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Abstract

The purpose of this work is discovering regularities in financial time series using Inductive Logic
Programming (ILP) and related "Discovery" software system [Vityaev et al., 1992,1993]   in data mining. Discovered
regularities were used for forecasting the target variable, representing the relative difference in percent between
today's closing price and the price five days ahead.  We describe the method, types of regularities found and
analyzed, statistical characteristics of these regularities on the training and test data and the percentage of true and
false predictions on the test data. There are more than 130 discovered regularities on 10 year (1985-1994) data. The
best of these regularities had shown about 75 % of correct forecasts on test data (1995-1996).  The target variable was
predicted using separately SP500 (close) and own history of the target variable. Active trading strategy based on
discovered rules outperformed buy-and-hold strategy and strategies based on several ARIMA models in simulated
trading for 1995-1996. An ARIMA model constructed using discovered rules had shown the best performance among
tested ARIMA models. The performance of this model is similar to performance based on discovered rules.
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      1.Introduction

A machine learning type of method, called Machine Methods for Discovering Regularities (MMDR) is
applied for forecasting financial time series in this paper.  The method expresses patterns in first order logic and
assigns probabilities to rules generated by composing patterns. Currently the majority of learning systems for
financial applications concentrate on neural networks, genetic algorithms, and related techniques. In practice,
learning systems based on first-order representations have been successfully applied to many problems in chemistry,
physics, medicine and other fields [Mitchell, 1997, Kovalerchuk et al, 1997]. Often these methods are called Inductive
Logic Programming (ILP) methods [Mitchell, 1997].

How can we motivate the choice for MMDR in financial applications?  As any technique based on first
order logic, this technique allows one to get human-readable forecasting rules  [Mitchell, 1997, chapter 10], i.e.
interpretable in ordinary financial language in addition to the forecast. A financial specialist can evaluate the
performance of the forecast as well as a forecasting rule. We present examples of human-readable forecasting rules in
section 2.2. 

Also, as any technique based on probabilistic estimates, this technique delivers rules tested on their
statistical significance. Statistically significant rules have advantage in comparison with rules tested only for their
performance on training and test data [Mitchell, 1997, chapter 5].  Training and testing data can be too limited and/or
not representative. If rules rely only on them then there are more chances that these rules will not deliver a right
forecast on other data.

What is the motivation to use MMDR in particular?  MMDR uses hypothesis/rule generation and selection
process, based on fundamental representative measurement theory [Krantz, Luce, Suppes and Tversky, 1971, 1989,
1990.] The original challenge for MMDR was the simulation of discovering scientific laws  from empirical data in
chemistry and physics. There is a well-know difference between “black box” models and fundamental models (laws)
in modern physics. The last ones have much longer life, wider scope and a solid background. We have a reason to
believe that MMDR caught some important features of discovering these regularities (“laws”).  This is an area of
extensive computer science research during the last 25 years [Pattern Recognition and Artificial Intelligence, 1989,
Zagoruiko, 1979]. MMDR ideas and the "Discovery" system have been successfully used in several Russian and
international research projects, e.g., [Kovalerchuk et al, 1997]. There are reasons to believe that usage of MMDR for
financial forecast can be beneficial in financial area as well as for further advances of MMDR.

In the paper we study several types of hypotheses/rules presented in first-order logic.  They are simple
relational assertions with variables (section 2.2).  Mitchell [1997] noted the importance that relational assertions “can
be conveniently expressed using first-order representations, while they are very difficult to describe using
propositional representations” (pp.275, 283-284). Many well-known rule learners such as AQ, CN2 are propositional
[Mitchell, 1997, p.279, 283]. Note that decision tree methods represent a particular type of propositional
representation [Mitchell, 1997, p.275]. Therefore decision tree methods as ID3 and its successor C4.5 [Quinlan, 1993]
fit better to tasks without relational assertions. Mitchell argues and gives examples that propositional representations
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offer no general way to describe the essential relations among the values of the attributes (pp. 283-284). Below we
follow his example. In contrast with propositional rules, a program using first-order representations could learn the
following general rule:  IF Father(x,y) & Female(y), THEN Daugher(x,y),  where x and y are variables that can be
bound to any person. For the target concept Daughter1,2 propositional rule learner such as CN2 or C4.5,  the result
would be a collection of very specific rules such as

IF (Father1=Bob)&(Name2=Bob)&(Female1=True) THEN Daughter1,2=True.
Although it is correct, this rule is so specific that it will rarely, if ever, be useful in classifying future pairs of people
[Mitchell, 1977, pp.283-284]. In section 5 we show that the close problem exists for ARIMA and Neural Networks
methods. First-order logic rules have an advantage in discovering relational assertions because they capture
relations directly, e.g., Father(x,y) in the example above.

  Also, first order rules allow one to express naturally other more general hypotheses not only the relation
between pairs of attributes [Krantz et all, 1971, 1989, 1990]. These more general rules can be as for classification
problems as for an interval forecast of continuous variable. Moreover these rules are able to catch Markov chain type
of models used for financial time series forecast. In section 2.2 we describe first-order rules with relational assertions
which we used. We share Mitchell’s opinion about the importance of algorithms designed to learn sets of first-order
rules that contain variables. “This is significant because first-order rules are much more expressive than propositional
rules” [Mitchell, 1997, p.274].

What is the difference of MMDR from other Machine Learning methods dealing with first-order logic
[Mitchell, 1997, Russel and Norvig, 1995]?   From our viewpoint the main accent in western first-order methods
[Mitchell, 1997, Russel and Norvig, 1995] is on two computational complexity issues: how wide is the class of
hypotheses tested by the particular machine learning algorithms and how to construct a learning algorithm to find
deterministic rules. The emphasis of MMDR is on probabilistic first-order rules and measurement issues, i.e., how we
can move from a real measurement to first-order logic representation. This is a non-trivial task [Krantz et all, 1971,
1989, 1990]. For example, how to represent temperature measurement in terms of first-order logic without losing the
essence of the attribute (temperature in this case) and without inputting unnecessary conventional properties?  For
instance, Fahrenheit and Celsius zeros of temperature are our conventions in contrast with Kelvin scale where the
zero is a real physical zero. There are no temperatures less than this zero.  Therefore incorporating properties of the
Fahrenheit zero into first-order rules may force us to discover/learn properties of this convention along with more
significant scale invariant forecasting rules. Learning algorithms in the space with those kind of accidental properties
may be very time consuming and may produce inappropriate rules. This study is closely related to “learning from
hints”, which incorporates any invariance hint about unknown function f [Abu-Mostafa, 1989] in contrast to learning
only from examples.  “A hint may take the form of a global constraint on f, such as symmetry property or an
invariance. It may also be partial information about the implementation of f.” [Abu-Mostafa, 1989].  Our main source
for hints in first-order logic rules is [Krantz et all, 1971, 1989, 1990].

 It is well know that the general problem of rule generating and testing is NP-complete. Therefore the
discussion above is closely related to the following questions. What determines the number of rules and when to
stop generating rules? What is the justification for specifying particular expressions instead of any other
expressions? Using [Krantz et all, 1971, 1989, 1990] approach we select rules which are simplest and consistent with
measurement scales for a particular task. Section 2.2 presents a set of rules applicable to stock market. The algorithm
stops generating new rules when they become too complex (i.e., statistically insignificant for the data) in spite of
possible high accuracy on training data. The obvious other stop criterion is time limitation. Detailed discussion about
a mechanism of initial rule selection from measurement theory [Krantz et all, 1971, 1989, 1990] viewpoint is out of the
scope of this paper. A special study may result in a catalogue of initial rules/hypotheses to be tested (learned) for
stock market forecast. In this way any financial analyst can choose rules to be tested without generating them. This 
paper delivers a preliminary list of rules for that catalogue (see section 2.2).

The critical issue in applying data-driven forecasting systems is generalization.  The "Discovery" system
generalizes data through “lawlike” logical probabilistic rules.  Discovered rules have similar statistical estimate and
significance on training and test sets of studied time series. Theoretical advantages of MMDR generalization are
presented in [Vityaev,1992] and [Kovalerchuk et al,1996]. This approach has some similarity with mentioned hint
approach [Abu-Mostafa, 1990]. We use mathematical formalisms of first order logic rules described in [Russel and
Norvig, 1995], [Halpern, 1990] and [Krantz, Luce, Suppes and Tversky, 1971, 1989, 1990].

The relative difference in percent between today's closing price and the price five days ahead was used as a
target variable. We also used Standard and Poor 500 close (SP500C), Dow-Jones Industrial Average (DJIA), and
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additional generated features:
(i)  weekday (indication of a particular day of the week, i.e., Monday, Tuesday, Wednesday, Thursday, Friday)  for

each value of studied variables and
(ii)  the first and second differences for variables (prices and SP500C and DJIA indexes) for various weekdays, which

are similar to their  first and second derivatives.
All this information is expressed using the first order logic and probability theory through logical probabilistic laws. 

Figure 1. Flow diagram for MMDR: steps and technique applied.

Figure 1 describes the steps of MMDR. On the first step we select and/or generate a class first–order logic
rules suitable for a particular task (see section 2.1). The next step is learning the particular first-order logic rules using
available training data. Then we test first-order logic rules on training using Fisher statistical criterion. After that we
select statistically significant rules and apply Occam’s razor principle: prefer the simplest hypothesis (rules) that fits
the data [Mitchell, 1977, p. 65]. Simultaneously we use the rules’ performance on training for their selection. We may
iterate back and forth among these three steps several times to find the best rules. The last step is creating interval
and threshold forecasts using selected first-order logic rules:  IF A(x,y,…,z) THEN B(x,y,…,z).

The paper has the following structure: introduction, method, forecasting results, simulated trading
performance, comparison with ARIMA, and concluding remarks.

2. Method

2.1.Variables.  Two time series TR (training set) and CT (control/test set) of the target variable were used to
train and evaluate a forecasting algorithm, where TR = {a1, ... , atr} is ten year data (1985-1994, tr =2528 days)  and CT
= {a1, ... , act} is two year data (1995-1996, ct = 506 days).

Five sequential days are used as the main forecast unit (an object):
at = (a1

t,a
2
t,a

3
t,a

4
t,a

5
t ),

where aj
t is j-th day of five-day object at. We will also use another notation: at=(at,at+1,at+2,at+3,at+4), with the following

correspondence between notations: a(t-1)+j =aj
t for all five days of at (j=1,...,5). A variable Weekday(a t) has five

values:1,2,3,4 and 5 for weekdays, where Weekday(a t)=1  means Monday and Weekday(a t)=5 means Friday. Example.
Let at =”March 3, 1998”, Weekday(a t)=2. Tuesday’s  code is 2. We do not consider Saturdays and Sundays in this
study, because the stock market is closed these days.

Several new variables were generated from SP500C:
(2.1.1) relative differences )ij(at) = (SP500C(aj

t) - SP500C(ai
t))/SP500C(ai

t), i<j, i,j= 1,...,5;
Example. Let i=1, j=2, t=”March 3, 1998”  then
at = <March 3, 1998; March 4, 1998; March 5, 1998; March 6, 1998;March 9, 1998> , where a1

t =at = “March 3, 1998”, a2
t

MMDR models
(selecting/generating  first-order 
logic rules with variables x,y,..,z:
IF A(x,y,…,z)THEN B(x,y,…,z)

Learning first-order logic rules on
training data using conditional
probabilities of inference
P(B(x,y,…,z)/A(x,y,…z))

Creating interval and threshold
Forecasts using rules
IF A(x,y,…,z) THEN B(x,y,…,z)
and p-quintiles

Testing and selecting
first-order logic rules
on training data
(Occam’s razor, Fisher
criterion)
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=at+1 = “March 4, 1998”, a3
t =at+2 = “March 5, 1998”,

a4
t =at+3 = “March 6, 1998”, a5

t =at+4 = “March 9, 1998”. Therefore, )12(at) = (SP500C(a2
t) - SP500C(a1

t))/SP500C(a1
t)

=(SP500C(March 4, 1998) - SP500C(March 3, 1998))/SP500C(March 3, 1998).
 (2.1.2) differences )ijk(at) = )jk(at) - )ij(at) between two relative differences.
Example. Let k=3, then )ijk(at) = )jk(at) - )ij(at) can be written as
)123(at) = (SP500C(March 5, 1998) - SP500C(March 4, 1998))/SP500C(March 4, 1998) -
                -(SP500C(March 4, 1998) - SP500C(March 3, 1998))/SP500C(March 3, 1998).
(2.1.3) cyclic permutation B (cycle of length 5) for object  a  and function wd(a). wd(a) = <1,2,3,4,5>  means that a 

represents normal five weekdays from Monday to Friday, but wd(b) = < d1,...,d5> =<2,3,4,5,1> means the five days
from Tuesday to the next Monday, i.e.,  <Tue, Wed, Thu, Fri, Mon>. Let B(Mon, Tue, Wed, Thu, Fri)=(Tue, Wed,
Thu, Fri, Mon). Thus B is a cyclic permutation, which changes the set of five days under consideration for rule
extraction from a to b: < d1,...,d5> = B(<Mon, Tus, Wen, Thu, Fri >).  
Formally wd(b)=< d1,...,d5>  is equivalent to  (Weekday(b1)= d1) &...& (Weekday(b5)=d5), and
< d1,...,d5> =B(Mon, Tue, Wed, Thu, Fri), where B  is  a cyclic permutation of weekdays. The Weekday function is
defined in this section above.

Note that it is possible to generate hundreds of similar variables in addition to (2.1.1)-(2.1.3). In the time
frame of current study we considered only (2.1.1)-(2.1.3) for SP500C and their analogues for the target and DJIA. The
first two features (2.1.1) and (2.1.2) catch properties similar to the first and second derivatives of the original time
series. Analysis of more variables requires much more runtime. Therefore current results show mostly applicability of
the method and its capability as a knowledge acquisition tool for financial time series.

2.2. Hypotheses and probabilistic “laws”.  Let’s introduce notation: a = at1, b = at2  are arbitrary objects;
()(a) # )(b))g  is any of inequalities as ()ij(a) # )ij(b))g, i < j; i,j = 1,...,5; or ()ijk(a) # )ijk(b)), i < j < k; i,j,k = 1,..,5;
g,g0,g1,g3 0 {0,1}, (0)  means that there is no negation for the expression  )ij(a) # )ij(b) and (1) means negation of this
expression. 

To find probabilistic regularities (“laws”) we tested the following hypotheses 2.2.1-2.2.4:
2.2.1.  (wd(a) = wd(b) = <d1,...,d5>)&()(a) # )(b))g1 Y ((target(a5) # target(b5))g0;
Example: Let a  = <March 3, 1998; March 4, 1998; March 5, 1998; March 6, 1998;March 9, 1998>, b = <March

10, 1998; March 11, 1998; March 12, 1998; March 13, 1998; March 16, 1998>, )(a)= )12(at), )(b)= )12(bt), g1 = 0 (no
negation of relation )(a) # )(b) ),  g0=1(negation of relation (target(a5) # target(b5)). The last one means that we test
the rule with relation (target(a5) > target(b5)).  Let also < d1,...,d5>=< Tue,Wed, Thu, Fri, Mon >.  Therefore, the tested
rule/hypothesis is  ((wd(March 3, 1998; March 4, 1998; March 5, 1998; March 6, 1998; March 9, 1998) = wd(March 10,
1998; March 11, 1998; March 12, 1998; March 13, 1998; March 16, 1998) = < Tue,Wed, Thu, Fri, Mon >) &()(a) # )(b))
Y (target(a5) > target(b5)). This means that we test all five-day objects, which begin with Tuesday. The tested
statement is: “IF for any five-day objects a and b the SP500C difference )12(at)  is smaller than )12(bt) THEN  the
target stock for the last day of a will be greater than for the last day of b”.

2.2.2. (wd(a) = wd(b) = < d1,...,d5>)&()(a) # )(b))g1&()(a) # )(b))g2 Y (target(a5) # target(b5))g0;
These hypotheses have similar interpretation. The only difference from 2.2.1 is that now we consider two

differences in the rules. For example one of the tested statements is: “IF for any five-day objects a and b the SP500C
difference )12(at) is smaller than )12(bt) AND the SP500C difference )23(at)  is greater than )23(bt) THEN the target
stock for the last day of a will be greater than for the last day of b”.

 2.2.3. (wd(a) = wd(b) = < d1,...,d5>)&()(a) # )(b))g1&()(a) # )(b))g2&
                 ()(a) # )(b))g3 Y (target(a5) # target(b5))g0;

These hypotheses have similar interpretation. The only difference from 2.2.2 is that now we consider three
differences in the rules. For example one of the tested statements is: “IF for any five-day objects a and b the SP500C
difference )12(at) is smaller than )12(bt) AND the SP500C difference )23(at)  is greater than )23(bt) AND the SP500C
difference )123(at)  is greater than )123(bt) THEN the target stock for the last day of a will be greater then for the last
day of b”.

2.2.4. (wd(a) = wd(b) =< d1,...,d5>)&()(a) # )(b))g1& ... &()(a) # )(b))gk Y (target(a5) # target(b5))g0.
These hypotheses allow us generate more than three relations including )ijk(at). For example, one of the

tested statements is: “IF for any five-day objects a and b the SP500C difference )12(at) is smaller than )12(bt) AND the
SP500C difference )23(at)  is greater than )23(bt) AND the SP500C difference )123(at)  is greater than )123(bt) AND …..
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AND …. THEN the target stock for the last day of a will be greater than for the last day of b”.
Figure 2, tables 1 and 2 present examples  of hypotheses 2.2.1-2.2.4 in usual financial terms. 

Figure 2.  Diagram for rule 2.4.1 .

2.3. Transition probabilities.  Many well-known prediction methods used for stock market study can be
written in terms similar to 2.2.1-2.2.4, e.g., Markov chains and other methods exploiting conditional/transition
probabilities. Two simple Markov chains are presented in [Hiller, Lieberman, 1995, p. 632].

Chain 1 has four states with conditional probabilities presented in table 1.

Table 1. Transition matrix for chain 1
The stock increases today The stock decreases today

The stock increased yesterday 0.7 0.3
The stock decreased yesterday 0.5 0.5
In particular, table 1 gives a rule:

IF the stock increased yesterday THEN the stock increases today with probability 0.7. 
Chain 2 has more states and presented in table 2.
This chain has similar interpretation. For instance, table 2 gives a rule:
IF the stock increases today and decreases yesterday THAN the stock will increase tomorrow with

probability 0.6. This rule is a combination of bold cells in table 2. If part is taken from the first column. Similarly the
bold cell on the first row is used as a THEN part of the rule. Probability 0.6 can be found in the intersection of
respective row and column.

Below we show how this Markov chain type of models can be embedded into first-order logic rules and
discovered using this technique.   We evaluate expressions 2.2.1-2.2.4 on training data using conditional
probabilities. Let us consider six-day objects instead of five-day objects:
<d1,...,d5,d6>=<Mon,Tues,Wed, Thur, Fri, Mon>, (wd(a) = wd(b) = < d1,...,d5,d6>, a=at and a6

t= a1
t+1=b1

t ,i.e., a is some
six days and b is the next six days excluding Saturday and Sunday with overlapping the end of a and the beginning of
b. Also we generate relative difference (2.1.1) for the same target stock price (S):  deltaij(at) = (S(aj

t)-S(ai
t))/S(ai

t).  This
variable is equal to target(at) five days back.  The target represents five-day forecast in contrast with deltaij(at).

Let us suppose that we have found the following conditional probabilities on training set TR sore
some fixed days i and j from at and at+1:
       0.31  for Rule1:  (deltaij(at ) < deltaij(at+1) => (target(a6

t ) < target(a6
t+1))   

       0.69  for Rule 2 : (deltaij(at ) < deltaij(at+1) => NOT(target(a5
t ) < target(a5

t+1))

IF
current 5 days end on Monday and there are some  other (“old”) five days (from the history of years
1984-1996) that end on Monday too

AND
the relative SP500C difference between Tuesday and  Thursday for the old five days is no greater
than between Tuesday and Thursday for the current five days

AND
the relative SP500C difference between Tuesday and  Monday for the old five days is  greater than
between Tuesday and Monday for the current five days

AND
the relative difference between SP500C differences for Tuesday, Wednesday and Wednesday, 
Thursday)  for the old five days  is no greater than for the pairs of days for the current five days 

AND   <we omit linguistic description of  ()245(a) > )245(b)), which is similar to previous one>
THEN

 the target value for Monday from the current 5 days should be no greater than target value for the
Monday from the old five days, i.e., we forecast that a  target stock five days ahead from current
Monday  will grow no greater than it was five days ahead from the old Monday.
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       0.65  for Rule 3 : NOT (deltaij(at ) < deltaij(at+1) => (target(a5
t ) < target(a5

t+1))
       0.35 for Rule 4 : NOT(deltaij(at)<deltaij(at+1) => NOT(target(a5

t ) < target(a5
t+1))

Table 2. Transition matrix for chain 2
The stock increases
both tomorrow and
today

The stock increases
tomorrow and
decreases today

The stock decreases
tomorrow and
increases today

The stock
decreases both
tomorrow and
today

The stock
increased both
today and
yesterday

0.9 0 0.1 0

The stock
increased today and
decreased
yesterday

0.6 0 0.4 0

The stock
decreased today
and increased
yesterday

0 0.5 0 0.5

The stock
decreased both
today and
yesterday

0 0.3 0 0.7

It can be represented with a matrix of transition probabilities, used in Markov chains for forecasting:
              Target

           0      1
Delta    0         0.31   0.69

1         0.65   0.35

We use 0 for “up”, i.e., if deltaij(at ) < deltaij(at+1) and 1 for “down”, i.e., if deltaij(at ) ≥ deltaij(at+1). The same notation
is used for the target.  Rule 2 can be described using usual financial language: “If delta goes UP then target goes
DOWN with probability 0.69”. Several of these expressions were used to study a forecast horizon for consecutive
days and weeks by changing < d 1,...,dk> and i,j day, where < d1,...,dk> was extended from 5 days up to 12 weeks.

For each probabilistic law C=(A1(x,y,…z)&…&Ak(x,y,…z)YA0( x,y,…,z)) we obtain an estimate of conditional
probability (relative frequency) P(A0/A1&…&Ak) using training data. Remind that all expressions Ai in first-order
rules depend on variables x,y,…,z, i.,e. A i(x,y,…z) in contrast with propositional logic expressions, which do not have
variables x,y,…z.. These probabilities are used as evaluation functions combined with a test for statistical
significance. This is a relatively common way designing an evaluation function. The relative frequency is used in AQ
method and statistical significance in evaluated in CN2 method, but for entropy. We exploited an original search
mechanism to select appropriate expressions [Vityaev, 1992; Vityaev, Moskvitin 1993] using mentioned evaluation
criteria (conditional probability P(A0/A1&…&Ak) and Fisher statistical significance test). The search is in the line with
“current-best-hypothesis” search and “least-commitment” search [Russel and Norvig, 1995, pp.546-552] but it is
applied for probabilistic hypothesis, which is more complex. The used search was arranged in accordance with a
definition of semantic probabilistic inference [Vityaev, 1992].  After finding several probabilistic laws E1 ¤ E2 ¤ ... ¤
Ek-1 the search for a new one was done by adding to the IF part of the rule (antecedent) a new atomic logical
expression  ()(a) # )(b))g. This adding is also known as specialization [Russel and Norvig, 1995, p.546]. We find
mentioned new logical expression using the full search in 2.21-2.2.4 logical expressions.

The Fisher criterion was used on each step to test statistically each generated hypothesis 2.2.1-2.2.4 to be a
probabilistic “law” [Vityaev, 1992]. We delete one of the atoms ()(a) # )(b)) and test if the rest of the expression has
less conditional probability. If the conditional probability decreases statistically significantly (with a certain level of
confidence) then we accept a tested hypothesis as a probabilistic “law” Ek. This idea is close to idea of finding a
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generalization of a hypothesis [Russel and Norvig, 1995, p.546].
2.4. Learning. We tested hypotheses 2.2.1-2.2.4 using training set TR = {a1, ... ,atr} and  randomly chosen

pairs of objects a, b from TR by the "Discovery" system.  To test hypotheses from section 2.3 we used all sequential
pairs of objects from TR. The result of learning is a set Law of possible probabilistic “laws” found on TR. Each of
these probabilistic “laws” was described with conditional probabilities on TR.  To test if a “law” is a stable “law” we
evaluated also its conditional probability on CT. However we did not use these conditional probabilities to choose
preferred “laws” for forecast to guarantee independence of the forecast test on the control set (CT).

Let us give three examples of laws with relatively high conditional probabilities for both
training and test/control sets TR and CT:
2.4.1. (wd(a) = wd(b) =<2,3,4,5,1>)&()13(a) # )13(b))&()15(a) > )15(b))&
    ()234(a) # )234(b))&()245(a) > )245(b)) Y (target(a5) # target(b5));
Frequency on TR is 0.6385 and frequency on CT is 0.7609. This “law” can be translated to the normal financial
language (see figure 2 above). That statement is true only statistically as it reflects by frequencies: the frequency on
TR equals to 0.64 and the frequency on CT equals to 0.76. It means that for about 70% of those cases we have found
an upper limit for the target value, which is the target value for the old Monday.

Let us suppose that the last target value is -3%, i.e. closing price for the old five days decreased. It means
that we also will have a decrease from the current Tuesday to current Monday and amount of decrease will be greater
than -3% with probability 0.7, for example, it can be  -5%.
We present the next two examples without a linguistic description.
2.4.2. (wd(a) = wd(b) =<2,3,4,5,1>)&()24(a) # )24(b))&()145(a) # )145(b))&()234(a) > )234(b))&()235(a) # )235(b))
                      Y (target(a5) > target(b5));
Frequency on TR is 0 .63 and frequency on CT is 0.66.
 2.4.3. (wd(a) = wd(b) =<2,3,4,5,1>)&()25(a) # )25(b))&()45(a) > )45(b))&  ()124(a) > )124(b))
                                          Y (target(a5) > target(b5));

We have found 134 regularities (“laws”) of that kind connecting SP500C and the target.
The process of generating new rules is finished when there are no more rules with higher conditional probability and
still statistically significant. Note this stop criterion does not require itself to restrict the set of tested rules a priory.
The restriction can be based on the volume of available data, acceptable levels of conditional probabilities and
significance. For practical computations often we stop computations earlier, reaching some runtime limit or/and
acceptable level of conditional probabilities. The average of conditional probabilities of these regularities on training
data TR is 0.5813 and the average of conditional probabilities on test data CT is 0.5759. All conditional probabilities
are evaluated as relative frequencies on TR and CT respectively as it common in Machine Learning [Mitchell, 1997,
p.282]. Thus performance (conditional probability) is sufficiently stable when we are moving from training to test
data. The difference is 0.0054=0.5813-0.5759, i.e. 0.54%.  Nevertheless this difference has a variation. Typical
difference is no greater than K3% (53 regularities, i.e., 40%).  There are also regularities with significantly higher
differences. It tells us that some regularities became stronger and some weaker in financial time series for the last two
years.  Sometimes frequencies dropped down by 50%. It can mean changing market conditions, business strategy of
the target company, stockholders’ behavior and even that regularities have become known and people used them
(market efficiency). Thus there are three types of regularities:
(1) Regularities/rules with similar performance on training and test data. Frequency difference range is K3% (53

regularities, 40%)  with only  0.14% of the average decrease of frequencies;
(2) Regularities/rules with increasing performance on test data. Frequency increased on 38 regularities ( 28%) with

5.8% of the average increase of frequency;
(3) Regularities/rules with decreasing performance on test data. Frequency decreases on 43 regularities (32%) with

6.6% of average decrease of frequency.
Noise issue. It is possible that rules may not work out of sample due to noise. This is a common problem of

all forecast methods.  Probably MMDR suffers less from noise than other methods. If MMDR captured a “critical
mass” of noise this noise would be a part of statistically significant rule (MMDR selects only statistically significant
rules). So it is questionable should it be called noise. We interpret this situation as discovering different laws on
different data as it is  common in scientific discovery. For example, some laws of physics identified using data from
Earth do not work on Moon or Mars with other gravitational levels.

Often the reason that rules may not work out of the sample is that the method is very sensitive to initial
assumptions. In Neural Networks initial assumptions include such parameters as weight functions, number of layers,
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and so on. MMDR is relatively robust in this sense, because MMDR pays special attention to minimize the set of
assumptions.

2.5. Forecast. We can use regularities from Law set for forecasting only if we know right-side (target(a5)) or
left-side (target(b5)) value of inequality (target(a5) # target(b5))g0, which is a part of a found regularity.  If we take both
objects a and b from CT, then a forecast is impossible, because both target values are unknown. Therefore  five days
from TR with  a known target value were used. If we take, for example, object a from TR and object b from CT then we
will have a lower bound for unknown target(b5) if  g0= 1 and an upper bound if g0 = 0, because the value target(a5)  is
known. If we take object a from CT and object b from TR, we will have an upper bound if g0 = 1 and a lower bound if
g0 = 0 for unknown value of target(a5).  In the “If part” of the rule 5.2.4 ()(a) # )(b))g1& ... &()(a) # )(b))gk values of
all inequalities for objects a,b are defined in TRcCT  and this part of the rule is an expression, which relates training 
and test/control objects. This expression shows similarity of objects a and b.

We forecast a target value for object a from CT by applying all regularities from the Law set to two sets of
pairs of objects {<a,b>*b 0 TR} and {<b,a>*b 0 TR}. The first of these sets for each regularity gives a set of upper
bounds Up1(a5) = {target(b5)}, if g0 = 1 and  a set of lower bounds Low1(a5) = {target(b5)} if g0 = 0   for unknown
value of target(a5). Similarly the second of these sets gives lower bounds Low2(a5) = {target(b5)} if g0 = 1  and a set of
upper bounds Up2(a5) = {target(b5)}, if g0 = 0   for an unknown value of target(a5). The whole sets of upper and lower
bounds Up1(a5), Up2(a5), Low1(a5), Low2(a5)  for target(a5) are obtained by joining these bounds for all individual
regularities.

Our regularities allow us to forecast only for the last days of a five-day cycle (not necessarily Friday).  It
means that if there is a holiday within these five days we do not have enough data for forecast.  We made a forecast
for 442 days from 506 on CT.

 This is not a principal restriction of the method. Regularities could  be discovered with missing days, but it
would take more runtime. Note that regularities without identification of a particular day of the week have
significantly less prediction power.

Next we use order statistics with a confidence level. We compute p-quintile   (p = 0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90) for the upper bound of target(a5) and (1-p)-quintile for the lower bound of target(a5). For each value of
p-quintile (p = 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90) we have the upper bound Upp(a

5) for target(a5), taken from
Up1(a5cUp2(a5) and we have the lower bound Lowp(a

5) for target(a5), taken from Low1(a5)cLow2(a5).
We assign Lowp(a

5)= -4  for large p values (e.g. 0.80, 0.90, 0.95)  if (1-p)-quintile is less than the least value of
the lower bound for target(a5). Also we assign Upp(a

5)= +4  for large p values (e.g. 0.80, 0.90, 0.95),  if p-quintile is
greater than the largest value of the respective upper bound.

There is no the forecast if the lower bound Lowp(a
5) is greater than the upper bound  Up p(a

5). It took place
sometimes for small p (e.g., 0.55, 0.60, 0.65). We also refuse the forecast if we get p-interval [-4,+4].    Note that the p-
intervals [Lowp(a

5), Upp(a
5)]  for an unknown value of target(a5) are nested for growing p values, i.e., Lowp1(a

5) #
Lowp2(a

5) 4 Upp1(a
5) $ Upp2(a

5), if p1 > p2.  All these intervals are results of forecast.

3.Results
3.1.Results for set of expressions from section 2.2. We have evaluated the performance of the forecast for

each p-quintile and for all objects from CT using six parameters:
(1) percentage of Rejections,
(2) percentage of Errors,
(3) percentage of Right forecasts,
(4) mean length of the p-intervals for all (right and wrong) forecasts (ML)
(5) mean length of the p-intervals for all right forecasts (MLR) and
(6) bound forecast mean square error (BF MSE), i.e. mean square difference between the

forecast and the nearest p-interval bound for forecasts which are out of p-interval.
For cases when one of the bounds is not defined (we did not find “good” regularities for that bound) we took a
doubled distance from target(a5) obtained by forecast and  a known bound, i.e., 2*(target(a5) – Lowp(a

5)),  if we found
the lower bound. If we have the upper bound 2*(Upp(a

5) - target(a5)) is used.  Table 3 and Figure 3 show performance
metrics for test set CT of listed parameters. Figure 3 graphically represents first four columns of table 3. It reflects that
with growth of p percent of correct forecast is growing too.
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Table 3. Performance metrics for a set of regularities

p-

value

Rejections Errors 

  

Right

Forecast

 ML -Mean length
of the p-intervals for
all (right and wrong)
 forecasts

MLR- Mean
length of the p-
intervals for all
right forecasts

BF MSE Bound
Forecast Mean
Square Error

0.55 102 (23%) 268 (61%) 72 (16%) 0.5432 1.2148 2.0113

0.60 17  (4%) 315 (71%) 110 (25%) 0.8236 1.3325 1.5903

0.65 4   (0.9%) 279 (61%) 168 (38%) 1.2404 1.5755 1.7527

0.70 4   (0.9%) 215 (49%) 223 (50%) 1.7630 2.0140 1.9939

0.75 3   (0.7%) 176 (40%) 263 (59%) 2.3310 2.5875 1.7256

0.80 3   (0.7%) 125 (28%) 314 (71%) 3.0392 3.2493 1.3803

0.85 3   (0.7%) 71  (16%) 368 (83%) 3.9483 4.0957 1.2254

0.90 10  (2.2%) 35  (7.9%) 397 (90%) 5.1923 5.2540 1.1093

3.2.Results for regularity (2.4.1).  Regularity (1) from section 2.4 was identified with 440 objects from training set TR.
 There are also 89 five-day sequences available in test set CT  to test regularity (1).  We considered different p-values
and found the number of objects from those 89 objects, which are related to a particular p-value.   For example p=0.55

Figure 3. Performance of found regularities on test data 
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brings us 58 objects and 28 of them were predicted correctly (in relatively narrow forecast interval).  See table 4.
Increasing p allowed us to get up to 100% correct forecast, but with a wider forecast interval and less number of
objects (see figure 4 and table 4). It means that for practical forecast we need to choose some intermediate acceptable
level of p.  Figure 4 shows approximately equal number of right forecasts, wrong forecasts and rejections for p=0.55
and growth of rejections and decreasing the number of wrong forecasts.

Table 4. Performance for regularity #2.4.1

    p-value

  

  Right

   Forecast

 ML- Mean length of
the p-intervals for all
(right and wrong) 
forecasts

MLR- Mean
length of the p-
intervals for all
right forecasts

BF MSE Bound
Forecast Mean
Square Error

0.55 28 from 58 (48,3%) 2.806 0.269 2.640

0.60 36 from 62 (58.1%) 3.111 0.925 3.347

0.65 34 from 56 (60.7%) 3.471 1.386 2.146

0.70 30 from 46 (65.2%) 4.081 2.119 1.989

0.75 26 from 37(70.3%) 5.059 3.172 0.604

0.80 24 from 29 (82.8%) 4.962 4.013 0.114

0.85 16 from 18 (88.9%) 6.129 5.411 0.029

0.90 8 from 8  (100%) 6.221 6.221 0.000

Figure 4. Performance of regularity #2.4.1 for 89 test objects
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This choice depends on investor’s individual purposes, acceptable risk level and environment. Therefore it
should be a part of a trading strategy, which requires a special study probably similar to portfolio selection with risky
securities [Hiller, Lieberman, 1995, pp.561-563]. We leave systematic study of this issue out of the paper.  Without
that analysis we assume that reasonable level of p-value for data presented in table 3 would be [0.65, 0.75]. Also the
interval stock forecast can be viewed as an integral part of portfolio selection with risky securities. One of the known
non-linear optimization models for portfolio selection is based on study done by Markowitz and Sharpe that helped
them win the 1991 Nobel Prize in Economics  [Hiller and Lieberman, 1995, pp.561-563]. Let us present basic elements
of that model.

There are n stocks considered for inclusion in the portfolio, xj is the number of shares of stock j, mij and s ij

are estimated mean and variance, respectively, of the return on each share of stock j, where s jj  measures the risk of

the stock, s ij is a covariance of the return on one share each of stock i and stock j. Two functions R(x)= j

n

j
j x∑

=1

µ

and V(x)= ij

n

j
ij

n

i

xx∑∑
== 11

σ  are introduced. The first one represents the total return and the second one the risk

associated with the portfolio. The objective function to be maximized is f(x)=R(x)-ßV(x), where the parameter ß is a
nonnegative constant that reflects the investor’s desired trade-off between expected return and risk. Choosing ß=0
implies that risk should be ignored completely, whereas choosing a large value for ß places a heavy weight on
minimizing risk.   This way investor’s expected utility can be maximized if the model captured investor’s utility
function (relative value to the investor of different total returns) [Bazaraa et al, 1993].

There is a bottleneck in this model to identify ß, {Fj} and {s ij.}.The bottleneck related to {Fj} and {s ij} is that
they are only mean and variance over a period of time. Different periods may give different mean and variance. Also it
is not clear which of them will be similar to them for portfolio selection term. Therefore the usage of forecast values of
mean and variance appears a natural extension of that model. We think that our forecasted intervals for a stock j can
be natural substitution for the stock variance and the middle of that interval could substitute mean Fj.  Also having
probabilities and respective forecast for discovered rules (“laws”), it is possible to incorporate them into decision
analysis models to maximize payoff over possible alternatives [Hiller, Lieberman, 1995, pp.832-901] in stochastic
programming setting.

Let us comment an advantage to predict the target using a particular regularity as (2.4.1). If we exploit all 134
found regularities  the target can be predicted practically for all possible objects, but for some of them forecast
interval can be very large and useless.  Using a particular regularity from (2.4.1) we often can predict the target only
for few specific objects but much more accurately. It means that we refuse to make any stock market decision for
objects where we found that there is insufficient information for an accurate forecast.  This approach looks more
reasonable than other approaches delivering forecasts for all objects and always using only one formula (rule). In
section 3.3 we illustrate this with some discovered rules. Those rules are applicable only for 55 days of 1995-1996, but
they outperformed buy-and-hold strategy in simulated trading (see section 4).

3.3. Results for expressions from section 2.3. We found transition probabilities for several expressions on
training data and confirmed them on test data. These expressions and probabilities can be used for forecast similarly
to expressions described in 3.1 and 3.2. In 3.1 and 3.2 we used SP500C to predict the target.   The main difference is
that now we use previous values of the target itself to predict the target similarly as it is done in Markov chains
models (see section 2.3). In 3.1 and 3.2 we used SP500C to predict the target. Similarly, we show that first-order logic
can help to discover Markov chains type of models automatically.

Below we present examples of studied prediction statements:
(i) If the target decreases from previous Monday to current Monday then the target will grow for the next

Tuesday with probability P1.
(ii) If the target increases from previous Monday to current Monday then the target will decrease for the next

Tuesday with probability P2.
How did we select these types of rules? There are four reasons. The first one is based on Occam’s razor

principle: prefer the simplest hypothesis that fits the data [Mitchell, 1977, p.65]. What does it mean fit the data?  We
use a specific version of Occam’s razor: prefer the simplest rules with maximum expected forecasting stability when
moving from sample to a real forecast. This expected stability is evaluated using statistical criteria. The second one is
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that given simple rules (based on relational assertions) well fit to the first-order logic. They can be naturally
discovered with first-order logic in contrast with rules in propositional logic (see introduction to this paper). The third
reason is based on fundamental results [Krantz et al, 1971, 1989,1990] showing that any fundamental measurement
can be presented using first-order logic assertions. Krantz et al [1971, 1989,1990] developed these presentations for
the most popular scales as order, interval, relational and absolute scales.  The forth reason is that conditional
probabilities found in Markov chain type of models have direct relationship with performance of the forecast, i.e.,
how these rules are confirmed on control/test data (CT).  For testing rules we only need to find these probabilities on
CT and compare them with probabilities on training data (TR). If probabilities on CT are similar or higher than on TR
then rules are confirmed. 

Regularities with different days in (i) and (ii) were tested. One of the found pairs of these regularities has
relatively good prediction power (probabilities 0.66 and 0.75 on test set CT) and can be tested for practical forecast
of the target. Actually our conditional probabilities are very close to a confusion matrix used in [Swanson, White,
1995] as a measure of forecast performance that is calculated how well a given forecasting procedure identifies the
direction of change in the spot rate. 

The natural buy/sell prediction strategy is based on this directional forecast [Cheng and Wagner, 1996]





=
DOWNSell
UPBuy

if,
if,

Prediction

We also studied the horizon of that forecast (see figure 5).  Regularities (i) and (ii) are restricted. They are

not applicable for all days, e.g.,  (i) and (ii) are not applicable for Wednesday and Thursday forecast. The most
promising is forecast for one week among found regularities. There are also some lower chances for success for 5 and
8 weeks (see figure 5).  But the majority of probabilities beyond one-week horizon is too close to 50:50. The upper line
shows transition probabilities for 0→1  and 0→0, i.e., from up to down and from up to up  (see section 2.3 for more
details about notation).

4. Simulated trading performance

In this section we discuss testing the discovered regularities on the test data (1995-1996) using simulated
trading performance. Direct testing of regularities described in sections 2.3 and 3.3 on the test data are given in table
6 (one-week horizon). This testing confirms the discovered regularities. In fact they are even more confirmed in 1995-
1996 data than in the training data (1985-1994). In table 6 we use notation from section 2.3. Transition probability for
training data is 0.69 for transition from 0 to 1 (0? 1) and 0.65 is for transition from 1 to 0 (1? 0). As we used above
codes 0 and 1 for target and delta represent up and down, respectively (section 2.3.) Table 6 shows 0.84 and 0.7 for

Figure 5. Transition probabilities for 12 weeks (training data)
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them, respectively on the test data (1995-1996).
 Table 5. Transition probabilities for test data

Target
Delta 0 (up) 1(down)
0 (up) 0.3 0.7
1 (down) 0.84 0.16

The comparison with another methods is more complicated. Regularities 2.2.1-2.2.3 are used to deliver
interval forecasts. Regularities (2.2.4) are used to deliver so called “threshold forecasts”, e.g., stock price c will be no
less than the threshold C (c=C). See section 2.2. There are also “point” forecasts, where a particular value of the
stock is forecasted.  So there is a problem to compare threshold, interval and “point” forecasts directly, i.e., to find
out which one is closer to the actual value of a stock.

Fortunately, different forecasts can be compared using trading performance. A forecast giving the best
performance obviously has an advantage. We simulated trade over 1995-1996 years and compared results of
simulated trading with stock prices and gain/loss in these years using our regularities in form of 2.2.4 (sections. 2.2
and 2.3) for forecast.

This testing of forecast of time series requires using a trading strategy. So we test a forecast together with a
trading strategy. Each of them can be wrong/ineffective and can corrupt/hide a real advantage of another one.
Therefore, this comparison can not be a final comparison of forecast methods, but it gives a useful output about the
practical value of a forecast method in trade.

 A simulated trading performance for the target (T) was evaluated on the test data (1995-1996). The target
was scaled using the formula T=10*(t+5) to get more convenient larger numbers. The scaling does not change the
performance. An active trade strategy was compared with buy-and-hold strategy for entire 1995-1996 years (table 6
and figure 6).

Buy-and-hold strategy means in our simulation “buying” n shares at the first trading day of 1995 and
“selling” them at the last trading day of 1996. This way we “bought” 48 shares for 55.6 each (total investment 2668.7)
on January 3, 1995 and “sold” for 60.36 on December 31, 1996 with gain 228.58 (8.56% of the initial buy-and-hold
investment).

Table 6.  Simulated trading performance
Active trading Buy-and-hold

Average investment for 1995-1996 994.53 2668.7
Final number of shares 48 48
Gain  for 1995-1996 1059.87 228.37
Gain ( % to the final capital) 52.92% 7.88%
Gain (% to the average active trading investment) 106.57% Not applicable
Gain (% to the initial buy-and-hold investment) Not applicable 8.56%

The active trading delivered simulated gain of 1059.87 (for 48 shares) in contrast with 228.37 in buy-and-hold
strategy for the same 48 shares (table 6). To simplify consideration we ignore all taxes in this consideration. The initial
investment in our active strategy is much smaller (169.68) with average investment over two years equal to 994.53 in
contrast with 2668.7 in buy-and-hold strategy. It means that the active strategy does not require “freezing” 2668.7 in
shares for two years.  The gain is 52.92% of the final capital for the active strategy and 7.88% is a gain for to the final
capital for buy-and-hold strategy (table 6. Therefore the active strategy outperformed buy-and-hold strategy. All
taxes were ignored as we mentioned before.

Figure 6 shows how the active strategy outperformed buy-and-hold strategy in gain/loss dynamics. Trading
days are numbered on these figures from 1 to 55.  These days were chosen over 1995-1996 using our rules and
forecast bases on these rules .  The rules used are applicable only for these days of 1995-1996.

To illustrate how we reached this result and have chosen trading dates we present simulated trade for
January 1995 in more detail. The real trading interval in our active trading strategy is shorter. It begins on January
16,1995. How did we choose January 16 instead of the first trading day on 1995? January 16 is the first day with
enough data to use tested regularities. They are applicable only for trading days with particular properties.  Therefore
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the scope of these regularities can be relatively narrow. Nevertheless they can deliver more exact forecast than a
regularity applicable for all trading days, because they capture deeper and more specific properties.  An extended set
of rules can be discovered the same way and they can be applicable for a wider set of trading days. Meanwhile we
show that an active strategy with discovered regularities already outperforms buy-and-hold strategy.

There is a mechanism within an active trading to chose whether we should trade on a particular day, e.g.,
January 3. In buy-and-hold strategy this date is chosen formally as a beginning of the year. In active strategy we
used rules discovered on TC, i.e., data from 1985-1994. Only data of 1995-1996 were used to make trading decisions
using these rules. Only on January 16 we get enough data for our rules and can check which rule is applicable (IF part
of the rule is equal to 1). The applicable rules forecast on January 16 that the price will go up on January 23.
Therefore, January 16 is time to buy shares and January 23 is time to sell them, if the forecast is correct. We buy
shares on January 16.  On January 23 rules forecast that the price will go down on January 30 with high probability.
Thus, January 23 is time to sell, but there is also a relatively high probability that the price will continue to grow so
we can sell only half of our shares. This can give us some extra gain, but force us to use a more complex active
strategy. In this paper we follow a simpler active strategy--to sell all shares bought just before. This way we get a
gain on January 23. As it was mentioned the forecast for January 30 is that shares will go down. Thus they should be
sold out, but we already sold out all our shares. Therefore there is no trade for us on January 30. Having more shares
on that day we could get an extra gain, because share’s value is higher on January 30,1995. Next forecast on February
6 shows us that shares will go up on February 13, so February 6 is a time to buy. The further dynamics of gain/losses
is shown in figure 6. They show that the active strategy, using discovered regularities and forecast outperformed
buy-and-hold strategy for test years (1995-1996).

 5. Comparison with ARIMA
 
 We made comparison of our results with ARIMA time series model [Pankratz, 1983, Montgomery at al, 1990].

Studied ARIMA models are presented in table 8, where s periodic parameter (s=5 days), t is a day and T(t) is the
Target stock for day t, a,b,c and q are model coefficients. These coefficients were evaluated for models 3-5 using
non-linear optimization methods (Solver Tool, MS Excess’97) and test data (1995-1996 years). The sign of T(t+1)-T(t)
was forecast with high accuracy, but not an absolute value. Correct forecast of the sign is sufficient to form a
successful buy/sell strategy. The sign forecast is simpler than absolute value forecast and first-order logic methods
fit to discover sign forecast rules.

 Model (1) called a random walk is considered “…a good ARIMA model for many stock-price series”

Figure 6. Performance difference between active and 
buy-and-hold trading (1995-1996)
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[Pancratz, 1983, p.410]. Nevertheless this model is not applicable to generate a trading strategy. This model does not
create ups and downs needed for a trading strategy.  We can not say that models presented in table 8 utilize all the
power of ARIMA. ARIMA model requires adjusting parameters. Therefore it is possible to find a better ARIMA
model. There are many ways how ARIMA parameters can be adjusted. We experimented with an adjustment
mechanism within licensed ARIMA software (“Forecast Expert”, SBS Inc.). The SBS Inc. offers this software for
investors. After adjustment done by this software we have got 58% of correct sign forecast of Dow-Jones Industrial
Averag1e (DJIA). We forecasted for 25 days ahead during 1994. This result shows us that there is a room to improve

 
 
 

 Table 7. Comparison with ARIMA

  Model  Data  Simulated
trading
performance
 (correct buy/ sell
signal)

 Comment

 1  T(t+1)=T(t)  1995-1996
 all days

 Not applicable  Buy/sell strategy is based on non-zero
difference between T(t+1) and T(t). This
model has zero difference for all days. Only
random advice is possible here with 50% of
success

 2  T(t+1)=aT(t)+b  1995-1996
 all days

 62.58%  This result is less precise than the one for a
subset selected by our method (table 5).

3 T(t+4)=(1-q)*
*(T(t+3)+qT(t++2)
++q*qT(t)+c

 1995-1996
 all days

 58.84%  This result is less precise than the one for
subset selected by our method (table 5)

 4  T(t+s)=aT(t)+b  1995-1996
 s=5, t is a fixed
weekday

 79.6%  This simple Markov process is fully
consistent with our approach. We tested all
weekdays t (Mondays, Tuesdays,
Wednesdays, Thursdays and Fridays) using
our approach to discover appropriate s and t

 5  T(t+2s)=aT(t+s)+
 +bT(t)+c

 1995-1996
 s=5, t is a fixed
weekday

 75.92%  This model exploits exactly the same data as
we used to discover regularities. The model
gives 75.92%. We got 84-70% (see table 5).
This result confirms our approach. 

 

 an adjustment mechanism in ARIMA. MMDR and other first-order logic methods can be effective for these
purposes. Model 4 in table 8 shows that when we found parameters s and t with MMDR we were able to adjust
ARIMA parameters and to get 79% of correct sign forecast.

 General problems of ARIMA model are presented in Montgomery et al [1990, p.288-290]. “There is no at
present a convenient way to modify or update the estimates of the model parameters as each new observations
become available, such as there is in direct smoothing. Future evolution of the time series will be identical to the past,
that is the form of the model will not change over time.”

The most significant advantage of the first order methods and MMDR, in particular, is that they can
forecast directly the sign of the difference instead of the value as ARIMA does. ARIMA can generate a sign
forecast using a forecasted value. The forecast of a value is more complex and available data may not fit for value
forecast. The value forecast can be inaccurate and statistically insignificant but the forecast of the sign can be
accurate and statistically significant for the same data.                                                                                 

The similar problem exists for neural networks. Chang and Wagner [1996] noted that their individual neural
networks were capable of sign forecast, but not for the forecast of the absolute magnitude of the price.
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 6. Conclusion
 
Computational experiments presented in this paper show that first-order logic Machine Learning methods

and Machine Methods for Discovering Regularities (MMDR), in particular, are able to discover useful regularities in
financial time series for stock market prediction.  In the time frames of the current study we obtained positive results
using separately SP500C and history of target itself for target forecast. The best of these regularities had shown
about 75 % of correct forecasts on test data (1995-1996).  The target variable was predicted using separately SP500
(close) and own history of the target variable. Active trading strategy based on discovered rules outperformed buy-
and-hold strategy and strategies based on several ARIMA models in simulated trading for 1995-1996. An ARIMA
model constructed using discovered rules had shown the best performance among tested ARIMA models.

Combined usage of SP500C, target history, DJIA and other indicators can give more powerful regularities
and a better forecast in future study.
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