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Abstract— Planning safe trajectories for nonlinear dynamical
systems subject to model uncertainty and disturbances is
challenging. In this work, we present a novel approach to
tackle chance-constrained trajectory planning problems with
nonconvex constraints, whereby obstacle avoidance chance
constraints are reformulated using the signed distance function.
We propose a novel sequential convex programming algorithm
and prove that under a discrete time problem formulation, it
is guaranteed to converge to a solution satisfying first-order
optimality conditions. We demonstrate the approach on an
uncertain 6 degrees of freedom spacecraft system and show
that the solutions satisfy a given set of chance constraints.

I. INTRODUCTION

Planning safe trajectories for autonomous systems in the
presence of uncertainty (e.g., uncertain model parameters,
external disturbances) is critical to their use in real-world
applications, especially for robotic systems with limited
control authority. Accordingly, probabilistic models have
become popular to characterize the dynamics of uncertain
systems, as they can be derived from data [1], [2], and allow
one to quantify and impose constraints on the risk associ-
ated with robotic operations in the face of uncertainty [3].
This motivates the development of trajectory optimization
algorithms tailored to tackle this class of problems.

The problem of computing a safe minimal cost trajectory
under model uncertainty and external random disturbances
has been approached from the perspectives of robust control
[4] and chance-constrained optimal control. However, con-
sidering fixed deterministic bounds on all uncertainties as in
robust control can be too conservative or lead to infeasibility
(e.g., when uncertainties follow probability distributions with
unbounded support). Instead, chance constraints guarantee
the satisfaction of constraints for a pre-defined probability
level p. For a constraint g(x) ≤ 0 with a random variable x,
chance constraints are expressed as

Pr(g(x) ≤ 0) ≥ p. (1)

To handle such constraints, most approaches reformulate
(1) as one or multiple deterministic constraints. The first class
of methods consists of using indicator functions I(·):

Pr(g(x) ≤ 0) = E(I(x)), with I(x) =

1 if g(x)≤0

0 otherwise.
(2)
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Fig. 1: Using a chance-constrained problem formulation, the pro-
posed sequential convex programming algorithm efficiently plans
safe trajectories despite nonlinear dynamics, nonconvex constraints,
model uncertainty, and external disturbances.

Methods such as the scenario approach [5], the Bernstein
approximation [6], [7], and Monte-Carlo-based methods [8],
[9] reformulate (1) by sampling x to approximate E(I(x)),
which can be computationally expensive. For discretized
state spaces, chance-constrained dynamic programming [10],
[11] also leverages (2) to incorporate chance constraints, but
such methods are too slow for fast re-planning.

On the other hand, for specific classes of constraints g(x)
and probability distributions p(x), such as affine constraints
with radial distributions, equivalent explicit reformulations
of (1) exist [12], [13]. Probabilistic confidence sets have
been proposed to conservatively reformulate such constraints.
[14]. For uncertain systems subject to polytopic constraints,
these properties have been employed in chance-constrained
trajectory planning [15], [16] and model predictive control
[17], [18]. To handle nonconvex obstacles avoidance con-
straints, it is common to decompose the free space as multi-
ple polytopes, and to solve the resulting problem with mixed
integer programming [15], [16], [19]. However, for chance-
constrained problems, such methods typically assume linear
dynamics, and are slow for a large number of obstacles.
A chance-constrained problem formulation is considered in
[20], although it is limited to ellipsoidal obstacles. To address
these limitations, the method proposed in this work exploits
explicit reformulations of chance constraints and signed
distance functions to handle obstacles of arbitrary shape.

Reliably and efficiently computing a trajectory satisfying
nonlinear dynamics and nonconvex chance constraints is
of particular interest. Recent work on sequential convex
programming (SCP) has proposed efficient algorithms for
trajectory optimization [21]–[26]. By iteratively formulating
convex approximations of the original nonconvex optimiza-
tion problem, this class of algorithms is capable of computing



feasible trajectories in real time. Importantly, recent results
provide theoretical guarantees ensuring that the resulting
solution satisfies first-order necessary conditions for opti-
mality of the original problem [22]–[26]. However, these
works consider deterministic dynamics, penalization of the
constraints, and heuristics to facilitate convergence, such as
virtual controls and nonsmooth functions which complicate
the convergence analysis of the algorithm. In this work, we
provide a formulation and algorithm tailored to solve the
class of discrete-time chance-constrained trajectory planning
problems, as well as a proof of the convergence of our
algorithm to a locally optimal point.

The key contributions of this work are as follows:
1) We reformulate the chance-constrained trajectory opti-

mization problem with obstacle avoidance constraints
by leveraging signed distance functions to explicitly
reformulate chance constraints and probabilistic confi-
dence sets for obstacles of arbitrary shape.

2) We provide a novel sequential convex programming
trajectory optimization algorithm with hard enforce-
ment of constraints to solve the chance-constrained
problem.

3) We prove the convergence of our algorithm to a point
guaranteed to satisfy first-order necessary optimality
conditions and all constraints, which is critically en-
abled by our discrete-time C1 problem formulation.

This paper is organized as follows. In Section II, we state
the chance-constrained optimal control problem. In Section
III, we review known approaches to model uncertainty and
to reformulate linear chance constraints, In Section IV, these
results are leveraged together with the signed distance func-
tion to express a deterministic reformulation of the original
chance-constrained problem. This problem is convexified
in Section V and solved using a novel SCP algorithm.
In Section VI, we prove that under mild assumptions, the
proposed SCP method is guaranteed to converge to a point
satisfying first-order necessary optimality conditions of the
nonconvex problem. Finally, the approach is validated on a
6 DoF uncertain spacecraft system in Section VII.

Notations: N (µ,Σ) denotes the multivariate normal dis-
tribution of mean µ and covariance Σ, χ2

n(p) and Φ−1(p)
the p-th quantiles of the χ2 distribution with n degrees of
freedom and of the inverse cumulative function of N (0, 1),
respectively. For A∈Rn×m, Ai· denotes the i-th row of A
and Aij the j-th element of Ai·. For b∈Rn, bi denotes the
i-th element of b. For a vector-valued function f(·), ∇xf
denotes the Jacobian matrix of f with respect to x.

II. PROBLEM DEFINITION

The problem of trajectory optimization consists of
computing a sequence of control inputs uk, for a discrete
time dynamical system xk+1 = f(xk,uk,wk) with xk
the state and wk random parameters and disturbances,
whose solution xk connects an initial state x(0) ∈ Rn to
a goal region Xgoal ⊂ Rn, minimizes given final lf (·) and
step l(·) costs, and satisfies obstacle avoidance constraints
xk ∈ Xfree ⊂ Rn, input constraints uk ∈ U ⊂ Rm and linear

structural constraints Hxk ≤ h with H ∈ Rl×n, h ∈ Rl,
such as bounds on translational and angular speed. Due to
uncertainty in the dynamics, we embed this problem in the
framework of stochastic optimal control and enforce state
and input constraints as chance constraints. The resulting
optimal control problem (OCP) can be written as follows:

Problem 1. Original Chance-Constrained OCP

min
x,u

E
{
lf (xN ) +

N−1∑
k=0

l(xk,uk,wk)

}
(3a)

s.t. xk+1 = f(xk,uk,wk) k=0. . .N−1 (3b)
Pr(Hxk ≤ h) ≥ px k=1. . .N (3c)
Pr(xk ∈ Xfree) ≥ px k=1. . .N−1 (3d)
Pr(uk ∈ U) ≥ pu k=0. . .N−1 (3e)
Pr(xN ∈ Xgoal) ≥ px (3f)
x0 = x(0), (3g)

where k ∈ {0, · · · , N}, with N the optimization horizon,
Xfree the safe region, Xgoal ⊂ Xfree the goal region, U the
admissible input set, px and pu the probability thresholds
for the state and input chance constraints. We assume that
f ∈ C2, Xgoal and U are polytopes and that Xfree = Rn\Xobs,
Xobs =

⋃M
i=1Oi where Oi ⊂ Rn are closed convex sets.

Nonconvex obstacle avoidance constraints (3d) are separated
from linear inequality state constraints (3c) to enable the user
to specify different probability thresholds for them.

As the uncertainty of the state trajectory grows over time,
planning an open-loop trajectory can lead to a conservative
reformulation of chance constraints which does not account
for feedback controllers typically used to track the planned
trajectory. Therefore, we develop our formulation using a
control policy uk = νk + K(xk)(xk − µk), where K(x)
is a pre-defined state feedback controller gain (e.g., a linear-
quadratic regulator). Due to the uncertainty in xk, uk is also
uncertain, which motivates the use of chance constraints in
(3e). This notation is general, as the user may set K(x) = 0
to plan for an open-loop trajectory instead.

III. PRELIMINARIES

To solve Problem 1, our strategy entails reformulating
chance constraints as deterministic constraints. To do so, as
it is common in the literature [20], [27] , we (approximately)
represent the probability distributions for xk and uk as
Gaussian distributions. Specifically, given a nominal control
input trajectory (νk)N−1

k=0 , the two moments (µk,Σk)Nk=0

used to approximate the Gaussian distribution of the state
trajectory can be computed using different methods, such as
the sigma point transform or first order Taylor expansions.
For the latter, given µ0=x(0) and Σ0=0n2 and assuming
xk,wk are independent, the two moments of xk+1 can be
recursively computed as

µk+1 = f(µk,νk,E(wk)) (4a)

Σk+1 = ∇xfcl·Σk·∇xfTcl +∇wf ·Σw·∇wfT , (4b)



where ∇xfcl = (∇xf + ∇uf ·K), Σw = Var(wk), and K
and all gradients are evaluated at (µk,νk,E(wk)). Due to
space constraints, we refer the reader to the Appendix1 for
derivations. While this approximation might in general be
quite coarse, it is indeed common, works well in practice (as
confirmed by our experiments), and allows us to reformulate
an otherwise intractable stochastic optimal control problem
as a deterministic one (see Section IV).

Most importantly, given this Gaussian approximation,
affine chance constraints can be rigorously reformulated as
deterministic constraints in two ways: (1) exactly, using
reformulations for radial distributions, and (2) conservatively,
via ellipsoidal confidence sets. We discuss the relative merits
of both approaches in Remark 2 in Section IV.

First, consider a,b ∈ Rn, where b follows a radial prob-
ability distribution [12], c ∈ R and p ∈ (0.5, 1). Then, affine
chance constraints Pr(aTb≤c) ≥ p can be reformulated as
aT b̄+κ(p)

√
aTΣba ≤ c, where κ(p)>0 depends on the

distribution of b [12]. In particular, if b ∼ N (b̄,Σb), then

Pr(aTb ≤ c) ≥ p ⇐⇒ aT b̄ + Φ−1(p)
√

aTΣba ≤ c, (5)

where Φ−1(p) denotes the p-th quantile of the inverse
cumulative function of the standard normal distribution [13].

The other method to reformulate chance constraints in-
volves confidence sets, characterizing a region in which a
random variable lies for a given probability p. In particular,
ellipsoidal confidence sets are defined as follows:

Definition III.1. (Ellipsoidal Confidence Set)2

An ellipsoidal set Bp(µ,Q), Q ∈ Rn×n,Q � 0, defined as

Bp(µ,Q) :=
{
x | (x− µ)TQ−1(x− µ) ≤ 1

}
, (6)

is an ellipsoidal confidence set of probability level p for x
if

Pr(x ∈ Bp(µ,Q)) ≥ p. (7)

Remark 1. For a Gaussian-distributed random variable x ∈
Rn, x ∼ N (µ,Σ), Bp(µ, χ2

n(p)Σ) is an ellipsoidal confi-
dence set of probability level p for x.

Alternatively to (5), if Bp(b̄,Qb) is an ellipsoidal confi-
dence set of probability level p for b, then [18]

Pr(aTb ≤ c) ≥ p ⇐= aT b̄ +
√

aTQba ≤ c. (8)

From Remark 1, if b ∼ N (b̄,Σb) then Qb = χ2
n(p)Σb.

Since χn(p) ≥ Φ−1(p) ∀n, (5) is less conservative than (8)
for a single chance constraint. However, when considering
multiple constraints such as (3c), using (8) can be less
conservative as we will discuss in the following section.

1The Appendix is available at asl.stanford.edu/wp-content/
papercite-data/pdf/Lew.Bonalli.Pavone.ECC20.pdf.

2Definition III.1 is equivalent to [14, Lemma 2], but with µ 6= 0. For
x ∼ N (µ,Σ), it is obtained by applying [14, Lemma 2] to (x−µ) with
Q = χ2

n(p)Σ.

IV. DETERMINISTIC PROBLEM REFORMULATION

To reformulate Problem 1 as a deterministic problem with
optimization variables (µk,νk)k, we exploit the Gaussian
approximation and present a method to conservatively refor-
mulate obstacle avoidance chance constraints by leveraging
signed distance functions.

A. Cost and Dynamics

As in [17], we use an approximation of the expected cost
along the nominal trajectory (µk,νk)k as

E{l(xk,uk,wk)} ≈ l(µk,νk,E{wk}) := l̃(µk,νk) (9)

E{lf (xN )} ≈ lf (µN ) := l̃f (µN ). (10)

This mean-equivalent reformulation could be replaced
with different approaches, e.g., using a first-order approxi-
mation or risk metrics [3]. Choosing a cost function is not the
focus of this paper and we leave the reader choose a problem-
dependent cost. For the dynamics, we use (4) to reformulate
the state trajectory as a function of (µk,νk)k only. Note that
our proposed trajectory optimization algorithm can leverage
other uncertainty propagation techniques, e.g., [18].

B. Polytopic Chance Constraints

The linear state chance constraints in (3c) can be conserva-
tively rewritten using (a) (Pr(

∧
iAi) ≥ p) ≡ (Pr(

∨
i Āi) ≤

1− p), where Ai ∈ {0, 1} denotes a random event, and (b)
Boole’s inequality (Pr(

∨
iAi) ≤

∑
i Pr(Ai)), as

Pr(Hxk ≤ h) ≥ px
(a)⇐⇒ Pr

( l∨
i=1

Hi·xk > hi

)
≤ 1− px

(b)⇐=

l∑
i=1

Pr (Hi·xk > hi) ≤ 1− px. (11)

Using a uniform risk allocation with δlx = 1−px
l , a

conservative condition for (11) is given as

(11) ⇐= Pr(Hi·xk > hi) ≤ δlx, i = 1, . . . , l

⇐⇒ Pr(Hi·xk ≤ hi) ≥ 1− δlx, i = 1, . . . , l. (12)

Finally, exploiting the approximation xk∼N (µk,Σk) and
using (5), (12) can be equivalently rewritten with l determin-
istic constraints as

Hi·µk + Φ−1(1−δlx)
√

Hi·ΣkH
T
i· ≤ hi, i = 1, . . ., l. (13)

Alternatively, assuming that Bpx(µk,Qk) is an ellipsoidal
confidence set of probability level px for xk and using
(8), (3c) can be directly reformulated as l deterministic
constraints (without the use of Boole’s inequality) as

Hi·µk +
√

Hi·QkH
T
i· ≤ hi, i = 1, . . . , l. (14)

Remark 2. For a given statespace dimension n, there exists
a critical number of linear constraints l such that it is per-
ferable to use (14) than (13). For the Gaussian distribution,
such values are reported in Appendix IX-F.

The same approach is used to reformulate control input
chance constraints in (3e). Let U = {u |Guu≤bu} with

asl.stanford.edu/wp-content/papercite-data/pdf/Lew.Bonalli.Pavone.ECC20.pdf
asl.stanford.edu/wp-content/papercite-data/pdf/Lew.Bonalli.Pavone.ECC20.pdf


Gu ∈Rr×m, bu ∈Rr, and δu = 1−pu
r . Since u = ν +

K(x−µ), we approximate uk∼N (νk,KΣkK) and obtain

Pr(uk ∈ U) ≥ pu ⇐⇒ Pr(Guuk ≤ bu) ≥ pu, i = 1. . .r

⇐= Gu
i·νk + Φ−1(1−δu)

√
Gu
i·KΣkK

TGuT
i· ≤ bi, (15)

where (15) holds ∀i = 1, . . ., r, and K = K(µk). Similarly,
if Bpu(νk,Q

u
k) satisfies Definition III.1 for uk, (3e) can

be reformulated as Gu
i·νk+

√
Gu
i·Q

u
kG

uT
i· ≤ bi, i = 1, . . ., r.

Finally, with Xgoal = {x |Px≤p}, P∈Rq×n,p∈Rq , and
δN = 1−px

q , the goal region constraint Pr(xN ∈Xgoal) ≥ px
in (3f) is reformulated similarly using either (13) or (14).

C. Obstacle Avoidance Constraints
Consider M obstacles Oi ⊂ Rn and the unsafe and safe

sets Xobs =
⋃M
i=1Oi and Xfree = Rn \ Xobs. Then,

Pr(xk ∈ Xfree) ≥ px ⇐⇒ Pr
( M∧
i=1

xk /∈ Oi
)
≥ px. (16)

Following similar derivations as before with a uniform risk
allocation δx := 1−px

M , a sufficient condition for (16) is

(16)
(a)⇐⇒ Pr

( M∨
i=1

xk ∈ Oi
)
≤ 1− px (17)

(b)⇐=

M∑
i=1

Pr (xk∈Oi)≤1−px ⇐=

M∧
i=1

Pr (xk∈Oi)≤δx

⇐⇒ Pr (xk /∈ Oi) ≥ 1− δx, i = 1, . . .,M. (18)

For general nonconvex sets Oi and probability
distributions for xk, the constraints above are nonconvex.
Instead of using conservative polytopic approximations of
the obstacles as in [19] and to avoid the use of mixed integer
programming, we leverage the signed distance function
di : X → R: a nonlinear function which returns the shortest
distance from a point x to the boundary ∂Oi of a set Oi
[21]. It is defined as

di(x) = inf
y∈Oi

‖x− y‖2 − inf
z/∈Oi

‖x− z‖2. (19)

States out of obstacles return positive signed distances, i.e.,
x /∈ Oi ⇐⇒ di(x) ≥ 0. Also, note that ∇di(x) is given as

ni(x) =
x− xiobs

di(x)
, with xiobs = argmin

xobs∈∂Oi

‖xobs − x‖2, (20)

where ∂Oi denotes the boundary of Oi. Compared to
[26] which uses projection operators, the signed distance
function is differentiable almost everywhere which facili-
tates the convergence analysis of our algorithm and en-
ables its initialization with infeasible trajectories. Further,
although di(·) is nonconvex, it is possible to formulate a
convex conservative approximation of each individual obsta-
cle avoidance constraint xk /∈Oi by simply linearizing the
constraint di(x)≥ 0. Indeed, define xjk ∈Rn, djik = di(x

j
k)

and njik = ni(x
j
k). Then, given p∈ (0, 1),

djik + njTik (xk − xjk) ≥ 0 =⇒ xk /∈ Oi, and (21)

Pr
(
djik+njTik (xk−xjk)≥0

)
≥p =⇒ Pr (xk /∈Oi)≥p. (22)

This result is generalized to the free set Xfree and summa-
rized in the following proposition:

Proposition 1. Define x, xj ∈ Rn, Xfree = Rn\Xobs, dmin ≥
0 a safety margin, dji = di(x

j), and nji = (xj − xobs)/d
j
i .

If Xobs =
⋃M
i=1Oi, and Oi ⊂ Rn are closed convex sets,

then

dji + njTi (x−xj)≥ dmin, i=1, . . .,M =⇒ x∈Xfree. (23)

Further, for p ∈ (0, 1), and any probability distribution of x,

Pr
(
dji + njTi (x− xj) ≥ dmin, i = 1, . . .,M

)
≥ p (24)

=⇒ Pr (x ∈ Xfree) ≥ p.

Proof. Due to space constraints, we refer the reader to the
Appendix for the full proof of the first fact.

For the second, define the indicator functions Il(x)
and I(x), such that Il(x)=1 if dji+njTi (x−xj)≥dmin,
I(x)=1 if x∈Xfree, and Il(x)=0, I(x)=0 otherwise.
Using (2), it holds that (24)⇐⇒ E(Il(x))≥p and
Pr(x∈Xfree)≥p⇐⇒ E(I(x))≥p. From the definitions
of E(·), Il(x), I(x) and due to Proposition 1,
E(I(x))≥E(Il(x)). Hence, E(Il(x))≥p =⇒ E(I(x)))≥p,
from which Proposition 1 follows.

Importantly, (21) holds for any xjk and is linear in xk.
Thus, using the procedure used to obtain (13), each chance
constraint in (18) can be conservatively reformulated as

djik+njTik (µk−xjk)− Φ−1(1−δx)

√
njTik Σkn

j
ik ≥ 0. (25)

As Proposition 1 holds ∀xjk, we set xjk = µk and obtain

(18) ⇐= di(µk)− Φ−1(1−δx)
√

nTi Σkni ≥ 0, (26)

with i= 1, . . .,M and ni = ni(µk).
Similarly, if Bpx(µk,Qk) satisfies Definition III.1 for xk,

(16) can be conservatively reformulated with Proposition 1
as

(16) ⇐= di(µk)−
√

nTi Qkni ≥ 0, i= 1, . . .,M. (27)

As mentioned in Remark 2 and shown in Figure 2,
there exists obstacle configurations for which (27) is less
conservative than (26).

Fig. 2: Consider x ∼ N (µ,Σ). For many obstacles or linear
chance constraints, using ellipsoidal confidence sets (Def. III.1,
in blue) rather than risk allocation and the exact reformulation
of each chance constraint (Eq. (26), feasible set in gray) is less
conservative.



D. Nonlinear Deterministic Problem
Using the deterministic reformulations defined above, the

chance-constrained optimal control problem (OCP) can be
conservatively reformulated as a deterministic problem with
optimization variables (µ,ν) := (µk,νk)Nk=0 as

Problem 2. Chance-Constrained OCP (CC-OCP)

min
µ,ν

l̃f (µN ) +

N−1∑
k=0

l̃k(µk,νk)

s.t. µk+1=f̃(µk,νk), µ0=x(0), Σk+1(µ,ν)=(4b), Σ0=0n2

Hi·µk+Φ−1

δlx
‖Hi·‖Σk ≤ hi, di(µk)−Φ−1

δx
‖nik‖Σk ≥ 0,

Gu
i·νk+Φ−1

δu
‖Gu

i·K‖Σk≤bi, Pi·µN+Φ−1
δN
‖Pi·‖ΣN ≤ pi,

where the indices i and j are defined separately
for each constraint in this section, Φ−1

δ :=Φ−1(1−δ),
f̃(µk,νk)=f(µk,νk,E(wk))) and ‖a‖Σ:=

√
aTΣa for

conciseness. We stress that instead of using the reformulation
for Gaussian distributions with Φ−1

δ with (5) as in this
formulation, ellipsoidal confidence sets can be used with (8),
as specified in Remark 2.

V. CONVEX PROBLEM REFORMULATION AND
SEQUENTIAL CONVEX PROGRAMMING

We provide solutions for (CC-OCP) by leveraging se-
quential convex programming (SCP). Specifically, in Algo-
rithm 1, we provide Chance-Constrained SCP (CC-SCP), a
version of [23, Algorithm 1] designed to solve (CC-OCP).
By leveraging the discrete time and chance constraints setting
in (CC-OCP), we are able to prove that, when convergence
is achieved, (CC-SCP) finds a point that 1) is a feasible point
for (CC-OCP), and in particular, it satisfies state constraints,
and 2) it satisfies strong necessary conditions for optimality
for (CC-OCP).

The working principle of (CC-SCP) consists of suc-
cessively linearizing the costs and nonconvex constraints,
seeking a solution of the original problem through a sequence
of convex problems. Given the solution (µj ,νj) from the
convexified problem at iteration j, the convex approximation
of (CC-OCP) at the current iteration (j+1) is described next.

First, we approximate the cost terms l̃f (·), l̃k(·) around
zj = (µj ,νj) using a first order Taylor approximation and
denote each linearized term as ljf (µN ) and ljk(µk,νk). Next,
all nonconvex constraints, including the dynamics and chance
constraints, are also linearized around (µj ,νj).

To avoid artificial unboundedness [25], where the solution
of the linearized problem may lie far from the lineariza-
tion trajectory (µj ,νj), it is necessary to add trust region
constraints ‖µk−µjk‖2 ≤ ∆j , ‖νk−νjk‖2 ≤ ∆j , where
∆j ∈ [0,∆0], ∆0 > 0 is the trust region radius. Also,
to provide theoretical convergence guarantees, we penalize
this constraint using a convex C1 approximation ϕ(t) for
max{t, 0} satisfying dϕ

dt (t)=0 for t ≤ 0.
Therefore, the convexified chance-constrained optimal

control problem at iteration (j + 1) is defined as follows:

Problem 3. Chance-Constrained Lin. OCP (CC-LOCP)

min
µ,ν

ljf (µN ) +

N−1∑
k=0

ljk(µk,νk) + (29a)

ωj

( N∑
k=1

ϕ(‖µk−µjk‖
2−∆j)+

N−1∑
k=0

ϕ(‖νk−νjk‖
2−∆j)

)
s.t. Linearized Version of the Constraints in (CC-OCP).

where ωj ≥ 0 is a penalization weight. The complete problem
formulation is expressed in the Appendix.

Another key component of (CC-SCP) is the computation
of an accuracy ratio ρ to quantify whether the solution to
(CC-LOCP) is close to a solution of (CC-OCP): where
|∆lj+1

k |, ‖∆f j+1
k ‖, ‖∆gj+1

k ‖ quantify the differences be-
tween the true and linearized costs, dynamics and constraints,
respectively, normalized by the respective linearized expres-
sions as in [23].

(CC-SCP), outlined in Algorithm 1, consists of solving
a sequence of (CC-LOCP) (line 3) to obtain a solution
to (CC-OCP). If the solution lies outside the trust region
(line 4) or is deemed not accurate with respect to the
nonlinear problem (lines 5-6), it is rejected and weights are
updated accordingly (lines 7-8, 12-14) to ensure that the next
solution satisfies these conditions. Otherwise, each solution
is accepted and used to obtain the next (CC-LOCP). The
algorithm terminates once it converges or if it cannot find
a feasible solution (line 2). At line 15, ∆ is shrunk by
a coefficient α to satisfy an assumption necessary for the
theoretical convergence result presented in the next section,
although this step appeared to have no impact in practice.

Algorithm 1 Chance-Constrained SCP (CC-SCP)
Input: Initial guess (µ0,ν0)
Parameters: ∆0, βfail, βsucc, ρ0, ρ1, ω0, ωmax, γfail, α
Output: Solution (µ,ν)

1: j ← 0
2: while (µj+1,νj+1) 6= (µj ,νj) and ωj ≤ ωmax do
3: Solve (CC-LOCP)j+1 for (µj+1,νj+1)
4: if ‖µj+1−µj‖2≤∆j and ‖νj+1−νj‖2≤∆u

j then
5: Compute model accuracy ratio ρj
6: if ρj > ρ1 then
7: Reject solution (µj+1,νj+1)
8: ∆j+1 ← βfail∆j

9: else
10: Accept solution (µj+1,νj+1)

11: ∆j+1 ←

{
min{βsucc∆j ,∆0} if ρj < ρ0
∆j if ρj ≥ ρ0

12: else
13: Reject solution (µj+1,νj+1)
14: ωj+1 ← γfail · ωj
15: ∆j+1 ← α∆j+1, with α ≈ 1, α < 1
16: j ← j + 1

17: return (µj+1,νj+1)



VI. CONVERGENCE GUARANTEES

(CC-SCP) enjoys theoretical guarantees of convergence.
Specifically, the main takeaway is that, when convergence is
achieved, (CC-SCP) returns a feasible point for (CC-OCP)
satisfying first-order necessary conditions for optimality, i.e.,
the Karush–Kuhn–Tucker (KKT) conditions associated to
(CC-OCP). In other words, (CC-SCP) leads to points that
are necessarily local optima for the nonconvex problem
(CC-OCP). In this section, we state and prove these the-
oretical guarantees of convergence. It is worth pointing out
that our analysis does not rely on the specific formulation of
(CC-OCP), but, under mild assumptions, it rather applies to
a broader class of nonlinear optimization problems.

A. Reformulation of the Main Problem
Denote z= (µ1, . . .,µN ,ν0, . . .,νN−1). Then, (CC-OCP)

takes the form of the following nonconvex problem:

Problem 4. Nonlinear/Nonconvex Formulation

min
z

c(z) s.t. h(z) = 0, g(z) ≤ 0,

where c: RN(n+m)→R, h: RN(n+m)→Rr, g: RN(n+m)→Rs,
where integers r, s > 0 sum up over all constraints in for-
mulation (2) and the inequality above holds componentwise.

In practice, (CC-SCP) successively solves linearized ver-
sions of Problem 4, defined as (CC-LOCP). Under the
formalism adopted above, these problems can be written as
the following family of convex problems:

Problem 5. Convexified Formulation at Iteration (j + 1)

min
z

(
c(zj) +∇c(zj)(z − zj)

)
+ ϕ(‖z − zj‖2 −∆j)

s.t. h(zj) +∇h(zj)(z − zj) = 0

g(zj) +∇g(zj)(z − zj) ≤ 0

where zj denotes the unique solution to Problem 5 at the
previous iteration j, around which Problem 4 was linearized,
∇h and ∇g are the Jacobians of h and g respectively,
and with the notation ‖z− zj‖2−∆j , gathers all the con-
tributions ‖µk−µjk‖2−∆j , ‖νk−νjk‖2−∆j in formulation
(3). Recall that the scalar function ϕ(t) is a C1, convex
approximation for max{t, 0} with dϕ

dt (t) = 0 for t ≤ 0.

B. Necessary Conditions for Optimality
Definition VI.1. A point z satisfies the Linear Independence
Constraint Qualification (LICQ) for a nonlinear, nonconvex
formulation as in Problem 4 if, for every i ∈ A ⊆ {1, . . . , s}
for which gi(z) = 0, the vectors ∇(gi)(z), i ∈ A and
∇(h1)(z), . . . ,∇(hr)(z) are linearly independent.

Definition VI.2. A point z satisfies the KKT conditions for
a nonlinear, nonconvex formulation as in Problem 4 if there
exists a multiplier (α,λ, ζ) ∈ R1+r+s satisfying

α∇c(z) + λ>∇h(z) + ζ>∇g(z) = 0, (32a)
h(z) = 0, g(z) ≤ 0, (α,λ, ζ) 6= 0, (32b)
ζigi(z) = 0, ζi ≥ 0, i = 1, . . . , s. (32c)

Below, we recall the classical result concerning first-order
necessary conditions for optimality (see, e.g., [28]):

Theorem 1. Let z∗ be an optimum for Problem 4 for which
LICQ holds. Then, z∗ satisfies the KKT conditions related
to Problem 4 with multiplier (α,λ, ζ) satisfying α = 1.

The previous theorem provides the existence of multipliers
(α,λ, ζ) for which α 6= 0. As a consequence, this might
prevent from having a control over the norm of the multiplier,
that is, when considering a family of optimization problems
(in our case, represented by the family of convexified Prob-
lems 5) it might happen that the family of associated mul-
tipliers (when they exist) is not bounded. Having bounded
families of multipliers will be crucial to prove our theoretical
result. For this, below we derive slightly different necessary
conditions for optimality tailored to our framework:

Corollary 1. Let z∗ be an optimum for Problem 4 for which
LICQ holds. Then, z∗ satisfies the KKT conditions related to
Problem 4 with multiplier satisfying ‖(α,λ, ζ)‖ = 1, α ≥ 0.

Proof. Thanks to Theorem 1, z∗ satisfies the KKT condi-
tions related to Problem 4 with multiplier (α̃, λ̃, ζ̃) satisfying
α̃ = 1. Since (α̃, λ̃, ζ̃) 6= 0, the conclusion follows by taking
(α,λ, ζ) := (α̃, λ̃, ζ̃)/‖(α̃, λ̃, ζ̃)‖.

C. Assumptions and Proof of the Main Result

The proof of our main result makes use of the following
set of assumptions, which we list below. We appropriately
comment these assumptions and their validity in the context
of our main problem (CC-OCP).

Assumption 1. Functions c, h and g are C1.

This assumption is easily satisfied in the context of
(CC-OCP). Indeed, all deterministic cost and dynamics are
taken to be C2, therefore, the covariance matrices Σk are C1.
Moreover, all original deterministic constraints can be chosen
to be C1, including the signed distance function which is
C∞ when the obstacles are either walls or discs (for which
the differentiability holds everywhere but at their centers; this
also extends to ellipsoids). A proof of this fact is provided in
the Appendix. Finally, it is worth noting that this assumption
can always be enforced because any Lipschitz function can
be approximated by a smooth function with a precision that
is selected by the user (see, e.g., [29]).

Assumption 2. At each iteration j, Problem 5 has a solution
zj . Moreover, zj satisfies LICQ related to Problem 5.
Finally, the family of solutions zj , j ∈ N is bounded.

This assumption is classic in convex optimization and
easily satisfied in the context of the linearized Problems
(CC-LOCP). In particular, since the constraints in for-
mulation (29) define a convex and closed feasible region,
every Problem (CC-LOCP) has at least one solution as
soon as the feasible region is not empty and either the
convexified version of the cost goes to infinity at infinity
or the feasible region is bounded. The latter is satisfied



in all cases considered in this work since the workspace
is compact and we set polytopic control input constraints,
which also enforce the family of solutions for (CC-LOCP)
to be bounded. Finally, LICQ is a standard assumption in
optimization and it is satisfied by almost any optimization
problem (see, e.g., [30, Theorem 1]).

Assumption 3. Set ∆zj+1 := zj+1 − zj . We require that

∃M > 0 s.t. ∀j > M, ‖∆zj+1‖ < ‖∆zj‖. (33)

Assumption 3 plays a mere technical role in the proof,
providing the existence of a converging subsequence of
solutions zj’s (we can weaken (33) by considering a
subsequence). The assumption above is satisfied thanks to
step 15 of (CC-SCP). It is worth noting that Assumption
3 does not force the entire sequence (zj)j∈N to converge.
As a counterexample, consider the nonconvergent sequence
(log(i))i∈N which clearly satisfies relation (33).

Our convergence result consists of proving that, under
Assumptions 1, 2 and 3, solving a sequence of Problem 5
yields a solution satisfying the KKT conditions related to
Problem 4. To do so, we extract a converging subsequence
of solutions for Problems 5, then retrieve a multiplier
for Problem 4 by extracting a convergent subsequence of
multipliers related to Problems 5, which is possible by
Corollary 1. Importantly, this implies that the algorithm does
not retrieve trivial, noninformative multipliers for the original
formulation.

Theorem 2 (Convergence guarantees). Assume that Assump-
tions 1, 2, 3 hold and consider the family (zj)j∈N where zj

is solution of Problem 5 at iteration j. The following holds:
1) If there exists an iteration j̄ such that for every j ≥ j̄

it holds zj = zj̄ , then zj̄ is a feasible point satisfying
the KKT conditions related to Problem 4, with α = 1.

2) Assume that (zj)j∈N is an infinite sequence of solution
for Problems 5. Then, there exists a subsequence
(zj`)`∈N that converges to a point z̄ satisfying the KKT
conditions related to Problem 4, with α ≥ 0.

The convergence behavior of (CC-SCP) is completely
described by Theorem 2 when the parameter ω takes values
in [ω0, ωmax]. Due to numerical errors, in practice we are
always led to consider the second case of Theorem 2,
where usually the entire sequence (zj)j∈N converge. It is
then useful to state that limiting points satisfy necessary
conditions for optimality related to the original nonlinear,
nonconvex formulation. Importantly, since every feasible
point for Problem 4 satisfies LICQ with probability one (see
[30, Theorem 1]), the point z̄ whose existence is guaranteed
by Theorem 2 is a candidate optimum for Problem 4.

Proof. The proof makes use of classical arguments in
optimization. Due to space constraints, we refer to the
Appendix.

In the following section, we demonstrate our approach
on an uncertain 6 degrees of freedom spacecraft system
navigating on-board the International Space Station (ISS).

VII. RESULTS: 6 DOF FREE-FLYER SPACECRAFT

We consider the guidance problem of a free-flyer robot,
whose state is given by x := [p,v,q,ω] ∈ R13 and its
control inputs are u := [F,M] ∈ R6. We further define

S(ω):=

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
, Ω(ω):=

 0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

. (34)

The continuous time dynamics of the system ẋ = ft(·) are

ṗ = v, mv̇ = F, q̇ =
1

2
Ω(ω)q, Jω̇ = M− S(ω)Jω. (35)

Using a zero-order hold on the controls, we discretize (35)

xk+1 = xk + ∆t·ft(xk,νk,m,J) + εk, (36)

where εk ∼ N (0,Σε) are i.i.d. disturbances. As in [31], m
and J = diag([Jx, Jy, Jz]) are distributed according to

m∼N (7.2, (3.2)2), Jx, Jy, Jz∼N (0.07, (0.015)2). (37)

We consider the problem of planning a trajectory on-board
the ISS from (pinit,qinit) = ([9.2, 0, 5],

√
1/3·[1, 0, 1, 1]) to

(pg,qg) = ([11.3, 6, 4.5], [−0.5, 0.5,−0.5, 0.5]), with zero
initial and final velocities v,ω for p = 90%. The ISS is de-
fined using 26 polytopes (not shown in Fig. 3) and obstacles
of arbitrary shape are placed in the station. Since the total
number of obstacles is 30 for this scenario, obstacle avoid-
ance chance constraints are reformulated using ellipsoidal
confidence sets with (26) rather than (25), which would ac-
tually cause the problem to be infeasible. Linear chance con-
straints are used to enforce |vi|<vm, |ωi|<ωm, |Fi|<Fm and
|Mi|<Mm, with (vm, ωm, Fm,Mm) = (0.4, 0.8, 0.7, 0.1)
corresponding to hardware limits of the spacecraft. A linear-
quadratic regulator is used to reduce the growth of uncer-
tainty, computed using the linearized dynamics at each state.

Fig. 3: Left: projections of the trajectory computed by (CC-SCP),
avoiding all spherical and polygonal obstacles on-board the ISS.
Right: 90% confidence intervals of the control input trajectory.

The algorithm is implemented in Python3, and OSQP
[32] is used to solve each convex problem. (CC-SCP) is
initialized with an infeasible straight line trajectory from
xinit to xg. Nevertheless, convergence is achieved after 8
iterations. To verify the satisfaction of chance constraints,
10’000 Monte-Carlo simulations are run. All chance con-
straints are satisfied at their threshold p = 90%. In particular,

3The code is available at github.com/StanfordASL/ccscp.

github.com/StanfordASL/ccscp


mink{Pr(xk ∈ Xfree)} = 95.4%, indicating that the Gaussian
parameterization of the trajectory distribution is reasonable.
In comparison, running the algorithm without considering
uncertainty yields mink{Pr(xk ∈ Xfree)} = 60.5%.

An alternative approach avoiding a chance-constrained
problem formulation consists of using buffers to tighten
constraints. To show that this deterministic approach can
be difficult to tune in practice and can yield higher cost
trajectories, we run experiments on 10 different scenarios
with obstacles sampled randomly. For each scenario, we first
run (CC-SCP) with p = 95%, which we compare with the
variant neglecting uncertainty but using 6 different buffer
radius to inflate all obstacles. As shown in Figure 4, choosing
an appropriate clearance can lead to conservative trajectories
or violate chance constraints. Importantly, its value for each
constraint is problem dependent and unknown a-priori.

Fig. 4: Results comparing (CC-SCP) with the mean-equivalent SCP
approach with obstacle padding.

VIII. CONCLUSION

In this paper, we presented a trajectory optimization algo-
rithm based on sequential convex programming designed to
solve chance-constrained planning problems. The proposed
method is independent of the shape of obstacles and is
guaranteed to converge to a solution satisfying first-order
necessary optimality conditions.

Future work includes leveraging different uncertainty
propagation schemes to theoretically guarantee the satis-
faction of chance constraints, and exploring risk allocation
methods to further reduce the conservatism of our approach.
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APPENDIX

A. Proof of Theorem 2 (Convergence guarantees)

Proof. The first assertion is a particular case of the second
one, where Theorem 1 is used instead of its Corollary 1.
Therefore, we only need to prove the second assertion.

From the Bolzano-Weierstrass theorem, the boundedness
assumption in Assumption 2 allows us to extract a subse-
quence (zj`)`∈N from (zj)j∈N that converges to a point z̄.
When considering iteration (j`+1), evaluating the constraints
of Problem 5 at its solution zj`+1 gives

h(zj`) +∇h(zj`)∆zj`+1 = 0 (38)

g(zj`) +∇g(zj`)∆zj`+1 ≤ 0. (39)

Thanks to Assumption 3, the quantities ∆zj`+1 tend to 0
when ` tends to infinity. Under Assumption 1, passing to the
limit in (38) gives that z̄ is feasible for Problem 4.

Consider now Assumption 2. Then, Corollary 1 applies
to the subsequence (zj`)`∈N guaranteeing the existence of
multipliers (α`,λ`, ζ`) for Problems 5 associated to each
zj` , respectively for every ` ∈ N, and satisfying

α`
(
∇c(zj`) + 2

dϕ

dt
(‖∆zj`+1‖2 −∆j`)z

j`+1
)

(40)

+ (λ`)>∇h(zj`) + (ζ`)>∇g(zj`) = 0 (41)

ζ`i

(
gi(z

j`) +∇gi(zj`)∆zj`+1

)
= 0, (42)

ζ`i ≥ 0, i = 1, . . . , s, ‖(α`,λ`, ζ`)‖ = 1, α` ≥ 0. (43)

Since the sequence ((α`,λ`, ζ`))`∈N is bounded, up to some
subsequence we can assume that it converges to a tuple
(α,λ, ζ) satisfying ‖(α,λ, ζ)‖ = 1, ζ ≥ 0 and α ≥ 0.
In particular, we have that (α,λ, ζ) is nontrivial. By passing
to the limit in (40) we obtain that z̄ satisfies (32) related to
Problem 4 and the conclusion follows.

B. Full Formulation of (CC-LOCP)

In this section, we formulate the full linearized problem
of (CC-OCP). At iteration (j + 1), each nonconvex term
is linearized around zj = (µj ,νj). For instance, each
nonconvex cost terms l̃f (·), l̃k(·) and nonlinear dynamics
f̃(·) are approximated using a first-order Taylor expansion
as

ljk(µk,νk) := l̃(µjk,ν
j
k) +∇µν l̃(µjk,ν

j
k)

[
µk − µjk
νk − νjk

]
(44)

ljf (µN ) := l̃f (µjN ) +∇µ l̃f (µjN )
(
µk − µjk

)
(45)

f̃(µk,νk) ≈ f jk +∇µf jk
(
µk−µjk

)
+∇νf jk

(
νk−νjk

)
, (46)

where f jk := f̃(µjk,ν
j
k). Note that if the original cost

functions l̃f (·), l̃k(·) are convex, linearizing these terms is
not necessary.

Then, combining all convexified terms and using the
problem formulation from Sections IV and V, the convexified
problem (Problem 3) is given as

Chance-Constrained Linearized OCP (CC-LOCP)

min
µ,ν

ljf (µN ) +

N−1∑
k=0

ljk(µk,νk) + (47a)

ωj

(
N∑
k=1

ϕ(‖µk−µjk‖
2−∆j)+

N−1∑
k=0

ϕ(‖νk−νjk‖
2−∆j)

)
s.t. µk+1 = f jk +∇µf jk

(
µk−µjk

)
+∇νf jk

(
νk−νjk

)
(47b)

k = 0, . . . , N−1

Hi·µk + Φ−1

δlx

(
‖HT

i·‖Σj
k

+∇‖HT
i·‖Σj

k
·(z−zj)

)
≤ hi,

i = 1, . . ., l, k = 1, . . . , N (47c)

di(µ
j
k) +∇di(µjk)(µk − µjk)

− Φ−1
δx

(
‖njik‖Σj

k
+∇‖njik‖Σj

k
·(z−zj)

)
≥ 0, (47d)

i = 1, . . .,M, k = 1, . . . , N−1

Pi·µN+Φ−1
δN

(
‖Pi·‖Σj

N
+∇‖Pi·‖Σj

N
(z−zj)

)
≤ pi, (47e)

i = 1, . . . , q

Gu
i·νk+Φ−1

δu

(
‖Gu

i·K‖Σj
k
+∇‖Gu

i·K‖Σj
k
·(z−zj)

)
≤ bi,

i = 1, . . ., r, k = 0, . . . , N−1 (47f)
µ0 = x(0), Σ0 = 0n2 , (47g)

where Σj
k = Σk(µjk). Note that the chance constraints

in (CC-OCP) are also linearized. Denoting a(z) :
dom(z)→Rn, Σ(z) : dom(z)→Rn×n, with Σ(z)≥0 ∀z,
the gradients in (47c)-(47f) can be computed as

∇z (‖a‖Σ) =
1

2
√

aTΣa

(
2aTΣ∇za+

n∑
i=1

n∑
j=1

aiaj∇zΣij

)
,

where a:=a(z) and Σ:=Σ(z) for conciseness. As discussed
in Section VI-C, the gradients ∇Σij and ∇a are C1 for the
classes of functions considered in this work. In practice, auto-
differentiation packages can be used to efficiently compute
the gradient of the constraints directly.

C. Approximate Uncertainty Propagation
In this section, we derive the expressions in (4) for the

first moments of the state distribution xk ∼ N (µk,Σk).
The dynamics are given as xk+1 = f(xk,uk(xk),wk),
the control policy is uk(xk) = νk + K(xk)(xk − µk),
E(wk) = w̄ and Var(wk) = Σw. We assume that xk,wk
are independent for all k.

Denoting (x,u,w) = (xk,uk,wk), and using a first-order
Taylor approximation at (µ,ν, w̄), we obtain

xk+1 ≈ f(µ,ν, w̄) + (∇xf(x,u(x),w))|(µ,ν,w̄)·(x− µ)

+ (∇wf(x,u(x),w))|(µ,ν,w̄)·(w − w̄),

where

(∇xf(x,u(x),w))|(µ,ν,w̄) =

(∇xf(x,u,w) +∇uf(x,u,w)∇x(u(x))) |(µ,ν,w̄).

We note that ∇x(u(x)) = ∇xK(x)(x−µ)+K(x). Thus,
after evaluating the above at (µ,ν, w̄), we obtain

∇xf(µ,ν, w̄) = ∇µf(µ,ν, w̄) +∇νf(µ,ν, w̄)K(µ).



From the linearized expression computed above, we obtain

µk+1 = E(xk+1) = f(µk,νk,E(w)),

Σk+1 = Var(xk+1) = E((xk+1 − µk+1)(xk+1 − µk+1)T )

= ∇xfcl·Σk·∇xfTcl +∇wf ·Σw·∇wfT ,

where ∇xfcl = (∇xf(x,u(x),w))|(µ,ν,w̄), and
the last result is obtained after using the fact that
E((x−µ)(w − w̄)T ) = 0 since x and w are uncorrelated.

Similarly, to obtain the approximation u ∼ N (ν,KΣK)
used in (15), we compute

u(x) ≈ ν + (∇x(u(x))) |(µ,ν,w̄)(x− µ)

= ν + K(µ)(x− µ),

from which we derive Var(uk)=K(µ)Σk(µ,ν, w̄)K(µ).

D. Reformulation of Obstacle Avoidance Constraints

Proposition 1. (first statement)
Define x,xj∈Rn, Xfree=Rn\Xobs, dmin ≥ 0 a safety

margin, dji=di(x
j), and nji = (xj − xobs)/d

j
i .

If Xobs =
⋃M
i=1Oi, Oi ⊂ Rn are closed convex sets, and

dji + njTi (x− xj) ≥ dmin ∀i = 1, . . . ,M, (48)

then x ∈ Xfree.

Proof. This proof is inspired from the proof of the Hy-
perplane Separating Theorem [33] in [34]. First, we show
by contradiction that ∀x ∈ Oi, the linearized constraint
gi(x) := dji + njTi (x − xj) − dmin ≥ 0 is not satisfied.
Hence, satisfaction of all constraints implies that x /∈ Xobs.
Finally, we conclude that x must lie in the safe set Xsafe.

Without loss of generality, assume that xj /∈ Oi4, such
that dji = ‖xj−xobs‖ and nji = (xj−xobs)

‖xj−xobs‖ . Then, assume,
for the sake of contradiction, that ∃x̄ ∈ Oi s.t. gi(x̄) > 0,
i.e.

gi(x̄) = dji + njTi (x̄− xj)− dmin

= ‖xj − xobs‖+
(xj − xobs)

T

‖xj − xobs‖
(x̄− xj)− dmin > 0.

Define d2(x) = ‖x − xj‖2. We claim that (x̄ − xobs)
is a descent direction for d2(x) at xobs. Indeed, using the
inequality above and dmin ≥ 0,

∇d2(xobs)(x̄− xobs) = 2(xobs − xj)T (x̄− xobs)

= 2
(
(xobs−xj)T (x̄−xj) + (xobs−xj)T (xj−xobs)

)
< 2

(
‖xj−xobs‖2 − dmin‖xj−xobs‖ − ‖xj−xobs‖2

)
= 2

(
−dmin‖xj − xobs‖

)
< 0.

Hence, ∃λ+ > 0 such that ∀λ ∈ (0, λ+), x̃ = xobs +
λ(x̄− xobs) satisfies x̃ ∈ Oi (by convexity of Oi) and

d2(x̃) < d2(xobs).

4If xj ∈ Oi, define x̃j = xj + 2djin
j
i , the squared distance function

d̃2(x) = ‖x − x̃j‖2 and follow the same reasoning to reach the same
conclusion.

Hence, xobs is not the closest point in Oi to xj . This is a
contradiction. Therefore, gi(x) < 0,∀x ∈ Oi.

By negation,

dji + njTi (x− xj) ≥ dmin =⇒ x /∈ Oi.

Then, since Xobs =
⋃M
i=1Oi, we have

dji + njTi (x− xj) ≥ dmin ∀i = 1, . . . ,M =⇒ x /∈ Xobs.

Finally, since Xsafe = Rn \ Xobs, we have that x ∈
Xsafe ⇐⇒ x /∈ Xobs. Therefore,

dji + njTi (x− xj) ≥ dmin ∀i = 1, . . . ,M =⇒ x ∈ Xsafe.

which concludes the proof.

Note that as shown on Figure 5, this result does not hold
in the case of non-convex obstacles. A solution consists
of decomposing each non-convex obstacle Oi into convex
sets which union includes Oi, or to use a convex outer
approximation.

Fig. 5: Obstacle constraints convex reformulation using the signed
distance function (21). On the left, this is conservative since the
obstacle is convex. On the right, it is not.

E. Differentiability of the Signed Distance Function

Theorem 3. Let D ⊆ R3 be either a plane or a disc, whose
center is denoted by c. Consider the signed distance function

dsD : A → R : x 7→

{
−d∂D(x) if x ∈ D
d∂D(x) otherwise ,

where dS(x) = inf
y∈S
‖x − y‖, and A = R3 in the case that

D is a plane whereas A = R3 \ c in the case that D is a
disc. The mapping dsD is of class C∞.

Proof. For sake of conciseness and clarity of notation, we
provide a proof in the case D = D1(0)\0, i.e, the unitary disc
centered at 0, for which ∂D = S2 := {y ∈ R3 | ‖y‖ = 1}.
The proof of the other cases goes similarly.

For every x ∈ R3 \ 0, there exists a unique point y(x) ∈
S2 such that ‖x− y(x)‖ = dS2(x). From this, we have

x = (1 + dsD(x))y(x) (49)

which is satisfied for every x ∈ R3 \ 0. We use relation (49)
to show that dsD is a smooth function of x by leveraging the
inverse function theorem locally around any x ∈ R3 \ 0.



Fix x0 ∈ R3 \0 and let y0 = y(x0) ∈ S2 such that ‖x0−
y0‖ = dS2(x0). We may assume that y0 6= N := (0, 0, 1)
(otherwise, we would have y0 6= S := (0, 0,−1) and the
proof goes similarly). Consider the stereographic projection

ϕ : S2 \N → R2 : (y1, y2, y3) 7→
(

y1

1− y3
,

y2

1− y3

)
which has C∞ inverse

ϕ−1 :R2 → S2 \N

(z1, z2) 7→
(

2z1

z2
1 + z2

2 + 1
,

2z2

z2
1 + z2

2 + 1
,
z2

1 + z2
2 − 1

z2
1 + z2

2 + 1

)
,

and denote (z0
1 , z

0
2) = ϕ(y0), d0 = dS2(x0) = ‖x0 − y0‖.

Then, define the C∞ vector function

F : U → R3 : (z1, z2, d) 7→ (1 + d)ϕ−1(z1, z2)

where U is any neighborhood of (z0
1 , z

0
2 , d0) not containing

(0, 0,−1). Straightforward computations provide that

det ∇F (z1, z2, d) = − 4(1 + d)2

(z2
1 + z2

2 + 1)2
6= 0

for every (z1, z2, d) ∈ U . The inverse function theorem
applied to F at (z0

1 , z
0
2 , d0) provides a neighborhood V1

of (z0
1 , z

0
2 , d0) and a neighborhood V2 of x0 such that the

restriction F |V1 : V1 → V2 is a C∞ diffeomorphism. We
have that dsD(x) = π3((F |V1)−1(x)) for every x ∈ V2,
where π3 is the projection on the third component. Indeed,
for x ∈ U , relation (49) gives F (ϕ(y(x)), dsD(x)) = x.

The conclusion follows.

F. Limit number of obstacles

As stated in Remark 2, using ellipsoidal confidence sets to
reformulate chance constraints is usually more conservative
than using equivalent reformulations for radial probabil-
ity distributions. However, due to the risk allocation with
Boole’s inequality, this remark does not hold for a large
number of constraints, such as an environment with multiple
obstacles. For Gaussian random variables, it is possible to
directly compare the conservatism of both approaches as in
Figures 6, where the quantiles used to reformulate chance
constraints used in (5) and (8) are compared. Values of the
minimum number of linear chance constraints from which it
is less conservative to use (8) than (5) are also reported.

Fig. 6: Comparison of the quantiles χn(p) and Φ−1(1− δ), where
δ = 1−p

M
, depending on M , the number of constraints.

Probability p
0.800 0.900 0.950 0.975

Dim. n 2 6 7 7 8
3 13 17 20 23

TABLE I: From Figure 6, it is possible to determine the number
of linear chance constraints from which using ellipsoidal confi-
dence sets with (8) is less conservative than leveraging Boole’s
inequality and the exact reformulation of linear chance constraints
for Gaussian-distributed variables (5). For instance, for more than
M = 20 obstacles for a 3-dimensional statespace with px = 95%,
using ellipsoidal confidence sets is less conservative.
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