
A Brief Description of the
Levenberg-Marquardt Algorithm Implemened

by levmar

Manolis I. A. Lourakis
Institute of Computer Science

Foundation for Research and Technology - Hellas (FORTH)
Vassilika Vouton, P.O. Box 1385, GR 711 10

Heraklion, Crete, GREECE

February 11, 2005

Abstract

The Levenberg-Marquardt (LM) algorithm is an iterative technique that
locates the minimum of a function that is expressed as the sum of squares
of nonlinear functions. It has become a standard technique for nonlinear
least-squares problems and can be thought of as a combination of steepest
descent and the Gauss-Newton method. This document briefly describes the
mathematics behind levmar, a free LM C/C++ implementation that can be
found at http://www.ics.forth.gr/˜lourakis/levmar.

Introduction

The Levenberg-Marquardt (LM) algorithm is an iterative technique that locates
the minimum of a multivariate function that is expressed as the sum of squares
of non-linear real-valued functions [4, 6]. It has become a standard technique
for non-linear least-squares problems [7], widely adopted in a broad spectrum of
disciplines. LM can be thought of as a combination of steepest descent and the
Gauss-Newton method. When the current solution is far from the correct one,
the algorithm behaves like a steepest descent method: slow, but guaranteed to

1

converge. When the current solution is close to the correct solution, it becomes a
Gauss-Newton method. Next, a short description of the LM algorithm based on
the material in [5] is supplied. Note, however, that a detailed analysis of the LM
algorithm is beyond the scope of this report and the interested reader is referred to
[5, 8, 9, 2, 10] for more comprehensive treatments.

The Levenberg-Marquardt Algorithm

In the following, vectors and arrays appear in boldface and
�

is used to denote
transposition. Also,

���������
and

�����������
denote the 2 and infinity norms respectively.

Let 	 be an assumed functional relation which maps a parameter vector
�����
to an estimated measurement vector ���� 	���
������� ���� . An initial parameter es-
timate
�� and a measured vector � are provided and it is desired to find the vector
� that best satisfies the functional relation 	 , i.e. minimizes the squared distance! � ! with ! �"��# �� . The basis of the LM algorithm is a linear approximation to	 in the neighborhood of
 . For a small

���%$'&(���
, a Taylor series expansion leads to

the approximation 	���
*) $+& �-,.	��/
0�1)32 $4& � (1)

where 2 is the Jacobian matrix 5+687 &:95 & . Like all non-linear optimization methods,
LM is iterative: Initiated at the starting point
0� , the method produces a series of
vectors
<;+�=
?>8� �8�8� � that converge towards a local minimizer
 for 	 . Hence, at
each step, it is required to find the

$'&
that minimizes the quantity

��� �@# 	��/
A)$+& � ��� , ��� ��# 	���
�� # 2 $+&B��� � ��� ! # 2 $+&(��� . The sought
$'&

is thus the solution to a
linear least-squares problem: the minimum is attained when 2 $C& # ! is orthogonal
to the column space of 2 . This leads to 2 � �/2 $4& # ! � �ED , which yields

$'&
as the

solution of the so-called normal equations [1]:

2 � 2 $4& � 2 � ! � (2)

The matrix 2 � 2 in the left hand side of Eq. (2) is the approximate Hessian, i.e. an
approximation to the matrix of second order derivatives. The LM method actually
solves a slight variation of Eq. (2), known as the augmented normal equationsF $4& � 2 � ! � (3)

where the off-diagonal elements of
F

are identical to the corresponding elements
of 2 � 2 and the diagonal elements are given by

FHG�G � I)KJL2 � 2NM G�G for some

IPORQ . The strategy of altering the diagonal elements of 2 � 2 is called damping
and I is referred to as the damping term. If the updated parameter vector
�) $C&
with

$4&
computed from Eq. (3) leads to a reduction in the error ! , the update is

accepted and the process repeats with a decreased damping term. Otherwise, the
damping term is increased, the augmented normal equations are solved again and
the process iterates until a value of

$8&
that decreases error is found. The process

of repeatedly solving Eq. (3) for different values of the damping term until an
acceptable update to the parameter vector is found corresponds to one iteration of
the LM algorithm.

In LM, the damping term is adjusted at each iteration to assure a reduction in
the error ! . If the damping is set to a large value, matrix

F
in Eq. (3) is nearly

diagonal and the LM update step
$'&

is near the steepest descent direction. More-
over, the magnitude of

$'&
is reduced in this case. Damping also handles situations

where the Jacobian is rank deficient and 2 � 2 is therefore singular [3]. In this way,
LM can defensively navigate a region of the parameter space in which the model
is highly nonlinear. If the damping is small, the LM step approximates the exact
quadratic step appropriate for a fully linear problem. LM is adaptive because it
controls its own damping: it raises the damping if a step fails to reduce ! ; oth-
erwise it reduces the damping. In this way LM is capable to alternate between a
slow descent approach when being far from the minimum and a fast convergence
when being at the minimum’s neighborhood [3]. The LM algorithm terminates
when at least one of the following conditions is met:S The magnitude of the gradient of ! � ! , i.e. 2 � ! in the right hand side of

Eq. (2), drops below a threshold TU;S The relative change in the magnitude of
$8&

drops below a threshold TV>S The error ! � ! drops below a threshold TXWS A maximum number of iterations Y �0Z\[is completed

If a covariance matrix]_^ for the measured vector � is available, it can be in-
corporated into the LM algorithm by minimizing the squared]a` ;^ -norm ! �]�` ;^ !
instead of the Euclidean ! � ! . Accordingly, the minimum is found by solving a
weighted least squares problem defined by the weighted normal equations

2 �] ` ;^ 2 $4& � 2 �] ` ;^ ! � (4)

The rest of the algorithm remains unchanged. The complete LM algorithm is
shown in pseudocode in Fig. 1. It is derived by slight modification of algorithm

3.16 in page 27 of [5]; more details regarding the LM algorithm can be found
there. Indicative values for the user-defined parameters are b �dcCQ ` W , Te; � Tf> �TfW �EcCQ ` ;/g , Y �0Z\[�EcCQhQ . levmar is a free C/C++ implementation of this LM al-
gorithm that can be found at http://www.ics.forth.gr/˜lourakis/levmar.

References

[1] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, 3rd edition, 1996.

[2] C.T. Kelley. Iterative Methods for Optimization. SIAM Press, Philadelphia,
1999.

[3] M. Lampton. Damping-Undamping Strategies for the Levenberg-
Marquardt Nonlinear Least-Squares Method. Computers in Physics Journal,
11(1):110–115, Jan./Feb. 1997.

[4] K. Levenberg. A Method for the Solution of Certain Non-linear Problems in
Least Squares. Quarterly of Applied Mathematics, 2(2):164–168, Jul. 1944.

[5] K. Madsen, H.B. Nielsen, and O. Tingleff. Methods
for Non-Linear Least Squares Problems. Technical Uni-
versity of Denmark, 2004. Lecture notes, available at
http://www.imm.dtu.dk/courses/02611/nllsq.pdf.

[6] D.W. Marquardt. An Algorithm for the Least-Squares Estimation of Nonlin-
ear Parameters. SIAM Journal of Applied Mathematics, 11(2):431–441, Jun.
1963.

[7] H.D. Mittelmann. The Least Squares Problem. [web page]
http://plato.asu.edu/topics/problems/nlolsq.html,
Jul. 2004. [Accessed on 4 Aug. 2004.].

[8] H.B. Nielsen. Damping Parameter in Marquardt’s Method. Technical Report
IMM-REP-1999-05, Technical University of Denmark, 1999. Available at
http://www.imm.dtu.dk/˜hbn.

[9] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York,
1999.

Input: A vector function 	 : �ji �� with kmlon , a measurement vector� �H�� and an initial parameters estimate
0�p�� � .
Output: A vector
 �H�� minimizing

��� �q# 	0�/
0� ���%r .
Algorithm:Yts �uQ ; vts �xw ;
ys �
�� ;z s � 2 � 2 ; ! & s �P��# 	0�/
0� ; {�s � 2 � ! & ;
stop:=(

��� { ���%�}| Te;); I s � b�~����f� G�� ;��%�%�%� � � ��� G�G � ;
while (not stop) and (Yt��Y ��Z\[)Y*s � Y�) c ;

repeat
Solve � z) IB� � $4& � { ;
if � ���%$4&�����| Tf> ���
 ��� �

stop:=true;
else
 �8�/� s �
*) $+& ;� s � � ��� ! &(��� > # ��� �q# 	��/
 �8�/� � ��� > ����� $ �& � I $+&)�{1��� ;

if ��O�Q
 �
 �8��� ;z s � 2 � 2 ; ! & s �u�q# 	���
�� ; {�s � 2 � ! & ;
stop:=(

��� { ���%�}| Te;) or (
��� ! &(��� > | TfW);I s ��I ~��a�:�(� ;W � c�# � wf�_#Pc � W � ; vts �}w ;

elseI s ��I ~�v ; vts �}w ~�v ;
endif

endif
until (��O�Q) or (stop)

endwhile
� �s �
 ;

Figure 1: Levenberg-Marquardt non-linear least squares algorithm; see text and
[5, 8] for details.

[10] W.H. Press, S.A. Teukolsky, A.W.T. Vetterling, and B.P. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, New York, 1992.

