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Preface
Learning ROS for Robotics Programming, Second Edition gives you a comprehensive 
review of ROS tools. ROS is the Robot Operating System framework, which is used 
nowadays by hundreds of research groups and companies in the robotics industry. 
But it is also the painless entry point to robotics for nonprofessional people. You will 
see how to install ROS, you will start playing with its basic tools, and you will end 
up working with state-of-the-art computer vision and navigation tools.

The content of the book can be followed without any special devices, and each 
chapter comes with a series of source code examples and tutorials that you can  
run on your own computer. This is the only thing you need to follow in the book.

However, we also show you how to work with hardware so that you can connect 
your algorithms with the real world. Special care has been taken in choosing devices 
that are affordable for amateur users, but at the same time, the most typical sensors 
or actuators in robotics research are covered.

Finally, the potential of ROS is illustrated with the ability to work with whole robots 
in a simulated environment. You will learn how to create your own robot and 
integrate it with the powerful navigation stack. Moreover, you will be able to run 
everything in simulation by using the Gazebo simulator. We will end the book by 
providing an example of how to use the Move it! package to perform manipulation 
tasks with robotic arms. At the end of the book, you will see that you can work 
directly with a ROS robot and understand what is going on under the hood.

What this book covers
Chapter 1, Getting Started with ROS Hydro, shows the easiest way you must follow 
in order to have a working installation of ROS. You will see how to install ROS on 
different platforms, and you will use ROS Hydro throughout the rest of the book. 
This chapter describes how to make an installation from Debian packages, compile 
the sources and make installations in virtual machines and ARM CPU.
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Chapter 2, ROS Architecture and Concepts, is concerned with the concepts and tools 
provided by the ROS framework. We will introduce you to nodes, topics, and services, 
and you will also learn how to use them. Through a series of examples, we will 
illustrate how to debug a node and visualize the messages published through a topic.

Chapter 3, Visualization and Debug Tools, goes a step further in order to show  
you powerful tools to debug your nodes and visualize the information that goes 
through the node's graph along with the topics. ROS provides a logging API that 
allows you to diagnose node problems easily. In fact, we will see some powerful 
graphical tools, such as rqt_console and rqt_graph, as well as visualization interfaces, 
such as rqt_plot and rviz. Finally, this chapter explains how to record and play back 
messages using rosbag and rqt_bag.

Chapter 4, Using Sensors and Actuators with ROS, literally connects ROS with the real 
world. This chapter goes through a number of common sensors and actuators that 
are supported in ROS, such as range lasers, servo motors, cameras, RGB-D sensors, 
GPS, and much more. Moreover, we explain how to use embedded systems with 
microcontrollers, similar to the widely known Arduino boards.

Chapter 5, Computer Vision, shows the support for cameras and computer vision tasks 
in ROS. This chapter starts with drivers available for FireWire and USB cameras so 
that you can connect them to your computer and capture images. You will then be 
able to calibrate your camera using the ROS calibration tools. Later, you will be able 
to use the image pipeline, which is explained in detail. Then, you will see how to use 
several APIs for vision and integrate OpenCV. Finally, the installation and usage of a 
visual odometry software is described.

Chapter 6, Point Clouds, in this chapter, we show how to use Point Cloud Library in 
your ROS nodes. This chapter starts with the basics utilities, such as read or write a 
PCL snippet and the conversions needed to publish or subscribe to these messages. 
Then, you will create a pipeline with different nodes to process 3D data, and you will 
downsample, filter, and search for features using PCL.

Chapter 7, 3D Modeling and Simulation, constitutes one of the first steps in order to 
implement your own robot in ROS. It shows you how to model a robot from scratch 
and run it in simulation by using the Gazebo simulator. You will simulate sensors, 
such as cameras and laser range sensors. This will later allow you to use the whole 
navigation stack provided by ROS and other tools.
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Chapter 8, The Navigation Stack – Robot Setups, is the first of two chapters concerned 
with the ROS navigation stack. This chapter describes how to configure your robot so 
that it can be used with the navigation stack. In the same way, the stack is explained, 
along with several examples.

Chapter 9, The Navigation Stack – Beyond Setups, continues the discussion of the 
previous chapter by showing how we can effectively make our robot navigate 
autonomously. It will use the navigation stack intensively for that. This chapter 
shows the great potential of ROS by using the Gazebo simulator and rviz to create 
a virtual environment in which we can build a map, localize our robot, and do path 
planning with obstacle avoidance.

Chapter 10, Manipulation with MoveIt!, is a set of tools for mobile manipulation in 
ROS. This chapter contains the documentation that you need to install this package. 
The chapter also contains example demonstrations with robotic arms that use 
MoveIt! for manipulation tasks, such as grasping, pick and place, or simple motion 
planning with inverse kinematics.

What you need for this book
This book was written with the intention that almost everybody can follow it and 
run the source code examples provided with it. Basically, you need a computer 
with a Linux distribution. Although any Linux distribution should be fine, it is 
recommended that you use a version of Ubuntu 12.04 LTS. Then, you will use ROS 
Hydro, which is installed according to the instructions given in Chapter 1, Getting 
Started with ROS Hydro.

For this distribution of ROS, you will need a version of Ubuntu prior to 14.04 
because, since this version, Hydro is no longer supported.

As regards the hardware requirements of your computer, in general, any computer 
or laptop is enough. However, it is advisable to use a dedicated graphics card in 
order to run the Gazebo simulator. Also, it will be good to have a good number of 
peripherals so that you can connect several sensors and actuators, including cameras 
and Arduino boards.

You will also need Git (the git-core Debian package) in order to clone the repository 
with the source code provided with this book. Similarly, you are expected to have 
a basic knowledge of the Bash command line, GNU/Linux tools, and some C/C++ 
programming skills.
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Who this book is for
This book is targeted at all robotics developers, from amateurs to professionals. It 
covers all the aspects involved in a whole robotic system and shows how ROS helps 
with the task of making a robot really autonomous. Anyone who is learning robotics 
and has heard about ROS but has never tried it will benefit from this book. Also, ROS 
beginners will learn advanced concepts and tools of this framework. Indeed, even 
regular users may learn something new from some particular chapters. Certainly, 
only the first three chapters are intended for new users; so those who already use 
ROS can skip these ones and go directly to the rest.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The rosdep command-line tool must be installed and initialized before you can  
use ROS."

A block of code is set as follows:

#include <ros/ros.h>
#include <dynamic_reconfigure/server.h>
#include <chapter2_tutorials/chapter2Config.h>

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

dynamic_reconfigure::Server<chapter2_tutorials::chapter2Config>::Call
backType f;

  f = boost::bind(&callback, _1, _2);

Any command-line input or output is written as follows:

$ sudo apt-get install python-rosdep

$ sudo rosdep init

$ rosdep update
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New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "When it 
finishes, you can start your virtual machine by clicking on the Start button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you. You can also download these 
code files from https://github.com/AaronMR/ROS_Book_Hydro.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/7580OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/7580OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/7580OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Getting Started with  
ROS Hydro

Welcome to the first chapter of this book where you will learn how to install ROS, 
the new standard software framework in robotics. This book is an update on Learning 
ROS for Robotics Programming, based in ROS Fuerte. With ROS you will learn how to 
program and control your robots the easy way, using tons of examples and source 
code that will show you how to use sensors, devices, or add new functionalities such 
as autonomous navigation, visual perception, and so on to your robot. Thanks to the 
open source motto and a community that is developing state-of-the-art algorithms 
and providing new functionalities, ROS is growing every day.

 Throughout this book, you will learn the following:

• Installing ROS Hydro framework on a version of Ubuntu
•  The basic operation of ROS
• Debugging and visualizing data
• Programming your robot using this framework
• Connecting sensors, actuators, and devices to create your robot
• Creating a 3D model to use in the simulator
• Using the navigation stack to make your robot autonomous

In this chapter, we are going to install a full version of ROS Hydro in Ubuntu. ROS 
is fully supported and recommended for Ubuntu, and it is experimental for other 
operative systems. The version used in this book is the 12.04 (Precise Pangolin) and 
you can download it for free from http://releases.ubuntu.com/12.04/.

Before starting with the installation, we are going to learn about the origin of the 
ROS and its history.

http://releases.ubuntu.com/12.04/
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The Robot Operating System (ROS) is a framework that is widely used in Robotics. 
The philosophy is to make a piece of software that could work in other robots with 
only little changes to the code. What we get with this idea is the ability to create 
functionalities that can be shared and used in other robots without effort, so we do 
not need to reinvent the wheel.

ROS was originally developed in 2007 by the Stanford Artificial Intelligence 
Laboratory (SAIL) in support of the Stanford AI Robot project. As of 2008, 
development continues primarily at Willow Garage, a Robotics Research Institute, with 
more than twenty institutions collaborating within a federated development model.

A lot of research institutions have started to develop in ROS, adding hardware and 
sharing their code. Also, the companies have started to adapt their products to be 
used in ROS. In the following set of images, you can see some of the platforms which 
are fully supported. Normally, these platforms are published with a lot of code, 
examples, and simulators to permit the developers to start work easily. The first 
three robots are examples of robots with published code and they are humanoids. 
The last one is an AUV developed by the University of Las Palmas de Gran Canaria 
and the code has not been published yet. You can find a lot of such examples at 
http://wiki.ros.org/Robots.

The sensors and actuators used in robotics have also been adapted for use in ROS. 
Everyday, more devices are being supported by this framework. Furthermore, 
thanks to ROS and open hardware, companies are creating cheaper and more 
powerful sensors. The Arduino board is a good example of this, because using 
a cheap electronic board you can add a lot of sensors like encoders, light and 
temperature sensors, and so on.

ROS provides standard operating system facilities such as hardware abstraction, 
low-level device control, implementation of commonly used functionalities, message 
passing between processes, and package management.

http://wiki.ros.org/Robots
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It is based on graph architecture with a centralized topology, where processing takes 
place in nodes that may receive, post the multiplex sensor, control, state, planning, 
actuator, and so on. The library is geared towards a Unix-like system.

The *-ros-pkg is a community repository for developing high-level libraries easily. 
Many of the capabilities frequently associated with ROS, such as the navigation 
library and the rviz visualizer, are developed in this repository. These libraries give a 
powerful set of tools for working with ROS easily, knowing what is happening every 
time. Visualization, simulators, and debugging tools are the most important. In the 
next image you can see two of these tools, the rviz and rqt_plot. The screenshot in 
the center is rqt_plot where you can see the plotted data from some sensors. The 
other two screenshots are rviz; in the screenshot you can see a 3D representation of a 
real robot.

ROS is released under the terms of the BSD (Berkeley Software Distribution) 
license and is an open source software. It is free for commercial and research use. The 
ros-pkg contributed packages are licensed under a variety of open source licenses.

With ROS you can do this and more. You can take a code from the repositories, 
improve it, and share it again. This philosophy is the underlying principle of open 
source software.

ROS has numerous versions, the last one being Indigo. In this book, we are going to 
use Hydro because it is a stable version while Indigo is still experimental and may 
contain bugs.

Now we are going to show you how to install ROS Hydro. Although in this book we 
use Hydro, you may need to install older versions to use some code that works only 
with these versions.
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As we said before, the operating system used in the book is Ubuntu, and we are 
going to use it throughout this book and with all the tutorials. If you use another 
operating system and you want to follow the book, the best option is to install a 
virtual machine with a copy of Ubuntu. At the end of this chapter, we will explain 
how to install a virtual machine to use the ROS inside it or download a virtual 
machine with ROS installed.

Anyway, if you want to try installing it in an operating system other than Ubuntu, 
you can find instructions to do so in many other operating systems at  http://wiki.
ros.org/hydro/Installation.

PC installation
We assume that you have a PC with a copy of Ubuntu 12.04. We are using Ubuntu 
because it comes with a Long-Term Support (LTS). That means the community will 
maintain this version for five years.

Furthermore, it is necessary to have a basic knowledge of Linux and command tools 
such as the terminal, vim, creating folders, and so on. If you need to learn these tools, 
you can find a lot of relevant resources on the Internet, or you can find books on 
these topics instead.

Installing ROS Hydro – using repositories
Last year, the ROS webpage was updated with a new design and a new organization 
of contents. You can see a screenshot of the webpage that follows:

http://wiki.ros.org/hydro/Installation
http://wiki.ros.org/hydro/Installation
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In the menu, you can find information about ROS and whether ROS is a good choice 
for your system, blogs, news, and so on.

Instructions for the ROS installation can be found under the Install tab in the Getting 
Started section.

ROS recommends that you install the system using the repository instead of the 
source code, unless you are an advanced user and you want to make a customized 
installation; in that case, you may prefer installing ROS using the source code.

So to install ROS using the repositories, we will start by configuring the Ubuntu 
repository in our system.

Configuring your Ubuntu repositories
In this section, you will learn the steps for installing ROS Hydro in your computer. 
This process has been based on the official installation page, which can be found at 
http://wiki.ros.org/hydro/Installation/Ubuntu.

We assume that you know what an Ubuntu repository is, and how to manage it. 
If you have any doubts about it, refer to https://help.ubuntu.com/community/
Repositories/Ubuntu.

Before we start the installation, we need to configure our repositories. To do that, 
the repositories need to allow restricted, universe, and multiverse. To check if your 
Ubuntu accepts these repositories, click on the Ubuntu Software Center in the menu 
on the left-hand side of your desktop, as shown in the following screenshot:

http://wiki.ros.org/hydro/Installation/Ubuntu
http://wiki.ros.org/hydro/Installation/Ubuntu
https://help.ubuntu.com/community/Repositories/Ubuntu
https://help.ubuntu.com/community/Repositories/Ubuntu
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Click on Edit | Software Sources and you will see the next window. Make sure that 
all the listed options are checked as shown in the following screenshot:

Normally these options are marked, so you should not have any problem with  
this step.

Setting up your source.list file
In this step, you have to select your Ubuntu version. It is possible to install ROS 
Hydro in various versions of the operating system. You can use any of them, but 
we recommend version 12.04 to follow the chapters of this book. Keep in mind that 
Hydro works in the Precise Pangolin (12.04), Quantal Quetzal (12.10), and the Raring 
Ringtail(13.04) versions of Ubuntu.

• If you're going follow the book with Ubuntu 12.04 (Precise Pangolin), type 
the following command to add the repositories:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu precise 
main" > /etc/apt/sources.list.d/ros-latest.list'

• If you're going to follow the book with Ubuntu 12.10 (Quantal Quetzal), type 
the following command to add the repositories:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu quantal 
main" > /etc/apt/sources.list.d/ros-latest.list'

•  To follow the book with Ubuntu 13.04 (Raring Ringtail), type the following 
command to add the repositories:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu raring 
main" > /etc/apt/sources.list.d/ros-latest.list'
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Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

Once you've added the correct repository, your operating system will know where to 
download programs to install them into your system.

Setting up your keys
This step is to confirm that the origin of the code is correct and that no-one has 
modified the code or programs without the knowledge of the owner. Normally, 
when you add a new repository you have to add the keys of that repository, so  
it is added to your system's trusted list.

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

Now we can be sure that the code came from an authorized site and has not  
been modified.

Installing ROS
We are ready to start the installation now, but before we do that it's better to make an 
update to avoid problems with the libraries and software with a version other than 
what ROS needs. This is done with the following command:

$ sudo apt-get update

ROS is huge; sometimes you will install libraries and programs that you will never 
use. Normally it has four different installations, but this depends on the final use. 
For example, if you are an advanced user, maybe you only need the basic installation 
for a robot without much space on the hard disc. For this book, we recommend you 
use the full installation because it will install everything necessary to practice the 
examples and tutorials.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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It doesn't matter if you don't know what are you installing right now — rviz, 
simulators, navigation, and so on. You will learn everything in the upcoming chapters:

• The easiest (and recommended if you have enough hard disk space) 
installation is known as desktop-full. It comes with ROS, the rqt tools,  
the rviz visualizer (for 3D), many generic robot libraries, simulator in 2D  
(like stage) and 3D (usually gazebo), the navigation stack (to move, localize, 
do mapping, and control arms), and also perception libraries using vision, 
lasers or RGBD cameras:
$ sudo apt-get install ros-hydro-desktop-full

• If you do not have enough disk space or you prefer to install only a few 
packages, install only the desktop install initially, which comes with only 
ROS, the rqt tools, rviz, and generic robot libraries. You can install the rest of 
the packages as and when you need them. For example, using aptitude and 
looking for ros-hydro-* packages with the following command:.
$ sudo apt-get install ros-hydro-desktop

• If you only want the bare bones, install ROS-base, which is usually 
recommended for the robot itself, or for computers without a screen or just 
a tty. It will install the ROS package with the build and communication 
libraries and no GUI tools at all. With BeagleBone Black (BBB), we will 
install the system with the following option:
$ sudo apt-get install ros-hydro-ros-base

• Finally, whichever of the previous options you choose, you can also install 
individual/specific ROS packages (for a given package name):
$ sudo apt-get install ros-hydro-PACKAGE

Initializing rosdep
Before you can use ROS, you will need to initialize rosdep. The rosdep command 
line too enables you to easily install system dependencies for the source you want 
to compile and is required to run some core components in ROS. In ROS Fuerte you 
had to install rosdep after installing ROS, and it was known as a standalone tool. 
Now rosdep is installed in ROS by default. To initialize rosdep, you have to use  
the following commands:

$ sudo rosdep init 

$ rosdep update
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Setting up the environment
Congratulations! If you are at this step, you have an installed version of ROS on your 
system! To start using it, the system needs to know the location of the executable or 
binary files as well as the other commands. To do so, normally you need to execute 
the next script; if you also install another ROS distro, you can work with both just 
by calling the script of the one you need each time, since this script simply sets your 
environment. Here we use the one for ROS Hydro, but just replace Hydro with 
Fuerte or Groovy if you want to try other distros:

$ source /opt/ros/hydro/setup.bash

If you type roscore in the shell, you will see something starting up. This is the best 
test for finding out if you have ROS, and if it is installed correctly.

Notice that if you open another shell and type roscore or other ROS commands, it 
does not work. This is because it is necessary to execute the script again to configure 
the global variables, the path where ROS is installed, and so on.

It is very easy to solve this; you just need to add the script at the end of your .bashrc 
script file so that when you start a new shell, the script will execute and you will 
have the environment configured.

The .bashrc file is within the user home (/home/USERNAME/.bashrc). It has the 
configuration of the shell or terminal, and each time the user opens the terminal, 
this file is loaded. So you can add commands or configuration to make the user's life 
easy. For this reason, we will add the script at the end of the .bashrc file, to avoid 
keying it in each time we open a terminal. We do this with the following command:

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc 

 To see the results, you have to execute the file using the next command, or close the 
current terminal and open another.

$ source ~/.bashrc

Some users need more than a single ROS distribution installed in their system. Your 
~/.bashrc must only source the setup.bash of the version you are currently using, 
since the last call will override the environment set of the others. So you have several 
distros living in the same system and need to switch between them.
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For example, you might have the following lines in your .bashrc file:

…

source /opt/ros/hydro/setup.bash

source /opt/ros/fuerte/setup.bash

source /opt/ros/electric/setup.bash

…

The ROS Electric version will be executed in this case. So you have to make sure that 
the version you are running is the last one in the file.

If you want to check the version used in a terminal, you can do so easily using the 
echo $ROS_DISTRO command.

Getting rosinstall
Now, the next step is to install a command tool that will help us install other 
packages with a single command. This tool is based in Python, but don't worry,  
you don't need to know Python to use it. You will learn how to use this tool in  
the upcoming chapters:

To install this tool on Ubuntu, run the following command:

$ sudo apt-get install python-rosinstall

And that is all! You have a complete ROS system installed in your system. When I 
finish a new installation of ROS, I personally like to test two things: that roscore 
works, and turtlesim.

If you want to do the same,, type the following commands in different shells:

$ roscore

$ rosrun turtlesim turtlesim_node

And if everything is okay, you will see the following screenshot:
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How to install VirtualBox and Ubuntu
VirtualBox is a general-purpose full virtualizer for x86 hardware, targeted at server, 
desktop, and embedded use. VirtualBox is free and supports all the major operating 
systems and pretty much every Linux flavor out there.

If you don't want to change the operating system of your computer to Ubuntu, tools 
such as VirtualBox help us virtualize a new operating system in our computers 
without making any changes.

In the following section, we are going to show you how to install VirtualBox and a 
new installation of Ubuntu. After this virtual installation, you should have a clean 
installation to restart your development machine if you have any problems, or to 
save all the setups necessary for your robot in the machine.

Downloading VirtualBox
The first step is to download the VirtualBox installation file. The latest version at the 
time of writing this book is 4.3.12; you can download it from http://download.
virtualbox.org/virtualbox/4.3.12/. If you're using Windows, you can download 
it from http://download.virtualbox.org/virtualbox/4.3.12/VirtualBox-
4.3.12-93733-Win.exe.

Once installed, you need to download the image of Ubuntu; for this tutorial we  
will use a copy of Ubuntu with ROS Hydro installed. You can download it from 
http://nootrix.com/2014/04/virtualized-ros-hydro/.

For this version, the Nootrix team are using torrent to download the virtual machine; 
I tried this way to download the file and it works perfectly.

You can find different virtual machines with Ubuntu and ROS preinstalled, but we 
are going to use this version because it is referred to in the official pages of ROS.

http://download.virtualbox.org/virtualbox/4.3.12/
http://download.virtualbox.org/virtualbox/4.3.12/
http://download.virtualbox.org/virtualbox/4.3.12/VirtualBox-4.3.12-93733-Win.exe
http://download.virtualbox.org/virtualbox/4.3.12/VirtualBox-4.3.12-93733-Win.exe
http://nootrix.com/2014/04/virtualized-ros-hydro/
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Creating the virtual machine
Creating a new virtual machine with the downloaded file is very easy; just proceed 
with the following steps. Open VirtualBox and click on File | Import Appliance. 
Then click on Open appliance and select the ROSHydro.ova file downloaded earlier:

In the windows that follow, you can configure the parameters of the new virtual 
machine. Keep the default configuration and change only the name for the virtual 
system. This name is how you distinguish this virtual machine from others. Our 
recommendation is to put a descriptive name, in our case the name of this book:
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Click on the Import button, and accept the software license agreement in the next 
window. You will see a progress bar. It means that VirtualBox is copying the file 
with the virtual image, and it is creating a new copy with the new name.

Notice that this process doesn't modify the original file ROS.ova, and you could 
create more virtual machines with different copies from the original file.

The process will take a few minutes depending on your computer. When it finishes, 
you can start your virtual machine by clicking on the Start button. Remember to 
select the right machine before you start it. In our case, we only have one but you 
could have more:

Sometimes, you will get an error as shown in the following screenshot. It is because 
your computer doesn't have the correct drivers to use the USB 2.0 controller. You 
can fix this by installing the Oracle VM VirtualBox Extension Pack, but you can also 
choose to disable the USB support to start using the virtual machine:
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To disable the USB support, right-click over the virtual machine and select Settings. 
In the General tab, click on Ports | USB and uncheck the Enable USB 2.0 (EHCI) 
Controller, as shown in the following screenshot. Now you can restart the virtual 
machine and it should start without any problems.

Once the virtual machine starts, you should see the next window as seen in the 
following screenshot. It is the Ubuntu 12.04 OS with ROS installed:
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When you finish these steps, you will have a full copy of ROS Hydro that can be 
used along with this book. You can run all the examples and stacks that we are going 
to work with. Unfortunately, VirtualBox has problems when working with real 
hardware, and it's possible that you may not be able to use this copy of ROS Hydro 
with the examples given in Chapter 4, Using Sensors and Actuators with ROS.

Installing ROS Hydro in BeagleBone 
Black (BBB)
BeagleBone Black is a low-cost development platform based on an ARM Cortex 
A8 processor. This board is fabricated with a Linux distribution called Ångström. 
Ångström was developed by a small group who wanted to unify Linux distribution 
for embedded systems. They wanted an operating system that was stable and  
user-friendly.

Texas Instruments designed BeagleBone Black thinking that the community of 
developers needed an on-board computer with some general purpose input/
output (GPIO) pins. The BeagleBone Black platform is an evolution of the original 
BeagleBone. The main features of the board are an ARM Cortex A8 processor at 
1 GHz with 512 MB RAM, and with Ethernet, USB, and HDMI connections and 
two headers of 46 pins GPIO. This GPIO can be set up as digital I/O, ADC, PWM, 
or for communication protocol like I2C, SPI, or UART. The GPIO is an easy way 
to communicate with sensors and actuators directly from the BeagleBone without 
intermediaries. The following is a labeled image of BeagleBone:
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When the BeagleBone board came out, it was not possible to install ROS on the 
Ångström distribution. For this reason, it was common to install an operating system 
based on Ubuntu on the BeagleBone. There are different versions of Ubuntu ARM 
compatible with the BeagleBone Black and ROS; we recommend you use an image of 
Ubuntu ARM 13.04 raring armhf on the platform to work with ROS.

Now, a ROS version for Ångström distribution is ready to be installed; you can 
do it following the installation steps given at http://wiki.ros.org/hydro/
Installation/Angstrom. Despite this possibility, we have chosen to install ROS 
on Ubuntu ARM because these distributions are more common and can be used on 
other ARM-based boards such as UDOO, ODROID U3, ODROID X2, or Gumstick.

The ARM technology is booming with the use of mobile devices such as smartphones 
and tablets. Apart from the increasing computer power of the ARM cortex, the great 
level of integration and low consumption have made this technology suitable for 
autonomous robotic systems. In the last few years, multiple ARM platforms for 
developers have been launched in the market. Some of them have features similar 
to the BeagleBone Black like the Raspberry PI or the Gumstick Overo. Additionally, 
more powerful boards like Gumstick DuoVero with a Dual Core ARM Cortex A9 or 
some quad core boards like Odroid U3, Odroid X2 or UDOO are now available.

Prerequisites
Before installing ROS on Beaglebone Black, we have to achieve some prerequisites. 
As this book is focused on ROS, we will list them without entering into detail.  
There is a lot of information about Beaglebone Black and Ubuntu ARM available  
on websites, forums, and books that you can check out.

First, we have to install an Ubuntu ARM distribution compatible with ROS.  
So, an image of Ubuntu ARM is needed. You can obtain an Ubuntu 13.04  
Raring armhf  using wget with the following command:

$ wget https://rcn-ee.net/deb/flasher/raring/BBB-eMMC-flasher-
ubuntu-13.04-2013-10-08.img

Download the Ubuntu 13.04 armhf image and install it on your SD card. You  
can get more details on how to install Ubuntu on Bealgebone Black on eLinux  
at http://elinux.org/Beagleboard:Ubuntu_On_BeagleBone_Black#Ubuntu_
Raring_On_Micro_SD.

The process described in the preceding webpage works fine, but we have to be 
careful with the version of Ubuntu used. As the website is periodically updated,  
they are now using Ubuntu 14.04, which is not compatible with ROS. We will use  
an Ubuntu 13.04 Raring armhf as mentioned earlier.

http://wiki.ros.org/hydro/Installation/Angstrom
http://wiki.ros.org/hydro/Installation/Angstrom
http://elinux.org/Beagleboard:Ubuntu_On_BeagleBone_Black#Ubuntu_Raring_On_Micro_SD
http://elinux.org/Beagleboard:Ubuntu_On_BeagleBone_Black#Ubuntu_Raring_On_Micro_SD
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Once we have Ubuntu ARM on our platform, the Beaglebone Black network 
interfaces must be configured to provide access to the network. So, you will  
have to configure the network settings such as IP, DNS, and gateway.

Remember that the easiest way could be mounting the SD card in another computer 
and editing /etc/network/interfaces.

After setting up the network, we should install the packages, programs, and libraries 
that ROS will need such as CMake, Python, or Vim using the following commands:

$ sudo apt-get install cmake python-catkin-pkg python-empy python-nose 
python-setuptools libgtest-dev build-essential

$ sudo apt-get install g++ curl pkg-config libv4l-dev libjpeg-dev build-
essential libssl-dev vim

The operating system for Beaglebone Black is set up for micro SD cards with  
1-4 GHz. This memory space is very limited if we want to use a great part of  
the ROS Hydro packages. So in order to solve this situation, we can use SD  
cards with larger space and expand the file system to occupy all the space  
available with re-partitioning.

So if we want to work with a bigger memory space, it is recommended to expand the 
Beaglebone Black memory file system. This process is further explained at http://
elinux.org/Beagleboard:Expanding_File_System_Partition_On_A_microSD.

You can do this by following the commands listed next:

1. We need to become a super user, so we will type the following command and 
our password:
$ sudo su

2. We will look at the partitions of our SD card:
$ fdisk /dev/mmcblk0

3. On typing p, the two partitions of the SD card will be shown:
$ p

4. After this, we will delete one partition by typing 'd' and then, we will type 2 
to indicate that we want to delete /dev/mmcblk0p2:
$ d

$ 2

http://elinux.org/Beagleboard:Expanding_File_System_Partition_On_A_microSD
http://elinux.org/Beagleboard:Expanding_File_System_Partition_On_A_microSD
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5. On typing n, a new partition will be created; if we type p it will be a primary 
partition. We will indicate that we want to number it as the second partition 
by typing 2:
$ n

$ p

$ 2

6. You can write these changes by typing w if everything is right, or eliminate 
the changes with Ctrl + Z:
$ w

7. We should reboot the board after finishing:
$ reboot

8. Once again, become a super user once the reboot is complete:
$ sudo su

9. And finally, run the following command to execute the expansion of the 
memory file system of the operating system.
$ resize2fs /dev/mmcblk0p2

Now we should be ready to install ROS. At this point, the process of installation 
is pretty similar to the PC installation previously explained in this chapter. So, we 
should be familiar with it. We will see that the main difference when installing ROS 
on BeagleBone Black is that we can't install the ROS full-desktop; we must install it 
package by package.

Setting up the local machine and source.list 
file
Now you will start setting up your local machine:

$ sudo update-locale LANG=C LANGUAGE=C LC_ALL=C LC_MESSAGES=POSIX

After this, we will configure the source lists depending on the Ubuntu version that 
we have installed in BeagleBone Black. The number of Ubuntu versions compatible 
with BeagleBone Black are limited, and only active builds can be found for Ubuntu 
13.04 raring armhf, the most popular version of Ubuntu ARM.

• Ubuntu 13.04 Raring armhf:
$ sudo sh -c 'echo "deb http://packages.namniart.com/repos/ros 
raring main" > /etc/apt/sources.list.d/ros-latest.list'
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• Ubuntu 12.10 Quantal armhf:
$ sudo sh -c 'echo "deb http://packages.namniart.com/repos/ros 
quantal main" > /etc/apt/sources.list.d/ros-latest.list'

• Ubuntu 12.04 Precise armhf:
$ sudo sh -c 'echo "deb http://packages.namniart.com/repos/ros 
precise main" > /etc/apt/sources.list.d/ros-latest.list'

Setting up your keys
As explained previously, this step is needed to confirm that the origin of the code is 
correct and that no-one has modified the code or programs without the knowledge  
of the owner:

$ wget http://packages.namniart.com/repos/namniart.key -O - | sudo apt-
key add –

Installing the ROS packages
Before the installation of ROS packages, we must update the system to avoid 
problems of library dependencies.

$ sudo apt-get update

This part of the installation is slightly different for the Beaglebone Black. There are 
a lot of libraries and packages in ROS and not all of them compile fully on an ARM. 
So, it is not possible to make a full-desktop installation. It is recommended to install 
package by package to ensure that they will work on an ARM platform.

You can try to install ROS-base, known as ROS Bare Bones. ROS-base installs the 
ROS package along with the build and communications libraries but does not 
include the GUI tools:

$ sudo apt-get install ros-hydro-ros-base

We can install specific ROS packages by using the following command:

$ sudo apt-get install ros-hydro-PACKAGE

If we need to find the ROS packages available for BeagleBone Black, you can run the 
following command:

$ apt-cache search ros-hydro
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For example, the following packages are the basics that work with ROS and can be 
installed individually using apt-get install:

$ sudo apt-get install ros-hydro-ros

$ sudo apt-get install ros-hydro-roslaunch

$ sudo apt-get install ros-hydro-rosparam

$ sudo apt-get install ros-hydro-rosservice

Although  theoretically, not all the packages of ROS are supported by BeagleBone 
Black, in practice, we have been able to migrate entire projects developed on PC to 
BeagleBone Black. We tried a lot of packages, and we could only not install rviz.

Initializing rosdep for ROS
The rosdep command-line tool must be installed and initialized before you can use 
ROS. This allows you to easily install libraries and solving system dependencies for 
the source you want to compile, and is required to run some core components in 
ROS. You can use the following commands to install and initialize rosdep:

$ sudo apt-get install python-rosdep

$ sudo rosdep init

$ rosdep update

Setting up the environment in BeagleBone 
Black
If you have arrived at this step, congratulations because you have installed ROS in 
your BeagleBone Black. The ROS environment variables can be added to your bash, 
so they will be added every time a shell is launched:

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

We have to be careful if we have more than one version of ROS in our system.  
The bashrc setup must use the variables of the version being used only.

If we want to set up the environment in the current shell, we will run the  
following command:

$ source /opt/ros/hydro/setup.bash
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Getting rosinstall for BeagleBone Black
Rosinstall is a common command-line tool in ROS that helps us to install packages 
easily. It can be installed on Ubuntu with the following command line:

$ sudo apt-get install python-rosinstall

Summary
In this chapter, we have installed ROS Hydro on different devices (PC, VirtualBox, 
and BeagleBone Black) in Ubuntu. With these steps, you have everything necessary 
installed on your system to start working with ROS and you can also practice the 
examples in this book. You also have the option of installing ROS using the source 
code. This option is for advanced users and we recommend you use only the 
repository as installation as it is more common and normally does not give  
errors or problems.

It is a good idea to play around with ROS and its installation on a virtual machine. 
That way, if you have problems with the installation or with something else, you  
can reinstall a new copy of your operating system and start again.

Normally, with virtual machines, you will not have access to real hardware, for 
example, sensors or actuators. Anyway, you can use it for testing the algorithms.
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ROS Architecture  
and Concepts

Once you have installed ROS, you certainly must be thinking, "OK, I have installed 
it, and now what?" In this chapter, you will learn the structure of ROS and the parts 
it is made up of. Furthermore, you will start to create nodes and packages and use 
ROS with examples using Turtlesim.

The ROS architecture has been designed and divided into three sections or levels  
of concepts:

• The Filesystem level
• The Computation Graph level
• The Community level

The first level is the Filesystem level. In this level, a group of concepts are used 
to explain how ROS is internally formed, the folder structure, and the minimum 
number of files that it needs to work.

The second level is the Computation Graph level where communication between 
processes and systems happens. In this section, we will see all the concepts and 
systems that ROS has to set up systems, handle all the processes, communicate  
with more than a single computer, and so on.

The third level is the Community level where there are certain tools and concepts to 
share knowledge, algorithms, and code from any developer. This level is important 
because ROS can grow quickly with great support from the community.
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Understanding the ROS Filesystem level
When you start to use or develop projects with ROS, you will see that although  
this concept can sound strange in the beginning, you will become familiar with  
it with time.

Filesystem Level

Packages

Metapackages

Package
manifest Messages Services Code Others

Similar to an operating system, an ROS program is divided into folders, and these 
folders have files that describe their functionalities:

• Packages: Packages form the atomic level of ROS. A package has the 
minimum structure and content to create a program within ROS. It may  
have ROS runtime processes (nodes), configuration files, and so on.

• Package manifests: Package manifests provide information about a package, 
licenses, dependencies, compilation flags, and so on. A package manifest is 
managed with a file called package.xml.

• Metapackages: When you want to aggregate several packages in a group, 
you will use metapackages. In ROS Fuerte, this form for ordering packages 
was called Stacks. To maintain the simplicity of ROS, the stacks were 
removed, and now, metapackages make up this function. In ROS, there  
exist a lot of these metapackages; one of them is the navigation stack.

• Metapackage manifests: Metapackage manifests (package.xml) are similar 
to a normal package but with an export tag in XML. It also has certain 
restrictions in its structure.
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• Message (msg) types: A message is the information that a process sends 
to other processes. ROS has a lot of standard types of messages. Message 
descriptions are stored in my_package/msg/MyMessageType.msg.

• Service (srv) types: Service descriptions, stored in my_package/srv/
MyServiceType.srv, define the request and response data structures  
for services provided by each process in ROS.

In the following screenshot, you can see the content of the turtlesim package. What 
you see is a series of files and folders with code, images, launch files, services, and 
messages. Keep in mind that the screenshot was edited to show a short list of files; 
the real package has more.

The workspace
Basically, the workspace is a folder where we have packages, edit the source files  
or compile packages. It is useful when you want to compile various packages at  
the same time and is a good place to have all our developments localized.
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A typical workspace is shown in the following screenshot. Each folder is a different 
space with a different role:

• The Source space: In the Source space (the src folder), you put your 
packages, projects, clone packages, and so on. One of the most important 
files in this space is CMakeLists.txt. The src folder has this file because it is 
invoked by CMake when you configure the packages in the workspace. This 
file is created with the catkin_init_workspace command.

• The Build space: In the build folder, CMake and catkin keep the cache 
information, configuration, and other intermediate files for our packages  
and projects.

• The Development (devel) space: The devel folder is used to keep the 
compiled programs. This is used to test the programs without the installation 
step. Once the programs are tested, you can install or export the package to 
share with other developers.

You have two options with regard to building packages with catkin. The first one is 
to use the standard CMake workflow. With this, you can compile one package at a 
time, as shown in the following commands:

$ cmake packageToBuild/

$ make

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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If you want to compile all your packages, you can use the catkin_make command 
line, as shown in the following commands:

$ cd workspace

$ catkin_make

Both commands build the executables in the build space directory configured  
in ROS.

Another interesting feature of ROS are its overlays. When you are working with a 
package of ROS, for example, Turtlesim, you can do it with the installed version, or 
you can download the source file and compile it to use your modified version.

ROS permits you to use your version of this package instead of the installed version. 
This is very useful information if you are working on an upgrade of an installed 
package. At this moment, perhaps you don't understand the utility of this, but  
in the next chapters, we will use this feature to create our own plugins.

Packages
Usually, when we talk about packages, we refer to a typical structure of files and 
folders. This structure looks as follows:

• include/package_name/: This directory includes the headers of the libraries 
that you would need.

• msg/: If you develop nonstandard messages, put them here.
• scripts/: These are executable scripts that can be in Bash, Python, or any 

other scripting language.
• src/: This is where the source files of your programs are present. You can 

create a folder for nodes and nodelets or organize it as you want.
• srv/: This represents the service (srv) types.
• CMakeLists.txt: This is the CMake build file.
• package.xml: This is the package manifest.

To create, modify, or work with packages, ROS gives us tools for assistance, some of 
which are as follows:

• rospack: This command is used to get information or find packages in  
the system.

• catkin_create_pkg: This command is used when you want to create a  
new package.

• catkin_make: This command is used to compile a workspace.
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• rosdep: This command installs the system dependencies of a package.
• rqt_dep: This command is used to see the package dependencies  

as a graph. If you want to see the package dependencies as a graph,  
you will find a plugin called package graph in rqt. Select a package  
and see the dependencies.

To move between packages and their folders and files, ROS gives us a very useful 
package called rosbash, which provides commands that are very similar to Linux 
commands. The following are a few examples:

• roscd: This command helps us change the directory. This is similar to the  
cd command in Linux.

• rosed: This command is used to edit a file.
• roscp: This command is used to copy a file from a package.
• rosd: This command lists the directories of a package.
• rosls: This command lists the files from a package. This is similar to the ls 

command in Linux.

The package.xml file must be in a package, and it is used to specify information 
about the package. If you find this file inside a folder, probably this folder is a 
package or a metapackage.

If you open the package.xml file, you will see information about the name of the 
package, dependencies, and so on. All of this is to make the installation and the 
distribution of these packages easy.

Two typical tags that are used in the package.xml file are <build_depend> and  
<run _depend>.

The <build_depend> tag shows what packages must be installed before installing 
the current package. This is because the new package might use a functionality of 
another package.
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The <run_depend> tag shows the packages that are necessary to run the code of the 
package. The following screenshot is an example of the package.xml file:

Metapackages
As we have shown earlier, metapackages are special packages with only one file 
inside; this file is package.xml. This package does not have other files, such as code, 
includes, and so on.

Metapackages are used to refer to others packages that are normally grouped 
following a feature-like functionality, for example, navigation stack, ros_tutorials, 
and so on.

You can convert your stacks and packages from ROS Fuerte to Hydro and catkin 
using certain rules for migration. These rules can be found at http://wiki.ros.
org/catkin/migrating_from_rosbuild.

http://wiki.ros.org/catkin/migrating_from_rosbuild
http://wiki.ros.org/catkin/migrating_from_rosbuild
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In the following screenshot, you can see the content from the package.xml  
file in the ros_tutorials metapackage. You can see the <export> tag and  
the <run_depend> tag. These are necessary in the package manifest, which  
is shown in the following screenshot:

If you want to locate the ros_tutorials metapackage, you can use the  
following command:

$ rosstack find ros_tutorials

The output will be a path, such as /opt/ros/hydro/share/ros_tutorials.

To see the code inside, you can use the following command line:

$ vim /opt/ros/hydro/share/ros_tutorials/package.xml

Remember that Hydro uses metapackages, not stacks, but the rosstack find 
command line works to find metapackages.
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Messages
ROS uses a simplified message description language to describe the data values that 
ROS nodes publish. With this description, ROS can generate the right source code for 
these types of messages in several programming languages.

ROS has a lot of messages predefined, but if you develop a new message, it will be 
in the msg/ folder of your package. Inside that folder, certain files with the .msg 
extension define the messages.

A message must have two principal parts: fields and constants. Fields define the type 
of data to be transmitted in the message, for example, int32, float32, and string, 
or new types that you have created earlier, such as type1 and type2. Constants 
define the name of the fields.

An example of a msg file is as follows:

int32 id
float32 vel
string name

In ROS, you can find a lot of standard types to use in messages, as shown in the 
following table list:

Primitive type Serialization C++ Python
bool (1) unsigned 8-bit int uint8_t(2) bool

int8 signed 8-bit int int8_t int

uint8 unsigned 8-bit int uint8_t int(3)

int16 signed 16-bit int int16_t int

uint16 unsigned 16-bit int uint16_t int

int32 signed 32-bit int int32_t int

uint32 unsigned 32-bit int uint32_t int

int64 signed 64-bit int int64_t long

uint64 unsigned 64-bit int uint64_t long

float32 32-bit IEEE float float float

float64 64-bit IEEE float double float

string ascii string (4) std::string string

time secs/nsecs signed 32-bit ints ros::Time rospy.Time

duration secs/nsecs signed 32-bit ints ros::Duration rospy.Duration
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A special type in ROS is the header type. This is used to add the time, frame, and 
so on. This permits you to have the messages numbered, to see who is sending the 
message, and to have more functions that are transparent for the user and that ROS 
is handling.

The header type contains the following fields:

uint32 seq
time stamp
string frame_id

You can see the structure using the following command:

$ rosmsg show std_msgs/Header

Thanks to the header type, it is possible to record the timestamp and frame of what is 
happening with the robot, as we will see in the upcoming chapters.

In ROS, there exist tools to work with messages. The rosmsg tool prints out the 
message definition information and can find the source files that use a message type.

In the upcoming sections, we will see how to create messages with the right tools.

Services
ROS uses a simplified service description language to describe ROS service 
types. This builds directly upon the ROS msg format to enable request/response 
communication between nodes. Service descriptions are stored in .srv files in the 
srv/ subdirectory of a package.

To call a service, you need to use the package name, along with the service name; for 
example, you will refer to the sample_package1/srv/sample1.srv file as sample_
package1/sample1.

There are tools that exist to perform functions with services. The rossrv tool prints 
out the service descriptions and packages that contain the .srv files, and finds 
source files that use a service type.

If you want to create a service, ROS can help you with the service generator. These 
tools generate code from an initial specification of the service. You only need to add 
the gensrv() line to your CMakeLists.txt file.

In the upcoming sections, you will learn how to create your own services.
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Understanding the ROS Computation 
Graph level
ROS creates a network where all the processes are connected. Any node in the 
system can access this network, interact with other nodes, see the information  
that they are sending, and transmit data to the network:

Topics Services Bags

Nodes Master Parameter
Server

Messages

Computation
Graph Level

The basic concepts in this level are nodes, the master, Parameter Server, messages, 
services, topics, and bags, all of which provide data to the graph in different ways 
and are explained in the following list:

• Nodes: Nodes are processes where computation is done. If you want to have 
a process that can interact with other nodes, you need to create a node with 
this process to connect it to the ROS network. Usually, a system will have 
many nodes to control different functions. You will see that it is better to 
have many nodes that provide only a single functionality, rather than have 
a large node that makes everything in the system. Nodes are written with a 
ROS client library, for example, roscpp or rospy.

• The master: The master provides the registration of names and the lookup 
service to the rest of the nodes. It also sets up connections between the nodes. If 
you don't have it in your system, you can't communicate with nodes, services, 
messages, and others. In a distributed system, you will have the master in one 
computer, and you can execute nodes in this or other computers.

• Parameter Server: Parameter Server gives us the possibility of using keys to 
store data in a central location. With this parameter, it is possible to configure 
nodes while it's running or to change the working of the nodes.

• Messages: Nodes communicate with each other through messages. A 
message contains data that sends information to other nodes. ROS has many 
types of messages, and you can also develop your own type of message using 
standard messages.
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• Topics: Each message must have a name to be routed by the ROS network. 
When a node is sending data, we say that the node is publishing a topic. 
Nodes can receive topics from other nodes simply by subscribing to the topic. 
A node can subscribe to a topic, and it isn't necessary that the node that is 
publishing this topic should exist. This permits us to decouple the production 
from the consumption. It's important that the name of the topic be unique to 
avoid problems and confusion between topics with the same name.

• Services: When you publish topics, you are sending data in a many-to-many 
fashion, but when you need a request or an answer from a node, you can't do 
it with topics. Services give us the possibility of interacting with nodes. Also, 
services must have a unique name. When a node has a service, all the nodes 
can communicate with it, thanks to ROS client libraries.

• Bags: Bags are a format to save and play back the ROS message data. Bags 
are an important mechanism to store data, such as sensor data, that can be 
difficult to collect but is necessary to develop and test algorithms. You will 
use bags a lot while working with complex robots.

In the following figure, you can see the graphic representation of this level. It 
represents a real robot working in real conditions. In the graph, you can see the 
nodes, the topics, which node is subscribed to a topic, and so on. This graph does not 
represent messages, bags, Parameter Server, and services. It is necessary for other 
tools to see a graphic representation of them. The tool used to create the graph is 
rqt_graph; you will learn more about it in Chapter 3, Visualization and Debug Tools.

These concepts are implemented in the ros_comm repository.
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Nodes and nodelets
Nodes are executables that can communicate with other processes using topics, 
services, or the Parameter Server. Using nodes in ROS provides us with fault 
tolerance and separates the code and functionalities, making the system simpler.

ROS has another type of node called nodelets. These special nodes are designed 
to run multiple nodes in a single process, with each nodelet being a thread (light 
process). This way, we avoid using the ROS network among them but permit 
communication with other nodes. With that, nodes can communicate more 
efficiently, without overloading the network. Nodelets are especially useful for 
camera systems and 3D sensors, where the volume of data transferred is very high.

A node must have a unique name in the system. This name is used to permit the 
node to communicate with another node using its name without ambiguity. A node 
can be written using different libraries, such as roscpp and rospy; roscpp is for C++ 
and rospy is for Python. Throughout this book, we will use roscpp.

ROS has tools to handle nodes and give us information about it, such as rosnode. 
The rosnode tool is a command-line tool used to display information about nodes, 
such as listing the currently running nodes. The supported commands are as follows:

• rosnode info NODE: This prints information about a node
• rosnode kill NODE: This kills a running node or sends a given signal
• rosnode list: This lists the active nodes
• rosnode machine hostname: This lists the nodes running on a particular 

machine or lists machines
• rosnode ping NODE: This tests the connectivity to the node.
• rosnode cleanup: This purges the registration information from 

unreachable nodes

In the upcoming sections, you will learn how to use these commands with examples.

A powerful feature of ROS nodes is the possibility of changing parameters while 
you start the node. This feature gives us the power to change the node name, 
topic names, and parameter names. We use this to reconfigure the node without 
recompiling the code so that we can use the node in different scenes.

An example of changing a topic name is as follows:

$ rosrun book_tutorials tutorialX topic1:=/level1/topic1



ROS Architecture and Concepts

[ 36 ]

This command will change the topic name topic1 to /level1/topic1. I am sure 
that you don't understand this at this moment, but you will find the utility of it in  
the upcoming chapters.

To change parameters in the node, you can do something similar to changing the 
topic name. For this, you only need to add an underscore (_) to the parameter name; 
for example:

$ rosrun book_tutorials tutorialX _param:=9.0

The preceding command will set param to the float number 9.0.

Bear in mind that you cannot use names that are reserved by the system. They are  
as follows:

• __name: This is a special, reserved keyword for the name of the node
• __log: This is a reserved keyword that designates the location where the 

node's log file should be written
• __ip and __hostname: These are substitutes for ROS_IP and ROS_HOSTNAME
• __master: This is a substitute for ROS_MASTER_URI
• __ns: This is a substitute for ROS_NAMESPACE

Topics
Topics are buses used by nodes to transmit data. Topics can be transmitted without a 
direct connection between nodes, which means that the production and consumption 
of data are decoupled. A topic can have various subscribers and can also have 
various publishers, but you can take care about publishing the same topic with 
different nodes because it can create conflicts.

Each topic is strongly typed by the ROS message type used to publish it, and nodes 
can only receive messages from a matching type. A node can subscribe to a topic 
only if it has the same message type.

The topics in ROS can be transmitted using TCP/IP and UDP. The TCP/IP-based 
transport is known as TCPROS and uses the persistent TCP/IP connection. This is 
the default transport used in ROS.

The UDP-based transport is known as UDPROS and is a low-latency, lossy 
transport. So, it is best suited to tasks such as teleoperation.



Chapter 2

[ 37 ]

ROS has a tool to work with topics called rostopic. It is a command-line tool  
that gives us information about the topic or publishes data directly on the network. 
This tool has the following parameters:

• rostopic bw /topic: This displays the bandwidth used by the topic.
• rostopic echo /topic: This prints messages to the screen.
• rostopic find message_type: This finds topics by their type.
• rostopic hz /topic: This displays the publishing rate of the topic.
• rostopic info /topic: This prints information about the active topic, 

topics published, ones it is subscribed to, and services.
• rostopic list: This prints information about active topics.
• rostopic pub /topic type args: This publishes data to the topic.  

It allows us to create and publish data in whatever topic we want,  
directly from the command line.

• rostopic type /topic: This prints the topic type, that is, the type of 
message it publishes.

We will learn to use it in the upcoming sections.

Services
When you need to communicate with nodes and receive a reply, you cannot do it 
with topics; you need to do it with services.

Services are developed by the user, and standard services don't exist for nodes.  
The files with the source code of the messages are stored in the srv folder.

Similar to topics, services have an associated service type that is the package resource 
name of the .srv file. As with other ROS filesystem-based types, the service type 
is the package name and the name of the .srv file. For example, the chapter2_
tutorials/srv/chapter2_srv1.srv file has the chapter2_tutorials/chapter2_
srv1 service type.

ROS has two command-line tools to work with services: rossrv and rosservice. 
With rossrv, we can see information about the services' data structure, and it has 
exactly the same usage as rosmsg.
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With rosservice, we can list and query services. The supported commands are  
as follows:

• rosservice call /service args: This calls the service with the  
arguments provided

• rosservice find msg-type: This finds services by service type
• rosservice info /service: This prints information about the service
• rosservice list: This lists the active services
• rosservice type /service: This prints the service type
• rosservice uri /service: This prints the ROSRPC URI service

Messages
A node sends information to another node using messages that are published 
by topics. The message has a simple structure that uses standard types or types 
developed by the user.

Message types use the following standard ROS naming convention; the name of the 
package, then /, and then the name of the .msg file. For example, std_msgs/ msg/
String.msg has the std_msgs/String message type.

ROS has the rosmsg command-line tool to get information about messages. The 
accepted parameters are as follows:

• rosmsg show: This displays the fields of a message
• rosmsg list: This lists all messages
• rosmsg package: This lists all of the messages in a package
• rosmsg packages: This lists all of the packages that have the message
• rosmsg users: This searches for code files that use the message type
• rosmsg md5: This displays the MD5 sum of a message

Bags
A bag is a file created by ROS with the .bag format to save all of the information of the 
messages, topics, services, and others. You can use this data later to visualize what has 
happened; you can play, stop, rewind, and perform other operations with it.

The bag file can be reproduced in ROS just as a real session can, sending the topics  
at the same time with the same data. Normally, we use this functionality to debug 
our algorithms.
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To use bag files, we have the following tools in ROS:

• rosbag: This is used to record, play, and perform other operations
• rqt_bag: This is used to visualize data in a graphic environment
• Rostopic: This helps us see the topics sent to the nodes

The ROS master
The ROS master provides naming and registration services to the rest of the nodes in 
the ROS system. It tracks publishers and subscribers to topics as well as services. The 
role of the master is to enable individual ROS nodes to locate one another. Once these 
nodes have located each other, they communicate with each other in a peer-to-peer 
fashion. You can see in a graphic example the steps performed in ROS to advertise a 
topic, subscribe to a topic, and publish a message, in the following diagram:

Advertise Subscribe Publish

Advertise(data) Subscribe(data)
Master Master Master

Sensor rqt_plot Sensor rqt_plot Sensor rqt_plot

data data

The master also provides Parameter Server. The master is most commonly run  
using the roscore command, which loads the ROS master, along with other  
essential components.

Parameter Server
Parameter Server is a shared, multivariable dictionary that is accessible via a 
network. Nodes use this server to store and retrieve parameters at runtime.

Parameter Server is implemented using XMLRPC and runs inside the ROS master, 
which means that its API is accessible via normal XMLRPC libraries. XMLRPC is a 
Remote Procedure Call (RPC) protocol that uses XML to encode its calls and HTTP 
as a transport mechanism.
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Parameter Server uses XMLRPC data types for parameter values, which include  
the following:

• 32-bit integers
• Booleans
• Strings
• Doubles
• ISO8601 dates
• Lists
• Base64-encoded binary data

ROS has the rosparam tool to work with Parameter Server. The supported 
parameters are as follows:

• rosparam list: This lists all the parameters in the server
• rosparam get parameter: This gets the value of a parameter
• rosparam set parameter value: This sets the value of a parameter
• rosparam delete parameter: This deletes a parameter
• rosparam dump file: This saves Parameter Server to a file
• rosparam load file: This loads a file (with parameters) on  

Parameter Server

Understanding the ROS Community level
The ROS Community level concepts are the ROS resources that enable separate 
communities to exchange software and knowledge. These resources include  
the following:

• Distributions: ROS distributions are collections of versioned  
metapackages that you can install. ROS distributions play a similar role to 
Linux distributions. They make it easier to install a collection of software, 
and they also maintain consistent versions across a set of software.

• Repositories: ROS relies on a federated network of code repositories,  
where different institutions can develop and release their own robot  
software components.

• The ROS Wiki: The ROS Wiki is the main forum for documenting information 
about ROS. Anyone can sign up for an account, contribute their own 
documentation, provide corrections or updates, write tutorials, and more.
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• Bug Ticket System: If you find a problem or want to propose a new feature, 
ROS has this resource to do it.

• Mailing lists: The ROS user-mailing list is the primary communication 
channel about new updates to ROS as well as a forum to ask questions  
about the ROS software.

• ROS Answers: Users can ask questions on forums using this resource.
• Blog: You can find regular updates, photos, and news at  

http://www.ros.org/news.

Tutorials to practice with ROS
It is time for you to practice what you have learned until now. In the upcoming 
sections, you will see examples for you to practice along with the creation of packages, 
using nodes, using Parameter Server, and moving a simulated robot with Turtlesim.

Navigating by ROS Filesystem
We have command-line tools to navigate through the filesystem. We are going to 
explain the most used ones.

To get information and move to packages and stacks, we will use rospack, 
rosstack, roscd, and rosls.

We use rospack and rosstack to get information about packages and stacks, the 
path, the dependencies, and so on.

For example, if you want to find the path of the turtlesim package, you will use the 
following command:

$ rospack find turtlesim

You will then obtain the following output:

/opt/ros/hydro/share/turtlesim

The same thing happens with the metapackages that you have installed in the 
system. An example of this is as follows:

$ rosstack find ros_comm

You will obtain the path for the ros_comm metapackage as follows:

/opt/ros/hydro/share/ros_comm

http://www.ros.org/news
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To list the files inside the pack or stack, you will use the following command:

$ rosls turtlesim

The following is the output of the preceding command:

cmake    images    srv      package.xml  msg

If you want to go inside the folder, you will use roscd as follows:

$ roscd turtlesim

$ pwd

The new path will be as follows:

/opt/ros/hydro/share/turtlesim

Creating our own workspace
Before we do anything, we are going to create our own workspace. In this 
workspace, we will have all the code that we will use in this book.

To see the workspace that ROS is using, use the following command:

$ echo $ROS_PACKAGE_PATH

You will see output similar to the following:

/opt/ros/hydro/share:/opt/ros/hydro/stacks

The folder that we are going to create is in ~/dev/catkin_ws/src/. To add this 
folder, we use the following commands:

$ mkdir –p ~/dev/catkin_ws/src

$ cd ~/dev/catkin_ws/src

$ catkin_init_workspace

Once we've created the workspace folder, there are no packages inside—only 
CMakeList.txt. The next step is building the workspace. To do this, we use the 
following commands:

$ cd ~/dev/catkin_ws

$ catkin_make

Now, if you type the ls command in the directory, you can see new folders created 
with the previous command. These are the build and devel folders.
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To finish the configuration, use the following command:

$ source devel/setup.bash

This step is only to reload the setup.bash file. You will obtain the same result if  
you close and open a new shell. You should have this command line in the end in 
your ~/.bashrc file because we used it in Chapter 1, Getting Started with ROS Hydro. 
If not, you can add it using the following command:

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc 

Creating a ROS package and metapackage
As said earlier, you can create a package manually. To avoid tedious work, we will 
use the catkin_create_pkg command-line tool.

We will create the new package in the workspace created previously using the 
following commands:

$ cd ~/dev/catkin_ws/src

$ catkin_create_pkg chapter2_tutorials std_msgs roscpp

The format of this command includes the name of the package and the dependencies 
that will have the package, in our case std_msgs and roscpp. This is shown in the 
following command:

Catkin_create_pkg [package_name] [depend1] [depend2] [depend3]

The following dependencies are included:

• std_msgs: This contains common message types representing primitive data 
types and other basic message constructs, such as MultiArray.

• roscpp: This is a C++ implementation of ROS. It provides a client library  
that enables C++ programmers to quickly interface with ROS topics, services, 
and parameters.

If everything is right, you will see the following screenshot:
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As we saw earlier, you can use the rospack, roscd, and rosls commands to retrieve 
information about the new package. The following are the dependencies used:

• rospack profile: This command informs you about the newly added 
packages to the ROS system. It is useful after installing any new package.

• rospack find chapter2_tutorials: This command helps us find the path.
• rospack depends chapter2_tutorials: This command helps us see  

the dependencies.
• rosls chapter2_tutorials: This command helps us see the content.
• roscd chapter2_tutorials: This command changes the actual path.

Building an ROS package
Once you have your package created and you have some code, it is necessary to 
build the package. When you build the package, what happens really is that the  
code is compiled.

To build a package, we will use the catkin_make tool, as follows:

$ cd ~/dev/catkin_ws/

$ catkin_make

In a few seconds, you will see something similar to the following screenshot:

If you don't encounter any failures, the package is compiled.
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Remember that you should run the catkin_make command line in the workspace 
folder. If you try to do it in any other folder, the command will fail. An example of 
this is provided in the following command lines:

$ roscd chapter2_tutorials/

$ catkin_make

When you are in the chapter2_tutorials folder and try to build the package using 
catkin_make, you will get the following error:

The specified base path "/home/your_user/dev/catkin_ws/src/chapter2_
tutorials" contains a CMakeLists.txt but "catkin_make" must be invoked in 
the root of workspace

If you execute catkin_make in the catkin_ws folder, you will obtain a  
good compilation.

Playing with ROS nodes
As we explained in the Nodes and nodelets section, nodes are executable programs, 
and these executables are in the devel space. To practice, and learn about, nodes,  
we are going to use a typical package called turtlesim.

If you have installed the desktop installation, you will have the turtlesim package 
preinstalled; if not, install it with the following command:

$ sudo apt-get install ros-hydro-ros-tutorials

Before starting with anything, you must start roscore using the following command:

$ roscore

To get information on nodes, we have the rosnode tool. To see what parameters are 
accepted, type the following command:

$ rosnode

You will obtain a list of accepted parameters, as shown in the following screenshot:
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If you want a more detailed explanation of the use of these parameters, use the 
following command:

$ rosnode <param> -h 

Now that roscore is running, we are going to get information about the nodes that 
are running, using the following command:

$ rosnode list

You see that the only node running is /rosout. It is normal because this node runs 
whenever roscore is run.

We can get all the information about this node using parameters. Try to use the 
following commands for more information:

$ rosnode info

$ rosnode ping

$ rosnode machine

$ rosnode kill

$ rosnode cleanup

Now, we are going to start a new node with rosrun using the following command:

$ rosrun turtlesim turtlesim_node

We will then see a new window appear with a little turtle in the middle, as shown in 
the following screenshot:
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If we see the node list now, we will see a new node with the name /turtlesim. You 
can see information about the node using rosnode info nameNode.

You can see a lot of information that can be used to debug your programs, using the 
following command:

$ rosnode info /turtlesim

The preceding command line prints the following information:

Node [/turtlesim]

Publications:

 * /turtle1/color_sensor [turtlesim/Color]

 * /rosout [rosgraph_msgs/Log]

 * /turtle1/pose [turtlesim/Pose]

Subscriptions:

 * /turtle1/cmd_vel [unknown type]

Services:

 * /turtle1/teleport_absolute

 * /turtlesim/get_loggers

 * /turtlesim/set_logger_level

 * /reset

 * /spawn

 * /clear

 * /turtle1/set_pen

 * /turtle1/teleport_relative

 * /kill

contacting node http://127.0.0.1:43753/ ...

Pid: 32298

Connections:

 * topic: /rosout

 * to: /rosout

 * direction: outbound

 * transport: TCPROS
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In the information, we can see the Publications (topics), Subscriptions (topics), 
and Services (srv) that the node has and the unique name of each.

Now, let's see how you interact with the node using topics and services.

Learning how to interact with topics
To interact and get information about topics, we have the rostopic tool. This tool 
accepts the following parameters:

• rostopic bw TOPIC: This displays the bandwidth used by topics
• rostopic echo TOPIC: This prints messages to the screen
• rostopic find TOPIC: This finds topics by their type
• rostopic hz TOPIC: This displays the publishing rate of topics
• rostopic info TOPIC: This prints information about active topics
• rostopic list: This lists the active topics
• rostopic pubs TOPIC: This publishes data to the topic
• rostopic type TOPIC: This prints the topic type

If you want see more information on these parameters, use -h as follows:

$ rostopic bw –h

With the pub parameter, we can publish topics that can subscribe to any node. We 
only need to publish the topic with the correct name. We will do this test later; we 
are now going to use a node that will do this work for us:

$ rosrun turtlesim turtle_teleop_key
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With this node, we can move the turtle using the arrow keys, as illustrated in the 
following screenshot:

Why does the turtle move when turtle_teleop_key is executed?

If you want to see information about the /teleop_turtle and /turtlesim nodes, 
we can see in the following code that there exists a topic called /turtle1/cmd_vel 
[geometry_msgs/Twist] in the Publications section of the node, and in the 
Subscriptions section of the second node, there is /turtle1/cmd_vel [geometry_
msgs/Twist]:

$ rosnode info /teleop_turtle

Node [/teleop_turtle]

...

Publications:

 * /turtle1/cmd_vel [geometry_msgs/Twist]

 ...

$ rosnode info /turtlesim

Node [/turtlesim]

...
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Subscriptions:

 * /turtle1/cmd_vel [geometry_msgs/Twist]

...

This means that the first node is publishing a topic that the second node can 
subscribe to. You can see the topic list using the following command line:

$ rostopic list

The output will be as follows:

/rosout

/rosout_agg

/turtle1/color_sensor

/turtle1/cmd_vel

/turtle1/pose

With the echo parameter, you can see the information sent by the node. Run the 
following command line and use the arrow keys to see the data that is being sent:

$ rostopic echo /turtle1/cmd_vel

You will see something similar to the following output:

---

linear:

  x: 0.0

  y: 0.0

  z: 0.0

angular:

  x: 0.0

  y: 0.0

  z: 2.0

---
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You can see the type of message sent by the topic using the following command line:

$  rostopic type /turtle1/cmd_vel

You will see something similar to the following output:

Geometry_msgs/Twist

If you want to see the message fields, you can do it with the next command:

$ rosmsg show geometry_msgs/Twist

You will see something similar to the following output:

geometry_msgs/Vector3 linear

  float64 x

  float64 y

  float64 z

geometry_msgs/Vector3 angular

  float64 x

  float64 y

  float64 zfloat32 angular

These tools are useful because, with this information, we can publish topics using the 
rostopic pub [topic] [msg_type] [args] command:

$ rostopic pub /turtle1/cmd_vel  geometry_msgs/Twist -r 1 -- "linear:

  x: 1.0

  y: 0.0

  z: 0.0

angular:

  x: 0.0

  y: 0.0

  z: 1.0"
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You will see the turtle doing a curve, as shown in the following screenshot:

Learning how to use services
Services are another way through which nodes can communicate with each other. 
Services allow nodes to send a request and receive a response.

The tool that we are going to use to interact with services is called rosservice. The 
accepted parameters for this command are as follows:

• rosservice args /service: This prints the service arguments
• rosservice call /service: This calls the service with the  

arguments provided
• rosservice find msg-type: This finds services by their service type
• rosservice info /service: This prints information about the service
• rosservice list: This lists the active services
• rosservice type /service: This prints the service type
• rosservice uri /service: This prints the ROSRPC URI service
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We are going to list the services available for the turtlesim node using  
the following command, so if it is not working, run roscore and run the  
turtlesim node:

$ rosservice list

You will obtain the following output:

/clear

/kill

/reset

/rosout/get_loggers

/rosout/set_logger_level

/spawn

/teleop_turtle/get_loggers

/teleop_turtle/set_logger_level

/turtle1/set_pen

/turtle1/teleport_absolute

/turtle1/teleport_relative

/turtlesim/get_loggers

/turtlesim/set_logger_level

If you want to see the type of any service, for example, the /clear service, use the 
following command:

$ rosservice type /clear

You will see something similar to the following output:

std_srvs/Empty

To invoke a service, you will use rosservice call [service] [args]. If you want 
to invoke the /clear service, use the following command:

$ rosservice call /clear

In the turtlesim window, you will now see that the lines created by the movements 
of the turtle will be deleted.
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Now, we are going to try another service, for example, the /spawn service. This 
service will create another turtle in another location with a different orientation. To 
start with, we are going to see the following type of message:

$ rosservice type /spawn | rossrv show

You will see something similar to the following output:

float32 x

float32 y

float32 theta

string name

---

string name

The preceding command is the same as the following commands. If you want to 
know why these lines are the same, search in Google about piping Linux:

$ rosservice type /spawn

You will see something similar to the following output:

turtlesim/Spawn

Type in the following command:

$ rossrv show turtlesim/Spawn

You will see something similar to the following output:

float32 x

float32 y

float32 theta

string name

---

string name

With these fields, we know how to invoke the service. We need the position of x and 
y, the orientation (theta), and the name of the new turtle:

$ rosservice call /spawn 3 3 0.2 "new_turtle"
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We then obtain the following result:

Using Parameter Server
Parameter Server is used to store data that is accessible to all nodes. ROS has a  
tool called rosparam to manage Parameter Server. The accepted parameters are  
as follows:

• rosparam set  parameter value: This sets the parameter
• rosparam get  parameter: This gets the parameter
• rosparam load file: This loads parameters from the file
• rosparam dump file: This dumps parameters to the file
• rosparam delete parameter: This deletes the parameter
• rosparam list: This lists the parameter names
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For example, we can see the parameters in the server that are used by all nodes:

$ rosparam list

We obtain the following output:

/background_b

/background_g

/background_r

/rosdistro

/roslaunch/uris/host_aaronmr_laptop__60878

/rosversion

/run_id

The background parameters are of the turtlesim node. These parameters change 
the color of the windows that are initially blue. If you want to read a value, you will 
use the get parameter:

$ rosparam get /background_b

To set a new value, you will use the set parameter:

$ rosparam set /background_b 100

Another important feature of rosparam is the dump parameter. With this parameter, 
you can save or load the contents of Parameter Server.

To save Parameter Server, use rosparam dump [file_name] as follows:

$ rosparam dump save.yaml

To load a file with new data for Parameter Server, use rosparam load [file_name] 
[namespace] as follows:

$ rosparam load load.yaml namespace

Creating nodes
In this section, we are going to learn how to create two nodes: one to publish data 
and the other to receive this data. This is the basic way of communicating between 
two nodes, that is, to handle data and do something with this data.

Navigate to the chapter2_tutorials/src/ folder using the following command:

$ roscd chapter2_tutorials/src/



Chapter 2

[ 57 ]

Create two files with the names example1_a.cpp and example1_b.cpp. The 
example1_a.cpp file will send the data with the node name, and the example1_b.cpp 
file will show the data in the shell. Copy the following code inside the example1_a.cpp 
file or download it from the repository:

#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example1_a");
  ros::NodeHandle n;
  ros::Publisher chatter_pub = n.advertise<std_
msgs::String>("message", 1000);
  ros::Rate loop_rate(10);
  while (ros::ok())
  {
    std_msgs::String msg;
    std::stringstream ss;
    ss << " I am the example1_a node ";
    msg.data = ss.str();
    //ROS_INFO("%s", msg.data.c_str());
    chatter_pub.publish(msg);
    ros::spinOnce();
    loop_rate.sleep();
  }
  return 0;
}

Here is a further explanation of the preceding code:

#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

The headers to be included are ros/ros.h, std_msgs/String.h, and sstream. Here, 
ros/ros.h includes all the files necessary to use the node with ROS, and std_msgs/
String.h includes the header that denotes the type of message we are going to use.

ros::init(argc, argv, "example1_a");

Initiate the node and set the name; remember that the name must be unique:

ros::NodeHandle n;
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This is the handler of our process.

ros::Publisher chatter_pub = n.advertise<std_msgs::String>("message", 
1000);

Set a publisher and tell the master the name of the topic and the type. The name is 
message, and the second parameter is the buffer size. If the topic is publishing data 
quickly, the buffer will keep at 1,000.

ros::Rate loop_rate(10);

Set the frequency to send the data, which in this case is 10 Hz.

while (ros::ok())
{

The ros::ok() line stops the node if Ctrl + c is pressed or if ROS stops all the nodes:

std_msgs::String msg;
std::stringstream ss;
ss << " I am the example1_a node ";
msg.data = ss.str();

In this part, we create a variable for the message with the correct type to send  
the data:

chatter_pub.publish(msg);

Here, the message is published:

ros::spinOnce();

We have a subscriber in this part, where ROS updates and reads all the topics:

loop_rate.sleep();

Sleep for the necessary time to get a 10 Hz frequency.

Now, we will create the other node. Copy the following code inside the example1_b.
cpp file or download it from the repository:

#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv)
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{
  ros::init(argc, argv, "example1_b");
  ros::NodeHandle n;
  ros::Subscriber sub = n.subscribe("message", 1000, chatterCallback);
  ros::spin();
  return 0;
}

Let's explain the code:

#include "ros/ros.h"
#include "std_msgs/String.h"

Include the headers and the type of message to use for the topic:

void messageCallback(const std_msgs::String::ConstPtr& msg)
{
  ROS_INFO("I heard: [%s]", msg->data.c_str());
}

This function is called every time that the node receives a message. This is where we 
do something with the data; in this case, we show it in the shell:

ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);

Create a subscriber and start to listen to the topic with the name message. The buffer 
will be of 1,000, and the function to handle the message will be messageCallback:

ros::spin();

The ros::spin() line is a loop where the node starts to read the topic and when a 
message arrives, messageCallback is called. When the user presses Ctrl + c, the node 
exits the loop and ends.

Building the node
As we are using the chapter2_tutorials package, we are going to edit  
the CMakeLists.txt file. You can use your favorite editor or the rosed tool.  
This will open the file with the Vim editor:

$ rosed chapter2_tutorials CMakeLists.txt
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At the end of the file, we will copy the following lines:

include_directories(
  include
  ${catkin_INCLUDE_DIRS}
)

add_executable(chap2_example1_a src/example1_a.cpp)
add_executable(chap2_example1_b src/example1_b.cpp)

add_dependencies(chap2_example1_a chapter2_tutorials_generate_
messages_cpp)
add_dependencies(chap2_example1_b chapter2_tutorials_generate_
messages_cpp)

target_link_libraries(chap2_example1_a ${catkin_LIBRARIES})
target_link_libraries(chap2_example1_b ${catkin_LIBRARIES})

Now, to build the package and compile all the nodes, use the catkin_make tool  
as follows:

$ cd ~/dev/catkin_ws/

$ catkin_make chapter2_tutorials

If ROS is not running on your computer, you will have to use the following command:

$ roscore

You can check whether ROS is running using the rosnode list command as follows:

$ rosnode list

Now, run both nodes in different shells:

$ rosrun chapter2_tutorials example1_a

$ rosrun chapter2_tutorials example1_b

If you check the shell where the example1_b node is running, you will see something 
similar to the following screenshot:
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Everything that is happening can be viewed in the following diagram. You can see 
that the example1_a node is publishing the message topic, and the example2_b  
node is subscribing to the topic.

/message
/example1_a /example1_b

You can use rosnode and rostopic to debug and see what the nodes are doing.  
Try the following commands:

$ rosnode list

$ rosnode info /example1_a

$ rosnode info /example1_b

$ rostopic list

$ rostopic info /message

$ rostopic type /message

$ rostopic bw /message

Creating msg and srv files
In this section, we are going to learn how to create msg and srv files for use in 
our nodes. They are files where we put a specification about the type of data to 
be transmitted and the values of this data. ROS will use these files to create the 
necessary code for us to implement the msg and srv files to be used in our nodes.

Let's start with the msg file first.

In the example used in the Building the node section, we created two nodes with a 
standard type message. Now, we are going to learn how to create custom messages 
with the tools that ROS has.

First, create a new msg folder in our chapter2_tutorials package, create a new 
chapter2_msg1.msg file and the following lines:

int32 A
int32 B
int32 C

Now, edit package.xml and remove <!--  --> from the <build_depend>message_
generation</build_depend> and <run_depend>message_runtime</run_depend> 
lines.
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Edit CMakeList.txt and add the message_generation line as follows:

find_package(catkin REQUIRED COMPONENTS
  roscpp
  std_msgs
  message_generation
)

Find the next lines, uncomment, and add the name of the new message as follows:

## Generate messages in the 'msg' folder
add_message_files(
        FILES
        chapter2_msg1.msg
)

## Generate added messages and services with any dependencies listed 
here
 generate_messages(
   DEPENDENCIES
   std_msgs
 )

And now, you can compile using the following lines:

$ cd ~/dev/catkin_ws/

$ catkin_make

To check whether all is OK, you can use the rosmsg command:

$ rosmsg show chapter2_tutorials/chapter2_msg1

If you see the same content as that of the chapter2_msg1.msg file, all is OK.

Now, we are going to create a srv file. Create a new folder in the chapter2_
tutorials folder with the name srv, create a new chapter2_srv1.srv file,  
and add the following lines:

int32 A
int32 B
int32 C
---
int32 sum

To compile the new msg and srv files, you have to uncomment the following lines in 
the package.xml and CMakeLists.txt files. These lines permit the configuration of 
the messages and services and tell ROS how and what to build.
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First of all, open the package.xml folder from your chapter2_tutorials package 
as follows:

$ rosed chapter2_tutorials package.xml

Search for the following lines and uncomment them:

<build_depend>message_generation</build_depend>
<run_depend>message_runtime</run_depend>

Open CMakeLists.txt using the following command:

$ rosed chapter2_tutorials CMakeLists.txt

Find the following lines, uncomment them, and complete them with the correct data:

catkin_package(
CATKIN_DEPENDS message_runtime
)

To generate messages, you need to add the message_generation line in the find_
package section:

find_package(catkin REQUIRED COMPONENTS
  roscpp
  std_msgs
  message_generation
)

Add the names of the message and service files in the add_message_files section, 
as follows:

## Generate messages in the 'msg' folder
add_message_files(
    FILES
    chapter2_msg1.msg
)

## Generate services in the 'srv' folder
add_service_files(
    FILES
    chapter2_srv1.srv
)
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Uncomment the generate_messages section to make sure that the generation of 
messages and services can be done:

## Generate added messages and services with any dependencies listed 
here
 generate_messages(
   DEPENDENCIES
   std_msgs
 )

You can test whether all is OK using the rossrv tool as follows:

$ rossrv show chapter2_tutorials/chapter2_srv1

If you see the same content as that of the chapter2_srv1.srv file, all is OK.

Using the new srv and msg files
First, we are going to learn how to create a service and how to use it in ROS. Our 
service will calculate the sum of three numbers. We need two nodes: a server and  
a client.

In the chapter2_tutorials package, create two new nodes with the following 
names: example2_a.cpp and example2_b.cpp. Remember to put the files in  
the src folder.

In the first file, example2_a.cpp, add the following code:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"

bool add(chapter2_tutorials::chapter2_srv1::Request  &req,
         chapter2_tutorials::chapter2_srv1::Response &res)
{
  res.sum = req.A + req.B + req.C;
  ROS_INFO("request: A=%ld, B=%ld C=%ld", (int)req.A, (int)req.B, 
(int)req.C);
  ROS_INFO("sending back response: [%ld]", (int)res.sum);
  return true;
}

int main(int argc, char **argv)
{
  ros::init(argc, argv, "add_3_ints_server");
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  ros::NodeHandle n;

  ros::ServiceServer service = n.advertiseService("add_3_ints", add);
  ROS_INFO("Ready to add 3 ints.");
  ros::spin();

  return 0;
}

Let's explain the code:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"

These lines include the necessary headers and the srv file that we created:

bool add(chapter2_tutorials::chapter2_srv1::Request  &req,
         chapter2_tutorials::chapter2_srv1::Response &res)

This function will add three variables and send the result to the other node:

ros::ServiceServer service = n.advertiseService("add_3_ints", add);

Here, the service is created and advertised over ROS.

In the second file, example2_b.cpp, add this code:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv1.h"
#include <cstdlib>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "add_3_ints_client");
  if (argc != 4)
  {
    ROS_INFO("usage: add_3_ints_client A B C ");
    return 1;
  }

  ros::NodeHandle n;
  ros::ServiceClient client = n.serviceClient<chapter2_
tutorials::chapter2_srv1>("add_3_ints");
  chapter2_tutorials::chapter2_srv1 srv;
  srv.request.A = atoll(argv[1]);
  srv.request.B = atoll(argv[2]);
  srv.request.C = atoll(argv[3]);
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  if (client.call(srv))
  {
    ROS_INFO("Sum: %ld", (long int)srv.response.sum);
  }
  else
  {
    ROS_ERROR("Failed to call service add_3_ints");
    return 1;
  }

  return 0;
}

Let's explain the code:

ros::ServiceClient client = n.serviceClient<chapter2_
tutorials::chapter2_srv1>("add_3_ints");

Create a client for the service with the name add_3_ints.

chapter2_tutorials::chapter2_srv1 srv;
srv.request.A = atoll(argv[1]);
srv.request.B = atoll(argv[2]);
srv.request.C = atoll(argv[3]);

Here, we create an instance of our srv file and fill all the values to be sent. If you 
remember, the message has three fields.

if (client.call(srv))

With this line, the service is called and the data is sent. If the call succeeds, call() 
will return true, and if not, call() will return false.

To build the new nodes, edit CMakeList.txt and add the following lines:

add_executable(chap2_example2_a src/example2_a.cpp)
add_executable(chap2_example2_b src/example2_b.cpp)

add_dependencies(chap2_example2_a chapter2_tutorials_generate_
messages_cpp)
add_dependencies(chap2_example2_b chapter2_tutorials_generate_
messages_cpp)

target_link_libraries(chap2_example2_a ${catkin_LIBRARIES})
target_link_libraries(chap2_example2_b ${catkin_LIBRARIES})
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Now, execute the following command:

$ cd ~/dev/catkin_ws

$ catkin_make

To start the nodes, execute the following command lines:

$ rosrun chapter2_tutorials example2_a

$ rosrun chapter2_tutorials example2_b 1 2 3

You should see something similar to this output:

Node example2_a

[ INFO] [1355256113.014539262]: Ready to add 3 ints.

[ INFO] [1355256115.792442091]: request: A=1, B=2 C=3

[ INFO] [1355256115.792607196]: sending back response: [6]

Node example2_b

[ INFO] [1355256115.794134975]: Sum: 6

Now, we are going to create nodes with our custom msg file. The example is the 
same, that is, example1_a.cpp and example1_b.cpp, but with the new message, 
chapter2_msg1.msg.

The following code snippet is present in the example3_a.cpp file:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"
#include <sstream>

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example3_a");
  ros::NodeHandle n;
  ros::Publisher pub = n.advertise<chapter2_tutorials::chapter2_
msg1>("message", 1000);
  ros::Rate loop_rate(10);
  while (ros::ok())
  {
    chapter2_tutorials::chapter2_msg1 msg;
    msg.A = 1;
    msg.B = 2;
    msg.C = 3;
    pub.publish(msg);
    ros::spinOnce();
    loop_rate.sleep();
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  }
  return 0;
}

The following code snippet is present in the example3_b.cpp file:

#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg1.h"

void messageCallback(const chapter2_tutorials::chapter2_
msg1::ConstPtr& msg)
{
  ROS_INFO("I heard: [%d] [%d] [%d]", msg->A, msg->B, msg->C);
}

int main(int argc, char **argv)
{
  ros::init(argc, argv, "example3_b");
  ros::NodeHandle n;
  ros::Subscriber sub = n.subscribe("message", 1000, messageCallback);
  ros::spin();
  return 0;
}

If we run both nodes now, we will see something similar to the following output:

…

[ INFO] [1355270835.920368620]: I heard: [1] [2] [3]

[ INFO] [1355270836.020326372]: I heard: [1] [2] [3]

[ INFO] [1355270836.120367449]: I heard: [1] [2] [3]

[ INFO] [1355270836.220266466]: I heard: [1] [2] [3] 

…

The launch file
The launch file is a useful feature in ROS to launch more than one node. In these 
sections, we have created nodes, and we have been executing them in different 
shells. Imagine working with 20 nodes and the nightmare of executing each one  
in a shell!
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With the launch file, we can do it in the same shell by launching a configuration file 
with the extension .launch.

To practice with this utility, we are going to create a new folder in our package  
as follows:

$ roscd chapter2_tutorials/

$ mkdir launch

$ cd launch

$ vim chapter2.launch

Now, put the following code inside the chapter2.launch file:

<?xml version="1.0"?>
<launch>
  <node name ="example1_a" pkg="chapter2_tutorials" 
type="example1_a"/>
  <node name ="example1_b" pkg="chapter2_tutorials" 
type="example1_b"/>
</launch>

This file is simple although you can write a very complex file if you want, for 
example, to control a complete robot, such as PR2 or Robonaut. Both are real robots 
and they are simulated in ROS.

The file has a launch tag; inside this tag, you can see the node tag. The node tag is 
used to launch a node from a package, for example, the example1_a node from the 
chapter2_tutorials package.

This launch file will execute two nodes—the first two examples of this chapter. If 
you remember, the example1_a node sends a message to the example1_b node. To 
launch the file, you can use the following command:

$ roslaunch chapter2_tutorials chapter2.launch



ROS Architecture and Concepts

[ 70 ]

You will see something similar to the following screenshot on your screen:

The running nodes are listed in the screenshot. You can also see the running nodes 
using the following command:

$ rosnode list

You will see the three nodes listed as follows:

When you launch a launch file, it is not necessary to execute it before the roscore 
command; roslaunch does it for us.

Remember that the example1_b node prints in the screen the message received 
from the other node. If you take a look, you won't see anything. This is because 
example1_b prints the message using ROS_INFO, and when you run only a node  
in a shell, you can see it, but when you run a launch file, you can't.
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Now, to see the message printed in the screen, you can use the rqt_console utility. 
You will learn more about this utility in the following chapters. Now, run the 
following command:

$ rqt_console

You will see the message sent by example1_b, as shown in the following screenshot:

On the line, you can see the message, the node that has sent it, and the path of the 
source file.

Dynamic parameters
Another utility in ROS is the Dynamic Reconfigure utility. Normally, when you 
are programming a new node, you initialize the variables with data that can only 
be changed within the node. If you want to change these values dynamically from 
outside the node, you can use Parameter Server, services, or topics. If you are 
working in a PID node to control a motor, for example, you should use the  
Dynamic Reconfigure utility.

In this section, you will learn how to configure a basic node with this feature.  
Add the necessary lines in the CMakeLists.txt and package.xml files.

To use Dynamic Reconfigure, you should write a configuration file and save it in the 
cfg folder in your package. Create the folder and a new file as follows:

$ roscd chapter2_tutorials

$ mkdir cfg

$ vim chapter2.cfg
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Write the following code in the chapter2.cfg file:

#!/usr/bin/env python
PACKAGE = "chapter2_tutorials"

from dynamic_reconfigure.parameter_generator_catkin import *

gen = ParameterGenerator()

gen.add("double_param", double_t, 0, "A double parameter", .1, 0,   1)
gen.add("str_param", str_t, 0, "A string parameter", "Chapter2_
dynamic_reconfigure")
gen.add("int_param", int_t, 0, "An Integer parameter", 1,  0, 100)
gen.add("bool_param",   bool_t, 0, "A Boolean parameter",  True)

size_enum = gen.enum([ gen.const("Low", int_t, 0, "Low is 0"),
                   gen.const("Medium", int_t, 1, "Medium is 1"),
                   gen.const("High", int_t, 2, "Hight is 2")],
                 "Select from the list")

gen.add("size", int_t, 0, "Select from the list", 1, 0, 3, edit_
method=size_enum)

exit(gen.generate(PACKAGE, "chapter2_tutorials", "chapter2_"))

Let's explain the code:

#!/usr/bin/env python
PACKAGE = "chapter2_tutorials"

from dynamic_reconfigure.parameter_generator_catkin import *

These lines initialize ROS and import the parameter generator:

gen = ParameterGenerator()

This line initializes the parameter generator, and thanks to it, we can start to add 
parameters in the following lines:

gen.add("double_param", double_t, 0, "A double parameter", .1, 0,   1)
gen.add("str_param", str_t, 0, "A string parameter", "Chapter2_
dynamic_reconfigure")
gen.add("int_param", int_t, 0, "An Integer parameter", 1,  0, 100)
gen.add("bool_param",   bool_t, 0, "A Boolean parameter",  True)
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These lines add different parameter types and set the default values, description, 
range, and so on. The parameter has the following arguments:

gen.add(name, type, level, description, default, min, max)

• name: This is the name of the parameter
• type: This is the type of the value stored
• level: This is a bitmask that is passed to the callback
• description: This is a little description that describes the parameter
• default: This is the default value when the node starts
• min: This is the minimum value for the parameter
• max: This is the maximum value for the parameter

The names of the parameters must be unique, and the values have to be in the range 
and have min and max values:

exit(gen.generate(PACKAGE, "chapter2_tutorials", "chapter2_"))

The last line generates the necessary files and exits the program. Notice that the .cfg 
file was written in Python. This book is for C++ snippets, but we will sometimes use 
Python snippets.

It is necessary to change the permissions for the file because the file will be executed 
by ROS. To make the file executable and runnable by any user, we will use the chmod 
command with the a+x parameter as follows:

$ chmod a+x cfg/chapter2.cfg

Open CMakeList.txt and add the following lines:

find_package(catkin REQUIRED COMPONENTS
  roscpp
  std_msgs
  message_generation
  dynamic_reconfigure
)

generate_dynamic_reconfigure_options(
  cfg/chapter2.cfg
)

add_dependencies(example4 chapter2_tutorials_gencfg)
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Now, we are going to write our new node with Dynamic Reconfigure support. 
Create a new file in your src folder as follows:

$ roscd chapter2_tutorials

$ vim src/example4.cpp

Write the following code snippet in the file:

#include <ros/ros.h>
#include <dynamic_reconfigure/server.h>
#include <chapter2_tutorials/chapter2Config.h>

void callback(chapter2_tutorials::chapter2Config &config, uint32_t 
level) {
  ROS_INFO("Reconfigure Request: %d %f %s %s %d",
        config.int_param,
        config.double_param,
        config.str_param.c_str(),
        config.bool_param?"True":"False",
        config.size);
}

int main(int argc, char **argv) {
  ros::init(argc, argv, "example4_dynamic_reconfigure");

  dynamic_reconfigure::Server<chapter2_tutorials::chapter2Config> 
server;
  dynamic_reconfigure::Server<chapter2_tutorials::chapter2Config>::Ca
llbackType f;

  f = boost::bind(&callback, _1, _2);
  server.setCallback(f);

  ros::spin();
  return 0;
}

Let's explain the code and note the important lines:

#include <ros/ros.h>
#include <dynamic_reconfigure/server.h>
#include <chapter2_tutorials/chapter2Config.h>
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These lines include the headers for ROS, Parameter Server. and our config file 
created earlier:

void callback(chapter2_tutorials::chapter2Config &config, uint32_t 
level) {
  ROS_INFO("Reconfigure Request: %d %f %s %s %d",
         config.int_param,
         config.double_param,
         config.str_param.c_str(),
         config.bool_param?"True":"False",
         config.size);
}

The callback function will print the new values for the parameters. The way to access 
the parameters is, for example, config.int_param. The name of the parameter must 
be the same as the one that you configured in the example2.cfg file:

dynamic_reconfigure::Server<chapter2_tutorials::chapter2Config> 
server;

The server is initialized in the line where we pass the chapter2_Config 
configuration file:

dynamic_reconfigure::Server<chapter2_tutorials::chapter2Config>::Call
backType f;

  f = boost::bind(&callback, _1, _2);
  server.setCallback(f);

Now, we send the callback function to the server. When the server gets a 
reconfiguration request, it will call the callback function.

Once we are done with the explanation, we need to add lines to the CMakeLists.txt 
file as follows:

add_executable(chap2_example4 src/example4.cpp)

add_dependencies(chap2_example4 chapter2_tutorials_gencfg)

target_link_libraries(chap2_example4 ${catkin_LIBRARIES})

Now, you have to compile and run the node and the Dynamic Reconfigure GUI  
as follows:

$ roscore

$ rosrun chapter2_tutorials example4

$ rosrun rqt_reconfigure rqt_reconfigure
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When you execute the last command, you will see a new window where  
you can modify dynamically the parameters of the node, as shown in the  
following screenshot:

Each time you modify a parameter with the slider, the checkbox, and so on, you will 
see the changes made in the shell where the node is running. You can see an example 
in the following screenshot:

Thanks to Dynamic Reconfigure, you can program and test your nodes more 
efficiently and in a fast way. Using the program with hardware is a good choice  
and you will learn more about it in the next chapters.



Chapter 2

[ 77 ]

Summary
This chapter provided you with general information about the ROS architecture 
and how it works. You saw certain concepts, tools, and samples of how to interact 
with nodes, topics, and services. In the beginning, all of these concepts might 
look complicated and without use, but in the upcoming chapters, you will start to 
understand their applications.

It is useful to practice using these terms and tutorials before continuing because, in 
the upcoming chapters, we will assume that you know all of the concepts and uses.

Remember that if you have queries about something and you cannot find  
the solution in this book, you can use the official resources of ROS from  
http://www.ros.org. Additionally, you can ask the ROS community  
questions at http://answers.ros.org.

In the next chapter, you will learn how to debug and visualize data using ROS tools. 
This will help you to find problems, know whether what ROS is doing is correct, and 
better define what your expectations from it are.

http://www.ros.org
http://answers.ros.org
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Visualization and  
Debug Tools

ROS has a good number of tools that allow the user and the developer to visualize 
and debug the code in order to detect and solve issues with both hardware and 
software. This comprises a message logging system similar to log4cxx, diagnostic 
messages and also visualization and inspection tools that show which nodes are 
running and how are they connected.

In this chapter, we will also show you how to debug an ROS node with the GDB 
debugger. The message logging API will be explained, and advice will be given 
on how to choose the logging level. Then, we will explain the set of ROS tools 
that are meant to inspect which processes are running and what information is 
communicated among them. For instance, the following figure shows a tool that 
visualizes the graph of the system, where the nodes are the processes running and 
the edges represent the data workflow through communication topics. This tool 
is rqt_graph, and in this case, it show the nodes and topics for the REEM robot 
running on a Gazebo simulation.
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You can see multiple controllers for the arms, torso, head, MoveIt! move_group node, 
pick and place action servers, and play_motion node for pre-recorded movements. 
Other nodes publish joint_states, spawn the robot controllers, and control the 
joystick to move the mobile base.

/default_controllers_spawner

play_motion

play_motion/action_topics

/play_motion

/joystick /joy /joy_teleop

/joint_states /robot_state_publisher

/is_already_there

/tf

place

place/action_topics

/trajectory_execution_event

/attached_collision_object

pickup

pickup/action_topics

right_hand_controller/follow_joint_trajectory/action_topics

right_hand_controller

right_arm_controller

right_arm_controller/follow_joint_trajectory/action_topics

torso_controller

torso_controller/follow_joint_trajectory/action_topics

head_controller

head_controller/follow_joint_trajectory/action_topics

left_arm_controller

left_arm_controller/follow_joint_trajectory/action_topics

left_hand_controller

left_hand_controller/follow_joint_trajectory/action_topics

move_group

move_group/action_topics /move_group

/gazebo



Chapter 3

[ 81 ]

Similarly, this chapter will show you how to plot scalar data in a time series, 
visualize images from a video stream, and represent different types of data in  
a 3D representation using (the widely known) rviz (or rqt_rviz) shown in the 
following screenshot:

The preceding screenshot shows the REEM robot, which can be run in simulation 
with the following command:

$ roslaunch reem_2dnav_gazebo reem_navigation.launch

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

Note that, before you install it, you follow the instructions provided at  
http://wiki.ros.org/Robots/REEM.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
http://wiki.ros.org/Robots/REEM
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In the next sections, we will do the following:

• We will look at how to debug our code in ROS.
• We will look at how to use logging messages in our code, with different 

severity levels, names, conditions, and throttling options. Here, we will 
explain the rqt_logger_level and rqt_console interfaces, which allow 
setting the severity level of a node and visualizing the message, respectively.

• We will look at how to inspect the state of the ROS system by listing the nodes 
running, the topics, services, and actions they use to transfer messages among 
them, and the parameters declared in the ROS master server. We will explain 
rqt_graph, which shows nodes and topics in a directed graph representation, 
and rqt_reconfigure, which allows changing dynamic parameters.

• We will look at how to visualize diagnostics information using the  
runtime_monitor and robot_monitor interfaces.

• We will look at how to plot scalar data from messages using rqt_plot.  
For nonscalar data, we will explain other rqt tools available in ROS, such  
as rqt_image_view to visualize images and rqt_rviz to show multiple 
data in a 3D representation. We also show how to visualize markers and 
interactive markers.

• We will explain what frames are and how they are integrated into ROS 
messages and visualization tools. We also explain how to use rqt_tf_tree 
to visualize the Transform Frame (tf) tree.

• We will look at how to save messages and replay them for simulation or 
evaluation purposes. We also explain the rqt_bag interface.

• Finally, other rqt_gui interfaces are explained as well as how to arrange 
them in a single GUI.

Most of the rqt tools can be run by simply putting their name in the terminal, such 
as rqt_console, but in some cases, this does not work and we must use rosrun 
rqt_reconfigure rqt_reconfigure, which always works; note that the name 
seems to be repeated but it is actually the package name and the node name one  
after the other.
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Debugging ROS nodes
ROS nodes can be debugged as regular programs. They run as a process in the 
operative system and have a PID. Therefore, you can debug them as with any program 
using standard tools, such as gdb. Similarly, you can check for memory leaks with 
valgrind or profile the performance of your algorithm with callgrind. However, 
remember that in order to run a node, you must run the following command:

$ rosrun chapter3_tutorials example1

Unfortunately, you cannot run the command in the following way:

$ gdb rosrun chapter3_tutorials example1

In the next sections, we will explain how to call these tools for an ROS node to 
overcome this issue. Later, we will see how to add a logging message to our code 
in order to make it simple to diagnose problems that, in practice, helps to diagnose 
basic problems even without debugging the binaries. Similar, later on, we will 
discuss ROS introspection tools that allow detecting broken connections between 
nodes easily. Therefore, although here we will show you a bottom-up overview, in 
practice, we follow a top-down approach to diagnose issues.

Using the GDB debugger with ROS nodes
In order to debug a C/C++ node with the gdb debugger, all we have to know is the 
location of the node executable. With the ROS hydro and catkin packages, the node 
executable is placed inside the devel/lib/<package> folder within the workspace. 
For example, in order to run the example1 node from the chapter3_tutorials 
package in gdb, we have to proceed as follows, starting from the workspace folder  
(~/dev/catkin_ws):

$ cd devel/lib/chapter3_tutorials

If you have run catkin_make install, you can also navigate to the install/lib/
chapter3_tutorials directory using the following code:

$ cd install/lib/chapter3_tutorials
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Now we can run the node executable inside gdb with the following command:

$ gdb example1

Remember that you must have roscore running before you 
start your node because it will need the master/server running.

Once roscore is running, you can start your node in gdb by pressing the R key  
(and Enter), and you can also list the associated source code with the L key as  
well as setting breakpoints or any of the functionalities that gdb comes with. If 
everything is correct, you should see the following output in the gdb terminal  
after running the node:

(gdb) r

Starting program: ~/dev/catkin_ws/devel/lib/chapter3_tutorials /example1 

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_
db.so.1".

[New Thread 0x7ffff2664700 (LWP 3204)]

[New Thread 0x7ffff1e63700 (LWP 3205)]

[New Thread 0x7ffff1662700 (LWP 3206)]

[New Thread 0x7ffff0e61700 (LWP 3211)]

[DEBUG] [1356342615.325647326]: This is a simple DEBUG message!

[DEBUG] [1356342615.326124607]: This is a DEBUG message with an argument: 
3.140000

[DEBUG] [1356342615.326254667]: This is DEBUG stream message with an 
argument: 3.14

[Thread 0x7ffff0e61700 (LWP 3211) exited]

[Thread 0x7ffff1662700 (LWP 3206) exited]

[Thread 0x7ffff2664700 (LWP 3204) exited]

[Thread 0x7ffff1e63700 (LWP 3205) exited]

[Inferior 1 (process 3200) exited normally]
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Attaching a node to GDB while launching 
ROS
We might get a launch file that starts the node, as in this example:

<launch>
  <node pkg="chapter3_tutorials" type="example1" name="example1"/>
</launch>

In order to attach it to gdb, we must add launch-prefix="xterm -e gdb --args" 
as follows:

<launch>
<node pkg="chapter3_tutorials" type="example1" name="example1"
  launch-prefix="xterm -e gdb --args"/>
</launch>

Similarly, you can also add output="screen" to make the node output appear on 
the terminal. With this launch prefix, a new xterm terminal will be created with the 
node attached to gdb. Set breakpoints if needed, and then press the C or R key to run 
the node and debug it. For example, this is useful to obtain a backtrace (bt) if the 
node crashes.

Profiling a node with valgrind while launching 
ROS
Additionally, we can use the same attribute to attach the node to diagnosis tools. For 
example, we can run valgrind (see http://valgrind.org for further information) 
on our program to detect memory leaks and perform profiling analysis. Contrary to 
attaching to gdb, now we do not need to start xterm anew:

<launch>
<node pkg="chapter3_tutorials" type="example1"
  name="example1" output="screen"
  launch-prefix="valgrind"/>
</launch>

http://valgrind.org
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Enabling core dumps for ROS nodes
Although ROS nodes are actually regular executables, there is a tricky point to enable 
core dumps, which can later be used in a gdb session. First of all, we have to set an 
unlimited core size; the current value can be checked with ulimit -a. Note that this 
is also required for any executable and not just ROS nodes:

$ ulimit -c unlimited

Then, to allow core dumps to be created, we must set the core filename to use the pid 
process by default. Otherwise, they will not be created because at $ROS_HOME, there  
is already a core directory to prevent core dumps. Therefore, in order to create  
core dumps with the name and path $ROS_HOME/core.PID, we must run the 
following command:

$ echo 1 | sudo tee /proc/sys/kernel/core_uses_pid

Logging messages
It is a good practice to include messages that indicate what the program is doing. 
But we must do it without compromising on the efficiency of our software and the 
clarity of its output. In ROS, we have an API that covers both features, built on top 
of log4cxx (a port of the well-known log4j logger library). In brief, we have several 
levels of messages, which might have a name (named messages) and depend on a 
condition or even throttle. All of them have a null footprint on performance if they 
are masked by the current verbosity level (even at compile time). They also have 
full integration with other ROS tools to visualize and filter the messages from all the 
nodes running.

Outputting a logging message
ROS comes with a great number of functions/macros to output logging messages. It 
supports different levels, conditions, STL streams, throttling, and other features that 
we will see in this section. To start with something simple, an information message is 
printed with this code in C++:

$ ROS_INFO("My INFO message.");
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In order to have access to these logging functions/macros, this header is enough:

#include <ros/ros.h>

This includes the following header (where the logging API is defined):

#include <ros/console.h>

As a result of running a program with the preceding message, we will get the 
following output:

[ INFO] [1356440230.837067170]: My INFO message.

All messages are printed with their level and the current timestamp (your output 
might differ for this reason), before the actual message, with both between square 
brackets. The timestamp is the epoch time, that is, the seconds and nanoseconds 
since January 1, 1970. Then, we have our message—always with a newline:

This function allows parameters in the same way as the C printf function does. For 
example, we can print the value of a floating point number in the variable val with 
this code:

float val = 1.23;
ROS_INFO("My INFO message with argument: %f", val);

Also, C++ STL streams are supported with *_STREAM functions. Therefore, the 
previous instruction is equivalent to the following using streams:

ROS_INFO_STREAM("My INFO message with argument: " << val);

Note that we did not specify any stream since the API takes care of that by 
redirecting to cout/cerr, a file, or both.

Setting the debug message level
ROS supports the following logging levels (in the increasing order of relevance):

• DEBUG

• INFO

• WARN

• ERROR

• FATAL

These names are part of the function used to output messages following this syntax:

ROS_<LEVEL>[_<OTHER>]
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Each message is printed with a particular color. The colors are as follows:

DEBUG in green
INFO in white
WARN in yellow
ERROR in red
FATAL in purple

Each message level is meant to be used for a different purpose. Here, we suggest 
uses for the following levels:

• DEBUG: These messages are useful only when debugging
• INFO: These messages indicate significant steps or what the node is doing
• WARN: These messages warn you that something might be wrong, missed,  

or abnormal
• ERROR: These messages indicate errors although the node can still run
• FATAL: These error messages usually prevent the node from continuing  

to run

Configuring the debugging level of a 
particular node
By default, only messages of INFO or higher levels are shown. ROS uses the levels to 
filter the messages printed by a particular node. There are many ways to do so. Some 
of them are set at the time of compilation and some messages aren't even compiled 
below a given verbosity level; others can be changed before execution using a 
configuration file, and it is also possible to change that level dynamically using the 
rqt_console and rqt_logger_level tools.

It is possible to set the logging level at compile time in our source code, but this 
is very uncommon and not recommended because it requires us to modify the 
source code to change the logging level; please refer to Learning ROS for Robotics 
Programming, Packt Publishing, if you want to see how to do it.

Nevertheless, in some cases, we need to remove the overhead of all the logging 
functions below a given level. In that case, we want to be able to see those messages 
later because they get removed from the code and not just disabled. To do so, we 
must set ROSCONSOLE_MIN_SEVERITY to the minimum severity level desired or even 
none in order to avoid any message (even FATAL). The macros are as follows:

ROSCONSOLE_SEVERITY_DEBUG
ROSCONSOLE_SEVERITY_INFO
ROSCONSOLE_SEVERITY_WARN
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ROSCONSOLE_SEVERITY_ERROR
ROSCONSOLE_SEVERITY_FATAL
ROSCONSOLE_SEVERITY_NONE

The ROSCONSOLE_MIN_SEVERITY macro is defined in <ros/console.h> to the DEBUG 
level if not given. Therefore, we can pass it as a built argument (with -D) or put it 
before all the headers. For example, to show only ERROR (or higher) messages, we 
will put this in our source code:

#define ROSCONSOLE_MIN_SEVERITY ROSCONSOLE_SEVERITY_ERROR

Alternatively, we can set this to all the nodes in a package setting this macro in 
CMakeLists.txt by adding this line:

add_definitions(-DROSCONSOLE_MIN_SEVERITY=ROSCONSOLE_SEVERITY_ERROR)

On the other hand, we have the more flexible solution of setting the minimum 
logging level in a configuration file. We create a config folder with a file, such as 
chapter3_tutorials.config, and this content (edit the file given since it is set  
to DEBUG):

log4j.logger.ros.chapter3_tutorials=ERROR

Then, we must set the ROSCONSOLE_CONFIG_FILE environment variable to point to 
our file. We can do this on a launch file that also runs the node. Therefore, we will 
extend the launch file shown earlier to do so with the env (environment variable) 
element as shown here:

<launch>
  <!-- Logger config -->
  <env name="ROSCONSOLE_CONFIG_FILE"
       value="$(find chapter3_tutorials)/config/chapter3_tutorials.
config"/>

  <!-- Example 1 -->
  <node pkg="chapter3_tutorials" type="example1" name="example1"
        output="screen"/>
</launch>

The environment variable takes the configuration file shown previously, which 
contains the logging level specification for each named logger; in this case, it is  
for the package name.
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Giving names to messages
By default, ROS assigns several names to the node loggers. The messages discussed 
until now will be named after the node's name. In complex nodes, we can give 
a name to those messages of a given module or functionality. This is done with 
ROS_<LEVEL>[_STREAM]_NAMED functions (see the example2 node):

ROS_INFO_STREAM_NAMED(
  "named_msg",
  "My named INFO stream message; val = " << val
);

With named messages, we can set different initial logging levels for each named 
message using the configuration file and modify them individually later. We must 
use the name of the messages as children of the package in the specification; for 
example, for named_msg messages, we will use the following code:

log4j.logger.ros.chapter3_tutorials.named_msg=ERROR

Conditional and filtered messages
Conditional messages are printed only when a given condition is satisfied. To use 
them, we have the ROS_<LEVEL>[_STREAM]_COND[_NAMED] functions; note that  
they can be named messages as well (see the example2 node for more examples  
and combinations):

ROS_INFO_STREAM_COND(
  val < 0.,
  "My conditional INFO stream message; val (" << val << ") < 0"
);

Filtered messages are similar to conditional message in essence, but they allow 
us to specify a user-defined filter that extends ros::console::FilterBase; we 
must pass a pointer to such a filter in the first argument of a macro with the format 
ROS_<LEVEL>[_STREAM]_FILTER[_NAMED]. The following example is taken from the 
example2 node:

struct MyLowerFilter : public ros::console::FilterBase {
  MyLowerFilter( const double& val ) : value( val ) {}
  inline virtual bool isEnabled() { return value < 0.; }
  double value;
};

MyLowerFilter filter_lower( val );

ROS_INFO_STREAM_FILTER(&filter_lower,
  "My filter INFO stream message; val (" << val << ") < 0"
);
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Showing messages in the once, throttle, and 
other combinations
It is also possible to control how many times a given message is shown. We can print 
it only once with ROS_<LEVEL>[_STREAM]_ONCE[_NAMED]:

for( int i = 0; i < 10; ++i ) {
  ROS_INFO_STREAM_ONCE("My once INFO stream message; i = " << i);
}

This code from the example2 node will show the message only once.

However, it is usually better to show the message with a certain frequency. For that, 
we have throttle messages. They have the same format as the once message, but here 
ONCE is replaced with THROTTLE, and they have a first argument, which is period, 
that is, it is printed only every period seconds:

for( int i = 0; i < 10; ++i ) {
  ROS_INFO_STREAM_THROTTLE(2,
    "My throttle INFO stream message; i = " << i);
  ros::Duration( 1 ).sleep();
}

Finally, note that named, conditional, and once/throttle messages can be used 
together with all the available levels.

Nodelets also have some support in terms of logging messages. Since they have 
their own namespace, they have a specific name to differentiate the message of 
one nodelet from another. Simply put, all the macros shown until now are valid, 
but instead of ROS_*, we have NODELET_*. These macros will only compile inside 
nodelets. Also, they operate by setting up a named logger with the name of the 
nodelet running so that you can differentiate between the outputs of two nodelets of 
the same type running in the same nodelet manager. They also have the advantage 
that you can turn one specific nodelet into the debug level instead of all the nodelets 
of a specific type.
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Using rqt_console and rqt_logger_level to 
modify the debugging level on the fly
ROS provides a series of tools to manage logging messages. In ROS hydro, we have 
two separate GUIs: rqt_logger_level to set the logging level of the nodes or named 
loggers and rqt_console to visualize, filter, and analyze the logging messages.

In order to test this, we are going to use example3. Run roscore and rqt_console 
to see the logging messages:

$ rosrun rqt_console rqt_console

The following window will open:

Now run the node:

$ rosrun chapter3_tutorials example3
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You will start seeing the logging messages, as the next screenshot shows. Note  
that roscore must be running and that you must press the recording button  
on rqt_console.

In rqt_console, the messages are collected and shown in a table where different 
columns separate the timestamp, the message itself, the severity level, and the node 
that produced that message, besides other information. You can fit the columns 
automatically by pressing the Resize columns button. If you double-click on a 
message, you can see all the information, including the line of code that generated it, 
as shown in the screenshot:
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This interface allows pausing, saving, and loading previous/saved logging 
messages. We can clear the list of messages and filter them. In ROS hydro, excluding 
filtered ones, the messages have specific interfaces depending on the filter criteria. 
For instance, nodes can be filtered with a single rule, where we select the nodes we 
want to exclude. Additionally, in the same way, we can set highlighting filters. This 
is shown in the following screenshot:

As an example, the messages from the previous image are filtered by excluding those 
with a severity different than ERROR and FATAL.
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In order to set the severity of the loggers, we must run the following command:

$ rosrun rqt_logger_level rqt_logger_level

Here, we can select the node, then the named logger, and finally its severity. Once 
we modify it, the new messages received with a severity below the desired one will 
not appear in rqt_console:

Shown in the next screenshot is an example where we set the severity level to the 
minimum (DEBUG) for the named logger, ros.chapter3_tutorials.named_msg, of 
the example3 node; remember that the named loggers are created by the *_NAMED 
logging functions:

As you can see, every node has several internal loggers by default, which are related 
to the ROS communication API, among others; in general, you should not reduce 
their severity.
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Inspecting what is going on
When our system is running, we might have several nodes and many more topics 
publishing messages among nodes. Also, we might have nodes providing actions or 
services as well. For large systems, it is important to have tools that let us see what is 
running at a given time. ROS provides basic but powerful tools with this aim, from 
the CLI to GUI applications.

Listing nodes, topics, services, and 
parameters
In our honest opinion, we will start with the most basic level of introspection. We are 
going to see how to obtain the list of nodes running and topics and services available 
at a given time:

Obtain the list of all Command
Nodes running rosnode list

Topics of all nodes running rostopic list

Services of all nodes running rosservice list

Parameters on the server rosparam list

We recommend that you go back to Chapter 2, ROS Architecture and Concepts, to see 
how these commands also allow us to obtain the message type sent by a particular 
topic as well as its fields, using rosmsg show.

Any of these commands can be combined with regular bash commands, such as 
grep, to look for the desired nodes, topics, services, or parameters. For example, 
action goal topics can be found using the following command:

$ rostopic list | grep goal

The grep bash command looks for text or patterns in a list of files or the standard 
output, which can be piped as shown in this example.
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Additionally, ROS provides several GUIs to play with topics and services. First, rqt_
top shows the nodes running in an interface similar to a table of processes (ToP), 
which allows us to rapidly see all the nodes and resources they are using. For this 
screenshot, we have used the REEM simulation with the navigation stack running, as 
an example:

On the other hand, rqt_topic shows the debugging information about topics, 
including publishers, subscribers, the publishing rate, and messages published. 
You can view the message fields topic and select the topics you want to subscribe 
to, to analyze their bandwidth and rate (Hz) and see the latest message published; 
note that latched topics usually do not publish continuously, so you will not see any 
information about them. The following screenshot shows this:
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Similarly, rqt_publisher allows us to manage multiple instances of rostopic pub 
commands in a single interface. It also supports Python expressions for the published 
messages and fixed values. In the next screenshot, we will see two example topics 
being published (we will see the messages using rostopic echo <topic> in two 
different terminals).

An alternative with a more flexible GUI is rqt_ez_publisher. For ROS hydro, you 
must install it manually using the following code from an empty workspace:

$ cd src

$ git clone https://github.com/OTL/rqt_ez_publisher.git

$ cd ..

$ catkin_make

$ source devel/setup.bash
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For ROS indigo, it will come as a Debian package, so you will only have to run the 
following command:

$ sudo apt-get install ros-indigo-rqt-ez-publisher

Then, just run the following command:

$ rosrun rqt_ez_publisher rqt_ez_publisher

With the example5 node running, you can publish messages that will be read by this 
node. In the next screenshot, we will select the accel and temp topics (and remove 
the accel/y and accel/z fields):

Note that with repeat enabled, the messages are continuously published; otherwise, 
the GUI only publishes the messages when you change the values.
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And rqt_service_caller does the same thing for multiple instances of rosservice 
call commands. In the next screenshot, we will call the /move_base/NavfnROS/
make_plan service, where we have to set up the request; for empty services, this 
is not needed as the /global_localization service from the /amcl node. After 
clicking on the Call button, we will obtain the response message. For this example, 
we have used the REEM simulation with the navigation stack running:

Inspecting the node's graph online with  
rqt_graph
The current state of an ROS session can be shown as a directed graph where the 
nodes running are the graph nodes and the edges are the publisher-subscriber 
connections among these nodes through the topics. This graph is drawn dynamically 
by rqt_graph:

$ rosrun rqt_graph rqt_graph
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In order to illustrate how to inspect the nodes, topics, and services with rqt_graph, 
we are going to run the example4 and example5 nodes simultaneously with the 
following launch file:

$ roslaunch chapter3_tutorials example4_5.launch

The example4 node publishes in two different topics and calls a service. Meanwhile, 
example5 subscribes to those topics and also has the service server to attend the 
request queries and provide the response. Once the nodes are running, we have the 
node's topology in the next screenshot:
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In this screenshot, we have the nodes connected by the topics. Since Hide Debug is 
selected, we do not see the ROS server node rosout as well as the rosout topic that 
publishes the logging messages for the diagnostic aggregator in the server, as we did 
previously. We can deselect this option to show the debug nodes/topics, so that the 
ROS server is shown as well as the rqt_graph node itself (see the next screenshot). It 
is useful to hide these nodes for large systems because it simplifies the graph. Also, 
with ROS hydro, the nodes in the same namespace are grouped, for example, the 
image pipeline nodes:

When there is a problem in the system, the nodes appear in red all the time (not just 
when we move the mouse over them). In those cases, among others, it is useful to 
select all topics to also show unconnected topics. This usually shows misspelled 
topic names that break connections among nodes.

When running nodes in different machines, rqt_graph shows its great high-level 
debugging capabilities since it shows whether the nodes see each other from one 
machine to the other, enumerating the connections.

Finally, we can enable statistics to see the message rate and bandwidth represented 
in the topic edge, with the rate written and the line width, as shown in the next 
figure. We must set this parameter before running rqt_graph in order to have this 
information available:

$ rosparam set enable_statistics true
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Unfortunately, this parameter it is not available to ROS hydro yet. It will come with 
ROS indigo (the next distribution), and it will be probably backported to hydro.

Setting dynamic parameters
If a node implements a dynamic reconfigure parameter server, we can use 
rqt_reconfigure to modify them on the fly. Run the following example, which 
implements a dynamic reconfigure server with several parameters (see the cfg  
file in the cfg folder of the package).

$ roslaunch chapter3_tutorials example6.launch

With the dynamic reconfigure server running, open the GUI with the following 
command:

$ rosrun rqt_reconfigure rqt_reconfigure

Select the example6 server in the left-hand side table list, and you will see its 
parameters, which you can modify directly. The parameter changes take effect 
immediately, running the code inside a callback method in the source code, which 
checks for the validity of the values. In this example, the parameters are printed 
every time they are changed, that is, when the callback method is executed. The 
following screenshot encapsulates this discussion:
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Dynamic parameters were originally meant for drivers, so it was easy to modify 
them. For this reason, several drivers already implement them; nevertheless, they 
can be used for any other node. Examples of drivers that implement them are the 
hokuyo_node driver for the Hokuyo laser rangefinders or the Firewire camera1394 
driver. Indeed, in the case of Firewire cameras, it is common for drivers to support 
changing some configuration parameters of the sensor, such as the frame rate, 
shutter speed, and brightness, among others. The ROS driver for FireWire (IEEE 
1394, a and b) cameras can be run with the following command:

$ rosrun camera1394 camera1394_node

Once the camera is running, we can configure its parameters with rqt_reconfigure, 
and we will see something similar to what's shown in the following screenshot:
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Note that we will cover how to work with cameras in Chapter 5, Computer Vision, 
where we will also explain these parameters from a developer's point of view.

When something weird happens
ROS has several tools to detect potential problems in all the elements of a given 
package. Just move with roscd to the package you want to analyze. Then, run 
roswtf. For chapter3_tutorials, we have the following output. Note that if 
you have something running, the ROS graph would be analyzed too. We run the 
roslaunch chapter3_tutorials example6.launch command that yields the an 
output similar to the following screenshot:

In general, we should expect no error or warning, but even some of them are 
innocuous. In the preceding screenshot, we see that roswtf does not detect any 
error; it only issues a warning about pip, which sometimes might generate problems 
with the Python code installed in the system. Note that the purpose of roswtf is to 
signal potential problems, and then we are responsible to check whether they are real 
or meaningless ones, as in the previous case.

Another useful tool is catkin_lint, which helps to diagnose errors with catkin, 
usually in the CMakeLists.txt and package.xml files. For chapter3_tutorials, 
we have the following output:

$ catkin_lint –W2 --pkg chapter3_tutorials
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With -W2, we see warnings that can be usually ignored, as the ones shown in the 
following screenshot:

Visualizing node diagnostics
ROS nodes can provide diagnostic information using the diagnostics topic. For that, 
there is an API that helps to publish diagnostic information in a standard way. The 
information follows the diagnostic_msgs/DiagnositcStatus message type, which 
allows us to specify a level (OK, WARN, ERROR), name, message, and hardware ID as well 
as a list of diagnostic_msgs/KeyValue, which are pairs of key and value strings.

The interesting part comes with the tools to collect and visualize this diagnostic 
information. At the basic level, rqt_runtime_monitor allows us to visualize  
the information directly published through the diagnostics topic. Run the 
example7 node, which publishes information through the diagnostics topic  
and this visualization tool to see the diagnostic information:

$ roslaunch chapter3_tutorials example7.launch

$ rosrun rqt_runtime_monitor rqt_runtime_monitor
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The preceding commands display the following output:

When the system is large, we can aggregate diagnostic information using the 
diagnostic_aggregator. It processes and categorizes the diagnostics topic 
messages and republishes them on diagnostics_agg. These aggregated diagnostic 
messages can be visualized with rqt_robot_monitor. The diagnostic aggregator 
is configured with a configuration file, such as the following one (see config/
diagnostic_aggregator.yaml in chapter3_tutorials), where we define different 
analyzers, in this case using an AnalyzerGroup:

type: AnalyzerGroup
path: Sensors
analyzers:
  status:
    type: GenericAnalyzer
    path: Status
    startswith: example7
    num_items: 1

The launch file used in the preceding code already runs the diagnostic aggregator_
node with the preceding configuration, so you can run the following command:

$ rosrun rqt_robot_monitor rqt_robot_monitor
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Now, we can compare the visualization of rqt_runtime_monitor with the one of 
rqt_robot_monitor, as shown in the following screenshot:

Plotting scalar data
Scalar data can be easily plotted with generic tools already available in ROS. Even 
nonscalar data can be plotted, but with each scalar field plotted separately. That 
is why we talk about scalar data, because most nonscalar structures are better 
represented with ad hoc visualizers, some of which we will see later; for instance, 
images, poses, orientation/attitude, and so on.

Creating a time series plot with rqt_plot
Scalar data can be plotted as a time series over the time provided by the timestamps 
of the messages. Then, in the y axis, we will plot our scalar data. The tool to do so is 
rqt_plot. It has a powerful argument syntax, which allows specifying several fields 
of a structured message in a concise manner as well; we can also add or remove 
topics or fields manually from the GUI.



Chapter 3

[ 109 ]

To show rqt_plot in action, we are going to use the example4 node since it publishes 
a scalar and a vector (nonscalar) in two different topics, which are temp and accel, 
respectively. The values put in these messages are synthetically generated, so they 
have no actual meaning, but they are useful for our plotting demonstration purposes. 
So, start by running the node using the following command:

$ rosrun chapter3_tutorials example4

To plot a message, we must know its format; use rosmg show <msg type> if you 
do not know it. In the case of scalar data, we always have a data field that has the 
actual value. Hence, for the temp topic, which is of the Int32 type, we will run the 
following command:

$ rosrun rqt_plot rqt_plot /temp/data

With the node running, we will see a plot that changes over time, with the incoming 
messages, as shown in the following screenshot:

For accel, we have a Vector3 message (as you can check with rostopic type  
/accel), which contains three fields that we can visualize in a single plot. The 
Vector3 message has the x, y, and z fields. We can specify the fields separated by 
commas (,) or in the more concise manner shown in the following command:

$ rosrun rqt_plot rqt_plot /accel/x:y:z
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The plot will look somewhat like the one in the following screenshot:

We can also plot each field in a separate axis. However, rqt_plot does not support 
this directly. Instead, we must use rqt_gui and arrange three plots manually, as 
shown in the following command and the screenshot after that:

$ rosrun rqt_gui rqt_gui
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The rqt_plot GUI supports three plotting frontends. Before ROS hydro, only 
matplotlib was supported. Now, we can use QT frontends, which are faster and 
support more time series simultaneously. You can access and select them from the 
configuration button:

Image visualization
In ROS, we have a node that allows the display of images coming from a camera  
on-the-fly. This is an example of a topic with complex data, which is better visualized 
or analyzed with special tools. You only need a camera to do this, such as your 
laptop webcam. The example8 node implements a basic camera capture program 
using OpenCV and ROS bindings to convert cv::Mat images into ROS Image 
messages that can be published in a topic. This node publishes the camera frames  
in the /camera topic.

We are only going to run the node with a launch file created to do so. The code 
inside the node is still new for the reader, but in the next chapters, we will cover how 
to work with cameras and images in ROS, so we will be able to come back to this 
node and understand it:

$ roslaunch chapter3_tutorials example8.launch
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Once the node is running, we can list the topics (rostopic list) and see that  
the /camera topic is there. A straightforward way to verify that we are actually 
capturing images is to see at which frequency we are receiving images in the topic 
with rostopic hz /camera. It should be something in the region of 30 Hz usually. 
This is shown in the following screenshot:

Visualizing a single image
We cannot use rostopic echo /camera because, as it's an image, the amount of 
information in plain text would be very huge and not human readable. Hence, we 
are going to use the following command:

$ rosrun image_view image_view image:=/camera

This is the image_view node, which shows the images in the given topic (the image 
argument) in a window. This way, we can visualize every image or frame published 
in a topic in a very simple and flexible manner—even over a network. If you press 
the right-hand side button of your mouse on the window, you can save the current 
frame in the disk, usually in your home directory or ~/.ros.

ROS hydro also has rqt_image_view, which supports viewing multiple images in a 
single window but does not allow the saving of images by pressing the right-hand 
side button. We can select the image topic manually on the GUI, or as we do with 
image_view:

$ rosrun rqt_image_view rqt_image_view
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The preceding command yields an output shown in the following screenshot:

ROS provides a camera calibration interface built on top of the OpenCV calibration 
API. We will cover this in Chapter 5, Computer Vision, when we see how to work with 
cameras. There, we will see monocular and stereo cameras as well as the ROS image 
pipeline (image_proc and stereo_image_proc), which allow the rectification of the 
camera image distortion and compute the depth image disparity for stereo pairs, so 
that we obtain a point cloud.

3D visualization
There are certain devices (such as stereo cameras, 3D lasers, the Kinect sensor, and so 
on) that provide 3D data—usually in the form of point clouds (organized/ordered 
or not). For this reason, it is extremely useful to have tools that visualize this type of 
data. In ROS, we have rviz or rqt_rviz, which integrates an OpenGL interface with 
a 3D world that represents sensor data in a world representation, using the frame of 
the sensor that reads the measurements in order to draw such readings in the correct 
position with respect to each other.
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Visualizing data in a 3D world using rqt_rviz
With roscore running, start rqt_rviz with (note that rviz is still valid in  
ROS hydro):

$ rosrun rqt_rviz rqt_rviz

We will see the graphical interface of the following screenshot, which has a  
simple layout:

On the left-hand side, we have the Displays panel, in which we have a tree list of 
the different elements in the world, which appears in the middle. In this case, we 
have certain elements already loaded. Indeed, this layout is saved in the config/
example9.rviz file, which can be loaded in the File | Open Config menu.

Below the Displays area, we have the Add button that allows adding more elements 
by topic or type. Also note that there are global options, which are basically a tool to 
set the fixed frame in the world, with respect to which the others might move. Then, 
we have Axes and a Grid as a reference for the rest of the elements. In this case, for 
the example9 node, we are going to see Marker and PointCloud2.
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Finally, on the status bar, we have information regarding the time, and on the  
right-hand side, there are menus. The Tools properties allows us to configure  
certain plugin parameters, such as, the 2D Nav Goal and 2D Pose Estimate topic 
names. The Views menu gives different view types, where Orbit and TopDownOrtho 
are generally enough; one for a 3D view and the other for a 2D top view. Another 
menu shows elements selected on the environment. At the top, we also have a menu 
bar with the current operation mode (Interact, Move, Measure, and so on.) and 
certain plugins.

Now we are going to run the example9 node using the following screenshot:

$ roslaunch chapter3_tutorials example9.launch

In rqt_rviz, we are going to set frame_id of the marker, which is frame_marker,  
in the fixed frame. We will see a red cubic marker moving, as shown in the following 
screenshot:
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Similarly, if we set the fixed frame to frame_pc, we will see a point cloud that 
represents a plane of 200 x 100 points, as shown in the following screenshot:

The list of supported built-in types in rqt_viz includes Camera and Image, which 
are shown in a window—similar to image_view. In the case of Camera, its calibration 
is used, and in the case of stereo images, they allow us to overlay the point cloud. We 
can also see the LaserScan data from range lasers, Range cone values from IR/sonar 
sensors, or PointCloud2 from 3D sensors, such as the Kinect sensor.

For the navigation stack, which we will cover the in next chapters, we have several 
data types, such as Odometry (which plots the robot odometry poses), Path (which 
draws the path plan followed by the robot), Pose objects, PoseArray for particle 
clouds with the robot pose estimate, the Occupancy Grid Map (OGM) as a Map, and 
costmaps (which are of the Map type in ROS hydro and were GridCell before).

Among other types, it is also worth mentioning the RobotModel, which shows the 
CAD model of all the robot parts, taking the transformation among the frames of 
each element into account. Indeed, tf elements can also be drawn, which is very 
useful to debug the frames in the system; we will see an example in the next section. 
In RobotModel, we also have the links that belong to the robot URDF description 
with the option to draw a trail showing how they move over time.
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Basic elements can also be represented, such as a Polygon for the robot footprint; 
several kind of Markers, which support basic geometric elements, such as cubes, 
spheres, lines, and so on; and even InteractiveMarker objects, which allow the 
user to set a pose (position and orientation) on the 3D world. Run the example8  
node to see an example of a simple interactive marker:

$ roslaunch chapter3_tutorials example10.launch

You will see a marker that you can move in the interactive mode of rqt_rviz. Its 
pose can be used to modify the pose of another element in the system, such as the 
joint of a robot:

The relationship between topics and frames
All topics must have a frame if they are publishing data from a particular sensor that 
has a physical location in the real world. For example, a laser is located in a position 
with respect to the base link of the robot (usually at the middle of the traction wheels 
in wheeled robots). If we use the laser scans to detect obstacles in the environment 
or to build a map, we must use the transformation the laser and the base link. In 
ROS, stamped messages have frame_id, apart from the timestamp (which is also 
extremely important to put or synchronize different messages). A frame_id gives a 
name to the frame it belongs to.
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However, the frames themselves are meaningless. We need the transformation 
among them. Actually, we have the tf frame, which usually has the base_link 
frame as its root (or map if the navigation stack is running). Then, in rqt_rviz,  
we can see how this and other frames move with respect to each other.

Visualizing frame transformations
To illustrate how to visualize frame transformations, we are going to use the 
turtlesim example. Run the following command to start the demonstration:

$ roslaunch turtle_tf turtle_tf_demo.launch

This is a very basic example with the purpose of illustrating the tf visualization in 
rqt_rviz; note that, for the different possibilities offered by the tf API, you should 
see later chapters of this book. For now, it is enough to know that it allows us to 
make computations in one frame and then transform them to another, including 
time delays. It is also important to know that tf is published at a certain frequency 
in the system, so it is like a subsystem where we can traverse the tf tree to obtain the 
transformation between any frames in it; we can do it in any node of our system just 
by consulting tf.

If you receive an error, it is probably because the listener died on the launch startup 
because another node that was required was still not ready, so please run the following 
command on another terminal to start it again:

$ rosrun turtle_tf turtle_tf_listener

Now you should see a window with two turtles, where one follows the other. You 
can control one of the turtles with the arrow keys as long as you have the focus on 
the terminal where you run the launch file. The following screenshot shows how 
one turtle has been following the other after moving the one we control with the 
keyboard for some time:
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Each turtle has its own frame, so we can see it in rqt_rviz:

$ rosrun rqt_rviz rqt_rviz

Now, instead of viewing the turtlesim window, we are going to see how the turtles' 
frames move in rqt_rviz as we move our turtle with the arrow keys. We have to 
set the fixed frame to /world and then add the tf tree to the left-hand side area. We 
will see that we have the /turtle1 and /turtle2 frames, both as children of the 
root /world frame. In the world representation, the frames are shown as axes, and 
the parent-child links are shown with a yellow arrow that has a pink end. Also set 
the view type to TopDownOrtho, so it is easier to see how the frames move because 
they only move on the 2D ground plane. You might also find it useful to translate the 
world center, which is done with the mouse with the Shift key pressed.

In the next screenshot, you can see how the two turtle frames are shown with 
respect to the /world frame. You can change the fixed frame to experiment with this 
example and tf. Note that config/example_tf.rviz is provided to give the basic 
layout for this example:
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Saving and playing back data
Usually, when we work with robotic systems, the resources are shared, not always 
available, or the experiments cannot be done regularly because of the cost or time 
required for preparing and performing them or because they are difficult to reproduce. 
For this reason, it is a good practice to record the data of the experiment session for 
later analysis and to work, develop, and test our algorithms. However, the process 
of saving good data so that we can reproduce the experiment offline is not trivial. 
Fortunately, in ROS, we have powerful tools that have already solved this problem.

ROS can save all the messages published on any topic. It has the ability to create a 
bag file that contains the messages as they are with all their fields and timestamps. 
That allows the reproduction of the experiment offline with its real conditions on  
the robot as the latency of messages transmission. What's more, ROS tools do all  
this efficiently, with a high bandwidth, and in an adequate manner to organize  
the saved data.

In the next section, we will explain the tools provided by ROS to save and play back 
the data stored in bag files, which use a binary format designed for and by ROS 
developers. We will also see how to manage these files, that is, inspect the content 
(number of messages, topics, and so on), compress them, and split or merge several 
of them.

What is a bag file?
A bag file is a container of messages sent by topics that were recorded during a 
session using a robot or nodes. In brief, they are the logging files for the messages 
transferred during the execution of our system, and they allow us to play back 
everything, even with the time delays, since all messages are recorded with a 
timestamp—not only the timestamp in the header, but also for the packets that have 
it. The difference between the timestamp used to record and the one in the header 
is that the first one is set once the message is recorded, while the other is set by the 
producer/publisher of the message.

The data stored in a bag file is in the binary format. The particular structure of this 
container allows for an extremely fast recording bandwidth, which is the most 
important concern when saving data. Also, the size of the bag file is relevant but 
usually at the expense of speed. Anyway, we have the option to compress the file 
on the fly with the bz2 algorithm; just use the -j parameter when you record with 
rosbag record as you will see in the sequel.
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Every message is recorded along with the topic that published it. Therefore, we can 
specify which topics to record or just record all (with -a). Later, when we play the 
bag file back, we can also select a particular subset of topics of the ones in the bag file 
by indicating the name of the topics we want to be published.

Recording data in a bag file with rosbag
The first thing we have to do is simply record some data. We are going to use a very 
simple system as an example—our example4 node. Hence, we will first run the node:

$ rosrun chapter3_tutorials example4

Now we have two options. First, we can record all the topics with the following 
command:

$ rosbag record -a

Otherwise, we can record only specific topics. In this case, it makes sense to record 
only the example4 topics, so we will run the following command:

$ rosbag record /temp /accel

By default, when we run the above command, the rosbag program subscribes to 
the node and starts recording the message in a bag file in the current directory with 
the data as the name. Once you have finished the experiment or you want to stop 
recording, you only have to hit Ctrl + C. The following is an example of a recording 
session and the resulting bag file:

[ INFO] [1404248014.668263731]: Subscribing to /temp

[ INFO] [1404248014.671339658]: Subscribing to /accel

[ INFO] [1404248014.674950564]: Recording to 2014-07-01-22-54-34.bag.

You can see more options with rosbag help record, which include the bag file 
size, the duration of the recording, options to split the files in several ones of a given 
size, and so on. As we mentioned before, the file can be compressed on the fly (the 
-j option). In our honest opinion, this is only useful for a small bandwidth, because 
it also consumes CPU time, and it might produce message dropping. If messages are 
dropped, we can increase the buffer (-b) size for the recorder in MB, which defaults 
to 256 MB, but can be increased to some GB if the bandwidth is very high (especially 
with images).
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It is also possible to include the call to rosbag record into a launch file, which is 
useful when we want to set up a recorder for certain topics. To do so, we must add 
the following node:

<node pkg="rosbag" type="record" name="bag_record"
            args="/temp /accel"/>

Note that the topics and other arguments to the command are passed using the args 
argument. Also, it is important to say that when it is run from the launch file, the 
bag file is created by default in ~/.ros unless we give the name of the file with  
-o (prefix) or -O (full name).

Playing back a bag file
Now that we have a bag file recorded, we can use it to play back all the messages 
of the topics inside it; note that we need roscore running and usually nothing else. 
Then, we will move to the folder with the bag file we want to play (there are two 
examples in the bag folder of this chapter's tutorials) and run this command:

$ rosbag play 2014-07-01-22-54-34.bag

We will see the following output:

[ INFO] [1404248314.594700096]: Opening 2014-07-01-22-54-34.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING]  Bag Time: 1404248078.757944   Duration: 2.801764 / 39.999515

In the terminal in which we play the bag file, we can pause (hit space) or move step 
by step (hit s). As usual, press Ctrl + C to finish it immediately. Once we reach the 
end of the file, it will close, but there is an option to loop (-l), which sometimes 
might be useful.
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Automatically, we will see the topics with rostopic list, as follows:

/accel

/clock

/rosout

/rosout_agg

/temp

The /clock topic appears because we can simulate the system clock to simulate 
a faster playback. This can be configured using the -r option. The /clock topic 
publishes the time for the simulation at a configurable frequency with the --hz 
argument (it defaults to 100 Hz).

Also, we can specify a subset of the topics in the file to be published. This is done 
with the --topics option.

Inspecting all the topics and messages in a 
bag file
There are two main ways to see what we have inside a bag file. The first one is very 
simple. We just type rosbag info <bag_file>, and the result is something similar 
to the one shown in the following screenshot:

We have information about the bag file itself, such as the creation date, duration, 
size, the number of messages inside, and the compression (if any). Then, we have the 
list of data types inside the file and finally the list of topics, with their corresponding 
name, number of messages, and type.
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The second way to inspect a bag file is extremely powerful. It is a GUI named  
rqt_bag that also allows playing back the files, viewing the images (if any), plotting 
scalar data, and also the RAW structure of the messages; it is the replacement of 
rxbag. We only have to pass the name of the bag file, and we will see something 
similar to the following screenshot (for the previous bag file):

We have a timeline for all the topics, where each message appears with a mark.  
In the case of images, we can enable the thumbnails to see them in the timeline.

In the next screenshot, we can see how to access the RAW, Plot, and Image (if the 
topic is of the Image type) views for the topics in the file. This pop-up menu appears 
with a right-click over the timeline. The following screenshot corresponds to the old 
rxbag because this functionality has been recently added to rqt_bag and might still 
not be available in your Debian repository:
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As an alternative, we can use rqt_gui and put the rqt_bag and rqt_plot plugins 
in the same window; the layout of the following screenshot can be imported from 
the perspective given in the config/bag_plot.perspective folder. However, we 
have to use Publish All and play to actually see the plot, which differs from the 
rxbag behavior. For /accel, we can plot all the fields in a single axis. To do so, once 
we have the plot view, we add each field by pressing the + button/icon. Note that 
we can remove them later or create different axes. As mentioned before, the plot is 
not generated for all the values in the file, but it simply shows the data that is played 
back and published:

Remember that with the rxbag behavior, we must press the play button at least once 
to be able to plot the data. Then we can play, pause, stop, and move to the beginning 
or the end of the file.

The images are straightforward, and a simple window appears with the current 
frame with options to save them as image files in the disk.

Since the first version of rqt_bag did not have the preview/visualization features 
mentioned previously, you will still need rxbag compiled for ROS hydro or just 
upgrade to the latest ROS hydro version of rqt_bag (or clone the hydro-devel 
branch from the GitHub repository and compile).
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Using the rqt_gui and rqt plugins
Since ROS Fuerte, the rx applications or tools are deprecated, and we should 
instead use the rqt nodes. They are basically the same, and only a few of them 
incorporate small updates, bug fixes, and new features. The following table shows 
the equivalences for the tools shown in this chapter (the ROS hydro rqt tool and the 
one it replaces from previous ROS distributions):

ROS hydro rqt tool Replaces (ROS fuerte or before)
rqt_console and rqt_logger_level rxconsole

rqt_graph rxgraph

rqt_reconfigure rqt_reconfigure dynamic_reconfigure 
reconfigure_gui

rqt_plot rxplot

rqt_image_view image_view

rqt_bag rxbag

In ROS hydro, there are even more standalone plugins, such as a shell (rqt_shell), 
a topic publisher (rqt_publisher), a message type viewer (rqt_msg), and much 
more (the most important ones have been covered in this chapter). Even rqt_viz 
is a plugin, which replaces rviz, and can also be integrated into the new rqt_gui 
interface. We can run this GUI and add and arrange several plugins manually on the 
window, as it has been seen in several examples in this chapter:

$ rosrun rqt_gui rqt_gui
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Summary
After reading and running the code of this chapter, you learned to use many tools 
that help you to develop robotic systems faster, debug errors, and visualize your 
results, so that you can evaluate their quality or validate them. Some of the specific 
concepts and tools you will exploit the most in your life as a robot developer have 
been summarized here.

Now you know how to include logging messages in your code with different levels 
of verbosity, which will help you to debug errors in your nodes. For this purpose, 
you can also use the powerful tools included in ROS, such as the rqt_console 
interface. Additionally, you can also inspect or list the nodes running, topics 
published, and services provided in the whole system. This includes the inspection 
of the node graph using rqt_graph.

Regarding the visualization tools, you should be able to plot scalar data using 
rqt_plot for a more intuitive analysis of certain variables published by your nodes. 
Similarly, you can view more complex types (nonscalar ones). This includes images 
and 3D data using rqt_image_view and rqt_rviz, respectively. Similarly, you can 
use tools to calibrate and rectify the camera images.

Finally, recording and playing back the messages of the topics available are now in 
your hands with rosbag. You also know how to view the contents of a bag file with 
rqt_bag. This allows you to record the data from your experiments and process 
them later with your AI or robotics algorithms.

In the next chapter, you will use many of the tools covered here to visualize data of 
very different types. Several sensors are presented along with the instructions to use 
them in ROS and visualize their output data.
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Using Sensors and  
Actuators with ROS

When you think of a robot, you would probably think of a human-sized one with 
arms, a lot of sensors, and a wide field of locomotion systems.

Now that we know how to write small programs in ROS and manage them,  
we are going to work with sensors and actuators—things that can interact  
with the real world.

You can find a wide list of devices supported by ROS at http://www.ros.org/
wiki/Sensors.

In this chapter, we will deal with the following topics:

• Cheap and common sensors for your projects
• 3D sensors, such as Kinect and laser rangefinders
• Using Arduino to connect more sensors and actuators

We know that it is impossible to explain all the types of sensors in this chapter. For 
this reason, we have selected some of the most commonly used ones and those that 
are affordable to most users—regular, sporadic, or amateur.

Sensors and actuators can be organized into different categories: rangefinders, 
cameras, pose estimation devices, and so on. They will help you find what you  
are looking for more quickly.

http://www.ros.org/wiki/Sensors
http://www.ros.org/wiki/Sensors
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Using a joystick or a gamepad
I am sure that, at one point or another, you have used a joystick or a gamepad of a 
video console.

A joystick is nothing more than a series of buttons and potentiometers. With this 
device, you can perform or control a wide range of actions.

In ROS, a joystick is used to telecontrol a robot to change its velocity or direction.

Before we start, we are going to install some packages. To install these packages in 
Ubuntu, execute the following command:

$ sudo apt-get install ros-hydro-joystick-drivers

$ rosstack profile & rospack profile

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

In these packages, you will find code to learn how to use the joystick and a guide to 
create our packages.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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First of all, connect your joystick to your computer. Now, we are going to check 
whether the joystick is recognized, using the following command:

$ ls /dev/input/

We will see the following output:

by-id    event0  event2  event4  event6  event8  js0   mouse0

by-path  event1  event3  event5  event7  event9  mice

The port created is js0; with the jstest command, we can check whether  
it is working, by using the following command:

$ sudo jstest /dev/input/js0

Axes:  0:  0  1:  0  2:  0 Buttons:  0:off  1:off  2:off  3:off  4:off  
5:off  6:off  7:off  8:off  9:off  10:off

Our joystick, Logitech Attack 3, has 3 axes and 11 buttons, and if we move the 
joystick, the values change.

Once you have checked the joystick, we are going to test it in ROS. To do this, you 
can use the joy and joy_node packages:

$ rosrun joy joy_node

If everything is OK, you will see the following output:

[ INFO] [1357571588.441808789]: Opened joystick: /dev/input/js0. 
deadzone_: 0.050000.

How does joy_node send joystick 
movements?
With the joy_node package active, we are going to see the messages sent by this 
node. This will help us understand how it sends information about axes and buttons.

To see the messages sent by the node, we can use this command:

$ rostopic echo /joy

And then, we can see each message sent:

---

header:

seq: 157
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stamp:

  secs: 1357571648

  nsecs: 430257462

  frame_id: ''

axes: [-0.0, -0.0, 0.0]

buttons: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

---

You will see two main vectors: one for axes and the other for buttons. Obviously, these 
vectors are used to publish the states of the buttons and axes of the real hardware.

If you want to know the message type, type the following command line in a shell:

$ rostopic type /joy

You will then obtain the type used by the message; in this case, it is sensor_msgs/Joy.

Now, to see the fields used in the message, use the following command line:

$ rosmsg show sensor_msgs/Joy

You will see the following output:

std_msgs/Header header

  uint32 seq

  time stamp

  string frame_id

float32[] axes

int32[] buttons

This is the message structure that you must use if you want to use a joystick with your 
developments. In the next section, you will learn how to write a node that subscribes to 
the joystick topic and how to generate moving commands to move turtlesim.

Using joystick data to move a turtle in 
turtlesim
Now, we are going to create a node that gets data from joy_node and Published 
topics to control turtlesim.

First, it is necessary to know the name of the topic where we will publish the 
messages. So, we are going to start turtlesim and do some investigation:

$ rosrun turtlesim turtlesim_node
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To see the topic list, use the following command line:

$ rostopic list

You will then see the following output, where turtle1/command_velocity is the 
topic we will use:

/rosout

/rosout_agg

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

Now, we need to know the topic type. Use the following command line to see it:

$ rostopic type /turtle1/cmd_vel

You will see this output:

geometry_msgs/Twist

To know the contents of this message, execute the following command line:

$ rosmsg show geometry_msgs/Twist

You will then see the two fields that are used to send the velocity:

geometry_msgs/Vector3 linear

  float64 x

 float64 y

  float64 z

geometry_msgs/Vector3 angular

  float64 x

  float64 y

  float64 z

OK, now that we have localized the topic and the structure to use, it is time to create 
a program to generate velocity commands using data from the joystick.
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Create a new file, c4_example.1.cpp, in the chapter4_tutorials/src directory 
and type in the following code snippet:

#include<ros/ros.h>
#include<geometry_msgs/Twist.h>
#include<sensor_msgs/Joy.h>
#include<iostream>
using namespace std;

class TeleopJoy{
public:
  TeleopJoy();
private:
  void callBack(const sensor_msgs::Joy::ConstPtr& joy);
  ros::NodeHandle n;
  ros::Publisher pub;
 ros::Subscriber sub;
  int i_velLinear, i_velAngular;
};

TeleopJoy::TeleopJoy()
{    
  n.param("axis_linear",i_velLinear,i_velLinear);
  n.param("axis_angular",i_velAngular,i_velAngular);
  pub = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",1);
  sub = n.subscribe<sensor_msgs::Joy>("joy", 10, &TeleopJoy::callBack, 
this);
}

void TeleopJoy::callBack(const sensor_msgs::Joy::ConstPtr& joy)
{
  geometry_msgs::Twist vel;
  vel.angular.z = joy->axes[i_velAngular];
  vel.linear.x = joy->axes[i_velLinear];
  pub.publish(vel);
}

int main(int argc, char** argv)
{
  ros::init(argc, argv, "teleopJoy");
  TeleopJoy teleop_turtle;
  ros::spin();
}
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Now, we are going to break the code to explain how it works. In the main function, 
we create an instance of the TeleopJoy class:

int main(int argc, char** argv)
{
  ...
  TeleopJoy teleop_turtle;
 ...

In the constructor, four variables are initialized. The first two variables are filled 
using data from Parameter Server. These variables are joystick axes. The next two 
variables are the advertiser and the subscriber. The advertiser will publish a topic 
with the geometry_msgs::Twist type. The subscriber will get data from the topic 
with the name Joy. The node that is handling the joystick sends this topic:

TeleopJoy::TeleopJoy()
{    
  n.param("axis_linear",i_velLinear,i_velLinear);
  n.param("axis_angular",i_velAngular,i_velAngular);
  pub = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",1);
  sub = n.subscribe<sensor_msgs::Joy>("joy", 10, &TeleopJoy::callBack, 
this);
}

Each time the node receives a message, the callBack function is called. We create a 
new variable with the name vel, which will be used to publish data. The values of 
the axes of the joystick are assigned to the vel variable. In this part, you can create a 
process with the data received before publishing it:

void TeleopJoy::callBack(const sensor_msgs::Joy::ConstPtr& joy)
{
  geometry_msgs::Twist vel;
  vel.angular.z = joy->axes[i_velAngular];
  vel.linear.x = joy->axes[i_velLinear];
  pub.publish(vel);
}

Finally, the topic is published using pub.publish(vel).

We are going to create a launch file for this example. In the launch file, we declare 
data for Parameter Server and launch the joy and example1 nodes.
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Copy the following code step to a new file, example1.launch, in the chapter4_
tutorials/src directory:

<launch>

<node pkg="turtlesim" type="turtlesim_node" name="sim"/>
<node pkg="chapter4_tutorials" type="c4_example1" name="c4_example1" 
/>
<param name="axis_linear" value="1" type="int" />
<param name="axis_angular" value="0" type="int" />

<node respawn="true" pkg="joy"type="joy" name="teleopJoy">
  <param name="dev" type="string" value="/dev/input/js0" />
  <param name="deadzone" value="0.12" />
</node>

</launch>

You will notice that, in the launch file, there are three different nodes: c4_example1, 
sim, and joy.

There are four parameters in the launch file; these parameters will add data to 
Parameter Server, and it will be used by our node. The axis_linear and axis_
angular parameters will be used to configure the axes of the joystick. If you want 
to change the axes configuration, you only need to change the value and put the 
number of the axes you want to use. The dev and deadzone parameters will be used 
to configure the port where the joystick is connected, and the dead zone is the region 
of movement that is not recognized by the device.

To run the launch file, use the following command line:

$ roslaunch chapter4_tutorials example1.launch

You can see whether everything is fine by checking the running nodes and the topic 
list by using the rosnode list and the rostopic list. If you want to see it graphically, 
use rqt_graph.

Using a laser rangefinder – Hokuyo  
URG-04lx
In mobile robotics, it is very important to know where the obstacles are, the outline 
of a room, and so on. Robots use maps to navigate and move across unknown 
spaces. The sensor used for these purposes is LIDAR. This sensor is used to measure 
distances between the robot and objects.
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In this section, you will learn how to use a low-cost version of LIDAR that is 
widely used in robotics. This sensor is the Hokuyo URG-04lx rangefinder. You can 
obtain more information about it at http://www.hokuyo-aut.jp/. The Hokuyo 
rangefinder is a device used to navigate and build maps in real time:

The Hokuyo URG-04lx model is a low-cost rangefinder commonly used in robotics. 
It has a very good resolution and is very easy to use. To start with, we are going to 
install the drivers for the laser:

$ sudo apt-get install ros-hydro-hokuyo-node

$ rosstack profile && rospack profile

Once installed, we are going to check whether everything is OK. Connect your laser 
and check whether the system can detect it and whether it is configured correctly:

$ ls -l /dev/ttyACM0

When the laser is connected, the system sees it, so the result of the preceding 
command line is the following output:

crw-rw---- 1 root dialout 166, 0 Jan 13 11:09 /dev/ttyACM0

In our case, we need to reconfigure the laser device to give ROS the access to use it; 
that is, we need to give the appropriate permissions:

$ sudo chmod a+rw /dev/ttyACM0

Check the reconfiguration with the following command line:

$ ls -l /dev/ttyACM0

crw-rw-rw- 1 root dialout 166, 0 Jan 13 11:09 /dev/ttyACM0 

http://www.hokuyo-aut.jp/
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Once everything is OK, we are going to switch on the laser. Start roscore in one 
shell, and, in another shell, execute the following command:

$ rosrun hokuyo_node hokuyo_node

If everything is fine, you will see the following output:

[ INFO] [1358076340.184643618]: Connected to device with ID: H1000484

Understanding how the laser sends data in 
ROS
To check whether the node is sending data, use rostopic as shown here:

$ rostopic list

You will see the following topics as the output:

/diagnostics

/hokuyo_node/parameter_descriptions

/hokuyo_node/parameter_updates

/rosout

/rosout_agg

/scan

The /scan topic is the topic where the node is publishing. The type of data used by 
the node is shown here:

$ rostopic type /scan

You will then see the message type used to send information about the laser:

sensor_msgs/LaserScan

You can see the structure of the message by using the following command:

$ rosmsg show sensor_msgs/LaserScan

To learn a little bit more about how the laser works and what data it is sending,  
we are going to use the rostopic command to see a real message:

$ rostopic echo /scan

Then, you will see the following message sent by the laser:

---

header:
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seq: 3895

stamp:

  secs: 1358076731

  nsecs: 284896750

  frame_id: laser

...

ranges: [1.1119999885559082, 1.1119999885559082, 1.1109999418258667, ...]

intensities: []

---

This data is difficult to understand for humans. If you want to see the data in a more 
friendly and graphical way, it is possible to do so using rviz. Type the following 
command line in a shell to launch rviz with the correct configuration file:

$ rosrun rviz rviz -d `rospack find chapter4_tutorials`/rviz/laser.rviz

The following screenshot shows a graphical representation of the message:

You will see the contour on the screen. If you move the laser sensor, you will see the 
contour changing.
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Accessing the laser data and modifying it
Now, we are going to make a node get the laser data, do something with it, and 
publish the new data. Perhaps, this will be useful at a later date, and with this 
example, you will learn how to do it.

Copy the following code snippet to the c4_example2.cpp file in your /chapter4_
tutorials/src directory:

#include <ros/ros.h>
#include "std_msgs/String.h"
#include <sensor_msgs/LaserScan.h>

#include<stdio.h>
using namespace std;
class Scan2{
  public:
  Scan2();
  private:
  ros::NodeHandle n;
  ros::Publisher scan_pub;
  ros::Subscriber scan_sub;
  void scanCallBack(const sensor_msgs::LaserScan::ConstPtr& scan2);
};
Scan2::Scan2()
{
  scan_pub = n.advertise<sensor_msgs::LaserScan>("/scan2",1);
  scan_sub = n.subscribe<sensor_msgs::LaserScan>("/scan",1, 
&Scan2::scanCallBack, this);
}

void Scan2::scanCallBack(const sensor_msgs::LaserScan::ConstPtr& 
scan2)
{
  int ranges = scan2->ranges.size();
  //populate the LaserScan message
  sensor_msgs::LaserScan scan;
  scan.header.stamp = scan2->header.stamp;
  scan.header.frame_id = scan2->header.frame_id;
  scan.angle_min = scan2->angle_min;
  scan.angle_max = scan2->angle_max;
  scan.angle_increment = scan2->angle_increment;
  scan.time_increment = scan2->time_increment;
  scan.range_min = 0.0;
  scan.range_max = 100.0;
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  scan.ranges.resize(ranges);
  for(int i = 0; i < ranges; ++i)
  {
    scan.ranges[i] = scan2->ranges[i] + 1;
  }
  scan_pub.publish(scan);
}
int main(int argc, char** argv)
{
  ros::init(argc, argv, "example2_laser_scan_publisher");
  Scan2 scan2;
  ros::spin();
}

We are going to break the code and see what it is doing.

In the main function, we initialize the node with the name example2_laser_scan_
publisher and create an instance of the class that we have created in the file.

In the constructor, we will create two topics: one of them will subscribe to the other 
topic, which is the original data from the laser. The second topic will publish the 
newly modified data from the laser.

This example is very simple; we are only going to add 1 unit to the data received 
from the laser topic and publish it again. We do that in the scanCallBack() 
function. Take the input message and copy all the fields to another variable. Then, 
take the field where the data is stored and add the 1 unit. Once the new value is 
stored, publish the new topic:

void Scan2::scanCallBack(const sensor_msgs::LaserScan::ConstPtr& 
scan2)
{
    ...
sensor_msgs::LaserScan scan;
    scan.header.stamp = scan2->header.stamp;
 ...
 ...
    scan.range_max = 100.0;    
scan.ranges.resize(ranges);

for(int i = 0; i < ranges; ++i){
    scan.ranges[i] = scan2->ranges[i] + 1;
    }

scan_pub.publish(scan);
}
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Creating a launch file
To launch everything, we are going to create a launch file, example2.launch:

<launch>
  <node pkg="hokuyo_node" type="hokuyo_node" name="hokuyo_node"/>
  <node pkg="rviz" type="rviz" name="rviz"
  args="-d $(find chapter4_tutorials)/rviz/laser.rviz"/>

  <node pkg="chapter4_tutorials" type="c4_example2" name="c4_example2" 
/>
</launch>

Now, if you launch the example2.launch file, three nodes will start: hokuyo_node, 
rviz, and c4_example2. You will see the rviz screen with the two-laser contour. 
The green contour is the new data, as shown in the following screenshot:
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Using the Kinect sensor to view objects 
in 3D
The Kinect sensor is a flat, black box that sits on a small platform when placed on a 
table or shelf near the television you're using with your Xbox 360. This device has the 
following three sensors that we can use for vision and robotics tasks:

• A color VGA video camera to see the world in color
• A depth sensor, which is an infrared projector and a monochrome CMOS 

sensor working together, to see objects in 3D
• A multiarray microphone that is used to isolate the voices of the players from 

the noise in the room

In ROS, we are going to use two of these sensors: the RGB camera and the depth 
sensor. In the latest version of ROS, you can even use three.

Before we start using it, we need to install the packages and drivers. Use the following 
command lines to install them:

$ sudo apt-get install ros-hydro-openni-camera ros-hydro-openni-launch

$ rosstack profile && rospack profile

Once the packages and drivers are installed, plug in the Kinect sensor, and we will 
run the nodes to start using it. In a shell, start roscore. In another shell, run the 
following command lines:

$ rosrun openni_camera openni_node

$ roslaunch openni_launch openni.launch

If everything goes well, you will not see any error messages.
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How does Kinect send data from the sensors, 
and how do we see it?
Now, we are going to see what we can do with these nodes. List the topics that you 
have created by using this command:

$ rostopic list

Then, you will see a lot of topics, but the most important ones for us are the following:

...

/camera/rgb/image_color

/camera/rgb/image_mono

/camera/rgb/image_raw

/camera/rgb/image_rect

/camera/rgb/image_rect_color

...

We will see a lot of topics created by nodes. If you want to see one of the sensors, for 
example, the RGB camera, you can use the /camera/rgb/image_color topic. To see 
the image from the sensor, we are going to use the image_view package. Type the 
following command in a shell:

$ rosrun image_view image_view image:=/camera/rgb/image_color

Note that we need to rename (remap) the image topic to /camera/rgb/image_color 
by using the parameter's image. If everything is fine, a new window appears that 
shows the image from Kinect.

If you want to see the depth sensor, you can do so just by changing the topic in the 
last command line:

$ rosrun image_view image_view image:=/camera/depth/image
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You will then see an image similar to the following screenshot:

Another important topic is the one that sends the point cloud data. This kind of data 
is a 3D representation of the depth image. You can find this data in /camera/depth/
points, /camera/depth_registered/points and other topics.

We are going to see the type of message this is. To do this, use rostopic type. To 
see the fields of a message, we can use rostopic type /topic_name | rosmsg 
show. In this case, we are going to use the /camera/depth/points topic:

$ rostopic type /camera/depth/points | rosmsg show

To see the official specification of the message, visit http://ros.org/doc/api/
sensor_msgs/html/msg/PointCloud2.html.

If you want to visualize this type of data, run rviz in a new shell and add a new 
PointCloud2 data visualization, as shown here:

$ rosrun rviz rviz

Click on Add, order topics by display type, and select PointCloud2. Once you have 
added a PointCloud2 display type, you have to select the name of the camera/
depth/points topic.

http://ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html
http://ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html
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On your computer, you will see a 3D image in real time; if you move in front of the 
sensor, you will see yourself moving in 3D, as you can see in the following screenshot:

Creating an example to use Kinect
Now, we are going to implement a program to generate a node that filters the point 
cloud from the Kinect sensor. This node will apply a filter to reduce the number of 
points in the original data. It will make a down sampling of the data.

Create a new file, c4_example3.cpp, in your chapter4_tutorials/src directory 
and type in the following code snippet:

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
// PCL specific includes
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
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#include <pcl/filters/voxel_grid.h>

#include <pcl/io/pcd_io.h>

ros::Publisher pub;

void cloud_cb (const pcl::PCLPointCloud2ConstPtr& input)
{
  pcl::PCLPointCloud2 cloud_filtered;
  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setInputCloud (input);
  sor.setLeafSize (0.01, 0.01, 0.01);
  sor.filter (cloud_filtered);
  // Publish the dataSize
  pub.publish (cloud_filtered);
}

int main (int argc, char** argv)
{
  // Initialize ROS
  ros::init (argc, argv, "my_pcl_tutorial");
  ros::NodeHandle nh;
  // Create a ROS subscriber for the input point cloud
  ros::Subscriber sub = nh.subscribe ("/camera/depth/points", 1, 
cloud_cb);
  // Create a ROS publisher for the output point cloud
  pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);
  // Spin
  ros::spin ();
}

This sample is based on the tutorial of Point Cloud Library (PCL). You can see 
it at http://pointclouds.org/documentation/tutorials/voxel_grid.
php#voxelgrid.

All the work is done in the cb() function. This function is called when a message 
arrives. We create a sor variable with the VoxelGrid type, and the range of the grid 
is changed in sor.setLeafSize(). These values will change the grid used for the 
filter. If you increment the value, you will obtain less resolution and fewer points on 
the point cloud:

cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
...
  pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;

http://pointclouds.org/documentation/tutorials/voxel_grid.php#voxelgrid
http://pointclouds.org/documentation/tutorials/voxel_grid.php#voxelgrid
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  ...
  sor.setLeafSize(0.01f,0.01f,0.01f);
...
}

If we open rviz now with the new node running, we will see the new point cloud  
in the window, and you will directly notice that the resolution is less than that of  
the original data, as shown in the following screenshot:

On rviz, you can see the number of points that a message has. For original data, we 
can see that the number of points is 2,19,075. With the new point cloud, we obtain 
16,981 points. As you can see, it is a huge reduction of data.

At http://pointclouds.org/, you will find more filters and tutorials on how you 
can use this kind of data.

http://pointclouds.org/
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Using servomotors – Dynamixel
In mobile robots, servomotors are widely used. This kind of actuator is used  
to move sensors, wheels, and robotic arms. A low-cost solution is to use RC 
servomotors. It provides a movement range of 180 degrees and a high torque  
for the existing servomotors.

The servomotor that we will explain in this section is a new type of servomotor 
designed and used for robotics. This is the Dynamixel servomotor.

Dynamixel is a lineup, high-performance, networked actuator for robots developed 
by ROBOTIS, a Korean manufacturer. ROBOTIS is also the developer and 
manufacturer of OLLO, Bioloid, and DARwIn-OP DXL. These robots are used by 
numerous companies, universities, and hobbyists due to their versatile expansion 
capability, powerful feedback functions, position, speed, internal temperature, input 
voltage, and their simple daisy chain topology for simplified wiring connections.

In the following image, you can see Dynamixel AX-12 and the USB interface. Both 
are used in this example.
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First, we are going to install the necessary packages and drivers. Type the following 
command line in a shell:

$ sudo apt-get install ros-hydro-dynamixel-motor

$ rosstack profile && rospack profile

Once the necessary packages and drivers are installed, connect the dongle to the 
computer and check whether it is detected. Normally, it will create a new port with 
the name ttyUSBX inside your /dev/ folder. If you see this port, everything is OK, 
and now we can let the nodes play a little with the servomotor.

In a shell, start roscore, and in another shell, type the following command line:

$ roslaunch dynamixel_tutorials controller_manager.launch

If the motors are connected, you will see the motors detected by the driver. In our 
case, a motor with the ID 6 is detected and configured:

process[dynamixel_manager-1]: started with pid [3966]

[INFO] [WallTime: 1359377042.681841] pan_tilt_port: Pinging motor IDs 1 
through 25...

[INFO] [WallTime: 1359377044.846779] pan_tilt_port: Found 1 motors - 1 
AX-12 [6], initialization complete.

How does Dynamixel send and receive 
commands for the movements?
Once you have launched the controller_manager.launch file, you will see a list of 
topics. Remember to use the following command line to see these topics:

$ rostopic list

These topics will show the state of the motors configured, as follows:

/diagnostics

/motor_states/pan_tilt_port

/rosout

/rosout_agg

If you see /motor_states/pan_tilt_port with the rostopic echo command, you 
will see the state of all the motors, which, in our case, is only the motor with the ID 
6; however, we cannot move the motors with these topics, so we need to run the next 
launch file to do it.
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This launch file will create the necessary topics to move the motors, as follows:

$ roslaunch dynamixel_tutorials controller_spawner.launch

The topic list will have two new topics added to the list. One of the new topics will 
be used to move the servomotor, as follows:

/diagnostics

/motor_states/pan_tilt_port

/rosout

/rosout_agg

/tilt_controller/command

/tilt_controller/state

To move the motor, we are going to use the /tilt_controller/command that will 
publish a topic with the rostopic pub command. First, you need to see the fields of 
the topic and the type. To do that, use the following command lines:

$ rostopic type /tilt_controller/command

std_msgs/Float64

As you can see, it is a Float64 variable. This variable is used to move the motor to a 
position measured in radians. So, to publish a topic, use the following commands:

$ rostopic pub /tilt_controller/command std_msgs/Float64 -- 0.5

Once the command is executed, you will see the motor moving, and it will stop at 0.5 
radians or 28.6478898 degrees.

Creating an example to use the servomotor
Now, we are going to show you how you can move the motor using a node. Create a 
new file, c4_example4.cpp, in your /chapter4_tutorials/src directory with the 
following code snippet:

#include<ros/ros.h>
#include<std_msgs/Float64.h>
#include<stdio.h>

using namespace std;

class Dynamixel{
  private:
    ros::NodeHandle n;
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    ros::Publisher pub_n;
  public:
    Dynamixel();
    int moveMotor(double position);
};

Dynamixel::Dynamixel(){
  pub_n = n.advertise<std_msgs::Float64>("/tilt_controller/
command",1);
}
int Dynamixel::moveMotor(double position)
{
  std_msgs::Float64 aux;
  aux.data = position;
  pub_n.publish(aux);
  return 1;
}

int main(int argc,char** argv)
{
  ros::init(argc, argv, "example4_move_motor");
  Dynamixel motors;

  float counter = -180;
  ros::Rate loop_rate(100);
  while(ros::ok())
  {
    if(counter < 180)
    {
      motors.moveMotor(counter*3.14/180);
      counter++;
    }else{
      counter = -180;
    }
    loop_rate.sleep();
  }
}

This node will move the motor continuously from -180 to 180 degrees. It is a simple 
example, but you can use it to make complex movements or control more motors. 
We assume that you understand the code and that it is not necessary to explain it. 
Note that you are publishing data to the /tilt_controller/command topic; this  
is the name of the motor.
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Using Arduino to add more sensors and 
actuators
Arduino is an open source electronics prototyping platform based on flexible,  
easy-to-use hardware and software. It's intended for artists, designers, hobbyists, 
and anyone interested in creating interactive objects or environments. The following 
image shows how an Arduino board looks:

ROS can use this type of device with the rosserial package. Basically, Arduino is 
connected to the computer using a serial connection, and data is transmitted using 
this port. With rosserial, you can also use a lot of devices controlled by a serial 
connection, for example, GPS, servo controllers, and so on.

First, we need to install the packages. To do this, we use the following command lines:

$ sudo apt-get install ros-hydro-rosserial-arduino

$ sudo apt-get install ros-hydro-rosserial

Then, for the catkin workspace, we need to clone the rosserial repository into the 
workspace. The rosserial messages are created and ros_lib is compiled with the 
following command lines:

$ cd ~/dev/catkin_ws/src/

$ git clone https://github.com/ros-drivers/rosserial.git

$ cd ~/dev/catkin_ws/
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$ catkin_make

$ catkin_make install

$ source install/setup.bash

OK, we assume that you have the Arduino IDE installed. If not, just follow the steps 
described at http://arduino.cc/en/Main/Software. For Ubuntu 12.04, you can 
use this command to install it:

$ sudo apt-get update && sudo apt-get install arduino arduino-core

Once you have the package and the IDE installed, it is necessary to copy ros_lib 
from the rosserial package to the sketchbook/libraries folder, which is  
created on your computer after running the Arduino IDE. Then, you have to  
run make_libraries.py:

$ cd ~/sketchbook/libraries

$ rosrun rosserial_arduino make_libraries.py .

Creating an example program to use Arduino
Now, we are going to upload an example program from the IDE to Arduino. Select 
the Hello World sample and upload the sketch:

http://arduino.cc/en/Main/Software
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The code in the preceding screenshot is very similar to the following code. In the 
following code, you can see an include line with the ros.h library. This library is 
the rosserial library, which we have installed before. Also, you can see a library 
with the message to send with a topic; in this case, it is the std_msgs/String type.

The following code snippet is present in the c4_example5_1.ino file:

#include <ros.h>
#include <std_msgs/String.h>

ros::NodeHandle  nh;

std_msgs::String str_msg;
ros::Publisher chatter("chatter", &str_msg);

char hello[19] = "chapter4_tutorials";

void setup()
{
  nh.initNode();
  nh.advertise(chatter);
}

void loop()
{
  str_msg.data = hello;
  chatter.publish( &str_msg );
  nh.spinOnce();
delay(1000);
}

The Arduino code is divided into two functions: setup() and loop(). The setup() 
function is executed once and is usually used for setting up the board. After 
setup(), the loop() function runs continuously. In the setup() function, the name 
of the topic is set; in this case, it is called chatter. Now, we need to start a node to 
hear the port and publish the topics sent by Arduino on the ROS network. Type the 
following command in a shell. Remember to run roscore:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Now, you can see the messages sent by Arduino with the rostopic echo command:

$ rostopic echo chatter
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You will see the following data in the shell:

data: chapter4_tutorials

The last example is about the data sent from Arduino to the computer. Now, we are 
going to use an example where Arduino will subscribe to a topic and will change 
the LED state connected to the pin number 13. The name of the example that we are 
going to use is blink; you can find this in the Arduino IDE by navigating to File | 
Examples | ros_lib | Blink.

The following code snippet is present in the c4_example5_2.ino file:

#include <ros.h>
#include <std_msgs/Empty.h>

ros::NodeHandle nh;
void messageCb( const std_msgs::Empty& toggle_msg){
digitalWrite(13, HIGH-digitalRead(13));   // blink the led
}

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb );

void setup()
{
  pinMode(13, OUTPUT);
  nh.initNode();
  nh.subscribe(sub);
}

void loop()
{
  nh.spinOnce();
  delay(1);
}

Remember to launch the node to communicate with the Arduino board:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Now, if you want to change the LED status, you can use the rostopic pub 
command to publish the new state:

$ rostopic pub /toggle_led std_msgs/Empty "{}" –once

publishing and latching message for 3.0 seconds
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You will notice that the LED has changed its status; if the LED was on, it will now 
turn off. To change the status again, you only have to publish the topic once more:

$ rostopic pub /toggle_led std_msgs/Empty "{}" –once

publishing and latching message for 3.0 seconds

Now, you can use all the devices available to Arduino on ROS. This is very useful 
because you have access to cheap sensors and actuators to implement your robots.

When we were writing the chapter, we noticed that Arduino does 
not work with rosserial, for instance, in the case of Arduino 
Leonardo. So, be careful with the selection of the device to use with 
this package. 
We didn't face any problems while working with Arduino UNO R3, 
Mega, Arduino Duemilanove, or Arduino Nano.

Using an ultrasound range sensor with 
Arduino
An I/O board such as Arduino can be connected to multiple sensors and actuators. 
In this section, we will program Arduino to control HC-SR04, an ultrasonic 
range sensor to be used in ROS. HC-SR04 sensors are low-cost and are commonly 
employed to measure distances between robots and obstacles.

This device is a Printed Circuit Board (PCB) with two piezoelectric transducers that 
are similar to microphones and piezoelectric headphones, but for the fact that they 
work in the ultrasonic range. One of the transducers is used as an emitter and the 
other as a receiver. The principle for measuring distance with this sensor is based on 
the echolocation system of animals such as bats. The sensor will emit ultrasound. If 
the ultrasound bounces against an obstacle, it will return to the sensor. Knowing the 
speed of sound in the air, we will measure the time between the emission and the 
reception of the sound to calculate the distance to the obstacle.
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The HC-SR04 sensor has four male pins, VCC will be connected to 5V, GND will be 
connected to GND, the trigger will be connected to pin number 7, and ECHO will be 
connected to pin number 3. The trigger is used to activate the emission of ultrasound; 
when we write in pin number 7, a logical, high-level sensor will emit ultrasound 
waves. The echo pin will be at a high level if the sensor receives an ultrasound, as 
shown in the following diagram:

We will open c4_examples5_2.ino with the Arduino IDE and upload it to the 
board. The code is given here:

#include <ros.h>
#include <std_msgs/Int16.h>

ros::NodeHandle  nh;
std_msgs::Int16 range;
ros::Publisher range_pub("range", &range);
const int trigpin = 7;
const int echopin = 3;
long duration = 0;

void setup()
{
  nh.initNode();
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  nh.advertise(range_pub);
}

void loop()
{
  range.data = ping();
  range_pub.publish(&range);
  nh.spinOnce();
  delay(100);
}

long ping()
{
// Send out PING))) signal pulse
  pinMode(trigpin, OUTPUT);
  pinMode(echopin,INPUT);
  digitalWrite(trigpin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigpin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigpin, LOW);
  //Get duration it takes to receive echo
  duration = pulseIn(echopin, HIGH);
  //Convert duration into distance
  return duration /29/2;
}

We will include the ros_lib and std_msgs/Int16 libraries, declare the ros handler 
and std_msgs::Int16 named "range". In this topic, Arduino will send the distance 
to the closest obstacle:

std_msgs::Int16 range;
ros::Publisher range_pub("range", &range);

In the setup() function, ROS is initialized and the message to be published is 
advertised as follows:

  nh.initNode();

  nh.advertise(range_pub);
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In Arduino's loop() function, the ping() function is invoked to manage the 
ultrasonic sensor, the distance is calculated, and then the distance is published in 
centimeters. A delay of 100 ms is introduced to generate data at almost 10 hz:

range.data = ping();

range_pub.publish(&range);

nh.spinOnce();

delay(100);

The ping() function declares pin 7 as a digital output and pin 3 as a digital input. 
We will put pin number 7 to a low level to ensure that no sound is emitted and keep 
the channel clean. Then, it writes a digital high level during 10 microseconds.

After that, the pulseIn() Arduino function measures the time until the echo pin is 
at the high level, indicating that the ultrasound is received. This function returns the 
time in microseconds. Multiplying the duration of the pulse by the speed of sound, 
the distance is calculated. It's important to divide the distance by two because the 
sound pulse will go over two times the distance. First, it goes to the obstacle, and 
then it comes back to the sensor.

To run this node, we will execute roscore in a terminal. In a new one, we will 
execute the rosserial node to communicate with Arduino:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Now, we should be prepared to use an ultrasound sensor in ROS.

As a curiosity, in the underwater robotics field, sonar technology is really 
fundamental; it plays the same role as a laser range sensor in ground robotics.  
As sound has better propagation features in water than it does in light, the sonar 
sensor is used to detect obstacles, to map, and to determine location.

How distance sensors send messages
If you have uploaded the code correctly to Arduino and serial_node.py, it's 
working well and we can see the topic name /range in the topic list:

$ rostopic list

You can learn about the type of the topic as usual by using the rostopic type:

$ rostopic type /range

std_msgs/Int16
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If you want to check the data contained in the messages, we should type  
the following:

$ rostopic echo /range

You can play with this sensor, pointing it at objects at different distances.

Creating an example to use the ultrasound 
range
In this example, the ultrasound sensor will command the turtle of the turtlesim 
node. The example is programmed to behave depending on the distance to objects. 
This way, it is possible to avoid obstacles, publishing geometry_msgs/Twist in 
turtlesim1/cmd_vel. When the ultrasound finds an object too close, that is, less 
than 20 cm, the turtle will go backward. If an obstacle is found at a middle distance, 
that is, between 20 and 40 cm, the turtle will turn. If the obstacles are not found  
or if they are found at more than 40 cm, the turtle will go forward. You can open  
c4_example5_2.cpp to see the code:

#include<ros/ros.h>
#include<geometry_msgs/Twist.h>
#include<std_msgs/Int16.h>
#include<iostream>
using namespace std;
ros::Publisher pub;
ros::Subscriber sub;

void rangeCallBack(const std_msgs::Int16 &range)
{
  geometry_msgs::Twist vel;
  if (range.data > 40)
  {
    vel.angular.z = 0;
    vel.linear.x = 1;
  }
  else if (range.data >20)
  {
    vel.angular.z = 1;
    vel.linear.x = 0;
  }
  else
  {
    vel.angular.z = 0;
    vel.linear.x = -1;
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  }
  pub.publish(vel);
}

int main(int argc, char** argv)
{
  
  ros::init(argc, argv, "turtle_ultra_sound");
  ros::NodeHandle n;
  pub = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",1);
  sub = n.subscribe("range", 10, &rangeCallBack);
  ros::spin();
}

In the main() function, ROS is initialized and a publisher and a subscriber are 
declared. The publisher is geometry_msgs::Twist /turtle1/cmd_vel that controls 
the turtlesim node. The subscriber data comes from the ultrasound sensor, and 
each time a /range message is published, the /rangeCallBack function will run:

ros::init(argc, argv, "turtle_ultra_sound");
ros::NodeHandle n;
pub = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",1);
sub = n.subscribe("range", 10, &rangeCallBack);
ros::spin();

In /rangeCallBack, std_msg::Int16 is expected, but geometry_msgs::Twist 
is declared. Depending on the range data, different values are assigned to /vel to 
model the three behaviors to avoid obstacles:

void rangeCallBack(const std_msgs::Int16 &range)
{
  geometry_msgs::Twist vel;
  if (range.data > 40)
  {
    vel.angular.z = 0;
    vel.linear.x = 1
  }
  …
  pub.publish(vel);
}
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To use this example, you should run rosserial python, the turtlesim node, and 
then c4_example5_2. Write the following commands in different terminals:

$ roscore

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

$ rosrun chapter4_tutorials c4_example5_2

$ rosrun turtlesim turtlesim_node

Using the IMU – Xsens MTi
An inertial measurement unit, or IMU, is an electronic device that measures 
and reports on a craft's velocity, orientation, and gravitational forces, using a 
combination of accelerometers and gyroscopes, sometimes also magnetometers. 
IMUs are typically used to manoeuvre aircraft, including unmanned aerial vehicles 
(UAVs), among many others, and spacecraft, including satellites and landers.

                                                                                                                   – Wikipedia

In the following image, you can see the Xsens MTi, which is the sensor used in  
this section:

In this section, you will learn how to use it in ROS and how to use the topics 
published by the sensor. There is a small example with code to take data from  
the sensor and publish a new topic.
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You can use a lot of IMU devices with ROS. In this section, we will use the 
Xsens IMU, which is necessary to install the right drivers. But if you want to use 
MicroStrain 3DM-GX2 or Wiimote with Wii Motion Plus, you need to download  
the following drivers:

• The drivers for the MicroStrain 3DM-GX2 IMU are available at  
http://www.ros.org/wiki/microstrain_3dmgx2_imu.

• The drivers for Wiimote with Wii Motion Plus are available at  
http://www.ros.org/wiki/wiimote.

To use our device, we are going to use xsens_driver. You can install it using the 
following command:

$ sudo apt-get install ros-hydro-xsens-driver

Using the following commands, we also need to install two packages because the 
driver depends on them:

$ rosstack profile

$ rospack profile

Now, we are going to start the IMU and see how it works. In a shell, launch the 
following command:

$ roslaunch xsens_driver xsens_driver.launch 

This driver detects the USB port and the baud rate directly without any changes.

How does Xsens send data in ROS?
If everything is fine, you can see the topic list by using the rostopic command:

$ rostopic list

The node will publish three topics. We will work with /imu/data in this section. 
First of all, we are going to see the type and the data sent by this topic. To see the 
type and the fields, use the following command lines:

$ rostopic type /imu/data

$ rostopic type /imu/data | rosmsg show

The /imu/data topic is sensor_msg/Imu. The fields are used to indicate the 
orientation, acceleration, and velocity. In our example, we will use the orientation 
field. Check a message to see a real example of the data sent. You can do it with the 
following command:

$ rostopic echo /imu/data

http://www.ros.org/wiki/microstrain_3dmgx2_imu
http://www.ros.org/wiki/wiimote
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You will see something similar to the following output:

---

header:

seq: 288

stamp:

  secs: 1330631562

  nsecs: 789304161

frame_id: xsens_mti_imu

orientation:

x: 0.00401890464127

y: -0.00402884092182

z: 0.679586052895

w: 0.73357373476

---

If you observe the orientation field, you will see four variables instead of three, 
as you would probably expect. This is because in ROS, the spatial orientation is 
represented using quaternions. You can find a lot of literature on the Internet  
about this concise and nonambiguous orientation representation.

We can observe the imu orientation in the rviz run and add the imu display type:

$ rosrun rviz rviz

Creating an example to use Xsens
Now that we know the type of data sent and what data we are going to use, let's start 
with the example.

In this example, we are going to use the IMU to move turtlesim. To do this, we 
need to take the data from the quaternion, convert it to Euler angles (roll, pitch, 
and yaw). We also need to take the rotation values around the x and y axes (roll and 
pitch) to move the turtle with a linear and angular movement.

The following code snippet is similar to the joystick code. Create a new file,  
c4_example6.cpp, in your chapter4_tutorials/src/ directory and type  
in the following code:

#include<ros/ros.h>
#include<geometry_msgs/Twist.h>
#include<sensor_msgs/Imu.h>
#include<iostream>
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#include<tf/LinearMath/Matrix3x3.h>
#include<tf/LinearMath/Quaternion.h>

using namespace std;

class TeleopImu{
  public:
  TeleopImu();
  private:
  void callBack(const sensor_msgs::Imu::ConstPtr& imu);
  ros::NodeHandle n;
  ros::Publisher pub;
  ros::Subscriber sub;
};

TeleopImu::TeleopImu()
{
  pub = n.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",1);
  sub = n.subscribe<sensor_msgs::Imu>("imu/data", 10, 
&TeleopImu::callBack, this);
}

void TeleopImu::callBack(const sensor_msgs::Imu::ConstPtr& imu)
{
  geometry_msgs::Twist vel;
  tf::Quaternion bq(imu->orientation.x,imu->orientation.y,imu-
>orientation.z,imu->orientation.w);
  double roll,pitch,yaw;
  tf::Matrix3x3(bq).getRPY(roll,pitch,yaw);
  vel.angular.z = roll;
  vel.linear.x = pitch;
  pub.publish(vel);
}

int main(int argc, char** argv)
{
  ros::init(argc, argv, "teleopImu");
  TeleopImu teleop_turtle;
  ros::spin();
}
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The node will subscribe to the imu/data topic and will publish a new topic with the 
movement commands for turtlesim:

TeleopImu::TeleopImu()
{        
pub = n.advertise<geometry_msgs::Twist>("turtle1/cmd_vel",1);
sub = n.subscribe<sensor_msgs::Imu>("imu/data", 10, 
&TeleopImu::callBack, this);
}

The important part of the code is the callBack function. Inside this callback method, 
the IMU topic is received and processed to create a new geometry_msgs/Twist 
topic. As you might remember, this type of message will control the velocity of 
turtlesim. The following code encapsulates this discussion:

void TeleopImu::callBack(const sensor_msgs::Imu::ConstPtr& imu)
{    
...
tf::Matrix3x3(bq).getRPY(roll,pitch,yaw);
  vel.angular.z = roll;
    vel.linear.x = pitch;
pub.publish(vel);
}

The conversion of quaternions to Euler angles is done by means of the Matrix3x3 
class. Then, we use the accessor method, getRPY, provided by this class. Using this, we 
will get the roll, pitch, and yaw actions from the matrix about the fixed x, y, and z axes.

After that, we only need to assign the value of pitch and roll to the linear and angular 
velocity variables, respectively.

Now, if you run everything at the same time, you will see the turtle moving 
according to the IMU movements as if it were a joystick.

Using a low-cost IMU – 10 degrees of 
freedom
In this section, we will learn to use a low-cost sensor with 10 degrees of freedom 
(DoF). This sensor, which is similar to Xsens MTi, has an accelerometer (x3), a 
magnetometer (x3), a barometer (x1), and a gyroscope (x3). It is controlled with a 
simple I2C interface, and, in this example, it will be connected to Arduino Nano 
(http://arduino.cc/en/Main/ArduinoBoardNano).

http://arduino.cc/en/Main/ArduinoBoardNano
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This sensor is also used for similar uses. Xsens costs approximately $2,000, which 
is very expensive for normal users. The sensor explained in this section has an 
approximate cost of $20. The low price of this sensor permits its usage in a lot  
of projects. You can see this sensor in the following image. It is thin and has a  
few components:

This board has the following sensors:

• ADXL345: This is a three-axis accelerometer with a high resolution (13-bit) 
measurement of up to ±16 g. This sensor is widely used in mobile device 
applications. It measures the static acceleration of gravity in tilt-sensing 
applications as well as the dynamic acceleration resulting from motion  
or shock.

• HMC5883L: This sensor is designed for low-field magnetic sensing with a 
digital interface for devices such as low-cost compasses and magnetometers.

• BMP085: This is a high-precision barometric pressure sensor used in 
advanced mobile applications. It offers superior performance with an 
absolute accuracy up to to 0.03 hPa and has very low power consumption,  
3 µA.

• L3G4200D: This is a three-axis gyroscope with a very high resolution  
(16-bit) measurement of up to 2,000 degrees per second (dps).This  
gyroscope measures how much the device is rotating around all three axes.
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As we have said earlier, the board is controlled using the I2C protocol, and we will 
use Arduino to control it. In the following image, you can see the way to connect 
both the boards:

The only thing necessary to make it work is to connect the four wires. Connect GND 
and VCC from the sensor to GND and 5V in Arduino.

The Serial Data Line (SDL) must be connected to the analog pin 4, and the Serial 
Clock (SCK) must be connected to the analog pin 5. If you connect these pins 
wrongly, Arduino will not be able to communicate with the sensor.

Downloading the library for the accelerometer
Before using the sensor, it is necessary to download the right library for Arduino.

On the Internet, you can find a lot of libraries with different functionalities, but we 
will use the library that can be downloaded from https://github.com/jenschr/
Arduino-libraries. Once you have downloaded the library, decompress it inside 
your sketchbook folder to load it. 

You can find the libraries for the other sensors on the Internet. But to make your life 
easy, you can find all the necessary libraries to use the 10 DOF sensor in chapter4_
tutorials/libraries. Inside each library, you can also find examples of how to use 
the sensor.

Programming Arduino Nano and the 10 DOF 
sensor
In this section, we are going to create a program in Arduino to take data from the 
accelerometers and publish it in ROS.

https://github.com/jenschr/Arduino-libraries
https://github.com/jenschr/Arduino-libraries
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Open the Arduino IDE, create a new file with the name c4_example7.ino, and type 
in the following code:

#include <ros.h>
#include <std_msgs/Float32.h>

#include <Wire.h>
#include <ADXL345.h>

ADXL345 Accel;

ros::NodeHandle  nh;
std_msgs::Float32 velLinear_x;
std_msgs::Float32 velAngular_z;

ros::Publisher velLinear_x_pub("velLinear_x", &velLinear_x);
ros::Publisher velAngular_z_pub("velAngular_z", &velAngular_z);

void setup(){

  nh.initNode();
  nh.advertise(velLinear_x_pub);
  nh.advertise(velAngular_z_pub);

  Wire.begin();
  delay(100);
    Accel.set_bw(ADXL345_BW_12);

}

void loop(){

  double acc_data[3];
    Accel.get_Gxyz(acc_data);

  velLinear_x.data = acc_data[0];
  velAngular_z.data = acc_data[1];

  velLinear_x_pub.publish(&velLinear_x);  
  velAngular_z_pub.publish(&velAngular_z);

  nh.spinOnce();
  delay(10);
}
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Let's break up the code and see the steps to take the data and publish it.

We are going to use two Float32 variables to publish the data and it is necessary to 
include the following line in the program:

#include <std_msgs/Float32.h>

To be able to communicate with the sensor using the I2C Bus, we need to use the 
Wire.h library. This library is standard in Arduino:

#include <Wire.h>

To use the library downloaded before, we add the following include header:

#include <ADXL345.h>

We will use the Accel object to interact with the sensor:

ADXL345 Accel;

The data read from the sensor will be stored in the following variables: velLinear_x, 
which is used for linear velocity and the data is read from the accelerometer for the x 
axis, while velAngular_z is used for angular velocity and the data is read from the 
accelerometer for the z axis:

std_msgs::Float32 velLinear_x;
std_msgs::Float32 velAngular_z;

This program will publish two different topics—one for linear velocity and the other 
for angular velocity:

ros::Publisher velLinear_x_pub("velLinear_x", &velLinear_x);
ros::Publisher velAngular_z_pub("velAngular_z", &velAngular_z);

This is where the topic is created. Once you have executed these lines, you will see 
two topics in ROS with the names velAngular_z and velLinear_x:

nh.advertise(velLinear_x_pub);
nh.advertise(velAngular_z_pub);

The sensor and its bandwidth are initialized in this line as follows:

Accel.set_bw(ADXL345_BW_12);

The data returned by get_Gxyz is stored in a three-component vector:

double acc_data[3];
Accel.get_Gxyz(acc_data);
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Finally, the data is published:

velLinear_x_pub.publish(&velLinear_x);  
velAngular_z_pub.publish(&velAngular_z);

Creating an ROS node to use data from the 10 
DOF sensor
In this section, we are going to create a new program to use data from the sensor  
and generate moving commands to move the turtle in turtlesim. The goal is to  
use the 10 DOF sensor board as the input for turtlesim and move the turtle by  
using the accelerometers.

So, create a new file inside the chapter4_tutorials/src directory with the name 
c4_example8.cpp and type in the following code:

#include<ros/ros.h>
#include<geometry_msgs/Twist.h>
#include<std_msgs/Float32.h>
class TeleopImu{
  public:
  TeleopImu();
  private:
    void velLinearCallBack(const std_msgs::Float32::ConstPtr& vx);
    void velAngularCallBack(const std_msgs::Float32::ConstPtr& wz);
    ros::NodeHandle n;
    ros::Publisher pub;
    ros::Subscriber velAngular_z_sub;
    ros::Subscriber velLinear_x_sub;
    geometry_msgs::Twist vel;
};

TeleopImu::TeleopImu()
{    
  pub = n.advertise<geometry_msgs::Twist>("turtle1/cmd_vel",1);
  velLinear_x_sub = n.subscribe<std_msgs::Float32>("/velLinear_x", 1, 
&TeleopImu::velLinearCallBack, this);
  velAngular_z_sub = n.subscribe<std_msgs::Float32>("/velAngular_z", 
1, &TeleopImu::velAngularCallBack, this);
}

void TeleopImu::velAngularCallBack(const std_msgs::Float32::ConstPtr& 
wz){
    vel.linear.x = -1 * wz->data;
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    pub.publish(vel);
}

void TeleopImu::velLinearCallBack(const std_msgs::Float32::ConstPtr& 
vx){
  vel.angular.z = vx->data;
  pub.publish(vel);
}

int main(int argc, char** argv)
{
  ros::init(argc, argv, "example8");
  TeleopImu teleop_turtle;
  ros::spin();
}

This code is similar to c4_example6.cpp that was used with the Xsens IMU; the 
only difference is the topic to subscribe, along with the type of data. In this case, we 
will subscribe to two topics created by Arduino Nano. These topics will be used to 
control turtlesim.

It is necessary to subscribe to the /velLinear_x and velAngular_z topics and we 
will do this as shown in the following lines:

velLinear_x_sub = n.subscribe<std_msgs::Float32>("/velLinear_x", 1, 
&TeleopImu::velLinearCallBack, this);
velAngular_z_sub = n.subscribe<std_msgs::Float32>("/velAngular_z", 1, 
&TeleopImu::velAngularCallBack, this);

Every time the node receives a message, it takes the data from the message, creates a 
new geometry_msgs/Twist message, and publishes it:

void TeleopImu::velAngularCallBack(const std_msgs::Float32::ConstPtr& 
wz){
  vel.linear.x = -1 * wz->data;
  pub.publish(vel);
}

void TeleopImu::velLinearCallBack(const std_msgs::Float32::ConstPtr& 
vx){
vel.angular .z=  vx->data;
  pub.publish(vel);
}
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To run the example, remember to compile the code and follow the steps outlined.

Start a new session using the roscore command in a shell. Connect Arduino to the 
computer and launch the following command:

$ rosrun rosserial_python serial_node.py

Now, start turtlesim by typing the following command:

$ rosrun turtlesim turtlesim_node

And finally, type the following command to start the node:

$ rosrun chapter4_tutorials c4_example8

If everything is OK, you should see the turtlesim interface with the turtle moving. 
If you move the sensor, the turtle will move in a straight line or change its direction.

Using a GPS system
The Global Positioning System (GPS) is a space-based satellite system that provides 
information on the position and time for any weather and any place on the face of 
the earth and its vicinity. You must have an unobstructed direct path with four GPS 
satellites to obtain valid data.

The data received from the GPS conforms to the standards of communication set 
up by National Maritime Electronics Association (NMEA) and follows a protocol 
with different types of sentences. In them, we can find all the information about the 
position of the receiver. To read more about all the types of NMEA messages, you 
can visit http://www.gpsinformation.org/dale/nmea.htm.

One of the most interesting pieces of information about a GPS is contained in GGA 
sentences. They provide the current Fix data with the 3D location of the GPS. An 
example of this sentence and an explanation of each field are given here:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
Where:
     GGA          Global Positioning System Fix Data
     123519       Fix taken at 12:35:19 UTC
     4807.038,N   Latitude 48 deg 07.038' N
     01131.000,E  Longitude 11 deg 31.000' E
     1            Fix quality: 0 = invalid
                               1 = GPS fix (SPS)
                               2 = DGPS fix
                               3 = PPS fix
                               4 = Real Time Kinematic

http://www.gpsinformation.org/dale/nmea.htm
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                               5 = Float RTK
                               6 = estimated (dead reckoning) (2.3 
feature)
                               7 = Manual input mode
                               8 = Simulation mode
     08           Number of satellites being tracked
     0.9          Horizontal dilution of position
     545.4,M      Altitude, Meters, above mean sea level
     46.9,M       Height of geoid (mean sea level) above WGS84
                      ellipsoid
     (empty field) time in seconds since last DGPS update
     (empty field) DGPS station ID number
     *47          the checksum data, always begins with *

Depending on the GPS receiver, we can find different performances and precisions. 
We have a simple GPS at a low cost that is commonly used in different applications, 
such as a UAV. They have an error that can be in the range of a few meters. Also, 
we can find expensive GPS devices that can be configured as differential GPS or can 
work in the Real Time Kinematics (RTK) mode, where a second GPS at a known 
location sends corrections to the first GPS. This GPS can achieve great results in 
terms of precision, with location errors below 10 cm.

In general, GPS uses serial protocols to transmit the data received to a computer or 
a microcontroller, such as Arduino. We can find devices that use TTL or RS232, and 
they are easy to connect to the computer with a USB adapter. In this section, we will 
use a low-cost GPS (EM-406a) and a really accurate system, such as GR-3 Topcon in 
the RTK mode. We will see that, with the same drivers, we can obtain the latitude, 
longitude, and altitude from both devices:
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In order to control a GPS sensor with ROS, we will install the NMEA GPS driver 
package by using the following command line (don't forget to run the rosstack  
and rospack profiles after that):

$ sudo apt-get install ros-hydro-nmea-gps-driver 

$ rosstack profile & rospack profile

To execute the GPS driver, we will run the nmea_gpst_driver.py file. To do that, 
we have to indicate two arguments: the port that is connected to the GPS and the 
baud rate:

$ rosrun nmea_gps_driver nmea_gps_driver.py _port:=/dev/ttyUSB0 _
baud:=4800

In the case of the EM-406a GPS, the default baud rate is 4800 hz as indicated in  
the preceding command line. For Topcon GR-3, the baud rate is higher; it's about 
115200 hz. If we want to use it with ROS, we will modify the _baud argument, as 
shown in the following command:

$ rosrun nmea_gps_driver nmea_gps_driver.py _port:=/dev/ttyUSB0 _
baud:=115200

How GPS sends messages
If everything is OK, we will see a topic called /fix in the topic list by typing this:

$ rostopic list

To know which kind of data we will use, we typed the rostopic command. The 
NMEA GPS driver uses the sensor_msgs/NavSatFix message to send the GPS 
status information:

$ rostopic type /fix 

sensor_msgs/NavSatFix 

The /fix topic is sensor_msg/NavSatFix. The fields are used to indicate the 
latitude, longitude, altitude, status, quality of the service, and the covariance matrix. 
In our example, we will use the latitude and the longitude to project them to a 2D 
Cartesian coordinate system called Universal Transverse Mercator (UTM).

Check a message to see a real example of the data sent. You can do it with the 
following command:

$ rostopic echo /fix 
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You will see something that looks similar to the following output:

---

header: 

  seq: 3 

  stamp: 

    secs: 1404993925 

    nsecs: 255094051 

  frame_id: /gps 

status: 

  status: 0 

  service: 1 

latitude: 28.0800916667 

longitude: -15.451595 

altitude: 315.3 

position_covariance: [3.24, 0.0, 0.0, 0.0, 3.24, 0.0, 0.0, 0.0, 12.96] 

position_covariance_type: 1 

---

Creating an example project to use GPS
In this example, we are going to project the latitude and the longitude of a GPS to 
a 2D Cartesian space. For this, we will use a function written by Chuck Gantz that 
converts latitudes and longitudes into UTM coordinates. The node will subscribe 
to the /fix topic where GPS data is sent. You can find the code in chapter4_
tutorials in the c4_example8.cpp file:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
#include <stdio.h>
#include <iostream>
#include <sensor_msgs/NavSatFix.h>
geometry_msgs::Point global_position;
ros::Publisher position_pub;
void gpsCallBack(const sensor_msgs::NavSatFixConstPtr& gps)
{
  double northing, easting;
  char zone;
  LLtoUTM(gps->latitude, gps->longitude,  northing, easting , &zone);
  global_position.x = easting;
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  global_position.y = northing;
  global_position.z = gps->altitude;
}
int main(int argc, char** argv){
  ros::init(argc,argv, "Geoposition");
  ros::NodeHandle n;
  ros::Subscriber gps_sub = n.subscribe("fix",10, gpsCallBack);
  position_pub = n.advertise<geometry_msgs::Point> ("global_position", 
1);
  ros::Rate loop_rate(10);
  while(n.ok())
  {
    ros::spinOnce();
    loop_rate.sleep();
  }
}

First, you should declare the NavSatFix message by using #include <sensor_
msgs/NavSatFix.h>.

This way, we can subscribe to the /fix topic in the ros::Subscriber gps_sub = 
n.subscribe("fix",10, gpsCallBack) main function.

All the action happens in the gpsCallBack() function. We will use the LltoUTM() 
function to make the conversion from latitudes and longitudes to the UTM space. We 
will publish a geometry_msg/Point topic called /global_position with the UTM 
northing and easting coordinates and the altitude from the GPS.

To try this code, after running the GPS driver, you can use the following command:

$ rosrun chapter4_tutorials c4_example8
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Summary
The use of sensors and actuators in robotics is very important since this is the 
only way to interact with the real world. In this chapter, you learned how to use, 
configure, and investigate further how certain common sensors and actuators work, 
which are used by a number of people in the world of robotics. We are sure that if 
you wish to use another type of sensor, you will find information on the Internet and 
in the ROS documentation about how to use it without problems.

In our opinion, Arduino is a very interesting device because you can add more 
devices and cheap sensors to your computer with it and use them within the ROS 
framework easily and transparently. Arduino has a large community and you can 
find information on many sensors, which cover the spectrum of applications you  
can imagine.

Finally, we must mention that the range laser will be a very useful sensor in the 
upcoming chapters. The reason is that it is a mandatory device to implement the 
navigation stack, which relies on the range readings it provides at a high frequency 
and with good precision. In the next chapter, you will see how to model your robot, 
visualize it in rviz, and use it by loading it on the Gazebo simulator, which is also 
integrated into ROS.
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Computer Vision
ROS provides basic support for Computer Vision. First, drivers are available for 
different cameras and protocols, especially for FireWire (IEEE1394a or IEEE1394b) 
cameras. An image pipeline helps with the camera calibration process, distortion 
rectification, color decoding, and other low-level operations. For more complex tasks, 
you can use OpenCV, and the cv_bridge and image_transport libraries to interface 
with it and subscribe and publish images on topics. Finally, there are several 
packages that implement algorithms for object recognition, augmented reality, visual 
odometry, and so on.

Although FireWire cameras are best integrated in ROS, it is not difficult to support 
other protocols, such as USB and GigaEthernet. Since USB cameras are usually less 
expensive and easier to find, in this chapter we discuss several options, and we will 
also provide a driver that integrates seamlessly in the image pipeline, using the 
OpenCV video capture API.

The camera calibration and the result integration in the image pipeline is explained 
in detail. ROS provides GUIs to help with the camera calibration process, using a 
calibration pattern. Furthermore, we cover stereo cameras and explain how we can 
manage rigs of two or more cameras, with more complex setups than a binocular 
camera. Stereo vision will also let us obtain depth information from the world, up 
to an extent and depending on certain conditions. Hence, we will see how to inspect 
that information as point clouds and how to improve its quality to the best possible 
extent for our camera's quality and its setup.
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Here, we explain the ROS image pipeline, which simplifies the process of converting 
the RAW images acquired by the camera into monochrome (grayscale) and color 
images; this sometimes means to "debayer" the RAW images if they are codified as a 
Bayer pattern. If the camera has been calibrated, the calibration information is used 
to rectify the images, that is, to correct the distortion. For stereo images, since we 
have the baseline between the left and right cameras, we can compute the disparity 
image that allows obtaining depth information and a 3D point cloud, once it has 
been fine-tuned; here, we will give tuning advice, which may be quite difficult for 
low-quality cameras and sometimes require good calibration results beforehand.

Finally, using OpenCV inside ROS, even though it's only version 2.x (version 3.x 
is not yet supported), we have the ability to implement a wide range of Computer 
Vision and Machine Learning algorithms or even to run some algorithms or examples 
already present in this library. Here, we will not see the OpenCV API, which is 
outside the scope of this book. On the contrary, we advise the reader to check the 
online documentation (http://docs.opencv.org) or any book about OpenCV and 
Computer Vision. Here, we simply show you how you can use OpenCV in your nodes, 
with an example of feature detection, descriptor extraction, and matching to compute 
the homography between two images. Additionally, this chapter will finish with a 
tutorial to set up and run a visual odometry implementation integrated into ROS: the 
viso2_ros wrapper of the libviso2 visual odometry library, using a stereo pair built 
with two cheap webcams attached to a supporting bar. Other visual odometry libraries 
will be mentioned, for example, fovis, along with some advice to start working with 
them and how to improve the results with RGBD sensors, such as Kinect, or even 
sensor fusion or additional information in the case of monocular vision.

Connecting and running the camera
The first few steps that we must perform are connecting the camera to the computer, 
running the driver, and seeing the images it acquires in ROS. Before we get into 
ROS, it is always a good idea to use external tools to check that the camera is actually 
recognized by our system, which, in our case, is an Ubuntu distribution. We will 
start with FireWire cameras since they are better supported in ROS, and later, we 
will see USB cameras.

FireWire IEEE1394 cameras
Connect your camera to the computer, which should have a FireWire IEEE1394a or 
IEEE1394b slot. Then, in Ubuntu, you only need coriander to check that the camera 
is recognized and working. If it is not already installed, just install coriander. Then, 
run it (in old Ubuntu distributions, you may have to run it as sudo):

$ coriander

http://docs.opencv.org
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Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

It will automatically detect all your FireWire cameras, as shown in the next screenshot:

The great thing about coriander is that it also allows us to view the image  
and configure the camera. Indeed, our advice is to use the coriander package's 
camera configuration interface and then take those values into ROS, as we will see 
later. The advantage of this approach is that coriander gives us the dimensional 
values of some parameters, and in ROS, there are certain parameters that sometimes 
fail to be set, that is, gamma, and they may need to be set beforehand in coriander 
as a workaround.

Now that we know that the camera is working, we can close coriander and run the 
ROS FireWire camera driver (with roscore running):

$ rosrun camera1394 camera1394_node

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro


Computer Vision

[ 184 ]

Simply run roscore and the preceding command. It will start the first camera on the 
bus, but note that you can select the camera by its GUID, which you can see in the 
coriander package's GUI.

The FireWire camera's parameters supported are listed and assigned sensible values 
in the camera1394/config/firewire_camera/format7_mode0.yaml file, as shown 
in the following code:

guid: 00b09d0100ab1324       # (defaults to first camera on bus)

iso_speed: 800  # IEEE1394b

video_mode: format7_mode0  # 1384x1036 @ 30fps bayer pattern

# Note that frame_rate is overwritten by frame_rate_feature; some useful 
values:

# 21fps (480)

frame_rate: 21 # max fps (Hz)

auto_frame_rate_feature: 3 # Manual (3)

frame_rate_feature: 480

format7_color_coding: raw8  # for bayer

bayer_pattern: rggb

bayer_method: HQ

auto_brightness: 3 # Manual (3)

brightness: 0

auto_exposure: 3 # Manual (3)

exposure: 350

auto_gain: 3 # Manual (3)

gain: 700

# We cannot set gamma manually in ROS, so we switch it off

auto_gamma: 0 # Off (0)

#gamma: 1024    # gamma 1

auto_saturation: 3 # Manual (3)

saturation: 1000

auto_sharpness: 3 # Manual (3)

sharpness: 1000

auto_shutter: 3 # Manual (3)

#shutter: 1000 # = 10ms

shutter: 1512 # = 20ms (1/50Hz), max. in 30fps

auto_white_balance: 3 # Manual (3)
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white_balance_BU: 820

white_balance_RV: 520

frame_id: firewire_camera

camera_info_url: package://chapter5_tutorials/calibration/firewire_
camera/calibration_firewire_camera.yaml

The values must be tuned by watching the images acquired, for example, in 
coriander, and setting the values that give better images. The GUID parameter is 
used to select the camera, which is a unique value. You should usually set the shutter 
speed to a frequency equal to, or a multiple of, the electric light you have in the room 
to avoid flickering. If outside, with sun light, you only have to worry about setting 
a value that gives you an appropriate lightness. You can also put a high gain, but it 
will introduce noise. However, in general, it is better to have a salt-and-pepper noise 
such as that of a low shutter speed (to receive most light), because with a low shutter 
speed, we will have motion blur, and most algorithms perform badly with it. As you 
see, the configuration depends on the lighting conditions of the environment, and 
you may have to adapt the configuration to them. That is quite easy using coriander 
or the rqt_reconfigure interface (see the screenshots following the upcoming code, 
for instance):

$ rosrun rqt_reconfigure rqt_reconfigure /camera

$ coriander
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In order to better understand how to properly set the parameters of the camera to 
obtain high-quality images, which are also algorithm-friendly, you are encouraged 
to find out more about the basic concepts of photography, such as the exposure 
triangle, which is a combination of shutter speed, ISO, and aperture.

Here, the camera's namespace is /camera. Then, we can change all the parameters 
that are specified in the camera1394 dynamic reconfigure cfg file, as shown in 
Chapter 3, Visualization and Debug Tools. Here, for your convenience, you can  
create a launch file, which is also in launch/firewire_camera.launch:

<launch>
  <!-- Arguments -->
  <!-- Show video output (both RAW and rectified) -->
  <arg name="view" default="false"/>
  <!-- Camera params (config) -->
  <arg name="params" default="$(find chapter5_tutorials)/config/
firewire_camera/format7_mode0.yaml"/>

  <!-- Camera driver -->
  <node pkg="camera1394" type="camera1394_node" name="camera1394_
node">
    <rosparam file="$(arg params)"/>
  </node>

  <!-- Camera image processing (color + rectification) -->
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  <node ns="camera" pkg="image_proc" type="image_proc" name="image_
proc"/>

  <!-- Show video output -->
  <group if="$(arg view)">
    <!-- Image viewer (non-rectified image) -->
    <node pkg="image_view" type="image_view" name="non_rectified_
image">
      <remap from="image" to="camera/image_color"/>
    </node>

    <!-- Image viewer (rectified image) -->
    <node pkg="image_view" type="image_view" name="rectified_image">
      <remap from="image" to="camera/image_rect_color"/>
    </node>
  </group>
</launch>

The camera1394 driver is started with the parameters shown so far. Then, it  
also runs the image pipeline that we will see in the sequel in order to obtain the  
color-rectified images using the Debayer algorithm and the calibration parameters 
(once the camera has been calibrated). Finally, we have a conditional group to 
visualize the color and color-rectified images using image_view (or rqt_image_view).

In sum, in order to run a FireWire camera in ROS and view the images, once you 
have set its GUID in the parameters file, simply run the following command:

$ roslaunch chapter5_tutorials firewire_camera.launch view:=true

Then, you can also configure it dynamically with rqt_reconfigure.

USB cameras
Now, we are going to do the same thing with USB cameras. The only problem is 
that, surprisingly, they are not inherently supported by ROS. First of all, once you 
connect the camera to the computer, test it with a chat or video meeting program, 
for example, Skype or Cheese. The camera resource should appear in /dev/video?, 
where ? should be a number starting with 0 (that may be your internal webcam if 
you are using a laptop).

There are two main options that deserve to be mentioned as possible USB camera 
drivers for ROS. First, we have usb_cam. To install it, use the following command:

$ sudo apt-get install ros-hydro-usb-cam
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Then, run the following command:

$ roslaunch chapter5_tutorials usb_cam.launch view:=true

It simply does rosrun usb_cam usb_cam_node and also shows the camera images 
with image_view (or rqt_image_view), so you should see something similar to the 
following screenshot. It has the RAW image of the USB camera, which is already  
in color:

Similarly, another good option is gscam, which is installed as follows:

$ sudo apt-get install ros-hydro-gscam

Then, run the following command:

$ roslaunch chapter5_tuturials gscam.launch view:=true

As for usb_cam, this launch file performs a rosrun gscam gscam and also sets  
the camera's parameters. It also visualizes the camera's images with image_view  
(or rqt_image_view), as shown in the following screenshot:
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The parameters required by gscam are as follows (see config/gscam/logitech.yaml):

gscam_config: v4l2src device=/dev/video0 ! video/x-raw-
rgb,framerate=30/1 ! ffmpegcolorspace
frame_id: gscam
camera_info_url: package://chapter5_tutorials/calibration/gscam/
calibration_gscam.yaml

The gscam_config parameter invokes the v4l2src command with appropriate 
arguments to run the camera. The rest of the parameters will be useful once the 
camera is calibrated and used in the ROS image pipeline.

Writing your own USB camera driver with 
OpenCV
Although we have the preceding two options, this book comes with its own USB 
camera driver, implemented on top of OpenCV, using the cv::VideoCapture 
class. It runs the camera and also allows changing some of its parameters as long as 
they are supported by the camera's firmware. It also allows us to set the calibration 
information in the same way as with the FireWire cameras. With usb_cam, this is not 
possible because the CameraInfo message is not available. With respect to gscam, 
we will have more control; we can change the camera configuration and also see 
how to publish the camera's images and information in ROS. In order to implement 
a camera driver using OpenCV, we have two options about how we read images 
from the camera. First, we can poll with a target Frames Per Second (FPS); secondly, 
we can set a timer for the period of such FPS and, in the timer callback, we perform 
the actual reading. Depending on the FPS, one solution may be better than the 
other in terms of CPU consumption. Anyway, note that the polling is not blocking 
since the OpenCV reading function waits until an image is ready; meanwhile, other 
processes can take the CPU. In general, for fast FPS, it is better to use polling, so we 
do not incur the time penalty of using the timer and its callback. For low FPS, the 
timer should be similar to polling, and the code is in some way cleaner. We invite 
the reader to compare both implementations in the src/camera_polling.cpp and 
src/camera_timer.cpp files. For the sake of space, here we show the timer-based 
approach. Indeed, the final driver in src/camera.cpp uses a timer. Note that the 
final driver also includes the camera information management, which we will see in 
the sequel.
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In the package, we must set the dependency with OpenCV, the ROS image message 
libraries, and related. They are the following packages:

<depend package="sensor_msgs"/>
<depend package="opencv2"/>
<depend package="cv_bridge"/>
<depend package="image_transport"/>

Consequently, in src/camera_timer.cpp, we have the following headers:

#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <opencv2/highgui/highgui.hpp>

The image_transport API allows the publishing of images using several transport 
formats seamlessly, which can be compressed images, with different codecs, based 
on the plugins installed in the ROS system, for example, compressed and theora. 
The cv_bridge is used to convert from OpenCV images to ROS Image messages, for 
which we may need the image encoding of sensor_msgs, in the case of grayscale/
color conversion. Finally, we need the highgui API of OpenCV (opencv2) in order to 
use cv::VideoCapture.

Here, we will explain the main parts of the code in src/camera_timer.cpp, which 
has a class that implements the camera driver. Its attributes are as follows:

ros::NodeHandle nh;
image_transport::ImageTransport it;
image_transport::Publisher pub_image_raw;

cv::VideoCapture camera;
cv::Mat image;
cv_bridge::CvImagePtr frame;

ros::Timer timer;

int camera_index;
int fps;

As usual, we need the node handle. Then, we need ImageTransport that is used  
to send the images in all available formats in a seamless way. In the code, we only 
need to use Publisher (only one), but note that it must be a specialization of the 
image_transport library.
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Then, we have the OpenCV stuff to capture images/frames. In the case of the frame, 
we directly use the cv_brigde frame, which is CvImagePtr, because we can access 
the image field it has.

Finally, we have the timer, and the basic camera parameters for the driver to work. 
This is the most basic driver possible. These parameters are the camera index, that is, 
the number for the /dev/video? device, for example, 0 for /dev/video0; the camera 
index is passed to cv::VideoCapture. And the fps parameter sets the camera FPS (if 
possible) and the timer. Here, we use an int value, but it will be a double in the final 
version, src/camera.cpp.

The driver uses the class constructor for the setup or initialization of the node, the 
camera, and the timer:

nh.param<int>( "camera_index", camera_index, DEFAULT_CAMERA_INDEX );

if ( not camera.isOpened() )
{
    ROS_ERROR_STREAM( "Failed to open camera device!" );
    ros::shutdown();
}

nh.param<int>( "fps", fps, DEFAULT_FPS );
ros::Duration period = ros::Duration( 1. / fps );

pub_image_raw = it.advertise( "image_raw", 1 );

frame = boost::make_shared< cv_bridge::CvImage >();
frame->encoding = sensor_msgs::image_encodings::BGR8;

timer = nh.createTimer( period, &CameraDriver::capture, this );

First, we open the camera and abort it if it does not open. Note that we must do  
this in the attribute constructor, shown as follows, where camera_index is passed  
by the parameter:

camera( camera_index )

Then, we read the fps parameter and compute the timer period, which is used to 
create the timer and set the capture callback at the end. We advertise the image 
publisher using the image transport API, for image_raw (RAW images), and 
initialize the frame variable.
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The capture callback method reads and publishes images as follows:

camera >> frame->image;
if( not frame->image.empty() )
{
  frame->header.stamp = ros::Time::now();
  pub_image_raw.publish( frame->toImageMsg() );
}

The preceding method captures the images, checks whether a frame was actually 
captured, and in that case, sets the timestamp and publishes the image, which is 
converted to a ROS Image.

You can run this node with the following command:

$ rosrun chapter5_tutorials camera_timer _camera_index:=0 _fps:=15

This will open the /dev/video0 camera at 15 fps.

Then, you can use image_view or rqt_image_view to see the images. Similarly, for 
the polling implementation, you have the following command:

$ roslaunch chapter5_tutorials camera_polling.launch camera_index:=0 
fps:=15 view:=true

With the preceding command, you will see the /camera/image_raw topic images.

For the timer implementation, we also have the camera.launch file, which runs 
the final version and provides more options that we will see throughout this entire 
chapter. The main contributions of the final version are the support for dynamic 
reconfiguration parameters and that it provides the camera information that includes 
the camera calibration. We are going to show how to do this in brief, and we advise 
that you see the source code for a more detailed understanding.

As with the FireWire cameras, we can give support for the dynamic reconfiguration 
of the camera's parameters. However, most USB cameras do not support changing 
certain parameters. What we do is expose all OpenCV supported parameters and 
warn in case of error (or disable a few of them). The configuration file is in cfg/
Camera.cfg; check it for the details. It supports the following parameters:

• camera_index: This parameter is used to select the /dev/video? device.
• frame_width and frame_height: These parameters give the image resolution.
• fps: This parameter sets the camera FPS.
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• fourcc: This parameter specifies the camera pixel format in the FOURCC 
format (http://www.fourcc.org). The file format is typically YUYV or MJPEG, 
but they fail to change in most USB cameras with OpenCV.

• brightness, contrast, saturation, hue: These parameters set the camera's 
properties. In digital cameras, this is done by software, during the acquisition 
process in the sensor, or simply on the resulting image.

• gain: This parameter sets the gain of the Analog-Digital Converter (ADC) of 
the sensor. It introduces salt-and-pepper noise into the image but increases 
the lightness in dark environments.

• exposure: This parameter sets the lightness of the images, usually by 
adapting the gain and shutter speed (in low-cost cameras, this is simply  
the integration time of the light that enters the sensor).

• frame_id: This parameter is the camera frame, useful if we use it for 
navigation, as we will see in the Using visual odometry with viso2 section.

• camera_info_url: This parameter provides the path to the camera's 
information, which is basically its calibration.

Then, in the following line of code, in the driver, we use a dynamic reconfigure server:

#include <dynamic_reconfigure/server.h>

We set a callback in the constructor:

server.setCallback( boost::bind( &CameraDriver::reconfig, this, _1, _2 
) );

The setCallback constructor reconfigures the camera. We even allow changing the 
camera and stopping the current one when the camera_index is changed. Then, we 
use the OpenCV cv::VideoCapture class to set the camera's properties, which are 
part of the parameters shown in the preceding line. As an example, in the case of 
frame_width, we use the following commands:

newconfig.frame_width = setProperty( camera, CV_CAP_PROP_FRAME_WIDTH , 
newconfig.frame_width );

This relies on a private method named setProperty, which calls the set method of 
cv::VideoCapture and controls the cases in which it fails to print an ROS warning 
message. Note that the FPS is changed in the timer itself and usually cannot be 
modified in the camera. Finally, it is important to note that all this reconfiguration  
is done within a locked mutex to avoid acquiring any images while reconfiguring  
the driver.

http://www.fourcc.org
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In order to set the camera's information, ROS has a camera_info_manager library 
that helps us to do so, as shown in the following line:

#include <camera_info_manager/camera_info_manager.h>

We use the library to obtain the CameraInfo message. Now, in the capture callback 
of the timer, we use image_transport::CameraPublisher and not only for the 
images. The code is as follows:

      camera >> frame->image;
      if( not frame->image.empty() )
      {
        frame->header.stamp = ros::Time::now();

        *camera_info = camera_info_manager.getCameraInfo();
        camera_info->header = frame->header;

        camera_pub.publish( frame->toImageMsg(), camera_info );
      }

This is run within the mutex mentioned previously for the reconfiguration method. 
Now, we do the same as for the first version of the driver but also retrieve the camera 
information from the manager, which is set with the node handler, the camera 
name, and camera_info_url in the reconfiguration method (which is always called 
once on loading). Then, we publish both the image/frame (ROS Image) and the 
CameraImage messages.

In order to use this driver, use the following command:

$ roslaunch chapter5_tutorials camera.launch view:=true

The command will use the config/camera/webcam.yaml parameter as default, 
which sets all the dynamic reconfiguration parameters seen so far.

You can check that the camera is working with rostopic list and rostopic hz /
camera/image_raw; you can also check with image_view or rqt_image_view.

With the implementation of this driver, we have used all the resources available in 
ROS to work with cameras, images, and Computer Vision. In the following sections, 
for the sake of clarity, we explain each of them separately.



Chapter 5

[ 195 ]

Using OpenCV and ROS images with  
cv_bridge
If we have an OpenCV image, that is, cv::Mat image, we need the cv_bridge 
library to convert it into a ROS Image message and publish it. We have the option to 
share or copy the image, with CvShare or CvCopy, respectively. However, if possible, 
it is easier to use the OpenCV image field inside the CvImage class provided by  
cv_bridge. That is exactly what we do in the camera driver as a pointer:

cv_bridge::CvImagePtr frame;

Being a pointer, we initialize it in the following way:

frame = boost::make_shared< cv_bridge::CvImage >();

If we know the image encoding beforehand, we can use the following code:

frame->encoding = sensor_msgs::image_encodings::BGR8;

Later, we set the OpenCV image at some point, for example, capturing it from  
a camera:

camera >> frame->image;

It is also common to set the timestamp of the message at this point:

frame->header.stamp = ros::Time::now();

Now we only have to publish it. To do so, we need a publisher and it must use the 
image_transport API of ROS. This is shown in the following section.

Publishing images with image transport
We can publish single images with ros::Publisher, but it is better to use an 
image_transport publisher. It can publish images with their corresponding camera 
information. That is exactly what we did for the camera driver previously. The 
image_transport API is useful to provide different transport formats in a seamless 
way. The images you publish actually appear in several topics. Apart from the 
basic, uncompressed one, you will see a compressed one or even more. The number 
of supported transports depends on the plugins installed in your system; you will 
usually have the compressed and theora transports. You can see this with rostopic 
info. In order to install all the plugins, use the following command:

$ sudo apt-get install ros-hydro-image-transport-plugins
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In your code, you need the node handle to create the image transport and then the 
publisher. In this example, we will use a simple image publisher; please check the 
final USB camera driver for the CameraPublisher usage:

ros::NodeHandle nh;
image_transport::ImageTransport it;
image_transport::Publisher pub_image_raw; 

The node handle and the image transport are constructed with (in the attribute 
constructors of a class) the following code:

nh( "~" ),
it( nh )

Then, for an image_raw topic, the publisher is created this way within the node 
namespace:

pub_image_raw = it.advertise( "image_raw", 1 );

Hence, now the frame shown in the previous section can be published with the 
following code:

pub_image_raw.publish( frame->toImageMsg() );

Using OpenCV in ROS
ROS uses the standalone OpenCV library installed on your system. However,  
you must specify a build and running dependency with an opencv2 package  
in the package.xml file:

<build_depend>opencv2</build_depend>
<run_depend>opencv2</run_depend>

In CMakeLists.xml, we have to insert the following lines:

find_package(OpenCV)
include_directories(${catkin_INCLUDE_DIRS} ${OpenCV_INCLUDE_DIRS})

Then, for each library or executable that uses OpenCV, we must add ${OpenCV_
LIBS} to target_link_libraries (see CMakeLists.txt provided for the 
chapter5_tutorials package).

In our node cpp file, we include any of the OpenCV libraries we need. For example, 
for highgui.hpp, we use the following line:

#include <opencv2/highgui/highgui.hpp>
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Now, you can use any of the OpenCV API classes, functions, and so on, in your 
code, as usual. Simply use its cv namespace and follow any OpenCV tutorial if you 
are starting with it. Note that this book is not about OpenCV—just how we can do 
Computer Vision inside ROS.

Visualizing the camera input images
In Chapter 3, Visualization and Debug Tools, we explained how to visualize any image 
published in the ROS framework by using the image_view node of the image_view 
package or rqt_image_view. The following code encapsulates this discussion:

$ rosrun image_view image_view image:=/camera/image_raw

What is important here is the fact that using the image transport, we can select 
different topics to see the images using compressed formats if required. Also, in the 
case of stereo vision, as we will see later, we can use rqtrviz to see the point cloud 
obtained with the disparity image.

Calibrating the camera
Most cameras, especially wide-angle ones, exhibit large distortions. We can model 
such distortions as radial or tangential and compute the coefficients of that model 
using calibration algorithms. The camera calibration algorithms also obtain a 
calibration matrix that contains the focal distance and principle point of the lens and, 
hence, provide a way to measure distances in the world using the images acquired. 
In the case of stereo vision, it is also possible to retrieve depth information, that is, 
the distance of the pixels to the camera, as we will see later. Consequently, we have 
3D information of the world up to an extent.

The calibration is done by showing several views of a known image named 
calibration pattern, which is typically a chessboard/checkerboard. It can also be 
an array of circles or an asymmetric pattern of circles; note that circles are seen as 
ellipses by the camera for skew views. A detection algorithm obtains the inner corner 
point of the cells in the chessboard and uses them to estimate the camera's intrinsic 
and extrinsic parameters. In brief, the extrinsic parameters are the pose of the camera 
or, in other words, the pose of the pattern with respect to the camera if we left the 
camera in a fixed position. What we want are the intrinsic parameters because they 
do not change, can be used later for the camera in any pose, allow the measuring of 
distances in the images, and allow correcting the image distortion, that is, rectifying 
the image.



Computer Vision

[ 198 ]

With our camera driver running, we can use the calibration tool of ROS to calibrate 
it. It is important that the camera driver provides CameraInfo messages and has the 
camera_info_set service, which allows the setting of the path to the calibration 
results file. Later, this calibration information is always loaded by the image pipeline 
when using the camera. One camera driver that satisfies these prerequisites is the 
camera1394 driver for the FireWire cameras. In order to calibrate your FireWire 
camera, use the following command:

$ roslaunch chapter5_tutorials calibration_firewire_camera_chessboard.
launch

This will open a GUI that automatically selects the views of our calibration pattern 
and provides bars to inform how each axis is covered by the views retrieved. It 
comprises the x and y axes, meaning how close the pattern has been shown to each 
extreme of these axes in the image plane, that is, the horizontal and vertical axes, 
respectively. Then, the scale goes from close to far (up to the distance at which the 
detection works). Finally, skew requires that views of the pattern tilt in both the x 
and y axes. The three buttons below these bars are disabled by default, as shown in 
the following screenshot:
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You will see the points detected overlaid over the pattern every time the detector 
finds them. The views are automatically selected to cover a representative number 
of different views, so you must show views to make the bars become green from 
one side to the other, following the instructions given in the following section. In 
theory, two views are enough, but in practice, around ten are usually needed. In 
fact, this interface captures even more (30 to 40). You should avoid fast movements 
because blurry images are bad for detection. Once the tool has enough views, it will 
allow you to calibrate, that is, to start the optimizer that, given the points detected in 
the calibration pattern views, solve the system of the pinhole camera model. This is 
shown in the following screenshot:

Then, you can save the calibration data and commit the calibration results to the 
camera, that is, it uses the camera_info_set service to commit the calibration to  
the camera, so later, it is detected automatically by the ROS image pipeline.

The launch file provided for the calibration simply uses cameracalibrator.py of 
the camera_calibration package:

<node pkg="camera_calibration" type="cameracalibrator.py"
  name="cameracalibrator" args="--size 8x6 --square 0.030"
  output="screen">
    <remap from="image" to="camera/image_color" />
    <remap from="camera" to="camera" />
</node>



Computer Vision

[ 200 ]

The calibration tool only needs the pattern's characteristics (the number of squares 
and their size, --size 8x6 and --square 0.030 in this case), the image topic, and 
the camera namespace.

The launch file also runs the image pipeline, but it is not required. In fact, instead of 
the image_color topic, we could have used the image_raw one.

Once you have saved the calibration (save button), a file is created in your /tmp 
directory. It contains the calibration pattern views used for the calibration. You 
can find it at /tmp/calibrationdata.tar.gz; the ones used for the calibration 
in the book can be found in the calibration directory and the firewire_camera 
subfolder for the FireWire camera. Similarly, on the terminal (stdout output), you 
will see information regarding the views taken and the calibration results. The ones 
obtained for the book are in the same folder as the calibration data. The calibration 
results can also be consulted in the ost.txt file inside the calibrationdata.tar.
gz ZIP file. Anyway, remember that, after the commit, the calibration file is updated 
with the calibration matrix and the coefficients of the distortion model. A good way 
to do so consists of on creating a dummy calibration file before the calibration. In our 
package, that file is in calibration/firewire_camera/calibration_firewire_
camera.yaml, which is referenced by the parameters file:

camera_info_url: package://chapter5_tutorials/calibration/firewire_
camera/calibration_firewire_camera.yaml

Now, we can use our camera again with the image pipeline, and the rectified 
images will have the distortion corrected as a clear sign that the camera is calibrated 
correctly. Since ROS uses the Zhang calibration method implemented in OpenCV, 
for more details on the calibration formulas, our advice is that you consult its 
documentation at http://docs.opencv.org/doc/tutorials/calib3d/camera_
calibration/camera_calibration.html.

Finally, you can also play with different calibration patterns using the following 
launch files for circles and asymmetric circles (http://docs.opencv.org/
_downloads/acircles_pattern.png), prepared for FireWire cameras, as an example:

roslaunch chapter5_tutorials calibration_firewire_camera_circles.
launch
roslaunch chapter5_tutorials calibration_firewire_camera_acircles.
launch

http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html.
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html.
http://docs.opencv.org/_downloads/acircles_pattern.png
http://docs.opencv.org/_downloads/acircles_pattern.png
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You can also use multiple chessboard patterns for a single calibration using patterns 
of different sizes. However, we think it is enough to use a single chessboard pattern 
printed with good quality. Indeed, for the USB camera driver, we only use that.

In the case of the USB camera driver, we have a more powerful launch file, which 
integrates the camera calibration node; there is also a standalone one for FireWire 
cameras, though. Hence, in order to calibrate your camera, use the following action:

$ roslaunch chapter5_tutorials camera.launch calibrate:=true

In the next screenshots, you can see the steps of the calibration process in the GUI, 
identical to the case of FireWire cameras. That means we have an operating camera_
info_set service.
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After pressing the calibrate button, the calibration optimization algorithm will take a 
while to find the best camera intrinsic and extrinsic parameters. Once it is done, the 
save and commit will be enabled. The following screenshot shows this:

Stereo calibration
The next step consists of working with stereo cameras. One option is to run two 
monocular camera nodes, but in general, it is better to consider the whole stereo 
pair as a single sensor because the images must be synchronized. In ROS, there is no 
driver for FireWire stereo cameras, but we can use an extension to stereo using the 
following command line:

$ git clone git://github.com/srv/camera1394stereo.git
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However, FireWire stereo pairs are quite expensive. For this reason, we provide 
a stereo camera driver for USB cameras. We use the Logitech C120 USB webcam, 
which is very cheap. It is also noisy, but we will see that we can do great things with 
it after we calibrate them. It is important that, in the stereo pair, the cameras are 
similar, but you can try with different cameras as well. Our setup for the cameras is 
shown in the images. You only need the two cameras on the same plane and pointing 
in parallel directions. We have a baseline of approximately 12 cm, which will also 
be computed in the stereo calibration process. As you can see in the following 
screenshot, you only need a rod to attach the cameras to, with zip ties:

Now, connect the cameras to your USB slots. It is good practice to connect the  
left-hand side camera first and then the right-hand side one. This way, they are 
assigned to the /dev/video0 and /dev/video1 devices, or 1 and 2 if 0 was already 
taken. Alternatively, you can create a udev rule.

Then, you can test each camera individually as we would do for a single camera. 
Some tools you will find useful are the video4linux control panels for cameras:

$ sudo apt-get install v4l-utils qv4l2

You might experience the following problem:

In case of problems with stereo:

libv4l2: error turning on stream: No space left on device
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This happens because you must connect each camera to a different USB controller; 
note that certain USB slots are managed by the same controller and hence it cannot 
deal with the bandwidth of more than a single camera. If you only have a USB 
controller, there are other options you can try. First, try to use a compressed pixel 
format, such as MJPEG in both cameras. You can check whether it is supported by 
your camera or not using the following command:

$ v4l2-ctl -d /dev/video2 --list-formats

The command will generate something similar to the following output:

ioctl: VIDIOC_ENUM_FMT

Index       : 0

Type        : Video Capture

Pixel Format: 'YUYV'

Name        : YUV 4:2:2 (YUYV)

Index       : 1

Type        : Video Capture

Pixel Format: 'MJPG' (compressed)

Name        : MJPEG

If MJPEG is supported, we can use more than one camera in the same USB controller; 
otherwise, with uncompressed pixel formats, we must use different USB controllers 
or reduce the resolution to 320 x 240 or lower. Similarly, with the GUI of qv4l2, you 
can check this and test your camera. You can also check whether it is possible to set 
the desired pixel format. In fact, this does not work for our USB cameras using the 
OpenCV set method, so we use an USB slot managed by a different USB controller.

The USB stereo camera driver that comes with this book is based on the USB camera 
discussed so far. Basically, the driver extends the camera to support camera publishers, 
which send the left-hand side and right-hand side images and the camera information 
as well. You can run it and view the images by using the following command:

$ roslaunch chapter5_tutorials camera_stereo.launch view:=true

It also shows the disparity image of the left-hand side and right-hand side cameras, 
which will be useful once the cameras are calibrated since it is used by the ROS 
image pipeline. In order to calibrate the cameras, use the following command:

$ roslaunch chapter5_tutorials camera_stereo.launch calibrate:=true
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You will see a GUI for monocular cameras similar to the following screenshot:

At the time the preceding image was taken, we showed enough views to start the 
calibration. Note that the calibration pattern must be detected by both cameras 
simultaneously to be included for the calibration optimization step. Depending on 
the setup, this may be quite tricky, so you should put the pattern at the appropriate 
distance from the camera. You can see the setup used for the calibration of this book 
in the next image:
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The calibration is done by the same cameracalibrator.py node used for monocular 
cameras. We pass the left-hand side and right-hand side cameras and images, so the 
tool knows that we are going to do stereo calibration. The following is the node in 
the launch file:

<node ns="$(arg camera)" name="cameracalibrator"
  pkg="camera_calibration" type="cameracalibrator.py"
  args="--size 8x6 --square 0.030" output="screen">
    <remap from="left" to="left/image_raw"/>
    <remap from="right" to="right/image_raw"/>
    <remap from="left_camera" to="left"/>
    <remap from="right_camera" to="right"/>
</node>

The result of the calibration is the same as for monocular cameras, but in this case, 
we have two calibration files, one for each camera. In accordance with the parameters 
file in config/camera_stereo/logitech_c120.yaml, we have the following code:

camera_info_url_left: package://chapter5_tutorials/calibration/camera_
stereo/${NAME}.yaml
camera_info_url_right: package://chapter5_tutorials/calibration/
camera_stereo/${NAME}.yaml

${NAME} is the name of the camera, which resolved to logitech_c120_left 
and logitech_c120_right for the left-hand side and right-hand side cameras, 
respectively. After the commit of the calibration, those files are updated with the 
calibration of each camera. They contain the calibration matrix, the distortion model 
coefficients, and the rectification and projection matrix, which includes the baseline, 
that is, the separation between each camera in the x axis of the image plane. In the 
parameters file, you can also see values for the camera properties that have been 
set for indoor environments with artificial light; the camera model used has some 
autocorrection, so sometimes, the images may be quite bad, but these values seem to 
work well in most cases.
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The ROS image pipeline
The ROS image pipeline is run with the image_proc package. It provides all the 
conversion utilities to obtain monochrome and color images from the RAW images 
acquired from the camera. In the case of FireWire cameras, which may use a Bayer 
pattern to code the images (actually in the sensor itself), it debayers them to obtain 
the color images. Once you have calibrated the camera, the image pipeline takes 
the CameraInfo messages, which contain that information, and rectifies the images. 
Here, rectification means to un-distort the images, so it takes the coefficients of the 
distortion model to correct the radial and tangential distortion.

As a result, you will see more topics for your camera in its namespace. In the 
following screenshots, you can see the image_raw, image_mono, and image_color 
topics, which display the RAW, monochrome, and color images, respectively:
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The rectified images are provided in monochrome and color in the image_rect and 
image_rect_color topics. In the following image, we compare the uncalibrated, 
distorted RAW images with the rectified ones. You can see the correction because 
the pattern shown in the screenshots has straight lines only in the rectified images, 
particularly in areas far from the center (principle point) of the image (sensor):
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You can see all the topics available with rostopic list or rqt_graph, which 
include the image_transport topics as well.

You can view the image_raw topic of a monocular camera directly with the  
following command:

$ roslaunch chapter5_tutorials camera.launch view:=true

It can be changed to see other topics, but for these cameras, the RAW images are 
already in color. However, in order to see the rectified ones, use image_rect_color 
with image_view or rqt_image_view, or change the launch file. The image_proc 
node is used to make all these topics available. The following code shows this:

<node ns="$(arg camera)" pkg="image_proc" type="image_proc" 
name="image_proc"/>

The image pipeline for stereo cameras
In the case of stereo cameras, we have the same for the left-hand side and right-hand 
side cameras. However, there are specific visualization tools for them because we can 
use the left-hand side and right-hand side images to compute and see the disparity 
image. An algorithm uses stereo calibration and the texture of both images to estimate 
the depth of each pixel, which is the disparity image. To obtain good results, we must 
tune the algorithm that computes such an image. In the next screenshot, we see the 
left-hand side, right-hand side, and disparity images as well as rqt_reconfiguire 
for stereo_image_proc, which is the node that builds the image pipeline for stereo 
images; in the launch file, we only need the following lines:

<node ns="$(arg camera)" pkg="stereo_image_proc" type="stereo_image_
proc"
    name="stereo_image_proc" output="screen">
  <rosparam file="$(arg params_disparity)"/>
</node>
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It requires the disparity parameters, which can be set with rqt_reconfigure  
as shown in the following screenshot and saved with rosparam dump /stereo/
stereo_image_proc:

We have good values for the environment used in this book's demonstration in  
the config/camera_stereo/disparity.yaml parameters file. This is shown in  
the following code:

{correlation_window_size: 33, disparity_range: 32, min_disparity: 25, 
prefilter_cap: 5,
  prefilter_size: 15, speckle_range: 15, speckle_size: 50, texture_
threshold: 1000,
  uniqueness_ratio: 5.0}



Computer Vision

[ 212 ]

However, these parameters depend a lot on the calibration quality and the 
environment. You should adjust it to your experiments. It takes time and it is quite 
tricky, but you can follow the next guidelines. Basically, you start by setting a 
disparity_range value that makes enough blobs appear. You also have to set min_
disparity, so you see areas covering the whole range of depths (from red to blue/
purple). Then, you can fine-tune the result, setting speckle_size, to remove small, 
noisy blobs. Also, modify uniqueness_ratio and texture_threshold to have 
larger blobs. The correlation_window_size is also important since it affects the 
detection of initial blobs.

If it becomes very difficult to obtain good results, you might have to recalibrate or 
use better cameras for your environment and lighting conditions. You can also try it 
in another environment or with more light. It is important that you have texture in 
the environment; for example, from a flat, white wall, you cannot find any disparity. 
Also, depending on the baseline, you cannot retrieve depth information very close 
to the camera. For stereo navigation, it is better to have a large baseline, say 12 cm 
or more. We use it here because, later, we will try visual odometry. However, with 
this setup, we only have depth information one meter apart from the cameras. With 
a smaller baseline, on the contrary, we can obtain depth information from closer 
objects. This is bad for navigation because we lose resolution far away, but it is good 
for perception and grasping.

As far as calibration problems go, you can check your calibration results with  
the cameracheck.py node, which is integrated in both the monocular and stereo 
camera launch files:

$ roslaunch chapter5_tutorials camera.launch view:=true check:=true

$ roslaunch chapter5_tutorials camera_stereo.launch view:=true 
check:=true
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For the monocular camera, our calibration yields this RMS error (see more in 
calibration/camera/cameracheck-stdout.log):

Linearity RMS Error: 1.319 Pixels      Reprojection RMS Error: 1.278 
Pixels
Linearity RMS Error: 1.542 Pixels      Reprojection RMS Error: 1.368 
Pixels
Linearity RMS Error: 1.437 Pixels      Reprojection RMS Error: 1.112 
Pixels
Linearity RMS Error: 1.455 Pixels      Reprojection RMS Error: 1.035 
Pixels
Linearity RMS Error: 2.210 Pixels      Reprojection RMS Error: 1.584 
Pixels
Linearity RMS Error: 2.604 Pixels      Reprojection RMS Error: 2.286 
Pixels
Linearity RMS Error: 0.611 Pixels      Reprojection RMS Error: 0.349 
Pixels

For the stereo camera, we have epipolar error and the estimation of the cell size 
of the calibration pattern (see more in calibration/camera_stereo/cameracheck-
stdout.log):

epipolar error: 0.738753 pixels   dimension: 0.033301 m
epipolar error: 1.145886 pixels   dimension: 0.033356 m
epipolar error: 1.810118 pixels   dimension: 0.033636 m
epipolar error: 2.071419 pixels   dimension: 0.033772 m
epipolar error: 2.193602 pixels   dimension: 0.033635 m
epipolar error: 2.822543 pixels   dimension: 0.033535 m

To obtain these results, you only have to show the calibration pattern to the 
camera/s; that is the reason why we also pass view:=true to the launch files. An 
RMS error greater than 2 pixels is quite large; we have something around it, but 
remember that these are very low-cost cameras. Something below a 1 pixel error is 
desirable. For the stereo pair, the epipolar error should also be lower than 1 pixel; 
in our case, it is still quite large (usually greater than 3 pixels), but we still can do 
many things. Indeed, the disparity image is just a representation of the depth of each 
pixel shown with the stereo_view node. We also have a 3D point cloud that can be 
visualized texturized with rviz. We will see this in the following demonstrations, 
doing visual odometry.
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ROS packages useful for Computer 
Vision tasks
The great advantage of doing Computer Vision in ROS is the fact that we do not 
have to re-invent the wheel. A lot of third-party software is available, and we can 
also connect our vision stuff to the real robots or do some simulations. Here, we are 
going to enumerate interesting Computer Vision tools for the most common visual 
tasks, but we will only explain in detail one of them later, including all the steps to 
set it up. We will do it for visual odometry, but other packages are also easy to install 
and it is also easy to start playing with them; simply follow the tutorials or manuals 
in the links provided here:

• Visual Servoing: Also known as Vision-based Robot Control, this is a 
technique that uses feedback information obtained from a vision sensor 
to control the motion of a robot, typically an arm used for grasping. In 
ROS, we have a wrapper of the Visual Servoing Platform (ViSP) software 
(http://www.irisa.fr/lagadic/visp/visp.html, http://www.ros.
org/wiki/vision_visp). ViSP is a complete cross-platform library that 
allows prototyping and developing applications in visual tracking and visual 
servoing. The ROS wrapper provides a tracker that can be run with the 
visp_tracker (moving edge tracker) node as well as visp_auto_tracker  
(a model-based tracker). It also helps to calibrate the camera and perform 
hand-to-eye calibration, which is crucial for visual servoing in grasping tasks.

• Augmented Reality: An Augmented Reality (AR) application involves 
overlaying virtual imagery on the real world. A well-known library for this 
purpose is ARToolkit (http://www.hitl.washington.edu/artoolkit/). 
The main problem in this application is tracking the user's viewpoint to draw 
the virtual imagery on the viewpoint where the user is looking in the real 
world. ARToolkit video tracking libraries calculate the real camera position 
and orientation relative to physical markers in real time. In ROS, we have a 
wrapper named ar_pose (http://www.ros.org/wiki/ar_pose). It allows 
us to track single or multiple markers where we can render our virtual 
imagery (for example, a 3D model).

http://www.irisa.fr/lagadic/visp/visp.html
http://www.ros.org/wiki/vision_visp
http://www.ros.org/wiki/vision_visp
http://www.hitl.washington.edu/artoolkit/
http://www.ros.org/wiki/ar_pose
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• Perception and object recognition: Most basic perception and object 
recognition is possible with the OpenCV libraries. However, there are several 
packages that provide an object recognition pipeline, such as the object_
recognition stack, which provides tabletop_object_detector to detect 
objects on a table, for example; a more general solution provided by Object 
Recognition Kitchen (ORK) can be found at http://wg-perception.
github.io/object_recognition_core. It is also worth mentioning a tool 
called RoboEarth (http://www.roboearth.org), which allows you to detect 
and build 3D models of physical objects and store them in a global database 
accessible for any robot (or human) worldwide. The models stored can be 
2D or 3D and can be used to recognize similar objects and their viewpoint, 
that is, to identify what the camera/robot is watching. The RoboEarth project 
is integrated into ROS, and many tutorials are provided to have a running 
system (http://www.ros.org/wiki/roboearth).

• Visual odometry: A visual odometer is an algorithm that uses the images 
of the environment to track features and estimate the robot's movement, 
assuming a static environment. It can solve the 6 DoF pose of the robot with a 
monocular or stereo system, but it may require additional information in the 
monocular case. There are two main libraries for visual odometry: libviso2 
(http://www.cvlibs.net/software/libviso2.html) and libfovis 
(http://www.ros.org/wiki/fovis_ros), both of which have wrappers for 
ROS. The wrappers just expose these libraries to ROS. They are the viso2 
and fovis stacks respectively. In the next section, we will see how we can 
do visual odometry with our homemade stereo camera using the viso2_ros 
node of viso2. The libviso2 library allows us to do monocular and stereo 
visual odometry. However, for monocular odometry, we also need the pitch 
and heading for the ground plane estimation. You can try the monocular 
case with one camera and an IMU (see Chapter 4, Using Sensors and Actuators 
with ROS), but you will always have better results with a good stereo pair, 
correctly calibrated, as seen so far in this chapter. Finally, libfovis does not 
allow the monocular case, but it supports RGBD cameras, such as the Kinect 
sensor (see Chapter 6, Point Clouds). As regards the stereo case, it is possible to 
try both libraries and see which one works better in your case. Here, we show 
a step-by-step tutorial to install and run viso2 in ROS and fovis with Kinect.

http://wg-perception.github.io/object_recognition_core
http://wg-perception.github.io/object_recognition_core
http://www.roboearth.org
http://www.ros.org/wiki/roboearth
http://www.cvlibs.net/software/libviso2.html
http://www.ros.org/wiki/fovis_ros
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Using visual odometry with viso2
In order to use viso2, go to your catkin workspace (~/dev/catkin_ws) and use the 
following commands:

$ cd src

$ wstool init

$ wstool set viso2 --git git://github.com/srv/viso2.git

$ wstool update

Now, to build it, run the following command:

$ cd ..

$ catkin_make

Once it is built, we set up our environment by using the following command:

$ source devel/setup.bash

Now we can run viso2_ros nodes, such as stereo_odometer, which is the one we 
are going to use here. But before that, we need to publish the frame transformation 
between our camera and the robot or its base link. The stereo camera driver is 
already prepared for that, but we have explained how it is done in the next sections.

Camera pose calibration
In order to set the transformation between the different frames in our robot system, 
we must publish the TF message of such transforms. The most appropriate and 
generic way to do so consists of using the camera_pose stack; we use the latest 
version from this repository, which can be found at https://github.com/jbohren-
forks/camera_pose. This stack offers a series of launch files that calibrates the 
camera poses with respect to each other. It comes with launch files for 2, 3, 4, or more 
cameras. In our case, we only have two cameras (stereo), so we proceed this way. 
First, we extend camera_stereo.launch with the calibrate_pose argument that 
calls calibration_tf_publisher.launch from camera_pose:

<include file="$(find camera_pose_calibration)/blocks/calibration_tf_
publisher.launch">
    <arg name="cache_file" value="/tmp/camera_pose_calibration_cache.
bag"/>
</include>

https://github.com/jbohren-forks/camera_pose
https://github.com/jbohren-forks/camera_pose
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Now, run the following command:

$ roslaunch chapter5_tutorials camera_stereo.launch calibrate_pose:=true

The calibration_tf_publisher will publish the frame transforms (tf) as soon as 
the calibration has been done correctly. The calibration is similar to the one we have 
seen so far but using the specific tools from camera_pose, which are run using the 
following command:

$ roslaunch camera_pose_calibration calibrate_2_camera.launch camera1_
ns:=/stereo/left camera2_ns:=/stereo/right checker_rows:=6 checker_
cols:=8 checker_size:=0.03

With this call, we can use the same calibration pattern we used with our previous 
calibration tools. However, it requires the images to be static; some bars can move 
from one side to another of the image and turn green when the images in all 
the cameras have been static for a sufficient period of time. This is shown in the 
following screenshot:
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With our noisy cameras, we need support for the calibration pattern, such as a tripod 
or a panel, as shown in the following image:
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Then, we can calibrate as shown in the following screenshot:

This creates tf from the left-hand side camera to the right-hand side camera. 
However, although this is the most appropriate way to perform the camera pose 
calibration, we are going to use a simpler approach that is enough for a stereo 
pair, and is also required by viso2, since it needs the frame of the whole stereo 
pair as a single unit/sensor; internally, it uses the stereo calibration results of 
cameracalibrator.py to retrieve the baseline.

We have a launch file that uses static_transform_publisher for the camera link 
to the base link (robot base) and another from the camera link to the optical camera 
link because the optical one requires rotation; recall that the camera frame has the z 
axis pointing forward from the camera's optical lens, while the other frames (world, 
navigation, or odometry) have the z axis pointing up. This launch file is in launch/
frames/stereo_frames.launch:

<launch>
  <arg name="camera" default="stereo" />

  <arg name="baseline/2" value="0.06"/>
  <arg name="optical_translation" value="0 -$(arg baseline/2) 0"/>

  <arg name="pi/2" value="1.5707963267948966"/>
  <arg name="optical_rotation" value="-$(arg pi/2) 0 -$(arg pi/2)"/>

  <node pkg="tf" type="static_transform_publisher" name="$(arg 
camera)_link"
        args="0 0 0.1 0 0 0 /base_link /$(arg camera) 100"/>  
  <node pkg="tf" type="static_transform_publisher" name="$(arg 
camera)_optical_link"
        args="$(arg optical_translation) $(arg optical_rotation) 
/$(arg camera) /$(arg camera)_optical 100"/>
</launch>
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This launch file is included in our stereo camera launch file and publishes these static 
frame transforms. Hence, we only have to run the following command to get the 
launch file to publish them:

$ roslaunch chapter5_tutorials camera_stereo.launch tf:=true

Then, you can check whether they are being published in rqt_rviz, with the TF 
display, as we will see in the following running viso2; you can also use rqt_tf_
tree for this (see Chapter 3, Visualization and Debug Tools).

Running the viso2 online demo
At this point, we are ready to run the visual odometry algorithm: our stereo pair 
cameras are calibrated, their frame has the appropriate name for viso2 (ends with 
_optical), and TF for the camera and optical frames is published. However, before 
using our own stereo pair, we are going to test viso2 with the bag files provided in 
http://srv.uib.es/public/viso2_ros/sample_bagfiles/; just run bag/viso2_
demo/download_amphoras_pool_bag_files.sh to obtain all the bag files (this 
totals about 4 GB). Then, we have a launch file for both the monocular and stereo 
odometers in the launch/visual_odometry folder. In order to run the stereo demo, 
we have a launch file on top that plays the bag files and also allows inspecting and 
visualizing its contents. For instance, to calibrate the disparity image algorithm, run 
the following command:

$ roslaunch chapter5_tutorials viso2_demo.launch config_disparity:=true 
view:=true

http://srv.uib.es/public/viso2_ros/sample_bagfiles/
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You will see the left-hand side, right-hand side, and disparity images and the 
rqt_reconfigure interface to configure the disparity algorithm. You need to do 
this tuning because the bag files only have the RAW images. We have found good 
parameters that are in config/viso2_demo/disparity.yaml. In the following 
screenshot, you can see the results obtained using them, where you can clearly 
appreciate the depth of the rocks in the stereo images:

In order to run the stereo odometry and see the result in rqt_rviz, run the  
following command:

$ roslaunch chapter5_tutorials viso2_demo.launch odometry:=true rviz:=true

Note that we provide an adequate configuration for rqt_rviz in config/viso2_
demo/rviz.rviz, which is automatically loaded by the launch file. The next 
sequence of images shows different instants of the texturized 3D point cloud and the 
/odom and /stereo_optical frames that show the camera pose estimate from the 
stereo odometer. The third image has a decay time of 3 seconds for the point cloud, 
so we can see how the points overlay over time. This way, with good images and 
odometry, we can even see a map drawn in rqt_rviz, but it is quite difficult and 
generally needs a SLAM algorithm for that (see Chapter 8, The Navigation Stack – Robot 
Setups). All this is encapsulated in the following screenshots:
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Running viso2 with our low-cost stereo 
camera
Finally, we can do what viso2_demo does with our own stereo pair. We only have  
to run the following command to run the stereo odometry and see the results in  
rqt_rviz (note that the tf tree is published by default):

$ roslaunch chapter5_tutorials camera_stereo.launch odometry:=true 
rviz:=true
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The next image shows an example of the visual odometry system running for our low-
cost stereo camera. If you move the camera, you should see the /odom frame moving. If 
the calibration is bad or the cameras are very noisy, the odometer may get lost, which 
is indicated by a warning message on the terminal. In that case, you should look for 
better cameras or recalibrate them to see whether better results are obtained. You also 
might have to look for better parameters for the disparity algorithm.

Performing visual odometry with an 
RGBD camera
Now we are going to see how to perform visual odometry using RGBD cameras  
using fovis.
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Installing fovis
Since fovis is not provided as a Debian package, you must build it in your catkin 
workspace (use the same workspace you use for chapter5_tutorials). Therefore, 
proceed with the following commands within any workspace:

$ cd src

$ git clone https://github.com/srv/libfovis.git

$ git clone https://github.com/srv/fovis.git

$ cd ..

$ catkin_make

This clones two repositories that allow us to have the fovis software integrated  
in ROS. Note that the original code is hosted on this Google Code Project at 
https://code.google.com/p/fovis/.

Once this has been built successfully, set up the environment for this workspace 
before using the software:

$ source devel/setup.bash

Using fovis with the Kinect RGBD camera
At this point, we are going to run fovis for the Kinect RGBD camera. This means 
that we are going to have 3D information to compute the visual odometry, so better 
results are expected than when we use stereo vision or a monocular camera (as with 
viso2).

We simply have to launch the Kinect RGBD camera driver and fovis. For 
convenience, we provide a single launch file that runs both:

$ roslaunch chapter5_tutorials fovis_demo.launch

https://code.google.com/p/fovis/
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Move the camera around and you should be able to have a good odometry 
estimation of the trajectory followed by the camera. The next figure shows this on 
rviz in the initial state before moving the camera. You can see the RGBD point cloud 
and two arrows showing the odometry and the current position of the camera in the 
following screenshot:

After moving the camera, you should see the arrows showing the camera pose (as 
shown in the following screenshot). Take into account that you have to move it quite 
slowly since the software needs time to compute the odometry depending on the 
computer you are using:
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By default, the fovis_demo.launch file uses the no_registered depth information. 
This means that the depth image is not registered or transformed into the RGB 
camera frame. Although it is better to have it registered, this drops the frame rate 
dramatically from the raw throughput of 30 Hz provided by the Kinect sensor to 
something around 2.5 Hz depending on your computing resources.

Anyway, you can use throttle on the RGB camera frames to still use the registered 
version. This is automatically done by the launch file provided. You can select 
between the following modes: no_registered (default), hw_registered, and 
sw_registered. Note that, in principle, the Kinect sensor does not support the 
hardware registration mode (hw_registered), which is expected to be the fastest 
one. Therefore, you can try the software registration mode (sw_registered), for 
which we throttle the RGB camera messages to 2.5 Hz; you can change this in fovis_
sw_registered.launch, as shown here:

$ roslaunch chapter5_tutorials fovis_demo.launch mode:=sw_registered
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Computing the homography of two 
images
The homography matrix is a 3 x 3 matrix that provides transformation up to scale 
from a given image and a new one, which must be coplanar. In src/homography.
cpp, there is an extensive example that takes the first image acquired by the camera 
and then computes the homography for every new frame with respect to the first 
image. In order to run the example, take something planar, such as a book cover,  
and run the following command:

$ roslaunch chapter5_tutorials homography.launch

This runs the camera driver that should grab frames from your camera (webcam), 
detect features (SURF by default), extract descriptors for each of them, and match 
them with the ones extracted for the first image using a Flann-based matching with 
a cross-check filter. Once the program has the matches, the homography matrix H is 
computed. With H, we can warp the new frame to obtain the original one, as shown 
in the next screenshot (matches on the top, warped image using H, which is shown in 
plain text in the terminal):
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Summary
In this chapter, we have given an overview of the Computer Vision tools provided by 
ROS. We started by showing how we can connect and run several types of cameras, 
particularly FireWire and USB ones. The basic functionality to change their parameters 
was presented, so now you can adjust certain parameters to obtain images of good 
quality. Additionally, we provided a complete USB camera driver example.

Then, we showed how you can calibrate the camera. The importance of calibration 
is the ability to correct the distortion of wide-angle cameras, particularly cheap ones. 
Also, the calibration matrix allows you to perform many Computer Vision tasks, 
such as visual odometry and perception.

We showed how you can work with stereo vision in ROS and how you can set up an 
easy solution with two inexpensive webcams. We also explained the image pipeline, 
several APIs that work with Computer Vision in ROS, such as cv_bridge, image_
transport, and the integration of OpenCV within ROS packages.

Finally, we enumerated useful tasks and topics in Computer Vision that are 
supported by tools developed in ROS. In particular, we illustrated the example of 
visual odometry using the viso2 and fovis libraries. We showed an example with 
data recorded with a high-quality camera and also with the inexpensive stereo pair 
proposed. Finally, feature detection, descriptor extraction, and matching is shown 
to illustrate how you can obtain the homography between two images. All in all, 
after reading and running the code in this chapter, you will have seen the basics to 
perform Computer Vision in ROS.

In the next chapter, you will learn to work with point clouds using PCL, which 
allows you to work with RGBD cameras.
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Point Clouds
Point clouds appeared in the robotics toolbox as a way to intuitively represent and 
manipulate the information provided by 3D sensors, such as time-of-flight cameras 
and laser scanners, in which the space is sampled in a finite set of points in a 3D 
frame of reference. The Point Cloud Library (PCL) provides a number of data types 
and data structures to easily represent not only the points of our sampled space, 
but also the different properties of the sampled space, such as color, normal vectors, 
and so on. PCL also provides a number of state-of-the-art algorithms to perform 
data processing on our data samples, such as filtering, model estimation, surface 
reconstruction, and much more.

ROS provides a message-based interface through which PCL point clouds can be 
efficiently communicated, and a set of conversion functions from native PCL types to 
ROS messages, in much the same way as it is done with OpenCV images. Aside from 
the standard capabilities of the ROS API, there are a number of standard packages 
that can be used to interact with common 3D sensors, such as the widely used 
Microsoft Kinect or the Hokuyo laser, and visualize the data in different reference 
frames with RViz.

This chapter will provide a background on the PCL library, relevant data types, and 
ROS interface messages that will be used throughout the rest of the sections. Later, a 
number of techniques will be presented on how to perform data processing using the 
PCL library and how to communicate the incoming and outgoing data through ROS.
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Understanding the point cloud library
Before we dive into the code, it's important to understand the basic concepts of both 
the Point Cloud Library and the PCL interface for ROS. As mentioned before, the 
former provides a set of data structures and algorithms for 3D data processing, and 
the latter provides a set of messages and conversion functions between messages 
and PCL data structures. All of these software packages and libraries, in combination 
with the capabilities of the distributed communication layer provided by ROS, open 
up possibilities for many new applications in the robotics field.

In general, PCL contains one very important data structure, which is PointCloud. 
This data structure is designed as a template class that takes the type of point to 
be used as a template parameter. As a result of this, the point cloud class is not 
much more than a container of points that includes all of the common information 
required by all point clouds regardless of their point type. The following are the most 
important public fields in a point cloud:

• header: This field is of the pcl::PCLHeader type and specifies the 
acquisition time of the point cloud.

• points: This field is of the std::vector<PointT, ... > type and is the 
container where all of the points are stored. PointT in the vector definition 
corresponds to the class template parameter, that is, the point type.

• width: This field specifies the width of the point cloud when organized as an 
image; otherwise, it contains the number of points in the cloud.

• height: This field specifies the height of the point cloud when organized as 
an image; otherwise, it's always one.

• is_dense: This field specifies whether the cloud contains invalid values 
(infinite or NaN).

• sensor_origin_: This field is of the Eigen::Vector4f type, and it defines 
the sensor acquisition pose in terms of a translation from the origin.

• sensor_orientation_: This field is of the Eigen::Quaternionf type, and it 
defines the sensor acquisition pose as a rotation.

These fields are used by PCL algorithms to perform data processing and can be 
used by the user to create their own algorithms. Once the point cloud structure is 
understood, the next step is to understand the different point types a point cloud  
can contain, how PCL works, and the PCL interface for ROS.
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Different point cloud types
As described earlier, pcl::PointCloud contains a field that serves as a container 
for the points; this field is of the PointT type, which is the template parameter of 
the pcl::PointCloud class and defines the type of point the cloud is meant to store. 
PCL defines many types of points, but a few of the most commonly used ones are  
the following:

• pcl::PointXYZ: This is the simplest type of point and probably one of the 
most used; it stores only 3D xyz information.

• pcl::PointXYZI: This type of point is very similar to the previous one, but 
it also includes a field for the intensity of the point. Intensity can be useful 
when obtaining points based on a certain level of return from a sensor. 
There are two other standard identical point types to this one: the first one is 
pcl::InterestPoint, which has a field to store strength instead of intensity, 
and pcl::PointWithRange, which has a field to store the range instead of 
either intensity or strength.

• pcl::PointXYZRGBA: This type of point stores 3D information as well as 
color (RGB = Red, Green, Blue) and transparency (A = Alpha).

• pcl::PointXYZRGB: This type is similar to the previous point type, but it 
differs in that it lacks the transparency field.

• pcl::Normal: This is one of the most used types of points; it represents the 
surface normal at a given point and a measure of its curvature.

• pcl::PointNormal: This type is exactly the same as the previous one; it 
contains the surface normal and curvature information at a given point, but 
it also includes the 3D xyz coordinates of the point. Variants of this point 
are PointXYZRGBNormal and the PointXYZINormal, which, as the names 
suggest, include color (former) and intensity (latter).

Aside from these common types of points, there are many more standard 
PCL types, such as PointWithViewpoint, MomentInvariants, Boundary, 
PrincipalCurvatures, Histogram, and many more. More importantly, the PCL 
algorithms are all templated so that not only the available types can be used, but also 
semantically valid user-defined types can be used.
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Algorithms in PCL
PCL uses a very specific design pattern throughout the entire library to define point 
cloud processing algorithms. In general, the problem with these types of algorithms 
is that they can be highly configurable, and in order to deliver their full potential, 
the library must provide a mechanism for the user to specify all of the parameters 
required as well as the commonly used defaults.

In order to solve this problem, PCL developers decided to make each algorithm a 
class belonging to a hierarchy of classes with specific commonalities. This approach 
allows PCL developers to reuse existing algorithms in the hierarchy by deriving 
from them and adding the required parameters for the new algorithm, and it also 
allows the user to easily provide the parameter values it requires through accessors, 
leaving the rest to their default value. The following snippet shows how using a PCL 
algorithm usually looks:

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::Po
intXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr result(new pcl::PointCloud<pcl::P
ointXYZ>);
 
pcl::Algorithm<pcl::PointXYZ> algorithm;
algorithm.setInputCloud(cloud);
algorithm.setParameter(1.0);
algorithm.setAnotherParameter(0.33);
algorithm.process (*result);

This approach is only followed when required within the library, so there might  
be exceptions to the rule, such as the I/O functionality, which are not bound by  
the same requirements.

The PCL interface for ROS
The PCL interface for ROS provides the means required to communicate PCL data 
structures through the message-based communication system provided by ROS. To 
do so, there are several message types defined to hold point clouds as well as other 
data products from the PCL algorithms. In combination with these message types, a 
set of conversion functions are also provided to convert from native PCL data types 
to messages. Some of the most useful message types are the following:

• std_msgs::Header: This is not really a message type, but it is usually part 
of every ROS message; it holds the information about when the message was 
sent as well a sequence number and the frame name. The PCL equivalent is 
pcl::Header type.
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• sensor_msgs::PointCloud2: This is possibly the most important type; 
this message is used to transfer the pcl::PointCloud type. However, it is 
important to take into account that this message will be deprecated in future 
versions of PCL in favor of pcl::PCLPointCloud2.

• pcl_msgs::PointIndices: This type stores indices of points belonging to a 
point cloud; the PCL equivalent type is pcl::PointIndices.

• pcl_msgs::PolygonMesh: This holds the information required to 
describe meshes, that is, vertices and polygons; the PCL equivalent type is 
pcl::PolygonMesh.

• pcl_msgs::Vertices: This type holds a set of the vertices as indices in 
an array, for example, to describe a polygon. The PCL equivalent type is 
pcl::Vertices.

• pcl_msgs::ModelCoefficients: This stores the values of the different 
coefficients of a model, for example, the four coefficients required to  
describe a plane. The PCL equivalent type is pcl::ModelCoefficients.

The previous messages can be converted to and from PCL types with the conversion 
functions provided by the ROS PCL package. All of the functions have a similar 
signature, which means that once we know how to convert one type, we know how 
to convert them all. The following functions are provided in the pcl_conversions 
namespace:

void fromPCL(const <PCL Type> &, <ROS Message type> &);
void moveFromPCL(<PCL Type> &, <ROS Message type> &);
void toPCL(const <ROS Message type> &, <PCL Type> &);
void moveToPCL(<ROS Message type> &, <PCL Type> &);

Here, the PCL type must be replaced by one of the previously specified PCL 
types and the ROS message types by their message counterpart. sensor_
msgs::PointCloud2 has a specific set of functions to perform the conversions:

void toROSMsg(const pcl::PointCloud<T> &, sensor_msgs::PointCloud2 &);
void fromROSMsg(const sensor_msgs::PointCloud2 &, pcl::PointCloud<T> 
&);
void moveFromROSMsg(sensor_msgs::PointCloud2 &, pcl::PointCloud<T> &);

You might be wondering about what the difference between each function and its 
move version is. The answer is simple, the normal version performs a deep copy of 
the data, while the move versions perform a shallow copy and nullify the source data 
container. This is referred to as "move semantics".
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My first PCL program
In this section, you will learn how to integrate PCL and ROS. Knowledge and 
understanding of how ROS packages are laid out and how to compile are required 
although the steps will be repeated for simplicity. The example used in this first PCL 
program has no use whatsoever other than serving as a valid ROS node, which will 
successfully compile.

The first step is to create the ROS package for this entire chapter in your workspace. 
This package will depend on the pcl_conversions, pcl_ros, pcl_msgs, and 
sensor_msgs packages:

$ catkin_create_pkg chapter6_tutorials pcl_conversions pcl_ros pcl_msgs 
sensor_msgs

The next step is to create the source directory in the package using the  
following commands:

$ rospack profile

$ roscd  chapter6_tutorials

$ mkdir src

In this new source directory, you should create a file called pcl_sample.cpp with 
the following code, which creates a ROS node and publishes a point cloud with  
100 elements. Again, what the code does should not really be of any concern to 
you as it is just for the purpose of having a valid node that uses PCL and compiles 
without problems:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_ros/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>

main (int argc, char** argv)
{
    ros::init (argc, argv, "pcl_sample");
    ros::NodeHandle nh;
    ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> 
("pcl_output", 1);

    sensor_msgs::PointCloud2 output;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pc
l::PointXYZ>);

    // Fill in the cloud data
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    cloud->width  = 100;
    cloud->height = 1;
    cloud->points.resize (cloud->width * cloud->height);

    //Convert the cloud to ROS message
    pcl::toROSMsg (*cloud, output);

    pcl_pub.publish(output);
    ros::spinOnce();

    return 0;
}

The next step is to add PCL libraries to CMakeLists.txt so that the ROS node 
executable can be properly linked against the system's PCL libraries:

find_package(PCL REQUIRED)

include_directories(include ${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})

Finally, the lines to generate the executable and link against the appropriate libraries 
are added:

add_executable(pcl_sample src/pcl_sample.cpp)
target_link_libraries(pcl_sample ${catkin_LIBRARIES} ${PCL_LIBRARIES})

Once the final step has been reached, the package can be compiled by calling 
catkin_make as usual from the workspace root directory.

Creating point clouds
In this first example, the reader will learn how to create PCL point clouds composed 
solely of pseudorandom points. The PCL point clouds will then be published 
periodically through a topic named /pcl_output. This example provides practical 
knowledge on how to generate point clouds with custom data and how to convert 
them to the corresponding ROS message type in order to broadcast point clouds to 
subscribers. The source code for this first example can be found in the chapter6_
tutorials/src folder, and it is called pcl_create.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>

main (int argc, char **argv)
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{
    ros::init (argc, argv, "pcl_create");

    ros::NodeHandle nh;
    ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> 
("pcl_output", 1);
    pcl::PointCloud<pcl::PointXYZ> cloud;
    sensor_msgs::PointCloud2 output;

    // Fill in the cloud data
    cloud.width  = 100;
    cloud.height = 1;
    cloud.points.resize(cloud.width * cloud.height);

    for (size_t i = 0; i < cloud.points.size (); ++i)
    {
        cloud.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
        cloud.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
        cloud.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
    }

    //Convert the cloud to ROS message
    pcl::toROSMsg(cloud, output);
    output.header.frame_id = "odom";

    ros::Rate loop_rate(1);
    while (ros::ok())
    {
        pcl_pub.publish(output);
        ros::spinOnce();
        loop_rate.sleep();
    }

    return 0;
}

The first step in this, and every other snippet, is including the appropriate header 
files; in this case, we'll include a few PCL-specific headers as well as the standard 
ROS header and the one that contains the declarations for the PointCloud2 message:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
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After the node initialization, a PointCloud2 ROS publisher is created and advertised; 
this publisher will later be used to publish the point clouds created through PCL. Once 
the publisher is created, two variables are defined. The first one, of the PointCloud2 
type, is the message type that will be used to store the information to be sent through 
the publisher. The second variable, of the PointCloud<PointXYZ> type, is the native 
PCL type that will be used to generate the point cloud in the first place:

ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> ("pcl_
output", 1);
pcl::PointCloud<pcl::PointXYZ> cloud;
sensor_msgs::PointCloud2 output;

The next step is to generate the point cloud with relevant data. In order to do so, 
we need to allocate the required space in the point cloud structure as well as set the 
appropriate field. In this case, the point cloud created will be of size 100. Since this 
point cloud is not meant to represent an image, the height will only be of size 1:

// Fill in the cloud data
cloud.width  = 100;
cloud.height = 1;
cloud.points.resize(cloud.width * cloud.height);

With the space allocated and the appropriate fields set, the point cloud is filled with 
random points between 0 and 1024:

for (size_t i = 0; i < cloud.points.size (); ++i)
{
  cloud.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
  cloud.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
  cloud.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}

At this point, the cloud has been created and filled with data. Since this node is 
meant to be a data source, the next and last step in this snippet is to convert the PCL 
point cloud type into a ROS message type and publish it. In order to perform the 
conversion, the toROSMSg function will be used, performing a deep copy of the data 
from the PCL point cloud type to the PointCloud2 message.

Finally, the PointCloud2 message is published periodically at a rate of 1 Hz in order 
to have a constant source of information, albeit immutable:

//Convert the cloud to ROS message
pcl::toROSMsg(cloud, output);
output.header.frame_id = "odom";

ros::Rate loop_rate(1);
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while (ros::ok())
{
  pcl_pub.publish(output);
  ros::spinOnce();
  loop_rate.sleep();
}

Perhaps the reader has also noticed that the frame_id field in the message header 
has been set to the odom value; this has been done in order to be able to visualize  
our PointCloud2 message on the RViz visualizer.

In order to run this example, the first step is to open a terminal and run the  
roscore command:

$ roscore

In another terminal, the following command will run the example:

rosrun chapter6_tutorials pcl_create

To visualize the point cloud, RViz must be run with the following command:

$ rosrun rviz rviz

Once rviz has been loaded, a PointCloud2 object needs to be added by clicking on 
Add and adding the pcl_output topic. The reader must make sure to set odom as 
the fixed frame in the Global Options section. If everything has worked properly, 
a randomly spread point cloud should be shown in the 3D view, just as in the 
following screenshot:
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Loading and saving point clouds to the disk
PCL provides a standard file format to load and store point clouds to the disk as it is 
a common practice among researchers to share interesting datasets for other people 
to experiment with. This format is called PCD, and it has been designed to support 
PCL-specific extensions.

The format is very simple: it starts with a header containing information about  
the point type and the number of elements in the point cloud, followed by a list  
of points conforming to the specified type. The following lines are an example of  
a PCD file header:

# .PCD v.5 - Point Cloud Data file format
FIELDS x y z intensity distance sid
SIZE 4 4 4 4 4 4
TYPE F F F F F F
COUNT 1 1 1 1 1 1
WIDTH 460400
HEIGHT 1
POINTS 460400
DATA ascii

Reading PCD files can be done through the PCL API, which makes it a very 
straightforward process. The following example can be found in chapter6_
tutorials/src, and it is called pcl_read.cpp. This example shows how to  
load a PCD file and publish the resulting point cloud as an ROS message:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/io/pcd_io.h>

main(int argc, char **argv)
{
    ros::init (argc, argv, "pcl_read");

    ros::NodeHandle nh;
    ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> 
("pcl_output", 1);

    sensor_msgs::PointCloud2 output;
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    pcl::PointCloud<pcl::PointXYZ> cloud;

    pcl::io::loadPCDFile ("test_pcd.pcd", cloud);

    pcl::toROSMsg(cloud, output);
    output.header.frame_id = "odom";

    ros::Rate loop_rate(1);
    while (ros::ok())
    {
        pcl_pub.publish(output);
        ros::spinOnce();
        loop_rate.sleep();
    }

    return 0;
}

As always, the first step is to include the required header files. In this particular case, 
the only new header file that has been added is pcl/io/pcd_io.h, which contains 
the required definitions to load and store point clouds to PCD and other file formats.

The main difference between the previous example and this new one is simply the 
mechanism used to obtain the point cloud. While in the first example we manually 
filled the point cloud with random points, in this case, we just load them from the disk:

pcl::io::loadPCDFile ("test_pcd.pcd", cloud);

As we can see, the process of loading a PCD file has no complexity whatsoever. 
Further versions of the PCD file format also allow reading and writing of the  
current origin and orientation of the point cloud.

In order to run the previous example, we need to access the data directory in the 
package provided, which includes an example PCD file containing a point cloud  
that will be used further in this chapter:

$ roscd chapter6_tutorials/data

$ rosrun chapter6_tutorials pcl_read
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As in the previous example, the point cloud can be easily visualized through RViz:

Obvious though it may sound, the second interesting operation when dealing with 
PCD files is creating them. In the following example, our goal is to subscribe to a 
sensor_msgs/PointCloud2 topic and store the received point clouds into a file. The 
code can be found in chapter6_tutorials, and it is called pcl_write.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/io/pcd_io.h>

void cloudCB(const sensor_msgs::PointCloud2 &input)
{
    pcl::PointCloud<pcl::PointXYZ> cloud;
    pcl::fromROSMsg(input, cloud);
    pcl::io::savePCDFileASCII ("write_pcd_test.pcd", cloud);
}

main (int argc, char **argv)
{
    ros::init (argc, argv, "pcl_write");

    ros::NodeHandle nh;
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    ros::Subscriber bat_sub = nh.subscribe("pcl_output", 10, cloudCB);

    ros::spin();

    return 0;
}

The topic subscribed to is the same used in the two previous examples, namely  
pcl_output, so they can be linked together for testing:

ros::Subscriber bat_sub = nh.subscribe("pcl_output", 10, cloudCB);

When a message is received, the callback function is called. The first step in this 
callback function is to define a PCL cloud and convert PointCloud2 that is received, 
using the pcl_conversions function fromROSMsg. Finally, the point cloud is saved 
to the disk in the ASCII format, but it could also be saved in the binary format, which 
will generate smaller PCD files:

void cloudCB(const sensor_msgs::PointCloud2 &input)
{
    pcl::PointCloud<pcl::PointXYZ> cloud;
    pcl::fromROSMsg(input, cloud);
    pcl::io::savePCDFileASCII ("write_pcd_test.pcd", cloud);
}

In order to be able to run this example, it is necessary to have a publisher providing 
point clouds through the pcl_output topic. In this particular case, we will use the 
pcl_read example shown earlier, which fits this requirement. In three different 
terminals, we will run the roscore, the pcl_read node, and the pcl_write node:

$ roscore

$ roscd chapter6_tutorials/data && rosrun chapter6_tutorials pcl_read

$ roscd chapter6_tutorials/data && rosrun chapter6_tutorials pcl_write

If everything worked properly, after the first (or second) message is produced, the 
pcl_write node should have created a file called write_pcd_test.pcd in the data 
directory of the chapter6_tutorials package.
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Visualizing point clouds
PCL provides several ways of visualizing point clouds. The first and simplest is 
through the basic cloud viewer, which is capable of representing any sort of PCL 
point cloud in a 3D viewer, while at the same time providing a set of callbacks for 
user interaction. In the following example, we will create a small node that will 
subscribe to sensor_msgs/PointCloud2 and the node will display sensor_msgs/
PointCloud2 using cloud_viewer (basic) from the library. The code for this example 
can be found in the chapter6_tutorials/src source directory, and it is called pcl_
visualize.cpp:

#include <iostream>
#include <ros/ros.h>
#include <pcl/visualization/cloud_viewer.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>

class cloudHandler
{
public:
    cloudHandler()
    : viewer("Cloud Viewer")
    {
        pcl_sub = nh.subscribe("pcl_output", 10, 
&cloudHandler::cloudCB, this);
        viewer_timer = nh.createTimer(ros::Duration(0.1), 
&cloudHandler::timerCB, this);
    }

    void cloudCB(const sensor_msgs::PointCloud2 &input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud;
        pcl::fromROSMsg(input, cloud);

        viewer.showCloud(cloud.makeShared());
    }

    void timerCB(const ros::TimerEvent&)
    {
        if (viewer.wasStopped())
        {
            ros::shutdown();
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        }
    }

protected:
    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
    pcl::visualization::CloudViewer viewer;
    ros::Timer viewer_timer;
};

main (int argc, char **argv)
{
    ros::init (argc, argv, "pcl_visualize");

    cloudHandler handler;

    ros::spin();

    return 0;
}

The code for this particular example introduces a different pattern; in this case, all of 
our functionality is encapsulated in a class, which provides a clean way of sharing 
variables with the callback functions, as opposed to using global variables.

The constructor implicitly initializes the node handle through the default 
constructor, which is automatically called for the missing objects in the initializer 
list. The cloud handle is explicitly initialized with a very simple string, which 
corresponds to the window name, after everything is correctly initialized. The 
subscriber to the pcl_output topic is set as well as a timer, which will trigger a 
callback every 100 milliseconds. This timer is used to periodically check whether  
the window has been closed and, if this is the case, shut down the node:

cloudHandler()
: viewer("Cloud Viewer")
{
  pcl_sub = nh.subscribe("pcl_output", 10, &cloudHandler::cloudCB, 
this);
  viewer_timer = nh.createTimer(ros::Duration(0.1), 
&cloudHandler::timerCB, this);
}
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The point cloud callback function is not very different from the previous examples 
except that, in this particular case, the PCL point cloud is passed directly to the 
viewer through the showCloud function, which automatically updates the display:

void cloudCB(const sensor_msgs::PointCloud2 &input)
{
  pcl::PointCloud<pcl::PointXYZ> cloud;
  pcl::fromROSMsg(input, cloud);
  
  viewer.showCloud(cloud.makeShared());
}

Since the viewer window usually comes with a close button as well as a keyboard 
shortcut to close the window, it is important to take into account this event and 
act upon it by, for example, shutting down the node. In this particular case, we are 
handling the current state of the window in a callback, which is called through a ROS 
timer every 100 milliseconds. If the viewer has been closed, our action is to simply 
shut down the node:

void timerCB(const ros::TimerEvent&)
{
  if (viewer.wasStopped())
  {
    ros::shutdown();
  }
}

To execute this example, and any other for that matter, the first step is to run the 
roscore command in a terminal:

$ roscore

In a second terminal, we will run the pcl_read example and a source of data, such as 
a reminder, using the following commands:

$ roscd chapter6_tutorials/data

$ rosrun chapter6_tutorials pcl_read

Finally, in a third terminal, we will run the following command:

$ rosrun chapter6_tutorials pcl_visualize
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Running this code will cause a window to launch; this window will display the point 
cloud contained in the test PCD file provided with the examples. The following 
screenshot shows this:

The current example uses the simplest possible viewer, namely the PCL cloud_
viewer, but the library also provides a much more complex and complete 
visualization component called PCLVisualizer. This visualizer is capable of 
displaying point clouds, meshes, and surfaces, as well as including multiple 
viewports and color spaces. An example of how to use this particular visualizer is 
provided in the chapter6_tutorials source directory called pcl_visualize2.cpp.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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In general, all of the visualizers provided by PCL use the same underlying 
functionality and work in much the same way. The mouse can be used to move 
around the 3D view; in combination with the shift, it allows the you to translate the 
image, and in combination with the control, it allows you to rotate the image. Finally, 
upon pressing h, the help text is printed in the current terminal, which should look 
like the following screenshot:

Filtering and downsampling
The two main issues that we may face when attempting to process point clouds 
are excessive noise and excessive density. The former causes our algorithms to 
misinterpret the data and produce incorrect or inaccurate results, while the latter 
makes our algorithms take a long time to complete their operation. In this section, we 
will provide insight into how to reduce the amount of noise or outliers of our point 
clouds and how to reduce the point density without losing valuable information.
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The first part is to create a node that will take care of filtering outliers from the point 
clouds produced in the pcl_output topic and sending them back through the pcl_
filtered topic. The example can be found in the source directory of the chapter6_
tutorials package, and it is called pcl_filter.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/filters/statistical_outlier_removal.h>

class cloudHandler
{
public:
    cloudHandler()
    {
        pcl_sub = nh.subscribe("pcl_output", 10, 
&cloudHandler::cloudCB, this);
        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
filtered", 1);
    }

    void cloudCB(const sensor_msgs::PointCloud2& input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud;
        pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
        sensor_msgs::PointCloud2 output;

        pcl::fromROSMsg(input, cloud);

        pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;
        statFilter.setInputCloud(cloud.makeShared());
        statFilter.setMeanK(10);
        statFilter.setStddevMulThresh(0.2);
        statFilter.filter(cloud_filtered);

        pcl::toROSMsg(cloud_filtered, output);
        pcl_pub.publish(output);
    }

protected:
    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
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    ros::Publisher pcl_pub;
};

main(int argc, char** argv)
{
    ros::init(argc, argv, "pcl_filter");

    cloudHandler handler;

    ros::spin();

    return 0;
}

Just as with the previous example, this one uses a class that contains a publisher as a 
member variable that is used in the callback function. The callback function defines 
two PCL point clouds, one for input messages and one for the filtered point cloud. As 
always, the input point cloud is converted using the standard conversion functions:

pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
sensor_msgs::PointCloud2 output;

pcl::fromROSMsg(input, cloud);

Now, this is where things start getting interesting. In order to perform filtering, we 
will use the statistical outlier removal algorithm provided by PCL. This algorithm 
performs an analysis of the point cloud and removes those points that do not 
satisfy a specific statistical property, which, in this case, is the average distance 
in a neighborhood, removing all of those points that deviate too much from the 
average. The number of neighbors to use for the average computation can be set by 
the setMeanK function, and the multiplier on the standard deviation threshold can 
also be set through setStddevMulThresh. The following piece of code handles the 
filtering and sets the cloud_filtered point cloud with our new noiseless cloud:

pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;
statFilter.setInputCloud(cloud.makeShared());
statFilter.setMeanK(10);
statFilter.setStddevMulThresh(0.2);
statFilter.filter(cloud_filtered);
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Finally, and as always, the filtered cloud is converted to PointCloud2 and published 
so that our other algorithms can make use of this new point cloud to provide more 
accurate results:

pcl::toROSMsg (cloud_filtered, output);
pcl_pub.publish(output);

In the following screenshot, we can see the result of the previous code when it is 
applied on the point cloud provided in our test PCD file. The original point cloud can 
be seen on the left-hand side, and the filtered one on the right-hand side. The results 
are not perfect, but we can observe how much of the noise has been removed, which 
means that we can now proceed with reducing the density of the filtered point cloud.

Reducing the density of a point cloud, or any other data set for that matter, is called 
downsampling. There are several techniques that can be used to downsample a point 
cloud, but some of them are more rigorous or provide better results than others. 
In general, the goal of downsampling a point cloud is to improve the performance 
of our algorithms; for that reason, we need our downsampling algorithms to keep 
the basic properties and structure of our point cloud so that the end result of our 
algorithms doesn't change too much.

In the following example, we are going to demonstrate how to perform 
downsampling on point clouds with Voxel Grid Filter. In this case, the input point 
clouds are going to be the filtered ones from the previous example so that we can 
chain both examples together to produce better results in further algorithms. The 
example can be found in the source directory of the chapter6_tutorials package, 
and it's called pcl_downsampling.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/filters/voxel_grid.h>

class cloudHandler
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{
public:
    cloudHandler()
    {
        pcl_sub = nh.subscribe("pcl_filtered", 10, 
&cloudHandler::cloudCB, this);
        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
downsampled", 1);
    }

    void cloudCB(const sensor_msgs::PointCloud2 &input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud;
        pcl::PointCloud<pcl::PointXYZ> cloud_downsampled;
        sensor_msgs::PointCloud2 output;

        pcl::fromROSMsg(input, cloud);

        pcl::VoxelGrid<pcl::PointXYZ> voxelSampler;
        voxelSampler.setInputCloud(cloud.makeShared());
        voxelSampler.setLeafSize(0.01f, 0.01f, 0.01f);
        voxelSampler.filter(cloud_downsampled);

        pcl::toROSMsg(cloud_downsampled, output);
        pcl_pub.publish(output);

    }
protected:
    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
    ros::Publisher pcl_pub;
};

main(int argc, char **argv)
{
    ros::init(argc, argv, "pcl_downsampling");

    cloudHandler handler;

    ros::spin();

    return 0;
}
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This example is exactly the same as the previous one, with the only differences being 
the topics subscribed and published, which, in this case, are pcl_filtered and pcl_
downsampled, and the algorithms used to perform the filtering on the point cloud.

As said earlier, the algorithm used is Voxel Grid Filter, which partitions the  
point cloud into voxels, or more accurately a 3D grid, and replaces all of the points 
contained in each voxel with the centroid of that subcloud. The size of each voxel can 
be specified through setLeafSize and will determine the density of our point cloud:

pcl::VoxelGrid<pcl::PointXYZ> voxelSampler;
voxelSampler.setInputCloud(cloud.makeShared());
voxelSampler.setLeafSize(0.01f, 0.01f, 0.01f);
voxelSampler.filter(cloud_downsampled);

The following image shows the results of both the filtered and downsampled images 
when compared to the original one. You can appreciate how the structure has been 
kept, the density reduced, and much of the noise completely eliminated.

To execute both examples, as always we start running roscore:

$ roscore

In a second terminal, we will run the pcl_read example and a source of data:

$ roscd chapter6_tutorials/data

$ rosrun chapter6_tutorials pcl_read

In a third terminal, we will run the filtering example, which will produce the  
pcl_filtered image for the downsampling example:

$ rosrun chapter6_tutorials pcl_filter

Finally, in the fourth terminal, we will run the downsampling example:

$ rosrun chapter6_tutorials pcl_downsampling
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As always, the results can be seen on rviz, but in this case, the pcl_visualizer2 
example provided in the package can also be used, although you might need to 
tweak the subscribed topics.

Registration and matching
Registration and matching is a common technique used in several different fields 
that consists of finding common structures or features in two datasets and using 
them to stitch the datasets together. In the case of point cloud processing, this can be 
achieved as easily as finding where one point cloud ends and where the other one 
starts. These techniques are very useful when obtaining point clouds from moving 
sources at a high rate, and we have an estimate of the movement of the source. With 
this algorithm, we can stitch each of those point clouds together and reduce the 
uncertainty in our sensor pose estimation.

PCL provides an algorithm called Iterative Closest Point to perform registration  
and matching. We will use this algorithm in the following example, which can be 
found in the source directory of the chapter6_tutorials package, and it's called 
pcl_matching.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl/registration/icp.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>

class cloudHandler
{
public:
    cloudHandler()
    {
        pcl_sub = nh.subscribe("pcl_downsampled", 10, 
&cloudHandler::cloudCB, this);
        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
matched", 1);
    }

    void cloudCB(const sensor_msgs::PointCloud2 &input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud_in;
        pcl::PointCloud<pcl::PointXYZ> cloud_out;
        pcl::PointCloud<pcl::PointXYZ> cloud_aligned;



Point Clouds

[ 256 ]

        sensor_msgs::PointCloud2 output;

        pcl::fromROSMsg(input, cloud_in);

        cloud_out = cloud_in;

        for (size_t i = 0; i < cloud_in.points.size (); ++i)
        {
            cloud_out.points[i].x = cloud_in.points[i].x + 0.7f;
        }

        pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
        icp.setInputSource(cloud_in.makeShared());
        icp.setInputTarget(cloud_out.makeShared());

        icp.setMaxCorrespondenceDistance(5);
        icp.setMaximumIterations(100);
        icp.setTransformationEpsilon (1e-12);
        icp.setEuclideanFitnessEpsilon(0.1);

        icp.align(cloud_aligned);

        pcl::toROSMsg(cloud_aligned, output);
        pcl_pub.publish(output);
    }

protected:
    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
    ros::Publisher pcl_pub;
};

main(int argc, char **argv)
{
    ros::init(argc, argv, "pcl_matching");

    cloudHandler handler;

    ros::spin();

    return 0;
}
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This example uses the pcl_downsampled topic as the input source of point clouds 
in order to improve the performance of the algorithm; the end result is published in 
the pcl_matched topic. The algorithm used for registration and matching takes three 
point clouds: the first one is the point cloud to transform, the second one is the fixed 
cloud to which the first one should be aligned, and the third one is the end result 
point cloud:

pcl::PointCloud<pcl::PointXYZ> cloud_in;
pcl::PointCloud<pcl::PointXYZ> cloud_out;
pcl::PointCloud<pcl::PointXYZ> cloud_aligned;

To simplify matters, and since we don't have a continuous source of point clouds, 
we are going to use the same original point cloud as the fixed cloud but displaced on 
the x axis. The expected behavior of the algorithm would then be to align both point 
clouds together:

cloud_out = cloud_in;

for (size_t i = 0; i < cloud_in.points.size (); ++i)
{
  cloud_out.points[i].x = cloud_in.points[i].x + 0.7f;
}

The next step is to call the Iterative Closest Point algorithm to perform the registration 
and matching. This iterative algorithm uses Singular Value Decomposition (SVD) to 
calculate the transformations to be done on the input point cloud towards decreasing 
the gap to the fixed point cloud. The algorithm has three basic stopping conditions:

• The difference between the previous and current transformations is 
smaller than a certain threshold. This threshold can be set through the 
setTransformationEpsilon function.

• The number of iterations has reached the maximum set by the user.  
This maximum can be set through the setMaximumIterations function.

• Finally, the sum of the Euclidean squared errors between two consecutive 
steps in the loop is below a certain threshold. This specific threshold can be 
set through the setEuclideanFitnessEpsilon function.

Another interesting parameter that is used to improve the accuracy of 
the result is the correspondence distance, which can be set through the 
setMaxCorrespondanceDistance function. This parameter defines the minimum 
distance that two correspondent points need to have between them to be considered 
in the alignment process.
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With all of these parameters, the fixed point cloud, and the input point cloud, the 
algorithm is capable of performing the registration and matching and returning  
the end result point cloud after the iterative transformations:

pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(cloud_in.makeShared());
icp.setInputTarget(cloud_out.makeShared());
icp.setMaxCorrespondenceDistance(5);
icp.setMaximumIterations(100);
icp.setTransformationEpsilon (1e-12);
icp.setEuclideanFitnessEpsilon(0.1);
icp.align(cloud_aligned);

Finally, the resulting point cloud is converted into PointCloud2 and published 
through the corresponding topic:

pcl::toROSMsg(cloud_aligned, output);
pcl_pub.publish(output);

In order to run this example, we need to follow the same instructions as the filtering 
and downsampling example, starting with roscore in one terminal:

$ roscore

In a second terminal, we will run the pcl_read example and a source of data:

$ roscd chapter6_tutorials/data

$ rosrun chapter6_tutorials pcl_read

In a third terminal, we will run the filtering example:

$ rosrun chapter6_tutorials pcl_filter

In a fourth terminal, we will run the downsampling example:

$ rosrun chapter6_tutorials pcl_downsampling

Finally, we will run the registration and matching node that requires the pcl_
downsampled topic, which is produced by the chain of nodes run before:

$ rosrun chapter6_tutorials pcl_matching
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The end result can be seen in the following image, which has been obtained from 
rviz. The blue one is the original point cloud obtained from the PCD file, and 
the white point cloud is the aligned one obtained from the Iterative Closest Point 
algorithm. It has to be noted that the original point cloud was translated in the x 
axis, so the results are consistent with the point cloud, completely overlapping the 
translated image, as shown in the following screenshot:

Partitioning point clouds
Oftentimes, when processing our point clouds, we might need to perform operations 
that require accessing a local region of a point cloud or manipulating the neighborhood 
of specific points. Since point clouds store data in a one-dimensional data structure, 
these kinds of operations are inherently complex. In order to solve this issue, PCL 
provides two spatial data structures, called the kd-tree and the octree, which can 
provide an alternative and more structured representation of any point cloud.
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As the name suggests, an octree is basically a tree structure in which each node has 
eight children, and which can be used to partition the 3D space. In contrast, the 
kd-tree is a binary tree in which nodes represent k-dimensional points. Both data 
structures are very interesting, but, in this particular example, we are going to learn 
how to use the octree to search and retrieve all the points surrounding a specific 
point. The example can be found in the source directory of the chapter6_tutorials 
package, and it's called pcl_partitioning.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/octree/octree.h>

class cloudHandler
{
public:
    cloudHandler()
    {
        pcl_sub = nh.subscribe("pcl_downsampled", 10, 
&cloudHandler::cloudCB, this);
        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
partitioned", 1);
    }

    void cloudCB(const sensor_msgs::PointCloud2 &input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud;
        pcl::PointCloud<pcl::PointXYZ> cloud_partitioned;
        sensor_msgs::PointCloud2 output;

        pcl::fromROSMsg(input, cloud);

        float resolution = 128.0f;
        pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree 
(resolution);

        octree.setInputCloud (cloud.makeShared());
        octree.addPointsFromInputCloud ();

        pcl::PointXYZ center_point;
        center_point.x = 0 ;
        center_point.y = 0.4;
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        center_point.z = -1.4;

        float radius = 0.5;
        std::vector<int> radiusIdx;
        std::vector<float> radiusSQDist;
        if (octree.radiusSearch (center_point, radius, radiusIdx, 
radiusSQDist) > 0)
        {
            for (size_t i = 0; i < radiusIdx.size (); ++i)
            {
                cloud_partitioned.points.push_back(cloud.
points[radiusIdx[i]]);
            }
        }

        pcl::toROSMsg(cloud_partitioned, output);
        output.header.frame_id = "odom";
        pcl_pub.publish(output);
    }

protected:
    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
    ros::Publisher pcl_pub;
};

main(int argc, char **argv)
{
    ros::init(argc, argv, "pcl_partitioning");

    cloudHandler handler;

    ros::spin();

    return 0;
}
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As usual, this example uses the pcl_downsampled topic as an input source of point 
clouds and publishes the resulting partitioned point cloud to the pcl_partitioned 
topic. The handler function starts by converting the input point cloud to a PCL 
point cloud. The next step is to create an octree-searching algorithm, which requires 
passing a resolution value that will determine the size of the voxels at the lowest 
level of the tree and, consequently, other properties such as the tree's depth. The 
algorithm also requires to be given the point cloud to explicitly load the points:

float resolution = 128.0f;
pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree 
(resolution);

octree.setInputCloud (cloud.makeShared());
octree.addPointsFromInputCloud ();

The next step is to define the center point of the partition; in this case, it has been 
handpicked to be close to the top of the point cloud:

pcl::PointXYZ center_point;
center_point.x = 0 ;
center_point.y = 0.4;
center_point.z = -1.4;

We can now perform a search in a radius around that specific point using the 
radiusSearch function from the octree search algorithm. This particular function is 
used to output arguments that return the indices of the points that fall in that radius 
and the squared distance from those points to the center point provided. With those 
indices, we can then create a new point cloud containing only the points belonging to 
the partition:

float radius = 0.5;
std::vector<int> radiusIdx;
std::vector<float> radiusSQDist;
if (octree.radiusSearch (center_point, radius, radiusIdx, 
radiusSQDist) > 0)
{
  for (size_t i = 0; i < radiusIdx.size (); ++i)
  {
    cloud_partitioned.points.push_back(cloud.points[radiusIdx[i]]);
  }
}
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Finally, the point cloud is converted to the PointCloud2 message type and published 
in the output topic:

pcl::toROSMsg(cloud_partitioned, output);
output.header.frame_id = "odom";
pcl_pub.publish(output);

In order to run this example, we need to run the usual chain of nodes, starting  
with roscore:

$ roscore

In a second terminal, we can run the pcl_read example and a source of data:

$ roscd chapter6_tutorials/data

$ rosrun chapter6_tutorials pcl_read

In a third terminal, we will run the filtering example:

$ rosrun chapter6_tutorials pcl_filter

In a fourth terminal, we will run the downsampling example:

$ rosrun chapter6_tutorials pcl_downsampling

Finally, we will run this example:

$ rosrun chapter6_tutorials pcl_partitioning

In the following image, we can see the end result of the partitioning process.  
Since we handpicked the point to be close to the top of the point cloud, we managed 
to extract part of the cup and the table. This example only shows a tiny fraction of  
the potential of the octree data structure, but it's a good starting point to further  
your understanding.
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Segmentation
Segmentation is the process of partitioning a dataset into different blocks of data 
satisfying certain criteria. The segmentation process can be done in many different 
ways and with varied criteria; sometimes, it may involve extracting structured 
information from a point cloud based on a statistical property, and in other cases,  
it can simply require extracting points in a specific color range.

In many cases, our data might fit a specific mathematical model, such as a plane, 
line, or sphere, amongst others. When this is the case, it is possible to use a model 
estimation algorithm to calculate the parameters for the model that fits our data. 
With those parameters, it is then possible to extract the points belonging to that 
model and evaluate how well they fit it.

In this example, we are going to show how to perform model-based segmentation of 
a point cloud. We are going to constrain ourselves to a planar model, which is one of 
the most common mathematical models you can usually fit to a point cloud. For this 
example, we will also perform the model estimation using a widespread algorithm 
called RANdom SAmple Consensus (RANSAC), which is an iterative algorithm 
capable of performing accurate estimations even in the presence of outliers.

The example code can be found in the chapter6_tutorials package, and it's called 
pcl_planar_segmentation.cpp:

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
#include <sensor_msgs/PointCloud2.h>

class cloudHandler
{
public:
    cloudHandler()
    {
        pcl_sub = nh.subscribe("pcl_downsampled", 10, 
&cloudHandler::cloudCB, this);
        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
segmented", 1);
        ind_pub = nh.advertise<pcl_msgs::PointIndices>("point_
indices", 1);
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        coef_pub = nh.advertise<pcl_msgs::ModelCoefficients>("plana
r_coef", 1);
    }

    void cloudCB(const sensor_msgs::PointCloud2 &input)
    {
        pcl::PointCloud<pcl::PointXYZ> cloud;
        pcl::PointCloud<pcl::PointXYZ> cloud_segmented;

        pcl::fromROSMsg(input, cloud);

        pcl::ModelCoefficients coefficients;
        pcl::PointIndices::Ptr inliers(new pcl::PointIndices());

        pcl::SACSegmentation<pcl::PointXYZ> segmentation;
        segmentation.setModelType(pcl::SACMODEL_PLANE);
        segmentation.setMethodType(pcl::SAC_RANSAC);
        segmentation.setMaxIterations(1000);
        segmentation.setDistanceThreshold(0.01);
        segmentation.setInputCloud(cloud.makeShared());
        segmentation.segment(*inliers, coefficients);

        pcl_msgs::ModelCoefficients ros_coefficients;
        pcl_conversions::fromPCL(coefficients, ros_coefficients);
        ros_coefficients.header.stamp = input.header.stamp;
        coef_pub.publish(ros_coefficients);

        pcl_msgs::PointIndices ros_inliers;
        pcl_conversions::fromPCL(*inliers, ros_inliers);
        ros_inliers.header.stamp = input.header.stamp;
        ind_pub.publish(ros_inliers);

        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud(cloud.makeShared());
        extract.setIndices(inliers);
        extract.setNegative(false);
        extract.filter(cloud_segmented);

        sensor_msgs::PointCloud2 output;
        pcl::toROSMsg(cloud_segmented, output);
        pcl_pub.publish(output);
    }

protected:
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    ros::NodeHandle nh;
    ros::Subscriber pcl_sub;
    ros::Publisher pcl_pub, ind_pub, coef_pub;
};

main(int argc, char **argv)
{
    ros::init(argc, argv, "pcl_planar_segmentation");

    cloudHandler handler;

    ros::spin();

    return 0;
}

As the reader might have noticed, two new message types are being used in the 
advertised topics. As their names suggest, the ModelCoefficients messages store 
the coefficients of a mathematical model, and PointIndices stores the indices of the 
points of a point cloud. We will publish these as an alternative way of representing 
the extracted information, which could then be used in combination with the original 
point cloud (pcl_downsampled) to extract the correct point. As a hint, this can be 
done by setting the timestamp of the published objects to the same timestamp of the 
original point cloud message and using ROS message filters:

pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_segmented", 1);
ind_pub = nh.advertise<pcl_msgs::PointIndices>("point_indices", 1);
coef_pub = nh.advertise<pcl_msgs::ModelCoefficients>("planar_coef", 
1);

As always, in the callback function, we perform the conversion from the 
PointCloud2 message to the point cloud type. In this case, we also define two new 
objects that correspond to the native ModelCoefficients and PointIndices types, 
which will be used by the segmentation algorithm:

  pcl::PointCloud<pcl::PointXYZ> cloud;
  pcl::PointCloud<pcl::PointXYZ> cloud_segmented;

  pcl::fromROSMsg(input, cloud);

  pcl::ModelCoefficients coefficients;
  pcl::PointIndices::Ptr inliers(new pcl::PointIndices());
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The segmentation algorithm lets us define ModelType and MethodType, with the 
former being the mathematical model we are looking to fit and the latter being 
the algorithm to use. As we explained before, we are using RANSAC due to its 
robustness against outliers. The algorithm also lets us define the two stopping 
criteria: the maximum number of iterations (setMaxIterations) and the maximum 
distance to the model (setDistanceThreshold). With those parameters set, plus the 
input point cloud, the algorithm can then be performed, returning the inliers (points 
which fall in the model) and the coefficients of the model:

pcl::SACSegmentation<pcl::PointXYZ> segmentation;
segmentation.setModelType(pcl::SACMODEL_PLANE);
segmentation.setMethodType(pcl::SAC_RANSAC);
segmentation.setMaxIterations(1000);
segmentation.setDistanceThreshold(0.01);
segmentation.setInputCloud(cloud.makeShared());
segmentation.segment(*inliers, coefficients);

Our next step is to convert and publish the inliers and the model coefficients. As 
usual, conversions are performed with the standard functions, but you might notice 
that the namespace and signature of the conversion function is different from the 
one being used for point cloud conversions. To further improve this example, these 
messages also include the timestamp of the original point cloud in order to link them 
together. This also allows the use of the ROS message filters on other nodes to create 
callbacks containing objects that are linked together:

pcl_msgs::ModelCoefficients ros_coefficients;
pcl_conversions::fromPCL(coefficients, ros_coefficients);
ros_coefficients.header.stamp = input.header.stamp;
coef_pub.publish(ros_coefficients);

pcl_msgs::PointIndices ros_inliers;
pcl_conversions::fromPCL(*inliers, ros_inliers);
ros_inliers.header.stamp = input.header.stamp;
ind_pub.publish(ros_inliers);
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In order to create the segmented point cloud, we extract the inliers from the point 
cloud. The easiest way to do this is with the ExtractIndices object, but it could be 
easily done by simply looping through the indices and pushing the corresponding 
points into a new point cloud:

pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud.makeShared());
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(cloud_segmented);

Finally, we convert the segmented point cloud into a PointCloud2 message type and 
we publish it:

sensor_msgs::PointCloud2 output;
pcl::toROSMsg (cloud_segmented, output);
pcl_pub.publish(output)

The result can be seen in the following image; the original point cloud is represented 
in white and the segmented inliers are represented in blueish. In this particular case, 
the floor was extracted as it's the biggest flat surface. This is quite convenient as it  
is probably one of the main elements we will usually want to extract from our  
point clouds.



Chapter 6

[ 269 ]

Summary
In this chapter we have explored the different tools, algorithms and interfaces which 
can be used to work with point clouds in ROS. The reader might have noticed 
that we have tried to link the examples together to provide more insight into how 
these kinds of nodes might be used in a reusable manner. In any case, given the 
computational price of point cloud processing, any kind of architectural design will 
be inextricably linked to the computational capabilities of the system at hand.

The data flow of our examples should start with all of the data producers, which are 
the pcl_create and the pcl_read. It should continue to the data filters which are 
the pcl_filter and the pcl_downsampling. After the filtering is performed, more 
complex information can be extracted through the pcl_planar_segmentation,  
pcl_partitioning and pcl_matching. Finally, the data can be written to disk 
through the pcl_write or visualized through the pcl_visualize.

The main objective of this particular chapter was to provide clear and concise 
examples of how to integrate the basic capabilities of the PCL library with ROS, 
something which can be limited to messages and conversion functions. In order 
to accomplish this goal, we have taken the liberty of also explaining the basic 
techniques and common algorithms used to perform data processing on point  
clouds as we are aware of the growing importance of this kind of knowledge.
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3D Modeling and Simulation
Programming directly on a real robot gives us a good feedback and is more impressive 
than simulations, but not everybody has access to real robots. For this reason, we have 
programs that simulate the physical world.

In this chapter, we are going to learn how to:

• Create a 3D model of our robot
• Provide movements, physical limits, inertia, and other physical aspects  

to our robot
• Add simulated sensors to our 3D model
• Use the model on the simulator

A 3D model of our robot in ROS
The way ROS uses the 3D model of a robot or its parts, to simulate them or to simply 
help the developers in their daily work, is by means of the URDF files.

Unified Robot Description Format (URDF) is an XML format that describes a robot, 
its parts, its joints, dimensions, and so on. Every time you see a 3D robot on ROS, 
for example, the PR2 (Willow Garage) or the Robonaut (NASA), a URDF file is 
associated with it. In the next few sections, we will learn how to create this file, and 
the format for defining different values.

Creating our first URDF file
The robot that we are going to build in the following sections, is a mobile robot with 
four wheels and an arm with a gripper.
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To start with, we create the base of the robot with four wheels. Create a new file in the 
chapter7_tutorials/robot1_description/urdf folder with the name robot1.
urdf, and enter the following code; this URDF code is based on XML, and the 
indentation is not mandatory but advisable. So, use an editor that supports it or an 
adequate plugin or configuration (for example, an appropriate .vimrc file in Vim):

<?xml version="1.0"?>
  <robot name="Robot1">
    <link name="base_link">
      <visual>
        <geometry>
          <box size="0.2 .3 .1"/>
        </geometry>
        <origin rpy="0 0 0" xyz="0 0 0.05"/>
        <material name="white">
          <color rgba="1 1 1 1"/>
        </material>
      </visual>
    </link>

    <link name="wheel_1">
      <visual>
        <geometry>
          <cylinder length="0.05" radius="0.05"/>
        </geometry>
        <origin rpy="0 1.5 0" xyz="0.1 0.1 0"/>
          <material name="black">
            <color rgba="0 0 0 1"/>
          </material>
      </visual>
    </link>

    <link name="wheel_2">
      <visual>
        <geometry>
          <cylinder length="0.05" radius="0.05"/>
        </geometry>
        <origin rpy="0 1.5 0" xyz="-0.1 0.1 0"/>
        <material name="black"/>
      </visual>
    </link>
    <link name="wheel_3">
      <visual>
        <geometry>
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          <cylinder length="0.05" radius="0.05"/>
        </geometry>
        <origin rpy="0 1.5 0" xyz="0.1 -0.1 0"/>
        <material name="black"/>
      </visual>
    </link>

    <link name="wheel_4">
      <visual>
        <geometry>
          <cylinder length="0.05" radius="0.05"/>
        </geometry>
        <origin rpy="0 1.5 0" xyz="-0.1 -0.1 0"/>
        <material name="black"/>
      </visual>
    </link>

    <joint name="base_to_wheel1" type="fixed">
      <parent link="base_link"/>
      <child link="wheel_1"/>
      <origin xyz="0 0 0"/>
    </joint>

    <joint name="base_to_wheel2" type="fixed">
      <parent link="base_link"/>
      <child link="wheel_2"/>
      <origin xyz="0 0 0"/>
    </joint>

    <joint name="base_to_wheel3" type="fixed">
      <parent link="base_link"/>
      <child link="wheel_3"/>
      <origin xyz="0 0 0"/>
    </joint>

    <joint name="base_to_wheel4" type="fixed">
      <parent link="base_link"/>
      <child link="wheel_4"/>
      <origin xyz="0 0 0"/>
    </joint>
  </robot>
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Explaining the file format
As you can see in the code, there are two principal fields that describe the geometry 
of a robot: links and joints.

The first link has the name base_link; this name must be unique to the file:

<link name="base_link">
  <visual>
    <geometry>
      <box size="0.2 .3 .1" />
    </geometry>
    <origin rpy="0 0 0" xyz="0 0 0.05" />
    <material name="white">
      <color rgba="1 1 1 1" />
    </material>
  </visual>
</link>

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

In order to define what we will see on the simulator, we use the visual field in the 
preceding code. Inside the code, you can define the geometry (cylinder, box, sphere, 
or mesh), the material (color or texture), and the origin. We then have the code for 
the joint, shown as follows:

<joint name="base_to_wheel1" type="fixed">
  <parent link="base_link"/>
  <child link="wheel_1"/>
  <origin xyz="0 0 0"/>
</joint>

In the joint field, we define the name, which must be unique as well. Also, we 
define the type of joint (fixed, revolute, continuous, floating, or planar), the 
parent, and the child. In our case, wheel_1 is a child of base_link. It is fixed, but  
as it is a wheel we can set it to revolute, for example.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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To check whether the syntax is fine or whether we have errors, we can use the 
check_urdf command tool:

$ check_urdf robot1.urdf

The output of the command will be as follows:

robot name is: Robot1

---------- Successfully Parsed XML ---------------

root Link: base_link has 4 child(ren)

  child(1):  wheel_1

  child(2):  wheel_2

  child(3):  wheel_3

  child(4):  wheel_4

If you want to see it graphically, you can use the urdf_to_graphiz command tool:

$ urdf_to_graphiz robot1.urdf

This command generates two files: origins.pdf and origins.gv. You can open the 
file using evince:

$ evince origins.pdf

The following image is what you will receive as an output:

Watching the 3D model on rviz
Now that we have the model of our robot, we can use it on rviz to watch it in 3D 
and see the movements of the joints.
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We will create the display.launch file in the robot1_description/launch folder, 
and put the following code in it:

<?xml version="1.0"?>

<launch>
  <arg name="model" />
  <arg name="gui" default="False" />
  <param name="robot_description" textfile="$(arg model)" />
  <param name="use_gui" value="$(arg gui)" />
  <node name="joint_state_publisher" pkg="joint_state_publisher" 
type="joint_state_publisher" />
  <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher" />
</launch>

We will launch it with the following command:

$ roslaunch robot1_description display.launch model:="`rospack find 
robot1_description`/urdf/robot1.urdf"

If everything is fine, you will see the following window with the 3D model on it:
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Let's finish the design by adding some parts: a base arm, an articulated arm, and 
a gripper. Try to finish the design yourself; you can find the final model in the 
chapter7_tutorials/robot1_description/urdf/robot1.urdf file. You can see 
the final design in the following screenshot as well:

Loading meshes to our models
Sometimes, we want to give more realistic elements to our model or make a more 
elaborate design, rather than using basic geometric objects/blocks. It is possible 
to load meshes generated by us or to use meshes of other models. URDF models 
support .stl and .dae meshes. For our model, we used the PR2's gripper. In the 
following code, you can see an example of how to use it:

<link name="left_gripper">
  <visual>
    <origin rpy="0 0 0" xyz="0 0 0" />
    <geometry>
      <mesh filename="package://pr2_description/meshes/gripper_v0/l_
finger.dae" />
    </geometry>
  </visual>
</link>
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This looks like the sample link that we used before, but in the geometry section,  
we added the mesh that we are going to use. You can see the result in the  
following screenshot:

Making our robot model movable
To convert the model into a robot that can actually move, the only thing you have to 
do is take care of the type of joints it uses. If you check the URDF model file, you will 
see the different types of joints used in this model.

The most used type of joint is the revolute joint. For example, the one used on 
arm_1_to_arm_base is shown in the following code:

<joint name="arm_1_to_arm_base" type="revolute">
  <parent link="arm_base"/>
  <child link="arm_1"/>
  <axis xyz="1 0 0"/>
  <origin xyz="0 0 0.15"/>
  <limit effort ="1000.0" lower="-1.0" upper="1.0" velocity="0.5"/>
</joint>
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This means that they rotate in the same way that the continuous joints do, but 
they have strict limits. The limits are fixed using the <limit effort ="1000.0" 
lower="-1.0" upper="1.0" velocity="0.5"/> line, and you can select the axis 
to move with axis xyz="1 0 0". The <limit> tag is used to set the following 
attributes: effort (maximum force supported by the joint), lower to assign the lower 
limit of a joint (radian per revolute joints, meters for prismatic joints), upper for the 
upper limit, and velocity for enforcing the maximum joint velocity.

A good way of testing whether or not the axis and limits of the joints are fine is by 
running rviz with the Join_State_Publisher GUI:

$ roslaunch robot1_description display.launch model:="`rospack find 
robot1_description`/urdf/robot1.urdf" gui:=true

You will see the rviz interface in another window with some sliders, each one 
controlling one joint:

Physical and collision properties
If you want to simulate the robot on Gazebo or any other simulation software, it is 
necessary to add physical and collision properties. This means that we need to set 
the dimension of the geometry to calculate the possible collisions, for example, the 
weight that will give us the inertia, and so on.

It is necessary that all links on the model file have these parameters; if not, the robot 
will not be simulated.
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For the mesh models, it is easier to calculate collisions by using simplified geometry 
rather than the actual mesh. Calculating the collision between two meshes is more 
computationally complex than it is to calculate a simple geometry.

In the following code, you will see the new parameters added on the link with the 
name wheel_1:

<link name="wheel_1">
  ...
  <collision>
    <geometry>
      <cylinder length="0.05" radius="0.05"/>
    </geometry>
  </collision>
  <inertial>
    <mass value="10"/>
    <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" 
izz="1.0"/>
  </inertial>
</link>

It is the same for the other links. Remember to put collision and inertial 
elements in all the links, because if you do not, Gazebo will not take the model.

You can find a complete file with all the parameters at robot1_description/urdf/
robot1_physics.urdf.

Xacro – a better way to write our robot 
models
Notice the size of the robot1_physics.urdf file. It has 314 lines of code to define 
our robot. Imagine adding cameras, legs, and other geometries—the file will start 
increasing, and the maintenance of the code will become more complicated.

Xacro helps in reducing the overall size of the URDF file and makes it easier to 
read and maintain. It also allows us to create modules and reutilize them to create 
repeated structures such as several arms or legs.

To start using xacro, we need to specify a namespace so that the file is parsed 
properly. For example, these are the first two lines of a valid xacro file:

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="robot1_
xacro">
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In the preceding lines, we define the name of the model, which in this case is 
robot1_xacro. Remember that the file extension will be .xacro instead of .urdf.

Using constants
We can use xacro to declare constant values; hence, we can avoid putting the same 
value in a lot of lines. Without the use of xacro, it would be almost impossible to 
maintain the changes if we had to change some values.

For example, the four wheels have the same values for length and radius. If we want 
to change the value, we will need to change it in each line, but if we use the next 
lines, we can change all the values easily:

<xacro:property name="length_wheel" value="0.05" />
<xacro:property name="radius_wheel" value="0.05" />

And now, to use these variables, you only have to change the old value with the 
following new value:

${name_of_variable}:

<cylinder length="${length_wheel}" radius="${radius_wheel}"/>

Using math
You can build up arbitrarily complex expressions in the ${} construct using the four 
basic operations (+, -, *, /), the unary minus, and the parenthesis. Exponentiation 
and modulus are, however, not supported:

<cylinder radius="${wheeldiam/2}" length=".1"/>
<origin xyz="${reflect*(width+.02)} 0 .25" />

By using mathematics, we can resize the model by only changing a value. To do this, 
we need a parameterized design.

Using macros
Macros are the most useful component of the xacro package. To reduce the file size 
even more, we are going to use the following macro for inertial:

<xacro:macro name="default_inertial" params="mass">
  <inertial>
    <mass value="${mass}" />
    <inertia ixx="1.0" ixy="0.0" ixz="0.0"
     iyy="1.0" iyz="0.0"
     izz="1.0" />
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  </inertial>
</xacro:macro>
<xacro:default_inertial mass="100"/>

If we compare the robot1.urdf file with robot1.xacro, we will have eliminated 30 
duplicate lines without effort. It is possible to reduce it further using more macros 
and variables.

To use the xacro file with rviz and Gazebo, you need to convert it to .urdf. To do 
this, we execute the following command inside the robot1_description/urdf folder:

$ rosrun xacro xacro.py robot1.xacro > robot1_processed.urdf

You can also execute the following command everywhere and it should give the 
same result as the other command:

$ rosrun xacro xacro.py "`rospack find robot1_description`/urdf/robot1.
xacro" > "`rospack find robot1_description`/urdf/robot1_processed.urdf"

So, in order to make the commands easier to write, we recommend you to continue 
working in the same folder.

Moving the robot with code
Okay, we have the 3D model of our robot and we can see it on rviz, but how do we 
move the robot using a node?

We are going to create a simple node to move the robot; if you want to learn more, 
ROS offers great tools to control robots, such as the ros_control package. Create a 
new file in the robot1_description/src folder with the name state_publisher.
cpp and copy the following code:

#include <string>
#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>

int main(int argc, char** argv) {
  ros::init(argc, argv, "state_publisher");
  ros::NodeHandle n;
  ros::Publisher joint_pub = n.advertise<sensor_
msgs::JointState>("joint_states", 1);
  tf::TransformBroadcaster broadcaster;
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  ros::Rate loop_rate(30);

  const double degree = M_PI/180;

  // robot state
  double inc= 0.005, base_arm_inc= 0.005, arm1_armbase_inc= 0.005, 
arm2_arm1_inc= 0.005, gripper_inc= 0.005, tip_inc= 0.005;
  double angle= 0 ,base_arm = 0, arm1_armbase = 0, arm2_arm1 = 0, 
gripper = 0, tip = 0;
  // message declarations
  geometry_msgs::TransformStamped odom_trans;
  sensor_msgs::JointState joint_state;
  odom_trans.header.frame_id = "odom";
  odom_trans.child_frame_id = "base_link";

  while (ros::ok()) {
      //update joint_state
      joint_state.header.stamp = ros::Time::now();
      joint_state.name.resize(7);
      joint_state.position.resize(7);
      joint_state.name[0] ="base_to_arm_base";
      joint_state.position[0] = base_arm;
      joint_state.name[1] ="arm_1_to_arm_base";
      joint_state.position[1] = arm1_armbase;
      joint_state.name[2] ="arm_2_to_arm_1";
      joint_state.position[2] = arm2_arm1;
      joint_state.name[3] ="left_gripper_joint";
      joint_state.position[3] = gripper;
      joint_state.name[4] ="left_tip_joint";
      joint_state.position[4] = tip;
      joint_state.name[5] ="right_gripper_joint";
      joint_state.position[5] = gripper;
      joint_state.name[6] ="right_tip_joint";
      joint_state.position[6] = tip;

      // update transform
      // (moving in a circle with radius 1)
      odom_trans.header.stamp = ros::Time::now();
      odom_trans.transform.translation.x = cos(angle);
      odom_trans.transform.translation.y = sin(angle);
      odom_trans.transform.translation.z = 0.0;
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      odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(
angle);

       //send the joint state and transform
      joint_pub.publish(joint_state);
      broadcaster.sendTransform(odom_trans);

        // Create new robot state
      arm2_arm1 += arm2_arm1_inc;
      if (arm2_arm1<-1.5 || arm2_arm1>1.5) arm2_arm1_inc *= -1;
        arm1_armbase += arm1_armbase_inc;
if (arm1_armbase>1.2 || arm1_armbase<-1.0) arm1_armbase_inc *= -1;
      base_arm += base_arm_inc;
      if (base_arm>1. || base_arm<-1.0) base_arm_inc *= -1;
      gripper += gripper_inc;
      if (gripper<0 || gripper>1) gripper_inc *= -1;
       angle += degree/4;

      // This will adjust as needed per iteration
      loop_rate.sleep();
  }
  return 0;
}

We are going to see what we can do to the code to get these movements.

For moving the model, first we have to know some tf frames that are generally  
used in ROS, such as map, odom, and base_link. The tf frame map is a world fixed 
frame that is useful as a long-term global reference. The odom frame is useful as an 
accurate, short-term local reference. The coordinate frame called base_link is rigidly 
attached to the mobile robot base. Normally, these frames are attached and their 
relationship can be illustrated as map | odom | base_link.

First, we create a new frame called odom, and all the transforms will be referred to 
this new frame. As you might remember, all the links are children of base_link and 
all the frames will be linked to the odom frame:

...
geometry_msgs::TransformStamped odom_trans;
odom_trans.header.frame_id = "odom";
odom_trans.child_frame_id = "base_link";
...
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Now, we are going to create a new topic to control all the joints of the model. Joint_
state is a message that holds data to describe the state of a set of torque-controlled 
joints. As our model has seven joints, we create a message with seven elements:

sensor_msgs::JointState joint_state;

joint_state.header.stamp = ros::Time::now();
joint_state.name.resize(7);
joint_state.position.resize(7);
joint_state.name[0] ="base_to_arm_base";
joint_state.position[0] = base_arm;
...

In our example, the robot will move in circles. We calculate the coordinates and the 
movement in the next portion of our code:

odom_trans.header.stamp = ros::Time::now();
odom_trans.transform.translation.x = cos(angle)*1;
odom_trans.transform.translation.y = sin(angle)*1;
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(angle);

Finally, we publish the new state of our robot:

joint_pub.publish(joint_state);
broadcaster.sendTransform(odom_trans);

We are also going to create a launch file to launch the node, the model, and all 
the necessary elements. Create a new file with the name display_xacro.launch 
(content given as follows), and put it in the robot1_description/launch folder:

<?xml version="1.0"?>

<launch>
  <arg name="model" />
  <arg name="gui" default="False" />
  <param name="robot_description" command="$(find xacro)/xacro.py 
$(arg model)" />
  <param name="use_gui" value="$(arg gui)"/>
  <node name="state_publisher_tutorials" pkg="robot1_description" 
type="state_publisher_tutorials" />
  <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher" />
  <node name="rviz" pkg="rviz" type="rviz" args="-d $(find robot1_
description)/urdf.rviz" />
</launch>
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Before starting our node, we have to install the following packages:

$ sudo apt-get instal ros-hydro-map-server

$ sudo apt-get install ros-hydro-fake-localization

$ cd ~/dev/catkin_ws && catkin_make

Using the following command, we will start our new node with the complete model. 
We will see the 3D model on rviz, moving all the articulations:

$ roslaunch robot1_description state_xacro.launch model:="`rospack find 
robot1_description`/urdf/robot1.xacro"

In the following screenshot, you can see a mix of four screens captured to show you 
the movements that we obtained with the node. If you see it fine, you will see the 
trajectory through a circle and the arms moving:

3D modeling with SketchUp
It is possible to generate the model using 3D programs such as SketchUp. In this 
section, we will show you how to make a simple model, export it, generate a urdf, 
and watch the model on rviz. Notice that SketchUp works on Windows and Mac, 
and that this model was developed using Mac and not Linux.
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First, you need to have SketchUp installed on your computer. When you have it, 
make a model similar to the following:

The model was exported only to one file, so the wheels and chassis are the same 
object. If you want to make a robot model with mobile parts, you must export each 
part in a separate file.

To export the model, navigate to Export | 3D Model | Save As COLLADA File 
(*.dae).

We named the file bot.dae and saved it in the robot1_description/meshes folder.

Now, to use the 3D model, we are going to create a new file in the robot1_
description/urdf folder with the name dae.urdf and type in the following code:

<?xml version="1.0"?>
<robot name="robot1">
  <link name="base_link">
  <visual>
    <geometry>
      <mesh scale="0.025 0.025 0.025" filename="package://robot1_
description/meshes/bot.dae"/>
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    </geometry>
    <origin xyz="0 0 0.226"/>
  </visual>
  </link>
</robot>

As you can notice, when we load the mesh, we can choose the scale of 
the model with the command line <mesh scale="0.025 0.025 0.025" 
filename="package://robot1_description/meshes/bot.dae"/>.  
Test the model with the following command:

$ roslaunch robot1_description display.launch model:="`rospack find 
robot1_description`/urdf/dae.urdf"

You will see the following output:

Simulation in ROS
In order to make simulations with our robots on ROS, we are going to use Gazebo.

Gazebo (http://gazebosim.org/) is a multirobot simulator for complex indoor and 
outdoor environments. It is capable of simulating a population of robots, sensors, 
and objects in a three-dimensional world. It generates both realistic sensor feedback 
and physically plausible interactions between objects.

http://gazebosim.org/
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Gazebo is now independent from ROS and is installed as a standalone package in 
Ubuntu. In this section, we will see how to interface Gazebo and ROS. You will learn 
how to use the model created before, how to include a laser sensor and a camera, and 
how to move it as a real robot.

Using our URDF 3D model in Gazebo
We are going to use the model that we designed in the last section, but without the 
arm to make it simple.

Make sure that you have Gazebo installed by typing the following command in  
a terminal:

$ gazebo

Before starting to work with Gazebo, we will install ROS packages to interface Gazebo:

$ sudo apt-get install ros-hydro-gazebo-ros-pkgs ros-hydro-gazebo-ros-
control

The Gazebo GUI will open after this command. If all is working well, we are going 
to prepare our robot model to be used on Gazebo. You can test the integration of 
Gazebo with ROS using the following commands and checking that the GUI is open.

$ roscore & rosrun gazebo_ros gazebo

To introduce the robot model in Gazebo, it is necessary to complete the URDF 
model. In order to use it in Gazebo, we need to declare more elements. We will also 
use the .xacro file; although this may be more complex, it is more powerful for the 
development of the code. You have a file with all the modifications at chapter7_
tutorials/robot1_description/urdf/robot1_base_01.xacro:

<link name="base_link">
  <visual>
    <geometry>
      <box size="0.2 .3 .1"/>
    </geometry>
    <origin rpy="0 0 1.54" xyz="0 0 0.05"/>
    <material name="white">
      <color rgba="1 1 1 1"/>
    </material>
  </visual>
  <collision>
    <geometry>
      <box size="0.2 .3 0.1"/>
    </geometry>
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  </collision>
  <xacro:default_inertial mass="10"/>
</link>

This is the new code for the chassis of the robot base_link. Notice that the 
collision and inertial sections are necessary to run the model on Gazebo  
in order to calculate the physics of the robot.

To launch everything, we are going to create a new .launch file. Create a new file 
with the name gazebo.launch in the chapter7_tutorials/robot1_gazebo/
launch folder, and put in the following code:

<?xml version="1.0"?>

<launch>
  <!-- these are the arguments you can pass this launch file, for 
example paused:=true -->
  <arg name="paused" default="true" />
  <arg name="use_sim_time" default="false" />
  <arg name="gui" default="true" />
  <arg name="headless" default="false" />
  <arg name="debug" default="true" />
  <!-- We resume the logic in empty_world.launch, changing only the 
name of the world to be launched -->
  <include file="$(find gazebo_ros)/launch/empty_world.launch">
    <arg name="world_name" value="$(find robot1_gazebo)/worlds/robot.
world" />
    <arg name="debug" value="$(arg debug)" />
    <arg name="gui" value="$(arg gui)" />
    <arg name="paused" value="$(arg paused)" />
    <arg name="use_sim_time" value="$(arg use_sim_time)" />
    <arg name="headless" value="$(arg headless)" />
  </include>
  <!-- Load the URDF into the ROS Parameter Server -->
  <arg name="model" />
  <param name="robot_description" command="$(find xacro)/xacro.py 
$(arg model)" />
  <!-- Run a python script to the send a service call to gazebo_ros to 
spawn a URDF robot -->
  <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" 
respawn="false" output="screen" args="-urdf -model robot1 -param 
robot_description -z 0.05" />
</launch>
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To launch the file, use the following command:

$ roslaunch robot1_gazebo gazebo.launch  model:="`rospack find robot1_
description`/urdf/robot1_base_01.xacro"

You will now see the robot in Gazebo. The simulation is initially paused; you can 
click on play to start it. Congratulations! This is your first step in the virtual world:

As you can see, the model has no texture. In rviz, you observed the textures that 
were declared in the URDF file. But in Gazebo, you cannot see them.

To add visible textures in Gazebo, use the following code on your model .gazebo 
file. In robot1_description/urdf, create a file robot.gazebo:

<gazebo reference="base_link">
  <material>Gazebo/Orange</material>
</gazebo>

<gazebo reference="wheel_1">
  <material>Gazebo/Black</material>
</gazebo>

<gazebo reference="wheel_2">
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  <material>Gazebo/Black</material>
</gazebo>

<gazebo reference="wheel_3">
  <material>Gazebo/Black</material>
</gazebo>

<gazebo reference="wheel_4">
  <material>Gazebo/Black</material>
</gazebo>

Copy the robot1_description/urdf/robot1_base_01.xacro file, save it with the 
name robot1_base_02.xacro, and add the following code inside:

<xacro:include filename="$(find robot1_description)/urdf/robot.gazebo" />

Launch the new file and you will see the same robot, but with the added textures:

$ roslaunch robot1_gazebo gazebo.launch  model:="`rospack find robot1_
description`/urdf/robot1_base_02.xacro"

You will see the following output:
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Adding sensors to Gazebo
In Gazebo, you can simulate the physics of the robot and its movement, and you can 
also simulate sensors.

Normally, when you want to add a new sensor you need to implement the behavior. 
Fortunately, some sensors are already developed for Gazebo and ROS.

In this section, we are going to add a camera and a laser sensor to our model. These 
sensors will be a new part on the robot. Therefore, you need to select where to put 
them. In Gazebo, you will see a new 3D object that looks like a Hokuyo laser and a red 
cube that will be the camera. We talked about these sensors in the previous chapters.

We are going to take the laser from the gazebo_ros_demos package. This is the 
magic of ROS — you can re-use code from other packages for your development.

It is necessary to add the following lines in our .xacro file for adding the 3D model 
of a Hokuyo laser to our robot:

<?xml version="1.0" encoding="UTF-8"?>
<link name="hokuyo_link">
  <collision>
    <origin xyz="0 0 0" rpy="0 0 0" />
    <geometry>
      <box size="0.1 0.1 0.1" />
    </geometry>
  </collision>
  <visual>
    <origin xyz="0 0 0" rpy="0 0 0" />
    <geometry>
      <mesh filename="package://robot1_description/meshes/hokuyo.dae" 
/>
    </geometry>
  </visual>
  <inertial>
    <mass value="1e-5" />
    <origin xyz="0 0 0" rpy="0 0 0" />
    <inertia ixx="1e-6" ixy="0" ixz="0" iyy="1e-6" iyz="0" izz="1e-6" 
/>
  </inertial>
</link>
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In our .gazebo file, we are going to add the plugin libgazebo_ros_laser.so that 
will simulate the behavior of a Hokuyo range laser:

<gazebo reference="hokuyo_link">
  <sensor type="ray" name="head_hokuyo_sensor">
    <pose>0 0 0 0 0 0</pose>
    <visualize>false</visualize>
    <update_rate>40</update_rate>
    <ray>
      <scan>
        <horizontal>
          <samples>720</samples>
          <resolution>1</resolution>
          <min_angle>-1.570796</min_angle>
          <max_angle>1.570796</max_angle>
        </horizontal>
      </scan>
      <range>
        <min>0.10</min>
        <max>30.0</max>
        <resolution>0.01</resolution>
      </range>
      <noise>
        <type>gaussian</type>
        <!-- Noise parameters based on published spec for Hokuyo laser

               achieving "+-30mm" accuracy at range < 10m.  A mean of 
0.0m and

               stddev of 0.01m will put 99.7% of samples within 0.03m 
of the true

               reading. -->
        <mean>0.0</mean>
        <stddev>0.01</stddev>
      </noise>
    </ray>
    <plugin name="gazebo_ros_head_hokuyo_controller" 
filename="libgazebo_ros_laser.so">
      <topicName>/robot/laser/scan</topicName>
      <frameName>hokuyo_link</frameName>
    </plugin>
  </sensor>
</gazebo>
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Launch the new model with the following command:

$ roslaunch robot1_gazebo gazebo.launch  model:="`rospack find robot1_
description`/urdf/robot1_base_03.xacro"

You will see the robot with the laser module attached to it.

In a similar way, we have added lines to robot.gazebo and robot1_base_03.xacro  
to add another sensor: a camera. Check these files!

In the following screenshot, you can see the robot model with the Hokuyo laser and 
a red cube that simulates the camera model:

Notice that this laser is generating "real" data as a real laser. You can see the data 
generated using the rostopic echo command:

$ rostopic echo /robot/laser/scan

We can say the same about the camera. If you want to see the gazebo simulation of 
the images taken, you can write the following command in a terminal:

$ rosrun image_view image_view image:=/robot/camera1/image_raw
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Gazebo allows us to add objects to the world using the right menu. We have added 
some elements like a traffic cone, a table, and a can to check how the sensors react to 
them. You can see three screenshots showing this. The first image is that of Gazebo 
and our simulated world, then we have a top-down view of Rviz with the laser data, 
and finally, an image visualization of the camera.

Loading and using a map in Gazebo
In Gazebo, you can use virtual worlds as offices, mountains, and so on.

In this section, we are going to use a map of the office of Willow Garage that is 
installed by default with the ROS installation.

This 3D model is in the gazebo_worlds package. If you do not have the package, 
install it before you continue.

To check the model, you will only have to start the .launch file using the  
following command:

$ roslaunch gazebo_ros willowgarage_world.launch

You will see the 3D office in Gazebo. The office has walls only. You can add tables, 
chairs, and much more, if you want. By inserting and placing objects, you can create 
your own worlds in Gazebo to simulate your robots. You have the option of saving 
your world by selecting Menu | Save as.
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Please note that Gazebo requires a good machine, with a relatively recent GPU. You 
can check whether your graphics are supported at the Gazebo home page. Also, 
note that sometimes this software crashes, but great effort is being taken by the 
community to make it more stable. Usually, it is enough to run it again (probably 
several times) if it crashes. If the problem persists, our advice is to try with a newer 
version, which will be installed by default with more recent distributions of ROS.

What we are going to do now is create a new .launch file to load the map and the 
robot together. To do that, create a new file in the robot1_gazebo/launch folder 
with the name gazebo_wg.launch, and add the following code:

<?xml version="1.0"?>
<launch>
  <include file="$(find gazebo_ros)/launch/willowgarage_world.launch">
  </include>

  <!-- Load the URDF into the ROS Parameter Server -->
  <param name="robot_description"
         command="$(find xacro)/xacro.py '$(find robot1_description)/
urdf/robot1_base_03.xacro'" />

  <!-- Run a python script to the send a service call to gazebo_ros to 
spawn a URDF robot -->
   <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" 
respawn="false" output="screen"
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        args="-urdf -model robot1 -param robot_description -z 0.05"/>

</launch>

Now, launch the file of the model with the laser:

$  roslaunch robot1_gazebo gazebo_wg.launch

You will see the robot and the map on the Gazebo GUI. The next step is to command 
the robot to move and receive the simulated readings of its sensors as it evolves 
around the virtual world loaded in the simulator.

Moving the robot in Gazebo
A skid-steer robot is a mobile robot whose movement is based on separately driven 
wheels placed on either side of the robot body. It can thus change its direction 
by varying the relative rate of rotation of its wheels, and it does not require an 
additional steering motion.

As we said before, in Gazebo you need to program the behaviors of the robot, joints, 
sensors, and so on. As for the laser, Gazebo already has a skid drive implemented 
and we can use it to move our robot.

To use this controller, you only have to add the following code to the model file:

<gazebo>
  <plugin name="skid_steer_drive_controller" filename="libgazebo_ros_
skid_steer_drive.so">
    <updateRate>100.0</updateRate>
    <robotNamespace>/</robotNamespace>
    <leftFrontJoint>base_to_wheel1</leftFrontJoint>
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    <rightFrontJoint>base_to_wheel3</rightFrontJoint>
    <leftRearJoint>base_to_wheel2</leftRearJoint>
    <rightRearJoint>base_to_wheel4</rightRearJoint>
    <wheelSeparation>4</wheelSeparation>
    <wheelDiameter>0.1</wheelDiameter>
    <robotBaseFrame>base_link</robotBaseFrame>
    <torque>1</torque>
    <topicName>cmd_vel</topicName>
    <broadcastTF>0</broadcastTF>
  </plugin>
</gazebo>

The parameters that you can see in the code are simply the configuration set up to 
make the controller work with our four-wheeled robot.

For example, we selected the base_to_wheel1, base_to_wheel2, base_to_wheel3, 
and base_to_wheel4 joints as wheels to move the robot.

Another interesting parameter is topicName. We need to publish commands  
with this name in order to control the robot. In this case, when you publish a 
sensor_msgs/Twist topic call /cmd_vel, the robot will move. It is important to 
have a well-configured orientation of the wheels joint. With the current orientation 
on the xacro file, the robot will move upside-down. So, it is necessary to change the 
origin rpy for the four wheels, as shown in the following lines for the joint of the 
base link and the wheel1 joint:

<joint name="base_to_wheel1" type="continuous">
  <parent link="base_link"/>
  <child link="wheel_1"/>
  <origin rpy="-1.5707 0 0" xyz="0.1 0.15 0"/>
  <axis xyz="0 0 1" />
 </joint>

All these changes are in the chapter7_tutorials/robot1_description/urfd/
robot1_base_04.xacro file. In gazebo_wg.launch, we have to update the robot 
model for using the new file robot1_base_04.xacro.

Now, to launch the model with the controller and the map, we use the  
following command:

$ roslaunch robot1_gazebo gazebo_wg.launch

You will see the map with the robot on the Gazebo screen. We are going to move the 
robot using the keyboard. This node is in the teleop_twist_keyboard package that 
publishes the /cmd_vel topic.
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Run the following commands in a terminal to install the package:

$ sudo apt-get install ros-hydro-teleop-twist-keyboard

$ rosstack profile

$ rospack profile

Then, you can run the node as follows:

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

You will see a new shell with some instructions and the keys to move the robot (u, i 
,o , j , k , l , m , "," , ".") and adjust maximum speeds.

If everything has gone well, you can drive the robot across the Willow Garage office. 
You can see the laser data or visualize images from the camera.
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Summary
For people learning robotics, the ability to have access to real robots is fun and 
useful, but not everyone has access to a real robot. Simulators are a great tool when 
we have limited access to a real robot. They were created for testing the behavior of 
algorithms before trying them on a real robot. This is why simulators exist.

In this chapter, you have learned how to create a 3D model of your own robot. This 
includes a detailed explanation that guides you in the tasks of adding textures and 
creating joints, and also describes how to move the robot with a node.

Then, we introduced Gazebo, a simulator where you can load the 3D model of your 
robot, and simulate it moving and sensing a virtual world. This simulator is widely 
used by the ROS community and it already supports many real robots in simulation.

Indeed, in a nutshell, we have seen how to reuse parts of other robots to design ours. 
In particular, we have included a gripper and added sensors, such as a laser range 
finder and a camera.

Hence, it is not mandatory to create a robot from scratch to start using the simulator. 
The community has developed a lot of robots and you can download the code, 
execute them in ROS and Gazebo, and modify them if it turns out to be necessary.

You can find a list of the robots supported on ROS on http://www.ros.org/wiki/
Robots. Also, you can find tutorials about Gazebo on http://gazebosim.org/
tutorials.

In the next chapter, we will learn about abond packages, such as SLAM, to perform 
navigation with lasers.

http://www.ros.org/wiki/Robots
http://www.ros.org/wiki/Robots
http://gazebosim.org/tutorials
http://gazebosim.org/tutorials
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The Navigation Stack –  
Robot Setups

In the previous chapters, we have seen how to create our robot, mount some sensors 
and actuators, and move it through the virtual world using a joystick or the keyboard. 
Now, in this chapter, you will learn what is probably one of the most powerful features 
in ROS, something that will let you move your robot autonomously.

Thanks to the community and the shared code, ROS has many algorithms that can be 
used for navigation.

First of all, in this chapter, you will learn all the necessary ways to configure the 
navigation stack with your robot. In the next chapter, you will learn how to configure  
and launch the navigation stack on the simulated robot, giving goals and configuring 
some parameters to get the best results. In particular, we will cover the following 
topics in this chapter:

• Introduction to the navigation stacks and their powerful capabilities—clearly 
one of the greatest pieces of software that comes with ROS.

• The tf—showing the transformation of one physical element to the other 
from the frame; for example, the data received using a sensor or the 
command for the desired position of an actuator. tf is a library for keeping 
track of the coordinate frames.

• Creating a laser driver or simulating it.
• Computing and publishing the odometry and how this is provided by Gazebo.
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• Base controllers and creating one for your robot.
• Executing SLAM (Simultaneous Localization And Mapping) with ROS—

building a map from the environment with your robot as it moves through 
it. Localizing your robot in the map using the AMCL algorithm of the 
navigation stack. AMCL is a probabilistic localization system for a robot 
moving in 2D. It implements the adaptive Monte Carlo localization approach, 
which uses a particle filter to track the pose of a robot against a known map.

The navigation stack in ROS
In order to understand the navigation stack, you should think of it as a set of 
algorithms that use the sensors of the robot and the odometry so that you can control 
the robot using a standard message. It can move your robot without any problems, 
such as crashing, getting stuck in a location, or getting lost to another position.

You would assume that this stack can be easily used with any robot. This is almost 
true, but it is necessary to tune some configuration files and write some nodes to use 
the stack.

The robot must satisfy some requirements before it uses the navigation stack:

• The navigation stack can only handle a differential drive and  
holonomic-wheeled robots. The shape of the robot must either be a square  
or a rectangle. However, it can also do certain things with biped robots,  
such as robot localization, as long as the robot does not move sideways.

• It requires that the robot publishes information about the relationships 
between the positions of all the joints and sensors.

• The robot must send messages with linear and angular velocities.
• A planar laser must be on the robot to create the map and localization. 

Alternatively, you can generate something equivalent to several lasers or 
a sonar, or you can project the values to the ground if they are mounted at 
another place on the robot.
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The following diagram shows you how the navigation stacks are organized. You can 
see three groups of boxes with colors (gray and white) and dotted lines. The plain 
white boxes indicate the stacks that are provided by ROS, and they have all the nodes 
to make your robot really autonomous:

amcl

"move_base_simple/goal"
geometry_msgs/PoseStamped

sensor
tranforms

sensor
tranforms

sensor
tranforms

move_base

global_planner

"/tf"
tf/tfMessage

local_planner

map_server

"/map"
nav_msgs/GetMap

sensor topics
sensor_msgs/LaserScan
sensor_msgs/PointCloud

global_costmap

recovery_behaviors

local_costmap

odometry
source

"odom"
nav_msgs/Odometry

sensor
sources
sensor
sources

sensor
sources

base controller provided node
optional provided node
platform specific node

"cmd_vel" geometry_msgs/Twist

internal
nav_msgs/Path

In the following sections, we will see how to create the parts marked in gray  
in the diagram. These parts depend on the platform used; this means that it is 
necessary to write code to adapt the platform to be used in ROS and to be used  
by the navigation stack.

Creating transforms
The navigation stack needs to know the position of the sensors, wheels, and joints.

To do that, we use the tf (Transform Frames) software library. It manages a 
transform tree. You could do this with mathematics, but if you have a lot of  
frames to calculate, it will be a bit complicated and messy.

Thanks to the tf, we can add more sensors and parts to the robot, and tf will handle 
all the relations for us.

If we put the laser 10 cm backwards and 20 cm above with reference to the origin 
of the base_link coordinates, we would need to add a new frame to the 
transformation tree with these offsets.
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Once inserted and created, we could easily know the position of the laser with 
reference to the base_link value or the wheels. The only thing we need to do  
is call the tf library and get the transformation.

Creating a broadcaster
Let's test this with a simple code. Create a new file in chapter8_tutorials/src 
with the name tf_broadcaster.cpp, and put the following code inside it:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>

int main(int argc, char** argv){
  ros::init(argc, argv, "robot_tf_publisher");
  ros::NodeHandle n;

  ros::Rate r(100);

  tf::TransformBroadcaster broadcaster;

  while(n.ok()){
    broadcaster.sendTransform(
      tf::StampedTransform(
        tf::Transform(tf::Quaternion(0, 0, 0, 1), tf::Vector3(0.1, 
0.0, 0.2)),
        ros::Time::now(),"base_link", "base_laser"));
    r.sleep();
  }
}

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

Remember to add the following line in your CMakelist.txt file to create the  
new executable:

add_executable(tf_broadcaster src/tf_broadcaster.cpp)
target_link_libraries(tf_broadcaster ${catkin_LIBRARIES})

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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We also create another node that will use the transform, and which will give us  
the position of a point on the sensor with reference to the center of base_link  
(our robot).

Creating a listener
Create a new file in chapter8_tutorials/src with the name tf_listener.cpp and 
input the following code:

#include <ros/ros.h>
#include <geometry_msgs/PointStamped.h>
#include <tf/transform_listener.h>

void transformPoint(const tf::TransformListener& listener){
  //we'll create a point in the base_laser frame that we'd like to 
transform to the base_link frame
  geometry_msgs::PointStamped laser_point;
  laser_point.header.frame_id = "base_laser";

  //we'll just use the most recent transform available for our simple 
example
  laser_point.header.stamp = ros::Time();

  //just an arbitrary point in space
  laser_point.point.x = 1.0;
  laser_point.point.y = 2.0;
  laser_point.point.z = 0.0;

    geometry_msgs::PointStamped base_point;
    listener.transformPoint("base_link", laser_point, base_point);

    ROS_INFO("base_laser: (%.2f, %.2f. %.2f) -----> base_link: (%.2f, 
%.2f, %.2f) at time %.2f",
        laser_point.point.x, laser_point.point.y, laser_point.point.z,
        base_point.point.x, base_point.point.y, base_point.point.z, 
base_point.header.stamp.toSec());
  
    ROS_ERROR("Received an exception trying to transform a point from 
\"base_laser\" to \"base_link\": %s", ex.what());

}

int main(int argc, char** argv){
  ros::init(argc, argv, "robot_tf_listener");
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  ros::NodeHandle n;

  tf::TransformListener listener(ros::Duration(10));

  //we'll transform a point once every second
  ros::Timer timer = n.createTimer(ros::Duration(1.0), 
boost::bind(&transformPoint, boost::ref(listener)));

  ros::spin();
}

Remember to add the line in the CMakeList.txt file to create the executable. 
Compile the package and run both the nodes using the following commands  
in each terminal:

$ catkin_make

$ rosrun chapter8_tutorials tf_broadcaster

$ rosrun chapter8_tutorials tf_listener

Remember, always run roscore before starting with the examples. You will see the 
following message:

[ INFO] [1368521854.336910465]: base_laser: (1.00, 2.00. 0.00) -----> 
base_link: (1.10, 2.00, 0.20) at time 1368521854.33

[ INFO] [1368521855.336347545]: base_laser: (1.00, 2.00. 0.00) -----> 
base_link: (1.10, 2.00, 0.20) at time 1368521855.33

This means that the point that you published on the node, with the position (1.00, 
2.00, 0.00) relative to base_laser, has the position (1.10, 2.00, 0.20) relative 
to base_link.

As you can see, the tf library performs all the mathematics for you to get the 
coordinates of a point or the position of a joint relative to another point.

A transform tree defines offsets in terms of both translation and rotation between 
different coordinate frames. Let us see an example to help you understand this.
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In our robot model used in Chapter 7, 3D Modeling and Simulation, we are going to 
add another laser, say, on the back of the robot (base_link):

The system in our robot had to know the position of the new laser to detect 
collisions, such as the one between the wheels and walls. With the tf tree, this is 
very simple to do and maintain, apart from being scalable. Thanks to tf, we can add 
more sensors and parts, and the tf library will handle all the relations for us. All the 
sensors and joints must be correctly configured on tf to permit the navigation stack 
to move the robot without problems, and to know exactly where each one of their 
components is.

Before starting to write the code to configure each component, keep in mind that 
you have the geometry of the robot specified in the URDF file. So, for this reason, it 
is not necessary to configure the robot again. Perhaps you do not know it, but you 
have been using the robot_state_publisher package to publish the transform tree 
of your robot. In Chapter 7, 3D Modeling and Simulation, we used it for the first time; 
therefore, you do have the robot configured to be used with the navigation stack.
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Watching the transformation tree
If you want to see the transformation tree of your robot, use the following command:

$ roslaunch chapter8_tutorials gazebo_map_robot.launch model:="`rospack 
find chapter8_tutorials`/urdf/robot1_base_01.xacro"

$ rosrun tf view_frames

The resultant frame is depicted as follows:

base_footprint

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 1418486463.907
Buffer length: 4.920 sec

Broadcaster: /robot_state_publisher
Average rate: 10.208 Hz

Most recent transform: 1418486463.333
Buffer length: 4.800 sec

Broadcaster: /robot_state_publisher
Average rate: 10.208 Hz

Most recent transform: 1418486463.333
Buffer length: 4.800 sec

Broadcaster: /robot_state_publisher
Average rate: 10.208 Hz

Most recent transform: 1418486463.333
Buffer length: 4.800 sec

Broadcaster: /robot_state_publisher
Average rate: 10.208 Hz

Most recent transform: 1418486463.333
Buffer length: 4.800 sec

base_link

wheel_3wheel_2wheel_1 wheel_4

And now, if you run tf_broadcaster and run the rosrun tf view_frames 
command again, you will see the frame that you have created using code:

$ rosrun chapter8_tutorials tf_broadcaster

$ rosrun tf view_frames

The resultant frame is depicted as follows:

base_footprint

Broadcaster: /robot_state_publisher
Average rate: 50.205 Hz

Most recent transform: 1418486564.748
Buffer length: 4.940 sec

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1418486564.233
Buffer length: 4.900 sec

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1418486564.233
Buffer length: 4.900 sec

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1418486564.233
Buffer length: 4.900 sec

Broadcaster: /robot_tf_publisher
Average rate: 100.211 Hz

Most recent transform: 247.407
Buffer length: 4.750 sec

base_link

wheel_2wheel_1 wheel_4base_laser wheel_3

Broadcaster: /robot_state_publisher
Average rate: 10.204 Hz

Most recent transform: 1418486564.233
Buffer length: 4.900 sec

Publishing sensor information
Your robot can have a lot of sensors to see the world; you can program a lot of nodes 
to take this data and do something, but the navigation stack is prepared only to use 
the planar laser's sensor. So, your sensor must publish the data with one of these 
types: sensor_msgs/LaserScan or sensor_msgs/PointCloud2.
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We are going to use the laser located in front of the robot to navigate in Gazebo. 
Remember that this laser is simulated on Gazebo, and it publishes data on the 
hokuyo_link frame with the topic name /robot/laser/scan.

In our case, we do not need to configure anything in our laser to use it on the 
navigation stack. This is because we have tf configured in the .urdf file, and  
the laser is publishing data with the correct type.

If you use a real laser, ROS might have a driver for it. Indeed, in Chapter 4, Using 
Sensors and Actuators with ROS, you learned how to connect the Hokuyo laser to ROS. 
Anyway, if you are using a laser that has no driver on ROS and want to write a node 
to publish the data with the sensor_msgs/LaserScan sensor, you have an example 
template to do it, which is shown in the following section.

But first, remember the structure of the message sensor_msgs/LaserScan. Use the 
following command:

$ rosmsg show sensor_msgs/LaserScan

The preceding command will generate the following output:

std_msgs/Header header

  uint32 seq

  time stamp

  string frame_id

float32 angle_min

float32 angle_max

float32 angle_increment

float32 time_increment

float32 scan_time

float32 range_min

float32 range_max

float32[] ranges

float32[] intensities
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Creating the laser node
Now we will create a new file in chapter8_tutorials/src with the name  
laser.cpp and put the following code in it:

#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>

int main(int argc, char** argv){
  ros::init(argc, argv, "laser_scan_publisher");

  ros::NodeHandle n;
  ros::Publisher scan_pub = n.advertise<sensor_
msgs::LaserScan>("scan", 50);

  unsigned int num_readings = 100;
  double laser_frequency = 40;
  double ranges[num_readings];
  double intensities[num_readings];

  int count = 0;
  ros::Rate r(1.0);
  while(n.ok()){
    //generate some fake data for our laser scan
    for(unsigned int i = 0; i < num_readings; ++i){
      ranges[i] = count;
      intensities[i] = 100 + count;
    }
    ros::Time scan_time = ros::Time::now();
    //populate the LaserScan message
    sensor_msgs::LaserScan scan;
    scan.header.stamp = scan_time;
    scan.header.frame_id = "base_link";
    scan.angle_min = -1.57;
    scan.angle_max = 1.57;
    scan.angle_increment = 3.14 / num_readings;
    scan.time_increment = (1 / laser_frequency) / (num_readings);
    scan.range_min = 0.0;
    scan.range_max = 100.0;

    scan.ranges.resize(num_readings);
    scan.intensities.resize(num_readings);
    for(unsigned int i = 0; i < num_readings; ++i){
      scan.ranges[i] = ranges[i];
      scan.intensities[i] = intensities[i];
    }

    scan_pub.publish(scan);
    ++count;
    r.sleep();
  }
}
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As you can see, we are going to create a new topic with the name scan and the 
message type sensor_msgs/LaserScan. You must be familiar with this message 
type from Chapter 4, Using Sensors and Actuators with ROS. The name of the topic 
must be unique. When you configure the navigation stack, you will select this topic 
to be used for navigation. The following command line shows how to create the topic 
with the correct name:

ros::Publisher scan_pub = n.advertise<sensor_msgs::LaserScan>("scan", 
50);

It is important to publish data with header, stamp, frame_id, and many more 
elements because, if not, the navigation stack could fail with such data:

scan.header.stamp = scan_time;
scan.header.frame_id = "base_link";

Other important data on header is frame_id. It must be one of the frames created 
in the .urdf file and must have a frame published on the tf frame transforms. The 
navigation stack will use this information to know the real position of the sensor and 
make transforms, such as the one between the data sensor and obstacles.
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With this template, you can use any laser, even if it has no driver for ROS. You only 
have to change the fake data with the right data from your laser.

This template can also be used to create something that looks like a laser but is not. 
For example, you could simulate a laser using stereoscopy or using a sensor such as 
a sonar.

Publishing odometry information
The navigation stack also needs to receive data from the robot odometry. The 
odometry is the distance of something relative to a point. In our case, it is the 
distance between base_link and a fixed point in the frame odom.

The type of message used by the navigation stack is nav_msgs/Odometry. We can see 
its structure using the following command:

$ rosmsg show nav_msgs/Odometry

The output of the preceding command is shown as follows:

std_msgs/Header header

  uint32 seq

  time stamp

  string frame_id

string child_frame_id

geometry_msgs/PoseWithCovariance pose

  geometry_msgs/Pose pose

    geometry_msgs/Point position

      float64 x

      float64 y

      float64 z

    geometry_msgs/Quaternion orientation

      float64 x

      float64 y

      float64 z

      float64 w
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  float64[36] covariance

geometry_msgs/TwistWithCovariance twist

  geometry_msgs/Twist twist

    geometry_msgs/Vector3 linear

      float64 x

      float64 y

      float64 z

    geometry_msgs/Vector3 angular

      float64 x

      float64 y

      float64 z

  float64[36] covariance

As you can see in the message structure, nav_msgs/Odometry gives the position of 
the robot between frame_id and child_frame_id. It also gives us the pose of the 
robot using the geometry_msgs/Pose message, and the velocity with the geometry_
msgs/Twist message.

The pose has two structures that show the position in Euler coordinates and 
the orientation of the robot using a quaternion. The orientation is the angular 
displacement of the robot.

The velocity has two structures that show the linear velocity and the angular 
velocity. For our robot, we will use only the linear x velocity and the angular z 
velocity. We will use the linear x velocity to know whether the robot is moving 
forward or backward. The angular z velocity is used to check whether the robot is 
rotating towards the left or right.

As the odometry is the displacement between two frames, it is necessary to publish 
its transform. We did it in the last section, but later on in this section, I will show you 
an example for publishing the odometry and the transform of our robot.

Now, let me show you how Gazebo works with the odometry.



The Navigation Stack – Robot Setups

[ 316 ]

How Gazebo creates the odometry
As you have seen in other examples with Gazebo, our robot moves in the simulated 
world just like a robot in the real world. We use a driver for our robot, diffdrive_
plugin. We configured this plugin in Chapter 7, 3D Modeling and Simulation, when 
you created the robot to use it in Gazebo.

This driver publishes the odometry generated in the simulated world, so we do not 
need to write anything for Gazebo.

Execute the robot sample in Gazebo to see the odometry working. Type the following 
commands in the shell:

$ roslaunch chapter8_tutorials gazebo_xacro.launch model:="`rospack find 
robot1_description`/urdf/robot1_base_04.xacro"

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Then, with the teleop node, move the robot for a few seconds to generate new data 
on the odometry topic.

On the screen of the Gazebo simulator, if you click on robot_model1, you will see 
some properties of the object. One of these properties is the pose of the robot. Click 
on the pose, and you will see some fields with data. What you are watching is the 
position of the robot in the virtual world. If you move the robot, the data changes:
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Gazebo continuously publishes the odometry data. Check the topic and see what 
data it is sending. Type the following command in a shell:

$ rostopic echo /odom/pose/pose

The following is the output that you will receive:

---

position:

  x: 1.36988769868

  y: 0.620282427846

  z: 0.0

orientation:

  x: 0.0

  y: 0.0

  z:  0.28708429626

  w: 0.957905322477

---

As you can observe, Gazebo is creating the odometry as the robot moves. We are 
going to see how Gazebo creates it by looking inside the plugin's source code.

The plugin file is located in the gazebo_plugins package, and the file is gazebo_
ros_skid_steer_drive.cpp. You can find the code at https://github.com/
ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/
gazebo_ros_skid_steer_drive.cpp.

The file has a lot of code, but the important part for us now is the following function, 
publishOdometry():

void GazeboRosSkidSteerDrive::publishOdometry(double step_time)
{
  ros::Time current_time = ros::Time::now();
  std::string odom_frame =
  tf::resolve(tf_prefix_, odometry_frame_);
  std::string base_footprint_frame =
  tf::resolve(tf_prefix_, robot_base_frame_);
  // TODO create some non-perfect odometry!
  // getting data for base_footprint to odom transform
  math::Pose pose = this->parent->GetWorldPose();
  tf::Quaternion qt(pose.rot.x, pose.rot.y, pose.rot.z, pose.rot.w);
  tf::Vector3 vt(pose.pos.x, pose.pos.y, pose.pos.z);
  tf::Transform base_footprint_to_odom(qt, vt);
  if (this->broadcast_tf_)

https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
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  {
    transform_broadcaster_->sendTransform(
    tf::StampedTransform(base_footprint_to_odom, current_time,
    odom_frame, base_footprint_frame));
  }
  // publish odom topic
  odom_.pose.pose.position.x = pose.pos.x;
  odom_.pose.pose.position.y = pose.pos.y;
  odom_.pose.pose.orientation.x = pose.rot.x;
  odom_.pose.pose.orientation.y = pose.rot.y;
  odom_.pose.pose.orientation.z = pose.rot.z;
  odom_.pose.pose.orientation.w = pose.rot.w;
  odom_.pose.covariance[0] = 0.00001;
  odom_.pose.covariance[7] = 0.00001;
  odom_.pose.covariance[14] = 1000000000000.0;
  odom_.pose.covariance[21] = 1000000000000.0;
  odom_.pose.covariance[28] = 1000000000000.0;
  odom_.pose.covariance[35] = 0.01;
  // get velocity in /odom frame
  math::Vector3 linear;
  linear = this->parent->GetWorldLinearVel();
  odom_.twist.twist.angular.z = this->parent->GetWorldAngularVel().z;
  // convert velocity to child_frame_id (aka base_footprint)
  float yaw = pose.rot.GetYaw();
  odom_.twist.twist.linear.x = cosf(yaw) * linear.x + sinf(yaw) * 
linear.y;
  odom_.twist.twist.linear.y = cosf(yaw) * linear.y - sinf(yaw) * 
linear.x;
  odom_.header.stamp = current_time;
  odom_.header.frame_id = odom_frame;
  odom_.child_frame_id = base_footprint_frame;
  odometry_publisher_.publish(odom_);
}

The publishOdometry() function is where the odometry is published. You can see 
how the fields of the structure are filled and the name of the topic for the odometry is 
set (in this case, it is odom). The pose is generated in the other part of the code that we 
will see in the following section.

Once you have learned how and where Gazebo creates the odometry, you will be 
ready to learn how to publish the odometry and the transform for a real robot. The 
following code will show a robot doing circles continuously. The final outcome does 
not really matter; the important thing to know here is how to publish the correct data 
for our robot.
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Creating our own odometry
Create a new file in chapter8_tutorials/src with the name odometry.cpp,  
and put the following code in it:

#include <string>
#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>

int main(int argc, char** argv) {

ros::init(argc, argv, "state_publisher");
    ros::NodeHandle n;
    ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", 
10);

    // initial position
    double x = 0.0;
    double y = 0.0;
    double th = 0;

    // velocity
    double vx = 0.4;
    double vy = 0.0;
    double vth = 0.4;
    ros::Time current_time;
    ros::Time last_time;
    current_time = ros::Time::now();
    last_time = ros::Time::now();

    tf::TransformBroadcaster broadcaster;
    ros::Rate loop_rate(20);

    const double degree = M_PI/180;

    // message declarations
    geometry_msgs::TransformStamped odom_trans;
    odom_trans.header.frame_id = "odom";
    odom_trans.child_frame_id = "base_footprint";

    while (ros::ok()) {
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        current_time = ros::Time::now();

        double dt = (current_time - last_time).toSec();
        double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
        double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
        double delta_th = vth * dt;

        x += delta_x;
        y += delta_y;
        th += delta_th;

        geometry_msgs::Quaternion odom_quat;    
        odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);

        // update transform
        odom_trans.header.stamp = current_time;
        odom_trans.transform.translation.x = x;
        odom_trans.transform.translation.y = y;
        odom_trans.transform.translation.z = 0.0;
        odom_trans.transform.rotation = tf::createQuaternionMsgFromYa
w(th);

        //filling the odometry
        nav_msgs::Odometry odom;
        odom.header.stamp = current_time;
        odom.header.frame_id = "odom";
        odom.child_frame_id = "base_footprint";
        // position
        odom.pose.pose.position.x = x;
        odom.pose.pose.position.y = y;
        odom.pose.pose.position.z = 0.0;
        odom.pose.pose.orientation = odom_quat;

        // velocity
        odom.twist.twist.linear.x = vx;
        odom.twist.twist.linear.y = vy;
        odom.twist.twist.linear.z = 0.0;
        odom.twist.twist.angular.x = 0.0;
        odom.twist.twist.angular.y = 0.0;
        odom.twist.twist.angular.z = vth;

      last_time = current_time;

        // publishing the odometry and the new tf
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        broadcaster.sendTransform(odom_trans);
        odom_pub.publish(odom);

      loop_rate.sleep();
    }
    return 0;
}

First, create the transformation variable and fill it with frame_id and the  
child_frame_id values in order to know when the frames have to move. In  
our case, the base base_footprint will move relatively towards the frame odom:

geometry_msgs::TransformStamped odom_trans;
    odom_trans.header.frame_id = "odom";
    odom_trans.child_frame_id = "base_footprint";

In this part, we generate the pose of the robot. With the linear velocity and the 
angular velocity, we can calculate the theoretical position of the robot after a while:

double dt = (current_time - last_time).toSec();
double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
double delta_th = vth * dt;

x += delta_x;
y += delta_y;
th += delta_th;

geometry_msgs::Quaternion odom_quat;    
odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);

In the transformation, we will only fill in the x and rotation fields, as our robot can 
only move forward and backward and can turn:

odom_trans.header.stamp = current_time;
odom_trans.transform.translation.x = x;
odom_trans.transform.translation.y = 0.0;
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(th);

With the odometry, we will do the same. Fill the frame_id and child_frame_id 
fields with odom and base_footprint.
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As the odometry has two structures, we will fill in the x, y, and orientation of 
the pose. In the twist structure, we will fill in the linear velocity x and the angular 
velocity z:

// position
odom.pose.pose.position.x = x;
odom.pose.pose.position.y = y;
odom.pose.pose.orientation = odom_quat;

// velocity
odom.twist.twist.linear.x = vx;
odom.twist.twist.angular.z = vth;

Once all the necessary fields are filled in, publish the data:

// publishing the odometry and the new tf
broadcaster.sendTransform(odom_trans);
odom_pub.publish(odom);

Remember to create the following line in the CMakeLists.txt file before  
compiling it:

add_executable(odometry src/odometry.cpp)
target_link_libraries(odometry ${catkin_LIBRARIES})

Compile the package and launch the robot without using Gazebo, using only rviz to 
visualize the model and the movement of the robot. Use the following command to 
do this:

$ roslaunch chapter8_tutorials display_xacro.launch model:="`rospack find 
chapter8_tutorials`/urdf/robot1_base_04.xacro"

Now, run the odometry node with the following command:

$ rosrun chapter8_tutorials odometry
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The following output is what you will get:

On the rviz screen, you can see the robot moving over some red arrows (grid). The 
robot moves over the grid because you published a new tf frame transform for the 
robot. The red arrows are the graphical representation for the odometry message. 
You will see the robot moving in circles continuously as we programmed in the code.
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Creating a base controller
A base controller is an important element in the navigation stack because it is 
the only way to effectively control your robot. It communicates directly with the 
electronics of your robot.

ROS does not provide a standard base controller, so you must write a base controller 
for your mobile platform.

Your robot has to be controlled with the message type geometry_msgs/Twist. This 
message was used on the Odometry message that we saw before.

So, your base controller must subscribe to a topic with the name cmd_vel, and must 
generate the correct commands to move the platform with the correct linear and 
angular velocities.

We are now going to recall the structure of this message. Type the following 
command in a shell to see the structure:

$ rosmsg show geometry_msgs/Twist

The output of this command is as follows:

geometry_msgs/Vector3 linear

  float64 x

  float64 y

  float64 z

geometry_msgs/Vector3 angular

  float64 x

  float64 y

  float64 z

The vector with the name linear indicates the linear velocity for the axes x, y, and z. 
The vector with the name angular is for the angular velocity on the axes.

For our robot, we will only use the linear velocity x and the angular velocity z. This 
is because our robot is on a differential-wheeled platform; it has two motors to move 
the robot forward and backward and to turn.

We are working with a simulated robot on Gazebo, and the base controller is 
implemented on the driver used to move/simulate the platform. This means  
that we will not have to create the base controller for this robot.



Chapter 8

[ 325 ]

Anyway, in this chapter, you will see an example to implement the base controller 
on your physical robot. Before that, let's execute our robot on Gazebo to see how the 
base controller works. Run the following commands on different shells:

$ roslaunch chapter8_tutorials gazebo_xacro.launch model:="`rospack find 
robot1_description`/urdf/robot1_base_04.xacro"

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

When all the nodes are launched and working, open rxgraph to see the relation 
between all the nodes:

$ rqt_graph

You can see that Gazebo subscribes automatically to the cmd_vel topic that is 
generated by the teleoperation node.

Inside the Gazebo simulator, the plugin of our robot is running and is getting the 
data from the cmd_vel topic. Also, this plugin moves the robot in the virtual world 
and generates the odometry.
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Using Gazebo to create the odometry
To obtain some insight of how Gazebo does that, we are going to take a sneak peek 
inside the diffdrive_plugin.cpp file. You can find it at https://github.com/
ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/
gazebo_ros_skid_steer_drive.cpp.

The load function performs the function of registering the subscriber of the topic, 
and when a cmd_vel topic is received, the cmdVelCallback() function is executed  
to handle the message:

void GazeboRosSkidSteerDrive::Load(physics::ModelPtr _parent, 
sdf::ElementPtr _sdf)
{
  …
  …
  // ROS: Subscribe to the velocity command topic (usually "cmd_vel")
  ros::SubscribeOptions so =
  ros::SubscribeOptions::create<geometry_msgs::Twist>(command_topic_, 
1,
  boost::bind(&GazeboRosSkidSteerDrive::cmdVelCallback, this, _1),
  ros::VoidPtr(), &queue_);
  …
  …
}

When a message arrives, the linear and angular velocities are stored in the internal 
variables to run operations later:

void GazeboRosSkidSteerDrive::cmdVelCallback(
const geometry_msgs::Twist::ConstPtr& cmd_msg)
{
  boost::mutex::scoped_lock scoped_lock(lock);
  x_ = cmd_msg->linear.x;
  rot_ = cmd_msg->angular.z;
}

The plugin estimates the velocity for each motor, using the formulas from the 
kinematic model of the robot, in the following manner:

void GazeboRosSkidSteerDrive::getWheelVelocities() {
  boost::mutex::scoped_lock scoped_lock(lock);
  double vr = x_;
  double va = rot_;
  wheel_speed_[RIGHT_FRONT] = vr + va * wheel_separation_ / 2.0;
  wheel_speed_[RIGHT_REAR] = vr + va * wheel_separation_ / 2.0;

https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/hydro-devel/gazebo_plugins/src/gazebo_ros_skid_steer_drive.cpp
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  wheel_speed_[LEFT_FRONT] = vr - va * wheel_separation_ / 2.0;
  wheel_speed_[LEFT_REAR] = vr - va * wheel_separation_ / 2.0;
}

And finally, it estimates the distance traversed by the robot using more formulas 
from the kinematic motion model of the robot. As you can see in the code, you must 
know the wheel diameter and the wheel separation of your robot:

// Update the controller
void GazeboRosSkidSteerDrive::UpdateChild()
{
  common::Time current_time = this->world->GetSimTime();
  double seconds_since_last_update =
  (current_time - last_update_time_).Double();
  if (seconds_since_last_update > update_period_)
  {
    publishOdometry(seconds_since_last_update);
    // Update robot in case new velocities have been requested
    getWheelVelocities();
    joints[LEFT_FRONT]->SetVelocity(0, wheel_speed_[LEFT_FRONT] / 
wheel_diameter_);
    joints[RIGHT_FRONT]->SetVelocity(0, wheel_speed_[RIGHT_FRONT] / 
wheel_diameter_);
    joints[LEFT_REAR]->SetVelocity(0, wheel_speed_[LEFT_REAR] / wheel_
diameter_);
    joints[RIGHT_REAR]->SetVelocity(0, wheel_speed_[RIGHT_REAR] / 
wheel_diameter_);
    last_update_time_+= common::Time(update_period_);
  }
}

This is the way gazebo_ros_skid_steer_drive controls our simulated robot  
in Gazebo.

Creating our base controller
Now, we are going to do something similar, that is, prepare a code to be used with a 
real robot with two wheels and encoders.

Create a new file in chapter8_tutorials/src with the name base_controller.
cpp and put in the following code:

#include <ros/ros.h>
#include <sensor_msgs/JointState.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
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#include <iostream>

using namespace std;

double width_robot = 0.1;
double vl = 0.0;
double vr = 0.0;
ros::Time last_time;    
double right_enc = 0.0;
double left_enc = 0.0;
double right_enc_old = 0.0;
double left_enc_old = 0.0;
double distance_left = 0.0;
double distance_right = 0.0;
double ticks_per_meter = 100;
double x = 0.0;
double y = 0.0;
double th = 0.0;
geometry_msgs::Quaternion odom_quat;

void cmd_velCallback(const geometry_msgs::Twist &twist_aux)
{
    geometry_msgs::Twist twist = twist_aux;    
    double vel_x = twist_aux.linear.x;
    double vel_th = twist_aux.angular.z;
    double right_vel = 0.0;
    double left_vel = 0.0;

    if(vel_x == 0){  
// turning
        right_vel = vel_th * width_robot / 2.0;
        left_vel = (-1) * right_vel;
    }else if(vel_th == 0){ 
// forward / backward
        left_vel = right_vel = vel_x;
    }else{ 
// moving doing arcs
        left_vel = vel_x - vel_th * width_robot / 2.0;
        right_vel = vel_x + vel_th * width_robot / 2.0;
    }
    vl = left_vel;
    vr = right_vel;    
}
int main(int argc, char** argv){
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    ros::init(argc, argv, "base_controller");
    ros::NodeHandle n;
    ros::Subscriber cmd_vel_sub = n.subscribe("cmd_vel", 10, cmd_
velCallback);
    ros::Rate loop_rate(10);

    while(ros::ok())
    {

        double dxy = 0.0;
        double dth = 0.0;
        ros::Time current_time = ros::Time::now();
        double dt;
        double velxy = dxy / dt;
        double velth = dth / dt;

      ros::spinOnce();
        dt =  (current_time - last_time).toSec();;
        last_time = current_time;

        // calculate odomety
        if(right_enc == 0.0){
          distance_left = 0.0;
          distance_right = 0.0;
        }else{
          distance_left = (left_enc - left_enc_old) / ticks_per_meter;
          distance_right = (right_enc - right_enc_old) / ticks_per_
meter;
        }

        left_enc_old = left_enc;
        right_enc_old = right_enc;

         dxy = (distance_left + distance_right) / 2.0;
         dth = (distance_right - distance_left) / width_robot;

        if(dxy != 0){
          x += dxy * cosf(dth);
          y += dxy * sinf(dth);
        }    

        if(dth != 0){
          th += dth;
        }
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        odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);
        loop_rate.sleep();
      }
}

Do not forget to insert the following in your CMakeLists.txt file to create the 
executable of this file:

add_executable(base_controller src/base_controller.cpp)
target_link_libraries(base_controller ${catkin_LIBRARIES})

This code is only a common example and must be extended with more code to make 
it work with a specific robot. It depends on the controller used, the encoders, and 
so on. We assume that you have the right background to add the necessary code in 
order to make the example work fine.

Creating a map with ROS
Getting a map can sometimes be a complicated task if you do not have the correct 
tools. ROS has a tool that will help you build a map using the odometry and a laser 
sensor. This tool is the map_server (http://wiki.ros.org/map_server). In this 
example, you will learn how to use the robot that we created in Gazebo, as we did in 
the previous chapters, to create a map, save it, and load it again.

We are going to use a .launch file to make it easy. Create a new file in chapter8_
tutorials/launch with the name gazebo_mapping_robot.launch and put in the 
following code:

<?xml version="1.0"?>
<launch>
  <param name="/use_sim_time" value="true" />
  <include file="$(find gazebo_ros)/launch/willowgarage_world.
launch"/>
  <arg name="model" />
  <param name="robot_description" command="$(find xacro)/xacro.py 
$(arg model)" />
  <node name="joint_state_publisher" pkg="joint_state_publisher" 
type="joint_state_publisher" ></node>
  <!-- start robot state publisher -->
  <node pkg="robot_state_publisher" type="robot_state_publisher" 
name="robot_state_publisher" output="screen" >
  <param name="publish_frequency" type="double" value="50.0" />
  </node>

http://wiki.ros.org/map_server
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  <node name="spawn_robot" pkg="gazebo_ros" type="spawn_model" 
args="-urdf -param robot_description -z 0.1 -model robot_model" 
respawn="false" output="screen" />
  <node name="rviz" pkg="rviz" type="rviz" args="-d $(find chapter8_
tutorials)/launch/mapping.rviz"/>
  <node name="slam_gmapping" pkg="gmapping" type="slam_gmapping">
    <remap from="scan" to="/robot/laser/scan"/>
    <param name="base_link" value="base_footprint"/>
  </node>
</launch>

With this .launch file, you can launch the Gazebo simulator with the 3D model, the 
rviz program with the correct configuration file, and slam_mapping to build a map 
in real time. Launch the file in a shell, and in the other shell, run the teleoperation 
node to move the robot:

$ roslaunch chapter8_tutorials gazebo_mapping_robot.launch 
model:="`rospack find robot1_description`/urdf/robot1_base_04.xacro"

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

When you start to move the robot with the keyboard, you will see the free and 
unknown space on the rviz screen, as well as the map with the occupied space; this 
is known as an Occupancy Grid Map (OGM). The slam_mapping node updates the 
map state when the robot moves, or more specifically, when (after some motion) 
it has a good estimate of the robot's location and how the map is. It takes the laser 
scans and the odometry to build the OGM for you.
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Saving the map using map_server
Once you have a complete map or something acceptable, you can save it to use it 
later in the navigation stack. To save it, use the following command:

$ rosrun map_server map_saver -f map

This command will create two files, map.pgm and map.yaml. The first one is the map 
in the .pgm format (the portable gray map format). The other is the configuration file 
for the map. If you open it, you will see the following output:

Now, open the .pgm image file with your favorite viewer, and you will see the map 
being built before you:
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Loading the map using map_server
When you want to use the map built with your robot, it is necessary to load it with 
the map_server package. The following command will load the map:

$ rosrun map_server map_server map.yaml

But to make it easy, create another .launch file in chapter8_tutorials/launch 
with the name gazebo_map_robot.launch, and put in the following code:

<?xml version="1.0"?>
<launch>
   <param name="/use_sim_time" value="true" />
    <!-- start up wg world -->
    <include file="$(find gazebo_ros)/launch/willowgarage_world.
launch"/>
    <arg name="model" />
    <param name="robot_description" command="$(find xacro)/xacro.py 
$(arg model)" />
    <node name="joint_state_publisher" pkg="joint_state_publisher" 
type="joint_state_publisher" ></node>
    <!-- start robot state publisher -->
  <node pkg="robot_state_publisher" type="robot_state_publisher" 
name="robot_state_publisher" output="screen" >
  <param name="publish_frequency" type="double" value="50.0" />
  </node>
    <node name="spawn_robot" pkg="gazebo_ros" type="spawn_model" 
args="-urdf -param robot_description -z 0.1 -model robot_model" 
respawn="false" output="screen" />
    <node name="map_server" pkg="map_server" type="map_server" args=" 
$(find chapter8_tutorials)/maps/map.yaml" />
    <node name="rviz" pkg="rviz" type="rviz" args="-d $(find chapter8_
tutorials)/launch/mapping.rviz" />
</launch>

Now, launch the file using the following command and remember to put the model 
of the robot that will be used:

$ roslaunch chapter8_tutorials gazebo_map_robot.launch model:="`rospack 
find chapter8_tutorials`/urdf/robot1_base_04.xacro" 

Then, you will see rviz with the robot and the map. The navigation stack, in order 
to know the localization of the robot, will use the map published by the map server 
and the laser readings. This will help it perform a scan matching algorithm that helps 
in estimating the robot's location using a particle filter implemented in the amcl 
(Adaptive Monte Carlo Localization) node.

We will see more about maps as well as more useful tools, in the next chapter.
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Summary
In this chapter, you worked on the steps required to configure your robot in order to 
use it with the navigation stack. Now you know that the robot must have a planar 
laser, must be a differential-wheeled robot, and it should satisfy some requirements 
for the base control and the geometry.

Keep in mind that we are working with Gazebo to demonstrate the examples and 
to explain how the navigation stack works with different configurations. It is more 
complex to explain all of this directly on a real, robotic platform because we do not 
know whether you have one or have access to one. In any case, depending on the 
platform, the instructions may vary and the hardware may fail, so it is safer and 
useful to run these algorithms in simulations; later, we can test them on a real robot, 
as long as it satisfies the requirements described thus far.

In the next chapter, you will learn how to configure the navigation stack, create the 
.launch files, and navigate autonomously in Gazebo with the robot that you created 
in the previous chapters.

In brief, what you will learn after this chapter will be extremely useful because 
it shows you how to configure everything correctly so you know how to use the 
navigation stack with other robots, either simulated or real.



[ 335 ]

The Navigation Stack –  
Beyond Setups

We are now getting close to the end of the book, and this is when we will use  
all the knowledge acquired through it. We have created packages, nodes, 3D models 
of robots, and more. In Chapter 8, The Navigation Stack – Robot Setups, you configured 
your robot in order to be used with the navigation stack, and in this chapter, we will 
finish the configuration for the navigation stack so that you learn how to use it with 
your robot.

All the work done in the previous chapters has been a preamble for this precise 
moment. This is when the fun begins and when the robots come alive.

In this chapter, we are going to learn how to do the following:

• Apply the knowledge of Chapter 8, The Navigation Stack – Robot Setups and the 
programs developed therein

• Understand the navigation stack and how it works
• Configure all the necessary files
• Create launch files to start the navigation stack

Let's begin!
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Creating a package
The correct way to create a package is by adding the dependencies with the other 
packages created for your robot. For example, you could use the next command to 
create the package:

$ roscreate-pkg my_robot_name_2dnav move_base my_tf_configuration_dep my_
odom_configuration_dep my_sensor_configuration_dep

But in our case, as we have everything in the same package, so it is only necessary to 
execute the following:

$ catkin_create_pkg chapter9_tutorials roscpp tf

Remember that in the repository, you may find all the necessary files for the chapter.

Creating a robot configuration
To launch the entire robot, we are going to create a launch file with all the necessary 
files to activate all the systems. Anyway, here you have a launch file for a real robot 
that you can use as a template. The following script is present in configuration_
template.launch:

<launch>
  <node pkg="sensor_node_pkg" type="sensor_node_type" name="sensor_
node_name" output="screen">
    <param name="sensor_param" value="param_value" />
  </node>

  <node pkg="odom_node_pkg" type="odom_node_type" name="odom_node" 
output="screen">
    <param name="odom_param" value="param_value" />
  </node>

  <node pkg="transform_configuration_pkg" type="transform_
configuration_type" name="transform_configuration_name" 
output="screen">
    <param name="transform_configuration_param" value="param_value" />
  </node>
</launch>

This launch file will launch three nodes that will start up the robot.
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Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

The first one is the node responsible for activating the sensors, for example, the Laser 
Imaging, Detection, and Ranging (LIDAR) system. The parameter sensor_param 
can be used to configure the sensor's port, for example, if the sensor uses a USB 
connection. If your sensor needs more parameters, you need to duplicate the line 
and add the necessary parameters. Some robots have more than one sensor to help 
in the navigation. In this case, you can add more nodes or create a launch file for 
the sensors, and include it in this launch file. This could be a good option for easily 
managing all the nodes in the same file.

The second node is to start the odometry, the base control, and all the necessary files 
to move the base and calculate the robot's position. Remember that in Chapter 8, The 
Navigation Stack – Robot Setups, we looked at these nodes in some detail. As in the 
other section, you can use the parameters to configure something in the odometry, 
or replicate the line to add more nodes.

The third part is meant to launch the node responsible for publishing and calculating 
the geometry of the robot, and the transform between the arms, sensors, and so on.

The previous file is for your real robot, but for our example, the next launch file is all 
we need.

Create a new file in chapter9_tutorials/launch with the name chapter9_
configuration_gazebo.launch, and add the following code:

<?xml version="1.0"?>
<launch>
        <param name="/use_sim_time" value="true" />
        <remap from="robot/laser/scan" to="/scan" />
        <!-- start up wg world -->
        <include file="$(find gazebo_ros)/launch/willowgarage_world.
launch"/>
        <arg name="model" default="$(find robot1_description)/urdf/
robot1_base_04.xacro"/>
        <param name="robot_description" command="$(find xacro)/xacro.
py $(arg model)" />

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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        <node name="joint_state_publisher" pkg="joint_state_publisher" 
type="joint_state_publisher" ></node>
        <!-- start robot state publisher -->
        <node pkg="robot_state_publisher" type="robot_state_publisher" 
name="robot_state_publisher" output="screen" />
        <node name="spawn_robot" pkg="gazebo_ros" type="spawn_model" 
args="-urdf -param robot_description -z 0.1 -model robot_model" 
respawn="false" output="screen" />
        <node name="rviz" pkg="rviz" type="rviz" args="-d $(find 
chapter9_tutorials)/launch/navigation.rviz" />
</launch>

This launch file is the same that we used in the previous chapters, so it does not need 
any additional explanation.

Now to launch this file, use the following command:

$ roslaunch chapter9_tutorials chapter9_configuration_gazebo.launch

You will see the following window:
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Notice that in the previous screenshot, there are some fields in red, blue, and yellow, 
without you having configured anything before. This is because in the launch file, 
a configuration file for the rviz layout is loaded along with rviz, and this file was 
configured in the previous chapter of this book.

In the upcoming sections, you will learn how to configure rviz to use it with the 
navigation stack and view all the topics.

Configuring the costmaps – global_
costmap and local_costmap
Okay, now we are going to start configuring the navigation stack and all the 
necessary files to start it. To start with the configuration, first we will learn what 
costmaps are and what they are used for. Our robot will move through the map 
using two types of navigation—global and local.

• The global navigation is used to create paths for a goal in the map or at a  
far-off distance

• The local navigation is used to create paths in the nearby distances and avoid 
obstacles, for example, a square window of 4 x 4 meters around the robot

These modules use costmaps to keep all the information of our map. The global 
costmap is used for global navigation and the local costmap for local navigation.

The costmaps have parameters to configure the behaviors, and they have common 
parameters as well, which are configured in a shared file.

The configuration basically consists of three files where we can set up different 
parameters. The files are as follows:

• costmap_common_params.yaml

• global_costmap_params.yaml

• local_costmap_params.yaml

Just by reading the names of these configuration files, you can instantly guess what 
they are used for. Now that you have a basic idea about the usage of costmaps, 
we are going to create the configuration files and explain the parameters that are 
configured in them.
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Configuring the common parameters
Let's start with the common parameters. Create a new file in chapter9_tutorials/
launch with the name costmap_common_params.yaml, and add the following code.

The following script is present in costmap_common_params.yaml:

obstacle_range: 2.5
raytrace_range: 3.0
footprint: [[-0.2,-0.2],[-0.2,0.2], [0.2, 0.2], [0.2,-0.2]]
inflation_radius: 0.5
cost_scaling_factor: 10.0
observation_sources: scan
scan: {sensor_frame: base_link,  observation_persistence: 0.0, max_
obstacle_height: 0.4, min_obstacle_height: 0.0, data_type: LaserScan, 
topic: /scan, marking: true, clearing: true}

This file is used to configure common parameters. The parameters are used in 
local_costmap and global_costmap. Let's break the code and understand it.

The obstacle_range and raytrace_range attributes are used to indicate the 
maximum distance that the sensor will read and introduce new information in the 
costmaps. The first one is used for the obstacles. If the robot detects an obstacle closer 
than 2.5 meters in our case, it will put the obstacle in the costmap. The other one 
is used to clean/clear the costmap and update the free space in it when the robot 
moves. Note that we can only detect the echo of the laser or sonar with the obstacle; 
we cannot perceive the whole obstacle or object itself, but this simple approach will 
be enough to deal with these kinds of measurements, and we will be able to build a 
map and localize within it.

The footprint attribute is used to indicate the geometry of the robot to the 
navigation stack. It is used to keep the right distance between the obstacles and  
the robot, or to find out if the robot can go through a door. The inflation_radius 
attribute is the value given to keep a minimal distance between the geometry of the 
robot and the obstacles.

The cost_scaling_factor attribute modifies the behavior of the robot around  
the obstacles. You can make a behavior aggressive or conservative by changing  
the parameter.

With the observation_sources attribute, you can set the sensors used by the 
navigation stack to get the data from the real world and calculate the path.

In our case, we are using a simulated LIDAR in Gazebo, but we can use a point cloud 
to do the same.
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The next line will configure the sensor's frame and the uses of the data:

scan: {sensor_frame: base_link,  data_type: LaserScan, topic: /scan, 
marking: true, clearing: true}

The laser configured in the previous line is used to add and clear obstacles in 
the costmap. For example, you could add a sensor with a wide range to find 
obstacles and another sensor to navigate and clear the obstacles. The topic's name 
is configured in this line. It is important to configure it well, because the navigation 
stack could wait for another topic and all this while, the robot is moving and could 
crash into a wall or an obstacle.

Configuring the global costmap
The next file to be configured is the global costmap configuration file. Create a 
new file in chapter9_tutorials/launch with the name global_costmap_params.
yaml, and add the following code:

global_costmap:
  global_frame: /map
  robot_base_frame: /base_footprint
  update_frequency: 1.0
  static_map: true

The global_frame and the robot_base_frame attributes define the transformation 
between the map and the robot. This transformation is for the global costmap.

You can configure the frequency of updates for the costmap. In this case, it is 1 Hz. 
The static_map attribute is used for the global costmap to see whether a map or the 
map server is used to initialize the costmap. If you aren't using a static map, set this 
parameter to false.

Configuring the local costmap
The next file is for configuring the local costmap. Create a new file in chapter9_
tutorials/launch with the name local_costmap_params.yaml, and add the 
following code:

local_costmap:
  global_frame: /map
  robot_base_frame: /base_footprint
  update_frequency: 5.0
  publish_frequency: 2.0
  static_map: false
  rolling_window: true
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  width: 5.0
  height: 5.0
  resolution: 0.02
  tranform_tolerance: 0.5
  planner_frequency: 1.0
  planner_patiente: 5.0

The global_frame, robot_base_frame, update_frequency and static_map 
parameters are the same as described in the previous section, configuring the 
global costmap. The publish_frequency parameter determines the frequency for 
publishing information. The rolling_window parameter is used to keep the costmap 
centered on the robot when it is moving around the world.

The transform_tolerance parameter configures the maximum latency for the 
transforms, in our case 0.5 seconds. With the planner_frequency parameter, we 
can configure the rate in Hz at which to run the planning loop. And the planner_
patiente parameter configures how long the planner will wait in seconds in an 
attempt to find a valid plan, before space-clearing operations are performed.

You can configure the dimensions and the resolution of the costmap with the width, 
height, and resolution parameters. The values are given in meters.

Base local planner configuration
Once we have the costmaps configured, it is necessary to configure the base planner. 
The base planner is used to generate the velocity commands to move our robot. 
Create a new file in chapter9_tutorials/launch with the name base_local_
planner_params.yaml, and add the following code:

TrajectoryPlannerROS:
  max_vel_x: 0.2
  min_vel_x: 0.05
  max_rotational_vel: 0.15
  min_in_place_rotational_vel: 0.01
  min_in_place_vel_theta: 0.01
  max_vel_theta: 0.15
  min_vel_theta: -0.15
  acc_lim_th: 3.2
  acc_lim_x: 2.5
  acc_lim_y: 2.5
  holonomic_robot: false

The config file will set the maximum and minimum velocities for your robot.  
The acceleration is also set.
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The holonomic_robot parameter is true if you are using a holonomic platform. In 
our case, our robot is based on a non-holonomic platform and the parameter is set to 
false. A holonomic vehicle is one that can move in all the configured space from 
any position. In other words, if the places where the robot can go are defined by any 
x and y values in the environment, this means that the robot can move there from 
any position. For example, if the robot can move forward, backward, and laterally, 
it is holonomic. A typical case of a non-holonomic vehicle is a car, as it cannot move 
laterally, and from a given position, there are many other positions (or poses) that 
are not reachable. Also, a differential platform is non-holonomic.

Creating a launch file for the navigation 
stack
Now we have all the files created and the navigation stack is configured. To run 
everything, we are going to create a launch file. Create a new file in the chapter9_
tutorials/launch folder, and put the following code in a file with the name move_
base.launch:

<launch>

  <!-- Run the map server -->

  <node name="map_server" pkg="map_server" type="map_server" 
args="$(find chapter9_tutorials)/maps/map.yaml" output="screen"/>

  <include file="$(find amcl)/examples/amcl_diff.launch" />

  <node pkg="move_base" type="move_base" respawn="false" name="move_
base" output="screen">

    <rosparam file="$(find chapter9_tutorials)/launch/costmap_common_
params.yaml" command="load" ns="global_costmap" />

    <rosparam file="$(find chapter9_tutorials)/launch/costmap_common_
params.yaml" command="load" ns="local_costmap" />

    <rosparam file="$(find chapter9_tutorials)/launch/local_costmap_
params.yaml" command="load" />

    <rosparam file="$(find chapter9_tutorials)/launch/global_costmap_
params.yaml" command="load" />

    <rosparam file="$(find chapter9_tutorials)/launch/base_local_
planner_params.yaml" command="load" />

  </node>
</launch>
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Notice that in this file, we are launching all the files created earlier. We will launch 
a map server as well with a map that we created in Chapter 8, The Navigation Stack – 
Robot Setups and the amcl node.

The amcl node that we are going to use is for differential robots because our robot  
is also a differential robot. If you want to use amcl with holonomic robots, you  
will need to use the amcl_omni.launch file. If you want to use another map,  
go to Chapter 8, The Navigation Stack – Robot Setups, and create a new one.

Now launch the file and type the next command in a new shell. Recall that before you 
launch this file, you must launch the chapter9_configuration_gazebo.launch file.

$ roslaunch chapter9_tutorials move_base.launch

You will see the following window:
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If you compare this image with the image that you saw when you launched the 
chapter9_configuration_gazebo.launch file, you will see that all the options  
are in blue; this is a good signal and it means that everything is OK.

As we said before, in the next section you will learn which options are necessary to 
visualize all the topics used in a navigation stack.

Setting up rviz for the navigation stack
It is good practice to visualize all possible data which what the navigation stack does. 
In this section, we will show you the visualization topic that you must add to rviz 
to see the correct data sent by the navigation stack. Discussions on each visualization 
topic that the navigation stack publishes are given next.

The 2D pose estimate
The 2D pose estimate (P shortcut) allows the user to initialize the localization system 
used by the navigation stack by setting the pose of the robot in the world.

The navigation stack waits for the new pose of a new topic with the name 
initialpose. This topic is sent using the rviz windows where we previously 
changed the name of the topic.
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You can see in the following screenshot how you can use initialpose. Click on the 
2D Pose Estimate button, and click on the map to indicate the initial position of your 
robot. If you don't do this at the beginning, the robot will start the auto-localization 
process and try to set an initial pose.

• Topic: initialpose
• Type: geometry_msgs/PoseWithCovarianceStamped
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The 2D nav goal
The 2D nav goal (G shortcut) allows the user to send a goal to the navigation by 
setting a desired pose for the robot to achieve. The navigation stack waits for a new 
goal with  /move_base_simple/goal as the topic name; for this reason, you 
must change the topic's name in the rviz windows in Tool Properties in the 2D Nav 
Goal menu. The new name that you must put in this textbox is /move_base_simple/
goal. In the next window, you can see how to use it. Click on the 2D Nav Goal 
button, and select the map and the goal for your robot. You can select the x and y 
position and the end orientation for the robot.

• Topic: move_base_simple/goal
• Type: geometry_msgs/PoseStamped
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The static map
This displays the static map that is being served by the map_server, if one exists. 
When you add this visualization, you will see the map we captured in Chapter 8,  
The Navigation Stack – Robot Setups, in the Creating a map with ROS section.

In the next window, you can see the display type that you need to select and the 
name that you must put in the display name.

• Topic: map
• Type: nav_msgs/GetMap
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The particle cloud
This displays the particle cloud used by the robot's localization system. The spread 
of the cloud represents the localization system's uncertainty about the robot's pose. 
A cloud that spreads out a lot reflects high uncertainty, while a condensed cloud 
represents low uncertainty. In our case, you will obtain the following cloud for  
the robot:

• Topic: particlecloud
• Type: geometry_msgs/PoseArray
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The robot's footprint
This shows the footprint of the robot; in our case, the robot has a footprint, which  
has a width of 0.4 meters and a height of 0.4 meters. Remember that this parameter  
is configured in the costmap_common_params file. This dimension is important 
because the navigation stack will move the robot in a safe mode using the values 
configured before.

• Topic: local_costmap/robot_footprint
• Type: geometry_msgs/Polygon
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The local costmap
This shows the local costmap that the navigation stack uses for navigation. The 
yellow line is the detected obstacle. For the robot to avoid collision, the robot's 
footprint should never intersect with a cell that contains an obstacle. The blue zone 
is the inflated obstacle. To avoid collisions, the center point of the robot should never 
overlap with a cell that contains an inflated obstacle.

• Topic: /move_base/local_costmap/costmap
• Type: nav_msgs/OccupancyGrid
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The global costmap
This shows the global costmap that the navigation stack uses for navigation. The 
yellow line is the detected obstacle. For the robot to avoid collision, the robot's 
footprint should never intersect with a cell that contains an obstacle. The blue zone 
is the inflated obstacle. To avoid collisions, the center point of the robot should never 
overlap with a cell that contains an inflated obstacle.

• Topic: /move_base/global_costmap/costmap
• Type: nav_msgs/OccupancyGrid
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The global plan
This shows the portion of the global plan that the local planner is currently pursuing. 
You can see it in green in the next image. Perhaps the robot will find obstacles during 
its movement, and the navigation stack will recalculate a new path to avoid collisions 
and try to follow the global plan.

• Topic: TrajectoryPlannerROS/global_plan
• Type: nav_msgs/Path
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The local plan
This shows the trajectory associated with the velocity commands currently being 
commanded to the base by the local planner. You can see the trajectory in blue in 
front of the robot in the next image. You can use this display to see whether the  
robot is moving, and the approximate velocity from the length of the blue line.

• Topic: TrajectoryPlannerROS/local_plan
• Type: nav_msgs/Path



Chapter 9

[ 355 ]

The planner plan
This displays the full plan for the robot computed by the global planner. You will see 
that it is similar to the global plan.

• Topic: NavfnROS/plan
• Type: nav_msgs/Path
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The current goal
This shows the goal pose that the navigation stack is attempting to achieve. You can 
see it as a red arrow, and it is displayed after you put a new 2D nav goal. It can be 
used to find out the final position of the robot.

• Topic: current_goal
• Type: geometry_msgs/PoseStamped
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These visualizations are all you need to see the navigation stack in rviz. With this, 
you can notice whether the robot is doing something strange. Now we are going to 
see a general image of the system. Run rqt_graph to see whether all the nodes are 
running and to see the relations between them.
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Adaptive Monte Carlo Localization
In this chapter, we are using the amcl (Adaptive Monte Carlo Localization) 
algorithm for the localization. The amcl algorithm is a probabilistic localization 
system for a robot moving in 2D. This system implements the adaptive Monte Carlo 
localization approach, which uses a particle filter to track the pose of a robot against 
a known map.

The amcl algorithm has many configuration options that will affect the  
performance of localization. For more information on amcl, please refer  
to the AMCL documentation at http://wiki.ros.org/amcl and also  
at http://www.probabilistic-robotics.org/.

The amcl node works mainly with laser scans and laser maps, but it could be 
extended to work with other sensor data, such as a sonar or stereo vision. So for 
this chapter, it takes a laser-based map and laser scans, transforms messages, and 
generates a probabilistic pose. On startup, amcl initializes its particle filter according 
to the parameters provided in the setup. If you don't set the initial position, amcl will 
start at the origin of the coordinates. Anyway, you can set the initial position in RViz 
using the 2D Pose Estimate button.

When we include the amcl_diff.launch file, we are starting the node with a series 
of configured parameters. This configuration is the default configuration and the 
minimum setting needed to make it work.

http://wiki.ros.org/amcl
http://www.probabilistic-robotics.org/
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Next, we are going to see the content of the amcl_diff.launch launch file to explain 
some parameters:

<launch>
<node pkg="amcl" type="amcl" name="amcl" output="screen">
  <!-- Publish scans from best pose at a max of 10 Hz -->
  <param name="odom_model_type" value="diff"/>
  <param name="odom_alpha5" value="0.1"/>
  <param name="transform_tolerance" value="0.2" />
  <param name="gui_publish_rate" value="10.0"/>
  <param name="laser_max_beams" value="30"/>
  <param name="min_particles" value="500"/>
  <param name="max_particles" value="5000"/>
  <param name="kld_err" value="0.05"/>
  <param name="kld_z" value="0.99"/>
  <param name="odom_alpha1" value="0.2"/>
  <param name="odom_alpha2" value="0.2"/>
  <!-- translation std dev, m -->
  <param name="odom_alpha3" value="0.8"/>
  <param name="odom_alpha4" value="0.2"/>
  <param name="laser_z_hit" value="0.5"/>
  <param name="laser_z_short" value="0.05"/>
  <param name="laser_z_max" value="0.05"/>
  <param name="laser_z_rand" value="0.5"/>
  <param name="laser_sigma_hit" value="0.2"/>
  <param name="laser_lambda_short" value="0.1"/>
  <param name="laser_lambda_short" value="0.1"/>
  <param name="laser_model_type" value="likelihood_field"/>
  <!-- <param name="laser_model_type" value="beam"/> -->
  <param name="laser_likelihood_max_dist" value="2.0"/>
  <param name="update_min_d" value="0.2"/>
  <param name="update_min_a" value="0.5"/>
  <param name="odom_frame_id" value="odom"/>
  <param name="resample_interval" value="1"/>
  <param name="transform_tolerance" value="0.1"/>
  <param name="recovery_alpha_slow" value="0.0"/>
  <param name="recovery_alpha_fast" value="0.0"/>
</node>
</launch>

The min_particles and max_particles parameters set the minimum and 
maximum number of particles that are allowed for the algorithm. With more 
particles, you get more accuracy, but this increases the use of the CPU.
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The laser_model_type parameter is used to configure the laser type. In our case, we 
are using a likelihood_field parameter but the algorithm can also use beam lasers.

The laser_likelihood_max_dist parameter is used to set the maximum distance 
for obstacle inflation on the map, which is used in the likelihood_field model.

The initial_pose_x, initial_pose_y, and initial_pose_a parameters are not 
in the launch file, but they are interesting because they set the initial position of 
the robot when the amcl starts, for example, if your robot always starts in the dock 
station and you want to set the position in the launch file.

Perhaps you should change some parameters to tune your robot and make it work 
fine. On http://wiki.ros.org/amcl, you have a lot of information about the 
configuration and the parameters that you could change.

Modifying parameters with  
rqt_reconfigure
A good option for understanding all the parameters configured in this chapter, is by 
using rqt_reconfigure to change the values without restarting the simulation.

To launch rqt_reconfigure, use the following command:

$ rosrun rqt_reconfigure rqt_reconfigure

You will see the screen as follows:

http://wiki.ros.org/amcl


The Navigation Stack – Beyond Setups

[ 360 ]

As an example, we are going to change the parameter max_vel_x configured in 
the file, base_local_planner_params.yaml. Click over the move_base menu and 
expand it. Then select TrajectoryPlannerROS in the menu tree. You will see a list 
of parameters. As you can see, the parameter max_vel_x has the same value that we 
assigned in the configuration file.

You can see a brief description for the parameter by hovering the mouse over  
the name for a few seconds. This is very useful for understanding the function  
of each parameter.

Avoiding obstacles
A great functionality of the navigation stack is the recalculation of the path if it  
finds obstacles during the movement. You can easily see this feature by adding  
an object in front of the robot in Gazebo. For example, in our simulation we added  
a big box in the middle of the path. The navigation stack detects the new obstacle,  
and automatically creates an alternative path.

In the next image, you can see the object that we added. Gazebo has some predefined 
3D objects that you can use in the simulations with mobile robots, arms, humanoids, 
and so on.
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To see the list, go to the Insert model section. Select one of the objects and then click 
at the location where you want to put it, as shown in the following screenshot:

If you go to the rviz windows now, you will see a new global plan to avoid the 
obstacle. This feature is very interesting when you use the robot in real environments 
with people walking around the robot. If the robot detects a possible collision, it will 
change the direction, and it will try to arrive at the goal. Recall that the detection 
of such obstacles is reduced to the area covered by the local planner costmap (for 
example, 4 x 4 meters around the robot). You can see this feature in the next screenshot:
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Sending goals
We are sure that you have been playing with the robot by moving it around the map 
a lot. This is funny but a little tedious, and it is not very functional.

Perhaps you were thinking that it would be a great idea to program a list of 
movements and send the robot to different positions with only a button, even  
when we are not in front of a computer with rviz.

Okay, now you are going to learn how to do it using actionlib.

The actionlib package provides a standardized interface for interfacing with tasks. 
For example, you can use it to send goals for the robot to detect something at a place, 
make scans with the laser, and so on. In this section, we will send a goal to the robot, 
and we will wait for this task to end.

It could look similar to services, but if you are doing a task that has a long duration, 
you might want the ability to cancel the request during the execution, or get periodic 
feedback about how the request is progressing. You cannot do this with services. 
Furthermore, actionlib creates messages (not services), and it also creates topics, so 
we can still send the goals through a topic without taking care of the feedback and 
the result, if we do not want to.

The following code is a simple example for sending a goal to move the robot. Create 
a new file in the chapter9_tutorials/src folder, and add the following code in a 
file with the name sendGoals.cpp:

#include <ros/ros.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
#include <tf/transform_broadcaster.h>
#include <sstream>

typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> 
MoveBaseClient;

int main(int argc, char** argv){
  ros::init(argc, argv, "navigation_goals");

  MoveBaseClient ac("move_base", true);

  while(!ac.waitForServer(ros::Duration(5.0))){
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    ROS_INFO("Waiting for the move_base action server");
  }

  move_base_msgs::MoveBaseGoal goal;

  goal.target_pose.header.frame_id = "map";
  goal.target_pose.header.stamp = ros::Time::now();

  goal.target_pose.pose.position.x = 1.0;
  goal.target_pose.pose.position.y = 1.0;
  goal.target_pose.pose.orientation.w = 1.0;

  ROS_INFO("Sending goal");
  ac.sendGoal(goal);

  ac.waitForResult();

  if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
    ROS_INFO("You have arrived to the goal position");
  else{
    ROS_INFO("The base failed for some reason");
 }
  return 0;
}

Add the next file in the CMakeList.txt file to generate the executable for our program:

add_executable(sendGoals src/sendGoals.cpp)
target_link_libraries(sendGoals ${catkin_LIBRARIES})

Now, compile the package with the following command:

$ catkin_make

Now launch everything to test the new program. Use the next command to launch 
all the nodes and the configurations:

$ roslaunch chapter9_tutorials chapter9_configuration_gazebo.launch

$ roslaunch chapter9_tutorials move_base.launch

Once you have configured the 2D pose estimate, run the sendGoal node with the 
next command in a new shell:

$ rosrun chapter9_tutorials sendGoals
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If you go to the rviz screen, you will see a new global plan (green line) over the 
map. This means that the navigation stack has accepted the new goal and it will  
start to execute it.
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When the robot arrives at the goal, you will see the next message in the shell where 
you ran the node:

[ INFO ] [...,...]: You have arrived to the goal position

You can make a list of goals or waypoints, and create a route for the robot. This way 
you can program missions, guardian robots, or collect things from other rooms with 
your robot.

Summary
At the end of this chapter, you should have a robot—simulated or real—moving 
autonomously through the map (which models the environment), using the 
navigation stack. You can program the control and the localization of the robot 
by following the ROS philosophy of code reusability, so that you can have the 
robot completely configured without much effort. The most difficult part of this 
chapter is to understand all the parameters and learn how to use each one of them 
appropriately. The correct use of them will determine whether your robot works fine 
or not; for this reason, you must practice changing the parameters and look for the 
reaction of the robot.

In the next chapter, you will learn how to use MoveIt! with some tutorials  
and examples. If you don't know what MoveIt! is, it is a software for building  
mobile manipulation applications. With it, you can move your articulated robot  
in an easy way.
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Manipulation with MoveIt!
MoveIt! is a set of tools for mobile manipulation in ROS. The main web page 
(http://moveit.ros.org) contains documentation, tutorials, and installation 
instructions as well as example demonstrations with several robotic arms (or robots) 
that use MoveIt! for manipulation tasks, such as grasping, picking and placing, or 
simple motion planning with inverse kinematics.

The library incorporates a fast inverse kinematics solver (as part of the motion 
planning primitives), state-of-the-art algorithms for manipulation, grasping 3D 
perception (usually in the form of point clouds), kinematics, control, and navigation. 
Apart from the backend, it provides an easy-to-use GUI to configure new robotic 
arms with the MoveIt! and RViz plugins to develop motion planning tasks in an 
intuitive way.

In this chapter, we will see how we can create a simple robotic arm in the 
URDF format and how we can define motion planning groups with the MoveIt! 
configuration tool. For a single arm, we will have a single group, so that later we can  
use the inverse kinematics solvers to perform manipulation tasks specified from the 
RViz interface. A pick and place task is used to illustrate the capabilities and tools  
of MoveIt!.

The first section explains the MoveIt! architecture, explaining the basic concepts used 
in the framework, such as joint groups and planning scene, and general concepts 
such as trajectory planning, (inverse) kinematics, and collision checking concerns. 
Then, we will show how you can integrate an arm into MoveIt!, creating the 
planning groups and scene. Next, we will show you how you can perform motion 
planning with collisions and how you can incorporate point clouds, which will allow 
you to avoid collisions with dynamic obstacles.

Finally, perception and object recognition tools will be explained and later used in 
a pick and place demonstration. For this demonstration, we will use the MoveIt! 
plugin for RViz.

http://moveit.ros.org
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The MoveIt! architecture
The architecture of MoveIt! is depicted in the following diagram taken from the 
concepts sections of its official documentation at http://moveit.ros.org/
documentation/concepts/. Here, we describe the main concepts in brief.  
In order to install MoveIt!, you only have to run this command:

$ sudo apt-get install ros-hydro-moveit-full

Alternatively, you can install all the dependencies of the code that comes with this 
chapter by running the following command from a workspace that contains it:

$ rosdep install --from-paths src -iy

The following diagram (Figure 1) shows the architecture of MoveIt!:
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Figure 1: MoveIt! architecture diagram

In the center of the architecture, we have the move_group element. The main idea is 
that we have to define groups of joints and other elements to perform moving actions 
using motion planning algorithms. These algorithms consider a scene with objects to 
interact with and the joints characteristics of the group.

http://moveit.ros.org/documentation/concepts/
http://moveit.ros.org/documentation/concepts/
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A group is defined using standard ROS tools and definition languages, such as YAML, 
URDF, and SDF. In brief, we have to define the joints that are part of a group with their 
joint limits. Similarly, we define the end effector tools, such as a gripper and perception 
sensors. The robot must expose JointTrajectoryAction controllers so that the 
output of the motion planning can be planned and executed on the robot hardware (or 
simulator). In order to monitor the execution, /joint_states is also needed by means 
of the robot state publisher. All this is provided by the ROS control as well as specific 
sensor drivers. Note that MoveIt! provides a GUI wizard to define the joint groups for 
a given robot, which can be called directly as follows:

$ roslaunch moveit_setup_assistant setup_assistant.launch

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. You can also download these code 
files from https://github.com/AaronMR/ROS_Book_Hydro.

Once move_group is configured properly, we can interface with it. MoveIt! provides 
a C++ and a Python API to do so and also an RViz plugin that integrates seamlessly 
and allows us to send motion goals, plan them, and send (execute) them on the robot, 
as shown in Figure 2:

Figure 2: MoveIt! integration for simulated manipulator in Gazebo

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/AaronMR/ROS_Book_Hydro
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Motion planning
Motion planning deals with the problem of moving the arm to a configuration, 
allowing you to reach a pose with the end effector without crashing the move  
group with any obstacle, that is, the links themselves or other objects perceived 
by sensors (usually as point clouds) or violating the joint limits. The MoveIt! user 
interface allows you to use different libraries for motion planning, such as OMPL  
(http://ompl.kavrakilab.org), using ROS actions or services.

A motion plan request is sent to the motion planning, which takes care of avoiding 
collisions (including self-collisions) and finds a trajectory for all the joints in the 
groups that move the arm so that it reaches the goal requested. Such a goal consists 
of a location in joint space or an end effector pose, which could include an object  
(for example, if the gripper picks up something) as well as kinematic constraints:

• Position constraints: These restrict the position of a link
• Orientation constraints: These restrict the orientation of a link
• Visibility constraints: These restrict a point on a link to be visible in a 

particular zone (it falls inside the sensor visibility cone)
• User-specified constraints: These are provided with a user-defined callback

The result of the motion plan is a trajectory that moves the arm to the target 
goal location. This trajectory also avoids collisions and satisfies the velocity and 
acceleration constraints at the joint level.

Finally, MoveIt! has a motion planning pipeline made of motion planners and 
plan request adapters. The latter are components that allow the preprocessing and 
postprocessing of the motion plan request. For example, preprocessing is useful 
when the initial state of the arm is outside joint limits; postprocessing is useful to 
convert paths into time-parameterized trajectories. Some of the default motion 
planning adapters provided by MoveIt! are as follows:

• FixStartStateBounds: This fixes the initial/start state to be inside the 
joint limits specified in the URDF. Without this adapter, when the joints are 
outside the joint limits, the motion planner would not be able to find any 
plan since the arm is already violating the joint limits. The adapter will move 
the joints into the joint limits but only when the joint state is not outside by a 
large amount since, in such cases, it is not necessarily the best solution.

• FixWorkspaceBounds: This defines a default workspace to plan a  
10 x 10 x 10 m3 cube.

• FixStartStateCollision: This will attempt to sample a collision-free 
configuration near a given configuration in collision. It will do that by 
disturbing the joint states only by a small amount.

http://ompl.kavrakilab.org
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• FixStartStatePathConstraints: This is applied when the initial state does 
not obey the given path constraints. It will attempt to find a plan from the 
initial configuration to a new one that satisfies the path constraints, which 
will then be used as the initial state for motion planning.

• AddTimeParameterization: This will time-parameterize the kinematic path 
typically generated by the motion planner (a path that does not obey any 
velocity or acceleration constraints) by applying velocity and acceleration 
constraints given in the joint_limits.yaml file of the robot.

The planning scene
The planning scene represents the world around the robot as well as the robot state. 
This is maintained by the planning scene monitor shown in the next diagram, taken 
from the concepts section of its official documentation at http://moveit.ros.org/
documentation/concepts/. It is a subpart of move_group, which listens to joint_
states, the sensor information (usually point clouds), and the world geometry, which 
is provided by the user input on the planning_scene topic. This is shown in Figure 3:
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Figure 3: MoveIt! planning scene diagram
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The world geometry monitor uses an occupancy map monitor to build a  
3D representation of the environment around the robot and augments it with the 
planning_scene topic information, such as objects (for example, grasping objects); 
an octomap is used to register all this information. In order to generate the 3D 
representation, MoveIt! supports different sensors to perceive the environment by 
means of plugins supplying two kinds of inputs:

• Point Clouds: This is handled by a point cloud occupancy map updater plugin.
• Depth images: This is handled by the depth image occupancy map updater 

plugin, including a self-filter that removes visible parts of the robot from the 
depth map using the robot state information to that end.

Kinematics
Forward kinematics and its Jacobians are integrated in the RobotState class.  
On the other hand, for inverse kinematics, MoveIt! provides a default plugin that 
uses a numerical Jacobian-based solver that is automatically configured by the setup 
assistant. As with other components of MoveIt!, the users can write their own inverse 
kinematics plugins, such as IKFast.

Collision checking
The CollisionWorld object of the planning scene is used to configure collision 
checking using the Flexible Collision Library (FCL) package. The collision objects 
supported are meshes, primitive shapes, for example, boxes, cylinders, cones, 
spheres, and planes, and an octomap.

Collision checking is a very expensive operation that usually accounts for 90 percent 
of motion planning. For that reason, an Allowed Collision Matrix (ACM) is used to 
encode a Boolean value that indicates whether collision checking is needed for two 
pairs of bodies (on the robot or in the world); a value of 1 indicates that collision 
checking is not needed for a pair of objects. This is the case for bodies that are very 
far from each other, so they would never collide.

Integrating an arm in MoveIt!
In this section, we will go through the different steps required to get a robotic arm 
working with MoveIt! There are several elements that need to be provided beforehand, 
such as the arm description file (URDF), as well as the components required to make it 
work in Gazebo, although some of these will be covered in this chapter.
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What's in the box?
In order to make it easier to understand how we can integrate a robotic arm 
with MoveIt!, we have provided a set of packages containing all of the necessary 
configurations, robot descriptions, launch scripts, and modules to integrate MoveIt! 
with ROS, Gazebo, and RViz. We will not cover the details of how to integrate a 
robot with Gazebo as that has been covered in other chapters, but an explanation on 
how to integrate MoveIt! with Gazebo will be provided. The following packages are 
provided in the repository for this chapter, in the chapter10_tutorials directory:

• chapter10_tutorials: This repository acts as a container for the rest of 
the packages that will be used in this chapter. This sort of structure usually 
requires a metapackage to let catkin know that the packages are loosely 
related; hence, this package is the metapackage of the repository.

• rosbook_arm_bringup: This package centralizes the launching of both the 
controllers and MoveIt! as well as the play_motion utility, which can be 
used to request predefined arm configurations. It brings up the robot—either 
the real one or in simulation.

• rosbook_arm_controller_configuration: This package contains the 
launch files to load the controllers required to move the arm. These are 
trajectory (JointTrajectoryController) controllers used to support  
the MoveIt! motion planning.

• rosbook_arm_controller_configuration_gazebo: This package contains 
the configuration for the joint trajectory controllers. This configuration also 
includes the PID values required to control the arm in Gazebo.

• rosbook_arm_description: This package contains all of the required 
elements to describe the robotic arm, including URDF files (actually xacro), 
meshes, and configuration files.

• rosbook_arm_gazebo: This package is one of the most important packages, 
containing the launch files for Gazebo, which will take care of launching the 
simulation environment as well as MoveIt!, and the controllers, as well as 
taking care of running the launch files required (mainly calling the launch file 
in rosbook_arm_bringup but also all the previous packages). It also contains 
the world's descriptions in order to include objects to interact with.

• rosbook_arm_hardware_gazebo: This package uses the ROS Control plugin 
used to simulate the joints in Gazebo. This package uses the robot description 
to register the different joints and actuators, in order to be able to control 
their position. This package is completely independent of MoveIt!, but it is 
required for the integration with Gazebo.
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• rosbook_arm_moveit_config: This package is generated through the MoveIt! 
setup assistant. This contains most of the launch files required for both MoveIt! 
and the RViz plugins as well as several configuration files for MoveIt!.

• rosbook_arm_snippets: Except for the pick and place example, this package 
contains all of the snippets used throughout the chapter.

• rosbook_arm_pick_and_place: This package is the biggest and most 
complex example in the book, containing a demonstration of how you can 
perform object picking and placing with MoveIt!.

Generating a MoveIt! package with the setup 
assistant
MoveIt! provides a user-friendly graphical interface for the purpose of integrating 
a new robotics arm into it. The setup assistant takes care of generating all of the 
configuration files and launch scripts based on the information provided by the 
user. In general, it is the easiest way to start using MoveIt! as it also generates 
several demonstration launch scripts, which can be used to run the system without a 
physical arm or simulation in place.

In order to launch the setup assistant, the following command needs to be executed 
in a terminal:

$ roslaunch moveit_setup_assistant setup_assistant.launch

Figure 4: Initial screen of MoveIt! setup assistant
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Once the command has been executed, a window similar to the one shown in Figure 4  
should appear; in this particular case, the goal is to generate a new configuration, so 
that's the button we should aim for. Once the button has been pressed, the assistant 
will request a URDF or COLLADA model of the robotic arm, which, for our example 
arm, can be found in the following location inside the repository package:

rosbook_arm_description/robots/rosbook_arm_base.urdf.xacro

Please note that the robot description provided is in the XML Macros (Xacro) format, 
which makes it easier to generate complex URDF files. Once the robot description has 
been loaded, the reader needs to go through each tab, adding the required information. 
The first tab, as seen in Figure 5, is used to generate the self-collision matrix. Fortunately 
for the user, this process is performed automatically by simply setting the sampling 
density (or using the default value), and clicking on the Regenerate Default Collision 
Matrix button. The collision matrix contains information about how and when links 
collide in order to improve the performance of the motion planner. Figure 5 shows this 
in detail:

Figure 5: Self-collision tab of MoveIt! Setup Assistant 
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The second tab, as seen in Figure 6, is used to assign virtual joints to the robot. A 
virtual joint is used to attach the robotic arm to the world as the pose of a robot 
can vary with respect to it, but in this particular case, we won't need a virtual 
joint because the base of the arm does not move. We need virtual joints when the 
manipulator is not fixed in one place. In that case, for example, if the arm is on top  
of a mobile platform, we need a virtual joint for the odometry since base_link  
(base frame) moves with respect to the odom frame.

Figure 6: Virtual joints tab of MoveIt! Setup Assistant
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In the third tab, which can be seen in Figure 7, we need to define the planning 
groups of the robotic arm. Planning groups, as the name suggests, are sets of joints 
that need to be planned together in order to achieve a given goal on a specific link 
or end effector. In this particular case, we need to define two planning groups: one 
for the arm itself and another for the gripper. The planning will then be performed 
separately for the arm positioning and the gripper action.

Figure 7: Planning Groups tab of MoveIt! Setup Assistant
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The fourth tab, as shown on Figure 8, gives us the ability to define known robot poses 
in order to be able to reference them later; these predefined poses are also referred 
to as group states. As we can see, we have set up two different poses: the home 
position, which corresponds to the "stored" position of the arm, and the grasping 
position, which, as the name suggests, should allow the robot to grasp elements in 
the scene. Setting known poses can have multiple benefits in a real-life situation; 
for example, it is common to have an initial position from which planning happens, 
a position where the arm is safe to be stored in a container, or even a set of known 
positions with which to compare the position accuracy over time.

Figure 8:Robot Poses tab of MoveIt! Setup Assistant



Chapter 10

[ 379 ]

The fifth tab, used to define the robotic arm's end effector, can be seen in Figure 9. As 
we discussed earlier, the robotic arm usually has an end effector, which is used to 
perform an action, such as a gripper or some other tool. In our case, the end effector 
is a gripper, which allows us to pick objects from the scene. In this tab, we need to 
define the gripper's end effector by assigning it a name, a planning group, and the 
parent link containing the end effector.

Figure 9: End effectors tab of MoveIt! Setup Assistant
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The sixth tab, shown in Figure 10, is an optional configuration step, which allows 
us to define joints that cannot be actuated. An important feature of these joints is 
that MoveIt! doesn't need to plan for them and our modules don't need to publish 
information about them. An example of a passive joint in a robot could be a caster, 
but in this case, we'll skip this step as all of our passive joints have been defined as 
fixed joints, which will eventually produce the same effect on motion planning.

Figure 10: Passive Joints tab of MoveIt! Setup Assistant
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Finally, as seen in Figure 11, the last step in the setup assistant is generating the 
configuration files. The only thing required in this step is to provide the path of the 
configuration package, which will be created by MoveIt!, and which will contain 
most of the launch and configuration files required to properly start controlling our 
robotic arm from MoveIt!

Figure 11: Generate Configuration Files tab of MoveIt! Setup Assistant

It is important to take into account that the configuration generated by the setup 
assistant has already been provided in the repository and that even though it is 
recommended that you go through the process, the result can be discarded in favor 
of the provided package, which is already being referenced by the rest of the launch 
scripts and configuration files in the repository.
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Integration into RViz
MoveIt! provides a very useful and complete RViz plugin that gives the user the 
ability to perform several actions, such as plan different goals, add and remove 
objects to the scene, and so on. The setup assistant usually creates a number of 
launch files, among which there is one called demo, which takes care of launching 
MoveIt! as well as the fake controllers, RViz and the plugin. In order to start the 
demonstration, run the following command:

$ roslaunch rosbook_arm_moveit_config demo.launch

Once RViz launches, a motion planning panel should appear as well as the 
visualization of the robotic arm. The important tabs we need to consider are the 
Planning tab and the Scene objects tab. In the Planning tab, the user will be able to 
plan different goal positions, execute them, and set some of the common planning 
options. In the latter, objects can be inserted and removed from the planning scene.

Figure 12 shows the planning tab as well as a visualization of the robotic arm in both 
white and orange. The former is the current state of the arm, and the latter is the 
goal position defined by the user. In this particular case, the goal position has been 
generated using the tools in the Query panel. Once the user is happy with the goal 
state, the next step can be to either plan to visualize how the arm is going to move or 
plan to execute it to not only visualize the movement but also move the arm itself.

Figure 12: Planning tab and goal position visualization in RViz plugin
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Other options, such as the planning time or the number of planning attempts, can 
be tweaked in order to account for complex goals, but for most of the cases in the 
demonstration, changing these parameters won't be required. Another important 
parameter is the goal tolerance, which defines how close to the goal position we 
require the robotic arm to be, in order to consider the position as having been achieved.

Planning random goals might be of some interest, but another level of planning is 
provided by the RViz plugin. As illustrated in Figure 13, the robotic arm visualization 
has a marker on the end effector. This marker allows us to position the end effector 
of the arm as well as rotate it on each axis. You can now make use of this marker to 
position the arm towards more interesting configurations.

Figure 13: Using markers to set the goal position in RViz plugin
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Figure 14: Markers out of bounds in RViz plugin

In many cases, planning by positioning the marker might produce no movement 
at all and show the robotic arm in the same position, but the marker and the end 
effector might be in other positions. An example of this behavior can be seen in 
Figure 14, and it usually happens when the desired position is out of the range of 
motion of the robotic arm (when there are not enough degrees of freedom, too many 
constraints, and so on). Similarly, when the arm is positioned in a state in which 
it collides with elements in the scene or with itself, the arm will show the collision 
zone in red. Finally, Figure 15 shows the different options provided by the MoveIt! 
plugin's visualization:
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Figure 15: Motion planning plugin options in RViz plugin

As the names suggest, all of these options are meant to provide a way to tweak the 
visualization as well as add more information to it. Other interesting options that 
the user might want to modify are Trajectory Topic, which, as the name suggests, is 
the topic on which the visualization trajectory is published, and Query Start State, 
which will also show the state from which the arm is about to execute the plan. 
In most cases, the start state is usually the current state of the arm, but having a 
visualization cue can help spot issues in our algorithms.
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Integration into Gazebo or a real robotic arm
The MoveIt! integration into Gazebo is a relatively straightforward process, which 
can be divided into two different steps: first of all, we need to provide all of the 
sensors required by MoveIt!, such as the RGBD sensor, so that motion planning 
can take the environment into account, and secondly, we also need to provide a 
controller as well as the current joint states periodically.

When a sensor is created in Gazebo, it interacts with the system as a normal sensor 
would by simply producing the required data. This data is then used by MoveIt! in 
exactly the same way that data produced by a real sensor would in order to generate 
collision artifacts in the planning scene. The process of making MoveIt! aware of 
those sensors will be explained later in this chapter.

As regards the manipulator's (arm and gripper) definition, a URDF description 
is provided using Xacro files as with any robot in ROS. In the case of using 
MoveIt!, we need to configure the controllers for the manipulator joints as 
JointTrajectoryController because the motion plans provide the output with 
messages for that type of controller. In the case of the manipulator used in this 
chapter, we need two controllers of this type: one for the arm and another for the 
gripper. The controller configuration is organized in the rosbook_arm_controller_
configuration and rosbook_arm_controller_configuration_gazebo packages 
with the launch and config YAML files, respectively.

This type of controller is provided by the ROS control. Consequently, we need a 
RobotHardware interface for our arm to actually move in Gazebo or in the real 
hardware. The implementation is different for Gazebo and the real arm, and here we 
only provide the first. The rosbook_arm_hardware_gazebo package has the C++ 
implementation of RobotHardware for the manipulator used in this chapter. This is 
done by implementing the interface, so we create a new class that inherits from it. 
Then, the joints are properly handled, by writing the desired target positions (using 
position control) and reading the actual ones, along with the effort and velocity for 
each joint. For the sake of simplicity, we omit the explanation of the details of this 
implementation, which is not needed to understand MoveIt! However, if the number 
manipulator is drastically changed, the implementation must be changed although it is 
generic enough to detect the number of joints automatically from the robot description.
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Simple motion planning
The RViz plugin provides a very interesting mechanism to interact with MoveIt! 
But it could be considered quite limited or even cumbersome due to the lack of 
automation. In order to fully make use of the capabilities included in MoveIt!, several 
APIs have been developed, which allow us to perform a range of operations over 
it, such as motion planning, accessing the model of our robot, and modifying the 
planning scene.

In the following section, we will cover a few examples on how to perform different 
sorts of simple motion planning. We will start by planning a single goal, continue 
with planning a random target, proceed with planning a predefined group state, and 
finally, explain how to improve the interaction of our snippets with RViz.

In order to simplify the explanations, a set of launch files have been provided to 
launch everything required. The most important one takes care of launching Gazebo, 
MoveIt!, and the arm controllers:

$ roslaunch rosbook_arm_gazebo rosbook_arm_empty_world.launch

Another interesting launch file has been provided by the setup assistant, which 
launches RViz and the motion planning plugin. This particular one is optional,  
but it is useful to have, as RViz will be used further in this section:

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

A number of snippets have also been provided, which cover everything explained 
in this section. The snippets can be found in the rosbook_arm_snippets package. 
The snippets package doesn't contain anything other than code, and launching the 
snippets will be done by calling rosrun instead of the usual roslaunch.

Every snippet of code in this section follows the same pattern, starting with the 
typical ROS initialization, which won't be covered here. After the initialization, 
we need to define the planning group on which motion planning is going to be 
performed. In our case, we only have two planning groups, the arm and the gripper, 
but in this case, we only care about the arm. This will instantiate a planning group 
interface, which will take care of the interaction with MoveIt!:

moveit::planning_interface::MoveGroup plan_group("arm");
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After the instantiation of the planning group interface, there is usually some code 
dedicated to deciding the goal to be planned, which will be specific to each of the 
types of goals covered in this section. After the goal has been decided, it needs to 
be conveyed to MoveIt! so that it gets executed. The following snippet of code takes 
care of creating a plan and using the planning group interface to request MoveIt! to 
perform motion planning and, if successful, to also execute it:

moveit::planning_interface::MoveGroup::Plan goal_plan;
if (plan_group.plan(goal_plan))
{
  ...
  plan_group.move();
}

Planning a single goal
To plan a single goal, we literally only need to provide MoveIt! with the goal itself. A 
goal is expressed by a Pose message from the geometry_msgs package. We need to 
specify both the orientation and the pose. For this particular example, this goal was 
obtained by performing manual planning and checking the state of the arm. In a real 
situation, goals will probably be set depending on the purpose of the robotic arm:

geometry_msgs::Pose goal;
goal.orientation.x = -0.000764819;
goal.orientation.y = 0.0366097;
goal.orientation.z = 0.00918912;
goal.orientation.w = 0.999287;
goal.position.x = 0.775884;
goal.position.y = 0.43172;
goal.position.z = 2.71809;

For this particular goal, we can also set the tolerance. We are aware that our PID is 
not incredibly accurate, which could lead to MoveIt! believing that the goal hasn't 
been achieved. Changing the goal tolerance makes the system achieve the waypoints 
with a higher margin of error in order to account for inaccuracies in the control:

plan_group.setGoalTolerance(0.2);

Finally, we just need to set the planning group target pose, which will then be 
planned and executed by the snippet of code shown at the beginning of this section:

plan_group.setPoseTarget(goal);
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We can run this snippet of code with the following command; the arm should 
position itself without any issues:

$ rosrun rosbook_arm_snippets move_group_plan_single_target

Planning a random target
Planning a random target can be effectively performed in two steps: first of all, we 
need to create the random target itself and then check its validity. If the validity 
is confirmed, then we can proceed by requesting the goal as usual; otherwise, we 
will cancel (although we could retry until we find a valid random target). In order 
to verify the validity of the target, we need to perform a service call to a service 
provided by MoveIt! for this specific purpose. As usual, to perform a service call,  
we need a service client:

ros::ServiceClient validity_srv =  nh.serviceClient<moveit_
msgs::GetStateValidity>("/check_state_validity");

Once the service client is set up, we need to create the random target. To do so, we 
need to create a robot state object containing the random positions, but to simplify 
the process, we can start by acquiring the current robot state object:

robot_state::RobotState current_state = *plan_group.getCurrentState();

We will then set the current robot state object to random positions, but to do so, we 
need to provide the joint model group for this robot state. The joint model group can 
be obtained using the already created robot state object as follows:

current_state.setToRandomPositions(current_state.
getJointModelGroup("arm"));

Up to this point, we have a service client waiting to be used as well as a random 
robot state object, which we want to validate. We will create a pair of messages: 
one for the request and another for the response. Fill in the request message with 
the random robot state using one of the API conversion functions, and request the 
service call:

moveit_msgs::GetStateValidity::Request validity_request;
moveit_msgs::GetStateValidity::Response validity_response;

robot_state::robotStateToRobotStateMsg(current_state, validity_
request.robot_state);
validity_request.group_name = "arm";

validity_srv.call(validity_request, validity_response);
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Once the service call is complete, we can check the response message. If the state 
appears to be invalid, we would simply stop running the module; otherwise, we 
will continue. As explained earlier, at this point, we could retry until we get a valid 
random state; this can be an easy exercise for the reader:

if (!validity_response.valid)
{
  ROS_INFO("Random state is not valid");
  ros::shutdown();
  return 1;
}

Finally, we will set the robot state we just created as the goal using the planning 
group interface, which will then be planned and executed as usual by MoveIt!:

plan_group.setJointValueTarget(current_state);

We can run this snippet of code with the following command, which should lead to 
the arm repositioning itself on a random configuration:

$ rosrun rosbook_arm_snippets move_group_plan_random_target

Planning a predefined group state
As we commented during the configuration generation step, when initially 
integrating our robotic arm, MoveIt! provides the concept of predefined group states, 
which can later be used to position the robot with a predefined pose. Accessing 
predefined group states requires creating a robot state object as a target; in order to 
do so, the best approach is to start by obtaining the current state of the robotic arm 
from the planning group interface:

robot_state::RobotState current_state = *plan_group.getCurrentState();

Once we have obtained the current state, we can modify it by setting it to the 
predefined group state, with the following call, which takes the model group  
that needs to be modified and the name of the predefined group state:

current_state.setToDefaultValues(current_state.
getJointModelGroup("arm"), "home");

Finally, we will use the new robot state of the robotic arm as our new goal and let 
MoveIt! take care of planning and execution as usual:

plan_group.setJointValueTarget(current_state);
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We can run this snippet of code with the following command, which should lead to 
the arm repositioning itself to achieve the predefined group state:

$ rosrun rosbook_arm_snippets move_group_plan_group_state

Displaying the target motion
MoveIt! provides a set of messages that can be used to communicate visualization 
information, essentially providing it with the planned path in order to get a 
nice visualization of how the arm is going to move to achieve its goal. As usual, 
communication is performed through a topic, which needs to be advertised:

ros::Publisher display_pub = nh.advertise<moveit_
msgs::DisplayTrajectory>("/move_group/display_planned_path", 1, true);

The message we need to publish requires the start state of the trajectory and the 
trajectory itself. In order to obtain such information, we always need to perform 
planning using the planning group interface first, and using the created plan,  
we can proceed to fill in the message:

moveit_msgs::DisplayTrajectory display_msg;
display_msg.trajectory_start = goal_plan.start_state_;
display_msg.trajectory.push_back(goal_plan.trajectory_);
display_pub.publish(display_msg);

Once the message has been filled in, publishing it to the correct topic will cause  
the RViz visualization to show the trajectory that the arm is about to perform.  
It is important to take into account that, when performing a call to plan, it will also 
show the same type of visualization, so you shouldn't be confused if the trajectory  
is displayed twice.

Motion planning with collisions
It might be interesting for the reader to know that MoveIt! provides motion planning 
with collisions out of the box, so in this section we will cover how you can add 
elements to the planning scene that could potentially collide with our robotic arm. 
First, we will start by explaining how to add basic objects to the planning scene, 
which is quite interesting as it allows us to perform planning even if a real object 
doesn't exist in our scene. For completion, we will also explain how to remove 
those objects from the scene. Finally, we will explain how to add an RGBD sensor 
feed, which will produce point clouds based on real-life (or simulated) objects, thus 
making our motion planning much more interesting and realistic.
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Adding objects to the planning scene
To start adding an object, we need to have a planning scene; this is only possible 
when MoveIt! is running, so the first step is to start Gazebo, MoveIt!, the controllers, 
and RViz. Since the planning scene only exists in MoveIt!. RViz is required to be able 
to visualize objects contained in it. In order to launch all of the required modules, we 
need to run the following commands:

$ roslaunch rosbook_arm_gazebo rosbook_arm_empty_world.launch

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

The snippet of code then starts by instantiating the planning scene interface object, 
which can be used to perform actions on the planning scene itself:

moveit::planning_interface::PlanningSceneInterface current_scene;

The next step is to create the collision object message that we want to send through 
the planning scene interface. The first thing we need to provide for the collision 
object is a name, which will uniquely identify this object and will allow us to  
perform actions on it, such as removing it from the scene once we're done with it:

moveit_msgs::CollisionObject box;

box.id = "rosbook_box";

The next step is to provide the properties of the object itself. This is done through 
a solid primitive message, which specifies the type of object we are creating, and 
depending on the type of object, it also specifies its properties. In our case, we are 
simply creating a box, which essentially has three dimensions:

shape_msgs::SolidPrimitive primitive;
primitive.type = primitive.BOX;
primitive.dimensions.resize(3);
primitive.dimensions[0] = 0.2;
primitive.dimensions[1] = 0.2;
primitive.dimensions[2] = 0.2;

To continue, we need to provide the pose of the box in the planning scene. Since 
we want to produce a possible collision scenario, we have placed the box close to 
our robotic arm. The pose itself is specified with a pose message from the standard 
geometry messages package:

geometry_msgs::Pose pose;
pose.orientation.w = 1.0;
pose.position.x =  0.7;
pose.position.y = -0.5;
pose.position.z =  1.0;
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We then add the primitive and the pose to the message and specify that the 
operation we want to perform is to add it to the planning scene:

box.primitives.push_back(primitive);
box.primitive_poses.push_back(pose);
box.operation = box.ADD;

Finally, we add the collision object to a vector of collision object messages and call 
the addCollisionObjects method from the planning scene interface. This will take 
care of sending the required messages through the appropriate topics, in order to 
ensure that the object is created in the current planning scene:

std::vector<moveit_msgs::CollisionObject> collision_objects;
collision_objects.push_back(box);

current_scene.addCollisionObjects(collision_objects);

We can test this snippet by running the following command in a terminal, as said 
earlier. Since the object is added to the planning scene, it is important to have the 
RViz visualization running; otherwise, the reader won't be able to see the object:

$ rosrun rosbook_arm_snippets move_group_add_object

The result can be seen in Figure 16 as a simple, green, squared box in the middle of 
the way between the arm's goal and the current position of the arm:

Figure 16: Scene collision object in RViz
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Removing objects from the planning scene
Removing the added object from the planning scene is a very simple process. 
Following the same initialization as in the previous example, we only need to  
create a string vector containing the IDs of the objects we want to remove and  
call the removeCollisionObjects function from the planning scene interface:

std::vector<std::string> object_ids;
object_ids.push_back("rosbook_box");
current_scene.removeCollisionObjects(object_ids);

We can test this snippet by running the following command, which will remove the 
object created with the previous snippet from the planning scene:

$ rosrun rosbook_arm_snippets move_group_remove_object

Alternatively, we can also use the Scene objects tab in the RViz plugin to remove any 
objects from the scene.

Motion planning with point clouds
Motion planning with point clouds is much simpler than it would appear to be.  
The main thing to take into account is that we need to provide a point cloud feed  
as well as tell MoveIt! to take this into account when performing planning. The 
Gazebo simulation we have set up for this chapter already contains an RGBD sensor, 
which publishes a point cloud for us. To start with this example, let's launch the 
following commands:

$ roslaunch rosbook_arm_gazebo rosbook_arm_grasping_world.launch

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

The user might have noticed that the Gazebo simulation now appears to include 
several objects in the world. Those objects are scanned by an RGBD sensor, and the 
resulting point cloud is published to the /rgbd_camera/depth/points topic. What we 
need to do in this case is tell MoveIt! where to get the information from and what the 
format of that information is. The first file we need to modify is the following one:

rosbook_arm_moveit_conifg/config/sensors_rgbd.yaml
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This file will be used to store the information of the RGBD sensor. In this file, we 
need to tell MoveIt! which plugin it needs to use to manage the point cloud as well as 
some other parameters specific to the sensor plugin itself. In this particular case, the 
plugin to use is Octomap Updater, which will generate an octomap with the point 
cloud provided, downsample it, and publish the resulting cloud. With this first step, 
we have set up a plugin, which will provide enough information to MoveIt! to plan 
while taking into account possible collisions with the point cloud:

sensors:
- sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
  point_cloud_topic: /rgbd_camera/depth/points
  max_range: 10
  padding_offset: 0.01
  padding_scale: 1.0
  point_subsample: 1
  filtered_cloud_topic: output_cloud

As you might have suspected, the file itself is nothing more than a configuration 
file. The next step we need to perform is to load this configuration file into the 
environment so that MoveIt! is aware of the new sensor we have added. In order  
to do so, we will need to modify the following XML file:

$ rosbook_arm_moveit_conifg/launch/rosbook_arm_moveit_sensor_manager.
launch.xml

In this XML file, we can potentially specify a few parameters that will be used  
by the sensor plugin, such as the cloud resolution and the frame of reference. It is 
important to take into account that some of these parameters might be redundant 
and can be omitted. Finally, we need to add a command to load the configuration  
file into the environment:

<launch>
  <rosparam command="load" file="$(find rosbook_arm_moveit_config)/
config/sensors_rgbd.yaml" />
</launch>
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The result of running the commands specified in the beginning with the new changes 
we have added can be seen on Figure 17. In this particular case, we can see both 
the Gazebo simulation and the RViz visualization. The RViz simulation contains a 
point cloud, and we have already performed some manual motion planning, which 
successfully took the point cloud into account to avoid any collisions:

Figure 17: Gazebo simulation (left), point cloud in RViz (right)

The pick and place task
In this section, we are going to explain how to perform a very common application or 
task with a manipulator robot. A pick and place task consists of picking up a target 
object, which includes grasping it, and placing it somewhere else. Here, we assume 
that the object is initially on top of a supporting surface, which is flat or planar, such 
as a table, but it is easy to generalize it to more complex environments. As regards 
the object to grasp, we will consider a cylinder that is approximated by a box because 
the gripper we are going to use to grasp is very simple; for more complex objects, 
you will need a better gripper or even a hand.
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In the further sections, we will start by describing how to set up the planning scene, 
which MoveIt! needs in order to identify the objects that are there, apart from the 
arm itself. These objects are considered during motion planning to avoid obstacles, 
and they can also be targets for picking up or grasping. In order to simplify the 
problem, we will omit the perception part, but we will explain how it can be done 
and integrated. Once the planning scene is defined, we will describe how to perform 
the pick and place task using the MoveIt! API. Finally, we will explain how to run 
this task in the demonstration mode, using fake controllers so that we do not need 
the actual robot (either simulated on Gazebo or a real one). We will also show 
how you can actually see the motion on the simulated arm in Gazebo while it is 
interacting with the simulated objects in the environment.

The planning scene
The first thing we have to do is define the objects in the environment since MoveIt! 
needs this information to make the arm interact without colliding and to reference 
them to do certain actions. Here, we will consider the scene shown in Figure 18:

Figure 18: Environment with manipulator and objects in Gazebo
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This scene has the arm with the gripper and the RGB-D sensor as the robotic 
manipulator. Then, there is also a table and a can of Coke, which are the flat  
support surface and the cylindrical object, respectively. You can run this scene  
in Gazebo with the following command:

$ roslaunch rosbook_arm_gazebo rosbook_arm_grasping_world.launch

This scene is just a simple example that models a real use case. However, we still 
have to tell MoveIt! about the planning scene. At this moment, it only knows about 
the robotic manipulator. We have to tell it about the table and the can of Coke. This 
can be done either by using 3D perception algorithms, which take the point cloud 
of the RGB-D sensor, or programmatically, by specifying the pose and shape of the 
objects with some basic primitives. We will see how we can define the planning 
scene following the latter approach.

The code to perform the pick and place task is the pick_and_place.py Python 
program located in the scripts folder of the rosbook_arm_pick_and_place package. 
The important part to create the planning scene is in the __init__ method of the 
CokeCanPickAndPlace class:

self._scene = PlanningSceneInterface() 

In the following sections, we will add the table and the can of Coke to this  
planning scene.

The target object to grasp
In this case, the target object to grasp is the can of Coke. It is a cylindrical object that 
we can approximate as a box, which is one of the basic primitives in the MoveIt! 
planning scene API:

# Retrieve params: 
self._grasp_object_name = rospy.get_param('~grasp_object_name', 'coke_
can') 

# Clean the scene: 
self._scene.remove_world_object(self._grasp_object_name) 

# Add table and Coke can objects to the planning scene: 
self._pose_coke_can = self._add_coke_can(self._grasp_object_name) 
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The objects in the planning scene receive a unique identifier, which is a string. In this 
case, coke_can is the identifier for the can of Coke. We remove it from the scene to 
avoid having duplicate objects, and then we add to the scene. The _add_coke_can 
method does that by defining the pose and shape dimensions:

def _add_coke_can(self, name): 
    p = PoseStamped() 
    p.header.frame_id = self._robot.get_planning_frame() 
    p.header.stamp = rospy.Time.now() 

    p.pose.position.x = 0.75 - 0.01 
    p.pose.position.y = 0.25 - 0.01 
    p.pose.position.z = 1.00 + (0.3 + 0.03) / 2.0 

    q = quaternion_from_euler(0.0, 0.0, 0.0) 
    p.pose.orientation = Quaternion(*q) 

    self._scene.add_box(name, p, (0.15, 0.15, 0.3)) 

    return p.pose 

The important part here is the add_box method that adds a box object to the planning 
scene we created earlier. The box is given a name, its pose, and dimensions, which, in 
this case, are set to match the ones in the Gazebo world shown earlier, with the table 
and the can of Coke. We also have to set frame_id to the planning frame one and 
the timestamp to now. In order to use the planning frame, we need RobotCommander, 
which is the MoveIt! interface to command the manipulator programmatically:

self._robot = RobotCommander() 

The support surface
We proceed similarly to create the object for the table, which is also approximated 
by a box. Therefore, we simply remove any previous object and add the table. In this 
case, the object name is table:

# Retrieve params: 
self._table_object_name = rospy.get_param('~table_object_name', 
'table') 

# Clean the scene: 
self._scene.remove_world_object(self._table_object_name) 

# Add table and Coke can objects to the planning scene: 
self._pose_table    = self._add_table(self._table_object_name) 
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The _add_table method adds the table to the planning scene:

def _add_table(self, name): 
    p = PoseStamped() 
    p.header.frame_id = self._robot.get_planning_frame() 
    p.header.stamp = rospy.Time.now() 

    p.pose.position.x = 1.0 
    p.pose.position.y = 0.0 
    p.pose.position.z = 1.0 

    q = quaternion_from_euler(0.0, 0.0, numpy.deg2rad(90.0)) 
    p.pose.orientation = Quaternion(*q) 

    self._scene.add_box(name, p, (1.5, 0.8, 0.03)) 

    return p.pose

We can visualize the planning scene objects in RViz running the following commands:

$ roslaunch rosbook_arm_gazebo rosbook_arm_grasping_world.launch

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

$ roslaunch rosbook_arm_pick_and_place grasp_generator_server.launch

$ rosrun rosbook_arm_pick_and_place pick_and_place.py

This actually runs the whole pick and place task, which we will continue to explain 
later. Right after starting the pick_and_place.py program, you will see the boxes 
that model the table and the can of Coke in green, matching perfectly with the point 
cloud seen by the RGB-D sensor, as shown in Figure 19:
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Figure 19: Point cloud seen by the RGB-D sensor of the environment

Perception
Adding the objects manually to the planning scenes can be avoided by perceiving 
the supporting surface. In this case, the table can be detected as a horizontal plane on 
the point cloud. Once the table is recognized, it can be subtracted from the original 
point cloud to obtain the target object, which can be approximated with a cylinder or 
a box. We will use the same method to add boxes to the planning scene as before, but 
in this case, the pose and dimensions (and the classification) of the objects will come 
from the output of the 3D perception and segmentation algorithm used.
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This sort of perception and segmentation in the point cloud provided by the RGB-D 
sensor can be easily done using the concepts and algorithms. However, in some 
cases, the accuracy will not be enough to grasp the object properly. The perception 
can be helped using fiducial markers placed on the object to grasp, such as ArUco 
(http://www.uco.es/investiga/grupos/ava/node/26) which has the ROS 
wrapper which can be found at https://github.com/pal-robotics/aruco_ros.

Here, we set the planning scene manually and leave the perception part to you. As 
we saw, the target object to grasp and the support surface is defined on the code 
manually by comparing the correspondence with the point cloud in RViz until we 
have a good match.

Grasping
Now that we have the target object defined in the scene, we need to generate 
grasping poses to pick it up. To achieve this aim, we use the grasp generator server 
from the moveit_simple_grasps package, which can be found at https://github.
com/davetcoleman/moveit_simple_grasps.

Although there is a Debian package available in Ubuntu for ROS hydro, it does not 
support any robot properly. For that reason, we need a patched version until the 
following pull request is accepted. The patched version can be downloaded from 
https://github.com/davetcoleman/moveit_simple_grasps/pull/16.

Therefore, we need to run the following commands to add the patched branch to our 
workspace (inside the src folder of the workspace):

$ wstool set moveit_simple_grasps --git git@github.com:efernandez/moveit_
simple_grasps.git -v server_params

$ wstool up moveit_simple_grasps

We can build this using the following commands:

$ cd ..

$ caktin_make

Now we can run the grasp generator server as follows (remember to source  
devel/setup.bash):

$ roslaunch rosbook_arm_pick_and_place grasp_generator_server.launch

The grasp generator server needs the following grasp data configuration in our case:

base_link: base_link 

gripper: 

http://www.uco.es/investiga/grupos/ava/node/26
https://github.com/pal-robotics/aruco_ros
https://github.com/davetcoleman/moveit_simple_grasps
https://github.com/davetcoleman/moveit_simple_grasps
https://github.com/davetcoleman/moveit_simple_grasps/pull/16
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  end_effector_name: gripper 

  # Default grasp params 
  joints: [finger_1_joint, finger_2_joint] 

  pregrasp_posture:          [0.0, 0.0] 
  pregrasp_time_from_start:  &time_from_start 4.0 

  grasp_posture:             [1.0, 1.0] 
  grasp_time_from_start:     *time_from_start 

  postplace_time_from_start: *time_from_start 

  # Desired pose from end effector to grasp [x, y, z] + [R, P, Y] 
  grasp_pose_to_eef:          [0.0, 0.0, 0.0] 
  grasp_pose_to_eef_rotation: [0.0, 0.0, 0.0] 

  end_effector_parent_link: tool_link

This defines the gripper we are going to use to grasp objects and the pre- and  
post-grasp postures, basically.

Now we need an action client to query for the grasp poses. This is done inside  
the pick_and_place.py program, right before we try to pick up the target object.  
So, we create an action client using the following code:

# Create grasp generator 'generate' action client: 
self._grasps_ac = SimpleActionClient('/moveit_simple_grasps_server/
generate', GenerateGraspsAction) 
if not self._grasps_ac.wait_for_server(rospy.Duration(5.0)): 
    rospy.logerr('Grasp generator action client not available!') 
    rospy.signal_shutdown('Grasp generator action client not 
available!') 
    return 

Inside the _pickup method, we use the following code to obtain the grasp poses:

grasps = self._generate_grasps(self._pose_coke_can, width) 

Here, the width argument specifies the width of the object to grasp. The _generate_
grasps method does the following:

    def _generate_grasps(self, pose, width): 
        # Create goal: 
        goal = GenerateGraspsGoal() 

        goal.pose  = pose 
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        goal.width = width 

        # Send goal and wait for result: 
        state = self._grasps_ac.send_goal_and_wait(goal) 
        if state != GoalStatus.SUCCEEDED: 
            rospy.logerr('Grasp goal failed!: %s' % self._grasps_
ac.get_goal_status_text()) 
            return None 

        grasps = self._grasps_ac.get_result().grasps 

        # Publish grasps (for debugging/visualization purposes): 
        self._publish_grasps(grasps) 

        return grasps

To summarize, it sends an actionlib goal to obtain a set of grasping poses for the 
target goal pose (usually at the object centroid). In the code provided with the book, 
there are some options commented upon, but they can be enabled to query only for 
particular types of grasps, such as some angles or pointing up or down. The output 
of the function are all the grasping poses that later the pickup action will try. Having 
multiple grasping poses increases the possibility of a successful grasp.

The grasp poses provided by the grasp generation server are also published as 
PoseArray using the _publish_grasps method for visualization and debugging 
purposes. We can see them on RViz running the whole pick and place task as before:

$ roslaunch rosbook_arm_gazebo rosbook_arm_grasping_world.launch

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

$ roslaunch rosbook_arm_pick_and_place grasp_generator_server.launch

$ rosrun rosbook_arm_pick_and_place pick_and_place.py



Chapter 10

[ 405 ]

A few seconds after running the pick_and_place.py program, we will see multiple 
arrows on the target object, which correspond with the grasp pose that will be tried 
in order to pick it up. This is shown in Figure 20 as follows:

Figure 20: Visualization of grasping poses

The pickup action
Once we have the grasping poses, we can use the MoveIt! /pickup action server to 
send a goal passing all of them. As before, we will create an action client:

# Create move group 'pickup' action client: 
self._pickup_ac = SimpleActionClient('/pickup', PickupAction) 
if not self._pickup_ac.wait_for_server(rospy.Duration(5.0)): 
    rospy.logerr('Pick up action client not available!') 
    rospy.signal_shutdown('Pick up action client not available!') 
    return 
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Then, we will try to pick up the can of Coke as many times as needed until we finally 
do it:

# Pick Coke can object: 
while not self._pickup(self._arm_group, self._grasp_object_name, 
self._grasp_object_width): 
    rospy.logwarn('Pick up failed! Retrying ...') 
    rospy.sleep(1.0) 

Inside the _pickup method, we create a pickup goal for MoveIt!, right after 
generating the grasps poses, as explained earlier:

# Create and send Pickup goal: 
goal = self._create_pickup_goal(group, target, grasps) 

state = self._pickup_ac.send_goal_and_wait(goal) 
if state != GoalStatus.SUCCEEDED: 
    rospy.logerr('Pick up goal failed!: %s' % self._pickup_ac.get_
goal_status_text()) 
    return None 

result = self._pickup_ac.get_result() 

# Check for error: 
err = result.error_code.val 
if err != MoveItErrorCodes.SUCCESS: 
    rospy.logwarn('Group %s cannot pick up target %s!: %s' % (group, 
target, str(moveit_error_dict[err]))) 

    return False 

return True 

The goal is sent and the state is used to check whether the robot manipulator picks 
up the object or not. The pickup goal is created in the _create_pickup_goal method 
as follows:

def _create_pickup_goal(self, group, target, grasps): 
  # Create goal: 
  goal = PickupGoal() 

  goal.group_name  = group 
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  goal.target_name = target 

  goal.possible_grasps.extend(grasps) 

  # Configure goal planning options: 
  goal.allowed_planning_time = 5.0 

  goal.planning_options.planning_scene_diff.is_diff = True 
  goal.planning_options.planning_scene_diff.robot_state.is_diff = True 
  goal.planning_options.plan_only = False 
  goal.planning_options.replan = True 
  goal.planning_options.replan_attempts = 10 

  return goal

The goal needs the planning group (arm in this case) and the target name (coke_can 
in this case). Then, all the possible grasps are set, and several planning options, 
including the planning time allowed, can be increased if needed.

When the target object is successfully picked up, we will see the box corresponding 
to it attached to the gripper's grasping frame with a purple color, as shown in  
Figure 21 (note that it might appear like a ghost gripper misplaced, but that is  
only a visualization artifact):

Figure 21: Arm picking up an object
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The place action
Right after the object has been picked up, the manipulator will proceed with the 
place action. MoveIt! provides the /place action server, so the first step consists of 
creating an action client to send a place goal in the desired location, in order to place 
the object picked up:

# Create move group 'place' action client: 
self._place_ac = SimpleActionClient('/place', PlaceAction) 
if not self._place_ac.wait_for_server(rospy.Duration(5.0)): 
    rospy.logerr('Place action client not available!') 
    rospy.signal_shutdown('Place action client not available!') 
    return 

Then, we will try to place the object until we finally manage to do it:

# Place Coke can object on another place on the support surface 
(table): 
while not self._place(self._arm_group, self._grasp_object_name, self._
pose_place): 
    rospy.logwarn('Place failed! Retrying ...') 
    rospy.sleep(1.0) 

The _place method uses the following code:

def _place(self, group, target, place): 
    # Obtain possible places: 
    places = self._generate_places(place) 

    # Create and send Place goal: 
    goal = self._create_place_goal(group, target, places) 

    state = self._place_ac.send_goal_and_wait(goal) 
    if state != GoalStatus.SUCCEEDED: 
        rospy.logerr('Place goal failed!: ' % self._place_ac.get_goal_
status_text()) 
        return None 

    result = self._place_ac.get_result() 

    # Check for error: 
    err = result.error_code.val 
    if err != MoveItErrorCodes.SUCCESS: 
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        rospy.logwarn('Group %s cannot place target %s!: %s' % (group, 
target, str(moveit_error_dict[err]))) 

        return False 

    return True

The method generates multiple possible places to leave the object, create the place 
goal, and send it. Then, it checks the result to verify whether the object has been 
placed or not. To place an object, we can use a single place pose, but it is generally 
better to provide several options. In this case, we have the _generate_places 
method, which generates places with different angles at the position given. When  
the places are generated, they are also published as PoseArray, so we can see them 
as shown in Figure 22 with blue arrows:

Figure 22: Visualization of place poses
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Once the places are obtained, the _create_place_goal method creates a place goal 
as follows:

def _create_place_goal(self, group, target, places): 
    # Create goal: 
    goal = PlaceGoal() 

    goal.group_name           = group 
    goal.attached_object_name = target 

    goal.place_locations.extend(places) 

    # Configure goal planning options: 
    goal.allowed_planning_time = 5.0 

    goal.planning_options.planning_scene_diff.is_diff = True 
    goal.planning_options.planning_scene_diff.robot_state.is_diff = 
True 
    goal.planning_options.plan_only = False 
    goal.planning_options.replan = True 
    goal.planning_options.replan_attempts = 10 

    return goal

In brief, the place goal has the group (arm in this case) and the target object (coke_
can in this case), which are attached to the gripper and the place or places (poses). 
Additionally, several planning options are provided, along with the allowed 
planning time, which can be increased if needed. When the object is placed, we will 
see the box representing it in green again and on top of the table, and the arm will be 
up again, as shown in Figure 23:
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Figure 23: Arm after placing an object

The demo mode
We can do the whole pick and place task without perception in demo mode, that is, 
without actually actuating on the Gazebo simulation, or the real, robotic arm. In this 
mode, we will use fake controllers to move the arm once the motion plan has been 
found by MoveIt! to do the pick and place actions, including grasping the object. The 
same code can be used directly on the actual controllers.

In order to run pick and place in the demo mode, run the following commands:

$ roslaunch rosbook_arm_moveit_config demo.launch 

$ roslaunch rosbook_arm_pick_and_place grasp_generator_server.launch 

$ rosrun rosbook_arm_pick_and_place pick_and_place.py 



Manipulation with MoveIt!

[ 412 ]

The special part is the first launch file, which simply opens RViz and loads fake 
controllers instead of spawning the robotic manipulator on Gazebo. Figure 24 shows 
several snapshots of the arm moving and doing the pick and place after running the 
preceding commands:

Figure 24: Arm doing pick and place task in the demo mode

Simulation in Gazebo
Using the same code as in demo mode, we can actually move the real controllers, 
either in simulation (Gazebo) or using the real hardware. The interface is the same, 
so using a real arm or gazebo is completely equivalent. In these cases, the joints will 
actually move and the grasping will actually make the gripper come in contact with 
the grasping object (the can of Coke). This requires a proper definition of the objects 
and the gripper in Gazebo to work properly.
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The commands to run the pick and place in this case (as shown previously) are:

$ roslaunch rosbook_arm_gazebo rosbook_arm_grasping_world.launch

$ roslaunch rosbook_arm_moveit_config moveit_RViz.launch config:=true

$ roslaunch rosbook_arm_pick_and_place grasp_generator_server.launch

$ rosrun rosbook_arm_pick_and_place pick_and_place.py

It is only the first part to launch files that changes with respect to the demo mode; 
it replaces demo.launch in the demo mode. In this case, we spawn the robotic 
manipulator in Gazebo with the environment containing the table and the can 
of Coke as well as the RGB-D camera. Then, the moveit_RViz.launch file opens 
RViz with the MoveIt! plugin, providing the same interface as with demo.launch. 
However, in this case, when the pick_and_place.py program is run, the arm in 
Gazebo is moved.

Summary
In this chapter, we have covered most of the aspects involved in integrating a robotic 
arm with MoveIt! and Gazebo, which gives us a realistic view of how a robotic arm 
could be used in a real-life environment. MoveIt! provides us with very simple and 
concise tools for motion planning on robotic arms using an Inverse Kinematics 
(IK) solver as well as ample documentation in order to facilitate this process, but 
given the complexity of the architecture, it can only be done properly once all of the 
different interactions between MoveIt!, the sensors, and the actuators in our robot 
have been properly understood.

We have glanced through the different high-level elements in the MoveIt! API, 
which would require an entire book of their own to be covered in detail. In an 
attempt to avoid the cost of understanding a full API to perform very simple actions, 
the approach taken in this book has been to limit ourselves to very simple motion 
planning and interacting with both artificially created objects in the planning scene 
and RGB-D sensors that generate a point cloud.

Finally, a very detailed explanation has been provided for how to perform an object 
pick and place task. Although not being the sole purpose of a robotic arm, this is one 
that you might enjoy experimenting with as it is very common in industrial robots, but 
using MoveIt! motion planning and 3D perception allows you to do so in complex and 
dynamic environments. For this particular purpose of the robotic arm, a deeper look at 
the APIs and enhanced understanding of the MoveIt! architecture was required, giving 
you much more depth and understanding as to the possibilities of MoveIt!
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Association (NMEA)
about  174
URL  174

navigation stack
in ROS  304, 305
launch file, creating for  343-345

nodelets  35, 36
nodes

about  33-35
building  59-61
creating  56-59

O
Object Recognition Kitchen (ORK)

about  215
URL  215

obstacles
avoiding  360, 361

Occupancy Grid Map (OGM)  116, 331
Octomap Updater  395
odometry

creating  319-323
creating, Gazebo used  316-318, 326, 327
information, publishing  314, 315

OMPL
URL  370

OpenCV
URL  182
USB camera driver, writing with  189-194
using, in ROS  196

OpenCV image
using, with cv_bridge  195
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package

about  24, 27
creating  336
structure  27

package manifests  24
parameters

listing  96-99
modifying, with rqt_reconfigure  359, 360

parameters, cameras
brightness  193
camera_index  192
camera_info_url  193
contrast  193
exposure  193
fourcc  193
fps  192
frame_height  192
frame_id  193
frame_width  192
gain  193
hue  193
saturation  193

Parameter Server
about  33, 39, 55
using  56

parameters, rosparam tool
rosparam delete parameter  40, 55
rosparam dump file  40, 55
rosparam get parameter  40, 55
rosparam list  40, 55
rosparam load file  40, 55
rosparam set parameter value  40, 55

particle cloud  349
PCL programs

defining  236, 237
pick and place task

about  396
demo mode  411
grasping  402-404
perception  401
pickup action  405-407
place action  408-410
planning scene  397, 398
simulation, in Gazebo  412, 413

support surface  399, 400
target object  398, 399

planner plan  355
planning scene

about  371, 372
objects, adding  392, 393
objects, removing  394

Point Cloud Library (PCL)
about  231
algorithms  234
defining  232
PCL interface, for ROS  234, 235
point cloud types  233
reference link  147

point clouds
creating  237-240
loading, to disk  241-244
motion planning  394, 395
partitioning  259-263
saving, to disk  241-244
visualizing  245-248
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pcl::Normal  233
pcl::PointNormal  233
pcl::PointXYZ  233
pcl::PointXYZI  233
pcl::PointXYZRGB  233
pcl::PointXYZRGBA  233

portable gray map format (.pgm format)  332
PR2 (Willow Garage)  271
Printed Circuit Board (PCB)  157
public fields, point cloud

header  232
height  232
is_dense  232
points  232
sensor_orientation_  232
sensor_origin_  232
width  232

R
RAndom SAmple Consensus  

(RANSAC)  264
Real Time Kinematics (RTK)

URL  175
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REEM robot
about  81
URL  81

registration and matching  
technique  255-259

Remote Procedure Call (RPC)  39
repositories  40
RGBD camera

visual odometry, performing with  224
RoboEarth project

URL  215
Robonaut (NASA)  271
robot configuration

creating  336-339
robotic arm

integrating, in MoveIt!  372, 373
Robot Operating System (ROS)

3D model, of robot  271
about  1, 181
defining  231
history  2, 3
map, creating with  330, 331
OpenCV, using  196
origin  2
tools  27
URL, for blog  41

rosbag
used, for recording data in bag file  121

rosbash package
roscd command  28
roscp command  28
rosd command  28
rosed command  28
rosls command  28

ROS Community level
about  40
blog  41
Bug Ticket System  41
distributions  40
mailing lists  41
repositories  40
ROS Answers  41
ROS Wiki  40

ROS Computation Graph level
about  33
bags  34, 38
master  33, 39

messages  33, 38
nodelets  35, 36
nodes  33-36
Parameter Server  39
services  34, 37
topics  34-37

ROS distributions  40
ROS Filesystem

about  24
messages  25, 31, 32
metapackage manifests  24
metapackages  24, 29, 30
navigating by  41
package manifests  24
packages  24, 27
services  25, 32
workspace  25-27

ROS Hydro, installing in BeagleBone Black 
(BBB)

about  15
environment, setting  20
keys, setting up  19
local machine, setting up  18
prerequisites  16-18
rosdep, initializing for ROS  20
ROS packages, installing  19

ROS Hydro, installing with repositories
about  4, 5
environment, setting up  9
keys, setting up  7
rosdep, initializing  8
ROS, installing  7, 8
rosinstall, obtaining  10
source.list file, setting up  6, 7
Ubuntu repositories, configuring  5, 6
URL  4

ROS image pipeline
about  207-210
used, for stereo cameras  210-213

ROS master  39
rosmsg command-line tool

rosmsg list parameter  38
rosmsg md5 parameter  38
rosmsg package parameter  38
rosmsg packages parameter  38
rosmsg show parameter  38
rosmsg users parameter  38



[ 421 ]

ROS nodes
attaching, to GDB debugger  85
core dumps, enabling  86
creating, for 10 DOF sensor  172-174
debugging  83
debugging, GDB debugger used  83
debug message level, configuring  88, 89
diagnostics, visualizing  106, 107
execution, inspecting  96
graph, inspecting online  

with rqt_graph  100-102
listing  96-99
profiling, with valgrind  85
working with  45-48

rosnode tool
rosnode cleanup command  35
rosnode info NODE command  35
rosnode kill NODE command  35
rosnode list command  35
rosnode machine hostname command  35
rosnode ping NODE command  35

ROS package
Augmented Reality  214
building  44, 45
creating  43, 44
perception and object recognition  215
used, for Computer Vision tasks  214, 215
visual odometry  215
Visual Servoing  214

rosparam tool
parameters  40, 55

rosservice tool
rosservice args /service parameter  38, 52
rosservice call /service parameter  38, 52
rosservice find msg-type parameter  38, 52
rosservice info /service parameter  38, 52
rosservice list parameter  38, 52
rosservice type /service parameter  38, 52

rosservice uri /service parameter  38, 52
rostopic tool

rostopic bw /topic parameter  37
rostopic echo /topic parameter  37
rostopic find message_type parameter 37
rostopic hz /topic parameter  37
rostopic info /topic parameter  37
rostopic list parameter  37

rostopic pub /topic type args parameter  37
rostopic type /topic parameter  37

ROS wrapper
URL  402

rqt_console
used, for modifying debug  

message level  92-95
rqt_graph

used, for inspecting graph of  
ROS nodes  100-102

rqt_gui plugin
using  126

rqt_logger_level
used, for modifying debug  

message level  92-95
rqt_plot

time series plot, creating  108-111
rqt plugin

using  126
rqt_reconfigure

parameters, modifying with  359, 360
rqt_rviz

used, for visualizing data in  
3D world  114-117

RViz
MoveIt!, integrating  382-385

rviz, for navigation stack
2D nav goal  347
2D pose estimate  345, 346
current goal  356, 357
footprint, of robot  350
global costmap  352
global plan  353
local costmap  351
local plan  354
particle cloud  349
planner plan  355
setting up  345
static map  348

S
scalar data

plotting  108
time series plot, creating  

with rqt_plot  108-111
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segmentation
defining  264-268

sensors
about  2
adding, Arduino used  153
information, publishing  310
laser node, creating  312-314
reference link  129

Serial Clock (SCK)  169
Serial Data Line (SDL)  169
services

about  32-37, 52
listing  96-99
using  53-55

servomotors
Dynamixel  149, 150
example  151, 152
using  149, 150

simulations, in ROS
creating  288
map, loading in Gazebo  296-298
map, using in Gazebo  296-298
robot, moving in Gazebo  298-300
sensors, adding to Gazebo  293-295
URDF 3D model, using in Gazebo  289-292

Singular Value Decomposition (SVD)  257
SketchUp  286
skid-steer robot  298
SLAM (Simultaneous Localization And 

Mapping)  304
Source space  26
srv files

creating  61-68
Stacks  24
Stanford Artificial Intelligence  

Laboratory (SAIL)  2
static map  348

T
TCPROS  36
time series plot

creating, with rqt_plot  108-111
tools, ROS

catkin_create_pkg  27
catkin_make  27

rosdep  28
rospack  27
rqt_dep  28

topics
about  34-37
and frames, relationship between  117
interacting with  48-51
listing  96-99

transformation tree
observing  310

Transform Frame (tf) tree  82, 305
transforms

broadcaster, creating  306
creating  305
listener, creating  307-309
transformation tree, observing  310

Turtlesim  27

U
Ubuntu

installing  11
repositories, URL  5
URL  11

UDPROS  36
ultrasound range sensor

used, with Arduino  157-160
Unified Robot Description  

Format (URDF)  271
Universal Transverse Mercator (UTM)  176
URDF file

3D model, viewing on rviz  275, 276
collision properties  279, 280
creating  271, 272
file format, explaining  274, 275
meshes, loading to models  277, 278
model, converting to robot  278, 279
physical properties  279

USB camera driver
writing, with OpenCV  189-194

V
valgrind

URL  85
used, for profiling ROS nodes  85
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VirtualBox
about  11
downloading  11
installing  11
URL, for downloading  11

virtual machine
creating  12-14

viso2
URL  220

visual odometry
about  215
camera pose calibration  216-220
performing, with RGBD camera  224
references  215
URL  215
used, with viso2  216
viso2 online demo, running  220, 221
viso2, running with low-cost  

stereo camera  223
Visual Servoing Platform (ViSP)

about  214
URL  214

W
Wiimote

URL  164
workspace

about  25
Build space  26
creating  42
Development (devel) space  26
Source space  26

X
XML Macros (Xacro)

about  375
3D modeling, with SketchUp  286-288
about  280, 281
constants, using  281
macros, using  281, 282
math, using  281
robot, moving with code  282-286

XMLRPC  39
Xsens MTi

about  163
data, sending  164, 165
example  165-167
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