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Material to be Covered:
◮ Statistical problems and models.
◮ Uncertainty.
◮ Parametric Methods of producing estimators.
◮ Bayesian methods.
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Why do we collect data?
◮ We wish to make decisions given we have observed data

generated from some scenario.
◮ If our decision is not to be influenced by the data, it makes

no sense to collect the data.
◮ Not all data yields information about all models. Statistical

problems are inductive rather than deductive.
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What is a Model?
◮ A model is how we describe the generation of an

observable quantity.
◮ A model can be mechanistic, describing the underlying

mechanism that explains the observed data (think Newton,
laws of motion).

◮ A model can be empirical, explaining observed variability
(think Kepler).
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Uncertainty
◮ In most data collection scenarios there is uncertainty.
◮ Uncertainty arises because there is stochastic uncertainty.
◮ Uncertainty also arises due to inductive uncertainty.
◮ Whatever modelling decisions you make – you probably

could have made another... “All models are wrong, but
some are useful...”
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Uncertainty
◮ The condition of being uncertain; doubt.
◮ Something uncertain: the uncertainties of modern life.
◮ The estimated amount or percentage by which an

observed or calculated value may differ from the true value.
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Parametrics etc
◮ Most models are parametric, e.g. depend on a set number

of parameters in which terms the model is specified.
◮ Sometimes models are semi-parametric, e.g. certain

aspects of the model are parametric.
◮ Or models can be non-parametric, e.g. not depend on

parameters.
◮ Modern problems often contain more variables p than data

points n, as we shall return to.
◮ If you try to estimate more parameters than you have data

points, a number of fallacies will most often arise. Typical
example is using SVD when you didn’t have many
replicates.
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Basics
◮ A parametric model usually corresponds to specifying a cdf

on a scalar:
FX (x) = P (X ≤ x |θ) , (1)

or a pdf corresponding to a derivative of d
dx FX (x) = fX (x),

or a vector X = (X1, . . . ,Xn)
T

FX (x |θ) ≡ P (X1 ≤ x1, . . . ,Xn ≤ xn|θ) .

◮ The set of random variables
X1, . . . ,Xn is said to be a random sample of size n from a
population with pdf fX (x |θ) if the joint pdf has the form

fX (x |θ) = fX (x1|θ) · · · fX (xn|θ).

This means that the joint density function is a product of
marginal densities.
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Nonparametrics
◮ Before formulating a parametric model it may be sensible

to start by describing the data non-parametrically.
◮ For example we can estimate the pdf using a histogram or

a kernel density estimator.
◮ Histograms are very crude, and their characteristics

depend on their bin size.
◮ To investigate whether a given distribution is appropriate,

our first choice is a q-q plot, e.g. using the ordered data
X(1), . . . ,X(n) and plotting

{(
F−1

X

(
j

n + 1

)
,X(j)

)
,

}
(2)
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Expectation
◮ The expectation of a random variable is

E (X ) =

∫
xfX (x) dx = µ.

◮ The variance of a random variable is

var (X ) =

∫
(x − µ)2fX (x) dx .
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Estimation
◮ Usually one wishes to learn about θ from the data, by

calculating statistics.
◮ A statistic is a function of the data which does not depend

on any unknown parameters.
◮ A statistic that is used to estimate the value of the

parameter θ is called an estimator of θ, and an observed
value of the statistic is called an estimate of θ.
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Method of moments
◮ j th moment of X is given by

EX (X j |θ) =

∫
x j fX (x |θ).

◮ j th sample moment of random sample X1, . . . ,Xn is given
by

Mj = EXj
(X j) =

1
n

n∑

i=1

X j
i .

◮ The method of moments equates theoretical and empirical
moments to determine the unknown parameters.

◮ We solve the k equations

EX |fX (X j |fX ) = Mj , j = 1, . . . , k .

◮ How do we know if this is a good estimator?
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How Good Is An Estimator
◮ In theory we could make up any amount of estimators.
◮ These are generally evaluated in terms of their mean

square error, that is the aggregation of the bias square
plus the variance, where the bias of estimator T for θ is

E(T )− θ.

◮ A good estimator has a small mean square error.
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Dimensionality Reduction
◮ We have focused on understanding one vector of

observations in terms of their distribution, or a set of
explanatory variables.

◮ Sometimes we wish to understand many variables
simultaneously.

◮ Assume we have Y (j)
i , N observations of each of p

variables, or p vectors Y(j) of length N.
◮ We can then define

Σ =




cov{Y (1)

i ,Y (1)
i } cov{Y (1)

i ,Y (2)
i } . . . cov{Y (1)

i ,Y (p)
i }

. . . . . . . . .

cov{Y (p)
i ,Y (1)

i } cov{Y (p)
i ,Y (2)

i } . . . cov{Y (p)
i ,Y (p)

i }



 (3)
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Estimation
◮ We can estimate the covariance using

σ̂kj =
1
N

∑
(Y (k)

i − Y
(k)

)(Y (j)
i − Y

(j)
) (4)

◮ To convey most of the structure of the data wish to replace
Σ by an approximation.

◮ Because Σ is symmetric it has an eigen-decomposition,
e.g. it can be written as

Σ =

p∑

j=1

λjv jvT
j . (5)

◮ If only a few λj are large, then Σ ≈
∑p0

j=1 λjv jvT
j .
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Likelihood Inference
◮ The joint density function of n random variables X1, . . . ,Xn

evaluated at x1, . . . , xn, say f (x1, . . . , xn; θ) is referred to as
a likelihood function .

◮ For a fixed data sample x1, . . . , xn the likelihood is only a
function of θ and we shall denote it by ℓ(θ).

◮ For a random sample X1, . . . ,Xn from f (x ; θ),

ℓ(θ) = f (x1; θ) · · · f (xn; θ) =

n∏

1

f (xi ; θ).

◮ Usually convenient to deal with the log-likelihood

L(θ) = log(ℓ(θ)).
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Linear and Generalized Linear Models
◮ A typical model is

Yi = xT
i β + ǫi

with a distribution on ǫi . This is a linear model.
◮ If Yi is constrained to be positive or lie in a range, it may be

more convenient to use a generalized linear model, or to
say

EYi = µi (6)

µi = g−1
(

xT
i β

)
(7)

◮ You will hear more about the linear model and regression
in later lectures.
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Example – GMLs
◮ At UCLH prematurely born infants are subjected to noxious

stimulation as part of their scheduled treatment.
◮ Many noxious stimulations are inevitable in the due course

of their stay.
◮ We wish to understand how they respond to stimuli, painful

or otherwise.
◮ The data comes in the form of time-courses Y (j)

i measured
at time ti . We think

Y (j)
i =

∑
ajkzk (ti) + εij . (8)
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Typical Signals
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Delta-brushes
◮ One of the zk (ti ) is a delta-brush, e.g. a non-specific

neuronal burst.
◮ It is a significant change from the baseline energy

occurring simultaneously in the low frequency 86 band
(0.5-1.5 Hz) and the high frequency band (8-25 Hz).

◮ We detect this from a regression coefficient, which is
“present” if exceeds a threshold, based on the statistics of
the noise, correcting for multiple testing.

◮ We now wish to explain the detection in terms of the age of
the infant τj . How???
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GLMs
◮ We assume that the variable Zj takes the value of zero or

one depending on if a delta-brush was detected.
◮ We cannot assume

EZj = θj = β0 + β1τj . (9)

◮ Instead we take

θj =
1

1 + e−(β0+β1τj )

◮ This can be fitted to the data using the fact that Bernoulli
random variables are part of the exponential family.
Parameter fitting is part of a larger class of algorithms.
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Range of Behaviour

Figure 3. Relationship between Response Type, Nonspecific Neuronal Burst, or Modality-Specific Potentials, Evoked by Tactile and Noxious Stimulation,

with Gestational Age

Age dependence of the occurrence and topographical distribution of tactile (A), nociceptive-specific potentials (B), and nonspecific neuronal bursts (C and

Development of Touch and Pain Discrimination
1555
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Likelihood Inference
◮ Learning from the data. – “rational degree of belief”.
◮ R.A. Fisher, On the mathematical foundations of

theoretical statistics, Philosophical Transactions of the
Royal Society, A, 222: 309–368. (1922).

◮ ‘. . . inference from an experiment should be based only on
the likelihood function for the observed data.’

◮ For a given observed set of data ℓ(θ) gives the likelihood of
that set occurring as a function of θ. The ML principle of
estimation is to choose as the estimate of θ that value
for which the observed set of data would have been
most likely to occur . That is

θ̂ = arg max
θ∈Ω

ℓ(θ).

Sofia Olhede Basics of Inference



Introduction
Method of Moments

Maximum Likelihood
Bayesian Inference

Sofia Olhede Basics of Inference



Introduction
Method of Moments

Maximum Likelihood
Bayesian Inference

Likelihood Inference
◮ If the likelihood is differentiable and achieves a maximum

in Ω, then the MLE will be the solution to the maximum
likelihood equation

d
dθ
ℓ(θ) = 0, with

d2

dθ2 ℓ(θ) < 0.

◮ If θ̂ is the mle of θ and if t(θ) is a monotone function of θ
then u(θ̂) is an mle of u(θ).

◮ The ml estimator with a sample size n, θ̂n,
1. exists and is unique,
2. is a consistent estimator of θ (increasing n),
3. is nearly normal with approximate mean θ and variance

[
nE

{[
∂

∂θ
log f (X ; θ)

]2
}]

−1

.
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Vector θ
◮ If θ is a p-parameter vector, then most often with increasing

n, θ̂n − θ is nearly zero-mean multivariate Gaussian.
◮ It has a covariance matrix which can be found from the

Hessian matrix of the log-likelihood.
◮ Properties follow from

∇L(θ)|θ=θo = ∇L(θ)
θ̂

+ H
(
θo − θ̂

)

◮ Most computer packages can maximize the likelihood for
you.

◮ What happens if p is large???
(LARS/LASSO/penalization).
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Nuisance parameters
◮ Unfortunately often not all of θ are of interest.
◮ If we only want to estimate ψ where θ = [ψ,φ] then we

can either use:
iterated maximization (profile likelihood),
marginal likelihood methods.

◮ Profile likelihood is defined by

φ̂(ψ) = argψ fixed max L(ψ,φ),L∗(ψ) = L(ψ, φ̂(ψ)). (10)

◮ There is some loss of performance, but there is a
well-developed theory.
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Hypothesis testing
◮ Hypothesis testing can be implemented by comparing the

likelihood optimized under different hypotheses of the
parameters.

◮ The ratio of the likelihood follows a known distribution if
hypotheses are nested.

◮ Other methods include the score test.
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Bayesian Inference
◮ We have assumed that there is some parameter θ with

some unknown constant value.
◮ We could think of the unknown parameter θ as being a

realisation from random variable Θ where Θ has some
supposed distribution p(Θ = θ).

◮ The previous approach is a special case of this method
with p(Θ = θ0) = 1 and p(Θ 6= θ) = 0.
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Bayesian Inference II
◮ We write

p(D, θ) = p(D|θ)p(θ) = p(θ|D)p(D),

where D = (X1, . . . ,Xn) and p(·) is either a pmf or pdf,
giving us

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ)

Posterior = Likelihood × Prior.

◮ By Bayes’ Theorem and note that p(D) is not a function of
θ and it is given by

p(D) =

∫

Θ
p(D|θ)p(θ)dθ.
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Bayesian Inference III
◮ We write the likelihood with a conditional sign rather than a

semi-colon to reflect the fact that θ is a random variable
rather than a constant.

◮ Using Bayes theorem allows us to determine a posterior
distribution for Θ which gives us all the available
information about it after we have seen the data, D.

◮ Usually it is impossible to do all of the integrals analytically,
unless the distributions are chosen to be conjugate.

◮ Winbugs is a practical programme for implementing
Bayesian analysis.
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Bayesian Inference III
◮ We may report a single value for each parameter, such as

a maximum aposteriori estimate.
◮ We may want an interval which will contain Θ with

probability that include the most concentrated areas of
p(θ|D).

◮ We can do this by determining the 100γ% credible interval
which is an interval which contains 100γ% of the total
density in the posterior distribution.

◮ Let l(x) and u(x) be some functions of the observed data
then a 100γ% credible interval satisfies

P(l(x) < Θ < u(x)|D) =

∫ u(x)

l(x)
p(θ|D)dθ

= γ.
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Approximate Bayesian Computation
◮ Often the posterior distribution is not readily available.

Computational methods such as Metropolis Hastings
(Robert and Casella) and Gibbs sampling (Casella and
George), can give samples from the posterior.

◮ When we have large sets of data, this may be because the
likelihood cannot be computed quickly.

◮ We follow Pritchard et al (1999). We can however
simulate from f (y |θ).

◮ We sample a vector θ∗ from some proposal density π(θ).
◮ We simulate f (y |θ∗).
◮ If d(Y ,Y 0) < ε, for some tolerance level – accept θ∗ as a

sample from the posterior.
◮ Choosing d() is a very strong statement. Can replace Y

by some well chosen summary statistics.
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