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Abstract

The test flight of the gravity gradiometer survey system was taken in a flat area. In the future
the tests will be carried out in rough mountain area and the topographic effect has to be taken into
account. In this report the analytical downward continuation method was used to determine the
gravity disturbance on the earth's topographic surface. The downward continuation is an
improperly posed problem, especially in the processing of the aerial gradient data. In order to
overcome this difficult, three methods were discussed and used for a simulated computation. The
numerical computation shows that the gravity disturbance can be determined on the earth's surface
with satisfactory accuracy. With a 1 E6tvds measurement error in the gravity gradient data, the
gravity disturbance was determined on the earth's surface with the accuracy of 1 mgal. The gravity
disturbance was recovered with the accuracy of 3 mgal when the measurement error of the gravity
gradient was 5 E6tvos.
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1. Introduction

After many years of development of the hardware, the airborne gravity gradiometry has
reached the operational stage. The test flight was taken in the Texas-Oklahoma area and the test
results were published (Brzezowski, et al., 1988). The test area is very smooth, so the
topographic effect was neglected. In the future, the airborne gravity gradiometry will be used for
the rough mountain area. The effect of the topography has to be taken into account in more rugged
topographic areas. For many years this problem has been studied by different authors (Chinnery,
1961; Dorman et al., 1974; Hammer, 1976; Tziavos, et al., 1988). All studies had a basic idea -
they intended to eliminate the effect of the topography by removing the mass above the geoid. The
gradients of the attractions of the mass above the geoid were subtracted from the aerial gradient
data, and the gravity disturbances could be determined on the geoid by processing the reduced
aerial gradient data.

If the gravity disturbance is determined on the earth's surface, other methods can be used.
One of the methods was suggested by Jekeli (1987). He used a surface integral to determine the
disturbing potential on the earth's surface and avoided using the topographic reduction.
Theoretically, this method is perfect but it is difficult to realize in practice, because the inclination
of the topography, which is ill-defined, is needed at every computation point.

An alternative solution (ibid., p.239) which is difficult but simply defined is the use of the
analytical continuation method. Assume that the derivatives of the disturbing potential T, such as
T,, Tzz, Tzzz, ..., can be well determined at a mean plane through the topographic surface. By
analytical downward continuation, the gravity disturbance can be determined on the topographic
surface by using Taylor's series.

It was shown (Schwarz, 1979; Rummel, et al.,, 1979; Neyman, 1985; Ilk, 1988) that
downward continuation is an improperly posed problem. An improperly posed problem may have
a solution but it does not depend on the data continuously. A small error in data, e.g. a random
measurement error, can cause a significant deviation in the solution. Itis expected that the second
derivatives of the disturbing potential T, such as Tz, Tzx, Txys -.., are rough at the flight altitude.
The problem is, how can we downward continue these rough functions to a mean level?
Furthermore, how can we absorb the useful information from such data to determine even higher
derivatives of the disturbing potential on the mean level? Sometimes it looks like it is impossible,
but if the gradient data is accurate and in good distribution, the reasonable results can always be
expected. In order to avoid the instability of the computations and get a reasonable smooth
solution, there are different methods that can be used, e.g., least squares collocation,
regularization, or smoothing (filtering). These methods have the same property: they filter out the
high frequency of the data and make the results stable and smooth. We will show that the three
methods are identical under some conditions .

The goal of this study is to find methods for the determination of the gravity disturbance on

the topographic surface by processing the aerial gradient data. The numerical computation will be
carried out to gain an idea about the use of the methods.

Because the gradient data can be obtained at regular grid points, the very efficient numerical
computation method - Fast Fourier transformation (FFT), is used. We will study the problem in
the spectral domain and use FFT in the numerical computations.

2. Solution of the Analytical Downward Continuation for the Airborne Gravity Gradiometry

This section presents the formulas of the analytical downward continuation for the airborne
gravity gradiometry.



Because the airbonre gravity-gradiometry is taken in a local area, the flat-earth approximation
is suitable for the processing the aerial gravity gradient data (Jekeli, 1985).

At first we consider the analytical downward continuation of the aerial gravity-grgdiept data to
the mean elevation level. The geometry of the airborne gravity-gradiometry is drawn in Figure 1.
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‘ Figure 1. Geometry of the Airborne Gradiometry

Assume that the Runge's theorem (Moritz, 1980, p. 67) is valid also for the plane approximation,
one can say that there is a function which is harmonic on and outside the mean elevation level and
this function approximates the disturbing potential on and outside the earth's surface as good as we
wish. We assume this function can be approximated by the analytically downward continuing the
disturbing potential of the earth from outside the earth's surface to the mean elevation level.

Therefore we assume that the disturbing potential T and its derivatives, such as Tj, Tij, 1,j =
1,2, 3 corresponding to the subscripts x, y, z respectively, are analytically downward continued
inside the earth and are harmonic above the mean elevation level.

The Poisson's integral gives the relationship between a solid harmonic function and its values
at the mean elevation level (cf. Heiskannen and Moritz, 1967, p. 239):

z T(x,
Tlxp ¥p Zl'a=ﬁf./; %Cb‘d)’ "

where 1 = [(x-xp)2 + (y-yp)? + 241172, is the distance between the current point on the mean
elevation level 7 and the point P at the flight level; zy is the height of the flight level above the mean
elevation level. Eq. (1) is valid for any harmonic function. For the derivatives of the disturbing
potential Tj, Tjj we have:
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The second derivatives of the disturbing potential Tj; are given on the flight level, the
derivatives of the disturbing potential T, such as Tj, Tiz, 'f'izz and even higher terms will be
determined on the mean elevation level. We consider this process in two steps: first the
components of the gravity disturbance T; are computed at the flight level by processing the second
derivatives of the disturbing potential T,_, The formulas can be found in (Jekeli, 1985)
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where 1%) = (x-x")2 + (y-y")2 and « is the azimuth of the point (x’, y’) with respect to the point
(x,y)-

The second step is to downward continue the derivatives of the disturbing potential Tj, Tjz,
Tizz to the mean level by using the Poisson's integral. If Tj, Tjz, Tj;; are determined on the mean
level, then we can get the gravity disturbance on the topographic surface by using Taylor's series:
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where Ah = QP’ = hQ - hm, the height of the topography referenced to the mean elevation level.

The role of the mean elevation level is like the point level in the analytical downward
continuation solution of the Molodensky's problem (Moritz, 1980). Instead of the point level in
the solution of the Molodensky's problem the mean elevation level is being used, so that Tj, Ah
Tiz, 1/2 (Ah)2 Tj;, should have a similar magnitude and property as Ag, g1 and g7 of the solution
of the Molodensky's problem. For more details about the numerical properties of gi, g2 and
higher terms see (Wang, 1987).

In the following discussion we consider how the gravity disturbance and its derivatives can
best be determined on the mean elevation level. First we consider the use of least squares
collocation to process the aerial gravity-gradient data.

3. Processing the Aerial Gravity-Gradient Data by Using Least Squares Collocation in a
Continuous Case

If the data are dense and regularly distributed as in the case of airborne gradiometry, least
squares collocation can be considered in a continuous case. The advantages are that the problem
can be solved in the frequency domain easily and the efficient numerical computation method - Fast
Fourier transform can be used.

Generally, we consider the operator equation
g° =Af g°e G, feF . (10)

where A: F — G, a linear operator which maps the normed space F into the normed space G. In
airborne gradiometry A can be any integral or differential operator. A specific example is: A is the
upward continue operator defined by the Poisson's integral (formula (3)); f is the second derivative
of the disturbing potential Tj; at the mean level T and g° is Tjj at the flight level. Now we have the
second derivatives of the disturbing potential Tij at the flight level. We want to determine Tjjon
the mean level 1. This inverse problem may be properly posed if Tjj at the flight level is smooth
enough and errorless.

In practice such an inverse problem is improperly defined, because we always have the errors
in the data. It means, instead of the original function g°, we have in practice

g=g°+e 1)
where € is the measurement error.
Even though the inverse of the operator A-1 exists, the solution

ff=Alg (12)

can be quite different from f which we are trying to determine. Now we want to find the methods
to overcome this difficulty.

If we have the previous information about the statistics of the data and the measurement error,
the method of least squares collocation can be used to obtain a solution. This technique has
become a standard computational method for the inverse problem in physical geodesy.



In eq. (11) we assume that the function g° is centered:
M{g’}=0

The operator M is defined as

T T
M{g}=lim — [ [ " g°(x,y)axdy
T 4T T 2T (13)

The function g° is deterministic and the error € is considered as a stochastic process, so the
measurement g is a stochastic process.

The variance and the covariance function are defined as

Cge{P, Q= M{f (P} flQ}

Cgg (P, Q=M({f(P) Q)

P, Q are the points on the reference plane.

(14)

We assume the function g° and the error € are independent:
M{e(P) (@} = M {g°lP)e(Q} =0

M{e(P) gQ) = M {e(P)e(Q)} = CpalP.Q) (15)

where Cpp is the covariance of the error €.
We consider a process for the best estimation of the function f:

f=Hg (16)

where £ is the best estimate of the function f, H is the estimation operator which makes the mean
square estimation error e the smallest:

M { ez} =M {(f—f)z} = min.

Eq. (17) is equivalent to

(7

Cee (r =0, H) = min. (18)

where Cee is the covariance of the estimation error, and it is a function of the estimator H; r is the
distance between the points P and Q.



Eq. (18) can be viewed as an extreme value problem: To find an estimator H which makes
Cee (r =0, H) the smallest.

Now we consider how to solve this minimum problem in the frequency domain.

The two dimensional Fourier transformation and its inverse are defined by

F {f(x,y)) f f f(x,y) 2"""“"yv)dxd

(19)
F (g fuv)) = f f g (u,v) e T gy gy
- (20)
where j =V-1; F and F-1 denote the Fourier transformation and its inverse respectively.
We denote the Fourier transformation of the function f by w¢
of =F {f(x, y)} Q1)
and assume that
F (Af} = 0 oy 22)
F {Hf} = ¢y o
where 04, Oy are called the spectra of the operators A and H respectively.
For the Fourier transformation of the covariances we have (cf. Schwarz, et al., 1989):
R (u,v)=FIC (x Y) lim o .0
i€ {C }T_)4T(ff) 03
R (u v)=FfC_(xy (VIO
{CrxnN}= T_W4T( ©%)
= lim —5(0 ¢,0 o, R
Tesyeo 4T(fA f) A 24)
Rgf (0, v) =F {Cgf (x,y)} = ¢a Ryr
= Rf, 25)

Rgg (u, V) = 6A OA Rer (26)



where the symbol " * " denotes the conjugate of a complex function and Rgf, Reg, Rgf, Rgg are the
Fourier transformation of the covariances. Sometimes they are called the power spectral density
function.

If we denote the power spectral density of the estimation error by Ree (u, v), then eq. (18) can
be written in the form:

Cee(r=0,H)=ﬂﬁan(u,v, ¢H)du dv =min.
- @7)

then the extreme value problem becomes:
To find the spectrum of the operator H which makes the estimation error the smallest.

If there is a procedure which minimizes the power spectral density function of the estimation
error everywhere in the frequency domain:

R (0, v, 0 =min, u,ve (oo, +oo) 28)

the word "everywhere" means the minimum values of Ree for every frequency u, v, then the
extreme value problem (18) can be replaced by (28) in frequency domain. The minimum condition
(28) was used by Bendat (1980) for minimizing the power spectral density function of the
estimation error.

Note that the Ree is non-negative and compare eq. (28) with eq. (27), one can find that eq.
(27) can be obtained by using eq. (28). If the power spectral density function Ree is minimized
everywhere, its integration Cee (r = 0, H) is also smallest.

The estimation error covariance is given by

Ceo=M{e(P)e (@) = M{[£(P)- F(P][7Q1- F(Ql}

=Cy- Cg- Cipt+ C (29)

Using eqgs. (23) - (26) and (29) we get the power spectral density function of the estimation
eITor €:

L I

Rec= Rff" ¢H¢ARff- ¢H¢ARff+ ¢H¢H(¢A ¢A Rff+ Rnn) (30)

Under the minimum condition (28), the spectra ¢ﬁ, ¢y have to satisfy the following conditions:

d

—[Ruy=0
Wy 31)



2 Ry=0

8¢H
From (30) and (31) we get:
0 Ry
¢H== .
¢A ¢A Rff+ Rnn
* oA Rgr
¢}{=: -
¢A ¢A Rff+ Rnn

The best estimate of the function f is given by
A -1
f=F {¢H mg}

*

- ¢, R
* g
¢A ¢A Rff+ Rnn

where @y is the Fourier transformation of the measurement (data) g.

The estimation error is given by (cf. egs. (27) and (30)):

M (€2} = Cee (0)

hd 2 *
=ff [(1-¢A¢H Rff+¢H¢HRm]dudv

(32)

(33)

(34

(35)

If the pre-information of the statistics of the function f and the error e, or the power spectral
density function R¢f and Rpp, are known, then we can use formulas (32) and (34) to get the best
estimation of the function f from the data g. The estimation error can be computed by using eq.

(35).

Now we consider a more general case. We have a heterogeneous data set related to the

function f:



gi=A1f+g
g2=Axf+e

gn=Anf+En, (36)

A solution which is the best approximation of the function f is to be determined by processing
this heterogeneous data. An example for eq. (36) is the processing of aerial gravity-gradient data.
gi,i= 1,2, ... 6is the second derivative of the disturbing potential, and f can be the disturbing
potential or any of its derivatives. Of course, if we have any other data related to the function f, we
can always put it in the form as eq. (36).

We assume the best estimate of the function f is given by:

n
f=H1g1+H2g2+...+Hngn=ZHigi

i=1 (37)
The estimation error is
~ n
e=f-f=f- ) Hig;
i=1 (38)

The estimation error covariance has the same form as eq. (29):

Cee= Cgs- Cte- Cee+ Cfi (29

Note that

= =1 .L_ .
R, =F{C}=lm — = (©,%)

= 2 ¢Ha¢i Ry
i=1

1=
Rg=F(Cg)
n k  »
=2, 0u0; Rg
=1 (39)
Ri=F[CH)



-3 S outafoo maer)

n
i=1 j=1

R;;= {gjj% 0 .

Here we have assumed the measure errors €, 1= 1, 2, ... n are independent of each other; Rjj is
the power spectral density function of the measurement error €j; ¢j is the spectrum of the operator
Aj. The spectral density function of the estimation error is:

Il n * %
Ree=Ryr- Y, 0p0; Re;- Z¢Hgbj Re+
i=1 j=1

+ Z z ¢H;¢H,-(¢i ¢j Re+Ry;
i=1j=1 41)

The power spectral density function Reg has the extreme value when:

dR
>=0
W, “2)
dR,,
=0
3y

Using egs. (41) and (42) we get

- 2 ¢j R+ zzq)ﬂi(q)iq)j R+ R;jj=0
j=1 i=1j=1 @3)

- ; O;Re+ ZZ‘I’H,.(‘% ®; Ree+ Rij)= 0

i=1j=1
Eq. (43) can be rewritten as

n »* n

2|9 Re+ D 05(0;0; Rep+ Rij) =0
i=1

=1

(43%)
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i=1

n * *
R+ Z¢Hj(¢i¢j R+ Rij) =0
i1

Eq. (43*) implies that

~¢; R+ ¢Hi(¢i¢j Rg+R;j=0
B (44)

~O;Rg+ ), ¢Hi(¢i ¢; R+ Rij)= 0
=1

d (45)

Equations (44) and (45) are conjugate to each other. They are indeterminate linear equations.

There are infinite solutions for the "variables” ¢g; and q>i'ij. One of the solutions of eq. (44) can be
written as:

*
o; R
b= . whenR;;=Ros=... Ry

i n «
D, 6;0; R+ Ry;
j=1

(46)

This is a special case in which all measurement errors have the same magnitude and property
(same power spectral density function). One can expect that it can happen sometimes, €.g., in the

airborne gravity-gradiometry, the components of the gradient of the gravity are measured with
different accuracy.

In the last case the solution for the indeterminate equation (44) can be

* -1
0; ReeRy;
¢Hi=
n * 1
Z 0; 0;RgRj; +1
= 47
If the power spectral density function of the measurement error is "white" noise, we have:
Rjj = constant (48)

We then can define a spectral weight m;‘, by



@p=Rii (49)

so that equation (47) becomes:

*

i
®; R,

¢Hi=
n * _]
Z ¢j ¢j Rffmp+ 1
j=1

(50)

Obviously, eq. (50) can be considered as a weighted least squares collocation solution with weight
(DI‘,. If a data set is measured with low accuracy, based on €gs. (49) and (50), the spectral weight

G)E) becomes smaller and so the ¢H;. This data set is weighted and has less contribution to the
results.

The definition of the spectral weight (n;‘, can also be expanded to a more general case in which
the Ree is not restricted to be a constant. Assume that the power spectral density function of the
measurement errors is not only the "white" noise and let eq. (49) still be valid, eq. (47) can be
considered as a weighted least squares collocation solution with weight @}, too. The only
difference from the "white" noise case is that the spectral weight (DE, has different values to different
frequencies.

We now consider only the case in which all data are measured with the same accuracy. The
best estimation of the function f is given by

~ -1 I
f=F {z(pﬂimgi
i=1

*
n ¢i (Dginf

=F! z

i=1 & *
2 ¢j ¢j Rff+Rii
j=1

(1)
where g; is the Fourier transform of the data g;.

The estimation error variance is (cf. egs. (27) and 41)):

M (€2} = Cee (0)

2

=ff:[(1-g¢i¢n) Rff"'glq)ﬂrRii dudv

(52)

12



Here we have used:

Y. 2. 04 0uRij= 2 0n,0uRii
i=1j=1 =1 (53)

In an ideal case the data are errorless, the spectrum of the best estimation operator H;j has the
form:

) (54)

then the function f can be exactly recovered without using any pre-information of the statistics of
the function f.

Because egs. (44), and (45) are indeterminate linear equations and pose infinite solutions, we
can find another solutions of the operator H; which satisfies egs. (44) and (45). An alternative
method to solve this problem is discussed in (Bendat, et al., 1980, Chapter 10).

The above formulas can be used for any observed quantities which are related to the disturbing
potential, e.g., the gravity anomalies; deflections of the vertical; geoid undulation etc. If we have
such heterogeneous data, the above formulas can be used to determine the needed quantities.

The weakness of this method is that the data have to be regularly distributed and should not be
so sparse that the interested information is lost.

4. Regularization

In Section 3 we have considered the solution of the improperly posed problem by using least
squares collocation. Now we study the problem from another starting point. We will consider the
solution to be stable and smooth.

In least squares collocation the statistics of the determined function and the measurement error
have to be known. In practice, they are never exactly known and are always assumed. If the
solutions are sensitive to the statistical model of the measurement error or of the function being
estimated, or the statistical model is not properly assumed, the results may not be good or not
stable. In this case one can consider the use of a regularization method.

The regularization method has been used in many technical and scientific areas (Nashed,
1974). The use of the regularization in physical geodesy can be found in (Schwarz, 1979;
Neyman, 1985; Ilk, 1988). This method is flexible in obtaining a stable and smooth solution

because we have the chance to choose the regularization parameter and the regularization function
arbitrarily.

13
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There are different regularization methods and different ways to regularize an improperly
posed problem; for more detailed see Nashed (1974). Here we are interested in this problem: Find

a solution where its nth derivatives are smooth and it is the best approximation of the original
solution.
For the improperly posed operator equation
g=Af (109
fe F,ge G

Let F, G and Z be Hilbert spaces and A: F—G be an operator mapping the Hilbert space F into G;
Lm: F—Z be an operator mapping the Hilbert space F into Z. We consider the minimization
problem: find a function f, to minimize the functional

2
(£, 8 0 L) =[IAE - gl + o [Lnt], (55)

where the norm of a function f is defined
2 .
[I£1° = {£, (56)

Eq. (56) is from the definition of the Hilbert space (Bachman, et al., 1966, p. 141). The inner
product (f, f) can be defined for our purpose as: :

1 T T
(£.0 =lm — | £ dx dy
Toe AT" "o ot (57)
where f* is the conjugate of the function f.
Notice that
Af-g=¢ (58)
where € is the measurement error, therefore €q. (55) is equal to
J(f o, L )—||e||2+oz2 L,f
» 8, & L) =||€]lg L £ (59)

Let a = 0, then the minimization problem (55) becomes: find a function fo to minimize the
functional

2
I, g)=|el] 60)

Eq. (60) is a classic least-squares minimization problem. The physical meaning of the last term in
(59) is clear. If Ly, is chosen as a differential operator up to m order, then the minimization



problem (55) means: to finda function fy, to minimize not only the measurement error, but also the

functional |[Lyf] |. The last term | ILmf || makes the function fo smooth and stable and it makes
the difference between the classic least-squares minimization problem and the regularization
problem.

The solution of (55) has been given by (Nashed, 1974, chapter 4):

* 2 * *
(A A+a LmL,,,)fa=A g

(61)
where A* is the adjoint operator and is defined by (Bachman, et al., 1966, p. 16):
(Ax,y)=(x,A*y), x,yeF (62)
If the inverse of the operator
* 2 *
(A A+a L Lm)
exists, then we have the solution
* * -1,
Based on the Lemma 2.2 (ibid, p. 25) we get the spectrum of the adjoint operator A*:
0 =0y (64)

That means that the spectrum of the adjoint operator A* is equal to the conjugate of the spectrum of
the operator A.

Applying the Fourier transformation to €q. (61), we get the spectrum of the regularization
solution fg:

*

F{fa}—(ofa— - _—
We denote (61) by an operator equation
fao=Hpg (66)

with

15
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* 2 * *
H0=(A A+o LmLm) A

(67)
Hg was viewed as a regularization operator by Nashed (1974).
In the spectral domain eq. (66) can be written in the form (cf. eq. (65)):
Dr,= On, 0 (68)
with
q)*
=
Padata o O (69)
The regularization error is defined as
ef=f-fgy, (70)
and the error covariaﬁce is
cl=m{c P}
=C- Cror- Crio + Croge 1)
The power spectral density function of the regularization error is given by:
Reelu, V)= F {Clelx, y))
2 2
=(1- 08,0 Rer+|0] Ran -

where Rpp is the power spectral density function of the measurement error.

From egs. (61) and (69) we can see that the solution fo is dependent on the regularization
parameter & and on the choices of the operator Ly,. No statistical model of the function f and the
measurement error are needed. But if the regularization error is to be determined, the statistics of
the measurement error and of the function being estimated, are always needed (cf. eq. (72)).

The mean square of the regularization error is given by:

Cee(0, @, Lm)=ff°°R’(u,v)dudv
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) f f: [(1 ' ¢H0¢A)2 R+ |¢qu2 R,m] dudv

Cze (0, o, L) is a function of the regularization parameters o and the operator L.

(73)

The regularization of the improperly posed problem can be extended to the heterogeneous
data. Denote the equations (36) with the vectorial form:

where the underbar denotes the vector, £ is a vector function with the components g;, i=1,2,

.0, and A is a vector operator with components A;,i=1,2,...n. The minimization problem is:
Find a function fg, to minimize the functional

J (6 & 0 Lm) =1l Af- £15 + o2 [Lusfliz (75)

The norm of a vector in the Hilbert space G is defined by the inner product:
lel’ = (&-8) = (Af.AD
= (45+ - Af, f) (76)

where the symbol "+" denotes the transpose of the adjoint operator of the vector operator A. The
product of the A™ - A is a scalar operator and it is given by

A" A=ATA +ALA, H L FALA, an

Because the Af, g are the elements of the Hilbert space G, therefore the extreme value problem
(75) is the same as the problem defined in (ibid, chapter 4). The solution of eq. (75) is then

A" A+2Li Ly fa=A"- & (78)
If the inverse of the operator

A" -A+o2LpLn
exists, then eq. (78) can be written in the form

fo=A" A+o2LiLo! AT g (79)
By using eq. (77) and the definition of the vector operator eq. (78) can be written as

no . 2 . no,
YA Aj+a LyLy fa=ZAi g;

i=1 i=1 (80)
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Applying the Fourier transformation to eq. (80) and using egs. (22) and (64), we obtain the
spectrum of the regularized function fy;

n * 2 *
Z o; ¢+ O o
=1 (81)
In order to get the fq in space domain, the operator equation (80) has to be solved. In the
frequency domain this problem becomes much easier: the regularized function f can be obtained
by taking the inverse Fourier transformation of eq. (81).

The estimation error covariance is the same as eq. (71):

R
Cee=Cp- Cr - Cgr + Cr g, (82)

where the superscript "R" distinguishes the estimation error covariance between the heterogenous
data and the homogeneous data cases.

Notice that
F{Cg} =Ry

F{Cg=0oRy (83)

%k
F{Cq}=0o Ry
. 2
F{Crsh=000oRe+ 0.,
where

2.0, 6;

i=1

bo=0p= . . 5 .
Z 0 0;+a o 0
=1 (84)
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n *
2 ¢i ¢i Rii
2 i=1
b= 2
n * 2 =
200+ 0 0 0
= : (85)
then we have
R 2 2
Ree= (Il - ¢o) R+ ¢, (86)

obviously the RR, is a function of the parameter o and the power spectral density function ¢r .

5. Smoothing

In practice there are always some kinds of smoothing being used in the numerical
computations. For instance, the use of the mean values of the data is a smoothing. A smoothing
procedure can be used for solving the improperly posed problem. If we know the frequency
composition of the function f and of the measurement error, we can design a smoothing operator
(filter) to filter out the effect of errors.

Here we introduce one smoothing operator which has the spectrum
¢ =——, 020, A20

A

1+ o @7

where ¢ is the spectrum of the smoothing operator S, and o, A are parameters which can be
chosen; @ = (u2 + v2)12, u, v, are frequency variables. ¢s is a low-pass filter because it filters out
the high frequencies and lets the low frequencies pass through.

For the improperly posed problem we have the solution

fs=S-Alg (88)
In the spectral domain eq. (88) can be written as

-1
mf,= ¢s ¢A mg (89)

The smoothing procedure can also be applied to the heterogeneous data. If the data are
errorless, the best estimation operator Hj was given by eq. (53) and the spectrum of the solution is
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=1 (90)

In reality the errors are always included in the data. Except for the systematic error the
measurement error are often modeled by random error and such error effects mostly the high and
very high frequencies of the data. Therefore a low-pass filter can be used to decrease such effect.
Another reason of the use of the low-pass filter is that the high frequencies (nearby Nyquist
frequency) must be minimized in the numerical computation. Because such frequencies are mostly
distorted by the measurement error, sampling error, truncation error, etc.

After the smoothing of eq. (90) we obtain a solution:

o1

If the smoothing procedure is chosen properly, the effect of the errors can also be minimized
and a smooth solution can be obtained from an improperly posed problem.

The smoothing error is given by
eS=f-f 92)

and the error covariance is

Cl.= M{es(P) e’ (Q)}

=C-Cpr,- Cppt+ Crg ©3)

By using eqgs. (10), (11), (88) and (92) we get the power spectral density function of the
smoothing error:

2

. 2 -1
Reefu, v)=(1-0) Re+[0,0, | R,,

94)

For the heterogeneous data the estimation error e is given by
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RE fu,v)=(1-0) Re+| o,

where Rj; is the power spectral density function of the measurement error &;.

95)
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6. Relationship Between the Least Square Collocation, Regularization and Smoothing

The relationship between the least squares collocation and the regularization method was
shown in (Rummel, et al., 1979). Both of the methods are identical under some restrictions.
Basically, three methods are the same and have the same property: they filter out the high
frequencies in the solutions and make the solution stable and smooth.  We will show that they are
identical if they satisfy a few conditions.

The easiest way to show the relationship between the three methods is to inspect them in the
spectral domain. We consider only the homogeneous data case. Comparing eq. (32) with (69),
we find that ¢g and ¢y become identical, if the following equation holds

2
o ¢Lm¢Lm= R, /R

(96)

Rewrite eq. (69) in the form

-1
-1 (1 2 . )
= +a /
Op,=Oa O 0L/ 694 o
and compare (97) with (89) and using eq. (87), we get the equation:
-1

2 * A

O 0L 9L |0404 =0 0 (98)

If the regularization parameter o and the spectrum of the operator Ly, satisfy eq. (97), then the

regularization method is identical with the smoothing method which has a spectrum similar to eq.
87).

Putting egs. (96) and (98) together, we get the identical condition of three methods:

2 =x -1 * A
o ¢Lm¢l_,m= RunRg = ¢A¢A o 99)

If the regularization parameter o, smoothing parameters 0, A and the regularization operator oLy,
satisfy eq. (99), then the three methods are identical.

The study has shown the relationship between the three methods. They pose the same property -
reducing or filtering out the high frequencies in the solution. But they are different procedures.
They are identical only when all of them fulfill the condition (99).

For the regularization and smoothing method we can choose the parameters and the
regularization operator L, or different smoothing operator to get smooth solutions. Therefore they
are more flexible than least squares collocation for the solving of improperly posed problems.



7. Numerical Test

In this section we take numerical tests. The goal of this numerical simulation is: To have an
idea about the use of the Taylor series to get the gravity disturbance on the earth's surface by
processing the aerial gravity-gradient data. The formulas above derived are used to determine the
derivatives of the disturbing potential, such as Tz, Tzz, Tzzz at the mean level. We want to know
how good the methods are and have a view about the magnitude of the terms, such as Ah T,
1/2(Ah)2 Tyzz.

The test area that was chosen has the geographic latitude 32°<(<35° and the geographic
longitude 257°<A<260°. The 4 km x 4 km free-air anomaly for the United States (Rapp, et al.,
1988) was used as the original data.

In the computation the point mass model was used. We assumed that there is a point mass

layer embedded at a depth of 8 km below sea level (i.e. the geoid). The relationship between the
point layer and the disturbing potential T is given by:

N M .
Ty, d=- 22, M

i=1j=1 [(x - xi)2 + (y - yj)2 +d

5 1/2
] (100)

where Mj; is the product of the point mass at point (xj, y;) times the gravitational constant G, and d
is the height of the computed point; N, M are the grid numbers of the area along x and y directions,
the minus sign in eq. (100) is for convenience. The geometry of the point mass model is shown in
Figure 2.

z
? Flight Altitude

Topography

Mean Elevation level

— hfm \
$/'y + Sea level

8 km
{ Point Mass Layer
—» X

Figure 2. Geometry of the Point Mass Model (z9 = 4 km, hm = 1.5 km)
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The computational process is described generally as follows:

1. Read the free-air anomaly from the 4 km x 4 km data file (Rapp, et al., 1988) and assume
the data are given on the sea level. Furthermore, the free-air anomaly is assumed to be the

gravity disturbance T, and the formula (102) given in paragraph 7.3 is used to get the Mj;. d
was chosen as 8 km;

2. computing Tjj, i, j = 1, 2, 3 on the flight level by using formulas (103), (104), (105),
(107), (108), and 2110) given in paragraph 7.2;

3. corrupting Tjj by adding random errors with error variances 62 = 1, 4, 25 E5tvos2 and
mean value equal zero;

4. processing the simulated gradient data to get T;, Tj, Tizz on the mean elevation level;

5. comparing the computed ’1&, ’hz, If‘izz with the "true" value which were computed directly
from the point mass model.

In the following we give the description of the data, the formulas used and some considerations
about the numerical computations.

7.1 Data Used

The gravity anomaly in 4 km x 4 km grid point values for the United States was used. In
order to get higher frequencies in the solution, the data was interpolated in 2 km x 2 km grid
interval by using the bicubic spline function. All computations were based on the data in 2 km x 2
km grid values. The use of 2 km x 2 km grid interval is based on the following considerations.

1. Using a small grid interval can decrease the aliasin g effect in the Fourier transformation, even

though we do not get more information by interpolating the 4 km x 4 km gravity anomaly into 2
km x 2 km grid point values;

2. The evaluation of the formulas, such as given in the next paragraph, can be more accurate by

using 2 km x 2 km grid than using 4 km x 4 km grid. Using the smaller grid can increase the
computation accuracy (cf. Tziavos, et al., 1988).

The statistics of gravity anomaly Ag in this area is given in Table 1.

Table 1. Statistics of the Gravity Anomaly Ag in the Test Area.
(mgal)

mean value RMS value maximum minimum
-8.82 24.48 78.21 -76.17

The contour map of the gravity anomaly in the test area is shown in Fi gure 3.
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7.2 Formulas Used

Before the numerical tests were taken, the formulas which would be used are written in the
following. The spectra of the differential operators used occur in the airborne gravity gradiometry
are given in Table 2 (cf. Vassiliou, 1986). The definition of the spectra of the operators are given
in eq. (22).

Table 2. Spectra of the Differential Operators

Operators Spectra
9
ox j2mu
9
dy j2mv
9
oz 2T
an
k1 k 1
ox dy azp (jZnu)(jva)(—Zno))p

Here we havek +1+p=n;k,,p=0, 1,2, ...
It is easy to find the spectrum of the upward continuation operator U defined by eq. (1):

_ —21!012})
Py=e (101)

The relationship between the disturbing potential T and the mass point Mj; is given by eq.
(100). The derivatives of the disturbing potential T;, Tij1,j =1, 2, 3 can be derived from eq.
(100) (cf. Vassiliou, 1986):

(102)
M N (x-x,) +(y-yj)2-2d2
Tzz= Z z 5/2 M‘J
=1 j=1 1 (103)
M N 3xx)d
sz=_ Z Z ( 5/21) ij

(104)



i=1j=1 1 (105)
M N x.x
Tx=22 3/; M;;
i=1j=1 1 (106)
M N
y-y) +d"-2{xx
Txx=22( J) 5 ( l) M
i=1 j=1 1 (107)
M XN 3(x-x] [y-y
Txy‘-ZZ ( 51)/2{ J) i
i=1 j=1 1 (108)
M N
y-y
Ty=2 2 5 Mi
i=1j=1 1 (109)
MY (xx) +d"-2{y-y)
Tyy= ) 2 502 M
=1 =1 1 (110)

where 1= [(x-x)2 + (y-yj)? + d2]1/2.

Taking the Fourier transformation of the formulas (102) - (110), and using Table 2, we have:

F (T} =F (M;} ( é e-znmd)

(111)
F (T, =F (M} (2“ e'zm) (112)
F(Ty)= F{Mu}{ (2n) zm} (113)
F (T, =F (My} {_] (2n) e ‘°“} (114)
F(T,y) =F [My} jl2n) ve 2’“’"’} 115)

1{iten
F(T,)= F(Mu){]% }

(116)
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F(Ty=F (M) (27“1)2 o 2md

@ 117
2
F (Tyy) = F (M) (2r) |y 2m0t
@ (118)
2TV 2ned
F{Ty>=F{MlJ}{-J———C }
@ (119) |
(21w)2 2nad
F {Tyy} =F (Mll} [+]
(120)

Here we should not confuse the subscript j with the imaginary number j = vy-1.

In the numerical computations eqs. (111) - (120) were discretizated and were evaluated by
using the fast Fourier transformation (FFT). The first and second derivatives of the disturbing
potential were computed at the flight level and mean elevation level by using egs. (111) - (120).

After the computations of the second derivatives of the disturbing ?otential Tij at the flight
level, the normal distribution of the random noise with the variance 62 = 1, 4, 25 Eo6tvos2 was
added to the computed Tj;. In processing the corrupted data to determine the derivatives of the
disturbing potential Tj, Tiz, Tizz on the mean elevation level, the regularization method was used.

It was assumed that the disturbing potential T and its partial derivatives to z up to third order
are smooth at the mean elevation level. For the word "smooth" we understand it under such
meaning: The disturbing potential T has continuous partial derivatives up to third order. In fact,
the disturbing potential T has continuous partial derivatives up to all orders above the earth's
surface. Because the analytical downward continuation is used, we constrained the disturbing
potential has continuous partial derivatives up to 3rd order above the mean elevation level. -We
took the regularization operator in eq. (75) as

(121)

where U is the upward continuation operator.

The spectrum of the operator Ly, is given by

3
o=~ (2m0) ¢y, (122)
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Six components of the second derivatives were used to determine Tj, i =1, 2, 3 on the mean
elevation level. The observation equations are

l=A T,+e, (123)
l=A,T,+e, (124)
I=A T,+Eg, (125)

where 1 is the observation vector Wthh has thc components lj, i =1, 2, ... 6, the measured second
derivatives of the disturbing potential; Ax, Ay and Az are vector opcrators, € is the vector of the
measurement error. As a specific example eq. (123) is written in the form:

sz
€
Tl Al 1
yz €
2z A3 €4
=y & §Tx+
T 4
xx A5
1 €s
Tpy Ag
€
1 6
yy

(123")

where T,l(z, T)l,z, ... are the measured gradients of the gravity disturbance; €, €2,... are the
corresponding measurement error.

The best estimates of the Tx, Ty and Tz in eq. (123), (124) and (125) are given by:

T4[x,y, hy)=F " {k(u, v)j 2] (126)
Ty(x, Yy, hm)=F-1{k(ll,V)j21tV} (127)
T, [, y, ho) = F " {k u, v) - 2n0)} (128)

where the symbol " A" denotes the estimate of the function, and k (u, v) is given by:
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kfu,v)=

6

Eq;: 0, + a2 (21tco)6

i=1 (129)

Here we have used egs. (81) and (122). The «yg; is the Fourier transform of the observations Tj;.
From eq. (126) - (128) one can see that the k (u, v) is nothing but the spectrum of the disturbing
potential T determined by using the gradient data Tj;. If the Tj; is ordered as in (123'), then we
have:

2 2
0,=-i2n) vo, ¢,=-jl2n) vo,

2 2 2
0,=(2n) @ , ¢,=—(2n) u?,

2 2,
Insert (130) into (129), we get
1.6 =
by 2 &; 0,

i=1

ku,v)=

03m4 - u2v2) v (2n0) (131)

In the numerical computations the regularization parameter o has taken the value 0.07.

In the same manner we have the formulas for the second and third derivatives on the mean
elevation level:

|
Tyafx, v, hy)=F {k o, v)(2x)” ('-juco)}' (132)
~ 1 ! 2
Tyalks vo b = F {k(u, v)(2n) (‘-jvm)}l (133)
?u(x,y, hrrJ=F-1 {k (u,v)(21t)2 (02} (134)
and

Traz%r ¥, hy)=F {k(u, (2n) (juwz)} (135)
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Tyuaf®s yo ) = F {k(u, v(2n) (jvmz)} (136)

Tk, yo b =F {k(u, ven)’ (-m3)> (137)

The formulas (126) - (137) were discretizated and evaluated by using the fast Fourier
transformation.

If we use the smoothing method, according to the equation (98), the parameter a, A are
chosen

1 2
o, =— o = 100, A=2
3 (138)
The spectrum of the smoothing operator is
1 1
0= 2 2
l+a,0 1+1000 (139)

The least squares collocation method can also be used. But the power spectral density
function of the disturbing potential and of the measurement error have to be properly chosen.

The regularization error was not computed by using the formulas like (86), because the "true”
value could be computed directly. The difference between the "true" values and the computed
values were computed and the results are shown in the following section.

If we have no "true" values, as it should be in practice we can choose the spectral density
function of the disturbing potential T and of the error &, the estimation error (regularization error,
smoothing error) can be estimated by using the above derived formulas.

7.3  Considerations of the Singularity and Recovery of the Spectra of the Gravity Disturbance
From Gradient Data

In the above derived formulas we have the singularity problem. The formulas, e.g. eq. (131),
are not defined at the origin. Such a problem can be catalogued by the singular integral problem.
A theoretical study of singular integrals and integral equations is given in Miklin (1965). The

study of the singular integrals in the physical geodesy can be found in (Siinkel, 1977; Wang,
1986).

Here we consider the singularity problem in the spectra domain. As a common example, we
consider the Stokes' integral. In the planar approximation we have:

2nyJ J

(140)



where N is the geoid undulation, ¥, and Ag are the normal gravity and gravity anomaly,
respectively. Applying the Fourier transformation to eq. (140) we get

1

2Ty (141)

where W, g are the Fourier transformation of the geoid undulation and the gravity anomaly,
respectively.

We have two methods to compute eq. (140). One is taking the discrete Fourier transformation

to eq. (140). The kernel I-! has a singularity at the point (x = 0, y = 0). The treatment of the

singularity can be found in (Heiskanen and Moritz, p. 121; Schwarz, et al., 1989).

Eq. (141) can also be used to compute the geoid undulation. The only question is, what kind
of value eq. (141) should be taken at the point (u =0, v = 0)? It will be shown that the choice of
the value wn (0, 0) effects on the geoid a constant bias.

Let
ox(0,0)=B w,(0,0)#0 (142)
where B is an arbitrary constant. Notice that
o, (O, O) = ff 2™ (O'X+O'Y)Ag (x, y)dx dy
=ff Ag(x,y)dx dy
— (143)

If the integral in eq. (143) is limited in a local area, as the case in practice, wg (0, 0) is not always
equal to zero. Assume that eq. (141) is discretized and inversed by using the discrete Fourier
transformation, then the wy (0, 0) has the contribution to the geoid.

M N .fm0 no
BN =g 2 2 By(0,0)6 35

m=0 n=0

=B (Dg(0,0) (144)

where 3N is the change of the geoid due to the different choices of the N (0, 0). dN is a constant
everywhere. If we set wg (0, 0) =0, then 8N = 0. Therefore the geoid undulation from eq. (141)
may have a constant difference with the geoid undulation direct from the Stoke's integral (140). In
order to remove this bias, other data, such as reference fields, should be used.
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Another question is: Can we recover all spectra of the gravity disturbance from the gradient
data? The answer is no. For example, the relationship between Tz and Txx 18

If we want to recover o, from or,,, we have
Or=-j-—0r,
2 (146)

At the line u = 0, the spectra wr, are not defined. A common way in the numerical computation is
to set

o1, 0,V)=0, Ve (-o0+oo). (147)

But in reality eq. (147) is not correct, since the spectra @r, (0, v) should not be equal to zero. The
conclusion is: The spectrum of T, cannot be recovered from the spectra T,x entirely.

In the numerical computations, we have to take the assumption (147). Therefore it is not good

enough using Ty (including Ty,) to determine T, because we cannot recover all frequencies of T,
from Tz or Tyy.

A better recovery of the spectrum of T can be achieved from Tz

1
Wp=——0
T. 2T®

(148)

This function is not defined at the origin (0, 0). If we assume the mean value T, is equal to zero,
based on eq. (143) we have:

or (0,0)=0 (149)

and we can get all frequencies of Tz from Ty. If the @T, is not equal to zero, we still have to take
(149) in the numerical computation. But the information on the bias of T has to be provided by
other data, such as the point disturbance component values on the ground (Jekeli, 1986).

The best way to recover the frequencies of the gravity disturbance is the use of all components
of the second derivatives of the disturbing potential. From egs. (128) and (131) we can see,
frequency of Tz from all data is not defined only at the point (0, 0). We define the frequency of T,

at this point as equal to zero, and the frequency or, (0, 0) is obtained from tie point disturbance
component values or another data.

Summary: We can recover all frequencies of the gravity disturbance by processing the aerial
gravity-gradient data except the mean value. The mean value of the gravity disturbance must be
provided by tie point values or another data.



7.4 Results

In the preceeding sections we described the data, the formulas used. In this section we give
the computational results. The derivatives of the disturbing potential were determined on the mean
elevation level and compared with the "true" values which were computed from the point mass
model directly.

In Table 3 we give the statistics of the differences (errors) between the computed and the
“true” values for the partial derivatives of the disturbing potential to z. In the numerical

computation eqs. (128), (134) and (137) were used. The regularization function was chosen as
described in section 7.2.

Table 3. Statistics of the Differences Between the Computed and the "True" Values

Noise level (E) | mean RMS | max min

T, o=1 - 0.29 0.52] 2.57] -3.72
(mgal) o=2 -0.29 060]| 2.78) -394
o=35 - 0.29 099 3.67| -4.76

o=1 -0.03 026 147 - 1.64

Tz o=2 - 0.03 0471} 2.13]| - 1.95
(mgal/km) c=5 - 0.03 1.14] 4.35] -4.73
o=1 -0.84x10-51 040 1.71] - 1.69

Tozz o=2 -0.87x10-3| 0.77] 3.05{ - 1.95
mgal/km?2) o=35 -0.96x10-3] 1.90}| 7.78| - 6.97

From Table 3 we can see that the random noises have no significant effects on T,. In the
computations the regularization was used and the effects of the noise have been mostly removed.
This is not the same as expected (Jekeli, 1987). The reasons may be:

1. We used the gravity anomaly in a not very rough (gravity anomaly wise) area. The spectra
of Ag consisted mostly by lower frequencies. The power spectral density function of the data is
shown in Figure 4. The amplitude of the high frequencies of the data is small and should have no
significant contribution to Ty, T,z and T,z;. The high frequencies of the measurement noise and the

high frequencies of the data were filtered out and the results were not chan ged significantly from
the "true” value.
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Figure 4. Power Spectral Density of the Gravity Anomaly Ag in Test Area

2. An important thing in the numerical simulation is the choice of the grid inteval. The
gradient data used were regularly distributed in a 2 km x 2 km grid interval. The small grid interval
minimized the aliasing effect. A study about the computation accuracy with the grid spacing, flight
altitude can be found in (Tziavos, et al., 1988). Even though where they were talking about the
computation of the topographic effect on the gradient data, we get some idea about the relationship
between the computation accuracy and the ratio of the grid spacing/flight altitude. In our
computation the ratio of grid spacing/flight altitude was 2/2.5 and it met the computation accuracy.

3. The ratio of signal/noise is defined by the RMS value of signal/RMS value of noise. In the
numerical computations this ratio was reasonable. For example, for the gradient Tz we have the
signal/noise ratio equal 8, when the random noise has variance o = 1 E6tvds. A very interesting
phenomenon is, even if 6 = 5 Eotvos when the ratio of the signal/noise equal 1.6, the results for T,
are still good. The reason may be: the random errors pose high frequencies and they are filtered
out by using the regularization method; the second reason is that all components of the gravity
gradient have been used and it improved the results.

Of course we cannot expect to obtain good results of Tz by processing the aerial gradient

data. The high derivatives of the disturbing potential Tz is more sensitive to the measurement
€rror.

In the following we determine the derivatives of the disturbing potential up to third order on
the mean elevation level, and the Taylor's series are used to get the gravity disturbance on the
earth's surface. The difference between the "true" values and the computed values are given in the
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following tables. The second correction term of eq. (9) is also included and the results are
presented in the tables. The results without the second correction term of (9) are also shown in the
following tables.

Table 4. Statistics of the Differences of

~ A~ 1 2.
T,-|T,+ Ah T+ 5 (a0) T,

unit mgal
noise level (E) mean RMS max min
c=1 - 0.06 1.12 7.25 | -7.55
o=2 - 0.06 1.94 8.52 | -9.08
o=35 - 0.06 4.61 18.83 | -17.54
Table 5. Statistics of the Difference of
T,-(T,+ A T,
unit mgal
noise level (E) mean RMS max min
c=1 - 0.06 0.91 7.89 | -9.02
o=2 - 0.06 1.26 8.51 | -9.43
o=35 - 0.06 2.61 10.39 | -12.04

Comparing Table 4 with 5 we find: If the accuracy of the gravity gradient data is poor, e.g., ¢
=5 E, the term 0.5 (Ah)2 T,y is corrupted by the errors and it is not usable (compare the results in
Table 4 and 5 when 6 = 5 E.). But this term still gives some contributions to the big values of T,
(compare the results in Table 4 and 5 when o = 1 E.) while the RMS values becomes bigger. Itis
expected that this term gives significant contributions to the big absolute values of T if the gradient
data are accurate and in good distribution.

The map of the contour line for the estimated Tz was drawn in Figure 5. Comparing Figure 3
with 5, one can find the ‘fz is smoother and smaller (absolute magnitude). Figure 6 shows the
contribution of the correction term Ah Tzz , in test area. A few significant corrections are in the

rough gravity anomaly area. The contribution of the correction term 1/2(Ah)2 Tzzz is shown in
Figure 7. The correction is small and rough. This correction can become very small after some
kinds of smoothing, e.g., the results are averaged into mean block values. Figure 8 gives the
computed T in the test area. In comparison with Figure 3 one can say that the recovery of the
gravity disturbance by processing the gradient data are successful. Figure 9 gives the difference
between the "true” values and the computed values. Although the difference (error) can reach 5-7

mgal at some points, but it can become smaller when the results are averaged into mean block
values.
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Similarly, the computation at results for Tx, Ty are given in Table 6-11.

Table 6. Statistics of Differences Between the Results and the "True Value"

unit mgal
Noise level (E) | mean RMS | max min
Tx o=1 0.71x10-2 | 0.26 ] 2.84 | - 2.11
(mgal) o=2 0.01 0.33| 2.84| -2.18
o=5 0.02 0.64] 291| -295
o=1 -0.35x10-3] 0.18] 1.00[ - 1.00
Txz o=2 -0.50x103} 0.33| 1.37| - 1.34
(mgal/km) c=35 - 0.94x103} 0.81| 3.01] - 3.31
o=1 -0.32x10-3] 0.28 ] 1.19] - 1.03
Txzz o=2 - 0.44x104| 0.54| 2.37| -2.03
(mgal/km?) c=5 -0.17x10-3] 1.35] 5.89| - 5.05

Table 7. Statistics of Differences of

~ ~ 1 2
Ty-|Tx+ Ah Ty, + 5 (40) T

XZZ

unit mgal
noise level (E) mean RMS max min
c=1 0.01 0.78 5.39 | -4.82
c=2 0.01 1.37 5.78 | -5.74
c=5 0.03 3.26 13.20 | -12.36

Table 8. Statistics of the Differences of

T, - ("f‘x + Ah ”I\‘zx)

unit mgal
noise level (E) mean RMS max min
o=1 0.01 0.63 6.48 | -5.67
o=2 0.01 0.88 6.56 | -5.77
o=5 0.03 1.84 7.41 -7.44




Table 9. Statistics of Differences Between the Results and the "True Value"

unit mgal
Noise level (E) | mean RMS | max min
Ty o=1 0.11 031 197 - 2.89
(mgal) o=2 0.11 0.38] 2.19| - 294
o=35 0.12 0.671 2.85| - 3.35
o=1 -0.90x10-3] 0.18] 1.14] - 0.96
Ty, o=2 - 0.87x10-3] 033 1.43| - 1.30
(mgal/km) o=5 -0.79x10-3] 0.81] 3.18 ] - 3.18
o=1 -0.17x10-3] 0.28 | 1.06| - 1.15
Tyz c=2 -0.21x10-3]1 0.541 2.09| -2.14
(mgal/km?) o=35 -0.32x10-3| 1.35) 5.18] - 5.33

Table 10. Statistics of Differences of

T,-|T,+Ah T 1(Ah)2?
y \ iyt yz¥ 3 yzz

unit mgal

noise level (E) mean RMS max min
o=1 0.11 0.79 452 | -5.86
o=2 0.11 1.38 5.55 | - 6.07
c=3 0.12 3.27 1254 | -12.81

Table 11. Statistics of Differences of

T,-(Ty+ah T,

unit mgal
noise level (E) mean RMS max min
o=1 0.11 0.65 502 | -7.21
c=2 0.12 0.89 542 | -7.25
=35 0.13 1.85 699 | -8.19

From Tables 4-11 we come to the following conclusion: The gravity disturbance can be
determined on the earth's surface with demanded accuracy. With 1 E6tvos error in the gradient
data, the components of the gravity disturbance Tx, Ty and T are determined with an accuracy inl
mgal. Even though the measurement error is 5 E., the gravity disturbance can be determined with
an accuracy of 3 mgal on the topographic surface.

Here we need to point out that the measurement error model is assumed a normal distributed
random noise. Although this assumption is not entirely realistic it gives the main property of the
effects of the error in the processing of the gradient data. It is expected that if the spectral
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distributions of the gradient data and the measurement error are known, one can use the methods
proposed in this study to minimize the effect of the measurement error and to get a stable and
reasonable solution.

Normally, for a convergent series, the more correction terms that are taken, the results are
determined more accurately. But we do not know whether the Taylor's series is conver§cnt on the
mean elevation level. From Tables 4-11 we can see that the correction term 1/2(Ah)# Tz, may
have some contribution to the large values of the gravity disturbance when the measurement error
is small. But it supplies wrong information when the data accuracy is poor. Therefore we suggest
if the area is very rough and the data are accurate enough, e.g. measurement error is lower than 1
E., then the correction term 1/2(Ah)2 T, etc., could be taken into account; in a flat area this term
is very small and can be neglected; if the accuracy of the gradient data are poor, the correction term
1/2(Ah)2 T, etc., could be wrong and it is not of benefit to the results.

8. Conclusion

After many years of development the airborne gravity gradiometer survey system is coming in
to practical application. Recently, a test flight was taken in the Texas-Oklahoma area which is
characterized by a very smooth topography. Although this was the first time the gravity
gradiometer survey system was flown, and only a fraction of the total runs yielded good gradient
data, the components of the gravity disturbance were determined on the ground with the accuracy
of 2 to 3 mgal in 5" x 5’ mean anomalies.

In the future the test will be carried out in the rough mountain area and the topographic effect
has to be taken into account. This problem has been considered by many authors. Tziavos et. al,
have developed an estimation algorithms for the computation of the effect of the mass above the
ellipsoid (Tziavos, et al., 1988). If we subtract the contribution of the topography from the
gradient data, it means the mass of the earth is adjusted by removin g the mass above the ellipsoid.
This is not correct in some cases, e.g. the determination of the geoid. This report did not discuss
this problem. Our goal was the determination of the gravity disturbance on the earth's surface.
We assumed that the disturbing potential and its derivatives can be analytically downward
continued to a mean level - in the report the mean elevation level was chosen, then the Taylor series
was used. The gravity disturbance was given by (cf. Figure 1):

T,Q=T,[P) + An T, (P) + %(Ah)2 T,..(P) ©)

Obviously this analytical downward continuation problem is an improperly posed problem. The
solution T, (Q) may pose serious numerical difficult and not be stable.

For an improperly posed problem there are three methods that can be used: the least squares
collocation, regularization and smoothing. How can they be used in the gravity gradiometry was
studied in Section 3, 4 and 5. The studies indicate that the three methods are essentially the same.
They filter out the high frequencies of the data and make the results smooth and stable. In

comparison to the least squares collocation the methods of the regularization and smoothing are
more flexible.

The regularization was used for a simulated computation. The numerical computation shows
that this method is qualified for the analytical continuation of the derivatives of the disturbing
potential, such as T, T,;, T,z to the mean elevation level. When the accuracy of the gradient data
was 1 Eotvs, the gravity disturbance was recovered with the accuracy of 1 mgal. If the accuracy
of the gradient data is poor, but the ratio of the signal/noise is still high enough, the recovery of the
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gravity disturbance can achieve a reasonable accuracy. One example described in the report is
when the gravity disturbance was determined with an accuracy of 3 mgal when the accuracy of the
gravity gradient data was 5 EStvos.

The derivatives of the disturbing potential Tzz; can be obtained by processing the aerial
gradient data but it is corrupted by the measurement errors. It is still a difficult work to get the
higher derivatives of the disturbing potential and sometimes it looks like it is impossible.
Fortunately the high derivatives of the disturbing potential have most effects on the high
frequencies of the disturbing potential which do not have significant contribution to the disturbing
potential.

For a flat area the first two terms in eq. (9) satisfied our needs, but in a rough mountain area
the last term in (9) has to be considered if the accuracy of the gravity gradient data is high. If the
accuracy of the gravity gradient data is poor, the last term is not beneficial to the results.

The numerical simulation was limited by different assumptions, such as the measurement error
model, no position errors in the data, etc., but it represents the main property of the processing of
the aerial gradient data and approximates the real world to a great extent. All the computations
were completed by using the fast Fourier transformation.

References

Bachman, G.,and L. Narici, Functional Analysis, Academic Press, New York and London,
1966.

Bendat, J., A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, A.
Wiley-Interscience Publication, John Wiley & Sons, 1980.

Brzezowski, S., D. Gleason, J. Goldstein, W. Heller, C., Jekeli, J. White, The Gravity
Gradiometer Survey System and Test Results, in: Chapman Conference on progress in the
Determination of the Earth's Gravity Field, 1988.

Chinnery, M.A., Terrain Corrections for Airbone Gravity Gradient Measurements, Geophysics,
26, 480-489, 1961.

Dorman, L.M. and B.T.R. Lewis, The Use of Non-linear Functional Expansions in Calculation of
the Terrain Effect in Airborne and Marine Gravimetry and Gradiometry, Geophysics, 39, 33-
38, 1974.

Gleason, D.M., Computing any Arbitrary Downward Continuation Kernel Function of an Integral
Predictor Yielding Surface Gravity Disturbance Components from Airborne Gradient Data,
manuscripta geodaetica, 13, 147-155, 1988.

Hammer, S., Topographic Corrections for Gradients in Airborne Gravimetry, Geophysics, 41,
346-352, 1976.

Heiskanen, W.A. and H. Moritz, Physical Geodesy, W.H. Freeman, San Francisco, 1967.

Ik, K.H., Untersuchungen Zum Einfluss von a-priori Varianz-Kovarianzmatrizon anf die Losung
von Regularisierten Ausgleichungs problemen. In: Festschrift Rudolf Sigl zum 60.
Geburtstag, Deutsche geoditische Kommission bei der Bayerischen Akademie der
Wissenschaften, Reihe B, Heft Nr. 287, Miinchen, 1988.

45



Jekeli, C., On Optimal Estimation of Gravity From Gravity Gradients at Aircraft Altitude, Reviews
of Geophysics, Vol. 23, No. 3, 1985.

Jekeli, C., Estimation of Gravity Disturbance Differences from a Large and Densely Spaced
Heterogeneous Gradient Data Set Using an Integral Formula, manuscripta geodaetica, vol.
11, 48-56, 1986.

Jekeli, C., The Downward Continuation of Aerial Gravimetric Data Without Density Hypothesis,
Bulletin Geodesique, 61, 319-329, 1987.

Miklin, 8.G., Multidimensional Singular Integrals and Integral equations, Pergamon Press, Ltd.,
Headington, Hill Hall, Oxford, London, 1965.

Moritz, H., Advanced Physical Geodesy, Abacus Press, Tumbridge Wells, Kent, 1980.

Nashed, M.Z., Approximate Regularized Solutions to Improperly Posed Linear Integral and
Operator Equations, in: Constructive and Computational Methods for Integral and
Differential Equations, Lecture Notes in Mathematics, 430, 289-332, 1974.

Neyman, Y.M., Improperly Posed Problems in Geodesy and Methods of Their Solution,
Proceedings of International Summer School on Local Gravity Field Approximation, 1985.

Rapp, R.H,, S. Zhao, The 4 km x 4 km Free-Air Anomaly File for the Conterminous United
States, Internal Report, Dept. of Geodetic Science and Surveying, The Ohio State
University, 1988.

Rummel, R., K.P. Schwarz., M. Gerstl, Least Squares Collocations and Regularization, Bulletin
Geodesique, 53, 343-361, 1979.

Schwarz, K.P., Geodetic Improperly Posed Problems and Their Regularization, Boll. Geod., e
Sci. Affini, 38, p. 389-416, 1979.

Schwarz, K.P., M.G. Sideris, R. Forsberg, The Use of FFT Techniques in Physical Geodesy,
Submitted to Geophysical Journal, 1989.

Siinkel, H., Die Darstellung Geodétischer Integral formula Durch Bikubische Spline-Funktionen,
Mitterlungen der Geoditischen Institute der Technischen Universitit Graz, Folge 28, Graz,
1977.

Tikonov, A.N., Regularization of Incorrectly Posed Problems, Soviet Math, Dokl., 4, 1624-16217,
1963.

Tziavos, L.N., M.G. Sideris, R. Forsberg, and K.P. Schwarz, The Effect of the Terrain
Correction on Airborne Gravity and Gradiometry, Journal of Geophysical Research, Vol.
93, No. 138, 9173-9186, 1988.

Vassiliou, A.A., Numerical Techniques for Processing Airborne Gradiometer Data, Department of

Surveying Engineering Report Numer 20017, University of Calgary, Calgary, Alberta,
Canada, May, 1986.

Wang, Y.M., Problem der Glitting bei den Integraloperatoren in der Physikalischen Geodisie,
Doctoral Dissertation, Technical University, Graz, 1986.

46



Wang, Y.M., Numerical Aspects of the Solution of Molodensky's Problem by Analytical
Continuation, manuscripta geodaetica, 12, 290-295, 1987.

47






