

OpenShift

i

About the Tutorial

OpenShift is a cloud development Platform as a Service (PaaS) developed by Red Hat. It

is an open source development platform, which enables the developers to develop and

deploy their applications on cloud infrastructure. It is very helpful in developing cloud-

enabled services.

This tutorial will help you understand OpenShift and how it can be used in the existing

infrastructure. All the examples and code snippets used in this tutorial are tested and

working code, which can be simply used in any OpenShift setup by changing the current

defined names and variables.

Audience

This tutorial has been prepared for those who want to understand the features and

functionalities of OpenShift and learn how it can help in building cloud-enabled services

and applications.

After completing this tutorial, readers will be at a moderate level of understanding of

OpenShift and its key building block. It will also give a fair idea on how to configure

OpenShift in a preconfigured infrastructure and use it.

Prerequisites

Readers who want to understand and learn OpenShift should have a basic knowledge of

Docker and Kubernetes. Readers also need to have some understanding of system

administration, infrastructure, and network protocol communication.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

OpenShift

ii

Table of Contents

About the Tutorial .. i

Audience... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents... ii

1. OPENSHIFT - OVERVIEW ... 1

Virtualization ... 1

OpenShift .. 3

2. OPENSHIFT - TYPES ... 6

OpenShift Online ... 6

OpenShift Container Platform ... 9

OpenShift Dedicated .. 10

Competitors of OpenShift .. 11

3. OPENSHIFT - ARCHITECTURE .. 12

Components of OpenShift.. 13

Frequently Used Terms .. 15

4. OPENSHIFT - ENVIRONMENT SETUP ... 16

System Requirement ... 16

Step by Step Guide to OpenShift Setup .. 17

5. OPENSHIFT - BASIC CONCEPT ... 23

Containers and Images .. 23

Pods and Services .. 25

Builds and Streams .. 27

OpenShift

iii

Routes and Templates ... 28

Authentication and Authorization ... 32

6. OPENSHIFT - GETTING STARTED ... 35

Creating a New Application ... 35

Develop and Deploy a Web Application ... 37

7. OPENSHIFT - BUILD AUTOMATION ... 52

8. OPENSHIFT - CLI ... 56

OpenShift CLI Setup ... 56

CLI Configuration Files ... 57

Setting Up CLI Client .. 58

CLI Profiles ... 59

9. OPENSHIFT – CLI OPERATIONS ... 61

Basic Commands .. 61

Build and Deploy Commands ... 62

Application Management Commands .. 63

Troubleshooting and Debugging Commands .. 63

Advanced Commands .. 64

Setting Commands ... 64

10. OPENSHIFT – CLUSTERS .. 65

Setting Up Cluster .. 65

Adding Hosts to a Cluster ... 67

Managing Cluster Logs ... 68

Upgrading a Cluster ... 70

11. OPENSHIFT – APPLICATION SCALING .. 74

Deployment Strategies in OpenShift .. 75

OpenShift

iv

12. OPENSHIFT – ADMINISTRATION .. 78

Master and Node Configuration .. 78

Managing Nodes .. 83

Configuration Authentication .. 84

Configuring a Service Account.. 87

Working with HTTP Proxy .. 88

OpenShift Storage with NFS ... 89

User and Role Management .. 90

13. OPENSHIFT – DOCKER AND KUBERNETES ... 95

Images ... 95

POD ... 96

Service ... 96

Replication Controller .. 97

Replica Set ... 97

Deployment ... 98

14. OPENSHIFT – SECURITY ... 100

Container Security ... 101

Network Security ... 102

Volume Security .. 103

OpenShift

1

OpenShift is a cloud development Platform as a Service (PaaS) hosted by Red Hat. It’s an

open source cloud-based user-friendly platform used to create, test, and run applications,

and finally deploy them on cloud.

OpenShift is capable of managing applications written in different languages, such as

Node.js, Ruby, Python, Perl, and Java. One of the key features of OpenShift is it is

extensible, which helps the users support the application written in other languages.

OpenShift comes with various concepts of virtualization as its abstraction layer. The

underlying concept behind OpenShift is based on virtualization.

Virtualization

In general, virtualization can be defined as the creation of a virtual system rather than

physical or actual version of anything starting from system, storage, or an operating

system. The main goal of virtualization is to make the IT infrastructure more scalable and

reliable. The concept of virtualization has been in existence from decades and with the

evolution of IT industry today, it can be applied to a wide range of layers starting from

System level, Hardware level, to Server level virtualization.

How It Works

It can be described as a technology in which any application or operating system is

abstracted from its actual physical layer. One key use of the virtualization technology is

server virtualization, which uses a software called hypervisor to abstract the layer from

the underlying hardware. The performance of an operating system running on

virtualization is as good as when it is running on the physical hardware. However, the

concept of virtualization is popular as most of the system and application running do not

require the use of the underlying hardware.

1. OpenShift - Overview

OpenShift

2

Physical vs Virtual Architecture

OpenShift

3

Types of Virtualization

Application Virtualization: In this method, the application is abstracted from the

underlying operating system. This method is very useful in which the application can be

run in isolation without being dependent on the operating system underneath.

Desktop Virtualization: This method is used to reduce the workstation load in which one

can access the desktop remotely, using a thin client at the desk. In this method, the

desktops are mostly run in a datacenter. A classic example can be a Virtual Desktop Image

(VDI) which is used in most of the organizations.

Data Virtualization: It is a method of abstracting and getting away from traditional

method of data and data management.

Server Virtualization: In this method, server-related resources are virtualized which

includes the physical server, process, and operating system. The software which enables

this abstraction is often referred to as the hypervisor.

Storage Virtualization: It is the process of pooling in multiple storage devices into a

single storage device that is managed from a single central console.

Network Virtualization: It is the method in which all available network resources are

combined by splitting up the available bandwidth and channels, each of which is

independent of each other.

OpenShift

OpenShift is a cloud-enabled application Platform as a Service (PaaS). It’s an open source

technology which helps organizations move their traditional application infrastructure and

platform from physical, virtual mediums to the cloud.

OpenShift supports a very large variety of applications, which can be easily developed and

deployed on OpenShift cloud platform. OpenShift basically supports three kinds of

platforms for the developers and users.

Infrastructure as a Service (IaaS)

In this format, the service provider provides hardware level virtual machines with some

pre-defined virtual hardware configuration. There are multiple competitors in this space

starting from AWS Google cloud, Rackspace, and many more.

The main drawback of having IaaS after a long procedure of setup and investment is that,

one is still responsible for installing and maintaining the operating system and server

packages, managing the network of infrastructure, and taking care of the basic system

administration.

OpenShift

4

Software as a Service (SaaS)

With SaaS, one has the least worry about the underlying infrastructure. It is as simple as

plug and play, wherein the user just has to sign up for the services and start using it. The

main drawback with this setup is, one can only perform minimal amount of customization,

which is allowed by the service provider. One of the most common example of SaaS is

Gmail, where the user just needs to login and start using it. The user can also make some

minor modifications to his account. However, it is not very useful from the developer’s

point of view.

Platform as a Service (PaaS)

It can be considered as a middle layer between SaaS and IaaS. The primary target of PaaS

evaluation is for developers in which the development environment can be spin up with a

few commands. These environments are designed in such a way that they can satisfy all

the development needs, right from having a web application server with a database. To

do this, you just require a single command and the service provider does the stuff for you.

Why Use OpenShift?

OpenShift provides a common platform for enterprise units to host their applications on

cloud without worrying about the underlying operating system. This makes it very easy to

use, develop, and deploy applications on cloud. One of the key features is, it provides

managed hardware and network resources for all kinds of development and testing. With

OpenShift, PaaS developer has the freedom to design their required environment with

specifications.

OpenShift provides different kind of service level agreement when it comes to service

plans.

Free: This plan is limited to three gears with 1GB space for each.

Bronze: This plan includes 3 gears and expands up to 16 gears with 1GB space per gear.

Sliver: This is 16-gear plan of bronze, however, has a storage capacity of 6GB with no

additional cost.

Other than the above features, OpenShift also offers on-premises version known as

OpenShift Enterprise. In OpenShift, developers have the leverage to design scalable and

non-scalable applications and these designs are implemented using HAproxy servers.

Features

There are multiple features supported by OpenShift. Few of them are -

 Multiple Language Support

 Multiple Database Support

 Extensible Cartridge System

 Source Code Version Management

 One-Click Deployment

 Multi Environment Support

 Standardized Developers’ workflow

OpenShift

5

 Dependency and Build Management

 Automatic Application Scaling

 Responsive Web Console

 Rich Command-line Toolset

 Remote SSH Login to Applications

 Rest API Support

 Self-service On Demand Application Stack

 Built-in Database Services

 Continuous Integration and Release Management

 IDE Integration

 Remote Debugging of Applications

OpenShift

6

OpenShift came into existence from its base named OpenShift V2, which was mainly based

on the concept of gear and cartridges, where each component has its specifications

starting from machine creation till application deployment, right from building to deploying

the application.

Cartridges: They were the focal point of building a new application starting from the type

of application the environment requires to run them and all the dependencies satisfied in

this section.

Gear: It can be defined as the bear metal machine or server with certain specifications

regarding the resources, memory, and CPU. They were considered as a fundamental unit

for running an application.

Application: These simply refer to the application or any integration application that will

get deployed and run on OpenShift environment.

As we go deeper in the section, we will discuss on different formats and offerings of

OpenShift. In the earlier days, OpenShift had three major versions.

OpenShift Origin: This was the community addition or open source version of OpenShift.

It was also known as upstream project for other two versions.

OpenShift Online: It is a pubic PaaS as a service hosted on AWS.

OpenShift Enterprise: This is the hardened version of OpenShift with ISV and vendor

licenses.

OpenShift Online

OpenShift online is an offering of OpenShift community using which one can quickly build,

deploy, and scale containerized applications on the public cloud. It is Red Hat’s public cloud

application development and hosting platform, which enables automated provisioning,

management and scaling of application which helps the developer focus on writing

application logic.

Setting Up Account on Red Hat OpenShift Online

Step 1: Go to browser and visit the site https://manage.openshift.com/

2. OpenShift - Types

https://manage.openshift.com/

OpenShift

7

Step 2: If you have a Red Hat account, login to OpenShift account using the Red Hat login

ID and password using the following URL.
https://developers.redhat.com/auth/realms/rhd/protocol/openid-

connect/auth?client_id=oso&redirect_uri=https%3A%2F%2Fmanage.openshift.com%2F

accounts%2Fauth%2Fkeycloak%2Fcallback&response_type=code&scope=openid+profile

+email&state=b73466d00a5b3b4028ca95eac867e2dd

Step 3: If you do not have a Red Hat account login, then sign up for OpenShift online

service using the following link.

https://developers.redhat.com/auth/realms/rhd/login-actions/registration?code=G4w-

myLd3GCH_QZCqMUmIOQlU7DIf_gfIvGu38nnzZQ.cb229a9d-3cff-4c58-b7f6-

7b2c9eb17926

https://developers.redhat.com/auth/realms/rhd/protocol/openid-connect/auth?client_id=oso&redirect_uri=https%3A%2F%2Fmanage.openshift.com%2Faccounts%2Fauth%2Fkeycloak%2Fcallback&response_type=code&scope=openid+profile+email&state=b73466d00a5b3b4028ca95eac867e2dd
https://developers.redhat.com/auth/realms/rhd/protocol/openid-connect/auth?client_id=oso&redirect_uri=https%3A%2F%2Fmanage.openshift.com%2Faccounts%2Fauth%2Fkeycloak%2Fcallback&response_type=code&scope=openid+profile+email&state=b73466d00a5b3b4028ca95eac867e2dd
https://developers.redhat.com/auth/realms/rhd/protocol/openid-connect/auth?client_id=oso&redirect_uri=https%3A%2F%2Fmanage.openshift.com%2Faccounts%2Fauth%2Fkeycloak%2Fcallback&response_type=code&scope=openid+profile+email&state=b73466d00a5b3b4028ca95eac867e2dd
https://developers.redhat.com/auth/realms/rhd/protocol/openid-connect/auth?client_id=oso&redirect_uri=https%3A%2F%2Fmanage.openshift.com%2Faccounts%2Fauth%2Fkeycloak%2Fcallback&response_type=code&scope=openid+profile+email&state=b73466d00a5b3b4028ca95eac867e2dd
https://developers.redhat.com/auth/realms/rhd/login-actions/registration?code=G4w-myLd3GCH_QZCqMUmIOQlU7DIf_gfIvGu38nnzZQ.cb229a9d-3cff-4c58-b7f6-7b2c9eb17926
https://developers.redhat.com/auth/realms/rhd/login-actions/registration?code=G4w-myLd3GCH_QZCqMUmIOQlU7DIf_gfIvGu38nnzZQ.cb229a9d-3cff-4c58-b7f6-7b2c9eb17926
https://developers.redhat.com/auth/realms/rhd/login-actions/registration?code=G4w-myLd3GCH_QZCqMUmIOQlU7DIf_gfIvGu38nnzZQ.cb229a9d-3cff-4c58-b7f6-7b2c9eb17926

OpenShift

8

After login, you will see the following page.

Once you have all the things in place, Red Hat will show some basic account details as

shown in the following screenshot.

OpenShift

9

Finally, when you are logged in, you will see the following page.

OpenShift Container Platform

OpenShift container platform is an enterprise platform which helps multiple teams such as

development and IT operations team to build and deploy containerized infrastructure. All

the containers built in OpenShift uses a very reliable Docker containerization technology,

which can be deployed on any data center of publically hosted cloud platforms.

OpenShift container platform was formally known as OpenShift Enterprises. It is a Red Hat

on-premise private platform as service, built on the core concept of application containers

powered by Docker, where orchestration and administration is managed by Kubernetes.

In other words, OpenShift brings Docker and Kubernetes together to the enterprise level.

It is a container platform software for enterprise units to deploy and manage applicants in

an infrastructure of own choice. For example, hosting OpenShift instances on AWS

instances.

OpenShift container platform is available in two package levels.

OpenShift Container Local: This is for those developers who wish to deploy and test

applications on the local machine. This package is mainly used by development teams for

developing and testing applications.

OpenShift Container Lab: This is designed for extended evaluation of application

starting from development till deployment to pre-prod environment.

OpenShift

10

OpenShift Dedicated

This is another offering added to the portfolio of OpenShift, wherein there is a customer

choice of hosting a containerized platform on any of the public cloud of their choice. This

gives the end user a true sense of multi-cloud offering, where they can use OpenShift on

any cloud which satisfies their needs.

This is one of the newest offering of Red Hat where the end user can use OpenShift to

build test deploy and run their application on OpenShift which is hosted on cloud.

OpenShift

11

Features of OpenShift Dedicated

OpenShift dedicated offers customized solution application platform on public cloud and it

is inherited from OpenShift 3 technology.

 Extensible and Open: This is built on the open concept of Docker and deployed

on cloud because of which it is can expend itself as and when required.

 Portability: As it is built using Docker, the applications running on Docker can

easily be shipped from one place to the other, where Docker is supported.

 Orchestration: With OpenShift 3, one of the key features of container

orchestration and cluster management is supported using Kubernetes which came

into offering with OpenShift version 3.

 Automation: This version of OpenShift is enabled with the feature of source code

management, build automation, and deployment automation which makes it very

popular in the market as a Platform as a Service provider.

Competitors of OpenShift

Google App Engine: This is Google’s free platform for developing and hosting web

applications. Google’s app engine offers fast development and deployment platform.

Microsoft Azure: Azure cloud is hosted by Microsoft on their data centers.

Amazon Elastic Cloud Compute: They are built-in services provided by Amazon, which

help in developing and hosting scalable web applications on cloud.

Cloud Foundry: It is an open source PaaS platform for Java, Ruby, Python, and Node.js

applications.

CloudStack: Apache’s CloudStack is a project developed by Citrix and is designed to

become a direct competitor of OpenShift and OpenStack.

OpenStack: Another cloud technology provided by Red Hat for cloud computing.

Kubernetes: It is a direct orchestration and cluster management technology built to

manage Docker container.

OpenShift

12

OpenShift is a layered system wherein each layer is tightly bound with the other layer

using Kubernetes and Docker cluster. The architecture of OpenShift is designed in such a

way that it can support and manage Docker containers, which are hosted on top of all the

layers using Kubernetes. Unlike the earlier version of OpenShift V2, the new version of

OpenShift V3 supports containerized infrastructure. In this model, Docker helps in creation

of lightweight Linux-based containers and Kubernetes supports the task of orchestrating

and managing containers on multiple hosts.

3. OpenShift - Architecture

OpenShift

13

Components of OpenShift

One of the key components of OpenShift architecture is to manage containerized

infrastructure in Kubernetes. Kubernetes is responsible for Deployment and Management

of infrastructure. In any Kubernetes cluster, we can have more than one master and

multiple nodes, which ensures there is no point of failure in the setup.

OpenShift

14

Kubernetes Master Machine Components

Etcd: It stores the configuration information, which can be used by each of the nodes in

the cluster. It is a high availability key value store that can be distributed among multiple

nodes. It should only be accessible by Kubernetes API server as it may have sensitive

information. It is a distributed key value Store which is accessible to all.

API Server: Kubernetes is an API server which provides all the operation on cluster using

the API. API server implements an interface which means different tools and libraries can

readily communicate with it. A kubeconfig is a package along with the server side tools

that can be used for communication. It exposes Kubernetes API”.

Controller Manager: This component is responsible for most of the collectors that

regulate the state of the cluster and perform a task. It can be considered as a daemon

which runs in a non-terminating loop and is responsible for collecting and sending

information to API server. It works towards getting the shared state of the cluster and

then make changes to bring the current status of the server to a desired state. The key

controllers are replication controller, endpoint controller, namespace controller, and

service account controller. The controller manager runs different kind of controllers to

handle nodes, endpoint, etc.

Scheduler: It is a key component of Kubernetes master. It is a service in master which

is responsible for distributing the workload. It is responsible for tracking the utilization of

working load on cluster nodes and then placing the workload on which resources are

available and accepting the workload. In other words, this is the mechanism responsible

for allocating pods to available nodes. The scheduler is responsible for workload utilization

and allocating a pod to a new node.

Kubernetes Node Components

Following are the key components of the Node server, which are necessary to

communicate with the Kubernetes master.

Docker: The first requirement of each node is Docker which helps in running the

encapsulated application containers in a relatively isolated but lightweight operating

environment.

Kubelet Service: This is a small service in each node, which is responsible for relaying

information to and from the control plane service. It interacts with etcd store to read the

configuration details and Wright values. This communicates with the master component

to receive commands and work. The kubelet process then assumes responsibility for

maintaining the state of work and the node server. It manages network rules, port

forwarding, etc.

Kubernetes Proxy Service: This is a proxy service which runs on each node and helps

in making the services available to the external host. It helps in forwarding the request to

correct containers. Kubernetes Proxy Service is capable of carrying out primitive load

balancing. It makes sure that the networking environment is predictable and accessible

but at the same time it is isolated as well. It manages pods on node, volumes, secrets,

creating new containers health checkup, etc.

OpenShift

15

Integrated OpenShift Container Registry

OpenShift container registry is an inbuilt storage unit of Red Hat, which is used for storing

Docker images. With the latest integrated version of OpenShift, it has come up with a user

interface to view images in OpenShift internal storage. These registries are capable of

holding images with specified tags, which are later used to build containers out of it.

Frequently Used Terms

Image: Kubernetes (Docker) images are the key building blocks of Containerized

Infrastructure. As of now, Kubernetes only supports Docker images. Each container in a

pod has its Docker image running inside it. When configuring a pod, the image property

in the configuration file has the same syntax as the Docker command.

Project: They can be defined as the renamed version of the domain which was present in

the earlier version of OpenShift V2.

Container: They are the ones which are created after the image is deployed on a

Kubernetes cluster node.

Node: A node is a working machine in Kubernetes cluster, which is also known as minion

for master. They are working units which can a physical, VM, or a cloud instance.

Pod: A pod is a collection of containers and its storage inside a node of a Kubernetes

cluster. It is possible to create a pod with multiple containers inside it. For example,

keeping the database container and web server container inside the pod.

OpenShift

16

In this chapter, we will learn about the environment setup of OpenShift.

System Requirement

In order to set up enterprise OpenShift, one needs to have an active Red Hat account. As

OpenShift works on Kubernetes master and node architecture, we need to set up both of

them on separate machines, wherein one machine acts as a master and other works on

the node. In order to set up both, there are minimum system requirements.

Master Machine Configuration

Following are the minimum system requirements for master machine configuration.

 A base machine hosted either on physical, virtual, or on any of the cloud

environment.

 At least Linux 7 with the required packages on that instance.

 2 CPU core.

 At least 8 GB RAM.

 30 GB of internal hard disk memory.

 Node Machine Configuration

 Physical or virtual base image as given for the master machine.

 At least Linux 7 on the machine.

 Docker installed with not below than 1.6 version.

 1 CPU core.

 8 GB RAM.

 15 GB hard disk for hosting images and 15 GB for storing images.

4. OpenShift - Environment Setup

OpenShift

17

Step by Step Guide to OpenShift Setup

In the following description, we are going to set up OpenShift lab environment, which can

be later extended to a bigger cluster. As OpenShift requires master and node setup, we

would need at least two machines hosted on either cloud, physical, or virtual machines.

Step 1: First install Linux on both the machines, where the Linux 7 should be the least

version. This can be done using the following commands if one has an active Red Hat

subscription.

subscription-manager repos --disable="*"

subscription-manager repos --enable="rhel-7-server-rpms"

subscription-manager repos --enable="rhel-7-server-extras-rpms"

 # subscription-manager repos --enable="rhel-7-server-optional-rpms"

subscription-manager repos --enable="rhel-7-server-ose-3.0-rpms"

yum install wget git net-tools bind-utils iptables-services bridge-utils

yum install wget git net-tools bind-utils iptables-services bridge-utils

yum install python-virtualenv

yum install gcc

yum install httpd-tools

OpenShift

18

yum install docker

yum update

Once we have all the above base packages installed in both of the machines, the next step

would be to set up Docker on the respective machines.

Step 2: Configure Docker so that it should allow insecure communication on the local

network only. For this, edit the Docker file inside /etc/sysconfig. If the file is not present

then you need to create it manually.

vi /etc/sysconfig/docker

OPTIONS=--selinux-enabled --insecure-registry 192.168.122.0/24

After configuring the Docker on the master machine, we need to set up a password-less

communication between both the machines. For this, we will use public and private key

authentication.

Step 3: Generate keys on the master machine and then copy the id_rsa.pub key to the

authorized key file of the node machine, which can be done using the following command.

ssh-keygen

ssh-copy-id -i .ssh/id_rsa.pub root@ose3-node.test.com

Once you have all of the above setup in place, next is to set up OpenShift version 3 on the

master machine.

Step 4: From the master machine, run the following curl command.

 # sh <(curl -s https://install.openshift.com/ose)

OpenShift

19

The above command will put the setup in place for OSV3. The next step would be to

configure OpenShift V3 on the machine.

If you cannot download from the Internet directly, then it could be downloaded from

https://install.openshift.com/portable/oo-install-ose.tgz as a tar package from which the

installer can run on the local master machine.

Once we have the setup ready, then we need to start with the actual configuration of OSV3

on the machines. This setup is very specific to test the environment for actual production,

we have LDAP and other things in place.

Step 5: On the master machine, configure the following code located under

/etc/openshift/master/master-config.yaml

vi /etc/openshift/master/master-config.yaml

identityProviders:

- name: my_htpasswd_provider

challenge: true

login: true

provider:

apiVersion: v1

kind: HTPasswdPasswordIdentityProvider

file: /root/users.htpasswd

routingConfig:

 subdomain: testing.com

 Next, create a standard user for default administration.

htpasswd -c /root/users.htpasswd admin

Step 6: As OpenShift uses Docker registry for configuring images, we need to configure

Docker registry. This is used for creating and storing the Docker images after build.

Create a directory on the OpenShift node machine using the following command.

mkdir /images

Next, login to the master machine using the default admin credentials, which gets created

while setting up the registry.

oc login

Username: system:admin

https://install.openshift.com/portable/oo-install-ose.tgz

OpenShift

20

Switch to the default created project.

oc project default

Step 7: Create a Docker Registry.

#echo

'{"kind":"ServiceAccount","apiVersion":"v1","metadata":{"name":"registry"}}' |

oc create -f -

Edit the user privileges.

#oc edit scc privileged

users:

- system:serviceaccount:openshift-infra:build-controller

- system:serviceaccount:default:registry

Create and edit the image registry.

#oadm registry --service-account=registry --

config=/etc/openshift/master/admin.kubeconfig --

credentials=/etc/openshift/master/openshift-registry.kubeconfig --

images='registry.access.redhat.com/openshift3/ose-${component}:${version}' --

mount-host=/images

Step 8: Create a default routing.

By default, OpenShift uses OpenVswitch as software network. Use the following command

to create a default routing. This is used for load balancing and proxy routing. The router

is similar to the Docker registry and also runs in a registry.

echo

'{"kind":"ServiceAccount","apiVersion":"v1","metadata":{"name":"router"}}' | oc

create -f -

OpenShift

21

Next, edit the privileges of the user.

#oc edit scc privileged

users:

 - system:serviceaccount:openshift-infra:build-controller

 - system:serviceaccount:default:registry

 - system:serviceaccount:default:router

#oadm router router-1 --replicas=1 --

credentials='/etc/openshift/master/openshift-router.kubeconfig' --

images='registry.access.redhat.com/openshift3/ose-${component}:${version}'

Step 9: Configure the DNS.

In order to handle URL request, OpenShift needs a working DNS environment. This DNS

configuration is required to create a wild card, which is required to create DNS wild card

that points to a router.

yum install bind-utils bind

systemctl start named

systemctl enable named

vi /etc/named.conf

options {listen-on port 53 { 10.123.55.111; };

forwarders {

10.38.55.13;

;

};

zone "lab.com" IN {

 type master;

 file "/var/named/dynamic/test.com.zone";

 allow-update { none; };

};

OpenShift

22

Step 10: The final step would be to set up github server on OpenShift V3 master machine,

which is optional. This can be done easily using the following sequence of commands.

#yum install curl openssh-server

#systemctl enable sshd

systemctl start sshd

firewall-cmd --permanent --add-service=http

systemctl reload firewalld

#curl https://packages.gitlab.com/install/repositories/gitlab/gitlab-

#yum install gitlab-ce

gitlab-ctl reconfigure

Once the above setup is complete, you can verify by test and deploy applications, which

we will know more about in the subsequent chapters.

OpenShift

23

Before beginning with the actual setup and deployment of applications, we need to

understand some basic terms and concepts used in OpenShift V3.

Containers and Images

Images

These are the basic building blocks of OpenShift, which are formed out of Docker images.

In each pod on OpenShift, the cluster has its own images running inside it. When we

configure a pod, we have a field which will get pooled from the registry. This configuration

file will pull the image and deploy it on the cluster node.

apiVersion: v1

kind: pod

metadata:

 name: Tesing_for_Image_pull -----------> Name of Pod

 spec:

containers:

- name: neo4j-server ------------------------> Name of the image

image: <Name of the Docker image>----------> Image to be pulled

imagePullPolicy: Always ------------->Image pull policy

command: [“echo”, “SUCCESS”] -------------------> Massage after image pull

In order to pull and create an image out of it, run the following command. OC is the client

to communicate with OpenShift environment after login.

$ oc create –f Tesing_for_Image_pull

5. OpenShift - Basic Concept

OpenShift

24

Container

This gets created when the Docker image gets deployed on the OpenShift cluster. While

defining any configuration, we define the container section in the configuration file. One

container can have multiple images running inside and all the containers running on cluster

node are managed by OpenShift Kubernetes.

spec:

 containers:

 - name: py ------------------------> Name of the container

 image: python----------> Image going to get deployed on container

 command: [“python”, “SUCCESS”]

 restartPocliy: Never --------> Restart policy of container

Following are the specifications for defining a container having multiple images running

inside it.

apiVersion: v1

kind: Pod

metadata:

 name: Tomcat

spec:

 containers:

 - name: Tomcat

 image: tomcat: 8.0

 ports:

 - containerPort: 7500

 imagePullPolicy: Always

 -name: Database

 Image: mongoDB

 Ports:

 - containerPort: 7501

imagePullPolicy: Always

OpenShift

25

In the above configuration, we have defined a multi-container pod with two images of

Tomcat and MongoDB inside it.

Pods and Services

Pods

Pod can be defined as a collection of container and its storage inside a node of OpenShift

(Kubernetes) cluster. In general, we have two types of pod starting from a single container

pod to multi-container pod.

Single Container Pod: These can be easily created with OC command or by a basic

configuration yml file.

$ oc run <name of pod> --image=<name of the image from registry>

Create it with a simple yaml file as follows.

apiVersion: v1

kind: Pod

metadata:

 name: apache

spec:

 containers:

 - name: apache

 image: apache: 8.0

 ports:

 - containerPort: 7500

imagePullPolicy: Always

Once the above file is created, it will generate a pod with the following command.

$ oc create –f apache.yml

OpenShift

26

Multi-Container Pod: Multi-container pods are those in which we have more than one

container running inside it. They are created using yaml files as follows.

apiVersion: v1

kind: Pod

metadata:

 name: Tomcat

spec:

 containers:

 - name: Tomcat

 image: tomcat: 8.0

 ports:

 - containerPort: 7500

imagePullPolicy: Always

 -name: Database

 Image: mongoDB

 Ports:

 - containerPort: 7501

imagePullPolicy: Always

After creating these files, we can simply use the same method as above to create a

container.

Service: As we have a set of containers running inside a pod, in the same way we have a

service that can be defined as a logical set of pods. It’s an abstracted layer on top of the

pod, which provides a single IP and DNS name through which pods can be accessed.

Service helps in managing the load balancing configuration and to scale the pod very

easily. In OpenShift, a service is a REST object whose deification can be posted to

apiService on OpenShift master to create a new instance.

apiVersion: v1

kind: Service

metadata:

 name: Tutorial_point_service

spec:

 ports:

 - port: 8080

 targetPort: 31999

OpenShift

27

 Builds and Streams

Builds

In OpenShift, build is a process of transforming images into containers. It is the processing

which converts the source code to an image. This build process works on pre-defined

strategy of building source code to image.

The build processes multiple strategies and sources.

Build Strategies

 Source to Image: This is basically a tool, which helps in building reproducible

images. These images are always in a ready stage to run using the Docker run

command.

 Docker Build: This is the process in which the images are built using Docker file

by running simple Docker build command.

 Custom Build: These are the builds which are used for creating base Docker

images.

Build Sources

Git: This source is used when the git repository is used for building images. The Dockerfile

is optional. The configurations from the source code looks like the following.

source:

 type: "Git"

 git:

 uri: "https://github.com/vipin/testing.git"

 ref: "master"

 contextDir: "app/dir"

 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example"

Dockerfile: The Dockerfile is used as an input in the configuration file.

source:

 type: "Dockerfile"

 dockerfile: "FROM ubuntu: latest

 RUN yum install -y httpd"

OpenShift

28

Image Streams: Image streams are created after pulling the images. The advantage of

an image stream is that it looks for updates on the new version of an image. This is used

to compare any number of Docker formatted container images identified by tags.

Image streams can automatically perform an action when a new image is created. All the

builds and deployments can watch for image action and perform an action accordingly.

Following is how we define a build a stream.

apiVersion: v1

kind: ImageStream

metadata:

 annotations:

 openshift.io/generated-by: OpenShiftNewApp

 generation: 1

 labels:

 app: ruby-sample-build

 selflink: /oapi/v1/namespaces/test/imagestreams/origin-ruby-sample

 uid: ee2b9405-c68c-11e5-8a99-525400f25e34

spec: {}

status:

 dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample

 tags:

 - items:

 - created: 2016-01-29T13:40:11Z

 dockerImageReference: 172.30.56.218:5000/test/origin-apache-sample

 generation: 1

 image: vklnld908.int.clsa.com/vipin/test

 tag: latest

Routes and Templates

Routes

In OpenShift, routing is a method of exposing the service to the external world by creating

and configuring externally reachable hostname. Routes and endpoints are used to expose

the service to the external world, from where the user can use the name connectivity

(DNS) to access defined application.

OpenShift

29

In OpenShift, routes are created by using routers which are deployed by OpenShift admin

on the cluster. Routers are used to bind HTTP (80) and https (443) ports to external

applications.

Following are the different kinds of protocol supported by routes:

 HTTP

 HTTPS

 TSL and web socket

When configuring the service, selectors are used to configure the service and find the

endpoint using that service. Following is an example of how we create a service and the

routing for that service by using an appropriate protocol.

{

 "kind": "Service",

 "apiVersion": "v1",

 "metadata": {

 "name": "Openshift-Rservice"

 },

 "spec": {

 "selector": {

 "name":"RService-openshift"

 },

 "ports": [

 {

 "protocol": "TCP",

 "port": 8888,

 "targetPort": 8080

 }

]

 }

}

Next, run the following command and the service is created.

$ oc create -f ~/training/content/Openshift-Rservice.json

OpenShift

30

This is how the service looks like after creation.

$ oc describe service Openshift-Rservice

Name: Openshift-Rservice

Labels: <none>

Selector: name= RService-openshift

Type: ClusterIP

IP: 172.30.42.80

Port: <unnamed> 8080/TCP

Endpoints: <none>

Session Affinity: None

No events.

Create a routing for service using the following code.

{

 "kind": "Route",

 "apiVersion": "v1",

 "metadata": {

 "name": "Openshift-service-route"

 },

 "spec": {

 "host": "hello-openshift.cloudapps.example.com",

 "to": {

 "kind": "Service",

 "name": "OpenShift-route-service"

 },

 "tls": {

 "termination": "edge"

 }

 }

}

OpenShift

31

When OC command is used to create a route, a new instance of route resource is created.

Templates

Templates are defined as a standard object in OpenShift which can be used multiple times.

It is parameterized with a list of placeholders which are used to create multiple objects.

This can be used to create anything, starting from a pod to networking, for which users

have authorization to create. A list of objects can be created, if the template from CLI or

GUI interface in the image is uploaded to the project directory.

apiVersion: v1

kind: Template

metadata:

 name: <Name of template>

 annotations:

 description: <Description of Tag>

 iconClass: "icon-redis"

 tags: <Tages of image>

objects:

- apiVersion: v1

 kind: Pod

 metadata:

 name: <Object Specification>

 spec:

 containers:

 image: <Image Name>

 name: master

 ports:

 - containerPort: <Container port number>

 protocol: <Protocol>

labels:

 redis: <Communication Type>

OpenShift

32

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

https://store.tutorialspoint.com/

