Functional Programming

tutorialspoint

S I MPLYEASYLEARNINIG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia ‘3 https://twitter.com/tutorialspoint

F#

About the Tutorial

F# helps you in the daily development of the mainstream commercial business software.
This tutorial provides a brief knowledge about F# and its features, and also provides the
various structures and syntaxes of its methods and functions.

Audience

This tutorial has been designed for beginners in F#, providing the basic to advanced
concepts of the subject.

Prerequisites

Before starting this tutorial you should be aware of the basic understanding of Functional
Programming, C# and .Net.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

k' tutorials

LY ASYLEARMNIMNIEG

mailto:contact@tutorialspoint.com

F#

Table of Contents
FiY T 10| o 4 T T o) o T | PO Nt
F T 1= Vol PPN i
Prer@QUISITES coiiiiiiieeiiiiiiiiriiiiiiiiiiinriesees e sse s st s s s sassssss st s e s sasssssssssssssssssssssssnssssssssssssssnsssnsssssssssnnsnnnes i
COPYIight & DiSCIAIMET......uuiiiiiiiiiiiiiiiiiiiisiiiiisississnns i
I <1 Lo 0 =T N i
1. FH = OVERVIEW ... e s aaa s asasasnsasnsnsnsannsnsnsnsnnnnnnns 1
ABOUL Fh..oiiiiiiiiiiiiiiiiiiiiiniiiinissssssssssssss s ss ssnnsssssnnnnsnsnnns 1
[T L T] i =N 1
L8130 = - JS N 1
2. FH—ENVIRONMENT SETUP ...uuiiiiiiiiiiiiiiiiiisiiisisisisssssss s s s s asnsnsnsasnsnsnsnsnsnnns 3
Integrated Development Environment (IDE) for Fifceeeseesssssssssssssssnnnnns 3
Writing FH Programs ON LINUXciiiiiiiiiiuiiiiiniiiieimmiiiiimmmsssiiimssssssssiimmssssssssssisssssssssssssssssssssssssss 3
3. FH—=PROGRAM S STRUCTURE ... 4
A, FH = BASIC SYNT AX ceeiiiiiieeiticieee e e ettt rreee e e e e e e e eata i aeesesessres s st aasesesssessasanaseseseressnnnnnnsenenens 5
B ICe 1T T T N 5
COMMENTS TN Ff ...t see e e s s e e enas s e s s e s e snnssssssssesesnnssssssssssssnnnssssssssseennnnsssssssnsennnnns 10
A Basic Program and Application Entry Point in Fé.........ccceeeeeiiiiiiiiiiieciiiniireeneessscsneneennessssesseeennnnsssnens 11
5. FH=DATATYPES ..., 12
INEEEIral DAta TYPES «..ueiiiiieieeeiciiiiiietteeieeerieeennnsssssesseseennssssssssssssnnnsssssssssssnnnssssssssssssnnnssssssssesennnnssssssnnnes 12
FlOQting POINt Data TYPES...ceeeeeeeeeeeeeeeeeeeemmemsmmssnnnns 14
TEXE DAta TYPS..ceuuiiirieiiiiieiiiiiiiiiiiiiiiiniiiiirieiisiriestissesssisnsssstssssssnssssssssssssssssssssssssssssssssssssnssssssssssssnnsss 16
Other Data TYPES ...cuuereiiriiiississns 16
6. FH—=VARIABLESootiiiii i e e s e s e s sar e aen e e e s e se s e nerens 18
Variable Declaration iN Ff ... iiiiiiieiccicrirrercesccss s ererness s s e s e s e snnssssesssesennasssssssseessnnnssssssssneennnnsnnnns 18

k tutorials

SIMPLYEASYLEARNINIEG

Variable Definition with Type Declaration........cccceviiiiiiiiiiiiiiiiiii e 19
MULabIe Variables........ueiiiieiiiiiiiiiiiiitiieeiiee st ase s as e s s as e s as e e s an e s s ann e e 20
FH — OPERATORS ...ttt ettt ettt e e e e s e st e e e e e e s e s amrneneeeaesssesennnnrenaeens 22
N T 0 T Aol 0« =T - 1 o 22
COMPATiSON OPEIAtOrS ...cccuuuuiiiiiiiiiniiiiiiiiiirrieiisesiirssnsssissstirrssssssssessitessssssssssstsssssssssssssssssssssssssssssssssnnes 23
BOOIEAN OPEIatOrS ..ccceeeeereeeeeeeeremeeeeeeeeeesssnss 25
BitWiS@ OPEIratorscccoiiiiiiuuiiiiiiiiiiiiuiiiiiiiiiesieeiisstiirssassssssstresssssssssssssnsssanes 26
OPErators PrECEUENCE........cccverrrerrrrrrrrrssnsnns 28
FH# — DECISION MAKINGceettiiieiiiiiitieee e ettt e e e e e st eeeeeeesesasnsneneaeeesesssansnsseneeens 30
FH - if [then StatemMENt.....ueueeeeeeeeeeeeieeeeeiieeeeeeeeeeeeeeeeeeeeseesessessssssesssnnsnns 31
F# - if /then/else STateMENtueeesseeesssnnnns 32
F# - if /then/elif/else STAt@MENTceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseessnsnns 33
Fi#t - Nested if STatementscoooveiiiiiiiiiiiiiiiiiiiiiircer s ssn e s ssse e sessnesee 34
- el 108 | PRSP 35
F# - for...to and for... dOWNEO EXPreSSiONS........eeeeeeeeeeeeeeeeeeeeeeeemmsmmss 36
FH - fOr... IN EXPreSSIONS ..cccvveeeeeeeeieeeeeeeeteeeteeeemesesssnsnns 38
Fi - While...dO EXPreSSIONSccciiiiieeeeniiiiriiierinnisiesiireennssssssssssessnmssssssssssennnssssssssssssnnnsssssssssssnnnssssssssanes 39
FH - NESTEA LOOPS ceuuneiiiiiiiiiieniiiiitiietinsiseeereeennnsssssesseseennssssssssssesnnssssssssssssnnnssssssssssssnnnssssssssssennnnsssssssnnes 39
FH —FUNCTIONS ...ttt ettt ee e e et ce e s e s e s sstne st se s e s e ssssnenenesesesssansnsnenenenens 41
Defining @ FUNCHIONccceeeeeeeieessseessssessssasssassassssssnsssssssssssnsnnnsnnnsnnnnnnnnnnnnnnnn 41
Parameters Of @ FUNCHIONcciiiiiiiiiiiiiiiiiniiiiciiinc e csessnessssssessssse e sesssnesssssssessssssessesssnesas 41
ReCUISIVE FUNCHIONSccuunniiiiiiiiiiiiiniiiiieiiiiiiniiieeeinsisnnsiieesissssssssnneesisssssssssnssessssssssssssassssssssssssssssssssas 43
Arrow NOtations iN FHcooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiicsseieeesiiesssssseeesissssssssssseessssssssssssseessssssssnes 44
Lambda EXPreSSIONScceveeeeeeeeeeeeeeeeeeeeeeeemmsssmsssnnnns 45
Function Composition and PipeliniNgccoeeeeeeeeiiiiiiiiiiccecrrirreceescee s s e rereessseee s s e s e nnnssssssssesennnnssssssnenes 45
FH — STRINGS ..ottt e e s e st s s e e e s e seseentrereaeaeaesasansnenenesesesssansnsseneneaens 47

ifi

k' tutorials

PLYEASYLEARNINDEG

N g T KT - | E RPN 47
Ways of 1Ignoring the ESCApe SEQUENCEccceviiiiiiiiiiiiiiiiiiiiiiiieessssissnnns 47
Basic OPerations ON STFNES......ccciiiiiriiiiiiiiiiiieiiiiiniiieeresiiisiiieesnsssisssiisesssssssssssssssnsssssssssssssnnsnssssssssnes 48

R] = 1 0 N N 51
LT 0 T o T o S 51
Option Properties and Methods.........cccccviiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiiississ 52

L3, FH = TUPLES.......oeeee e e e s e e e e a s e s asasasnsasnsnsnsnsnsnsnsnsnsnsnnnsnnnsnnnsnnnnns 54
Accessing Individual Tuple MembBers......cccoiiiiiiiiiiiiiiii e s e s s s s e s eeees 55

i - el 60 T3] 5 PR 56
(0= LY TL Y= T 1 (=T olo]« [N 56
(O 11 = TN 2 =T o] 56

T e 11 1) 1T 59
Creating and INitializing @ List.......ccceeiiiiiiiiiiiiiiiiiiiiiiiiiininiisssisss 59
Properties Of List Data TYPEcciiiiivieeeiiiiiiiiiiinneiiiiisisissstesniissssssssseesisissssssssssssssssssssssssssssssssssssnssssssssas 61
Basic OPerations ON LiStucciiiiiiiiimmniiiiniiinmmmniiiiniiimemmsiiiiimmmsssiiimssssssssiimssmsssssssssssssssssssssssnes 62

16. FH—SEQUENCESotttititititiiiiiiiiiii bbb bbb bbb sasassassnsssnsnannns 70
[0 YT Y=Y Yo [UT=T s ol =T- IS 70
Creating Sequences and SEqUENCE EXPresSSiONS.......ccccceiiiiiiiiiiiiiiiisiisiisisssnns 70
Basic OPerations ON SEQUENCEcccceeeeeiiiriiiermmniiieriereennsssssesssseennnssssssssssennnssssssssssssnnssssssssssssnnsssssssssases 72

R -] = I RN 80
Creating SOTS c.cvvuuuiiiiiiiiiiiiiiiiiiiiitiuisiitiiiresisssssssttrnesssssssssstnssnsnnes 80
BasiC OPerations ON SEtScceiiiiiiiiieuiiiiiiiiinemnmisiiiiiiiesssssiiiiiiieessssstiimessssssssstimssssssssssssssssssssssssssssnes 80

L8, FH=IMAPS ...ttt s e s e e e e s e s e e e e e e e e s e st rene e e e e se st raaeneee s 84
CrEating IMIAPS cevvueuiiiiiiitenniiiiiiiiieeesssisniineesssssssssssisessssssssssstsesssnnnnes 84
Basic OPerations ON IMIaps........ccceiiieeeeeiciiiiiieeienseeesreeeennnssseesssesesnnsssssssseeennnsssssssssssennnssssssssessnnnnsssssssnnes 85

iv

k' tutorials

PLYEASYLEARNINDEG

19.

20.

21.

22.

23.

24,

25.

26.

Fi# — DISCRIMINATED UNIONSottt crcirirere e s sinerenese s s s sssaenenenesesssssansnsneneneees 88
FH = MUTABLE DAT A i, 91
MULabIe Variables.......ceeeeeeeeeeeeeemeeeeeeeeememmmmememeeeeemmsmss 91
Uses Of MUtable Data........ceeeeeeeeeeeeieeeeeeeeeemmmemeeeeemsessmssssssmsss 93
FH — ARRAY S ... 95
(O =T 1] =Y -) 95
BasiC OPErations ON ArTAYSccoiiireeeuuiiiiiiiiiemnnssiiiisiiimmssssiiisiiimssmsssisssiimmsmssssiesttmsssmsssssssttsssssssssssssanes 96
Creating Arrays USiNg FUNCHIONS........cciiiiiiiiiiiiiiiiiiininniiiiiiiieenessisssiiiesnssssssssiisssssssssssssssssssssssssssssssnnnns 101
1ol 111 V-4V - 1S TRt 104
FH—MUTABLE LISTS .., 106
Creating @ MULADIE LiStccccceeiiiiiiiciiisrrinsssnsnnes 106
TRE LISt(T) Class.ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeesesssssssssssesssnssnsssssnnns 106
F# — MUTABLE DICTIONARY. ... oo 114
Creating of @ Mutable DICtIONArYccccceiiiiiiiiiiiiiiiiiiiniiiisisss 114
The Dictionary(TKey, TValue) Classccccvvrmreriiriicisssnneeniiseicsssnneesesssssssssnnesssssssssssnnssessssssssssnnssasssssas 114
FH=BASIC IO ... 118
Core.Printf MOAUIEcoiiiieeiiiiiiiiieeeeetnn i seese e s sss s ssnnse e s s s sssssssnnsessssssssssssnnsansssssssssnnnsessssssssssnns 118
oYy o =Y Y =T} o= Y o Lo T4 3N 119
LI T 000 T4 o1 L= 0 £ TN 121
The System.IO NamMESPACE ...ccuuuuiiiiiiierieeiieieriieernneeeesereesnnsssssesssssennnssssssssssennnssssssssssssnnssssssssssssnnnnsssnns 126
FH = GENERICS ... oottt et e e e e e e et b e e e e esesesestaaeesesesesessnnannnenens 131
L= 4 T=T ol o - 3PN 132
FlE — DELEGATES ...ttt scririreree e s s e sererer e e e s e s s s e saaaeaen e s e s s s e s nansnenenesesesesnsnnsenenens 133
Declaring DEleGates.......ccueeeeeeeeeeeeeeeeeeeeeeeeeneeeemmeeeeesssnnnns 133

k' tutorials

PLYEASYLEARNINDEG

27. FH—=ENUMERATIONS ...ttt ittt ssenerereee s e s s sersesererese e s se s nansrenenesesesesnsnnne 136
Declaring ENUMEIAtIONScceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssesssnsssssnnnnns 136
28. FH—PATTERN MATCHING ... ss s sese s e se s e se s e s e s s s e s e s e s e s e s e s e s e se s e s e s e aeaeanas 138
Pattern Matching FUNCLIONSoociuiiiiiiiiiiiiieien et ass e aanse e 140
Adding Filters or GUuards t0 Patternsccccceviiiiiieeniiiiiiiiiiieetensesee s asss e anes 140
Pattern Matching With TUPIESccccueeiiiiiiiieic e aasse e 141
Pattern Matching With RECOIdS.........ueeeiiiiiiiiiieiiiiiiiicetnn e aasse e 142
29. FH —EXCEPTION HANDLING. .. coitiiiiiiiiiiiririrereseresess s sssesesssssesesesesese s s s s sese s e sssssnsesssnsssnsnanas 143
Examples of EXception HAaNAIING........eeeseeseessessssssssssssssssssssssssnnnnnnnnns 145
30, FH—=CLASSES ..., 149
CONSErUCLOr OF @ ClassS....ciiiiiiiinereiiiiiiiisisnneeiiniiississnneesssssssssssssessssssssssssnssssssssssssssnssssssssssssssnnsassssssssssnns 150
LEt BiNAINGS.cceueeeeeereeeeeeeeeeeemmeeeeeeemmemesssnnss 151
31. FH—= STRUCTURES ..., 152
32. FH#—OPERATOR OVERLOADING.......cceii it 154
Implementation of Operator OVerloading...........eeeeeeeeeeeeeeeeeeeeeemmeemeeneememeemesssssssssssssessssssssssssssssssssssssses 154
33, FH—=INHERITANCE ...t e, 156
Base Class and SUD Classceeeeeeeeeemeeeeeeeeemmemeeeememeeemeeeeeeeeeeeeeemmeemmmmsss 156
OVErriding MeEthOdSceee it se s e s e s e enee s s e s s e s e snassssssssssesnnssssssssssssnnnsssssssnsesnnnns 158
Y 1 Tt A0 1= - . 159
34, FH = INTERFACES ...ttt e ettt e e e e e e e et st e e e e s e s e ses e st e e esesesesnnnnnnnss 162
Calling Interface Methodscccceviiiiiiiiiiiiiiiinii s s sssssssssssssssssssssssssssnes 163
QY =T £ Lol [y =T o = T o= 164
3. FH = EVENTS i e e e s s s e e e e e s e s e e e e eesenanans 166
The Event Class and Event ModUle............cceeeeeiiiiiiiiinieeieinininniiniieieeimieimimieemiessesmsssssssmsssssssssssssssssssssssss 166

Vi

k' tutorials

PLYEASYLEARNINDEG

36.

37.

Creating EVENTS c...uiiiiiiiiiiiiiiiiiiieenniiiiiiinesssssisssiinssssssssssssisssnsssssssssssssnnans 167
FH = IMODULESooiiiitee ettt ettt e e e s e st e e e e e s e s e sasbnereneeesesesannnsneneaeaens 171
FH — NAMESPACES ...ttt ettt e s st rer e e e s e s s s sambseneeeaeaesesaannrenenens 174
Declaring @ NAMESPACEeeeeiiiiiiiiiiineteiiiiiiiiisereetiiissssssssssesssssssssssssseesssssssssssssessssssssssssssensssssssssssssenss 174
vii

k') tutorials

PLYEASYLEARNINEG

1. F#-—Overview

F# is a functional programming language. To understand F# constructs, you need to read a
couple of lines about the programming paradigm named Functional Programming.

Functional programming treats computer programs as mathematical functions. In functional
programming, the focus would be on constants and functions, instead of variables and states.
Because functions and constants are things that don’t change.

In functional programming, you will write modular programs, i.e., the programs would consist
of functions that will take other functions as input.

Programs written in functional programming language tend to be concise.

About F#

Following are the basic information about F#:

e It was developed in 2005 at Microsoft Research.

It is a part of Microsoft’s family of .Net language.

It is a functional programming language.

It is based on the functional programming language OCaml.

Features of F#

e It is .Net implementation of OCaml.

e It compiles .Net CLI (Common Language Interface) byte code or MSIL (Microsoft
Intermediate Language) that runs on CLR (Common Language Runtime).

e It provides type inference.

e It provides rich pattern matching constructs.

e It has interactive scripting and debugging capabilities.
o It allows writing higher order functions.

e It provides well developed object model.

Uses of F#

F# is normally used in the following areas:

\ tutorialspoint

SIMPLYEASYLEARNINLEG

F#

Making scientific model
Mathematical problem solving
Artificial intelligence research work
Financial modelling

Graphic design

CPU design

Compiler programming

Telecommunications

It is also used in CRUD apps, web pages, GUI games and other general purpose programs.

&

tutorials

SIMPLYEASYLEARMINIEG

2. F#-Environment Setup

The tools required for F# programming are discussed in this chapter.

Integrated Development Environment (IDE) for F#

Microsoft provides Visual Studio 2013 for F# programming.

The free Visual Studio 2013 Community Edition is available from Microsoft’s official website.
Visual Studio 2013 Community and above comes with the Visual F# Tools. The Visual F#
Tools include the command-line compiler (fsc.exe) and F# Interactive (fsi.exe).

Using these tools, you can write all kinds of F# programs from simple command-line
applications to more complex applications. You can also write F# source code files using a
basic text editor, like Notepad, and compile the code into assemblies using the command-line
compiler.

You can download it from Microsoft Visual Studio. It gets automatically installed in your
machine.

Writing F# Programs on Linux

Please visit the F# official website for the latest instructions on getting the tools as a Debian
package or compiling them directly from the source: http://fsharp.org/use/linux/.

Try it Option Online
We have set up the F# Programming environment online. You can easily compile and execute
all the available examples online along with doing your theory work. It gives you confidence

in what you are reading and to check the result with different options. Feel free to modify any
example and execute it online.

Try the following example wusing the Try it option or use the |url:
http://www.compileonline.com/.

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

For most of the examples given in this tutorial, you will find a Try it option in our website code
sections at the top right corner that will take you to the online compiler. So just make use of
it and enjoy your learning.

10

\ tutorialspoint

SIMPLYEASYLEARNINLEG

http://www.compileonline.com/

3. F#—Program Structure

F# is a Functional Programming language.

In F#, functions work like data types. You can declare and use a function in the same way
like any other variable.

In general, an F# application does not have any specific entry point. The compiler executes
all top-level statements in the file from top to bottom.

However, to follow procedural programming style, many applications keep a single top level
statement that calls the main loop.

The following code shows a simple F# program:

open System

(* This is a

multi-line comment *)

// This is a single-line comment

let sign num
if num > © then "positive"
elif num < @ then "negative”

else "zero"

let main() =

Console.WritelLine("sign 5: {@}", (sign 5))

main()

When you compile and execute the program, it yields the following output:

sign 5: positive

Please note that:
11

\ tutorialspoint

SIMPLYEASYLEARNINLEG

&

F#

An F# code file might begin with a number of open statements that is used to import
namespaces.

The body of the files includes other functions that implement the business logic of the
application.

The main loop contains the top executable statements.

12

tutorials

SIMPLYEASYLEARMINIEG

4. F# - Basic Syntax

You have seen the basic structure of an F# program, so it will be easy to understand other
basic building blocks of the F# programming language.

Tokens in F#

An F# program consists of various tokens. A token could be a keyword, an identifier, a
constant, a string literal, or a symbol. We can categorize F# tokens into two types:

e Keywords

e Symbol and Operators

F# Keywords

The following table shows the keywords and brief descriptions of the keywords. We will discuss
the use of these keywords in subsequent chapters.

Keyword Description
Indicates a method that either has no implementation in the type in
abstract which it is declared or that is virtual and has a default
implementation.
and Used in mutually recursive bindings, in property declarations, and
with multiple constraints on generic parameters.
Used to give the current class object an object name. Also used to
as . L
give a name to a whole pattern within a pattern match.
assert Used to verify code during debugging.
base Used as the name of the base class object.
begin In verbose syntax, indicates the start of a code block.
13
tutorialspoint

SIMPLYEASYLEARNINLEG

F#

class In verbose syntax, indicates the start of a class definition.
default Indicates an implementation of an abstract method; used together
with an abstract method declaration to create a virtual method.
delegate Used to declare a delegate.
do Used in looping constructs or to execute imperative code.
done In verbose syntax, indicates the end of a block of code in a looping
expression.
downcast Used to convert to a type that is lower in the inheritance chain.
downto In a for expression, used when counting in reverse.
elif Used in conditional branching. A short form of else if.
else Used in conditional branching.
In type definitions and type extensions, indicates the end of a section
of member definitions.
end
In verbose syntax, used to specify the end of a code block that starts
with the begin keyword.
exception Used to declare an exception type.
Indicates that a declared program element is defined in another
extern :
binary or assembly.
false Used as a Boolean literal.
. -
tutorials

&

SIMPLYEAS

Y¥LEARNINLEG

14

F#

. Used together with try to introduce a block of code that executes
finally .
regardless of whether an exception occurs.
for Used in looping constructs.
fun Used in lambda expressions, also known as anonymous functions.
Used as a shorter alternative to the fun keyword and
function a match expression in a lambda expression that has pattern
matching on a single argument.
global Used to reference the top-level .NET namespace.
if Used in conditional branching constructs.
in Used for sequence expressions and, in verbose syntax, to separate
expressions from bindings.
inherit Used to specify a base class or base interface.
inline Used to indicate a function that should be integrated directly into the
caller's code.
interface Used to declare and implement interfaces.
. Used to specify that a member is visible inside an assembly but not
internal .
outside it.
laz Used to specify a computation that is to be performed only when a
y result is needed.
let Used to associate, or bind, a nhame to a value or function.
. -
|\ tutorials
SIMPLYEASYLEARNINLEG

15

F#

Used in asynchronous workflows to bind a name to the result of an
let! asynchronous computation, or, in other computation expressions,
used to bind a name to a result, which is of the computation type.
match Used to branch by comparing a value to a pattern.
member Used to declare a property or method in an object type.
Used to associate a name with a group of related types, values, and
module . .)
functions, to logically separate it from other code.
mutable Used to declare a variable, that is, a value that can be changed.
Used to associate a name with a group of related types and modules,
namespace))
to logically separate it from other code.
Used to declare, define, or invoke a constructor that creates or that
can create an object.
new
Also used in generic parameter constraints to indicate that a type
must have a certain constructor.
not Not actually a keyword. However, not struct in combination is used
as a generic parameter constraint.
Indicates the absence of an object.
null
Also used in generic parameter constraints.
of Used in discriminated unions to indicate the type of categories of
values, and in delegate and exception declarations.
Used to make the contents of a namespace or module available
open . e
without qualification.
. -
tutorials

&

SIMPLYEASYLEARMINIEG

16

F#

Used with Boolean conditions as a Boolean or operator. Equivalent
or to |].
Also used in member constraints.
. Used to implement a version of an abstract or virtual method that
override . .
differs from the base version.
private Restricts access to a member to code in the same type or module.
public Allows access to a member from outside the type.
rec Used to indicate that a function is recursive.
return Used to indicate a value to provide as the result of a computation
expression.
Used to indicate a computation expression that, when evaluated,
return! . L - -
provides the result of the containing computation expression.
Used in query expressions to specify what fields or columns to
extract. Note that this is a contextual keyword, which means that it
select
is not actually a reserved word and it only acts like a keyword in
appropriate context.
Used to indicate a method or property that can be called without an
static instance of a type, or a value member that is shared among all
instances of a type.
Used to declare a structure type.
struct Also used in generic parameter constraints.
Used for OCaml compatibility in module definitions.
then Used in conditional expressions.
. -
tutorials

&

SIMPLYEASYLEARMINIEG

17

F#

Also used to perform side effects after object construction.
to Used in for loops to indicate a range.
true Used as a Boolean literal.
tr Used to introduce a block of code that might generate an exception.
y Used together with with or finally.
Used to declare a class, record, structure, discriminated union,
type . . -
enumeration type, unit of measure, or type abbreviation.
upcast Used to convert to a type that is higher in the inheritance chain.
use Used instead of let for values that require Dispose to be called to
free resources.
Used instead oflet!in asynchronous workflows and other
use! computation expressions for values that require Dispose to be called
to free resources.
Used in a signature to indicate a value, or in a type to declare a
val LT . .
member, in limited situations.
. Indicates the .NET void type. Used when interoperating with other
void
.NET languages.
Used for Boolean conditions (when guards) on pattern matches and
when . . .
to introduce a constraint clause for a generic type parameter.
while Introduces a looping construct.
with Used together with the match keyword in pattern matching
expressions. Also used in object expressions, record copying
. -
tutorials

&

SIMPLYEASYLEARMINIEG

18

F#

expressions, and type extensions to introduce member definitions,
and to introduce exception handlers.

computation expression.

yield Used in a sequence expression to produce a value for a sequence.
Used in a computation expression to append the result of a given
yield! computation expression to a collection of results for the containing

Some reserved keywords came from the OCaml language:

asr land lor Isl Isr Ixor mod sig
Some other reserved keywords are kept for future expansion of F#.
atomic break checked component const constraint constructor
continue | eager event external fixed functor include
method mixin object parallel process protected pure
sealed tailcall trait virtual volatile
Comments in F#

F# provides two types of comments:

e One line comment starts with // symbol.

e Multi line comment starts with (* and ends with *).

MPLYEASYLEARMINIEG

|\ !:utnrials

19

F#

A Basic Program and Application Entry Point in F#

Generally, you don’t have any explicit entry point for F# programs. When you compile an F#
application, the last file provided to the compiler becomes the entry point and all top level
statements in that file are executed from top to bottom.

A well-written program should have a single top-level statement that would call the main loop
of the program.

A very minimalistic F# program that would display ‘Hello World’ on the screen:

(* This is a comment *)
(* Sample Hello World program using F# *)
printfn "Hello World!"

When you compile and execute the program, it yields the following output:

Hello World!

20

|\ tutorials

SIMPLYEASYLEARNINIEG

5. F#—Data Types

The data types in F# can be classified as follows:
e Integral types
e Floating point types
e Text types
e Other types

Integral Data Types
The following table provides the integral data types of F#. These are basically integer data
types.
F# Type Size Range Example Remarks
sbyte 1 byte | -128 to 127 signed
-11y integer
42uy 8'bi_t
byte 1 byte | 0 to 255 unsigned
200uy integer
. 5 425 1_6-bit
int16 bvtes -32768 to 32767 signed
Y LS integer
_ 2 42us 16"_3it
uintlé bvtes 0 to 65,535 unsigned
y 200us integer
int/int3 | 4 42 3_2'bit
-2,147,483,648 to 2,147,483,647 signed
2 bytes -11)
integer
21

\ tutorialspoint

SIMPLYEASYLEARNINLEG

F#

uint32 bvtes 0 to 4,294,967,295 unsigned
Y 200u integer
int64 8 -9,223,372,036,854,775,808 to 42L S:‘_nb;él
bytes |9,223,372,036,854,775,807 1L >19
integer
_ 8 42UL 64-bit
uint64 bvtes 0 to 18,446,744,073,709,551,615 unsighed
Y 200UL integer
421
1499999
o At _ 9999999 arbit_ra_lry
bigint least 4 | any integer precision
bytes 9999999 integer
9999999
99991
Example

(* single byte integer *)

let x =
let y =
let z =

printfn
printfn
printfn

(* unsigned

268.97f

312.58f

X +Yy

"x: %F’ x
"y %y

"z %f” 2z

8-bit natural number *)

let p = 2uy
let q = 4uy
let r =p +q
22
. -
|\ tutorials
SIMPLYEASYLEARNINIEG

F#

printfn "p: %i" p
printfn "q: %i" q

printfn "r: %i" r

(* signed 16-bit integer *)
let a = 12s

let b = 24s

let c=a+b

printfn "a: %i" a
printfn "b: %i" b

printfn "c: %i" c

(* signed 32-bit integer *)

let d = 2121
let e = 5041
let f =d + e

printfn "d: %i" d

printfn "e: %i" e

printfn "f: %i" f

When you compile and execute the program, it yields the following output:

a A M W N R

b: 24

|\' tutorials

SIMPLYEASYLEARMINIEG

23

F#

c: 36
d: 212
e: 504
f: 716
Floating Point Data Types
The following table provides the floating point data types of F#.
F# Type Size Range Example Remarks
32-bit signed floating
+1.5e- 42.0F
float32 4 bytes i; 2:3‘;5 to point number (7
' -11.0F significant digits)
64-bit signed floating
+ - 42.0
float 8 bytes ii'g:3?6284 to point number (15-16
' -11.0 significant digits)
128-bit signed floating
+1.0e- 42.0M
decimal t1>6tes :t; 8:2288 to point number (28-29
Y ' -11.0M significant digits)
Arbitrary precision
. . At least | Any rational 42N rational number. Using
BigRational 4 bvtes | number this type requires a
Y ' -11N reference to
FSharp.PowerPack.dll.
Example

(* 32-bit signed floating point number *)

(* 7 significant digits *)

let d = 212.
let e = 504.
let £ =d +
printfn "d:

printfn "e:

printfn "f:

098f
768f

e

%F" d
%" e
%F" f

|\ tutorials

SIMPLYEASYLEARMINIEG

24

F#

(* 15-16 significant digits *)
let x = 21290.098
let y = 50446.768

let z=x+y

printfn "x: %g" x
printfn "y: %g" vy
printfn "z: %g" z

(* 64-bit signed floating point number *)

When you compile and execute the program, it yields the following output:

d:

212.098000

: 504.768000
: 716.866000
: 21290.1
: 50446.8
: 71736.9

Text Data Types

The following table provides the text data types of F#.

F#
Type

Size

Range

Example

Remarks

char 2 bytes

U+0000 to U+ffff

X

I\tl

Single unicode
characters

string

20 + (2 * string's
length) bytes

0 to about 2 billion
characters

"Hello"
"World"

Unicode text

Example

let choice ="y

|\ tutorials

SIMPLYEASYLEARMINIEG

25

F#

let name = "Zara Ali"

let org = "Tutorials Point"

printfn "Choice: %c"

printfn "Name: %s"

choice

name

printfn "Organisation: %s" org

When you compile and execute the program, it yields the following output:

Choice: y

Name: Zara Ali

Organisation: Tutorials Point

Other Data Types

The following table provides some other data types of F#.

F# Size Range Example Remarks
Type
Only two possible values, true Stores boolean
bool 1 byte
true or false false values
Example

let trueval = true

let falseVal = false

printfn "True Value: %b" (trueval)

printfn "False Value: %b" (falseVal)

When you compile and execute the program, it yields the following output:

True Value: true

False Value: false

tutorials

k SIMPLYEASYLEARMINIEG

26

6. Fit—Variables

A variable is a name given to a storage area that our programs can manipulate. Each variable
has a specific type, which determines the size and layout of the variable's memory; the range
of values that can be stored within that memory; and the set of operations that can be applied
to the variable.

Variable Declaration in F#

The let keyword is used for variable declaration:

For example,

let x = 10

It declares a variable x and assigns the value 10 to it.

You can also assign an expression to a variable:

let x = 10
let y = 20
let z=x+y

The following example illustrates the concept:

Example
let x = 10
let y = 20

let z=x +y

printfn "x: %i" x
printfn "y: %i" y

printfn "z: %i" z

When you compile and execute the program, it yields the following output:

Xx: 10

27

\ tutorialspoint

SIMPLYEASYLEARNINLEG

F#

y: 20

Variables in F# are immutable, which means once a variable is bound to a value, it can’t be

changed. They are actually compiled as static read-only properties.

The following example demonstrates this.

Example
let x = 10
let y = 20
let z=x+y

printfn "x: %i" x
printfn "y: %i" y

printfn "z: %i" z

let x = 15

let y = 20

let z=x+y
printfn "x: %i" x
printfn "y: %i" y

printfn "z: %i" z

When you compile and execute the program, it shows the following error message:

Duplicate definition of value 'x

Duplicate definition of value 'y

Duplicate definition of value 'z

|\' tutorials

SIMPLYEASYLEARMINIEG

28

F#

Variable Definition with Type Declaration

A variable definition tells the compiler where and how much storage for the variable should
be created. A variable definition may specify a data type and contains a list of one or more
variables of that type as shown in the following example.

Example
let x:int32 = 10
let y:int32 = 20
let z:int32 = x + y

printfn "x: %d" x

printfn "y: %d" y

printfn "z: %d" z

15.99

let p:float
20.78

let qg:float
let r:float = p + q

printfn "p: %g" p

printfn "q: %g" q

printfn "r: %g" r

When you compile and execute the program, it shows the following error message:

x: 10
y: 20
z: 30
p: 15.99
q: 20.78
r: 36.77

29

|\' tutorials

SIMPLYEASYLEARMINIEG

F#

Mutable Variables

At times you need to change the values stored in a variable. To specify that there could be a
change in the value of a declared and assigned variable, in later part of a program, F#
provides the mutable keyword. You can declare and assigh mutable variables using this
keyword, whose values you will change.

The mutable keyword allows you to declare and assign values in a mutable variable.

You can assign some initial value to a mutable variable using the let keyword. However, to
assign new subsequent value to it, you need to use the <- operator.

For example,

let mutable x = 10

X <- 15

The following example will clear the concept:

Example
let mutable x = 10
let y = 20
let mutable z = x +y

printfn "Original Values:"
printfn "x: %i" x
printfn "y: %i" y

printfn "z: %i" z

printfn "Let us change the value of x"
printfn "Value of z will change too."
X <- 15

Z<-X+y

printfn "New Values:"

printfn "x: %i" x

printfn "y: %i" y

printfn "z: %i" z

When you compile and execute the program, it yields the following output:

30

|\' tutorials

SIMPLYEASYLEARMINIEG

F#

Original Values:

Xx: 10
y: 20
z: 30

Let us change the value of x
Value of z will change too.
New Values:

x: 15

y: 20

z: 35

|\' tutorials

SIMPLYEASYLEARMINIEG

31

7. Fi#—Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. F# is rich in built-in operators and provides the following types of operators:

e Arithmetic Operators
e Comparison Operators
e Boolean Operators

o Bitwise Operators

Arithmetic Operators

The following table shows all the arithmetic operators supported by F# language. Assume
variable A holds 10 and variable B holds 20 then:

Operator Description Example
+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B/ A will give 2

Modulus Operator and remainder of after an

o)
Yo integer division

B % A will give 0

o Exponentiation Operator, raises an operand

* % i i 10
to the power of another B**A will give 20

Example

let a : int32 21

let b : int32 10

let mutable c a+b

printfn "Line 1 - Value of ¢ is %d" c
C <- a - b;

printfn "Line 2 - Value of c is %d" ¢

32

\ tutorialspoint

SIMPLYEASYLEARNINLEG

F#

c <- a * b;

printfn "Line 3 - Value of c¢ is %d" c

c<-a/ b;

printfn "Line 4 - Value of c¢ is %d" c

c<-a%b;

printfn "Line 5 - Value of c¢ is %d" c

When you compile and execute the

program, it yields the following output:

Line 1

Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Comparison Operators
The following table shows all the comparison operators supported by F# language. These
binary comparison operators are available for integral and floating-point types. These
operators return values of type bool.
Assume variable A holds 10 and variable B holds 20, then:
Operator Description Example
_ Checks if the values of two operands are equal or (A == B) is not
not, if yes then condition becomes true. true.
Checks if the values of two operands are equal or
<> not, if values are not equal then condition becomes (A <> B) is true.
true.
Checks if the value of left operand is greater than the
> value of right operand, if yes then condition becomes | (A > B) is not true.
true.
Checks if the value of left operand is less than the
< value of right operand, if yes then condition becomes | (A < B) is true.
true.
33
]

tutorials

k SIMPLYEASYLEARMINIEG

F#

Checks if the value of left operand is greater than or .
. . (A >= B) is not
>= equal to the value of right operand, if yes then
. true.
condition becomes true.
Checks if the value of left operand is less than or
<= equal to the value of right operand, if yes then (A <= B) is true.
condition becomes true.
Example

let mutable a : int32
let mutable b : int32

if (a = b)
printfn
else

printfn

if (a < b)
printfn
else

printfn

if (a > b)
printfn
else

printfn

then

"Line 1 - a is

"Line 1 - a is

then

"Line 2 - a is

"Line 2 - a is

then

"Line 3 - a is

"Line 3 - a is

(* Lets change value of a

a <-5

b <- 20

if (a <= b) then

printfn

else

"Line 4 - a is

21
10

equal to b"

not equal to b"

less than b"

not less than b"

greater than b"

not greater than b"

and b *)

either less than or equal to b"

printfn "Lined4 - a is a is greater than b"

MPLYEASYLEARMINIEG

|\ !:utnrials

34

F#

When you compile and execute the program, it yields the following output:

Line 1 - a is not equal to b
Line 2 - a is not less than b
Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Boolean Operators

The following table shows all the Boolean operators supported by F# language. Assume
variable A holds true and variable B holds false, then:

Operator Description Example

Called Boolean AND operator. If both the operands

&& "
are non-zero, then condition becomes true.

(A && B) is false.

Called Boolean OR Operator. If any of the two

operands is non-zero, then condition becomes true. (A 1] B) is true.

Called Boolean NOT Operator. Use to reverses the
not logical state of its operand. If a condition is true then
Logical NOT operator will make false.

not (A & & B) is
true.

Example

let mutable a : bool = true;
let mutable b : bool = true;
if (a & b) then

printfn "Line 1 - Condition is true”
else

printfn "Line 1 - Condition is not true"

if (a|] b) then

printfn "Line 2 - Condition is true"
else

printfn "Line 2 - Condition is not true"

35

|\' tutorials

SIMPLYEASYLEARMINIEG

F#

(* lets change the value of a *)
a <- false
if (a & b) then

printfn "Line 3 - Condition is true"
else

printfn "Line 3 - Condition is not true”

if (a || b) then

printfn "Line 4 - Condition is true"
else

printfn "Line 4 - Condition is not true"

When you compile and execute the program, it yields the following output:

Line 1 - Condition is true
Line 2 - Condition is true
Line 3 - Condition is not true

Line 4 Condition is true

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &&&
(bitwise AND), ||| (bitwise OR), and "~ (bitwise exclusive OR) are as follows:

p q p&&&q plllq prr"q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:
A =0011 1100
B = 0000 1101

36

SIMPLYEASYLEARNINIEG

|\ tutorials

A&&&B = 0000 1100

A|||B = 0011 1101

A~MNAB = 0011 0001

~~~vA = 1100 0011

F#

The Bitwise operators supported by F# language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then:

Operator Description Example
RR& Binary AND Operator copies a bit to (A &&& B) will give 12, which is
the result if it exists in both operands. | 0000 1100
n Binary OR Operator copies a bit if it (A |]] B) will give 61, which is
exists in either operand. 0011 1101
AAA Binary XOR Operator copies the bit if it | (A A"~ B) will give 49, which
is set in one operand but not both. is 0011 0001
Binary Ones Complement Operator is (~~~A) will give -61, which is
~~ unary and has the effect of 'flipping' 1100 0011 in 2's complement
bits. form.
Binary Left Shift Operator. The left
<< operands value is moved left by the A <<< 2 will give 240 which is
number of bits specified by the right 1111 0000
operand.
Binary Right Shift Operator. The left
o> operands value is moved right by the A >>> 2 will give 15 which is
number of bits specified by the right 0000 1111
operand.
Example
let a : int32 = 60 // 60 = 0011 1100
let b : int32 = 13 // 13 = 0000 1101
let mutable c : int32 = 0

c <- a && b // 12 = 0000 1100

printfn "Line 1 - Value of c is %d" c

|\' tutorials

SIMPLYEASYLEARMINIEG

37




F#

c<-a ||l b// 61 = 0011 1101

printfn "Line 2 - Value of c is

c <-a™™~b // 49 = 0011 0001

printfn "Line 3 - Value of c is

€ <- ~~~3 // -61 = 1100 0011

printfn "Line 4 - Value of c is

C <- a << 2 // 240 = 1111 0000

printfn "Line 5 - Value of c is

€ <-a»>>2// 15 = 0000 1111

printfn "Line 6 - Value of c is

%dll

%dll

%dll

%d"

%d"

When you compile and execute the program, it yields the following output:

Line 1 - Value of c is 12

Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is 49
Line 5 - Value of c is 240
Line 6 - Value of c is 15
38
[ ]

|\ tutorials

SIMPLYEASYLEARMINIEG




&

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

tutorials

SIMPLYEASYLEARMINIEG

F#

39



