Chapter 5 Thermochemistry

Learning Outcomes:

- > Interconvertenergy units
- > Distinguish between the system and the suncurdings in the modynamics
- > Calculate internal energy from heat and work and state sign conventions of these quantities
- > Explain the concept of a state function and give examples
- > Calculate H from E and P V
- > Relate $q_{\bf p}$ to H and indicate how the signs of q and H relate to whether a process is exothermic or end othermic
- > Use thermochemical equations to relate the amount of heat energy transferred inneractions inneractions at constant pressure (H) to the amount of substance involved in the reaction

1

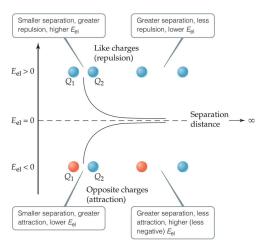
- Energy is the ability to downkortum sierheat.
- Thermodynamics is the study of energy and its transformations.
- Thermochemistry is the study of chemical reactions and the energy changes that involve heat

Heat

Work

Energy used to cause the temperature of an object to increase.

Energy used to cause an object that has mass to move. $w = F \times d$


Chemical reactions that release heat

Chemical reactions that do work

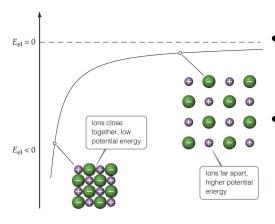
Electrostatic potential energy

 The most important form of potential energy in molecules is electrostatic potential energy, E_{el}:

$$E_{\rm el} = \frac{\kappa Q_1 Q_2}{d}$$

where $\kappa = 8.99 \times 10^9 \text{ J} \cdot \text{m/C}^2$

Electron charge:


 $1.602\times10^{\text{-}19}\;\text{C}$

• The unit of energy commonly used is the Joule:

 $1~J=1~\frac{kg~m^2}{s^2}$

3

Attraction between ions

- Electrostatic attraction occurs between oppositely charged ions.
- Energy is released when chemical bonds are formed; energy is consumed when chemical bonds are broken.

First Law of Thermodynamics

- Energy can be converted from one form to another, but it is neither created nor destroyed.
- Energy can be transferred between the system and surroundings.
- Chemical energy is converted to heat in grills.
- Sunlight is converted to chemical energy in green plants.
- There are many examples of conversion of energy from one form to another.

5

System and Surroundings

leave system as heat or as work done on piston.

Matter cannot enter or leave system.

Surroundings = cylinder,

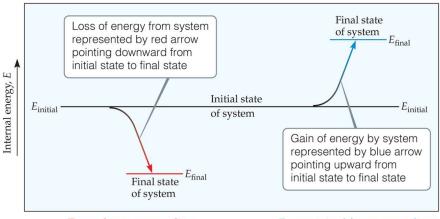
piston, and everything beyond

System = $H_2(g)$ and $O_2(g)$

Energy can enter or

The surroundings are everything else.
In thermochemistry we stud

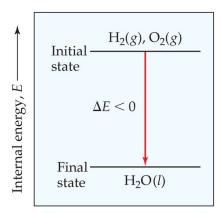
• The **system** includes the


molecules of interest.

- In thermochemistry we study the exchange of energy between the system and surroundings.
- open system matter and energy can be exchanged with the surroundings
- *closed system* exchange energy--but not matter--with the surroundings.
- isolated system neither matter nor energy may be exchanged with surroundings.

Internal Energy

The internal energy of a system is the sum of all kinetic and potential energies of all components of the system; we call it *E.*


$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

Energy lost to surroundings, internal energy of system decreases, ΔE negative

Energy gained from surroundings, internal energy of system increases, ΔE positive

7

 $E_{\rm initial}$ greater than $E_{\rm final}$; therefore, energy is released from system to surroundings during reaction and $\Delta E < 0$.

By definition, the change in internal energy, ΔE , is the final energy of the system minus the initial energy of the system:

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

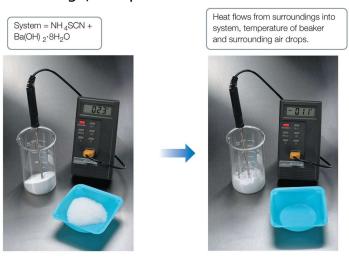
 $\Delta E < 0$, $E_{\text{final}} < E_{\text{initial}}$ the system *released* energy to the surroundings.

Thermodynamic Quantities: Three Parts

- 1) A number, 2) a unit, 3) a sign
 - A positive ΔE results when the system gains energy from the surroundings.
 - A negative ΔE results when the system loses energy to the surroundings.

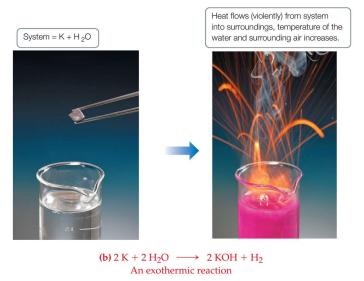
TABLE 5.1 Sign Conventions for q, w, and ΔE

For q	+ means system gains heat	– means system <i>loses</i> heat
For w	+ means work done on system	 means work done by system
For ΔE	+ means net gain of energy by system	- means net loss of energy by system


- When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).
- That is, $\Delta E = q + w$.

9

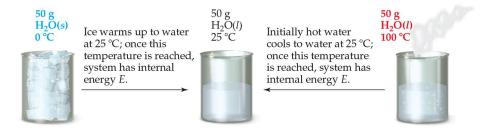
Exchange of Heat between System and Surroundings


When heat is absorbed by the system from the surroundings, the process is **endothermic**.

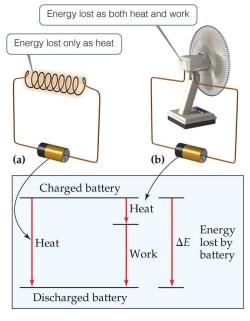
(a) $Ba(OH)_2 \cdot 8H_2O + 2 NH_4SCN \longrightarrow Ba(SCN)_2 + 2 NH_3 + 10 H_2O$ An endothermic reaction

Exchange of Heat between System and Surroundings

When heat is released by the system into the surroundings, the process is **exothermic**.



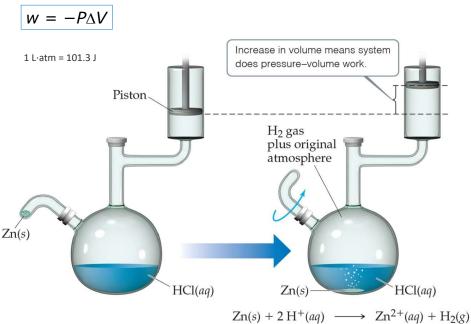
11


State Functions

The internal energy of a system is independent of the path by which the system achieved that state.

<u>Internal energy</u>, **E**, is a state function.

State Functions


q and w are **not** state functions.

 ΔE is the same whether the battery is shorted out or is discharged by running the fan.

> - q and w are different in the two cases.

13

Work

Example

Calculate the work (in J) associated with the expansion of a gas from 44 mL to 63 mL at a constant pressure of 14 atm.

15

Enthalpy

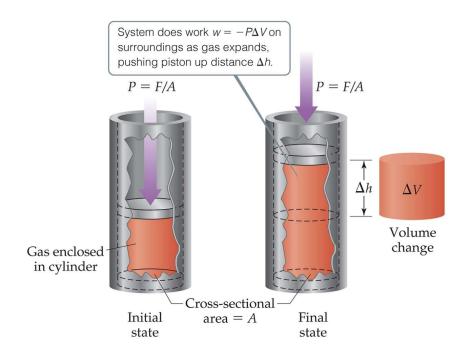
• Enthalpy is a thermodynamic function equal to the internal energy plus pressure×volume: H = E + PV

When the system changes at constant pressure, the change in enthalpy, ΔH , is

$$\Delta H = \Delta (E + PV)$$

This can be written

$$\Delta H = \Delta E + P \Delta V$$


Since $\Delta E = q + w$ and $w = -P\Delta V$, we can substitute these into the enthalpy expression:

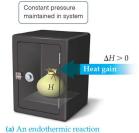
$$\Delta H = \Delta E + P \Delta V$$

$$\Delta H = (q+w) - w$$

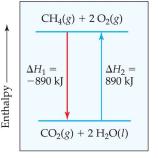
$$\Delta H = q$$

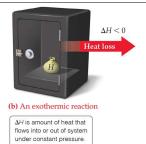
The enthalpy change, ΔH , is defined as the heat gained or lost by the system under *constant pressure*.

$$\Delta H = q_D$$


17

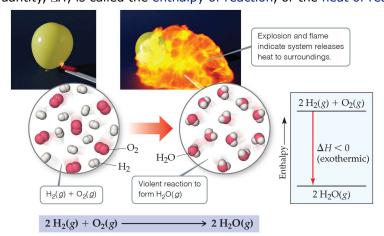
Properties of Enthalpy


- 1. Enthalpy is a state function.
- 2. Enthalpy is an extensive property.
- 3. Enthalpy is reversible. The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to ΔH for the reverse reaction.
- 4. ΔH for a reaction depends on the state of the products and the state of the reactants.


Endothermic and Exothermic

$$\Delta H = H_{final} - H_{initial}$$
 or $\Delta H = H_{products} - H_{reactants}$

 A process is endothermic when ΔH is positive (>0).

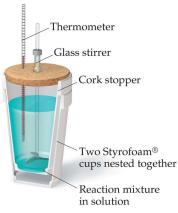


A process is
 exothermic
 when ΔH is
 negative (<0).

19

Enthalpies of Reaction

This quantity, ΔH , is called the enthalpy of reaction, or the heat of reaction.



A **thermochemical equation** is an equation for which ΔH is given:

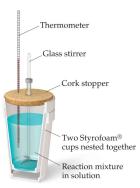
2
$$H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$$
 $\Delta H = -483.6 \text{ kJ}$
 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$ $\Delta H = -241.8 \text{ kJ}$

The enthalpy changes assume the coefficients are moles of the substances

Calorimetry

- Calorimetry, the measurement of heat released or absorbed by a chemical reaction.
- A calorimeter is the device used to measure heat
- The quantity of heat transferred by the reaction causes a change in temperature of the solution.

21


Heat Capacity and Specific Heat

- The amount of energy required to raise the temperature of a substance by 1 K (1°C) is its heat capacity (C in units of J/K).
- We define specific heat capacity (or simply specific heat; C_s or s in units of J/g·K) as the amount of energy required to raise the temperature of 1 g of a substance by 1 K.
- If the amount is one mole, it is the molar heat capacity. $C_s = s = \frac{q}{m \times \Delta T}$

TABLE 5.2 Specific Heats of Some Substances at 298 K Elements Compounds				
Substance	Specific Heat (J/g-K)	Substance	Specific Heat (J/g-K)	
$N_2(g)$	1.04	$H_2O(l)$	4.18	
Al(s)	0.90	$CH_4(g)$	2.20	
Fe(s)	0.45	$CO_2(g)$	0.84	
Hg(l)	0.14	$CaCO_3(s)$	0.82	

Constant Pressure Calorimetry

Indirectly measure the heat change for the system

Because the specific heat for water is well known (4.184 J/g·K), we can measure q for the reaction with this equation:

$$q_{soln} = C_s \times m \times \Delta T = -q_{rxn}$$

The calorimeter and its contents are the surroundings, so q_{soln} is found from the mass, heat capacity, and temperature change.

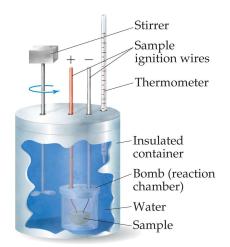
23

Example

A metal pellet with mass 100.0 g, originally at 88.4 $^{\circ}$ C, is dropped into 125 g of water originally at 25.1 $^{\circ}$ C. The final temperature of both the pellet and the water is 31.3 $^{\circ}$ C.

Calculate the heat capacity C (in J/ $^{\circ}$ C) and specific heat capacity C_s (in J/ $^{\circ}$ C) of the pellet. The specific heat of water is 4.184 J/ $^{\circ}$ C.

Example

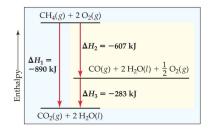

When 200. g of a AgNO₃ solution mixes with 150. g of NaI solution, 2.93 g of AgI precipitates, and the temperature of the solution rises by 1.34°C. Assume 350. g of solution and a specific heat capacity of 4.184 J/g•°C. Calculate ΔH for the following:

$$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$$

25

Bomb Calorimetry

- Because the volume in the bomb calorimeter is constant, what is measured is really the change in internal energy, ΔE, not ΔH.
- For most reactions, the difference is small.
- The heat absorbed (or released) by the water is a very good approximation of the enthalpy change for the reaction.
- $q_{\text{rxn}} = C_{\text{cal}} \times \Delta T$



Example

27

Hess's Law

- ΔH is known for many reactions, but it is inconvenient to measure ΔH for every reaction in which we are interested.
- However, we can calculate ΔH using published ΔH values and the properties of enthalpy.
- Hess's law states that "If a reaction is carried out in a series of steps, ΔH for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps." ΔH is a state function

Hess's Law

Most H values are labeled Ho, and measured under standard conditions

- -P = 1 atm (but for gases P = 1 bar)
- -T = usually 298.15 K (25.0 °C)
- Concentration = 1 mol/L

Using **Hess's law** - when two or more thermochemical equations are added, the enthalpy change of the resulting equation is the sum of those for the added equations.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ}$
 $CO_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g)$ $\Delta H = +283.0 \text{ kJ}$

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$
 $\Delta H = -110.5 \text{ kJ}$

29

Example

Given the thermochemical equations

```
2WO_2(s) + O_2(g) \rightarrow 2WO_3(s) \Delta H = -506 \text{ kJ}

2W(s) + 3O_2(g) \rightarrow 2WO_3(s) \Delta H = -1686 \text{ kJ}

calculate the enthalpy change for:

2W(s) + 2O_2(g) \rightarrow 2WO_2(s)
```

Enthalpies of Formation

• An enthalpy of formation, ΔH_f , is defined as the enthalpy change for the reaction in which a compound is made from its constituent elements in their elemental forms.

Standard Enthalpy of Formation

- Only one enthalpy value is needed for each substance, called the standard enthalpy of formation.
- The standard enthalpy of formation is the enthalpy change when one mole of a substance in its standard state is formed from the most stable form of the elements in their standard states.

31

Standard State

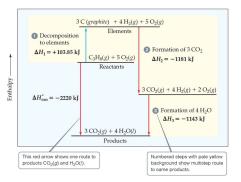
- Enthalpy changes depend on the temperature and pressure at which they are measured
 - When applying Hess's law, all values must refer to the same conditions of pressure and temperature
- The standard state of a substance at a specified temperature is the pure form at 1 atm pressure
 - Tabulated values for enthalpy refer to the standard state, usually at a temperature of 25°C

Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	ΔH_f^o (kJ/mol)
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	CH ₃ OH(I)	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Ethanol	$C_2H_5OH(I)$	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

Standard Enthalpy of Formation

- The symbol used for standard enthalpy of formation is ΔH_f° , where the $^{\circ}$ designates standard state.
- The product is always one mole of a single substance.
- The standard enthalpy of formation of the elements in their most stable form is **zero**.
- Some examples of standard enthalpies of formation:

C(graphite) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_f^{\circ}[CO_2(g)]$
 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ $\Delta H_f^{\circ}[H_2O(I)]$
 $2Na(s) + Se(s) + 2O_2(g) \rightarrow Na_2SeO_4(s) \Delta H_f^{\circ}[Na_2SeO_4(s)]$
 $H_2(g) \rightarrow H_2(g)$ $\Delta H_f^{\circ}[H_2(g)] = 0$


33

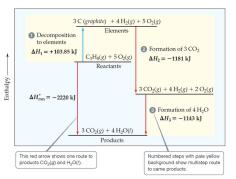
Enthalpies of Reaction

$$C_3H_3(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

Imagine this as occurring in 3 steps:

$$C_3H_2(g) \longrightarrow 3C_{(c)} + 4H_2(g)$$

 $\Delta H = \sum n \Delta H_f^o(\text{products}) - \sum m \Delta H_f^o(\text{reactants})$


where n and m are the stoichiometric coefficients.

$C_3H_3(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$

• Imagine this as occurring

in 3 steps:

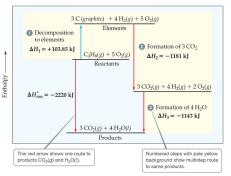
$$C_3H_3(g) \longrightarrow 3C_{(graphic)} + 4H_2(g)$$
 $3C_{(graphic)} + 3O_2(g) \longrightarrow 3CO_2(g)$

$\Delta H = \sum n \Delta H_f^o$ (products) - $\sum m \Delta H_f^o$ (reactants)

where n and m are the stoichiometric coefficients.

35

$C_3H_3(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$

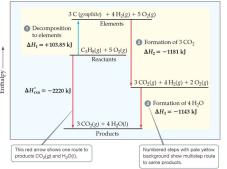

• Imagine this as occurring

in 3 steps:

$$C_3H_3(g) \longrightarrow 3C_{(gaphin)} + 4H_2(g)$$

$$3C_{(gaphin)} + 3O_2(g) \longrightarrow 3CO_2(g)$$

$$4H_2(g) + 2O_2(g) \longrightarrow 4H_2(g)$$


$\Delta H = \sum n \Delta H_f^o$ (products) - $\sum m \Delta H_f^o$ (reactants)

where *n* and *m* are the stoichiometric coefficients.

$C_3H_3(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$

• The sum of these equations is:

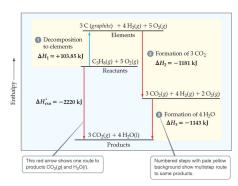
$$\begin{array}{l} \textbf{C_3H_3(0)} \longrightarrow \textbf{3C_{(graphic)}} + \textbf{4H_2(0)} \\ \textbf{3C_{(graphic)}} + \textbf{3O_2(0)} \longrightarrow \textbf{3CO_2(0)} \\ \textbf{4H_2(0)} + \textbf{2O_2(0)} \longrightarrow \textbf{4H_2O(0)} \end{array}$$

$C_3H_2(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$

 $\Delta H = \sum n \Delta H_f^o$ (products) - $\sum m \Delta H_f^o$ (reactants)

where *n* and *m* are the stoichiometric coefficients.

37


$C_3H_3(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$

 $\Delta H = \sum n \, \Delta H_f^o(\text{products}) - \sum m \, \Delta H_f^o(\text{reactants})$

where \emph{n} and \emph{m} are the stoichiometric coefficients.

 $\Delta H_{r \times n}{}^0 = [(3 \text{ mol})(-393.5 \text{ kJ/mol}) + (4 \text{ mol})(-285.8 \text{ kJ/mol})] - [(1 \text{ mol})(-103.85 \text{ kJ/mol}) + (5 \text{ mol})(0 \text{ kJ})]$

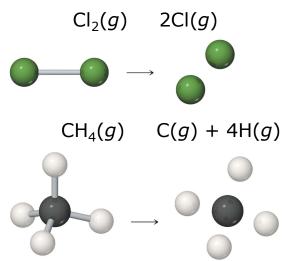
- = [(-1180.5 kJ) + (-1143.2 kJ)] [(-103.85 kJ) + (0 kJ)]
- = (-2323.7 kJ) (-103.85 kJ)
- = -2219.9 kJ

Example

Use standard enthalpies of formation to calculate the enthalpy change for the reaction:

$$P_4O_{10}(s) + 6H_2O(g) \rightarrow 4H_3PO_4(s)$$

<u>Substance</u>	<u>ΔH_f° (kJ/mol)</u>
$P_4O_{10}(s)$	-2940
$H_2O(g)$	- 242
$H_3^{-}PO_4(s)$	-1279


 $\Delta H = \sum n \Delta H_f^o$ (products) - $\sum m \Delta H_f^o$ (reactants)

where n and m are the stoichiometric coefficients.

39

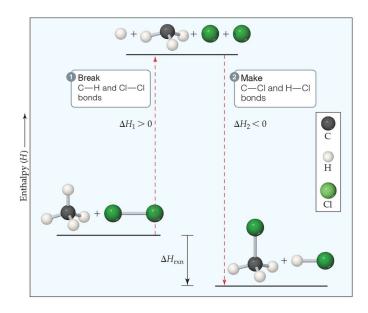
Bond Enthalpy

The enthalpy associated with breaking one mole of a particular bond in a gaseous substance.

- Bond enthalpy is always positive because energy is required to break chemical bonds.
- Energy is released when a bond forms between gaseous fragments.
- The greater the bond enthalpy, the stronger the bond.

TABLE 5.4	Averag	e Bond E	nthalpies	(kJ/mol)	0		
С—Н	413	N—H	391	о-н	463	F-F	155
C-C	348	N-N	163	0-0	146		
C = C	614	N-O	201	0=0	495	Cl—F	253
C-N	293	N-F	272	O-F	190	Cl—Cl	242
c-o	358	N-Cl	200	O-Cl	203		
c=0	799	N—Br	243	0—I	234	Br—F	237
C-F	485					Br—Cl	218
C-Cl	328	н—н	436			Br —Br	193
C-Br	276	H-F	567				
C-I	240	H—Cl	431			I—Cl	208
		H—Br	366			I—Br	175
		н—і	299			I—I	151

41


Bond Enthalpies and Enthalpy of Reaction

To obtain an estimate of ΔH ,

 Sum the bond enthalpies for all bonds broken and subtract the sum of the bond enthalpies for all bonds formed.

$$H_{rxn}$$
 = (bond enthalpies – (bond enthalpies of bonds broken) of bonds formed)

Predict whether a chemical reaction will be endothermic or exothermic using bond enthalpies.

43

Energy in Foods

The energy released when one gram of food is combusted is its **fuel value**.

TABLE 5.5	Compositions and Fuel Values of Some Common Foods						
	Approximate C	Approximate Composition (% by Mass)			Fuel Value		
	Carbohydrate	Fat	Protein	kJ/g	kcal/g(Cal/g)		
Carbohydrate	e 100	_	_	17	4		
Fat	_	100	_	38	9		
Protein	_	-	100	17	4		
Apples	13	0.5	0.4	2.5	0.59		
Beer ^a	1.2	_	0.3	1.8	0.42		
Bread	52	3	9	12	2.8		
Cheese	4	37	28	20	4.7		
Eggs	0.7	10	13	6.0	1.4		
Fudge	81	11	2	18	4.4		
Green beans	7.0	_	1.9	1.5	0.38		
Hamburger	_	30	22	15	3.6		
Milk (whole)	5.0	4.0	3.3	3.0	0.74		
Peanuts	22	39	26	23	5.5		

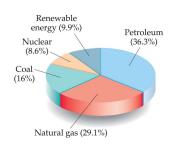
^a Beer typically contains 3.5% ethanol, which has fuel value.

Most of the energy infoods comes from carbohydrates, fats, and proteins.

Carbohydrates (17kJ/g):

$$C_0H_2O_0(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(f)$$
 $H^0 = -2803kJ$

Fats (38kJ/g):


$$2 C_{57}H_{110}O_6(s) + 163 O_2(g) \longrightarrow 114 CO_2(g) + 110 H_2O(I) \Delta H^{\circ} = -71,609 \text{ kJ}$$

Proteins produce 17 kJ/g (same as carbohydrates): However, their chemical reaction in the body is NOT the same as in a calorineter:

45

Fuels

TABLE 5.6 Fuel Values and G	Composit	ions of S	Some Co	mmon Fuels
	Approximate Elemental Composition (Mass %)			
	С	Н	0	Fuel Value (kJ/g)
Wood (pine)	50	6	44	18
Anthracite coal (Pennsylvania)	82	1	2	31
Bituminous coal (Pennsylvania)	77	5	7	32
Charcoal	100	0	0	34
Crude oil (Texas)	85	12	0	45
Gasoline	85	15	0	48
Natural gas	70	23	0	49
Hydrogen	0	100	0	142

The vast majority of the energy consumed in this country comes from fossil fuels.

