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Abstract

Storage problems are an important subclass
of stochastic control problems. This pa-
per presents a new method, approximate dy-
namic programming for storage, to solve stor-
age problems with continuous, convex deci-
sion sets. Unlike other solution procedures,
ADPS allows math programming to be used
to make decisions each time period, even in
the presence of large state variables. We test
ADPS on the day ahead wind commitment
problem with storage.

1. Introduction

Storage problems are a special subclass of multistage
stochastic optimization problems: a resource, such as
energy, assets or stock options, is held so that it can be
used either now for a certain gain or in the future with
uncertain rewards. In each time period, the decision
maker weighs the benefit of a here-and-now reward
against the value of saving the resource for a later date.
However, many storage problems, particularly those in
energy, have action spaces that are much larger than
those in traditional reinforcement learning problems.
Math programming is an efficient way to search the
action space, but it a convex, deterministic reward
function. Rewards, however, are often dependent on
a large “state of the world” variable. We exploit the
special structure of storage—namely that time periods
are tied only through the storage resource—to produce
a method that accommodates convex optimization in
the action space within a reinforcement learning set-
ting. These methods are applied to the day ahead
wind commitment problem, where a wind farm opera-
tor commits to production levels for the next 24 hours
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by placing a bid on the day ahead power market. The
difficulties are that 1) the wind level is not known un-
til is arrives and 2) the action is selecting production
levels for the next 24 hours at once.

Sequential decision problems have been studied in
both the reinforcement learning and operations re-
search communities. Reinforcement learning typically
solves multistage stochastic optimization problems by
approximating a value to go function and choosing the
action that maximizes the sum of current rewards and
the estimated value to go. There are a variety of tech-
niques to approximate value functions, including least
squares regression with basis functions (Tsitsiklis &
Van Roy, 2001; Lagoudakis & Parr, 2003), cluster-
ing and aggregation (Singh et al., 1995); these meth-
ods place no restrictions on the shape of the value
function. However, in order to use math program-
ming to search the action space, the value function
needs to be convex or concave in the storage resource
for every state of the world. This can be treated
as shape-restricted functional regression, that is, re-
gression where the response is a shape-restricted func-
tional. Shape-restricted functional regression is largely
unexplored, but there are many methods for univariate
convex regression (Meyer, 2008; Seijo & Bodhisattva,
2011).

Likewise, the operations research community has ap-
proached these problems mainly through stochastic
programming (SP). SP combines mathematical pro-
gramming formulations with statistical approxima-
tions of the underlying outcome space, allowing a
search over large decision spaces (Shapiro et al., 2009).
SP estimates the value of future outcomes and deci-
sions by simulating a few time stages into the future
to produce a here-and-now decision, rather than an
implementable policy. Most SP approaches rely on
modeling the outcome space with a scenario tree: n1
realizations from the outcome distribution of the first
time period are sampled; for each of those, n2 realiza-
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tions from the second time period are sampled from
the conditional distribution and so on. While this
sampling method gives desirable statistical properties,
trees grow exponentially in the number of time peri-
ods, require a model for generation and often sparsely
sample the outcome space.

We use approximate dynamic programming for stor-
age (ADPS) to blend reinforcement learning and math
programming. We simulate only T time periods in
advance and nonparametrically approximate shape-
restricted value functions. With the approximations,
the problem is then solved via backward recursion, like
traditional dynamic programming. Value functions are
approximated by clustering states with Dirichlet pro-
cess mixture models so that convex value functions can
be fit within each cluster (Hannah et al., 2010). This
scales well to large state spaces and avoids the diffi-
culties that would be associated with shape-restricted
functional regression. Scalability is demonstrated as
ADPS is applied to the day ahead wind commitment
problem, which has a complex state variable and re-
quires the solution of a math program every time pe-
riod to obtain commitment levels.

The rest of the paper is organized as follows. In Sec-
tion 2, we review multistage stochastic optimization
and apply it to the day ahead wind commitment prob-
lem. In Section 3, we present the ADPS algorithm. In
Section 4, we apply ADPS to wind commitment in the
day ahead electricity market with a storage resource.
In Section 5, we give conclusions and future directions.

2. Multistage Stochastic Optimization
and Storage

In this paper, we draw heavily from the stochastic pro-
gramming representation of sequential decision prob-
lems, mainly to distinguish when information is avail-
able and when decisions are made. Notation is in
the SP format. We begin by reviewing a single stage
stochastic optimization problem,

max
x∈X (ξ)

E [f(x, ξ)] .

Here x ∈ Rd is a continuous decision variable, f is
a random utility function, ξ : Ω → Ξ is a random
variable, and X (ξ) is a random convex constraint set.

The single stage problem can be expanded to a
T−stage stochastic optimization problem,

max
x0∈X0

f0(x0) + E
[

max
x1∈X1(x0,ξ[1])

f1(x1, ξ1) (1)

+E
[
· · ·+ E

[
max

xT∈XT (x[T−1],ξ[T ])
fT (xT , ξT )

]]]
,

where x[t] = (x0, x1, . . . , xt) is the set of all previ-
ous decisions, ξ1, . . . , ξT is a random data process,
ξ[t] = (ξ1, . . . , ξt) and Xt(x[t−1], ξ[t]) is a decision set
that depends on the current state of the data process
and previous outcomes. Note that when T is large,
Equation (1) can be used to approximate an infinite
horizon decision process.

The nested expectation format of Equation (1) is cum-
bersome. It can be described more compactly by a set
of recursive, value-to-go functions. Let

Vt(x[t−1]|ξ[t]) (2)

= max
xt∈Xt(x[t−1],ξ[t])

ft(xt, ξt) + E
[
Vt+1(x[t]|ξ[t+1])|Ft

]
for t = 0, . . . , T − 1 and VT (x[T−1]|ξ[T ]) = 0. Here Ft
is the filtration generated by (ξ1, . . . , ξt). We will use
the value function representation throughout the rest
of this paper.

2.1. Storage as Multistage Stochastic
Optimization

We use structure to reduce the size of the value func-
tions. Storage problems have the distinguishing char-
acteristic that the value functions between times t− 1
and t are tied together only by a storage variable, Rt,
which denotes the amount of a resource in storage at
time t. Therefore, the value functions need only cap-
ture the value of Rt conditioned on the random out-
come. For storage problems, Equation (2) can be writ-
ten as

Vt(Rt|ξ[t]) = max
xt

fKt (xt, ξt) + E
[
fUt (xt, ξt+1)

+ Vt+1(Rt+1|ξ[t+1])|Ft
]

s.t. xt ∈ X (Rt)

Rt+1 = fR(Rt, xt, ξt+1) (3)

for t = 0, . . . , T − 1 and VT (RT |ξ[T ]) = 0. Here,
X (Rt) is a decision set that depends only upon the
current storage resource and fR(Rt, xt, ξt+1) is a tran-
sition function between the current storage level and
the storage level in the next time period. Note that
we use Rt+1 in the value function instead of x[t]; it
is a post-decision state variable and this change in
time index will allow us to more easily approximate
the expectation. The value function Vt+1(x[t] | ξ[t+1])
is broken up into two parts, the storage value func-
tion Vt+1(Rt+1|ξ[t+1]), which is tied to the next time
period, and a function fUt (xt, ξ[t+1]), that represents a
here-and-now reward derived from the random infor-
mation that arrives between time t and t+ 1, ξt+1.
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2.2. Example: Day Ahead Wind Commitment

Throughout this paper we use the example of wind
commitment on the day ahead market. Wind farms
produce energy from a renewable but stochastic re-
source. The energy markets, however, are based
around bids for future production, either 15 minutes
or 1 hour before production in the regulating mar-
kets, or up to 24 hours before production in the day
ahead market. Such markets work well for traditional
energy producers, who make energy by burning a re-
source (coal and natural gas) or operate on a fixed,
long-term schedule (nuclear), but can be problematic
for renewable producers. For wind farms, determining
the level of commitment (energy pledged) for a future
production contract is a stochastic optimization prob-
lem. When storage is added, it becomes a multistage
stochastic optimization problem (Ruiz et al., 2009). A
slightly simplified model for the day ahead market is
as follows. Parameters are given in Table 1.

1. Place a bid. At the end of day t, the wind
farm manager sees electricity market prices pt =
(pt,1, . . . , pt,24) for each of the next 24 hours in dol-
lars per megawatt hour (MWh). Given pt, she pledges
how much electricity her farm will produce for each of
the next 24 hours, xt = (xt,1, . . . , xt,24), in MWh.

2. Generate power. During day t + 1, the
farm receives wind Wt+1 = (Wt+1,1, . . . ,Wt+1,24).
This is converted into power output Lt+1 =
(Lt+1,1, . . . , Lt+1,24). The wind-price pair
(Wt+1, pt+1) form ξt+1.

3. Distribute power to satisfy commitment.
The power output Lt+1 can be 1) sent to satisfy the
commitment xt, 2) placed into storage, or 3) dumped
via discharging heat. These values are defined as the
dummy decision variables, yxt+1,i, y

add
t+1,i and ydt+1,i, re-

spectively. The commitment can be comprised of elec-
tricity from 1) wind power Lt+1, 2) storage, or 3) un-
met commitment (i.e. bought off the spot market);
these are defined as yxt+1,i, y

rem
t+1,i and yut+1,i, respec-

tively. The storage level when day t + 1 starts is
Rt; intermediate levels throughout the day are zt+1 =
(zt+1,0, . . . , zt+1,24); the final level zt+1,24 determines
the starting storage level for the next day. The max-
imum level of storage is Rmax. The system has the
following dynamics:

Lt+1,i = yxt+1,i + yaddt+1,i + ydt+1,i,

xt,i = yxt+1,i + yremt+1,i + yut+1,i,

zt+1,i = zt+1,i−1 + yaddt+1,i − yremt+1,i,

0 ≤ zt+1,i ≤ Rmax.

Table 1. Parameters and variables for the day ahead wind
commitment problem at time t.

Decision Variables
xt = commitment decision

Storage Variable
Rt = storage level at time t

Random Variables
Wt+1 = wind from time t to t+ 1
Lt+1 = power output from time t to t+ 1

Power Flow Variables
yxt+1 = power from wind to commitment
yaddt+1 = power from wind to storage
yremt+1 = power from storage to commitment
ydt+1 = power from wind that is dumped
yut+1 = unmet commitment
zt+1 = intra-day storage levels

Other Parameters
Rmax = maximum storage level

pt = day ahead market prices

4. Get revenue. Revenue is generated from
the commitment level multiplied by the price,∑24
i=1 xt,ipt,i. Revenue is lost by dumping power,∑24
i=1 f

d(ydt+1,i), or by not meeting the commitment

level,
∑24
i=1 f

u(yut+1,i). For a horizon of T days, the
entire problem is defined by the following recursive
equations,

Vt(Rt|ξ[t]) = max
xt

24∑
i=1

(xt,ipt,i − fd(ydt+1,i)− fu(yut+1,i))

+ E
[
Vt+1(Rt+1|ξ[t+1])|Ft

]
subject to

zt+1,0 = Rt,

Lt+1,i = yxt+1,i + yaddt+1,i + ydt+1,i, i = 1, . . . , 24,

xt,i = yxt+1,i + yremt+1,i + yut+1,i, i = 1, . . . , 24,

zt+1,i = zt+1,i−1 + yaddt+1,i − yremt+1,i, i = 1, . . . , 24,

0 ≤ zt+1,i, i = 1, . . . , 24,

Rmax ≥ zt+1,i, i = 1, . . . , 24,

Rt+1 = zt+1,24,

for t = 0, . . . , T − 1, where VT (RT ) = 0.

3. Solution via ADPS

The storage problem in Equation (3) can be solved as
a stochastic dynamic program (SDP). That is, since
VT (RT |ξ[T ]) can be found, it is found for all values
of RT and all sample paths (ξ1, . . . , ξT ). The values
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for time T are then plugged into the subproblems for
time T − 1 and the problem is solved recursively. This
method is computationally infeasible in most cases.

Approximate dynamic programming models stochas-
tic dynamic programs by approximating value func-
tions and representing dynamics in a simplified form.
Equation (3) is conditioned on ξ[t], the entire history
of random variables. Instead of conditioning on every-
thing, let St be a state variable. It is the smallest col-
lection of information needed to make a decision. State
variables reduce the domain of the value functions and
makes the transition from St to St+1 Markov.

The state variable gives information that is as-
sociated with both the current objective function
and the information needed to take the expectation
E[Vt+1(Rt+1|St+1)|St]. It is often well approximated
by a smaller subset of information; in an abuse of no-
tation, we use these values interchangeably. For exam-
ple, in the wind commitment problem, we define St as
the set of currently observed market prices, pt, and the
wind from the previous day, Wt. The prices are used
directly in the optimization problem and provide infor-
mation about future prices. The wind from the previ-
ous day provides information about future wind. The
state could be expanded to include information like
price and wind forecasts, but we use only the smaller
variable due to the unavailability of data.

When Ft is replaced by St, the value functions
in Equation (3) are still impossible to compute if
St is a large discrete or continuous space. There-
fore, the value function Vt(Rt|St) is replaced with an
approximation, V̄t(Rt|St). The new problem faces
two main difficulties: 1) computing the expectation
E
[
V̄t+1(Rt+1|St+1)|St

]
, and 2) maximizing over xt.

The expectation is difficult because it is defined over
a high-dimensional space; the maximization is difficult
because the decision is included in the expectation and
may require math programming.

We propose using approximate dynamic programming
for storage (ADPS) to solve these problems. First,
because we cannot solve an infinite number of recur-
sive equations, we collect a finite number of samples
from the state process, (S0(ωk), . . . , ST (ωk))nk=1, and
random information process, (ξ1(ωk), . . . , ξT (ωk))nk=1.
These samples are used to approximate the infinite
dimensional state and outcome spaces. The storage
variable is approximated by a finite sampling. For
each sample and storage pair, the value function is
approximated by a weighted average of the outcomes
given by the other samples. Dirichlet process mix-
ture models over the state space provide an appealing
way to weight the samples by clustering. Solving these

problems for the storage level samples gives a concave
approximate value function conditioned on the state
St(ωk); this is done for all k. The value functions
are then passed on to time t − 1. We assure that the
maximization over xt is easily computable by main-
taining concavity in the approximate value functions
and approximating the expectation with a determinis-
tic weighted average.

3.1. Single Stage Stochastic Optimization

To solve Equation (3), we begin by approximat-
ing the infinite-dimensional state and outcome spaces
by n sample paths, (S0(ωk), . . . , ST (ωk))nk=1 and
(ξ1(ωk), . . . , ξT (ωk))nk=1. Unlike scenario trees,these
samples are not conditionally independent (but neither
do they grow exponentially with the number of time
periods). However, the distribution of (St+1, ξt+1) is
implicitly assumed to be Markov conditioned on St.
Therefore, if we know V̄t+1(Rt+1|St+1), we can treat
Equation (3) as a single stage stochastic optimization
problem for a fixed state St = st. Hannah et al.
(2010) develops methods to solve single stage stochas-
tic optimization problems with large, continuous de-
cision spaces and non-i.i.d. observations that include
a state variable. We use their “function-based” opti-
mization method, which takes an average of the out-
comes weighted by the state variable,

V̄t(rt|st) = max
xt

fKt (xt, ξt) +

n∑
k=1

wn(st, St(ωk)) (4)

×[fUt (xt, ξt+1(ωk)) + V̄t+1(Rt+1(ωk)|St+1(ωk))]

s.t. xt ∈ X (rt)

Rt+1(ωk) = fR(rt, xt, ξt+1(ωk)), k = 1, . . . , n.

Here, wn(s1, s2) is a weight function between states s1
and s2 conditioned on the n samples; wn(s1, s2) ≥ 0
for every s1, s2 and

∑n
k=1 wn(s, S(ωk)) = 1 for every

s. Weights are discussed in Section 3.2.

Starting with t = T , we can approximate a value func-
tion for an arbitrary state-resource pair, (sT , rT ). At
t = T − 1, Equation (4) requires value function ap-
proximations only for (ST (ωk))nk=1. However, they are
required to be continuous, concave functions in RT .
Convex functions can be produced by sampling from
Rt and then fitting a convex regression; observations
from other sample paths can be included in the regres-
sion by weighting them accordingly.

For simplicity, we use the following sampling and re-
gression scheme. If Rt is a scalar variable, it can be
discretized between 0 and Rmax to produce an approx-
imation of Vt(Rt | st) for every fixed st. Assume Rt is
scalar and let {0 = r0, r1, . . . , rJ = Rmax} be such a
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discretization. The value function forRt is constructed
by averaging over the two closest values of r,

V̄t(Rt | st) =
Rt − ri
ri+1 − ri

V̄t(ri | st) (5)

+
ri+1 −Rt
ri+1 − ri

V̄t(ri+1 | st),

for ri ≤ Rt < ri+1, i = 0, . . . , J − 1. Then Equation
(4) is solved at (rj , St(ωk)) for each j and k.

3.2. Weight Functions via Dirichlet Process
Mixture Models

The weight functions in Equation (4) try to weight
the observations in a way that would make them act
as if they were i.i.d. from the conditional distribu-
tion given St = st. We do this by assuming the pairs
(St, St+1, ξt+1) come from a mixture model,

h(St, St+1, ξt+1) =

K∑
i=1

pi g (St, St+1, ξt+1 | θ∗i ) ,

where h is the density, K is the number of components,
pi is the ith component weight, and g is a parametric
density function with parameter θ∗i . Mixture models
offer broad distributional support but still reduce the
distribution into a finite dimensional model. Given
samples (St(ωk), St+1(ωk), ξt+1(ωk)}nk=1, let (θk)nk=1

be the component parameters associated with each
sample.

In practice, however, neither the parameters for each
observation, θ1:n, nor the number of components, K,
are known. To cope with these problems, a Dirichlet
process mixture model places a prior over the number
of observed components, their parameters, and the as-
sociations between observed data and components. A
Dirichlet process (DP) with base measure G0 and con-
centration parameter α is used to place a distribution
over the joint distribution of (pi, θ

∗
i ), the mixture pro-

portion and location of component i (Ferguson, 1973;
Antoniak, 1974). For simplicity, assume generic i.i.d.
data Z1, . . . , Zn with a distribution that is modeled by
a mixture over the parametric distribution G(θ) (as-
sociated with density g),

P ∼ DP (α,G0), θi|P ∼ P, Zi|θi ∼ G(θi). (6)

The distribution P is drawn from a Dirichlet process; it
is an almost surely discrete measure over parameters,
with the mixture proportion associated with θ as the
atomic weight.

To construct weights from Equation (6), note that
a Dirichlet process prior places a distribution over

data partitions, which are induced by the number of
components seen, K, and the parameters, θ1:n. Let
p = {C1, . . . , CK(p)} be the partition of the observa-
tions {1, . . . , n}. Here Ci = {j : θj = θ∗i } is the parti-
tion set generated by K(p) unique parameter values,
denoted θ∗1 , . . . , θ

∗
K(p). If the partition p is known, the

query variable z is included into cluster Ci with prob-
ability

ps(Ci|p) = P(z ∈ Ci |p, Z1:n) ∝ ni
∫
g(z | θ∗)dHCi

(θ∗),

where ni is the number of elements in Ci, and HCi(θ
∗)

is the posterior distribution of θ∗ conditioned on G0

and the observations {Zj : j ∈ Ci}. Given p, the
weight function is the probability that the hidden pa-
rameter for z would be θi, the parameter for Zi,

wn(z, Zi) |p =

K(p)∑
j=1

ps(Cj |p)

nj
1{i∈Cj}. (7)

Equation (7) is conditioned on a partition structure.
Let π(p) be the prior and π(p|Z1:n) the posterior dis-
tribution for partitions p induced by the Dirichlet pro-
cess. Integrating with respect to the posterior, we ob-
tain unconditional weights,

wn(z, Zi) =
∑
p

π(p|Z1:n)

K(p)∑
j=1

ps(Cj |p)

nj
1{i∈Cj} (8)

≈ 1

M

M∑
m=1

K(p(m))∑
j=1

ps(Cj |p(m))

nj
1{i∈Cj}.

It is infeasible to integrate over all of the partitions;
therefore, we approximate Equation (8) by performing
a Monte Carlo integration with M posterior partition
samples, (p(m))Mm=1. We obtain (p(m))Mm=1 by generat-
ingM samples of the hidden parameters, θ1:n, from the
posterior of Equation (6) with Gibbs sampling (Neal,
2000).

The data Z1:n can either be the states (St(ωi))
n
i=1 or

the pairs (St(ωi), St+1(ωi), ξt+1(ωi))
n
i=1. The former

relies on assumed continuity of the expectation with
respect to St. The latter requires that (St+1, ξt+1) be
integrated out from the mixture to obtain ps(Ci|p); in
general, this will give better weights.

3.3. ADPS

The storage problem is addressed by solving smaller,
deterministic subproblems in succession. A full de-
scription of this method, approximate dynamic pro-
gramming for storage, is given in Algorithm 1. For
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Algorithm 1 ADPS: Approximate Dynamic Programming for Storage

Input: time horizon T , state variable observations (S0(ωk), . . . , ST (ωk))nk=1, random outcome observations
(ξ1(ωk), . . . , ξT (ωk))nk=1, storage discretization {0 = r0, r1, . . . , rJ = Rmax}
Set V̄T (RT |ST ) = 0
for t = T − 1 to 0 do
for k = 1 to n do

Generate weights (wn(St(ωk), St(ωi)))
n
i=1

for j = 0 to J do
Set

V̄t(rj |St(ωk)) = max
xt

fKt (xt, ξt) +

n∑
i=1

wn(St(ωk), St(ωi))
[
fUt (xt, ξt+1(ωi)) + V̄t+1(Rt+1(ωi)|St+1(ωi))

]
subject to :xt ∈ X (rt), Rt+1(ωi) = fR(rj , xt, ξt+1(ωi)), i = 1, . . . , n (9)

end for
If ri ≤ Rt < ri+1, i = 0, . . . , J − 1, set V̄t(Rt |St(ωk)) = Rt−ri

ri+1−ri
V̄t(ri |St(ωk)) +

ri+1−Rt

ri+1−ri
V̄t(ri+1 |St(ωk))

end for
end for

this storage sampling scheme, ADPS requires n×J×T
optimization problems to be solved. However, given
V̄t+1(r|s), the n× J optimization problems that need
to be solved for time t are all independent and thus
their solutions can be parallelized. ADPS also main-
tains structural properties for all subproblems. As long
as fKt (xt, ξt) and fUt (xt, ξt+1) are concave in xt and rt
for every ξt and ξt+1, then all optimization problems
given by Equation (9) in Algorithm 1 are convex and
hence quickly solvable. Nevertheless, convexity may
need to be enforced due to approximation error.

4. Day Ahead Wind Commitment

We implemented ADPS on the day ahead wind com-
mitment problem with storage. We obtained hourly
wind speed data for the years 1998 through 2005
from the North American Land Data Assimilation
Survey. Data were collected by satellite on a 1/8
degree grid over North America; we selected loca-
tions in the outer banks of North Carolina (33.9375N,
77.9375W); north of Cleveland, OH in Lake Erie
(41.8125N, 81.5625W); and offshore from Point Ju-
dith, RI (41.3125N, 71.4375W). Day ahead market
data were obtained for the PJM (New York and New
Jersey area) market for the years 2002 through 2009.
Power generation curves were used for the GE 1.5MW
SL turbine. Average power generation was around 7.5
MWh per day. The loss function for unmet demand
was two times the price for that hour; the loss for
dumping excess energy was fixed at $5 per MWh.

The state variable St was composed of the last 24
hours of wind velocity cubed, (W 3

t,1, . . . ,W
3
t,24), and

the pricing data (pt,1, . . . , pt,24). Both of these vari-
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Figure 1. Day ahead market prices in $ per MWh and wind
levels in meters per second for hour 12 of each day. The
first 3 years were used for training and the last 5 were used
for testing.

ables are high dimensional but can be viewed as func-
tional data. We used functional principal component
analysis (fPCA) (Ramsay & Silverman, 2005) to de-
compose the functions into their principal components.
See Table 2 for the variance reduction associated with
each principal component. We replaced the wind and
price vectors with the scores for their first two prin-
cipal components. In both cases, the first compo-
nent corresponded to magnitude while the second to a
price/wind velocity peak in the morning.

We trained on the first three years of data (1096 -
T days) and tested on the other five (1826 days);
this corresponded to a training, testing breakdown
of 1/1/02–12/31/04, 1/1/05–12/31/09 in prices and
1/1/98–12/31/00, 1/1/01–12/31/05 in wind. Time se-
ries data are shown in Figure 1. Training data are bro-
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Table 2. Percent of variance explained by fPCA component
for wind velocity cubed (by location) and day ahead mar-
ket. The first two component scores were used as covariates
for the mixture model.

Comp. NC OH RI Day Ahead

1 73.02% 75.92% 71.94% 78.87%
2 15.17% 15.25% 18.73% 15.71%
3 6.04% 5.26% 5.34% 2.18%
4 2.58% 1.72% 1.94% 1.19%
5 1.50% 0.86% 0.95% 1.10%

Total 98.32% 99.02% 98.85% 99.06%

ken into overlapping sets based on T ; if T = 2, days
(1, 2), (2, 3), etc. form the training datasets. We used
a DP mixture of Gaussian distributions. Five poli-
cies were compared on four storage sizes: 0 MWh (no
storage), 7.5 MWh, 15 MWh and 30 MWh.

Persistence. Electricity is pledged at the level it
was generated the day before, i.e., xt = Lt.

Average. We used the function-based method of
(Hannah et al., 2010) to produce a weighted average
of previous observations. This is equivalent to setting
T = 1 in ADPS,

x∗t (st, rt) = arg max
xt

n∑
k=1

wn(st, St(ωk))

×
24∑
i=1

xt,ipt,i − fd(ydt+1,i(ωk))− fu(yut+1,i(ωk))

s.t. Rt+1(ωk) = fR(rt, xt, Lt+1(ωk)).

ADPS, T = 2. We created a value function, V̄1(r|s)
by running Algorithm 1 with T = 2 and saving V̄1.
Then, we plugged the resulting value function V̄1(r|s)
into the following equation to generate a policy,

x∗t (st, rt) = arg max
xt

n∑
k=1

wn(st, St(ωk)) (10)

×
24∑
i=1

xt,ipt,i − fd(ydt+1,i(ωk))− fu(yut+1,i(ωk))

+ V̄1(Rt+1(ωk) |St+1(ωk))

s.t. Rt+1(ωk) = fR(rt, xt, Lt+1(ωk)).

ADPS, T = 4. Same method as above, with T = 4.

ADPS, T = 6. Same method as above, with T = 6.

All policies were run in Matlab on a 2.66 GHz Intel
Core i7 with 4 GB of RAM. Optimization problems
were solved with the function fmincon using an inte-
rior points algorithm. Mean solution time for opti-
mization problems with the form of Equation (10) was
0.15 seconds. Storage levels were discretized by 0.5,
1 and 2 MWh for 7.5, 15 and 30 MWh, respectively.
Values for each policy were generated by using the first
time period policy as a policy for the MDP generated
by the testing data, which is not broken into T stage
problems. Results are given by location and storage
size in Table 3.

The results show that ADPS consistently adds value,
which generally grows with decreasing returns. What
is less expected, however, is that the time T in ADPS
seems to make little difference. This appears to be due
to the relatively small storage size (about 1 to 4 days
of electricity). There are daily and seasonal cycles in
electricity prices; the storage size is large enough to
take advantage of the former but not the latter.

The day ahead wind commitment problem was chosen
to demonstrate the ability of ADPS to solve problems
that require math programming to generate a decision
each stage, while that decision is still dependent on a
large state variable. In practice, however, renewable
penetration is low enough and tax subsidies are high
enough that wind power is not (yet) in the day ahead
market. Most production is owned by power compa-
nies who can use scheduling and short term forecast-
ing to predict and make up for shortfalls (Smith et al.,
2007). Scheduling is done using math programming;
any incorporation of “future value” will require shape-
restricted value functions that are dependent on a large
state variable. ADPS provides a reasonable method
to produce these. It should be noted that distribu-
tional forecasts can easily be included by training the
value functions on a set of historical (or model-based)
training data and then selecting m samples from the
forecast to be used in place of (ωi)

n
i=1 in Equation (10).

5. Conclusions and Future Directions

In this paper, we presented a new method to solve
stochastic storage problems that allows the use of math
programming to search the action space even when the
values of the actions depend on a large state variable.
This is achieved by clustering states with a Dirich-
let process mixture model and then fitting a shape-
restricted value function within each cluster. Work is
still needed for value function approximation: efficient
sampling design for the storage resource, fast multi-
variate convex regression and Bayesian convex regres-
sion methods to include the value function in the state
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Table 3. Average annual value of policy in $1,000 for given storage sizes and a 1.5 MW turbine. Percentages are percent
change in value over the Average policy.

Site Storage Size Persistence Average ADPS, T = 2 ADPS, T = 4 ADPS, T = 6

NC

0 MWh -0.42 (-102.7%) 15.72 – – –
7.5 MWh 76.49 (-25.3%) 102.33 114.77 (12.2%) 114.86 (12.2%) 114.54 (11.9%)
15 MWh 116.15 (-18.1%) 141.78 163.27 (15.2%) 163.51 (15.3%) 163.46 (15.3%)
30 MWh 127.94 (-15.7%) 175.40 205.26 (17.0%) 205.38 (17.0%) 205.23 (17.0%)

OH

0 MWh -13.91 (-461.2%) 3.85 – – –
7.5 MWh 60.02 (-24.7%) 79.62 90.45 (13.6%) 90.53 (13.7%) 90.47 (13.6%)
15 MWh 95.12 (-16.9%) 114.41 131.77 (15.2%) 131.83 (15.2%) 131.48 (14.9%)
30 MWh 126.57 (-17.2%) 152.79 171.82 (12.5%) 170.81 (11.8%) 170.35 (11.5%)

RI

0 MWh -10.80 (-202.7%) 10.52 – – –
7.5 MWh 72.04 (-26.6%) 98.19 107.60 (9.6%) 107.58 (9.6%) 107.52 (9.5%)
15 MWh 112.52 (-19.2%) 139.29 155.00 (11.3%) 154.46 (10.9%) 154.29 (10.8%)
30 MWh 148.74 (-16.77%) 178.71 200.83 (12.4%) 198.72 (11.2%) 198.31 (11.0%)

mixture. For use in larger problems, policies need to
be more robust: changes in training data can produce
large changes in policy. This will require a combina-
tion of regularization, quantifying model uncertainty
and using robust optimization.
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