
Preface

“How sensitive are the values of the outputs of my computer program with respect
to changes in the values of the inputs? How sensitive are these first-order sensitivities
with respect to changes in the values of the inputs? How sensitive are the second-order
sensitivities with respect to changes in the values of the inputs? . . .”

Computational scientists, engineers, and economists as well as quantitative analysts
in computational finance tend to ask these questions on a regular basis. They write computer
programs in order to simulate diverse real-world phenomena. The underlying mathemat-
ical models often depend on a possibly large number of (typically unknown or uncertain)
parameters. Values for the corresponding inputs of the numerical simulation programs can,
for example, be the result of (typically error-prone) observations and measurements. If
very small perturbations in these uncertain values yield large changes in the values of the
outputs, then the feasibility of the entire simulation becomes questionable. Nobody should
make decisions based on such highly uncertain data.

Quantitative information about the extent of this uncertainty is crucial. First- and
higher-order sensitivities of outputs of numerical simulation programs with respect to their
inputs (also first and higher derivatives) form the basis for various approximations of uncer-
tainty. They are also crucial ingredients of a large number of numerical algorithms ranging
from the solution of (systems of) nonlinear equations to optimization under constraints
given as (systems of) partial differential equations. This book describes a set of techniques
for modifying the semantics of numerical simulation programs such that the desired first
and higher derivatives can be computed accurately and efficiently. Computer programs im-
plement algorithms. Consequently, the subject is known as Algorithmic (also Automatic)
Differentiation (AD).

AD provides two fundamental modes. In forward mode, a tangent-linear version of
the original program is built. The sensitivities of all outputs of the program with respect
to its inputs can be computed at a computational cost that is proportional to the number of
inputs. The computational complexity is similar to that of finite difference approximation.
At the same time, the desired derivatives are computed with machine accuracy. Truncation
is avoided.

Reverse mode yields an adjoint program that can be used to perform the same task at a
computational cost that is proportional to the number of outputs. For example, in large-scale
nonlinear optimization a scalar objective that is returned by the given computer program
can depend on a very large number of input parameters. The adjoint program allows for
the computation of the gradient (the first-order sensitivities of the objective with respect to
all parameters) at a small constant multiple R (typically between 3 and 30) of the cost of
running the original program. It outperforms gradient accumulation routines that are based

xi



xii Preface

on finite differences or on tangent-linear code as soon as the size of the gradient exceeds R.
The ratio R plays a very prominent role in the evaluation of the quality of derivative code.
It will reappear several times in this book.

The generation of tangent-linear and adjoint code is the main topic of this introduc-
tion to The Art of Differentiating Computer Programs by AD. Repeated applications of
forward and reverse modes yield higher-order tangent-linear and adjoint code. Two ways
of implementing AD are presented. Derivative code compilers take a source transforma-
tion approach in order to realize the semantic modification. Alternatively, run time support
libraries can be developed that use operator and function overloading based on a redefined
floating-point data type to propagate tangent-linear as well as adjoint sensitivities. Note that

AD differentiates what you implement!1

Many successful applications of AD are described in the proceedings of, five interna-
tional conferences [10, 11, 13, 18, 19]. The standard book on the subject by Griewank and
Walther [36] covers a wide range of basic, as well as advanced, topics in AD. Our focus is
different. We aim to present a textbook style introduction to AD for undergraduate and grad-
uate students as well as for practitioners in computational science, engineering, economics,
and finance. The material was developed to support courses on “Computational Differ-
entiation” and “Derivatives Code Compilers” for students of Computational Engineering
Science, Mathematics, and Computer Science at RWTH Aachen University. Project-style
exercises come with detailed hints on possible solutions. All software is provided as open
source. In particular, we present a fully functional derivative code compiler (dcc) for a
(very) limited subset of C/C++. It can be used to generate tangent-linear and adjoint code of
arbitrary order by reapplication to its own output. Our run time support librarydco provides
a better language coverage at the expense of less efficient derivative code. It uses operator
and function overloading in C++. Both tools form the basis for the ongoing development
of production versions that are actively used in a number of collaborative projects among
scientists and engineers from various application areas.

Except for relatively simple cases, the differentiation of computer programs is not
automatic despite the existence of many reasonably mature AD software packages.2 To
reveal their full power, AD solutions need to be integrated into existing numerical simulation
software. Targeted application of AD tools and intervention by educated users is crucial.
We expect AD to be become truly “automatic” at some time in the (distant) future. In
particular, the automatic generation of optimal (in terms of robustness and efficiency) adjoint
versions of large-scale simulation code is one of the great open challenges in the field of
High-Performance Scientific Computing. With this book, we hope to contribute to a better
understanding of AD by a wider range of potential users of this technology. Combine it
with the book of Griewank and Walther [36] for a comprehensive introduction to the state
of the art in the field.

There are several reasonable paths through this book that depend on your specific
interests. Chapter 1 motivates the use of differentiated computer programs in the context of
methods for the solution of systems of nonlinear equations and for nonlinear programming.
The drawbacks of closed-form symbolic differentiation and finite difference approxima-
tions are discussed, and the superiority of adjoint over tangent-linear code is shown if the

1Which occasionally differs from what you think you implement!
2See www.autodiff.org.



Preface xiii

number of inputs exceeds the number of outputs significantly. The generation of tangent-
linear and adjoint code by forward and reverse mode AD is the subject of Chapter 2. If
you are a potential user of first-order AD exclusively, then you may proceed immediately
to the relevant sections of Chapter 5, covering the use of dcc for the generation of first
derivative code. Otherwise, read Chapter 3 to find out more about the generation of second-
or higher-order tangent-linear and adjoint code. The remaining sections in Chapter 5 illus-
trate the use of dcc for the partial automation of the corresponding source transformation.
Prospective developers of derivative code compilers should not skip Chapter 4. There, we
relate well-known material from compiler construction to the task of differentiating com-
puter programs. The scanner and parser generators flex and bison are used to build a
compiler front-end that is suitable for both single- and multipass compilation of derivative
code. Further relevant material, including hints on the solutions for all exercises, is collected
in the Appendix.

The supplementary website for this book, http://www.siam.org/se22, contains sources
of all software discussed in the book, further exercises and comments on their solutions
(growing over the coming years), links to further sites on AD, and errata.

In practice, the programming language that is used for the implementation of the orig-
inal program accounts for many of the problems to be addressed by users of AD technology.
Each language deserves to be covered by a separate book. The given computing infrastruc-
ture (hardware, native compilers, concurrency/parallelism, external libraries, handling data,
i/o, etc.) and software policies (level of robustness and safety, version management) may
complicate things even further. Nevertheless, AD is actively used in many large projects,
each of them posing specific challenges. The collection of these issues and their struc-
tured presentation in the form of a book can probably only be achieved by a group of AD
practitioners and is clearly beyond the scope of this introduction.

Let us conclude these opening remarks with comments on the book’s title, which
might sound vaguely familiar. While its scope is obviously much narrower than that of the
classic by Knuth [45], the application of AD to computer programs still deserves to be called
an “art.” Educated users are crucial prerequisites for robust and efficient AD solutions in the
context of large-scale numerical simulation programs. “In AD details really do matter.”3

With this book, we hope to set the stage for many more “artists” to enter this exciting field.

Uwe Naumann
July 2011

3Quote from one of the anonymous referees.


