
1

1.1 Introduction
Think about some of the different ways that people use computers. In school, students use com-
puters for tasks such as writing papers, searching for articles, sending email, and participating in
online classes. At work, people use computers to analyze data, make presentations, conduct busi-
ness transactions, communicate with customers and coworkers, control machines in manufac-
turing facilities, and do many other things. At home, people use computers for tasks such as pay-
ing bills, shopping online, communicating with friends and family, and playing computer games.
And don’t forget that cell phones, iPods®, BlackBerries®, car navigation systems, and many
other devices are computers too. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This means
that computers are not designed to do just one job, but to do any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task. For
example, Figure 1-1 shows screens from two commonly used programs, Microsoft Word and
Adobe Photoshop. Microsoft Word is a word processing program that allows you to create,
edit, and print documents with your computer. Adobe Photoshop is an image editing program
that allows you to work with graphic images, such as photos taken with your digital camera.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

Introduction to Computers
and Programming1

TOPICS

1.1 Introduction
1.2 Hardware and Software
1.3 How Computers Store Data

1.4 How a Program Works
1.5 Using Python

C
H

A
P

T
E

R

M01_GADD7119_01_SE_C01.QXD 1/30/08 12:55 AM Page 1

2 Chapter 1 Introduction to Computers and Programming

This book introduces you to the fundamental concepts of computer programming using the
Python language. Before we begin exploring those concepts, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write Python programs.

1.2 Hardware and Software

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware
The term hardware refers to all of the physical devices, or components, that a computer is made
of. A computer is not one single device, but a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and
so on. Unless you already know a lot about computers, or at least have a friend that does,
understanding what these different components do might be challenging. As shown in
Figure 1-2, a typical computer system consists of the following major components:

• The central processing unit (CPU)
• Main memory
• Secondary storage devices
• Input devices
• Output devices

Figure 1-1 A word processing program and an image editing program

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 2

1.2 Hardware and Software 3

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the com-
puter is running or executing the program. The central processing unit, or CPU, is the part
of a computer that actually runs programs. The CPU is the most important component in
a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device.
The two women in the photo are working with the historic ENIAC computer. The
ENIAC, which is considered by many to be the world’s first programmable electronic
computer, was built in 1945 to calculate artillery ballistic tables for the U.S. Army. This
machine, which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed
30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the
old electromechanical CPUs in early computers, microprocessors are also much more
powerful.

Figure 1-2 Typical components of a computer system

Input

Devices

Output

Devices

Secondary

Storage Devices

Central Processing

Unit

Main Memory

(RAM)

M01_GADD7119_01_SE_C01.QXD 1/24/08 7:48 AM Page 3

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer (courtesy of U.S. Army Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy of Intel
Corporation)

Main Memory
You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 4

1.2 Hardware and Software 5

essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Figure 1-5 Memory chips (photo courtesy of IBM Corporation)

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. For many years floppy disk drives were popu-
lar. A floppy disk drive records data onto a small floppy disk, which can be removed from
the drive. Floppy disks have many disadvantages, however. They hold only a small amount
of data, are slow to access data, and can be unreliable. The use of floppy disk drives has
declined dramatically in recent years, in favor of superior devices such as USB drives. USB
drives are small devices that plug into the computer’s USB (universal serial bus) port, and

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 5

6 Chapter 1 Introduction to Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, however.
They store data in a special type of memory known as flash memory. USB drives, which are
also known as memory sticks and flash drives, are inexpensive, reliable, and small enough
to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded
as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits and
thus read the encoded data. Optical discs hold large amounts of data, and because recordable
CD and DVD drives are now commonplace, they are good mediums for creating backup
copies of data.

Input Devices
Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk
drives and optical drives can also be considered input devices because programs and data
are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be a
sales report, a list of names, or a graphic image. The data is sent to an output device, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

Software
If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

System Software
The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on a
computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programs to run on the computer.
Figure 1-6 shows screens from three popular operating systems: Windows Vista, Mac OS
X, and Linux.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 6

1.2 Hardware and Software 7

Figure 1-6 Screens from the Windows Vista, Mac OS X, and Fedora Linux operating systems

Windows Vista Mac OS X

Fedora Linux

Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.
Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and inter-
preters are examples of programs that fall into this category.

Application Software
Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two
commonly used applications: Microsoft Word, a word processing program, and Adobe
Photoshop, an image editing program. Some other examples of application software are
spreadsheet programs, email programs, web browsers, and game programs.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 7

8 Chapter 1 Introduction to Computers and Programming

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.9 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

1.3 How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do any-
thing meaningful, a computer has to have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-7 shows the way
that a computer scientist might think of a byte of memory: as a collection of switches that
are each flipped to either the on or off position.

Figure 1-7 Think of a byte as eight switches

OFF

ON

OFF OFFOFF

ON ON ON

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 8

1.3 How Computers Store Data 9

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pat-
tern that represents the data. For example, the pattern shown on the left in Figure 1-8
shows how the number 77 would be stored in a byte, and the pattern on the right shows
how the letter A would be stored in a byte. We explain below how these patterns are
determined.

Figure 1-8 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-9 The values of binary digits as powers of 2

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems, a
bit that is turned off represents the number 0 and a bit that is turned on represents the num-
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called) all numeric values are written as sequences of 0s
and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as shown
in Figure 1-9. Figure 1-10 shows the same diagram with the position values calculated.
Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so
forth.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 9

10 Chapter 1 Introduction to Computers and Programming

128 + 16 + 8 + 4 + 1 = 157

1

128 64 32 16 8 4 2 1
Position
values

1

0

11 1 1

0 0

Figure 1-12 The bit pattern for 157

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

Figure 1-10 The values of binary digits

1 0 0 1 1 1 0 1
1

4
8
16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-11 Determining the value of 10011101

To determine the value of a binary number you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-11. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

Figure 1-12 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 10

1.3 How Computers Store Data 11

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byte is 1 � 2 � 4 � 8 � 16 �
32 � 64 � 128 � 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown
in Figure 1-13, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-13 Two bytes used for a large number

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is tak-
ing place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

Storing Characters
Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as a
binary number, of course). This is shown in Figure 1-14.

65A
00

1

0

1

0 0 0

Figure 1-14 The letter A is stored in memory as the number 65

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 11

12 Chapter 1 Introduction to Computers and Programming

1001010111010
0
010101101

Figure 1-15 A digital image is stored in binary format

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67,
and so forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s, and was eventually adopted by
most all computer manufacturers. ASCII is limited however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can also
represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage
Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

Other Types of Data
Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a digital
device is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other
types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-15, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

M01_GADD7119_01_SE_C01.QXD 1/24/08 7:48 AM Page 12

1.4 How a Program Works 13

The music that you play on your CD player, iPod or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into,
the more it sounds like the original music when it is played back. A CD quality song is
divided into more than 44,000 samples per second!

Checkpoint

1.12 What amount of memory is enough to store a letter of the alphabet or a small number?

1.13 What do you call a tiny “switch” that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

1.4 How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

Earlier, we stated that the CPU is the most important component in a computer because it
is the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain,” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

• Reading a piece of data from main memory
• Adding two numbers
• Subtracting one number from another number
• Multiplying two numbers
• Dividing one number by another number
• Moving a piece of data from one memory location to another
• Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific oper-
ation. Here’s an example of an instruction that might appear in a program:

10110000

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 13

14 Chapter 1 Introduction to Computers and Programming

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction
to perform an operation.1 It is written in 0s and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, there is an instruction for adding numbers, there is an instruction for sub-
tracting one number from another, and so forth. The entire set of instructions that a CPU
can execute is known as the CPU’s instruction set.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a
value into the CPU.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and
Motorola. If you look carefully at your computer, you might find a tag showing a logo
for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do
anything meaningful. Because the operations that a CPU knows how to perform are so
basic in nature, a meaningful task can be accomplished only if the CPU performs many
operations. For example, if you want your computer to calculate the amount of inter-
est that you will earn from your savings account this year, the CPU will have to
perform a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands or even millions of machine language
instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer’s disk
drive from a CD-ROM, or perhaps downloaded from a website.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-16.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 14

1.4 How a Program Works 15

When a CPU executes the instructions in a program, it is engaged in a process that is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are:

1. Fetch A program is a long sequence of machine language instructions. The first step of the
cycle is to fetch, or read, the next instruction from memory into the CPU.

2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes the
instruction that was just fetched from memory, to determine which operation it
should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-17 illustrates these steps.

Main memory

(RAM)

Disk drive CPU

The program is copied

from secondary storage

to main memory.

The CPU executes

the program in

main memory.

Figure 1-16 A program is copied into main memory and then executed

CPU

Main memory

(RAM)

10111000

10100001

10011110

00011010

11011100

and so forth...

10100001

1
Fetch the next instruction

in the program.

Decode the instruction

to determine which

operation to perform.

3
Execute the instruction

(perform the operation).

2

Figure 1-17 The fetch-decode-execute cycle

From Machine Language to Assembly Language
Computers can only execute programs that are written in machine language. As previously
mentioned, a program can have thousands or even millions of binary instructions, and writing
such a program would be very tedious and time consuming. Programming in machine language
would also be very difficult because putting a 0 or a 1 in the wrong place will cause an error.

M01_GADD7119_01_SE_C01.QXD 1/24/08 7:48 AM Page 15

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-18. The machine language program that is created by the assembler can
then be executed by the CPU.

16 Chapter 1 Introduction to Computers and Programming

Although a computer’s CPU only understands machine language, it is impractical for people
to write programs in machine language. For this reason, assembly language was created in the
early days of computing2 as an alternative to machine language. Instead of using binary num-
bers for instructions, assembly language uses short words that are known as mnemonics. For
example, in assembly language, the mnemonic add typically means to add numbers, mul typ-
ically means to multiply numbers, and mov typically means to move a value to a location in
memory. When a programmer uses assembly language to write a program, he or she can write
short mnemonics instead of binary numbers.

2 The first assembly language was most likely that developed in the 1940s at Cambridge University for use with
a historic computer known as the EDSAC.

mov eax, Z

add eax, 2

mov Y, eax

and so forth...
Assembler

10111000

10100001

10011110
and so forth...

Assembly language
program

Machine language
program

Figure 1-18 An assembler translates an assembly language program to a machine
language program

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

High-Level Languages
Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about the
CPU. Assembly language also requires that you write a large number of instructions for
even the simplest program. Because assembly language is so close in nature to machine lan-
guage, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages
began to appear. A high-level language allows you to create powerful and complex programs
without knowing how the CPU works, and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 16

1.4 How a Program Works 17

languages created in the 1950s), he or she would write the following instruction to display the
message Hello world on the computer screen:

DISPLAY "Hello world"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

print 'Hello world'

Doing the same thing in assembly language would require several instructions, and an intimate
knowledge of how the CPU interacts with the computer’s output device. As you can see from this
example, high-level languages allow programmers to concentrate on the tasks they want to per-
form with their programs rather than the details of how the CPU will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several
of the more well-known languages.

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historic figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for begin-
ners to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s, and was
designed for business applications.

Pascal Pascal was created in 1970, and was originally designed for teaching program-
ming. The language was named in honor of the mathematician, physicist, and
philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose lan-
guages developed at Bell Laboratories. The C language was created in 1972
and the C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the
year 2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a web server.

JavaScript JavaScript, created in the 1990s, can be used in web pages. Despite its name,
JavaScript is not related to Java.

Python Python, the language we use in this book, is a general-purpose language created
in the early 1990s. It has become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-
ingly becoming a popular language for programs that run on web servers.

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 17

18 Chapter 1 Introduction to Computers and Programming

Table 1-2 The Python key words

and del from not while

as elif global or with

assert else if pass yiel

break except import print

class exec in raise

continue finally is return

def for lambda try

Key Words, Operators, and Syntax: an Overview
Each high-level language has its own set of predefined words that the programmer must
use to write a program. The words that make up a high-level programming language are
known as key words or reserved words. Each key word has a specific meaning, and can-
not be used for any other purpose. You previously saw an example of a Python statement
that uses the key word print to print a message on the screen. Table 1-2 shows all of the
Python key words.

In addition to key words, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that per-
form arithmetic. In Python, as well as most other languages, the � sign is an operator that
adds two numbers. The following adds 12 and 75:

12 + 75

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to key words and operators, each language also has its own syntax, which is a
set of rules that must be strictly followed when writing a program. The syntax rules dictate
how key words, operators, and various punctuation characters must be used in a program.
When you are learning a programming language, you must learn the syntax rules for that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of key words, oper-
ators, punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Compilers and Interpreters
Because the CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language that a program has been written in, the programmer will use either a compiler or
an interpreter to make the translation.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 18

1.4 How a Program Works 19

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any time
it is needed. This is shown in Figure 1-19. As shown in the figure, compiling and executing
are two different processes.

print "Hello

Earthling"

and so forth...

High-level language

program

Machine language

program

Compiler
10111000

10100001

10011110

and so forth...

10111000

10100001

10011110

and so forth...

Machine language

program
CPU

The compiler is used

to translate the high-level

language program to a

machine language program.

1

The machine language

program can be executed

at any time, without using

the compiler.

2

Figure 1-19 Compiling a high-level program and executing it

The Python language uses an interpreter, which is a program that both translates and
executes the instructions in a high-level language program. As the interpreter reads each
individual instruction in the program, it converts it to machine language instructions
and then immediately executes them. This process repeats for every instruction in
the program. This process is illustrated in Figure 1-20. Because interpreters combine
translation and execution, they typically do not create separate machine language
programs.

The interpreter translates each high-level instruction to

its equivalent machine language instructions and

immediately executes them.

This process is repeated for each high-level instruction.

print "Hello

Earthling"

and so forth...

program

Interpreter 10100001

Machine language

High-level language

instruction

CPU

Figure 1-20 Executing a high-level program with an interpreter

M01_GADD7119_01_SE_C01.QXD 1/24/08 7:48 AM Page 19

20 Chapter 1 Introduction to Computers and Programming

The statements that a programmer writes in a high-level language are called source code,
or simply code. Typically, the programmer types a program’s code into a text editor and
then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler
to translate the code into a machine language program, or an interpreter to translate and
execute the code. If the code contains a syntax error, however, it cannot be translated. A
syntax error is a mistake such as a misspelled key word, a missing punctuation character,
or the incorrect use of an operator. When this happens the compiler or interpreter displays
an error message indicating that the program contains a syntax error. The programmer cor-
rects the error and then attempts once again to translate the program.

NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class, and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortunately,
compilers and interpreters do not have this ability. If even a single syntax error appears
in a program, the program cannot be compiled or executed. When an interpreter
encounters a syntax error, it stops executing the program.

Checkpoint

1.18 A CPU understands instructions that are written only in what language?

1.19 A program has to be copied into what type of memory each time the CPU executes it?

1.20 When a CPU executes the instructions in a program, it is engaged in what process?

1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

1.23 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in a
high-level language program?

1.26 What type of mistake is usually caused by a misspelled key word, a missing
punctuation character, or the incorrect use of an operator?

1.5 Using Python

CONCEPT: The Python interpreter can run Python programs that are saved in files,
or interactively execute Python statements that are typed at the keyboard.
Python comes with a program named IDLE that simplifies the process of
writing, executing, and testing programs.

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 20

1.5 Using Python 21

Installing Python
Before you can try any of the programs shown in this book, or write any programs of your
own, you need to make sure that Python is installed on your computer and properly con-
figured. If you are working in a computer lab, this has probably been done already. If you
are using your own computer, you can follow the instructions in Appendix A to install
Python from the accompanying CD.

The Python Interpreter
You learned earlier that Python is an interpreted language. When you install the Python lan-
guage on your computer, one of the items that is installed is the Python interpreter. The
Python interpreter is a program that can read Python programming statements and execute
them. (Sometimes we will refer to the Python interpreter simply as the interpreter.)

You can use the interpreter in two modes: interactive mode and script mode. In interactive
mode, the interpreter waits for you to type Python statements on the keyboard. Once you
type a statement, the interpreter executes it and then waits for you to type another state-
ment. In script mode, the interpreter reads the contents of a file that contains Python state-
ments. Such a file is known as a Python program or a Python script. The interpreter exe-
cutes each statement in the Python program as it reads it.

Interactive Mode
Once Python has been installed and set up on your system, you start the interpreter in interac-
tive mode by going to the operating system’s command line and typing the following command:

python

If you are using Windows, you can alternatively click the Start button, then All
Programs. You should see a program group named something like Python 2.5. (The
“2.5” is the version of Python that is installed. At the time this is being written, Python
2.5 is the latest version.) Inside this program group you should see an item named
Python (command line). Clicking this menu item will start the Python interpreter in
interactive mode.

When the Python interpreter starts in interactive mode, you will see something like the fol-
lowing displayed in a console window:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> that you see is a prompt that indicates the interpreter is waiting for you to type a
Python statement. Let’s try it out. One of the simplest statements that you can write in Python
is a print statement, which causes a message to be displayed on the screen. For example, the
following statement causes the message Python programming is fun! to be displayed:

print 'Python programming is fun!'

Notice that after the word print, we have written Python programming is fun!
inside a set of single-quote marks. The quote marks are necessary, but they will not be

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 21

22 Chapter 1 Introduction to Computers and Programming

displayed. They simply mark the beginning and the end of the text that we wish to display.
Here is an example of how you would type this print statement at the interpreter’s
prompt:

>>> print 'Python programming is fun!'

After typing the statement you press the Enter key and the Python interpreter executes the
statement, as shown here:

>>> print 'Python programming is fun!'
Python programming is fun!
>>>

After the message is displayed, the >>> prompt appears again, indicating that the inter-
preter is waiting for you to enter another statement. Let’s look at another example. In the
following sample session we have entered two print statements.

>>> print 'To be or not to be'
To be or not to be
>>> print 'That is the question.'
That is the question.
>>>

If you incorrectly type a statement in interactive mode, the interpreter will display an error
message. This will make interactive mode useful to you while you learn Python. As you
learn new parts of the Python language, you can try them out in interactive mode and get
immediate feedback from the interpreter.

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z
(pressing both keys together) followed by Enter. On a Mac, Linux, or UNIX computer,
press Ctrl-D.

Writing Python Programs and Running
Them in Script Mode
Although interactive mode is useful for testing code, the statements that you enter in inter-
active mode are not saved as a program. They are simply executed and their results dis-
played on the screen. If you want to save a set of Python statements as a program, you save
those statements in a file. Then, to execute the program, you use the Python interpreter in
script mode.

For example, suppose you want to write a Python program that displays the following three
lines of text:

Nudge nudge
Wink wink
Know what I mean?

To write the program you would use a simple text editor like Notepad (which is installed
on all Windows computers) to create a file containing the following statements:

print 'Nudge nudge'
print 'Wink wink'
print 'Know what I mean?'

[ENTER]

[ENTER]

[ENTER]

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 22

1.5 Using Python 23

NOTE: It is possible to use a word processor to create a Python program, but you
must be sure to save the program as a plain text file. Otherwise the Python interpreter
will not be able to read its contents.

When you save a Python program, you give it a name that ends with the .py extension, which
identifies it as a Python program. For example, you might save the program previously shown
with the name test.py. To run the program you would go to the directory in which the file
is saved and type the following command at the operating system command line:

python test.py

This starts the Python interpreter in script mode and causes it to execute the statements in
the file test.py. When the program finishes executing, the Python interpreter exits.

The IDLE Programming Environment
The previous sections described how the Python interpreter can be started in interactive
mode or script mode at the operating system command line. As an alternative, you can use
an integrated development environment, which is a single program that gives you all of the
tools you need to write, execute, and test a program.

Recent versions of Python include a program named IDLE, which is automatically installed
when the Python language is installed. (IDLE stands for Integrated DeveLopment Environment.)
When you run IDLE, the window shown in Figure 1-21 appears. Notice that the >>> prompt
appears in the IDLE window, indicating that the interpreter is running in interactive mode. You
can type Python statements at this prompt and see them executed in the IDLE window.

IDLE also has a built-in text editor with features specifically designed to help you write
Python programs. For example, the IDLE editor “colorizes” code so that key words and
other parts of a program are displayed in their own distinct colors. This helps make pro-
grams easier to read. In IDLE you can write programs, save them to disk, and execute them.
Appendix B provides a quick introduction to IDLE, and leads you through the process of
creating, saving, and executing a Python program.

Figure 1-21 IDLE

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 23

24 Chapter 1 Introduction to Computers and Programming

NOTE: Although IDLE is installed with Python, there are several other Python IDEs
available. Your instructor might prefer that you use a specific one in class.

Review Questions
Multiple Choice

1. A(n) __________ is a set of instructions that a computer follows to perform a task.
a. compiler
b. program
c. interpreter
d. programming language

2. The physical devices that a computer is made of are referred to as __________.
a. hardware
b. software
c. the operating system
d. tools

3. The part of a computer that runs programs is called __________.
a. RAM
b. secondary storage
c. main memory
d. the CPU

4. Today, CPUs are small chips known as __________.
a. ENIACs
b. microprocessors
c. memory chips
d. operating systems

5. The computer stores a program while the program is running, as well as the data that
the program is working with, in __________.
a. secondary storage
b. the CPU
c. main memory
d. the microprocessor

6. This is a volatile type of memory that is used only for temporary storage while a pro-
gram is running.
a. RAM
b. secondary storage
c. the disk drive
d. the USB drive

M01_GADD7119_01_SE_C01.QXD 1/24/08 7:49 AM Page 24

Review Questions 25

7. A type of memory that can hold data for long periods of time, even when there is no
power to the computer, is called __________.
a. RAM
b. main memory
c. secondary storage
d. CPU storage

8. A component that collects data from people or other devices and sends it to the com-
puter is called __________.
a. an output device
b. an input device
c. a secondary storage device
d. main memory

9. A video display is a(n) __________ device.
a. output device
b. input device
c. secondary storage device
d. main memory

10. A __________ is enough memory to store a letter of the alphabet or a small number.
a. byte
b. bit
c. switch
d. transistor

11. A byte is made up of eight __________.
a. CPUs
b. instructions
c. variables
d. bits

12. In a(n) __________ numbering system, all numeric values are written as sequences of
0s and 1s.
a. hexadecimal
b. binary
c. octal
d. decimal

13. A bit that is turned off represents the following value: __________.
a. 1
b. –1
c. 0
d. “no”

14. A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is __________.
a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 25

26 Chapter 1 Introduction to Computers and Programming

15. An extensive encoding scheme that can represent characters for many languages in the
world is __________.
a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

16. Negative numbers are encoded using the __________ technique.
a. twos compliment
b. floating point
c. ASCII
d. Unicode

17. Real numbers are encoded using the __________ technique.
a. two’s complement
b. floating point
c. ASCII
d. Unicode

18. The tiny dots of color that digital images are composed of are called __________.
a. bits
b. bytes
c. color packets
d. pixels

19. If you were to look at a machine language program, you would see __________.
a. Python code
b. a stream of binary numbers
c. English words
d. circuits

20. In the __________ part of the fetch-decode-execute cycle, the CPU determines which
operation it should perform.
a. fetch
b. decode
c. execute
d. immediately after the instruction is executed

21. Computers can only execute programs that are written in __________.
a. Java
b. assembly language
c. machine language
d. Python

22. The __________ translates an assembly language program to a machine language
program.
a. assembler
b. compiler
c. translator
d. interpreter

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 26

Review Questions 27

23. The words that make up a high-level programming language are called __________.
a. binary instructions
b. mnemonics
c. commands
c. key words

24. The rules that must be followed when writing a program are called __________.
a. syntax
b. punctuation
c. key words
d. operators

25. A(n) __________ program translates a high-level language program into a separate
machine language program.
a. assembler
b. compiler
c. translator
d. utility

True or False

1. Today, CPUs are huge devices made of electrical and mechanical components such as
vacuum tubes and switches.

2. Main memory is also known as RAM.

3. Any piece of data that is stored in a computer’s memory must be stored as a binary
number.

4. Images, like the ones you make with your digital camera, cannot be stored as binary
numbers.

5. Machine language is the only language that a CPU understands.

6. Assembly language is considered a high-level language.

7. An interpreter is a program that both translates and executes the instructions in a high-
level language program.

8. A syntax error does not prevent a program from being compiled and executed.

9. Windows Vista, Linux, UNIX, and Mac OSX are all examples of application software.

10. Word processing programs, spreadsheet programs, email programs, web browsers, and
games are all examples of utility programs.

Short Answer

1. Why is the CPU the most important component in a computer?

2. What number does a bit that is turned on represent? What number does a bit that is
turned off represent?

3. What would you call a device that works with binary data?

4. What are the words that make up a high-level programming language called?

5. What are the short words that are used in assembly language called?

6. What is the difference between a compiler and an interpreter?

7. What type of software controls the internal operations of the computer’s hardware?

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 27

28 Chapter 1 Introduction to Computers and Programming

Exercises
1. To make sure that you can interact with the Python interpreter, try the following steps

on your computer:

• Start the Python interpreter in interactive mode.
• At the >>> prompt type the following statement and then press Enter:

print 'This is a test of the Python interpreter.'

• After pressing the Enter key the interpreter will execute the statement. If you typed
everything correctly, your session should look like this:

>>> print 'This is a test of the Python interpreter.'
This is a test of the Python interpreter.
>>>

• If you see an error message, enter the statement again and make sure you type it
exactly as shown.

• Exit the Python interpreter. (In Windows, press Ctrl-Z followed by Enter. On other
systems press Ctrl-D.)

2. To make sure that you can interact with IDLE, try the following steps on your computer:

• Start IDLE. To do this in Windows, click the Start button, then All Programs. In the
Python program group click IDLE (Python GUI).

• When IDLE starts, it should appear similar to the window previously shown in
Figure 1-21. At the >>> prompt type the following statement and then press Enter:

print 'This is a test of IDLE.'

• After pressing the Enter key the Python interpreter will execute the statement. If you
typed everything correctly, your session should look like this:

>>> print 'This is a test of IDLE.'
This is a test of IDLE.
>>>

• If you see an error message, enter the statement again and make sure you type it
exactly as shown.

• Exit IDLE by clicking File, then Exit (or pressing Ctrl-Q on the keyboard).

3. Use what you’ve learned about the binary numbering system in this chapter to convert
the following decimal numbers to binary:

11

65

100

255

4. Use what you’ve learned about the binary numbering system in this chapter to convert
the following binary numbers to decimal:

1101

1000

101011

[ENTER]

[ENTER]

[ENTER]

[ENTER]

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 28

Exercises 29

5. Look at the ASCII chart in Appendix C and determine the codes for each letter of your
first name.

6. Use the Internet to research the history of the Python programming language, and
answer the following questions:

• Who was the creator of Python?
• When was Python created?
• In the Python programming community, the person who created Python is commonly

referred to as the “BDFL.” What does this mean?

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 29

M01_GADD7119_01_SE_C01.QXD 1/23/08 5:19 PM Page 30

