nificance tests were conducted using the (two-tailed) Sign Test [25].

3 The head POS tags were found using a modification of the Collins’
Head Finder. This modified algorithm addresses some of the limitations
of the head finding heuristics described by [23] and can be found here:
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/
ModCollinsHeadFinder.html.
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4.2 Linguistic correlates of problem- and solution-hood

We first define a set of features without taking the phrase’s context into account.
This will tell us about the disambiguation ability of the problem/solution de-
scription’s semantics alone. In particular, we cut out the rest of the sentence
other than the phrase and never use it for classification. This is done for similar
reasons to excluding certain ‘give-away’ phrases inside the phrases themselves
(as explained above). As the phrases were found using templates, we know that
the machine learner would simply pick up on the semantics of the template,
which always contains a synonym of “problem” or “solution”, thus drowning
out the more hidden features hopefully inherent in the semantics of the phrases
themselves. If we allowed the machine learner to use these stronger features, it
would suffer in its ability to generalise to the real task.

Of these, bags of words are traditionally successfully used for classification
tasks in NLP, so we included bags of words (lemmas) within the candidate
phrases as one of our features (and treat it as a baseline later on). Our second
feature concerns the polarity of selected words, by determining the head of each
candidate phrase and performing word sense disambiguation of each head using
the Lesk algorithm [26]. The polarity of the resulting synset in SentiWordNet
[27] was then looked up and used as a feature. Next, a set of syntactic features
were defined by using the POS tags present in each candidate. We were careful
not to base the model directly on the head POS tag and the length of each
candidate phrase, as these are defining characteristics used for determining the
non-problem and non-solution candidate set. Not all words are assigned a sense
by the Lesk algorithm, so we need to take care when that happens to a phrasal
head. In those cases, the distributional semantic similarity of the phrasal head
is compared to two words with a known polarity, namely “poor” and “excel-
lent”.These particular words have traditionally been consistently good indica-
tors of polarity status in many studies [28, 29]. Semantic similarity was defined
as cosine similarity on the embeddings of the Word2Vec model (cf. Section 3).

Given that solutions often involve an activity (e.g. a task), we also model the
subcategorisation properties of the verbs involved. Our intuition was that since
problematic situations are often described as non-actions, then these are more
likely to be intransitive. Conversely solutions are often actions and are likely to
have at least one argument. This feature was calculated by running the C&C
parser [30] on each sentence. C&C is a supertagger and parser that has access
to subcategorisation information.

We also wanted to add more information using word embeddings. This was
done in two different ways. Firstly, we created a Doc2Vec model [31], which was
trained on ∼19 million sentences from scientific text (no overlap with our data
set). An embedding was created for each candidate sentence. Secondly, word
embeddings were calculated using the Word2Vec model (cf. Section 3). For each
candidate head, the full word embedding was included as a feature.

Modality Responses to problems in scientific writing often express possibility
and necessity, and so have a close connection with modality. Modality can be
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broken into three main categories, as described by [32], namely epistemic (possi-
bility), deontic (permission / request / wish) and dynamic (expressing ability).

Problems have a strong relationship to modality within scientific writing. Of-
ten, this is due to a tactic called “hedging” [33] where the author uses speculative
language in an attempt to make either noncommital or vague statements. This
has the effect of allowing the author to distance themselves from the statement,
and is often employed when discussing negative or problematic topics.

To take this linguistic correlate into account as a feature, we replicated a
modality classifier as described by Ruppenhofer et al. [34]. More sophisticated
modality classifiers have been recently introduced, for instance using a wide
range of features and convolutional neural networks, e.g, [35, 36]. However, we
wanted to check the effect of a simpler method of modality classification on the
final outcome first before investing heavily into their implementation. We trained
three classifiers using the subset of features which Ruppenhofer et al. reported
as performing best, and evaluated them on the gold standard dataset provided
by the authors4. The dataset contains annotations of English modal verbs on
the 535 documents of the first MPQA corpus release [37].

The modality classifier was then retrained on the entirety of the dataset used
by [34] using the best performing model from training (Logistic Regression).
This new model was then used in the upcoming experiment to predict modality
labels for each instance in our dataset.

5 Results

5.1 Problems

Feature Sets
Classification Accuracy
NB LR SVM

Baselinebow 62.7 67.9 68.1
+Transitivity 63.1 68.3 68.1
+Modality 63.9 67.2 68.2
+Polarity 63.6 65.4 68.4
+Syntax 71.8* 72.5* 74.6
+Doc2Vec 80.8** 79.9* 79.6
+Word2Vec 82.4 81.0 80.6
+Word2Vecsmoothed 82.2 81.1 80.9

Fig. 3: Results distinguishing problems from non-problems using Näıve Bayes
(NB), Logistic Regression (LR) and a Support Vector Machine (SVM). Each
consecutive feature set is cumulative. 10-fold stratified cross-validation was used
across all experiments. Statistical significance with respect to the previous fea-
ture set at the p < 0.05 and 0.01 levels is denoted by * and ** respectively.

4 https://www.uni-hildesheim.de/ruppenhofer/data/modalia release1.0.tgz
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IG Features

0.018 single

0.014 limit, experiment

0.010 datum, information

0.009 require, generate, error, many

0.008 explosion

Fig. 4: Information gain (IG) in bits of top lemmas from the best performing
model in Figure 3 (Word2Vec with NB).

As can be seen from Figure 3, we are able to achieve good results for distin-
guishing a problematic statement from non-problematic one. The bag of words
baseline achieves a reasonable performance of 68.1% for the SVM classifier, show-
ing that there is enough signal in the candidate phrases alone to distinguish them
much better than random chance. Taking a look at Figure 4, which shows the
information gain for the top lemmas, we can see that the top lemmas are indeed
indicative of problemhood (e.g. “limit”,“explosion”). The transitivity feature
provided some improvement over the baseline but was unable to achieve the
marked improvement we were expecting. Upon taking a closer look at our data,
we saw that our hypothesis that intransitive verbs are commonly used in prob-
lematic statements was true, with over 30% of our problems (153) using them.
However, due to our sampling method for the negative cases we also picked up
many intransitive verbs (163). This explains the small improvement given that
the distribution of intransitive verbs amongst the positive and negative candi-
dates was almost even.

The modality feature was the most expensive to produce, and managed to
increase performance in both the Bayesian and SVM classifiers but degraded
performance in the Logistic Regression. This surprising result may be partly
due to a data sparsity issue where only a small portion (67) of our instances
contained modal verbs. If the accumulation of additional data was possible, we
think that this feature may have the potential to be much more valuable in
determining problemhood. Additionally, modality has also shown to be helpful
in determining contextual polarity [38] and argumentation [39], so using the
output from this modality classifier may also prove useful for further feature
engineering taking this into account in future work.

Polarity also didn’t achieve the performance we were expecting, improving
only the SVM, but this feature also suffers from a sparsity issue resulting from
cases where the Lesk algorithm [26] is not able to resolve the synset of the syn-
tactic head. Knowledge of syntax provides a big improvement with a significant
increase in results from two of the classifiers. Examining this in greater detail,
POS tags with high information gain included WH- tags and VB- tags. WH-
tags encode a problematic nature, that of being unsure / awaiting resolution
and so this may be one of the reasons for the marked increase.

The embeddings from Doc2Vec allowed us to obtain the most significant
increase in performance (80.8 with Näıve Bayes) and Word2Vec provided the
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best overall result (82.4 with Näıve Bayes). The addition of these vectors may
be seen as a form of smoothing in cases where previous linguistic features had a
sparsity issue i.e., instead of a NULL entry, the embeddings provide some sort
of value for each candidate. Particularly wrt. the polarity feature, cases where
Lesk was unable to resolve a synset meant that a ZERO entry was added to the
vector supplied to the machine learner. However, using the word embeddings for
the head in addition to the head’s polarity meant that even if Lesk was unable
to resolve the synset, the embedding were able to provide some sort of signal.

5.2 Solutions

Feature Sets
Classification Acc.
NB LR SVM

Baselinebow 66.8 63.4 69.5
+Transitivity 66.1 63.3 69.1
+Polarity 68.0 66.3 71.5
+Syntax 70.4 69.5 73.9
+Doc2Vec 75.5 75.5 78.8
+Word2Vec 75.0 81.5 79.8
+Word2Vecsmoothed 74.6 81.3 80.1

Fig. 5: Results distinguishing solu-
tions from non-solutions using Näıve
Bayes (NB), Logistic Regression
(LR) and a Support Vector Machine
(SVM). Each consecutive feature set
is cumulative. 10-fold stratified cross-
validation was used across all exper-
iments.

IG Features

0.022 use

0.014 method

0.013 argument

0.012 dependency

0.011 sequence, configuration, subject

0.009 weakest, label

0.008 rewrite, employ, edge

0.007 verb, lexical, feature

Fig. 6: Information gain (IG) in bits
of top lemmas from the best perform-
ing model in Figure 5 (Word2Vec
with LR).

The results for disambiguation of solutions from non-solutions can be seen
in Figure 5. The bag of words baseline performs much better than random, with
the performance being quite high with regard to the SVM (this result was also
higher than any of the baseline performances from the problem classifiers). As
shown in Figure 6, the top ranked lemmas from the best performing model (using
information gain) were “use” and “method”. These lemmas are very indicative
of solutionhood and so give some insight into the high baseline returned from
the machine learners. Transitivity provided no improvement and actually de-
graded performance in all three classifiers. However, this low performance is due
to the sampling of the non-solutions (the same reason for the low performance
of the problem transitivity feature). When fitting the POS-tag distribution for
the negative samples, we noticed that over 80% of the head POS-tags were verbs
(much higher than the problem heads). The most frequent verb type being the
infinite form. This is not surprising given that a very common formulation to
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describe a solution is to use the infinitive “TO” since it often describes a task
e.g., “One solution is to find the singletons and remove them.” Therefore, since
the head POS tags of the non-solutions had to match this high distribution of
infinitive verbs present in the solution, the transitivity feature is not particularly
discriminatory. Polarity and syntactic features were slightly more discriminate,
improving results in all three classifiers. However, similar to the problem exper-
iment, the embeddings from Word2Vec and Doc2Vec provide the highest result
(81.5% from LR).

There was no significant increase in performance as each feature set was
added. However, the best performing models for each classifier (Doc2Vec, Word2Vec
and Word2Vecsmoothed) were all significant with regard to the baseline (P < 0.01).

6 Discussion

In this work, we have presented new supervised classifiers for the task of identify-
ing problem and solution statements in scientific text. We have also introduced a
new corpus for this task and used it for evaluating our classifiers. Great care was
taken in constructing the corpus by ensuring that the negative and positive sam-
ples were closely matched in terms of syntactic shape. If we had simply selected
random subtrees for negative samples without regard for any syntactic similarity
with our positive samples, the machine learner may have found easy signals such
as sentence length. Additionally, since we did not allow the machine learner to
see the surroundings of the candidate string within the sentence, this made our
task even harder. Our performance on the corpus shows promise for this task,
and proves that there are strong signals for determining both the problem and
solution parts of the problem-solving pattern independently.

With regard to classifying problems from non-problems, features such as the
POS tag and document and word embeddings provide the best results, with the
Word2Vec embeddings providing the highest performance (82.4%). Classifying
solutions from non-solutions also performs well using these features, with the
best result coming from the embeddings (81.5%).

In future work, we plan to link problem and solution statements which were
found independently during our corpus creation. Given that our classifiers were
trained on data solely from the ACL anthology, we also hope to investigate
the domain specificity of our classifiers and see how well they can generalise
to domains other than ACL (e.g. bioinformatics). Since we took great care at
removing the knowledge our classifiers have of the explicit statements of problem
and solution (i.e. the classifiers were trained only on the syntactic argument of the
explicit statement of problem-/solution-hood), our classifiers should in principle
be in a good position to generalise, i.e., find implicit statements too. In future
work, we will measure to which degree this is the case.

To facilitate further research on this topic, all code and data used in our
experiments can be found here: www.cl.cam.ac.uk/∼kh562/ps.html
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