Department of Mathematics

MAL 180: Discrete Mathematical Structures

PROBLEMS ON LOGIC

- 1. Let **p** be the proposition "I will do every exercise in this book" and **q** be the proposition "I will get an 'A' in this course". Express each of the following in terms of **p** and **q**:
 - (i) I will get an 'A' in this course only if I do every exercise in this book.
 - (ii) I will get an 'A' in this course and I will do every exercise in this book.
 - (iii) Either I will get an 'A' in this course or I will not do every exercise in this book.
 - (iv) For me to get an 'A' in this course it is necessary and sufficient that I do every exercise in this book.
- 2. Write the truth table of the compund proposition $(\mathbf{p} \vee \mathbf{q}) \to (\mathbf{p} \wedge \neg \mathbf{r})$.
- 3. Show that the following two compound statements are tautologies:
 - (i) $(\neg \mathbf{p} \wedge (\mathbf{p} \rightarrow \mathbf{q})) \rightarrow \neg \mathbf{p}$.
 - (ii) $((\mathbf{p} \vee \mathbf{q}) \wedge \neg \mathbf{p}) \to \mathbf{q}$.
- 4. Give the converse, the contrapositive, and the inverse of the following conditional statements:
 - (i) If it rains today, then I will drive to work.
 - (ii) If |x| = x, then $x \ge 0$.
 - (iii) If n is greater than 3, then n^2 is greater than 9.
- 5. Show that these statements are inconsistent:
 - "If Mr. T does not take a course in Discrete Mathematics, then he will not graduate."
 - "If Mr. T does not graduate, then he is not qualified for the job."
 - "If Mr. T reads Rosen's 'Discrete Mathematics', then he is qualified for the job."
 - "Mr. T does not take a course in Discrete Mathematics but he reads Rosen's 'Discrete Mathematics'."
- 6. There are only two kinds of people who reside in an island: knights and knaves. Knights always speak the truth and knaves always lie. Three people in this island A, B, C make the statements:

A: "I am a knave and B is a knight."

B: "Exactly one of the three of us is a knight."

What can you say about A, B, and C?

- 7. Let S be the conditional statement (If S is true, then unicorns live) \rightarrow (Unicorns live). If S is true, prove that S cannot be a proposition.
- 8. Let P(x) be the statement "student x knows Calculus" and let Q(y) be the statement "class y contains a student who knows Calculus". Express each of the following as quantifications of P(x) and Q(y):
 - (i) Some students know Calculus.
 - (ii) Not every student knows Calculus.
 - (iii) Every class has a student in it who knows Calculus.
 - (iv) Every student in every class knows Calculus.
 - (v) There is at least one class with no student who know Calculus.

9. Find domains for the quantifiers in

$$\exists x \,\exists y \Big(x \neq y \land \forall z ((z = x) \lor (z = y)) \Big)$$

such that this statement is true/false.

- 10. Use existential and universal quantifiers to express the statement "Everybody has exactly two biological parents" using the propositional function P(x, y), which represents "x is the biological parent of y."
- 11. Let P(x,y) be a propositional function. Show that

$$\exists x \, \forall y \, P(x,y) \rightarrow \, \forall y \, \exists x \, P(x,y)$$

is a tautology.

- 12. If $\forall y \exists x P(x,y)$ is true, does it necessarily follow that $\exists x \forall y P(x,y)$ is true?
- 13. Find the negation of the following statements:
 - (i) If it snows today, then I will go skiing tomorrow.
 - (ii) Every person in this class understands mathematical induction.
 - (iii) Some students in this class do not like Discrete Mathematics.
 - (iv) In every Mathematics class there is some student who falls asleep during lectures.
- 14. Express the statement "There is a building on the campus of some college in India in which every room is painted white" using quantifiers.
- 15. Use the Rules of Inference to show that if the premises $\forall x (P(x) \to Q(x)), \forall x (Q(x) \to R(x))$ and $\neg R(a)$ where a is in the domain, are true, then the conclusion $\neg P(a)$ is true.
- 16. Prove that given a nonnegative integer n, there is a unique nonnegative integer m such that $m^2 < n < (m+1)^2$.
- 17. Disprove the statement that every positive integer is the sum of the cubes of 8 nongetaive integers.
- 18. Assuming the truth of the theorem that states that \sqrt{n} is irrational whenever n is a positive integer that is not a perfect square, prove that $\sqrt{2} + \sqrt{3}$ is irrational.