
Ann Oper Res
DOI 10.1007/s10479-008-0481-4

A branch-and-cut algorithm based on semidefinite
programming for the minimum k-partition problem

Bissan Ghaddar · Miguel F. Anjos · Frauke Liers

© Springer Science+Business Media, LLC 2008

Abstract The minimum k-partition (MkP) problem is the problem of partitioning the set of
vertices of a graph into k disjoint subsets so as to minimize the total weight of the edges
joining vertices in the same partition. The main contribution of this paper is the design and
implementation of a branch-and-cut algorithm based on semidefinite programming (SBC)
for the MkP problem. The two key ingredients for this algorithm are: the combination of
semidefinite programming with polyhedral results; and a novel iterative clustering heuristic
(ICH) that finds feasible solutions for the MkP problem. We compare ICH to the hyper-
plane rounding techniques of Goemans and Williamson and of Frieze and Jerrum, and the
computational results support the conclusion that ICH consistently provides better feasible
solutions for the MkP problem. ICH is used in our SBC algorithm to provide feasible so-
lutions at each node of the branch-and-bound tree. The SBC algorithm computes globally
optimal solutions for dense graphs with up to 60 vertices, for grid graphs with up to 100
vertices, and for different values of k, providing a fast exact approach for k ≥ 3.

Keywords Minimum k-partition · Semidefinite programming · Branch-and-cut ·
Polyhedral cuts

Dedicated to the memory of Peter L. Hammer and in celebration of his outstanding contribution to the
field of operations research.

Partially supported by the Marie Curie RTN 504438 (ADONET) funded by the European Commission.
BG and MFA were supported by NSERC Discovery Grant 312125 and MITACS Network of Centres of
Excellence and Canada Foundation for Innovation. FL was supported by the German Science
Foundation under contract Li 1675/1.

B. Ghaddar · M.F. Anjos (�)
Department of Management Sciences, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario, Canada N2L 3G1
e-mail: anjos@stanfordalumni.org

B. Ghaddar
e-mail: bghaddar@uwaterloo.ca

F. Liers
Institut für Informatik, Universität zu Köln, Pohligstr. 1, 50969 Köln, Germany
e-mail: liers@informatik.uni-koeln.de

mailto:anjos@stanfordalumni.org
mailto:bghaddar@uwaterloo.ca
mailto:liers@informatik.uni-koeln.de

Ann Oper Res

1 Introduction

The minimum k-partition problem (MkP) is a well-known optimization problem encoun-
tered in various applications such as network planning (Eisenblätter 2002), VLSI layout
design (Barahona et al. 1988), micro-aggregation of statistical data (Domingo-Ferrer and
Mateo-Sanz 2002), sports team scheduling (Mitchell 2003; Elf et al. 2003), and statistical
physics (Liers et al. 2004). It is known to be N P -hard in general and difficult to solve in
practice. The MkP is equivalent to finding a maximum k-cut, where the weighted sum of all
edges having endpoints in distinct sets is maximized.

The MkP was formulated by Chopra and Rao (1993) where several valid and facet-
defining inequalities are identified. Further results can be found in Deza et al. (1991), Chopra
and Rao (1995) and the book by Deza and Laurent (1997). Mitchell (2001) applied a branch-
and-cut algorithm based on linear programming (LP) to the k-way equipartition problem
with application to the National Football League (NFL). The k-way equipartition problem
is an MkP problem with an additional constraint that partitions have to be of the same size.
Computational results found the optimal solution for the NFL realignment problem where
k = 8 and n = 32, whereas a percentage gap of less than 2.5% was given for graphs of sizes
100 to 500. Moreover, Lisser and Rendl (2003) described a telecommunication application
for the k-way equipartition problem. They investigated both semidefinite and linear relax-
ations of the problem with iterative cutting plane algorithms. For graph sizes ranging from
100 to 900 vertices and k = 5, 10, the semidefinite programming (SDP) approach produces
a gap between 4%–6% from the optimal solution and is better than the LP approach.

The special case with k = 2 is known as the max-cut problem and is equivalent to uncon-
strained binary quadratic optimization. It has been extensively studied, see e.g. Barahona
and Mahjoub (1986), Deza and Laurent (1997), and Boros and Hammer (1991). For k = 2,
the linear-programming-based bounds are strong. As they also can exploit sparsity, sparse
instances can usually be solved faster with linear than with SDP-based methods. On the
other hand, SDP-based methods perform better for dense instances. Both a linear (Spin-glass
server 1996) and an SDP-based server (Biq Mac solver 2007) are available in the public do-
main. The former is especially designed for fast solutions of instances defined on grids that
have application in physics (Liers et al. 2004). The latter can solve max-cut instances of
graphs of any structure up to 100 vertices (Rendl et al. 2007).

Hence, while effective computational procedures that yield globally optimal solution for
arbitrary instances with up to 100 vertices and sparse graphs of considerably larger sizes
have been implemented for the k = 2 case, to the best of our knowledge, most of the proce-
dures proposed in the literature either cannot be applied for general k, provide no guaran-
tee of global optimality, or enforce additional constraints. An exception is the recent paper
(Kaibel et al. 2007) in which a tool called “orbitopal fixing” was used to design a linear
branch-and-cut procedure for graph partitioning problems. The authors present results for
the minimum k-cut problem in graphs with up to 50 nodes.

In this work, we present an exact algorithm for the minimum k-partition problem that
uses positive semidefinite relaxations. We found experimentally that for k > 2 they yield
much stronger bounds than the linear relaxation obtained by deleting the integrality con-
straints, for both sparse and dense instances.

This paper is organized as follows. In Sect. 2, technical definitions and an overview over
the literature on the MkP problem are given. The SDP-based branch-and-cut algorithm and
the primal heuristic are presented in Sect. 3. In Sect. 4, the heuristic is compared to the hyper-
plane rounding of Goemans and Williamson (1994) and Frieze and Jerrum (1997) in terms
of bounds. In addition, computational results for the branch-and-cut algorithm on several

Ann Oper Res

Fig. 1 A k-partition of a graph with |V | = 7 and k = 3. The optimal value is 0.06

important classes of instances, and for different values of k, are presented. The computa-
tional results show the potential of our proposed algorithm for tackling the MkP problem.
Finally, conclusions and future research directions are discussed in Sect. 5.

2 Problem description and some related previous results

An instance of the minimum k-partition problem consists of an undirected graph G = (V ,E)

with edge weights wij of the edges, and a positive integer k ≥ 2. The objective is to find a
partition of V into at most k disjoint partitions V1, . . . , Vk such that

∑k

l=1

∑
i,j∈Vl

wij is
minimized. An example is shown in Fig. 1.

Without loss of generality the graph G can be completed to K|V | by adding zero-weight
edges. The edge set is then E = {ij | 1 ≤ i < j ≤ n}. Define the variable zij as

zij =
{

1 if i and j are in the same partition,

0 otherwise.

Chopra and Rao (1995) considered the following integer linear programming (ILP) formu-
lation for MkP:

(ILPMkP) min
∑

i,j∈V

wij zij (1)

s.t. zih + zhj − zij ≤ 1 ∀h, i, j ∈ V (2)
∑

i,j∈Q

zij ≥ 1 ∀Q ⊆ V where |Q| = k + 1 (3)

zij ∈ {0,1} ∀i, j ∈ V,

where inequalities (2) and (3) are the triangle and clique inequalities, respectively. Constraint
(2) requires the values of the variables to be consistent. For example, if zih and zhj indicate
that i, h, and j are in the same partition, then by transitivity the value of zij has to reflect

Ann Oper Res

that as well. Constraint (3) imposes that at least two from every subset of k +1 vertices have
to be in the same partition. Together with the constraints (2), this implies that there are at
most k partitions. There are 3

(|V |
3

)
triangle inequalities and

(|V |
k+1

)
clique inequalities.

Here we are interested in exact solutions that we generate with a branch-and-cut algo-
rithm. The latter is an often successful framework in combinatorial optimization. Usually,
linear programming relaxations are used and strengthened during the run of the algorithm.

However, we found for MkP that linear bounds obtained by relaxing the integrality con-
straints in (ILPMkP) are weak in practice which could result in nearly complete enumera-
tion of all solutions. Furthermore, we found experimentally that the semidefinite relaxation
bound that we introduce next is much stronger than the LP bound (Ghaddar 2007). This
motivates us to use SDP relaxations within branch-and-cut for the MkP problem.

2.1 SDP relaxation for the MkP problem

Semidefinite programming relaxations of combinatorial optimization problems were pio-
neered by Lovász (1979) in 1979 in order to compute the Shannon capacity of a graph.
Moreover, Goemans and Williamson (1994) used SDP to provide a performance guarantee
of an approximation algorithm for the satisfiability and the max-cut problem. The latter led
to a rapid growth of the field. The MkP problem was formulated in Eisenblätter (2002) as
follows:

min
∑

i,j∈V,i<j

wij

(k − 1)Xij + 1

k
(4)

s.t. Xii = 1 ∀i ∈ V (5)

Xij ∈
{ −1

k − 1
,1

}

∀i, j ∈ V, i < j (6)

X � 0,

where Xij = −1
k−1 can be interpreted as vertices i and j being in different partitions and

Xij = 1 means that they are in the same partition. Replacing constraint (6) by −1
k−1 ≤ Xij ≤ 1

results in a semidefinite relaxation. However, the constraint Xij ≤ 1 can be dropped since it
is enforced implicitly by the constraints Xii = 1 and X � 0. We end up with the following
SDP relaxation:

(SMkP) min
∑

i,j∈V, i<j

wij

(k − 1)Xij + 1

k
(7)

s.t. Xii = 1 ∀i ∈ V (8)

Xij ≥ −1

k − 1
∀i, j ∈ V, i < j (9)

X � 0.

The SDP relaxation can be further tightened by adding valid inequalities, i.e., inequali-
ties that are satisfied for all positive semidefinite matrices that are feasible for the original
formulation. The two types of valid inequalities added are the triangle and the clique in-
equalities formulated for SDP. Observing that in any cycle of length three exactly zero or

Ann Oper Res

two edges are cut, the triangle inequalities have the form:

Xij + Xjh − Xih ≤ 1,

where i, j , and h ∈ V . It is not hard to see that the clique inequalities take the form:

∑

i,j∈Q, i<j

Xij ≥ −k

2
∀Q ⊆ V where |Q| = k + 1.

To verify validity, recall that the clique inequalities ensure that for every set Q ⊆ V with
|Q| = k + 1 at least 2 vertices have to be in the same partition. This means that at least one
Xij equals 1. Therefore,

∑

i,j∈Q, i<j

Xij ≥ 1 +
(k+1

2)−1∑

i=1

−1

k − 1
∀Q ⊆ V where |Q| = k + 1.

⇔
∑

i,j∈Q, i<j

Xij ≥ 1 +
[

(k + 1)k

2
− 1

] −1

k − 1

⇔
∑

i,j∈Q, i<j

Xij ≥ −k

2
.

The validity of the triangle inequality can be verified similarly. Once the (SMkP) relaxation
is solved, one can separate violated triangle and clique inequalities. Adding them to the SDP
problem will strengthen the relaxation.

2.2 Approximation algorithm for max k-cut

In the previous section we discussed how to obtain a lower bound for the MkP problem. In
this section we give an overview of an approximation algorithm that can be used to obtain
an upper bound for this problem.

Goemans and Williamson (1994) used semidefinite programming in the design of a ran-
domized approximation algorithm for the max-cut problem which always produces solu-
tions with expected value at least 0.87856 times the optimal value. This was the first time
that a performance guarantee was given using semidefinite programming for an N P -hard
optimization problem. The results in Goemans and Williamson (1994) showed that the cut
generated using the randomized algorithm was in the range of 4% to 9% away from the
semidefinite bound in practice. Hence, it is an effective heuristic technique for generating
cuts.

Frieze and Jerrum (1997) presented an extension of Goemans and Williamson (1994) to
obtain a polynomial-time approximation algorithm for the max k-cut problem. They con-
sider the following SDP relaxation:

(MkC-SDP) max
k − 1

k

∑

i,j∈V, i<j

wij (1 − Xij) (10)

s.t. Xij ≥ −1

k − 1
∀i, j ∈ V, i < j (11)

X � 0. (12)

Ann Oper Res

It can be easily shown that (MkC-SDP) is equivalent to the (SMkP) relaxation described
earlier. Frieze and Jerrum described a rounding heuristic based on the SDP relaxation that
can be used to obtain a feasible solution of the max k-cut problem. This method works as
follows:

1. Solve (MkC-SDP) to get an optimal solution, X = (Xij). Find unit vectors v1, . . . , vn ∈
R

n satisfying vT
i vj = Xij where i, j ∈ V . This can be done by computing the Cholesky

factorization V T V of X.
2. Choose k independent random vectors r1, . . . , rk ∈ R

n.
3. Partition V into Vk = {V1, . . . , Vk} according to Vj = {i : vi · rj ≥ vi · rj ′ , for j
= j ′} for

1 ≤ j ≤ k. For this we would additionally need ‖ ri ‖= 1 ∀i = 1, . . . , k, however this
complicates the analysis. So the kn components of r1, . . . , rk are chosen as independent
random variables from a standard normal distribution with mean 0 and variance 1.

The authors proved in Frieze and Jerrum (1997) the existence of a sequence of constants
α(k≥2) such that:

E(w(Vk)) ≥ αkw(V ∗
k)

where w(Vk) = ∑
1≤r<s≤k

∑
i∈Vr ,j∈Vs

wij , V ∗
k determines an optimal cut, and E denotes the

expected value. In Frieze and Jerrum (1997), it was shown that the sequence of αk satisfies
the following theorem:

Theorem 1 (Frieze and Jerrum 1997) αk satisfies

1. αk > k−1
k

2. αk − k−1
k

∼ 2 lnk

k2

In de Klerk et al. (2004), the performance guarantee of Frieze and Jerrum was sharpened
for small fixed values of k. The max k-cut approximation guarantees as given in de Klerk et
al. (2004) are as follows:

α2 ≥ 0.878567 α3 ≥ 0.836008 α4 ≥ 0.857487

α5 ≥ 0.876610 α6 ≥ 0.891543.

The process of Frieze and Jerrum can be iterated by varying the random vectors r1, . . . , rk

and taking the best solution (i.e., minimum upper bound). The cut obtained by this hyper-
plane rounding technique may be further improved in practice by local improvement steps.

3 An SDP-based branch-and-cut framework for the MkP problem

During the run of a branch-and-cut algorithm, a sequence of relaxations of the original
problem is solved at each node of the branch-and-bound tree. Cutting-planes are used to
improve the relaxations, tightening the bounds. The branch-and-bound part of the algorithm
guarantees that a globally optimum solution is obtained.

In this work, we use SDP relaxations within a branch-and-cut framework since we found
experimentally that they are stronger than the corresponding linear bounds. The root node
of the branch-and-bound tree is the original SDP relaxation (SMkP). In each iteration, we
separate valid inequalities, add them to the relaxation and resolve the SDP. If the SDP bound

Ann Oper Res

determines a feasible partition in the root node, we terminate. Otherwise, when no more
violated inequalities can be generated, the algorithm branches. In the branching step, two
subproblems are created by fixing an infeasible variable (i.e., a variable that is neither 1 nor
−1
k−1 in the optimal solution of the SDP relaxation) to 1 in one subproblem and to −1

k−1 in
the other. This means that in one subproblem we force vertices i and j to be in the same
partition and in the other to different partitions. The subproblems are solved recursively. The
branch-and-cut algorithm stops when all subproblems have been fathomed. A subproblem is
fathomed if it is either infeasible, if the dual bound determines a feasible partition, or if we
can conclude that it does not contain an optimal solution. The incumbent solution is the best
solution (giving an upper bound, since we are minimizing) found so far in the tree. After
termination, the incumbent is a globally optimal solution.

In the following sections, we describe in detail our branch-and-cut technique using SDP
as the bounding procedure. The addition of triangle and clique inequalities at each node
markedly improves the SDP lower bound. Moreover, at each node a feasible solution is
computed to get an upper bound.

3.1 Separation of valid inequalities

As discussed earlier, the SDP relaxation can be further tightened by adding valid inequali-
ties. Once (SMkP) is solved, one can check for violated triangle and clique inequalities and
add them to the SDP problem, hence getting a better lower bound.

The number of triangle and clique inequalities added at each iteration depends on the size
of the problem. We use complete enumeration for adding triangle inequalities. The triangle
inequalities are sorted by the magnitude of the violation and added starting with the most
violated ones. If not enough triangle inequalities are violated, we add clique inequalities.

Exact separation of clique inequalities is an N P -hard problem, and exact enumeration
becomes intractable already for small values of k. Therefore, we design a heuristic sep-
aration that generates inequalities that are ‘important’ in practice. It does not necessarily
determine a violated inequality whenever one exists, however we find that it is fast and
yields good bounds.

In order to find which clique inequalities are important in practice, we conducted sev-
eral experiments in which we enumerated and added all violated clique inequalities. We
assume that an inequality is important if it is binding at the optimum of the re-solved prob-
lem, i.e. if it is satisfied with equality. We found that the binding clique inequalities usually
cover the whole graph, and that each vertex in the graph is contained in several different
clique inequalities. So the heuristic separation is designed to imitate this behavior as fol-
lows. For each vertex vj in the graph, we grow a clique Q of size k + 1 containing vj .
Vertices are added to the cliques in a greedy fashion. At each iteration and while the clique
size is smaller than k + 1, we add to the clique the vertex vj ′ that contributes the smallest
amount to the left-hand side of the corresponding clique inequality, i.e. we choose vj ′ so that∑

vj ∈Q,vj ′ ∈V \Q Xjj ′ is smallest. Since this algorithm is applied to each vertex of the graph,

we will have n clique inequalities added to the set of inequalities.
The separation routine consists of two parts: first the algorithm searches for violated tri-

angle inequalities as described above. If no more than ρ triangle inequalities are added, the
heuristic is used to find violated clique inequalities. If less than ρ inequalities are found, we
branch. In the computational experiments of Sect. 4, ρ is set to 200. The triangle inequal-
ities are added first since we experimentally found that they are stronger than the clique
inequalities.

Ann Oper Res

3.2 ICH: an iterative clustering SDP-based heuristic

The ICH heuristic is designed to find a feasible solution from the optimal solution of the
SDP relaxation at each node of the tree. It is a recursive procedure that groups vertices
together to form a graph of smaller size and then it is recursively applied on the smaller
graph until the desired partition size is reached. Given a graph G(V,E) with n vertices,
weights wij between vertices i and j , and number of partitions k, the heuristic is described
in Algorithm 1.

Algorithm 1 ICH Heuristic
1. Initialize a parameter r , the current number of partitions, to zero.
2. Initialize a parameter m, the current number of nodes, to n.
3. Initialize a tolerance tol. (Experimentally, tol = 1.7 is a good choice.)
4. Solve the SDP relaxation with m nodes and get the optimal solution X∗.
5. Take each triplet of vertices i, j, and h and sum the values on their edges: Tijh = X∗

ij +
X∗

ih + X∗
jh.

6. Sort the values of Tijh.
7. (a) Choose vertices i, j, and h with Tijh ≥ tol to be in the same partition.

(b) If any vertices remain unassigned to a partition, choose vertices with Tijh ≤ tol to be
in separate partitions.

(c) Update r to be the number of current partitions.
8. If r > k,

(a) Aggregate the vertices that are in the same partition into a single vertex. Call these
new vertices 1′,2′, . . . , r ′.

(b) Set m = r and create the new aggregate weight matrix with entries W̄i′,j ′ =∑
i∈i′,j∈j ′ wij .

(c) Return to step 4.
9. End.

The intuition behind this approach is the use of aggregate information which is more
reliable than single elements of data. When we sum the X∗

ij values on the edges between
three vertices, we have a better idea of whether or not these three vertices should be in the
same partition than by looking at each edge separately. The sorting of the data is done to take
advantage of the best information first and use the less certain information only if necessary.
An illustration of the algorithm is shown in Fig. 2.

3.2.1 The ICH heuristic with convex combination

The convex combination technique to improve on the Goemans-Williamson hyperplane
rounding was proposed and implemented for k = 2 in Wiegele (2006). Using this convex
combination technique results in a better solution than using only hyperplane rounding.
This motivated us to apply the convex combination idea to the Frieze and Jerrum (1997)
algorithm presented in Sect. 2.2.

Given the SDP solution matrix X∗
1 and the hyperplane rounding feasible solution matrix

X
feasible
1 , we take their convex combination to obtain the following matrix:

X2 = αX∗
1 + (1 − α)X

feasible
1 .

Ann Oper Res

Fig. 2 Example of the use of ICH with n = 20 and k = 3

Next we take matrix X2 and perform the hyperplane rounding technique on this matrix to
get a new feasible solution.

Similarly, we applied the convex combination technique to the ICH heuristic. Taking
the feasible solution matrix X

feasible
1 obtained from the ICH heuristic and the SDP solution

matrix, X∗
1 , we consider a convex combination of the following form:

X2 = αX∗
1 + (1 − α)X

feasible
1 .

Then we can apply the ICH heuristic to the X2 matrix to get a new feasible solution, Xfeasible
2 .

However, we experimentally found that the new feasible solution X
feasible
2 was always iden-

tical to X
feasible
1 . This result is not too surprising since multiplying X∗

1 by α only scales the
values of Xij and will not change their sorted order. In addition, since we got X

feasible
1 from

X∗
1 , they most likely have vertices i, j , and h with the same sorted order. Once we multiply

X
feasible
1 by (1 − α) then this will only scale the values but will not change their sorted order.

We have X2 = αX∗
1 + (1 − α)X

feasible
1 so adding the edges values, Xij , of the three vertices

using the matrix X2 will give the same result as when we add the edges of the three vertices
using the matrix X1 since the order of Tijh values in the sorting will likely remain the same
(with a difference in the value since it is scaled and shifted). This was the case in all our
computational experiments.

Hence, the convex combination technique does not seem to improve the solution for the
ICH heuristic. This gives evidence that the heuristic is strong enough that it does not benefit
from performing the convex combination improvement technique.

A computational comparison of the ICH heuristic and the hyperplane rounding technique
is presented in Sect. 4.1.

Ann Oper Res

Algorithm 2 Alternate Hyperplane Rounding
1. Solve (MkC-SDP) to get an optimal solution X = (Xij). Find unit vectors v1, . . . , vn ∈

R
n satisfying vT

i vj = Xij where i, j ∈ V . This can be done by computing the Cholesky
factorization V T V of X.

2. Choose an initial set of k linearly independent vectors r1, . . . , rk ∈ R
n with ‖ ri ‖= 1∀i =

1, . . . , k and ri · rj = −1
k−1 ∀i = {1, . . . , k}, j = {1, . . . , k}, and i
= j . The r vectors are the

columns of the matrix of the following form:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11 x12 x13 · · · x1k

0 x22 x23 · · · x2k

0 0 x33 · · · x3k

0 0 0 · · · ...
...

...
...

... xkk

...
...

...
...

...

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×k

,

where xhi is the hth component of vector ri . The xhi values are chosen to satisfy the
following two conditions:
(a)

∑n

h=1(xhi)
2 = 1 ∀i = {1, . . . , k}.

(b)
∑n

h=1(xhj × xhi) = −1
k−1 ∀i = {1, . . . , k}, j = {1, . . . , k}, and i
= j .

3. Partition V into Vk = {V1, . . . , Vk} according to Vj = {i : vi · rj ≥ vi · rj ′ , for j
= j ′} for
1 ≤ j ≤ k.

4. To generate another set of r vectors, we apply a rotation matrix. In R
n, the rotation matrix

has the following form:

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · · · ·
0

. . . cos θ − sin θ
... 0 sin θ cos θ

· · · ... 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

n×n

,

where θ is the rotation angle generated randomly between 0 and 2π .
5. Let r ′ = R r and set r to be r ′. Go back to step 3.

3.2.2 An improved randomized rounding algorithm

In this section, we describe an alternate way to implement the hyperplane rounding algo-
rithm. The method is the same as the one proposed in Frieze and Jerrum (1997), however
instead of choosing the kn components of r1, . . . , rk from a standard normal distribution
with mean 0 and variance 1, we choose an initial set of r1, . . . , rk vectors to have norm 1 and
each pair of vectors, ri and rj , satisfy ri · rj = −1

k−1 . Then these vectors are randomized by
rotating them using rotation matrices with randomly generated angles while preserving the
angles between the vectors and their norms. A detailed description of the algorithm is given
in Algorithm 2.

Ann Oper Res

We note that we have
(
n

2

)
combinations to form the rotation matrix depending on what

plane of rotation we choose. The final rotation matrix R can be one rotation matrix or the
product of several or all the

(
n

2

)
rotation matrices.

We experimentally found that taking R to be the product of all
(
n

2

)
rotation matrices

doesn’t perform well in practice. However, choosing R to be the product of a few rotation
matrices provides better results. In our computational results, the number of rotations was set
to three. This resulting method significantly improves the results of the hyperplane rounding
technique in Sect. 2.2 but, as shown in Sect. 4.1, it is still no better than ICH.

3.3 Branching rules

Part of the success of a branch-and-bound algorithm depends on the choice of the variable
to branch on. Based on the results of the analysis done by Helmberg and Rendl (1998), we
decided to use in our branch-and-cut implementation a version of their branching rule R3
which branches on the variable that is ‘least decided’ in the optimal solution of the SDP
relaxation of the current node which is an often used branching rule. Our rule works as
follows:

Select the edge ij with X∗
ij farthest from 1 and −1

k−1 , i.e., branch on the edge ij that

minimizes | 2X∗
ij

(k−1)−k+2

k
|.

By branching on the most difficult decision Xij , we hope that the bound will improve
quickly.

3.4 The SBC algorithm

We implemented the algorithms and the methods that we described in the preceding sections
into a branch-and-cut algorithm. A description of it is provided in Algorithm 3.

4 Computational results

4.1 Comparison of hyperplane roundings and ICH

We implemented ICH and the hyperplane rounding presented in Frieze and Jerrum (1997)
using C and MATLAB respectively. In addition, the randomized algorithm presented in
Sect. 3.2.2 was implemented in MATLAB. In this section, we compare the three algorithms
to find a feasible solution for the MkP problem.

Since the hyperplane rounding presented by Frieze and Jerrum (1997) and Algorithm 2
are randomized, each time we run these algorithms a different feasible solution might be
obtained. As a result, each algorithm was run 30 times and the minimum and the average of
the upper bound (UB) were computed. The average value can be interpreted as an estimate
of the expected value of the UB that this algorithm would give. On the other hand, the
minimum value is the best solution found over the 30 runs. The minimum value is the value
reported in Tables 1, 2, and 3. More detailed results are presented in Ghaddar (2007).

In addition to complete graphs with randomly generated edge weights, we consider a
set of test problems arising in a physics application (Lee et al. 2006 provides some recent
physics analysis and introduces the physics literature). The two techniques were tested on
the following three types of graphs for k = 2 and for k = 3:

• Random Instances: These instances consist of complete graphs where the edge weights
are integers randomly generated between 0 and 9.

Ann Oper Res

Algorithm 3 SBC Algorithm
Step 1: Initialization Form the root node by using the (SMkP) problem without fixing any

variables. Set the incumbent solution, Xincumbent, to be the matrix of all ones and incum-
bent objective value ν∗ = ∑

i∈V

∑
j
=i∈V wij .

Step 2: Solving Choose a node t not yet solved. Solve the SDP relaxation of the current
subproblem to get a solution X∗

t and a lower bound ωt .
Step 3: Terminating Check whether t can be fathomed. If all nodes are fathomed then

terminate with the incumbent solution, Xincumbent, as the optimal solution and the corre-
sponding objective value ν∗ as the optimal objective value.

Step 4: Adding Valid Inequalities Separate violated triangle and clique inequalities as dis-
cussed in Sect. 3.1. If none are violated go to Step 5. Otherwise, go to Step 3.

Step 5: Obtaining a Feasible Solution Get a feasible solution Xfeasiblet
using ICH (Algo-

rithm 1) and an upper bound νt as the objective value of Xfeasiblet
. Try to improve νt

locally by local exchange routines. Update the incumbent if νt < ν∗.
Step 6: Fathoming

1. By Solving: If the solution X∗
t has all entries −1

k−1 or 1, then ωt and νt are identical.
Go to Step 2.

2. By Bound: If the SDP relaxation gives ωt ≥ ν∗, then branching on this node will not
improve the incumbent. Go to Step 2.

3. By Infeasibility: If the SDP relaxation doesn’t have a feasible solution. Go to Step 2.
Step 7: Branching Choose a variable that is non-feasible (i.e., not 1 or −1

k−1) and create two
new nodes by fixing the variable to 1 for one node and −1

k−1 for the other node. Go to
Step 2.

• Spinglass2g Instances: These instances consist of graphs that were generated using the
rudy graph generator (Rinaldi 1996). Spinglass2g generates a toroidal two dimensional
grid with Gaussian distributed weights.

• Grid_2D Instances: These instances consist of graphs that were generated using the rudy
graph generator (Rinaldi 1996). Grid_2D generates a planar bidimensional grid with edge
weights all equal to 1.

From Tables 1–3, we notice that ICH is in all cases at least as good as the hyperplane
rounding minimum and in most cases at least as good as the Algorithm 2 minimum. More-
over, even using different values of α for the hyperplane rounding with convex combination,
the results are still not as good as those of ICH. Therefore, the UBs provided by ICH are
generally tighter and using it at each node of the branch-and-cut algorithm helps reducing
the size of the tree.

From Table 2 we see that for spinglass2g instances where both positive and negative edge
weights are present, ICH provides a better solution than the minimum value of hyperplane
rounding for all values of α. This shows that ICH is still very effective in the presence of
negative weights unlike the hyperplane roundings. (We note that the performance guaran-
tee from Theorem 1 does not apply for these instances). Moreover, by comparing the UB
provided by ICH with the LB, we see that ICH provides a tight bound at the root node and
sometimes immediately finds the optimal solution.

We note that for the grid_2D instances we can find a solution by inspection. For the case
k = 2 there is a unique solution, while for k = 3 we have multiple solutions. Moreover, for
k = 2 the SDP matrix X∗ satisfies Xij ∈ {−1,1} while for k = 3 the SDP matrix X∗ doesn’t
have its entries Xij ∈ {− 1

2 ,1} but the matrix is in practice often a convex combination of

Ann Oper Res

Ta
bl

e
1

C
om

pu
ta

tio
na

l
re

su
lts

fo
r

de
te

rm
in

in
g

fe
as

ib
le

so
lu

tio
ns

fo
r

ra
nd

om
in

st
an

ce
s

w
ith

k
=

2
an

d
3.

N
um

be
rs

in
bo

ld
in

di
ca

te
th

at
th

e
he

ur
is

tic
so

lu
tio

n
is

th
e

op
tim

al
so

lu
tio

n

SD
P

Fr
ie

ze
&

α
fo

r
Fr

ie
ze

&
Je

rr
um

w
ith

co
nv

ex
co

m
bi

na
tio

n

|V
|

L
B

IC
H

Je
rr

um
A

lg
or

ith
m

2
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

k
=

2
30

91
2

91
2

91
2

91
2

91
2

91
2

91
2

92
1

92
7

94
1

92
5

91
2

91
2

40
16

90
.4

63
16

91
17

28
16

91
17

28
17

42
17

73
16

91
16

91
17

16
17

19
16

91
16

91

50
27

16
.0

69
27

29
28

58
27

24
28

48
27

67
28

23
28

57
28

15
27

87
28

10
28

02
28

55

60
39

85
.3

64
40

01
41

51
40

11
40

54
41

51
41

28
41

06
41

72
41

96
41

12
40

95
41

59

70
53

84
.1

04
54

01
56

08
54

01
56

67
56

25
54

52
55

81
56

54
55

20
55

01
55

84
55

57

80
70

32
.7

64
70

98
73

89
71

10
73

89
73

82
72

11
73

21
73

63
73

81
72

81
73

41
72

30

90
91

90
.7

76
92

92
98

30
93

17
95

51
95

72
95

95
94

80
95

99
95

08
94

50
95

92
95

68

10
0

11
38

2.
92

11
49

6
11

74
7

11
53

0
11

78
4

11
74

7
11

88
1

11
85

4
11

87
8

11
87

1
11

87
8

11
93

6
11

86
0

k
=

3
30

49
3.

7
55

7
58

9
55

1
61

4
58

8
61

1
62

3
59

8
60

5
58

0
59

2
55

8

40
92

5.
5

99
2

10
88

99
7

11
17

11
35

11
08

10
94

11
30

10
77

11
01

10
96

10
89

50
14

97
.1

16
56

16
94

16
59

17
52

17
35

17
25

17
04

17
66

17
61

17
57

17
06

17
37

60
23

51
.9

25
48

27
24

25
62

27
49

28
09

27
39

27
74

27
16

27
22

26
49

26
92

27
05

70
32

23
.4

34
77

36
79

34
98

38
15

37
08

37
74

37
06

37
89

36
76

36
85

36
15

36
64

80
42

93
.5

45
08

48
48

45
34

48
92

48
88

47
90

48
09

49
09

48
57

48
77

48
92

48
15

90
54

20
.1

57
74

61
32

57
77

62
49

61
34

60
84

60
54

62
63

61
17

61
51

61
39

60
98

10
0

66
34

.2
69

73
74

91
71

18
75

66
76

61
75

29
75

34
76

02
75

61
75

49
74

96
74

33

Ann Oper Res

Ta
bl

e
2

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
r

de
te

rm
in

in
g

fe
as

ib
le

so
lu

tio
ns

fo
r

sp
in

gl
as

s2
g

in
st

an
ce

s
w

ith
k

=
2

an
d

3.
N

um
be

rs
in

bo
ld

in
di

ca
te

th
at

th
e

he
ur

is
tic

so
lu

tio
n

is
th

e
op

tim
al

so
lu

tio
n

SD
P

Fr
ie

ze
&

A
lg

o-
ri

th
m

2
α

fo
r

Fr
ie

ze
&

Je
rr

um
w

ith
co

nv
ex

co
m

bi
na

tio
n

|V
|

L
B

IC
H

Je
rr

um
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

k
=

2
3

×
3

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

−7
95

50
4

4
×

4
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

92
20

2
−5

36
55

1
5

×
5

−1
54

3
70

7
−1

54
3

70
7

−1
45

1
47

0
−1

54
3

70
7

−1
54

3
70

7
−1

18
2

98
8

−1
54

3
70

7
−1

54
3

70
7

−1
46

1
39

1
−1

54
3

70
7

−1
27

8
66

2
−1

54
3

70
7

−1
54

3
70

7
6

×
6

−2
84

6
69

1
−2

84
6

69
1

−2
84

6
69

1
−2

84
6

69
1

−2
84

6
69

1
−2

55
41

16
−2

84
6

69
1

−2
84

6
69

1
−2

68
0

26
8

−2
84

6
69

1
−2

84
6

69
1

−2
71

8
20

2
−2

84
6

69
1

7
×

7
−3

02
0

29
7

−3
02

0
29

7
−2

81
8

05
3

−2
95

9
43

9
−2

78
7

84
9

−2
78

7
84

9
−2

81
8

05
3

−3
02

0
29

7
−3

02
0

29
7

−3
02

0
29

7
−2

80
7

37
0

−3
02

0
29

7
−3

02
0

29
7

8
×

8
−4

48
9

98
9

−4
48

9
98

9
−4

48
9

98
9

−4
48

9
98

9
−4

39
6

00
2

−4
48

9
98

9
−4

25
2

11
5

−4
48

9
98

9
−4

27
1

66
1

−3
70

2
04

0
−4

48
9

98
9

−4
48

9
98

9
−4

00
5

56
0

9
×

9
−6

23
0

10
2

−6
23

0
10

2
−5

52
2

45
6

−6
07

8
87

2
−6

23
0

10
2

−5
95

0
57

0
−5

85
8

89
6

−5
52

2
45

6
−5

64
4

32
7

−5
95

3
24

2
−5

21
3

00
5

−6
23

0
10

2
−6

15
3

14
4

10
×

10
−7

87
2

96
8

−7
87

2
96

8
−7

87
2

96
8

−7
87

2
96

8
−7

87
2

96
8

−7
76

0
36

4
−7

87
2

96
8

−6
86

92
39

−7
87

2
96

8
−6

48
0

14
8

−7
04

2
38

8
−7

87
2

96
8

−7
54

0
71

6

k
=

3
4

×
4

−9
54

07
7

−9
54

07
7

−9
54

07
7

−9
54

07
7

−8
19

31
2

−8
31

39
2

−7
41

23
1

−7
98

27
8

−7
61

52
6

−5
80

1
61

−7
41

29
8

−7
51

10
3

−8
52

94
6

5
×

5
−1

48
4

34
8

−1
48

4
34

8
−1

18
5

09
7

−1
48

4
34

8
−1

48
4

34
8

−1
16

6
94

6
−1

10
3

32
9

−1
12

4
67

6
−1

18
8

75
4

−8
36

27
5

−1
31

9
36

1
−1

17
5

21
8

−9
66

95
7

6
×

6
−2

75
8

52
0

−2
75

8
52

0
−2

14
7

42
5

−1
85

0
24

0
−2

11
5

52
4

−1
73

2
62

4
−1

80
2

50
7

−1
62

5
81

9
−2

75
8

52
0

−1
41

4
84

9
−1

87
2

75
7

−1
59

5
56

1
−2

69
0

35
9

7
×

7
−3

28
2

58
6

−3
28

2
58

6
−2

11
5

56
0

−2
73

7
50

8
−2

11
5

56
0

−2
11

5
56

0
−2

88
9

40
3

−1
58

7
52

8
−1

90
2

40
4

−1
84

1
52

0
−2

17
1

88
0

−2
01

6
23

2
−2

75
6

52
9

8
×

8
−4

06
3

05
9

−4
06

3
05

9
−2

70
5

50
6

−3
49

4
92

5
−2

46
9

00
5

−2
09

0
01

6
−2

12
8

79
3

−2
21

9
78

5
−2

41
9

07
3

−2
52

3
73

3
−3

15
4

94
3

−2
89

6
46

5
−2

50
2

69
6

9
×

9
−5

23
6

17
8

−4
75

8
33

2
−2

24
7

37
4

−4
29

5
07

9
−2

22
5

26
0

−2
32

4
29

6
−1

97
0

21
7

−2
12

7
38

5
−2

23
5

66
4

−2
02

6
42

3
−2

08
5

49
8

−2
30

7
41

4
−3

15
5

25
6

10
×

10
−7

23
0

20
3

−6
57

0
98

4
−3

15
0

64
5

−5
97

9
08

5
−3

25
1

79
8

−3
44

2
69

6
−2

75
0

32
7

−3
12

4
19

9
−3

12
2

20
4

−3
63

8
33

6
−3

39
5

68
1

−2
94

1
67

4
−3

57
9

24
1

Ann Oper Res

Table 3 Computational results for grid_2D instances with k = 2 and 3. Numbers in bold indicate that the
heuristic solution is the optimal solution

SDP Frieze & α for Frieze & Jerrum with convex combination

|V | LB ICH Jerrum Algorithm 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k = 2 3 × 3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 × 4 0 0 0 0 0 0 0 0 0 0 0 3 0

5 × 5 0 0 0 0 2 0 2 0 0 0 6 6 0

6 × 6 0 0 0 0 0 0 0 0 3 0 2 0 2

7 × 7 0 0 4 0 4 4 3 3 0 0 0 0 3

8 × 8 0 0 0 0 0 4 20 0 4 0 0 13 0

9 × 9 0 0 0 0 3 0 10 2 0 8 0 0 12

10 × 10 0 0 0 0 0 0 10 0 3 7 0 4 0

k = 3 3 × 3 0 0 1 1 2 0 1 0 0 1 0 1 0

4 × 4 0 0 2 1 3 3 1 3 2 1 4 2 3

5 × 5 0 0 4 6 7 7 4 4 1 5 6 4 4

6 × 6 0 0 7 7 12 8 12 8 12 7 8 7 9

7 × 7 0 0 14 13 15 16 18 14 13 17 13 13 13

8 × 8 0 0 17 20 16 20 20 24 20 17 19 17 20

9 × 9 0 0 22 17 32 29 23 24 25 25 24 26 21

10 × 10 0 0 36 31 39 34 33 39 37 35 39 35 33

several of the multiple solutions. We included the results for grid_2D instances to show that
even if we don’t have the SDP matrix with Xij ∈ {− 1

k−1 ,1} entries, the ICH heuristic can
still extract a feasible solution that was found to be optimal for all test cases tried, unlike the
hyperplane rounding and Algorithm 2.

In terms of computational time, for the instances we conducted the computational time of
all three algorithms are roughly comparable. The computational time for the ICH algorithm
ranges from one second to few seconds depending on the instance size. The computational
time for each run of the randomized algorithms is slightly less than the ICH running time.
However, the total computational time of the randomized algorithms depend on how many
times we run them and how large in size the instances are.

4.2 Computational results for SBC algorithm

We implemented in C the branch-and-cut SDP-based algorithm (SBC) described in Sect. 3.4.
To solve the SDP, which has to be done at each node of the tree, we used the CSDP solver
(Borchers 1999). The computations were done on a 1200 MHz Sun Sparc machine.

4.2.1 Test instances

The test instances1 consist of graphs generated using the rudy graph generator (Rinaldi
1996). The instances consist of complete graphs and two and three-dimensional grid graphs
with Gaussian distributed and ±1 edge weights:

1The graphs used in the computational results can be downloaded from the online addendum to this paper
available at http://mfa.research.uwaterloo.ca.

http://mfa.research.uwaterloo.ca

Ann Oper Res

Table 4 SBC results for clique instances where k = 3. The time is given in hr:min:s. The last column is the
number of nodes required to reach the optimal solution

|V | Optimal Solution Time Number of Nodes

20 147 0:00:06 1

30 495 0:00:09 1

40 1183 0:02:10 1

50 2312 0:14:20 1

60 3990 0:06:41 1

70 6348 0:58:29 1

• Clique: generates complete graphs with the edge weight of edge (i, j) chosen as |i − j |.
• Spinglass2g: described in Sect. 4.1.
• Spinglass3g: generates a toroidal three-dimensional grid with Gaussian distributed

weights.
The grid has size n = (rows × columns × layers).

• Spinglass2pm: generates a toroidal two-dimensional grid with ±1 weights. The grid has
size n = (rows × columns). The percentage of negative weights is 50%.

• Spinglass3pm: generates a toroidal three dimensional grid with ±1 weights. The grid has
size n = (rows × columns × layers). The percentage of negative weights is 50%.

For some of the classes of instances, rudy generator expects a random seed that specifies the
instance. These random seeds were generated randomly.

Table 4 shows the computational result for clique instances. Tables 5 and 6 show the
computational results for the SBC algorithm for two-dimensional and three-dimensional
grid instances with k = 3. In addition to the optimum solution value, the lower bound and
the upper bound at the root node as well as the time at the root node are presented. Moreover,
the number of nodes of the branch-and-bound tree as well as the time to reach a certain
percentage gap are given in the tables. The symbol � denotes that a gap smaller than the
one written in the corresponding column was achieved at the root node. For Table 5, we give
optimal solutions for sizes up to 100 vertices (10×10 grids) and provide a feasible solution
for larger sizes (up to 196 vertices) with a percentage gap of less than 6%.

4.2.2 Analysis of the computational results

The computational results which we have presented for spin-glass problems lead to the
following observations:

1. SBC is fast in determining optimal solutions for problems with Gaussian distributed and
±1 edge weights for two- and three-dimensional grids with up to n = 60 vertices, and
for k = 3. For 60 < n ≤ 100 we reach a gap of 1% within a reasonable amount of time,
however reaching a 0% gap takes longer.

2. The remarkable tightness of the bounds obtained at the root node make it worthwhile to
conduct a branch-and-cut algorithm since the bounds will likely help reduce the number
of nodes in the tree.

3. Furthermore, the ICH heuristic often provides an optimal solution at the root node or
after only a few branches. Most of the times computing the lower bound is the bottleneck;
often ICH obtains the global optimal solution, but we cannot prove optimality right away.

Ann Oper Res

Ta
bl

e
5

SB
C

re
su

lts
fo

r
sp

in
gl

as
s2

g
an

d
sp

in
gl

as
s3

g
in

st
an

ce
s

w
he

re
k

=
3.

T
he

tim
e

is
gi

ve
n

in
hr

:m
in

:s
.T

he
la

st
fiv

e
co

lu
m

ns
ar

e
th

e
nu

m
be

r
of

no
de

s
of

th
e

tr
ee

an
d

th
e

tim
e

re
qu

ir
ed

to
re

ac
h

th
e

gi
ve

n
ga

p

B
es

t
So

lu
tio

n
V

al
ue

R
oo

tN
od

e
N

um
be

r
of

N
od

es
—

T
im

e
to

ac
hi

ev
e

%
G

ap

|V
|

L
B

U
B

T
im

e
0%

1%
2%

5%
10

%

3
×

3
−4

49
79

5
−4

49
79

5
−4

49
79

5
0:

00
:0

5
1—

0:
00

:5
�

�
�

�

4
×

4
−9

54
07

7
−9

54
07

7
−9

54
07

7
0:

00
:1

6
1—

0:
00

:1
6

�
�

�
�

5
×

5
−1

48
4

34
8

−1
48

4
72

2
−1

48
4

34
8

0:
00

:1
8

2—
0:

00
:2

3
1—

0:
00

:1
8

�
�

�

6
×

6
−2

86
5

56
0

−2
86

5
56

0
−2

86
5

56
0

0:
05

:1
2

1—
0:

05
:1

2
�

�
�

�

7
×

7
−3

28
2

43
5

−3
28

2
43

5
−3

28
2

43
5

0:
52

:0
8

1—
0:

52
:0

8
�

�
�

�

8
×

8
−5

93
5

34
1

−5
93

5
34

1
−5

93
5

34
1

2:
21

:4
3

1—
2:

21
:4

3
�

�
�

�

9
×

9
−4

75
8

33
2

−4
80

6
17

8
−4

75
8

33
2

3:
35

:4
9

4—
13

:4
1:

17
1—

3:
35

:4
9

�
�

�

10
×

10
−6

57
0

98
4

−6
63

0
20

2.
5

−6
57

0
98

4
10

:3
6:

23
6—

18
:0

9:
41

1—
10

:3
6:

23
�

�
�

11
×

11
−8

58
6

38
2

−9
01

5
70

1.
1

−8
58

6
38

2
5:

48
:5

0
–

–
–

1—
5:

48
:5

0
�

12
×

12
−1

0
64

6
78

2
−1

1
18

9
76

8
−1

0
64

6
78

2
9:

31
:0

0
–

–
–

1—
9:

31
:0

0
�

13
×

13
−1

1
61

8
40

6
−1

2
29

2
27

4
−1

1
61

8
40

6
29

:3
3:

27
–

–
–

–
1—

29
:3

3:
27

14
×

14
−1

3
78

0
37

0
−1

4
60

7
19

2
−1

3
78

0
37

0
47

:1
6:

57
–

–
–

–
1—

47
:1

6:
57

2
×

3
×

4
−2

10
3

69
4

−2
10

3
69

4
−2

10
3

69
4

0:
00

:1
2

1—
0:

00
:1

2
�

�
�

�

2
×

3
×

5
−2

56
5

84
5

−2
56

5
84

5
−2

56
5

84
5

0:
00

:0
9

1—
0:

00
:0

9
�

�
�

�

2
×

4
×

5
−3

10
3

02
0

−3
10

3
02

0
−3

10
3

02
0

0:
37

:4
6

1—
0:

37
:4

6
�

�
�

�

3
×

3
×

3
−1

88
2

38
9

−1
88

2
38

9
−1

88
2

38
9

0:
00

:2
1

1—
0:

00
:2

1
�

�
�

�

3
×

3
×

4
−3

19
2

31
7

−3
19

2
31

7
−3

19
2

31
7

0:
26

:5
2

1—
0:

26
:5

2
�

�
�

�

3
×

3
×

5
−4

20
4

24
6

−4
20

9
34

8
−4

20
4

24
6

2:
52

:3
1

5—
3:

38
:3

7
1—

2:
52

:3
1

�
�

�

3
×

4
×

4
−5

38
7

83
8

−5
42

1
40

3
−5

38
7

83
8

0:
58

:1
5

3—
1:

38
:5

1
1—

0:
58

:1
5

�
�

�

3
×

4
×

5
−5

24
0

43
5

−5
32

3
78

8
−5

04
9

42
4

6:
02

:5
2

13
—

19
:1

2:
31

10
—

16
:4

3:
10

7—
11

:2
1:

53
1—

6:
02

:5
2

�

4
×

4
×

4
−7

47
4

52
5

−7
52

9
31

8
−7

47
4

52
5

3:
22

:3
7

3—
10

:1
2:

11
1—

3:
22

:3
7

�
�

�

Ann Oper Res

Table 6 SBC results for spinglass2pm and spinglass3pm instances where k = 3. The time is given in
hr:min:s. The last five columns are the number of nodes of the tree and the time required to reach the given
gap

Best
Solution
Value

Root Node Number of Nodes—Time to achieve % Gap

|V | LB UB Time 0% 1% 2% 5% 10%

4 × 4 −13 −13 −13 0:00:00 1—0:00:00 � � � �

5 × 5 −20 −20 −20 0:00:04 1—0:00:04 � � � �

6 × 6 −29 −29 −29 0:00:22 1—0:00:22 � � � �

7 × 7 −40 −40 −40 0:01:52 1—0:01:52 � � � �

8 × 8 −55 −55 −55 0:26:38 1—0:26:38 � � � �

9 × 9 −65 −65 −65 7:35:49 1—7:35:49 � � � �

2 × 3 × 4 −21 −21 −21 0:00:04 1—0:00:03 � � � �

2 × 4 × 4 −31 −31 −31 0:00:29 1—0:00:29 � � � �

3 × 3 × 3 −26 −26 −26 0:00:11 1—0:00:11 � � � �

3 × 3 × 4 −36 −36 −36 0:00:50 1—0:00:50 � � � �

3 × 4 × 4 −48 −48 −48 0:11:59 1—0:11:59 � � 1—2:40:22 �

3 × 4 × 5 −65 −66 −62 4:38:12 16—8:55:33 10—7:09:22 7—6:04:19 1–4:38:12 �

4 × 4 × 4 −65 −65 −64 4:32:18 19—8:36:15 12—7:38:33 1—4:32:18 � �

Table 7 SBC results for k = 5 and 7. The time is given in hr:min:s

k = 5 k = 7

|V | Objective Value Time Objective Value Time

spinglass2g 6 × 6 −2 865 560 0:23:41 −2 865 560 0:21:00

7 × 7 −3 843 979 0:42:31 −3 864 156 0:39:23

8 × 8 −5 935 341 2:09:07 −5 935 341 2:13:05

9 × 9 −5 745 419 2:39:38 −6 026 024 2:18:56

10 × 10 −6 860 706 19:14:02 −7 644 016 17:32:29

spinglass3g 2 × 3 × 4 −2 127 451 0:00:07 −2 127 451 0:00:04

2 × 3 × 5 −2 566 275 0:05:32 −2 566 275 0:03:01

2 × 4 × 5 −3 338 052 0:19:02 −3 338 052 0:14:29

3 × 3 × 3 −2 932 403 0:00:47 −2 932 403 0:00:03

3 × 3 × 4 −3 552 295 0:26:58 −3 559 337 0:21:15

3 × 3 × 5 −4 561 622 2:04:49 −4 648 539 1:02:09

3 × 4 × 4 −5 371 414 1:14:11 −5 466 518 1:18:02

4 × 4 × 4 −7 619 675 9:30:19 −7 646 881 4:57:05

4. For k = 5 and 7, our empirical analysis shows that for a given |V | as k increases, the
computational time decreases. Moreover, for some test cases the objective function val-
ues of the same test instance with different k values are the same, see Table 7. This is
because the solution partitioned the vertices into less than k partitions due to the presence
of positive and negative edge weights.

Ann Oper Res

5 Conclusions and future work

In this paper we presented an exact algorithm for computing minimum k-partitions. Inside a
branch-and-cut algorithm we used positive semidefinite relaxations that were further tight-
ened using polyhedral results. The resulting algorithm is called SBC. The SBC algorithm
was implemented and tested using several instances, and our computational results show the
potential of SBC in tackling the MkP problem. We developed and implemented the novel
ICH heuristic which appears to be a promising method for generating a good feasible solu-
tion. The proposed model often improves the upper bound and gives good feasible solutions.
ICH can be applied to the MkP problem for different values of k. When compared with other
approaches in the literature such as the hyperplane rounding technique by Frieze and Jerrum
(1997), it provides a better solution in practice. Moreover, the ICH heuristic was used in a
SDP-based branch-and-cut approach to provide optimal solutions for MkP.

Future research will investigate the solver used to solve the SDP at each node of the tree
since it is the major bottleneck in the SBC algorithm. In particular, exploiting the structure
of the graph and its sparsity may lead to an effective way for solving the SDP relaxations.
Future work also includes adjusting the SBC algorithm and ICH so that they can be applied
to closely related partitioning problems such as the k-way equipartition problem.

Acknowledgements The authors thank Franz Rendl for suggesting the improved randomized rounding
algorithm from Sect. 3.2.2 and Joe Naoum-Sawaya for his help in implementing the branch and bound code
and the clique heuristic code.

References

Barahona, F., & Mahjoub, A. (1986). On the cut polytope. Mathematical Programming, 36, 157–173.
Barahona, F., Grötschel, M., Jünger, M., & Reinelt, G. (1988). An application of combinatorial optimization

to statistical physics and circuit layout design. Operations Research, 36, 493–513.
Biq Mac solver. (2007). http://biqmac.uni-klu.ac.at/.
Borchers, B. (1999). CSDP, a C library for semidefinite programming. Optimization Methods and Software,

11/12(1–4), 613–623.
Boros, E., & Hammer, P. (1991). The max-cut problem and quadratic 0–1 optimization: Polyhedral aspects,

relaxations and bounds. Annals of Operations Research, 33, 151–180.
Chopra, S., & Rao, M. R. (1993). The partition problem. Mathematical Programming, 59, 87–115.
Chopra, S., & Rao, M. R. (1995). Facets of the k-partition problem. Discrete Applied Mathematics, 61, 27–

48.
de Klerk, E., Pasechnik, D., & Warners, J. (2004). Approximate graph colouring and max-k-cut algorithms

based on the theta function. Journal of Combinatorial Optimization, 8(3), 267–294.
Deza, M., & Laurent, M. (1997). Algorithms and combinatorics. Geometry of cuts and metrics. Berlin:

Springer.
Deza, M., Grötschel, M., & Laurent, M. (1991). Complete descriptions of small multicut polytopes. Applied

Geometry and Discrete Mathematics—The Victor Klee Festschrift, 4, 205–220.
Domingo-Ferrer, J., & Mateo-Sanz, J. M. (2002). Practical data-oriented microaggregation for statistical dis-

closure control. IEEE Transactions on Knowledge and Data Engineering, 14(1), 189–201.
Eisenblätter, A. (2002). The semidefinite relaxation of the k-partition polytope is strong. In Proceedings of the

9th international IPCO conference on integer programming and combinatorial optimization (Vol. 2337,
pp. 273–290).

Elf, M., Jünger, M., & Rinaldi, G. (2003). Minimizing breaks by maximizing cuts. Operations Research
Letters, 31(5), 343–349.

Frieze, A., & Jerrum, M. (1997). Improved approximation algorithms for max k-cut and max bisection.
Algorithmica, 18, 67–81.

Ghaddar, B. (2007). A branch-and-cut algorithm based on semidefinite programming for the minimum k-
partition problem. Master’s thesis, University of Waterloo

Goemans, M., & Williamson, D. (1994). New 3
4 -approximation algorithms for the maximum satisfiability

problem. SIAM Journal of Discrete Mathematics, 7(4), 656–666.

http://biqmac.uni-klu.ac.at/

Ann Oper Res

Helmberg, C., & Rendl, F. (1998). Solving quadratic (0, 1)-problems by semidefinite programs and cutting
planes. Mathematical Programming, Series A, 82(3), 291–315.

Kaibel, V., Peinhardt, M., & Pfetsch, M. E. (2007). Orbitopal fixing. In M. Fischetti & D. P. Williamson
(Eds.), Lecture notes in computer science: Vol. 4513. IPCO (pp. 74–88). Berlin: Springer.

Lee, L. W., Katzgraber, H. G., & Young, A. P. (2006). Critical behavior of the three- and ten-state short-range
Potts glass: A Monte Carlo study. Physical Review B, 74, 104–116.

Liers, F., Jünger, M., Reinelt, G., & Rinaldi, G. (2004). Computing exact ground states of hard ising spin
glass problems by branch-and-cut. In New optimization algorithms in physics (pp. 47–68). New York:
Wiley.

Lisser, A., & Rendl, F. (2003). Telecommunication clustering using linear and semidefinite programming.
Mathematical Programming, 95, 91–101.

Lovász, L. (1979). On the Shannon capacity of a graph. IEEE Transactions Information Theory, IT-25, 1–7.
Mitchell, J. (2001). Branch-and-cut for the k-way equipartition problem (Technical report). Department of

Mathematical Sciences, Rensselaer Polytechnic Institute.
Mitchell, J. E. (2003). Realignment in the National Football League: Did they do it right? Naval Research

Logistics, 50(7), 683–701.
Rendl, F., Rinaldi, G., & Wiegele, A. (2007). A branch and bound algorithm for max-cut based on combining

semidefinite and polyhedral relaxations. Integer Programming and Combinatorial Optimization, 4513,
295–309.

Rinaldi, G. (1996). Rudy. http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz.
Spin-glass server. (1996). http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/index.html.
Wiegele, A. (2006). Nonlinear optimization techniques applied to combinatorial optimization problems.

Ph.D. thesis, Alpen-Adria-Universität Klagenfurt.

http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
http://www.informatik.uni-koeln.de/ls_juenger/research/sgs/index.html

	A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem
	Abstract
	Introduction
	Problem description and some related previous results
	SDP relaxation for the MkP problem
	Approximation algorithm for max k-cut

	An SDP-based branch-and-cut framework for the MkP problem
	Separation of valid inequalities
	ICH: an iterative clustering SDP-based heuristic
	The ICH heuristic with convex combination
	An improved randomized rounding algorithm

	Branching rules
	The SBC algorithm

	Computational results
	Comparison of hyperplane roundings and ICH
	Computational results for SBC algorithm
	Test instances
	Analysis of the computational results

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

