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* Latches and Flip-Flops
* Synchronous Logic Design
Finite State Machines

 Parallelism
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Introduction

* Outputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops

SEQUENTIAL LOGIC DESIGN
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Sequential Circuits

* (G1ve sequence to events
 Have memory (short-term)

» Use feedback from output to input to store
information

SEQUENTIAL LOGIC DESIGN
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State Elements

 The state of a circuit influences its future
behavior

» State elements store state
— Bistable circuit
— SR Latch
— D Latch
— D Flip-flop

SEQUENTIAL LOGIC DESIGN
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Bistable Circuit

* Fundamental building block of other state
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Bistable Circuit Analysis

» Consider the two possible cases:

- 0=0:
then Q =1, O = 0 (consistent)

-0=1:
then O =0, O = 1 (consistent) 0

1

UENTIAL LOGIC DESIGN
A

« Stores 1 bit of state in the state variable, Q (or Q)
* But there are no inputs to control the state

Q
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SR (Set/Reset) Latch
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E * Consider the four possible cases:
| ~S=1,R=0
> - S5S=0R=1
@ ~S=0,R=0
o —S=1,R-=1
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SEQUENTIAL LOGIC DESIGN

SR Latch Analysis

-5S=1,R=0:
then O=1and Q=0

-S5S=0,R=1:
thenO=1and O =0
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SEQUENTIAL LOGIC DESIGN

SR Latch Analysis

-5S=1,R=0:
then O=1and Q=0
Set the output

-S5S=0,R=1:
thenO=1and 0 =0
Reset the output
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SEQUENTIAL LOGIC DESIGN

SR Latch Analysis

_S=1,R=1: R m 0,
thenQZO,QZO °

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <11>




SEQUENTIAL LOGIC DESIGN

SR Latch Analysis

_S=09R=0: Qprev=0 Qprev=1

then 0=0Q,., r? QQ R _Q

Memory!

—S=1,R=1:_ R m 0,
then O=0,0=0 °
I_nvalid State 8(1) m. 04q
0#NOT Q

inlh
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SR Latch Symbol

SR stands for Set/Reset Latch
— Stores one bit of state (Q)

* Control what value 1s being stored with S, R
inputs

— Set: Make the output 1 SSRyrl;xallotglh
(S=1,R=0,0=1)

— Reset: Make the output 0 R
(S=0,R=1,0=0) 19

SEQUENTIAL LOGIC DESIGN
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* Two mputs: CLK, D
— CLK: controls when the output changes

— D (the data mnput): controls what the output changes to

* Function D Latch
— When CLK =1, Symbol
D passes through to QO (transparent) CII_K
— When CLK =0, b aL
O holds its previous value (opaque) aL

 Avoids invalid case when

0+NOT 0
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D Latch Internal Circuit

CLK DoﬁjiR al-q C||_K
s

_ —D

Q
Q
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D Latch Internal Circuit

CLK DoﬁjiR al-q C||_K
s

5 s aa |° Y
Q |
CLK D| D S R|Q Q
O X Y O O Qprer—prev
1 0 1 0 1 0 1
1 1 0 1 0 1 0
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SEQUENTIAL LOGIC DESIGN

D Flip-Flop

* Inputs: CLK, D
* Function

D Flip-Flop

Symbols
|

— Samples D on rising edge of CLK

e When CLK ri1ses fromOto 1, D D
passes through to QO

Q
Q

* Otherwise, O holds its previous
value

— Q changes only on rising edge of
CLK

» Called edge-triggered
» Activated on the clock edge
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complementary clocks
e When CLK =10

— L1 1s transparent

— L2 1s opaque

— D passes through to N1
« When CLK =1

— L2 1s transparent
— L1 1s opaque
— N1 passes through to O

— D passes through to 0

SEQUENTIAL LOGIC DESIGN
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D Flip-Flop Internal Circuit

D —

« Two back-to-back latches (L1 and L2) controlled by

CLK
o]
CLK CLK
N1
D Q D QFQ
L1 Q- |L2 QFQ
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* Thus, on the edge of the clock (when CLK rises from 0—1)




D Latch vs. D Flip-Flop

|
CLK

D Q- D Q-
Q- Qf-

o / \

Q (latch)

Q (flop)
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D Latch vs. D Flip-Flop
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D Q- 4D

Q
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Q (flop) \A\
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CLK

D,—D Q—Q,

SEQUENTIAL LOGIC DESIGN
|
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Enabled Flip-Flops

e Inputs: CLK, D, EN

— The enable mput (EN) controls when new data (D) 1s stored

* Function
— EN = 1: D passes through to QO on the clock edge
— EN = 0: the flip-flop retains its previous state

UENTIAL LOGIC DESIGN

Internal
Circuit
EN CLK Symbol
| | |
-0
8 D Q+-Q D Q
(N W} D1
EN
mi |
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Resettable Flip-Flops

* Inputs: CLK, D, Reset

e Function:

— Reset=1: Q1s forced to 0
— Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

|
N

—D Q_ S I

Reset |
|
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Resettable Flip-Flops

* Two types:

— Synchronous: resets at the clock edge only

— Asynchronous: resets immediately when Reset = 1

* Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

* Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN
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Resettable Flip-Flops

* Two types:
— Synchronous: resets at the clock edge only

— Asynchronous: resets immediately when Reset = 1
* Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop
* Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset —}D W=Q
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|

Settable Flip-Flops

* Inputs: CLK, D, Set

* Function:
— Set=1: Qissettol
— Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

- D

N

Set

Q
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cd Sequential Logic
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Sequential Logic

* Sequential circuits: all circuits that aren’t
combinational
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* A problematic circuit:

012345678t|me(ns)

No inputs and 1-3 outputs

Astable circuit, oscillates

Period depends on inverter delay

It has a cyclic path: output fed back to input
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Synchronous Sequential Logic Design

* Breaks cyclic paths by inserting registers
» Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

Rules of synchronous sequential circuit composition:
— Every circuit element 1s either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal

— Every cyclic path contains at least one register

* Two common synchronous sequential circuits
— Finite State Machines (FSMs)

— Pipelines

SEQUENTIAL LOGIC DESIGN
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Finite State Machine (FSM)

: CLK
 Consists of: |
— State register §—— S
Next Current
e Stores current state State State

* Loads next state at clock edge

— Combinational logic
* Computes the next state
* Computes the outputs

Next State Output
Logic Logic

Next
+[ }State { CP_ %Outputs
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SEQUENTIAL LOGIC DESIGN

Finite State Machines (FSMs)

* Next state determined by current state and inputs
« Two types of finite state machines differ in output logic:

— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

Moore FSM
CLK
M noxt ) k next I K N
i tput
inputs 77_@/ state | state olggpig outputs
Mealy FSM

CLK
|

M next YKk next k N
inputs %4 state I/ state | © |, state C’Igtpigt outputs
logic J

’|
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FSM Black Box

* Inputs: CLK, Reset, T, T
* QOutputs: L, Ly

CLK
T, — Traffic —— L,
Light
I, —— Controller —— Lg
|
Reset

SEQUENTIAL LOGIC DESIGN
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— Laghts: L, Ly

Academic (T,)

UENTIAL LOGIC DESIGN

Labs

Q

SE
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FSM Example

 Traffic light controller
— Traffic sensors: T, T (TRUE when there’s traffic)

Dining
Hall

Q openelg
A=
-
— w
>

T, ) Ave.
E]LB Dorms
W
< [}

O [ Fields
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FSM State Transition Diagram

 Moore FSM: outputs labeled 1n each state
» States: Circles

e Transitions: Arcs

SEQUENTIAL LOGIC DESIGN
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FSM State Transition Diagram

 Moore FSM: outputs labeled 1n each state
» States: Circles

S1
L, yellow
L red

e Transitions: Arcs
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FSM State Transition Table
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FSM State Transition Table

-

O

A

W

Q) Current

@ State

ey

O

9 SO 0 X S1
|

- SO 1 X SO

S S1 X X S2

IE S2 X 0 S3

w S2 X ] S2

a S3 X X SO

T

Wy

i NI “-';j-
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Current State Inputs Next State

FSM Encoded State Transition Table

State  Encoding

SEQUENTIAL LOGIC DESIGN

O O i X SO 00
0 0 . X
o T x o S 01
o X 52 10
| O : : S3 11
1 1 % <
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FSM Encoded State Transition Table

O
T
)
g: Current State Inputs Next State
- State  Encoding
G’ 0 0 0 X | 0 1
SO 00
Ol o | o | 1 | xX]o0]o0
SLo x| xf1]o S 01
< | 1 o | X | o 1] 1 S2 10
——
b~ 1 0 X 1 1] 0
2' S3 11
0 | | X X 0 0
a S’l — Sl @ SO
B.l,: S0 = 5180y + 815013
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FSM Output Table

0 0 green 00
0 1 yellow 01
1 0 red 10
1 1

SEQUENTIAL LOGIC DESIGN

R e s
e ‘-.:- .’4._ 2%
SN
:
\31)
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FSM Output Table

O
A
W
Q
L
—
Gl 0 0 0 0 | 0 green 00
91: 0 L ] o | 1t | 1] 0| |yellow| o0l
— : 0 : 0 0 0 red 10
é L1 [ 1 ool 1
2: Ly =S5
g: Ly = ElSo
G Lp =5
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SEQUENTIAL LOGIC DESIGN
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FSM Schematic:

State Register

CLK
S, S,
SO SO

r

|
Reset

state register
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FSM Schematic: Next State Logic

<
9
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Q
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el
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\) S'1 S1
J
— s, S,
T, G
S1 S0
inputs next state logic
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FSM Schematic: Output Logic

SEQUENTIAL LOGIC DESIGN
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FSM State Encoding

* Binary encoding:
— 1.e., for four states, 00, 01, 10, 11

* One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— 1.e., for 4 states, 0001, 0010, 0100, 1000
— Requires more flip-flops
— Often next state and output logic 1s simpler

SEQUENTIAL LOGIC DESIGN
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Moore vs. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape
with 1’s and 0’s on it. The snail smiles whenever the last two

digits 1t has crawled over are 01. Design Moore and Mealy

FSMs of the snail’s brain. 7 ,_4
7
QremN

UENTIAL LOGIC DESIGN
f

SEQ
i
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State Transition Diagrams

Moore FSM

Mealy FSM

Reset
0/0

1/0 ° °

Mealy FSM: arcs indicate input/output

SEQUENTIAL LOGIC DESIGN
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Current

State Inputs Next State

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

SEQUENTIAL LOGIC DESIGN
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Moore FSM State Transition Table

State  Encoding

SO 00

S1 01

S2 10
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Current

State Inputs Next State

SEQUENTIAL LOGIC DESIGN
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0 0 0 0 |
0 0 | 0 0
0 1 0 0 |
0 1 1 | 0
1 0 0 0 |
1 0 | 0 0

S," = S,A4

Sy =4

Moore FSM State Transition Table

State  Encoding

SO 00

S1 01

S2 10
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Moore FSM Output Table

0 0
0 1
1 0

SEQUENTIAL LOGIC DESIGN
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Moore FSM Output Table

0 0 0

0 1 0

1 0 1
Y:S1

SEQUENTIAL LOGIC DESIGN
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Current Next
State Input  State Output

—_— = | OO
—_ O = O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012

Mealy FSM State Transition & Output Table

State Encoding

SO 00
S1 01
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Current Next

State Input  State Output

_— o = O

S |I= |1 |

—_— = | OO

_— OO O

SEQUENTIAL LOGIC DESIGN
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Mealy FSM State Transition & Output Table

State Encoding

SO 00
S1 01
Chapter 3 <54>
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Moore FSM Schematic

SEQUENTIAL LOGIC DESIGN
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Mealy FSM Schematic

A
CLK L
o
_DQ S’ So =Y
r
|
Reset

SEQUENTIAL LOGIC DESIGN
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Factoring State Machines

* Break complex FSMs into smaller interacting
FSMs

 Example: Modify traffic light controller to have
Parade Mode.

— Two more inputs: P, R
— When P =1, enter Parade Mode & Bravado Blvd

light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN
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5 Parade FSM
o
Y
~ Unfactored FSM r—
QI R—> controller [ La
U ;A:: FSM —> L,
— B
0 r——————~— 1
-l | |
- Factored FSM SN
R FSM |
I : '
-~ | LM |
> Y
W TA4I—> Lights TL’ Ly
=) Tt PSM
| |
> ' l
| Controller |
|
A |
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Unfactored FSM

Reset

PT, _
RT, RT,
PTy S RT,
L,: green L,: yellow S5

1
L: red Ly red L,: yellow
Lg: red

UENTIAL LOGIC DESIGN

Q
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Factored FSM

L,: yellow
Lg: red

M+Tg
Lights FSM Mode FSM

SEQUENTIAL LOGIC DESIGN
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FSM Designh Procedure

Identify mputs and outputs
Sketch state transition diagram
Write state transition table
Select state encodings

A

For Moore machine:

1. Rewrite state transition table with state encodings
2. Write output table

6. For a Mealy machine:

1. Rewrite combined state transition and output table with state
encodings

7.  Write Boolean equations for next state and output loglc

SEQUENTIAL LOGIC DESIGN

8. Sketch the circuit schematic
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* Flip-flop samples D at clock edge

* D must be stable when sampled

* Simular to a photograph, D must be stable
around clock edge

» If not, metastability can occur

SEQUENTIAL LOGIC DESIGN
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Input Timing Constraints

° Setup time: 7, = time before clock edge data must be
stable (1.e. not changing)

« Hold time: #,,4 = time after clock edge data must be stable

* Aperture time: ¢, = time around clock edge data must be
stable (ta - zLsetup + ZLhold)

SEQUENTIAL LOGIC DESIGN

CLK ,(
|
|
| | !
D Y XK
<>
i tsetup | thold i
« >
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Output Timing Constraints

 Propagation delay: z,., = time after clock edge that the
output 0 1s guaranteed to be stable (1.e., to stop changing)

¢ Contamination delay: 7., = time after clock edge that O
might be unstable (1.e., start changing)

CLK ,Ifﬁ
| |

Q R
| ; ;
<t > |
K ccq : H

pcq

SEQUENTIAL LOGIC DESIGN
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Dynamic Discipline

* Synchronous sequential circuit inputs must be
stable during aperture (setup and hold) time

around clock edge

» Specifically, inputs must be stable

— at least ¢, ., before the clock edge

setup

— at least until ¢, 4 after the clock edge

SEQUENTIAL LOGIC DESIGN
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g Dynamic Discipline

—

7o)

g  The delay between registers has a
O minimum and maximum delay, dependent
G on the delays of the circuit elements
0 CLK CLK

] , | Q1 ¢ \D2, | /

-l L)L J L

S (a) R1 R2

IE p Lt >

Ly CLK | \ ,JI/_

5 e

— D2 | OO0 |

N b) |
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Setup Time Constraint

* Depends on the maximum delay from register R
through combinational logic to R2

 The input to register R2 must be stable at least t
before clock edge

1

setup

SEQUENTIAL LOGIC DESIGN

CLK CLK
| |
Q1( \D2
¥ ) I.=
R1 R2
< Te »
CLK | \ ,{’_
Q1 1 % |
I | | I
D2 1 me |
:(tpcq)g( 1:pd )g(tsetup ):
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Setup Time Constraint

 Depends on the maximum delay from register R1
through combinational logic to R2

* The input to register R2 must be stable at least tsetup
before clock edge

SEQUENTIAL LOGIC DESIGN

CLK CLK
| |
Q1( D2
L k y 7—;’ 2 tpcq T tpd T tsetup
R1 R2
T lpa =
l« : »l
CLK | \ ,{’_
Q1 1 % |
I | | I
D2 | | me |
:(tpcq)g( 1:pd )g(tsetup ):
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Setup Time Constraint

 Depends on the maximum delay from register R1
through combinational logic to R2

* The input to register R2 must be stable at least tsetup
before clock edge

SEQUENTIAL LOGIC DESIGN

CITK CITK
Q1[ ¢ ]Dz T.> theqg T boa T Lsetup
Rll Te :2 tpd = Tc B (tpcq T tsetup)
CLK ~ \ /r—
Q1 | : |
D2 : Wm : (2,04 T Teerup): SEQUENCING OVerhead
e B e
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Hold Time Constraint

* Depends on the minimum delay from register R1
through the combinational logic to R2

* The input to register R2 must be stable for at least
t, .14 after the clock edge

CLK CLK
1Q1 e o2k
\ J fhold <
R1 R2
| |
CLK \ |8
|
QT T X
|
D2 | XOUOOCK

| ccq cd

|t
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Hold Time Constraint

* Depends on the minimum delay from register R1
through the combinational logic to R2

* The input to register R2 must be stable for at least
t, .14 after the clock edge

Cll_K Cll_K
Q1( ¢ \D2
. J thold < tccq ™ tcd
R1 R2
| | tcd >
CLK \ |8
|
Q1 1 XXX
|
D2 |

R

| ccq cd

|t
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Hold Time Constraint

* Depends on the minimum delay from register R1
through the combinational logic to R2

* The input to register R2 must be stable for at least
t, .14 after the clock edge

CLK CLK
1Q1 e o2k
. J thold < tccq ™ tcd
R1 R2
| | Led = Thold = Leeq
CLK \ |8
|
QT T X
|
D2 | XOUOOCK

| ccq cd

|t
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Timing Analysis

CLK ck Timing Characteristics

teeg =30 ps

18 ‘ theg =50ps

A
>
H/

g
3

I
o
oy _r
u tsetup = 60 PS
0‘ 1c 1) XIY|X -

-r J thola = 70 ps

—— e
~ e >,
< *g thy =35ps
: ’gb_ ty =25ps
2
W fea =
a Setup time constraint: Hold time constraint:
U 7:: 2 tccq + tcd > thold ?
W f.=
Lo’
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Timing Analysis

t,s =3 x 35 ps =105 ps

t.;,=25ps

Setup time constraint:

T. 2 (50 + 105 + 60) ps = 215 ps

UENTIAL LOGIC DESIGN

Q

f.=1/T. = 4.65 GHz

SE
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| CLK CLK
7
[ -r A >_ teeg = 30 ps
_|VB ‘ theg =50ps
tsetup = 60 PS
2 J_\ x"<7'2( :
/ thog =70ps
|
T B
()
o { t,g =35ps
Qlty =25ps

Hold time constraint:
tccq + tcd > thold ?

(30 +25) ps>70ps ? No!
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Timing Analysis
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Add buffers to the short paths:

CLK CLK
P
NV B
e D X'N] _X
<D WV_Y
tpd =
tcd =

Setup time constraint:

T.2

fe=

Timing Characteristics

teeg =30 ps
theg =50ps

tsetup =60 PS

thoa =70 ps
O
o { t,g =35ps
Qlty =25ps

Hold time constraint:

tccq + tcd > thold ?
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Timing Analysis

<
9
Y
Q
9
O
QO
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I
>
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Add buffers to the short paths: Timing Characteristics
CLK CLK teg =30ps
?7A

= } theg =50PpS
YB tsetup = 60 ps

yale D XY1X thog =70ps
It - >F or, -3sps
L — g|: pd = P
Qlty =25ps

t,s =3 x 35 ps =105 ps
t.y=2x25ps=50ps

Setup time constraint: Hold time constraint:
T. 2 (50 + 105 + 60) ps = 215 ps teeq + ted > thold ©
fe=1/T.=4.65GHz (30 + 50) ps > 70 ps ? Yes!
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Clock Skew

 The clock doesn’t arrive at all registers at same time
» Skew: difference between two clock edges

* Perform worst case analysis to guarantee dynamic
discipline is not violated for any register — many

registers in a system!
delay CLK

CLK1

CLK2

CLK

SEQUENTIAL LOGIC DESIGN

80
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Setup Time Constraint with Skew

* |n the worst case, CLK2 is earlier than CLK1

CI_|K1 CL|K2
Q1( D2,
al ¢ 1=

R1 T R2
¢ ° >

CLK1
7/SNEEAN 1>
CLK2/ /{ ) ARRRY //}I/
Q1 W T
| | | L
D2 | XXXXXKCOOG0RC ||
| R
<tpcq):< tpd !tsetluptskew

SEQUENTIAL LOGIC DESIGN
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Setup Time Constraint with Skew

* |n the worst case, CLK2 is earlier than CLK1

CL|K1 CL|K2
Q1 D2,
7 L (E J /
R T R2
< : >
CLK1
//)l\ AN ://'llf Té > tpcq + zLpd T tsetup T Lskew
S/ R N/ g
| . | pe =
Ql_ 00— |
| A
D2 | 0000000000 T |
| S
<« >« >
tpcq tpd ' 1:setuptskew

SEQUENTIAL LOGIC DESIGN
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Setup Time Constraint with Skew

* |n the worst case, CLK2 is earlier than CLK1

<

O

A

Wy

Q

2 CLK1 » \ DZCL|K2
O & )

o R R2
~ < K >
wad  CLK1 //{\ AN //)If
l§ CLK2/ /)I/ ) ARRRY / /}I/
R 11— T
W ]
U <t C* t d : t ’[i t k
ml pcq P setup "skew
¥
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T ( pcq ™ tsetup T tskew)
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Hold Time Constraint with Skew

* |n the worst case, CLK2 is later than CLK1

CL|K1 CI_|K2
Q1( \D2
LY
R1 R2
I I
CLK1 {{{II \\\\ /77P| N _
CLK2///F ™ 7 |leca ™ Led
I I
Q1 SO0 |
D2 SYTXXXRTTITN
t |
ccd | cd

t

skew “hold

SEQUENTIAL LOGIC DESIGN
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Hold Time Constraint with Skew

* |n the worst case, CLK2 is later than CLK1

CL|K1 CI_|K2
Q1( \D2
% )
R1 R2
I I
C'—KMZZ)I/ ARRAY /777I
CLK2///Y T\ A tccq + tcd > thold + tskew
I I
Q1 000 T |lead”
D2 XXX
tccqI tcd

SEQUENTIAL LOGIC DESIGN
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CL|K1 CI_|K2
Q1( \D2
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R1 R2
I I
CLK1 /// )II \\\\ / /) I|
C'-K_ZZZZ/I" AN / //If
Q1 HPOOXX |
D2 SRCCOORX
t |t
ccd | cd

skew

t t
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Hold Time Constraint with Skew

* |n the worst case, CLK2 is later than CLK1

tccq T tcd > thold ™ tskew

ZLca’ > thold T tskew_ tccq
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Violating the Dynamic Discipline

* Asynchronous (for example, user)
. . . . tetun thold
inputs might violate the dynamic = =

discipline K[
S ﬂj CLK Ci
= |

a1 DPMlq o/ 3

I g

§ Q / O

v ——

Q \ | S

D . =

i’?’?'? %

5 g
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Metastability

« Bistable devices: two stable states, and a metastable
state between them

 Flip-flop: two stable states (1 and 0) and one
metastable state

 If flip-flop lands in metastable state, could stay there
for an undetermined amount of time

metastable

stable stable

@, @

SEQUENTIAL LOGIC DESIGN
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Flip-Flop Internals

 Flip-flop has feedback: if O is somewhere between
1 and 0, cross-coupled gates drive output to either

rail (1 or 0) R m. 5

S _Q

« Metastable signal: if it hasn’t resolved to 1 or O

 If flip-flop input changes at random time, probability
that output Q is metastable after waiting some time, #:
P(tres > t) = (TO/Tc) e-t/T

tes . time toresolveto 1 or 0

SEQUENTIAL LOGIC DESIGN

Ty, T : properties of the circuit
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Metastability

e Intuitively:
T,/T,: probability input changes at a bad time (during aperture)
P(tres > t) - (TO/]::) e-t/r

T: time constant for how fast flip-flop moves away from
metastability

P(tres > t) = (TO/TC) e-t/T

 In short, if flip-flop samples metastable imput, if you wait
long enough (?), the output will have resolved to 1 or 0
with high probability.

UENTIAL LOGIC DESIGN

Q

SE
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Synchronizers

Asynchronous inputs are inevitable (user interfaces,
systems with different clocks interacting, etc.)

Synchronizer goal: make the probability of failure (the
output Q still being metastable) low

Synchronizer cannot make the probability of failure 0

onAs |2

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <89>



Synchronizer Internals

« Synchronizer: built with two back-to-back flip-flops
* Suppose D is transitioning when sampled by F1

* Internal signal D2 has (7, - #,,) time to resolve to 1

SEQUENTIAL LOGIC DESIGN

setu
or O Cll_K Cll_K
D D2 Q
F1 F2
T, ,
< >
CLK \ '
| | |
D2 | / |
| metastable \_A\ |
| | I/
| | i
a Y
< >« »
| t ot lt

res setup pcq
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Synchronizer Probability of Failure

For each sample, probability of failure is:

P(failure) = (T,/T,) e (1~ tew'

SEQUENTIAL LOGIC DESIGN

Cll_K CLK
|
D b2 Q
F1 F2
. T, .
< q
CLK | \ |
| : |
2 ) o
| / metastable M |
I | I/
| | i
- orsihe
1:res | 1:setup 1:pcq |
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Synchronizer Mean Time Between Failures

 If asynchronous input changes once per second,
probability of failure per second is P(failure).

 [If mput changes N times per second, probability of failure
per second 1s:

P(failure)/second = (NT/T,) e~ tew)/T

* Synchronizer fails, on average, 1/[ P(failure)/second]
Called mean time between failures, MTBF:

UENTIAL LOGIC DESIGN

MTBF = 1/[P(failure)/second] = (T./NT,) e Leu)/T

Q
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Example Synchronizer

N =10 events per second
« What is the probability of failure? MTBF?

SEQUENTIAL LOGIC DESIGN
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CLK CLK
| |
D b2 Q
F1 F2
e Suppose: 1, =1/500MHz=2ns t© =200ps
Ty =150ps lsetup = 100 ps
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Example Synchronizer

CLK CLK
| |
D2

F1 F2

e Suppose: 1, =1/500MHz=2ns t© =200ps
Ty =150ps lsetup = 100 ps
N =10 events per second
What 1s the probability of failure? MTBF?
P(failure) = (150 ps/2 ns) (1.9 ns)/200 ps
= 5.6 x 10-¢
P(failure)/second = 10 x (5.6 x 109)
= 5.6 x 10~ / second
MTBF = 1/[P(failure)/second] = 5 hours

SEQUENTIAL LOGIC DESIGN
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Parallelism

* Two types of parallelism:
— Spatial parallelism
* duplicate hardware performs multiple tasks at once
— Temporal parallelism
» task 1s broken into multiple stages
* also called pipelining
 for example, an assembly line

SEQUENTIAL LOGIC DESIGN
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Parallelism Definitions

* Token: Group of mnputs processed to produce
group of outputs

» Latency: Time for one token to pass from
start to end

* Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

SEQUENTIAL LOGIC DESIGN
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Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

* 5 minutes to roll cookies
e 15 minutes to bake
What 1s the latency and throughput without parallelism?

SEQUENTIAL LOGIC DESIGN
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Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

5 minutes to roll cookies
e 15 minutes to bake

What 1s the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

UENTIAL LOGIC DESIGN
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Parallelism Example

* What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
* two stages: rolling and baking

* He uses two trays

* While first batch 1s baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN
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Tray 1

Tray 2

Spatial
Parallelism

Tray 3

Tray 4

SEQUENTIAL LOGIC DESIGN

Spatial Parallelism

Latency:
time to
first tray
5 10 15 20 25 30 35 40 45 50
] ] ] ] ] ] ] ] ] ] .
Time
Roll
Alyssa 1
Legend

Latency =?
Throughput =?
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Spatial Parallelism

Latency:
time to
first tray
0 5 10 15 20 25 30 35 40 45 50
L ] ] ] ] ] ] ] ] ] ] .
Time
Tray 1
£ Roll
<2 Tray2 Alyssa 1
T =
o
Tray 4 Legend

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour

SEQUENTIAL LOGIC DESIGN
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Latency:
time to
first tray

Temporal Parallelism

w g Tray 1
9%
g-% Tray 2
° s
Fa Tray3
\J
Latency =?

Throughput =?

SEQUENTIAL LOGIC DESIGN
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Temporal Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

w g Tray 1
8_% Tray 2
£Es
° s

Fa Tray3

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

SEQUENTIAL LOGIC DESIGN
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