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Chapter 2 Kinematics in One Dimension

IN THIS CHAPTER, you will learn to solve
problems about motion along a straight line.

© 2017 Pearson Education, Inc.
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Chapter 2 Preview

What is kinematics?

Kinematics is the mathematical description
of motion. We begin with motion along a
straight line. Our primary tools will be an
object’s position, velocity, and acceleration.

(C LOOKING BACK Sections 1.4-1.6 Velocity,
acceleration, and Tactics Box 1.4 about signs
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Chapter 2 Preview

How are graphs used in kinematics?

Graphs are a very important visual x Slope
representation of motion, and learning to
“think graphically” is one of our goals. We'll t

work with graphs showing how position, \
velocity, and acceleration change with time. )
These graphs are related to each other: R” Value

= Velocity is the slope of the position graph. \

m Acceleration is the slope of the velocity
graph.

Slide 2-4
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Chapter 2 Preview

How is calculus used in kinematics?

Motion is change, and calculus is the ) Displacement is the
mathematical tool for describing a ntegrakolyeloclly,
quantity’s rate of change. We'll find that

m Velocity is the time derivative of position.

m Acceleration is the time derivative of
velocity. t

Slide 2-5
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Chapter 2 Preview

What are models?

A model is a simplified description
of a situation that focuses on essential

Look for model boxes

features while ignoring many details. like this throughout the
Models allow us to make sense of complex baok;

situations by seeing them as variations §Z§ gﬁﬂﬁm

on a common theme, all with the same Alpdetlinniauons
underlying physics.
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Chapter 2 Preview

What is free fall?

Free fall is motion under the influence of
gravity only. Free fall is not literally “falling”
because it also applies to objects thrown
straight up and to projectiles. Surprisingly,
all objects in free fall, regardless of their
mass, have the same acceleration. Motion
on a frictionless inclined plane is closely
related to free-fall motion.

—
Afree fall

<l
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Chapter 2 Preview

How will | use kinematics?

The equations of motion that you learn in this chapter will be
used throughout the entire book. In Part |, we’ll see how an
object’s motion is related to forces acting on the object. We'll
later apply these kinematic equations to the motion of waves
and to the motion of charged particles in electric and magnetic

fields.
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Chapter 2 Reading Questions
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Reading Question 2.1

The slope at a point on a position-versus-time
graph of an object is

A. The object’s speed at that point.
B. The object’s average velocity at that point.
C

The object’s instantaneous velocity at
that point.

'he object’s acceleration at that point.

"he distance traveled by the object to
that point.

m O
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Reading Question 2.1

The slope at a point on a position-versus-time
graph of an object is

A. The object’s speed at that point.
B. The object’s average velocity at that point.
C

The object’s instantaneous velocity at
that point.

The object’s acceleration at that point.

E. The distance traveled by the object to
that point.

O
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Reading Question 2.2

The area under a velocity-versus-time graph of
an object is

ne object’s speed at that point.

ne object’s acceleration at that point.

ne distance traveled by the object.

ne displacement of the object.

NisS topic was not covered in this chapter.

moow»
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Reading Question 2.2

The area under a velocity-versus-time graph of
an object is

A. The object’s speed at that point.
B. The object’s acceleration at that point.
C. The distance traveled by the object.
/' D. The displacement of the object.
E. This topic was not covered In this chapter.
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Reading Question 2.3

The slope at a point on a velocity-versus-time
graph of an object is

A.
B

C.
D.
E

The object’s speed at that point.

"he object’s instantaneous acceleration at
nat point.

ne distance traveled by the object.
ne displacement of the object.
ne object’s instantaneous velocity at

nat point.

Slide 2-14
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Reading Question 2.3

The slope at a point on a velocity-versus-time
graph of an object is

A. The object’s speed at that point.

¢/B. The object’s instantaneous acceleration
at that point.

C. The distance traveled by the object.
D. The displacement of the object.
E

The object’s instantaneous velocity at
that point.
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Reading Question 2.4

Suppose we define the y-axis to point vertically
upward. When an object is in free fall, it has
acceleration in the y-direction

A.
B.
C.

D.

E.

a, =-g, where g = +9.80 m/s?
a, = ¢, where g =-9.80 m/s*

Which Is negative and increases in magnitude as
it falls.

Which is negative and decreases in magnitude as
it falls.

Which depends on the mass of the object.

Slide 2-16
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Reading Question 2.4

Suppose we define the y-axis to point vertically
upward. When an object is in free fall, it has
acceleration in the y-direction

VA,
B.
C.
D.

E.

a, =-g, where g = +9.80 m/s*
a, = ¢, where g =-9.80 m/s*

Which is negative and increases in magnitude as
it falls.

Which is negative and decreases in magnitude as
it falls.

Which depends on the mass of the object.
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Reading Question 2.5

At the turning point of an object,

The instantaneous velocity Is zero.
The acceleration iIs zero.

Both A and B are true.

Neither A nor B Is true.

This topic was not covered in this chapter.

moow»
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Reading Question 2.5

At the turning point of an object,

v

The instantaneous velocity is zero.
The acceleration iIs zero.

Both A and B are true.

Neither A nor B is true.

This topic was not covered in this chapter.

moowy
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Reading Question 2.6

A 1-pound block and a 100-pound block are placed
side by side at the top of a frictionless hill. Each is
given a very light tap to begin their race to the
bottom of the hill. In the absence of air resistance

ne 1-pound block wins the race.
ne 100-pound block wins the race.
ne two blocks end in a tie.

nere’s not enough information to determine
which block wins the race.

coOw>»
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Reading Question 2.6

A 1-pound block and a 100-pound block are placed
side by side at the top of a frictionless hill. Each is
given a very light tap to begin their race to the
bottom of the hill. In the absence of air resistance

A. The 1-pound block wins the race.
B. The 100-pound block wins the race.

¢/ C. The two blocks end in a tie.
D

. There’s not enough information to determine
which block wins the race.
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Chapter 2 Content, Examples, and
QuickCheck Questions
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Uniform Motion

= The simplest possible

motion is motion along a

straight line at a
constant, unvarying
speed.

= \We call this uniform
motion.

= An object’'s motion is
uniform if and only If its
position-versus-time
graph is a straight line.

© 2017 Pearson Education, Inc.

v .—P.—P'.—P.—’.—P.

"eeenit The displacements between
successive frames are the same.

X The position graph is a
straight line. Its slope
is Ax/At.
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Uniform Motion

= For one-dimensional motion, the average velocity is
simply Ax /At (for horizontal motion) or Ay /At (for
vertical motion).

= On a horizontal position-versus-time graph, Ax and At
are, respectively, the “rise” and “run”.

= Because rise over run is the slope of a line, the
average velocity is the slope of the position-versus-
time graph.

= The Sl units of velocity are meters per second,
abbreviated m/s.

Ax Ay .. -
Vave = ——— Or —— = slope of the position-versus-time graph

Y& Ar o At
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Example 2.1 Relating a velocity graph to a position graph

EXAMPLE 2.1 | Relating a velocity graph to a position graph
FIGURE 2.2 is the position-versus-time graph of a car.

a. Draw the car’s velocity-versus-time graph.

b. Describe the car’s motion.

MODEL Model the car as a particle, with a well-defined position at
each instant of time.

VISUALIZE Figure 2.2 is the graphical representation.

x (m)
6_

- Slope = 5.0 m/s —

Slope = —2.0 m/s

|/]|||II(S)
1/23456

N
Slope = 0 m/s Slide 2-25
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Example 2.1 Relating a velocity graph to a position graph

EXAMPLE 2.1 | Relating a velocity graph to a position graph

SOLVE a. The car’s position-versus-time graph is a sequence of
three straight lines. Each of these straight lines represents uniform
motion at a constant velocity. We can determine the car’s velocity
during each interval of time by measuring the slope of the line.

The position graph starts out sloping downward—a negative
slope. Although the car moves a distance of 4.0 m during the first
2.0 s, its displacement is

'&x = Xaz20s — Xar00s — =4 0m=00m==4.0m

The time interval for this displacement is Az = 2.0 s, so the velocity
during this interval is

x (m)
6_

- Slope = 5.0 m/s —

Slope = —2.0 m/s

l/lllllt(s)
1/23456

N
Slope = 0 m/s Slide 2-26
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Example 2.1 Relating a velocity graph to a position graph

EXAMPLE 2.1 | Relating a velocity graph to a position graph

SOLVE
Ax —40m

=T3_ 20s

vy = —20m/s

The car’s position does not change from t =2stor=4s (Ax=0),
so v, = 0. Finally, the displacement between t =4s and t =65 is
Ax = 10.0 m. Thus the velocity during this interval is

_ 100m

Ve = 20s = 5.0m/s
These velocities are shown on the velocity-versus-time graph of
FIGURE 2.3.
v, (m/s)
G Value = 5.0 m/s
J kY
4 - : .
! Slopes on the position
] : graph become values
2" :
Value = 0 m/s ! on the velocity graph.
g 1
0 T I AN T : T —1(s)
- | 12 3 4 5 6
N, §% S
/

Value = —2.0 m/s
Slide 2-27
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Example 2.1 Relating a velocity graph to a position graph

EXAMPLE 2.1 | Relating a velocity graph to a position graph

SOLVE b, The car backs up for 2 s at 2,0 m/s, sits at rest for 2 s, then drives
forward at 5.0 m/s for at least 2 s. We can’t tell from the graph what
happens for t > 6 s.

AssSess The velocity graph and the position graph look completely
different. The value of the velocity graph at any instant of time
equals the slope of the position graph.

v, (m/s)

6 - Value = 5.0 m/s

. N
4 T ; . .

! Slopes on the position

9 ] : graph become values

| Value=0m \/f ! on the velocity graph.
0 i i I : T T f (S)

- 1 2 3 4 5 6

1

2T
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Tactics: Interpreting Position-versus-Time

Graphs

Interpreting position-versus-time graphs

© Steeper slopes correspond to faster speeds.

® Negative slopes correspond to negative velocities and, hence, to motion to the
left (or down).

©® The slope is a ratio of intervals, Ax/At, not a ratio of coordinates. That is, the
slope 1s not simply x /1.

Exercises 1-3

Slide 2-29
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The Mathematics of Uniform Motion

= Consider an object in uniform

motion along the s-axis, s cod e o
as shown in the graph. i
s
- The ObJeCt’S In Itlal The slope of the line is v, = As/At.
position is s; at time t.. :
= At a later time t, the object’s  Final
. L. . _ | position
final position Is s.. ! ™ Initial |
] . : position !
= The change in time ; At ;
= The final position can be
found as
sg=s; + v, At (uniform motion)

Slide 2-30
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The Uniform-Motion Model

Uniform motion

For motion with constant velocity.

Model the object as a particle moving
in a straight line at constant speed:

Mathematically:
o v, = As/At
o sp=us; + v, At

Limitations: Model fails if the particle has
a significant change of speed or direction.

© 2017 Pearson Education, Inc.

Vs Horizontal line

\

15 ﬁ:

The velocity is constant.

) The slope is v,.

Straight line
/
s;

t
Exercise 4 _
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Scalars and Vectors

The distance an object travels is a scalar guantity,
iIndependent of direction.

The displacement of an object is a vector quantity,
equal to the final position minus the initial position.

An object’s speed v Is scalar quantity, independent
of direction.

Speed is how fast an object is going; it is always
positive.

Velocity Is a vector quantity that includes direction.

In one dimension the direction of velocity Is
specified by the + or — sign.

Slide 2-32
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QuickCheck 2.1

An ant zig-zags back and forth on a picnic table as shown.

. .‘ . . ! — x (cm)
0) 10 20 30 40 50

The ant’'s distance traveled and displacement are

A. 50 cm and 50 cm.
30 cm and 50 cm.
50 cm and 30 cm.
50 cm and -50 cm.
50 cm and -30 cm.

mo oW
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QuickCheck 2.1

An ant zig-zags back and forth on a picnic table as shown.

[ I T T 1 T X (cm)
0) 10 20 30 40 50

The ant’'s distance traveled and displacement are

A. 50 cm and 50 cm.
B. 30 cm and 50 cm.
C. 50 cm and 30 cm.
D. 50 cm and -50 cm.
¢ E. 50 cm and =30 cm.

Slide 2-34
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Instantaneous Velocity

= Objects rarely travel for long with a constant velocity.
= Far more common is a velocity that changes with time.

= |f you watch a car’s speedometer, at any instant of time,
the speedometer tells you how fast the car is going at
that instant.

= |f we include directional information, we can define an
object’s instantaneous velocity—speed and direction—
as its velocity at a single instant of time.

= The average velocity v,,, = As/At becomes a better and

better approximation to the instantaneous velocity as At
gets smaller and smaller.

o As ds
v, = lim — = —

Instantaneous velocit
Ar—0 At dt ( y)

Slide 2-35
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Instantaneous Velocity

Motion diagrams and position graphs of an accelerating rocket.

As

What is the velocity at time ¢? Zoom in on a very small segment of the
curve centered on the point of interest.
This little piece of the curve is essentially
a straight line. Its slope As/At is the
average velocity during the interval Ar.

© 2017 Pearson Education, Inc.

s

: t

t

The little segment of straight line,
when extended, is the tangent to
the curve at time 1. Its slope is the
instantaneous velocity at time .
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Instantaneous Velocity

= As At continues to get smaller, the average velocity
Vavg = AS/At reaches a constant or limiting value.

= The Instantaneous velocity at time t is the average
velocity during a time interval At centered on t, as At
approaches zero.

= |n calculus, this is called the derivative of s with respect to t.
= Graphically, As/At is the slope of a straight line.
= Inthe limit At — 0, the straight line Is tangent to the curve.

= The Instantaneous velocity at time t is the slope of the line
that is tangent to the position-versus-time graph at time t.

v, = slope of the position-versus-time graph at time ¢

Slide 2-37
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QuickCheck 2.2

The slope at a point on a position-versus-time
graph of an object is

A. The object’s speed at that point.

B. The object’s velocity at that point.

C. The object’s acceleration at that point.
D

E

. The distance traveled by the object to that point.
. | really have no idea.

Slide 2-38
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QuickCheck 2.2

The slope at a point on a position-versus-time
graph of an object is

A. The object’s speed at that point.
¢/ B. The object’s velocity at that point.
C. The object’s acceleration at that point.
D. The distance traveled by the object to that point.
E. | really have no idea.

Slide 2-39
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Example 2.3 Finding Velocity from Position Graphically

EXAMPLE 2.3 | Finding velocity from position graphically

FIGURE 2.9 shows the position-versus-time graph of an elevator.
a. At which labeled point or points does the elevator have the
least velocity?

b. At which point or points does the elevator have maximum velocity?
¢. Sketch an approximate velocity-versus-time graph for the elevator.

Slide 2-40
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Example 2.3 Finding Velocity from Position Graphically

¥  Slope is maximum
at B. This is where C
v, 18 maximum.

LT
-
L
.

EXAMPLE 2.3 | Finding velocity from position graphically

MODEL Model the elevator as a particle. 0

VISUALIZE Figure 2.9 is the graphical representation.

SOLVE a. At any instant, an object’s velocity is the slope of its j
position graph. FIGURE 2.10a shows that the elevator has the least Slof)e T I
velocity—no velocity at all!—at points A and C where the slope is g so the velocity is zero.
zero. At point A, the velocity is only instantaneously zero. At point E X
C, the elevator has actually stopped and remains at rest.

Slope is negative
before A, so Wy % 0.

¥y

B

Slide 2-41
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Example 2.3 Finding Velocity from Position Graphically

Y  Slope is maximum
at B. This is where C
v, 1S maximum.

.
LI
-
ey,

EXAMPLE 2.3 | Finding velocity from position graphically

b. The elevator has maximum velocity at B, the point of steepest slope.

c¢. Although we cannot find an exact velocity-versus-time graph, we
can see that the slope, and hence v,, is initially negative, becomes
zero at point A, rises to a maximum value at point B, decreases H F...

back to zero a little before point C, then remains at zero thereafter. . et

Slof)e is zero at A and C,
_so the velocity is zero.

Slope is negative

Thus FIGURE 2.10b shows, at least approximately, the elevator’s
before A, so v, < 0.

velocity-versus-time graph.
v
¥

B

Slide 2-42
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Example 2.3 Finding Velocity from Position Graphically

¥  Slope is maximum
at B. This is where C
v, 18 maximum.

LT
-
L
.

EXAMPLE 2.3 | Finding velocity from position graphically 0

ASSESS Once again, the shape of the velocity graph bears no
resemblance to the shape of the position graph. You must transfer i
slope information from the position graph to value information on Slope is zero at A and C,
the velocity graph. : F.. .50 the velocity is zero.

Slope is negative
before A, so v, <0.
Ve & '

y s

Slide 2-43

© 2017 Pearson Education, Inc.



QuickCheck 2.3

Here is a motion diagram of a car moving along a straight road:

T X
0]

Which position-versus-time graph matches this motion diagram?

X X X X X

0 t 0 gt t 0//; 0 t0 / t

A. B. C. D. E.

Slide 2-44
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QuickCheck 2.3

Here is a motion diagram of a car moving along a straight road:

T X
0]

Which position-versus-time graph matches this motion diagram?

X X X X X

0 ! 0 / ! 0 / ! 0 t 0 / t
/

A. B. C: D. E.

Slide 2-45
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QuickCheck 2.4

Here is a motion diagram of a car moving along a straight road:

T X

0

Which velocity-versus-time graph matches this motion diagram?

v, Vi Vi vV,

t t t / t

A. B. C. D.

E. None of the above.

Slide 2-46
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QuickCheck 2.4

Here is a motion diagram of a car moving along a straight road:

T X

0

Which velocity-versus-time graph matches this motion diagram?

Vy Vs Vy | Vs

t t t / t

A. B. C. D.

E. None of the above.

Slide 2-47
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QuickCheck 2.5

Here is a motion diagram of a car moving along a straight road:

T X
0

Which velocity-versus-time graph matches this motion diagram?

Slide 2-48
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QuickCheck 2.5

Here is a motion diagram of a car moving along a straight road:

T X
0

Which velocity-versus-time graph matches this motion diagram?

Slide 2-49
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A Little Calculus: Derivatives

= ds/dt is called the derivative of s with respect to t.

= ds/dt is the slope of the line that Is tangent to the
position-versus-time graph.
= Consider the function u(t) = ct", where c and n are
constants: ]
u

The derivative of u = ct" is = net™!

= The derivative of a constant Is zero:

du _
— = (0 1f u = ¢ = constant
dt

= The derivative of a sum is the sum of the derivatives.
If u and w are two separate functions of time, then

d (4 + w) du " dw
_ w) = — + —
dt . dt dt Slide 2-50
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Derivative Example

Suppose the position of a particle as a function of time Is
s(t) = 2t? m where tis in s. What is the particle’s velocity?

= Velocity is the derivative of 5 (m)

40 -

s with respect to t:

Position s = 2¢*

v, = % = 3«2 =4 : Slope = 12 m/s
0 . —1(8)
= The figure shows the D '
particle’s position and ) o
velocity graphs. o veloely s =4
= The value of the velocity graph i Ve = 12ms
at any instant of time is the slope T 3 )

of the position graph at that same time.

© 2017 Pearson Education, Inc.
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QuickCheck 2.6

Here is a position graph ~ * (™
of an object: 20 -

10 A

Att=1.5s, the object’s
velocity is ¢ 1 e

A. 40 m/s

B. 20m/s

C. 10m/s

D. -10m/s

E. None of the above.

Slide 2-52
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QuickCheck 2.6

Here Is a position graph
of an object:

Att=1.5s, the object’s
velocity is

A. 40m/s
v B. 20m/s
C. 10m/s
D. -10m/s
E. None of the above.

© 2017 Pearson Education, Inc.

x (m)
20~

10 A

t(s)
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QuickCheck 2.7

Here is a position graph ~ * (™
of an object: 20 -

10 A

Att=3.0s, the object’s
velocity is ¢ 1 e

A. 40 m/s

B. 20m/s

C. 10m/s

D. -10m/s

E. None of the above.

Slide 2-54
© 2017 Pearson Education, Inc.



QuickCheck 2.7

Here Is a position graph
of an object:

Att=3.0s, the object’s
velocity is

A. 40 m/s
B. 20m/s
C. 10m/s
¢'D. -10m/s
E. None of the above.

© 2017 Pearson Education, Inc.

x (m)
20~

10 A

t(s)
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QuickCheck 2.8

When do objects 1 and 2 X
have the same velocity?

A. At some instant before

time t,.

At time t,.

C. At some instant after
time t,.

D. Both A and B.

Never.

W

m

Slide 2-56
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QuickCheck 2.8

When do objects 1 and 2 x
have the same velocity?

¢ A. At some instant before

time t,.

At time t,.

C. At some instant after T
time t,. >

D. Both A and B.

Never.

W

4

ame slope at this time

m

Slide 2-57
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Finding Position from Velocity

= Suppose we know an object’s position to be s; at an
initial time t..

= We also know the velocity as a function of time between
t. and some later time t..

= Even if the velocity is not constant, we can divide the
motion into N steps in which it is approximately constant,
and compute the final position as

N I
se=s;+ lim D (v,) At =s;+ | v,dt
Sl f

= The curlicue symbol is called an integral.

= The expression on the right is read “the integral of
v, dt from t; to t;.”

Slide 2-58
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Finding Position from Velocity

= The integral may be interpreted graphi

cally as the total

area enclosed between the t-axis and the velocity curve.

" The tOtaI displacement AS During step k,_ the product
is called the “area under g ek

the curve.”
7£

7&

v,  of the shaded rectangle.

Xt

-
*
#
*

-;-r*

F

L

\

! !
It

e

During the interval ¢ to #;,

the total
the “are

displacement As is
a under the curve.”

s; = §; + area under the velocity curve v, between ¢, and #;

© 2017 Pearson Education, Inc.
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QuickCheck 2.9

Here is the velocity graph
of an object that is at the
origin (x=0m) att=0s.

Att=4.0s, the object’s
position Is

A. 20m.
B. 16 m.
C. 12m.
D. 8m.
E. 4m.

© 2017 Pearson Education, Inc.

v, (m/s)
4

pe
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QuickCheck 2.9

Here is the velocity graph

of an object that is at the Vi 0013)
origin (x=0m) att=0s. 4
. 2_

Att=4.0s, the object’s
position Is 0 | |

0 1 2
A. 20m.
B. 16 m.

v'C. 12m. Displacement = area under the curve
D. 8m.
E. 4m.

© 2017 Pearson Education, Inc.
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Example 2.5 The Displacement During a

Drag Race

EXAMPLE 2.5 | The displacement during a drag race

FIGURE 2.16 shows the velocity-versus-time graph of a drag racer.
How far does the racer move during the first 3.0 s?

Ve (m/s) The line is the function
16 - v, = 4t m/s.

-+ The displacement
Ax is the area of the
shaded triangle.

0 —1(s)
0 1 2 3 4

Slide 2-62
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Example 2.5 The Displacement During a Drag

Race

EXAMPLE 2.5 ] The displacement during a drag race
MODEL Model the drag racer as a particle with a well-defined position

at all times.

VISUALIZE Figure 2.16 is the graphical representation. v, (m/s) The line is the function

sOLVE The question “How far?” indicates that we need to find a dis- 16 - v, = 4t m/s.

placement A x rather than a position x. According to Equation 2.12, 124 s

the car’s displacement Ax = x; — x; between t =0s and t =3s is

the area under the curve from t = 0 s to t = 3 s. The curve in this case 8 - - The displacement

Ax is the area of the
shaded triangle.

1(s)

is an angled line, so the area is that of a triangle:

Ax = area of triangle betweent=0sandr=3s

=1 X base X height 0 1 2 3 4
=3X3sX12m/s=18m

The drag racer moves 18 m during the first 3 seconds.
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A Little More Calculus: Integrals

Taking the derivative of a function is equivalent to
finding the slope of a graph of the function.

Similarly, evaluating an integral is equivalent to finding
the area under a graph of the function.

For the important function u(t) = ct", the essential result
from calculus is that

Iy Iy Ctn-i—l
udt= | ct"dt =
. " n+1

The vertical bar in the third step means the integral
evaluated at t; minus the integral evaluated at t;.

The integral of a sum is the sum of the integrals. If u
and w are two separate functions of time, then:

# t s
[(u—#w)dt: J udt-l—det
L A li

I ctfn+1 Cfin+l

. n+1l n+l1

(n # —1)
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QuickCheck 2.10

Which velocity-versus-time graph
goes with this position graph?

il
4

(a)

© 2017 Pearson Education, Inc.

(b)

S

(c)

(d)
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QuickCheck 2.10

A
Which velocity-versus-time graph

goes with this position graph?

7

(a) (b) (¢)

© 2017 Pearson Education, Inc.

(d)

Slide 2-66



Motion with Constant Acceleration

= |magine a competition between a
Volkswagen Beetle and a Porsche
to see which can achieve a velocity
of 30 m/s in the shortest time.

= The table shows the velocity of
each car, and the figure shows the
velocity-versus-time graphs.

= Both cars achieved every velocity
between 0 and 30 m/s, so neither
IS faster.

= But for the Porsche, the rate at
which the velocity changed was

Av, 30 m/s
f velocity ch = = =9
rate of velocity change A 6.0 s 5.0 (m/s)/s

© 2017 Pearson Education, Inc.

TABLE 2.1 Velocities of a Porsche and a

Vol

kswagen Beetle

t (S) Y Porsche (ml S) Vvw (ml S)
0.0 0.0 0.0
0.1 0.5 0.2
0.2 1.0 0.4
0.3 1.5 0.6
The Porsche reaches 30 m/s
in 6 s. The VW takes 15 s.
v, (m/s)
Porschq.,.--"' )
30 &
Av, = 10 m/s
20

10

Ar=50s

Slope = ayw 4, = 2.0 (m/s)/s

0 \é 10

t(s)

SI()pC = Aporsche avg = 50 (m’(\)ﬁ‘
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Motion with Constant Acceleration

= The Sl units of acceleration are (m/s)/s, or m/s?.

= [t is the rate of change of velocity and measures how
quickly or slowly an object’s velocity changes.

= The average acceleration during a time interval At is
Av,

aan = At

(average acceleration)

= Graphically, a,, Is the slope of a straight-line velocity-
versus-time graph.

= |If acceleration is constant, the acceleration a is the
same as a,,.

= Acceleration, like velocity, Is a vector quantity and has
both magnitude and direction.
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QuickCheck 2.11

A cart slows down while moving away
from the origin. What do the position S
and velocity graphs look like?
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QuickCheck 2.11

A cart slows down while moving away
from the origin. What do the position S
and velocity graphs look like?
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QuickCheck 2.12

A cart speeds up toward the origin.
What do the position and velocity . Sams x
graphs look like?

. _\ r . \ r
Ay C. v
0 ‘ 0 t
X X
0 t 0 ¢
\
B. D. v
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QuickCheck 2.12

A cart speeds up toward the origin.
What do the position and velocity . Sams x
graphs look like?
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QuickCheck 2.13

Here is a motion diagram of a car speeding up on a

straight road:

Start

0
The sign of the acceleration a, is

A. Positive.
B. Negative.
C. Zero.
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QuickCheck 2.13

Here is a motion diagram of a car speeding up on a

straight road:

Start
®e & e e o o o
. X
0

The sign of the acceleration a, is

A. Positive.
v’ B. Negative. Speeding up means v, and a, have the same sign.

C. Zero.
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Example 2.9 Running the Court

EXAMPLE 2.9 ‘ Running the court

A basketball player starts at the left end of the court and moves
with the velocity shown in FIGURE 2.20. Draw a motion diagram
and an acceleration-versus-time graph for the basketball player.
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Example 2.9 Running the Court

EXAMPLE 2.9 | Running the court

VISUALIZE The velocity is positive (motion to the right) and
increasing for the first 6 s, so the velocity arrows in the motion
diagram are to the right and getting longer. From ¢t = 6 s to 9 s the
motion is still to the right (v, is still positive), but the arrows are
getting shorter because v, is decreasing. There’s a turning point at
t =9s, when v, = 0, and after that the motion is to the left (v, is
negative) and getting faster. The motion diagram of FIGURE 2.21a
shows the velocity and the acceleration vectors.

Maximum speed
atr=206s

e d

- , ll'

v »»»o—»o—»o—»o—»o—»»oD

\

r=0s V"T.«
\ i

t=12s Turning point
att=9s

Slide 2-76

© 2017 Pearson Education, Inc.



Example 2.9 Running the Court

EXAMPLE 2.9 ] Running the court
SOLVE Acceleration is the slope of the velocity graph. For the first

6 s, the slope has the constant value
A i
%, olioiy 1.0 m/s?

“T At 605
The velocity then decreases by 12 m/s during the 6 s interval from

f=6stor=12s,s0
A —12 m/!
B S ——2.0m/s?

%“="At  60s

The acceleration graph for these 12 s is shown in FIGURE 2.21b.
Notice that there is no change in the acceleration at t =95, the

turning point.
2
a, (m/s”)
2 . Each segment of the motion
1 ¥ has constant acceleration.
i :"
!
0 T T ... I(S)
3 6 9 &/ 12
—1- u :
I :
—2- l - Slide 2-77
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Example 2.9 Running the Court

e
|

EXAMPLE 2.9 | Running the court

ASSESS The sign of a, does not tell us whether the object is speed-
ing up or slowing down. The basketball player is slowing down
from f = 6 s to t = 9 s, then speeding up from t =9s to = 12s.
Nonetheless, his acceleration is negative during this entire interval

because his acceleration vector, as seen in the motion diagram, always
points to the left.

Maximum speed
atr=06s

. e " - . L=
- B - B I -

[ - e - B=

Ql

|

\
|

=

_ gl
<@l 13 s i 3
@ | <4y

7 o-0P-0=p O @

\ A -
t=0s e e e e
=2 = %]
t=12s Turning point
atr=29s
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QuickCheck 2.14

A cart speeds up while moving away

from the origin. What do the velocity | S .
and acceleration graphs look like? 0
0 t 0 t
A. a, C a,
0 t 0 t
0 t 0 t
B a D. a
0 t 0 t
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QuickCheck 2.14

A cart speeds up while moving away

from the origin. What do the velocity | S .
and acceleration graphs look like? 0
0 t 0 t
A. a, C a,
0 t 0 t
0 t 0 t
B a V D. a
0 t 0 t
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QuickCheck 2.15

A cart slows down while moving away

from the origin. What do the velocity | Came; R
and acceleration graphs look like? 0
. / | 0 \ I
A. a, C a,
0 t 0 t
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QuickCheck 2.15

A cart slows down while moving away
from the origin. What do the velocity | Smme, R
and acceleration graphs look like? .

Ve Vv,
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QuickCheck 2.16

A cart speeds up while moving toward
the origin. What do the velocity and oo .
acceleration graphs look like?

Ve vV,

O / t 0 r
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QuickCheck 2.16

A cart speeds up while moving toward
the origin. What do the velocity and oo .
acceleration graphs look like?

Ve vV,

O / t 0 r
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The Kinematic Equations of Constant

Acceleration

= Suppose we know an object’s velocity to be v, at an
initial time t;.

= We also know the object has a constant acceleration
of a, over the time interval At = t;—t..

= We can then find the object’s velocity at the later
time t; as
Vg — Vis T A At
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The Kinematic Equations of Constant

Acceleration

Acceleration o stant acceleration a
= Suppose we know an . /
object’s position to be s; S | I
at an initial time t;. 0 | -,

= |t's constant acceleration
a, IS shown in graph (a).

At

Displacement As is the area

= The Ve|OCity-VerSUS-time il under the curve, consisting of
graph |S ShOWn In graph (b) Y a rectangle andat:rlangle.

] o ] Vts1 Constant slope = a, :
= The final position s; IS s; plus )
the area under the curve of ) |
v, between t; and t;: Vi - e
{ X 0 .‘ L~
S¢ — 8 -+ Vig Ar + 7 Ay (At) ti{ ff

At
Slide 2-86

© 2017 Pearson Education, Inc.



The Kinematic Equations of Constant

Acceleration

= Suppose we know an object’s velocity to be v, at
an initial position s.

= We also know the object has a constant
acceleration of a, while it travels a total
displacement of As = s;—s..

= We can then find the object’s velocity at the final
position s
vel = v.2 + 2a, As
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The Constant-Acceleration Model

Constant acceleration Ay Horizon\tal line

For motion with constant acceleration. ; " " ;

The acceleration is constant.

Model the object as a particle moving
in a straight line with constant acceleration.

=i &l

W

Mathematically:

e v, = v, +aAt
o 5;=us; + v, At +2a, (A1)

f 1 15 2 S( ) Parabola

o viZ=v2+2aAs \_~4

Limitations: Model fails if the particle’s 5i ] i t

acceleration changes. The slope is v,.

Exercise 16
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The Kinematic Equations of Constant Acceleration

Kinematics with constant acceleration
MobDEL Model the object as having constant acceleration.
visuaLize Use different representations of the information in the problem.

Draw a pictorial representation. This helps you assess the information you
are given and starts the process of translating the problem into symbols.
Use a graphical representation if it is appropriate for the problem.

Go back and forth between these two representations as needed.
soLvE The mathematical representation is based on the three kinematic equations:
Vg &= Vi + CZSAI
s¢= 8+ vi, At + 5a,(Ar)?
vi2 =2+ 2a, As
Use x or y, as appropriate to the problem, rather than the generic s.
Replace i and f with numerical subscripts defined in the pictorial representation.

Assess Check that your result has the correct units and significant figures, is
reasonable, and answers the question.
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Example 2.11 A Two-Car Race

EXAMPLE 2.11 | A two-car race

Fred is driving his Volkswagen Beetle at a steady 20 m/s when he
passes Betty sitting at rest in her Porsche. Betty instantly begins accel-
erating at 5.0 m/s*. How far does Betty have to drive to overtake Fred?

MODEL Model the VW as a particle in uniform motion and the
Porsche as a particle with constant acceleration.
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Example 2.11 A Two-Car Race

EXAMPLE 2.11 | A two-car race

VISUALIZE FIGURE 2.24 is the pictorial representation. Fred’s motion
diagram is one of uniform motion, while Betty’s shows uniform accel-
eration. Fred is ahead in frames 1, 2, and 3, but Betty catches up with
him in frame 4. The coordinate system shows the cars with the same
position at the start and at the end—but with the important difference
that Betty’s Porsche has an acceleration while Fred’s VW does not.

X Betty passes Fred

Fred attime 7. .,
5 0 1 2 3 4
e e e ”e e Fred
Vs 09 @——p-@ > e \
0 1 2 3 4 <
Betty Betty t
L f
_@ Q Known
0 (xo)p (Vows to N e e (xo)g (xo)p 0

(Vo )r =20m/s  (vy)g =0m/s

— (ag)s =5.0m/s>  (v;)p=20m/s
L= i % Find
0 (xp)g, (Vo)gs o (x)ps (Vi )ps 1
(x))g at 1, when (x))p = (x))g
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Example 2.11 A Two-Car Race

EXAMPLE 2.11 | A two-car race

sOLVE This problem is similar to Example 2.2, in which Bob
and Susan met for lunch. As we did there, we want to find Betty’s
position (x, )y at the instant #; when (x,)g = (x; ). We know, from
the models of uniform motion and uniform acceleration, that
Fred’s position graph is a straight line but Betty’s is a parabola.
The position graphs in Figure 2.24 show that we’re solving for the
intersection point of the line and the parabola.
Fred’s and Betty’s positions at 7, are

(x1)r = (%) + (Vor)r(t1 — o) = (vou )ty
(x1)8 = (x0)s + (Vo )s(t; — o) + %(%)B(rl — 1) = %(aox)nﬁz

X Betty passes Fred

Ered at time 1.
L, 0 1 2 3 4
Vi @ >-@ e @ e Fred
Vs 09 0—p-0 e e 5
0 1 2 3 4 N
Betty Betty g
ty 1
Q Known
i P =01 (x)g=0m ;=05
0 ’ . ’ ot oJF 0B 0
(Xo)es (Vor)es To Ty )r (Ve 1 (Vo)r =20m/s  (vo,)g =0m/s

— Q (ag)s =5.0m/s>  (v;)p=20m/s
L= % Find
0 (xp)g, (Vo)gs o (x)ps (Vi )ps 1
(x))g at 1, when (x))p = (x))g
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Example 2.11 A Two-Car Race

EXAMPLE 2.11
By equating these,

A two-car race

(Vod)pt; = %(am)a 8

we can solve for the time when Betty passes Fred:

tl[%(allt)ﬁtl = (Vax)l:] =0

Os
E i
: {2(VUx)F"’(a0.t)B =8.0s

Interestingly, there are two solutions. That’s not surprising, when you
think about it, because the line and the parabola of the position graphs
have two intersection points: when Fred first passes Betty, and 8.0 s
later when Betty passes Fred. We're interested in only the second of
these points. We can now use either of the distance equations to find
(x1)g = (x, ) = 160 m. Betty has to drive 160 m to overtake Fred.

X Betty passes Fred

Bred at time #,.
L0 1 2 3 4 k
Vi @ o o o -0 Fred
[y e e e >
0 1 2 3 4 N
Betty Betty 2
|
ly g
Q Known
i ¥ G)r=0m (x)g=0m ;=03
0 ’ P ’ t 0)r 0)B 0
(Xo)e: (Vor)es To Ty )r (Ve 6 Wedp=20m/s (vp)g =0m/s

52

0 (x)g, (Vor)ss fo

© 2017 Pearson Education, Inc.

—ii Q (ag)p =5.0m/s* (v, )p=20m/s

* Find
(xDps (Vi )ps 1
(x))g at #; when (x))p = (x))p
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Example 2.11 A Two-Car Race

EXAMPLE 2.11 ‘ A two-car race

ASSESS 160 m = 160 yards. Because Betty starts from rest while

Fred is moving at 20 m/s = 40 mph, needing 160 yards to catch him
seems reasonable.

NOTE The purpose of the Assess step is not to prove that an
answer must be right but to rule out answers that, with a little
thought, are clearly wrong.

X Betty passes Fred

Fred at time ;. *.,
5 0 1 2 3 4
Vi @ g o o e
. Fred\
Vg @9 @@ > o
0 1 2 3 4 AN
Betty Betty g

Iy h

Q Known
X

()r=0m (xp)g =0m 7, =0s
E) x/F» i = ==
o e (Ve (Vo)r =20m/s  (vy,)g =0 m/s

b

0 (xp)r (Vou)w fo

L

0 (XO)B:’ (VOX)35 tU

L S

(). (Vides 1
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(ag)s =5.0 m/s’ (vi)r =20 m/s
Find

(x))p at 1, when (x)g = (x))p
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QuickCheck 2.17

Which velocity-versus-time graph
goes with this acceleration graph?

3 N AN 7 7 N B
N

A. B. C. D. E.
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QuickCheck 2.17

Which velocity-versus-time graph
goes with this acceleration graph?
0 t
v Vv 1% v Vv V

LN LN
NN

A. B. C. D. E.
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Free Fall

= The motion of an object moving
under the influence of gravity
only, and no other forces, is
called free fall.

= Two objects dropped from the
same height will, if air
resistance can be neglected, hit
the ground at the same time
and with the same speed.

= Conseguently, any two objects
In free fall, regardless of their
mass, have the same
acceleration:

In a vacuum, the apple and
feather fall at the same rate and
hit the ground at the same time.

Qoo a1 = (9.80 m/s?, vertically downward)
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Free Fall

<

Figure (a) shows the motion (a)
diagram of an object that was
released from rest and falls freely.

Figure (b) shows the object’s

_’
Ufree fall

velocity graph.

The velocity graph is a straight |

line with a slope: v, (m/s)

ay — afree fall — _g " 1 2 3 ‘o

_98_

Where g Is a positive number el

which is equal to 9.80 m/s2 on e

the surface of the earth. 2944 =-9.80m/s?

Other planets have different values of g.
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QuickCheck 2.18

A ball is tossed straight up in the air. At its very
highest point, the ball’s instantaneous
acceleration a, is

A. Positive.
B. Negative.
C. Zero.
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QuickCheck 2.18

A ball is tossed straight up in the air. At its very
highest point, the ball’s instantaneous
acceleration a, is

A. Positive.
v/ B. Negative.
C. Zero.
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Example 2.13 Finding the Height of a Leap

EXAMPLE 2.13 | Finding the height of a leap

The springbok, an antelope found in
Africa, gets its name from its re-
markable jumping ability. When
startled, a springbok will leap
straight up into the air—a maneuver
called a “pronk.” A springbok goes
into a crouch to perform a pronk. It
then extends its legs forcefully, ac-
celerating at 35 m/s? for 0.70 m as
its legs straighten. Legs fully extended,
it leaves the ground and rises into the air.
How high does it go?
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Example 2.13 Finding the Height of a Leap

EXAMPLE 2.13 | Finding the height of a leap

MODEL The springbok is changing shape as it leaps, so can we
reasonably model it as a particle? We can if we focus on the body
of the springbok, treating the expanding legs like external springs.
Initially, the body of the springbok is driven upward by its legs.
We’ll model this as a particle—the body—undergoing constant
acceleration. Once the springbok’s feet leave the ground, we’ll
model the motion of the springbok’s body as a particle in free fall.
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Example 2.13 Finding the Height of a Leap

EXAMPLE 2.13 | Finding the height of a leap

VISUALIZE FIGURE 2.27 shows the pictorial representation. This How do we put “How high?” into symbols? The clue is that
is a problem with a beginning point, an end point, and a point in  the very top point of the trajectory is a turning point, and we've
between where the nature of the motion changes. We've identified  seen that the instantaneous velocity at a turning point is v,, = 0.

these points with subscripts 0, 1, and 2. The motion from 0 to 1~ This

was not explicitly stated but is part of our interpretation of

is a rapid upward acceleration until the springbok’s feet leave the  the problem.

ground at 1. Even though the springbok is moving upward from 1
to 2, this is free-fall motion because the springbok is now moving
under the influence of gravity only.

Y

Stop [ ﬂ':? Yz Vo s,

Leave
i ground. OF = Y
d L X0

Start 0 C;lf YoVos o

|
* 1a Y
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Known
Yp="070m 4,=0s

Vo= OMfs Qgy =35 m/s™

Find.
Yz,
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Example 2.13 Finding the Height of a Leap

EXAMPLE 2.13 | Finding the height of a leap

soLVE For the first part of the motion, pushing off, we know a
displacement but not a time interval. We can use

1»’1;;2 = 'l"l:l;,r2 + 2a0, Ay = 2(35 m}szj (0.70m) = 49 m?/s?
v, = V49 m¥s’ = 7.0 m/s

The springbok leaves the ground with a velocity of 7.0 m/s. This is
the starting point for the problem of a projectile launched straight
up from the ground. One possible solution is to use the velocity

Y

equation to find how long it takes to reach maximum height, then
the position equation to calculate the maximum height. But that
takes two separate calculations. It is easier to make another use of
the velocity-displacement equation:

vo =0=v,2+2a, Ay =v;,) —2¢(y, — )

where now the acceleration is a;, = —g. Using y; = 0, we can solve
for y,, the height of the leap:

vy (70m/s)*

=—— " __75
28 2(9.80m/is?)

Mg

Stop i C,::%; Yz Vowta,

Ta: L YO0

* IE? Yy

Known
Yp="070m 4,=08

Vo= OMfs Qyy =35 m/s™
Y=0m Vyy=0mjs

Find

Leave Yz
ground. OF S5 et

Start r <;§ YoVow o
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Example 2.13 Finding the Height of a Leap

EXAMPLE 2.13 | Finding the height of a leap

ASSESS 2.5 mis a bit over 8 feet, a remarkable vertical jump. But
these animals are known for their jumping ability, so the answer
seems reasonable. Note that it is especially important in a multipart
problem like this to use numerical subscripts to distinguish different
points in the motion.

- Y
v
Stop y %:?\9.22 gty
Known
Yp=—070m 4,=08
Vo= OMfs Aoy =35 mfs™
® J,Ef, \ [ Y=0m Vyy=0m/s
Find
Leave Iz
} " ground OF S Yy
IEL L X
Start =
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Motion on an Inclined Plane

= Figure (a) shows the motion diagram
of an object sliding down a straight, “';,’
frictionless inclined plane.

= Figure (b) shows the free-fall
acceleration 4. r,;; the object would
have If the incline suddenly vanished.

" This vector can be broken into two i i
pIeCeS a“ and aJ_ accelerates the object

down the incline.
= The surface somehow “blocks” @, , so

the one-dimensional acceleration along i | g
the incline is . AN

a. — i g SIHQ Same angle

A)

Angle of

incline T 7]

a [

= The correct sign depends on the
direction the ramp is tilted.

© 2017 Pearson Education, Inc.
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QuickCheck 2.19

The ball rolls up the ramp, then
back down. Which is the
correct acceleration graph?

(a) (b) (c) (d) (e)
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QuickCheck 2.19

The ball rolls up the ramp, then
back down. Which is the
correct acceleration graph?

(a) (b) (c) (d) (e)
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Thinking Graphically

= Consider the problem of a hard, smooth ball rolling on
a smooth track made up of several straight segments
connected together.

= Your task is to analyze the ball’'s motion graphically.

= There are a small number of rules to follow:

1. Assume that the ball passes smoothly from one
segment of the track to the next, with no abrupt change
of speed and without ever leaving the track.

2. The graphs have no numbers, but they should show
the correct relationships. For example, the position

grap
3. The
Simi
para

n should be steeper in regions of higher speed.
position s is the position measured along the track.
arly, v, and a, are the velocity and acceleration

lel to the track.
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Example 2.15 From Track to Graphs

EXAMPLE 2.15 | From track to graphs

Draw position, velocity, and acceleration graphs for the ball on the
smooth track of FIGURE 2.32.

Q_> Vos >0

N
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Example 2.15 From Track to Graphs

EXAMPLE 2.15 | From track to graphs

VISUALIZE It is often easiest to begin with the velocity. There is
no acceleration on the horizontal surface (a, = 0if # = 0°), so the
velocity remains constant at vy, until the ball reaches the slope. The
slope 1s an inclined plane where the ball has constant acceleration.
The wvelocity increases linearly with time during constant-
acceleration motion. The ball returns to constant-velocity motion
after reaching the bottom horizontal segment. The middle graph
of FIGURE 2.33 shows the velocity.

WVOS\/\O

The position graph changes
smoothly, without kinks.

My

-
f-.
.

\
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Example 2.15 From Track to Graphs

The position graph changes

smoothly, without kinks.
S 2

EXAMPLE 2.15 ‘ From track to graphs

VISUALIZE We can easily draw the acceleration graph. The
acceleration is zero while the ball is on the horizontal segments
and has a constant positive value on the slope. These accelerations
are consistent with the slope of the velocity graph: zero slope, then
positive slope, then a return to zero. The acceleration cannot
really change instantly from zero to a nonzero value, but the Vs
change can be so quick that we do not see it on the time scale

of the graph. That is what the vertical dotted lines imply.

".d

________FZ..______

WVOS\/\ 0 : p
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Example 2.15 From Track to Graphs

EXAMPLE 2.15 ‘ From track to graphs

VISUALIZE Finally, we need to find the position-versus-time graph.
The (position increases linearly with time during the first segment
at constant velocity. It also does so during the third segment of
motion, but with a steeper slope to indicate a faster velocity.
In between, while the acceleration is nonzero but constant, the
position graph has a parabolic shape. Notice that the parabolic section
blends smoothly into the straight lines on either side. An abrupt change
of slope (a “kink™) would indicate an abrupt change in velocity and
would violate rule 1.

WVOS>O

The position graph changes
smoothly, without kinks.

-

L
_______F:‘.______

\
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Example 2.16 From Graphs to Track

© 2017 Pearson Education, Inc.

EXAMPLE 2.16 | From graphs to track

FIGURE 2.34 shows a set of motion graphs for a ball moving on
a track. Draw a picture of the track and describe the ball’s initial
condition. Each segment of the track is straight, but the segments
may be tilted.

| |
| |
|
| |
|

| |
| |

| | \
v, ! !
| |
Vos - I .

0 1N | ¢
| I
| |
| ~
| |
| |
| |
| |
& | |
| |
0 l t

I
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EXAMPLE 2.16 | From graphs to track

VISUALIZE The ball starts with initial velocity vy, >0 and
maintains this velocity for awhile; there’s no acceleration. Thus the
ball must start out rolling to the right on a horizontal track. At the
end of the motion, the ball is again rolling on a horizontal track (no
acceleration, constant velocity), but it’s rolling to the left because v,
is negative. Further, the final speed (|v,|) is greater than the initial
speed. The middle section of the graph shows us what happens.

© 2017 Pearson Education, Inc.

Example 2.16 From Graphs to Track

The ball starts slowing with constant acceleration (rolling uphill),
reaches a turning point (s is maximum, v, = 0), then speeds up in
the opposite direction (rolling downhill). This is still a negative
acceleration because the ball is speeding up in the negative
s-direction. It must roll farther downhill than it had rolled uphill
before reaching a horizontal section of track. FIGURE 2.35 shows
the track and the initial conditions that are responsible for the
graphs of Figure 2.34.

This track has a “switch.” A ball
moving to the right goes up the incline,
but a ball rolling downhill goes

straight through.
. = @ >0 %/

//
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Advanced Topic: Instantaneous Acceleration

(a) The car speeds up from rest until
it reaches a steady cruising speed.

= Figure (a) shows a realistic X |
velocity-versus-time graph
for a car leaving a stop sign.

= The graph is not a straight line, | | |
L. ) ) (b) a, The slope of the velocity

SO thlS IS nOt mOtIOn Wlth a gliil‘pzil\it;itt'he value of the
constant acceleration. |

= Figure (b) shows the car’s
acceleration graph. ,«

= The instantaneous acceleration a. Is the slope of the
line that is tangent to the velocity-versus-time curve at
time t:

dv
a, = — = slope of the velocity-versus-time graph at time ¢

dl- Slide 2-116
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Advanced Topic: Instantaneous Acceleration

= Suppose we know an object’s velocity to be v, at an
initial time t..

= \We also know the acceleration as a function of time
between t; and some later time t..

= Even If the acceleration is not constant, we can divide
the motion into N steps of length At in which it is
approximately constant.

= |n the limit At — 0 we can compute the final velocity as
It
Ve, = Vi F J a, dt
l‘.

= The graphical interpretation of this equation is

Vg, = V;, T area under the acceleration curve a, between ¢, and #;

Slide 2-117
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Example 2.17 Finding Velocity from Acceleration

EXAMPLE 2.17 | Finding velocity from acceleration

FIGURE 2.37 shows the acceleration graph for a particle with an
initial velocity of 10 m/s. What is the particle’s velocity at t = 8 s?

a, (m/s’) LAy, 1s the area
41 _under the curve.
%
2 =
0 | I T . I 1 A (S)
, 2 4 6 8§ ~.10
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Example 2.17 Finding Velocity from Acceleration

EXAMPLE 2.17 | Finding velocity from acceleration
MODEL We’re told this is the motion of a particle.
VISUALIZE Figure 2.37 is a graphical representation of the motion.

soLVE The change in velocity is found as the area under the ac-
celeration curve:

v;, = v, + area under the acceleration curve a, between ¢, and 1;

The area under the curve between ¢, = 0 s and #; = 8 s can be subdi-
vided into arectangle (0s =t =4s) and atriangle (4s =< t =8s).
These areas are easily computed. Thus

v(att=28s)=10m/s + (4 (m/s)/s)(4s)

+3(4 (m/s)/s)(4s)
=34 m/s
2 .
a, (m/s”) Ay, is the area
4 .~ under the curve.
h.o N
2-
0 | T | \| — 1 (S)
, 2 4 6 8 ~.10
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Chapter 2 Summary Slides
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General Principles

Kinematics describes motion in terms of position, velocity, and acceleration.
General kinematic relationships are given mathematically by:
Instantaneous velocity v, = ds/dt = slope of position graph
Instantaneous acceleration a, = dv,/dt = slope of velocity graph

I ’
Final vositi e P under the velocity
inal position Sp= 8§ r1 Veddt = 8t curve from £ to £,
Final veloci " g G o || AIED under the acceleration
QIAEVEIOCIEY Vis = Vis : G = Vi curve from #to #;
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General Principles

Solving Kinematics Problems
MODEL Uniform motion or constant acceleration.
VISUALIZE Draw a pictorial representation.
SOLVE
* Uniform motion s; = s; + v, At
* Constant acceleration v, = v, + a,At
8¢ =5, + v, At + Sa (At)?
veZ =2+ 2a,As

ASSESS Is the result reasonable?
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Important Concepts

Position, velocity, and acceleration are
related graphically.

» The slope of the position-versus-time
graph is the value on the velocity graph.

» The slope of the velocity graph is the
value on the acceleration graph.

* §is a maximum or minimum at a turning
point, and v, = 0.
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Important Concepts

s * Displacement is the area under the

velocity curve.
7
t

g\

point

L

) ™~
]
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Applications

The sign of v, indicates the direction of motion.
* v, > 0 1s motion to the right or up.

* v, < 0 is motion to the left or down.

The sign of a, indicates which way a points, not whether the
object is speeding up or slowing down.

* g, > 0 if a points to the right or up.
e a, < 0if @ points to the left or down.

e The direction of @ is found with a motion diagram.

Slide 2-125

© 2017 Pearson Education, Inc.



Applications

An object is speeding up if and only if v, and a, have the same sign.

An object is slowing down if and only if v, and a, have opposite signs.

Free fall is constant-acceleration motion with

a, = —g = —9.80 m/s’ \
0

Motion on an inclined plane has a, = =+ gsin®.
The sign depends on the direction of the tilt.
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