

In the last Chapter, we came to know many compounds of importance to us. In this Chapter we will be studying about some more interesting compounds and their properties. Also we shall be learning about carbon, an element which is of immense significance to us in both its elemental form and in the combined form.

Activity 4.1

- Make a list of ten things you have used or consumed since the morning.
- Compile this list with the lists made by your classmates and then sort the items into the following Table.
- If there are items which are made up of more than one material, put them into both the relevant columns.

T	hings made of metal	Things made of glass/clay	Others

Look at the items that come in the last column – your teacher will be able to tell you that most of them are made up of compounds of carbon. Can you think of a method to test this? What would be the product if a compound containing carbon is burnt? Do you know of any test to confirm this?

Food, clothes, medicines, books, or many of the things that you listed are all based on this versatile element carbon. In addition, all living structures are carbon based. The amount of carbon present in the earth's crust and in the atmosphere is quite meagre. The earth's crust has only 0.02% carbon in the form of minerals (like carbonates, hydrogencarbonates, coal and petroleum) and the atmosphere has 0.03% of carbon dioxide. In spite of this small amount of carbon available in nature, the importance of carbon seems to be immense. In this Chapter, we will be looking at the properties of carbon which lead to this anomaly.

4.1 BONDING IN CARBON - THE COVALENT BOND

In the previous Chapter, we have studied the properties of ionic compounds. We saw that ionic compounds have high melting and boiling points and conduct electricity in solution or in the molten state. We also

saw how the nature of bonding in ionic compounds explains these properties. Let us now study the properties of some carbon compounds. Melting and boiling points of some carbon compounds are given in Table 4.1.

Most carbon compounds are poor conductors of electricity as we have seen in Chapter 2. From the data on the boiling and melting points of the above compounds, we can conclude that the forces of attraction between these molecules are not very strong. Since these compounds are largely nonconductors of electricity, we can conclude that the bonding in these compounds does not give rise to any ions.

Table 4.1 Melting points and boiling points of some compounds of carbon					
Compound	Melting	Boiling			

Melting point (K)	Boiling point (K)	
290	391	
209	334	
156	351	
90	111	
	Melting point (K) 290 209 156 90	Melting point (K) Boiling point (K) 290 391 209 334 156 351 90 111

In Class IX, we learnt about the

combining capacity of various elements and how it depends on the number of valence electrons. Let us now look at the electronic configuration of carbon. The atomic number of carbon is 6. What would be the distribution of electrons in various shells for carbon? How many valence electrons will carbon have?

We know that the reactivity of elements is explained as their tendency to attain a completely filled outer shell, that is, attain noble gas configuration. Elements forming ionic compounds achieve this by either gaining or losing electrons from the outermost shell. In the case of carbon, it has four electrons in its outermost shell and needs to gain or lose four electrons to attain noble gas configuration. If it were to gain or lose electrons –

- (i) It could gain four electrons forming C⁴⁻ anion. But it would be difficult for the nucleus with six protons to hold on to ten electrons, that is, four extra electrons.
- (ii) It could lose four electrons forming C⁴⁺ cation. But it would require a large amount of energy to remove four electrons leaving behind a carbon cation with six protons in its nucleus holding on to just two electrons.

Carbon overcomes this problem by sharing its valence electrons with other atoms of carbon or with atoms of other elements. Not just carbon, but many other elements form molecules by sharing electrons in this manner. The shared electrons 'belong' to the outer shells of both the atoms and lead to both atoms attaining the noble gas configuration. Before going on to compounds of carbon, let us look at some simple molecules formed by the sharing of valence electrons.

The simplest molecule formed in this manner is that of hydrogen. As you have learnt earlier, the atomic number of hydrogen is 1. Hence hydrogen has one electron in its K shell and it requires one more electron to fill the K shell. So two hydrogen atoms share their electrons to form a molecule of hydrogen, H_2 . This allows each hydrogen atom to attain the

Figure 4.1 A molecule of hydrogen

Figure 4.2 Single bond between two hydrogen atoms

Figure 4.3 Double bond between two oxygen atoms

Figure 4.4 Triple bond between two nitrogen atoms

electronic configuration of the nearest noble gas, helium, which has two electrons in its K shell. We can depict this using dots or crosses to represent valence electrons (Fig. 4.1).

The shared pair of electrons is said to constitute a single bond between the two hydrogen atoms. A single bond is also represented by a line between the two atoms, as shown in Fig. 4.2.

The atomic number of chlorine is 17. What would be its electronic configuration and its valency? Chlorine forms a diatomic molecule, Cl_2 . Can you draw the electron dot structure for this molecule? Note that only the valence shell electrons need to be depicted.

In the case of oxygen, we see the formation of a double bond between two oxygen atoms. This is because an atom of oxygen has six electrons in its L shell (the atomic number of oxygen is eight) and it requires two more electrons to complete its octet. So each atom of oxygen shares two electrons with another atom of oxygen to give us the structure shown in Fig. 4.3. The two electrons contributed by each oxygen atom give rise to two shared pairs of electrons. This is said to constitute a double bond between the two atoms.

> Can you now depict a molecule of water showing the nature of bonding between one oxygen atom and two hydrogen atoms? Does the molecule have single bonds or double bonds?

> What would happen in the case of a diatomic molecule of nitrogen? Nitrogen has the atomic number 7. What would be its electronic configuration and its combining capacity? In order to attain an octet, each nitrogen atom in a molecule of nitrogen contributes three electrons giving rise to three shared pairs of electrons. This is said to constitute a triple bond between the two atoms. The electron dot structure of N₂ and its triple bond can be depicted as in Fig. 4.4.

A molecule of ammonia has the formula NH_3 . Can you draw the electron dot structure for this molecule showing how all four atoms achieve noble gas configuration? Will the molecule have single, double or triple bonds?

Let us now take a look at methane, which is a compound of carbon. Methane is widely used as a fuel and is a major component of bio-gas and Compressed Natural Gas (CNG). It is also one of the simplest compounds formed by carbon. Methane has a formula CH_4 . Hydrogen, as you know, has a valency of 1. Carbon is tetravalent because it has four valence electrons. In order to achieve noble gas configuration, carbon shares these electrons with four atoms of hydrogen as shown in Fig. 4.5.

Such bonds which are formed by the sharing of an electron pair between two atoms are known as covalent bonds. Covalently bonded molecules are seen to have strong bonds within the molecule, but intermolecular forces are small. This gives rise to the low melting and boiling