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Preface

Overview

This Handbook is a report on mathematical discourse. Mathematical discourse as the phrase is
used here refers to what mathematicians and mathematics students say and write

• to communicate mathematical reasoning,
• to describe their own behavior when doing mathematics, and
• to describe their attitudes towards various aspects of mathematics.

The emphasis is on the discourse encountered in post-calculus mathematics courses taken by math
majors and first year math graduate students in the USA. Mathematical discourse is discussed
further in the Introduction.

The Handbook describes common usage in mathematical discourse. The usage is determined
by citations, that is, quotations from the literature, the method used by all reputable dictionar-
ies. The descriptions of the problems students have are drawn from the mathematics education
literature and the author’s own observations.

This book is a hybrid, partly a personal testament and partly documentation of research. On
the one hand, it is the personal report of a long-time teacher (not a researcher in mathematics
education) who has been especially concerned with the difficulties that mathematics students
have passing from calculus to more advanced courses. On the other hand, it is based on objective
research data, the citations.

The Handbook is also incomplete. It does not cover all the words, phrases and constructions
in the mathematical register, and many entries need more citations. After working on the book
off and on for six years, I decided essentially to stop and publish it as you see it (after lots of
tidying up). One person could not hope to write a complete dictionary of mathematical discourse
in much less than a lifetime.

The Handbook is nevertheless a substantial probe into a very large subject. The citations
accumulated for this book could be the basis for a much more elaborate and professional effort
by a team of mathematicians, math educators and lexicographers who together could produce a
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definitive dictionary of mathematical discourse. Such an effort would provide a basis for discov-
ering the ways in which students and non-mathematicians misunderstand what mathematicians
write and say. Those misunderstandings are a major (but certainly not the only) reason why so
many educated and intelligent people find mathematics difficult and even perverse.

Intended audience

The Handbook is intended for
• Teachers of college-level mathematics, particularly abstract mathematics at the post-calculus

level, to provide some insight into some of the difficulties their students have with mathe-
matical language.

• Graduate students and upper-level undergraduates who may find clarification of some of the
difficulties they are having as they learn higher-level mathematics.

• Researchers in mathematics education, who may find observations in this text that point to
possibilities for research in their field.
The Handbook assumes the mathematical knowledge of a first year graduate student in

mathematics. I would encourage students with less background to read it, but occasionally they
will find references to mathematical topics they do not know about. The Handbook website
contains some links that may help in finding out about such topics.

Citations

Entries are supported when possible by citations, that is, quotations from textbooks and articles
about mathematics. This is in accordance with standard dictionary practice [Landau, 1989],
pages 151ff. As in the case of most dictionaries, the citations are not included in the printed
version, but reference codes are given so that they can be found online at the Handbook website.

I found more than half the citations on JSTOR, a server on the web that provides on-line
access to many mathematical journals. I obtained access to JSTOR via the server at Case Western
Reserve University.
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mathematical register 157
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Introduction

Note: If a word or phrase is in this typeface then a marginal index
on the same page gives the page where more information about the word
or phrase can be found. A word in boldface indicates that the word is
being introduced or defined here.

In this introduction, several phrases are used that are described in
more detail in the alphabetized entries. In particular, be warned that the
definitions in the Handbook are dictionary-style definitions, not mathe-
matical definitions, and that some familiar words are used with technical
meanings from logic, rhetoric or linguistics.

Mathematical discourse

Mathematical discourse, as used in this book, is the written and spo-
ken language used by mathematicians and students of mathematics for
communicating about mathematics. This is “communication” in a broad
sense, including not only communication of definitions and proofs but
also communication about approaches to problem solving, typical errors,
and attitudes and behaviors connected with doing mathematics.

Mathematical discourse has three components.
• The mathematical register. When communicating mathematical rea-

soning and facts, mathematicians speak and write in a special register
of the language (only American English is considered here) suitable
for communicating mathematical arguments. In this book it is called
the mathematical register. The mathematical register uses spe-
cial technical words, as well as ordinary words, phrases and gram-
matical constructions with special meanings that may be different
from their meaning in ordinary English. It is typically mixed with
expressions from the symbolic language (below).
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conceptual 43
intuition 161
mathematical register 157
standard interpretation

233
symbolic language 243

• The symbolic language of mathematics. This is arguably not a form
of English, but an independent special-purpose language. It consists
of the symbolic expressions and statements used in calculation and
presentation of results. For example, the statement d

dx sin x = cos x
is a part of the symbolic language, whereas “The derivative of the
sine function is the cosine function” is not part of it.

• Mathematicians’ informal jargon. This consists of expressions such
as “conceptual proof” and “intuitive”. These communicate some-
thing about the process of doing mathematics, but do not themselves
communicate mathematics.
The mathematical register and the symbolic language are discussed

in their own entries in the alphabetical section of the book. Informal
jargon is discussed further in this introduction.

Point of view

This Handbook is grounded in the following beliefs.
The standard interpretation There is a standard interpretation

of the mathematical register, including the symbolic language, in the
sense that at least most of the time most mathematicians would agree
on the meaning of most statements made in the register. Students have
various other interpretations of particular constructions used in the math-
ematical register.

• One of their tasks as students is to learn how to extract the standard
interpretation from what is said and written.

• One of the tasks of instructors is to teach them how to do that.
Value of naming behavior and attitudes In contrast to com-

puter people, mathematicians rarely make up words and phrases that
describe our attitudes, behavior and mistakes. Computer programmers’
informal jargon has many names for both productive and unproductive
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mathematical object 155
mathematical register 157
property 209
relation 217

behaviors and attitudes involving programming, many of them detailed
in [Raymond, 1991] (see “creationism”, “mung” and “thrash” for exam-
ple). The mathematical community would be better off if we emulated
them by greatly expanding our informal jargon in this area, particularly
in connection with dysfunctional behavior and attitudes. Having a name
for a phenomenon makes it more likely that you will be aware of it in
situations where it might occur and it makes it easier for a teacher to tell
a student what went wrong. This is discussed in [Wells, 1995].

Descriptive and Prescriptive

Linguists distinguish between “descriptive” and “prescriptive” treatments
of language. A descriptive treatment is intended to describe the language
as it is used in fact, whereas a prescriptive treatment provides rules for
how the author thinks it should be used. This text is mostly descriptive.
It is an attempt to describe accurately the language used by American
mathematicians in communicating mathematical reasoning as well as in
other aspects of communicating mathematics, rather than some ideal
form of the language that they should use. Occasionally I give opinions
about usage; they are carefully marked as such.

Nevertheless, the Handbook is not a textbook on how to write math-
ematics. In particular, it misses the point of the Handbook to complain
that some usage should not be included because it is wrong.

Coverage

The words and phrases listed in the Handbook are heterogeneous. The
following list describes the main types of entries in more detail.

Technical vocabulary of mathematics: Words and phrases in
the mathematical register that name mathematical objects, relations or
properties. This is not a dictionary of mathematical terminology, and
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apposition 241
context 52
definition 66
disjunction 75
divide 76
elementary 79
equivalence relation 85
formal 99
function 104
identifier 120
if 123
include 127
interpretation 135
labeled style 139
let 140
malrule 150
mathematical education

150
mathematical logic 151
mathematical register 157
mental representation 161
metaphor 162
multiple meanings 169
name 171
noun phrase 177
positive 201
precondition 66
register 216
reification 180
representation 217
symbol 240
term 248
theorem 250
thus 250
type 257
universal quantifier 260
variable 268

most such words (“semigroup”, “Hausdorff space”) are not included.
What are included are words that cause students difficulties and that
occur in courses through first year graduate mathematics. Examples: di-
vide, equivalence relation, function, include, positive. I have also included
briefer references to words and phrases with multiple meanings.

Logical signalers: Words, phrases and more elaborate syntactic
constructions of the mathematical register that communicate the logical
structure of a mathematical argument. Examples: if, let, thus. These
often do not have the same logical interpretation as they do in other
registers of English.

Types of prose: Descriptions of the types of mathematical prose,
with discussions of special usages concerning them. Examples: defini-
tions, theorems, labeled style.

Technical vocabulary from other disciplines: Some technical
words and phrases from rhetoric, linguistics and mathematical logic used
in explaining the usage of other words in the list. These are included
for completeness. Examples: apposition, disjunction, metaphor, noun
phrase, register, universal quantifier.

Warning: The words used from other disciplines often have ordinary
English meanings as well. In general, if you see a familiar word in sans
serif, you probably should look it up to see what I mean by it before you
flame me based on a misunderstanding of my intention! Some words for
which this may be worth doing are: context, elementary, formal, iden-
tifier, interpretation, name, precondition, representation, symbol, term,
type, variable.

Cognitive and behavioral phenomena Names of the phenom-
ena connected with learning and doing mathematics. Examples: mental
representation, malrule, reification. Much of this (but not all) is termi-
nology from cognitive science or mathematical education community. It
is my belief that many of these words should become part of mathemati-
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attitudes 22
behaviors 25
mathematical education

150
myths 170
register 216

cians’ everyday informal jargon. The entries attitudes, behaviors, and
myths list phenomena for which I have not been clever enough to find or
invent names.

Note: The use of the name “jargon” follows [Raymond, 1991] (see
the discussion on pages 3–4). This is not the usual meaning in linguistics,
which in our case would refer to the technical vocabulary of mathematics.

Words mathematicians should use: This category overlaps the
preceding categories. Some of them are my own invention and some come
from math education and other disciplines. Words I introduce are always
marked as such.

General academic words: Phrases such as “on the one hand
. . . on the other hand” are familiar parts of a general academic register
and are not special to mathematics. These are generally not included.
However, the boundaries for what to include are certainly fuzzy, and I
have erred on the side of inclusivity.

Although the entries are of different types, they are all in one list
with lots of cross references. This mixed-bag sort of list is suited to
the purpose of the Handbook, to be an aid to instructors and students.
The “definitive dictionary of mathematical discourse” mentioned in the
Preface may very well be restricted quite properly to the mathematical
register.

The Handbook does not cover the etymology of words listed herein.
Schwartzman [1994] covers the etymology of many of the technical words
in mathematics. In addition, the Handbook website contains pointers to
websites concerned with this topic.
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abuse of notation

algebra 9
assertion 20
binary operation 183
composition 40
continuous 54
definition 66
free variable 102
generalization 112
indefinite article 128
mathematical definition

66
mathematical object 155
model 167
output 266
property 209
representation 217
true 256

Alphabetized Entries

a, an See indefinite article.

abstract algebra See algebra.

abstraction An abstraction of a concept C is a concept C ′ that
includes all instances of C and that is constructed by taking as axioms
certain assertions that are true of all instances of C. C may already
be defined mathematically, in which case the abstraction is typically a
legitimate generalization of C. In other cases, C may be a familiar concept
or property that has not been given a mathematical definition. In that
case, the mathematical definition may allow instances of the abstract
version of C that were not originally thought of as being part of C.
Example 1 The concept of “group” is historically an abstraction of the
concept of the set of all symmetries of an object. The group axioms are
all true assertions about symmetries when the binary operation is taken
to be composition of symmetries.

Example 2 The ε-δ definition of continuous function is historically an
abstraction of the intuitive idea that mathematicians had about functions
that there was no “break” in the output. This abstraction became the
standard definition of “continuous”, but allowed functions to be called
continuous that were not contemplated before the definition was intro-
duced.

Other examples are given under model and in Remark 2 under free
variable. See also the discussions under definition, generalization and
representation.

Citations: (31), (270). References: [Dreyfus, 1992], [Thompson,
1985].
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APOS 17
bar 24
check 36
circumflex 36
compositional 40
fallacy 96
identify 121
mathematical object 155
notation 177
prime 203
suppression of parameters

239
synecdoche 245
tilde 250
variable 268

abuse of notation affirming the consequent

The phrase “abuse of notation”
appears to me (but not to every-
one) to be deprecatory or at least
apologetic, but in fact some of
the uses, particularly suppression
of parameters, are necessary for
readability. The phrase may be
an imitation of a French phrase,
but I don’t know its history. The
English word “abuse” is stronger
than the French word “abus”.

abuse of notation A phrase used
to refer to various types of notation
that don’t have compositional seman-
tics. Notation is commonly called abuse
of notation if it involves suppression of
parameters or synecdoche (which over-
lap), and examples are given under
those headings. Other usage is some-
times referred to as abuse of notation,
for example identifying two structures
along an isomorphism between them. Citations: (82), (210), (399).

Acknowledgments: Marcia Barr

accented characters Mathematicians frequently use an accent to
create a new variable from an old one, usually to denote a mathematical
object with some specific functional relationship with the old one. The
most commonly used accents are bar, check, circumflex, and tilde.
Example 1 Let X be a subspace of a space S, and let X̄ be the closure
of X in S.

Citations: (66), (178).
Remark 1 Like accents, primes (the symbol ′) may be used to denote
objects functionally related to the given objects, but they are also used
to create new names for objects of the same type. This latter appears to
be an uncommon use for accents.

action See APOS.

affirming the consequent The fallacy of deducing P from P ⇒ Q
and Q. Also called the converse error. This is a fallacy in mathematical
reasoning.
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affirming the consequent algorithm

Example 1 The student knows that if a function is differentiable, then
it is continuous. He concludes [ERROR] that the absolute value function
is differentiable, since it is clearly continuous.

Citation: (149).

aleph Aleph is the first letter of the Hebrew alphabet, written ℵ. It
is the only Hebrew letter used widely in mathematics. Citations: (182),
(183), (315), (383).

algebra This word has several different meanings in the school system
of the USA, and college math majors in particular may be confused by
the differences.

• High school algebra is primarily algorithmic and concrete in na-
ture.

• College algebra is the name given to a college course, perhaps
remedial, covering the material covered in high school algebra.

• Linear algebra may be a course in matrix theory or a course in
linear transformations in a more abstract setting.

• A college course for math majors called algebra, abstract algebra,
or perhaps modern algebra, is an introduction to groups, rings,
fields and perhaps modules. It is for many students the first course
in abstract mathematics and may play the role of a filter course. In
some departments, linear algebra plays the role of the first course in
abstraction.

• Universal algebra is a subject math majors don’t usually see until
graduate school. It is the general theory of structures with n-ary
operations subject to equations, and is quite different in character
from abstract algebra.

algorithm An algorithm is a specific set of actions that when carried
out on data (input) of the allowed type will produce an output. This is

9



mathematical definition
66

mathematical discourse 1
mathematical object 155
proof 205

algorithm algorithm

the meaning in mathematical discourse. There are related meanings in
use:

• The algorithm may be implemented as a program in a computer
language. This program may itself be referred to as the algorithm.

• In texts on the subject of algorithm, the word may be given a math-
ematical definition, turning an algorithm into a mathematical object
(compare the uses of proof).

Example 1 One might express a simpleminded algorithm for calculat-
ing a zero of a function f(x) using Newton’s Method by saying

“Start with a guess x and calculate x − f(x)
f ′(x) repeatedly until

f(x) gets sufficiently close to 0 or the process has gone on too
long.”

One could spell this out in more detail this way:

1. Choose an accuracy ε, the maximum number of iterations N , and a
guess s.

2. Let n = 0.
3. If |f ′(s)| < ε then stop with the message “derivative too small”.
4. Replace n by n+ 1.
5. If n > N , then stop with the message “too many iterations”.

6. Let r = s− f(s)
f ′(s) .

7. If |f(r)| < ε then stop; otherwise go to step 3 with s replaced by r.

Observe that neither description of the algorithm is in a program-
ming language, but that the second one is precise enough that it could be
translated into most programming languages quite easily. Nevertheless,
it is not a program.

Citations: (77), (98).
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algorithm algorithm

alias 12
APOS 17
converse 87
function 104
mathematical definition

66
mathematical discourse 1
overloaded notation 189
process 17
syntax 246

Remark 1 It is the naive concept of abstract algorithm given in the
preceding examples that is referred to by the word “algorithm” as used in
mathematical discourse, except in courses and texts on the theory of algo-
rithms. In particular, the mathematical definitions of algorithm that have
been given in the theoretical computing science literature all introduce
a mass of syntactic detail that is irrelevant for understanding particular
algorithms, although the precise syntax may be necessary for proving the-
orems about algorithms, such as Turing’s theorem on the existence of a
noncomputable function.

An “algorithm” in the meaning given here
appears to be a type of process as that word
is used in the APOS description of math-
ematical understanding. Any algorithm fits
their notion of process, but whether the con-
verse is true or not is not clear.

Example 2 One can write a program in Pascal and
another one in C to take a list with at least three en-
tries and swap the second and third entries. There is a
sense in which the two programs, although different as
programs, implement the “same” abstract algorithm.

The following statement by Pomerance [1996]
(page 1482) is evidence for this view on the use of the word “algorithm”:
“This discrepancy was due to fewer computers being used on the project
and some ‘down time’ while code for the final stages of the algorithm was
being written.” Pomerance clearly distinguishes the algorithm from the
code.
Remark 2 Another question can be raised concerning Example 2. A
computer program that swaps the second and third entries of a list might
do it by changing the values of pointers or alternatively by physical-
ly moving the entries. (Compare the discussion under alias). It might
even use one method for some types of data (varying-length data such as
strings, for example) and the other for other types (fixed-length data).
Do the two methods still implement the same algorithm at some level of
abstraction?

See also overloaded notation.
Acknowledgments: Eric Schedler, Michael Barr.
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algorithm 9
attitudes 22
conceptual 43
group 34
guessing 119
look ahead 149
proof 205
trial and error 253

algorithm addiction alias

algorithm addiction Many students have the attitude that a prob-
lem must be solved or a proof constructed by an algorithm. They be-
come quite uncomfortable when faced with problem solutions that involve
guessing or conceptual proofs that involve little or no calculation.
Example 1 Recently I gave a problem in my Theoretical Computer
Science class that in order to solve it required finding the largest integer
n for which n! < 109. Most students solved it correctly, but several wrote
apologies on their paper for doing it by trial and error. Of course, trial
and error is a method.

Example 2 Students at a more advanced level may feel insecure in
the case where they are faced with solving a problem for which they
know there is no known feasible algorithm, a situation that occurs mostly
in senior and graduate level classes. For example, there are no known
feasible general algorithms for determining if two finite groups given by
their multiplication tables are isomorphic, and there is no algorithm at
all to determine if two presentations (generators and relations) give the
same group. Even so, the question, “Are the dihedral group of order 8
and the quaternion group isomorphic?” is not hard. (Answer: No, they
have different numbers of elements of order 2 and 4.) I have even known
graduate students who reacted badly to questions like this, but none of
them got through qualifiers!

See also Example 1 under look ahead and the examples under con-
ceptual.

alias The symmetry of the square illustrated by the figure below can
be described in two different ways.

12



alias all

alias 12
each 78
esilism 87
every 261
order of quantifiers 186
permutation 197
sentence 227
universal quantifier 260

.A .B

=⇒
.D .A

.
D

.
C

.
C

.
B

a) The corners of the square are relabeled, so that what was labeled
A is now labeled D. This is called the alias interpretation of the
symmetry.

b) The square is turned, so that the corner labeled A is now in the upper
right instead of the upper left. This is the alibi interpretation of the
symmetry.
Reference: These names are from [Birkhoff and Mac Lane, 1977].

They may have appeared in earlier editions of that text.
See also permutation.
Acknowledgments: Michael Barr.

alibi See alias.

all Used to indicate the universal quantifier. Examples are given under
universal quantifier.
Remark 1 [Krantz, 1997], page 36, warns against using “all” in a sen-
tence such as “All functions have a maximum”, which suggests that every
function has the same maximum. He suggests using each or every instead.
(Other writers on mathematical writing give similar advice.) The point
here is that the sentence means

∀f∃m(m is a maximum for f)

not
∃m∀f(m is a maximum for f)

See order of quantifiers and esilism. Citation: (333).
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all 13
assertion 20
citation vi
collective plural 37
every 261
mathematical object 155
mathematical structure

159
never 177
space 231
time 251
universal quantifier 260
variable 268

all ambient

I have not found a citation of the form “All X have a Y” that does
mean every X has the same Y , and I am inclined to doubt that this is
ever done. (“All” is however used to form a collective plural – see under
collective plural for examples.) This does not mean that Krantz’s advice
is bad.

always Used in some circumstances to indicate universal quantifica-
tion. Unlike words such as all and every, the word “always” is attached
to the verb instead of to the noun being quantified..
Example 1 “x2 + 1 is always positive.” This means, “For every x,
x2 + 1 is positive.”

Example 2 “An ellipse always has bounded curvature.”

Remark 1 In print, the usage is usually like Example 2, quantifying
over a class of structures. Using “always” to quantify over a variable
appearing in an assertion is not so common in writing, but it appears to
me to be quite common in speech.
Remark 2 As the Oxford English Dictionary shows, this is a very old
usage in English.

See also never, time.
Citations: (116), (155), (378), (424).

ambient The word ambient is used to refer to a mathematical object
such as a space that contains a given mathematical object. It is also
commonly used to refer to an operation on the ambient space.
Example 1 “Let A and B be subspaces of a space S and suppose φ is
an ambient homeomorphism taking A to B.”

The point is that A and B are not merely homeomorphic, but they
are homeomorphic via an automorphism of the space S.

Citations: (223), (172).
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analogy and

assertion 20
both 29
conceptual blend 45
conjunction 50
fallacy 96
metaphor 162
noun phrase 177
or 184
positive 201
theorem 250
true 256

analogy An analogy between two situations is a perceived similarity
between some part of one and some part of the other. Analogy, like
metaphor, is a form of conceptual blend.

Mathematics often arises out of analogy: Problems are solved by
analogy with other problems and new theories are created by analogy
with older ones. Sometimes a perceived analogy can be put in a formal
setting and becomes a theorem.

Analogy in problem solving is discussed in [Hofstadter, 1995].

An argument by analogy is the
claim that because of the similari-
ty between certain parts there must
also be a similarity between some
other parts. Analogy is a powerful
tool that suggests further similari-
ties; to use it to argue for further
similarities is a fallacy.

and

(a) Between assertions The word “and” between two as-
sertions P and Q produces the conjunction of P and Q.
Example 1 The assertion

“x is positive and x is less than 10.”
is true if both these statements are true: x is positive, x is less
than 10.

(b) Between verb phrases The word “and” can also be used between
two verb phrases to assert both of them about the same subject.
Example 2 The assertion of Example 1 is equivalent to the assertion

“x is positive and less than 10.”
See also both. Citations: (23), (410).

(c) Between noun phrases The word “and” may occur between two
noun phrases as well. In that case the translation from English statement
to logical assertion involves subtleties.
Example 3 “I like red or white wine” means “I like red wine and I like
white wine”. So does “I like red and white wine”. But consider also “I
like red and white candy canes”!

15



coreference 59
eternal 155
juxtaposition 138
mathematical discourse 1
mathematical logic 151
mathematical object 155
or 184
translation problem 253

and and

Example 4 “John and Mary go to school” means the same thing as
“John goes to school and Mary goes to school”. “John and Mary own a
car” (probably) does not mean “John owns a car and Mary owns a car”.

On the other hand, onsider also the possible meanings of “John and
Mary own cars”. Finally, in contrast to Examples 3 and 5, “John or Mary
go to school” means something quite different from “John and Mary go
to school.”

Example 5 In an urn filled with balls, each of a single color, “the set
of red and white balls” is the same as “the set of red or white balls”.

Terminology In mathematical logic, “and” may be denoted by “∧” or
“&”, or by juxtaposition.

See also the discussion under or.

Difficulties The preceding examples illustrate that mnemonics of the
type “when you see ‘and’ it means intersection” cannot work ; the transla-
tion problem requires genuine understanding of both the situation being
described and the mathematical structure.

In sentences dealing with physical objects, “and” also may imply
a temporal order (he lifted the weight and dropped it, he dropped the
weight and lifted it), so that in contrast to the situation in mathematical
assertions, “and” is not commutative in talking about physical objects.
That it is commutative in mathematical discourse may be because math-
ematical objects are eternal.

As this discussion shows, to describe the relationship between En-
glish sentences involving “and” and their logical meaning is quite involved
and is the main subject of [Kamp and Reyle, 1993], Section 2.4. Things
are even more confusing when the sentences involve coreference, as ex-
amples in [Kamp and Reyle, 1993] illustrate.
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and APOS

algorithm 9
arbitrary 18
conditional assertion 47
hypothesis 47
integral 133
outfix notation 188
structural notation 235
symbol 240
universal quantifier 260

Acknowledgments: The examples given above were suggested by
those in the book just referenced, those in [Schweiger, 1996], and in com-
ments by Atish Bagchi and Michael Barr.

angle bracket Angle brackets are the symbols “〈” and “〉”. They
are used as outfix notation to denote various constructions, most notably
an inner product as in 〈v, w〉.
Terminology Angle brackets are also called pointy brackets, partic-
ularly in speech.

Citations: (81), (171), (293), (105).

anonymous notation See structural notation.

antecedent The hypothesis of a conditional assertion.

antiderivative See integral.

any Used to denote the universal quantifier; examples are discussed
under that heading. See also arbitrary.

APOS The APOS description of the way students learn mathematics
analyzes a student’s understanding of a mathematical concept as devel-
oping in four stages: action, process, object, schema.

I will describe these four ideas in terms of computing the value of a
function, but the ideas are applied more generally than in that way. This
discussion is oversimplified but, I believe, does convey the basic ideas in
rudimentary form. The discussion draws heavily on [DeVries, 1997].

A student’s understanding is at the action stage when she can carry
out the computation of the value of a function in the following sense:
after performing each step she knows how to carry out the next step.

The student is at the process stage when she can conceive of the
process as a whole, as an algorithm, without actually carrying it out. In
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any 17
compartmentalization 39
metaphor 162
noun phrase 177
object-process duality 180
procept 181
universal generalization

260
yes it’s weird 278

APOS arbitrary

particular, she can describe the process step by step without having in
mind a particular input.

She is at the mathematical object stage when she can conceive of
the function as a entity in itself on which mathematical operations (for
example differentiation) can be performed.

A student’s schema for any piece of mathematics is a coherent col-
lection of actions, processes, objects and metaphors that she can bring to
bear on problems in that area (but see compartmentalization).

I can attest from experience that even
college students can genuinely have an
understanding of a process as an action
but not as a process. An attempt at
teaching writing in a math course in the
late sixties foundered on this when many
students, most of whom could efficiently
carry out long division, turned out to be
incapable of writing a coherent descrip-
tion of the process. I did not often see
students stuck at the action stage in my
later years at Case Western Reserve Uni-
versity, when I taught mostly computer
science students. They all had some pro-
gramming background. Presumably that
forced them to the process stage.

The APOS theory incorporates object-process dual-
ity and adds a stage (action) before process and another
(schema) after object.
References A brief overview of this theory is in [De-
Vries, 1997], and it is discussed in detail in [Thompson,
1994], pp. 26ff and [Asiala et al., 1996], pp. 9ff. The con-
cept of schema is similar to the concept of procept given
in [Gray and Tall, 1994]. Schemas are discussed in the
linguistic setting in [Harley, 2001], pages 329ff.

arbitrary Used to emphasize that there is no restric-
tion on the mathematical structure referred to by the
noun phrase that follows. One could usually use any in
this situation instead of “arbitrary”.
Example 1 “The equation xrxs = xr+s holds in an

arbitrary semigroup, but the equation xryr = (xy)r requires commuta-
tivity.” Citations: (249), (306), (390).

In a phrase such as “Let S be an arbitrary set” the word arbitrary
typically signals an expectation of an upcoming proof by universal gen-
eralization. “Any” could be used here as well.

Difficulties Students are frequently bothered by constructions that seem
arbitrary. Some examples are discussed under yes it’s weird.
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argument arity

argument 19
function 104
input 106
mathematical discourse 1
notation 177
proof 205
symbol 240
variable 268

argument This word has three common meanings in mathematical
discourse.

• The input to a function may be called the argument. Citation: (93),
(216), (429).

• The angle a complex number makes with the real axis is called the
argument of the number. This can be viewed as a special case of the
argument of a function.

• A proof may be called an argument. Citation: (7), (319).

In English, “argument” can mean orga-
nized step by step reasoning to support a
claim, and it can also mean the verbal ex-
pression of a disagreement. The meaning
of diagreement is the common one and it
carries a connotation of unpleasantness
not intended by the technical meanings
given here.

arity The arity of a function is the number of argu-
ments taken by the function. The word is most commonly
used for symbols denoting functions.
Example 1 The arity of the function sin is one.
Example 2 The arity of + is two. It takes two argu-
ments.

A function that takes n inputs is also called a func-
tion of n variables. In using the notation given here
the order in which the variables are listed is important; for example, one
cannot assume in general that f(2, 3) = f(3, 2).
Remark 1 A function of two variables may be analyzed as a function
f : R × R → R where R × R is the cartesian product of R with itself.
In that sense it is a function with one input, which must be an ordered
pair. I take that point of view in my class notes [Wells, 1997]; students
in my class from time to time ask me why I don’t write f((x, y)).
Remark 2 One sometimes finds functions with variable arity. For ex-
ample, one might use MAX for the maximum of a list, and write for
example

MAX(9, 9,−2, 5) = 9
Of course, one might take a point of view here analogous to that of
Remark 1 and say that MAX has one input that must be a list.

19



definite article 64
delimiter 71
determinate 74
formula 101
identifier 120
indefinite article 128
infix notation 131
mathematical logic 151
parenthetic assertion 194
Polish notation 200
postfix notation 201
predicate 202
prefix notation 203
proposition 210
reverse Polish notation

219
sentence 227
symbolic expression 241
term 248
variable 268
variate 272

arity assertion

Example 3 Computer languages such as Lisp and MathematicaR© have
some functions with variable arity. The expression +(3, 5, 5) in Lisp eval-
uates to 13, and so does the expression Plus[3,5,5] in Mathematica.

In general, variable arity is possible only for functions written in
prefix or postfix notation with delimiters. When the symbol for addition
(and similar symbols) is written in infix, Polish or reverse Polish notation,
the symbol must have exactly two arguments. Thus the symbol + in
Mathematica has arity fixed at 2. Citations: (15), (194), (190).

Acknowledgments: Lou Talman.

article The articles in English are the indefinite article “a” (with vari-
ant “an”) and the definite article “the”. Most of the discussion of articles
is under those heads.
Remark 1 Both articles can cause difficulties with students whose na-
tive language does not have anything equivalent. A useful brief discussion
aimed at such students is given by [Kohl, 1995]. The discussion in this
Handbook is restricted to uses that cause special difficulty in mathemat-
ics.

assertion An assertion or statement is a symbolic expression or
English sentence (perhaps containing symbolic expressions), that may
contain variate identifiers, which becomes definitely true or false if deter-
minate identifiers are substituted for all the variate ones. If the assertion
is entirely symbolic it is called a symbolic assertion or (in mathemat-
ical logic) a formula or sometimes, if the assertion contains variables, a
predicate. Contrast with term. Citation: (341).

The pronunciation of a symbolic assertion may vary with its position
in the discourse. See parenthetic assertion.
Example 1 “2 + 2 = 4” is an assertion. It contains no variate identi-
fiers. In mathematical logic such an assertion may be called a sentence
or proposition.
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assertion assumption

assertion 20
conditional assertion 47
consider 50
free variable 102
function 104
hypothesis 47
let 140
positive 201
symbolic assertion 20
term 248
true 256
variable 268

Example 2 “x > 0” is an assertion. The only variate identifier is x.
The assertion becomes a true statement if 3 is substituted for x and a
false statement if −3 is substituted for x.

By contrast, “x + 2y” is not an assertion, it is a term; it does not
become true or false when numbers are substituted for x and y, it merely
becomes an expression denoting a number.
Example 3 The sentence

“Either f(x) is positive or f(2x) is negative.”
is an assertion. It is not a symbolic assertion, which in this Handbook
means one that is entirely symbolic. The variables are f and x (this is
discussed further under variable.) The assertion becomes true if cos is
substituted for f and π/2 is substituted for x. It becomes false if sin is
substituted for f and 0 is substituted for x.
Remark 1 It is useful to think of an assertion as a function with “true”
and “false” as values, defined on a complicated domain consisting of state-
ments and the possible values of their free variables.

Acknowledgments: Owen Thomas.

assume See let.

assumption An assumption is an assertion that is taken as an axiom
in a given block of text called its scope. “Taken as an axiom” means
that any proof in the scope of the assumption may use the assumption
to justify a claim without further argument.
Example 1 “Throughout this chapter, G will denote an arbitrary Abe-
lian group.” Citations: (178), (297). See also consider.

A statement about a physical situation may be called an assump-
tion, as well; such statements are then taken as true for the purposes of
constructing a mathematical model. Citations: (400), (220).

Finally, the hypothesis of a conditional assertion is sometimes called
the assumption. Citations: (9), (282).
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look ahead 149
trigonometric functions

254

attitudes attitudes

at most For real numbers x and y, the phrase “x is at most y” means
x ≤ y.

Difficulties Many students, including some native English speakers, do
not understand this phrase. Some of them also don’t understand “at
least” and “not more than”. Citation: (71), (283).

attitudes Instructors, students and laymen have certain attitudes
towards mathematics and its presentation that I think deserve names. A
few are listed in this Handbook, with the page each is defined on:

algorithm addiction 12
esilism 87
guessing 119
literalist 145
Luddism 149
mathematical mind 154

myths 170
osmosis theory 188
Platonism 197
private language 204
walking blindfolded 274
yes it’s weird 278

Here are some attitudes that need names:

(a) I never would have thought of that Example 1 under look
ahead discusses the example in [Olson, 1998] of deriving a trig identity
from the Pythagorean identity. One student, faced with the first step
in the derivation, dividing the equation by c, said, “How would I ever
know to divide by c?” I have noticed that it is common for a student to
be bothered by a step that he feels he could not have thought of. My
response in class to this is to say: Nevertheless, you can understand the
proof, and now you know a new trick.

(b) No expertise required There seem to be subjects about which
many educated people both have strong opinions and apparently are not
aware that there is a body of knowledge connected with the subject. En-
glish usage is such a subject in the USA: many academicians who have
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attitudes back formation

behaviors 25
calculate 33
integral 133
Luddism 149
myths 170
plural 198
you don’t know shriek 279

never read a style book and know nothing about the discoveries concern-
ing grammar and usage that have been made in recent years nevertheless
are eloquent in condemning or upholding split infinitives, commas after
the penultimate entry in a series, and the like.

Happily or not, mathematics is not one of these bodies of knowledge.
Non-mathematicians typically don’t believe they know much about math-
ematics (some engineers are an exception).

On the other hand, many mathematicians take this attitude towards
certain subjects; programming is one, and another is mathematics edu-
cation.

(c) I had to learn it so they should learn it It is noticeable that
in curriculum committees professors strenuously resist relaxing a require-
ment that was in effect when they were students. In mathematical set-
tings this tends to be expressed in sentences such as, “It is inconceivable
that anyone could call himself a math major who has never had to inte-
grate cos3 x” (or whatever). This is clearly related to the you don’t know
shriek and to Luddism.

(d) I can’t even balance my checkbook Many people who have had
little association with mathematics believe that mathematics is about
numbers and that mathematicians spend their time calculating numbers.

See also behaviors and myths.

back formation One may misread a word, perhaps derived from some
root by some (often irregular) rule, as having been derived from some
other nonexistent root in a more regular way. Using the nonexistent root
creates a word called a back formation.
Example 1 The student who refers to a “matricee” has engaged in
back formation from “matrices”, which is derived irregularly from “ma-
trix”. See plural for more examples.
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accent 8
bound variable 30
delimiter 71
expression 241
function 104
identifier 120
input 106
lambda notation 139
mathematical mind 154
name 171
notation 177
property 209
straight arrow notation

234
value 266

bad at math be

bad at math See mathematical mind.

bar A line drawn over a single-symbol identifier is pronounced “bar”.
For example, x̄ is pronounced “x bar”. Other names for this symbol are
“macron” and “vinculum”.
Example 1 “Let F : S → S be a function and Ā its set of fixed points.”

See accent. Citation: (90).
Acknowledgments: Atish Bagchi.

bare delimiter See delimiter.

barred arrow notation A notation for specifying a function. It uses
a barred arrow with an identifier for the input variable on the left and an
expression or name that describes the value of the function on the right.
Example 1 “The function x �→ x2 has exactly one critical point.”
Compare lambda notation and straight arrow notation. Citation: (273).
Remark 1 One can substitute input values of the correct type into
barred arrow expressions, in contrast to lambda expressions (see bound
variable).
Example 2 One can say

“Under the function x �→ x2, one may calculate that 2 �→ 4.”

be The verb “to be” has many uses in the English language. Here I
mention a few common usages in mathematical texts.

(a) Has a property For example, “The Klein four-group is Abelian.”
Other examples are given under property.

24



be behaviors

assertion 20
attitudes 22
condition 47
defined on 181
definiendum 66
existential quantifier 93
group 34
mathematical definition

66
mathematical object 155
myths 170
statement 20

(b) To define a property In defining a property, the word “is” may
connect the definiendum to the name of the property, as in: “A group
is Abelian if xy = yx for all elements x and y.” Note that this is
not an assertion that some group is Abelian, as in the previous entry;
instead, it is saying what it means to be Abelian. Citations: (14),
(21).

(c) To define a type of object In statements such as:
“A semigroup is a set with an associative multiplication defined
on it.”

the word “is” connects a definiendum with the conditions defining it.
See mathematical definition for other examples. Citations: (40), (91),
(150).

(d) Is identical to The word “is” in the statement
“An idempotent function has the property that its image is its
set of fixed points.”

asserts that two mathematical descriptions (“its image” and “its set of
fixed points”) denote the same mathematical object. This is the same as
the meaning of “=”. Citations: (27), (66), (114).

(e) Asserting existence See existential quantifier for examples. Cita-
tions: (261), (346).

behaviors Listed here are a number of behaviors that occur among
mathematicians and students. Some of these phenomena have names
(in some cases I have named them) and are discussed under that name.
Many phenomena that need names are listed below. See also attitudes
and myths.

(a) Behaviors that have names The behaviors listed here are dis-
cussed under their names:
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generalization 112
number 179

behaviors behaviors

affirming the consequent 8
compartmentalization 39
covert curriculum 62
denying the hypothesis 73
enthymeme 83
existential bigamy 92
extrapolate 95
formal analogy 100
grasshopper 116
insight 132

jump the fence 137
malrule 150
private language 204
sanity check 222
self-monitoring 223
semantic contamination 224
symbolitis 245
synecdoche 245
yes it’s weird 278
you don’t know shriek 279

(b) Behaviors that need names
(i) All numbers are integers Student often unconsciously as-

sume a number is an integer. One sometimes has scenarios in calculus
classes like this:

Teacher (with an air of triumph): “Now by bisection we have shown
the root is between 3 and 4.”

Student (usually subvocally, but sometimes aloud): “But there aren’t
any numbers between 3 and 4.”

(ii) Excluding special cases Usually, a generalization of a math-
ematical concept will be defined in such a way as to include the special
case it generalizes. Thus a square is a rectangle and a straight line is a
curve. Students sometimes exclude the special case, saying “rectangle”
to mean that the figure is not a square, or asking something such as “Is
it a group or a semigroup?”

A definition that includes such special cases is sometimes called
inclusive; otherwise it is exclusive. Most definitions in mathematics
are inclusive. Exclusive definitions (such as for field or Boolean algebra)
have to point out the exclusion explicitly.
Example 1 A field is a nontrivial commutative ring in which every
element has an inverse. Reference: [Hersh, 1997a].

26



behaviors behaviors

assertion 20
disjoint 74
expression 241
integer 133
mathematical education

150
mathematical object 155
positive 201
representation 217
sanity check 222

(iii) Missing relational arguments Using a binary relation word
with only one argument. For an example, see disjoint. Students often do
this with “relatively prime”.

(iv) Forgetting to check trivial cases
Example 2 A proof about positive integers that begins,

“Let p be a prime divisor of n.”
The integer 1 has no prime divisors.

(v) Proving a conditional assertion backward When asked
to prove P ⇒ Q a student may come up with a proof beginning “If
Q . . . ” and ending “ . . . therefore P”, thus proving Q ⇒ P . This is
distressingly common among students in discrete mathematics and other
courses where I teach beginning mathematical reasoning. I suspect it
comes from proving equations in high school, starting with the equation
to be proved.

In mathematical education, the tendency
to read variable names as labels is called
the student-professor problem, but I
don’t want to adopt that as a name; in
some sense every problem in teaching is
a student-professor problem!

(vi) Reading variable names as labels An as-
sertion such as “There are six times as many students
as professors” is translated by some students as 6s = p
instead of 6p = s (where p and s have the obvious mean-
ings). This is discussed in [Nesher and Kilpatrick, 1990],
pages 101–102. See sanity check.

(vii) The representation is the object Many students begin-
ning the study of abstract mathematics firmly believe that the number
735 is the expression “735”. In particular, they are unwilling to use
whatever representation of an object is best for the purpose.

For example, students faced with a question such as
“Does 21 divide 3 · 5 · 72?”

will typically immediately multiply the expression out and then carry out
long division to see if indeed 21 divides 735. They will say things such
as,
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case 35
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operation 183
symbolic language 243

behaviors boldface

“I can’t tell what the number is until I multiply it out.”
This is discussed by Brown [2002] and by Ferrari [2002].

Integers have various representations: decimal, binary, the prime
factorization, and so on. Clearly the prime factorization is the best form
for determining divisors, whereas for example the decimal form (in our
culture) is a good form for determining which of two integers is the larger.

(viii) Unbalanced dichotomy This particular incident has hap-
pened to me twice, with two different students: The students became
quite upset (much more than merely puzzled) when I said, “Let p be an
odd prime.” They were bothered because there is only one prime that is
not odd.

The students had some expectation that is being violated, perhaps
that the referents of the two parts of a dichotomy ought to be in some way
balanced. Yet this example is no stranger than referring to a nonempty
set. Citation: (416).

binary operation See operation.

black box See function.

boldface A style of printing that looks like this. Section headings
are often in boldface, and some authors put a definiendum in boldface.
See definition.

In this text, a phrase is put in boldface in the place where it is (for-
mally or informally) defined (except the one in the previous paragraph!).

In the symbolic language, whether a letter is in boldface or not may
be significant. See also case.
Example 1 Let v = (v1, v2, v3) be a vector.

Citations: (1), (362).
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all 13
and 15
assertion 20
bound variable 30
conjunction 50
every 261
identifier 120
or 184
sentence 227
symbolic expression 241
variate identifier 272

both Both is an intensifier used with and to assert the conjunction of
two assertions.
Example 1 “The integers 4 and 6 are both even”, meaning “The inte-
ger 4 is even and the integer 6 is even”. This could also be worded as:
“Both the integers 4 and 6 are even.” Citation: (119), (245), (340),
(355).
Example 2 “2 is both even and a prime.” This means “2 is even and
2 is prime.” Citation: (251).

It is also used with or to emphasize that it is inclusive.
Example 3 “If m is even and m = rs then either r or s (or both) is
even.” This usage can be seen as another instance of intensifying “and”: r
is even or s is even or (r is even and s is even). Of course this last wording
is redundant, but that is after all the point of the construction “or both”.
Citations: (75), (91).

bound identifier An identifier is bound if it occurs in a phrase that
translates directly into a symbolic expression in which the identifier be-
comes a bound variable. This typically occurs with the use of English
quantifiers such as all and every, as well as phrases describing sums,
products and integrals. An identifier that is not bound is a free identi-
fier.
Example 1 “Any increasing function has a positive derivative.” The
phrase “increasing function” is bound. This sentence could be translated
into the symbolic expression

∀f (
INC(f) ⇒ f ′ > 0

)
Example 2 “If an integer is even, so is its square.” Here the identifier
“integer” is free.

See also variate identifier.
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barred arrow notation 24
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free variable 102
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scope 223
substitution 236
symbolic assertion 20
symbolic expression 241
universal quantifier 260
variable 268

bound variable bound variable

bound variable A variable is bound in a symbolic expression if it is
within the scope of an operator that turns the symbolic expression into
something referring collectively to all the values of the variable (perhaps
within limits). The operator is said to bind the variable. The operators
that can do this include the existential and universal quantifiers, the inte-
gral sign, the sum and product notations Σ and Π, and various notations
for functions. (See also bound identifier.) A variable that is not bound is
free.

A key property of a bound variable is that one is not allowed to
substitute for it (but see Example 3).
Example 1 In the expression x2 + 1, the x is a free variable. You can
substitute 4 for x in this expression and the result is 17. However, in∫ 5
3 x

2 + 1 dx, x is bound by the integral sign. If you substitute 4 for x
you get nonsense:

∫ 5
3 42 + 1 d4.

Example 2 In the symbolic assertion x > 7, x is free. In ∀x(x > 7) it
is bound by the universal quantifier (resulting in a false statement).
Example 3 This example is more subtle. In the following sentence,
intended to define a function,

“Let f(x) = x2 + 1.”
the variable x is bound. It is true that one can substitute for the x in
the equation to get, for example f(2) = 5, but that substitution changes
the character of the statement, from the defining equation of a function
to a statement about one of its values. It is clearer that the variable x is
bound in this statement

“Let the function f(x) be defined by f(x) = x2 + 1.”
which could not be transformed into

“Let the function f(2) be defined by f(2) = 22 + 1.”
These remarks apply also to the variables that occur in lambda notation,
but see Example 2 under barred arrow notation.
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bare delimiter 72
cases 35
free variable 102
outfix notation 188
set 227
setbuilder notation 228
status 234
substitution 236
symbol 240
variable clash 271

Terminology Bound variables are also called dummy variables. The
latter phrase has low status.

Difficulties Students find it difficult to learn how to use bound variables
correctly.

• They may allow variable clash.
• They may not understand that the choice of bound variable does not

matter (except for variable clash); thus
∫ 5
2 x

2 dx and
∫ 5
2 t

2 dt are the
same by their form.

• They may move a bound variable out of its binder, for example
changing

∑n
i=1 i

2 to i
∑n

i=1 i (which makes it easy to “solve”!).
• They may substitute for it, although in my teaching experience that

is uncommon.
Remark 1 The discussion in Remark 2 under free variable applies to
bound variables as well.
Remark 2 Church [1942] defines “bound” as simply “not free”.

brace Braces are the symbols “{” and “}”. Citation: (277).
A very common use of braces is in setbuilder notation.

Example 1 The set {(x, y) | y = x2} is a parabola in the plane.
Citation: (66).

They are also used occasionally as bare delimiters and as outfix no-
tation for functions.
Example 2 The expression 6/{(12 + 32) − 22} evaluates to 1.
Example 3 The fractional part of a real number r is denoted by {r}.

Citation: (265), (342), (380), (420).
A left brace may be used by itself in a definition by cases (see the

example under cases).

Terminology Braces are sometimes called curly brackets.
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angle bracket 17
delimiter 71
mathematical register 157
operation 183
sign 229
square bracket 232

bracket but

bracket This word has several related usages.

(a) Certain delimiters In common mathematical usage, brackets are
any of the delimiters in the list

( ) [ ] { } 〈 〉
Some American dictionaries and some mathematicians restrict the mean-
ing to square brackets or angle brackets. Citation: (277).

(b) Operation The word “bracket” is used in various mathematical
specialties as the name of an operation (for example, Lie bracket, Toda
bracket, Poisson bracket) in an algebra (often of operators) with a value in
another structure. The operation called bracket may use square brackets,
braces or angle brackets to denote the operation, but the usage for a
particular operation may be fixed as one of these. Thus the Lie bracket
of v and w is denoted by [v, w]. On the other hand, notation for the
Poisson and Toda brackets varies. Citation: (415), (166), (44).

(c) Quantity The word “bracket” may be used to denote the value of
the expression inside a pair of brackets (in the sense of delimiters).
Example 1 If the expression (x2 − 2x + 1) + (e2x − 5)3 is zero, then
the two brackets are opposite in sign. Citation: (414).

but

(a) And with contrast As a conjunction, “but” typically means the
same as “and”, with an indication that what follows is surprising or in
contrast to what precedes it. This is a standard usage in English, not
peculiar to the mathematical register.
Example 1 “5 is odd, but 6 is even.” Citations: (111), (154), (428).

32



but calculate

attitudes 22
just 138
mathematical object 155
now 178
sentence 227
symbol manipulation 245

(b) Introduces new property Mathematical authors may begin a
sentence with “But” to indicate that the subject under discussion has
a salient property that will now be mentioned, typically because it leads
to the next step in the reasoning. This usage may carry with it no thought
of contrast or surprise. The property may be one that is easy to deduce
or one that has already been derived or assumed. Of course, in this usage
“but” still means “and” as far as the logic goes; it is the connotations
that are different from the usage in (a).
Example 2 “We have now shown that m = pq, where p and q are
primes. But this implies that m is composite.”
Example 3 (In a situation where we already know that x = 7):

“ . . . We find that x2 + y2 = 100. But x is 7, so y =
√

51.”
See also just and now. Reference: [Chierchia and McConnell-Ginet,
1990], pages 283–284.

Citations: (9), (123), (204).

Non-mathematicians, and many mathe-
matics students, restrict the word “cal-
culation” to mean arithmetic calculation,
that is, symbol manipulation that comes
up with a numerical answer. (See atti-
tudes.) In contrast, I have heard math-
ematicians refer to calculating some ob-
ject when the determination clearly in-
volved conceptual reasoning, not symbol
manipulation.

Acknowledgments: Atish Bagchi

calculate To calculate is to perform symbol manipu-
lation on an expression, usually with the intent to arrive
at another, perhaps more satisfactory, expression.
Example 1 “Let us calculate the roots of the equation
x2 − 4x+ 1 = 0.”

Example 2 “An easy calculation shows that the equa-
tion x3−5x = 0 factors into linear factors over the reals.”

Example 3 “We may calculate that ¬ (∀x∃y(x > y2)
)

is equivalent to
∃x∀y(x ≤ y2).”
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compute 41
definition 66
first order logic 151
infinite 130
mathematical structure

159
metaphor 162
snow 229

calculate cardinality

Remark 1 Calculation most commonly involves arithmetic or algebra-
ic manipulation, but the rules used may be in some other system, as
Example 3 exhibits (the system is first order logic in that case).

See also compute. Citations: (60), (118).

call Used to form a definition.
Example 1 “A monoid is called a group if every element has an in-
verse.”Citation: (388)

Example 2 “Let g = h−1fh. We call g the conjugate of f by h.”
Citation: (29), (101), (279).

Example 3 “We call an integer even if it is divisible by 2.” Citation:
(142), (261).

Remark 1 Some object to the usage in Example 3, saying “call” should
be used only when you are giving a name to the object as in Examples 1
and 2. However, the usage with adjectives has been in the language for
centuries. Citation: (267).

cardinality The cardinality of a finite set is the number of elements
of the set. This terminology is extended to infinite sets either by referring
to the set as infinite or by using more precise words such as “countably
infinite” or “uncountable”.

The cardinality of a group or other structure is the cardinality of its
underlying set.

Difficulties Infinite cardinality behaves in a way that violates the ex-
pectation of students. More about this under snow. The book [Lakoff
and Núñez, 2000] gives a deep discussion of the metaphors underlying
cardinality and the concept of infinity in Chapters 7–10. Citations:
(266), (409).
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boldface 28
defining expression 105
definition 66
fraktur 102
Greek alphabet 116
mathematical structure

159
parameter 191

case The Roman alphabet, the Greek alphabet, and the Cyrillic al-
phabet have two forms of letters, “capital” or uppercase, A, B, C, etc,
and lowercase, a, b, c, etc. As far as I can tell, case distinction always
matters in mathematics. For example, one may use a capital letter to
name a mathematical structure and the same letter in lowercase to name
an element of the structure. Citations: (90), (243), (317),

Difficulties American students at the freshman calculus level or below
quite commonly do not distinguish uppercase from lowercase when taking
notes.
Remark 1 Other variations in font and style may also be significant.
See fraktur and boldface.

cases A concept is defined by cases if it is dependent on a parameter
and the definition provides a different defining expression for different
values of the parameter. This is also called a disjunctive definition or
split definition.
Example 1 Let f : R → R be defined by

f(x) =

{
1 x > 0
−1 x ≤ 0

Citation: (281), (384).

Difficulties Students may find disjunctive definitions unnatural. This
may be because real life definitions are rarely disjunctive. (One exception
is the concept of “strike” in baseball.) This requires further analysis.

category The word “category” is used with two unrelated meanings in
mathematics (Baire and Eilenberg-Mac Lane). It is used with still other
meanings by some linguists and cognitive scientists.
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character cognitive dissonance

character A character is a typographical symbol such as the letter
“a” and the digit “3”. Citation: (145).

A symbol in the sense of this Handbook may consist of more than
one character.
Example 1 The expression “sin” as in “sinπ = 0” is a symbol in the
sense of this Handbook composed of three characters.
Remark 1 Of course, “character” also has a mathematical meaning.

check The symbol “ˇ” over a letter is commonly pronounced “check”
by mathematicians. For example, x̌ is pronounced “x check”. The typo-
graphical name for this symbol is “háček”. See accent.

circumflex The symbol ˆ is a circumflex. Mathematicians common-
ly pronounce it hat: thus x̂ is pronounced “x hat”.
Example 1 “The closure of X will be denoted by X̂.”

See accent.

classical category See concept.

closed under A set is closed under an operation if the image of the
operation is a subset of the set.
Example 1 The set of positive integers is closed under addition but
not under subtraction. Citation: (206).

Acknowledgments: Guo Qiang Zhang.

code See algorithm.

cognitive dissonance Cognitive dissonance is a term introduced
in [Festinger, 1957]. It concerns conflicting understandings of some aspect
of the world caused by two different modes of learning. The conflict may
be resolved by suppressing the results of one of the modes of learning.
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cognitive dissonance college

deprecate 74
distributive plural 76
formal analogy 100
identifier 120
limit 144
metaphor 162
semantic contamination

224

Special types of cognitive dissonance are discussed under formal analogy,
limit (Example 1), metaphor and semantic contamination.

References: Cognitive dissonance is discussed further in [Bagchi and
Wells, 1998b], [Brown and Dobson, 1996], [Carkenord and Bullington,
1993].

Acknowledgments: Thanks to Geddes Cureton and Laurinda Brown
for suggesting references.

collective plural Using the plural of an identifier to refer to the entire
collection of items designated by the identifier.
Example 1 “Let H be a subgroup of G. The left cosets of H are a
partition of G.” I do not have a citation for this sort of wording, although
I have heard people use it.

Example 2 “Let Q be the rational numbers.” Citation: (104), (178),
(356).

Remark 1 It appears to me that the usage shown in the two examples
above is uncommon. It probably should be deprecated. Usually a word
such as “form” or “constitute” is used, or else one refers to the set of
cosets.
Example 3 “The left cosets of H constitute a partition of G.” or “The
set of all left cosets of H is a partition of G.”

Example 4 “The rational numbers form a dense subset of the reals.”
See distributive plural. Citation: (314).
References: [Lønning, 1997], [Kamp and Reyle, 1993], pages 320ff.

college In the United States, a college is an institution one attends
after graduating from high school (secondary school) that gives (usually)
a B.S. or B.A. degree. A university also grants these degrees; the name
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citation vi
parenthetic assertion 194
redundant 215

college combination

“university” usually connotes that the institution also grants other, high-
er, degrees. (There are exceptions in both directions.) The usage of the
word “college” is different in most other countries.

In this text, the phrase college mathematics denotes what in most
other countries could be called “university mathematics”. This is not
quite correct, since in other countries much of the content of American
freshman calculus would probably be taught in secondary school, or in a
school that one attends between secondary school and university.

colon equals The expression “:=” means “(is) defined to be equal
to”.
Example 1 “S := {1, 2, 3} is a finite set.” This is a short way of
saying:

“Define S to be the set {1, 2, 3}. Then S is finite.”
This usage is not very common, but my impression is that it is gain-

ing ground.
Remark 1 In citations this seems to occur mostly in parenthetic asser-
tions. This may be because it is hard to make an independent assertion
that both is non-redundant and does not start with a symbol. Consider

“Let S := {1, 2, 3}.”
(Or “Define . . . ”) The word “Let” already tells you we are defining S,
so that the symbol “ :=” is redundant. Citation: (28); (335). Note that
although the colon equals usage is borrowed from computer languages,
these two citations come from works in areas outside computing.

Acknowledgments: Gary Tee.

combination An r-combination of a set S is an r-element subset of
S. “Combination” is the word used in combinatorics. Everywhere else in
mathematics, a subset is called a subset. Citation: (393).
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comma componentwise

and 15
coordinatewise 59
coreference 59
defining expression 105
function 104
schema 17
symbolic assertion 20
symbolic expression 241

comma In symbolic expressions, a comma between symbolic assertions
may denote and.
Example 1 The set

{m | m = n2, n ∈ Z}
denotes the set of squares of integers. The defining condition is: m = n2

and n is an integer.
Citations: (168).

Remark 1 The comma is used the same way in standard written En-
glish. Consider “A large, brown bear showed up at our tent”.

The comma may also be used to indicate many-to-one coreference,
Example 2 “Let x, y �= 0.”

Citation: (112), (313), (317).
Acknowledgments: Michael Barr.

compartmentalization A student may have several competing ways
of understanding a concept that may even be inconsistent with each other.
Example 1 When doing calculus homework, a student may think of
functions exclusively in terms of defining expressions, in spite of the fact
that she can repeat the ordered-pairs definition when asked and may
even be able to give an example of a function in terms of ordered pairs,
not using a defining expression. In other words, defining expressions are
for doing homework except when the question is “give the definition of
‘function’ ”!

This phenomenon is called compartmentalization. The student
has not constructed a coherent schema for (in this case) “function”.

References: [Tall and Vinner, 1981], [Vinner and Dreyfus, 1989].

componentwise See coordinatewise.
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codomain 109
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integer 133
result 219
rightists 220
semantics 224
straight arrow notation

234
symbol 240
symbolic expression 241
syntax 246
value 266

composite compositional

composite The composite of two functions f : A → B and g : B →
C is a function h : A → C defined by h(a) = g(f(a)) for a ∈ A. It is
usually denoted by g ◦ f or gf . If A = B = C has a multiplicative struc-
ture, then gf may also denote the function defined by gf(a) = g(a)f(a),
a fact that sometimes causes confusion.

When displayed using straight arrow notation like this

A ��f
B ��g

C

then some find the notation g ◦ f jarring. See rightists. Citations:
(230), (327)

The operation (g, f) �→ g ◦ f is defined here
only when the codomain of f is the same as
the domain of g. Many authors allow g ◦ f to
be defined when the codomain of f is included
in (not necessarily equal to) the domain of g.
Indeed, in most of the literature one cannot tell
which variant of the definition is being used.

The usual name for this operation is composi-
tion. The result of the operation, the function g◦f ,
is the composite. See value for discussion of this
point.
Remark 1 “Composite” has another meaning:
an integer is composite if it has more than one prime
factor.

compositional The meaning of an expression is compositional if its
meaning can be determined by the meaning of its constituent parts and
by its syntax. Such semantics is also called synthetic or syntax-driven.
Example 1 The expression “three cats” is completely determined by
the meaning of “three” and “cats” and the English rule that adjectives
come before nouns. (The meaning of “cats” could of course be whips or
animals; that is determined by context.)

In contrast, the meaning of a word cannot usually be synthesized
from its spelling; the relationship between spelling and meaning is essen-
tially arbitrary. As an example, consider the different roles of the letter
“i” in the symbol “sin” and in the expression “3 − 2i”.
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compositional concept

calculate 33
conceptual 43
context-sensitive 54
convention 57
definition 66
suppression of parameters

239
symbol manipulation 245
symbolic expression 241
symbolic language 243
synecdoche 245
syntax 246
up to 265

Remark 1 In spite of Example 1, the meaning of general English dis-
course is commonly not compositional.

Compositionality in the symbolic language The symbolic language
of mathematics has compositional semantics, with some exceptions. Some
examples are given under symbolic expression; see also syntax.

Most of the examples of failure of compositionality that I have been
able to find are examples of one of the following four phenomena (which
overlap, but no one of them includes another):

• context sensitivity.
• conventions.
• suppression of parameters.
• synecdoche.

Examples are given under those headings.
Remark 2 Some symbolic expressions are multivalued, for example∫

x2 dx

which is determined only up to an added constant. I don’t regard this
as failure of compositionality; the standard meaning of the expression is
multivalued.

compute “Compute” is used in much the same way as calculate, ex-
cept that it is perhaps more likely to imply that a computer was used.
Remark 1 As in the case of calculate, research mathematicians often
refer to computing an object when the process involves conceptual rea-
soning as well as symbol manipulation. Citation: (60), (207), (220),
(331).

concept Mathematical concepts given by mathematical definitions al-
ways have the several characteristic properties:
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definition 66
if and only if 124
mathematical object 155
mental representation 161
pathological 92
prototype 210
radial concept 211

concept concept

Equal status All objects that satisfy the definition have equal
logical status.

Crisp An object either satisfies the definition or not. An algebraic
structure is either a group or it is not, but one can argue about whether
Australia is a continent or a large island. Thus a mathematical object is
crisp as opposed to fuzzy.

Accumulation of attributes An object is an instance of the con-
cept if and only if it has all the attributes required of it by the defini-
tion. Mathematical concepts are thus defined by an accumulation of
attributes.

Most human concepts are not given by accumulation of attributes
and many are not crisp. Furthermore, the concepts typically have internal
structure, for example they may be radial and they may have prototypes.
This is discussed by Lakoff in [1986], especially the discussion in Section 1,
and by Pinker and Prince in [1999]. The latter reference distinguishes
between family resemblance categories and classical categories;
the latter are those that in my terminology are defined by accumulation
of attributes.
Remark 1 Many mathematical concepts are abstractions of a prior,
non-mathematical concept that may be fuzzy, and one can argue about
whether the mathematical definition captures the prior concept. Note
also the discussions beginning on page 69 under definition.

Difficulties Of course every student’s and every mathematician’s men-
tal representation of a mathematical concept has more internal structure
than merely the accumulation of attributes. Some instances loom large
as prototypical and others are called by rude names such as pathological
because they are unpleasant in some way.

Students may expect to reason with mathematical concepts using
prototypes the way they (usually unconsciously) reason about everyday
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concept conceptual

divide 76
generalization 112
insight 132
mental representation 161
proof 205
symbol manipulation 245

concepts. (See generalization.) On the other hand, students with some
skill in handling mathematical concepts can shift psychologically between
this extra internal structure and the bare structure given by accumulation
of attributes, using the first for motivation and new ideas and the second
in proofs. This shifting in the general context of human reasoning is
discussed in [Pinker and Prince, 1999], section 10.4.4.

Most definitions even in science outside
of mathematics are not by accumulation
of attributes. Scientific definitions are
discussed in detail in [Halliday and Mar-
tin, 1993], who clearly regard accumula-
tion of attributes as a minor and excep-
tional method of definition; they mention
this process in Example 13 on page 152
almost as an afterthought.

References: [Bagchi and Wells, 1998b], [Bagchi and
Wells, 1998a], [Gopen and Smith, 1990], pages 3–6, [Vin-
ner, 1992]. Definitions in science in general are discussed
by [Halliday and Martin, 1993] pages 148–150, 170ff,
209ff.

Acknowledgments: Thanks to Michael Barr for
catching sloppy thinking in a previous version of this en-
try, and to Tommy Dreyfus and Jeffrey Farmer for helpful
references.

concept image See mental representation.

conceptual A proof is conceptual if it is an argument that makes
use of one’s mental representation or geometric insight. It is opposed to
a proof by symbol manipulation.
Example 1 Let m and n be positive integers, and let r be m mod n.
One can give a conceptual proof that

GCD(m,n) = GCD(m, r)

by showing that the set of common divisors of m and n is the same as
the set of common divisors of n and r (easy). The result follows because
the GCD of two numbers is the greatest common divisor, that is, the
maximum of the set of common divisors of the two numbers, and a set of
numbers has only one maximum.

I have shown my students this proof many times, but they almost
never reproduce it on an examination.
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conceptual conceptual

Example 2 Now I will provide three proofs of a certain assertion,
adapted from [Wells, 1995].

The statement to prove is that for all x, y and z,
(x > z) ⇒ ((x > y) ∨ (y > z)) (1)

(a) Conceptual proof We may visualize x and z on the real line as in
this picture:

. •z •x .

There are three different regions into which we can place y. In the
left two, x > y and in the right two, y > z. End of proof.

This proof is written in English, not in symbolic notation, and it
refers to a particular mental representation of the structure in question
(the usual ordering of the real numbers).

(b) Symbolic Proof The following proof is due to David Gries (private
communication) and is in the format advocated in [Gries and Schneider,
1993]. The proof is based on these principles:
P.1 (Contrapositive) The equivalence of P ⇒ Q and ¬Q ⇒ ¬P .
P.2 (DeMorgan) The equivalence of ¬(P ∨Q) and ¬P¬Q.
P.3 The equivalence in any totally ordered set of ¬(x > y) and x ≤ y.
In this proof, “¬” denotes negation.

Proof:
(x > z) ⇒ ((x > y) ∨ (y > z))

≡ by P.1
¬ ((x > y) ∨ (y > z)) ⇒ ¬(x > z)

≡ by P.2
(¬(x > y)¬(y > z)) ⇒ ¬(x > z)

≡ by P.3 three times
((x ≤ y)(y ≤ z)) ⇒ (x ≤ z)
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aha 132
algorithm 9
concept 41
elementary 79
first order logic 151
hypothesis 47
mental representation 161
symbol manipulation 245
true 256

which is true by the transitive law.
This proof involves symbol manipulation using logical rules and has

the advantage that it is easy to check mechanically. It also shows that
the proof works in a wider context (any totally ordered set).

(c) Another conceptual proof The conceptual proof given above
provides a geometric visualization of the situation required by the hy-
pothesis of the theorem, and this visualization makes the truth of the
theorem obvious. But there is a sense of “conceptual”, related to the
idea of conceptual definition given under elementary, that does not have
a geometric component. This is the idea that a proof is conceptual if it
appeals to concepts and theorems at a high level of abstraction.

To a person familiar with the elementary rules of first order logic,
the symbolic proof just given becomes a conceptual proof (this happened
to me): “Why, in a totally ordered set that statement is nothing but
the contrapositive of transitivity!” Although this statement is merely a
summary of the symbolic proof, it is enough to enable anyone conversant
with simple logic to generate the symbolic proof. Furthermore, in my
case at least, it provides an aha experience. Citations: (360), (48).

conceptual blend A cognitive structure (concept, mental represen-
tation or imagined situation) is a conceptual blend if it consists of
features from two different cognitive structures, with some part of one
structure merged with or identified with an isomorphic part of the other
structure. Mathematics is the

art of giving the same
name to different things.

–Henri Poincaré

Example 1 An experienced mathematician may conceive of the func-
tion x �→ x2 as represented by the parabola that is its graph, or as a
machine that given x produces its square (one may even have a particu-
lar algorithm in mind). In visualizing the parabola, she may visualize a
geometric object, a curve of a certain shape placed in the plane in a cer-
tain way, and she will keep in mind that its points are parametrized (or
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conceptual blend conceptual blend

identified with) the set {(x, y) | y = x2}. The cognitive structure involved
with the machine picture will include the set of paired inputs and out-
puts of the machine. Her complex mental representation of the functions
includes all these objects, but in particular the pairs that parametrize
the parabola and the input-output pairs of the machine are visualized
as being the same pairs, the elements of the set {(x, y) | y = x2}. That
identification of the set of pairs is a conceptual blend.

Example 2 A monk starts at dawn at the bottom of a mountain and
goes up a path to the top, arriving there at dusk. The next morning at
dawn he begins to go down the path, arriving at dusk at the place he
started from on the previous day. Prove that there is a time of day at
which he is at the same place on the path on both days.

Proof: Envision both events occurring on the same day, with a monk
starting at the top and another starting at the bottom and doing the same
thing the monk did on different days. They are on the same path, so they
must meet each other. The time at which they meet is the time required.
This visualization of both events occurring on the same day is an example
of conceptual blending.

Analogies and metaphors are types of conceptual blends. See also
identify.
Remark 1 A conceptual blend is like an amalgamated sum or a pushout.

References: Conceptual blending, analogical mappings, metaphors
and metonymies (these words overlap and different authors do not agree
on their definitions) are hot topics in current cognitive science. These
ideas have only just begun to be applied to the study of mathematical
learning. See [Lakoff and Núñez, 1997], [Presmeg, 1997b]. More general
references are [Fauconnier, 1997], [Fauconnier and Turner, 2002], [Katz
et al., 1998], [Lakoff, 1986], [Lakoff and Núñez, 1997], [Lakoff and Núñez,
2000].
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assertion 20
conditional assertion 47
constraint 51
inequality 130
mathematical definition

66
mathematical object 155
mathematical register 157
on 181

Acknowledgments: The monk example is adapted from [Fauconnier,
1997], page 151.

condition A condition is a requirement that occurs in the definition
of a type of mathematical object or in the statement of a theorem or
problem. See also on.

The word requirement is also used with this meaning. It means
essentially the same thing as constraint, but the latter word seems to
me occur mostly when the condition is an equation or an inequality.
Citations: (205), (224), (316), (396), (428).

conditional assertion A conditional assertionA ⇒ B (pronounced
A implies B) is an assertion formed from two assertions A and B, sat-
isfying the following truth table:

A B A ⇒ B
T T T
T F F
F T T
F F T

The operation “⇒” is called implication. It is sometimes writ-
ten “⊃”. In a given conditional A ⇒ B, A is the hypothesis or the
antecedent and B is the conclusion or consequent. Warning: a
conditional assertion is often called an implication, as well. Citation:
(341).

In the mathematical register, A ⇒ B may be written in several ways.
Here are some examples where A is “4 divides n” and B is “2 divides n”.

a) If 4 divides n, then 2 divides n. Citation: (79), (195), (410).
b) 2 divides n if 4 divides n. Citation: (69)
c) 4 divides n only if 2 divides n. Citation: (203), (387).
d) 4 divides n implies 2 divides n. Citation: (156), (423).
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conditional assertion conditional assertion

e) Suppose [or Assume] 4 divides n. Then 2 divides n. Citations: (96),
(163).

f) Let 4 divide n. Then 2 divides n. Citation: (353)
g) A necessary condition for 4 to divide n is that 2 divide n. Citation:

(195), (73).
h) A sufficient condition for 2 to divide n is that 4 divide n. Citation:

(195), (73).
i) The fact that 4 | n implies that 2 | n. Citation: (423).

Remark 1 The word “if” in sentences (1), (2), and (3) can be replaced
by “when” or (except for (3)) by “whenever”. (See also time.)
Remark 2 Note that if has other uses, discussed under that word. The
situation with let, assume, and suppose are discussed further in those
entries.
Remark 3 Many other English constructions may be translated into
(are equivalent to) conditional assertions. For example the statement

P ⇔“Every cyclic group is commutative”
is equivalent to the statement “If G is cyclic then it is commutative” (in
a context where G is of type “group”). But the statement P is not itself
a conditional assertion. See universal quantifier.

Difficulties Students may have difficulties with implication, mostly be-
cause of semantic contamination with the usual way “if . . . then” and
“implies” are used in ordinary English. Some aspects of this are described
here.

In the first place, one way conditional sentences are used in ordinary
English is to give rules. The effect is that “If P then Q” means “P if and
only if Q”.
Example 1 The sentence

“If you eat your dinner, you may have dessert.”
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affirming the consequent 8
converse 87
definition 66
denying the hypothesis 73
discourse 74
fallacy 96
false symmetry 96
mathematical register 157
only if 182
theorem 250
vacuous implication 265

means in ordinary discourse that if you don’t eat your dinner you may
not have dessert. A child told this presumably interprets the statement
as being in some sort of command mode, with different rules about “if”
than in other types of sentences (compare the differences in the use of
“if” in definitions and in theorems in the mathematical register.)

Perhaps as a consequence of the way they are used in ordinary En-
glish, students often take conditional sentences to be equivalences or even
simply read them backward. Related fallacies are denying the hypothesis
and affirming the consequent.
Example 2 A student may remember the fact “If a function is differen-
tiable then it is continuous” as saying that being differentiable and being
continuous are the same thing, or simply may remember it backward.

Example 3 When asked to prove P ⇒ Q, some students assume Q
and deduce P . This may have to do with the way students are taught to
solve equations in high school.

Recommendation: if you state a mathematical fact in the form of
a conditional assertion, you should always follow it by a statement ex-
plaining whether its converse is true, false or unknown. Besides providing
useful additional information, doing this will remind the student about
the direction of the conditional assertion.
Remark 4 Students have particular difficulty with only if and vacuous
implication, discussed under those headings. See also false symmetry.

References: See [Fulda, 1989] for a discussion of many of the points in
this entry. The sentence about dessert is from [Epp, 1995]. An analysis of
conditionals in ordinary English is given by McCawley [1993], section 3.4
and Chapter 15. Other more technical approaches are in Section 2.1 of
[Kamp and Reyle, 1993] and in Chapter 6 of [Chierchia and McConnell-
Ginet, 1990].
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true 256
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constant constant

conjunction A conjunction is an assertion P formed from two as-
sertions A and B with the property that P is true if and only if A and B
are true. It is defined by the truth table shown here.

A B P
T T T
T F F
F T F
F F F

Do not confuse the usage of “conjunction” given
here with the part of speech called “conjunction”.
Here, a conjunction is a whole sentence.

In the mathematical register, the conjunction of
two assertions is usually signaled by connecting the
two assertions with and. Examples are given under
and.

connective In mathematical logic, a connective or logical connec-
tive is a binary operation that takes pairs of assertions to an assertion.
The connectives discussed in this text are and, equivalent, imply, and
or. Note that some of these connectives are represented in English by
conjunctions and others in more complex ways.
Remark 1 Unary operations such as not are sometimes called connec-
tives as well. Citations: (148), (181).

consider The command “Consider . . . ” introduces a (possibly vari-
able) mathematical object together with notation for the objects and
perhaps some of its structure.
Example 1 “Consider the function f(x) = x2 + 2x.” In the scope of
this statement, f(x) will denote that function specifically. Citation:
(293), (302).

constant A specific mathematical object may be referred to as a con-
stant, particularly if it is a number.One man’s constant is

another man’s variable.
–Alan Perlis

Example 1 The constant π is the ratio of the circumference to the
diameter of a circle, for any circle. Citation: (107).
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collective plural 37
condition 47
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inequality 130
mathematical definition

66
mathematical object 155
parameter 191
requirement 47
sign 229
unknown 264
variable 268

More commonly, the word is used to refer to an object that may not
be determined uniquely but that makes a statement containing various
variables and parameters true for all values of the variables, but which
may depend on the parameters.
Example 2

“There is a constant K for which for any x > K, x2 > 100.”
The only variable is x and there are no parameters. In this case K is
independent of x but is not uniquely determined by the statement.
Citation: (24).
Example 3

“There is a constant K for which for any x > K, x2 + ax+ b >
100.”

Here the statement contains two parameters and K depends on both of
them. Such a constant might better be called a “dependent parameter”.
Citations: (162), (187), (384).

A constant function is one for which f(x) = f(y) for all x, y ∈
dom f . Citation: (133).

See variable, parameter, unknown.

constitute See collective plural.

constraint A constraint is a requirement that occurs in the defini-
tion of a mathematical object or in the statement of a problem. Usually
a constraint is an equation or an inequality, but almost any imposed
requirement may be called a constraint. The words condition and re-
quirement may also be used with a similar meaning.
Example 1 “Let r be the root of a quadratic equation x2 + ax+ b = 0
subject to the constraint that ab > 0, that is, a and b have the same
sign.”
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constraint context

Example 2 “Let p(x) be a polynomial subject to the constraint that
all its roots are in the interval [0, 1].” Citations: (334), (363), (421)

constructivism In mathematics education, this is the name given to
the point of view that a student constructs her understanding of math-
ematical concepts from her experience, her struggles with the ideas, and
what instructors and fellow students say. It is in opposition to the idea
that the instructor in some sense pours knowledge into the student.

Of course, all I have given here are metaphors. However, construc-
tivists draw conclusions concerning teaching and learning from their point
of view.

“Constructivism” as a philosophy of education
may connote other attitudes besides those dis-
cussed in the entry, including the idea that sci-
entific knowledge does not or should not have
a privileged position in teaching or perhaps
in philosophy. My view in contrast to this is
that in particular the standard interpretation
of mathematical discourse should indeed have
a privileged position in the classroom. This in
no way implies that a student’s private inter-
pretation should be ridiculed. This is discussed
further under standard interpretation.

Remark 1 Constructivism is the name of a point
of view in the philosophy of mathematics as well,
but there is no connection between the two ideas.

References: A brief description of constructiv-
ism in mathematics education may be found in
[Selden and Selden, 1997]. Two very different expo-
sitions of constructivism are given by Ernest [1998]
and Hersh [1997b]; these two books are reviewed in
[Gold, 1999].

contain If A and B are sets, the assertion A con-
tainsB can mean one of two thingsB ⊆ A orB ∈ A.

A similar remark can be made about the sentence “B is contained in A.”
Remark 1 Halmos, in [Steenrod et al., 1975], page 40, recommends
using “contain” for the membership relation and “include” for the in-
clusion relation. However, it appears to me that “contain” is used far
more often to mean “include”. Citations: (108), (142), (175), (181),
(398).
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scope 223
type 257
variable 268

The definition of “context” here
gives a narrow meaning of the
word and is analogous to its use
in programming language seman-
tics. The word has a broad-
er meaning in ordinary discourse,
typically referring to the physical
or social surroundings.

context The context of an asser-
tion includes the interpretation current-
ly holding of the identifiers as well as
any assumptions that may be in ef-
fect. Definitions and new assumptions
change the context on the fly, so to
speak. An experienced reader of math-
ematical discourse will be aware of the

meanings of the various identifiers and assumptions and their changes as
she reads.
Example 1 Before a phrase such as “Let n = 3”, n may be known
only as an integer variable, or it may not have been used at all. After the
phrase, it means specifically 3.

Example 2 A change of context may be given an explicit scope.
For example, the assertion “In this chapter, we assume every group is
Abelian” changes the context by restricting the interpretation of every
identifier of type group.
Example 3 An indefinite description also changes the context.

“On the last test I used a polynomial whose derivative had four
distinct zeroes.”

In the scope of such a sentence, definite descriptions such as “that polyno-
mial” must refer specifically to the polynomial mentioned in the sentence
just quoted.

Remark 1 The effect of each assertion in mathematical discourse can
thus be interpreted as a function from context to context. This is de-
scribed for one particular formalism (but not specifically for mathemat-
ical discourse) in [Chierchia and McConnell-Ginet, 1990], which has fur-
ther references. See also [de Bruijn, 1994], page 875 and [Muskens, van
Benthem and Visser, 1997].
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binary operation 183
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112
expression 241
function 104
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if and only if 124
if 123
interpretation 135
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pronunciation 205
real 214
space 231
symbolic assertion 20
symbolic expression 241
underlying set 258
writing dilemma 277

context-sensitive continuous

context-sensitive

(a) Context-sensitive interpretation The interpretation of a sym-
bolic expression is context-sensitive if it depends on the place of the
expression in the discourse containing it. The pronunciation of the ex-
pression may also vary with its place in the sentence.
Example 1 If means if and only if when it occurs in a definition. This
is discussed under if and writing dilemma.
Example 2 In discourse concerning a group G, one might say both

“G is commutative.”
and

“Every odd number is an element of G.”
In the first sentence, the reference is to the binary operation implicitly

or explicitly given in the definition of “group”, not to the underlying
set of G. In the second, the reference is to the underlying set of the
structure. Alternatively, one could say that the phrase “element of” is
context sensitive: “element of S” means one thing if S is a set and another
if S is a structure. In any case, the interpretation is context-sensitive.

That the interpretation of an expression
is “context-sensitive” does not mean it
depends on the context in the narrow
meaning of the word given under that
heading. In this situation, the “context”
is the syntactic context of the expres-
sion, for example whether “if” occurs in
a definition or elsewhere in Example 1,
and whether the symbol G occurs in the
phrase “element of” in Example 2.

(b) Context-sensitive pronunciation The pronunci-
ation of symbolic expressions in mathematics, particular-
ly symbolic assertions, may depend on how they are used
in the sentence. The most common way this happens is in
the case of parenthetic assertions, under which examples
are given.

continuous The notion of continuous function pos-
es problems for students, even in the case of a function
f : A → R where A is a subset of R (the set of all real

numbers). In that case, it is defined using the standard ε-δ definition.
This can be given an expansive generalization to metric spaces, and even
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intuition 161
quantifier 211
reconstructive generaliza-

tion 113
variable 268

further a reconstructive generalization to general topological spaces via
the rule about inverse images of open sets (quite baffling to some stu-
dents).

(a) Continuity is several related ideas One can define what it means
for a function

• to be continuous at a point,
• to be continuous on a set
• to be continuous (that is, on its whole domain).

The relation among these ideas has subtleties; for example the function
1/x is continuous at every point at which it is defined, but not continuous
on R.

(b) Metaphors for continuity are usually inaccurate The various
intuitions for continuity that students hear about are mostly incorrect.
Example 1 The well-known unbroken-graph intuition fails for func-
tions such as

f(x) =

{
sin

( 1
x

)
x �= 0

0 x = 0

This function is not continuous at 0 but nowhere is there a “break” in
the graph.

(c) Continuity is hard to put in words It is difficult to say precisely
in words what continuity means. The ε-δ definition is logically complicat-
ed with nested quantifiers and several variables. This makes it difficult
to understand. and attempts to put the ε-δ definition into words usually
fail to be accurate. For example:

“A function is continuous if you can make the output change
as little as you want by making the change in the input small
enough.”
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argument 19
conditional assertion 47
map 150
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semantic contamination

224

continuous contrapositive

That paraphrase does not capture the subtlety that if a certain change in
the input will work, then so must any smaller change at the same place.
See also map.

Citations: (164), (200), (230), (233),
References: This discussion draws from [Exner, 2000], Chapter 2.

See also [Núñez and Lakoff, 1998] and [Núñez, Edwards and Matos, 1999].

continuum hypothesis In mathematics, the continuum hypoth-
esis is the statement that there is no cardinality between that of the
integers and that of the reals. In fluid dynamics and elsewhere, it is
used to mean that discrete data can be usefully modeled by a continuous
function. These two meanings are independent of each other. I suspect
that the second meaning is the product of semantic contamination by
the first meaning, which dates as early as 1927. Citations: (35), (117),
(182), (412).

contrapositive The contrapositive of a conditional assertion P ⇒
Q is the statement (not Q) ⇒ (not P ). In mathematical arguments, the
conditional assertion and its contrapositive are equivalent. In particular,
to prove P ⇒ Q it is enough to prove that (not Q) ⇒ (not P ), and
once you have done that, no further argument is needed. I have attended
lectures where further argument was given, leading me to suspect that
the lecturer did not fully understand the contrapositive, but I have not
discovered an instance in print that would indicate that. See proof by
contradiction.
Remark 1 The fact that a conditional assertion and its contrapositive
are logically equivalent means that a proof can be organized as follows,
and in fact many proofs in texts are organized like this:

a) Theorem: P implies Q.
b) Assume that Q is false.
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contrapositive convention

conditional assertion 47
conjunction 50
definition 66
follow 98
functional knowledge 111
if 123
mathematical discourse 1
notation 177
only if 182
pattern recognition 195
semantic contamination

224
statement 20

c) Argument that not P follows.
d) Conclude that P implies Q.
e) End of proof.

Often P is a conjunction of several statements P1, . . . Pn and the argu-
ment in the third step will be an argument that not Pi for some particu-
lar i.

The reader may be given no hint as to the form of the proof; she
must simply recognize the pattern. A concrete example of such a proof
is given under functional knowledge. See also pattern recognition.

Difficulties In contrast to the situation in mathematical reasoning, the
contrapositive of a conditional sentence in ordinary English about every-
day topics of conversation does not in general mean the same thing as
the direct sentence. This causes semantic contamination.
Example 1 The sentence

“If it rains, I will carry my umbrella.”
does not mean the same thing as

“If I don’t carry my umbrella, it won’t rain.”
There are reasons for the difference, of course, but teachers rarely

explain this to students. McCawley [1993], section 3.4 and Chapter 15,
discusses the contrapositive and other aspects of conditional sentences in
English. More about this in the remarks under only if.

Citations: (208), (413).

convention A convention in mathematical discourse is notation or
terminology used with a special meaning in certain contexts or in certain
fields.
Example 1 The use of if to mean “if and only if” in a definition is a
convention. This is controversial and is discussed under if.
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159
parameter 191
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radial concept 211
real number 213
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254
underlying set 258
variable 268

convention convention

Example 2 Constants or parameters are conventionally denoted by a,
b, . . . , functions by f , g, . . . and variables by x, y, . . . .

Example 3 Referring to a group (or other mathematical structure) and
its underlying set by the same name is a convention.

Example 4 The meaning of sinn x is the inverse sine (arcsin) if n = −1
but the multiplicative power for positive n (sinn x = (sinx)n). This is a
common convention in calculus texts, usually explicit.

Remark 1 Example 1 exhibits context-sensitivity. Examples 3 and 4
exhibit failure of compositionality. Example 4 is not an example of
context-sensitivity since the meaning depends on what n itself is.
Remark 2 Examples 1 through 4 differ in how pervasive they are and
in whether they are made explicit or not. The convention in Example 1
is so pervasive it is almost never mentioned (it is just beginning to be
mentioned in textbooks aimed at first courses in abstract mathematics).
That is almost, but not quite, as true of the second convention. The third
and fourth conventions are quite common but often made explicit.

Any given culture has some customs
and taboos that almost no one in-
side the culture is aware of, others
that only some who are particular-
ly sensitive to such issues (or who
have traveled a lot) are aware of, and
still others that everyone is aware of
because it is regarded as a mark of
their subculture (such as grits in the
American south). One aspect of this
Handbook is an attempt to uncov-
er features of the way mathemati-
cians talk that mathematicians are
not generally aware of.

Example 5 Some conventions are pervasive among math-
ematicians but different conventions hold in other subjects
that use mathematics. An example is the use of i to denote
the imaginary unit. In electrical engineering it is commonly
denoted j instead, a fact that many mathematicians are un-
aware of. I first learned about it when a student asked me if
i was the same as j. Citation: (332).

Example 6 Other conventions are pervasive in one coun-
try but may be different in another. See part (b) of trigono-
metric functions for examples.

See also positive, radial concept and the sidebar under
real number.
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converse coreference

affirming the consequent 8
assertion 20
conditional assertion 47
definite description 65
discourse 74
false symmetry 96
function 104
integer 133
isomorphic 137
mathematical object 155
mathematical structure

159
positive 201
specific mathematical

object 156
true 256
up to 265

converse The converse of a conditional assertion P ⇒ Q
is Q ⇒ P . Students often fall into the trap of assuming that if the
assertion is true then so is its converse; this is the fallacy of affirming the
consequent. See also false symmetry.

coordinatewise A function F : A → B induces a function often called
F ∗ from lists of elements of A to lists of elements of B or from An to Bn

for a fixed positive integer n by defining
F ∗(a1, . . . , an) = (F (a1), . . . , F (an))

One says that this defines F ∗ coordinatewise or componentwise.
Example 1 “In the product of two groups, multiplication is defined
coordinatewise.”

One can say that assertions are defined coordinatewise, as well. (See
Remark 1 under assertion.)
Example 2 “The product of two ordered sets becomes an ordered set
by defining the order relation coordinatewise.”

Citations: (68), (244), (54).

copy When one is discussing a mathematical structure, say the ring
of integers, one sometimes refers to “a copy of the integers”, meaning a
structure isomorphic to the integers. This carries the connotation that
there is a preferred copy of the mathematical object called the integers
(see specific mathematical object); I suspect that some who use this ter-
minology don’t believe in such preferred copies. Our language, with its
definite descriptions and proper nouns, is not particularly suited to dis-
cussing things defined unique up to isomorphism. Citation: (398) (111),
(144).

coreference Coreference is the use of a word or phrase in discourse
to denote the same thing as some other word or phrase. In English, third
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coreference coreference

person pronouns (he, she, it, they), demonstratives (this, that, these,
those), and the word “do” are commonly used for coreference.

In this entry I will discuss two aspects of coreference that has caused
confusion among my students.

(a) Collective coreference Some years ago the following question ap-
peared in my classnotes [Wells, 1997]:

“Cornwall Computernut has 5 computers with hard disk drives
and one without. Of these, several have speech synthesizers,
including the one without hard disk. Several have Pascal, in-
cluding those with synthesizers. Exactly 3 of the computers
with hard disk have Pascal. How many have Pascal?”

Linguists have formulated some of the
rules that govern the use of coreference
in English. Typically, the rules produce
some syntactic restrictions on what can
be referred to, which in some cases deter-
mine the reference uniquely, but in other
cases the meaning must be left ambigu-
ous to be disambiguated (if possible) by
the situation in which it is uttered.

The phenomenon of coreference is also
called anaphora, a word borrowed from
rhetoric which originally meant some-
thing else. Many (but not all) linguists
restrict “anaphora” to backward corefer-
ence and use “cataphora” for forward ref-
erence. Some linguists call forward refer-
ence “backward dependency”. I took the
name “forward reference” from comput-
ing science.

Some students did not understand that the phrase
“including those with synthesizers” meant “including all
those with synthesizers” (this misunderstanding removes
the uniqueness of the answer). They were a minority, but
some of them were quite clear that “including those with
synthesizers” means some or all of those with synthesiz-
ers have Pascal; if I wanted to require that all of them
have Pascal I would have to say “including all those with
synthesizers”. A survey of a later class elicited a simi-
lar minority response. This may be related to common
usage in setbuilder notation. Citations: (206), (225),
(226).

I do not know of any literature in linguistics that
addresses this specific point.

(b) Forward reference A forward reference occurs
when a pronoun refers to something named later in the
text.
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assertion 20
example 89
mathematical discourse 1
respectively 219
theorem 250
universal quantifier 260

Example 1 This is a problem I gave on a test:
“Describe how to tell from its last digit in base 8 whether an
integer is even.”

In this sentence “its” refers to “an integer”, which occurs later in the
sentence.
Remark 1 That problem and other similar problems have repeatedly
caused a few of my students to ask what it meant. These included native
English speakers. Of course, this problem is not specific to mathematical
discourse.

References: Introductions to the topic are in [Harley, 2001], pages
322–325 and [Fiengo and May, 1996]. See also [Kamp and Reyle, 1993],
pp. 66ff, [Chierchia, 1995], [McCarthy, 1994], and [Halliday, 1994], pp. 312ff.

See also respectively.

corollary A corollary of a theorem is a fact that follows easily from
the theorem. Citations: (56), (79), (217), (313) (corollary of two theo-
rems).
Remark 1 “Easily” may mean by straightforward calculations, as in
Citation (56), where some of the necessary calculations occur in the proof
of the theorem, and in Citation (313), or the corollary may be simply an
instance of the theorem as in Citation (217).

counterexample A counterexample to an universally quantified as-
sertion is an instance of the assertion for which it is false.
Example 1 A counterexample to the assertion

“For all real x, x2 > x”
is x = 1/2. See also example.

Citation: (59), (205).
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counting number decreasing

counting number The counting numbers may denote the positive
integers, the nonnegative integers, or apparently even all the integers
(although I don’t have an unequivocal citation for that).

I have also heard people use the phrase to denote the number of
mathematical objects of a certain type parametrized by the positive or
nonnegative integers. For example, the nth Catalan number can be de-
scribed as the counting number for binary trees with n + 1 leaves.
Citation: (350).

covert curriculum The covert curriculum (or hidden curricu-
lum) consists of the skills we expect math students to acquire without
our teaching the skills or even mentioning them. What is in the covert
curriculum depends to some extent on the teacher, but for students in
higher level math courses it generally includes the ability to read math-
ematical texts and follow mathematical proofs. (We do try to give the
students explicit instruction, usually somewhat offhandedly, in how to
come up with a proof, but generally not in how to read and follow one.)
This particular skill is one that this Handbook is trying to make overt.
There are undoubtedly other things in the covert curriculum as well.

Reference: [Vallance, 1977].
Acknowledgments: I learned about this from Annie Selden. Christine

Browning provided references.

crisp See concept.

curly brackets See brace.

dash See prime.

decreasing See increasing.

62



default defining condition

mathematical discourse 1
number theory 180
schema 17
setbuilder notation 228
theory of functions 250
underlying set 258

default An interface to a computer program will have various possible
choices for the user to make. In most cases, the interface will use certain
choices automatically when the user doesn’t specify them. One says the
program defaults to those choices.
Example 1 A word processing program may default to justified para-
graphs and insert mode, but allow you to pick ragged right and typeover
mode.

I have spent a lot of time in both Minnesota
and Georgia and the remarks about skiing are
based on my own observation. One wonders
where the boundary line is. Perhaps people in
Kentucky are confused on the issue!

These usages are not absolute. Some af-
fluent Georgians (including native Georgians)
may refer to snow skiing as “skiing”, for exam-
ple, and this usage can be intended as a kind
of snobbery.

The concept of default is a remarkably useful
one in linguistic contexts. For example, there is a
sense in which the word “ski” defaults to snow skiing
in Minnesota and to water skiing in Georgia. Simi-
larly “CSU” defaults to Cleveland State University
in northern Ohio and to Colorado State University
in parts of the west.

Default usage may be observed in many situ-
ations in mathematical discourse. Some examples
from my own experience:
Example 2 To algebraists, the “free group” on a set S is non-Abelian.
To some topologists, this phrase means the free Abelian group.
Example 3 In informal conversation among some analysts, functions
are automatically continuous.

This meaning of “default” has
made it into dictionaries only
in the last ten years. This us-
age does not carry a derogatory
connotation.

Example 4 “The group Z” usually means the group with Z

(the set of integers) as underlying set and addition as operation.
There are of course many other group operations on Z. Indeed,
the privileged nature of the addition operation may be part of a
mathematician’s schema for Z.

See also theory of functions and number theory.

defining condition See setbuilder notation.
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defining equation definite article

defining equation See function.

definite article The word “the” is called the definite article. It is
used in forming definite descriptions.

(a) The definite article as universal quantifier Both the indefinite
article and the definite article can have the force of universal quantifica-
tion. Examples are given under universal quantifier.

(b) The definite article and setbuilder notation A set {x | P (x)}
in setbuilder notation is often described with a phrase such as “the set
of x such that P (x)”. In particular, this set is the set of all x for which
P (x) is true.
Example 1 The set described by the phrase “the set of even integers”
is the set of all even integers.

Difficulties Consider this test question:
“Let E be the set of even integers. Show that the sum of any
two elements of E is even.”

Students have given answers such as this:
“Let E = {2, 4, 6}. Then 2 + 4 = 6, 2 + 6 = 8 and 4 + 6 = 10,
and 6, 8 and 10 are all even.”

This misinterpretation has been made in my classes by both native and
non-native speakers of English.

(c) Definite article in definitions The definiendum of a definition
may be a definite description.
Example 2 “The sum of vectors (a1, a2) and (b1, b2) is (a1 + b1, a2 +
b2).” I have known this to cause difficulty with students in the case that
the definition is not clearly marked as such. The definite description
makes the student believe that they should know what it refers to. In the
assertion in Example 2, the only clue that it is a definition is that “sum”
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boldface 28
definite description 65
definition 66
determinate 74
determiner 177
function 104
group 34
identifier 120
mathematical object 155
mathematical register 157
noun phrase 177
parameter 191
variable mathematical

object 156
variate 272

is in boldface. This is discussed further under definition. Citations:
(40), (101), (150).

definite description A noun phrase in which the determiner is “the”
or certain other words such as “this”, “that”, “both”, and so on, is called
an definite description or a definite noun phrase. Such a phrase refers
to a presumably uniquely determined object. The assumption is that the
object referred to is already known to the speaker and the listener or has
already been referred to.
Example 1 If you overheard a person at the blackboard say to someone

“The function is differentiable, so . . . ”
you would probably assume that that person is referring to a function
that speaker and listener both already know about. It may be a specific
function, but it does not have to be; they could be in the middle of a
proof of a theorem about functions of a certain type and “the function”
could be a variable function that they named for the purposes of proving
the theorem.

This example shows that in the mathematical register, whether a
description is definite or indefinite is independent of whether the identifier
involved is determinate or variate.

Example 2 “Let G be a group. Show that the identity of G is idem-
potent.” This example shows that the presumptive uniquely determined
object (“the identity”) can depend on a parameter, in this case G.
Example 3 The phrase “the equation of a plane” is a definite descrip-
tion with a parameter (the plane).

Citations: (170), (133).
See [Kamp and Reyle, 1993], Section 3.7.5.
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definite description definition

definition

1. Mathematical definitions
A mathematical definition prescribes the meaning of a symbol, word,
or phrase, called the definiendum here, as a mathematical object sat-
isfying all of a set of requirements. The definiendum will be either an
adjective that denotes a property that mathematical objects may have,
or it may be a noun phrase that denotes a type of mathematical object
with certain properties.

A mathematical definition is fundamen-
tally different from other sorts of defini-
tions, a fact that is not widely appreci-
ated by mathematicians. The differences
are dicussed under concept and under
dictionary definition.

Mathematical texts sometimes define other parts of
speech, for example in the case of vanish, but that possi-
bility will not be discussed here.

(a) Syntax of mathematical definitions Definitions
of nouns and of adjectives have similar syntax, with some
variations. Every definition will contain a definiendum

and a definiens, which is a set of properties an object must have to be
correctly named by the definiendum. The definiens may be syntactical-
ly scattered throughout the definition much as the Union Terriroty of
Pondicherry is scattered throughout India.

In particular, a definition may have any or all of the following struc-
tures:

1. A precondition, occurring before the definiendum, which typically
gives the type of structure that the definition applies to and may
give other conditions.

2. A defining phrase, a list of conditions on the definiendum occurring
in the same sentence as the definiendum.

3. A postcondition, required conditions occurring after the ostensible
definition which appear to be an afterthought. The postcondition
commonly begins with “where” and some examples are given under
that heading.
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ambient 14
be 24
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definiendum 66
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indefinite description 129
mathematical object 155
noun phrase 177
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239
type 257

(i) Direct definitions One can define “domain” in point set topol-
ogy directly by saying

“A domain is a connected open set.”
(See be.) The definiendum is “domain” and the defining phrase (which
constitutes the entire definiens) is “is a connected open set”. Similarly:

“‘An even integer is an integer that is divisible by 2.”
Citation: (40), (55). In both these cases the definiendum is the subject
of the sentence.

Remark 1 The definition of “domain” given in the preceding para-
graph involves a suppressed parameter, namely the ambient topological
space.

(ii) Definitions using conditionals It is more common to word
the definition using “if”, in a conditional sentence. In this case the subject
of the sentence is a noun phrase giving the type of object being defined
and the definiendum is given in the predicate of the conclusion of the
conditional sentence. The subject of the sentence may be a definite noun
phrase or an indefinite one. The conditional sentence, like any such,
may be worded with hypothesis first or with conclusion first. All this is
illustrated in the list of examples following, which is not exhaustive.

1. [Indefinite noun phrase, definiendum with no proper name.] A set
is a domain if it is open and connected. Or: If a set is open and
connected, it is a domain. Similarly: An integer is even if it is
divisible by 2. Citation: (361).

2. [Indefinite noun phrase, definiendum given proper name.] A set D
is a domain if D is open and connected. An integer n is even if n
is divisible by 2. (In both cases and in similar named cases below
the second occurrence of the name could be replaced by “it”.)
Citation: (156), (222).
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definition definition

3. [Definite noun phrase.] The set D is a domain if D is open and
connected. Similarly: The integer n is even if n is divisible by 2.
Using the definite form is much less common than using the in-
definite form, and seems to occur most often in the older litera-
ture. It requires that the definiendum be given a proper name.
Citation: (14), (21).

4. [Using “let” in a precondition.] Let D be a set. Then D is a domain
if it is open and connected. Similarly: Let n be an integer. Then n
is even if it is divisible by 2. Citation: (124).

5. [Using “if” in a precondition] If n is an integer, then it is even if it
is divisible by 2. Citation: (40).

Remark 2 All the definitions above are given with the definiendum
marked by being in boldface. Many other forms of marking are possible;
see marking below.

A symbolic expression may be defined by using phrases similar to
those just given.
Example 1 “For an integer n, σ(n) is the sum of the positive divisors
of n.”

Sometimes “define” is used instead of “let” in the sense of “assume”.
Example 2 “Define f(x) to be x2 + 1. What is the derivative of f?”

Students sometimes wonder what they are supposed to do when they
read a sentence such as “Define f(x) to be x2 + 1”, since they take it as
a command. Citation: (237), (242).

Other ways of giving a definition use call, put, say and set, usually in
the imperative the way “define” is used in Example 2. Many other forms
of syntax are used, but most of them are either a direct definition or a
definition using a conditional, with variations in syntax that are typical
of academic prose.
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definiendum 66
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if and only if 124
if 123
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let 140
mathematical definition
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mathematical register 157
mental representation 161
recall 214
rewrite using definitions

220
trivial 255
unwind 265
writing dilemma 277

Remark 3 Some authors have begun using “if and only if” in defini-
tions instead of “if”. More about this in the entry for if and in writing
dilemma. See also convention and let.

(iii) Marking the definiendum The definiendum may be put in
italics or quotes or some other typeface instead of boldface, or may not be
marked at all. When it is not marked, one often uses signaling phrases
such as “is defined to be”, “is said to be”, or “is called”, to indicate
what the definiendum is. A definition may be delineated, with a label
“Definition”. Citations: (156), (211) (formally marked as definition);
(261), where it is signaled as definition by the sentence beginning “We call
two sets . . . ”; (126) and (139), where the only clue that it is a definition
is that the word is in boldface; (55) and (218), where the clue is that the
word is in italics.
Remark 4 Words and phrases such as “We have defined. . . ” or “recall”
may serve as a valuable clue that what follows is not a definition.
Remark 5 Some object to the use of boldface to mark the definiendum.
I know of no such objection in print; this observation is based on my
experience with referees.

(b) Mathematical definitions and concepts The definition of a
concept has a special logical status. It is the fundamental fact about
the concept from which all other facts about it must ultimately be de-
duced. I have found this special logical status one of the most difficult
concepts to get across to students beginning to study abstract mathemat-
ics (in a first course in linear algebra, discrete mathematics or abstract
algebra). There is more about this under concept, mental representation,
rewrite using definitions and trivial. See also unwind.

There is of course a connection among the following three ideas:
a) The uses of the word function in the mathematical register.
b) The mathematical definition of function.
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function 104
literalist 145
mathematical definition

66
mathematical register 157
mental representation 161
redundant 215

definition definition

c) The mental representation associated with “function”.
To explicate this connection (for all mathematical concepts, not just

“function”) is a central problem in the philosophy of mathematics.
References: [Lakoff and Núñez, 2000], Chapter 5, [Bills and Tall,

1998], [Tall and Vinner, 1981], [Vinner, 1992], [Vinner and Dreyfus, 1989],
[Wood, 1999].

(c) Definition as presentation of a structure A mathematical defi-
nition of a concept is spare by intent: it will generally provide an irre-
dundant list of data and of relationships that must hold among the data.
Data or properties that follow from other given items are generally not
included intentionally in a definition (some exceptions are noted under
redundant) and when they are the author may feel obligated to point out
the redundancy.

As a result, a mathematical definition hides the richness and com-
plexity of the concept and as such may not be of much use to students who
want to understand it (gain a rich mental representation of it). Moreover,
a person not used to the minimal nature of a mathematical definition may
gain an exaggerated idea of the importance of the items that the definition
does include. See also literalist.

2. Dictionary definition
An explanation, typically in a dictionary or glossary, of the meaning of
a word. This is not the same as a mathematical definition (meaning (1)
above). To distinguish, this Handbook will refer to a definition of the sort
discussed here as a dictionary definition. The entries in this Handbook
are for the most part dictionary definitions.
Example 3 The entry for “function” given in this Handbook describes
how the word “function” and related words are used in the mathemat-
ical register. The definition of function given in a typical mathematical
textbook (perhaps as a set of ordered pairs with certain properties) spec-
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definition delimiter

cases 35
converse 87
example 89
free variable 102
grouping 118
JSTOR vi
mathematical definition

66
mathematical object 155
mathematical structure

159
order 185
symbol 240
symbolic language 243
trigonometric functions

254

ifies what kind of mathematical object is to be called a function. See
Remark 2 under free variable for a discussion of this issue in a particular
case.

Acknowledgments: Atish Bagchi

definition by cases See cases.

degenerate An example of a type of mathematical structure is in
some disciplines called degenerate if either
(i) some parts of the structure that are distinct in the definition of

that type coincide (I call this collapsing), or
(ii) some parameter is zero.
The converse, that if a structure satisfies (i) or (ii) then it is called degen-
erate, is far from being correct; the word seems to be limited to certain
specific disciplines.

The definition of degenerate given here is
based on reading about thirty examples
of the use of the word on JSTOR. Some-
times the word has a mathematical defi-
nition specific to the particular discipline
of the paper and sometimes it appears to
be used informally.

Example 1 A line segment can be seen as a degenerate
isosceles triangle – two sides coincide and the third has
zero length. Note that this fits both (i) and (ii).

Example 2 The concept of degenerate critical point
has a technical definition (a certain matrix has zero de-
terminant) and is responsible for a sizeable fraction of the
occurrences of “degenerate” I found on JSTOR. A small
perturbation turns a degenerate critical point into several critical points,
so this can be thought of as a kind of collapsing.

Citations: (343), (359).
Acknowledgments: Robin Chapman.

degree See order and trigonometric functions.

delimiter Delimiters consist of pairs of symbols used in the symbolic
language for grouping.
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angle bracket 17
brace 31
character 36
display 75
expression 241
integral 133
labeled style 139
parenthesis 192
square bracket 232
text 74

delimiter delineated

(a) Bare delimiters A pair of delimiters may or may not have sig-
nificance beyond grouping; if they do not they are bare delimiters.
The three types of characters used as bare delimiters in mathematics are
parentheses, square brackets, and braces.

Typically, parentheses are the standard delimiters in symbolic ex-
pressions. Square brackets or braces may be used to aid parsing when
parentheses are nested or when the expression to be enclosed is large, but
square brackets and braces are occasionally used alone as bare delimiters
as well.

I have been unable to find a citation
for the use of angle brackets as bare
delimiters, although of course they are
commonly used as delimiters that carry
meaning beyond grouping.

Example 1 The expression
(
(x+ 1)2 − (x− 2)2

)n con-
tains nested parentheses and might alternatively be writ-
ten as

[
(x+ 1)2 − (x− 2)2

]n.
Parentheses, square brackets and braces may also be

used with additional significance; such uses are discussed
with examples under their own headings.

(b) Other delimiters Other symbols also are used to carry meaning
and also act as delimiters. Examples include:

• The symbol for absolute value, as in |x|.
• The symbol for the norm, as in ‖x‖.
• The integral sign, discussed under integral.

Citations: (103), (275), (380), (381).

delineated A piece of text is delineated if it is set off typographically,
perhaps as a display or by being enclosed in a rectangle. Delineated text
is often labeled, as well.
Example 1 “Theorem An integer n that is divisible by 4 is divisible
by 2.” The label is “Theorem”.
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denote dependent variable notation

assertion 20
conditional assertion 47
fallacy 96
function 104
group 34
mathematical object 155
pattern recognition 195
variable mathematical

object 156

denote To say that an expression A denotes a specific object B means
that A refers to B; in an assertion containing a description of B, the
description can be replaced by A and the truth value of the assertion
remains the same. B is sometimes called the denotation of A.
Example 1 The symbol π denotes the ratio of the circumference of a
circle to its diameter.

Citations: (342), (101).
Remark 1 [Krantz, 1997], page 38, objects to the use of “denote” when
the expression being introduced refers (in my terminology) to a variable
mathematical object, for example in a sentence such as “Let f denote a
continuous function”.
Remark 2 Some authors also object to the usage exemplified by “the
ratio of the circumference of a circle to its diameter is denoted π”; they
say it should be “denoted by π”. Citation: (176), (251). (333), (388),
(124).

denying the hypothesis The fallacy of deducing not Q from P ⇒ Q
and not P . Also called inverse error.
Example 1 You are asked about a certain subgroupH of a non-abelian
group G. You “know” H is not normal in G because you know the
theorem that if a group is Abelian, then every subgroup is normal in it.

In contrast, consider Example 1 under conditional assertion.

dependency relation See function.

dependent variable notation This is a method of referring to a
function that uses the pattern

“Let y be a function of x.”
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free identifier 29
identifier 120
input 106
mathematical discourse 1
mathematical object 155
output 266
structural notation 235
variate 272

dependent variable notation disjoint

where x is an identifier for the input and y is an identifier for the output.
In this case, one also says that y is depends or is dependent on x. The
rule for the function may not be given.

In this usage, the value of the unnamed function at x is sometimes
denoted y(x). Note that this does not qualify as structural notation
since the notation does not determine the function. Citation: (239),
(384).

deprecate The word deprecate is used in this Handbook to refer to
a usage occuring in mathematical discourse that one could reasonably
say should not be used for some good reason (usually because it causes
unnecessary confusion). This is sometimes my opinion and sometimes a
reference to another author’s opinion.

I have borrowed this word from computing science.

determinate A free identifier is determinate if it refers to a specific
mathematical object.
Example 1 The symbol “3” is determinate; it refers to the unique
integer 3. But see Remark (a) under mathematical object.

An extended discussion of determinate and variate identifiers may
be found under variate.

discourse Connected meaningful speech or writing. Connected mean-
ingful writing is also called text.

Discourse analysis is the name for the branch of linguistics that
studies how one extracts meaning from sequences of sentences in natu-
ral language. [Kamp and Reyle, 1993] provides a mathematical model
that may explain how people extract logic from connected discourse, but
it does not mention the special nature of mathematical exposition. A
shorter introduction to discourse analysis is [van Eijck and Kamp, 1997].

disjoint Two sets are disjoint if their intersection is empty.
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disjoint distinct

assertion 20
behaviors 25
cases 35
delineated 72
identifier 120
mathematical register 157
or 184
symbolic expression 241
true 256

Example 1 “{1, 2} and {3, 4, 5} are disjoint.”
The word may be used with more than two sets, as well:

Example 2 “Let F be a family of disjoint sets.”

Example 3 “Let A, B and C be disjoint sets.”
Citation: (143), (323).

Difficulties Students sometimes say things such as: “Each set in a par-
tition is disjoint”. This is an example of a missing relational argument
(see Section (iii) under behaviors).

disjunction A disjunction is an assertion P formed from two asser-
tions A and B with the property that P is true if and only if at least
one A and B is true. It is defined by the following truth table:

A B P
T T T
T F T
F T T
F F F

In the mathematical register, the disjunction of two assertions is usually
signaled by connecting the two assertions with “or”. Difficulties with
disjunctions are discussed under or.

disjunctive definition See cases.

display A symbolic expression is displayed if it is put on a line by
itself. Displays are usually centered. The word “displayed” is usually
used only for symbolic expressions. See delineated.

distinct When several new identifiers are introduced at once, the word
distinct is used to require that no two of them can have the same value.
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argument 19
collective plural 37
each 78
factor 96
integer 133
number theory 180
sentence 227
universal quantifier 260
variable 268

distinct divide

Example 1 “Let m and n be distinct integers.”
This means that in the following argument, one can assume that

m �= n.

Difficulties Students may not understand that without a word such as
“distinct”, the variables may indeed have the same value. Thus

“Let m and n be integers.”
allows m = n. In [Rota, 1996], page 19, it is reported that E. H. Moore
was sufficiently bothered by this phenomenon to say,

“Let m be an integer and let n be an integer.”
Citation: (238), (196), (279).

distributive plural The use of a plural as the subject of a sentence in
such a way that the predicate applies individually to each item referred
to in the subject.
Example 1 “The multiples of 4 are even.” (or “All the multiples of 4
are even” – see universal quantifier.)

This phenomenon is given a theoretical treatment in [Kamp and
Reyle, 1993], pages 320ff. See also collective plural and each. Citations:
(19), (225), (226).

divide

1. Divides for integers
An integer m divides an integer n (or: m is a divisor or factor of
n) if there is an integer q for which n = qm. Some authors require
that q be uniquely determined, which has the effect of implying that
no integer divides 0. (0 does not divide any other integer in any case.)
This definition, with or without the requirement for uniqueness, appears
to be standard in texts in discrete mathematics and number theory.
Citations: (69), (79).
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divide domain

abstract algebra 9
element 79
function 104
generalization 112
mathematical object 155
rule 106
set 227
straight arrow notation

234
symbolic expression 241

2. Divides for commutative rings
If a and b are elements of a commutative ring R, then a divides b if there
is an element c of R with the property that b = ac. This appears to be
the standard definition in texts in abstract algebra. I am not aware of
any such text that requires uniqueness of c.

Of course, the second meaning is a generalization of the first one.
I have known this to cause people to assert that every nonzero integer
divides every integer, which of course is true in the second meaning,
taking the commutative ring to be the ring of rationals or reals. Citation:
(76).

Most authors require that a function be
defined at every element of the domain, if
the domain is specified. A partial func-
tion is a mathematical object defined in
the same way as a function except that
it may be defined for only a subset of the
domain.

domain The domain of a function must be a set and
may be named in any way that sets are named. The
domain is frequently left unspecified. It may be possible
to deduce it from what is stated; in particular, in cases
where the rule of the function is a symbolic expression the
domain may be implicitly or explicitly assumed to be the
set of all values for which the expression is defined.
Remark 1 The set of values for which the expression is defined is a
subtle idea. Consider: Let x be a real variable. Is the expression x tan(x+
π/2) defined at x = 0?

• If you say all parts have to be meaningful, it is not defined. This is
what is called eager evaluation in computing science.

• If you start evaluating it from left to right and come up with a
definite value before you have considered all parts of the expression,
then the value is 0 (this is lazy evaluation).

Citations: (174), (384).
Acknowledgments: [Miller, 2003].

(a) Notation for domain Aside from straight arrow notation the fol-
lowing phrases may be used to state that a set S is the domain of a
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all 13
any 17
bound variable 30
defined in 181
distributive plural 76
every 261
i.e. 120
multiple meanings 169
on 181
universal quantifier 260

domain each

function f :
a) f is a function with domain S. Citation: (133).
b) domf = S. Citation: (122), (170).
c) f is a function on S. Citation: (26), (42), (188).

See also defined in.
Remark 2 The word “domain” is also used in topology (connected
open set) and in computing (lattice satisfying various conditions) with
meanings unrelated to the concept of domain of a function. See multiple
meanings. Citation: (205).

dummy variable Same as bound variable.

e.g. See i.e.

each Generally can be used in the same way as all, every, and any to
form a universal quantifier.
Example 1 “Each multiple of 4 is even.”

Remark 1 It appears to me that this direct use of “each” is uncommon.
When it is used this way, it always indicates a distributive plural, in
contrast to all.

“Each” is more commonly used before a noun that is the object of a
preposition, especially after “for”, to have the same effect as a distributive
plural.
Example 2 “For each even number n there is an integer k for which
n = 2k.”

Example 3 “A binary operation ∗ on a set is a rule that assigns to
each ordered pair of elements of the set some element of the set.” (from
[Fraleigh, 1982], page 11).
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contain 52
expression 241
in 125
lowercase 35
mathematical object 155
myths 170
set 227
uppercase 35

Example 4 Some students do not grasp the significance of a postposit-
ed “each” as in the sentence below.

“Five students have two pencils each.”
This means that each of the five students has two pencils (a different two
for each student). This usage occurs in combinatorics, for example.

Citations: (66), (110), (214), (369).

element If S is a set, the expression “x ∈ S” is pronounced in English
in any of the following ways:

a) “x is in S”. Citation: (126), (133).
b) “x is an element of S” [or “in S”]. Citation: (196), (369).
c) “x is a member of S”. Citation: (41).
d) “S contains x” or “x is contained in S”. Citation: (142), (108).

Remark 1 Sentence (4) could also mean x is contained in S as a subset.
This is not likely to cause confusion because of the common practice of
writing sets with uppercase letters and their elements as lowercase. See
contain.
Remark 2 A common myth among students is that there are two kinds
of mathematical objects: “sets” and “elements”. This can cause confu-
sion when they are faced with the idea of a set being an element of a
set. The word “element” is used by experienced mathematicians only in
a phrase involving both a mathematical object and a set. In particular,
being an element is not a property that some mathematical objects have
and some don’t.

Acknowledgments: Atish Bagchi

elementary In everyday English, an explanation is “elementary” if it
is easy and if it makes use of facts and principles known to most people.
Mathematicians use the word “elementary” with other meanings as well.
Most of them are technical meanings in a specific type of mathematics.
We consider two uses in mathematicans’ informal jargon.

79



citation vi
conceptual 43
first order logic 151
mathematical definition

66
mathematical structure

159
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underlying set 258
unwind 265

elementary elementary

(a) Elementary proofs A proof of a theorem is elementary if it us-
es only ideas from the same field as the theorem. Rota [Rota, 1996],
pages 113 ff., discusses the case of the prime number theorem in depth;
the first proofs around 1900 used complex function theory, but it was
given an elementary proof much later. That proof was quite long and
complicated, not at all elementary in the non-mathematician’s sense. (A
simpler one was found much later.)

(b) Elementary definitions Mathematicians sometimes use “elemen-
tary” in another sense whose meaning is not quite clear to me. It is ap-
parently in opposition to conceptual. Here are two possible definitions;
we need citations to clear this up.

a) A definition of a type of mathematical structure is elementary if it
involves quantifying only over the elements of the underlying set(s)
of the structure. In particular it does not involve quantifying over
sets or over functions. This is the meaning used by Vought [1973],
page 3.

b) A definition of a type of structure is elementary if it does not make
use of other definitions at the same level of abstraction. Thus it is
unwound.

Example 1 The usual definition of a topological space as a set together
with a set of subsets with certain properties can be expressed in an ele-
mentary way according to definition (2) but not in a direct way according
to definition (1). (But see the next remark.)

Remark 1 An elementary definition in the sense of (1) is also called
first order, because the definition can be easily translated into the lan-
guage of first order logic in a direct way. However, by incorporating the
axioms of Zermelo-Fraenkel set theory into a first order theory, one can
presumably state most mathematical definitions in first order logic. How
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conceptual 43
element 79
set 227
unwind 265
zero 280

this can be done is described in Chapter 7 of [Ebbinghaus, Flum and
Thomas, 1984].

In spite of the fact that the ZF axioms are first order, one often hears
mathematicians refer to a definition that involves quantifying over sets
or over functions (as in Example 1) as non-elementary.

The conceptual definition of left R-mod-
ule has the advantage of making the puz-
zling role of “left” clear in the phrase
“left R-module”. A right R-module is
a homomorphism from the opposite ring
of R to End(M). This makes it appar-
ent that the difference between left and
right module is intrinsic and asymmetric,
not a matter of the ostensibly symmet-
ric and pointless distinction concerning
which side you write the scalar on.

On the other hand, computations on
elements of the module will require
knowing the laws spelled out in the el-
ementary definition.

Example 2 Here is a conceptual definition of a left R-
module for a ring R: It is an Abelian group M together
with a homomorphism φ : R → End(M), where End(M)
denotes the ring of endomorphisms of M .

Now here is a more elementary definition obtained
by unwinding the previous one: It is an Abelian group M
together with an operation (r,m) �→ rm : R ×M → M
for which

a) 1m = m for m ∈ M , where 1 is the unit element of
R.

b) r(m+ n) = rm+ rn for r ∈ R, m,n ∈ M .
c) (rs)m = r(sm) for r, s ∈ R, m ∈ M .
d) (r + s)m = rm+ sm for r, s ∈ R, m ∈ M .

One could make this a completely elementary defi-
nition by spelling out the axioms for an Abelian group. The resulting
definition is elementary in both senses given above.

Example 3 The concept of 2-category is given both an elementary and
a conceptual definition in [Barr and Wells, 1995], Section 4.8.

Acknowledgments: Michael Barr and Colin McLarty.

empty set The empty set is the unique set with no elements. It is a
finite set and it has zero elements. It is denoted by one of these symbols:

a) ∅ (a zero with a slash through it). Citation: (389).
b) A circle with a slash through it. Citation: (263).
c) An uppercase “O” with a slash through it. Citation: (125).
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empty set empty set

d) { }. Citation: (389)
e) 0 (zero) (mostly by logicians) Citation: (296).
f) φ (the Greek letter φ (phi)).

André Weil, who introduced this notation as part of Bourbaki, says
in [Weil, 1992] that the symbol ∅ is the Norwegian letter ø, which is the
letter “O” with a slash through it. (It is pronounced like the German ö.)
In the Computer Modern Roman typeface of this book, it is a zero with
a slash through it; a zero (0) is not as fat as an O. Both Knuth [1986]
(page 128) and Schwartzman [1994] say it is a zero with a slash through
it.

The notion that the symbol should be the Greek letter φ is probably
a misunderstanding, but it is use by mathematicians at the blackboard
quite commonly. People who use it even call it “phi”.

See also zero.

Difficulties Students have various difficulties with the empty set. The
most basic difficulty is that they do not understand that the empty set
is something rather than nothing, so that for example the set {∅, 3, 5}
contains three elements, not two.

This is a perfectly natural reaction, because the basic grounding
metaphor of (positive) integer is that it is the number of things in a
collection, so that if you remove all the things in a collection, you no
longer have a collection. This causes cognitive dissonance with the idea
that the empty set is something. (See [Lakoff and Núñez, 2000], pages
65ff.)

Other difficulties:
• They may be puzzled by the proof that the empty set is included in

every set, which is an example of vacuous implication.
• They also circulate a myth among themselves that the empty set is

an element of every set.
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zero 280

• They may believe that the empty set may be denoted by {∅} as well
as by ∅.

• They may think that the empty set is the same thing as the num-
ber 0. This may be a result of fundamentalism, but it also may be
occasioned by the common practice among angineers and computer
people of writing the number zero with a slash through it to dis-
tinguish it from the letter “O”. I understand that some high school
teachers do not allow this usage.

See myths and set.
Acknowledgments: Atish Bagchi

encapsulation See object-process duality.

“Enthymeme” is a classical rhetorical
term [Lanham, 1991]. An enthymeme is
not necessarily bad, but in mathematical
argument it is important that the person
giving the proof know how to prove it if
challenged.

enthymeme An enthymeme is an argument based
partly on unexpressed beliefs. Beginners at the art of
writing proofs often produce enthymemes.
Example 1 In the process of showing that the inter-
section of two equivalence relations E and E′ is also an
equivalence relation, a student may write

“E ∩ E′ is transitive because E and E′ are both transitive.”
This is an enthymeme; it omits stating, much less proving, that the

intersection of transitive relations is transitive. “Obvious” is the
most dangerous word
in mathematics.

–Thomas Hobbes

The student may “know” that it is obvious that the intersection
of transitive relations is transitive, having never considered the similar
question of the union of transitive relations, which need not be transitive.

It is very possible that the student possesses (probably subconscious-
ly) a malrule to the effect that for any property P the union or intersection
of relations with property P also has property P . The instructor very
possibly suspects this. For some students, of course, the suspicion will be
unjustified, but for which ones? This sort of thing is a frequent source of
tension between student and instructor.
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enthymeme equations

See object-process duality.

equation An equation has the form e1 = e2, where e1 and e2 are
terms. The meaning of such an equation is that e1 and e2 denote the
same mathematical object. If the terms contain free variables, they must
denote the same variable mathematical object.

However, the purpose of different equations can be utterly different,
and the reader must normally depend on context to determine the intent
in a particular case. The intent depends on which part of the equation is
regarded as new information. The examples below give the commonest
uses.
Example 1 The intent of the equation 2 × 3 = 6 for a grade school
student may be a multiplication fact: the 6 is the new information.
Example 2 The intent of 6 = 2 × 3 may be information about a fac-
torization: the 2 and 3 are the new information.
Example 3 The equation 2 × 3 = 3 × 2 would probably be perceived
by many mathematicians as an instance of the commutative law.
Example 4 An equation containing variables may be given as a state-
ment that the two objects are the same for all values of the variables that
satisfy the hypotheses up to this point. Thus

“If f(x) is constant, then f ′(x) = 0.”
This includes the case of an identity, as discussed under that heading.
Citation: (85), (204), ().
Example 5 An equation containing variables may be perceived as a
constraint. Such equations are often given by teachers and perceived
by students as a command to give a simple expression for the values
of the variables that make the equation true. For example, faced with
x2 + 3x − 1 = 0 a student should expect that the equation will have
no more than two solutions. On the other hand, an equation such as
3x + 4y = 5 determines a straight line: a student faced with this might
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binary operation 183
defining equation 106
definition 66
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159
set 227
structure 159

be expected to give the equation of the line in slope-intercept form.
Citation: (43), (346).
Example 6 An equation of the form “y =[expression]” may occur as
the defining equation of y as a function of x. This is discussed in the
entry on function.

Acknowledgments: The first three examples come from [Schoenfeld,
1985], page 66.

equipped Used to specify the structure attached to a set to make up
a mathematical structure. Also endowed.
Example 1 A semigroup is a set equipped with [endowed with] an
associative binary operation. Citation: (68), (81).

Acknowledgments: Atish Bagchi.

equivalence relation A partition Π of a set S is a set of nonempty
subsets of S which are pairwise disjoint and whose union is all of S. Here
the only data are S and the set Π of subsets and the only requirements
are those listed.

An equivalence relation on a set S is a reflexive, symmetric, transi-
tive relation on S. Here the data are S and the relation and the properties
are those named.

The two definitions just given provide exactly the same class of struc-
tures. The first one takes the set of equivalence classes as given data and
the second one uses the relation as given data. Each aspect determines
the other uniquely. Each definition is a different way of presenting the
same type of structure. Thus a partition is the same thing as an equiva-
lence relation.

G.-C. Rota [Rota, 1997] exhibits this point of view when he says
(on page 1440) “The family of all partitions of a set (also called equiva-
lence relations) is a lattice when partitions are ordered by refinement”.
Literalists object to this attitude.
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lent 99

equivalent equivalent

Students’ understanding of equivalance relations is discussed in [Chin
and Tall, 2001].

equivalent

1. Equivalence of assertions
Two assertions are equivalent (sometimes logically equivalent) if they
necessarily have the same truth values no matter how the free variables
occurring in them are instantiated.
Example 1 There are many ways to say that two assertions are equiva-
lent. Some are listed here, all for the same assertions.

a) A real number has a real square root if and only if it is nonnegative.
Citation: (308), (354).

b) If a real number has a real square root then it is nonnegative. Con-
versely, if it is nonnegative, then it has a real square root. Citation:
(353).

c) A real number having a real square root is equivalent to its being
nonnegative. Citation: (67).

Other phrases are used in special cases: in other words, that is, or equiv-
alently, and the following are equivalent.
Remark 1 If P and Q are assertions, most authors write either P ≡ Q
or P ≡ Q to say that the two statements are equivalent. But be warned:
there is a Boolean operation, often denoted by ↔, with truth table

A B A ↔ B
T T T
T F F
F T F
F F T

This is an operation, not a relation, and the difference between “↔” and
“≡” matters. In particular, the assertion that three statements P , Q
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and R are (pairwise) equivalent is sometimes expressed by using if and
only if or iff in the form “P iff Q iff R”. This could be translated by
“P ≡ Q ≡ R”. Now, the connective ↔ is associative, so that

((P ↔ Q) ↔ R) ≡ (P ↔ (Q ↔ R))

but the assertion “(P ↔ Q) ↔ R” does not have the same meaning as
“P iff Q iff R” (consider the case where P and Q are false and R is true).

In texts on discrete mathematics, [Grimaldi, 1999], [Rosen, 1991],
and [Ross and Wright, 1992] all use ↔ for the connective and ≡ for the
relation. The text [Gries and Schneider, 1993] uses ≡ for the connective
(and avoids the relation altogether). It appears to me that most books
on logic avoid using the relation. Citation: (341).
Remark 2 One way of proving an equivalence P ≡ Q is to prove that
P ⇒ Q and then that Q ⇒ P . Proving P ⇒ Q is sometimes called
the forward direction of the proof, and proving Q ⇒ P is called the
converse direction.

Acknowledgments: Susanna Epp, Owen Thomas. Thomas Godfrey, a self-
taught mathematician,
was not a pleasing com-
panion; as, like most
great mathematicians
I have met with, he
expected universal pre-
cision in everything
said, or was forever
denying or distinguish-
ing upon trifles, to the
disturbance of all con-
versation.
– Benjamin Franklin

2. By an equivalence relation
A phrase of the form “x is equivalent to y” is also used to mean that x
and y are related by an equivalence relation. If the equivalence relation
is not clear from context a phrase such as “by the equivalence relation
E” or “under E” may be added. Citation: (128).

esilism This is my name for the theory espoused, usually subcon-
sciously, by some mathematicians and logicians that the English language
should be forced to mirror the notation, syntax and rules of one or an-
other of the common forms of first order logic. This is a special kind
of prescriptivism. The name is an acronym for “English Should Imitate
Logic”.
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order of quantifiers 186
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syntax 246

esilism esilism

Example 1 The statement “All that glitters is not gold”, translated
into logical notation the way the syntax indicates, gives

∀x(glitters(x) ⇒ (not gold(x)))

However, its meaning is
(not ∀x(glitters(x) ⇒ gold(x)))

The “not” modifies the whole sentence, not the phrase “is gold”.
Many, including perhaps most mathematicians, would regard this sen-
tence as “wrong” in spite of the fact that native English speakers use
sentences like it all the time and rarely misunderstand them. Another
example is given under order of quantifiers.But all thing which that

schyneth as the gold
Ne is no gold,as I
have herd it told.

–William Chaucer

Remark 1 Esilism has succeeded in ruling out the use of double nega-
tives in educated discourse in English, but not in colloquial use in some
dialects. See [Huddleston and Pullum, 2002], Chapter 9 and the quote
from Chaucer in the sidebar. It has not succeeded in ruling out the
phenomenon described in Example 1.

Some who read early drafts of this book
said that the sentence about gold is not
what Shakespeare wrote. Now, did I say
it was what Shakespeare wrote?

To esilize an English sentence in the mathematical
register is to restate it in a form that can be mindlessly
translated into one of the usual forms of symbolic logic
in a way that retains the intended meaning.

Example 2 “Every element has an inverse” could be esilized into “For
each element x there is an element y that is inverse to x”, which translates
more or less directly into ∀x∃y (Inverse(y, x)).
Remark 2 A style manual for mathematical writing should address the
issue of how much esilizing is appropriate. Thus the esilizing in Example 2
is surely unnecessary, but one should avoid saying “There is an inverse
for every element”, which reverses the quantifiers. (See Example 1 under
order of quantifiers.)

It may not be good style to write mathematics entirely in highly
esilized sentences, but it is quite instructive to ask students beginning
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esilism example

argument 19
definition 66
fix 98
function 104
illustration 124
insight 132
let 140
literalist 145
mathematical object 155
symbol 240
universal quantifier 260

abstract mathematics to esilize various mathematical sentences.
Diatribe Natural language has been around for thousands of years

and has evolved into a wonderfully subtle tool for communication. First
order logic is about a century old (although it has older precursors dating
back to Aristotle) and represents an artificial form of reasoning suited
to mathematics, but not to many situations in everyday life. See also
literalist.

Acknowledgments: Susanna Epp.

establish notation Mathematicians frequently say
“Let’s establish some notation.”

meaning they will introduce a methodical way of using certain symbols
to refer to a particular type of mathematical object. This is a type
of definition on the fly, so to speak. See also fix and let. Citation:
(99).

eternal See mathematical object.

eureka See insight.

evaluate To evaluate a function f at an argument x is to determine
the value f(x). See function. Citation: (288).

every See universal quantifier.

evolution The operation of extracting roots is sometimes called evo-
lution. Citation: (337).

example An example of a kind of mathematical object is a mathe-
matical object of that kind. One also may talk about an example of a
theorem; but this is often called an illustration and is discussed under
that heading.
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degenerate 71
mathematical object 155

example example

This entry provides a rough taxonomy of types of examples. The
types given overlap, and whether an example is an instance of a particular
type of example may depend on the circumstances (for example, the
background of the reader or the student in a class).The path of precept is

long, that of example
short and effectual.

– Seneca

(a) Easy example An easy example is one that can be immediately
verified with the information at hand or that is already familiar to the
reader. Easy examples may be given just before or after a definition.
Example 1 An introduction to group theory may give as examples the
integers on addition or the cyclic group of order 2, the last (I hope)
presented as the group of symmetries of an isosceles triangle as well as
via modular arithmetic.

(b) Motivating example A motivating example is an example giv-
en before the definition of the concept, with salient features pointed out.
Such an example gives the student something to keep in mind when read-
ing the definition.

I have occasionally known students who ob-
ject strenuously to giving an example of a
concept before it is defined, on the grounds
that one can’t think about how it fits the
definition when one doesn’t know the defi-
nition. Students who feel this way are in
my experience usually A students.

Example 2 A teacher could discuss the symmetries
of the square and point out that symmetries compose
and are reversible, then define “group”.

(c) Delimiting example A delimiting example
(called also a trivial example) is one with the least
possible number of elements or with degenerate struc-
ture.

Example 3 An example of a continuous function on R that is zero at
every integer is the constant zero function. Many students fail to come
up with examples of this sort ([Selden and Selden, 1998]).

(d) Consciousness-raising example A consciousness-raising ex-
ample of a kind of mathematical object is an example that makes the
student realize that there are more possibilities for that kind of thing that
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example example

counterexample 61
mathematical object 155
mathematical structure

159
prototype 210
up to 265

he or she had thought of. In particular, a consciousness-raising example
may be a counterexample to an unconscious assumption on the student’s
part.
Example 4 The function

f(x) =

{
x sin 1

x x �= 0
0 x = 0

is an example that helps the student realize that the “draw it without
lifting the chalk” criterion for continuity is inadequate. Few things are hard-

er to put up with
than the annoyance
of a good example.

–Mark Twain

Example 5 Example 1 of [Richter and Wardlaw, 1990] provides a di-
agonalizable integral matrix whose diagonal form over Z6 is not unique
up to ordering. This shows that the usual assumption in diagonalization
theorems that one is working over a field cannot be relaxed with impunity.

(e) Inventory examples Many mathematicians will check a conjec-
ture about a type of mathematical object against a small number of
prototypical examples they keep in mind when considering such objects,
especially when checking conjectures. This could be called a list of in-
ventory examples.

Mathematicians experienced with a concept will choose inventory
examples that illustrate various possibilities. For example, y = x4 is a
curve with second derivative zero at a point that is not an inflection point;
the dihedral group of order 8 is a nonabelian group with a proper normal
subgroup that is not a direct factor. Turn away with fear

and horror from this
lamentable plague
of continuous func-
tions that do not
have a derivative.

–Charles Hermite

(f) Pathological example A research mathematician will typically
come up with a definition of a new type of mathematical structure based
on some examples she knows about. Then further thought or conver-
sation with colleagues will produce examples of structures that fit the
definition that she had not thought of and furthermore she doesn’t want
them to be the kind of thing she was thinking of.
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66
mathematical object 155
mental representation 161

example existential bigamy

Often the definition is modified as a result of this. Sometimes, no
suitable modification seems practical and one must accept these new ex-
amples as valid. In that case they are often referred to by rude names such
as pathological or monster. This was the attitude of some nineteenth-
century mathematicians toward the space-filling curves, for example.
Citation: (39), (268).

References: The discussion of examples herein is drawn from [Mich-
ener, 1978] and [Bagchi and Wells, 1998a].

Occasionally an author will give a precise
mathematical definition to “pathologi-
cal” or “monster”, for example: [Arias-
De-Reyna, 1990], [Albert E. Babbitt,
1962], [McCleary, 1985]. In particular,
the name “Monster group” for a partic-
ular group has become common enough
that one would cause confusion by us-
ing the phrase to describe another group
with pathological behavior. “Monster”
in other fields is sometimes used to de-
scribe something that is merely very
large in some sense.

Difficulties We construct our mental representations of
the concept primarily through examples. Experienced
mathematicians know that this mental representation
must always be adjusted to conform to the definition, but
students often let examples mislead them (see generaliza-
tion).

Generating examples is an effective way to learn a
new concept. One of the marks of successful math majors
is that they spontaneously generate their own examples.
References: [Dahlberg and Housman, 1997], [Selden and
Selden, 1998].

existential bigamy A mistake beginning abstract
mathematics students make that occurs in connection with a property P
of an mathematical object x that is defined by requiring the existence of
an item y with a certain relationship to x. When students have a proof
that assumes that there are two items x and x′ with property P , they
sometimes assume that the same y serves for both of them.
Example 1 Let m and n be integers. By definition, m divides n if
there is an integer q such that n = qm. Suppose you are asked to prove
that if m divides both n and p, then m divides n + p. If you begin the
proof by saying, “Let n = qm and p = qm . . . ” then you are committing
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assertion 20
behaviors 25
existential quantifier 93
mathematical logic 151
mathematical object 155
mathematical register 157
predicate 202
satisfy 222
such that 238
symbol 240
true 256
type 257
variable mathematical

object 156

existential bigamy.

Terminology The name is my own. The fact that Muriel and Bertha
are both married (there is a person to whom Muriel is married and there
is a person to whom Bertha is married) doesn’t mean they are married
to the same person. See behaviors. Reference: [Wells, 1995].

Acknowledgments: Laurent Siebenmann.

existential instantiation When ∃(x)P (x) is known to be true (see
existential quantifier), one may choose a symbol c and assert P (c). The
symbol c then denotes a variable mathematical object that satisfies P .
That this is a legitimate practice is a standard rule of inference in math-
ematical logic. Citations: (189).

existential quantifier For a predicate P , an assertion of the form
∃xP (x) means that there is at least one mathematical object c of the type
of x for which the assertion P (c) is true. The symbol ∃ is pronounced
“there is” or “there are” and is called the existential quantifier. See
Remark 1 under such that.
Example 1 Let n be of type integer and suppose P (n) is the predicate
“n is divisible by 6”. Then the assertion ∃nP (n) can be expressed in the
mathematical register in these ways:

a) There is an integer divisible by 6. Citation: (261), (293).
b) There exists an integer divisible by 6. Citation: (90), (247).
c) There are integers divisible by 6. Citation: (195), (355).
d) Some integers are divisible by 6. Citation: (292).
e) For some integer n, 6 divides n. Citation: (236), (384).

Remark 1 If the assertion ∃xP (x) is true, there may be only one ob-
ject c for which P (c) is true, there may be many c for which P (c) is true,
and in fact P (x) may be true for every x of the appropriate type. For
example, in mathematical English the assertion, “Some of the computers
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existential quantifier explicit assertion

have sound cards”, allows as a possibility that only one computer has a
sound card, and it also allows as a possibility that all the computers have
sound cards. Neither of these interpretations reflect ordinary English us-
age.

In particular, in mathematical discourse, the assertion
“Some primes are less than 3.”

is true, even though there is exactly one prime less than 3. However, I do
not have an unequivocal citation for this. It would be a mistake to regard
such a statement as false since we often find ourselves making existential
statements in cases where we do not know how many witnesses there are.

In general, the passage from the quantifying English expressions to
their interpretations as quantifiers is fraught with difficulty. Some of
the basic issues are discussed in [Chierchia and McConnell-Ginet, 1990],
Chapter 3; see also [Kamp and Reyle, 1993], [Gil, 1992] and [Wood and
Perrett, 1997], page 12 (written for students).

See also universal quantifier, order of quantifiers, and Example 2
under indefinite article.

explicit assertion An assertion not requiring pattern recognition.
Example 1 Some calculus students memorize rules in the form of ex-
plicit assertions:

“The derivative of the square of a function is 2 times the function
times the derivative of the function.”

A form of this rule that does require pattern recognition is:
“The derivative of (f(x))2 is 2f(x)f ′(x).”
Of course, applying the explicit form of the rule just given requires

pattern recognition: you must recognize that you have the square of a
function and you must recognition what the function is. (This is not
necessarily obvious: consider the functions e2x, 1

x2 and sin2 x.) The point
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assertion 20
extrapolate 95
malrule 150
semantics 224
symbolic expression 241

is that the rule itself is stated in a way that you don’t have to decode
patterns to understand what the rule says.
Remark 1 Most definitions and theorems in mathematics do require
pattern recognition and many would be difficult or impossible to formu-
late clearly without it.
Remark 2 The process of converting a definition requiring pattern
recognition into one that does not require it bears a striking resemblance
to the way a compiler converts a mathematical expression into computer
code..

Terminology The terminology “explicit assertion” with this meaning
is my own.

expression See symbolic expression.

extensional See semantics.

extrapolate To assume (often incorrectly) that an assertion involving
a certain pattern in a certain system holds for expressions of similar
pattern in other systems.
Example 1 The derivative of xn is nxn−1, so [ERROR] the derivative
of ex is xex−1. Of course, the patterns here are only superficially similar;
but that sort of thing is precisely what causes problems for beginning
abstract mathematics students.
Example 2 The malrule invented by some first year calculus students
that transforms d(uv)

dx to du
dx

dv
dx may have been generated by extrapolation

from the correct rule
d(u+ v)
dx

=
du

dx
+
dv

dx
by changing addition to multiplication. The malrule√

x+ y =
√
x+

√
y
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false symmetry false symmetry

might have been extrapolated from the distributive law
a(x+ y) = ax+ ay

Both these examples can be seen as the operation of a single malrule:
“All operations are linear”. See [Matz, 1982] and [Resnick, Cauzinille-
Marmeche and Mathieu, 1987].

factor If an expression e is the product of several expressions ei, in
other words

e = Πn
i=1ei

then each ei is a factor of e. A divisor of an integer is also called a factor
of the integer.

“Factor” is also used as a verb. To factor an expression is to repre-
sent it as the product of several expressions; similarly, to factor an integer
(more generally an element of a structure with an associative binary op-
eration) is to represent it as a product of integers.

See also term. Citations: (376), (394), (375).

fallacy A fallacy is an error in reasoning. Two fallacies with standard
names that are commonly committed by students are affirming the con-
sequent and denying the hypothesis. See also argument by analogy and
Example 1 under conditional assertion

Terminology The meaning of fallacy given here is that used in this
Handbook. It is widely used with a looser meaning and often connotes
deliberate deception, which is not intended here.

false symmetry A student may fall into the trap of thinking that
some valid method or true assertion can be rearranged in some sense and
still be valid or true.

The fallacy of affirming the consequent is a kind of false symmetry,
and one might argue that extrapolation is another kind. The examples
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abstract algebra 9
behaviors 25
counterexample 61
give 114
mathematical object 155
set 227

below are intended to illustrate other types of false symmetry. See also
counterexample.

I have observed all these errors in my own classes.
Example 1 The product of any two rational numbers is a rational num-
ber, so [ERROR] if x is rational and x = yz then y and z must be rational.
Example 2 If V is a vector space with subspace W , then any basis of
W is included in a basis of V . This means [ERROR] that any basis of V
contains a basis of W as a subset.
Example 3 Any subgroup of an Abelian group A is normal in A, so
[ERROR] any Abelian subgroup of a group must be normal in that group.
This error may also be a case of a missing relational argument (see Beha-
vior (iii) under behaviors), since being normal is a two-place predicate.
Remark 1 It would be desirable to come up with a better description
of this process than “rearranged in some sense”! There may, of course,
be more than one process involved.

Acknowledgments: Eric Schedler.

family A family of sets sometimes means an indexed set of sets (so
differently indexed members may be the same) and sometimes merely a
set of sets.

[Ross and Wright, 1992], page 686 and [Fletcher and Patty, 1988],
pages 41–42 both define a family to be a set; the latter book uses “indexed
family” for a tuple or sequence of sets. Citations: (310), (323), (358).

field A field is both a type of object in mathematical physics and a
type of object in abstract algebra. The two meanings are unrelated.

find Used in problems in much the same way as give.
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find follow

Example 1 “Find a function of x whose value at 0 is positive” means
“Give [an example of] a function . . . ”

Also used in phrases such as “we find” to mean that there is an in-
stance of what is described after the phrase. As such, it means essentially
the same thing as “there exists”.
Example 2 “Since limx→∞ f(x) = ∞, we may find a number x such
that f(x) > 104.”

Citations: (16), (77), (74), (52), (135)

first order logic See mathematical logic.

fix A function f fixes a point p if f(p) = p. This is based on this
metaphor: you fix an object if you make it hold still (she fixed a poster
to the wall). In my observation, Americans rarely use “fix” this way; in
the USA, the word nearly always means “repair”.

“Fix” is also used in sentences such as “In the following we fix a
point p one unit from the origin”, which means that we will be talking
about any point one unit from the origin (a variable point!) and we have
established the notation p to refer to that point. The metaphor behind
this usage is that, because it is called p, every reference to p is to the
same value (the value is “fixed” throughout the discussion.)

Citations: (66), (157), (252), (280).
Acknowledgments: Guo Qiang Zhang.

follow The statement that an assertion Q follows from an assertion
P means that P implies Q.

The word “follow” is also used to indicate that some statements after
the current one are to be grouped with the current one, or (as in “the
following are equivalent)” are to be grouped with each other.
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universal quantifier 260

Example 1 “A set G with a binary operation is a group if it satisfies
the following axioms . . . ” This statement indicates that the axioms that
follow are part of the definition currently in progress.

Citation: (41), (70), (129), (224).

following are equivalent The phrase “the following are equiva-
lent” (or “TFAE”) is used to assert the equivalence of the following
assertions (usually more than two and presented in a list). Citation:
(307).

for all See universal quantifier.

formal

1. Carefully written mathematics
Describes prose or speech that directly presents a mathematical definition
or argument. In particular, a “formal proof” is a proof written in careful
language with the steps made clear. This is the terminology used by
Steenrod in [Steenrod et al., 1975]. Similar terminology includes “formal
definition”. In this Handbook such formal assertions are said to be in the
mathematical register. Citation: (5), (404).

2. Use in mathematical logic
The phrase “formal proof” is also used to mean a proof in the sense of
mathematical logic; see proof. In this sense a formal proof is a mathe-
matical object.

Reference: [Grassman and Tremblay, 1996], pages 46–48 define for-
mal proof as in logic.

3. Opposite of colloquial
The word “formal” also describes a style of writing which is elevated, the
opposite of colloquial. It is not used in that meaning in this book.
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formal analogy formal language

formal analogy A student may expect that a notation is to be used
in a certain way by analogy with other notation based on similarity of
form, whereas the definition of the notation requires a different use.
Example 1 Given real numbers r and s with s nonzero, one can form
the real number r/s. Given vectors �v and �w, students have been known
to write �v/�w by formal analogy.
Example 2 In research articles in mathematics the assertion A ⊂ B
usually means A is included as a subset in B. It carries no implication
that A is different from B. Citation: (189), (90), (338). However, the
difference between “m < n” and “m ≤ n” often causes students to expect
that A ⊂ B should mean A is a proper subset of B and that one should
express the idea that A is included in and possibly equal to B by writing
A ⊆ B. The research mathematical usage thus fails to be parallel to the
usage for inequalities, which can cause cognitive dissonance.

This formal analogy has resulted in a change of usage discussed fur-
ther under private language.
Remark 1 I would conjecture that in Example 2, the same process
is at work that is called leveling by linguists: that is the process that
causes small children to say “goed” instead of “went”.

Reference: This discussion is drawn from [Bagchi and Wells, 1998a].

formal language A set of symbolic expressions defined by a mathe-
matical definition. The definition is usually given recursively.
Example 1 Pascal, like other modern programming languages, is a
formal language. The definition, using Backus-Naur notation (a notation
that allows succinct recursive definitions), may be found in [Jensen and
Wirth, 1985].
Example 2 The languages of mathematical logic are formal languages.
Thus terms and expressions are defined recursively on pages 14 and 15 of
[Ebbinghaus, Flum and Thomas, 1984].
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Example 3 The traditional symbolic language of mathematics is not
a formal language; this is discussed under that entry.

See also context-sensitive. Reference: [Lewis and Papadimitriou,
1998].

formula

(a) Informal use In most mathematical writing, a formula is an ex-
pression that allows some function to be calculated. This is analogous to
the use of the word in other contexts; for example the formula for water
is H2O.

When teaching logic, I have frequently
witnessed the difficulties students have
had in remembering the difference in
meaning between a formula in the sense
of logic and formula as used elsewhere in
mathematics. This is an example of se-
mantic contamination. In this Handbook
the word assertion is usually used instead
of “formula” in the sense of logic.

One might say,
“The formula for the area of a circle with radius
r is πr2.”

or
“The formula for the area of a circle with radius
r is A = πr2.”
It is not always clear whether the equation is regard-

ed as the formula or the expression on the right side of
the equation. Citations: (160), (57), (239).

(b) In mathematical logic In mathematical logic, a formula is sym-
bolic expression in some formal language whose meaning is that of an
assertion. It must be distinguished from term; for example “x+2y” is not
a formula (it is a term), but “x > y” and x+y = z are formulas. Various
formalisms are described for example in [van Dalen, 1989], [Ebbinghaus,
Flum and Thomas, 1984], [Mendelson, 1987] and [Hartley Rogers, 1963].
Example 1 The assertion ∀x(x2 ≥ 0) could be a formula in an appro-
priately designed logical language.
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fraktur free variable

fraktur An alphabet formerly used for writing German that is some-
times used for mathematical symbols. It appears to me that its use is
dying out in mathematics. Many of the forms are confusing and are
mispronounced by younger mathematicians. In particular, A may be
mispronounced as “U” and I as “T”. Citations: (161), (183), (412).
Remark 1 The familiar name for this alphabet among native German
speakers seems to be “Altschrift” (this is based on conversations I have
had with Germans). The word “Fraktur” does occur in both German
and English with this meaning, and also refers to some types of folk art.

Also called gothic.

A, a A, a
B, b B, b
C, c C, c
D, d D, d
E, e E, e
F, f F, f
G, g G, g

H, h H, h
I, i I, i
J, j J, j
K, k K, k
L, l L, l
M, m M, m
N, n N, n

O, o O, o
P, p P, p
Q, q Q, q
R, r R, r
S, s S, s
T, t T, t
U, u U, u

V, v V, v
W, w W, w
X, x X, x
Y, y Y, y
Z, z Z, z

free variable A variable in an expression is free if one can substitute
the name of a specific mathematical object of the correct type for the
variable and obtain the name of a specific mathematical object. In other
words, the term is a function with the variable as one of the arguments.
Example 1 The variable x is free in the expression x2 + 1. If you
substitute 10 for x you get the expression 100 + 1 which denotes the
number 101.

Similarly, a variable in a symbolic assertion is free if it is possible
to substitute the identifier of a specific mathematical object and get a
meaningful statement. In particular, if one substitutes identifiers of spe-
cific mathematical objects for every free variable in a symbolic assertion
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bound variable 30
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dictionary definition 70
formal language 100
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66
mathematical logic 151
mathematical register 157
open sentence 262
parameter 191
term 248
true 256
variable 268

one should get a statement that is definitely true or definitely false. In
that sense, an assertion with free variables in it is parametrized; choos-
ing values for the parameters gives a specific statement. Another way of
saying this is that the assertion is a Boolean function of the variables.

In contrast, one cannot substitute for bound variables.
Example 2 The assertion

“x2 − 1 > 0”
is not definitely true or false. However, if you substitute 2 for x you get
3 > 0 which is true, and if you substitute 0 you get a false statement.
Remark 1 Observe that if we change the assertion in Example 2 to
“x2 +1 > 0”, the result is definitely true (assuming x of type real) before
substitution is made. Nevertheless, you can substitute a real number for
x in the assertion and get a statement that is definitely true or definitely
false (namely definitely true), so x is free. See open sentence.
Example 3 The term

∑n
k=1 k becomes an expression denoting 6 if 3

is substituted for n. But when one substitutes a number for k, getting
for example

∑n
5=1 5, one gets nonsense; k is not a free variable in the

expression “
∑n

k=1 k”, it is a bound variable.
Remark 2 The preceding discussion gives a kind of behavioral defi-
nition of how free variables are used in the mathematical register; this
definition is in the spirit of a dictionary definition. In texts on mathemat-
ical logic and on formal languages, freeness is generally given a recursive
mathematical definition based on the formal recursive definition of the
language. Such a recursive definition contains rules such as the following,
based on a prior recursive definition of formula.

• x is free in x.
• If x is free in T and in T ′, then x is free in T&T ′ (the conjunction

of T and T ′).
• if x is free in T , then x is not free in ∃xT .
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free variable function

That sort of definition constitutes a abstraction of the concept of free
variable defined here.

It is necessary to give such a mathematical definition of “free vari-
able” if one is going to prove theorems about them. However, students
need to know the intuition or metaphor underlying the concept if they
are going to make fluent use of it. Most modern logic books do attempt
to provide some such explanation.

Acknowledgments: Alonzo Church gave a similar definition of free
and bound in [Church, 1942].

function The concept of function in mathematics is as complex and
important as any mathematical idea, though perhaps the concept of space
has more subtleties. This long entry discusses the syntax we use in talk-
ing about functions, the metaphors behind the idea, and the difficulties
connected with it.

(a) Objects associated with a function When a function is dis-
cussed in the mathematical register, some or all of the following data will
be referred to.

• An identifier for the function.
• The domain of the function.
• The codomain of the function
• The argument to the function.
• The value of the function at an element of the domain.
• The graph of the function.
• The rule of the function.

There is no single item in the preceding list that a discussion of a
function must refer to. Below, I list many of the possibilities for referring
to these data and the common restrictions on their use.

(b) The identifier of a function (See also value).
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(i) Name Functions may have names, for example “sine” or “the
exponential function”. The name in English and the symbol for the func-
tion may be different; for example “sine” and “sin”, “exponential func-
tion” and “exp”. See also definition.

(ii) Local identifier A function may be given a local identifier.
This is by convention a single letter, often drawn from the Roman let-
ters f through h or one of many Greek letters.

(iii) Anonymous reference A function may be specified without
an identifier, using some form of structural notation. One form is to
use the defining expression (discussed below). Other types of structural
notation include barred arrow notation and lambda notation, discussed
under those entries.

(iv) Naming a function by its value at x It is common to refer
to a function with identifier f (which may or may not be a name) as f(x)
(of course some other variable may be used instead of x). This is used
with functions of more than one variable, too.
Example 1 “Let f(x) be a continuous function.”
Example 2 “The function sinx is bounded.” Citation: (164), (172),
(304).

(v) The defining expression as the name of a function It is
very common to refer to a function whose rule is given by an expression
f(x) by simply mentioning the expression, which is called its defining
expression. This is a special case of naming a function by its value.
Example 3 “The derivative of x3 is always nonnegative.”
Remark 1 It is quite possible that this usage should be analyzed as
simply referring to the expression, rather than a function.

The defining equation is also used as the name of a function.
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function function

Example 4 The derivative of y = x3 is always nonnegative.
Many authors deprecate this usage, but it is very common. See

writing dilemma.
(vi) Using the name to refer to all the values The name of

function can be used to stand for all values. Examples:
“f ≥ 0.”

“x2 is nonnegative.”

A related phenomenon is described under increasing function. Compare
collective plural. Citation: (335).

(c) The argument The element of the domain at which the function
is evaluated may be called the argument or the input. The latter word
occurs most commonly with operators or algorithms. Another word used
in some contexts is independent variable; then the output is the
dependent variable. Citations: (93), (216), (429), (174), (362). See
also arity.

(d) The rule for evaluation and the graph For a function f with
domain D, the graph of the function is the set

{(x, f(x) | x ∈ D}
Citation: (33). The word is often used for the picture of the graph.

The rule for evaluation of the function is an expression or algorithm
that provides a means of determining the value of the function. The rule
can be a symbolic expression or an algorithm, expressed informally or in
a formal language. When the rule is given by an expression e(x), the
definition of the function often includes the assertion

y = e(x)

which is called the defining equation of the function.
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Example 5 “Consider the function given by y = x2 +1.” The defining
equation is “y = x2 + 1”.
Example 6 “Consider the function f(x) = x2 + 1.” Note that this
gives the defining equation as a parenthetic assertion. In this expression
the variable x is bound (see Example 3 under bound variable).
Remark 2 A subtle point, which perhaps students should not be both-
ered with too early, is that a function will always have a graph but
it need not always have a defining rule. This is because the number
of possible rules (which are strings in a finite alphabvet) is only count-
ably infinite, but the cardinality of the set of all functions between two
infinite sets is uncountable. Citation: (28), (45), (63), (302), (381),
(396).

It appears to me that some mathemati-
cians avoid using the word “function” for
functions that do not act on numbers,
perhaps for reasons of readability. In-
stead, they use words such as functional,
operator, or operation. I have heard sec-
ondhand stories of mathematicians who
objected to using the word “function” for
a binary operation such as addition on
the integers, but I have never seen that
attitude expressed in print. In this text
functions are not restricted to operating
on numbers. See also mapping.

Disjunctive definitions An expression involving
disjunctions can confuse students, who don’t recognize it
as one expression defining one function.

Example 7 “Let f(x) =

{
x+ 1 if x > 2
2x− 1 otherwise.

” Cita-

tion: (140), (281).
Because of the practice of using defining equations,

students often regard a function as an equation [Thomp-
son, 1994], pp 24ff. So do teachers [Norman, 1992].

(e) How one thinks of functions A mathematician’s
mental representation of a function is generally quite rich
and involves several different metaphors. Some of the more common ways
are noted here. These points of view have blurry edges!

(i) Expression to evaluate Function as expression to evaluate.
This is the motivation for item (v) under “The identifier of a function”
earlier in this entry. It is the image behind statements such as “the deriva-
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tive of x3 is 3x2”. This gives an intensional semantics to the expression.
Citation: (93).

(ii) Graph Function as graph. A function illustrated graphically
is usually numerical. This provides a picture of the function as a relation
between argument and value; of course it is a special kind of relation.
Citation: (84).

(iii) Dependency relation Function as a dependency rela-
tion. This is the metaphor behind such descriptions as “let x depend
smoothly on t”. It is related to the graph point of view, but may not
carry an explicit picture; indeed, an explicit picture may be impossible.
Citation: (239).

(iv) Transformer Function as transformer, that takes an object
and turns it into another object. In this picture, the function F (x) = x3

transforms 2 into 8. This is often explicitly expressed as a “black box”
interpretation, meaning that all that matters is input and output and not
how it is performed. This point of view is revealed by such language as
“2 becomes 8 under f”.

(v) Algorithm Function as algorithm or set of rules that tell you
how to take an input and convert it into an output. This is a metaphor
related to those of function as expression and as transformer, but the ac-
tual process is implicit in the expression view (in the intensional seman-
tics of the expression) and hidden in the transformer (black box) view.
Citation: (385).

(vi) Relocator Function as relocator. In this version, the func-
tion F (x) = x3 moves the point at 2 over to the location labeled 8. This
is the “alibi” interpretation of [Mac Lane and Birkhoff, 1993] (page 256).
It is revealed by such language as “f takes 2 to 8”. Citation: (423).

(vii) Map Function as map. This is one of the most powerful
metaphors in mathematics. It takes the point of view that the function
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mathematical definition
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mathematical object 155

F (x) = x3 renames the point labeled 2 as 8. A clearer picture of a
function as a map is given by some function that maps the unit circle
onto, say, an ellipse in the plane. The ellipse is a map of the unit circle in
the same way that a map of Ohio has a point corresponding to each point
in the actual state of Ohio (and preserving shapes in some approximate
way). This is something like the “alias” interpretation of [Mac Lane and
Birkhoff, 1993]: The point on the map labeled “Oberlin”, for example,
has been renamed “Oberlin”. Citation: (252), (357).

References: [Lakoff and Núñez, 1997], [Selden and Selden, 1992]

(f) Mathematical definitions of function Texts in calculus and dis-
crete mathematics often define the concept of function as a mathematical
object. There are two nonequivalent definitions in common use.

a) A function is a set of ordered pairs with the functional property:
pairs with the same first coordinate have the same second coordinate.

b) A function consists of two sets called the domain and the codo-
main of the function, and a set of ordered pairs with the functional
property, subject to the requirements that

• the domain must be exactly the set of first coordinates of the
graph, and

• the codomain must include all the second coordinates.
The set of ordered pairs in the second definition is called the graph of
the function.
Example 8 Consider two sets A and B with A ⊆ B, and consider the
identity function from A to A and the inclusion function i : A → B
defined by i(a) = a.

Under the definition (1) above, the identity function and the inclu-
sion function are the same function. Under the definition (2), they are
different functions because they have different codomains, even though
they have the same graph.
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function functional

Authors vary much more in the treatment of the codomain than they
do in the treatment of the domain. Many authors use definition (1) and
do not mention a codomain at all. Others don’t make it clear whether
they require it or not. Even when authors do require specification of
the codomain, the specification is often an empty gesture since the text
fudges the question of whether two functions with the same domains and
same graphs but different codomains are really different.

See composite, range and image. Citations: (65), (180).

(g) Difficulties Typically, the definition of “function” does not corre-
spond very well with actual usage. For example, one generally does not
see the function expressed in terms of ordered pairs, one more commonly
uses the f(x) notation instead. To avoid this discrepancy, I suggested in
[Wells, 1995] the use of a specification for functions instead of a defini-
tion. I have discussed the discrepancy in the treatment of the codomain
in the preceding section.

These discrepancies probably cause some difficulty for students, but
for the most part students’ difficulties are related to their inability to
reify the concept of function or to their insistence on maintaining just
one mental representation of a function (for example as a set of ordered
pairs, a graph, an expression or a defining equation).

There is a large literature on the difficulties functions cause students,
I am particularly impressed with [Thompson, 1994]. Another important
source is the book [Harel and Dubinsky, 1992] and the references there-
in, especially [Dubinsky and Harel, 1992], [Norman, 1992], [Selden and
Selden, 1992], [Sfard, 1992]. See also [Vinner and Dreyfus, 1989], [Eisen-
berg, 1992] and [Carlson, 1998]. [Hersh, 1997a] discusses the confusing
nature of the word “function” itself.

Acknowledgments: Michael Barr.
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functional The word functional is used as a noun to denote some
special class of functions. The most common use seems to be to denote
a function whose domain consists of vectors, functions, or elements of
some abstract space such as a normed linear space whose motivating
examples are function spaces. But not all uses fit this classification.
Citation: (45), (216), (247), (299).

functional knowledge Functional knowledge is “knowing how”;
explicit knowledge is “knowing that”. Functional knowledge is also
called implicit knowledge.

“Whole step” is a technical
term in music theory for the
relation of the frequencies of
the two notes.

Example 1 Many people, upon hearing a simple tune, can sing
it accurately. If two successive notes differ by a whole step, as for
examples the second and third notes of “Happy Birthday”, they will
sing the sequence correctly. They have the functional knowledge to
be able to copy a simple enough tune. Some with musical training will
be able to say that this jump is a whole step, even though they had never
thought about the tune before; they are able to turn their functional
knowledge into explicit knowledge.
Example 2 Consider two students Hermione and Lucy in a first course
in number theory. The instructor sets out to prove that if the square of
an integer is odd, then the integer is odd. Her proof goes like this:

“Suppose the integer n is even. Then n = 2k for some integer
k, so n2 = 4k2 Thus n2 is even as well. QED.”

Hermione immediately understands this proof and is able to produce
similar proofs using the contrapositive even though she has never heard
of the word “contrapositive”. Lucy is totally lost; the proof makes no
sense at all: “Why are you assuming it is even when you are trying to
prove it is odd?” (I suspect some students are so stumped they don’t
even formulate a question like this.)
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functional knowledge generalization

In first classes involving rigorous proofs, this sort of thing happens
all the time. Clearly, Hermione has some sort of functional knowledge
that enables her to grasp the logical structure of arguments without any
explicit explanation. And Lucy does not have this functional knowledge;
she needs tutoring in logical reasoning.
Remark 1 Some students appear to me to have a natural talent for
acquiring the ability to grasp the logical structure of arguments, without
being explicitly taught anything about the translation problem or mathe-
matical logic. Indeed, many professional mathematicians know very little
of the terminology of logic but have no trouble with understanding the
logical structure of narrative arguments. Other students have difficulty
even when taught about the logical structure explicitly.

This may be the fundamental difference between those who have
a mathematical mind and those who don’t. It is likely that (a) most
students can learn mathematics at the high school level even though (b)
some students have special talent in mathematics.

The situation seems to be similar to that in music. Music educators
generally believe that most people can be taught to sing in time and on
key. Nevertheless, it is obvious that some children have special musical
talent. The parallel with mathematics is striking.

fuzzy See concept.

generalization

(a) Legitimate generalization To generalize a mathematical concept C
is to find a concept C ′ with the property that instances of C are also in-
stances of C ′.

(i) Expansive generalization One may generalize a concept by
changing a datum of C to a parameter. This is expansive generaliza-
tion.
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Example 1 Rn, for arbitrary positive integer n, is a generalization of
R2. One replaces the ordered pairs in R2 by ordered n-tuples, and much
of the spatial structure (except for the representation of R2 using complex
numbers) and even some of our intuitions carry over to the more general
case.

(ii) Reconstructive generalization Some generalizations may
require a substantial cognitive reconstruction of the concept. This is
reconstructive generalization.
Example 2 The relation of the concept of abstract real vector space
to Rn is an example of a reconstructive generalization. One forgets that
the elements are n-tuples and adopts axioms on a set of points to make
a real vector space. Of course, one can do an expansive generalization on
the field as well, changing R to an arbitrary field.

Another example occurs under continuous.
Remark 1 The suspicious reader will realize that I have finessed some-
thing in this discussion of vector spaces. If you have only a naive idea of
the real plane as a set of points, then before you can make an expansive
generalization to Rn you must reconstruct the real plane by identifying
each point with its pair of coordinates. It appears to me that this re-
construction happens to some students in high school and to others in
college.

It appears to me that the usual meaning
of the word “generalization” in colloquial
English is generalization from examples.
Indeed, in colloquial English the word is
often used in a derogatory way. The con-
trast between this usage and the way it
is used in mathematics may be a source
of cognitive dissonance.

Remark 2 The relation between reconstructive gener-
alization and abstraction should be studied further.

The names “expansive” and “reconstructive” are due
to [Tall, 1992a].

(b) Generalization from examples The idea of gen-
eralization discussed above is part of the legitimate
methodology of mathematics. There is another process
often called generalization, namely generalization from
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generalization give

examples. This process is a special case of extrapolation and is a com-
mon method of reasoning that however can lead to incorrect results in
mathematics.
Example 3 All the limits of sequences a student knows may have the
property that the limit is not equal to any of the terms in the sequences,
so the student generalizes this behavior with the myth “A sequence gets
close to its limit but never equals it”. Further discussion of this is in
Example 1 under limit. See also extrapolate and myths.

generic See mathematical object.

give “Give” is used in several ways in the mathematical register, often
with the same sense it would be used in any academic text (“we give a
proof . . . ”, “we give a construction . . . ”). One particular mathematical
usage: to give a object means to describe it sufficiently that it is uniquely
determined. Thus a phrase of the form “give an X such that P” means
describe a object of type X that satisfies predicate P . The description
may be by providing a determinate identifier or it may be a definition of
the object in the mathematical register.
Example 1 “Problem: Give a function of x that is positive at x = 0.”
A correct answer to this problem could be “the cosine function” (provide
an identifier), or “the function f(x) = x2+1” (in the calculus book dialect
of the mathematical register).

“Given” may be used to introduce an expression that defines an
object.
Example 2 One could provide an answer for the problem in the pre-
ceding example by saying:

“the function f : R → R given by f(x) = 2x+ 1.”
The form given is also used like if.
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Example 3 “Given sets S and T , the intersection S ∩ T is the set of
all objects that are elements of both S and T .”

See also find. Citation: (78), (126), (152), (219), (259), (391).

global See local.

global identifier A global identifier in a mathematical text is an
identifier that has the same meaning throughout the text. These may be
classified into three types:

(i) Global to all of mathematics Some global identifiers are
used by nearly all authors, for example “=”, mostly without definition.
Some global identifiers such as π and e are sometimes overridden in a
particular text. Even “=” is sometimes overridden; for example, one may
define the rationals as equivalence classes of ordered pairs of integers, and
say we write a/b for (a, b) and a/b = a′/b′ if (a, b) is equivalent to (a′, b′).

(ii) Global to a field Some are used by essentially all authors in
a given field and generally are defined only in the most elementary texts
of that field.

An identifier defined only in a section or paragraph is a local identi-
fier.

Global identifiers specific to a given text im-
pose a burden on the memory that makes
the text more difficult to read, especially for
grasshoppers. It helps to provide a glossary
or list of symbols, and to use type label-
ing. Steenrod [1975] says global symbols
specific to a text should be limited to five.
Mnemonic global identifiers of course put
less burden on the reader.

Example 1 The integral sign is global to any field
that uses the calculus. This seems never to be overrid-
den in the context of calculus, but it does have other
meanings in certain special fields (ends and coends in
category theory, for example).

(iii) Global to a text A global identifier may
be particular to a given book or article and defined at
the beginning of that text.
Remark 1 The classification just given is in fact an arbitrary division
into three parts of a continuum of possibilities.
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Acknowledgments: Thanks to Michael Barr, who made valuable sug-
gestions concerning an earlier version of this entry.

gothic The German fraktur alphabet is sometimes called gothic, as is
an alphabet similar to fraktur but easier to read that is used as newspaper
titles.

Certain sans-serif typefaces are also called gothic.

graph The word “graph” has two unrelated meanings in undergraduate
mathematics:

a) The graph of a function.
b) A structure consisting of nodes with directed or undirected edges

that connect the nodes is called a (directed or undirected) graph.
The actual mathematical definitions in the literature vary a bit.
Citation: (422).
Moreover, in both cases the word “graph” may also be used for

drawings of (often only part of) the mathematical objects just described.
Citations: (102), (100), (22).

grasshopper A reader who starts reading a book or article at the
point where it discusses what he or she is interested in, then jumps back
and forth through the text finding information about the ideas she meets.
Contrasted with someone who starts at the beginning and reads straight
through.

Terminology The terminology is due to Steenrod [1975]. Steenrod calls
the reader who starts at the beginning and reads straight through a nor-
mal reader, a name which this particular grasshopper resents.

Greek alphabet Every letter of the Greek alphabet except omicron
(O,o) is used in mathematics. All the lowercase forms and all those
uppercase forms that are not identical with the Roman alphabet are
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element 79used. Students and young mathematicians very commonly mispronounce
some of them. The letters are listed here with pronunciations and with
some comments on usage. Some information about the common uses of
many of these letters is given in [Schwartzman, 1994].

Pronunciation key: ăt, āte, bĕt, ēve, p̆ıt, r̄ıde, cŏt, gō, fōōd, fŏŏt,
bŭt, mūte, ´ schwa the neutral unaccented vowel as in ago (´ gō) or
focus (fōk´ s). A prime after a syllable indicates primary accent; double
prime secondary accent, as in secretary (sĕ′kr´ tă′′r̆ı) (American pronun-
ciation). (Br) indicates that the pronunciation is used chiefly in coun-
tries whose education system derived from the British system (including
Britain, Australia, New Zealand, South Africa).

Most Greek letters are pronounced differently in modern Greek; β
for example is pronounced vē′ta (last vowel as “a” in father).

A, α Alpha, ăl′f´. Citation: (50).
B, β Beta, bā′t´ or bē′t´ (Br). Citation: (50).
Γ, γ Gamma, gă′m´. Citation: (107), (118), (138).
∆, δ Delta, dĕl′t´. Citation: (26), (48).
E, ε or ε Epsilon, ĕp′s´ l´ n, ĕp′s´ lŏn′′, or ĕps̄i′l´ n. Note that the

symbol ∈ for elementhood is not an epsilon. Citations: (103), (395).
Z, ζ Zeta, zā′t´ or zē′t´ (Br). Citation: (375).
H, η Eta, ā′t´ or ē′t´ (Br). Citation: (129).
Θ, θ or ϑ Theta, thā′t´ or thē′t´ (Br). Citations: (211), (184),

(395).
I, ι Iota, ı̄ō′t´. Citation: (310).
K, κ Kappa, kăp′´. Citation: (88).
Λ, λ Lambda, lăm′d´. Citation: (88).
M, µ Mu, mū. Citation: (249).
N, ν Nu, nōō or nū. Citation: (157).
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Ξ, ξ Xi. I have heard ksē, s̄ı and z̄ı. Note that the pronunciation
s̄ı is also used for ψ (discussed further there). Citations: (106), (301).

O, o Omicron, ŏ′mı̆krŏn′′ or ō′mı̆krŏn′′.
Π, π Pi, p̄ı. To the consternation of some students beginning

abstract mathematics, π is very commonly used to mean all sorts of
things besides the ratio of the circumference of a circle to its diameter.
Citations: (184), (257), (320).

P, ρ Rho, rō. Citations: (322), (379).
Σ, σ Sigma, s̆ıg′m´. Citations: (423), (101), (293), (397).
T, τ Tau, pronounced to rhyme with cow or caw. Citation: (376).
Υ, υ Upsilon. The first syllable can be pronounced ōōp or ŭp and

the last like the last syllable of epsilon. Citations: (344), (431).
Φ, φ or ϕ Phi, f̄ı or fē. For comments on the symbol for the empty

set, see empty set. Citations: (257), (317).

I have heard two different young math-
ematicians give lectures containing both
φ and ψ who pronounced one of them f̄ı
and the other fē. I have also heard lec-
turers pronounce both letters in exactly
the same way.

X, χ Chi, pronounced k̄ı. I have never heard anyone
say kē while speaking English (that would be the expected
vowel sound in European languages). German speakers
may pronounce the first consonant like the ch in “Bach”.
Citation: (379).

Ψ, ψ Psi, pronounced s̄ı, sē, ps̄ı or psē. Citations:
(322), (395), (397).

Ω, ω Omega, ōmā′g´ or ōmē′g´. Citations: (14), (132), (289),
(397).

Acknowledgments: Gary Tee.

grouping Various syntactical devices are used to indicate that several
assertions in the mathematical register belong together as one logical
unit (usually as a definition or theorem). In the symbolic language this
is accomplished by delimiters. In general mathematical prose various
devices are used. The statement may be delineated or labeled, or phrases
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algorithm addiction 12
assertion 20
circumflex 36
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true 256
unique 259

from the general academic register such as “the following” may be used.
Examples are given under delimiter and follow.

guessing If the definition of a mathematical object determines it unique-
ly, then guessing at the answer to a problem and then using the definition
or a theorem to prove it is correct is legitimate, but some students don’t
believe this.
Example 1 It is perfectly appropriate to guess at an antiderivative and
then prove that it is correct by differentiating it. Many students become
uncomfortable if a professor does that in class.

This attitude is a special case of algorithm addiction.

hanging theorem A theorem stated at the point where its proof is
completed, in contrast to the more usual practice of stating the theorem
and then giving the proof. References: The name is due to Halmos
[Steenrod et al., 1975], page 34, who deprecates the practice, as does
[Krantz, 1997], page 68.

hat See circumflex.

hidden curriculum Covert curriculum.

hold An assertion P about mathematical objects of type X holds for
an instance i of X if P becomes true when P is instantiated at i.
Example 1 Let the type of x be real and let P be the assertion

f(x) > −1

Then P holds when f is instantiated as the sine function and x is in-
stantiated as 0. Typical usage in the mathematical register would be
something like this: “P holds for f = sin and x = 0.”

“Hold” is perhaps most often used when the instance i is bound by
a quantifier.
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hold identifier

Example 2 “x2 + 1 > 0 holds for all x.”
Citation: (28), (129), (363).

hyphen A hyphen is sometimes used to indicate the variable in the
definition of a function, especially when the function is defined by holding
some of the variables in a multivariable function fixed.
Example 1 Let f(x, y) be a function. For a fixed a, let f(−, a) be the
corresponding function of one variable.

Citation: (44).

I The symbol I has several common uses, often without explanation:
• I may be used to denote the unit interval, the set of real numbers x

for which 0 ≤ x ≤ 1. It may however denote any bounded interval
of real numbers.

• I may be used as the name of an arbitrary index set.
• For some authors, I or I is defined to be the set of integers; however,

Z seems to be more common in this respect.
• I may be used to denote the identity function.
• I is also used to denote the identity matrix for a dimension given by

context.
Citations: (28), (40), (68), (97), (252), (310).

i.e. The expression “i.e.” means that is. It is very commonly con-
fused with “e.g.”, meaning “for example”, by students and sometimes
by professors. This confusion sometimes gets into the research literature.
Using these should be deprecated. Citations: (67), (90), (364), (115),
(159).

identifier An identifier is a name or symbol used as the name of a
mathematical object. Symbols and names are defined in their own entries;
each of these words has precise meanings in this Handbook that do not
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coincide with common use. In particular, a symbol may consist of more
than one character and a name may be a word or a phrase.

We discuss the distinction between name and symbol here. A name
is an English noun phrase. A symbol is a part of the symbolic language
of mathematics.
Example 1 The expressions i, π and sin can be used in symbolic ex-
pressions and so are symbols for certain objects. The phrase “the sine
function” is a name. If a citation is found for “sine” used in a symbolic
expression, such as “sine(π)”, then for that author, “sine” is a symbol.
Remark 1 The number π does not appear to have a nonsymbolic name
in common use; it is normally identified by its symbol in both English dis-
course and symbolic expressions. The complex number i is also commonly
referred to by its symbol, but it can also be called the imaginary unit.
Citation: (185), (332).
Remark 2 I have not found examples of an identifier that is not clearly
either a name or a symbol. The symbolic language and the English it is
embedded in seem to be quite sharply distinguished.

Terminology I have adopted the distinction between name and symbol
from [Beccari, 1997], who presumably is following the usage of [ISO, 1982]
which at this writing I have not seen yet.

identify To identify an object A with another object B is to regard
them as identically the same object. This may be done via some for-
malism such as an amalgamated product or a pushout in the sense of
category theory, but it may also be done in a way that suppresses the
formalism (as in Example 1 below).
Example 1 The Möbius strip may be constructed by identifying the
edge

{(0, y) | 0 ≤ y ≤ 1}
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identify identity

of the unit square with the edge
{(1, y) | 0 ≤ y ≤ 1}

in such a way that (0, y) is identified with (1, 1 − y).
There is another example in Remark 1 under generalization.

Remark 1 One may talk about identifying one structure (space) with
another, or about identifying individual elements of one structure with
another. The word is used both ways as the citations illustrate. Exam-
ple 1 uses the word both ways in the same construction.
Remark 2 One often identifies objects without any formal construc-
tion and even without comment. That is an example of conceptual blend-
ing; examples are given there. Citations: (186), (285), (399).
Remark 3 In ordinary English, “identify” means to give a name to.
This presumably could cause “cognitive dissonance” but I have never
observed that happening myself.

identity This word has three common meanings.

1. Equation that always holds
An identity in this sense is an equation that holds between two expres-
sions for any valid values of the variables in the expressions. Thus, for
real numbers, the equation (x+ 1)2 = x2 + 2x+ 1 is an identity. But in
the assertion

“If x = 1, then x2 = x,”
the equation x2 = x would not be called an identity. The difference
is that the equation is an identity if the only restrictions imposed on
the variables are one of type. This is a psychological difference, not a
mathematical one. Citation: (36),

Sometimes in the case of an identity, the symbol ≡ is used instead
of the equals sign. Citation: (37).
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2. Identity element of an algebraic structure
If x∆ e = e∆ x for all x in an algebraic structure with binary operation
∆, then e is an identity or identity element for the structure. Such an
element is also called a unit element or unity. This can cause confusion
in ring theory, where a unit is an invertible element. Citation: (193),
(251).

3. Identity function
For a given set S, the function from S to S that takes every element
of S to itself is called the identity function. This is an example of a
polymorphic definition. Citation: (134).

if

(a) Introduces conditional assertion The many ways in which “if”
is used in translating conditional assertions are discussed under condi-
tional assertion.

(b) In definitions It is a convention that the word if used to introduce
the definiens in a definition means “if and only if”.
Example 1 “An integer is even if it is divisible by 2.” Citation:
(); (261). Some authors regularly use “if and only if” or “iff”. Cita-
tion: (126), (377). This is discussed (with varying recommendations)
in [Gillman, 1987], page 14; [Higham, 1993], page 16; [Krantz, 1997],
page 71; [Bagchi and Wells, 1998b].
Remark 1 It is worth pointing out (following [Bruyr, 1970]) that using
“if and only if” does not rid the definition of its special status: there is
still a convention in use. In the definition of “even” above, the left side
(the definiendum) of the definition, “An integer is even”, does not attain
the status of an assertion until the whole definition is read. In an ordinary
statement of equivalence, for example “An integer is divisible by 2 if and
only if it is divisible by −2”, both sides are assertions to begin with. In
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if illustration

a definition there is a special convention in effect that allows one to use
a syntax that treats the definiendum as an assertion even though before
the definition takes place it is meaningless.

Because of this, insisting on “if and only if” instead of “if” in defi-
nitions is not really an example of esilism because “if and only if” is not
used in definitions in first order logic. The usual formalisms for first or-
der logic use other syntactic devices, precisely because of the phenomenon
just described.

(c) In the precondition of a definition “If” can be used in the pre-
condition of a definition to introduce the structures necessary to make the
definition, in much the same way as let. See Example 5 under definition.
Citations: (318).

See also the discussion under let.

if and only if This phrase denotes the relation equivalent that may
hold between two assertions. See context-sensitive and if.

This phrase may be abbreviated by iff. Citation: (63), (110), (253).

illustration A drawing or computer rendering of a curve or surface
may be referred to as an illustration. Thus a drawing of (part of)
the graph of the equation y = x2 would be called an illustration. The
word is also used to refer to an instance of an object that satisfies the
hypotheses and conclusion of a theorem. (This is also called an example
of the theorem.)
Example 1 A professor could illustrate the theorem that a function is
increasing where its derivative is positive by referring to a drawing of the
graph of y = x2.
Example 2 The fact that subgroups of an Abelian group are normal
could be illustrated by calculating the cosets of the two-element subgroup
of Z6. This calculation might not involve a picture or drawing but it
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could still be called an illustration of the theorem. Citations: (50),
(70).

image The word image, or the phrase concept image, is used in
mathematical education to refer to what is here called the mental repre-
sentation of a concept.

This word also has a polymorphic mathematical meaning (the image
of a function) discussed under overloaded notation.

implication See conditional assertion.

implicit knowledge See functional knowledge.

imply See conditional assertion.

in In is used in mathematical discourse in all its English meanings, as
well as in some meanings that are peculiar to mathematics.

a) A is in B can mean A ∈ B. Citation: (226).
b) A is in B can mean A ⊆ B. Citation: (322).
c) One may say A is in B when A is an equation whose solution set is

included in B, or a geometric figure whose points are included in B,
or a sequence whose entries are in B. For example,

“The unit circle x2 + y2 = 1 is in the Euclidean plane.”
Citations: (28), (213), (265), (359), (375), (384).

d) One may say A is in B when A is in the expression B as some
syntactic substructure. For example, x is a variable in 3x2 + 2xy3,
and 3x2 is a term in 3x2 + 2xy3. Citation: (322),

e) A is P in B, where P is a property, may mean that A has property P
with respect to B, where B is a constituent of A or a related structure
(for example a containing structure). Thus one talks about A being
normal in B, where A is a subgroup of the group B. As another
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in in particular

example, 3x2 + 2xy3 is differentiable in y (and x). (122), (122),
(178), (205), (224), (276), (408).

f) One may describe an intersection using “in”. For example, The sets
{1, 2, 3, 4} and {1, 3, 5, 7} intersect in {1, 3} (or intersect in 1 and 3.)
Citation: (369).

g) In the phrase “in finite terms”. Citations: (293).

in general The phrase “in general” occurs in at least two ways in
mathematical statements. (One may often use “generally” with the same
meaning.)
Example 1 “The equation x2 − 1 = (x− 1)(x+1) is true in general.”
Citation: (154)
Example 2 “In general, not every subgroup of a group is normal.”
Citation: (83), (215),
(243)

Example 1 asserts that the equation in question is always true. Ex-
ample 2 does not make the analogous claim, which would be that no
subgroup of a group is normal. These two examples illustrate a pattern:
“In general, P” tends to mean that P is always true, whereas “In general,
not P” means that P is not necessarily true.

Acknowledgments: Owen Thomas.

in other words This phrase means that what follows is equivalent
to what precedes. Usually used when the equivalence is easy to see.
Citation: (273).

in particular Used to specify that the following statement is an in-
stantiation of the preceding statement, or more generally a consequence
of some of the preceding statements. The following statement may indeed
be equivalent to the preceding one, although that flies in the face of the
usual meaning of “particular”.
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Example 1 “We now know that f is differentiable. In particular, it is
continuous.” Citations: (114), (283), (430).

in terms of See term.

in your own words Students are encouraged in high school to de-
scribe things “in your own words”. When they do this in mathematics
class, the resulting reworded definition or theorem can be seriously mis-
leading or wrong. It might be reasonable for a teacher to encourage stu-
dents to rewrite mathematical statements in their own words and then
submit them to the teacher, who would scrutinize them for dysfunction-
ality.
Example 1 Students frequently use the word unique inappropriately.
A notorious example concerns the definition of function and the definition
of injective, both of which students may reword using the same words:

“A function is a relation where there is a unique output for every
input.”

“An injective function is one where there is a unique output for
every input.”

See also continuous.

include For sets A and B, B includes A, written A ⊆ B or A ⊂ B, if
every element of A is an element of B. See the discussions under contain
and formal analogy. Citations: (122), (195), (262), (338).

increasing An increasing function is a function f defined on some
ordered set S with the property that if x < y then f(x) < f(y). A
sequence a0, a1, . . . is increasing if it is true that i < j implies ai < aj .

A similar phenomenon occurs with decreasing, nondecreasing
and nonincreasing. This is related to the phenomenon described under

127



article 20
definite article 64
deprecate 74
function 104
identifier 120
indefinite description 129
mathematical object 155
time 251
universal quantifier 260

increasing indefinite article

“Using the name to refer to all the values” under function. See also time.
Citations: (233), (394)

indefinite article The word “a” or “an” is the indefinite article,
one of two articles in English.

(a) Generic use In mathematical writing, the indefinite article may be
used in the subject of a clause with an identifier of a type of mathematical
object (producing an indefinite description) to indicate an arbitrary object
of that type. Note that plural indefinite descriptions do not use an article.
This usage occurs outside mathematics as well and is given a theoretical
treatment in [Kamp and Reyle, 1993], section 3.7.4.
Example 1

“Show that an integer that is divisible by four is divisible by
two.”

Correct interpretation: Show that every integer that is divisible by four
is divisible by two. Incorrect interpretation: Show that some integer that
is divisible by four is divisible by two. Thus in a sentence like this it the
indefinite article has the force of a universal quantifier. Unfortunately,
this is also true of the definite article in some circumstances; more ex-
amples are given in the entry on universal quantifier. Citation: (156),
(179), (353) (for the indefinite article); (354) (for the definite article).
Remark 1 This usage is deprecated by Gillman [1987], page 7. Hersh
[1997a] makes the point that if a student is asked the question above on
an exam and answers, “24 is divisible by 4, and it is divisible by 2”, the
student should realize that with that interpretation the problem is too
trivial to be on the exam.
Remark 2 An indefinite description apparently has the force of uni-
versal quantification only in the subject of the clause. Consider:

a) “A number divisible by 4 is even.” (Subject of sentence.)
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b) “Show that a number divisible by 4 is even.” (Subject of subordinate
clause.)

c) “Problem: Find a number divisible by 4.” (Object of verb.) This
does not mean find every number divisible by 4; one will do.

Remark 3 In ordinary English sentences, such as
“A wolf takes a mate for life.”

([Kamp and Reyle, 1993], page 294), the meaning is that the assertion is
true for a typical individual (typical wolf in this case). In mathematics,
however, the assertion is required to be true without exception. See
concept and prototype.

(b) Existential meaning An indefinite description may have existen-
tial force.
Example 2 “A prime larger than 100 was found in 2700 B.C. by Argh
P. Ugh.” This does not mean that Mr. Ugh found every prime larger
than 100. In this case the indefinite description is the subject of a passive
verb, but in ordinary English indefinite subjects of active verbs can have
existential force, too, as in “A man came to the door last night selling
toothbrushes”. I have found it difficult to come up with an analogous
example in the mathematical register. This needs further analysis.

indefinite description An indefinite description is a noun phrase
whose determiner is the indefinite article in the singular and no article
or certain determiners such as some in the plural. It typically refers to
something not known from prior discourse or the physical context.
Example 1 Consider this passage:

“There is a finite group with the property that for some proper
divisor n of its order a subgroup of order n does not exist. How-
ever, groups also exist that have subgroups of every possible
order.”
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indefinite description infinite

The phrases “a finite group”, “a subgroup”, and “subgroups” are all
indefinite descriptions.

An indefinite description may have a generic use, discussed under
indefinite article.
Remark 1 This description of indefinite descriptions does not do jus-
tice to the linguistic subtleties of the concept. See [Kamp and Reyle,
1993], section 1.1.3.

inequality An inequality is an assertion of the form sαt, where s and
t are terms and α is one of the relations <, ≤, > or ≥. Citation: (24),
(67), (385), (421). I have not found a citation where the relation is �= or
�.
Remark 1 A few times, students have shown me that they were con-
fused by this concept, since an “inequality” sounds as if it ought to mean
a statement of the form P �= Q, not P < Q or P ≤ Q. This is a mild
case of semantic contamination.

inert See mathematical object.

infinite The concept of infinity causes trouble for students in various
ways.

(a) Failure of intuition concerning size Students expect their intu-
ition on size to work for infinite sets, but it fails badly. For example, a set
and a proper subset can have the same cardinality, and so can a set and
its Cartesian product with itself. (As Atish Bagchi pointed out to me, the
intuition of experienced mathematicians on this subject failed miserably
in the nineteenth century!) This is discussed further under snow.

(b) Infinite vs. unbounded Students may confuse “infinite” with “un-
bounded”. For example, omputer science students learn about the set A∗
of strings of finite length of characters from an alphabet A. There is an
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infinite number of such strings, each one is of finite length, and there is no
limit on how long they can be (except to be finite). I have seen students
struggle with this complex of ideas many times.

(c) Treating “∞” as a number. Of course, mathematicians treat
this symbol like a number in some respects but not in others. Thus we
sometimes say that 1/∞ = 0 and we can get away with it. Students then
assume we can treat it like a number in other ways and write ∞/∞ = 1,
which we cannot get away with. This is an example of extrapolation.

References: The mathematical concepts of infinity are discussed very
perceptively in [Lakoff and Núñez, 2000], Chapter 8. Student difficulties
are discussed by Tall [2001].

infix notation A function of two variables may be written with its
name between the two arguments. Thus one writes 3 + 5 rather than
+(3, 5). Usually used with binary operations that have their own non-
alphabetical symbol. Relations are written this way, too, for example
“x < y”. See prefix notation and postfix notation. Citation: (130),
(273), (346).

inhabit The meaning of a statement in mathematical discourse that
“A inhabits B” must be deduced from context. The citations show that
it can mean A is an element of B, A is contained in the delimiters B, A
is in the Bth place in a list, and that A is a structure included in some
sense in the space B. Lives in is used similarly in conversation, but I
have found very few citations in print. See also in. Citations: (6), (16),
(301), (365), (420).

Acknowledgments: Guo Qiang Zhang.

injective A function f is injective if f(x) �= f(y) whenever x and y
are in the domain of f and x �= y. Also called one-to-one. Citations:
(255), (298), (392), (430).
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injective insight

See also surjective.
Remark 1 When proving statements using this concept, the contra-
positive form of the definition is often more convenient.
Remark 2 Students often confuse this concept with the univalent
property of functions: this is the property that if (a, b) and (a, b′) are
both in the graph of the function, then b = b′, so that the expression f(a)
is well-defined. See in your own words.

In the sixties there were older math-
ematicians who became quite incensed
if I said “injective” instead of “one-to-
one”. At the time I understood that
this attitude was connected with an anti-
Bourbaki stance. The last one that I can
remember who had this attitude died re-
cently. That is how language changes.

Remark 3 The word injective is also used in a different
sense to denote a certain type of structure, as in “injective
module”. Searches on JSTOR turn up more occurrences
of that usage than the one given here.

input See function.

insight You have an insight into some mathematical
phenomenon if you have a sudden jump in your understanding of the
phenomenon. This may be accompanied by ejaculations such as “aha!”,
“eureka!”, or “I get it!” The jump may be in incremental (but not
gradual!) increase in understanding (worthy of “aha!”) or a complete
leap from incomprehension to clarity (“eureka!”).

. . .

a− b

. . .
b

.
a− b

.
b
.

Example 1 The geometric diagram in the margin proves that
a2 − b2 = (a− b)(a+ b)

at least for positive real numbers a and b with b < a.
This causes some who have not seen it before to have a feeling

something like: “Aha! Now I really understand it!” or at least, “Aha!
Now I have a better grasp of why it is true.” Even if you don’t feel that
way about this proof, you may have experienced a similar feeling about
another theorem, perhaps one whose proof by symbol manipulation was
more obscure.

132



insight integral

conceptual 43
convention 57
divide 76
expression 241
mathematical object 155
metaphor 162
model 167
positive 201
ratchet effect 213
representation 217
specific mathematical

object 156
symbol manipulation 245
type 257
variable 268

Compare this with the proof given under symbol manipulation. An-
other example of the aha experience is given under conceptual. In many
cases, the gain in insight is irreversible, an instance of the ratchet effect.
Remark 1 It appears to me that in every case I can think of, a gain in
insight as described here consists of acquiring a metaphor or model that
allows one more easily to think about the problem, or visualize it. (But
the metaphor need not be graphical or visual.)
Remark 2 In my experience, the clarity that you feel after a Eureka
insight tends to become a bit cloudy as you become aware of subtleties
you didn’t originally notice.

References: [Bullock, 1994], [Frauenthal and Saaty, 1979], [Halmos,
1990], pages 574ff.

instantiate To instantiate a variable in an expression is to replace
it with an identifier of a specific mathematical object of the appropriate
type. If all the variables in an expression are instantiated, the expression
should denote a specific object.

Many computer languages are arranged
so that an integer is not a real number.
This may be indicated by requiring that
every number be explicitly declared as
one or the other, or by the convention
that a number is real only if it is repre-
sented using a decimal point. For exam-
ple, in MathematicaR©, “32” is an integer
and “32.0” is a real number. Students
often assume that mathematicians follow
that convention and need to be explicitly
told that they don’t.

Example 1 If you instantiate x at 5 in the expression
2x+ 1 you get an expression denoting 11.

integer A whole number, positive, negative or zero.
Citations: (55), (78), (104), (119), (219).
Remark 1 I have no citation in which “integer” means
nonnegative integer or positive integer. However, stu-
dents quite commonly assume that the word means non-
negative or positive integer.

See divide.

integral This word has three different meanings.
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integral integral

1. Being an integer
“Integral” is used as an adjective to require that the noun phrase it
modifies denote an integer (8 is an integral power of 2). Citations:
(120), (138).

2. Antiderivative
An integral of a function is an antiderivative of the function. As such it
is an operator from the set of integrable functions to the set of continuous
functions modulo the relation of differing by a constant. In this usage the
operator is often called the “indefinite integral”. The indefinite integral
of f is denoted

∫
f(x) dx. One may also refer to a specific antiderivative

using the form
∫ x
c f(t) dt.

The word is also used to denote a solution of a more general differ-
ential equation. See also delimiters. Citations: (215), (292), (430).

3. Definite integral
“Integral” is also used to denote a “definite integral”: this operator takes
an integrable function and an interval (or more general space) on which
the function is defined and produces a number. The definite integral of f
on an interval [a, b] is denoted

∫ a
b f(x) dx or

∫ a
b f . Citation: (27), (95),

(138), (229).
The integral sign as delimiter For many authors, the integral

sign and the dx in the expression
∫ b
a x

2 + 1 dx delimit the integrand (and
of course also provide other information – they are not bare delimiters).

However, many others do not recognize these symbols as delimiters
and would write

∫ b
a (x2 + 1)dx. There is a strong argument for the latter

position. Historically the intuition behind the expression
∫ b
a f(x) dx is

that it is a sum: the integral sign is an elongated letter “S”, and the terms
of the sum are the infinitesimal rectangles with height f(x) and width
dx. This perception is the motivation for most physical applications of
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definite integration, so it is reasonable to teach it explicitly and to keep
one’s notation consistent with it.

interpretation An interpretation of a text is the current assign-
ment of a value (possibly a variable object) to each identifier used in the
discourse. With a given semantics, the text with that interpretation may
result in assertions about the values of the identifiers which may be true
or false or (if some identifiers are variables) indeterminate. See context
and standard interpretation.

In mathematical logic the language is a formal language and the
values lie in some mathematical structure defined for the purpose.

intensional See semantics.

interval An interval is a subset of the set of real numbers of one of
the following particular forms, where a, b ∈ R:

• (a, b) = {x | a < x < b}.
• [a, b) = {x | a ≤ x < b}.
• (a, b] = {x | a < x ≤ b}.
• [a, b] = {x | a ≤ x ≤ b}.

Variations Sometimes one also uses the word “interval” for exp-
pressions of the form (a,∞) = {x | a < x} and analogous constructions.
Commonly such intervals are qualified as infinite intervals.

One also refers to intervals of rational numbers or integers, or indeed
in any partially ordered set, defined in the same way. In a non-totally-
ordered set, an interval can be “fat”, perhaps violating one’s image of the
concept. Citations: (67), (233), (252), (396).

intuition See mental representation.

irregular syntax The symbolic language contains some identifiers
with irregular syntax.
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irregular syntax irregular syntax

Example 1 In the commonest usage (using prefix notation), the rule
for applying functions puts the identifier of the function on the left of
the argument and puts parentheses around the argumant. However, the
notation “!” for the factorial function is put on the right and the paren-
theses are omitted except when necessary for grouping. Citations: (7),
(138), (420).
Example 2 With some function identifiers the parentheses are conven-
tionally omitted by most authors who otherwise use them. This causes
trouble for some students learning programming languages where some-
thing like sin(x) or sin[x] is required.

Examples: “sinπ = 0.”
“log 3

2 = log 3 − log 2.”

“n! > 2n.”

Citation: (211), (303).
Example 3 From the point of view of calculus students, both common
notations for derivatives show irregular behavior. The prime notation is
normally used only for functions of one variable but not for functions of
more than one variable. Similarly, the notation involving d is used for
derivatives of functions of one variable; for more than one variable one
must change it to ∂.

There are of course reasons for this. In particular, one could have
in mind that d is the total derivative operator, which coincides with the
derivative when the function is of one variable; then ∂ is needed in the
case of more than one variable because the partial derivative is a different
operator. (See [Cajori, 1923], page 2.) But the beginning calculus student
does not know this.

See also orthogonal.
These phenomena are exactly analogous to the fact that some verbs

in English are irregular: for example, the past tense of “hatch” is “hatched”,
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but the past tense of “catch” is “caught”.
Remark 1 The irregularity of “!” lies in the symbol, not the meaning.
If the factorial function were called Fac, then in the usual practice one
would write Fac(n), not nFac. Similarly, in English one would say I
“grabbed” the ball, not using an irregular form for the past tense of
“grab”, even though one would use the irregular form for “catch”.

Moreover, occasionally authors use the symbol “!” for some function
other than the factorial (although usually analogous to it in some way),
but they still write it on the right. Citation: (186).

isomorphic Each type of mathematical structure has its own defi-
nition of “isomorphism”. The categorists’ definition of isomorphism (a
morphism that has an inverse) has all these definitions as special cases.
Citations: (398), (144).

Difficulties Students frequently don’t catch on to the fact that, if M
and N are isomorphic structures of some type, there can be many iso-
morphisms between M and N .

See copy and up to.

italics A style of printing that looks like this. Many texts put a definien-
dum in italics. See definition.

jump the fence If you are working with an expression whose variables
are constrained to certain values, and you instantiate the expression at a
value that violates the constraint, you jump the fence.
Example 1 A student, in dealing with a sum of Fibonacci numbers,
might write

n∑
k=0

f(k) =
n∑

k=0

f(k − 1) +
n∑

k=0

f(k − 2)
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jump the fence juxtaposition

not noticing that the sums on the right involve f(−1) and f(−2), which
may not have been defined when the definition of Fibonacci number was
given.

Terminology The name “jump the fence” is my variation of the “fen-
cepost error” discussed in [Raymond, 1991].

just One use of the word “just” in mathematical discourse is to indicate
that what precedes satisfies the statement that occurs after the word
“just”.
Example 1 (Assuming r and s are known to be integers greater than 1).

“ . . . Then m = rs. But that is just the definition of “compos-
ite”.”

(Or “That just means that m is composite”.)
Remark 1 My own perception of this usage before I looked for citations
is that the word “just” meant that what followed was equivalent to what
preceded, but in many citations what follows is only a consequence of
what precedes. Indeed, in some citations it is completely redundant.

Citations: (372), (303), (340).

just in case This phrase means that what follows is logically equiva-
lent to what precedes.
Example 1 “An integer is even just in case it is divisible by 2.”
Citation: (340).

juxtaposition Two symbols are juxtaposed if they are written down
one after the other. This most commonly indicates the numerical product
(but see Example 2 under number). Juxtaposition is also used to denote
other binary operations, for example the operation of “and” in Boolean
algebra, the concatenate of strings and the application of trigonometric
functions. Citations: (94), (130).
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labeled style law of gravity for functions

barred arrow notation 24
bound variable 30
cardinality 34
codomain 109
domain 77
expression 241
function 104
map 150
mathematical logic 151
narrative style 174
notation 177

labeled style The labeled style of writing mathematics requires la-
beling essentially everything that is written according to its intent: defi-
nition, theorem, proof, remark, example, discussion, and so on. Opposed
to narrative style.

The most extreme examples of labeled style are proofs, often in ge-
ometry, that are tabular in nature with the proof steps numbered and
justified by referring to previous steps by number.

Reference: The labeled style was named and discussed in [Bagchi
and Wells, 1998a].

lambda notation A notation for referring to a function. The function
is denoted by λx.e(x), where e is some expression that allows one to
calculate the value of the function at x. The x is bound in the expression
λx.e(x).
Example 1 “The function λx.x2 has exactly one critical point.” This
notation is used in mathematical logic, computing science, and linguistics,
but not generally by mathematicians. Citation: (45).

Compare barred arrow notation.

large A text that says one set is larger than another may be referring
to the inclusion ordering, or may be referring to cardinality. Citations:
(373), (409). Note that in the second citation the authors feel obligated
to explain that they mean cardinality, not inclusion.

“Large” said of a number can mean large positive or large negative,
in other words large in absolute value. Citations: (51), (300).

law of gravity for functions In mathematics at the graduate level
the student may notice that functions are very often illustrated or visu-
alized as mapping the domain down onto the codomain. Any function in
fact produces a structure on the domain (the quotient space) that in the
case of some kinds of structures (sheaves, Riemann surfaces, and others)
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law of gravity for functions let

is quite elaborate. In those applications the function is often thought of
as a projection. This is presumably the motivation for the use of the
word under.

In teaching such courses I have found it helpful to point out this
phenomenon to students, who from calculus may visualize functions as
going up, and from discrete mathematics or abstract algebra may think
of them as going from left to right. See over and rightists.

lemma A theorem. One may typically expect that a lemma is not
of interest for itself, but is useful in proving other theorems. However,
some lemmas (König’s Lemma, Schanuel’s Lemma, Zorn’s Lemma) have
become quite famous.

Acknowledgments: Owen Thomas. Citations: (46), (122), (260),
(345).

lemmata Lemmas. An obsolete plural.

let “Let” is used in several different ways in the mathematical register.
What follows is a tentative classification. Some of the variations in usage
(as in Examples 1 and 2) make no difference to the logical argument that
the usage expresses. This may make the classification seem excessively
picky. I am not aware of research on students’ misunderstandings in these
situations.

(a) Assume, Suppose and If In many cases, assume, suppose and
if can be used instead of “let”. The syntax for these others is different;
thus one says “Let x be . . . ” but “Assume [Suppose] x is . . . ” Also,
“If x = 1” cannot be a complete sentence, but “Let x = 1” can be.
The words “assume” and “if” are used in some situations where “let” is
inappropriate; those usages are discussed under assumption and if. There
are other subtle differences about the way “assume”, “suppose”, “let” and
“if” are used that need further investigation.
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argument 19
definition 66
global identifier 115
interpretation 135
mathematical definition

66
name 171
scope 223
symbol 240
variable 268

(b) Introducing a new symbol or name One common use of “let”
is to introduce a new symbol or name. This, of course, is a species of
definition, usually with a restricted scope (the current section of the text,
for example).
Example 1 Consider the theorem

“An integer divisible by 4 is divisible by 2.”
A proof could begin this way:

“Let n be an integer divisible by 4.”
This introduces a new variable symbol n and constrains it to be divisible
by 4.
Example 2 Suppose the theorem of the preceding example had been
stated this way:

“Let n be an integer. If n is divisible by 4 then it is divisible
by 2.”

Then the proof could begin
“Let n be divisible by 4.”

In this sentence, n is introduced in the theorem and is further constrained
in the proof.
Remark 1 These two examples illustrate that whether a new symbol
is introduced or a previous symbol is given a new interpretation is a minor
matter of wording; the underlying logical structure of the argument is the
same.
Remark 2 “Define” is sometimes used in this sense of “let”; see Ex-
ample 2 under mathematical definition. Of course, there is no logical
distinction between this use of “let” and a formal definition; the differ-
ence apparently concerns whether the newly introduced expression is for
temporary use or global and whether it is regarded as important or not.
Further investigation is needed to spell the distinction out.
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now 178
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true 256
universal generalization

260
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let let

If, assume and suppose can be used in this situation, with requisite
changes in syntax: “is” instead of “be” for assume and suppose, and the
sentences must be combined into one sentence with “if”. Citations: (46),
(155), (69).

(c) To consider successive cases
Example 3 “Let n > 0. . . . Now let n ≤ 0. . . . ” If, assume and
suppose seem to be more common that “let” in this use. See now.
Citation: (12), (109).

(d) To introduce the precondition of a definition
Example 4 “Definition Let n be an integer. Then n is even if n is
divisible by 2.” If, assume and suppose can be used here. Citation:
(56), (128), (325).

(e) To introduce an arbitrary object To pick an unrestricted object
from a collection with the purpose of proving an assertion about all ele-
ments in the collection using universal generalization. Example 1 above
is an example of this use. Often used with arbitrary. If, assume and
suppose can be used here. Citations: (143), (53)

(f) To name a witness To provide a local identifier for an arbitrary
object from a collection of objects known to be nonempty. Equivalently,
to choose a witness to an existential assertion that is known to be true.
If, assume and suppose can be used here.
Example 5 In proving a theorem about a differentiable function that
is increasing on some interval and decreasing on some other interval, one
might write:

“Let a and b be real numbers for which f ′(a) > 0 and f ′(b) < 0.”
These numbers exist by hypothesis.
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assume 140
contrapositive 56
defining phrase 66
definition 66
group 34
if 123
logarithm 148
object 17
suppose 140

Example 6 In the context that G is known to be a noncommutative
group:

“Let x and y be elements of G for which xy �= yx . . . ”
The following is a more explicit version of the same assertion:

“Let the noncommutative group G be given. Since G is noncom-
mutative, the collection {(x, y) ∈ G×G | xy �= yx} is nonempty.
Hence we may choose a member (x, y) of this set . . . ”

Example 7 In proving a function F : S → T is injective, one may begin
with “Let x, x′ ∈ S be elements for which F (x) = F (x′)”. These elements
must exist if F is non-injective: in other words, this begins a proof by
contrapositive. The existential assertion which the elements x, x′ ∈ S are
witnesses is implied by the assumption that F is not injective.

Remark 3 The choice of witness may be a parametrized choice: Given
that (∀x)(∃y)Q(x, y) and given c, let d be an object such that Q(c, d).
Example 8 Assuming c is a complex number:

“Let d be an nth root of c.”
Citations: (43), (176), (257), (298), (430).

(g) “Let” in definitions Let can be used in the defining phrase of a
definition.
Example 9 “Let an integer be even if it is divisible by 2.”
Remark 4 This usage strikes me as unidiomatic. It sounds like a trans-
lation of a French (“Soit . . . ”) or German (“Sei . . . ”) subjunctive. If,
assume and suppose cannot be used here.

References: This entry follows the discussion in [Bagchi and Wells,
1998a]. See also [Selden and Selden, 1999].

Acknowledgments: Atish Bagchi, Owen Thomas.

lg See logarithm.
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life isn’t fair limit

life isn’t fair My students (and I as well) sometimes feel that certain
situations in mathematics just aren’t fair.
Example 1 While it is true that if W is a sub-vector space of V then
any basis of W is contained in some basis of V , it is not true that any
basis of V contains a basis of W . (See false symmetry.)
Example 2 If you run around the unit circle in the complex plane
evaluating the square root function, when you get back to where you
started you have a different value.
Example 3 If you have a groupG with normal subgroupK and a group
G′ with a normal subgroup K ′, and if the quotients G/K and G′/K ′ are
isomorphic, it could still happen that G and G′ are not isomorphic.
Example 4 No matter how hard I try, I can’t find a formula in terms
of functions I already know for ex

2
.

Example 5 There are entirely too many different kinds of function
spaces.

The teacher can pontificate about how all these unfair situations give
rise to interesting mathematics, but perhaps this should not be done right
when students have lost points on a quiz because they didn’t understand
such booby traps.

limit Students have numerous problems associated with limits.
Example 1 Many students believe the myth that a sequence that has a
limit “approaches the limit but never get there”. They have presumably
constructed their prototypical sequence based on the examples they have
seen in class or in the text, most of which behave that way. This is
a form of cognitive dissonance. The two forms of learning required by
the definition of cognitive dissonance are the definition versus the normal
way we learn concepts via generalization from examples. Reference: This
example is from the discussion in [Tall, 1992b], Sections 1.5 and 1.6.
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set 227

Example 2 The ε-δ definition of limit is complicated and difficult for
students to grasp. The difficulties are similar to those discussed under
continuity.

See [Pimm, 1983], [Cornu, 1992], [Tall and Vinner, 1981], [Tall, 1993].

literalist A literalist or fundamentalist believes that the formalism
used to give a mathematical definition or to axiomatize a set of math-
ematical phenomena should be taken as the “real meaning” of the idea
and in extreme cases even as the primary way one should think about
the concepts involved. There is no surer way to

misread any document
than to read it literally.

–Learned Hand

Example 1 In the study of the foundations of mathematics, one of the
problems is to show that mathematics is consistent. One standard way to
do this is to define everything in terms of sets (so that math is consistent
if set theory is consistent). In particular, a function is defined as a set of
ordered pairs, an ordered pair (a, b) is defined to be {a, {a, b}}, and the
nonnegative integers may be defined recursively:

0 = {} the empty set
1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}

and so on.
Many mathematicians (but not all) would agree that it is desirable

to do this for the purposes of foundations. (see reductionist). A literalist
will insist that this means that an ordered pair and the number 3 really
are the sets just described, thus turning a perfectly legitimate consistency
proof into a pointless statement about reality.

That sort of behavior is not damaging as long as one does not engage
in it in front of students (except in a foundations class). Is it a good idea
to send students out in the world who believe the assertion “2 is even” is
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literalist literalist

on a par with the assertion “2 is an element of 3 but not an element of 1”?
Reference: A good place to read about defining integers in terms of sets
is [Simpson, 2000].

Example 2 Literalists object to regarding an equivalence relation and
its associated partition as the “same structure”. They say things like
“How can a set of subsets be the same thing as a relation?” It seems
to me that this literalist attitude is an obstruction to understanding the
concept.

The mature mathematician thinks of a type of structure as a whole
rather than always coming back to one of the defining aspects. Students
don’t always get to that stage quickly. The set of subsets and the relation
are merely data used to describe the structure. To understand the struc-
ture properly requires understanding the important objects and concepts
(such as a function being compatible with the partition) involved in these
structures and all the important things that are true of them, on an equal
footing (as in the concept of clone in universal algebra), and the ability
to focus on one or another aspect as needed.
Example 3 First order logic is a mathematical model of mathematical
reasoning. The literalist attitude would say: Then the expression of our
mathematical reasoning should look like first order logic. This is esilism.

One could argue that “fundamentalist”
should mean being literal-minded about
foundational definitions, but not neces-
sarily about other definitions in math-
ematics, and that “literalist” should be
used for the more general meaning.

Example 4 Literalists may also object to phrases such
as “incomplete proof” and “this function is not well-
defined”. See radial concept.

See also the discussions under mathematical defini-
tion, mathematical logic and mathematical structure.

Acknowledgments: Eric Schedler, Peter Freyd, Owen
Thomas and also [Lewis and Papadimitriou, 1998], page 9, where I got
the word “fundamentalist”. Lewis and Papadimitriou did not use the
word in such an overtly negative way as I have.
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assume 140
definition 66
global identifier 115
identifier 120
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let 140
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logarithm 148
mathematical discourse 1
mathematical object 155
mathematical register 157
scope 223
structure 159
text 74

References: [Benaceraff, 1965], [Lakoff and Núñez, 1997], pages 369–
374, and [Makkai, 1999].

lives in See inhabit.

ln See logarithm.

local With respect to a structure M, an object is defined locally if
it is in some sense defined only on a substructure of M. It is defined
globally if it is defined on all of M. This usage is usually informal,
but in some cases the word “local” or “global” has a formal definition.
Citations: (58), (65), (84), (170), (205), (418).

The words may be used in settings outside the mathematical register.
For example, one might complain that one understands a proof “locally
but not globally”, meaning that one can follow the individual steps but
has no overall grasp of the proof.
Example 1 The phrases local identifier and global identifier in this text
(borrowed from computing science) are examples of informal usage of the
terms.

Citations: (60).

local identifier A local identifier in a segment of a mathematical text
is an identifier for a particular mathematical object that has that meaning
only in the current block of text. The block of text for which that meaning
is valid is called the scope of the identifier.

The scope may be only for the paragraph or subsection in which it is
defined, with no explicit specification of the scope given. One clue for the
reader is that definitions with this sort of restricted scope are typically
introduced with words such as let or assume rather than being given the
formal status of a definition, which the reader tends to assume will apply
to the rest of the discourse.

The author may make the scope explicit.
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local identifier logarithm

Example 1 “Throughout this chapter f will be a continuous function.”
Citations: (178), (213), (271), (285).

See also global identifier.

location
(a) Physical location In mathematical discourse, words such as where,
anywhere and wherever, and local prepositions such as “in” and so on
are used to refer to physical locations in the same way that they are used
in ordinary discourse. By extension, they are used to refer to locations
in a particular discourse.
Example 1 “In this section, φ is a continuous function.” (See also
local identifier.) This is a normal part of academic discourse.

(b) Location in a structure In mathematics, it is common to refer
to a subset of elements of any set as if it were a location.
Example 2 “The function φ is positive wherever its derivative is posi-
tive.”

This presumably originated from the many examples where the set
in question is the set of elements of a space (see mathematical structure.)

See also time. Citation: (153), (254), (312).

logarithm The expression “log x” has a suppressed parameter, namely
the base being used. My observation is that in pure mathematics the base
is normally e, in texts by scientists it may be 10, and in computing science
it may be 2, and that in all these cases the base may not be explicitly
identified.

Students in particular need to know that this means there are three
different functions in common use called “log”. See also trigonometric
functions.
Remark 1 In calculus texts, loge may be written “ln”, and in comput-
ing science log2 may be written “lg”. Citation: (25), (169), (264).
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case 35
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254
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Acknowledgments: Owen Thomas.

look ahead When performing a calculation to solve a problem, one
may look ahead to the form the solution must take to guide the manip-
ulations one carries out.
Example 1 Given a right triangle with legs a and b and hypoteneuse
c, one can derive the Pythagorean Theorem a2+b2 = c2 from the identity

sin2 θ + cos2 θ = 1

by rewriting it as
a2

c2
+
b2

c2
= 1

and then multiplying by c2. Olson [1998] discovered that when asked
to reverse the process to derive the trig identity from the Pythagorean
Theorem, some students balked at the first step, which is to divide the
equation a2 + b2 = c2 by c2, because “there is no reason to divide by c2”:
The students apparently could think of no method or algorithm which
said to do this. Of course there is a method — look ahead to see what
form of the equation you need. More about this example in section (a)
under attitudes. This is related to walking blindfolded.

lowercase See case.

Luddism Luddism is an unreasoning opposition to all technological
innovation. Luddites appear in mathematics, most noticeable lately con-
cerning the use of calculators and computers by students. There is also
resistance to new terminology or notation.
Example 1 There is a legitimate debate over such questions as: Should
calculators be withheld from students until they can do long division
rapidly and accurately? Should Mathematica be withheld from students
until they can carry out formal integration rapidly and accurately? Un-
fortunately, professors by their nature tend to be skilled in argumentation,
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mathematical education mathematical education

so it may take long anthropological observation to distinguish a Luddite
from a rational opponent of a particular piece of technology.
Remark 1 The two questions in the preceding remark do not have to
be answered the same way. Nor do they have to be answered the same
way for math majors and for other students.

macron See bar.

malrule A malrule is an incorrect rule for syntactic transformation of
a mathematical expression. Examples are given in the entry for extrapo-
late.

This name comes from the mathematics education literature.

map Also mapping. Some texts use it interchangeably with the word
“function”. Others distinguish between the two, for example requiring
that a mapping be a continuous function. See function. Citation: (200),
(252), (298), (357).

Acknowledgments: Michael Barr.

marking See definition.

matchfix notation See outfix notation.

mathematical education One purpose of this Handbook is to raise
mathematicians’ awareness of what specialists in mathematical education
have found out in recent years. The following entries discuss that and
have pointers to the literature.

abstraction 7
and 15
APOS 17
attitudes 22

behaviors 25
cognitive dissonance 36
compartmentalization 39
concept 41
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extrapolate 95
function 104
generalization 112
limit 144
malrule 150
mathematical logic 151
mathematical object 155
mental representation 161

object-process duality 180
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proof 205
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set 227
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symbolic expression 241
syntax 246
translation problem 253
understand 259
universal quantifier 260
vector 273

The Handbook’s website provides links to some resources in mathe-
matical education.

mathematical logic Mathematical logic is any one of a number
of mathematical structures that models many of the assertions spoken
and written in the mathematical register. Such a structure typically is
provided with rules for proof and rules for giving meaning to items in the
structure (semantics). The phrases formal logic and symbolic logic
are also used.

First Order Logic The most familiar form of mathematical logic is
first order logic, in which, as in many other forms of logic, sentences
are represented as strings of symbols. For example,

“There is an m such that for all n, n < m”
would typically be represented as “∃m∀n (n < m)”.
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mathematical logic mathematical logic

First order logic is a useful codification of many aspects of mathe-
matical formalism, but it is not the only possible result of any attempt of
formalizing mathematics. The website [Zal, 2003] lists many types of log-
ic, some stronger than first order logic and some weaker, designed for use
with mathematics, computing science, and real-world applications. The
approach of category theory to model theory, as expounded in [Makkai
and Reyes, 1977], [Makkai and Paré, 1990], and [Adámek and Rosičky,
1994], produces formal systems that are very different in character from
standard first order logic and that vary in strength in both directions
from first order logic. However, first order logic has many nice formal
properties and seems particularly well adapted to mathematics.Logic is the hygiene the

mathematician prac-
tices to keep his ideas
healthy and strong.

–Hermann Weyl

Some mathematicians operate in the belief that the assertions and
proofs they give in the mathematical register can in principle be translated
into first order logic. This is desirable because in theory a purported
proof in the formal symbolism of mathematical logic can be mechanically
checked for correctness. The best place to see the argument that every
mathematical proof can in principle be translated into first order logic is
the book [Ebbinghaus, Flum and Thomas, 1984] (read the beginning of
Chapter XI). In particular, proofs involving quantification over sets can
be expressed in first order logic by incorporating some set of axioms for
set theory.

In practice no substantial proof gets so far as to be expressed in
logical symbolism; in fact to do so would probably be impossibly time-
consuming and the resulting proof not mechanically checkable because it
would be too large. What does happen is that someone will challenge a
step in a proof and the author will defend it by expanding the step into
a proof containing more detail, and this process continues until everyone
is satisfied. The mathematicians mentioned in the preceding paragraph
may believe that if this expansion process is continued long enough the
proof will become a proof in the sense of mathematical logic, at least in
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the sense that every step is directly translatable into logical formalism.
Even if this is so, caveats must be attached:

• First order logic may be optimal for mathematical reasoning, but
not for reasoning in everyday life or in other sciences.

• First order logic is clearly not the ideal language for communicat-
ing mathematical arguments, which are most efficiently and most
clearly communicated in the mathematical register using a mixture
of English and the symbolic language.
Geometric and other insights Aside from those caveats there

is a more controversial point. Consider the proof involving the monk
given in Example 2 under conceptual blend. This proof can probably be
transformed into a proof in first order logic (making use of continuous
mappings and the intermediate value theorem), but the resulting proof
would not be the same proof in some sense. In particular, it loses its
physical immediacy. Many geometric proofs as well have a (physical?
visual?) immediacy that is lost when they are translated into first order
logic.

One could defend the proposition that all proofs can be translated
into first order logic by either denying that the monk proof (and a pic-
torial geometric proof) is a mathematical proof, or by denying that the
translation into first order logic changes the proof. The first approach
says many mathematicians who think they are doing mathematics are
not in fact doing so. The second violates my own understanding of how
one does mathematics, because what is lost in the translation is for me
the heart of the proof. Specifically, the checking one could do on the first
order logic form of the proof would not check the physical or geometric
content.

Nevertheless, the translation process may indeed correctly model one
sort of proof as another sort of proof. It is a Good Thing when this can
be done, as it usually is when one kind of mathematics is modeled in
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mathematical logic mathematical mind

another. My point is that the two kinds of proof are different and both
must be regarded as mathematics. See the discussion in [Tall, 2002].

There is more about the suitability of mathematical logic in Re-
mark 2 under esilism.

See order of quantifiers, translation problem, and esilism.
References: First order logic is presented in the textbooks [Mendel-

son, 1987], [Ebbinghaus, Flum and Thomas, 1984], [van Dalen, 1989].
The formalisms in these books are different but equivalent. The book
[Lakoff and Núñez, 2000], Chapter 6, discusses logic from the point of
view of cognitive science.

Acknowledgments: Discussions with Colin McLarty.

mathematical mind People who have tried higher level mathemat-
ical courses and have become discouraged may say, “I just don’t have a
mathematical mind” or “I am bad at math”. Some possible reasons for
this attitude are discussed under ratchet effect, trivial and yes it’s weird.
Reasons for people being discouraged about mathematics (or hating it)
are discussed in [Kenschaft, 1997]. See also [Epp, 1997].

I do not deny that some people have a special talent for mathematics.
In particular, the best undergraduate mathematics students tend not to
have most of the difficulties many students have with abstraction, proof,
the language used to communicate logical reasoning, and other topics
that take up a lot of space in this book. It appears to me that:

• We who teach post-calculus mathematics could do a much better job
explaining what is involved in abstract mathematics, to the point
where many more students could get through the typical undergrad-
uate abstract algebra or analysis course than do now.

• The students who need a lot of such help are very likely not capable
of going on to do research at the Ph.D. level in mathematics. If
this is correct, the people who believe in osmosis would be correct –
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Platonism 197
time 251

if the only students who studied mathematics were future research
mathematicians!
These two points do not contradict each other. They are both factual

claims that could be tested by a (long, expensive) longitudinal study.

mathematical object Mathematical objects are what we refer
to when we do mathematics. Citation: (121),

(a) The nature of mathematical objects Mathematicians talk about
mathematical objects using most of the same grammatical constructions
in English that they use when talking about physical objects (see Platon-
ism). In this discussion I will take the way we talk about mathematical
objects as a starting point for describing them. I will not try to say what
they really are but rather will observe some properties that they must
have given the way we talk about them. Reality is nothing but

a collective hunch.
–Lily Tomlin

(i) Repeatable Experience Mathematical objects are like phys-
ical objects in that our experience with them is repeatable: If you ask
some mathematicians about a property of some particular mathematical
object that is not too hard to verify, they will generally agree on what
they say about it, and when there is disagreement they commonly discov-
er that someone has made a mistake or has misunderstood the problem.

(ii) Inert Mathematical objects are inert. They do not change
over time, and they don’t interact with other objects, even other math-
ematical objects. Of course, a particular function, such as for example
s(t) = 3t2, may model a change over time in a physical object, but the
function itself is the same every time we think of it.

(iii) Eternal Mathematical objects are eternal. They do not
come into and go out of existence, although our knowledge of them may
come and go.
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mathematical object mathematical object

Example 1 A dentist may tell you that he has a hole in his schedule
at 3PM next Monday; would you like to come then? That hole in his
schedule is certainly not a physical object. It is an abstract object.
But it is not a mathematical object; it interacts with physical objects
(people!) and it changes over time.
Example 2 A variable, say Height, in a computer program is an ab-
stract object, but it is not a mathematical object. At different times
when the program is running, it may have different values, so it is not
inert. It may be in a subroutine, in which case it may not exist except
when the subroutine is running, so it is not eternal. And it can certainly
interact (in a sense that would not be easy to explicate) with physical
objects, for example if it keeps track of the height of a missile which is
programmed to explode if its height becomes less than 100 meters.

(b) Types of mathematical objects It is useful to distinguish be-
tween specific mathematical objects and variable ones.
Example 3 The number 3 is a specific mathematical object. So is the
sine function (once you decide whether you are using radians or degrees).
But this is subject to disagreement; see unique.
Example 4 If you are going to prove a theorem about functions, you
might begin, “Let f be a continuous function”, and in the proof refer
to f and various objects connected to f . From one point of view, this
makes f a variable mathematical object. (A logician would refer to
the symbol f as a variable, but mathematicians in general would not use
the word.) This is discussed further under variable.

(c) Difficulties A central difficulty for students beginning the study of
mathematics is being able to conceive of objects such as the sine function
as an object, thus reaching the third stage of the APOS theory. This is the
problem of encapsulation. Students also confuse a mathematical object
with the symbols denoting it. [Pimm, 1987] discusses this in children,
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conditional assertion 47
contrapositive 56
eternal 155
function 104
include 127
inert 155
integral 133
literalist 145
mathematical definition

66
mathematical education

150
mathematical object 155
only if 182
register 216

pages 17ff, and much of the mathematical education literature concerning
function mentions that problem, too, as well as the more severe problem
of encapsulation. See also Example 2 under literalist.

Some of the difficulties students have when reasoning about math-
ematical objects may have to do with the properties we regard them as
having. The difficulties students have with conditional sentences may
be related to the inert and eternal nature of mathematical objects dis-
cussed previously in this entry; this is discussed further under only if and
contrapositive.

Acknowledgments: I learned the idea that mathematical objects are
inert and eternal from [Azzouni, 1994]. The example of the hole in the
schedule comes from [Hersh, 1997b], page 73. Michael Barr made insight-
ful comments. See also [Sfard, 2000b] and [Sfard, 2000a].

mathematical register This is a special register of the English lan-
guage used for mathematical exposition: communicating mathematical
definitions, theorems, proofs and examples. Distinctive features of the
mathematical register of English include

a) Ordinary words used in a technical sense, for example, “function”,
“include”, “integral”, and “group”.

b) Technical words special to the subject, such as “topology”, “polyno-
mial”, and “homeomorphism”. Mathematicians are like

Frenchmen: whatever
you say to them they
translate into their own
language and forthwith
it is something entirely
different. – Johann
Wolfgang von Goethe

c) Syntactic structures used to communicate the logic of an argument
that are similar to those in ordinary English but with differences in
meaning. This list describes those structures discussed in this book:

all 13
always 14
and 15
arbitrary 18
be 24

but 32
collective plural 37
comma 39
conditional assertion 47
contrapositive 56

definite article 64
disjunction 75
existential quantifier 93
if 123
indefinite article 128
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multiple meanings 169
proof by instruction 208
semantics 224

mathematical register mathematical register

just 138
large 139
necessary 175
negation 175
only if 182

or 184
order of quantifiers 186
some 231
such that 238
sufficient 238

universal generalization 260
universal quantifier 260
vacuous implication 265

Any register belonging to a technical subject has items such as (1)
and (2). Some words like these are listed in this Handbook, including
words that cause special problems to students and words that are used
with multiple meanings.

The syntactic structures mentioned in (3) are a major stumbling
block for students. It appears to me that these structures make the
mathematical register quite unusual even among technical registers in
general in how far its semantics deviates from the semantics of ordinary

Mathematics is written
for mathematicians.
–Nicolaus Copernicus

English. (However, every tribe thinks it is “more different” than any
other tribe . . . ). Some of these syntactic structures involve expressions
that are used with meanings that are subtly different from their meanings
in ordinary English or even in the general scientific register.

References: There seem to be very few articles that study the math-
ematical register specifically. A brief overview is given by [Ferrari, 2002].
Some aspects are described in [Epp, 1999], [Pimm, 1987], [Pimm, 1988],
[Schweiger, 1994a], [Schweiger, 1994b], [Schweiger, 1996]. Steenrod [1975],
page 1, distinguishes between the mathematical register (which he calls
the “formal structure”) and other registers.

N. J. de Bruijn [1994] introduces the concept of the mathematical
vernacular. He says it is “the very precise mixture of words and formulas
used by mathematicians in their better moments”. He excludes some
things, for example proof by instruction ([de Bruijn, 1994], page 267),
which I would include in the mathematical register. He makes a proposal
for turning a part of the mathematical vernacular into a formal system
and in the process provides a detailed study of part of (what I call the)
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arity 19
definition 66
equivalence relation 85
intuition 161
mathematical definition

66
mathematical object 155
mental representation 161
relation 217
set 227
space 231

mathematical register as well as other types of mathematical writing.
Many mathematical texts include discussions of history, intuitive

descriptions of phenomena and applications, and so on, that are in a
general scientific register rather than the mathematical register. Some
attempts to classify such other types of mathematical writing may be
found in [Bagchi and Wells, 1998a], [de Bruijn, 1994], and in Steenrod’s
article in [Steenrod et al., 1975].

Reference: Much of the current discussion is drawn from [Bagchi and
Wells, 1998a].

Acknowledgments: Cathy Kessel.

The definition given here of mathemati-
cal structure is not a mathematical defi-
nition. To give a proper mathematical
definition of “mathematical structure” as
a set with structure results in an unintu-
itive and complicated construction.

mathematical structure A mathematical struc-
ture is a set (or sometimes several sets) with various
associated mathematical objects such as subsets, sets of
subsets, operations of various arities, and relations, all of
which must satisfy various requirements. The collection
of associated mathematical objects is called the struc-
ture and the set is called the underlying set.

Two examples of definitions of mathematical structures may be found
under equivalence relation. The examples given there show that the same
structure can have two very different definitions.
Example 1 A topological space is a set S together with a set T of
subsets of S satisfying certain requirements.

Presenting a complex mathematical idea as a mathematical structure
involves finding a minimal set of associated objects (the structure) and
a minimal set of conditions on those objects from which the theorems
about the structure follow. The minimal set of objects and conditions
may not be the most important aspects of the structure for applications
or for one’s mental representation. See definition.
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in particular 126
input 106
mathematical object 155
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space 231
time 251

mathematical structure mean

Example 2 A function is commonly defined as a set of ordered pairs
with a certain property. A mathematician’s picture of a function has
many facets: how it models some covariation (for example, velocity), its
behavior in the limit, algorithms for calculating it, and so on. The set of
ordered pairs is not what first comes to mind, except perhaps when one
is thinking of the function’s graph.

The word “structure”, sometimes in the phrase “mathematical struc-
ture”, is also used to describe the way certain types of mathematical ob-
jects are related to each other in a system. This sense is similar to the
meaning of schema.
Example 3 One could investigate the structure of the solutions of a
particular type of differential equation.

Citations: (179), (364), (368), (406). See also space.

maximize To maximize a function is to find values of its argument
for which the function has a maximum. Minimize is used similarly.

The metaphor behind this usage seems to be: vary the input over
time until you find the largest value. Citation: (135), (247), (316).

mean

1. To form a definition
“Mean” may be used in forming a definition. Citation: (3), (173).
Example 1 “To say that an integer is even means that it is divisible
by 2.”

2. Implies
To say that an assertion P means an assertion Qmay mean that P implies
Q. Citation: (372).
Example 2 “We have proved that 4 divides n. This means in particular
that n is even.”
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cognitive dissonance 36
concept 41
definition 66
element 79
example 89
extrapolate 95
generalization 112
mathematical discourse 1
mathematical education

150
metaphor 162
prototype 210
radial concept 211
schema 17
symbol 240

Remark 1 Of course, mean is also a technical term (the average).

member See element.

mental representation One’s mental representation (also “in-
ternal representation”) of a particular mathematical concept is the cog-
nitive structure associated with the concept, built up of metaphors, men-
tal pictures, examples, properties and processes related to each other by
conceptual blending and in other ways.

The mental representation is called the concept image by many
writers in mathematical education. The definition just given is in fact
a modification of the definition of concept image given by Tall [1992b],
page 7. The way human concepts are organized, as described by cogni-
tive scientists such as George Lakoff [Lakoff, 1986], includes much of the
structure of the mental representation of the concept in my sense. This is
discussed further under concept, prototype, radial concept and schema.

I have known both logicians and com-
puter scientists (but not many, and no
mathematicians) who deny having any
nonsymbolic mental representations of
mathematical concepts. Some of them
have claimed to be entirely syntax direct-
ed; all they think of is symbols. Perhaps
some of these colleagues do have mental
representations in the broad sense, but
not pictorial or geometric ones. Possibly
the phrase “mental image” should be re-
stricted to cases where there is geometric
content.

In written or spoken mathematical discourse, discus-
sion of some aspect of the mental representation of a con-
cept is often signaled by such phrases as intuitively or
“you can think of . . . ”. Citation: (181).

(a) Mental representations and definitions The
contrast between a student’s mental representation of a
concept and its mathematical definition is a source of cog-
nitive dissonance. Students may avoid the disparity by
ignoring the definition. The disparity comes about from
inappropriate learning strategies such as generalization
and extrapolation.

Professional mathematicians who are learning a sub-
ject know they must adjust their mental representation to the definition.
In contrast, in doing research they often quite correctly adjust the defini-
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mental representation metaphor

tion instead of their mental representation. That is a primary theme of
[Lakatos, 1976].

References: Many articles in the book [Tall, 1992a] discuss mental
representation (under various names often including the word “image”) in
depth, particularly [Tall, 1992b], [Dreyfus, 1992] and [Harel and Kaput,
1992]. See also [Dieudonné, 1992] V.6, page 163, [Kieran, 1990], [Meel,
1998] (expecially pages 168–170), [Piere and Kieren, 1989], [Presmeg,
1997a], [Thompson and Sfard, 1998], [Tall and Vinner, 1981], [Wells,
1995], [Wheatley, 1997].Half this game

is 90% mental.
–Yogi Berra

Mental imagery is discussed from a philosophical point of view, with
many references to the literature, by Dennett [1991], Chapter 10. The
book [Lakoff, 1986] is concerned with concepts in general, with more of
a linguistic emphasis.

A sophisticated mental representation of an important concept will
have various formalisms and mental pictures that fit together by concep-
tual blending or metaphor. [Lakoff and Núñez, 1997] regard metaphor as
central to understanding what mathematics is all about.

See also aha, conceptual, mathematical object, Platonism and rep-
resentation.The folly of mistaking

a paradox for a dis-
covery, a metaphor for
a proof, a torrent of
verbiage for a spring
of capital truths, and
oneself for an ora-
cle, is inborn in us.

–Paul Valery

metaphor A metaphor is an implicit conceptual identification of part
of one type of situation with part of another. The word is used here to
describe a type of thought configuration, a form of conceptual blend. The
word is also used in rhetoric as the name of a type of figure of speech – a
linguistic entity which of course corresponds to a conceptual metaphor.
(Other figures of speech, such as simile and synecdoche, correspond to
conceptual metaphors as well.)

Lakoff and Núñez [1997], [1998], [2000] divide metaphors in mathe-
matics into two fundamental types: grounding metaphors, based on
everyday experience, and linking metaphors that link one branch of
mathematics to another.
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conceptual blend 45
mathematical definition
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159
name 171
set 227
snow 229
space 231

Example 1 The interior of a closed curve or a sphere is called that
because it is like the interior in the everyday sense of a bucket or a house.
This is a grounding metaphor. It also illustrates the fact that names in
mathematics are often based on metaphors. The fact that the boundary
of a real-life container has thickness, in contrast to a closed curve or a
sphere, illustrates my description of a metaphor as identifying part of
one situation with part of another. One aspect is emphasized; another
aspect, where they may differ, is ignored.

Example 2 The representation of a number as a location on a line, and
more generally tuples of numbers as locations in a space, links numbers
to geometry. The primitive concept of line is grounded in the everyday
notion of path.
Example 3 The insight in the previous example got turned around in
the late nineteenth century to create the metaphor of space as a set of
points. Topology, differential geometry, and other branches of mathemat-
ics were invented to turn this metaphor into a mathematical definition
that made the study of spaces more rigorous but also less intuitive. This
is discussed further under space.

See also conceptual blend, snow and the sidebar under mathematical
structure.
Example 4 The name “set” is said to be grounded in the metaphor of
“set as container”. This has at least two problems caused by the fact that
some aspects of real world containers don’t carry over to the mathematics.
For one thing, the intersection of two sets A and B is defined to be the
set that contains those elements that are in both A and B. Thus an
element of A ∩ B is also in A and in B. In real life, the elements are in
only one container at a time. Another discrepancy is that, for example,
your wallet may contain a credit card, and the wallet may be contained
in your pocket. In normal conversation, you would say the credit card is
in your pocket. In mathematics, however, ε is not transitive. I have seen
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metaphor metaphor

both these gaps cause trouble for students.
The concept of set may indeed have been historically grounded in

the concept of container. However, that metaphor has never played much
part in my thinking. For me, the set is a mathematical object distinct
from its elements but completely determined by them. It is the unique
such object of type “set”. I visualize the set as a node connected by a
special relationship to exactly each of its elements and nothing else.

The description of a set as for example {1, 2, 3} is of course also
determined by the elements of the set, but the description is a linguistic
object, not a mathematical one. I realize that in mathematical logic,
linguistic objects are modeled by mathematical objects; in particular, one
could have “{1, 2, 3}” occur as a term in a logical theory. But linguistic
objects are clearly not the same things as mathematical objects, and those
who teach logic should make it clear that their terms are mathematical
models of the linguistic objects, not identical with them.
Example 5 In college level mathematics we have another metaphor:
set as object which can be the subject of operations. This is a linking
metaphor (set as element of an algebra). This causes difficulties for stu-
dents, particularly “set as element of a set”; see object-process duality.
This is discussed in [Hazzan, 1999].
Example 6 One metaphor for the real line is that it is a set of points
(as in Example 3.) It is natural to think of points as tiny little dots;
that is the way we use the word outside mathematics. This makes it
natural to think that to the left and right of each point there is another
one, and to go on and wonder whether two such neighboring points touch
each other. It is valuable to think of the real line as a set of points, but
the properties of a “line of points” just described must be ignored when
thinking of the real line. In the real line there is no point next to a
given one, and the question of two points touching brings inappropriate
physical considerations into an abstract structure.
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This example comes from [Lakoff and Núñez, 2000]. See also space.

Difficulties Most important mathematical concepts are based on sev-
eral metaphors, some grounding and some linking; for examples see the
discussion under function. These metaphors make up what is arguably
the most important part of the mathematician’s mental representation of
the concept. The daily use of these metaphors by mathematicians cause
enormous trouble to students, because each metaphor provides a way
of thinking about an A as a kind of B in some respects. The student
naturally thinks about A as a kind of B in inappropriate respects as well.

Students also notoriously have difficulty in switching between differ-
ent suitable metaphors for the same object; possessing that ability is a
reliable sign of a successful student of mathematics.

The discussion in Example 6 is the tip of an iceberg. It may be that
most difficulties students have, especially with higher-level mathematics
(past calculus) are based on not knowing which aspects of a given meta-
phor are applicable in a given situation, indeed, on not being consciously
aware that one has to restrict the applicability of the mental pictures that
come with a metaphor.

Why not tell them? It would be appropriate for textbooks to devote
considerable space to how mathematicians think of each concept, com-
plete with a discussion of which aspects of a metaphor are apt and which
are not.

References: See [Lanham, 1991] for figures of speech and [Lakoff and
Núñez, 2000], Chapter 2, for an introduction to metaphors in cognitive
science. See also [Bullock, 1994], [English, 1997], [Lakoff and Núñez,
1997], [Lakoff and Núñez, 1998], [Mac Lane, 1981], [Núñez, Edwards and
Matos, 1999], [Núñez, 2000], [Núñez and Lakoff, 1998], [Pimm, 1988],
[Sfard, 1994], [Sfard, 1997].

minimize See maximize.
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minus mnemonic

minus The word minus can refer to both the binary operation on
numbers, as in the expression a − b, and the unary operation of taking
the negative: negating b gives −b. In current usage in American high
schools, a − b would be pronounced “a minus b”, but −b would be pro-
nounced “negative b”. The older usage for −b was “minus b”. College
students are sometimes confused by this usage from older college teachers.

Difficulties In ordinary English, if you subtract from a collection you
make it smaller, and if you add to a collection you make it bigger. In
mathematics, adding may also refer to applying the operation of addition;
a + b is smaller than a if b is negative. Similarly, subtracting b from
a makes the result bigger if b is negative. Both these usages occur in
mathematical writing.

Students sometime assume that an expression of the form −t must
be negative. This may be because of the new trend of calling it “negative
t”, or because of the use of the phrase “opposite in sign”. Citations:
(305), (145), (290). Reference: [Hersh, 1997a].

mnemonic A mnemonic identifier is one that suggests what it is
naming.
Example 1 Mathematical mnemonic identifiers usually consist of the
initial letter of the word the identifier suggests, as f for a function, G for
a group, and so on.
Example 2 Category theorists use “Ab” for the category of Abelian
groups.

See [Bagchi and Wells, 1998a] and predicate symbol.
Acknowledgments: Michael Barr.

166



model model

abstraction 7
algorithm 9
expression 241
function 104
mathematical discourse 1
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model

1. Model as mathematical object
In one of its uses in mathematical discourse, a model, or mathematical
model, of a phenomenon is a mathematical object that represents the
phenomenon. In fact, the mathematical object is often called a repre-
sentation of the phenomenon. The phenomenon being modeled may be
physical or another mathematical object. Models are to be

used, not believed.
–Henri Theil

Example 1 A moving physical object has a location at each instant;
this may be modeled by a function. One then observes that there is a
relation between the derivative of the function and the average velocity
of the physical object that allows one to define the instantaneous velocity
of the object.
Example 2 A “word problem” in algebra or calculus texts is an in-
vitation to find a mathematical model of the problem (set it up as a
mathematical expression using appropriate operations) and then solve
for the appropriate variable. This example is of course closely related to
Example 1.
Example 3 Mathematical logic has a concept of model of a theory;
a theory is a mathematical object abstracting the notion of structure
subject to axioms. A model of the theory is then a set valued function In theory, there is no

difference between theory
and practice. But in
practice, there is.
–Jan van de Snepscheut

that preserves both the mathematical and the inferential structure of the
theory.

Example 4 In computing science, a mathematical model of algorithm
is defined. It may also be called an algorithm (but other names are used
in some texts).

As the examples just discussed illustrate, a model and the thing it
models are often called by the same name. Thus one refers to the velocity
of an object (a physical property) and one also says that the derivative of
the velocity is the acceleration. In fact a mathematical model is a special

167



binary operation 183
metaphor 162
number theory 180
up to 265

model modulo

kind of metaphor (see Example 3 under metaphor), and to refer to the
mathematical model as if it were the thing modeled is a normal way of
speaking about metaphors. It would be worth investigating whether and
how this confuses students.

2. Physical model
A mathematical object may also have a physical model.
Example 5 A Möbius strip may be defined mathematically, and then
modeled by taking a rectangular strip of paper, twisting it around
halfway, and gluing the ends together.

Citations: (218), (275), (367), (411).

modulo The phrase “x is the same as y modulo ∼” means that x and
y are elements of some set, ∼ is an equivalence relation on the set, and
x ∼ y. One would also say that x is the same as y up to ∼.

This is also used colloquially in phrases such as “The administra-
tion kept my salary the same modulo [or mod] inflation”. Presumably
the equivalence relation here is something like: “One dollar in 2002 is
equivalent to $1.02 in 2003.”

In number theory one writes a ≡ b mod n, pronounced “a is equiva-
lent to b mod n”, to mean that a− b is divisible by n, for a, b, n integers.
Thus 20 ≡ 11 mod 3. In this usage, the symbol “mod” occurs as part of
a three-place assertion.

Many computer languages use an expression such as “a mod n” (the
syntactic details may differ) to mean the remainder obtained when a is
divided by n; they would write 20 mod 3 = 2. In this usage, mod is a
binary operation.

Mathematics majors often enter a number theory class already fa-
miliar with the computer usage, to their resultant confusion. Citations:
(75), (223), (222), (378)
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category 35
constructivism 52
continuum hypothesis 56
domain 77
field 97
graph 116
integral 133
lazy evaluation 77
name 171
symbol 240
symbolic language 243
trigonometric functions

254

multiple meanings Some names and symbols in the mathematical
register have more than one meaning.
Example 1 I recall as a graduate student being puzzled at the two
meanings of domain that I then knew, with the result that I spent a
(mercifully short) time trying to prove that the domain of a continuous
function had to be a connected open set.

Following is a list of entries in this Handbook of words and symbols
that have two or more distinct meanings. I have generally restricted this
to cases where students are likely to meet both usages by the time they
are first year graduate students in mathematics. See also lazy evaluation,
trigonometric functions and symbolic language.

algebra 9
algorithm 9
argument 19
bracket 32
category 35
composite 40
constructivism 52
contain 52
continuous 54
continuum hypothesis 56
definition 66
divide 76
domain 77
elementary 79
equivalent 86
family 97

field 97
formal 99
function 106
graph 116
I 120
identity 122
if 123
image 125
in general 126
injective 131
integral 133
large 139
logarithm 148
map 150
minus 166
model 167

modulo 168
or 184
order 185
parenthesis 192
permutation 197
power 202
prime 203
proposition 210
range 213
result 219
revise 219
sign 229
subscript 235
superscript 238
tangent 247
term 248

It is a general phenomenon that a particular phrase may mean dif-
ferent things in different branches of mathematics or science. Some of
the words listed above fit this, for example category, constructivism, con-
tinuum hypothesis, domain, field, graph, integral. Of course, there are
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behaviors 25
college 37
contain 52
context 52
element 79
empty set 81
equivalent 86
identity 122
in your own words 127
limit 144
mathematical register 157
parenthesis 192
superscript 238

multiple meanings myths

innumerable examples of others like this in mathematics or in any part of
science. However, some of the words listed above can occur in both their
meanings in the same document, for example contain, equivalent, identity,
and the notations (a, b) (see parenthesis) and fn(x) (see superscript).

must One frequently finds “must be” used in the mathematical register
when “is” would give the same meaning. It is used with verbs other than
“be” in the same way. I presume this is to emphasize that the fact being
asserted can be proved from facts known in the context.

Other uses of “must” in mathematical discourse are generally exam-
ples of the way the words is used in ordinary discourse.
Example 1 “If m is a positive integer and 2m − 1 is prime, then m
must be prime.”
Example 2 “Let C = {1, 2, 3}. If C ⊂ A ∪ B, then one of A and B
must contain two elements of C.” Citation: (10), (199), (294), (295).

myths Students in mathematics courses may have false beliefs about
the subject which are perpetuated explicitly from class to class in their
discussions with each other in attempting to explain a concept “in their
own words”. Some of the myths, sadly, are perpetuated by high school
teachers. I list two here; it would be helpful to give them names as
discussed under behaviors. Another example is given under element.

(a) The empty set Many students in my discrete math classes fre-
quently believe that the empty set is an element of every set. Readers of
early versions of this book have told me that some high school teachers
and even some college-level mathematicians believe this myth.

Other problems with the empty set are discussed in the entry about
them.

(b) Limits The myth that a sequence with a limit “approaches the
limit but never gets there” is discussed under limit.
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attitudes 22
cognitive dissonance 36
determinate 74
formal analogy 100
identifier 120
mathematical object 155
metaphor 162
multiple meanings 169
natural number 175
semantic contamination

224
symbol 240
variate 272

See attitudes.

N The symbol N usually denotes the set of natural numbers, in one or
another of the meanings of that phrase. Citation: (124), (104).

name The name of a mathematical object is an English word or phrase
used as an identifier of the object. It may be a determinate identifier or
variate. It should be distinguished from a symbol used as an identifier.
The distinction between name and symbol is discussed under identifier.

Common words as names A suggestive name is a a common
English word or phrase, chosen to suggest its meaning. Thus it is a
metaphor.
Example 1 “Slope” (of a curve), or “connected subspace” (of a topo-
logical space). See the discussion of suggestive names in [Wells, 1995] and
[Bagchi and Wells, 1998a].

Learned names A name may be a new word coined from (usually)
Greek or Latin roots. Such an identifier is a learned name. (Pronounce
“learned” with two syllables.)
Example 2 “Homomorphism”.

Personal names A concept may be named after a person.
Example 3 L’Hôpital’s Rule, Hausdorff space.

Typography A mathematical object may be named by the typo-
graphical symbol(s) used to denote it. This is used both formally and in
on-the-fly references. Citations: (44), (105), (414).

Difficulties The possible difficulties students may have with common
words used as identifiers are discussed under formal analogy and seman-
tic contamination. See also cognitive dissonance, names from other lan-
guages and multiple meanings.
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References: This discussion is drawn from [Bagchi and Wells, 1998b].
[Hersh, 1997a] gives many examples of dissonance between the mathemat-
ical meaning and the ordinary meaning of mathematical words.

namely Used to indicate that what follows is an explication (often a
repetition of the definition) of what precedes.
Example 1 “Let G be an Abelian group, namely a group whose mul-
tiplication is commutative.”
Example 2 “We now consider a specific group, namely S3”.

The word is also used after an existence claim to list those things
that are claimed to exist. (Of course, this is a special case of explication.)
Example 3 “12 has two prime factors, namely 2 and 3.”

Citations: (271), (272), (297), (309). (383).

names from other languages Mathematicians from many coun-
tries are mentioned in mathematical discourse, commonly to give them
credit for theorems or to use their names for a type of mathematical
object. Two problems for the student arise: Pronunciation and variant
spellings.

(a) Pronunciation During the twentieth century, it gradually became
an almost universal attitude among educated people in the USA to stig-
matize pronunciations of words from common European languages that
are not approximately like the pronunciation in the language they came
from, modulo the phonologies of the other language and English. This
did not affect the most commonly-used words. The older practice was
to pronounce a name as if it were English, following the rules of English
pronunciation.

For example, today many mathematicians pronounce “Lagrange”
the French way, and others, including (in my limited observation) most
engineers, pronounce it as if it were an English word, so that the second
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syllable rhymes with “range”. I have heard people who used the second
pronunciation corrected by people who used the first (this happened to me
when I was a graduate student), but never the reverse when Americans
are involved.

The older practice of pronunciation
evolved with the English language: In
1100 AD, the rules of pronunciation of
English, German and French, in particu-
lar, were remarkably similar. Over the
centuries, the sound systems changed,
and Englishmen, for example, changed
their pronunciation of “Lagrange” so
that the second syllable rhymes with
“range”, whereas the French changed it
so that the second vowel is nasalized (and
the “n” is not otherwise pronounced) and
rhymes with the “a” in “father”.

Forty years ago nearly all Ph.D. students had to show
mastery of two foreign languages; this included pronun-
ciation, although that was not emphasized. Today the
language requirements in the USA are much weaker, and
educated Americans are generally weak in foreign lan-
guages. As a result, graduate students pronounce for-
eign names in a variety of ways, some of which attract
ridicule from older mathematicians. (Example: the pos-
sibly apocryphal graduate student at a blackboard who
came to the last step of a long proof and announced, “Vi-
ola!”, much to the hilarity of his listeners.) There are
resources on the internet that allow one to look up the
pronunciation of common foreign names; these may be found on the web-
site of this handbook.

In spite of the fact that
most of the transliterations
of “Qebyxev ” show the
last vowel to be an “e”,
the name in Russian is
pronounced approximately
“chebby-SHOFF”, accent on
the last syllable.

(b) Transliterations from Cyrillic Another problem faced by
the mathematics graduate student is the many ways of transliterat-
ing foreign names. For example, name of the Russian mathematician
most commonly spelled “Chebyshev” in English is also spelled Cheb-
yshov, Chebishev, Chebysheff, Tschebischeff, Tschebyshev, Tscheb-
yscheff and Tschebyschef. (Also Tschebyschew in papers written in
German.) The correct spelling of his name is Qebyxev, since he
was Russian and Russian used the Cyrillic alphabet.

The only spelling in the list above that could be said to have some
official sanction is Chebyshev, which is used by the Library of Congress.
This is discussed by Philip J. Davis in [1983]. Other citations: (127),
(136), (151), (158), (197), (366).
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(c) German spelling and pronunciation The German letters “ä”,
“ö” and “ü” may also be spelled “ae”, “oe” and “ue” respectively. The
letters “ä”, “ö” and “ü” are alphabetized in German documents as if they
were spelled “ae”, “oe” and “ue”. It is far better to spell “Möbius” as
“Moebius” than to spell it “Mobius”.

The letter “ö” represents a vowel that does not exist in English;
it is roughly the vowel sound in “fed” spoken with pursed lips. It is
sometimes incorrectly pronounced like the vowel in “code” or in “herd”.
Similar remarks apply to “ü”, which is “ee” with pursed lips. The letter
“ä” may be pronounced like the vowel in “fed”.

The German letter “ß” may be spelled “ss” and often is by Swiss
Germans. Thus Karl Weierstrass spelled his last name “Weierstraß”.
Students sometimes confuse the letter “ß” with “f” or “r”. In English
language documents it is probably better to use “ss” than “ß”.

Another pronunciation problem that students run into are the com-
binations “ie” and “ei”. The first is pronounced like the vowel in “reed”
and the second like the vowel in “ride”. Thus “Riemann” is pronounced
REE-mon.

narrative style The narrative style of writing mathematics is a style
involving infrequent labeling; most commonly, the only things labeled are
definitions, theorems, proofs, and major subsections a few paragraphs to
a few pages in length. The reader must deduce the logical status of each
sentence from connecting phrases and bridge sentences. This is the way
most formal mathematical prose is written.

Difficulties Students have difficulties of several types with narrative
proofs.

• The proof may leave out steps.
• The proof may leave out reasons for steps.
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• The proof may instruct the reader to perform a calculation which
may not be particularly easy. See proof by instruction.

• The proof may not describe its own structure, which must be deter-
mined by pattern recognition. See proof by contradiction.

• The proof may end without stating the conclusion; the reader is
expected to understand that the last sentence of the proof implies
the conclusion of the theorem via known facts. Example 5 under
pattern recognition gives a proof that two sides of a triangle are
equal that ends with “Then triangle ABC is congruent to triangle
ACB . . . ”; the reader must then see that the congruence of these
two triangles implies that the required sides are the same.
Contrast labeled style. References: This style is named and discussed

in [Bagchi and Wells, 1998a]. See [Selden and Selden, 1999].

natural number For some authors, a natural number is a positive
integer. For others it is a nonnegative integer, and for others it is any
integer. It appears to me that the most common meaning these days is
that a natural number is a nonnegative integer. Citation: (124), (104),
(191), (311).
Remark 1 As the citations show, the disagreement concerning the
meaning of this phrase dates back to the nineteenth century.

necessary Q is necessary for P if P implies Q. Examples are given
under conditional assertion.

The motivation for the word “necessary” is that the assertion “P
implies Q” is logically equivalent to “not Q implies not P” (see contra-
positive), so that for P to be true it is necessary in the usual sense of the
word for Q to be true.

negation The negation of an assertion P is an assertion that denies
P . In some circumstances that is the effect of the English word not. In
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negation negation

symbols, “not P” may be written ¬P , −P , or P̄ . Citation: (383).

(a) Negation of quantified statements If P (x) is a predicate possi-
bly containing the variable x, then the negation of the assertion ∀xP (x) is
∃x¬P (x). Similarly, the negation of the assertion ∃xP (x) is (∀x)¬P (x).

Both of these rules cause difficulty in translating to and from English.
It is my experience that many students need to be explicitly taught these
rules and how to express them in English.
Example 1 The negation of the assertion

“All multiples of 4 are even.”
is not

“All multiples of 4 are not even.”
but rather

“Multiples of 4 are not all even.”
or, equivalently,

“Not all multiples of 4 are even.”
This illustrates the fact that simply putting a “not” into a sentence

may very well give the wrong results.
Example 2 In colloquial English as spoken by many people (including
students!), the sentence

“All multiples of 3 are not odd.”
means that some multiples of 3 are not odd (a true statement). A similar
remark holds for “Every multiple of 3 is not odd.” I believe that most
mathematicians would interpret it as meaning that no multiple of 3 is
odd (a false statement). See esilism.

This phenomenon quite possibly interferes with students’ under-
standing of negating quantifiers, but I have no evidence of this.

“Negation” is also used sometimes to denote the operation of taking
the negative of a number. Citation: (297).
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negative See minus.

never An assertion about a variable mathematical object of the form
“A is never B” means that for all A, A is not B. An assertion of that
form when A is a function means that no value of A is B.
Example 1 “A real number never has a negative square.”
Example 2 “The sine function is never greater than 1.”

See also always, time and universal quantifier
Citations: (114), (199), (331).

not See negation.

nonnegative A real number r is nonnegative if it is not negative,
in other words if r ≥ 0. Citations: (124), (282).
Remark 1 In an ordered set containing an element denoted 0, the
statement r ≥ 0 and the statement “not r < 0” are not equivalent if
the set is not totally ordered.

notation Notation is a system of signs and symbols used as a repre-
sentation of something not belonging to a natural language. The symbolic
language of mathematics is a system of notation. See establish notation.

noun phrase A noun phrase in English consists of these constituents
in order: a determiner, some modifiers, a noun called the head of the
noun phrase, and some more modifiers. The only thing in this list that
must be there is the noun. A noun phrase typically describes or names
something.

The determiner may be an article or one of a small number of other
words such as “this”, “that”, “some”, and so on. The modifiers may be
adjectives or certain types of phrases or clauses.
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noun phrase now

A noun phrase may occupy one of a number of different syntactic
positions in a sentence, such as the subject, direct or indirect object,
predicate nominative, object of a preposition, and so on.
Example 1 This is a noun phrase:

The︸︷︷︸
Det

little brown︸ ︷︷ ︸
Modifiers

fox︸︷︷︸
Noun

in the bushes︸ ︷︷ ︸
Modifier

In this noun phrase, the head is “fox”. The word “bushes” is also a
noun but it is not the head; it is a constituent of a modifying phrase.

This description omits many subtleties. See definite description and
indefinite description.

Reference: [Greenbaum, 1996].

now

(a) Introduce new notation “Now” may indicate that new notation
or assumptions are about to be introduced. This is often used to begin
a new argument. This use may have the effect of canceling assumptions
made in the preceding text. Citation: (4), (94), (109), (200), (285).
Example 1 “We have shown that if x ∈ A, then x ∈ B. Now suppose
x ∈ B. . . . ”

(b) Bring up a fact that is needed “Now” may be used to point out
a fact that is already known or easily deduced and that will be used in
the next step of the proof.
Example 2 In a situation where we already know that x = 7, one could
say:

“ . . . We get that x2 + y2 = 100. Now, x is 7, so y =
√

51.”
This is similar to the second meaning of but.

Citation: (16).
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natural number 175
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type 257

(c) “Here” “Now” may simply refer to the point in the text at which
it occurs. The metaphor here is that the reader has been reading straight
through the text (unlike a grasshopper) and at the current moment she
sees this word “now”. As such it does not really add anything to the
meaning. Citation: (328), (360).
Remark 1 The three usages described here are not always easy to dis-
tinguish.

Acknowledgments: Atish Bagchi

number Numbers in mathematics are usually written in base-10 no-
tation, although most students these days are familiar with other bases,
particularly 2, 8 and 16.

(a) Type of number The word number in most mathematical writing
is used for one of the types natural number (whatever it means), integer,
rational number, real number or complex number. A piece of discourse
will commonly establish right away how the word is being used. If it does
not, it is commonly because the type is clear from context, for example
because it is being used to refer to the size of a collection. Occasionally,
the context does not immediately make the usage clear, though further
reading usually determines it. In the citations I have found where the
context does not immediately make the usage clear, it always turns out
to be real. Citations: (114), (211), (239).

(b) Variables and base-10 notation The syntax for the usual base-
10 notation and for variables of type integer (or other type of number)
are different in ways that sometimes confuse students.
Example 1 Any nonzero number in base-10 notation with a minus sign
in front of it is negative. This may cause the student to assume that the
number represented by −n (for example) is negative. Of course, it need
not be, for example if n = −3.
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number object-process duality

Example 2 If x and y are numerical variable, xy is their product. How-
ever, the juxtaposition of numbers in base-10 notation does not represent
their product: 32 is not the product of 3 times 2. This causes some dif-
ficulty, perhaps mostly in high school. It is widely believed that college
students sometimes cancel the x in expressions such as

sinx
cosx

but I have not met up with this phenomenon myself.
See also item (i) under behaviors.

number theory The phrase number theory refers to the study of
the integers, particularly with respect to properties of prime numbers.
Citations: (87), (191), (382).

object See APOS and mathematical object.

object-process duality Mathematicians thinking about a mathe-
matical concept will typically hold it in mind both as a process and an
object. As a process, it is a way of performing mathematical actions in
stages. But this process can then be conceived as a mathematical object,
capable for example of being an element of a set or the input to another
process. Thus the sine function, like any function, is a process that as-
sociates to each number another number, but it is also an object which
you may be able to differentiate and integrate.

This discussion makes it sound as if the
mathematician switches back and forth
between process and object. In my own
experience, it is more like holding both
conceptions in my mind at the same
time. See [Piere and Kieren, 1989].

The mental operation that consists of conceiving of
a process as an object is called encapsulation, or some-
times reification or entification. Encapsulation is not a
one-way process: while solving a problem you may think
of for example finding the antiderivative of the sine func-
tion, but you are always free to then consider both the

sine function and its antiderivative as processes which can give values
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– and then you can conceive of them encapsulated in another way as a
graph in the xy plane.

The word procept was introduced in [Gray and Tall, 1994] to denote
a mathematical object together with one or more processes, each with an
expression that encapsulates the process and simultaneously denotes the
object. Thus a mathematician may have a procept including the number
6, expressions such as 2 + 3 and 2 · 3 that denote calculations that result
in 6, and perhaps alternative representations such as 110 (binary). This
is similar to the idea of schema. See also APOS and semantics.

References: [Gray and Tall, 1994], [Sfard, 1991], [Sfard, 1992] (who
gives a basic discussion of mathematical objects in the context of func-
tions), [Carlson, 1998], [Dubinsky and Harel, 1992], [Hersh, 1997b], pages
77ff, [Thompson and Sfard, 1998].

obtain Most commonly, “obtain” means “get”, as in ordinary English.
Example 1 “Set x = 7 in x2 + y2 = 100 and we obtain y =

√
51.”

Citations: (33), (147).
In the mathematical register, “obtain” may also be used in much the

same way as hold. This usage appears uncommon.
Example 2 “Let G be a group in which g2 = e obtains for every ele-
ment g.”

Citations: (153), (428).
Acknowledgments: Atish Bagchi.

on
1. Function on domain
A function F is on a set A, or defined in, defined on or defined over
A, if its domain is A. Citations: (54), (84), (403).

2. Structure on underlying set
A structure is on A if its underlying set is A. Citation: (128).
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3. Set where condition is satisfied
A mathematical structure is “P on A”, where P is some condition, if the
structure has a parameter that varies over some set containing A, and P
is true of the structure if the parameter is in A.
Example 1 “x2−1 is positive on the interval [2, 3].” Citations: (143),
(275).

4. On a figure
A point p is on a set if it is in the set. This usage seems to be restricted
to geometric figures.
Example 2 “The point ( 1√

2
, 1√

2
) is on the unit circle.” Citations:

(155), (172).

one to one Injective.

only if In the mathematical register, if P and Q are assertions, “P
only if Q” means P implies Q. The phrase “only if” is rarely used this
way in ordinary English discourse.
Example 1 The sentence

“4 divides n only if 2 divides n”
means the same thing as the sentence

“If 4 divides n, then 2 divides n.”
Example 2 The sentence

“I will carry my umbrella only if it rains.”
does not mean the same thing as

“If I carry my umbrella, it will rain.”
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Difficulties Students often get sentence in Example (1) backward, tak-
ing it to mean

(2 divides n) ⇒ (4 divides n)
Some of them flatly refuse to believe me when I tell them the correct inter-
pretation. This is a classic example of semantic contamination, a form
of cognitive dissonance – two sources of information appear to contradict
each other, in this case the professor and a lifetime of intimate experience
with the English language, with the consequence that one of them is re-
jected or suppressed. It is hardly suprising that some students prefer to
suppress the professor’s apparently unnatural and usually unmotivated
claims.

McCawley [1993] also rejects the equivalence of “A only if B” with
“If A, then B”, for ordinary discourse, but in the mathematical register
the sentence must be taken to be equivalent to the others. This difference
may have come about because conditional assertions in ordinary English
carry connotations of causality and time dependence. Because mathe-
matical objects are thought of as inert and eternal, the considerations
that distinguish the two sentences in the example do not apply to state-
ments such as the sentence in Example (1); the truth of the statement is
determined entirely by the truth table for implication.

The remarks in the preceding paragraph may explain some of the
difficulties students have with the contrapositive, as well.

onto Surjective.

operation Used to refer to a function of two variables that is written
in infix notation. May be called a binary operation
Example 1 The operation of addition on the set of real numbers is a
binary operation.

Citation: (273). Some authors use “operation” in certain contexts
to refer to any function. Citation: (385).
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operator or

operator Operator means function. Most authors seem to use “op-
erator” only in certain restricted situations. It is often used when the
domain is a set of functions or when the operator is a function from a
space to itself. Citation: (72). (But a “linear operator” can be between
different spaces.)

The text [Grassman and Tremblay, 1996] uses “operator” to refer to
a binary operation used in infix notation (see the discussion on pages 104
through 108). The text [Gries and Schneider, 1993] takes a similar ap-
proach (page 7 and page 387). The word is used to refer both to the
symbol and to the function. This usage may be associated with authors
having a background in computing science or logic.

Acknowledgments: Atish Bagchi and Michael Barr.

or Or placed between two assertions produces the disjunction of the
assertions.
Example 1 “x is nonnegative or x < 0”.

Terminology In mathematical logic, “or” may be denoted by “∨” or
“+”.

Difficulties As the truth table for disjunction indicates, “P orQ” allows
both P and Q to be true, although they cannot both be true in the
example just given. The assertion

“ x > 0 or x < 2 ”
is true for any real number x. A student may feel discomfort at this
assertion, perhaps because in many assertions in conversational English
involving “or” both cases cannot happen. Authors often emphasize the
inclusiveness by saying something such as “or both”.

See [Hersh, 1997a] for more examples. Citation: (75), (91), (302).
Students also have trouble negating conjunctions and disjunctions.

A statement such as
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“x is not (P or Q)”
means

“x is not P and x is not Q.”
So does

“x is neither P nor Q.”
See also both and Example 3 under yes it’s weird.

or equivalently This phrase means that what follows is equivalent
to what precedes. It is usually used when the equivalence is easy to see.
This usage has no relation to the connective “or”. Citation: (47).

order

1. Ordering
“Order” may be a variant of “ordering”.
Example 1 “Let ≤ be the usual order on the real numbers.” Citation:
(104), (242).

2. Cardinality
The order of a structure such as a group is the cardinality of (the un-
derlying set of) the structure. Citations: (369). But the meaning can be
more devious than that: See (250).

3. Parameter
The word “order” may refer to a nonnegative integer parameter or func-
tion of the structure. Of course, the cardinality meaning just mentioned
is a special case of this.
Example 2 The order of a differential equation is the highest deriva-
tive occurring in the equation.
Remark 1 The word degree is also used in this way, but the uses are
not interchangeable. Indeed, a structure may have both an order and a
degree, for example a permutation group. Citations: (192), (356).
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order of quantifiers When two quantifiers occur one after the other
in a mathematical statement, a dependence between the variables they
bind may be suggested, depending on the order of occurrence of the quan-
tifiers.
Example 1 The statement

∀x∃y(xy = e)

about elements x and y of a group with identity e, says that every ele-
ment has a right inverse; that is satisfied by all groups. In contrast, the
statement

∃x∀y(xy = e)
is satisfied only by the trivial group. The idea is that the element y
in the first sentence depends on the element x, and that according to
the customary interpretation of sentences in mathematical logic, this is
signaled by the fact that the x comes first. (See esilize for more about
this example.)

No dependence is suggested if
the two quantifiers that occur
in order are the same. Thus
∀x∀yP (x, y) means the same as
∀y∀xP (x, y) and ∃x∃yP (x, y)
means the same as ∃x∃yP (x, y).

Example 2 The definition of continuity commonly begins this
way:

“For every ε > 0, there is a δ > 0 for which. . . ”
Here δ depends on ε, but in contrast to the preceding example,
the dependence is not functional.

See [Bagchi and Wells, 1998b].

Difficulties Reversing the definition of continuous to write “There is a
δ > 0 such that for every ε > 0” gives the definition of uniform continuity.
Mathematicians in the nineteenth century had a great deal of difficulty
separating these two ideas, so it is hardly surprising that our students
do, too.

In ordinary English the way quantifiers are ordered does not always
obey these rules. A student might say, “there is an inverse for every
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element” and be understood in much the same way as one would under-
stand a statement such as “there is an ice cream cone for every child”.
The latter statement, translated mindlessly into first order logic, brings
up the picture of n children licking one cone. But no one in everyday
discourse would understand it that way, and only a few esilists would
think it bad English. Nevertheless, in writing mathematical arguments
in English, such constructions are avoided by many authors (see esilize).

It appears to me that the meaning of sentences such as “There is an
ice cream cone for every child” is extracted using a mechanism similar
to that for a distributive plural, but I have not found anything in the
linguistics literature about this.

See also all, and, mathematical logic and writing dilemma. Reference:
[Dubinsky, 1997].

orthogonal A system of notation is orthogonal if any construction
possible in the notation can be used anywhere it is appropriate.
Example 1 The notation for derivatives is not orthogonal. The prime
notation can be used for functions of one variable but not for functions of
more than one variable. Thus the failure of orthogonality occurs because
the prime notation suppresses a parameter (the variable with respect to
which the derivative is taken).
Example 2 The notation involving d is used for functions of one vari-
able; for more than one variable one must change it to ∂. (There is a
sense in which this is not a failure of orthogonality, although students
generally are not aware of this. See Example 3 under irregular syntax for
a discussion.)
Example 3 Early forms of Fortran were not orthogonal; one could use
an arithmetic expression (for example, i+2j2) that evaluated to an integer
in most places where one could use an integer — but not in the subscript
of an array. In other words, one could write the equivalent of Ai but not
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of Ai+2j2 . This context is where I first met the word “orthogonal” used.
Citations: (18), (324).
Of course, “orthogonal” has a meaning as a technical word in math-

ematics, as well.

osmosis theory The osmosis theory of teaching is this attitude: We
should not have to teach students to understand the way mathematics
is written, or the finer points of logic (for example how quantifiers are
negated). They should be able to figure these things on their own —
“learn it by osmosis”. If they cannot do that they are not qualified to
major in mathematics. (See mathematical mind).

We learned our native language(s) as children by osmosis. That
does not imply that college students can or should learn mathematical
reasoning that way. It does not even mean that college students should
learn a foreign language that way.

outfix notation A function is displayed in outfix notation if its
symbol consists of characters or expressions put on both sides of the
argument.
Example 1 The absolute value of a number r is denoted |r|.
Example 2 The greatest integer in x is sometimes denoted by  x!.

Other examples are described under brace, angle bracket and bracket.
See also integral. Also called matchfix notation Citations: (12).

output See function.

over

(a) Specifying domain To say that a function f is defined over S
means that the domain of f is S. Citation: (349).
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(b) Specifying a property with respect to a substructure Some
objects come attached with parameters, and one can say that the object
does or does not have some property over that parameter.
Example 1 The polynomial x2+1 does not split over the real field, but
it does split over the complex number field. Here the field is a parameter
for the polynomial.

(c) Defining an associated structure with respect to a substruc-
ture One also defines associated structures in terms of the object and
the parameter.
Example 2

∫ b
a x

3 dx is positive over any interval [a, b] in the positive
half interval. Citations: (229), (314).

(d) Specifying a structure with projection to a given structure
Many mathematical structures have as part of their definition a projection
onto some other structure S, not necessarily of the same kind. Thus one
talks about a sheaf over a space, or a multisheeted surface over a region
in the complex plane. Such a projection will also define an inverse image
structure over a point in S. Citations: (405) (257).

Here the word over carries a metaphor of literally “over”, since such
structures are typically drawn with the projection going down. See law
of gravity for functions. Citations: (50), (177).

overloaded notation This phrase usually applies to a symbol or
a name for a function that takes on different meanings depending on
which type of element it is evaluated at. Such a function is also called
polymorphic.
Example 1 The identity function is a polymorphic name; in the usual
formalism there is a different identity function on each set.
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setbuilder notation 228
symbol 240
symbolic expression 241
vector 273

overloaded notation overloaded notation

Example 2 A familiar example is the symbol ×, which is overloaded
in college mathematics courses. When a and b are numbers, a× b is their
product. When A and B are matrices, A × B is the matrix product.
When v and w are 3-vectors, v × w is their vector product.
Example 3 Another example is the common treatment of the image
for arbitrary functions: Let F : S → T be a function.

a) If x ∈ S, F (x) is the value of F applied to x. It is called the image
of x under F .

b) If A is a subset of S, then F (A) = {F (x) | x ∈ A} (see setbuilder
notation). It is called the image of A under F .

c) The image of F is the set of all t in T for which there is an x ∈ S
such that F (x) = t, which is the image in the sense of (2) of the
domain of F . The word “range” is also used for this meaning.

When students begin college mathemat-
ics, the frequent occurrence of ad-hoc
polymorphism means that they have to
read the surrounding text to understand
what a symbolic expression means: the
expression is no longer self-sufficient.
When I first came across this aspect of
mathematics in a matrix theory course
at Texas Southmost College, I felt that I
had been ejected from paradise.

Remark 1 The preceding example is in a way fake.
One could simply stipulate that every function F : S → T
has values defined for every element of S and (in the way
illustrated above) for every subset of S. However, the
phrase “the image of F” would still overload the word
“image”.
Example 4 A functor F from a category C to a cate-
gory D is defined on both objects and arrows of C. This,
too is a fake example, since the value of the functor at

identity arrows determines its value on objects.
Example 5 A text on vector spaces will very likely use + for addition
of vectors in every vector space. Similarly, some texts on group theory
will use e or 1 for the identity element for any group and juxtaposition
for the binary operation of any group.
Remark 2 Example 5 illustrates the common case of using the same
symbol in every model for a particular operation in an axiomatically
defined mathematical structure.
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overloaded notation parameter

algorithm 9
cases 35
definite description 65
identifier 120
identity function 123
instantiate 133
interval 135
mathematical definition

66
mathematical object 155
specific mathematical

object 156
superscript 238
suppression of parameters

239
synecdoche 245
variate identifier 272
vector 273

Remark 3 The operation × does not require the same algorithm on
matrices as it does on 3-vectors. This is the sort of phenomenon computer
scientists call ad-hoc polymorphism. It is contrasted with parametric
polymorphism, an example of which is the algorithm “swap the two
entries in an ordered pair”, which applies to ordered pairs of any type of
element. (The parameter that gives rise to the name “parametric” is the
type of element.) See algorithm. The identity function provides a trivial
example of parametric polymorphism.

Many mathematicians think and speak informally of a parametrically
polymorphic function as one single function. (“ . . . the identity function
is injective”).
Remark 4 The concept “overloaded” is natural in computing science
because operations on different data types are typically implemented dif-
ferently. For example, addition of integers is implemented differently from
addition of floating point numbers in most computer languages. The con-
cept is less natural in mathematics, where you could define the operation
on the disjoint union of all the sets under consideration (for ×, the set
might be R plus the set of all 3-dimensional real vectors plus the set of all
n×n real matrices for each n). Even there, however, the implementation
algorithm differs for some of the subsets. (See cases.)

See also superscript.
Citations: (248)

parameter A parameter is a variate identifier used in the definition
of a mathematical object. When the parameters are all instantiated,
the object becomes specific. The parameters may or may not be shown
explicitly in the identifier for the object; see synecdoche and suppression
of parameters. See also Example 2 under definite description.
Example 1 Let [a, b] be a closed interval. Here the parameters are a
and b. A particular instantiation gives the specific closed interval [π, 2π].
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symbolic expression 241

parameter parenthesis

Example 2 Consider the polynomial x2 + ax+ b. The parameters are
again a and b. (See Remark 1 below.)
Example 3 Consider the function f(x) = x2 + ax + b. Again a and
b are parameters and x is not. This might typically be referred to as a
“two-parameter family fa,b(x) = x2 + ax+ b of functions”.
Remark 1 A parameter in a symbolic expression is necessarily a free
variable, but the converse may not be true.

In Example 3, the variable x is not free, because the definition of
f uses a defining expression based on the named input variable x (see
bound variable). In consequence, the only parameters are a and b.

People outside science, particularly busi-
nessmen, often use “parameter” to mean
“boundary”, presumably because they
confused the word with “perimeter”.

On the other hand, in the expression x2 + ax + b
mentioned in Example 2, for example, all the variables
a, b and x might be considered free, but one might refer
only to a and b as parameters. In fact, whether x is free

or not depends on your point of view. If you think of x2 + ax + b as an
expression to be evaluated, you must substitute for all three variables to
get a number. But if you refer to x2 + ax+ b as a polynomial as I did in
the example, then convention decrees that it is a quadratic polyonial in
x with parameters a and b (because x is near the end of the alphabet).
In that case, substituting a number for x destroys the fact that it is a
polynomial, so there is an argument that the x is at least psychologically
not free.

Observe that in this remark I am saying that which variables are
regarded as parameters is determined by linguistic usage and point of
view, not by mathematical definitions.

Citations: (49), (252), (308), (321).

parenthesis Parentheses are the symbols “(” and “)”. Parentheses
are used in various ways in expressions.
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argument 19
bare delimiter 72
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irregular syntax 135
parenthesis 192
subexpression 242
value 266

(a) Grouping Parentheses are very commonly used as bare delimiters
to group subexpressions.
Example 1 Parentheses are used for grouping in the expressions (x2 +
1)2 and x(y + z). Citation: (103), (36), (427).

(b) Tuples and matrices Parentheses may be used to denote an or-
dered n-tuple, as in (3, 1, 2), and are the standard notation for matrices.
Citation: (33), (36), (240)

(c) Open interval The symbol (a, b) may denote the real interval
{x | a < x < b}

Citation: (140).

(d) Greatest common divisor The symbol (m,n) may denote the
greatest common divisor of the integers m and n. Citation: (140).

The citations for this and the last usage come from the same sen-
tence, which I quote here for convenience:

Richard Darst and Gerald Taylor investigated the differen-
tiability of functions fp (which for our purposes we will restrict
to (0, 1)) defined for each p ≥ 1 by

f(x) =

{
0 if x is irrational
1/np if x = m/n with (m,n) = 1.

It appears to me quite unlikely that any experienced mathematician
would be confused by that sentence. Students are another matter.

(e) Function values It is not clear whether the use of parentheses to
delimit the arguments in denoting the value of a function, in for example
f(x+1), is a simple matter of grouping, or whether it is part of a special
syntax for function application. See irregular syntax.
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parenthetic assertion parenthetic assertion

Terminology Parentheses are also called brackets, but “bracket” may
also refer to other delimiters. Sometimes parentheses are called round
parentheses for emphasis.

parenthetic assertion A symbolic assertion is parenthetic if it is
embedded in a sentence in a natural language in such a way that its
pronunciation becomes a phrase (not a clause) embedded in the sentence.
In contrast, when a symbolic assertion is a clause it is pronounced in such
a way as to be a complete sentence.
Example 1 “For any x > 0 there is a y > 0 such that y < x.” The as-
sertion “x > 0” in isolation is a complete sentence, typically pronounced
“x is greater than 0”. In the sentence quoted above, however, it is pro-
nounced “x greater than 0” or “x that is greater than 0”, becoming a
noun phrase embedded in the main sentence. Note that in the quoted sen-
tence, “x > 0” and “y > 0” are parenthetic but “y < x” is a full clause.
Citations: (28); (56); (112); (161); (335); (432).
Remark 1 In seeking citations I was struck by the fact that some au-
thors use parenthetic assertions in almost every paragraph and others
essentially never do this: the latter typically use symbolic assertions only
as complete clauses. Compare the articles [Bartle, 1996] and [Neidinger
and Annen III, 1996], in the same issue of The American Mathematical
Monthly.
Example 2 “. . .we define a null set in I := [a, b] to be a set that can
be covered by a countable union of intervals with arbitrarily small total
length.” This is from [Bartle, 1996], page 631. It could be read in this
way: “. . .we define a null set in I, which is defined to be [a, b], to be a
set. . . ”. In other words, the phrase “I := [a, b]” is a definition occurring
as a parenthetic assertion.
Example 3 “Consider the circle S1 ⊆ C = R2” This example is adapt-
ed from [Zulli, 1996]. Notice that the parenthetic remark contains another
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at most 22
context-sensitive 54
dictionary definition 70
equivalence relation 85
example 89
expression 241
mathematical object 155
proof 205
substitution 236
writing dilemma 277

parenthetic remark inside it.
See also context-sensitive.
References: [Gillman, 1987], pages 12–13; [Krantz, 1997], page 25;

[Lamport, 1994], page 18.
See writing dilemma.

partition See equivalence relation.

pathological See example.

pattern recognition Mathematicians must recognize abstract pat-
terns that occur in symbolic expressions, geometric figures, and in their
own mental representations of mathematical objects. This is one small
aspect of human pattern recognition; for a general view, see [Guenther,
1998], Chapter 3.

(a) An expression as an instance of substitution One particular
type of pattern recognition that students find immensely difficult it rec-
ognizing that a given expression is an instance of a substitution into a
known expression.
Example 1 This Handbook’s definition of “at most” says that “x is at
most y” means x ≤ y. To understand this definition requires recognizing
the pattern “x is at most y” no matter what occurs in place of x and y.
For example,

“sinx is at most 1”
means that sinx ≤ 1.
Example 2 Students may be baffled when a proof uses the fact that
2n + 2n = 2n+1 for positive integers n. This requires the recognition of
the pattern x+ x = 2x. Similarly 3n + 3n + 3n = 3n+1.
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pattern recognition pattern recognition

Example 3 The assertion
“x2 + y2 > 0”

has as a special case
“(−x2 − y2)2 + (y2 − x2)2 > 0.”

where you must insert appropriate parentheses. Students have trouble
with expressions such as this one not only in recognizing it as an instance
of substitution but in performing the substitution in the first place (see
substitution).

(b) Recognizing patterns of proof Students in postcalculus courses
must recognize patterns of proof without being told. Examples are given
under contrapositive and proof by contradiction.

Some proofs involve recognizing that a symbolic expression or figure
fits a pattern in two different ways. This is illustrated by the next two
examples. I have seen students flummoxed by Example 4, and Exam-
ple 5 may for all I know be the proof that flummoxed medieval geometry
students (see pons asinorum).
Example 4 In set with an associative binary operation and an identity
element e, suppose x is an element with an inverse x−1. (In this situation,
it is easy to see that x has only one inverse.)

Theorem: (x−1)−1 = x.
Proof: By definition of inverse, y is the inverse of x if and only if

xy = yx = e (2)

It follows by putting x−1 for x and x for y in Equation (2) that we must
show that

x−1x = xx−1 = e (3)

But this is true by that same Equation (2), putting x for x and x−1 for y.
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pattern recognition Platonism

explicit assertion 94
mathematical object 155

Example 5 Theorem: If a triangle has two equal angles, then it has
two equal sides.

Proof: In the figure below, assume ∠ABC = ∠ACB. Then triangle
ABC is congruent to triangle ACB since the sides BC and CB are equal
and the adjoining angles are equal.

.A

�������������������

��������������������

.B .C

See also explicit assertion.
Acknowledgments: Atish Bagchi.

permutation A permutation is defined in the literature in two differ-
ent ways:

a) A permutation of an n-element set is a sequence of length n in which
each element of the set appears once.

b) A permutation of a set is a bijection from the set to itself.
Of course, the two definitions can be converted into each other, but

psychologically they are rather different. Both definitions are given by
[Kolman, Busby and Ross, 1996], pages 75 and 181. Citation: (213),
(392).

Platonism Often used by mathematicians to refer to the attitude that
mathematical objects exist in some manner analogous to the existence of
physical objects.

All mathematicians, whether they regard themselves as Platonists
or not, refer to mathematical objects using the same grammatical con-
structions as are used for references to physical objects. For example,
one refers to “a continuous function” (indefinite reference) and “the sine
function” (definite reference), in the way one refers to “a boy” and “the
boss”, not in the way one refers to nonmathematical abstract concepts
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evaluate 89
mathematical object 155
status 234
symbol 240

Platonism plural

such as “truth” or “gravity” (no article). (This behavior is not limited
to mathematical objects: “the orbit of the moon” for example.) Symbols
are generally used in the same way as proper nouns.

See also mathematical object and Remark 2 under symbol. Cita-
tions: (2), (9), (20), (27), (70), (303), (410).

plug into “Plug a into f” means evaluate f at a. Here, f may be a
function or an expression, and a may be an expression.
Example 1 “If you plug π into the sine function, you get 0.”
Remark 1 Some find the use of the phrase “plug into” offensive. I
judge this phrase to have low status. Citations: (231), (289), (401).

plural Many authors form the plural of certain learned words using
endings from the language from which the words originated. Students
may get these wrong, and may sometimes meet with ridicule for doing
so.

(a) Plurals ending in a vowel Here are some of the common mathe-
matical terms with vowel plurals.

singular plural
automaton automata
polyhedron polyhedra
focus foci
locus loci
radius radii
formula formulae

Linguists have noted that such plurals seem to be processed differ-
ently from s-plurals ([Pinker and Prince, 1999]). In particular, when used
as adjectives, most nouns appear in the singular, but vowel-plural nouns
appear in the plural: Compare “automata theory” with “group theory”.
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back formation 23
collective plural 37
distributive plural 76
mathematical register 157

The plurals that end in a (of Greek and Latin neuter nouns) are
often not recognized as plurals and are therefore used as singulars. (This
does not seem to happen with my students with the -i plurals and the
-ae plurals.)

It is not unfair to say that some scholars
insist on using foreign plurals as a form
of one-upmanship. Students and young
professors need to be aware of these plu-
rals in their own self interest.

It appears to me that ridicule and
put-down for using standard English plu-
rals instead of foreign plurals, and for
mispronouncing foreign names, is much
less common than it was thirty years ago.
However, I am assured by students that
it still happens.

In the written literature, the -ae plural appears to
be dying, but the -a and -i plurals are hanging on. The
commonest -ae plural is “formulae”; other feminine Latin
nouns such as “parabola” are usually used with the En-
glish plural. In the 1990–1995 issues of six American
mathematics journals (American Journal of Mathematics,
American Mathematical Monthly, Annals of Mathemat-
ics, Journal of the American Mathematical Society, Pro-
ceedings of the American Mathematical Society, Transac-
tions of the American Mathematical Society), I found 829
occurrences of “formulas” and 260 occurrences of “formu-
lae”, in contrast with 17 occurrences of “parabolas” and and no occur-
rences of “parabolae”. (There were only three occurrences of “parabolae”
after 1918.) In contrast, there were 107 occurrences of “polyhedra” and
only 14 of “polyhedrons”.

(b) Plurals in s with modified roots
singular plural
matrix matrices
simplex simplices
vertex vertices

Students recognize these as plurals but produce new singulars for
the words as back formations. For example, one hears “matricee” and
“verticee” as the singular for “matrix” and “vertex”. I have also heard
“vertec”.

The use of plurals in the mathematical register is discussed under
collective plural and distributive plural.

199



arity 19
coordinatewise 59
delimiter 71
overloaded notation 189
prefix notation 203
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219

plural pons asinorum

Acknowledgments: Atish Bagchi, Eric Schedler.

pointwise See coordinatewise.

pointy bracket See delimiter.

Polish notation Polish notation consists in using prefix notation
without parentheses. This requires that all function names have a single
arity, so that which symbols apply to which inputs is unambiguous.

Polish notation originated with the Polish
logic school of the 1920’s. In particular the
phrases “Polish notation” and “reverse Pol-
ish notation” originated from that fact and
were not intended as ethnic slurs.

Example 1 In Polish notation,
2 sinx+ sin y

would be written
+ ∗ 2 sin x sin y

with ∗ denoting multiplication.
See also reverse Polish notation.

Terminology Some authors use the phrase “Polish notation” even if
parentheses are used (they are always redundant but add intelligibility).
Polish notation is occasionally called left Polish notation. Citations:
(374), (290), (32).

I assume, like Coxeter [1980],
that the name “bridge” comes
from the fact that an isosceles
triangle looks like a old arched
stone footbridge, particularly if
the triangle is drawn wider than
it is tall as on page 197.

polymorphic See overloaded notation.

pons asinorum The theorem in plane geometry that if a trian-
gle has two equal angles then it has two equal sides has been called
the pons asinorum (bridge of donkeys) because some students
found its proof impossible to understand. A proof is discussed on
page 197.

The problem of proving the Pythagorean Theorem has also
been called the pons asinorum.
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argument 19
concept 41
continuous 54
convention 57
definition 66
equivalence relation 85
function 104
negative 166
order of quantifiers 186
private language 204
proof 205
reification 180
space 231
where 276

Difficulties It would be worthwhile to find out what are the concepts
or proofs that could be called a pons asinorum for modern undergraduate
math majors. Some possibilities:

• The difference between continuity and uniform continuity eludes
some students. This is probably because of a general problem they
have with order of quantifiers.

• Students find it difficult to reify the equivalence classes of an equiva-
lence relation. It is a standard tool in higher mathematics to take the
classes of a partition and make them elements of a structure, points
in a space, and so on, for example in the construction of quotient
spaces or groups. Students may not understand that (for example in
a quotient group) one must think of multiplying the cosets themselves
instead of multiplying their elements.

positive In most (but not all) North American texts and university
courses, the phrase “x is positive” means x > 0. In a European setting it
may mean x ≥ 0. See convention and private language. This may have
been an innovation by Bourbaki. Similar remarks may be made about
negative.

postcondition A postcondition in a definition or statement of a
theorem is a condition stated after the definition or theorem.

“If n is divisible by four then it is even. This holds for any
integer n.”

The second sentence is a postcondition. Another example is given under
where. Citation: (236), (244), (254), (275), (343).

postfix notation Postfix notation consists in writing the name of
the function after its arguments.
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postfix notation predicate symbol

Example 1 The expression x+y in postfix notation would be (x, y)+.
Citation: (426), (139).

Most authors write functions of one variable in prefix notation, but
some algebraists use postfix notation. The symbol “!” denoting the
factorial function is normally written in postfix notation.

See also Polish notation, prefix notation and rightists.

power The integer 53 is a power of 5 with exponent 3. One also
describes 53 as “5 to the third power”. I have seen students confused by
this double usage. A statement such as “8 is a power of 2” may make the
student think of 28. Citations: (335), (347).

precedence If ∆ and ∗ are two binary operators, one says that ∆ has
higher precedence than ∗ if the expression x∆y ∗ z denotes (x∆y) ∗ z
rather than x∆(y ∗ z).
Example 1 The expression xy + z means (xy) + z, not x(y + z), be-
cause in the symbolic language, multiplication has higher precedence than
addition.

Unary operations (functions with one input) in mathematical writing
typically have low precedence.

The metaphor behind the word “prece-
dence” is that if one carries out a cal-
culation of the expression, one must
apply the operator with higher prece-
dence before the other one. Thus in
calculating (x∆y) ∗ z one calculates
u = x∆y and then u ∗ z.

Example 2 One writes sinx but sin(x+y) because sinx+
y may be perceived as either ambiguous or as (sinx) + y.
As this example illustrates, in the traditional symbolic lan-
guage the precedence relationship of some pairs of opera-
tions is not necessarily well-defined. Citation: (221).

See delimiter and evaluation.

predicate symbol A symbol may be used in mathe-
matical logic to denote an assertion containing variables. It is then called
a predicate symbol, or just a predicate.
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Example 1 The familiar binary relations <, ≤, > and ≥ are predicate
symbols. The expressions 3 < 5, 3 ≤ 5, 3 > 5 and 3 ≥ 5 are all assertions
(although only the first two are correct assertions). Citations: (126),
(287).
Example 2 Mathematics texts may use mnemonic predicate symbols.
Thus a text might use a predicate symbol Sq, meaning “is a square”, in
assertions such as Sq(9), meaning “9 is a square.” Citation: (278).

prefix notation An expression is in prefix notation if the function
symbols are written on the left of the argument.
Example 1 The expression x + y written in prefix notation would be
+(x, y)
Remark 1 In the traditional mathematical symbolic language, func-
tions of one variable are used in prefix notation but a few, for example
the symbols for the factorial and the greatest integer function, are used
in other ways. Most binary operations denoted by special nonalphabet-
ical symbols are written in infix notation, but those with alphabetical
symbols are generally written in prefix notation and others such as an
inner product may be written in outfix notation. Citations: (426), (),
(12).

See also postfix notation, Polish notation, reverse Polish notation
and outfix notation.

prescriptivist A prescriptivist is someone who gives rules for which
forms and syntax are correct in English (or another language). Pre-
scriptivists are those who say we should not use double negatives, split
infinitives, and “ain’t”. Opposed to descriptivist.

Esilism is a special form of prescriptivism.

prime (The typographical symbol). The symbol “′” is pronounced
“prime” or “dash”. For example, x′ is pronounced “x prime” or “x dash”.
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prime private language

x′′ is pronounced “x double prime”. The pronunciation “dash” is used
mostly outside the USA.

(a) Indicates a new variable If x is a variable of a certain type, then
x′ and x′′ are new variables of the same type.
Example 1 “Let S be a set and S′ and S′′ subsets of S.” Citations:
(10), (122), (155), (180), (311), (325).

(b) Derivative If f is a differentiable function, its derivative may be
indicated by f ′. See irregular syntax. Citations: (49), (147), (192),
(362).

(c) Other uses The prime is sometimes used for functional operations
other than the derivative, for example the Boolean complement or the
derived set of a subset of a topological space. Citation: (68),

private language Sometimes an author or teacher will give a different
definition to a term that has acquired a reasonably standard meaning.
This may even be done without warning the reader or student that the
definition is deviant. I would say that the person doing this is using a
private language. Such an author has no sense of being in a community
of scholars who expect to have a common vocabulary: to use recent slang,
the author is on “another planet”.
Example 1 It has been standard usage in the research literature for
fifty years to write A ⊂ B to mean that A is included as a subset in B,
in particular allowing A = B. In recent years, authors of high school
and lower-level college texts commonly write A ⊆ B to mean that A is
included in B. Citation: (388). Some of these write A ⊂ B to mean
that A is properly included in B (citation (377)), thereby clashing with
the usage in research literature. This was probably the result of formal
analogy.
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algorithm 9
APOS 17
assertion 20
context-sensitive 54
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deprecate 74
expression 241
labeled style 139
mental representation 161
narrative style 174
object-process duality 180
text 74

Using A ⊂ B to mean A is properly included in B seems to be
much less common that the usage of “⊆” and in my opinion should be
deprecated.

Acknowledgments: Michael Barr, Eric Schedler.

process See APOS and algorithm.

program See algorithm.

pronunciation Some students have told me that they find it necessary
to be able to pronounce an expression that occurs in a text; if they can’t,
they can’t read the text. One student brought this up with the common
notation “F : S → T”.

This difficulty surprised me. Upon introspection, I discovered that
when I was reading mathematics the inner voice in my head simply went
silent at certain constructions, specifically in the case of “F : S → T”.
Clearly some readers can’t tolerate this.

See context-sensitive, mental representation and names from other
languages.

procept See object-process duality.

proof A proof is a step by step argument intended to persuade other
mathematicians of the correctness of an assertion. Proofs may be in
narrative style or labeled style, discussed under those headings. Proof is an idol before

which the mathematician
tortures himself.
– Arthur Eddington

The individual phrases in a proof can be classified as follows:
(i) Proof steps A proof will contain formal mathematical state-

ments that contain calculations or follow from previous statements. We
call these proof steps. They are assertions in the mathematical register,
like theorems, but unlike theorems one must deduce from the context the
hypotheses that make them true.
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proof proof

(ii) Reasons Statement of a previous result in this same proof
that is the justification for either the next proof step or the one just
stated.

(iii) Summaries These state what must be proved, what we are
just about to prove, or, part way through a proof, what is left to be
proved or what has just been proved.

(iv) Pointers Pointers give the location of pieces of the proof
that are out of order, either elsewhere in the current proof or elsewhere
in the text or in another text. References to another text are commonly
called citations.
Example 1 I give a short narrative proof to illustrate these ideas. De-
fine m | n (read “m divides n”) to mean that there is an integer q for
which n = qm, and define m ∼= m′ (mod k) to mean that k | (m −m′).
Assume that I have already proved

Lemma A: If m | n and m | n′ then m | (n+ n′).
I will prove that if m ∼= m′ (mod k) and n ∼= n′ (mod k) then m +

n ∼= m′ + n′ and mn ∼= m′n′ (mod k). Proof:

Reason The hypothesis translates into the assertion
Proof Step k |m−m′ and k | n− n′.
Proof Step Now (m+ n) − (m′ + n′) = m−m′ + n− n′;
Reason this is the sum of two numbers divisible by k, so
Pointer by Lemma A
Proof Step it is divisible by k.
Proof Step Hence m+ n ∼= m′ + n′ (mod k).
Summary Now we must show that mn ∼= m′n′ (mod k).
Reason A little algebra shows that
Proof Step mn−m′n′ = m(n− n′) + n′(m−m′).
Pointer By Lemma A,
Proof Step k | (mn−m′n′),
Reason so by definition,
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Proof Step mn ∼= m′n′ (mod k).

This discussion is drawn from [Bagchi and Wells, 1998a]. [Hanna,
1992] discusses the role of proofs in mathematics (with lots of references to
the literature) and issues for mathematical education. Other discussions
of proof in mathematical education may be found in [Dreyfus, 1999],
[Epp, 1998], [Nardi, 1998], [Tall, 1999], [Tall, 2002].

Proofs in mathematical logic Mathematical logic also has a concept
called proof: that is a mathematical object intended to model mathe-
maticians’ proofs. Proofs in mathematical logic may be called formal
proofs, but that phrase is also used to indicate a particularly careful
and detailed proof in the ordinary sense — which is not a mathematical
object.

proof by contradiction There are two somewhat different formats
for proof that mathematicians refer to as proof by contradiction.

(a) Proof by deducing a false statement To prove P , assume P
is false and deduce some assertion Q that is known to be false. This
is the form of one well-known proof that

√
2 is irrational; one assumes

it is rational and then concludes by violating the known fact that every
fraction can be reduced to lowest terms.

Authors, even writing for undergraduates, often give such a proof
by contradiction without saying they are doing it. The format of such a
proof would be:

a) Theorem: P .
b) Assume P is false.
c) Argument that R is true, where R is some statement well known to

be false. The argument that R is true will assume that P is false,
possibly without saying so.

d) End of proof.
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proof by contradiction proof by instruction

The student must recognize the pattern of proof by contradiction without
being told that that is what it is.
Example 1 I will prove the

√
2 is irrational using this format. I will

use the fact that if k2 is even then so is k. Assume that
√

2 = m
n . Then

m2

n2 = 2, so m2 = 2n2. Therefore m2 is even, so m is even. Hence m = 2k
for some k. Therefore 2n2 = 4k2, so n2 = 2k2. Hence n is even. Thus
any way of writing

√
2 as a fraction of integers has the result that both

the numerator and denominator are even, which contradicts the fact that
a fraction can always be reduced to lowest terms.

In the first sentence, I assume that
√

2 is rational without saying that
we are aiming at a proof by contradiction. Furthermore, the assumption
that

√
2 is rational is stated by rewriting using the definition, again with-

out saying so. This sort of thing is very common in the literature.
See pattern recognition.

(b) Proof by contrapositive A proof that a conditional assertion
P ⇒ Q is true may be explicitly called a proof by contradiction but
will follow the format for a proof by contrapositive, omitting step (4) in
the format given in Remark 1 under contrapositive.

Citations: (245). See also Example 7 under let.
Reference: [Krantz, 1997], page 68, discusses how to write proofs by

contradiction.
Acknowledgments: Atish Bagchi, Eric Schedler.

proof by instruction A proof by instruction consists of instruc-
tions as to how to write a proof or how to modify a given proof to obtain
another one. They come in several types.

(i) Geometric instructions As an example, I could have worded
the proof in Example 5 under pattern recognition this way: “Flip triangle
ABC around the bisector of side BC and you must get the same triangle
since a side and two adjoining angles are equal. Thus AB = AC.”
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(ii) Algebraic instructions An example is the instruction in Ex-
ample 1 under look ahead to divide the Pythagorean identity a2 +b2 = c2

by c2 to obtain the identity sin2 θ + cos2 θ = 1. The proof in Example 1
under proof has a miniproof by instruction in line 9. Citations: (13),
(329).

(iii) Directions for modifying a proof This is an instruction
such as “interchange the role of x and y in the preceding proof and you
get a proof of . . . ”. Citation: (132).

proper A subset T of a set S is a proper subset if it is not S. This is
also used with substructures of a structure (proper subgroup, and so on).

The word is also used to mean nontrivial; for example, a proper
automorphism would be a non-identity automorphism. Citations: (256),
(347).

property A property that an instance of a class of mathematical
objects may have determines a subclass of those objects.
Example 1 Being even is a property that integers may have. This
property determines a subset of integers, namely the set of even integers.

One states that an object has a property using a form of “to be” and
an adjective or a noun phrase.
Example 2 One can say

“4 is even.”
or

“4 is an even integer.”
Citation: (173), (249), (302), (423).

In some cases the property may also be given by a verb. See vanish
for examples.
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prototype prototype

Property as subclass Mathematical texts sometimes define a property
as the class of objects having that property. Thus the property of being
even is the set of even integers.

This has some consequences. For one thing, two different definitions
can give the same property, so that a property is (perhaps unexpectedly)
not a linguistic concept. For example, say an integer n is “squeeven”
if n2 is even. Now, n2 is even if and only if n is even, so according to
the definition of property as a subclass, squeeven is the same property as
even, although its definition is different.

Some authors and editors object to us-
ing a property named after a person as
a predicate adjective. Instead of saying
“The space S is Hausdorff” they would
prefer “S is a Hausdorff space.”

Another consequence is that there are more proper-
ties for elements of an infinite set than there are possible
names for them.

In my experience, this point of view causes students
quite a bit of difficulty. On the other hand, defining

“property” in any language-oriented way appears to be complicated and
difficult.

See also relation.

proposition Proposition is used as another word for theorem. Some
texts distinguish between propositions and theorems, reserving the word
“theorem” for those that are considered especially important. This is the
practice in [Epp, 1995], for example (see her discussion on page 129).
Citation: (123), (253).

The word “proposition” is used in some texts to denote any assertion
that is definitely true or definitely false. Citation: (123), (412).

The art of doing
mathematics consists
in finding that special
case which contains all
the germs of generality.

–David Hilbert

prototype Commonly a human concept has typical members, called
prototypes by Lakoff.
Example 1 For many people, a sparrow is a prototypical bird, and a
penguin is not.
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set 227
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universal quantifier 260

Example 2 Students tend to have a prototype of the concept of limit
of a sequence in which the entries in the sequence never take on the value
of the limit. This is discussed under limit.

The concept of “prototype” is subtle; these examples only hint at its
depth. See also example and radial concept.

provided that Used like if to give a definition.
Example 1 “The integer n is squarefree provided that no square of
a prime divides n.” Also providing that. Citations: (90), (388).

Acknowledgments: Atish Bagchi.

put Used in definitions, mainly to define a symbol. Set is used in the
same way.
Example 1 “Put f(x) = x2 sinx.”

Citation: (29).

Q The symbol Q usually denotes the set of rational numbers. Citation:
(104).

quantifier In this text, a quantifier is either the existential quantifier
or the universal quantifier. Linguists and logicians study other quantifiers
not discussed here. See for example [Chierchia and McConnell-Ginet,
1990], Chapter 9, [Hintikka, 1996], and [Henkin, 1961].

R The symbol R usually denotes the set of real numbers. Sometimes it
is used for the rationals. Citation: (42), (303), (315).

radial concept A radial concept or radial category is a concept
with some central prototypical examples, and also some objects that devi-
ate from the prototypical examples in various ways. Some deviant objects
may be called by the basic name whereas others could not be (see Exam-
ple 1 below).
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radial concept radial concept

Some members of a radial category deviate only slightly from the
prototypes, others are highly metaphorical, and some contrast in some
way with the prototypes. The members are not necessarily automatically
generated from the prototypical examples; membership is to a consider-
able extent a matter of convention.

Our mental representation of the world is
to a great extent organized around radial
categories. The practice of adding new
deviant members to a radial category is
common and largely unconscious.

Example 1 The concept of “mother” is a radial con-
cept. Various members of the category among English-
speakers include birth mother, adoptive mother, foster
mother, earth mother, house mother, stepmother, grand-
mother, expectant mother and mother-in-law. Note that

typically an adoptive mother is in our culture commonly referred to as a
mother, but a house mother might not be called a mother. Aside from
these there are words such as motherboard, mother lode and mother of
pearl that seem to me to have a different status from those in the the
first list (and they definitely would not be called mothers) but which some
authors would classify as part of the category.
Example 2 Many phrases used by mathematicians are instances of ra-
dial categories. Consider

• Incomplete proof (compare expectant mother).
• Multivalued function (compare Triple Crown).
• Left identity (compare half-brother).

According to the very special way mathematical concepts are formulat-
ed, by accumulation of attributes, an incomplete proof is not a proof, a
multivalued function is not a function, and a left identity may not be an
identity. Literalists tend to object to such usages, but they are fighting
a losing battle against a basic method built into the human brain for
organizing our mental representation of the world.

Citations: (209), (177), (253).
Acknowledgments: The name “radial” and the mother examples come

from [Lakoff, 1986]. Also thanks to Gerard Buskes.
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range Depending on the text, the range of a function can denote
either the codomain or the image. The texts [Krantz, 1995] takes the
first approach, and [Epp, 1995] and [Grassman and Tremblay, 1996] take
the second approach.

ratchet effect Once you acquire an insight, you may not be able to
understand how someone else can’t understand it. It becomes obvious,
or trivial to prove. That is the ratchet effect.

This process probably involves synthesizing a new concept, as dis-
cussed by Dreyfus [1992], section 3.2. See also [Thurston, 1990].
Remark 1 It is distressingly common that a mathematician for whom
a concept has become obvious because of the ratchet effect will then tell
students that the concept is obvious or trivial. This is the phenomenon
discussed in the sidebar under trivial. It is a major point made in [Ken-
schaft, 1997], page 30.

real number Real numbers are associated have an elaborate schema
that students are expected to absorb in part by osmosis. Some aspects
of this schema which cause problems for students are listed here.

• Integers and rational numbers are real numbers (see the sidebar).
• A real number represents a point on the real line.
• A real number has a decimal expansion, but the representation is

not bijective because of the infinite sequence of nines phenomenon.
• The decimal expansion is not itself the real number. See item (vii)

under behaviors.
• Part of the decimal expansion of a real number approximates the

number in a precise way. However, some numbers (for example, 1/3
and

√
2) are defined exactly even though no part of their decimal

expansion gives the number exactly.
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real number reductionist

• The four basic arithmetic operations are defined for real numbers,
although it is not obvious how to carry out the usual algorithms
when the expansions of both numbers are infinite and nonrepeating.

• There is always another real number between any two distinct real
numbers.
The word real is frequently used as a predicate adjective, as in “Let

x be real,” meaning x is a real number. I have heard students use the
phrase “real number” to mean “genuine number”, that is, not a variable.

Computer languages typically treat inte-
gers as if they were distinct from real
numbers. In particular, many computer
languages have the convention that the
expression 2 denotes the integer and the
expression 2.0 denotes the real number.
I have known students who assumed that
professors of mathematics were all famil-
iar with this fact (probably nearly true
in recent years) and that we all use no-
tation this way (almost never true).

See also space. Citations: (85), (342).

recall Used before giving a definition, theorem or
proof.
Example 1 “Recall that an integer is even if it is di-
visible by 2.” The intent seems to be that the author
expects that the reader already knows the meaning of the
defined term, but just in case here is a reminder. See Re-
mark 4 under mathematical definition. Citation: (137),
(146).

reconstructive generalization See generalization.

reductionist A reductionist or eliminativist believes that all math-
ematical concepts should be reduced to as few concepts as possible, at
least for purposes of foundations. This is usually done by reducing every-
thing to sets. Not all mathematicians (especially not category theorists)
agree with this approach.

This becomes a problem only if the reductionists insist on thinking
of mathematical objects in terms of their reductions, or on insisting that
their reductions are what they really are. See literalist. Most mathemati-
cians, even those who agree with reductionism for foundational purposes,
are more relaxed than this.
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Acknowledgments: The word “eliminativist” comes from [Lakoff and
Núñez, 2000].

redundant

(a) Redundancy in discourse A given discourse is redundant if it
contains words and expressions that could be omitted without changing
the meaning. As another example, consider the sentence

“The counting function of primes
π(x) := # {p ≤ x : p prime}

satisfies the formula π(x) ∼ x/(log x).”
The phrase “the counting function of primes” is redundant, since the
definition just following that phrase says it is the counting function for
primes. This example, adapted from [Bateman and Diamond, 1996],
is in no way bad writing: the redundancy adds much to the reader’s
understanding (for this reader, anyway).

Type labeling is another commonly occurring systematic form of re-
dundancy.

(b) Redundancy in definitions Redundancy occurs in definitions in
a different sense from the type of verbal redundancy just discussed. In this
case redundancy refers to including properties or constituent structures
that can be deduced from the rest of the definition.

Structure determines underlying set An apparent systematic re-
dundancy in definitions of mathematical structures occurs throughout
mathematics, in that giving the structure typically determines the under-
lying set, but the definition usually mentions the underlying set anyway.
(Rudin [1966] point out this phenomenon on page 18.)
Example 1 A semigroup is a set S together with an associative binary
operation � defined on S.
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redundant register

If you say what � is explicitly, what S is is forced – it is the set of
first (or second) coordinates of the domain of �.

Similarly, if you give a topology, the underlying set is simply the
maximal element of the topology.

In practice, however, the specification of the set is commonly part of
the definition of the operation.
Example 2 The cyclic group of order three is defined up to iso-
morphism as the group with underlying set {0, 1, 2} and multiplication
given by addition mod 3.

Addition mod 3 defines a binary operation on the set
{0, 1, 2, 3, 4, 5}

as well, so the mention of the underlying set is necessary.

I have heard mathematicians say
(but not seen in print) that an as-
sertion purporting to be a mathe-
matical definition is not a definition
if it is redundant. This is a very
unwise stance, since it can be an
unsolvable problem to determine if
a particular definition is redundant.
Nevertheless, for reasons of efficien-
cy in proof, irredundant definitions
are certainly desirable.

The point of this example is that if you give the oper-
ation extensionally, the operation does indeed determine the
underlying set, but in fact operations are usually given by a
rule that may not determine the underlying set uniquely.

Other examples There are some other examples in
which the definition is redundant and the redundancy cannot
be described as a matter of convention. For example, in defin-
ing a group one usually requires an identity and that every
element have a two-sided inverse; in fact, a left identity and
left inverses with respect to the left identity are enough. In

this case it is properties, rather than data, that are redundant. See radial
concept.

Acknowledgments: Michael Barr.

register A register in linguistics is a choice of grammatical construc-
tions, level of formality and other aspects of the language, suitable for
use in a given social context. The scientific register is the distinctive
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register for writing and speaking about science. It is marked in particular
by the use of complex nominal phrases connected by verbs that describe
relations rather than actions. That register and the difficulties students
have with it is discussed in detail in [Halliday and Martin, 1993]. In that
book the scientific register is called “scientific English”, but the remarks
in chapters 3 and 5 make it clear that the authors regard scientific English
as a register.

A distinctive subregister of the scientific register is used in mathe-
matics, namely the mathematical register.

reification See object-process duality.

relation Texts frequently define a (binary) relation on a set S to be
a subset of the cartesian product S × S. The relation in use, however, is
used as a two-place infixed predicate symbol.
Example 1 On the set of real numbers, let R be relation

{(x, x+ 1) | x ∈ R}
Then R is a relation, so for example the statement 3R4 is true but the
statement 3R5 is false. These statements use R as a predicate symbol,
although it has been defined as a set. This caused much cognitive disso-
nance among my students. See also property. Citation: (126). See also
[Chin and Tall, 2001].

representation Mathematicians and their students make use of both
external representations and internal representations of mathe-
matical objects. These phrases are used in the mathematical education
literature. I take internal representations to be the same thing as mental
representations or concept images.

External representations An external representation of a phenomenon
is a mathematical or symbolic system intended to allow one to identify the
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representation representation

object being represented and in many cases to deduce assertions about
the phenomenon. Certain aspects of the phenomenon being represented
are identified with certain mathematical objects; thus a representation
involves a type of conceptual blend.

This is related to and may for some purposes be regarded as the
same as the concept of model. Among mathematicians, the word “rep-
resentation” is more likely to be used when mathematical objects are
the phenomena being represented and “model” is more often used when
physical phenomena are being represented by mathematical objects. This
distinction must be regarded as preliminary and rough; it is not based on
citations.

Logicians use “model” in a technical sense, roughly a mathematical
object that fulfils the requirements of a theory; the “theory” in this case
is itself a mathematical object.
Example 1 The expressions 101

2 , 10.5 and 21
2 are three different rep-

resentations of the same mathematical object. See value and item (vii)
under behaviors.
Example 2 Some of the ways in which one may represent functions are:
as sets of ordered pairs, as algorithms, as maps (in the everyday sense)
or other pictures, and as black boxes with input and output. Some of
these representations are mathematical objects and others are mental
representations. Other examples occur under model.

It may be seen from these examples that the internal and external
representations of an idea are not sharply distinguished from one an-
other. In particular, the internal representation will in general involve
the symbolism and terminology of the external representation, as well as
nonverbal and nonsymbolic images and relationships.

The book [Janvier, 1987] is a primary source of information about
representations. [Thompson, 1994] discusses confusions in the concept of
representation on pages 39ff. The need to keep in mind multiple repre-
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sentations is part of the discussion in [Thompson and Sfard, 1998]. See
also [Vinner and Dreyfus, 1989].
Remark 1 Of course, “representation” is also a mathematical word
with various definitions in different disciplines. These definitions are gen-
erally abstractions of the concept of representation discussed here.

respectively Used to indicate term-by-term coreference between two
lists of objects. Rarely used with lists with more than two entries.
Example 1 “The smallest prime divisors of 9 and 10 are 3 and 2, re-
spectively.” Citations: (78), (223), (246), (355).

See also comma, as well as citation (313).

result The value produced by a function at a given input may be called
the result of the function at that input. Citation: (289).

The word is also used to denote a mathematical fact that has been
proved. Citations: (48), (202), (230).

reverse Polish notation A form of postfix notation that is used
without parentheses. This requires that the arity of all the symbols used
be fixed.

Reverse Polish notation is used by
some Hewlett-Packard calculators
and by the computer languages
Forth and Postscript. It has come
into prominence because expres-
sions in a reverse Polish language
are already in the form that makes
it easy to design an interpreter or
compiler to process them.

Example 1 In reverse Polish notation,
2 sinx+ sin y

would be written
x sin 2 ∗ y sin +

with ∗ denoting multiplication. Citation: (374).
See Polish notation. Reverse Polish notation is sometimes

called right Polish notation.

revise In the United States, to “revise” a document means to change
it, hopefully improving it in the process. Speakers influenced by British
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rewrite using definitions rightists

English use “revise” to mean “review”; in particular, students may talk
about revising for an upcoming test. In this case there is no implication
that anything will (or will not) be changed.
Remark 1 This entry has nothing directly to do with mathematics or
the mathematical register, but I have several times witnessed the confu-
sion it can cause in academic circles and so thought it worth including
here. Citation: (339)

rewrite using definitions One of the secrets of passing a first course
in abstract mathematics that teaches proofs (first algebra course, first dis-
crete math course, advanced calculus, and so on) is to take every state-
ment to be proved and first rewrite it using the definitions of the terms in
the statement. It is remarkably difficult to convince students to try this.Always substitute men-

tally the definitions in
place of the defined.

–Blaise Pascal

Example 1 A relation α is defined on the set of real numbers by
x α y if and only if x < y − 1

Prove that α is transitive. Proof: Rewrite the definition of transitive:
We must show that if x α y and y α z then x α z. Rewrite using the
definition of α: This means we must show that if x < y− 1 and y < z− 1
then x < z−1. The hypotheses show that x < y−1 < (z−1)−1 < z−1
as required.

This technique is useful for finding counterexamples, as well. Try it
when α is defined by

x α y if and only if x < y + 1

Another example is given under trivial. See also unwind.
Acknowledgments: Eric Schedler.

rightists Occasionally naive young authors start using postfix notation
for functions so that functional composition can be read in its natural
order. They are rightists (my name). Thus they will write xf instead
of f(x) or fx, hence xfg instead of g(f(x)), allowing them to write the
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composite as f ◦g instead of g ◦f . Obviously, they think, everyone ought
to do this. Then they get complaints from people who find their papers
hard or impossible to read, and they revert to the usual prefix notation.
I was one of those naifs in the 1970’s.

Postfix notation has in fact caught on in some fields, particularly
some branches of abstract algebra.

Some French authors stick with prefix notation but then express
functions in the straight arrow notation so that the horizontal arrows go
to the left: thus f : B ←− A or more commonly

B A�� f

instead of f : A → B. They draw commutative diagrams in that direc-
tion, too. Then g ◦ f is pictured as

C B�� g
A�� f

instead of

A ��f
B ��g

C

However, most mathematicians who use straight arrow notation stick
with the latter form even though they write the composite as g ◦ f .

See also private language. Reference: [Osofsky, 1994].

root A root of an equation f(x) = 0 is a value c for which f(c) = 0.
This value c is also called a root or a zero of the function f .
Remark 1 Some hold it to be incorrect to refer c as a “root of f”
instead of “zero of f”. The practice is nevertheless quite widespread,
particularly when the function is a polynomial. Citations: (63), (328).
Remark 2 “Root” is of course used with a different but related mean-
ing in phrases such as “square root”, “nth root”, and so on.

Acknowledgments: Gary Tee.

221



assertion 20
delimiter 71
divide 76
group 34
instantiate 133
mathematical definition

66
mathematical structure

159
notation 177
plug into 198
student-professor problem

27
true 256
universal generalization

260
variable mathematical

object 156
variable 268

round parentheses say

round parentheses See delimiter.

sanity check A simple test to check if something you have formulated
makes sense.
Example 1 If you write down 6s = p for the student-professor problem
and check your work by plugging in s = 12, p = 2, you immediately
discover your error.

satisfy A mathematical structure satisfies an assertion that contains
variables if the assertion makes a meaningful statement about the struc-
ture that becomes true for every possible instantiation of the variables.
Example 1 “Every group satisfies the statement ∀x∃y(xyx = x).”
Citations: (9), (141), (234), (384).

say
(a) To signal a definition Say may be used to signal that a definition
is being given.
Example 1 “We say that an integer n is even if n is divisible by 2.”
Variation:

“An integer n is said to be even if it is divisible by 2.”
Citations: (302), (357), (398).

(b) To introduce notation The word “say” is also used to introduce
notation, especially to give a working name to a variable object used in
a universal generalization.
Example 2 Let f(x) be a polynomial with complex coefficients, say

f(x) = a0 + a1x+ . . .+ anx
n

One could then prove, for example, that an−1 is the sum of the roots
of f (counting multiplicity), a result that then holds for any complex
polynomial.
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Citations: (313), (283).
Remark 1 Note that the syntax used with “say” for definitions is dif-
ferent from that for introducing notation.

Acknowledgments: Atish Bagchi, Eric Schedler.

schema See APOS.

scope The scope of an assumption and the scope of a local identifier
are discussed in those entries.

In a symbolic expression, a variable is within the scope of an operator
if its meaning or use is affected by the operator. I will discuss the use of
this word here only for operators that bind variables.
Example 1 In the expression∫ b

a
x2 dx

the variable x is bound by the integral operator.
Example 2 In the expression∫ b

a
(x+ y)2 dx

the x is bound but not the y, so that one would expect the value to be
in terms of a, b and y, but not x.

See bound variable.
Remark 1 A mathematical definition of the scope of an operator, like
that of bound variable, requires a formal recursive definition of “symbolic
expression”. The definition given in this entry is a dictionary definition.
This is discussed in more detail in Remark 2 under free variable.

self-monitoring Self-monitoring is the activity a student engages
in when she notices that some practice she uses in solving problems is
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cognitive dissonance 36
conditional assertion 47
continuum hypothesis 56
contrapositive 56
expression 241
formula 101
inequality 130
mathematical definition

66
mathematical register 157
metaphor 162
notation 177
only if 182
sequence 227

self-monitoring semantics

counterproductive (or is helpful) and modifies her behavior accordingly.
It is discussed in [Resnick, 1987], [Schoenfeld, 1987b], and [Wells, 1995].

semantic contamination The connotations or implicit metaphors
suggested by a word or phrase that has been given a mathematical defi-
nition sometimes create an expectation in the reader that the word or
phrase has a certain meaning, different from the correct meaning given
by the definition. This is semantic contamination. It is a form of
cognitive dissonance. In this case the two modes of learning in the defini-
tion of cognitive dissonance are learning the meaning from the definition
and learning the meaning implicitly from connotations of the word used
(which is a common mode of learning outside mathematics.) A mathe-
matics student may suppress the information given by the definition (or
by part of it) and rely only on the connotations.
Example 1 The word series conveys to some students the concept
that is actually denoted in mathematics by the word sequence.

Other examples of semantic contamination are given under condi-
tional assertion, continuum hypothesis, contrapositive, formula, inequal-
ity and only if.

Reference: [Hersh, 1997a] gives many examples of disparities be-
tween the ordinary meaning and the mathematical meaning of mathe-
matical words. Any of them could be the source of semantic contamina-
tion.

Terminology The name “semantic contamination” is due to Pimm
[1987], page 88.

semantics A semantics is a method of determining the meaning of
an expression in a natural or artificial language or in a system of notation.

(a) Semantics of symbolic expressions Symbolic expressions in the
mathematical register have both intensional (note the spelling) and ex-

224



semantics semantics

equations 84
expression 241
extensional 224
function 104
intensional 224
interpretation 135
mathematical discourse 1
mathematical object 155
mathematical register 157
object-process duality 180

tensional semantics. Speaking very roughly, the intensional semantics
carries information concerning how its meaning is constructed or calcu-
lated; the extensional semantics is merely the object(s) denoted by the
expression.
Example 1 The intensional interpretation of

3 + 5
2

in the mathematical register is something like:
“The result of adding 5 and 3 and dividing the result by 2.”

The extensional interpretation of that fraction is 4.

Many computer scientists use the word
“semantics” to mean interpretation. In
this book, a semantics is a method of
interpretation, not a particular interpre-
tation. In this connection it is commonly
used as a singular noun. Semantics is al-
so used to denote the study of meaning
in a general sense.

There is more to this: see item (i) under “How one
thinks of functions” in the entry on function and the ex-
amples under equation.

(b) How we handle object-process duality Mathemat-
ical discourse routinely avoids making any distinction be-
tween these three objects:

• An expression,
• An intensional interpretation of the expression,
• The extensional interpretation of the expression (that is the mathe-

matical object it denotes).
A particular use of an expression may have any of these roles.
Example 2 “Both terms in the left side of the equation 10m+15n = k
are divisible by 5, so k is divisible by 5.” This sentence refers to the
expression 10m+ 15n = k itself.

Example 3 “If x + 3 = 2, then 3 + x = 2.” Here the sentence deals
with the intensional interpretation of the expressions.
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bracket 32
definite article 64
existential quantifier 93
indefinite article 128
interpretation 135
mathematical logic 151
mathematical object 155
object-process duality 180
satisfy 222
statement 20
symbolic assertion 20
text 74
universal quantifier 260

semantics semantics

Example 4 “Since x > 2, it follows that the expression x2 − 1 is not
negative.” This means that the expression x2−1 does not have a negative
value; thus the sentence refers to the extensional interpretation of the
expression.

This is how we handle object-process duality smoothly (see [Gray
and Tall, 1994]), and to succeed in mathematics a students must become
fluent in doing this, with very little explicit notice being given to the
phenomenon. Citations: (8), (376), (387).

Sometimes, even a typographical entity is used to refer to a mathe-
matical object.
Example 5 “Since x > 2, the brackets in the expression (x2 − 1) +
(x3 − 1) are both nonnegative.”

(c) Semantics in mathematical logic Mathematical logic typically
constructs an interpretation of a text in some formal language. For ex-
ample, an interpretation of the symbolic assertion x + 2 = 7 might take
the universe of the interpretation to be the set of integers, and could in-
terpret x as 2. A familiar semantics for algebraic expressions causes it to
be interpreted as the assertion that 4 = 7, and under the usual method
of determining truth for that assignment, this statement is “invalid” in
that interpretation. If x is interpreted as 5 then the symbolic assertion is
valid for that interpretation. One also says that 5 satisfies the assertion
but 2 does not.

Difficulties The semantics of natural languages is currently the object
of intensive study by linguists. Good starting places to find out about
this are [Chierchia and McConnell-Ginet, 1990] and [Partee, 1996]. Some
of what semanticists have learned sheds light on students’ misunderstand-
ings: see for example the related discussions of definite article, indefinite
article, universal quantifier and existential quantifier.

Citation: (336).
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sentence set

angle bracket 17
assertion 20
brace 31
mathematical definition

66
put 211
semantic contamination

224
specification 232
subscript 235
symbol 240
symbolic expression 241

sentence In this book, the word sentence refers to a sentence in the
English language. The word is also used in mathematical logic for a
symbolic expression that denotes an assertion.

sequence A infinite sequence of elements of a set S is typically re-
ferred to in one of several ways:

• A sequence s1, s2, . . . of elements of S [or “elements in S”].
• A sequence (s1, s2, . . . ) of elements of S (Angle brackets or even

braces are sometimes used.)
• A sequence (sn) of elements of S.

The notation for finite sequence has similar variations.
The elements si are referred to as entries or as elements of the

sequence.
The starting point may vary, for example a sequence s0, s1, . . . . It is

easy to get confused by the meaning of the phrase “The kth entry of the
sequence” if the sequence starts with some entry other than s1.

See also semantic contamination and subscript. Citations: (28),
(91), (348).

set

1. Verb
Use in definitions, usually to define a symbol.
Example 1 “Set f(t) = 3t2.” Put is used in the same way. Citation:
(11).

2. Noun
In abstract mathematics courses one may be tempted to “define” set,
only to quail at the prospect of presenting Zermelo-Fränkel set theory.
This may result in a total cop-out accompanied by mutterings about
collections of things. One way out is to give a specification for sets. Two
crucial properties of sets that students need to know are
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arbitrary 18
collective coreference 60
condition 47
element 79
empty set 81
expression 241
group 34
reification 180
set 227
setbuilder notation 228
status 234
structural notation 235
true 256
type 257
yes it’s weird 278

setbuilder notation setbuilder notation

a) A set is not the same thing as its elements.
b) A set is determined completely by what its elements are.

Most facts about sets as used in undergraduate mathematics courses
are made reasonable by knowing these two facts. See also element, empty
set and setbuilder notation. References: [Wells, 1995], [Wells, 1997].

Difficulties In advanced mathematics course structures such as quo-
tient groups are built on sets whose elements are sets; this requires reify-
ing the sets involved. See [Lakoff and Núñez, 1997].

Students sometimes express discomfort when faced with sets that
seem too arbitrary. See yes it’s weird.

setbuilder notation The expression {x | P (x)} defines a set. Its
elements are exactly those x for which the condition P (x) is true. (The
type of x is often deduced from the context.) This is called setbuilder
notation (a low-status name) or set comprehension (a higher status
but confusing name). The condition P is called the defining condition.
Setbuilder notation is a form of structural notation.Later mathematicians

will regard set theo-
ry as a disease from
which one has recovered.

–Henri Poincaré

Difficulties The basic rule of inference for setbuilder notation is that
P (a) is true if and only if a ∈ {x | P (x)}. This means in particular
that if P (a) then a ∈ {x | P (x)}, and if not P (a), then a /∈ {x | P (x)}.
Students may fail to make use of the latter fact. This may be related to
the phenomenon described under collective coreference.

Variations A colon is used by some authors instead of a vertical line.
One may put an expression before the vertical line. This can be

misleading.
Example 1 The set {x2 | x ∈ R and x �= 3} does contain 9, because
9 = (−3)2.

Gries and Schneider [1993], Chapter 11, give examples that show
that putting an expression before the vertical line can be ambiguous.
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snow snow

infinite 130
proof 205

(Example 1 above is not ambiguous.) They introduce a more elaborate
notation that eliminates the ambiguity. Citation: (139), and (for the
colon variation) (66).

show To prove (see proof). Some scientists and possibly some high
school teachers use “show” in a meaning that is something like “provide
evidence for” or “illustrate”. It appears to me that the collegiate level
usage is that “show” is nearly always synonymous with “prove”. See
[Maurer, 1991], page 15. Citation: (119).

One colleague has suggested that mathematicians use “show” when
the proof has a strong intuitive component. This seems to fit with what
I have observed as well.

sign The word sign is used to refer to the symbols “+” (the plus sign)
and “−” (the minus sign). It is also sometimes used for other symbols,
for example “the integral sign”. The word “sign” is also used to refer
to the question of whether an expression represents a numerical quantity
that is positive or negative.
Example 1 Let f(x) = x2. Then for negative x, f(x) and f ′(x) are
opposite in sign. Citations: (1), (416).

snow Professors (and other math students) sometimes try to intimi-
date the students by confronting them with unbelievable or difficult to
understand assertions without preparing the ground, in order to make The world is governed

more by appearances
than realities, so that
it is fully as necessary
to seem to know some-
thing as to know it.

–Daniel Webster

them realize just how wonderfully knowledgeable the professor is and
what worms the students are. If the professor succeeds in making the
student feel this way, I will say he has snowed the student.

Notions of infinite cardinality are a favorite tool for such putdowns.
Thus it is a scam to try to startle or mystify students with statements
such as “There are just as many even integers as integers!” The would-be
snower is taking advantage of the mathematician’s use of “same number
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equations 84
instantiate 133
metaphor 162
variable 268

snow solution

of elements” as a metaphor for sets in bijective correspondence, which in
the case of infinite sets has properties at odds with the familiar properties
of the idea for finite sets. (See [Lakoff and Núñez, 2000], pages 142–144.)

That scam is like asking a student “Please bring me that stick over
there on the other blackboard” without mentioning the fact that you have
decided to call a piece of chalk a “stick”. It is true that there is some
analogy between a piece of chalk and a stick (more than, say, between
a piece of chalk and an elf), but I would expect the student to look
confusedly for a long narrow thing made out of wood, not immediately
guessing that you meant the piece of chalk.
Remark 1 The successful student learns to resist being snowed. Of
course the student does not know everything about mathematics. Neither
does the professor. There are always things you don’t know, and the more
skillful would-be snowers manipulate the conversation so that they can
talk about something they do know and their listener may not.

Unfortunately, I have known students who are what might be called
co-snowers. They are all too ready to be humiliated by how little they
know when someone however innocently refers to something they don’t
know about. Many of them drop out of mathematics because of this.

The teacher pretend-
ed that algebra was a
perfectly natural affair,
to be taken for grant-
ed, whereas I didn’t
even know what num-
bers were. Mathematics
classes became sheer ter-
ror and torture to me.
I was so intimidated
by my incomprehen-
sion that I did not dare
to ask any questions.

–Carl Jung

It is important to discuss this snow/co-snow phenomenon openly
with students in beginning abstract math courses, where the problem is
particularly bad (it seems to me). Airing the matter will surely give some
of them heart to persevere.
Remark 2 This use of the word “snow” is obsolescent slang from (I
think) the sixties.

Acknowledgments: Eric Schedler.

solution A solution of an equation containing variables is a list of
instantiations of all the variables that make the equation true.
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space space

assertion 20
existential quantifier 93
function 104
grounding metaphor 162
mathematical register 157
mathematical structure

159
metaphor 162
space 231
vector 273

Example 1 One of the two solutions of x2 = 2 is
√

2. That is because if
you substitute

√
2 into the equation you get the true assertion (

√
2)2 = 2.

Example 2 Every complex solution of the equation x2 = y2 is of the
form x = z, y = ±z. Citations: (49), (346).

some The word some is used in the mathematical register to indi-
cate the existential quantifier. Some examples are given under existential
quantifier.

space The naive concept of space based on our own physical experi-
ence is the primary grounding metaphor for some of the most important
structures studied by mathematicians, including vector space, topological
space, Banach space, and so on. The perception that functions can be
regarded as points in a space (a function space) has been extraordinarily
fruitful. Points

Have no parts or joints
How then can they

combine
To form a line?

–J.A. Lindon

Difficulties Most modern approaches to defining a certain kind of space
as a mathematical structure begins with the concept that the space is a
set of points with associated structure. This doesn’t fit the naive picture
of a space. The idea that points, which have zero size, can make up a
space with extent, is completely counterintuitive. This shows up when
students imagine, for example, that a real number has a “next” real
number sitting right beside it (see Example 6 under metaphor). Students
also have difficulty with envisioning the boundary (of zero width) of a
subspace.

Intuitively, a space ought to be a chunk with parts, not a collection
of points. The points ought to be hard to see, not the first thing you start
with in the definition. This point of view has been developed in sheaf
theory and in category theory. See [Lawvere and Schanuel, 1997] and
[Lawvere and Rosebrugh, 2003].
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argument 19
bare delimiter 72
bracket 32
definition by cases 35
definition 66
function 104
interval 135
mathematical definition

66
outfix notation 188
set 227
tilde 250
value 266

specification squiggle

specification A specification of a mathematical concept describes
the way the concept is used in sufficient detail for the purposes of a
particular course or text, but does not give a mathematical definition.
Specifications are particularly desirable in courses for students beginning
abstract mathematics for concepts such as set, function and “ordered
pair” where the standard definitions are either difficult or introduce ir-
relevant detail. Examples may be found under set and function.
Remark 1 On pages 48ff of [Rota, 1996] the distinction is made be-
tween “description” and “definition” in mathematics. As an example of
a description which is not a definition, he mentions D. C. Spencer’s char-
acterization of a tensor as “an object that transforms according to the
following rules”. That sounds mighty like a specification to me.
Remark 2 Definitions in category theory, for example of “product”,
are often simply precise specifications. That is exemplified by the fact
that a product of sets in the categorical sense is not a uniquely defined
set in the way it appears to be in the classical definition as a set of
ordered pairs. Category theory has made the practice of specification
into a precise and dependable tool.

References: [Wells, 1995] and [Bagchi and Wells, 1998b].

split definition A definition by cases.

square bracket Square brackets are the delimiters [ ]. They are oc-
casionally used as bare delimiters and to enclose matrices, and may be
used instead of parentheses to enclose the argument to a function in an
expression of its value (as in f [x] instead of f(x)). They are also used as
outfix notation with other special meanings, for example to denote closed
intervals. See bracket. Citations: (103), (115), (131), (189), (275), (381),
(402).

squiggle See tilde.
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mathematical discourse 1
symbolic language 243
text 74

standard interpretation The standard interpretation of a math-
ematical discourse is the meaning a mathematician competent in a given
field will understand from a discourse belonging to that field. (One as-
pect of being “competent”, of course, is familiarity with the standard
interpretation!) There are no facts,

only interpretations.
–Friedrich Nietzsche

I will state two theses about the standard interpretation here and
make some comments.

(a) First thesis There is such a thing as the standard interpretation
and it is a proper subject for study in linguistics.

My claim that most of the time mathe-
maticians agree on the meaning of what
they read must be understood in the
way that the claims of physics are under-
stood. If an experiment disagrees with
an established law, the experimenter can
often discover a flaw that explains the
disagreement. If mathematicians dis-
agree about the meaning of a text, they
often discover a flaw as well: one of them
had the wrong definition of a word, they
come to agree that the text is genuine-
ly ambiguous, or the author tells them
about a typo . . .

My evidence for this is that for most mathematical
discourse, most mathematicians in the appropriate field
who read it will agree on its meaning (and will mark stu-
dents’ papers wrong if they have a nonstandard interpre-
tation). Furthermore, rules for how the interpretation is
carried out can be apparently formulated for much of the
symbolic part (see the discussion of MathematicaR© under
symbolic language), and some of the structure of the ex-
pressions that communicate logical reasoning is used out-
side mathematics and has been the subject of intensive
study by semanticists; for example, see [Chierchia and
McConnell-Ginet, 1990] and [Kamp and Reyle, 1993].

(b) Second thesis One of the major tasks of an in-
structor in mathematics is to show a student how to extract correctly the
standard interpretation of a piece of text. It is by universal mis-

understanding that all
agree. For if people
understood each other,
they would never agree.

–Charles Baudelaire

This thesis is based on my own experience. I have always been sensi-
tive to language-based misunderstandings, and not just in mathematics.
I have kept records of such misunderstandings and learned some basic
ideas of linguistics as a result of my curiosity about them. It appears to
me from my teaching experience that language based misunderstandings
cause problems in learning mathematics at the post-calculus level.
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standard interpretation straight arrow notation

Many mathematical educators seem to advocate the point of view
that the student’s interpretation, however nonstandard, is just as valid
as the mathematician’s. There is much merit in not ridiculing the va-
lidity of the student’s “misuse” of standard terminology, for example,
those described under conditional assertion and excluding special cases,
particularly when the misuse is customary linguistic behavior outside of
mathematics. Nevertheless, it is vital that the student be told something
like this: “Your usage may be perfectly natural in everyday discourse,
but it is not the way mathematicians talk and so to be understood, you
must speak the standard dialect.”

There is more about this in the entry translation problem.

status I have had a few experiences that lead me to believe that some
phrases in the mathematical register are “in” (have high status) and
others are “out” (low status).
Example 1 To some mathematicians, “dummy variable” may sound
high-schoolish and low status; it is much more refined to say “bound
variable”.
Example 2 The phrase “setbuilder notation” may have lower status
than “set comprehension”.

A reviewer of a book I wrote said,
“ . . . and he even referred to ‘set-
builder notation’ . . . ” without any
further explanation as to why that
was a bad thing. I was mightily
puzzled by that remark until it oc-
curred to me that status might be
involved.

Remark 1 Variations in status no doubt differ in different
mathematical disciplines.
Remark 2 I believe that in both examples just given, the
low status word is much more likely to be understood by high
school and beginning college students in the USA.

See also plug into.

straight arrow notation The notation f : S → T means
that f is a function with domain S and codomain T . It is read

“f is a function from S to T” if it is an independent clause and “f from S
to T” if it is parenthetic. Compare barred arrow notation. See rightists.
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straight arrow notation subscript

barred arrow notation 24
character 36
expression 241
lambda notation 139
mathematical object 155
mathematical structure

159
notation 177
set 227
setbuilder notation 228
symbol 240
symbolic expression 241

Citation: (90), (403).

structure See mathematical structure.

structural notation Structural notation for a mathematical object
is a symbolic expression that, in the given context, describes the (possibly
variable) mathematical object unambiguously without providing a symbol
for it. Also called anonymous notation.
Example 1 The expression {1, 2, 4} is structural notation for the unique
set that contains the elements 1, 2 and 4 and no other elements.
Example 2 The expression (

a2 ab
−ab b2

)
is structural notation for a certain matrix with parameters a and b.
Example 3 Setbuilder notation is a type of systematic structural no-
tation. So are barred arrow notation and lambda notation for functions.

subscript A string of characters is a subscript to a character if the
string is placed immediately after the character and below the base line
of the text. (But see Remark 1.)
Example 1 In the expression x23, the string 23 is a subscript to x.

Subscripts are normally used for indexing.
Example 2 The tuple a = (3, 1, 5) is determined by the fact that a1 =
3, a2 = 1, and a3 = 5.
Example 3 The Fibonacci sequence f0, f1, . . . is defined by f0 = 0,
f1 = 1, and fi = fi−1 + fi−2 for i > 1. (Some authors define f0 = 1.)
Citations: (28).

Subscripts may also be used to denote partial derivatives.
Example 4 If F (x, y) = x2y3 then Fx = 2xy3.
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denotation 73
expression 241
function 104
increasing 127
parenthesis 192
syntax 246
variable 268

subscript substitution

Difficulties The tuple in Example 2 can be seen as a function on the
set {1, 2, 3} (“a tuple is a function on its index set”), and the Fibonacci
sequence can be seen as a function on the nonnegative integers. The ith
entry of Fibonacci sequence could thus be written indifferently as fi or
f(i). This fact is familiar to working mathematicians, but in a classroom
where the Fibonacci function is denoted by fi a remark such as

“The Fibonacci sequence is an increasing function of i.”
can cause considerable confusion to beginners.
Remark 1 Occasionally, as for example in dealing with tensors, a string
is used as a left subscript by placing it immediately before the character
and below the base line of the text.
Example 5 Let kai denote the ith coefficient of the kth polynomial
kP . Citation: (201).

Acknowledgments: Gary Tee.

substitution To substitute an expression e for a variable x that oc-
curs in an expression t is to replace every occurrence of x by e (in a sophis-
ticated way – see below). The expression resulting from the substitution
has a possibly different denotation which can generally be determined
from the syntax.
Example 1 Let e be x+ y and t be 2u. Then substituting t for x in e
yields 2u+ y. Citations: (8), (286), (329)

(a) Syntax of substitution The act of substituting may require inser-
tion of parentheses and other adjustments to the expression containing
the variable. In general, substituting is not a mechanical act, but requires
understanding the syntax of the expression.
Example 2 Substituting 2u for x in x2 +2x+y gives (2u)2 +2(2u)+y;
note the changes that have to be made from a straight textual substitu-
tion.
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substitution substitution

assertion 20
evaluate 89
expression 241
find 97
function 104
instantiate 133
pattern recognition 195
semantics 224
substitution 236
syntax 246
theorem 250
variable mathematical

object 156
variable 268

Example 3 Substituting 4 for x in the expression 3x results in 12, not
34 (!).
Example 4 Suppose f(x, y) = x2 − y2. What is f(y, x)? What is
f(x, x)? Many students have trouble with this kind of question.

See also pattern recognition.
Uniform substitution Although a variate identifier denotes a

variable object, or, if you wish, can be instantiated as any one of (usual-
ly) many possibilities, all uses of a particular identifier refer to the same
object.
Example 5 “Let f : S → T be a surjective function between finite
sets. Then S has at least as many elements as T” This assertion is a
theorem, which means that whenever you can find a function f : A → B
with A and B finite sets, and you substitute A for S and B for T , then
the statement must be true.

The only place in mathematics that I know
of in which substitution of different objects
is allowed for different occurrences of the
same symbol is in the common notation for
context-free grammars, as for example in
[Hopcroft and Ullman, 1979].

Now, S (as well as T ) occurs twice in the state-
ment. The claim that the assertion is a theorem is
based on substituting the same set A for both occur-
rences of S, and similarly for T . Otherwise you could
easily make the statement false.

(b) Semantics of substitution A fundamental
fact about the syntax and semantics of all mathematical expressions (as
far as I know) is that substitution commutes with evaluation. This means
that if you replace a subexpression by its value the value of the containing
expression remains the same. For example, if you instantiate the variable
x in the expression 3x + y with 4 and replace the subexpression 3x by
its value 12, you get the expression 12 + y, which must have the same
value as 3x + y as long as x has the value 4. This is a basic fact about
manipulating mathematical expressions.

Acknowledgments: Michael Barr.
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assertion 20
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conditional assertion 47
imply 47
minus 166
overloaded notation 189
power 202
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setbuilder notation 228
universal quantifier 260

subtract superscript

subtract See minus.

such that For a predicate P , a phrase of the form “c such that P (c)”
means that P (c) holds.
Example 1 “Let n be an integer such that n > 2.” means that in the
following assertions that refer to n, one can assume that n > 2.
Example 2 “The set of all integers n such that n > 2.” refers to
the set {n | n > 2}. (See setbuilder notation.) Citations: (10), (24),
(162).
Remark 1 Note that in pronouncing ∃xP (x) the phrase “such that” is
usually inserted. This is not done for the universal quantifier.

Yes, I know that
“∀x(x > 0)” is
false.

Example 3 “∃x(x > 0)” is pronounced “There is an x such that x is
greater than 0”, but “∀x(x > 0)” is pronounced “For all x, x is greater
than 0”.

Acknowledgments: Susanna Epp.

sufficient P is sufficient for Q if P implies Q. One also says P
suffices for Q. The idea behind the word is that to know that Q is true
it is enough to know that P is true. Examples are given under conditional
assertion. Citation: (205).

superscript A string of characters is a superscript to a character if
the string is placed immediately after the character and raised above the
base line of the text.
Example 1 In the expression x23, the string 23 is a superscript to x.

Superscripts are heavily overloaded in mathematical usage. They
are used:

a) To indicate a multiplicative power of a number or a function. Cita-
tion: (75), (237), (335).
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superscript suppression of parameters

binary operation 183
domain 77
group 34
identifier 120
let 140
mathematical structure

159
notation 177
parameter 191
synecdoche 245
underlying set 258

b) To indicate repeated composites of a function. Thus f2(x) means
f(f(x)). It perhaps could be used to mean f(x)f(x), but I have
not found a citation for that usage. It appears to me that f(x)f(x)
would customarily be written (f(x))2. Citation: (97).

c) As an index. A superscript used as an index may indicate contravari-
ance. Citation: (140).

d) To indicate the domain of a function space. Citation: (345).
e) To indicate the dimension of a space. Citation: (432).
f) To indicate the application of an operator. This is common with the

notation T for transpose. Citation: (211), (386).
g) As a bound on an operator, for example summation, product and

integral. Citation: (293), (152).
h) A few authors use a superscript to the left of the base character, as

in 23x. This may be an index or have some other specially defined
meaning. Citation: (405).

Difficulties A serious confusion in lower level college math courses oc-
curs between f−1 as the reciprocal of a function and f−1 as the inverse.
This is a special case of items (1) and (2) above.
Remark 1 Sometimes in my classes students give answers that show
they think that the Cartesian power {1, 2, 3}2 (which is {1, 2, 3}×{1, 2, 3})
is {1, 4, 9}.
suppose Discussed under let.

suppression of parameters An identifier or other mathematical
notation may omit a parameter on which the meaning of the notation
depends.
Example 1 A common form of suppression of parameters is to refer to
a mathematical structure by its underlying set. Thus a group with under-
lying set G and binary operation ∗ may be called G, so that the notation
omits the binary operation. This is also an example of synecdoche.
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suppression of parameters symbol

Example 2 A parameter that is suppressed from the notation may or
may not be announced explicitly in the text. For example, a text may,
by the expression log x, refer to the logarithm with base e, and may or
may not announce this fact explicitly. Note that this is not an example
of synecdoche.

See also abuse of notation and orthogonal.

surjective A function f : A → B is surjective if for every element b
of B there is an element a of A such that f(a) = b. One also says f is
onto B. Citations: (65), (255), (392), (403).
Remark 1 In view of the differences in the way function is defined
mathematically (discussed under function), one should strictly speaking
either adopt the stance that every function is equipped with a codomain,
or one should always attach a phrase of the form “onto B” to any occur-
rence of the word “surjective”.
Remark 2 A phrase such as “f is a map onto S” does not always mean
it is surjective onto S. Citation: (303).

See also trivial and the sidebar under injective.

symbol A symbol is an identifier used in the symbolic language which
is a minimal arrangement of characters. “Minimal” means it is not itself
constructed of (mathematical) symbols by the rules of construction of
symbolic expressions.
Example 1 The symbol for the ratio between the circumference and
the diameter of a circle is “π”. This is a mathematical symbol consisting
of one character.
Example 2 The symbol for the sine function is sin. This is a symbol
made up of three characters. Although one of the characters is i and i
is itself a symbol, its role in the symbol “sin” is purely as a character.
(One could think “sin” is the product of s, i and n, and indeed students
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article 20
assertion 20
character 36
determinate 74
mathematical register 157
name 171
symbol 240
symbolic expression 241
synthetic 40
variable 268

do sometimes assume such things, but that would not be the author’s
intent.)

This is in contrast to the role of i in the symbolic expression 3i2,
a compound expression (not called a symbol in this Handbook) whose
meaning is determined synthetically by the meanings of the symbols 3, i
and 2 and the way they are arranged.
Remark 1 Many authors, for example [Fearnley-Sander, 1982] and
[Harel and Kaput, 1992], use “symbol” to mean what I call symbolic
expression. Others use “symbol” to mean character.
Remark 2 The syntax of symbols and symbolic expressions in the
mathematical register needs analysis. It appears to me that they are
treated like proper nouns. In particular, they don’t take the article.
Example 3 Compare “Sym3 is noncommutative” with “Flicka is a
horse”.
Example 4 Symbols are used in apposition like proper nouns. Two
nouns are in apposition if one follows the other and they play the same
syntactic role. Usually the second is a specification or explanation of the
first, as in “My friend Flicka”. Compare “The group Sym3” This applies
to variables as well as determinate symbols, as in “the quantity x2 + 1”
and “for all integers n”.

See also name.
References: This discussion derives in part from [de Bruijn, 1994],

page 876.

symbolic assertion See assertion.

symbolic expression A symbolic expression (or just expression)
is a collection of mathematical symbols arranged

a) according to the commonly accepted rules for writing mathematics,
or
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delimiter 71
formal language 100
mathematical object 155
representation 217
semantics 224
symbol 240
symbolic assertion 20
symbolic language 243
synthetic 40
term 248

symbolic expression symbolic expression

b) according to some mathematical definition of a formal language.
Every expression is either a term or an symbolic assertion. In particular,
every symbol is a symbolic expression.

The meaning of a symbolic expression is normally determined syn-
thetically from the arrangement and the meanings of the individual sym-
bols. See semantics and compositional.
Example 1 The expressions x2 and sin2 π mentioned under symbol
are symbolic expressions. “sin2 π” is an arrangement of three symbols,
namely sin, 2 and π. The arrangement itself is meaningful; “sin2 π” is
not the same symbolic expression as 2 sinπ even though they represent
the same mathematical object.
Remark 1 As the example indicates, the “arrangement” need not be
a string.

Citations: (93), (286), (316), (351), (407).

Subexpressions An expression may contain a subexpression. The
rules for forming expressions and the use of delimiters allow one to de-
termine the subexpressions.
Example 2 The subexpressions in x2 are x2, x and 2. Two of the
subexpressions in (2x + 5)3 are 2x and 2x + 5. The rules of algebra
require the latter to be inclosed in parentheses, but not the former.
Example 3 Is sinπ a subexpression of sin2 π? This depends on the
rules for construction of this expression; there is no book to consult be-
cause the rules for symbolic expressions in the mathematical register are
not written down anywhere, except possible in the bowels of Mathema-
ticaR©(see Remark 3 under symbolic language). One could imagine a rule
that constructs the function sin2 from sin and notation for the squaring
function, in which case sinπ is not a subexpression of sin2 π. On the
other hand, one could imagine a system in which one constructs (sinπ)2
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assertion 20
discourse 74
formula 101
identifier 120
mathematical register 157
parenthetic assertion 194
real number 213
symbolic assertion 20
symbolic expression 241
term 248

and than a Chomsky-style transformation converts it to sin2 π. In that
case sinπ is in some sense a subexpression of sin2 π.

This example shows that determining subexpressions from the ty-
pographical arrangement is not a trivial task. One must understand the
rules for forming expressions, implicitly if not explicitly.
Example 4 The set

{f | f = sinn, n ∈ N, n > 0}
could also be written

{f | f is a positive integral power of the sine function}
showing that English phrases can occur embedded in symbolic expres-
sions.

References: Symbols and symbolic expressions are discussed in the
context of mathematical education in [Schoenfeld, 1985], [Harel and Ka-
put, 1992], [Tall, 1992c].

symbolic language The symbolic language of mathematics is a
distinct special-purpose language used independently and in phrases in-
cluded in discourse in the mathematical register. It consists of symbolic
expressions written in the way mathematicians traditionally write them.
They may stand as complete sentences or may be incorporated into state-
ments in English. Occasionally statements in English are embedded in
symbolic expressions. (See Remark 2 under identifier.)
Example 1 “π > 0.” This is a complete assertion (formula) in the
symbolic language of mathematics.
Example 2 “If x is any real number, then x2 ≥ 0.” This is an assertion
in the mathematical register containing two symbolic expressions. Note
that “x” is a term and “x2 ≥ 0” is a symbolic assertion incorporated into
the larger assertion in English. See parenthetic assertion.
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symbolic expression 241
term 248
variate 272

symbolic language symbolic logic

Example 3 “{n | n is even}.” This is a term containing an embedded
phrase in the mathematical register.

The symbolic language as a formal structure The symbolic lan-
guage of mathematics has never been given by a mathematical definition
(in other words it is not a formal language). There would be difficulties
in doing so.

• The symbolic language is context-sensitive (examples are given under
that heading).

• The symbolic language of mathematics has many variants depending
on the field and individual idiosyncrasies.

• Even if one gives a formal definition one would have problems with
mechanical parsing (automatically computing the meaning of an ex-
pression) because the language contains ambiguities. Examples:

• Is “ma” a symbol or is it m times a? (See the sidebar under
variate.)

• Is sinx the result of function application or is it a product of
two variables named sin and x?

• What does sin−1 x mean?
MathematicaR© 3.0 has a standardized version (StandardForm) of

the symbolic expression language of the mathematical vernacular that
eliminates ambiguities, and it can also output symbolic expressions in
a form called TraditionalForm that is rather close to actual usage.
(See [Wolfram, 1997], pages 187ff.) Presumably the implementation of
TraditionalForm would have involved a definition of it as a formal lan-
guage.

De Bruijn [1994] proposes modeling a large part of the mathemat-
ical vernacular (not just the symbolic language) using a programming
language.

symbolic logic Another name for mathematical logic.
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aha 132
conceptual 43
mathematical logic 151
mathematical object 155
mathematical structure

159
proof 205
suppression of parameters

239
symbolic expression 241
underlying set 258

symbolitis The excessive use of symbols (as opposed to English words
and phrases) in mathematical writing – the meaning of “excessive”, of
course, depends on the speaker! There seems to be more objection to
symbols from mathematical logic such as ∀ and ∃ than to others.
Reference: This name was given by [Gillman, 1987], page 7.

symbol manipulation Symbol manipulation is the transforma-
tion of a symbolic expression by using algebraic or syntactic rules, typ-
ically with the intention of producing a more satisfactory expression.
Symbol manipulation may be performed as a step in a proof or as part
of the process of solving a problem.
Example 1 The proof that a2 − b2 = (a + b)(a − b) based on the dis-
tributive law, the commutative law for multiplication, and the algebraic
laws concerning additive inverses:

(a+ b)(a− b) = a(a− b) + b(a− b) = a2 − ab+ ba− b2

= a2 − ab+ ab− b2 = a2 − b2

An example of a proof by symbolic manipulation of formulas in math-
ematical logic is given under conceptual. Proof by symbol manipulation
is contrasted with conceptual proof. See also aha.

Difficulties Students often manipulate symbols inappropriately, using
rules not valid for the objects being manipulated. This is discussed by
Harel [1998].

synecdoche Synecdoche is naming something by naming a part of
it.
Example 1 Referring to a car as “wheels”.
Example 2 Naming a mathematical structure by its underlying set.
This happens very commonly. This is also a case of suppression of pa-
rameters.
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expression 241
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infix notation 131
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symbolic expression 241
term 248
value 266
well-defined 274

synecdoche syntax

Example 3 Naming an equivalence class by a member of the class.
Note that this is not an example of suppression of parameters. See well-
defined. Citations: (20), (150), (186),

See also metaphor.
Reference: [Presmeg, 1997b].

syntax The syntax of an expression is an analysis of the manner in
which the expression has been constructed from its parts.
Example 1 The syntax of the expression 5 + 3 consists partly of the
fact that “5” is placed before “+” and “3” after it, but the syntax is
more than that; it also includes the fact that “+” is a binary operation
written in infix notation, so that the expression 5 + 3 is a term and not
an assertion. The expression 3+5 is a different expression; the semantics
usually used for this expression tells us that it has the same value as 5+3.

+

��
��
�

��
��

�

∗

��
��
�

��
��

� y

3 x

3x+ y
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�

x y

3(x+ y)

Example 2 The syntax of the expression 5 > 3 tells us that it is an
assertion; the semantics tells us that it is a true assertion.
Example 3 The syntax of the expression 3x + y is different from the
syntax of 3(x + y). In the common tree notation for syntax the two
expressions are parsed as in the diagrams in the margin.

Using syntax The syntax of an expression gives it structure beyond
being merely a string of symbols. The structure must be deduced by
the reader with clues given by convention (in the case of Example 3,
that multiplication takes precedence over addition), parentheses, and the
context. (See also Example 3 under symbolic expression.)

Successful students generally have the functional knowledge need-
ed to determine the structure without much explicit instruction, and in
many cases without much conscious awareness of the process. For exam-
ple, college students may be able to calculate 3(x+y) and 3x+y correctly
for given instantiations of x and y, but they may have never consciously
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abstract object 156
compositional 40
expression 241
reverse Polish notation

219
substitution 236
trigonometric functions

254

noticed that in calculating 3x + y you must calculate the product be-
fore the sum, and the other way around for 3(x + y). (A reverse Polish
calculator forces you to notice things like that.) See also compositional.

The way the order of calculation is determined by the syntactic struc-
ture and the observation in section (b) under substitution that substi-
tution commutes with evaluation are basic aspects of learning to deal
with mathematical expressions that are essentially never made explicit in
teaching. (No teacher under whom I studied ever made them explicit.)

Students vary widely on how much they are able to use the syntax to
help decode mathematical expressions. Even college engineering and sci-
ence students don’t always understand the difference between expressions
such as −22 and (−2)2.

Similarly, the syntax of a complicated English sentence may help
some understand it while communicating little or nothing to others. Thus
a student may be able to understand a very complicated statement in
English that is in context, but will find meaningless a statement with the
same logical structure about abstract objects.

See also compositional, substitution.
Acknowledgments: Some of this discussion was suggested by [Du-

binsky, 1997]. A good reference to the syntax of English is [McCaw-
ley, 1988a], [McCawley, 1988b]. Thanks also to Atish Bagchi and Eric
Schedler.

synthetic See compositional.

tangent The word tangent refers both to a straight line in a certain
relation to a differentiable curve (more general definitions have been giv-
en) and to a certain trigonometric function. These two meanings are
related: the trigonometric tangent is the length of a certain line segment
tangent to the unit circle (−→DT in the picture). Sadly, some students get
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tangent term

to college without ever knowing this. Similar remarks apply to secant
(−→OT in the picture).

term The word term is used is several ways in the mathematical reg-
ister.

(a) A constituent of a sum or sequence A term is one constituent of
a sum (finite or infinite), in contrast to a factor, which is a constituent of
a product. The word is also used for a constituent of an infinite sequence.
Example 1 The second term in the expression x2 + 2x+ 1

x is 2x.
Citations: (8), (258).

The two usages in (a) and (b) conflict.
The expression x2 + 1 is a term in the
logical sense, and it is a factor in the ex-
pression (x2 + 1)(x2 + 3). This can and
does lead to confusion when mathemati-
cians and logicians talk.

(b) A symbolic expression denoting a mathemat-
ical object In mathematical logic, a term is a symbolic
expression that denotes a (possibly variable) mathemat-
ical object. This is in contrast to a symbolic assertion.
A term is thus equivalent to a noun phrase, whereas an
assertion is equivalent to a whole sentence.

Example 2 Any symbol that denotes a (possibly variable) mathemat-
ical object is a term. Thus π and 3 are terms.
Example 3 The expression 2 + 5 is a term that denotes 7.
Example 4 The expression x + 2y is a term. It denotes a variable
number. If specific numbers are substituted for x and y the resulting
expression is a term that (in the usual extensional semantics) denotes a
specific number.
Example 5 The expression ∫ 2

1
x dx

is a term; it (extensionally) denotes the number 3/2.
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defining equation 106
definite article 64
equivalent 86
formula 101
i.e. 120
parameter 191
sign 229
the following are equiva-

lent 99
variable 268

Citations: (289), (371).
See also formula.

(c) In terms of Writing a function in terms of x means giving a
defining equation containing x as the only variable (but it may contain
parameters).
Example 6 The expression xy = 1 implicitly determines y as a func-
tion of x, explicitly y is given by y = 1

x as a function of x. Citation:
(92).

Acknowledgments: Owen Thomas.

TFAE Abbreviation for “the following are equivalent”.

that is

(a) Indicating equivalence The phrase “that is” may be used to in-
dicate that what follows is equivalent to what precedes, usually when the
equivalence is essentially a rewording.
Example 1 “We have shown that xy < 0, that is, that x and y are
nonzero and of opposite sign.”

Example 2 “Then n = 2k, that is, n is even.”

(b) Indicating significance “That is” is sometimes used in the situ-
ation that what after is an explanation of the significance of what comes
before. The explanation may be a rewording as in (a) above, so that
these two usages overlap.
Example 3 “If the function is a polynomial, that is, easy to calculate,
numerical estimates are feasible.”

See also i.e.
Citation: (1), (66), (159), (196), (342),

the See definite article.
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proposition 210
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then tilde

then The word then in the mathematical register generally means that
what follows can be deduced from the preceding assumption, which is
commonly signaled by if or when. See conditional assertion and imply.
Example 1 “If n is divisible by 4, then n is even.”
Remark 1 Occasionally “then” has a temporal meaning. Citations:
(28), (79).

theorem To call an assertion a theorem is to claim that the assertion
has been proved.
Remark 1 In texts the proof is often given after the theorem has been
stated. In that case (assuming the proof is correct) it is still true that
the theorem “has been proved”! (See time).

Citations: (23), (28), (69), (147).
Some authors refer only to assertions they regard as important as

theorems, and use the word proposition for less important ones. See also
lemma and corollary.

Theorems, along with definitions, are often delineated. See labeled
style.

theory of functions In older mathematical writing, the phrase the-
ory of functions refers by default to the theory of analytic functions of
one complex variable. Citations: (417), (419).

thus Thus means that what follows is a consequence of what precedes.
Citations: (203), (269).

tilde The symbol “˜” is used
• over a letter to create a new variable,
• as a relation meaning asymptotically equal, and
• in web addresses.
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variate identifier 272

The symbol is pronounced “tilde” (till-day or till-duh), or informally
“twiddle” or “squiggle”. Thus “x̃” is pronounced “x tilde”, “x twiddle”
or “x squiggle”. See also accent. Citations: (30), (178), (405).

time The concept of time is used in several ways in mathematical
discourse.

(a) Reference to actual time
Example 1 “Fermat stated his famous ‘Last Theorem’ in about 1630.”

One also refers to things happening in time when a program is run. Time flies like an arrow.
Fruit flies like a banana.

–Groucho Marx
Example 2 “A local variable in a procedure disappears when the pro-
cedure is finished.” Citations: (18), (92), (205), (339).

(b) Model time by a variable “The velocity is the derivative of the
position with respect to time.” Citations: (62), (205).

(c) Metaphor: Variation thought of as taking place in time A
variable may be visualized as varying over time even if there is no stated
application involving time.
Example 3 “We find a maximum by varying x until y stops going up
and starts going down.”
Example 4 “The function f(x) = x2 − 1 vanishes when the function
g(x) = x− 1 vanishes, but not conversely.” Citations: (61) (331) (421)

One special case of this is the common picture of moving a geometric
figure through space.
Example 5 Revolve the curve y = x2 around the y-axis. Citation:
(349).

This metaphor is presumably behind the way the words increasing
and decreasing are used.

(d) Metaphor: Run through all instances One thinks of taking
the time to check through all the instances of a structure denoted by a
variate identifier.
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time time

Example 6 “When is the integral of a function expressible as a rational
function?” (The metaphor here is that we look through all the functions
and note which ones have integrals that are rational functions.)

Citations: (59), (72), (114).
Example 7 “When does a symmetric group have a nontrivial center?”
(Metaphor: Look at all the symmetric groups with an eye out for non-
trivial centers.)

(e) Metaphor: Implication takes time to happen A conditional
assertion “If P , then Q” uses “then” in a metaphor that probably comes
from thinking of P as causing Q to be true, and the effect of making Q
true takes time to happen. This metaphor is probably the reason “if” is
often replaced by “when”. (See examples under when).

(f) Metaphor: Progressing through mathematical discourse “Be-
fore” in a text refers to part of the text above the reference; “after” refers
to a part below it. (Note that I had to use another metaphor – that text
is a vertical column – to say this.) Other references to time are used in
this way, too.
Example 8 “We proved the forward part of the statement in Chapter 2
and will prove the converse part in Chapter 5.”
Example 9 “From now on we shall denote the binary operation by
juxtaposition”.

Progressing through a calculation is not
included under Metaphor (f) because the
intent of the author is often that one
imagines going through the calculation;
the calculation is not actually exhibited
in the discourse.

Example 10 “For the moment, suppose x > 0.” Cita-
tion: (5), (12), (45), (94), (96), (333), (355).

(g) Metaphor: Progress through a calculation or
a proof
Example 11 “We iterate this construction to obtain
all finite binary trees.”
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mathematical education
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mathematical logic 151
mathematical object 155
mathematical register 157
never 177
universal quantifier 260

Example 12 “Every time we perform the elimination step n is reduced
in value, so this calculation must eventually stop.”
Example 13 “The starting point for our proof is the observation that
the sum of two even integers is even.” Citation: (36), (34), (57), (130).
Remark 1 This is the metaphor behind the fact that a quick proof
means a short proof.

See also always, never, location.

translation problem The translation problem is the name used
in this Handbook for the process of discovering the logical structure of a
mathematical assertion P that has been stated in the mathematical reg-
ister. This is essentially equivalent to the problem of finding an assertion
in mathematical logic that represents P . Learning how to do this is one
of the difficult skills students of mathematics have to acquire, even very
early with simple word problems.

Many of the entries in this Handbook illustrate the complications
this involves; see for example and, conditional assertion and universal
quantifier.

References: This is discussed in the context of mathematical educa-
tion in [Selden and Selden, 1999], where discovering the logical structure
of an assertion is called unpacking. The text [Kamp and Reyle, 1993]
is essentially a study of the analogous problem of discovering the logical
structure of statements in ordinary English rather than in the mathemat-
ical register.

trial and error The process of finding an object that satisfies certain
constraints by guessing various possibilities and testing them against the
constraint until you find one that works is called the process of trial and
error. See Example 1 under algorithm addiction. Trial and error is valid
when it works but it typically takes exponential time in the size of the
problem to carry out.
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trial and error trigonometric functions

Citations: (348), (232).

trigonometric functions

(a) Degrees and radians It is not always explicitly noted to students
that if you write sinx meaning the sine of x degrees, you are not using
the same function as when you write sinx, meaning the sine of x radians.
They have different derivatives, for example. The same remark may be
made of the other trigonometric functions. This point is correctly made
in [Edwards and Penney, 1998], page 167.

It appears to me that in postcalculus pure mathematics “sinx” near-
ly always refers to the sine of x radians (not degrees), often without ex-
plicitly noting the fact. This is certainly not true for texts written by
non-mathematicians, but the situation is made easier by the customary
use of the degree symbol when degrees are intended.

(b) Variations in usage In the USA one calculates the sine function
on the unit circle by starting at (1, 0) and going counterclockwise (the
sine is the projection on the y-axis), but in other countries one may start
at (0, 1) and go clockwise (the sine is the projection on the x-axis). I
learned of this also from students, but have been unable to find citations.

Students educated in Europe may not have heard of the secant func-
tion; they would simply write cos−1.

(c) Evaluation One normally writes evaluation of trigonometric func-
tions by juxtaposition (with a small space for clarity), thus sinx instead
of sin(x). Students may sometimes regard this as multiplication.

See also logarithm and tangent.
Acknowledgments: Michael Barr.
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ratchet effect 213
rewrite using definitions

220
surjective 240

trivial
(a) About propositions A fact is said to be trivial to prove if the fact
follows by rewriting using definitions, or perhaps if the common mental
representation of the mathematical objects involved in the fact makes the
truth of the fact immediately perceivable. (This needs further analysis.
I would tend to use “obvious” for the second meaning.)
Example 1 A textbook may define the image of a function F : A → B
to be the set of all elements of B of the form F (a) for some a ∈ A.
It then goes on to say that F is surjective if for every element b of B
there is an element a ∈ A with the property that F (a) = b. It may then
state a theorem, or give an exercise, that says that a function F : A →
B is surjective if and only if the image of F is B. The proof follows
immediately by rewriting using definitions.

I suspect that teachers (and hotshot
math majors) telling students that an
assertion is “obvious” or “trivial” is an
important cause (but not the only one)
of the feeling much of the American
population has that they are “bad at
math”. In many cases a person who
feels that way may have simply not
learned to rewrite using definitions, and
so finds some proofs impossibly difficult
that their instructor calls “trivial”.

I have known instructors to refer to such an assertion
as “trivial” and to question the worth of including it in the
text. In contrast, I have known many students in discrete
math and abstract algebra classes who were totally baffled
when asked to prove such an assertion. This disparity
between the students’ and the instructors’ perception of
what is “trivial” must be taken seriously.

See ratchet effect. Reference: [Solow, 1995] is one
text with a discussion of image and surjective as described
in Example 1.

(b) About mathematical objects A function may be called trivial
if it is the identity function or a constant function, and possibly in other
circumstances. Citation: (37).

A solution to an equation is said to be trivial if it is the identity
element for some operation involved in the equation. There may be other
situations in which a solution is called “trivial” as well. Citations: (259),
(346).
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trivial twiddle

A mathematical structure is said to be trivial if its underlying set
is empty or a singleton set. In particular, a subset of a set is nontrivial
if it is nonempty. See proper. Citation: (64).
Remark 1 “Trivial” and degenerate overlap in meaning but are not
interchangeable. A search for more citations might be desirable, but it is
not clear to me that there is a consistent meaning to either word.

true An assertion P in mathematical discourse is true if it can be
proved using accepted axioms.
Remark 1 The two words “true” and valid are distinguished in math-
ematical logic, in which P is true roughly speaking if it can proved by a
sequence of deductions from the axioms currently being assumed, and it is
valid if it is a correct statement about every model of those axioms. The
completeness theorem in first order logic asserts that these two concepts
are the same for statements and proofs in first order logic.

turf If you are defensive about negative comments about your field,
or annoyed when another department tries to teach a course you believe
belongs in mathematics, you are protecting your turf. The use of this
word of course is not restricted to mathematicians (nor is the phenomenon
it describes).
Example 1 I have occasionally witnessed irritation by people familiar
with one field at the use of a term in that field by people in a different
field with a different meaning. This happened on the mathedu mailing
list when some subscribers started talking about constructivism with the
meaning it has in mathematical education rather than the (unrelated)
meaning it has in mathematical logic.

twiddle See tilde.
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two In mathematical discourse, two mathematical objects can be one
object. This is because two identifiers can have the same value unless
some word such as distinct is used to ensure that they are different.
Example 1 “The sum of any two even integers is even”. In this state-
ment, the two integers are allowed to be the same.

Acknowledgments: Susanna Epp.

type The type of a symbol is the kind of value it is allowed to have in
the current context.
Example 1 In the assertion

“If f is differentiable and f ′(x) = 0 then x is a critical point of
f .”

we may deduce that f is of type function and x is (probably) of type real,
even if the author does not say this.

Mathematicians do not use the word
“type” much in the sense used here.
When they do use it it typically refers
to a classification of structures in a par-
ticular field, as in for example differential
equations of hyperbolic type.

This sort of type deduction requires both mathe-
matical knowledge and knowledge of conventions; in the
present example one convention is that complex numbers
are more commonly written z instead of x. Mathematical
knowledge (as well as convention) tells us that x cannot
be of type integer.

Types and sets One could dispense with the concept of type and refer
to the set of possible values of the symbol. It appears to me however that
“type” is psychologically different from “set”. Normally one expects the
type to be a natural and homogeneous kind such as “function” or “real
number”, not an arbitrary kind such as “real number bigger than 3 or
integer divisible by 4”. One has no such psychological constraint on sets
themselves. This needs further investigation.

Type labeling Type labeling means giving the type of a symbol along
with the symbol. It is a form of redundancy.
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function 104
group 34
law of gravity for func-

tions 139
mathematical structure

159

type underlying set

Example 2 If it has been established on some early page of a text
that S3 denotes the symmetric group on 3 letters. A later reference to
it as “the group S3” or “the symmetric group S3” is an example of type
labeling.
Remark 1 Russian mathematical authors seem to do this a lot, al-
though that may be because one cannot attach grammatical endings to
symbols.

References: Jeffrey Ullman, in a guest appearance in [Knuth, Lar-
rabee and Roberts, 1989], flatly recommends always giving the type of a
symbol. Using explicit typing in teaching is advocated in [Wells, 1995].
See also [Bagchi and Wells, 1998a].

The discussion here is about using the
concept of type in communicating math-
ematics, not its use in logic or founda-
tions. It is not inconsistent to believe
both of these statements:

• In mathematical teaching and writ-
ing, it is helpful to mention the type
of a variable.

• Formal mathematical logic is best
done using untyped variables.

Difficulties Students commonly make type mistakes
(talking about 2π being divisible by 2, for example); it
would be helpful to refer to the concept explicitly as a
way of raising consciousness. This is discussed in [Wells,
1995]. Citations: (194), (248).

under Used to name the function by which one has
computed the value, or the function being used as an
operation.
Example 1 “If the value of x under F is greater than

the value of x under G for every x, one says that F > G.” Citation:
(139).
Example 2 “The set Z of integers is a group under addition.” Citation:
(68), (284).
Example 3 “If x is related to y under E, we write xEy.” Citation:
(128).

See law of gravity for functions.

underlying set See mathematical structure.

258



understand unique

condition 47
denote 73
isomorphic 137
literalist 145
mathematical education

150
mathematical object 155
metaphor 162
natural number 175
object 17
specific mathematical

object 156

understand Good students frequently complain that they can do the
calculations but they don’t understand the concepts. (Poor students can’t
do the calculations!) What they are missing are useful metaphors with
which they can think about the mathematical objects involved in their
calculations. This is discussed further under metaphor.

References: Much new insight has been gained in recent years by
cognitive scientists and researchers in mathematical education concerning
what it means to understand something. A good way to get into the
literature on this subject is to read [Lakoff and Núñez, 2000] and the
works of Sfard, particularly [Sfard, 1994] and [Sfard, 1997]. She gives
many references. Young man, in math-

ematics you don’t un-
derstand things, you
just get used to them.

–John von Neumann

unique To say that an object satisfying certain conditions is unique
means that there is only one object satisfying those conditions.

Citations: (66), (78), (138), (391). As some of the citations show, the
unique object may be a variable object determined uniquely by explicit
parameters.

This meaning can have philosophical complications.

(a) Is a natural number unique? The statement in Example 3 under
mathematical object that 3 is a specific mathematical object would not
be accepted by everyone. As Michael Barr pointed out in a response to
a previous version of this entry, there are various possible definitions of
the natural numbers and each one has its own element called 3. (See
literalist.) Nevertheless, mathematicians normally speak and think of the
number 3 as one specific mathematical object, and it is customary usage
that this Handbook is concerned with.

(b) Is the set of natural numbers unique? The phrase “the set of
natural numbers” causes a similar problem. This phrase could denote any
of the standard models of the Peano axioms, all of which are isomorphic.
Some mathematicians would say that the natural numbers are “unique
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expression 241
group 34
identifier 120
in your own words 127
mathematical logic 151
mathematical object 155
predicate 202
symbol 240
true 256
type 257
up to 265
variable mathematical

object 156

unique universal quantifier

up to isomorphism”. Others would say, “I choose one of the models and
that will be the natural numbers.” Still others would simply assert that
there is a unique set of natural numbers and all the talk above is about
foundations, not about what mathematicians actually deal with. Most
mathematicians in ordinary discourse speak of the natural numbers as if
they were unique, whatever they believe.

(c) Unique up to isomorphism “The symmetric group on n letters”
is unique up to isomorphism, but in contrast to the Peano natural num-
bers, it is not unique up to a unique isomorphism. Algebraists may
nevertheless talk about it as if it were unique, but when pressed by
literal-minded listeners they will admit that it is determined only up
to isomorphism.

The word “unique” is misused by students; see in your own words.
See also up to.

universal generalization If you have proved P (c) for a variable ob-
ject c of some type, and during the proof have made no restrictions on
c, then you are entitled to conclude that P (x) is true for all x of the
appropriate type. This process is formalized in mathematical logic as the
rule of deduction called universal generalization.

universal instantiation If it is known that P (x) is true of all x of
the appropriate type, and c is the identifier of a specific mathematical
object of that type, then you are entitled to conclude that P (c) is true.
In mathematical logic, the formal version of this is known as universal
instantiation.

universal quantifier An expression in mathematical logic of the form
∀xP (x), where P is a predicate, means that P (x) is true for every x of
the appropriate type. The symbol ∀ is pronounced “for all” and is called
the universal quantifier.
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universal quantifier universal quantifier

assertion 20
conditional assertion 47
each 78
mathematical register 157
sentence 227
the 64

Expressing universal quantification in the mathematical register
When a universally quantified sentence in the mathematical register is
translated into a sentence of the form ∀xP (x) in mathematical logic, the
assertion P (x) is nearly always in the form of a conditional assertion.
Thus in particular all the sentences listed as examples under conditional
assertion provide ways of expressing universal quantification in English.
However, there are other ways of doing that that are not conditional
assertions in English. To provide examples, let C(f) mean that f is
continuous and and D(f) mean that f is differentiable. The assertion
∀n (D(n) ⇒ C(n)) can be said in the following ways:

a) Every differentiable function is continuous. Citation: (28), (307).
b) Any differentiable function is continuous. Citation: (119), (314).
c) All differentiable functions are continuous. Citation: (7), (91),

(108), (322).
d) Differentiable functions are continuous. Citation: (228).
e) A differentiable function is continuous. Citation: (23), (273), (378).
f) Each differentiable function is continuous. Citation: (59), (66),

(104), (343), (369).
g) The differentiable functions are continuous. (This sounds like an

obsolescent usage to me.) Citation: (19).
One can make an explicit conditional assertion using the same words:

h) For every function f , if f is differentiable then it is continuous.
Citation: (46), (410).

i) For any function f , if f is differentiable then it is continuous.
Citation: (71), (54).

j) For all functions f , if f is differentiable then it is continuous. Cita-
tion: (91), (335).
In any of these sentences, the “for all” phrase may come after the

main clause. The conditional assertion can be varied in the ways described
under that listing. See also each.
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always 14
context 52
definite article 64
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each 78
indefinite article 128
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symbol 240
symbolic assertion 20
type 257
variable 268

universal quantifier universal quantifier

If the variable is typed, either the definite or the indefinite article
may be used:

k) “If the function f is differentiable, then it is continuous.”
l) “If a function f is . . . ”.

Citation: (342).
Remark 1 Sentences such as (4), (5) and (7) are often not recognized
by students as having universal quantification force. Sentence (5) is dis-
cussed further under indefinite article, and sentence (6) is discussed fur-
ther under each.

See also always, distributive plural and negation.

Universal quantification in the symbolic language The quantifier
is sometimes expressed by a constraint written to the right of a displayed
symbolic assertions.
Example 1 The assertion, “The square of any real number is nonneg-
ative” can be written this way:

x2 ≥ 0 (all real x)
or less explicitly

x2 ≥ 0 (x)
One might write “The square of any nonzero real number is positive” this
way:

x2 > 0 x �= 0

Citation: (79).
Open sentences Sometimes, the quantifier is not reflected by any

symbol or English word. The sentence is then an open sentence and is
interpreted as universally quantified. The clue that this is the case is that
the variables involved have not in the present context been given specific
values. Thus in [Grassman and Tremblay, 1996], page 105:
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always 14
assertion 20
counterexample 61
existential quantifier 93
false symmetry 96
indefinite article 128
never 177
order of quantifiers 186
universal generalization

260
universal quantifier 260

“A function f of arity 2 is commutative if f(x, y) = f(y, x).”
This means that f(x, y) = f(y, x) for all x and all y.
Remark 2 Sometimes an author does not make it clear which variable
is being quantified.

“ In fact, every Qi(s) ∼= 1 (mod m), since. . . . ”

The context shows that this means
∀i (Qi(s) ∼= 1 (mod m)

)
(This is from [Neidinger and Annen III, 1996], page 646.)

Difficulties Students sometimes attempt to prove a universally quan-
tified assertion by giving an example. They sometimes specifically com-
plain that the instructor uses examples, so why can’t they? There are
several possibilities for why this happens:

• The students have seen the instructor use examples and don’t have
a strong sensitivity to when one is carrying out a proof and when
one is engaged in an illuminatory discussion.

• The student has seen counterexamples used to disprove universal
statements, and expects to be able to prove such statements by a
kind of false symmetry.

• The student is thinking of the example as generic and is carrying out
a kind of universal generalization.

• The problem may have expressed the universal quantifier as in Ex-
ample 1 under indefinite article.
Acknowledgments: Atish Bagchi, Michael Barr.
References: [Epp, 1999]. The texts [Exner, 2000], chapter 3, [Wood

and Perrett, 1997], page 12 are written for students. For studies of quan-
tification in English, see [Chierchia and McConnell-Ginet, 1990] and
[Keenan and Westerst̊ahl, 1997].

See also always, counterexample, never, existential quantifier and
order of quantifiers.
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assertion 20
constraint 51
mathematical discourse 1
or 184
variable 268
walking blindfolded 274

unknown unnecessarily weak assertion

unknown One or more variables may occur in a constraint, and the
intent of the discourse may be to determine the values of the variables
that satisfy the constraint. In that case the variables may be referred to
as unknowns.
Remark 1 The variable is commonly numerical and the constraint is
commonly an equation, but the word occurs in other contexts as well,
for example finding the unknown function (or parametrized family of
functions) satisfying a differential equation.

Determining the “values of the variables that satisfy the constraint”
may mean finding the shape determined by the constraints (for example,
the unit circle determined by x2 + y2 = 1.)

Citations: (17), (43), (215), (408).

unnecessarily weak assertion Students are often uncomfortable
when faced with an assertion such as

“ Either x > 0 or x < 2 ”
because one could obviously make a stronger statement. The statement
is nevertheless true.
Example 1 Students have problems both with “2 ≤ 2” and with “2 ≤
3”. This may be compounded by problems with inclusive and exclusive
or.
Remark 1 It appears to me that unnecessarily weak statements occur
primarily in these contexts:

a) When the statement is what follows formally from the preceding
argument.

b) When the statement is made in that form because it allows one to
deduce a desired result.
I believe students are uncomfortable primarily in the case of (b), and

that their discomfort is an instance of walking blindfolded.
Acknowledgments: Michael Barr.
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unwind vacuous implication

case 35
conceptual 43
conditional assertion 47
copy 59
elementary 79
group 34
instantiate 133
isomorphic 137
mathematical definition

66
mathematical object 155
modulo 168
rewrite using definitions

220
true 256

unwind A typical definition in mathematics may make use of a number
of previously defined concepts. To unwind or unpack such a definition
is to replace the defined terms with explicit, spelled-out requirements.
This may change a conceptual definition into an elementary definition.
An example is given under elementary. See rewrite using definitions.
Citation: (38), (202), (227).

up to Let E be an equivalence relation. To say that a definition or
description of a type of mathematical object determines the object up to
E (or modulo E) means that any two objects satisfying the description
are equivalent with respect to E.
Example 1 An indefinite integral

∫
f(x) dx is determined up to a con-

stant. In this case the equivalence relation is that of differing by a con-
stant.

The objects are often described in terms of parameters, in which
case any two objects satisfying the description are equivalent once the
parameters are instantiated.
Example 2 The statement “G is a finite group of order n containing
an element of order n” forces G to be the cyclic group of order n, so that
the statement defines G up to isomorphism once n is instantiated.

See copy. Citation: (146), (274).

uppercase See case.

vacuous implication A conditional assertion “If A then B” is true
if A happens to be false. This is not usually the interesting case, so this
phenomenon is called vacuous implication.

Difficulties Students have a tendency to forget about vacuous implica-
tion even if reminded of it.
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vacuous implication value

Example 1 A relation α is antisymmetric if
(a α b) and b α a) ⇒ a = b

The relation “<” on the set of all reals is antisymmetric. When this is
pointed out, a student may ask, “How can less-than be antisymmetric?
It’s impossible to have r < s and s < r!”

valid In common mathematical usage, an assertion P (x) is valid if it
is correct, that is, if for all x of the correct type, P (x) is true. Thus valid
and true mean essentially the same thing in common usage.

A proof is valid if all its steps are correct.

value The object that is the result of evaluating a function at an ele-
ment x of its domain is called the value, output or result of the function
at x. Citation: (133), (212), (289).

The word “value” is also used to refer to the mathematical object
denoted by a literal expression. Most commonly the word is used when
the value is a number. Citation: (302), (323).

(a) Symbolic notation for value If the function is denoted by f , then
the value at x is denoted by f(x) or fx (prefix notation). Whichever
notation an author routinely uses, the value at x + 1 would of course
be denoted by f(x + 1). For an author who always writes f(x) (except
for function symbols that normally don’t use parentheses – see irregular
syntax), the parentheses serve to delimit the input to the function. For
those who normally write fx, the parentheses in f(x+1) are used as bare
delimiters. Both notations have a long history. Citations: (45), (164),
(407).

The value may be denoted in other ways:
a) xf (reverse Polish notation). (The notation fx is a special case of

Polish notation).
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value value

composite 40
defining expression 105
grouping 118
infix notation 131
integer 133
mathematical register 157
outfix notation 188
parenthesis 192
postfix notation 201
prefix notation 203
rightists 220
subscript 235

b) (x)f (postfix notation). These are discussed in their own entries with
examples. See also rightists.

c) fx (mostly for functions defined on integers— see subscript).
d) f [x]. This notation is used by MathematicaR©; parentheses are re-

served for grouping.
See parentheses for more about their usage with function values. Cita-
tions: (313), (317).

More elaborate possibilities exist for functions with more than one
input. See infix notation, prefix notation, postfix notation, outfix nota-
tion.

(b) Properties of function values Adjectives applied to a function
may refer to its outputs. Examples: The phrase real function means
that the outputs of the function are real (but some authors would prefer
“real-valued function”), and similarly for complex function. In neither
case does the phrase imply that the domain has to consist of real or
complex numbers. “F is a positive function” means that F (x) > 0 for
every x in its domain. The phrase “positive-valued function” seems to be
rare.

function symbol name result
addition plus sum
subtraction minus difference
multiplication times product
division divided by quotient
squaring squared square
composition composed with composite
differentiation derivative
integration integral

In contrast, a rational function is a func-
tion whose defining expression is the quotient of two
polynomials. A rational function F : R → R will
have rational outputs at rational inputs, but will
not have rational output in general. Citations:
(42); (164), (335), (425).

(c) Terminological conventions For many func-
tions, one says that the result of applying the func-
tion f to the input c is f(c). For example, the phrase
in the non-symbolic part of the mathematical register for sinx is “sine
of x”. However, many operations have a name that is not used for the
result, which requires another name. In some cases the symbol used has a
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function 104
mathematical logic 151
symbol 240
variate 272

value variable

third name. For example the result of adding 3 and 5 is 3+5, read 3 plus
5, and that is 8, which is the sum of 3 and 5. Some common operations
for which this holds are listed in the sidebar on page 267.

“Symbol name” refers to the way the symbol is read in speach; thus
a− b is read “a minus b”. Note that both differentiation and integration
involve several different symbolic notations.
Remark 1 These usages are not completely parallel. For example, one
can say “g composed with f” or “the composite of g and f”, and similarly
“the derivative of f”, but one cannot say “the plus of 3 and 5”. On the
other hand, “plus”, “minus” and “times” may be used with “sign” to
name the symbol directly, but the symbol “÷” is called the “division
sign”, not the “divided by” sign, and there is apparently no common
name for the sign for composition.
Remark 2 Many writers blur the distinction between composition and
composite and refer to g ◦ f as the “composition” of g and f . I have
heard students blur the distinction for some of the other operations, as
well, for example saying, “8 is the addition of 3 and 5”. Citations: (43)
(78), (80), (87), (114), (198), (286), (229), (302), (326), (327), (337),
(350).

vanish A function f vanishes at an input a if f(a) = 0.
Example 1 “Consider the collection of all continuous functions that
vanish at 0.” Citations: (43), (61), (312).

variable The noun variable in mathematical discourse generally refers
to a variate symbol. The word is used primarily in certain conventional
settings, primarily as a named element of the domain of a function, as a
reference to an unnamed function, and in certain technical terms, most
notably “random variable”. Most other occurrences of variate identifiers
would not be called variables, except in mathematical logic, where the
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variable mathematical
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word is given a technical definition that in effect refers to any variate
identifier. This Handbook uses the terminology of mathematical logic.
Example 1 In the discourse

“ Let f be a function for which f(x) > 0 when x > 2. ”
the x and the f are both variate symbols. In common mathematical
parlance only x would be called a variable. In the terminology of math-
ematical logic, both x and f are variables.
Example 2 Consider the discourse:

“Let G be a group with identity element e and an element a for
which a2 = e. Then a = a−1.”

The author or speaker may go on to give a proof of the claim that a = a−1,
talking about G, e, and a with the same syntax used to refer to physical
objects and to specific mathematical objects such as 3 or the sine function.

Because of the way the proof is written, the writer will appear to
have in mind not any specific group, and not all possible groups, but a
nonspecific or variable group. The symbol G is a variable; it varies over
groups.
Example 3 In the phrase “A function of n variables” the word refers
to the inputs to the function. If the function is given by a formula the
variables would normally appear explicitly in the formula.
Example 4 The statement, “Let x be a variable dependent on t” has
the same effect as saying “Let f(t) be a function”, but now the value is
called x or x(t) instead of f(t). Citations: (4), (106), (205), (235), (276),
(351), (370).

The adjective “variable” is used to say that the object it modifies is
a variable mathematical object. Citations: (89), (396).

There are several ways to think about variables and several ways to
formalize them.
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variable variable

(a) How to think about variables
(i) Variable objects One way of understanding the symbol G in

Example 2 is that it refers to a variable mathematical object.
From this point of view, what G refers to is a genuine mathematical

object just like 3 or R, the difference being that it is an object that is
variable as opposed to uniquely determined. This is sound: there are
various methods using mathematical logic or category theory that give a
formal mathematical definition of “variable object”.

(ii) Incomplete specification There is another point of view
about G that I suspect many mathematicians would come up with if
asked about this topic: G refers to any group that meets the constraint
(in this case having a nontrivial element whose square is the identity
element). It is thus incompletely specified. Statements made about it
become true if one deduces the statements from the axioms for groups
and the given constraints, and not from any other specific properties a
group might have.

(iii) Variable as role A metaphor that in some manner incorpo-
rates the “incomplete specification” point of view is that a variable is a
role; in Example 2, G is a role that can be played by any group satisfying
the constraint. Then the proof is like a play or a movie; when it stars a
particular group in the role of G it becomes a proof of the theorem about
that group. References: The idea of role comes from [Lakoff and Núñez,
2000].

(b) Formalisms for variables
(i) Logicians’ formalism In classical logic an interpretation of

discourse such as that in Example 2 assigns a specific group to G, its
identity element to e, an element of that group to a, and so on. An as-
sertion containing identifiers of variable mathematical objects is said to
be true if it is true in all interpretations. I will call this the logician’s
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semantics of variables. For the purposes of giving a mathematical defini-
tion of the word “variable”, it would be reasonable to identify the variable
object with the symbol in the formal language (such as G in the example
above) corresponding to it.

Another possibility would be to identify the variable object with the
set of all possible interpretations, although to do that correctly would
require dealing with the fact that that “set” might actually be a proper
class.

(ii) Categorists’ semantics of variable objects Categorists
have another approach to the concept of variable mathematical object.
One defines a theory, which is a specific category (the theory for groups,
for example). The theory contains a specific object g. Every group is the
value at g of a certain type of functor based on that theory. It is natu-
ral to interpret the object g of the theory (or, perhaps better, the entire
theory) as the object denoted by the identifier G in Example 2 above.

References: The categorical approach is worked out in [Fourman,
1977], [Makkai and Reyes, 1977], [Fourman and Vickers, 1986], [Lambek
and Scott, 1986].

(iii) Specific approaches The approaches suggested so far are
general ways of understanding variable objects. Certain specific con-
structions for particular types of variable objects have been known for
years, for example the familiar construction of the variable x in the poly-
nomial ring of a field as an infinite sequence that is all 0’s except for a 1
in the second place.

Other aspects of variables are discussed under bound variable, free
variable, determinate, substitution, variate, Platonism and the discussion
after Example 2 under variable mathematical object. Related concepts
are constant, parameter and unknown.
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variable clash variate

variable clash A substitution of an expression containing a free vari-
able into an expression that contains and binds the same literal variable.
Example 1 A student must solve an integral

∫ 9
0 r

3Adr, where she
knows that A is the area of a certain circle. She therefore rewrites it
as

∫ 9
0 r

3πr2 dr; this will give the wrong answer. Citation: (291).

variate A free identifier, either in the symbolic language or in English,
is variate if it is intended to refer to a variable mathematical object.
A variate identifier, at least in intent, has more than one interpretation
in the universe of discourse. These two points of view — the identifier
names a variable mathematical object and the identifier has more than
one interpretation — are discussed at length under variable.
Example 1 In the assertion, “If the quantity a is positive, then ax is
positive for all real x”, x and a are both variate. In contrast, in the phrase
“the exponential function ax”, a is variate but x is not an identifier, it is
a dummy variable. In this case, in common usage, x is a variable and a
is a parameter.
Example 2 In the passage

“Let G be a group with identity element e.”
“G” and “e” are variate.
Example 3 “Let G be a group and g ∈ G. Suppose the group G is
commutative . . . .” This illustrates the fact that variable mathematical
structures are commonly referred to using definite noun phrases.

Some fine points
a) Being determinate or variate is a matter of the current interpreta-

tion; it is not an inherent property of the symbol, even though some
symbols such as π are conventionally determinate and others such as
x are conventionally variate. For example, π is sometimes used as
the name of a projection function.
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variate vector

bound identifier 29
bound variable 30
character 36
condition 47
definite description 65
definite 65
element 79
free identifier 29
indefinite description 129
mental representation 161
symbol 240
symbolic expression 241
syntax 246
variable 268

b) The distinction between determinate and variate is not the same as
the grammatical distinction between definite description and indefi-
nite description. See Example 1 under definite description.

c) The distinction between determinate and variate is not the same
as the grammatical distinction between common and proper nouns.
Indeed, all symbolic expressions seem to use syntax very similar to
that of proper nouns. See Remark 2 under symbol.

d) Variate and determinate identifiers are free by definition. Asking
whether a bound variable is variate or determinate does not in any
obvious way make sense. See the sidebar under bound identifier.

e) Given the passage “Suppose x is a real variable and 3x + 1 = 7”,
one deduces that x = 2. Its use in that sentence is nevertheless
variate. The intent is that it be a variable. The conditions imposed
force it to denote just one number. (It is easy to think of examples
where, unlike this one, it is very difficult to determine whether the
conditions force a unique value.) It is the intent that matters.

[ISO, 1982], quoted in [Beccari, 1997],
recommends a practice which in my ter-
minology would be: Use upright typo-
graphic characters for determinate sym-
bols and slanted typographical charac-
ters for variate symbols. In fact common
practice these days seems to be: Use up-
right characters for multiletter symbols
(such as “sin”) and slanted characters
for symbols consisting of one character.
Michael Barr has commented that this
enables us to distinguish multiletter sym-
bols from products.

Terminology The names “determinate” and “variate”
are my own coinages. I felt it important not to use the
phrase “variable identifier” because it is ambiguous.

Acknowledgments: Owen Thomas.

vector The word vector has (at least) three different
useful mental representations:

• An n-tuple.
• A quantity with length and direction.
• An element of a vector space.

Of course, the third representation includes the other two,
but with some subtleties. For example, to think of an
element of an abstract n-dimensional vector space as a
n-tuple requires choosing a basis. There is in general no canonical choice
of basis.
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attitudes 22
bar 24
equivalent 86
identity 122
look ahead 149
on 181
partition 85
radial concept 211
synecdoche 245

vector well-defined

Variations In computer engineering, the word vector is often used to
refer to an n-tuple of any sort of thing, not necessarily elements of a field,
so that the n-tuple may indeed not be a member of a vector space.

I have heard this usage in conversation but have not found an un-
equivocal citation for it.

Citations: (76), (172), (321).
Students’ understanding of vectors are discussed in the very infor-

mative article [Watson, Spirou and Tall, 2003].

vinculum See bar.

walking blindfolded Sometimes a lecturer lists steps in an argument
that will indeed culminate in a valid proof, but the reason for the steps
is not apparent to the student. The student may feel like someone who is
walking straight ahead with a blindfold on: how do you know you won’t
bump into a wall or fall off a cliff? That is walking blindfolded (my
name). This is closely related to the attitude described in section (a)
under attitudes.

It is my observation that many students find it difficult or impossible
to follow a proof when they cannot see where it is going, whereas others
are not bothered at all by this.

See also look ahead.

well-defined Suppose you try to define a function F on a partition
Π of a set A by specifying its value on an equivalence class C of Π in
terms of an element x ∈ C (a case of synecdoche). For this to work, one
must have F (x) = F (x′) whenever x is equivalent to x′. In that case the
function F is said to be well-defined. (See radial concept).
Example 1 Let Z2 be the group of congruence class of integers mod 2,
with the class of n denoted by [n]. Define F : Z2 → Z2 by F [n] = [n2].
Then F is well-defined (in fact, it is the identity function), because an
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well-defined when

integer 133
literalist 145
necessary 175
nonnegative 177
radial concept 211
sequence 227
value 266

integer is even if and only if its square is even. If you define G[n] to be
the number of primes dividing n, then G would not be well-defined, since
G[2] = [1], G[6] = [2], and [2] = [6] but [1] �= [2].

Definition on equivalence classes is perhaps the most common use of
“well-defined”, but there are other situations in which it is used as well.
Example 2 Let P denote the set of all nonempty subsets of the set of
nonnegative integers. Define F : P → Z by: F (A) is the smallest element
of A. Since the nonnegative integers are well-ordered, F is well-defined.
This is a case where there might have been doubt that the value exists,
rather than worry about whether it is ambiguous.

There is a subtlety in Example 3. The
observation that a(n) < n for n ≥ 3 does
indeed show that the sequence is well-
defined, but a sequence can sometimes
be well-defined even if the function calls
in the definition of the value at n refer
to integers larger than n. An example is
the function

F (n) =

{
F

(
F (n+ 11)

)
(n ≤ 100)

n− 10 (n > 100)

Example 3 Conway defined a sequence on the positive
integers by a(1) = a(2) = 1 and

a(n) = a(a(n− 1)) + a(n− a(n− 1))

for n ≥ 3. This is well-defined because one can show by
induction that a(n) < n for n ≥ 3 (otherwise the term
a(n−a(n−1)) could cause trouble). This example comes
from [Mallows, 1991].

See radial concept and literalist.

Variations Many authors omit the hyphen in “well-
defined”.

Citations: (20), (165).

when Often used to mean “if”.
Example 1 “When a function has a derivative, it is necessarily contin-
uous.”
Remark 1 Modern dictionaries [Neufeldt, 1988] record this meaning
of “when”, but the original Oxford English Dictionary does not.
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assertion 20
deprecate 74
location 148
mathematical register 157
mathematical structure

159
postcondition 201
predicate 202
time 251

when without loss of generality

One occasionally comes across elaborations of this usage, such as
“when and only when”, “exactly when”, “precisely when” and so on, all
apparently meaning “if and only if”.

The usage “if whenever” evidently is motivated by the desire to avoid
two if’s in a row, for example in the sentence, “A relation α is symmetric
if whenever x α y then y α x”.

See time.
Citations: (41), (98), (160), (165), (299), (338), (405), (413).
Reference: This discussion follows [Bagchi and Wells, 1998a].

where Where is used in two special ways in the mathematical register.

(a) To state a postcondition
Example 1 “Definition: An element a of a group is involutive if
a2 = e, where e is the identity element of the group.” Here the statement
“where e is the identity element of the group” is a postcondition. Cita-
tions: (26), (275), (354).
Remark 1 [Krantz, 1997], page 44 and [Steenrod et al., 1975], page 38,
both deprecate this usage.

(b) Used to introduce a constraint
Example 2 “A point x where f ′(x) = 0 is a critical point.” In contrast
to the first usage, I have not found citations where this usage doesn’t carry
a connotation of location. Citation: (254).

Acknowledgments: Michael Barr for references.

without loss of generality A proof of an assertion involving two
elements x and y of some mathematical structure S might ostensibly
require consideration of two cases in which x and y are related in different
ways to each other; for example for some predicate P , P (x, y) or P (y, x)
could hold. However, if there is a symmetry of S that interchanges x and
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defining equation 106
first order logic 151
function 104
mathematical object 155
order of quantifiers 186
quantifier 211
true 256
variable 268
without loss of generality

276

y, one may need to consider only one case. In that case, the proof may
begin with a remark such as,

“Without loss of generality, we may assume P (x, y).”
Citations: (77), (34).

witness If P (x) is a predicate with just the one variable x, a particular
object c for which P (c) is true is a witness to the fact that ∃xP (x) is
true.
Remark 1 The word “witness” also has several different technical mean-
ings in particular fields of mathematics.

WLOG Without loss of generality.

writing dilemma The writing dilemma is the question: Should
we teach the students how to read mathematics as it is actually written,
or should we reform our writing style so that the students are less likely
to get confused?

Many proposals have been made for reforming the way we write.
Most of them concern making distinctions that are now not always made
in writing. Some of these widely spread ideas are:

a) We should not use the defining equation of a function as the name
of the function, for example saying “The function y = x3”. More
generally, we should distinguish between expressions and functions:
Instead of saying “The function x3”, we should say “The function
x �→ x3” (or something similar).

b) We should not reverse the order of quantifiers compared to the way
they would be ordered in first order logic. Thus we should not say
“There is a prime between any integer > 1 and its double.” Instead,
we should say “Between any integer > 1 and its double there is a
prime.” (See order of quantifiers.)
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definition 66
if 123
mathematical register 157
parenthesis 192
parenthetic assertion 194
private language 204

writing dilemma yes it’s weird

c) We should not use “if” in definitions for “if and only if”. (This is
discussed at length under if.)

d) We should not use parenthetic assertions, for example “The function
f(x) = x3 has a derivative that is always nonnegative.” They are
hard to parse.

e) We should distinguish the parentheses used around the argument of
a function from parentheses used for grouping. In Mathematica, one
must write f [x] rather than f(x).

f) We should distinguish between the equal sign used in a definition
and the equal sign used in an equation (see colon equals).
In fact, the writing dilemma is a paper tiger, since almost all the

reform efforts are surely doomed. These proposals are reminiscent of
various pioneers over the years who have wanted us to speak some com-
pletely regular and logical artificial language such as Esperanto. Such
efforts have failed, although Esperanto speakers still form a small subcul-
ture. Smaller scale efforts such as spelling reform also fail more often than
they succeed, too, although some of the changes Noah Webster pushed for
succeeded. Recently, both Germany and France tried to institute spelling
reforms which have met with great resistance.

Efforts to reform the mathematical register are mostly doomed to
failure, too. There are two kinds of reform proposals: a) Avoid a certain
usage. b) Change the language in some respect. Proposals for avoiding a
usage may have some merit, especially for textbooks in beginning abstract
mathematics courses. On the other hand, the proposals to change the
language are potentially dangerous: if adopted by textbooks but not by
mathematicians in general,which is the most the reformers could expect,
we could turn out students who then would have to learn another dialect
to read the mathematical literature. See also private language.

Acknowledgments: Susanna Epp.

278
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mathematical mind 154
or 184
set 227

yes it’s weird Students sometimes express discomfort at examples
that seem arbitrary in some sense.
Example 1 Try using the set {1, 3, 5, 6, 7, 9, 11} in an example; you
may get some question such as “Why did you put a 6 in there?”
Example 2 A different sort of example is a heterogenous set such as
the set {3, {2, 3}, ∅}, which has both numbers and sets as elements.
Example 3 Thom [1992] objects to the use of or between adjectives
when the qualities are heterogenous. Thus for him “Find all the balls
that are red or white” is acceptable, but not “Find all the balls that are
red or large”. He was discussing the use of such examples with children
in school. I have not had a student express discomfort or confusion at
such usage; this may be because they have been brainwashed/educated
(take your pick) by the American school system.
Remark 1 In teaching abstract mathematics I have adopted the prac-
tice of explicitly recognizing the students’ discomfort in situations such
as in Examples 1 and 2 (“yes, it’s weird”). I generally say something such
as: allowing such constructions is necessary to do abstract mathematics.
As far as I can tell this satisfies nearly everyone. I have no basis for doing
this from the mathematical education literature, but it appears to me
that the discomfort is real and may very well contribute to the common
attitude expressed by the phrase “I don’t have a mathematical mind”.

When a teacher takes the point of view that the student should have
known that such arbitrary constructions were legitimate, or otherwise
engages in put-down behavior, it can only contribute to the student’s
feeling of not being suited for mathematics.

you don’t know shriek This is the indignant shriek that begins,
“You mean you don’t know . . . !?” (Or “never heard of . . . ”) This is
often directed at young college students who may be very bright but
who simply have not lived long enough to pick up all the information a
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empty set 81
metaphor 162
negative 166
positive 201
root 221

you don’t know shriek

middle aged college professor has. I remember emitting this shriek when
I discovered as a young teacher that about half my freshman calculus
students didn’t know what a lathe is. In my fifties the shriek was emitted
at me when two of my colleagues discovered that I had never heard of
the prestigious private liberal arts college they sent their offspring to.

This phenomenon should be distinguished from the annoyance ex-
pressed at someone who isn’t paying attention to what is happening or
to what someone is saying.

The name is mine. However, this phenomenon needs a more insulting
name guaranteed to embarrass anyone who thinks of using it.

Z

The specification language Z was
invented in Britain. Some Amer-
ican computer scientists call it
“zed” as a result, although they
say “zee” when referring to the
letter of the alphabet.

The letter The letter Z is pronounced “zee” in the USA and
“zed” in the United Kingdom and in much of the ex-British
Empire.

The integers The symbol Z usually denotes the set of all inte-
gers. Some authors use I. Citations: (104).

Some authors and editors strongly object to the use of the
blackboard bold type style exemplified by R and Z.

zero The number zero is an integer. It is the number of elements in the
empty set. In American college usage it is neither positive nor negative,
but some college students show confusion about this.

See also empty set and root.
The metaphors involved with zero are discussed in [Lakoff and Núñez,

2000], pages 64ff.
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Mathematics. American Mathematical Society. (52,
99, 115, 116, 119, 158, 159, 276)

Stiff, L. V., editor (1999), Developing Mathematical
Reasoning in Grades K-12. NCTM Publications.
(283)

Tall, D., editor (1992a), Advanced Mathematical
Thinking, volume 11 of Mathematics Education Li-
brary. Kluwer Academic Publishers. (113, 162, 282,
282, 283, 284, 284, 290, 290, 291)

Tall, D. (1992b), ‘The psychology of advanced math-
ematical thinking’. In [Tall, 1992a], pages 3–21.
Internet link to this publication given on the Hand-
book website. (144, 161, 162)

Tall, D. (1992c), ‘Reflections’. In [Tall, 1992a], pages
251–259. Internet link to this publication given on
the Handbook website. (243)

Tall, D. (1993), ‘Conceptual foundations of the calcu-
lus’. In [Lum, 1993], pages 73–88. (145)

Tall, D. (1999), ‘The cognitive development of proof:
Is mathematical proof for all or for some?’. In Devel-

opments in School Mathematics Education Around
the World, Usiskin, Z., editor, volume 4, pages 117–
136. National Council of Teachers of Mathematics.
Internet link to this publication given on the Hand-
book website. (207)

Tall, D. (2001), ‘Conceptual and formal infinities’.
Educational Studies in Mathematics, volume 48,
pages 199–238. (131)

Tall, D. (2002), ‘Differing modes of proof and belief in
mathematics’. In [Lin, 2002], pages 91–107. Inter-
net link to this publication given on the Handbook
website. (154, 207)

Tall, D. and S. Vinner (1981), ‘Concept image and
concept definition in mathematics with particular
reference to limits and continuity’. Educational
Studies in Mathematics, volume 22, pages 125–147.
(39, 70, 145, 162)

Thom, R. (1992), ‘Leaving mathematics for philoso-
phy’. In [Casacuberta and Castellet, 1992], pages
1–12. (279)

Thompson, P. W. (1985), ‘Experience, problem-
solving, and learning mathematics: Considerations
in developing mathematical curricula’. In [Silver,
1985], pages 189–236. Internet link to this publica-
tion given on the Handbook website. (7)

Thompson, P. W. (1994), ‘Students, functions and
the undergraduate curriculum’. In [Dubinsky,
Schoenfeld and Kaput, 1994], pages 21–44. Inter-
net link to this publication given on the Handbook
website. (18, 107, 110, 218)

Thompson, P. W. and A. Sfard (1998), ‘Problems
of reification: Representations and mathematical ob-
jects’. In [Kirshner, 1998], pages 1–32. Internet link
to this publication given on the Handbook website.
(162, 181, 219)

Thurston, W. P. (1990), ‘Mathematical education’.

290



Bibliography

Notices of the American Mathematical Society, vol-
ume 7, pages 844–850. (213)

Vallance, E. (1977), ‘Hiding the hidden curriculum:
An interpretation of the language of justification in
nineteenth-century educational reform’. In [Bellack
and Kliebard, 1977], pages 590–607. (62)

van Benthem, J. and A. ter Meulen (1997), Hand-
book of Logic and Language. The MIT Press. (285,
286, 287, 291)

van Dalen, D. (1989), Logic and Structure. Sprin-
ger-Verlag. (101, 154)

van den Heuvel-Panhuizen, M., editor (2001),
25th Annual Conference of the International Group
for the Psychology of Mathematics Education (PME
25), Utrecht. University of Utrecht, The Nether-
lands. (282)

van Eijck, J. and H. Kamp (1997), ‘Represent-
ing discourse in context’. In [van Benthem and ter
Meulen, 1997], pages 179–239. (74)

Vaught, R. L. (1973), ‘Some aspects of the theory of
models’. American Mathematical Monthly, volume
80, pages 3–37. (80)

Vinner, S. (1992), ‘The role of definitions in the teach-
ing and learning of mathematics’. In [Tall, 1992a],
pages 65–81. (43, 70)

Vinner, S. and T. Dreyfus (1989), ‘Images and def-
initions for the notion of function’. Journal for Re-
search in Mathematics Education, volume 20, pages
356–366. (39, 70, 110, 219)

Watson, A., P. Spirou, and D. Tall (2003), ‘The re-
lationship between physical embodiment and math-
ematical symbolism: The concept of vector’. To be
published in The Mediterranean Journal of Mathe-

matics Education. (274)
Weil, A. (1992), The Apprenticeship of a Mathemati-

cian. Birkhaeuser Verlag. Translated from the
French by Jennifer Gage. (82)

Wells, C. (1995), ‘Communicating mathematics: Use-
ful ideas from computer science’. American Mathe-
matical Monthly, volume 102, pages 397–408. Inter-
net link to this publication given on the Handbook
website. (3, 44, 93, 110, 162, 171, 224, 228, 232, 258,
258)

Wells, C. (1997), ‘Discrete mathematics’. Class
notes, Case Western Reserve University. (19, 60,
228)

Wheatley, G. H. (1997), ‘Reasoning with images in
mathematical activity’. In [English, 1997], pages
281–298. Reviewed in [Dubinsky, 1999]. (162)

Wolfram, S. (1997), The Mathematica Book. Wol-
fram Media. (244)

Wood, L. (1999), ‘Teaching definitions in undergrad-
uate mathematics’. Internet link to this publication
given on the Handbook website. (70)

Wood, L. and G. Perrett (1997), Advanced Math-
ematical Discourse. University of Technology, Syd-
ney. (94, 263)

Zalta, E. N., editor (2003), ‘Stanford encyclopedia
of philosophy’. Internet link to this publication giv-
en on the Handbook website. (152)

Zazkis, R. (2002), ‘Language of number theory: Met-
aphor and rigor’. In [Campbell and Zazkis, 2002],
pages 83–96.

Zulli, L. (1996), ‘Charting the 3-sphere—an exposi-
tion for undergraduates’. American Mathematical
Monthly, volume 103, pages 221–229. (194)

291



Index
′, 203
+, 184
−, 176
〈, 17
ℵ, 9
∃, 93
∀, 260
≥, 130, 177, 203
>, 130, 203
⇒, 47
⊆, 100, 127, 204∫

, 134
≤, 100, 130, 203
<, 100, 130, 177, 203, 266
¬, 176
π, 240
⊂, 100, 127, 204
⊃, 47
∨, 184
∧, 16
×, 190
&, 16
|, 72
‖, 72

a, 20
Abelian, 25
absolute value, 72
abstract algebra, 9
abstract object, 156
abstraction, 7, 42, 104, 113, 167
abuse of notation, 7

accent, 8
accented characters, 8
accumulation of attributes, 42, 212
action, 17
ad-hoc polymorphism, 191
add, 166
addition, 267
affirming the consequent, 8, 59, 96
after, 252
aha, 45, 132
aleph, 9
algebra, 9
algorithm, 9, 12, 17, 108, 149, 167
algorithm addiction, 12, 119
alias, 12, 109
alibi, 108
all, 13, 14
always, 14
ambient, 14
ambiguity, 244
an, 20
analogy, 15
analytic function, 250
anaphora, 60
and, 15, 39, 50
angle bracket, 17, 72, 227
anonymous notation, 235
another planet, 204
antecedent, 47
antiderivative, 134
antisymmetric, 266
any, 17

anywhere, 148
APOS, 17, 156
apposition, 241
arbitrary, 18, 142, 228, 257
argument, 19, 193
argument by analogy, 15
arity, 19
article, 20, 177, 262
assertion, 20, 50, 61, 101, 119, 256,

270
assume, 48, 140, 142
assumption, 21
asymptotically equal, 250
at least, 22
at most, 22
attitudes, 5, 22
attribute, 42

back formation, 23
bad at math, 154, 255
Bagchi, Atish, vii, 17, 24, 33, 71,

79, 83, 85, 130, 143, 179, 181,
184, 197, 200, 208, 211, 223,
247, 263

Banach space, 231
bar, 24, 176
bare delimiter, 72
Barr, Marcia, vii, 8
Barr, Michael, vii, 11, 13, 17, 39,

43, 81, 110, 116, 150, 157, 166,
184, 205, 216, 237, 254, 259,
263, 264, 273, 276

292



Index

barred arrow notation, 24, 105, 235
Baudelaire, Charles, 233
be, 24
before, 252
behaviors, 5, 25
Berra, Yogi, 162
binary operation, 85, 123, 183
binary relation, 217
bind, 30
black box, 108
boldface, 28
both, 29
bound, 30
bound identifier, 29
bound variable, 30, 103
Bourbaki, 132, 201
brace, 31, 72
bracket, 32, 226
Brown, Anne, vii
Brown, Laurinda, vii, 37
Browning, Christine, vii, 62
Buskes, Gerard, vii, 212
but, 32

calculate, 33, 41
call, 34, 68
cardinality, 34
Cartesian power, 239
case, 35
cases, 35
cataphora, 60
category, 35
category theory, 152, 166, 231, 232,

270, 271
causality, 183
Chapman, Robin, 71

character, 36, 241
Chaucer, William, 88
check, 36
Christiansen, Iben M., vii
circumflex, 36
citation, vi
classical category, 42
closed under, 36
co-snowers, 230
codomain, 109, 110, 213, 234
cognitive dissonance, 36, 82, 100,

113, 144, 161, 224
collapsing, 71
collective coreference, 60, 228
collective plural, 37
college, 37
college algebra, 9
college mathematics, 38
colon equals, 38
combination, 38
comma, 39
compartmentalization, 39
complex function, 267
complex number, 19, 80, 250, 257
componentwise, 59
composite, 40
composition, 40, 267
compositional, 40
compute, 41
computing science, 11, 38, 60, 78,

95, 191, 225, 280
concept, 41, 45, 210, 211
concept image, 161
conceptual, 43, 80
conceptual blend, 45, 153, 162, 218
conceptual proof, 43

conclusion, 47
condition, 47, 182
conditional assertion, 27, 47, 56,

59, 183, 208
conjunction, 15, 50
connective, 50
consciousness-raising example, 90
consequent, 8, 47
consider, 50
constant, 50
constant function, 51
constitute, 37
constraint, 51, 84, 264
constructivism, 52, 256
contain, 52, 170
context, 52, 205
context-free grammar, 237
context-sensitive, 54
continuous, 7, 54, 150, 201
continuum hypothesis, 56
contrapositive, 56, 111, 132, 143,

183
convention, 57, 105, 123, 133, 214
converse, 59, 87
converse error, 8
coordinatewise, 59
Copernicus, Nicolaus, 158
copy, 59
coreference, 39, 59, 219
corollary, 61
coset, 201
countably infinite, 34
counterexample, 61, 91, 220, 263
counting number, 62
covert curriculum, 62
crisp, 42

293



Index

critical point, 71
Cureton, Geddes, vii, 37
curly bracket, 31
cyclic group, 48
cyclic group of order three, 216

dash, 203
decreasing, 127
default, 63
defined in, 181
defined on, 181
defined over, 181, 188
definiendum, 64, 66, 137
definiens, 66
defining condition, 228
defining equation, 105, 106, 249
defining expression, 105, 192
defining phrase, 66
definite, 65
definite article, 20, 64, 64, 128
definite description, 65, 273
definition, 35, 47, 51, 64, 66, 89,

118, 141–143, 147, 210, 224,
232

definition by cases, 35
degenerate, 71, 90, 256
degree, 185, 254
delimiter, 32, 71, 134
delimiting example, 90
delineated, 69, 72, 118
denotation, 73
denote, 73
denying the hypothesis, 73
dependency relation, 108
dependent variable, 106
dependent variable notation, 73

deprecate, 74
derivative, 204, 267
description, 232
descriptive, 3
descriptivist, 203
determinate, 74
determiner, 129, 177
diatribe, 89
dictionary definition, 70, 103, 223
difference, 267
differentiation, 267
dihedral group, 91
discourse, 53, 59, 74
discourse analysis, 74
disjoint, 74
disjunction, 75, 184
disjunctive definition, 35
display, 75
distinct, 75, 257
distributive plural, 76, 78, 187
divide, 76, 92
divided by, 267
division, 267
divisor, 76, 96
domain, 67, 77, 106, 109, 169, 181,

188, 234
Dreyfus, Tommy, vii, 43
dummy variable, 31, 78

each, 78
eager evaluation, 77
easy example, 90
Eddington, Arthur, 205
element, 79, 117, 125, 227
elementary, 79
eliminativist, 214

empty set, 81, 145, 170
encapsulation, 156, 180
endowed, 85
enthymeme, 83
entification, 180
entry, 227
Epp, Susanna, vii, 87, 89, 238, 257
equation, 84
equations, 27, 84, 122
equipped, 85
equivalence relation, 85, 87, 146,

201
equivalent, 86, 124, 170, 249
esilism, 87, 146
esilize, 88
establish notation, 89
eternal, 16, 155, 157, 183
etymology, 5
eureka, 132
evaluate, 89, 198, 237
every, 14, 261
evolution, 89
example, 89, 124
exclusive, 26
exist, 93
existential bigamy, 92
existential instantiation, 93
existential quantifier, 30, 93, 93,

238
expansive generalization, 54, 112
explicit assertion, 94
explicit knowledge, 111
expression, 225, 226, 241
extensional, 224, 225
external representations, 217
extrapolate, 95

294



Index

extrapolation, 96

factor, 96, 248
factorial, 137, 202, 203
fallacy, 15, 96
false symmetry, 96
family, 97
family resemblance category, 42
Farmer, Jeffrey, vii, 43
Fibonacci, 235
Fibonacci sequence, 236
field, 97, 271
find, 97
first order logic, 80, 87, 151, 256
fix, 98
follow, 98
following are equivalent, 99
for all, 260
form, 37
formal, 99
formal analogy, 100, 204
formal language, 100, 135, 242
formal logic, 151
formal proof, 99, 207
formula, 101
forward direction, 87
forward reference, 60
foundations of mathematics, 145,

260
fraktur, 102
Franklin, Benjamin, 87
free identifier, 29
free variable, 102
Freyd, Peter, 146
function, 7, 11, 24, 30, 39, 59, 73,

77, 89, 104, 120, 127, 131,

139, 145, 150, 157, 160, 181,
190, 192, 203, 218, 234, 236,
240, 255, 258

function of n variables, 19
function space, 231
functional, 107, 110
functional knowledge, 111
functional property, 109
functions, theory of, 250
fundamentalist, 145
fuzzy, 42

GCD, 43
generalization, 26, 112, 144
generalization from examples, 113
generalize, 112
Georgia, 63
Gerhart, Susan, vii
give, 114
given, 114
global, 147
global identifier, 115
Goethe, Johann Wolfgang von, 157
gothic, 116
graph, 108, 109, 116
graph of a function, 106
grasshopper, 115, 116
greatest common divisor, 193
greatest integer, 188, 203
Greek alphabet, 35, 116
grounding metaphor, 162, 231
group, 7, 34, 34, 65, 73, 90, 97,

124, 129, 144, 185, 186, 190,
201, 216, 222, 228, 265, 269,
270, 276

grouping, 118, 193

guessing, 119

Hand, Learned, 145
hanging theorem, 119
hat, 36
head, 177
Hermite, Charles, 91
hidden curriculum, 62
high school algebra, 9
Hilbert, David, 210
Hobbes, Thomas, 83
hold, 119
how language changes, 132
hyphen, 120
hypothesis, 47, 73

I, 120
i, 58, 121
I get it, 132
i.e., 120
identifier, 115, 120, 147
identify, 121
identity, 122, 170
identity function, 109, 123, 189
if, 48, 68, 69, 123, 142

in definitions, 69
if and only if, 69, 86, 87, 124
iff, 124
illustration, 108, 124
image, 125, 190, 213, 255
imaginary unit, 58, 121
implication, 47
implicit knowledge, 111
imply, 47, 47, 125, 238
in, 125
in general, 126
in other words, 86, 126

295



Index

in particular, 126
in terms of, 249
in your own words, 127
include, 52, 125, 127
inclusion function, 109
inclusive, 26
incomplete proof, 212
increasing, 127
increasing function, 127
indefinite article, 20, 64, 128, 129
indefinite description, 53, 128, 129,

273
indefinite integral, 134
independent variable, 106
indexed family, 97
inequality, 130
inert, 155, 157, 183
infinite, 34, 130
infinite intervals, 135
infinite sequence, 248
infix notation, 131, 183
inhabit, 131
injective, 127, 131
inner product, 17, 203
input, 106
insight, 43, 132
instantiate, 133
integer, 26, 40, 82, 96, 133
integral, 30, 115, 133, 223, 265,

267
integration, 267
intensional, 108, 224, 225
interior, 163
interpretation, 54, 135, 225, 270,

272
interval, 120, 135

intuition, 130, 161
inventory examples, 91
inverse, 137, 239
inverse error, 73, 73
irregular syntax, 135
isomorphic, 137
isomorphism, 59, 265
italics, 137

JSTOR, vi
jump the fence, 137
Jung, Carl, 230
just, 138
just in case, 138
juxtaposition, 138, 180

König’s Lemma, 140
Kentucky, 63
Kessel, Cathy, vii, 159

labeled style, 118, 139
Lakoff, George, 161, 210, 212
lambda notation, 105, 139, 235
Lamport, Leslie, vii
large, 139
lathe, 280
law of gravity for functions, 139
lazy evaluation, 77
learned name, 171
left identity, 212
left Polish notation, 200
left subscript, 236
lemma, 140
lemmata, 140
let, 48, 68, 140
leveling, 100
lg, 148

Lie bracket, 32
life isn’t fair, 144
limit, 144
Lindon, J.A., 231
linear algebra, 9
linguistic object, 164
literalist, 145
lives in, 131
ln, 148
local, 147
local identifier, 105, 147
location, 148
log, 136, 240
logarithm, 148
logic, 151
logical signaler, 4
logician’s semantics, 270
look ahead, 149
lowercase, 35, 79
Luddism, 149

macron, 24
malrule, 83, 95, 150
many-to-one coreference, 39
map, 108, 150
mapping, 150
marking, 69
Marx, Groucho, 251
matchfix notation, 188
mathedu mailing list, vii, 256
Mathematica, 20, 133, 233, 242,

244, 267
mathematical definition, 7, 25, 66,

69, 92, 109, 123, 124, 145, 216,
265

mathematical discourse, 1, 52, 53,
63, 74, 94, 161, 225, 233, 257

296



Index

mathematical education, 4, 23, 27,
52, 150, 150, 157, 207, 243,
253, 256

mathematical exposition, 157
mathematical logic, 100, 151, 164,

226, 245, 248, 253, 256, 260
mathematical mind, 112, 154
mathematical model, 167
mathematical object, 42, 66, 109,

119, 155, 181, 197, 255, 257
mathematical register, 1, 50, 65,

69, 88, 99, 118, 151, 157, 241,
243, 253

mathematical structure, 80, 137,
159, 239, 245

mathematical vernacular, 158, 244
matrix, 193
maximize, 160
McLarty, Colin, 81, 154
mean, 160
member, 52, 79, 125
mental representation, 42–46, 70,

92, 107, 110, 159, 161, 165,
212, 255

metaphor, 82, 104, 108, 133, 162,
162, 168, 171, 179, 202, 230,
231, 251–253, 259

metric space, 54
minimize, 160
Minnesota, 63
minus, 166, 176, 247, 267
minus sign, 229
misleading name, 180, 197, 213,

250
mnemonic, 166, 203
mod, 168, 274

model, 21, 133, 155, 167, 207, 218
modern algebra, 9
modifier, 177
module, 81
modulo, 168
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no way of determining whether a particular function is in this
class or not.

292



Citations

293. (17, 50, 93, 118, 126, 239) Mead, D. G. (1993),
‘Generators for the algebra of symmetric polynomials’. Ameri-
can Mathematical Monthly, volume 100, pages 386–388.

[p. 387. Lines 12–16.]
Consider the monomial symmetric function 〈a1, a2, . . . , ak〉

in Q[x1, x2, . . . , xn] and let t = Σk
i=1ai. Then there is a positive

rational number c and an element B in Q[p1, p2, . . . , pi−1] such
that

〈a1, a2, . . . , ak〉 = (−1)k1cpi +B.

293



Citations

294. (170) Melissen, H. J. B. M. (1993), ‘Densest
packings of congruent circles in an equilateral triangle’. Amer-
ican Mathematical Monthly, volume 100, pages 916–925.

[p. 917. Lines 1–4 of Section 2.1.]
Two of the four points must lie in the same subregion from

the partition shown in Figure 3a, so d4 ≤ 1√
3
. If the upper

bound is attained, then one point must lie at the center and
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What sort of creature now inhabits the curly braces?
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Missing Links
mental representation – conceptual blending

elementary – informal jargon
well-defined – mod
name – names from other languages
pronunciation – names from other languages
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