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PREFACE

As in previous editions, the objective of this book is to provide, in a single volume, a thorough

treatment of the principles of communication systems, both analog and digital, at the physical

layer. As with the previous five editions of this book, the sixth edition targets both senior-level

and beginning graduate students in electrical and computer engineering. Although a previous

course on signal and system theory would be useful to students using this book, an overview of

this fundamental background material is included early in the book (Chapter 2). A significant

change in the sixth edition is the addition of a new chapter (Chapter 4) covering the principles of

baseband data transmission. Included in this new chapter are line codes, pulse shaping and

intersymbol interference, zero-forcing equalization, eye diagrams, and basic ideas on symbol

synchronization without the complicating factor of noise. Following overview chapters on

probability and random processes (Chapters 5 and 6), the book turns to the central theme of

characterizing the performance of both analog (Chapter 7) and digital (Chapters 8–11)

communication systems in the presence of noise. Significant additions to the book include

an expanded treatment of phase-locked loops, including steady-state tracking errors of first-

order, second-order, and third-order loops, the derivation and comparative performances of

M-ary digital modulation systems, an expanded treatment of equalization, and the relative bit

error rate performance of BCH, Reed-Solomon, Golay, and convolutional codes. Each chapter

contains a number of worked examples as well as several computer examples, a summary

delineating the important points of the chapter, references, homework problems, and computer

problems.

Enabled by rapid and continuing advances in microelectronics, the field of communica-

tions has seen many innovations since the first edition of this book was published in 1976. The

cellular telephone is a ubiquitous example. Other examples includewireless networks, satellite

communications including commercial telephone, television and radio, digital radio and

television, and GPS systems, to name only a few. While there is always a strong desire to

include a variety of new applications and technologies in a new edition of a book, we continue

to believe that a first course in communications serves the student best if the emphasis is placed

on fundamentals. We feel that application examples and specific technologies, which often

have short lifetimes, are best treated in subsequent courses after students have mastered the

basic theory and analysis techniques. We have, however, been sensitive to new techniques that

are fundamental in nature and have added material as appropriate. As examples, sections on

currently important areas such as spread spectrum techniques, cellular communications, and

orthogonal frequency-division multiplexing are provided. Reactions to previous editions have

shown that emphasizing fundamentals, as opposed to specific technologies, serve the user well

while keeping the length of the book reasonable. This strategy appears to haveworked well for

advanced undergraduates, for new graduate students who may have forgotten some of the
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fundamentals, and for theworking engineerwhomay use the book as a reference orwhomay be

taking a course after-hours.

A feature of the previous edition of Principles of Communications was the inclusion of

several computer examples within each chapter. (MATLAB was chosen for these examples

because of its widespread use in both academic and industrial settings, as well as for

MATLAB�s rich graphics library.) These computer examples, which range from programs

for computing performance curves to simulation programs for certain types of communication

systems and algorithms, allow the student to observe the behavior of more complex systems

without the need for extensive computations. These examples also expose the student to

modern computational tools for analysis and simulation in the context of communication

systems. Even though we have limited the amount of this material in order to ensure that the

character of the book is not changed, the number of computer examples has been increased for

the sixth edition. In addition to the in-chapter computer examples, a number of �computer

exercises� are included at the end of each chapter. The number of these has also been increased

in the sixth edition. These exercises follow the end-of-chapter problems and are designed to

make use of the computer in order to illustrate basic principles and to provide the student with

additional insight. A number of new problems are included at the end of each chapter in

addition to a number of problems that were revised from the previous edition.

The publisher maintains aweb site fromwhich the source code for all in-chapter computer

examples may be downloaded. The URL is www.wiley.com/college/ziemer. We recommend

that, although MATLAB code is included in the text, students download MATLAB code of

interest from the publisher website. The code in the text is subject to printing and other types of

errors and is included to give the student insight into the computational techniques used for the

illustrative examples. In addition, the MATLAB code on the publisher website is periodically

updated as need justifies. This web site also contains complete solutions for the end-of-chapter

problems and computer exercises. (The solutionsmanual is password protected and is intended

only for course instructors.)

In order to compare the sixth edition of this book with the previous edition, we briefly

consider the changes chapter by chapter.

In Chapter 1, the tables have been updated. In particular Table 1.1, which identifies major

developments in communications, includes advances since the last edition of this book was

published. The role of the ITU and the FCC for allocating spectrum has been reworked.

References to turbo codes and to LDPC codes are now included.

Chapter 2, which is essentially a review of signal and system theory, remains basically

unchanged. However, several examples have been changed and two new examples have been

added. The material on complex envelopes has been clarified.

Chapter 3, which is devoted to basic modulation techniques, makes use of complex

envelope notation in the presentation of frequency modulation in order to build upon the ideas

presented in Chapter 2. In addition, Chapter 3 has been expanded to include significantly more

material on phase-locked loops operating in both the acquisition and tracking modes. The

phase-locked loop is a key building block of many communication system components

including frequency and phase demodulators, digital demodulators, and carrier and symbol

synchronizers.

Chapter 4, which is a new chapter for the sixth edition, covers basic digital transmission

techniques including line codes, pulse shaping and filtering, intersymbol interference, equal-

ization, eye diagrams, and basic synchronization techniques. Covering thismaterial early in the

book allows the student to appreciate the differences between analog and digital transmission
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techniques. This material is also presented without considering the complicating effects of

noise.

Chapters 5 and 6, which deal with basic probability theory and randomprocesses, have not

been significantly changed from the previous edition. Some of thematerial has been rearranged

to increase clarity and readability.

Chapter 7 treats the noise performance of various analog modulation schemes and also

contains a brief discussion of pulse-code modulation. The introduction to this chapter has been

expanded to reflect the importance of noise and the sources of noise. This also serves to better

place Appendix A in context. In addition, this material has been reorganized so that it flows

better and is easier for the student to follow.

Binary digital data transmission in the presence of noise is the subject of Chapter 8. A

section on the noise performance ofM-ary PAM systems has been added. The material dealing

with the noise performance of zero-ISI systems has been expanded as well as the material on

equalization. An example has been added which compares various digital transmission

schemes.

Chapter 9 treats more advanced topics in data communication systems including M-ary

systems, synchronization, spread-spectrum systems, multicarrier modulation and OFDM,

satellite links, and cellular radio communications. Derivations are now provided for the error

probability ofM-ary QAM and NCFSK. A figure comparing PSK, DPSK, and QAM has been

added aswell as a figure comparing CFSK andNCFSK. The derivation of the power density for

quadrature modulation schemes has been expanded as well as the material on synchronization.

The treatment of multicarrier modulation has also been expanded and information on 3G

cellular has been added.

Chapter 10, which deals with optimum receivers and signal-space concepts, is little

changed from the previous edition.

Chapter 11 provides the student with a brief introduction to the subjects of information

theory and coding. Our goal at the level of this book is not to provide an in-depth treatment of

information and coding but to give the student an appreciation of how the concepts of

information theory can be used to evaluate the performance of systems and how the concepts

of coding theory can be used to mitigate the degrading effects of noise in communication

systems. To this end we have expanded the computer examples to illustrate the performance of

BCH codes, the Golay code, and convolutional codes in the presence of noise.

We have used this text for various types of courses for a number of years. This book was

originally developed for a two-semester course sequence, with the first course covering basic

backgroundmaterial on linear systems and noiselessmodulation (Chapters 1–4) and the second

covering noise effects on analog and digital modulation systems (Chapters 7–11). With a

previous background by the students in linear systems and probability theory, we know of

several instances where the book has been used for a one-semester course on analog and digital

communication system analysis in noise. While probably challenging for all but the best

students, this nevertheless gives an option that will get students exposed to modulation system

performance in noise in one semester. In short, we feel that it is presumptuous for us to tell

instructors using the bookwhatmaterial to cover and in what order. Suffice it to saywe feel that

there is more than enough material included in the book to satisfy almost any course design at

the senior or beginning graduate levels.

We wish to thank the many persons who have contributed to the development of this

textbook and who have suggested improvements for the sixth edition. We especially thank our

colleagues and students at the University of Colorado at Colorado Springs, the Missouri
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University of Science and Technology, and Virginia Tech for their comments and suggestions.

The help of Dr. William Ebel at St. Louis University is especially acknowledged. We also

express our thanks to the many colleagues who have offered suggestions to us by correspon-

dence or verbally. The industries and agencies that have supported our research deserve special

mention since, by working with them on various projects, we have expanded our knowledge

and insight significantly. These include the National Aeronautics and Space Administration,

the Office of Naval Research, the National Science Foundation, GE Aerospace, Motorola Inc.,

Emerson Electric Company, Battelle Memorial Institute, DARPA, Raytheon, and the LGIC

Corporation. The expert support of Cyndy Graham, who worked through many of the LaTeX-

related problems and who contributed significantly to the development of the solutions manual

is gratefully acknowledged.

We also thank the reviewers of this and all previous editions of this book. The reviewers for

the sixth edition deserve special thanks for their help and guidance. They were:

Larry Milstein, University of California – San Diego

Behnam Kamali, Mercer University

Yao Ma, Iowa State University

Michael Honig, Northwestern University

Emad Ebbini, University of Minnesota

All reviewers, past and present, contributed significantly to this book. They caught many errors

and made many valuable suggestions. The authors accept full responsibility for any remaining

errors or shortcomings.

Finally, our families deserve much more than a simple thanks for the patience and support

that they have given us throughoutmore than thirty years of seemingly endlesswriting projects.

It is to them that this book is dedicated.

Rodger E. Ziemer

William H. Tranter
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CHAPTER1

INTRODUCTION

We are said to live inaneracalledthe intangible economy,drivennotby thephysicalflowofmaterial

goods but rather by the flow of information. If we are thinking about making a major purchase, for

example, chances are we will gather information about the product by an Internet search. Such

information gathering is made feasible by virtually instantaneous access to amyriad of facts about the

product, thereby making our selection of a particular brand more informed. When one considers the

technological developments that make such instantaneous information access possible, two main

ingredients surface: a reliable, fastmeansof communicationandameansof storing the information for

ready access, sometimes referred to as the convergence of communications and computing.

This book is concerned with the theory of systems for the conveyance of information. A system

is a combination of circuits and/or devices that is assembled to accomplish a desired task, such as the

transmission of intelligence from one point to another. Many means for the transmission of

information have been used down through the ages ranging from the use of sunlight reflected

from mirrors by the Romans to our modern era of electrical communications that began with the

invention of the telegraph in the 1800s. It almost goes without saying that we are concerned about

the theory of systems for electrical communications in this book.

A characteristic of electrical communication systems is the presence of uncertainty. This

uncertainty is due in part to the inevitable presence in any system of unwanted signal perturba-

tions, broadly referred to as noise, and in part to the unpredictable nature of information itself.

Systems analysis in the presence of suchuncertainty requires the use of probabilistic techniques.

Noise has been an ever-present problem since the early days of electrical communication,

but it was not until the 1940s that probabilistic systems analysis procedures were used to

analyze and optimize communication systems operating in its presence (Wiener, 1949; Rice

1944, 1945).1 It is also somewhat surprising that the unpredictable nature of information was

not widely recognized until the publication of Claude Shannon�s mathematical theory of

communications (Shannon, 1948) in the late 1940s. Thisworkwas the beginning of the science

of information theory, a topic that will be considered in some detail later.

Major historical facts related to the development of electrical communications are given in

Table 1.1.

1Refer to Historical References in the Bibliography.
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Table 1.1 Major Events and Inventions in the Development of Electrical Communications

Year Event

1791 Alessandro Volta invents the galvanic cell, or battery.

1826 Georg Simon Ohm establishes a law on the voltage–current relationship in resistors.

1838 Samuel F. B. Morse demonstrates the telegraph.

1864 James C. Maxwell predicts electromagnetic radiation.

1876 Alexander Graham Bell patents the telephone.

1887 Heinrich Hertz verifies Maxwell�s theory.
1897 Guglielmo Marconi patents a complete wireless telegraph system.

1904 John Fleming patents the thermionic diode.

1905 Reginald Fessenden transmits speech signals via radio.

1906 Lee De Forest invents the triode amplifier.

1915 The Bell System completes a U.S. transcontinental telephone line.

1918 B. H. Armstrong perfects the superheterodyne radio receiver.

1920 J. R. Carson applies sampling to communications.

1925–1927 First television broadcasts in England and the United States.

1931 Teletypwriter service is initialized.

1933 Edwin Armstrong invents frequency modulation.

1936 Regular television broadcasting begun by the British Broadcasting Corporation.

1937 Alec Reeves conceives pulse-code modulation (PCM).

WWII Radar and microwave systems are developed. Statistical methods are applied to signal

extraction problems.

1944 Computers put into public service (government owned).

1948 The transister is invented by W. Brattain, J. Bardeen, and W. Shockley.

1948 Claude Shannon�s A Mathematical Theory of Communications is published.

1950 Time-division multiplexing is applied to telephoney.

1956 First successful transoceanic telephone cable.

1959 Jack Kilby patents the �Solid Circuit�—precurser to the integrated circuit.

1960 First working laser demonstrated by T. H. Maiman of Hughes Research Labs. (Patent

awarded to G. Gould after a 20 year dispute with Bell Labs.)

1962 First communications satellite, Telstar I, launched.

1966 First successful facsimile (FAX) machine.

1967 U.S. Supreme Court Carterfone decision opens the door for modem development.

1969 Live television coverage of the manned moon exploration (Apollo 11).

1969 First Internet started—ARPANET.

1970 Low-loss optic fiber developed.

1971 Microprocessor invented.

1975 Ethernet patent filed.

1976 Apple I home computer invented.

1977 Live telephone traffic carried by a fiber-optic cable system.

1977 Interplanetary grand tour launched: Jupiter, Saturn, Uranus, and Neptune.

1979 First cellular telephone network started in Japan.

1981 IBM personal computer developed and sold to public.

1981 Hayes Smartmodem marketed (automatic dial-up allowing computer control).

1982 Compact disc (CD) audio based on 16-bit PCM developed.

1983 First 16-bit programmable digital signal processors sold.

1984 Divestiture of AT&T�s local operations into seven Regional Bell Operating Companies.

1985 Desktop publishing programs first sold. Ethernet developed.

1988 First commercially available flash memory (later applied in cellular phones, etc.).
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It is an interesting fact that the first electrical communication system, the telegraph, was

digital—that is, it conveyed information frompoint to point bymeans of a digital code consisting of

words composed of dots and dashes.2 The subsequent invention of the telephone 38 years after the

telegraph,whereinvoicewaves are conveyed by an analog current, swung the pendulum in favor of

this more convenient means of word communication for about 75 years [see Oliver et al. (1948)].

Onemay rightly ask, inviewof this history,why the almost complete domination by digital

formatting in today�s world? There are several reasons among which are

1. Media integrity: A digital format suffers much less deterioration in reproduction than does

an analog record.

2. Media integration:Whether a sound, picture, or naturally digital data such as a word file, all

are treated the same when in digital format.

3. Flexible interaction: The digital domain is much more convenient for supporting anything

from one-on-one to many-to-many interactions.

4. Editing:Whether text, sound, images, or video, all are conveniently and easily edited when

in digital format.

With this brief introduction and history, we now look in more detail at the various

components that make up a typical communication system.

n 1.1 BLOCK DIAGRAM OF A COMMUNICATION SYSTEM

Figure 1.1 shows a commonly usedmodel for a single-link communication system. Although it

suggests a system for communication between two remotely located points, this block diagram

is also applicable to remote sensing systems, such as radar or sonar, in which the system input

and output may be located at the same site. Regardless of the particular application and con-

figuration, all information transmission systems invariably involve three major subsystems—a

transmitter, the channel, and a receiver. In this book we will usually be thinking in terms of

1988 Asymmetric digital subscriber lines (ADSL) developed.

1990s Very small aperture satellites (VSATs) become popular.

1991 Application of echo cancellation results in low-cost 14,400-bps modems.

1993 Invention of turbo coding allows approach to Shannon limit.

mid-1990s Second generation (2G) cellular systems fielded.

1995 Global Positioning System (GPS) reaches full operational capability.

1996 All-digital phone systems result in modems with 56 kbps download speeds.

late Widespread personal and commercial applications of the Internet.

1990s High definition TV becomes mainstream.

2001 Apple iPoD first sold (October); 100 million sold by April 2007.

Fielding of 3G cellular telephone systems begins.WiFi andWiMAXallowwireless access

to the Internet and electronic devices wherever mobility is desired.

2000s Wireless sensor networks, originally conceived for military applications, find civilian

applications such as environment monitoring, healthcare applications, home automa-

tion, and traffic control as well.

2In the actual physical telegraph system, a dotwas conveyed by a short double click by closing and opening of the circuit

with the telegrapher�s key (a switch), while a dash was conveyed by a longer double click by an extended closing of
the circuit by means of the telegrapher�s key.
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systems for transfer of information between remotely located points. It is emphasized,

however, that the techniques of systems analysis developed are not limited to such systems.3

We will now discuss in more detail each functional element shown in Figure 1.1.

Input Transducer The wide variety of possible sources of information results in many

different forms for messages. Regardless of their exact form, however, messages may be

categorized as analog or digital. The formermay bemodeled as functions of a continuous-time

variable (for example, pressure, temperature, speech, music), whereas the latter consist of

discrete symbols (for example, written text). Almost invariably, the message produced by a

source must be converted by a transducer to a form suitable for the particular type of

communication system employed. For example, in electrical communications, speech waves

are converted by amicrophone to voltage variations. Such a convertedmessage is referred to as

the message signal. In this book, therefore, a signal can be interpreted as the variation of a

quantity, often a voltage or current, with time.

Transmitter The purpose of the transmitter is to couple themessage to the channel. Although

it is not uncommon to find the input transducer directly coupled to the transmissionmedium, as,

for example, in some intercom systems, it is often necessary tomodulate a carrier wavewith the

signal from the input transducer. Modulation is the systematic variation of some attribute of

the carrier, such as amplitude, phase, or frequency, in accordancewith a function of themessage

signal. There are several reasons for using a carrier and modulating it. Important ones are

(1) for ease of radiation, (2) to reduce noise and interference, (3) for channel assignment,

(4) for multiplexing or transmission of several messages over a single channel, and (5) to

overcome equipment limitations. Several of these reasons are self-explanatory; others, such as

the second, will become more meaningful later.

Transmitter

Carrier

Channel Receiver
Output

transducer

Output
signal

Received
signal

Transmitted
signal

Message
signal

Input
transducer

Output
message

Input
message

Additive noise, interference,
distortion resulting from band-
limiting and nonlinearities,
switching noise in networks,
electromagnetic discharges
such as lightning, powerline
corona discharge, and so on.

Figure 1.1

The Block Diagram of a Communication System.

3More complex communications systems are the rule rather than the norm: a broadcast system, such as television or

commercial rado, is a one-to-many type of situation which is composed of several sinks receiving the same

information from a single source; a multiple-access communication system is where many users share the same

channel and is typifiedby satellite communications systems; amany-to-many type of communications scenario is the

most complex and is illustrated by examples such as the telephone system and the Internet, both of which allow

communication between any pair out of a multitude of users. For the most part, we consider only the simplest

situation in this book of a single sender to a single receiver, although means for sharing a communication resource

will be dealt with under the topics of multiplexing and multiple access.
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In addition to modulation, other primary functions performed by the transmitter are

filtering, amplification, and coupling themodulated signal to the channel (for example, through

an antenna or other appropriate device).

Channel The channel can havemanydifferent forms; themost familiar, perhaps, is the channel

that exists between the transmitting antenna of a commercial radio station and the receiving

antenna of a radio. In this channel, the transmitted signal propagates through the atmosphere, or

free space, to the receiving antenna. However, it is not uncommon to find the transmitter

hardwired to the receiver, as in most local telephone systems. This channel is vastly different

from the radio example. However, all channels have one thing in common: the signal undergoes

degradation from transmitter to receiver. Although this degradationmay occur at any point of the

communication system block diagram, it is customarily associated with the channel alone. This

degradation often results from noise and other undesired signals or interference but also may

include other distortion effects as well, such as fading signal levels, multiple transmission paths,

and filtering. More about these unwanted perturbations will be presented shortly.

Receiver The receiver�s function is to extract the desiredmessage from the received signal at

the channel output and to convert it to a form suitable for the output transducer. Although

amplification may be one of the first operations performed by the receiver, especially in radio

communications, where the received signal may be extremely weak, the main function of the

receiver is to demodulate the received signal. Often it is desired that the receiver output be a

scaled, possibly delayed, version of the message signal at the modulator input, although in

some cases a more general function of the input message is desired. However, as a result of the

presence of noise and distortion, this operation is less than ideal.Ways of approaching the ideal

case of perfect recovery will be discussed as we proceed.

Output Transducer The output transducer completes the communication system. This

device converts the electric signal at its input into the form desired by the system user. Perhaps

themost common output transducer is a loudspeaker. However, there aremany other examples,

such as tape recorders, personal computers, meters, and cathode ray tubes, to name only a few.

n 1.2 CHANNEL CHARACTERISTICS

1.2.1 Noise Sources

Noise in a communication system can be classified into two broad categories, depending on its

source. Noise generated by components within a communication system, such as resistors,

electron tubes, and solid-state active devices is referred to as internal noise. The second

category, external noise, results from sources outside a communication system, including

atmospheric, man-made, and extraterrestrial sources.

Atmospheric noise results primarily from spurious radio waves generated by the natural

electrical discharges within the atmosphere associated with thunderstorms. It is commonly

referred to as static or spherics. Below about 100MHz, the field strength of such radiowaves is

inversely proportional to frequency. Atmospheric noise is characterized in the time domain by

large-amplitude, short-duration bursts and is one of the prime examples of noise referred to as

impulsive. Because of its inverse dependence on frequency, atmospheric noise affects
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commercial amplitude modulation (AM) broadcast radio, which occupies the frequency range

from540 kHz to 1.6MHz,more than it affects television and frequencymodulation (FM) radio,

which operate in frequency bands above 50 MHz.

Man-made noise sources include high-voltage powerline corona discharge, commutator-

generated noise in electrical motors, automobile and aircraft ignition noise, and switching-gear

noise. Ignition noise and switching noise, like atmospheric noise, are impulsive in character.

Impulse noise is the predominant type of noise in switchedwireline channels, such as telephone

channels. For applications such as voice transmission, impulse noise is only an irritation

factor; however, it can be a serious source of error in applications involving transmission of

digital data.

Yet another important source ofman-made noise is radio-frequency transmitters other than

the one of interest. Noise due to interfering transmitters is commonly referred to as radio-

frequency interference (RFI). Radio-frequency interference is particularly troublesome in

situations in which a receiving antenna is subject to a high-density transmitter environment, as

in mobile communications in a large city.

Extraterrestrial noise sources include our sun and other hot heavenly bodies, such as stars.

Owing to its high temperature (6000�C) and relatively close proximity to the earth, the sun is an

intense, but fortunately localized source of radio energy that extends over a broad frequency

spectrum. Similarly, the stars are sources of wideband radio energy. Although much more

distant and hence less intense than the sun, nevertheless they are collectively an important

source of noise because of their vast numbers. Radio stars such as quasars and pulsars are also

intense sources of radio energy. Considered a signal source by radio astronomers, such stars are

viewed as another noise source by communications engineers. The frequency range of solar

and cosmic noise extends from a few megahertz to a few gigahertz.

Another source of interference in communication systems is multiple transmission paths.

These can result from reflection off buildings, the earth, airplanes, and ships or from refraction

by stratifications in the transmission medium. If the scattering mechanism results in numerous

reflected components, the received multipath signal is noiselike and is termed diffuse. If the

multipath signal component is composed of only one or two strong reflected rays, it is termed

specular. Finally, signal degradation in a communication system can occur because of random

changes in attenuation within the transmission medium. Such signal perturbations are referred

to as fading, although it should be noted that specular multipath also results in fading due to the

constructive and destructive interference of the received multiple signals.

Internal noise results from the randommotion of charge carriers in electronic components.

It can be of three general types: the first, referred to as thermal noise, is caused by the random

motion of free electrons in a conductor or semiconductor excited by thermal agitation; the

second, called shot noise, is caused by the random arrival of discrete charge carriers in such

devices as thermionic tubes or semiconductor junction devices; the third, known as flicker

noise, is produced in semiconductors by a mechanism not well understood and is more severe

the lower the frequency. The first type of noise source, thermal noise, ismodeled analytically in

Appendix A, and examples of system characterization using this model are given there.

1.2.2 Types of Transmission Channels

There aremany types of transmission channels.Wewill discuss the characteristics, advantages,

and disadvantages of three common types: electromagneticwavepropagation channels, guided

electromagnetic wave channels, and optical channels. The characteristics of all three may be
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explained on the basis of electromagnetic wave propagation phenomena. However, the

characteristics and applications of each are different enough to warrant considering them

separately.

Electromagnetic Wave Propagation Channels

The possibility of the propagation of electromagnetic waves was predicted in 1864 by James

Clerk Maxwell (1831–1879), a Scottish mathematician who based his theory on the experi-

mental work ofMichael Faraday. Heinrich Hertz (1857–1894), a German physicist, carried out

experiments between 1886 and 1888 using a rapidly oscillating spark to produce electromag-

neticwaves, therebyexperimentallyprovingMaxwell�spredictions.Therefore,by the latterpart
of the nineteenth century, the physical basis for many modern inventions utilizing electro-

magnetic wave propagation—such as radio, television, and radar—was already established.

The basic physical principle involved is the coupling of electromagnetic energy into a

propagation medium, which can be free space or the atmosphere, by means of a radiation

element referred to as an antenna. Many different propagation modes are possible, depending

on the physical configuration of the antenna and the characteristics of the propagation

medium. The simplest case—which never occurs in practice—is propagation from a point

source in amedium that is infinite in extent. The propagating wave fronts (surfaces of constant

phase) in this case would be concentric spheres. Such a model might be used for the

propagation of electromagnetic energy from a distant spacecraft to earth. Another idealized

model, which approximates the propagation of radio waves from a commercial broadcast

antenna, is that of a conducting line perpendicular to an infinite conducting plane. These and

other idealized cases have been analyzed in books on electromagnetic theory. Our purpose is

not to summarize all the idealized models but to point out basic aspects of propagation

phenomena in practical channels.

Except for the case of propagation between two spacecraft in outer space, the inter-

mediate medium between transmitter and receiver is never well approximated by free space.

Depending on the distance involved and the frequency of the radiated waveform, a terrestrial

communication link may depend on line-of-sight, ground-wave, or ionospheric skip-wave

propagation (see Figure 1.2). Table 1.2 lists frequency bands from 3 kHz to 3� 106 GHz,

along with letter designations for microwave bands used in radar among other applications

(WWII and current). Note that the frequency bands are given in decades; the VHF band has 10

times as much frequency space as the HF band. Table 1.3 shows some bands of particular

interest.4

General spectrum allocations are arrived at by international agreement. The present

system of frequency allocations is administered by the International Telecommunications

Union (ITU), which is responsible for the periodic convening of Administrative Radio

Conferences on a regional or a worldwide basis (WARC before 1995; WRC 1995 and after,

standing for World Radiocommunication Conference).5 The responsibility of the WRC is the

4Bennet Z. Kobb, Spectrum Guide, 3rd ed., New Signals Press, Falls Church, VA, 1996. Bennet Z. Kobb, Wireless

Spectrum Finder, McGraw-Hill, New York, 2001.
5See A. F. Inglis, Electronic Communications Handbook, McGraw-Hill, New York, 1988, Chapter 3. WARC-79,

WARC-84, and WARC-92, all held in Geneva, Switzerland, have been the last three held under the WARC

designation; WRC-95, WRC-97, WRC-2000 (Istanbul), WRC-03, and WRC-07 are those held under the WRC

designation.
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drafting, revision, and adoption of the Radio Regulations which is an instrument for the

international management of the radio spectrum.6

Communication satellite

Earth

Ionosphere

Transionosphere
(LOS)

LOS
Ground wave

Skip wave

Figure 1.2

The various propagation modes for electromagnetic waves.

(LOS stands for line of sight)

Table 1.2 Frequency Bands with Designations

Microwave band

(GHz)

Letter

designation

Frequency band Name Old Current

3–30 kHz Very low frequency (VLF) 0.5–1.0 C

30–300 kHz Low frequency (LF) 1.0–2.0 L D

300–3000 kHz Medium frequency (MF) 2.0–3.0 S E

3–30 MHz High frequency (HF) 3.0–4.0 S F

30–300 MHz Very high frequency (VHF) 4.0–6.0 C G

0.3–3 GHz Ultrahigh frequency (UHF) 6.0–8.0 C H

3–30 GHz Superhigh frequency (SHF) 8.0–10.0 X I

30–300 GHz Extremely high frequency (EHF) 10.0–12.4 X J

43–430 THz Infrared ð0:7�7mmÞ 12.4–18.0 Ku J

430–750 THz Visible light ð0:4�0:7mmÞ 18.0–20.0 K J

750–3000 THz Ultraviolet ð0:1�0:4 mmÞ 20.0–26.5 K K

26.5–40.0 Ka K

Note: kHz ¼ kilohertz ¼ hertz� 103; MHz ¼ megahertz ¼ hertz� 106; GHz ¼ gigahertz ¼ hertz� 109; THz ¼
terahertz ¼ hertz� 1012; mm ¼ micrometers ¼ � 10�6 meters.

6Available on the Radio Regulations website: http://www.itu.int/pub/R-REG-RR-2004/en.

8 Chapter 1 . Introduction

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.itu.int/pub/R-REG-RR-2004/en
http://www.easyengineering.net


In the United States, the Federal Communications Commission (FCC) awards specific

applications within a band as well as licenses for their use. The FCC is directed by five

commissioners appointed to five-year terms by the President and confirmed by the Senate. One

commissioner is appointed as chairperson by the President.7

At lower frequencies, or long wavelengths, propagating radio waves tend to follow the

earth�s surface. At higher frequencies, or short wavelengths, radio waves propagate in straight
lines. Another phenomenon that occurs at lower frequencies is reflection (or refraction) of radio

waves by the ionosphere (a series of layers of charged particles at altitudes between 30 and

250mi above the earth�s surface). Thus, for frequencies below about 100MHz, it is possible to

have skip-wave propagation. At night, when lower ionospheric layers disappear due to

less ionization from the sun (the E, F1, and F2 layers coalesce into one layer—the F layer),

longer skip-wave propagation occurs as a result of reflection from the higher, single reflecting

layer of the ionosphere.

Table 1.3 Selected Frequency Bands for Public Use and Military Communications

Use Frequency

Omega navigation 10–14 kHz

Worldwide submarine

communication

30 kHz

Loran C navigation 100 kHz

Standard (AM) broadcast 540–1600 kHz

ISM band Industrial heaters; welders 40.66–40.7 MHz

Television: Channels 2–4

Channels 5–6

54–72 MHz

76–88 MHz

FM broadcast 88–108 MHz

Television Channels 7–13

Channels 14–83

(In the United States, channels

2–36 and 38–51

will be used for digital

TV broadcast; others will

be reallocated.)

174–216 MHz

420–890 MHz

Cellular mobile radio (plus other

bands in the vacinity of 900 MHz)

Mobile to base station

Base station to mobile

824–849 MHz

869–894 MHz

ISM band Microwave ovens; medical 902–928 MHz

Global Positioning System 1227.6, 1575.4 MHz

Point-to-point microwave 2.11–2.13 GHz

Personal communication services CDMA cellular in North America 1.8–2.0 GHz

Point-to-point microwave Interconnecting base stations 2.16–2.18 GHz

ISM band Microwave ovens; unlicensed

spread spectrum; medical

2.4–2.4835 GHz

23.6–24 GHz

122–123 GHz

244–246 GHz

7http://www.fcc.gov/.
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Above about 300 MHz, propagation of radio waves is by line of sight, because the

ionosphere will not bend radio waves in this frequency region sufficiently to reflect them back

to the earth. At still higher frequencies, say above 1 or 2 GHz, atmospheric gases (mainly

oxygen), water vapor, and precipitation absorb and scatter radio waves. This phenomenon

manifests itself as attenuation of the received signal, with the attenuation generally beingmore

severe the higher the frequency (there are resonance regions for absorption by gases that peak at

certain frequencies). Figure 1.3 shows specific attenuation curves as a function of frequency8

for oxygen, water vapor and rain [recall that 1 decibel (dB) is 10 times the logarithm to the base

Rainfall rate
= 100 mm/h

= 50 mm/h

= 10 mm/h

Oxygen
Water vapor100

10

1

0.1

0.01

0.001

0.0001

0.00001

100

10

1

0.01

0.01

0.001

0.0001

1 10 100
Frequency, GHz

(a)

Frequency, GHz
101

(b)

350 1000

100

mk/
Bd,noitaunett

A
mk/

Bd,noitaunett
A

Figure 1.3

Specific attenuation for atmospheric gases and rain. (a) Specific attenuation due to oxygen and water

vapor (concentration of 7.5 g/m3). (b) Specific attenuation due to rainfall at rates of 10, 50, and 100mm/h.

8Data from Louis J. Ippolito, Jr., Radiowave Propagation in Satellite Communications, Van Nostrand Reinhold, New

York, 1986, Chapters 3 and 4.
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10 of a power ratio]. One must account for the possible attenuation by such atmospheric

constituents in the design of microwave links, which are used, for example, in transcontinental

telephone links and ground-to-satellite communications links.

At about 23 GHz, the first absorption resonance due to water vapor occurs, and at about

62 GHz a second one occurs due to oxygen absorption. These frequencies should be avoided in

transmission of desired signals through the atmosphere, or undue power will be expended (one

might, for example, use 62 GHz as a signal for cross-linking between two satellites, where

atmospheric absorption is no problem, and thereby prevent an enemy on the ground from

listening in). Another absorption frequency for oxygen occurs at 120 GHz, and two other

absorption frequencies for water vapor occur at 180 and 350 GHz.

Communication at millimeter-wave frequencies (that is, at 30 GHz and higher) is

becoming more important now that there is so much congestion at lower frequencies (the

Advanced Technology Satellite, launched in themid-1990s, employs an uplink frequency band

around 20 GHz and a downlink frequency band at about 30 GHz). Communication at

millimeter-wave frequencies is becoming more feasible because of technological advances

in components and systems. Two bands at 30 and 60 GHz, the Local Multipoint Distribution

System (LMDS) andMultichannelMultipoint Distribution System (MMDS) bands, have been

identified for terrestrial transmission of wideband signals. Great care must be taken to design

systems using these bands because of the high atmospheric and rain absorption as well as

blockage of objects such as trees and buildings.

Somewhere above 1 THz (1000 GHz), the propagation of radio waves becomes optical in

character. At awavelength of 10mm (0.00001m), the carbon dioxide laser provides a source of

coherent radiation, and visible light lasers (for example, helium–neon) radiate in the wave-

length region of 1 mm and shorter. Terrestrial communications systems employing such

frequencies experience considerable attenuation on cloudy days, and laser communications

over terrestrial links are restricted to optical fibers for themost part. Analyses have been carried

out for the employment of laser communications cross-links between satellites, but there are as

yet no optical satellite communications links actually flying.

Guided Electromagnetic Wave Channels

Up until the last part of the 20th century, themost extensive example of guided electromagnetic

wave channels is the part of the long-distance telephone network that uses wire lines, but

this has almost exclusively been replaced by optical fiber.9 Communication between persons

a continent apart was first achieved by means of voice-frequency transmission (below

10,000 Hz) over open wire. Quality of transmission was rather poor. By 1952, use of the

types of modulation known as double sideband and single sideband on high-frequency carriers

was established. Communication over predominantly multipair and coaxial cable lines

produced transmission of much better quality. With the completion of the first transatlantic

cable in 1956, intercontinental telephone communication was no longer dependent on high-

frequency radio, and the quality of intercontinental telephone service improved significantly.

Bandwidths on coaxial cable links are a few megahertz. The need for greater bandwidth

initiated the development of millimeter-wavewaveguide transmission systems. However, with

the development of low-loss optical fibers, efforts to improve millimeter-wave systems to

9For a summary of guided transmission systems as applied to telephone systems, see F. T. Andrews, Jr.,

Communications Technology: 25 Years in Retrospect. Part III, Guided Transmission Systems: 1952–1973, IEEE

Communications Society Magazine, 16: 4–10, Jan. 1978.

1.2 Channel Characteristics 11

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


achieve greater bandwidth ceased. The development of optical fibers, in fact, has made the

concept of a wired city—wherein digital data and video can be piped to any residence or

business within a city—nearly a reality.10 Modern coaxial cable systems can carry only 13,000

voice channels per cable, but optical links are capable of carrying several times this number (the

limiting factor being the current driver for the light source).11

Optical Links The use of optical links was, until recently, limited to short and intermediate

distances.With the installation of transpacific and transatlantic optical cables in 1988 and early

1989, this is no longer true.12 The technological breakthroughs that preceeded the widespread

use of light waves for communication were the development of small coherent light sources

(semiconductor lasers), low-loss optical fibers or waveguides, and low-noise detectors.13

A typical fiber-optic communication systemhas a light source,whichmay be either a light-

emitting diode or a semiconductor laser, in which the intensity of the light is varied by the

message source. The output of this modulator is the input to a light-conducting fiber. The

receiver, or light sensor, typically consists of a photodiode. In a photodiode, an average current

flows that is proportional to the optical power of the incident light. However, the exact number

of charge carriers (that is, electrons) is random. The output of the detector is the sum of the

average current which is proportional to the modulation and a noise component. This noise

component differs from the thermal noise generated by the receiver electronics in that it is

�bursty� in character. It is referred to as shot noise, in analogy to the noisemade by shot hitting a

metal plate. Another source of degradation is the dispersion of the optical fiber itself. For

example, pulse-type signals sent into the fiber are observed as �smeared out� at the receiver.
Losses also occur as a result of the connections between cable pieces and between cable and

system components.

Finally, it should be mentioned that optical communications can take place through free

space.14

10The limiting factor here is expense—stringing anything under city streets is a very expensive proposition although

there are many potential customers to bear the expense. Providing access to the home in the country is relatively

easy from the standpoint of stringing cables or optical fiber, but the number of potential users is small so that the cost

per customer goes up. As for cable versus fiber, the �last mile� is in favor of cable again because of expense. Many

solutions have been proposed for this last mile problem, as it is sometimes referred, including special modulation

schemes to give higher data rates over telephone lines (see ADSL in Table 1.1), making cable TVaccess two way

(plenty of bandwidth but attenuation a problem), satellite (in remote locations), optical fiber (for those who want

wideband and are willing and / or able to pay for it), and wireless or radio access (see the earlier comment about

LMDS and MMDS). A universal solution for all situations is most likely not possible. For more on this intriguing

topic, see The IEEE Spectrum, The Networked House, Dec. 1999.
11Wavelength division multiplexing (WDM) is the lastest development in the relatively short existence of optical fiber

delivery of information. The idea here is that different wavelength bands (�colors�), provided by different laser light
sources, are sent in parallel through an optical fiber to vastly increase the bandwidth—several gigahertz of

bandwidth is possible. See, for example, The IEEE Communcations Magazine, Feb. 1999 (issue on �Optical
Networks, Communication Systems, and Devices�), Oct. 1999 (issue on �Broadband Technologies and Trial�s),
Feb. 2000 (issue on �Optical Networks Come of Age�), and June, 2000 (�Intelligent Networks for the New
Millennium�).
12See Inglis, op. cit., Chapter 8.
13For an overview on the use of signal-processingmethods to improve optical communications, see J. H.Winters, R. D.

Gitlin, and S. Kasturia, Reducing the Effects of Transmission Impairments in Digital Fiber Optic Systems, IEEE

Communications Magazine, 31: 68–76, June 1993.
14See IEEE Communications Magazine, 38: 124–139, Aug. 2000 (section on free space laser communications).
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n 1.3 SUMMARY OF SYSTEMS ANALYSIS TECHNIQUES

Having identified and discussed the main subsystems in a communication system and certain

characteristics of transmission media, let us now look at the techniques at our disposal for

systems analysis and design.

1.3.1 Time-Domain and Frequency-Domain Analyses

From circuits courses or prior courses in linear systems analysis, you are well aware that the

electrical engineer lives in the twoworlds, so to speak, of time and frequency. Also, you should

recall that dual time–frequency analysis techniques are especially valuable for linear systems

for which the principle of superposition holds. Although many of the subsystems and

operations encountered in communication systems are for the most part linear, many are not.

Nevertheless, frequency-domain analysis is an extremely valuable tool to the communications

engineer, more so perhaps than to other systems analysts. Since the communications engineer

is concerned primarily with signal bandwidths and signal locations in the frequency

domain, rather than with transient analysis, the essentially steady-state approach of the Fourier

series and transforms is used rather than the Laplace transform. Accordingly, we provide

an overview of the Fourier series, the Fourier integral, and their role in systems analysis in

Chapter 2.

1.3.2 Modulation and Communication Theories

Modulation theory employs time- and frequency-domain analyses to analyze and design

systems for modulation and demodulation of information-bearing signals. To be specific

consider the message signal m(t), which is to be transmitted through a channel using the

method of double-sideband modulation. The modulated carrier for double-sideband modula-

tion is of the form xcðtÞ¼AcmðtÞcosðvctÞ, where vc is the carrier frequency in radians per

second andAc is the carrier amplitude. Not onlymust amodulator be built that canmultiply two

signals, but amplifiers are required to provide the proper power level of the transmitted signal.

The exact design of such amplifiers is not of concern in a systems approach. However, the

frequency content of the modulated carrier, for example, is important to their design and

thereforemust be specified. The dual time–frequency analysis approach is especially helpful in

providing such information.

At the other end of the channel, theremust be a receiver configuration capable of extracting

a replica of m(t) from the modulated signal, and one can again apply time- and frequency-

domain techniques to good effect.

The analysis of the effect of interfering signals on system performance and the subsequent

modifications in design to improve performance in the face of such interfering signals are part

of communication theory, which, in turn, makes use of modulation theory.

This discussion, although mentioning interfering signals, has not explicitly emphasized

the uncertainty aspect of the information-transfer problem. Indeed, much can be done without

applying probabilistic methods. However, as pointed out previously, the application of

probabilistic methods, coupled with optimization procedures, has been one of the key

ingredients of the modern communications era and led to the development during the latter

half of the twentieth century of new techniques and systems totally different in concept from

those which existed before World War II.
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We will now survey several approaches to statistical optimization of communication

systems.

n 1.4 PROBABILISTIC APPROACHES TO SYSTEM OPTIMIZATION

The works of Wiener and Shannon, previously cited, were the beginning of modern statistical

communication theory. Both these investigators applied probabilistic methods to the problem

of extracting information-bearing signals from noisy backgrounds, but they worked from

different standpoints. In this section we briefly examine these two approaches to optimum

system design.

1.4.1 Statistical Signal Detection and Estimation Theory

Wiener considered the problem of optimally filtering signals from noise, where optimum is

used in the sense of minimizing the average squared error between the desired output

and the actual output. The resulting filter structure is referred to as the Wiener filter. This

type of approach is most appropriate for analog communication systems in which the

demodulated output of the receiver is to be a faithful replica of the message input to the

transmitter.

Wiener�s approach is reasonable for analog communications. However, in the early

1940s, (North, 1943) provided a more fruitful approach to the digital communications

problem, in which the receiver must distinguish between a number of discrete signals in

background noise. Actually, North was concerned with radar, which requires only the

detection of the presence or absence of a pulse. Since fidelity of the detected signal at the

receiver is of no consequence in such signal-detection problems, North sought the filter that

would maximize the peak-signal-to-root-mean-square (rms) noise ratio at its output. The

resulting optimum filter is called the matched filter, for reasons that will become apparent in

Chapter 8, where we consider digital data transmission. Later adaptations of the Wiener

and matched-filter ideas to time-varying backgrounds resulted in adaptive filters. We will

consider a subclass of such filters in Chapter 8 when equalization of digital data signals is

discussed.

The signal-extraction approaches of Wiener and North, formalized in the language of

statistics in the early 1950s by several researchers [see Middleton (1960), p. 832, for several

references], were the beginnings of what is today called statistical signal detection and

estimation theory. In considering the design of receivers utilizing all the information available

at the channel output, Woodward and Davies (1952) determined that this so-called ideal

receiver computes the probabilities of the received waveform given the possible transmitted

messages. These computed probabilities are known as a posteriori probabilities. The ideal

receiver then makes the decision that the transmitted message was the one corresponding to

the largest a posteriori probability. Although perhaps somewhat vague at this point, this

maximum a posteriori (MAP) principle, as it is called, is one of the cornerstones of detection

and estimation theory. Another development that had far-reaching consequences in the

development of detection theory was the application of generalized vector space ideas

(Kotel�nikov, 1959; Wozencraft and Jacobs, 1965). We will examine these ideas in more

detail in Chapters 8 through 10.
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1.4.2 Information Theory and Coding

The basic problem that Shannon considered is, �Given a message source, how shall the

messages produced be represented so as tomaximize the information conveyed through a given

channel?� Although Shannon formulated his theory for both discrete and analog sources,

we will think here in terms of discrete systems. Clearly, a basic consideration in this theory is

a measure of information. Once a suitable measure has been defined (and we will do so in

Chapter 11), the next step is to define the information carrying capacity, or simply capacity, of a

channel as the maximum rate at which information can be conveyed through it. The obvious

question that now arises is, �Given a channel, how closely can we approach the capacity of the

channel, andwhat is the quality of the receivedmessage?�Amost surprising, and the singularly

most important, result of Shannon�s theory is that by suitably restructuring the transmitted

signal, we can transmit information through a channel at any rate less than the channel

capacity with arbitrarily small error, despite the presence of noise, provided we have an

arbitrarily long time available for transmission. This is the gist of Shannon�s second theorem.

Limiting our discussion at this point to binary discrete sources, a proof of Shannon�s second
theorem proceeds by selecting code words at random from the set of 2n possible binary

sequences n digits long at the channel input. The probability of error in receiving a given n-digit

sequence, when averaged over all possible code selections, becomes arbitrarily small as

n becomes arbitrarily large. Thus many suitable codes exist, but we are not told how to find

these codes. Indeed, this has been the dilemma of information theory since its inception and is

an area of active research. In recent years, great strides have been made in finding good coding

and decoding techniques that are implementable with a reasonable amount of hardware and

require only a reasonable amount of time to decode. Several basic coding techniques will be

discussed in Chapter 11.15 Perhaps the most astounding development in the recent history of

coding was the invention of turbo coding and subsequent publication by French researchers in

1993.16 Their results, which were subsequently verified by several researchers, showed

performance to within a fraction of a decibel of the Shannon limit.17

1.4.3 Recent Advances

There have been great stridesmade in communications theory and its practical implementation

in the past fewdecades. Some of thesewill be pointed out later in the book. To capture the gist of

these advances at this point would delay the coverage of basic concepts of communications

theory, which is the underlying intent of this book. For those wanting additional reading at

this point, two recent issues of the IEEE Proceedings will provide information in two areas:

15For a good survey on Shannon theory, as it is known, see S. Verdu, Fifty Years of Shannon Theory, IEEE Trans.

Infor. Theory, 44: pp. 2057–2078, Oct., 1998.
16C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit Error-Correcting Coding and Decoding: Turbo

Codes, Proc. 1993 Int. Conf. Commun., Geneva, Switzerland, 1064–1070, May 1993. See also D. J. Costello and

G. D. Forney, Channel Coding: The Road to Channel Capacity, Proc. IEEE, 95: 1150–1177, June 2007 for an

excellent tutorial article on the history of coding theory.
17Actually low-density parity-check codes, invented and published by Robert Gallager in 1963, were the first codes to

allow data transmission rates close to the theoretical limit (Gallager, 1963). However, they were impractical to

implement in 1963, so were forgotten about until the past 10 to 20 years whence practical advances in their theory

and substantially advanced processors have spurred a resurgence of interest in them.
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turbo-information processing (used in decoding turbo codes among other applications)18, and

multiple-input multiple-output (MIMO) communications theory, which is expected to have

far-reaching impact on wireless local- and wide-area network development.19 An appreciation

for the broad sweep of developments from the beginnings ofmodern communications theory to

recent times can be gained from a collection of papers put together in a single volume, spanning

roughly 50 years, that were judged to be worthy of note by experts in the field.20

n 1.5 PREVIEW OF THIS BOOK

From the previous discussion, the importance of probability and noise characterization in

analysis of communication systems should be apparent. Accordingly, after presenting basic

signal, system, and noiseless modulation theory and basic elements of digital data transmission

in Chapters 2, 3, and 4, we briefly discuss probability and noise theory in Chapters 5 and 6.

Following this, we apply these tools to the noise analysis of analog communications schemes in

Chapter 7. In Chapters 8 and 9, we use probabilistic techniques to find optimum receivers when

we consider digital data transmission. Various types of digital modulation schemes are

analyzed in terms of error probability. In Chapter 10, we approach optimum signal detection

and estimation techniques on a generalized basis and use signal-space techniques to provide

insight as to why systems that have been analyzed previously perform as they do. As already

mentioned, information theory and coding are the subjects of Chapter 11. This provides us with

a means of comparing actual communication systems with the ideal. Such comparisons are

then considered in Chapter 11 to provide a basis for selection of systems.

In closing, we must note that large areas of communications technology, such as optical,

computer, and military communications, are not touched on in this book. However, one can

apply the principles developed in this text in those areas as well.

Further Reading

The references for this chapter were chosen to indicate the historical development of modern commu-

nications theory and by and large are not easy reading. They are found in theHistorical References section

of the Bibliography. You also may consult the introductory chapters of the books listed in the Further

Reading sections of Chapters 2 and 3. These books appear in the main portion of the Bibliography.

18Proceedings of the IEEE, 95: (6), June 2007 (special issue on turbo-information processing).
19Proceedings of the IEEE, 95: (7), July 2007 (special issue onmultiuserMIMO-OFDM for next-generationwireless).
20W. H. Tranter, D. P. Taylor, R. E. Ziemer, N. F. Maxemchuk, and J. W. Mark (eds.), 2007. The Best of the Best: Fifty

Years of Communications and Networking Research, John Wiley and IEEE Press.
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CHAPTER2

SIGNAL AND LINEAR SYSTEM ANALYSIS

The study of information transmission systems is inherently concerned with the transmission of

signals through systems. Recall that in Chapter 1 a signal was defined as the time history of some

quantity, usually a voltage or current. A system is a combination of devices and networks

(subsystems) chosen to perform a desired function. Because of the sophistication of modern

communication systems, a great deal of analysis and experimentation with trial subsystems occurs

before actual building of the desired system. Thus the communications engineer�s tools are

mathematical models for signals and systems.

In this chapter, we review techniques useful for modeling and analysis of signals and systems

used in communications engineering.1 Of primary concern will be the dual time–frequency

viewpoint for signal representation, and models for linear, time-invariant, two-port systems. It

is important to always keep in mind that a model is not the signal or the system but a mathematical

idealization of certain characteristics of it that are most relevant to the problem at hand.

With this brief introduction, we now consider signal classifications and various methods for

modeling signals and systems. These include frequency-domain representations for signals via the

complex exponential Fourier series and the Fourier transform, followed by linear system models

and techniques for analyzing the effects of such systems on signals.

n 2.1 SIGNAL MODELS

2.1.1 Deterministic and Random Signals

In this bookwe are concernedwith two broad classes of signals, referred to as deterministic and

random. Deterministic signals can be modeled as completely specified functions of time. For

example, the signal
x tð Þ ¼ A cos v0tð Þ; �¥ < t < ¥ ð2:1Þ

where A andv0 are constants, is a familiar example of a deterministic signal. Another example

of a deterministic signal is the unit rectangular pulse, denoted as P tð Þ and defined as

P tð Þ ¼ 1; jtj � 1

2

0; otherwise

8<: ð2:2Þ

1More complete treatments of these subjects can be found in texts on linear system theory. See the Bibliography for

suggestions.
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Random signals are signals that take on random values at any given time instant and must

bemodeled probabilistically. Theywill be considered inChapters 5 and 6. Figure 2.1 illustrates

the various types of signals just discussed.

2.1.2 Periodic and Aperiodic Signals

The signal defined by (2.1) is an example of a periodic signal. A signal x tð Þ is periodic if and
only if

x tþ T0ð Þ ¼ x tð Þ; �¥ < t < ¥ ð2:3Þ
where the constant T0 is the period. The smallest such number satisfying (2.3) is referred to as

the fundamental period (themodifier fundamental is often excluded). Any signal not satisfying

(2.3) is called aperiodic.

2.1.3 Phasor Signals and Spectra

A useful periodic signal in system analysis is the signal

~x tð Þ ¼ Ae j v0tþ uð Þ; �¥ < t < ¥ ð2:4Þ
which is characterized by three parameters: amplitude A, phase u in radians, and frequencyv0

in radians per second or f0 ¼ v0=2pHz.Wewill refer to ~x tð Þ as a rotating phasor to distinguish
it from the phasor Ae ju, for which e jv0t is implicit. Using Euler�s theorem,2 we may readily

A cos 0t

A

1
2

T0T0 T0

tt

t

– 1
2

– 1

1

0
2

1
2

T0 ––

(a)

(c)

II(t)

(b)

xR(t)

ω

Figure 2.1

Examples of various types of signals. (a) Deterministic (sinusoidal) signal. (b) Unit rectangular pulse

signal. (c) Random signal.

2Recall that Euler�s theorem is e�ju ¼ cos u�j sin u. Also recall that e j2p ¼ 1.

18 Chapter 2 . Signal and Linear System Analysis

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


show that ~x tð Þ ¼ ~x tþ T0ð Þ, where T0 ¼ 2p=v0. Thus ~x tð Þ is a periodic signal with period

2p=v0.

The rotating phasor Ae j v0tþ uð Þ can be related to a real, sinusoidal signal A cos v0tþ uð Þ in
two ways. The first is by taking its real part,

x tð Þ ¼ A cos v0tþ �ð Þ ¼ Re ~x tð Þð Þ
¼ Re ðAe j v0tþ �ð ÞÞ ð2:5Þ

and the second is by taking one-half of the sum of ~x tð Þ and its complex conjugate,

A cos v0tþ �ð Þ ¼ 1

2
~x tð Þ þ 1

2
~x* tð Þ

¼ 1

2
Ae j v0tþ �ð Þ þ 1

2
Ae� j v0tþ �ð Þ

ð2:6Þ

Figure 2.2 illustrates these two procedures graphically.

Equations (2.5) and (2.6), which give alternative representations of the sinusoidal signal

x tð Þ ¼ A cos v0tþ uð Þ in terms of the rotating phasor ~x tð Þ ¼ A exp j v0tþ uð Þ½ �, are time-

domain representations for x tð Þ. Two equivalent representations of x tð Þ in the frequency

domain may be obtained by noting that the rotating phasor signal is completely specified if the

parameters A and u are given for a particular f0. Thus plots of the magnitude and angle of Ae ju

versus frequency give sufficient information to characterize x tð Þ completely. Because ~x tð Þ
exists only at the single frequency f0, for this case of a single sinusoidal signal, the resulting

plots consist of discrete lines and are known as line spectra. The resulting plots are referred to as

the amplitude line spectrum and the phase line spectrum for x tð Þ, and are shown in Figure 2.3
(a). These are frequency-domain representations not only of ~x tð Þ but ofx tð Þ aswell, by virtue of
(2.5). In addition, the plots of Figure 2.3(a) are referred to as the single-sided amplitude and

phase spectra of x tð Þ because they exist only for positive frequencies. For a signal consisting of
a sum of sinusoids of differing frequencies, the single-sided spectrum consists of a multiplicity

of lines, with one line for each sinusoidal component of the sum.

By plotting the amplitude and phase of the complex conjugate phasors of (2.6) versus

frequency, one obtains another frequency-domain representation for x tð Þ, referred to as the

double-sided amplitude and phase spectra. This representation is shown in Figure 2.3(b). Two

Re

Re

Im

Im
1
2 A

A 1
2 A

   0t +

   0t +

   0t +

A cos (   0t +   )

A cos (   0t +   )

(b)(a)

ω θ

ω θ
ω

ω

ω θ

θ

θ

Figure 2.2

Twoways of relating a phasor signal to a sinusoidal signal. (a) Projection of a rotating phasor onto the real

axis. (b) Addition of complex conjugate rotating phasors.
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important observations may be made from Figure 2.3(b). First, the lines at the negative

frequency f ¼ �f0 exist precisely because it is necessary to add complex conjugate (or

oppositely rotating) phasor signals to obtain the real signal A cos v0tþ uð Þ. Second, we note
that the amplitude spectrum has even symmetry and that the phase spectrum has odd symmetry

about f¼ 0. This symmetry is again a consequence of x tð Þ being a real signal. As in the single-
sided case, the two-sided spectrum for a sumof sinusoids consists of amultiplicity of lines, with

one pair of lines for each sinusoidal component.

Figure 2.3(a) and (b) is therefore equivalent spectral representations for the signal

A cos v0tþ uð Þ, consisting of lines at the frequency f ¼ f0 (and its negative). For this simple

case, the use of spectral plots seems to be an unnecessary complication, but wewill find shortly

how the Fourier series and Fourier transform lead to spectral representations for more complex

signals.

EXAMPLE 2.1

(a) To sketch the single-sided and double-sided spectra of

x tð Þ ¼ 2 sin 10pt� 1

6
p

� �
ð2:7Þ

we note that x tð Þ can be written as

x tð Þ ¼ 2 cos 10pt� 1

6
p� 1

2
p

� �
¼ 2 cos 10pt� 2

3
p

� �
¼ Reð2e j 10pt� 2p=3ð ÞÞ ¼ e j 10pt� 2p=3ð Þ þ e� j 10pt� 2p=3ð Þ

ð2:8Þ

Thus the single-sided and double-sided spectra are as shown in Figure 2.3, with A ¼ 2; u ¼ �2
3
p rad, and

f0 ¼ 5 Hz.

(b) If more than one sinusoidal component is present in a signal, its spectra consist of multiple lines. For

example, the signal

y tð Þ ¼ 2 sin 10pt� 1

6
p

� �
þ cos 20ptð Þ ð2:9Þ

AmplitudeAmplitude PhasePhase

A

f
f00

f
f0 –f0

–f0
f0

f
f00

θθ

θ

00

1
2

A

(b)(a)

–

Figure 2.3

Amplitude and phase spectra for the signal A cos v0tþ uð Þ. (a) Single sided. (b) Double sided.
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can be rewritten as

y tð Þ ¼ 2 cos 10pt� 2

3
p

� �
þ cos 20ptð Þ

¼ Re 2e j 10pt� 2p=3ð Þ þ e j20pt
� �

¼ e j 10pt� 2p=3ð Þ þ e� j 10pt� 2p=3ð Þ þ 1

2
e j20pt þ 1

2
e� j20pt

ð2:10Þ

Its single-sided amplitude spectrum consists of a line of amplitude 2 at f ¼5 Hz and a line of amplitude

1 at f ¼ 10 Hz. Its single-sided phase spectrum consists of a single line of amplitude�2p=3 at f ¼ 5 Hz.

To get the double-sided amplitude spectrum, one simply halves the amplitude of the lines in the

single-sided amplitude spectrum and takes the mirror image of this result about f ¼ 0 (amplitude

lines at f ¼ 0 remain the same).Thedouble-sidedphase spectrumisobtainedby taking themirror imageof

the single-sided phase spectrum about f ¼ 0 and inverting the left-hand (negative frequency) portion.

&

2.1.4 Singularity Functions

An important subclass of aperiodic signals is the singularity functions. In this book we will be

concerned with only two: the unit impulse function d tð Þ (or delta function) and the unit step

function u(t). The unit impulse function is defined in terms of the integralð¥
�¥

x tð Þd tð Þdt ¼ x 0ð Þ ð2:11Þ

wherex tð Þ is any test function that is continuous at t ¼ 0.A change of variables and redefinition

of x tð Þ results in the sifting propertyð¥
�¥

x tð Þd t� t0ð Þdt ¼ x t0ð Þ ð2:12Þ

where x tð Þ is continuous at t ¼ t0. We will make considerable use of the sifting property in

systems analysis. By considering the special case x tð Þ ¼ 1 for t1 � t � t2 and x tð Þ ¼ 0 for

t < t1 and t > t2, the two propertiesðt2
t1

d t� t0ð Þdt ¼ 1; t1 < t0 < t2 ð2:13Þ

and

d t� t0ð Þ ¼ 0; t 6¼ t0 ð2:14Þ
are obtained that provide an alternative definition of the unit impulse. Equation (2.14) allows

the integrand in (2.12) to be replaced by x t0ð Þd t� t0ð Þ, and the sifting property then follows

from (2.13).

Other properties of the unit impulse function that can be proved from the definition (2.11)

are the following:

1. d atð Þ ¼ ð1=jajÞd tð Þ, a is a constant.

2. d �tð Þ ¼ d tð Þ.
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3. A generalization of the sifting property,
Ð t2
t1
x tð Þd t�t0ð Þdt ¼

x t0ð Þ; t1 < t0 < t2
0; otherwise

undefined; t0 ¼ t1 or t2

8<:
4. x tð Þd t�t0ð Þ ¼ x t0ð Þd t�t0ð Þ, where x tð Þ is continuous at t ¼ t0.

5.
Ð t2
t1
x tð Þd nð Þ t�t0ð Þ dt ¼ �1ð Þnx nð Þ t0ð Þ; t1 < t0 < t2. [In this equation, the superscript n

denotes the nth derivative; x tð Þ and its first n derivatives are assumed continuous at t ¼ t0.]

6. If f tð Þ ¼ g tð Þ, where f tð Þ ¼ a0d tð Þþ a1d
1ð Þ tð Þþ � � � þ and

nð Þ tð Þ and g tð Þ ¼ b0d tð Þþ
b1d

1ð Þ tð Þþ � � � þ bnd
nð Þ tð Þ, this implies that a0 ¼ b0; a1 ¼ b1; . . . ; an ¼ bn.

It is reassuring to note that (2.13) and (2.14) correspond to the intuitive notion of a unit

impulse function as the limit of a suitably chosen conventional function having unity area in an

infinitesimally small width. An example is the signal

de tð Þ ¼ 1

2e
P
�

t

2e

�
¼

1

2e
; jtj < e

0; otherwise

8<: ð2:15Þ

which is shown in Figure 2.4(a) for e ¼ 1=4 and e ¼ 1=2. It seems apparent that any signal

having unity area and zero width in the limit as some parameter approaches zero is a suitable

representation for d tð Þ, for example, the signal

d1e tð Þ ¼ e
1

pt
sin

pt

e

� �2

ð2:16Þ

which is sketched in Figure 2.4(b).

Other singularity functions may be defined as integrals or derivatives of unit impulses.We

will need only the unit step u(t), defined to be the integral of the unit impulse. Thus

u tð Þ/
ðt
�¥

d lð Þ dl ¼
0; t < 0

1; t > 0

undefined; t ¼ 0

8<: ð2:17Þ

11

22

∋

∋∋

= 1
2

∋= 1
2

1
4

1
4

1
2

∋= 1
4

∋= 1

–1 00

(b)

– 212

→ 0∋→ 0

tt
–1

2
–

(a)

Figure 2.4

Two representations for the unit impulse function in the limit as e! 0. (a) 1=2eð ÞP t=2eð Þ.
(b) e 1=ptð Þsin pt=eð Þ½ �2.
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or

d tð Þ ¼ du tð Þ
dt

ð2:18Þ

For consistency with the unit pulse function definition, we will define u 0ð Þ ¼ 1. You are no

doubt familiar with the usefulness of the unit step for ‘‘turning on’’ signals of doubly infinite

duration and for representing signals of the staircase type. For example, the unit rectangular

pulse function defined by (2.2) can be written in terms of unit steps as

P tð Þ ¼ u tþ 1

2

� �
� u t� 1

2

� �
ð2:19Þ

We are now ready to consider power and energy signal classifications.

n 2.2 SIGNAL CLASSIFICATIONS

Because the particular representation used for a signal depends on the type of signal involved, it

is useful to pause at this point and introduce signal classifications. In this chapter we will be

considering two signal classes, those with finite energy and those with finite power. As a

specific example, suppose e tð Þ is the voltage across a resistance R producing a current i tð Þ. The
instantaneous power per ohm is p tð Þ ¼ e tð Þi tð Þ=R ¼ i2 tð Þ. Integrating over the interval jtj � T ,

the total energy and the average power on a per-ohm basis are obtained as the limits

E ¼ lim
T!¥

ðT
�T

i2 tð Þ dt ð2:20Þ

and

P ¼ lim
T!¥

1

2T

ðT
�T

i2 tð Þ dt ð2:21Þ

respectively.

For an arbitrary signal x tð Þ, which may, in general, be complex, we define total (normal-

ized) energy as

E/ lim
T!¥

ðT
�T
jx tð Þj2 dt ¼

ð¥
�¥
jx tð Þj2 dt ð2:22Þ

and (normalized) power as

P/ lim
T!¥

1

2T

ðT
�T
jx tð Þj2dt ð2:23Þ

Based on the definitions (2.22) and (2.23), we can define two distinct classes of signals:

1. We say x tð Þ is an energy signal if and only if 0 < E < ¥, so that P ¼ 0.

2. We classify x tð Þ as a power signal if and only if 0 < P < ¥, thus implying that E ¼ ¥.3

3Signals that are neither energy nor power signals are easily found. For example, xðtÞ ¼ t�1=4; t 	 t0 > 0; and zero

otherwise.
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EXAMPLE 2.2

As an example of determining the classification of a signal, consider

x1 tð Þ ¼ Ae�atu tð Þ; a > 0 ð2:24Þ

whereA anda are positive constants. Using (2.22), wemay readily verify thatx1 tð Þ is an energy signal since
E ¼ A2=2a by applying (2.22).Lettinga! 0,weobtain the signalx2 tð Þ ¼ Au tð Þ, which has infinite energy.
Applying (2.23), we find that P ¼ 1

2
A2 for Au tð Þ, thus verifying that x2 tð Þ is a power signal.

&

EXAMPLE 2.3

Consider the rotating phasor signal given by (2.4). We may verify that ~x tð Þ is a power signal since

P ¼ lim
T!¥

1

2T

ðT
�T
j~x tð Þj2 dt ¼ lim

T!¥

1

2T

ðT
�T

A2 dt ¼ A2 ð2:25Þ

is finite. &

We note that there is no need to carry out the limiting operation to find P for a periodic

signal, since an average carried out over a single period gives the same result as (2.23); that is,

for a periodic signal xp tð Þ,

P ¼ 1

T0

ðt0 þT0

t0

jxp tð Þj2 dt ð2:26Þ

where T0 is the period and t0 is an arbitrary starting time (chosen for convenience). The proof of

(2.26) is left to the problems.

EXAMPLE 2.4

The sinusoidal signal

xp tð Þ ¼ A cos v0tþ uð Þ ð2:27Þ
has average power

P ¼ 1

T0

ðt0þT0
t0

A2 cos2 v0tþ �ð Þ dt

¼ v0

2p

ðt0þ 2p=v0ð Þ

t0

A2

2
dtþ v0

2p

ðt0þ 2p=v0ð Þ

t0

A2

2
cos 2 v0tþ �ð Þ½ � dt

¼ A2

2

ð2:28Þ

where the identity cos2u ¼ 1
2
þ 1

2
cos 2uð Þ has been used4 and the second integral is zero because the

integration is over two complete periods of the integrand.
&

4See Appendix G.2 for trigonometric identities.
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n 2.3 GENERALIZED FOURIER SERIES

Our discussion of the phasor signal given by (2.4) illustrated the dual time–frequency nature of

such signals. Fourier series and transform representations for signals are the key to generalizing

this dual nature, since they amount to expressing signals as superpositions of complex

exponential functions of the form e jvt.

In anticipation of signal space concepts, to be introduced and applied to communication

systems analysis in Chapters 9 and 10, the discussion in this section is concerned with the

representation of signals as a series of orthogonal functions or, as referred to here, a generalized

Fourier series. Such generalized Fourier series representations allow signals to be represented

as points in a generalized vector space, referred to as signal space, thereby allowing

information transmission to be viewed in a geometrical context. In the following section,

the generalized Fourier series will be specialized to the complex exponential form of the

Fourier series.

To begin our consideration of the generalized Fourier series, we recall fromvector analysis

that any vectorA in a three-dimensional space can be expressed in terms of any three vectors a,

b, and c that do not all lie in the same plane and are not collinear:

A ¼ A1a þ A2b þ A3c ð2:29Þ

where A1;A2; and A3 are appropriately chosen constants. The vectors a, b, and c are said to be

linearly independent, for no one of them can be expressed as a linear combination of the other

two. For example, it is impossible to write a ¼ abþbc, no matter what choice is made for the

constants a and b.
Such a set of linearly independent vectors a, b, and c is said to form a basis set for a three-

dimensional vector space. Such vectors span a three-dimensional vector space in the sense that

any vector A can be expressed as a linear combination of them.

Wemay, in an analogous fashion, consider the problem of representing a time function, or

signal, x tð Þ on a T-s interval t0; t0þ Tð Þ, as a similar expansion. Thus we consider a set of time

functions f1 tð Þ;f2 tð Þ; . . . ;fN tð Þ, which are specified independently of x tð Þ, and seek a series
expansion of the form

xa tð Þ ¼
XN
n¼0

Xnfn tð Þ; t0 � t � t0þ T ð2:30Þ

inwhich theN coefficientsXn are independent of time and the subscript a indicates that (2.30) is

considered an approximation.

We assume that thefn tð Þs in (2.30) are linearly independent; that is, no one of them can be

expressed as a weighted sum of the other N�1. A set of linearly independent fn tð Þ will be
called a basis function set.

We now wish to examine the error in the approximation of x tð Þ by xa tð Þ. As in the case of
ordinary vectors, the expansion (2.30) is easiest to use if the�n tð Þ are orthogonal on the interval
t0; t0 þ Tð Þ. That is,ðt0 þT

t0

fm tð Þf 
n tð Þ dt ¼ cndmn/
cn; n ¼ m

0; n 6¼ m
allm and nð Þ

�
ð2:31Þ
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where if cn ¼ 1 for all n, thefn tð Þs are said to be normalized. A normalized orthogonal set of

functions is called an orthonormal basis set. The asterisk in (2.31) denotes complex

conjugate, since we wish to allow the possibility of complex-valued fn tð Þ. The symbol dmn,

called the Kronecker delta function, is defined as unity if m ¼ n and zero otherwise.The

error in the approximation of x tð Þ by the series of (2.30) will be measured in the integral-

squared sense:

Error ¼ eN ¼
ð
T

jx tð Þ� xa tð Þj2dt ð2:32Þ

where
Ð
T
ð Þdt denotes integration over t from t0 to t0þ T . The integral-squared error (ISE)

is an applicable measure of error only when x tð Þ is an energy signal or a power signal. If x tð Þ
is an energy signal of infinite duration, the limit as T!¥ is taken.We now find the set of

coefficients Xn that minimizes the ISE. Substituting (2.30) into (2.32), expressing the

magnitude squared of the integrand as the integrand times its complex conjugate, and

expanding, we obtain

eN ¼
ð
T

jx tð Þj2dt�
XN
n¼0

X 
n

ð
T

x tð Þf 
n tð ÞdtþXn

ð
T

x 
 tð Þfn tð Þdt
� �

þ
XN
n¼0

cnjXnj2 ð2:33Þ

in which the orthogonality of the fn tð Þ has been used after interchanging the orders of

summation and integration. To find theXn that minimize eN , we add and subtract the quantityXN
n¼0

1

cn

				ð
T

x tð Þf 
n tð Þ dt
				2

which yields, after rearrangement of terms, the following result for eN :

eN ¼
ð
T

jx tð Þj2 dt�
XN
n¼0

1

cn

				ð
T

x tð Þf 
n tð Þ dt
				2þXN

n¼0
cn

				Xn� 1

cn

ð
T

x tð Þf 
n tð Þ dt
				2 ð2:34Þ

The first two terms on the right-hand side of (2.34) are independent of the coefficients Xn.

Since the last sum on the right-hand side is nonnegative, we will minimize eN if we

choose each Xn such that the corresponding term in the sum is zero. Thus, since cn > 0, the

choice of

Xn ¼ 1

cn

ð
T

x tð Þf 
n tð Þ dt ð2:35Þ

for Xn minimizes the ISE. The resulting minimum-error coefficients will be referred to as

the Fourier coefficients.The minimum value for eN, from (2.34), is obviously

eNð Þmin ¼
ð
T

jx tð Þj2 dt�
XN
n¼0

1

cn

				 ðTx tð Þf 
n tð Þ dt
				2

¼
ð
T

jx tð Þj2 dt�
XN
n¼0

cnjXnj2
ð2:36Þ

If we can find an infinite set of orthonormal functions such that

lim
N!¥

eNð Þmin ¼ 0 ð2:37Þ
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for any signal that is integrable square,ð
T

jx tð Þj2 dt < ¥ ð2:38Þ

we say that the fn tð Þ are complete. In the sense that the ISE is zero, we may then write

x tð Þ ¼
X¥
n¼0

Xnfn tð Þ ISE ¼ 0ð Þ ð2:39Þ

although there may be a number of isolated points of discontinuity where actual equality

does not hold. For almost all points in the interval t0; t0þ Tð Þ, Equation (2.39) requires that
x tð Þ be equal to xa tð Þ as N!¥.
Assuming a complete orthogonal set of functions, we obtain from (2.36) the relationð

T

jx tð Þj2 dt ¼
X¥
n¼0

cnjXnj2 ð2:40Þ

This equation is known as Parseval�s theorem.

EXAMPLE 2.5

Consider the set of two orthonormal functions shown in Figure 2.5(a). The signal

x tð Þ ¼ sin ptð Þ; 0 � t � 2

0; otherwise

�
ð2:41Þ

is to be approximated by a two-term generalized Fourier series of the form given by (2.30). The Fourier

coefficients, from (2.35), are given by

X1 ¼
ð2
0

f1 tð Þ sin ptð Þ dt ¼
ð1
0

sin ptð Þ dt ¼ 2

p ð2:42Þ

and

X2 ¼
ð2
0

f2 tð Þ sin ptð Þ dt ¼
ð2
1

sin ptð Þ dt ¼ � 2

p
ð2:43Þ

Thus the generalized two-term Fourier series approximation for this signal is

xa tð Þ ¼ 2

p
f1 tð Þ� 2

p
f2 tð Þ ¼ 2

p
P t� 1

2

� �
�P t� 3

2

� �� �
ð2:44Þ

whereP tð Þ is the unit rectangular pulse defined by (2.1). The signal x tð Þ and the approximation xa tð Þ are
compared in Figure 2.5(b). Figure 2.5(c) emphasizes the signal space interpretation of xa tð Þ by

representing it as the point 2=p;�2=pð Þ in the two-dimensional space spanned by the orthonormal

functions f1 tð Þ and f2 tð Þ. Representation of an arbitrary x tð Þ exactly eN ¼ 0ð Þ would require an infinite
set of properly chosen orthogonal functions (that is, a complete set).

The minimum ISE, from (2.36), is

eNð Þmin ¼
ð2
0

sin2 ptð Þ dt� 2
2

p

� �2

¼ 1� 8

p2
ffi 0:189 ð2:45Þ
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&

n 2.4 FOURIER SERIES

2.4.1 Complex Exponential Fourier Series

Given a signal x tð Þ defined over the interval t0; t0þ T0ð Þ with the definition

v0 ¼ 2pf0 ¼ 2p

T0

we define the complex exponential Fourier series as

x tð Þ ¼
X¥
n¼�¥

Xne
jnv0t; t0 � t < t0þ T0 ð2:46Þ

where

Xn ¼ 1

T0

ðt0 þT0

t0

x tð Þe�jnv0t dt ð2:47Þ

It can be shown to represent the signal x tð Þ exactly in the interval t0; t0þ T0ð Þ, except at a
point of jumpdiscontinuitywhere it converges to the arithmeticmean of the left-hand and right-

hand limits.5 Outside the interval t0; t0þ T0ð Þ, of course, nothing is guaranteed. However, we
note that the right-hand side of (2.46) is periodic with period T0, since it is the sum of periodic

rotating phasors with harmonic frequencies. Thus, if x tð Þ is periodic with period T0, the Fourier

φ1 (t) φ 2 (t)

φ 1 (t)

φ2 (t)

1

1

0 1

1

1

0

2/π

–2/π

212
tt

0 1

(a)

(b)

(c)

2
t

x(t)

xa(t)

xa(t)

2
π

2
π–

Figure 2.5

Approximation of a sinewave pulsewith a generalized Fourier series. (a) Orthonormal functions. (b) Sine

wave and approximation. (c) Signal space representation.

5Dirichlet�s conditions state that sufficient conditions for convergence are thatx tð Þ be defined and bounded on the range
t0; t0þT0ð Þ and have only a finite number of maxima and minima and a finite number of discontinuities on this

range.
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series of (2.46) is an accurate representation for x tð Þ for all t (except at points of discontinuity).
The integration of (2.47) can then be taken over any period.

A useful observation about a complete orthonormal-series expansion of a signal is that the

series is unique. For example, if we somehow find a Fourier expansion for a signal x tð Þ, we
know that no other Fourier expansion for that x tð Þ exists, since e jnv0tf g forms a complete set.

The usefulness of this observation is illustrated with the following example.

EXAMPLE 2.6

Consider the signal

x tð Þ ¼ cos v0tð Þþ sin2 2v0tð Þ ð2:48Þ
where v0 ¼ 2p=T0. Find the complex exponential Fourier series.

S o l u t i o n

We could compute the Fourier coefficients using (2.47), but by using appropriate trigonometric identities

and Euler�s theorem, we obtain

x tð Þ ¼ cos v0tð Þ þ 1

2
� 1

2
cos 4v0tð Þ

¼ 1

2
e jv0t þ 1

2
e� jv0t þ 1

2
� 1

4
e j4v0t� 1

4
e�j4v0t

ð2:49Þ

Invoking uniqueness and equating the second line term by term with
P¥

n¼�¥ Xne
jnv0t, we find that

X0 ¼ 1

2

X1 ¼ 1

2
¼ X�1

X4 ¼ � 1

4
¼ X�4

ð2:50Þ

with all otherXn equal to zero. Thus considerable labor is saved by noting that the Fourier series of a signal

is unique. &

2.4.2 Symmetry Properties of the Fourier Coefficients

Assuming x tð Þ is real, it follows from (2.47) that

X 
n ¼ X�n ð2:51Þ
by taking the complex conjugate inside the integral and noting that the same result is obtained

by replacing n by �n. Writing Xn as

Xn ¼ jXnje j=Xn ð2:52Þ
we obtain

jXnj ¼ jX�nj and =Xn ¼ �=X�n ð2:53Þ
Thus, for real signals, the magnitude of the Fourier coefficients is an even function of n, and the

argument is odd.
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Several symmetry properties can be derived for the Fourier coefficients, depending on the

symmetry ofx tð Þ. For example, suppose x tð Þ is even; that is,x tð Þ ¼ x �tð Þ. Then, using Euler�s
theorem to write the expression for the Fourier coefficients as (choose t0 ¼ �T0=2)

Xn ¼ 1

T0

ðT0=2
�T0=2

x tð Þ cos nv0tð Þdt� j

T0

ðT0=2
�T0=2

x tð Þ sin nv0tð Þdt ð2:54Þ

we see that the second term is zero, since x tð Þ sin nv0tð Þ is an odd function. Thus Xn is purely

real, and furthermore,Xn is an even function of n since cosðnv0tÞ is an even function of n. These
consequences of x tð Þ being even are illustrated by Example 2.6.

On the other hand, ifx tð Þ ¼ �x �tð Þ [that is,x tð Þ is odd], it readily follows thatXn is purely

imaginary, since the first term in (2.54) is zero by virtue of x tð Þ cos nv0tð Þ being odd. In

addition, Xn is an odd function of n, since sin nv0tð Þ is an odd function of n.

Another type of symmetry is (odd ) half-wave symmetry, defined as

x t� 1

2
T0

� �
¼ �x tð Þ ð2:55Þ

where T0 is the period of x tð Þ. For signals with odd half-wave symmetry,

Xn ¼ 0; n ¼ 0;�2;�4; . . . ð2:56Þ

which states that the Fourier series for such a signal consists only of odd-indexed terms. The

proof of this is left to the problems.

2.4.3 Trigonometric Form of the Fourier Series

Using (2.53) and assuming x tð Þ real, we can regroup the complex exponential Fourier series by

pairs of terms of the form

Xne
jnv0tþX�ne�jnv0t ¼ jXnje j nv0tþ __=Xnð Þ þ jXnje�j nv0tþ __=Xnð Þ

¼ 2jXnj cos
�
nv0tþ =Xn

� ð2:57Þ

where the facts that jXnj ¼ jX�nj and =Xn ¼ �=X�n have been used. Hence, (2.46) can be

written in the equivalent trigonometric form:

x tð Þ ¼ X0þ
X¥
n¼1

2jXnj cos
�
nv0tþ =Xn

�
ð2:58Þ

Expanding the cosine in (2.58), we obtain still another equivalent series of the form

x tð Þ ¼ X0þ
X¥
n¼1

An cos nv0tð Þþ
X¥
n¼1

Bn sin nv0tð Þ ð2:59Þ

where

An ¼ 2jXnj cos =Xn

¼ 2

T0

ðt0 þT0

t0

x tð Þ cos nv0tð Þ dt ð2:60Þ
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and

Bn ¼ �2jXnj sin __=Xn

¼ 2

T0

ðt0 þ T0

t0

x tð Þ sin nv0tð Þ dt ð2:61Þ

In either the trigonometric or the exponential forms of the Fourier series, X0 represents the

average or DC component of x tð Þ. The term for n ¼ 1 is called the fundamental, the term for

n ¼ 2 is called the second harmonic, and so on.

2.4.4 Parseval�s Theorem

Using (2.26) for average power of a periodic signal, substituting (2.46) for x tð Þ, and inter-

changing the order of integration and summation, we find Parseval�s theorem to be

P ¼ 1

T0

ð
T0

jx tð Þj2 dt ¼
X¥
n¼�¥

jXnj2 ð2:62Þ

¼ X2
0 þ

X¥
n¼1

2jXnj2 ð2:63Þ

which is a specialization of (2.40). In words, (2.62) simply states that the average power of a

periodic signal x tð Þ is the sum of the powers in the phasor components of its Fourier series, or

(2.63) states that its average power is the sum of the powers in its DC component plus that in its

AC components [from (2.58) the power in each cosine component is its amplitude squared

divided by 2, or 2jXnjð Þ2=2 ¼ 2jXnj2. Note that powers of the Fourier components can be added

because they are orthogonal.

2.4.5 Examples of Fourier Series

Table 2.1 gives Fourier series for several commonly occurring periodic waveforms. The left-

hand column specifies the signal over one period. The definition of periodicity,

x tð Þ ¼ x tþ T0ð Þ

specifies it for all t. The derivation of the Fourier coefficients given in the right-hand column

of Table 2.1 is left to the problems. Note that the full-rectified sine wave actually has the

period 1
2
T0.

For the periodic pulse train, it is convenient to express the coefficients in terms of the sinc

function, defined as

sinc z ¼ sin pzð Þ
pz

ð2:64Þ

The sinc function is an evendamped oscillatory functionwith zero crossings at integer values of

its argument.

2.4 Fourier Series 31

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


EXAMPLE 2.7

Specialize the results for the pulse train (item1) of Table 2.1 to the complex exponential and trigonometric

Fourier series of a square wave with even symmetry and amplitudes zero and A.

S o l u t i o n

The solution proceeds by letting t0 ¼ 0 and t ¼ 1
2
T0 in item 1 of Table 2.1. Thus

Xn ¼ 1

2
A sinc

1

2
n

� �
ð2:65Þ

But

sinc

�
n

2

�
¼ sin np=2ð Þ

np=2

¼

1; n ¼ 0

0; n ¼ even				 2

np

				; n ¼ �1;�5;�9; . . .

�
				 2

np

				; n ¼ �3;�7; . . .

8>>>>>>>>><>>>>>>>>>:

Table 2.1 Fourier Series for Several Periodic Signals

Signal (one period) Coefficients for exponential Fourier series

1. Asymmetrical pulse train; period ¼ T0:

x tð Þ ¼ AP
t�t0
t

� �
; t < T0 Xn ¼ At

T0
sinc nf0tð Þe�j2pnf0t0

x tð Þ ¼ x tþ T0ð Þ; all t n ¼ 0;�1;�2; . . .
2. Half-rectified sine wave; period ¼ T0 ¼ 2p=v0:

x tð Þ ¼ A sin v0tð Þ; 0 � t � T0=2
0; �T0=2 � t � 0

�
Xn ¼

A

p 1�n2ð Þ ; n ¼ 0; � 2; � 4; � � �

0; n ¼ �3; � 5; � � �
� 1

4
jnA; n ¼ �1

8>>>>><>>>>>:x tð Þ ¼ x tþ T0ð Þ all t

3. Full-rectified sine wave; period ¼ T0 ¼ p=v0:

x tð Þ ¼ Aj sin v0tð Þj Xn ¼ 2A

p 1�4n2ð Þ ; n ¼ 0;�1;�2; . . .

4. Triangular wave:

x tð Þ ¼
� 4A

T0
tþA; 0 � t � T0=2

4A

T0
tþA; �T0=2 � t � 0

8>>><>>>: Xn ¼
4A

p2n2
; n odd

0; n even

8<:
x tð Þ ¼ x tþ T0ð Þ; all t
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Thus

x tð Þ ¼ � � � þ A

5p
e�j5v0t� A

3p
e�j3v0tþ A

p
e�jv0t

þ A

2
þ A

p
e jv0t� A

3p
e j3v0tþ A

5p
e j5v0t� � � �

¼ A

2
þ 2A

p

�
cos v0tð Þ� 1

3
cos 3v0tð Þþ 1

5
cos 5v0tð Þ� � � �

� ð2:66Þ

The first equation is the complex exponential form of the Fourier series and the second equation is the

trigonometric form. The DC component of this squarewave is X0 ¼ 1
2
A. Setting this term to zero in the

preceding Fourier series, we have the Fourier series of a squarewave of amplitudes� 1
2
A. Such a squarewave

has half-wave symmetry, and this is precisely the reason that no evenharmonics arepresent in its Fourier series.

&

2.4.6 Line Spectra

ThecomplexexponentialFourierseries(2.46)ofasignalissimplyasummationofphasors.InSection

2.1weshowedhowaphasorcouldbecharacterizedinthefrequencydomainbytwoplots:oneshowing

its amplitude versus frequency and one showing its phase. Similarly, a periodic signal can be

characterized in the frequencydomainbymaking twoplots: one showingamplitudesof the separate

phasor components versus frequency and the other showing their phases versus frequency. The

resultingplotsarecalledthetwo-sidedamplitude6andphasespectra,respectively,ofthesignal.From

(2.53) it follows that for a real signal, the amplitude spectrum is even and the phase spectrum is odd,

which is simply a result of the addition of complex conjugate phasors to get a real sinusoidal signal.

Figure 2.6(a) shows the double-sided spectrum for a half-rectified sine wave as plotted

from the results given in Table 2.1. For n ¼ 2; 4; . . . ;Xn is represented as follows:

Xn ¼ �
				 A

p 1� n2ð Þ
				 ¼ A

p n2� 1ð Þ e
�jp ð2:67Þ

For n ¼ �2;�4; . . . ; it is represented as

Xn ¼ �
				 A

p 1� n2ð Þ
				 ¼ A

p n2�1ð Þ e
jp ð2:68Þ

to ensure that the phase is odd, as it must be (note that e�jp ¼ �1). Thus, putting this together
with X�1 ¼ �jA=4, we get

jXnj ¼

1

4
A; n ¼ �1				 A

p 1� n2ð Þ
				; all even n

8>>><>>>: ð2:69Þ

=Xn ¼

�p; n ¼ 2; 4; . . .

� 1

2
p n ¼ 1

0; n ¼ 0

1

2
p; n ¼ �1

p; n ¼ �2;�4; . . .

8>>>>>>>>>><>>>>>>>>>>:
ð2:70Þ

6Magnitude spectrum would be a more accurate term, although amplitude spectrum is the customary term.
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The single-sided line spectra are obtained by plotting the amplitudes and phase angles of

the terms in the trigonometric Fourier series (2.58) versus nf0. Because the series (2.58) has

only nonnegative frequency terms, the single-sided spectra exist only for nf0 	 0. From (2.58)

it is readily apparent that the single-sided phase spectrum of a periodic signal is identical to its

double-sided phase spectrum for nf0 	 0 and zero for nf0 < 0. The single-sided amplitude

spectrum is obtained from the double-sided amplitude spectrum by doubling the amplitude of

all lines for nf0 > 0. The line at nf0 ¼ 0 stays the same. The single-sided spectra for the half-

rectified sinewave are shown in Figure 2.6(b).
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nf0

A/

A/4

A/3
A/15
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π
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1
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2

–
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Figure 2.6

Line spectra for half-rectified sinewave. (a) Double sided. (b) Single sided.
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As a second example, consider the pulse train

x tð Þ ¼
X¥
n¼�¥

AP
t�nT0� 1

2
t

t

� �
ð2:71Þ

From Table 2.1 with t0 ¼ 1
2
t substituted in item 1, the Fourier coefficients are

Xn ¼ At
T0

sinc nf0tð Þe�jpnf0t ð2:72Þ

The Fourier coefficients can be put in the form jXnjexp j __=Xn

 �

, where

jXnj ¼ At

T0
j sinc nf0tð Þj ð2:73Þ

and

=Xn ¼
�pnf0t if sinc nf0tð Þ > 0

�pnf0tþp if nf0 > 0 and sinc nf0tð Þ < 0

�pnf0t�p if nf0 < 0 and sinc nf0tð Þ < 0

8><>: ð2:74Þ

The �p on the right-hand side of (2.74) on the second and third lines accounts for

jsinc nf0tð Þj ¼ �sinc nf0tð Þ whenever sinc nf0tð Þ < 0. Since the phase spectrum must have

odd symmetry if x tð Þ is real, p is subtracted if nf0 < 0 and added if nf0 > 0. The reverse could

have been done—the choice is arbitrary.With these considerations, the double-sided amplitude

and phase spectra can now be plotted. They are shown in Figure 2.7 for several choices of t and
T0. Note that appropriate multiples of 2p are added or subtracted from the lines in the phase

spectrum (e�j2p ¼ 1).

Comparing Figure 2.7(a) and (b), we note that the zeros of the envelope of the amplitude

spectrum, which occur at multiples of 1=t Hz, move out along the frequency axis as the pulse

0 2 –1τ–2 –1τ –1τ–1τ–

|Xn|

Xn

1
4

A

00

2 –1τ

–2 –1τ

–1τ

–1τ–

T0
–1

T0

A

π

π

τ

–

nf0t

nf0

x (t)

(a)

Figure 2.7

Spectra for a periodic pulse train signal. (a) t ¼ 1
4
T0. (b) t ¼ 1

8
T0; T0 same as in (a). (c) t ¼ 1

8
T0; t same

as in (a).
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width decreases. That is, the time duration of a signal and its spectral width are inversely

proportional, a property that will be shown to be true in general later. Second, comparing Figure

2.7(a) and (c), we note that the separation between lines in the spectra is 1=T0. Thus the density of
the spectral lines with frequency increases as the period of x tð Þ increases.

COMPUTER EXAMPLE 2.1

The MATLAB program given below computes the amplitude and phase spectra for a half-rectified sine

wave. The stem plots produced look exactly the same as those in Figure 2.6(a). Programs for plotting

spectra of other waveforms are left to the computer exercises.

% file c2ce1
% Plot of line spectra for half-rectified sine wave
%
clf
A ¼ 1;
n_max ¼ 11; % maximum harmonic plotted
n ¼ -n_max:1:n_max;
X ¼ zeros(size(n)); % set all lines ¼ 0; fill in nonzero ones
I ¼ find(n ¼¼ 1);
II ¼ find(n ¼¼ -1);
III ¼ find(mod(n, 2) ¼¼ 0);
X(I) ¼ -j*A/4;
X(II) ¼ j*A/4;
X(III) ¼ A./(pi*(1. - n(III).^2));
[arg_X, mag_X] ¼ cart2pol(real(X),imag(X)); % Convert to magnitude and phase
IV ¼ find(n >¼ 2 & mod(n, 2) ¼¼ 0);
arg_X(IV) ¼ arg_X(IV) - 2*pi; % force phase to be odd
subplot(2,1,1), stem(n, mag_X), ylabel(’X_n’)
subplot(2,1,2), stem(n, arg_X), xlabel(’nf_0’), ylabel(’angle(X_n)’)

&
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0 T0T0

A

τ
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–

Figure 2.7

Continued.
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n 2.5 THE FOURIER TRANSFORM

To generalize the Fourier series representation (2.46) to a representation valid for aperiodic

signals, we consider the two basic relationships (2.46) and (2.47). Suppose that x tð Þ is
nonperiodic but is an energy signal, so that it is integrable square in the interval �¥;¥ð Þ.7
In the interval jtj < 1

2
T0, we can represent x tð Þ as the Fourier series

x tð Þ ¼
X¥
n¼�¥

1

T0

ðT0=2
�T0=2

x lð Þe�j2pnf0l dl
" #

e j2pnf0t; jtj < T0

2
ð2:75Þ

where f0 ¼ 1=T0. To represent x tð Þ for all time, we simply let T0!¥ such that nf0 ¼ n=T0
becomes the continuous variable f, 1=T0 becomes the differential df , and the summation

becomes an integral. Thus

x tð Þ ¼
ð¥
�¥

ð¥
�¥

x lð Þe�j2pfl dl
� �

e j2p ft df ð2:76Þ
Defining the inside integral as

X fð Þ ¼
ð¥
�¥

x lð Þe�j2pfl dl ð2:77Þ

we can write (2.76) as

x tð Þ ¼
ð¥
�¥

X fð Þe j2pft df ð2:78Þ
The existence of these integrals is assured, since x tð Þ is an energy signal. We note that

X fð Þ ¼ lim
T0!¥

T0Xn ð2:79Þ

which avoids the problem that jXnj! 0 as T0!¥.
The frequency-domain description of x tð Þ provided by (2.77) is referred to as the Fourier

transform of x tð Þ, written symbolically as X fð Þ ¼ = x tð Þ½ �. Conversion back to the time

domain is achieved via the inverse Fourier transform (2.78), written symbolically as

x tð Þ ¼ =�1 X fð Þ½ �.
Expressing (2.77) and (2.78) in terms of f ¼ v=2p results in easily remembered

symmetrical expressions. Integrating (2.78) with respect to the variable v requires a factor

of 2pð Þ�1.

2.5.1 Amplitude and Phase Spectra

Writing X fð Þ in terms of magnitude and phase as

X fð Þ ¼ jX fð Þje ju fð Þ; u fð Þ ¼ _____=X fð Þ ð2:80Þ
we can show that for real x tð Þ,

jX fð Þj ¼ jX �fð Þj and u fð Þ ¼ �u �fð Þ ð2:81Þ

7This means that x tð Þ should be an energy signal. Dirichlet�s conditions give sufficient conditions for a signal to have a
Fourier transform. These condition are that x tð Þ be (1) single-valued with a finite number of maxima and minima

and a finite number of discontinuities in any finite time interval and (2) absolutely integrable, that is,Ð¥
�¥ jx tð Þj dt<¥. These conditions include all energy signals.
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just as for the Fourier series. This is done by using Euler�s theorem to write

R ¼ ReðX fð ÞÞ ¼
ð¥
�¥

x tð Þ cos 2pftð Þ dt ð2:82Þ
and

I ¼ ImðX fð ÞÞ ¼ �
ð¥
�¥

x tð Þ sin 2pftð Þ dt ð2:83Þ

Thus the real part of X fð Þ is even and the imaginary part is odd if x tð Þ is a real signal. Since
jX fð Þj2 ¼ R2þ I2 and tan u fð Þ ¼ I=R, the symmetry properties (2.81) follow. A plot of jX fð Þj
versus f is referred to as the amplitude spectrum8 of x tð Þ, and a plot of =Xð f Þ ¼ u fð Þ versus f is
known as the phase spectrum.

2.5.2 Symmetry Properties

If x tð Þ ¼ x �tð Þ, that is, if x tð Þ is even, then x tð Þ sin 2pftð Þ is odd in (2.83) and Im X fð Þ ¼ 0.

Furthermore, ReðX fð ÞÞ is an even function of f because cosine is an even function. Thus the

Fourier transform of a real, even function is real and even.

On the other hand, if x tð Þ is odd, x tð Þ cosð2pftÞ is odd in (2.82) and ReðX fð ÞÞ ¼ 0. Thus

the Fourier transform of a real, odd function is imaginary. In addition, ImðX fð ÞÞ is an odd

function of frequency because sinð2pftÞ is an odd function.

EXAMPLE 2.8

Consider the pulse

x tð Þ ¼ AP
�
t�t0
t

�
ð2:84Þ

The Fourier transform is

X fð Þ ¼
ð¥
�¥

AP
�
t� t0

t

�
e j2pft dt

¼ A

ðt0 þ t=2

t0�t=2
e�j2pft dt ¼ At sinc f tð Þe�j2pft0

ð2:85Þ

The amplitude spectrum of x tð Þ is
jX fð Þj ¼ Atjsinc f tð Þj ð2:86Þ

and the phase spectrum is

u fð Þ ¼ �2pt0 f if sinc f tð Þ > 0

�2pt0 f � p if sinc f tð Þ < 0

�
ð2:87Þ

The term�p is used to account for sinc f tð Þ being negative, and if þp is used for f > 0,�p is used for

f < 0, or vice versa, to ensure that u fð Þ is odd. When ju fð Þj exceeds 2p, an appropriate multiple of 2p

may be added or subtracted from u fð Þ. Figure 2.8 shows the amplitude and phase spectra for the signal

(2.84). The similarity to Figure 2.7 is to be noted, especially the inverse relationship between spectral

width and pulse duration.

8Amplitude density spectrum would be more correct, since its dimensions are (amplitude units)(time) = (amplitude

units)/frequency, but we will use the term amplitude spectrum for simplicity.
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&

2.5.3 Energy Spectral Density

The energy of a signal, defined by (2.22), can be expressed in the frequency domain as

follows:

E/
ð¥
�¥
jx tð Þj2 dt

¼
ð¥
�¥

x 
 tð Þ
ð¥
�¥

X fð Þe j2p ft df

� �
dt

ð2:88Þ

wherex tð Þhas beenwritten in terms of its Fourier transform.Reversing the order of integration,

we obtain

E ¼
ð¥
�¥

X fð Þ
ð¥
�¥

x 
 tð Þe j2p ft dt

� �
df

¼
ð¥
�¥

X fð Þ
ð¥
�¥

x tð Þe�j2pft dt
� �


df

¼
ð¥
�¥

X fð ÞX 
 fð Þ df

or

E ¼
ð¥
�¥
jx tð Þj2 dt ¼

ð¥
�¥
jX fð Þj2 df ð2:89Þ

This is referred to as Rayleigh�s energy theorem or Parseval�s theorem for Fourier transforms.

Examining jX fð Þj2 and recalling the definition of X fð Þ given by (2.77), we note that the

former has the units of volts-seconds or, since we are considering power on a per-ohm basis,

watts�seconds=hertz ¼ joules=hertz. Thus we see that jX fð Þj2 has the units of energy density,
and we define the energy spectral density of a signal as

G fð Þ/jX fð Þj2 ð2:90Þ
By integrating G fð Þ over all frequency, we obtain the signal�s total energy.

|X( f )|

ff

Aτ

τ2/τ1/
τ2/τ1/

τ–1/τ–2/ τ–1/τ–2/

π–2

π

θ

2

π

π

–
00

(a)

(b)

( f )

Figure 2.8

Amplitude and phase spectra for a pulse signal. (a) Amplitude spectrum. (b) Phase spectrum

(t0 ¼ 1
2
t is assumed).
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EXAMPLE 2.9

Rayleigh�s energy theorem (Parseval�s theoremfor Fourier transforms) is convenient for finding the energy in

a signal whose square is not easily integrated in the time domain, or vice versa. For example, the signal

x tð Þ ¼ 40 sinc 20tð Þ$X fð Þ ¼ 2P
f

20

� �
ð2:91Þ

has energy density

G fð Þ ¼ jX fð Þj2 ¼ 2P
f

20

� �� �2
¼ 4P

f

20

� �
ð2:92Þ

whereP f=20ð Þ need not be squared because it has unity amplitude. Using Rayleigh�s energy theorem, we

find that the energy in x tð Þ is

E ¼
ð¥
�¥

G fð Þ df ¼
ð10
�10

4df ¼ 80 J ð2:93Þ

This checks with the result that is obtained by integrating x2 tð Þ over all t using the definite integralÐ¥
�¥ sinc2u du ¼ 1.

The energy contained in the frequency interval 0;Wð Þ can be found from the integral

EW ¼
ðW
�W

G fð Þ df ¼ 2

ðW
0

�
2P
�

f

20

��2
df

¼ 8W ; W � 10

80; W > 10

�
ð2:94Þ

which follows because P f=20ð Þ ¼ 0; j f j > 10.

&

2.5.4 Convolution

Wedigress somewhat from our consideration of the Fourier transform to define the convolution

operation and illustrate it by example.

The convolution of two signals, x1 tð Þ and x2 tð Þ, is a new function of time, x tð Þ, written
symbolically in terms of x1 and x2 as

x tð Þ ¼ x1 tð Þ 
 x2 tð Þ ¼
ð¥
�¥

x1 lð Þx2 t� lð Þ dl ð2:95Þ

Note that t is a parameter as far as the integration is concerned. The integrand is formed from x1
and x2 by three operations: (1) time reversal to obtain x2 �lð Þ, (2) time shifting to obtain

x2 t� lð Þ, and (3) multiplication of x1 lð Þ and x2 t� lð Þ to form the integrand. An example

will illustrate the implementation of these operations to form x1 
 x2. Note that the dependence
on time is often suppressed.
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EXAMPLE 2.10

Find the convolution of the two signals

x1 tð Þ ¼ e�atu tð Þ and x2 tð Þ ¼ e�btu tð Þ; a > b > 0 ð2:96Þ
S o l u t i o n

The steps involved in the convolution are illustrated in Figure 2.9 for a ¼ 4 and b ¼ 2. Mathematically,

we can form the integrand by direct substitution:

x tð Þ ¼ x1 tð Þ 
 x2 tð Þ ¼
ð¥
�¥

e�alu lð Þe�b t�lð Þu t�lð Þ dl ð2:97Þ

However,

u lð Þu t�lð Þ ¼
0; l < 0

1; 0 < l < t

0; l > t

8<: ð2:98Þ
Thus,

x tð Þ ¼
0; t < 0ðt
0

e�bte� a�bð Þl dl ¼ 1

a�b e�bt�e�at
 �
; t 	 0

8><>: ð2:99Þ

This result for x tð Þ is also shown in Figure 2.9.

&

2.5.5 Transform Theorems: Proofs and Applications

Several useful theorems9 involving Fourier transforms can be proved. These are useful for

deriving Fourier transform pairs as well as deducing general frequency-domain relationships.

The notation x tð Þ$X fð Þ will be used to denote a Fourier transform pair.

x1(t) x2(t)

x(t)

x2(– λ)

λ

λ

x1(λ) x2(0.4 – λ)

x1(λ) x2(0.4–λ)

111

0

0

0.5

0.5
0.4

1.0 1.5

–0.5 0.50.4 1.00
0.1

1.0
t

t

0 0.5 1.0 –1.0 –0.5 0
t

Area = x(0.4)

Figure 2.9

The operations involved in the convolution of two exponentially decaying signals.

9See Tables G.5 and G.6 in Appendix G for a listing of Fourier transform pairs and theorems.
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Each theorem will be stated along with a proof in most cases. Several examples giving

applications will be given after the statements of all the theorems. In the statements of the

theorems, x tð Þ,x1 tð Þ, and x2 tð Þ denote signals with X fð Þ;X1 fð Þ, and X2 fð Þ denoting their

respective Fourier transforms. Constants are denoted by a, a1; a2; t0, and f0.

Superposition Theorem

a1x1 tð Þþ a2x2 tð Þ$ a1X1 fð Þþ a2X2 fð Þ ð2:100Þ

Proof: By the defining integral for the Fourier transform,

= a1x1 tð Þþ a2x2 tð Þf g ¼
ð¥
�¥

a1x1 tð Þþ a2x2 tð Þ½ �e�j2pft dt

¼ a1

ð¥
�¥

x1 tð Þe�j2pftdtþ a2

ð¥
�¥

x2 tð Þe�j2pft dt

¼ a1X1 fð Þþ a2X2 fð Þ

ð2:101Þ

Time-Delay Theorem

x t�t0ð Þ$X fð Þe�j2pft0 ð2:102Þ
Proof: Using the defining integral for the Fourier transform, we have

= x t�t0ð Þf g ¼
ð¥
�¥

x t� t0ð Þe�j2pft dt

¼
ð¥
�¥

x lð Þe�j2pf lþ t0ð Þ dl

¼ e�j2pft0
ð¥
�¥

x lð Þe�j2pfl dl

¼ X fð Þe�j2pft0

ð2:103Þ

where the substitution l ¼ t� t0 was used in the first integral.

Scale-Change Theorem

x atð Þ$ 1

jajX
f

a

� �
ð2:104Þ

Proof: First, assume that a > 0. Then

= x atð Þf g ¼
ð¥
�¥

x atð Þe�j2p ft dt

¼
ð¥
�¥

x lð Þe�j2p fl=a dl
a
¼ 1

a
X

�
f

a

� ð2:105Þ
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where the substitution l ¼ at has been used. Next, considering a < 0, we write

= x atð Þf g ¼
ð¥
�¥

x �jajtð Þe�j2p ft dt ¼
ð¥
�¥

x lð Þeþ j2p fl=jaj dl
jaj

¼ 1

jajX
�
� f

jaj
�
¼ 1

jajX
�
f

a

� ð2:106Þ

where use has been made of the relation �jaj ¼ a if a < 0.

Duality Theorem

X tð Þ$ x �fð Þ ð2:107Þ
That is, if the Fourier transform of x tð Þ is X fð Þ, then the Fourier transform of X fð Þ with f

replaced by t is the original time-domain signal with t replaced by �f .

Proof: The proof of this theorem follows by virtue of the fact that the only difference

between the Fourier transform integral and the inverse Fourier transform integral is

a minus sign in the exponent of the integrand.

Frequency Translation Theorem

x tð Þe j2p f0t$X f � f0ð Þ ð2:108Þ
Proof: To prove the frequency translation theorem, note thatð¥

�¥
x tð Þej2p f0te�j2p ft dt ¼

ð¥
�¥

x tð Þe�j2p f�f0ð Þt dt ¼ X f � f0ð Þ ð2:109Þ

Modulation Theorem

x tð Þ cos 2pf0tð Þ$ 1

2
X f � f0ð Þþ 1

2
X f þ f0ð Þ ð2:110Þ

Proof: The proof of this theorem follows by writing cos 2p f0tð Þ in exponential form as
1
2
e j2pf0tþ e�j2pf0t

 �

and applying the superposition and frequency translation

theorems.

Differentiation Theorem

dnx tð Þ
dtn
$ j2pfð ÞnX fð Þ ð2:111Þ

Proof: We prove the theorem for n ¼ 1 by using integration by parts on the defining

Fourier transform integral as follows:

=
�
dx

dt

�
¼
ð¥
�¥

dx tð Þ
dt

e�j2p ftdt

¼ x tð Þe�j2p ftj¥�¥þ j2pf

ð¥
�¥

x tð Þe�j2p ft dt

¼ j2pf X fð Þ

ð2:112Þ

where u ¼ e�j2pft and dv ¼ dx=dtð Þ dt have been used in the integration-by-parts

formula, and the first term of the middle equation vanishes at each end point by virtue

of x tð Þ being an energy signal. The proof for values of n > 1 follows by induction.
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Integration Theorem ðt
�¥

x lð Þdl$ j2pfð Þ�1X fð Þþ 1

2
X 0ð Þd fð Þ ð2:113Þ

Proof: If X 0ð Þ ¼ 0 the proof of the integration theorem can be carried out by using

integration by parts as in the case of the differentiation theorem. We obtain

=
ðt
�¥

x lð Þd lð Þ
� �

¼
ðt
�¥

x lð Þd lð Þ
� �

� 1

j2pf
e�j2pft

� �
j¥�¥þ

1

j2pf

ð¥
�¥

x tð Þe�j2pft dt

ð2:114Þ

The first term vanishes if X 0ð Þ ¼ Ð¥�¥ x tð Þ dt ¼ 0, and the second term is just

X fð Þ= j2pfð Þ. For X 0ð Þ 6¼ 0, a limiting argument must be used to account for the

Fourier transform of the nonzero average value of x tð Þ.
Convolution Theoremð¥

�¥
x1 lð Þx2 t�lð Þdl/

ð¥
�¥

x1 t�lð Þx2 lð Þdl$X1 fð ÞX2 fð Þ ð2:115Þ

Proof: To prove the convolution theorem of Fourier transforms, we represent x2 t�lð Þ in
terms of the inverse Fourier transform integral as

x2 t� lð Þ ¼
ð¥
�¥

X2 fð Þe j2p f t�lð Þ df ð2:116Þ

Denoting the convolution operation as x1 tð Þ
x2 tð Þ, we have

x1 tð Þ 
 x2 tð Þ ¼
ð¥
�¥

x1 lð Þ
ð¥
�¥

X2 fð Þe j2p f t�lð Þ df
� �

dl

¼
ð¥
�¥

X2 fð Þ
ð¥
�¥

x1 lð Þe�j2pfl dl
� �

e j2p ft df

ð2:117Þ

where the last step results from reversing the orders of integration. The bracketed

term inside the integral is X1 fð Þ, the Fourier transform of x1 tð Þ. Thus

x1 
 x2 ¼
ð¥
�¥

X1 fð ÞX2 fð Þe j2p ft df ð2:118Þ

which is the inverse Fourier transform of X1 fð ÞX2 fð Þ. Taking the Fourier trans-

form of this result yields the desired transform pair.

Multiplication Theorem

x1 tð Þx2 tð Þ$X1 fð Þ 
 X2 fð Þ ¼
ð¥
�¥

X1 lð ÞX2 f�lð Þ dl ð2:119Þ

Proof: The proof of the multiplication theorem proceeds in a manner analogous to the

proof of the convolution theorem.
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EXAMPLE 2.11

Use the duality theorem to show that

2AW sinc 2Wtð Þ$AP
f

2W

� �
ð2:120Þ

S o l u t i o n

From Example 2.8, we know that

x tð Þ ¼ AP
t

t

� �$At sincð f tÞ ¼ X fð Þ ð2:121Þ
Considering X tð Þ, and using the duality theorem, we obtain

X tð Þ ¼ At sinc ttð Þ$AP � f

t

� �
¼ X �tð Þ ð2:122Þ

where t is a parameter with dimension s�1, which may be somewhat confusing at first sight! By letting

t ¼ 2W and noting that P uð Þ is even, the given relationship follows.

&

EXAMPLE 2.12

Obtain the following Fourier transform pairs:

1. Ad tð Þ$A

2. Ad t�t0ð Þ$Ae�j2p ft0

3. A$Ad fð Þ
4. Ae j2pf0t$Ad f�f0ð Þ
S o l u t i o n

Even though these signals are not energy signals, we can formally derive the Fourier transform of each by

obtaining the Fourier transformof a ‘‘proper’’ energy signal that approaches the given signal in the limit as

some parameter approaches zero or infinity. For example, formally,

= Ad tð Þ½ � ¼ = lim
t! 0

A

t

� �
P

t

t

� �� �
¼ lim

t! 0
A sinc f tð Þ ¼ A ð2:123Þ

We can use a formal procedure such as this to define Fourier transforms for the other three signals as well.

It is easier, however, to use the sifting property of the delta function and the appropriate Fourier transform

theorems. The same results are obtained. For example, we obtain the first transform pair directly by

writing down the Fourier transform integral with x tð Þ ¼ d tð Þ and invoking the sifting property:

= Ad tð Þ½ � ¼ A

ð¥
�¥

d tð Þe�j2p ft dt ¼ A ð2:124Þ
Transform pair 2 follows by application of the time-delay theorem to pair 1.

Transform pair 3 can be obtained by using the inverse-transform relationship or the first transform

pair and the duality theorem. Using the latter, we obtain

X tð Þ ¼ A$Ad �fð Þ ¼ Ad fð Þ ¼ x �fð Þ ð2:125Þ
where the eveness property of the impulse function is used.

Transform pair 4 follows by applying the frequency-translation theorem to pair 3. The Fourier

transform pairs of Example 2.12 will be used often in the discussion of modulation.

&
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EXAMPLE 2.13

Use the differentiation theorem to obtain the Fourier transform of the triangular signal, defined as

L
t

t

� �
/

1�jtj=t; jtj < t
0; otherwise

�
ð2:126Þ

S o l u t i o n

Differentiating L t=tð Þ twice, we obtain, as shown in Figure 2.10,

d2L t=tð Þ
dt2

¼ 1

t
d tþ tð Þ� 2

t
d tð Þþ 1

t
d t�tð Þ ð2:127Þ

Using the differentiation, superposition, and time-shift theorems and the result of Example 2.12, we obtain

=
�
d2L t=tð Þ

dt2

�
¼ ð j2p f Þ2=

�
L
�
t

t

��
¼ 1

t
e j2p f t�2þ e�j 2p f t
 Þ

ð2:128Þ

or, solving for = L t
t


 � �
and simplifying, we get

=
h
L
� t
t

�i
¼ 2cos 2p f tð Þ�2

t j2p fð Þ2 ¼ t
sin2 pf tð Þ
pf tð Þ2 ð2:129Þ

where the identity 1
2
1� cos 2p ftð Þ½ � ¼ sin2 pftð Þ has been used. Summarizing, we have shown that

L
t

t

� �$ t sinc2 f tð Þ ð2:130Þ

where sin p f tð Þ= pf tð Þ has been replaced by sinc f tð Þ.

&

EXAMPLE 2.14

As another example of obtaining Fourier transforms of signals involving impulses, let us consider the

signal

ys tð Þ ¼
X¥
m¼�¥

d t�mTsð Þ ð2:131Þ

It is a periodic waveform referred to as the ideal sampling waveform and consists of a doubly infinite

sequence of impulses spaced by Ts s.

t
τ

ττ

Λ t
τ

τ

Λ
1

− τ
τ

− τ τ−0
(a)

(c)(b)

t

1/ τ1/ τ1/

τ−1/

τ−2/

tt

d
dt

t
τΛd2

dt2

Figure 2.10

Triangular signal and its first two derivatives. (a) Triangular signal. (b) First derivative of the triangular

signal. (c) Second derivative of the triangular signal.
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S o l u t i o n

To obtain the Fourier transform of ys tð Þ, we note that it is periodic and, in a formal sense, therefore can be

represented by a Fourier series. Thus,

ys tð Þ ¼
X¥
m¼�¥

d t�mTsð Þ ¼
X¥
n¼�¥

Yne
jn2pfst; fs ¼ 1

Ts
ð2:132Þ

where

Yn ¼ 1

Ts

ð
Ts

d tð Þe�jn2pfst dt ¼ fs ð2:133Þ

by the sifting property of the impulse function. Therefore,

ys tð Þ ¼ fs
X¥
n¼�¥

e jn2pfst ð2:134Þ
Fourier transforming term by term, we obtain

Ys fð Þ ¼ fs
X¥
n¼�¥

= 1 � e j2pnfst
 � ¼ fs

X¥
n¼�¥

d f�nfsð Þ ð2:135Þ
where we have used the results of Example 2.12. Summarizing, we have shown thatX¥

m¼�¥
d t�mTsð Þ$ fs

X¥
n¼�¥

d f�nfsð Þ ð2:136Þ

The transform pair (2.136) is useful in spectral representations of periodic signals by the Fourier

transform, which will be considered shortly.

A useful expression can be derived from (2.136). Taking the Fourier transformof the left-hand side of

(2.136) yields

=
X¥
m¼�¥

d t�mTsð Þ
" #

¼
ð¥
�¥

X¥
m¼�¥

d t�mTsð Þ
" #

e�j2p ftdt

¼
X¥
m¼�¥

ð¥
�¥

d t�mTsð Þe�j2p ftdt

¼
X¥
m¼�¥

e�j2pmTsf

ð2:137Þ

where we interchanged the orders of integration and summation and used the sifting property of the

impulse function to perform the integration. Replacingm by�m and equating the result to the right-hand

side of (2.136) gives X¥
m¼�¥e

j2pmTsf ¼ fs
X¥
n¼�¥

d f�nfsð Þ ð2:138Þ

This result will be used in Chapter 6.
&

EXAMPLE 2.15

Theconvolution theoremcanbeusedtoobtain theFourier transformof the triangleL t=tð Þdefinedby(2.126).
S o l u t i o n

We proceed by first showing that the convolution of two rectangular pulses is a triangle. The steps in

computing

y tð Þ ¼
ð¥
�¥

P
t�l
t

� �
P

l
t

� �
dl ð2:139Þ

are carried out in Table 2.2. Summarizing the results, we have
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tL
�
t

t

�
¼ P

�
t

t

�

 P

�
t

t

�
¼

0; t < �t
t� jtj; jtj � t
0; t > t

8<: ð2:140Þ

or L
�
t

t

�
¼ 1

t
P
�
t

t

�

 P

�
t

t

�
ð2:141Þ

Using the transform pair

P
�
t

t

�
$ t sinc ft ð2:142Þ

and the convolution theorem of Fourier transforms (2.115), we obtain the transform pair

L
�
t

t

�
$ t sinc2 f t ð2:143Þ

as in Example 2.13 by applying the differentiation theorem.

&

A useful result is the convolution of an impulse d t� t0ð Þwith a signal x tð Þ, where x tð Þ is
assumed continuous at t ¼ t0. Carrying out the operation, we obtain

d t� t0ð Þ 
 x tð Þ ¼
ð¥
�¥

d l� t0ð Þx t� lð Þ dl ¼ x t� t0ð Þ ð2:144Þ

by the sifting property of the delta function. That is, convolution of x tð Þ with an impulse

occurring at time t0 simply shifts x tð Þ to t0.

Table 2.2 Computation of P(t=tt) 
P(t=tt)

1

0

0

0

0

1
2

t

t

t

t

t + τ

1
2

t − τ

τ
1
2

− τ

1
2

τ

1
2

− τ 1
2

t + τ

1
2

τ 1
2

t −

1
2

τ

τ

t –

1
2

τ−

τ

1
2

τ

u

u

u

u

1
2

τt +

−∞ < t < −

τ0 < t < 

τ−  < t < 0

τ  < t < ∞

0

0

+ t

τ − t

to

to

aerAstimiLdnargetnIegnaR
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EXAMPLE 2.16

Consider the Fourier transform of the cosinusoidal pulse

x tð Þ ¼ AP
�
t

t

�
cos v0tð Þ; v0 ¼ 2pf0 ð2:145Þ

Using the transform pair (see Example 2.12, item 4)

e�j2pf0t$ d f � f0ð Þ ð2:146Þ
obtained earlier and Euler�s theorem, we find that

cos 2pf0tð Þ$ 1

2
d f�f0ð Þþ 1

2
d f þ f0ð Þ ð2:147Þ

We have also shown that

AP
�
t

t

�
$At sinc f tð Þ

Therefore, using the multiplication theorem of Fourier transforms (2.118), we obtain

X fð Þ ¼ =
�
AP
�
t

t

�
cos v0tð Þ

�
¼ At sinc f tð Þ½ � 


�
1

2
d f�f0ð Þþ d tþ f0ð Þ½ �

�
¼ 1

2
At sinc f�f0ð Þt½ � þ sinc f þ f0ð Þt½ �f g

ð2:148Þ

where d f�f0ð Þ 
 Z fð Þ ¼ Z f�f0ð Þ for Z fð Þ continuous at f ¼ f0 has been used. Figure 2.11(c) shows

X fð Þ. The same result can be obtained via the modulation theorem.

murtcepSlangiS

00

A
t

t

f

f

f0

–f0 f0

× *

1
2

– τ 1

1

00
2

τ

= =

A
2

τ

τ –1τ –1–

(a)

(b)

Figure 2.11

(a)–(c) Application of the multiplication theorem. (c)–(e) Application of the convolution theorem.

Note: � denotes multiplication; 
 denotes convolution, $ denotes transform pairs.
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&

2.5.6 Fourier Transforms of Periodic Signals

The Fourier transform of a periodic signal, in a strict mathematical sense, does not exist, since

periodic signals are not energy signals. However, using the transform pairs derived in Example

2.12 for a constant and a phasor signal, we could, in a formal sense, write down the Fourier

transform of a periodic signal by Fourier transforming its complex Fourier series term by term.

A somewhat more useful form for the Fourier transform of a periodic signal is obtained by

applying the convolution theorem and the transform pair (2.136) for the ideal sampl-

ing waveform. To obtain it, consider the result of convolving the ideal sampling waveform

with a pulse-type signal p tð Þ to obtain a new signal x tð Þ, where x tð Þ is a periodic power signal.
This is apparent when one carries out the convolution with the aid of (2.144):

x tð Þ ¼
X¥
m¼�¥

d t�mTsð Þ
" #


 p tð Þ ¼
X¥
m¼�¥

d t�mTsð Þ 
 p tð Þ ¼
X¥
m¼�¥

p t�mTsð Þ ð2:149Þ

Applying the convolution theorem and the Fourier transform pair of (2.136), we find that the

Fourier transform of x tð Þ is

X fð Þ ¼ =
X¥
m¼�¥

d t�mTsð Þ
( )

P fð Þ

¼ fs
X¥
n¼�¥

d f�nfsð Þ
" #

P fð Þ ¼ fs
X¥
n¼�¥

d f�nfsð ÞP fð Þ

¼
X¥
n¼�¥

fsP nfsð Þd f�nfsð Þ

ð2:150Þ

t

t

t

f

f

f

×

00

00

00

1
2

– τ 1
2

τ

1
2

– τ 1
2

τ

==
*

–fs
–1

–f0

–f0 f0

f0

fs
–1 –fs fs

–fs
–1 fs

–1

τA  /2

(c)

(d)

(e)

Figure 2.11

Continued.
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where P fð Þ ¼ = p tð Þ½ � and the fact that P fð Þd f�nfsð Þ ¼ P nfsð Þd f�nfsð Þ has been used.

Summarizing, we have obtained the Fourier transform pairX¥
m¼�¥

p t�mTsð Þ$ X¥
n¼�¥

fsP nfsð Þd f�nfsð Þ ð2:151Þ
The usefulness of (2.151) is illustrated with an example.

EXAMPLE 2.17

The Fourier transform of a single cosinusoidal pulse was found in Example 2.16 and is shown in

Figure 2.11(c). The Fourier transform of a periodic cosinusoidal pulse train, which could represent the

output of a radar transmitter, for example, is obtained by writing it as

y tð Þ¼
X¥
n¼�¥

d t�mTsð Þ
" #


 P
�
t

t

�
cos 2pf0tð Þ; f0  1=t

¼
X¥
m¼�¥

P
�
t�mTs

t

�
cos 2pf0 t�mTsð Þ½ �; fs � t�1

ð2:152Þ

This signal is illustrated in Figure 2.11(e). Identifying p tð Þ ¼ P t=tð Þcos 2pf0tð Þ, we get, by the

modulation theorem, that P fð Þ ¼ At=2ð Þ sinc f � f0ð Þtþ sinc f þ f0ð Þt½ �. Applying (2.151), the Fourier

transform of y tð Þ is
Y fð Þ ¼

X¥
n¼�¥

Afst
2

sinc nfs�f0ð Þtþ sinc nfs þ f0ð Þt½ �d f�nfsð Þ ð2:153Þ

The spectrum is illustrated on the right-hand side of Figure 2.11(e). &

2.5.7 Poisson Sum Formula

We can develop the Poisson sum formula by taking the inverse Fourier transform of the right-

hand side of (2.151). When we use the transform pair exp �j2pnfstð Þ$ d f � nfsð Þ (see
Example 2.12), it follows that

=�1
X¥
n¼�¥

fsP nfsð Þd f � fsð Þ
( )

¼ fs
X¥
n¼�¥

P nfsð Þe j2pnfst ð2:154Þ

Equating this to the left-hand side of (2.151), we obtain the Poisson sum formula:X¥
m¼�¥

p t�mTsð Þ ¼ fs
X¥
n¼�¥

P nfsð Þe j2pnfst ð2:155Þ

The Poisson sum formula is useful when one goes from the Fourier transform to sampled

approximations of it. For example, Equation (2.155) says that the sample values P nfsð Þ of
P fð Þ ¼ = p tð Þf gare theFourierseriescoefficientsof theperiodicfunctionTs

P¥
n¼�¥ p t�mTsð Þ.

n 2.6 POWER SPECTRAL DENSITY AND CORRELATION

Recalling the definition of energy spectral density (2.90), we see that it is of use only for energy

signals for which the integral of G fð Þ over all frequencies gives total energy, a finite quantity.
For power signals, it is meaningful to speak in terms of power spectral density. Analogous to
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G fð Þ, we define the power spectral density S fð Þ of a signal x tð Þ as a real, even, nonnegative
function of frequency, which gives total average power per ohm when integrated; that is,

P ¼
ð¥
�¥

S fð Þdf ¼ hx2 tð Þi ð2:156Þ

where hx2 tð Þi ¼ limT!¥ 1=2Tð Þ Ð T�T x2 tð Þ dt denotes the time average of x2 tð Þ. Since S fð Þ is a
function that gives the variation of density of power with frequency, we conclude that it must

consist of a series of impulses for the periodic power signals that we have so far considered.

Later, in Chapter 6, we will consider power spectra of random signals.

EXAMPLE 2.18

Considering the cosinusoidal signal
x tð Þ ¼ A cos 2p f0tþ uð Þ ð2:157Þ

we note that its average power per ohm, 1
2
A2, is concentrated at the single frequency f0 Hz. However, since

the power spectral densitymust be an even function of frequency,we split this power equally between þ f0
and �f0 Hz. Thus the power spectral density of x tð Þ is, from intuition, given by

S fð Þ ¼ 1

4
A2d f � f0ð Þþ 1

4
A2d f þ f0ð Þ ð2:158Þ

Checking this by using (2.156), we see that integration over all frequencies results in the average power

per ohm of 1
2
A2.

&

2.6.1 The Time-Average Autocorrelation Function

To introduce the time-average autocorrelation function, we return to the energy spectral density

of an energy signal (2.90). Without any apparent reason, suppose we take the inverse Fourier

transform of G fð Þ, letting the independent variable be t:

f tð Þ / =�1 G fð Þ½ � ¼ =�1 X fð ÞX 
 fð Þ½ �
¼ =�1 X fð Þ½ � 
 =�1 X 
 fð Þ½ � ð2:159Þ

The last step follows by application of the convolution theorem. Applying the time-reversal

theorem (item 3b in Table G.6 in Appendix G) to write =�1 X 
 fð Þ½ � ¼ x �tð Þ and then the

convolution theorem, we obtain

f tð Þ ¼ x tð Þ 
 x �tð Þ ¼
ð¥
�¥

x lð Þx lþ tð Þ dl

¼ lim
T!¥

ðT
�T

x lð Þx lþ tð Þ dl energy signalð Þ
ð2:160Þ

Equation (2.160) will be referred to as the time-average autocorrelation function for

energy signals. We see that it gives a measure of the similarity, or coherence, between a signal

and a delayed version of the signal. Note that f 0ð Þ ¼ E, the signal energy. Also note the

similarity of the correlation operation to convolution. The major point of (2.159) is that the

autocorrelation function and energy spectral density are Fourier transform pairs. We forgo

further discussion of the time-average autocorrelation function for energy signals in favor of

analogous results for power signals.

52 Chapter 2 . Signal and Linear System Analysis

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


The time-average autocorrelation function R tð Þ of a power signal x tð Þ is defined as the

time average
R tð Þ ¼ hx tð Þx tþ tð Þi

/ lim
T!¥

1

2T

ðT
�T

x tð Þx tþ tð Þ dt power signalð Þ ð2:161Þ

If x tð Þ is periodic with period T0, the integrand of (2.161) is periodic, and the time average can

be taken over a single period:

R tð Þ ¼ 1

T0

ð
T0

x tð Þx tþ tð Þ dt x tð Þ periodic½ �

Just likef tð Þ; R tð Þgives ameasure of the similarity between a power signal at time t and at

time tþ t; it is a function of the delay variable t, since time t is the variable of integration. In

addition to being a measure of the similarity between a signal and its time displacement, we

note that the total average power of the signal is

R 0ð Þ ¼ hx2 tð Þi/
ð¥
�¥

S fð Þdf ð2:162Þ

Thus we suspect that the time-average autocorrelation function and power spectral density of a

power signal are closely related, just as they are for energy signals. This relationship is stated

formally by theWiener–Khinchine theorem, which says that the time-average autocorrelation

function of a signal and its power spectral density are Fourier transform pairs:

S fð Þ ¼ = R tð Þ½ � ¼
ð¥
�¥

R tð Þe�j2p f t dt ð2:163Þ

and

R tð Þ ¼ =�1 S fð Þ½ � ¼
ð¥
�¥

S fð Þe j2p f tdf ð2:164Þ
A formal proof of the Wiener–Khinchine theorem will be given in Chapter 6. We simply

take (2.163) as the definition of power spectral density at this point. We note that (2.162)

follows immediately from (2.164) by setting t ¼ 0.

2.6.2 Properties of R (tt)

The time-average autocorrelation function has several useful properties, which are listed

below:

1. R 0ð Þ ¼ hx2 tð Þi 	 jR tð Þj, for all t; that is, a relative maximum of R tð Þ exists at t ¼ 0.

2. R �tð Þ ¼ hx tð Þx t�tð Þi ¼ R tð Þ; that is, R tð Þ is even.
3. limjtj!¥R tð Þ ¼ hx tð Þi2 if x tð Þ does not contain periodic components.

4. If x tð Þ is periodic in t with period T0, then R tð Þ is periodic in t with period T0.

5. The time-average autocorrelation function of any power signal has a Fourier transform that

is nonnegative.

Property 5 results by virtue of the fact that normalized power is a nonnegative quantity.

These properties will be proved in Chapter 6.

The autocorrelation function and power spectral density are important tools for systems

analysis involving random signals.
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EXAMPLE 2.19

We desire the autocorrelation function and power spectral density of the signal x tð Þ ¼
Re 2þ 3 exp j10ptð Þþ 4j exp j10ptð Þð Þ or x tð Þ ¼ 2þ 3 cos 10ptð Þ�4 sin 10ptð Þ. The first step is to write
the signal as a constant plus a single sinusoid. To do so, we note that

x tð Þ ¼ Re 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42

p
exp j tan�1

4

3

� �� �
exp j 10ptð Þ

� �
¼ 2þ 5 cos 10ptþ tan�1

4

3

� �� �

We may proceed in one of two ways. The first is to find the autocorrelation function of x tð Þ and
Fourier transform it to get the power spectral density. The second is to write down the power spectral

density and inverse Fourier transform it to get the autocorrelation function.

Following the first method, we find the autocorrelation function:

R tð Þ ¼ 1

T0

ð
T0

x tð Þx tþ tð Þ dt

¼ 1

0:2

ð0:2
0

�
2þ 5 cos

�
10ptþ tan�1

�
4

3

����
2þ 5 cos

�
10p

�
tþ t

�
þ tan�1

�
4

3

���
dt

¼ 5

ð0:2
0

�
4þ 10 cos

�
10ptþ tan�1

�
4

3

��
þ 10 cos

�
10p tþ tð Þþ tan�1

�
4

3

��

þ 25 cos

�
10ptþ tan�1

�
4

3

��
cos

�
10p tþ tð Þþ tan�1

�
4

3

���
dt

¼ 5

ð0:2
0

4dtþ 50

ð0:2
0

cos

�
10ptþ tan�1

�
4

3

��
dt

þ 50

ð0:2
0

cos

�
10p tþ tð Þþ tan�1

�
4

3

��
dt

þ 125

2

ð0:2
0

cos 10ptð Þdtþ 125

2

ð0:2
0

cos

�
20ptþ 10ptþ 2 tan�1

�
4

3

��
dt

¼ 5

ð0:2
0

4dtþ 0þ 0þ 125

2

ð0:2
0

cos 10ptð Þdt

þ 125

2

ð0:2
0

cos

�
20ptþ 10ptþ 2 tan�1

�
4

3

��
dt

¼ 4þ 25

2
cos 10ptð Þ ð2:165Þ

where integrals involving cosines of t are zero by virtue of integrating a cosine over an integer number of

periods, and the trigonometric relationship cos x cos y ¼ 1
2
cos xþ yð Þþ 1

2
cos x�yð Þ has been used. The

power spectral density is the Fourier transform of the autocorrelation function, or

S fð Þ ¼ =
�
4þ 25

2
cos 10ptð Þ

�
¼ 4= 1½ � þ 25

2
= cos 10ptð Þ½ �

¼ 4d fð Þþ 25

4
d f�5ð Þþ 25

4
d f þ 5ð Þ

ð2:166Þ
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Note that integration of this over all f gives P ¼ 4þ 25
2
¼ 16:5 W=W, which is the DC power plus the AC

power (the latter is split between 5 and�5 Hz).We could have proceeded bywriting down the power spectral

density first, using power arguments, and inverse Fourier transforming it to get the autocorrelation function.

Note that all properties of the autocorrelation function are satisfied except the third which does not apply.

&

EXAMPLE 2.20

The sequence 1110010 is an example of a pseudo noise orm-sequence; they are important in the implementa-

tion of digital communication systems and will be discussed further in Chapter 9. For now, we use this m-

sequence as another illustration for computing autocorrelation functions and power spectra. Consider Figure

2.12 (a), which shows the waveform equivalent of this m-sequence obtained by replacing each 0 by �1,
multiplying each sequence member by a square pulse function P t�t0ð Þ=Dð Þ, summing, and assuming the

resultingwaveformis repeated forever therebymaking it periodic.Tocompute theautocorrelation function,we

apply

R tð Þ ¼ 1

T0

ð
T0

x tð Þx tþ tð Þ dt

since a periodic repetition of the waveform is assumed. Consider the waveform x tð Þ multiplied by

x tþ nDð Þ [shown inFigure 2.12 (b) for n ¼ 2]. The product is shown in Figure 2.12 (c),where it is seen that

the net area under the product x tð Þx tþ nDð Þ is �D which gives R 2Dð Þ ¼ �D=7D ¼ � 1
7
for this case. In

fact, this answer results for any t equal to a nonzero integer multiple of D. For t ¼ 0, the net area under the

product x tð Þx tþ 0ð Þ is 7D, which gives R 0ð Þ ¼ 7D=7D ¼ 1. These correlation results are shown in Figure

2.12(d) by the open circles where it is noted that they repeat each t ¼ 7D. For a given noninteger delay
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Figure 2.12

Waveforms pertinent to computing the autocorrelation function and power spectrum of an

m-sequence of length 7.
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value, the autocorrelation function is obtained as the linear interpolation of the autocorrelation function

values for the integer delays bracketing the desired delay value. One can see that this is the case by

considering the integral
Ð
T0
x tð Þx tþ tð Þ dt and noting that the area under the productx tð Þx tþ tð Þmust be a

linear function of t due to x tð Þ being composed of square pulses. Thus the autocorrelation function is as

shown in Figure 2.12(d) by the solid line. For one period, it can be expressed as

R tð Þ ¼ 8

7
L

t
D

� �
� 1

7
; jtj � T0

2

The power spectral density is the Fourier transformof the autocorrelation functionwhich canbeobtainedby

applying (2.149). The detailed derivation of it is left to the problems. The result is

S fð Þ ¼ 8

49

X¥
n¼�¥

sinc2
n

7D

� �
d f� n

7D

� �
� 1

7
d fð Þ

and is shown in Figure 2.12(e). Note that near f ¼ 0, S fð Þ ¼ 8
49
� 1

7


 �
d fð Þ ¼ 1

49
d fð Þ, which says that the

DC power is 1
49
¼ 1=72 W. The student should think about why this is the correct result. (Hint:What is the

DC value of x tð Þ and to what power does this correspond?)
&

The autocorrelation function and power spectral density are important tools for systems

analysis involving random signals.

n 2.7 SIGNALS AND LINEAR SYSTEMS

In this section we are concerned with the characterization of systems and their effects on

signals. In system modeling, the actual elements, such as resistors, capacitors, inductors,

springs, and masses, that compose a particular system are usually not of concern. Rather, we

view a system in terms of the operation it performs on an input to produce an output.

Symbolically, for a single-input, single-output system, this is accomplished by writing

y tð Þ ¼ H x tð Þ½ � ð2:167Þ
where H �½ � is the operator that produces the output y tð Þ from the input x tð Þ, as illustrated in

Figure 2.13. We now consider certain classes of systems, the first of which is linear time-

invariant systems.

2.7.1 Definition of a Linear Time-Invariant System

If a system is linear, superposition holds. That is, if x1 tð Þ results in the output y1 tð Þ and x2 tð Þ
results in the output y2 tð Þ, then the output due to a1x1 tð Þþa2x2 tð Þ, where a1 and a2 are

constants, is given by

y tð Þ ¼ H a1x1 tð Þþa2x2 tð Þ½ � ¼ a1H x1 tð Þ½ � þa2H x2 tð Þ½ �
¼ a1y1 tð Þþa2y2 tð Þ

ð2:168Þ

Figure 2.13

Operator representation of a linear system. y(t)x(t)
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If the system is time invariant, or fixed, the delayed input x t� t0ð Þ gives the delayed output

y t� t0ð Þ; that is,
y t� t0ð Þ ¼ H x t� t0ð Þ½ � ð2:169Þ

With these properties explicitly stated, we are now ready to obtain more concrete descriptions

of linear time-invariant (LTI) systems.

2.7.2 Impulse Response and the Superposition Integral

The impulse response h tð Þ of an LTI system is defined to be the response of the system to an

impulse applied at t ¼ 0, that is

h tð Þ/H d tð Þ½ � ð2:170Þ
By the time-invariant property of the system, the response to an impulse applied at any time t0 is

h t� t0ð Þ, and the response to the linear combination of impulses a1d t� t1ð Þþa2d t� t2ð Þ is
a1h t� t1ð Þþa2h t� t2ð Þ by the superposition property and time invariance. Through induc-

tion, we may therefore show that the response to the input

x tð Þ ¼
XN
n¼1

and t� tnð Þ ð2:171Þ

is

y tð Þ ¼
XN
n¼1

anh t� tnð Þ ð2:172Þ

Wewill use (2.172) to obtain the superposition integral, which expresses the response of an

LTI system to an arbitrary input (with suitable restrictions) in terms of the impulse response

of the system. Considering the arbitrary input signal x tð Þ of Figure 2.14(a), we can represent

it as

x tð Þ ¼
ð¥
�¥

x lð Þd t�lð Þ dl ð2:173Þ

by the sifting property of the unit impulse. Approximating the integral of (2.173) as a sum, we

obtain

x tð Þ ffi
XN2

n¼N1

x n Dtð Þd t� nDtð ÞDt; Dt� 1 ð2:174Þ

tN1 tN2tktt1 t2
tt

00 t 2 tktt 2

x(t) x(t)

(b)(a)

Area = x(k t) t

~

Δ Δ Δ Δ Δ Δ Δ Δ

Δ Δ

Figure 2.14

A signal and an approximate representation. (a) Signal. (b) Approximation with a sequence of impulses.
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where t1 ¼ N1Dt is the starting time of the signal and t2 ¼ N2Dt is the ending time. The output,

using (2.172) with an ¼ x nDtð ÞDt and tn ¼ nDt, is

y~ tð Þ ¼
XN2

n¼N1

x n Dtð Þh t� n Dtð Þ Dt ð2:175Þ

where the tilde denotes the output resulting from the approximation to the input given by

(2.174). In the limit asDt approaches dl and n Dt approaches the continuous variable l, the sum
becomes an integral, and we obtain

y tð Þ ¼
ð¥
�¥

x lð Þh t�lð Þ dl ð2:176Þ

where the limits have been changed to�¥ to allow arbitrary starting and ending times for x tð Þ.
Making the substitution s ¼ t� l, we obtain the equivalent result

y tð Þ ¼
ð¥
�¥

x t�sð Þh sð Þ ds ð2:177Þ

Because these equations were obtained by superposition of a number of elementary responses

due to each individual impulse, they are referred to as superposition integrals.A simplification

results if the system under consideration is causal, that is, is a system that does not respond

before an input is applied. For a causal system, h t�lð Þ ¼ 0 for t < l, and the upper limit on

(2.176) can be set equal to t. Furthermore, if x tð Þ ¼ 0 for t < 0, the lower limit becomes zero.

2.7.3 Stability

A fixed, linear system is bounded-input, bounded-output (BIBO) stable if every bounded

input results in a bounded output. It can be shown10 that a system is BIBO stable if and

only if ð¥
�¥
jh tð Þj dt < ¥ ð2:178Þ

2.7.4 Transfer (Frequency-Response) Function

Applying the convolution theoremof Fourier transforms (item8 of TableG.6 inAppendixG) to

either (2.176) or (2.177), we obtain

Y fð Þ ¼ H fð ÞX fð Þ ð2:179Þ
where X fð Þ ¼ = x tð Þf g; Y fð Þ ¼ = y tð Þf g; and

H fð Þ ¼ = h tð Þf g ¼
ð¥
�¥

h tð Þe�j2pft dt ð2:180Þ

or

h tð Þ ¼ =�1 H fð Þf g ¼
ð¥
�¥

H fð Þe j2pft df ð2:181Þ

10See Ziemer et al. (1998), Chapter 2.
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H fð Þ is referred to as the transfer (frequency-response) function of the system. We see that

either h tð Þ or H fð Þ is an equally good characterization of the system. By an inverse Fourier

transform on (2.179), the output becomes

y tð Þ ¼
ð¥
�¥

X fð ÞH fð Þe j2pft df ð2:182Þ

2.7.5 Causality

A system is causal if it does not anticipate the input. In terms of the impulse response, it follows

that for a time-invariant causal system,

h tð Þ ¼ 0; t < 0 ð2:183Þ
When causality is viewed from the standpoint of the frequency-response function of the

system, a celebrated theorem by Wiener and Paley11 states that ifð¥
�¥
jh tð Þj2 dt ¼

ð¥
�¥
jH fð Þj2 df < ¥ ð2:184Þ

with h tð Þ � 0 for t < 0, it is then necessary thatð¥
�¥

jlnjH fð Þjj
1þ f 2

df < ¥ ð2:185Þ

Conversely, if jH fð Þj is square integrable and if the integral in (2.185) is unbounded, then we
cannotmake h tð Þ � 0; t < 0 nomatterwhatwe choose for ____=H fð Þ. Consequences of (2.185) are
that no filter can have jH fð Þj � 0 over a finite band of frequencies (i.e., a filter cannot perfectly

reject any band of frequencies). In fact, the Paley–Wiener criterion restricts the rate at which

jH fð Þj for a linear causal time-invariant system can vanish. For example,

jH fð Þj ¼ e�k1j f j ) jlnjH fð Þjj ¼ k1j f j ð2:186Þ
and

jH fð Þj ¼ e�k2 f
2 ) jlnjH fð Þjj ¼ k2 f

2 ð2:187Þ
where k1 and k2 are positive constants, are not allowable amplitude responses for causal filters

because (2.185) does not give a finite result in either case.

The sufficiency statement of the Paley–Wiener criterion is stated as follows: Given any

square-integrable function jH fð Þj for which (2.185) is satisfied, there exists an ____=H fð Þ such that
H fð Þ ¼ jH fð Þjexp j____=H fð Þh i

is the Fourier transform of h tð Þ for a causal filter.

2.7.6 Symmetry Properties of H(f )

The frequency response function of an LTI systemH fð Þ is, in general, a complex quantity. We

therefore write it in terms of magnitude and argument as

H fð Þ ¼ jH fð Þjexp j_____=H fð Þh i
ð2:188Þ

11See William Siebert, Circuits, Signals, and Systems, McGraw-Hill, New York, 1986, p. 476.
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where jH fð Þj is called the amplitude- (magnitude-) response function and _____=H fð Þ is called the
phase-response function of the LTI system. Also, H fð Þ is the Fourier transform of a real-time

function h tð Þ. Therefore, it follows that
jH fð Þj ¼ jH �fð Þj ð2:189Þ

and

_____=H fð Þ ¼ �_______=H �fð Þ ð2:190Þ
That is, the amplitude response of a system with real-valued impulse response is an even

function of frequency and its phase response is an odd function of frequency.

EXAMPLE 2.21

Consider the lowpass RC filter shown in Figure 2.15. We may find its frequency-response function by a

number of methods. First, we may write down the governing differential equation (integral-differential

equations, in general) as

RC
dy

dt
þ y tð Þ ¼ x tð Þ ð2:191Þ

and Fourier transform it, obtaining

j2p fRCþ 1ð ÞY fð Þ ¼ X fð Þ
or

H fð Þ ¼ Y fð Þ
X fð Þ ¼

1

1þ j f=f3ð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f3ð Þ2

q e�j tan
�1 f=f3ð Þ

ð2:192Þ

where f3 ¼ 1= 2pRCð Þ is the 3-dB frequency, or half-power frequency. Second, we can use Laplace

transform theory with s replaced by j2pf . Third, we can use AC sinusoidal steady-state analysis. The

amplitude and phase responses of this system are illustrated in Figure 2.16(a) and (b), respectively.

Using the Fourier transform pair

ae�atu tð Þ$ a

aþ j2pf
ð2:193Þ

we find the impulse response of the filter to be

h tð Þ ¼ 1

RC
e�t=RCu tð Þ ð2:194Þ

Figure 2.15

An RC lowpass filter.

+ vR(t)

vC (t)i(t)x(t) y(t)
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Finally, we consider the response of the filter to the pulse

x tð Þ ¼ AP
t� 1

2
T

T

� �
ð2:195Þ

Using appropriate Fourier transform pairs, we can readily findY fð Þ, but its inverse Fourier transformation

requires some effort. Thus it appears that the superposition integral is the best approach in this case.

Choosing the form

y tð Þ ¼
ð¥
�¥

h t�sð Þx sð Þ ds ð2:196Þ

we find, by direct substitution in h tð Þ, that

h t�sð Þ ¼ 1

RC
e� t�sð Þ=RCu t�sð Þ ¼

1

RC
e� t�sð Þ=RC; s < t

0; s > t

8<: ð2:197Þ

Since x sð Þ is zero for s < 0 and s > T , we find that

y tð Þ ¼

0; t < 0ðt
0

A

RC
e� t�sð Þ=RC ds; 0 � t � T

ðT
0

A

RC
e� t�sð Þ=RCds; t > T

8>>>>>>><>>>>>>>:
ð2:198Þ

Carrying out the integrations, we obtain

y tð Þ ¼
0; t < 0

A 1�e�t=RC
 �
; 0 < t < T

A e� t�Tð Þ=RC�e�t=RC
 �
; t > T

8<: ð2:199Þ

This result is plotted in Figure 2.17 for several values of T=RC. Also shown are jX fð Þj and jH fð Þj.
Note that T=RC ¼ 2pf3=T

�1 is proportional to the ratio of the 3-dB frequency of the filter to the spectral

width T�1ð Þ of the pulse. When this ratio is large, the spectrum of the input pulse is essentially passed

undistorted by the system, and the output looks like the input. On the other hand, for 2pf3=T
�1 � 1, the

f3

f3
ff

–f3 –f30

.707

1

(a)

(b)

|H( f )| = 1/   1 + ( f /f3)2 H( f ) = – tan–1( f /f3)

1
2

π
1
4

π
1
4

π
1
2

π

–

–

Figure 2.16

Amplitude and phase responses of the lowpass RC filter. (a) Amplitude response. (b) Phase response.
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systemdistorts the input signal spectrum, and y tð Þ looks nothing like the input. These ideaswill be put on a
firmer basis when signal distortion is discussed.

&

2.7.7 Input–Output Relationships for Spectral Densities

Consider a fixed linear two-port system with frequency-response function H fð Þ, input x tð Þ,
and output y tð Þ. If x tð Þ and y tð Þ are energy signals, their energy spectral densities

are Gx fð Þ ¼ jX fð Þj2 and Gy fð Þ ¼ jY fð Þj2, respectively. Since Y fð Þ ¼ H fð ÞX fð Þ, it follows
that

Gy fð Þ ¼ jH fð Þj2Gx fð Þ ð2:200Þ
A similar relationship holds for power signals and spectra:

Sy fð Þ ¼ jH fð Þj2Sx fð Þ ð2:201Þ

This will be proved in Chapter 6.

2.7.8 Response to Periodic Inputs

Consider the steady-state response of a fixed linear system to the complex exponential input

signal Ae j2pf0t. Using the superposition integral, we obtain

Input pulse

T/RC = 10

T/RC = 2

T/RC = 1

T/RC = 0.5

00
tt

2T 2T –1–2T –1 T –1–T –1T

1

11

|X( f )|

|H( f )|

|X( f ||) H( f )|

|H( f )| |X( f )|

(b)(a)

0
t

2T –1–2T –1 T –1–T –1 0
t

2T –1–2T –1 T –1–T –1

(d)(c)

Figure 2.17

(a) Waveforms and (b)–(d) spectra for a lowpass RC filter with pulse input. (a) Input and output signals.

(b) T=RC ¼ 0:5. (c) T=RC ¼ 2. (d) T=RC ¼ 10.
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yss tð Þ ¼
ð¥
�¥

h lð ÞAe j2p f0 t�lð Þdl

¼ Ae j2pf0t

ð¥
�¥

h lð Þe�j2p f0ldl

¼ H f0ð ÞAe j2p f0t

ð2:202Þ

That is, the output is a complex exponential signal of the same frequency but with amplitude

scaled by jH f0ð Þj and phase-shifted by _____=H f0ð Þ relative to the amplitude and phase of the input.

Using superposition, we conclude that the steady-state output due to an arbitrary periodic input

is represented by the complex exponential Fourier series

y tð Þ ¼
X¥
n¼�¥

XnH nf0ð Þe jn2p f0t ð2:203Þ

or

y tð Þ ¼
X¥
n¼�¥

jXnjjH nf0ð Þjexp j n2pf0tþ =Xnþ ______=H nf0ð Þ
h in o

ð2:204Þ

Thus, for a periodic input, the magnitude of each spectral component of the input is attenuated

(or amplified) by the amplitude-response function at the frequency of the particular spectral

component, and the phase of each spectral component is shifted by the value of the phase-shift

function of the system at the frequency of the particular spectral component.

EXAMPLE 2.22

Consider the response of a filter having the frequency-response function

H fð Þ ¼ 2P
f

42

� �
e�jpf /10 ð2:205Þ

to a unit-amplitude triangular signal with period 0.1 s. From Table 2.1 and (2.46), the exponential Fourier

series of the input signal is

x tð Þ ¼ � � � 4

25p2
e�j100ptþ 4

9p2
e�j60ptþ 4

p2
e�j20pt

þ 4

p2
e j20ptþ 4

9p2
e j60ptþ 4

25p2
e j100ptþ � � �

¼ 8

p2

�
cos 20ptð Þþ 1

9
cos 60ptð Þþ 1

25
cos 100ptð Þþ � � �

� ð2:206Þ

The filter eliminates all harmonics above 21 Hz and passes all those below 21 Hz, imposing an amplitude

scale factor of 2 and a phase shift of�pf=10 rad. The only harmonic of the triangularwave to be passed by

the filter is the fundamental, which has a frequency of 10 Hz, giving a phase shift of �p 10ð Þ=10 ¼ �p
rad. The output is therefore

y tð Þ ¼ 16

p2
cos

�
20p t� 1

20

� ��
ð2:207Þ

where the phase shift is seen to be equivalent to a delay of 1
20
s.

&
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2.7.9 Distortionless Transmission

Equation (2.204) shows that both the amplitudes and phases of the spectral components of a

periodic input signal will, in general, be altered as the signal is sent through a two-port LTI

system. This modificationmay be desirable in signal processing applications, but it amounts to

distortion in signal transmission applications. While it may appear at first that ideal signal

transmission results only if there is no attenuation and phase shift of the spectral components of

the input, this requirement is too stringent. A system will be classified as distortionless if it

introduces the same attenuation and time delay to all spectral components of the input, for then

the output looks like the input. In particular, if the output of a system is given in terms of the

input as

y tð Þ ¼ H0x t� t0ð Þ ð2:208Þ
where H0 and t0 are constants, the output is a scaled, delayed replica of the input (t0 > 0 for

causality). Employing the time-delay theorem to Fourier transform (2.208) and using the

definition H fð Þ ¼ Y fð Þ=X fð Þ, we obtain

H fð Þ ¼ H0e
�j2p ft0 ð2:209Þ

as the frequency-response function of a distortionless system; that is, the amplitude response of

a distortionless system is constant, and the phase shift is linear with frequency. Of course, these

restrictions are necessary only within the frequency ranges where the input has significant

spectral content. Figure 2.18 and Example 2.23, considered shortly, will illustrate these

comments.

In general, we can isolate three major types of distortion. First, if the system is linear but

the amplitude response is not constant with frequency, the system is said to introduce amplitude

distortion. Second, if the system is linear but the phase shift is not a linear function of

frequency, the system introduces phase, or delay, distortion. Third, if the system is not linear,

we have nonlinear distortion. Of course, these three types of distortion may occur in

combination with one another.

|H( f )|

2

1

–20 –10 0

(a)

10 20 f (Hz)

Tg( f )

1
60

–15 150
(c)

f (Hz)

Tp( f )

1
60

–15 150
(d)

f (Hz)

–15
15

0

(b)

f (Hz)

H( f )
π
2

π
2–

Figure 2.18

Amplitude and phase response and group and phase delays of the filter for Example 2.23. (a) Amplitude

response. (b) Phase response. (c) Group delay. (d) Phase delay.
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2.7.10 Group and Phase Delay

One can often identify phase distortion in a linear system by considering the derivative of

phase with respect to frequency. A distortionless system exhibits a phase response in which

phase is directly proportional to frequency. Thus the derivative of phase-response functionwith

respect to frequency of a distortionless system is a constant. The negative of this constant is

called the group delay of the LTI system. In other words, the group delay is defined by the

equation

Tg fð Þ ¼ � 1

2p

du fð Þ
df

ð2:210Þ

in which u fð Þ is the phase response of the system. For a distortionless system, the phase-

response function is given by (2.209) as

u fð Þ ¼ �2pft0 ð2:211Þ
This yields a group delay of

Tg fð Þ ¼ � 1

2p

d

df
�2pft0ð Þ

or

Tg fð Þ ¼ t0 ð2:212Þ
This confirms the preceding observation that the group delay of a distortionless LTI system is a

constant.

Group delay is the delay that a group of two or more frequency components undergo in

passing through a linear system. If a linear system has a single-frequency component as the

input, the system is always distortionless, since the output can bewritten as an amplitude-scaled

and phase-shifted (time-delayed) version of the input. As an example, assume that the input to a

linear system is given by

x tð Þ ¼ A cos 2pf1tð Þ ð2:213Þ
It follows from (2.204) that the output can be written as

y tð Þ ¼ AjH f1ð Þj cos 2pf1tþ u f1ð Þ½ � ð2:214Þ
where u f1ð Þ is the phase response of the system evaluated at f ¼ f1. Equation (2.214) can be

written as

y tð Þ ¼ AjH f1ð Þjcos 2pf1 tþ u f1ð Þ
2pf1

� �� �
ð2:215Þ

The delay of the single component is defined as the phase delay:

Tp fð Þ ¼ � u fð Þ
2pf

ð2:216Þ

Thus (2.215) can be written as

y tð Þ ¼ AjH f1ð Þj cos 2pf1 t� Tp f1ð Þ
 �� � ð2:217Þ
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Use of (2.211) shows that for a distortionless system, the phase delay is given by

Tp fð Þ ¼ � 1

2pf
�2pft0ð Þ ¼ t0 ð2:218Þ

The following example should clarify the preceding definitions.

EXAMPLE 2.23

Consider a systemwith amplitude response and phase shift as shown in Figure 2.18 and the following four

inputs:

1. x1 tð Þ ¼ cos 10ptð Þþ cos 12ptð Þ:
2. x2 tð Þ ¼ cos 10ptð Þþ cos 26ptð Þ:
3. x3 tð Þ ¼ cos 26ptð Þþ cos 34ptð Þ:
4. x4 tð Þ ¼ cos 32ptð Þþ cos 34ptð Þ:

Although this system is somewhat unrealistic from a practical standpoint, we can use it to illustrate various

combinations of amplitude and phase distortion.Using (2.204) and superposition, we obtain the following

corresponding outputs:

1.
y1 tð Þ ¼ 2 cos

�
10pt� 1

6
p

�
þ 2 cos

�
12pt� 1

5
p

�

¼ 2 cos

�
10p

�
t� 1

60

��
þ 2 cos

�
12p

�
t� 1

60

��
2.

y2 tð Þ ¼ 2 cos

�
10pt� 1

6
p

�
þ cos

�
26pt� 13

30
p

�

¼ 2 cos

�
10p

�
t� 1

60

��
þ cos

�
26p

�
t� 1

60

��
3.

y3 tð Þ ¼ cos

�
26pt� 13

30
p

�
þ cos

�
34pt� 1

2
p

�

¼ cos

�
26p

�
t� 1

60

��
þ cos

�
34p

�
t� 1

68

��
4.

y4 tð Þ ¼ cos

�
32pt� 1

2
p

�
þ cos

�
34pt� 1

2
p

�

¼ cos

�
32p

�
t� 1

64

��
þ cos

�
34p

�
t� 1

68

��

Checking these results with (2.208), we see that only the input x1 tð Þ is passed without distortion by the

system. For x2 tð Þ, amplitude distortion results, and for x3 tð Þ and x4 tð Þ, phase (delay) distortion is

introduced.
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Thegroupdelay andphase delay are also illustrated inFigure 2.18. It can be seen that for j f j � 15Hz, the

group and phase delays are both equal to 1
60
s. For j f j>15 Hz, the group delay is zero, and the phase delay is

Tp fð Þ ¼ 1

4j f j ; j f j>15Hz ð2:219Þ
&

2.7.11 Nonlinear Distortion

To illustrate the idea of nonlinear distortion, let us consider a zero memory nonlinear system

with the input–output characteristic

y tð Þ ¼ a1x tð Þþ a2x
2 tð Þ ð2:220Þ

where a1 and a2 are constants, and with the input

x tð Þ ¼ A1 cos v1tð ÞþA2 cos v2tð Þ ð2:221Þ
The output is therefore

y tð Þ ¼ a1 A1 cos v1tð ÞþA2 cos v2tð Þ½ � þ a2 A1 cos v1tð ÞþA2 cos v2tð Þ½ �2 ð2:222Þ

Using trigonometric identities, we can write the output as

y tð Þ ¼ a1 A1 cos v1tð ÞþA2 cos v2tð Þ½ �

þ 1

2
a2 A2

1þA2
2


 �þ 1

2
a2 A2

1 cos 2v1tð ÞþA2
2 cos 2v2tð Þ �

þ a2A1A2 cos v1þv2ð Þt½ � þ cos v1�v2ð Þt½ �f g

ð2:223Þ

As can be seen from (2.223) and as shown in Figure 2.19, the system has produced

frequencies in the output other than the frequencies of the input. In addition to the first term in

(2.223), which may be considered the desired output, there are distortion terms at harmonics

of the input frequencies (in this case, second) as well as distortion terms involving sums and

differences of the harmonics (in this case, first) of the input frequencies. The former are

referred to as harmonic distortion terms, and the latter are referred to as intermodulation

distortion terms. Note that a second-order nonlinearity could be used as a device to double

the frequency of an input sinusoid. Third-order nonlinearities can be used as triplers, and so

forth.

A general input signal can be handled by applying the multiplication theorem given in

Table G.6 in Appendix G. Thus, for the nonlinear system with the transfer characteristic given

by (2.220), the output spectrum is

Y fð Þ ¼ a1X fð Þþ a2X fð Þ 
 X fð Þ ð2:224Þ
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The second term is considered distortion and is seen to give interference at all frequencies

occupied by the desired output (the first term). It is usually not possible to isolate harmonic and

intermodulation distortion components as before. For example, if

X fð Þ ¼ AP
f

2W

� �
ð2:225Þ

Then the distortion term is

a2X fð Þ 
 X fð Þ ¼ 2a2WA2L
f

2W

� �
ð2:226Þ

The input and output spectra are shown in Figure 2.20. Note that the spectral width of the

distortion term is double that of the input.

2.7.12 Ideal Filters

It is often convenient to work with filters having idealized transfer functions with rectangular

amplitude-response functions that are constant within the passband and zero elsewhere. We

–f2

–2f2
–( f1 + f2)

–2f1 –f2 –f1 f1 f2 2f1 2f2

–f1 f1 f2
f

f

0

0

(a)

(b)

X( f )

Y( f )

–( f2 – f1) f2 – f1 f1 + f2

Figure 2.19

Input and output spectra for a nonlinear system with discrete frequency input. (a) Input spectrum.

(b) Output spectrum.

X( f ) Y( f )

A

ffW−W 0
(a)

W

a1A + 2a2A2W

−W−2W 2W0
(b)

Figure 2.20

Input and output spectra for a nonlinear system with continuous frequency input. (a) Input spectrum.

(b) Output spectrum.
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will consider three general types of ideal filters: lowpass, highpass, and bandpass. Within the

passband, a linear phase-response characteristic is assumed. Thus, if B is the single-sided

bandwidth (width of the stopband12 for the highpass filter) of the filter in question, the transfer

functions of ideal lowpass, highpass and bandpass filters are easily written.

1. For the ideal lowpass filter

HLP fð Þ ¼ H0P f=2Bð Þe�j2p ft0 ð2:227Þ
2. For the ideal highpass filter

HHP fð Þ ¼ H0 1�P f=2Bð Þ½ �e�j2p ft0 ð2:228Þ
3. Finally, for the ideal bandpass filter

HBP fð Þ ¼ H1 f � f0ð ÞþH1 f þ f0ð Þ½ �e�j2p ft0 ð2:229Þ
where H1 fð Þ ¼ H0P f=Bð Þ:

The amplitude-response and phase-response functions for these filters are shown in

Figure 2.21.

The corresponding impulse responses are obtained by inverse Fourier transformation of

the respective frequency-response function. For example, the impulse response of an ideal

lowpass filter is, from Example 2.11 and the time-delay theorem, given by

hLP tð Þ ¼ 2BH0 sinc 2B t� t0ð Þ½ � ð2:230Þ
Since hLP tð Þ is not zero for t<0, we see that an ideal lowpass filter is noncausal. Nevertheless,
ideal filters are useful concepts because they simplify calculations and can give satisfactory

results for spectral considerations.

Turning to the ideal bandpass filter, we may use the modulation theorem to write its

impulse response as

hBP tð Þ ¼ 2h1 t� t0ð Þ cos 2pf0 t�t0ð Þ½ � ð2:231Þ
where

h1 tð Þ ¼ =�1 H1 fð Þ½ � ¼ H0B sinc Btð Þ ð2:232Þ
Thus the impulse response of an ideal bandpass filter is the oscillatory signal

hBP tð Þ ¼ 2H0B sinc B t� t0ð Þ½ �cos 2pf0 t� t0ð Þ½ � ð2:233Þ
Figure 2.22 illustrates hLP tð Þ and hBP tð Þ. If f0  B, it is convenient to view hBP tð Þ as the

slowly varying envelope 2H0 sinc Btð Þ modulating the high-frequency oscillatory signal

cos 2pf0tð Þ and shifted to the right by t0 s.

Derivation of the impulse response of an ideal high pass filter is left to the problems

(Problem 2.63).

12The stopband of a filter will be defined here as the frequency range(s) for which jH fð Þj is below 3 dB of its maximum

value.
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2.7.13 Approximation of Ideal Lowpass Filters by Realizable Filters

Although ideal filters are noncausal and therefore unrealizable devices,13 there are several

practical filter types that may be designed to approximate ideal filter characteristics as closely

|HLP( f )|

HLP( f )

|HBP( f )|

HBP( f )

|HHP( f )|

H0

H0

H0

f

f

f

ff

f

B

f0–f0

B–B 0

B–B 0

HHP( f )

Slope = – 2 t0

0

π

Figure 2.21

Amplitude-response and phase-response functions for ideal filters.

hLP(t)

2BH0

hBP(t)

2BH0

t0 t0

t0 –
t0 – 1/B

f0
–1

t0 + 1/B

tt
00

1
2B

t0 + 1
2B

(b)(a)

Figure 2.22

Impulse responses for ideal lowpass and bandpass filters. (a) hLP tð Þ. (b) hBP tð Þ.

13See Williams and Taylor (1988), Chapter 2, for a detailed discussion of classical filter designs.
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as desired. In this section we consider three such approximations for the lowpass case.

Bandpass and highpass approximations may be obtained through suitable frequency trans-

formation. The three filter types to be considered are (1) Butterworth, (2) Chebyshev, and

(3) Bessel.

TheButterworth filter is a filter design chosen tomaintain a constant amplitude response in

the passband at the cost of less stopband attenuation. An nth-order Butterworth filter is

characterized by a transfer function, in terms of the complex frequency s, of the form

HBW sð Þ ¼ vn
3

s� s1ð Þ s� s2ð Þ � � � s� snð Þ ð2:234Þ

where the poles s1; s2; . . . ; sn are symmetrical with respect to the real axis and equally spaced

about a semicircle of radius v3 in the left half s plane and f3 ¼ v3=2p is the 3-dB cutoff

frequency.14 Typical pole locations are shown in Figure 2.23(a). For example, the system

14Frombasic circuit theory courses youwill recall that the poles and zeros of a rational function ofs;H sð Þ ¼ N sð Þ=D sð Þ,
are those values of complex frequency s D sþ jv for which D sð Þ ¼ 0 and N sð Þ ¼ 0, respectively.
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Figure 2.23

Pole locations and amplitude responses for fourth-order Butterworth and Chebyshev filters.

(a) Butterworth filter. (b) Chebyshev filter.
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function of a second-order Butterworth filter is

H2nd-order BW sð Þ ¼ v2
3

sþ 1þ jð Þ= ffiffiffi
2
p �

v3


 �
sþ 1�jð Þ= ffiffiffi

2
p �

v3


 � ¼ v2
3

s2þ ffiffiffi
2
p

v3sþv2
3

ð2:235Þ

where f3 ¼ v3=2p is the 3-dB cutoff frequency in hertz. The amplitude response for an nth-

order Butterworth filter is of the form

jHBU fð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f3ð Þ2n

q ð2:236Þ

Note that as n approaches infinity, jHBU fð Þj approaches an ideal lowpass filter characteristic.

However, the filter delay also approaches infinity.

The Chebyshev lowpass filter has an amplitude response chosen to maintain a minimum

allowable attenuation in the passband while maximizing the attenuation in the stopband. A

typical pole-zero diagram is shown in Figure 2.23(b). The amplitude response of a Chebyshev

filter is of the form

jHC fð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2C2

n fð Þp ð2:237Þ

The parameter e is specified by theminimum allowable attenuation in the passband, andCn fð Þ,
known as a Chebyshev polynomial, is given by the recursion relation

Cn fð Þ ¼ 2
f

fc

� �
Cn�1 fð Þ�Cn�2 fð Þ; n ¼ 2; 3; . . . ð2:238Þ

where

C1 fð Þ ¼ f

fc
and C0 fð Þ ¼ 1 ð2:239Þ

Regardless of the value of n, it turns out that Cn fcð Þ ¼ 1, so thatHC fcð Þ ¼ 1þ e2ð Þ�1=2. (Note
that fc is not necessarily the 3-dB frequency here.)

TheBessel lowpass filter is a design that attempts tomaintain a linear phase response in the

passband at the expense of the amplitude response. The cutoff frequency of a Bessel filter is

defined by

fc ¼ 2pt0ð Þ�1 ¼ vc

2p
ð2:240Þ

where t0 is the nominal delay of the filter. The frequency response function of an nth-order

Bessel filter is given by

HBE fð Þ ¼ Kn

Bn fð Þ ð2:241Þ

where Kn is a constant chosen to yield H 0ð Þ ¼ 1, and Bn fð Þ is a Bessel polynomial of order n

defined by

Bn fð Þ ¼ 2n�1ð ÞBn�1 fð Þ� f

fc

� �2

Bn�2 fð Þ ð2:242Þ
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where

B0 fð Þ ¼ 1 and B1 fð Þ ¼ 1þ j
f

fc

� �
ð2:243Þ

Figure 2.24 illustrates the amplitude-response and group-delay characteristics of third-

order Butterworth, Bessel, and Chebyshev filters. All four filters are normalized to have 3-dB

amplitude attenuation at a frequency of fc ¼ 1 Hz. The amplitude responses show that the

Chebyshev filters have more attenuation than the Butterworth and Bessel filters do for

frequencies exceeding the 3-dB frequency. Increasing the passband f < fcð Þ ripple of a

Chebyshev filter increases the stopband f > fcð Þ attenuation.
The group-delay characteristics shown in Figure 2.24(b) illustrate, as expected, that the

Bessel filter has the most constant group delay. Comparison of the Butterworth and the 0:1-dB
ripple Chebyshev group delays shows that although the group delay of the Chebyshev filter has

a higher peak, it has a more constant group delay for frequencies less than about 0.3fc.
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Figure 2.24

Comparison of third-order Butterworth, Chebyshev (0.1-dB ripple), and Bessel filters. (a) Amplitude

response. (b) Group delay. All filters are designed to have a 1-Hz, 3-dB bandwidth.
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COMPUTER EXAMPLE 2.2

TheMATLABprogramgiven below can be used to plot the amplitude and phase responses of Butterworth

and Chebyshev filters of any order and any cutoff frequency (3-dB frequency for Butterworth). The ripple

is also an input for theChebyshev filter. SeveralMATLAB subprograms are used, such as logspace, butter,

cheby1, freqs, and cart2pol. It is suggested that the student use the help feature of MATLAB to find out

how these are used. For example, a linefreqs(num,den,W) in the commandwindow automatically

plots amplitude and phase responses. However,we have used semilogx here to plot the amplitude response

in decibel versus frequency in hertz on a logarithmic scale.

% file: c2ce2
% Frequency response for Butterworth and Chebyshev 1 filters
%
clf
filt_type ¼ input(’Enter filter type; 1 ¼ Butterworth; 2 ¼ Chebyshev type 1 ’);
n_max ¼ input(’Enter maximum order of filter ’);
fc ¼ input(’Enter cutoff frequency (3-dB for Butterworth) in Hz ’);
if filt_type ¼¼ 2
R ¼ input(’Enter Chebyshev filter ripple in dB ’);

end
W ¼ logspace(0, 3, 1000); % Set up frequency axis; hertz assumed
for n ¼ 1:n_max

if filt_type ¼¼ 1 % Generate num. and den. polynomials
[num,den]¼butter(n, 2*pi*fc, ’s’);
elseif filt_type ¼¼ 2
[num,den]¼cheby1(n, R, 2*pi*fc, ’s’);

end
H ¼ freqs(num, den, W); % Generate complex frequency response
[phase, mag] ¼ cart2pol(real(H),imag(H));
subplot(2,1,1),semilogx(W/(2*pi),20*log10(mag)),...
axis([min(W/(2*pi)) max(W/(2*pi)) -20 0]),...
if n ¼¼ 1 % Put on labels and title; hold for future plots
grid on
ylabel(’H in dB’)
hold on
if filt_type ¼¼ 1

title([‘Butterworth filter responses: order 1 - ’,num2str
(n_max),‘; ...
cutoff freq ¼ ’,num2str(fc),‘ Hz’])

elseif filt_type ¼¼ 2
title([‘Chebyshev filter responses: order 1 - ’,num2str(n_max),‘;
...
ripple ¼ ’,num2str(R),’ dB; cutoff freq ¼ ’,num2str(fc),‘ Hz’])

end
end
subplot(2,1,2),semilogx(W/(2*pi),180*phase/pi),...
axis([min(W/(2*pi)) max(W/(2*pi)) -200 200]),...

if n ¼¼ 1
grid on
hold on
xlabel(‘f, Hz’),ylabel(’phase in degrees’)

end
end

&

2.7.14 Relationship of Pulse Resolution and Risetime to Bandwidth

In our consideration of signal distortion, we assumed bandlimited signal spectra.We found that

the input signal to a filter is merely delayed and attenuated if the filter has constant amplitude
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response and linear phase response throughout the passband of the signal. But suppose the input

signal is not bandlimited. What rule of thumb can we use to estimate the required bandwidth?

This is a particularly important problem in pulse transmission, where the detection and

resolution of pulses at a filter output are of interest.

A satisfactory definition for pulse duration and bandwidth, and the relationship

between them, is obtained by consulting Figure 2.25. In Figure 2.25(a), a pulse with a single

maximum, taken at t ¼ 0 for convenience, is shown with a rectangular approximation of

height x 0ð Þ and duration T . It is required that the approximating pulse and jx tð Þj have equal
areas. Thus

Tx 0ð Þ ¼
ð¥
�¥
jx tð Þjdt 	

ð¥
�¥

x tð Þdt ¼ X 0ð Þ ð2:244Þ

where we have used the relationship

X 0ð Þ ¼ = x tð Þ½ �jf¼0 ¼
ð¥
�¥

x tð Þe�j2pt � 0dt ð2:245Þ

Turning to Figure 2.25(b), we obtain a similar inequality for the rectangular approximation

to the pulse spectrum. Specifically, we may write

2W X 0ð Þ ¼
ð¥
�¥
jX fð Þjdf 	

ð¥
�¥

X fð Þdf ¼ x 0ð Þ ð2:246Þ

where we have used the relationship

x 0ð Þ ¼ =�1 X fð Þ½ �jt¼0 ¼
ð¥
�¥

X fð Þe j2pf � 0 df ð2:247Þ

Thus we have the pair of inequalities

x 0ð Þ
X 0ð Þ 	

1

T
and 2W 	 x 0ð Þ

X 0ð Þ ð2:248Þ

Equal
areas

Equal
areas

x(0)

|x(t)|

X(0)

|X(f)|

ft

(b)(a)

x(t) X( f )

1
2

– T T –W W1
2

00

Figure 2.25

Arbitrary pulse signal and spectrum. (a) Pulse and rectangular approximation. (b) Amplitude spectrum

and rectangular approximation.

2.7 Signals and Linear Systems 75

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


which, when combined, result in the relationship of pulse duration and bandwidth

2W 	 1

T
ð2:249Þ

or

W 	 1

2T
Hz ð2:250Þ

Other definitions of pulse duration and bandwidth could have been used, but a relationship

similar to (2.249) and (2.250) would have resulted.

This inverse relationship between pulse duration and bandwidth has been illustrated by all

the examples involving pulse spectra that we have considered so far (such as Examples 2.8,

2.11, and 2.13).

If pulses with bandpass spectra are considered, the relationship is

W 	 1

T
Hz ð2:251Þ

This is illustrated by Example 2.16.

A result similar to (2.249) and (2.250) also holds between the risetimeTR and bandwidth of

a pulse. A suitable definition of risetime is the time required for a pulse�s leading edge to go

from 10% to 90% of its final value. For the bandpass case, (2.251) holds with T replaced by TR,

where TR is the risetime of the envelope of the pulse.

Risetime can be used as a measure of a system�s distortion. To see how this is

accomplished, we will express the step response of a filter in terms of its impulse response.

From the superposition integral of (2.177), with x t�sð Þ ¼ u t�sð Þ, the step response of a

filter with impulse response h tð Þ is

ys tð Þ ¼
ð¥
�¥

h sð Þu t�sð Þds

¼
ðt
�¥

h sð Þ ds
ð2:252Þ

This follows because u t�sð Þ ¼ 0 for s > t. Therefore, the step response of a linear system is

the integral of its impulse response. This is not too surprising, since the unit step function is the

integral of a unit impulse function.15

Examples 2.24 and 2.25 demonstrate how the risetime of a system�s output due to a step

input is a measure of the fidelity of the system.

15This result is a special case of a more general result for an LTI system: If the response of a system to a given input is

knownand that input ismodified through a linear operation, such as integration, then the output to themodified input

is obtained by performing the same linear operation on the output due to the original input.
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EXAMPLE 2.24

The impulse response of a lowpass RC filter is given by

h tð Þ ¼ 1

RC
e�t=RC u tð Þ ð2:253Þ

for which the step response is found to be

ys tð Þ ¼ 1� e�2pf3t

 �

u tð Þ ð2:254Þ

where the 3-dB bandwidth of the filter, defined following (2.192), has been used. The step response is

plotted in Figure 2.26(a), where it is seen that the 10% to 90% risetime is approximately

TR ¼ 0:35

f3
¼ 2:2RC ð2:255Þ

which demonstrates the inverse relationship between bandwidth and risetime.

&
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Figure 2.26

Step response of (a) a lowpass RC filter

and (b) an ideal lowpass filter, illus-

trating 10% to 90% risetime of each.
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EXAMPLE 2.25

Using (2.230) with H0 ¼ 1, the step response of an ideal lowpass, filter is

ys tð Þ ¼
ðt
�¥

2B sinc 2B s� t0ð Þ½ �ds

¼
ðt
�¥

2B
sin 2pB s� t0ð Þ½ �
2pB s� t0ð Þ ds

ð2:256Þ

By changing variables in the integrand to u ¼ 2pB s� t0ð Þ, the step response becomes

ys tð Þ ¼ 1

2p

ð2pB t�t0ð Þ

�¥

sin u

u
du ¼ 1

2
þ 1

p
Si 2pB t� t0ð Þ½ � ð2:257Þ

where Si xð Þ ¼ Ð x
0

sin u=uð Þdu ¼ �Si �xð Þ is the sine-integral function.16 A plot of ys tð Þ for an ideal

lowpass filter, such as is shown in Figure 2.26(b), reveals that the 10% to 90% risetime is approximately

TR ffi 0:44

B
ð2:258Þ

Again, the inverse relationship between bandwidth and risetime is demonstrated.

&

n 2.8 SAMPLING THEORY

In many applications it is useful to represent a signal in terms of sample values taken at

appropriately spaced intervals. Such sample-data systems find application in feedback control,

digital computer simulation, and pulse-modulation communication systems.

In this section we consider the representation of a signal x tð Þ by a so-called ideal

instantaneous sampled waveform of the form

xd tð Þ ¼
X¥
n¼�¥

x nTsð Þd t�nTsð Þ ð2:259Þ

where Ts is the sampling interval. Two questions to be answered in connection with such

sampling are

What are the restrictions on x tð Þ and Ts to allow perfect recovery of x tð Þ from xd tð Þ?
How is x tð Þ recovered from xd tð Þ?

Both questions are answered by the uniform sampling theorem for lowpass signals,which may

be stated as follows:

Theorem

If a signal x tð Þ contains no frequency components for frequencies above f ¼ W Hz, then it is

completely described by instantaneous sample values uniformly spaced in time with period

Ts < 1=2W . The signal can be exactly reconstructed from the sampled waveform given by

(2.259) by passing it through an ideal lowpass filter with bandwidth B, whereW < B < fs�W
with fs ¼ T�1s . The frequency 2W is referred to as the Nyquist frequency.

16See M. Abramowitz and I. Stegun (1972), pp. 238ff.
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To prove the sampling theorem, we find the spectrum of (2.259). Since d t� nTsð Þ is zero
everywhere except at t ¼ nTs, (2.259) can be written as

xd tð Þ ¼
X¥

n¼�¥
x tð Þd t� nTsð Þ ¼ x tð Þ

X¥
n¼�¥

d t� nTsð Þ ð2:260Þ

Applying the multiplication theorem of Fourier transforms (2.119), the Fourier transform of

(2.260) is

Xd fð Þ ¼ X fð Þ 
 fs
X¥

n¼�¥
d f � nfsð Þ

" #
ð2:261Þ

where the transform pair (2.136) has been used. Interchanging the orders of summation and

convolution and noting that

X fð Þ 
 d f � nfsð Þ ¼
ð¥
�¥

X uð Þd f � u� nfsð Þdu ¼ X f � nfsð Þ ð2:262Þ

by the sifting property of the delta function, we obtain

Xd fð Þ ¼ fs
X¥

n¼�¥
X f � nfsð Þ ð2:263Þ

Thus, assuming that the spectrum of x tð Þ is bandlimited toW Hz and that fs > 2W as stated in

the sampling theorem, we may readily sketch Xd fð Þ. Figure 2.27 shows a typical choice for

X fð Þ and the correspondingXd fð Þ.We note that sampling simply results in a periodic repetition

of X fð Þ in the frequency domain with a spacing fs. If fs < 2W , the separate terms in (2.263)

overlap, and there is no apparentway to recoverx tð Þ fromxd tð Þwithout distortion. On the other
hand, if fs > 2W , the term in (2.263) for n ¼ 0 is easily separated from the rest by ideal lowpass

filtering. Assuming an ideal lowpass filter with the frequency-response function

H fð Þ ¼ H0P
f

2B

� �
e� j2pft0 ; W � B � fs�W ð2:264Þ

the output spectrum, with xd tð Þ at the input, is
Y fð Þ ¼ fsH0X fð Þe� j2pft0 ð2:265Þ

and by the time-delay theorem, the output waveform is

y tð Þ ¼ fsH0x t� t0ð Þ ð2:266Þ

X( f )

X0

f
W–W 0

(a)

X ( f )

fsX0

–fs fs

fs – W

f
W–W 0

(b)

δ

Figure 2.27

Signal spectra for lowpass sampling. (a) Assumed spectrum for xðtÞ. (b) Spectrum of the sampled signal.
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Thus, if the conditions of the sampling theorem are satisfied, we see that distortionless

recovery of x tð Þ from xd tð Þ is possible. Conversely, if the conditions of the sampling theorem

are not satisfied, either because x tð Þ is not bandlimited or because fs < 2W , we see that

distortion at the output of the reconstruction filter is inevitable. Such distortion, referred to as

aliasing, is illustrated in Figure 2.28(a). It can be combated by filtering the signal before

sampling or by increasing the sampling rate. A second type of error, illustrated in Figure 2.28

(b), occurs in the reconstruction process and is due to the nonideal frequency response

characteristics of practical filters. This type of error can be minimized by choosing reconstruc-

tion filters with sharper roll-off characteristics or by increasing the sampling rate. Note that the

error due to aliasing and the error due to imperfect reconstruction filters are both proportional

to signal level. Thus increasing the signal amplitude does not improve the signal-to-error ratio.

An alternative expression for the reconstructed output from the ideal lowpass filter can be

obtained by noting that when (2.259) is passed through a filter with impulse response h tð Þ, the
output is

y tð Þ ¼
X¥

n¼�¥
x nTsð Þh t� nTsð Þ ð2:267Þ

but h tð Þ corresponding to (2.264) is given by (2.230). Thus

y tð Þ ¼ 2BH0

X¥
n¼�¥

x nTsð Þ sinc 2B t� t0� nTsð Þ½ � ð2:268Þ

and we see that just as a periodic signal can be completely represented by its Fourier

coefficients, a bandlimited signal can be completely represented by its sample values.

By setting B ¼ 1
2
fs; H0 ¼ Ts; and t0 ¼ 0 for simplicity, (2.268) becomes

y tð Þ ¼
X
n

x nTsð Þ sinc fst� nð Þ ð2:269Þ

Reconstruction filter
amplitude response

Contributes to aliasing error

Spectrum of
sampled signal

Spectrum of
sampled signal

–fs

–fs fs

fs
f

f

0

0

(a)

(b)

Amplitude response of
reconstruction filter

Contributes to error
in reconstruction

Figure 2.28

Spectra illustrating two types of errors encountered in reconstruction of sampled signals. (a) Illustration of

aliasing error in the reconstruction of sampled signals. (b) Illustration of error due to nonideal

reconstruction filter.
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This expansion is equivalent to a generalized Fourier series of the form given by (2.39), for we

may show that ð¥
�¥

sinc fst� nð Þ sinc fst�mð Þdt ¼ dnm ð2:270Þ

where dnm ¼ 1; n ¼ m, and is 0 otherwise.

Turning next to bandpass spectra, for which the upper limit on frequency fu is much larger

than the single-sided bandwidthW , one may naturally inquire as to the feasibility of sampling

at rates less than fs > 2fu: The uniform sampling theorem for bandpass signals gives the

conditions for which this is possible.

Theorem

If a signal has a spectrum of bandwidth W Hz and upper frequency limit fu, then a rate fs at

which the signal can be sampled is 2fu=m, where m is the largest integer not exceeding fu=W .

All higher sampling rates are not necessarily usable unless they exceed 2fu:

EXAMPLE 2.26

Consider the bandpass signal x tð Þ with the spectrum shown in Figure 2.29. According to the bandpass

sampling theorem, it is possible to reconstruct x tð Þ from sample values taken at a rate of

fs ¼ 2fu

m
¼ 2 3ð Þ

2
¼ 3 samples per second ð2:271Þ

whereas the lowpass sampling theorem requires 6 samples per second.

To show that this is possible, we sketch the spectrum of the sampled signal. According to (2.263),

which holds in general,

Xd fð Þ ¼ 3
X¥
�¥

X f � 3nð Þ ð2:272Þ

X( f )

X ( f )

f

f

fsX0

+2 fs+3fs+fs+2 fs–2 fs–2 fs –3fs 0+fs–fs–fs 0

X0

–3

– 96303–6–9

–2 –1 0
(a)

(b)

1 2 3

δ
Desired
spectrum

Desired
spectrum

X( f ) centered
around f = –fs

Figure 2.29

Signal spectra for bandpass sampling. (a) Assumed bandpass signal spectrum. (b) Spectrum of the

sampled signal.
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The resulting spectrum is shown in Figure 2.29(b), and we see that it is theoretically possible to recover

x tð Þ from xd tð Þ by bandpass filtering.

Another way of sampling a bandpass signal of bandwidth W is to resolve it into two lowpass

quadrature signals of bandwidth 1
2
W . Both of these may then be sampled at a minimum rate of

2 1
2
W


 � ¼ W samples per second, thus resulting in an overall minimum sampling rate of 2W samples

per second.

&

n 2.9 THE HILBERT TRANSFORM

(Itmay be advantageous to postpone this section until consideration of single-sideband systems

in Chapter 3.)

2.9.1 Definition

Consider a filter that simply phase shifts all frequency components of its input by �1
2
p rad; that

is, its frequency-response function is

H fð Þ ¼ � j sgn f ð2:273Þ
where the sgn function (read ‘‘signum f ’’) is defined as

sgn f ¼
1; f > 0

0; f ¼ 0

� 1; f < 0

8<: ð2:274Þ

We note that jH fð Þj ¼ 1 and =____H fð Þ is odd, as it must be. If X fð Þ is the input spectrum to the

filter, the output spectrum is � j sgn fð ÞX fð Þ, and the corresponding time function is

x̂ tð Þ ¼ =� 1 � j sgn fð ÞX fð Þ½ �
¼ h tð Þ 
 x tð Þ ð2:275Þ

where h tð Þ ¼ � j=� 1 sgn f½ � is the impulse response of the filter. To obtain=� 1 sgn f½ �without
resorting to contour integration, we consider the inverse transform of the function

G f ;að Þ ¼ e�af ; f > 0

� eaf ; f < 0

�
ð2:276Þ

We note that lima! 0G f ; að Þ ¼ sgn f . Thus our procedure will be to inverse Fourier transform

G f ;að Þ and take the limit of the result as a approaches zero. Performing the inverse

transformation, we obtain

g t;að Þ ¼ =� 1 G f ;að Þ½ �

¼
ð¥
0

e�af e j2pft df �
ð0
¥
eaf e j2pft df ¼ j4pt

a2þ 2ptð Þ2
ð2:277Þ

Taking the limit as a approaches zero, we get the transform pair

j

pt
$ sgn f ð2:278Þ
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Using this result in (2.275), we obtain the output of the filter:

bx tð Þ ¼
ð¥
�¥

x lð Þ
p t� lð Þ dl ¼

ð¥
�¥

x t�hð Þ
ph

dh ð2:279Þ

The signal bx tð Þ is defined as the Hilbert transform of x tð Þ. Since the Hilbert transform
corresponds to a phase shift of � 1

2
p, we note that the Hilbert transform of bx tð Þ corresponds to

the frequency-response function �j sgn fð Þ2 ¼ �1, or a phase shift of p rad. Thusbx tð Þ ¼ � x tð Þ ð2:280Þ

EXAMPLE 2.27

For an input to a Hilbert transform filter of

x tð Þ ¼ cos 2pf0tð Þ ð2:281Þ
which has a spectrum given by

X fð Þ ¼ 1

2
d f � f0ð Þþ 1

2
d f þ f0ð Þ ð2:282Þ

we obtain an output spectrum from the Hilbert transformer of

bX fð Þ ¼ 1

2
d f � f0ð Þe� jp=2þ 1

2
d f þ f0ð Þe jp=2 ð2:283Þ

Taking the inverse Fourier transform of (2.283), we find the output signal to be

bx fð Þ ¼ 1

2
e j2pf0te� jp=2þ 1

2
e� j2pf0te jp=2

¼ cos 2pf0t� p

2

� � ð2:284Þ

or bcosð2pf 0tÞ ¼ sin 2pf0tð Þ
Of course, the Hilbert transform could have been found by inspection in this case by adding � 1

2
p to the

argument of the cosine. Doing this for the signal sinv0t, we find thatbsinð2pf 0tÞ ¼ sin

�
2pf0t� 1

2
p

�
¼ � cos 2pf0tð Þ ð2:285Þ

We may use the two results obtained to show that

de j2pf0t ¼ � j sgn 2pf0ð Þe j2pf0t ð2:286Þ
This is done by considering the two cases f0 > 0 and f0 < 0 and using Euler�s theorem in conjunctionwith

the results of (2.284) and (2.285). The result (2.286) also follows directly by considering the response of a

Hilbert transform filter with frequency response HHT fð Þ ¼ � j sgn 2pfð Þ to the input x tð Þ ¼ e j2pf0t.

&

2.9.2 Properties

The Hilbert transform has several useful properties that will be illustrated later. Three of these

properties will be proved here:
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1. The energy (or power) in a signal x tð Þ and its Hilbert transform bx tð Þ are equal. To show this,

we consider the energy spectral densities at the input and output of a Hilbert transform filter.

Since H fð Þ ¼ � j sgn f , these densities are related by

jbX fð Þj2/j= bx tð Þ½ �j2 ¼ j� j sgn f j2jX fð Þj2 ¼ jX fð Þj2 ð2:287Þ
where bX fð Þ ¼ = bx tð Þ½ � ¼ � j sgn fð ÞX fð Þ. Thus, since the energy spectral densities at input and
output are equal, so are the total energies. A similar proof holds for power signals.

2. A signal and its Hilbert transform are orthogonal; that is,ð¥
�¥

x tð Þbx tð Þdt ¼ 0 energy signalsð Þ ð2:288Þ

or

lim
T!¥

1

2T

ðT
�T

x tð Þbx tð Þ dt ¼ 0 power signalsð Þ ð2:289Þ

Considering (2.288), we note that the left-hand side can be written asð¥
�¥

x tð Þbx tð Þdt ¼
ð¥
�¥

X fð ÞbX 
 fð Þdf ð2:290Þ

by Parseval�s theorem generalized, where bX fð Þ ¼ = bx tð Þ½ � ¼ � j sgn fð Þ X fð Þ. It therefore
follows that ð¥

�¥
x tð Þbx tð Þdt ¼

ð¥
�¥
þ j sgn fð ÞjX fð Þj2 df ð2:291Þ

However, the integrand of the right-hand side of (2.291) is odd, being the product of the even

function jX fð Þj2 and the odd function j sgn f . Therefore, the integral is zero, and (2.288) is

proved. A similar proof holds for (2.289).

3. If c tð Þ and m tð Þ are signals with nonoverlapping spectra, wherem tð Þ is lowpass and c tð Þ is
highpass, then bm tð Þc tð Þ ¼ m tð Þĉ tð Þ ð2:292Þ
To prove this relationship, we use the Fourier integral to representm tð Þ and c tð Þ in terms of their

spectra M fð Þ and C fð Þ, respectively. Thus

m tð Þc tð Þ ¼
ð¥
�¥

ð¥
�¥

M fð ÞC f 0ð Þexp j2p f þ f 0ð Þt½ �df df 0 ð2:293Þ

where we assumeM fð Þ ¼ 0 for j f j > W andC f 0ð Þ ¼ 0 for j f 0j < W. The Hilbert transform of

(2.293) isbm tð Þc tð Þ ¼
ð¥
�¥

ð¥
�¥

M fð ÞC f 0ð Þexpbj2p f þ f 0ð Þt½ � df df 0

¼
ð¥
�¥

ð¥
�¥

M fð ÞC f 0ð Þ � j sgn f þ f 0ð Þ½ �exp j2p f þ f 0ð Þt½ �df df 0
ð2:294Þ
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where (2.286) has been used. However, the product M fð ÞC f 0ð Þ is nonvanishing only for

j f j < W and j f 0j > W , and we may replace sgn f þ f 0ð Þ by sgn f 0 in this case. Thusbm tð Þc tð Þ ¼
ð¥
�¥

M fð Þexp j2pftð Þdf
ð¥
�¥

C f 0ð Þ � j sgn f 0ð Þexp j2pf 0tð Þ½ �df 0 ð2:295Þ

However, the first integral on the right-hand side is just m tð Þ, and the second integral is ĉ tð Þ,
since

c tð Þ ¼
ð¥
�¥

C f 0ð Þexp j2pf 0tð Þdf 0

and

bc tð Þ ¼
ð¥
�¥

C f 0ð Þbexp j2pf 0tð Þdf 0

¼
ð¥
�¥

C f 0ð Þ � j sgn f 0exp j2pf 0tð Þ½ �df 0
ð2:296Þ

Hence (2.295) is equivalent to (2.292), which was the relationship to be proved.

EXAMPLE 2.28

Given that m tð Þis a lowpass signal with M fð Þ ¼ 0 for j f j > W, we may directly apply (2.292) in

conjunction with (2.291) and (2.285) to show thatbm tð Þ cos v0tð Þ ¼ m tð Þ sin v0tð Þ ð2:297Þ
and bm tð Þ sin v0tð Þ ¼ �m tð Þ cos v0tð Þ ð2:298Þ
if f0 ¼ v0=2p > W . &

2.9.3 Analytic Signals

An analytic signal xp tð Þ, corresponding to the real signal x tð Þ, is defined as

xp tð Þ ¼ x tð Þþ jbx tð Þ ð2:299Þ
wherebx tð Þ is theHilbert transformofx tð Þ.Wenowconsider several properties of an analytic signal.

We used the term envelope in connection with the ideal bandpass filter. The envelope of a

signal is defined mathematically as the magnitude of the analytic signal xp tð Þ. The concept of
an envelope will acquire more importance when we discuss modulation in Chapter 3.

EXAMPLE 2.29

In Section 2.7.12, (2.233), we showed that the impulse response of an ideal bandpass filter with bandwidth

B, delay t0, and center frequency f0 is given by

hBP tð Þ ¼ 2H0B sinc B t� t0ð Þ½ � cos v0 t� t0ð Þ½ � ð2:300Þ
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Assuming thatB < f0, we can use the result of Example 2.28 to determine the Hilbert transform of hBP tð Þ.
The result is bhBP tð Þ ¼ 2H0B sinc B t� t0ð Þ½ � sin v0 t� t0ð Þ½ � ð2:301Þ
The envelope is

jhBP tð Þj ¼ jx tð Þþ j bx tð Þj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ½ �2þ bx tð Þ½ �2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0B sinc B t� t0ð Þ½ �f g2 cos2 v0 t� t0ð Þ½ � þ sin2 v0 t� t0ð Þ½ �� �q ð2:302Þ

or

jhBP tð Þj ¼ 2H0Bjsinc B t� t0ð Þ½ �j ð2:303Þ
as shown in Figure 2.22(b) by the dashed lines. The envelope is obviously easy to identify if the signal is

composed of a lowpass signalmultiplied by a high-frequency sinusoid.Note, however, that the envelope is

mathematically defined for any signal.

&

The spectrumof the analytic signal is also of interest.Wewill use it to advantage inChapter

3 when we investigate single-sideband modulation. Since the analytic signal, from (2.299), is

defined as

xp tð Þ ¼ x tð Þþ j bx tð Þ
it follows that the Fourier transform of xp tð Þ is

Xp fð Þ ¼ X fð Þþ j � j sgn fð ÞX fð Þ½ � ð2:304Þ
where the term in brackets is the Fourier transform of bx tð Þ. Thus

Xp fð Þ ¼ X fð Þ 1þ sgn f½ � ð2:305Þ
or

Xp fð Þ ¼ 2X fð Þ; f > 0

0; f < 0

�
ð2:306Þ

The subscript p is used to denote that the spectrum is nonzero only for positive frequencies.

Similarly, we can show that the signal

xn tð Þ ¼ x tð Þ� j bx tð Þ ð2:307Þ
is nonzero only for negative frequencies. Replacing bx tð Þ by � bx tð Þ in the preceding discussion
results in

Xn fð Þ ¼ X fð Þ 1� sgn fð Þ ð2:308Þ
or

Xn fð Þ ¼ 0; f > 0

2X fð Þ; f < 0

�
ð2:309Þ

These spectra are illustrated in Figure 2.30.
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Two observations may be made at this point. First, if X fð Þ is nonzero at f ¼ 0, then Xp fð Þ
and Xn fð Þ will be discontinuous at f ¼ 0. Also, we should not be confused that jXn fð Þj and
jXp fð Þj are not even, since the corresponding time-domain signals are not real.

2.9.4 Complex Envelope Representation of Bandpass Signals

IfX fð Þ in (2.304) corresponds to a signal with a bandpass spectrum, as shown in Fig. 2.31(a), it

then follows by (2.306) that Xp fð Þ is just twice the positive frequency portion of

X fð Þ ¼ = x tð Þf g, as shown in Fig. 2.31(b). By the frequency-translation theorem, it follows

that xp tð Þ can be written as

xp tð Þ ¼ ~x tð Þe j2pf0t ð2:310Þ
where ~x tð Þ is a complex-valued lowpass signal (hereafter referred to as the complex envelope)

and f0 is a reference frequency chosen for convenience.
17 The spectrum (assumed to be real for

ease of plotting) of ~x tð Þ is shown in Figure 2.31(c).

To find ~x tð Þ, we may proceed along one of two paths [note that simply taking the

magnitude of (2.310) gives only j~x tð Þj but not its arguement]. First, using (2.299), we can find

–W W

A

0

(a)

–W 0

(c)

W0

(b)

X( f ) = {x(t)} Xp( f ) = {x(t) + jx(t)}

‹

Xn( f ) = {x(t) – jx(t)}

‹
2A 2A

fff

Figure 2.30

Specta of analytic signals. (a) Spectrumofx tð Þ. (b) Spectrumofx tð Þþ j bx tð Þ. (c) Spectrumofx tð Þ�j bx tð Þ.
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~
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Figure 2.31

Spectra pertaining to the formation of a complex envelope of a signalx(t). (a)Abandpass signal spectrum.

(b) Twice the positive-frequency portion of X fð Þ corresponding to = x tð Þþ j bx tð Þ½ �. (c) Spectrum of ~x(t).

17If the spectrum of xp tð Þ has a center of symmetry, a natural choice for f 0 would be this point of symmetry, but it need

not be.
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the analytic signal xp tð Þ and then solve (2.310) for ~x tð Þ. That is,
~x tð Þ ¼ xp tð Þe�j2pf0t ð2:311Þ

Second, we can find ~x tð Þ by using a frequency-domain approach to obtainX fð Þ, then scale
its positive frequency components by a factor of 2 to give Xp fð Þ, and translate the resultant

spectrum by f0 Hz to the left. The inverse Fourier transform of this translated spectrum is

then ~x tð Þ. For example, for the spectra shown in Figure 2.31, the complex envelope, using

Figure 2.31(c), is

~x tð Þ ¼ =�1 2AL
2f

B

� �� �
¼ AB sinc2 Bt=2ð Þ ð2:312Þ

The complex envelope is real in this case because the spectrum X fð Þ is symmetrical around

f ¼ f0.

Since xp tð Þ ¼ x tð Þþ j bx tð Þ, where x tð Þ and bx tð Þ are the real and imaginary parts,

respectively, of xp tð Þ, it follows from (2.310) that

xp tð Þ ¼ ~x tð Þe j2pf0t/x tð Þþ j bx tð Þ ð2:313Þ
or

x tð Þ ¼ Re ~x tð Þe j2pf0t

 � ð2:314Þ

and bx tð Þ ¼ Im ~x tð Þe j2pf0t

 � ð2:315Þ

Thus, from (2.314), the real signal x tð Þ can be expressed in terms of its complex envelope as

x tð Þ ¼ Re ~x tð Þe j2pf0t

 �

¼ Re ~x tð Þð Þ cos 2pf0tð Þ�Im ~x tð Þð Þ sin 2pf0tð Þ
¼ xR tð Þ cos 2pf0tð Þ�xI tð Þ sin 2pf0tð Þ

ð2:316Þ

where

~x tð Þ/xR tð Þþ jxI tð Þ ð2:317Þ
The signals xR tð Þ and xI tð Þ are known as the inphase and quadrature components of x tð Þ.

EXAMPLE 2.30

Consider the real bandpass signal

x tð Þ ¼ cos 22ptð Þ ð2:318Þ
Its Hilbert transform is bx tð Þ ¼ sin 22ptð Þ ð2:319Þ
so the corresponding analytic signal is

xp tð Þ ¼ x tð Þþ j bx tð Þ
¼ cos 22ptð Þþ j sin 22ptð Þ
¼ e j22pt

ð2:320Þ

In order to find the corresponding complex envelope, we need to specify f0, which for the purposes of

this example, we take as f0 ¼ 10 Hz. Thus, from (2.311), we have
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~x tð Þ ¼ xp tð Þe�j2pf0t
¼ e j22pte�j20pt

¼ e j2pt

¼ cos 2ptð Þþ j sin 2ptð Þ

ð2:321Þ

so that, from (2.317), we obtain

xR tð Þ ¼ cos 2ptð Þ and xI tð Þ ¼ sin 2ptð Þ ð2:322Þ
Putting these into (2.316), we get

x tð Þ ¼ xR tð Þ cos 2pf0tð Þ�xI tð Þ sin 2pf0tð Þ
¼ cos 2ptð Þ cos 20ptð Þ�sin 2ptð Þ sin 20ptð Þ
¼ cos 22ptð Þ

ð2:323Þ

which is, not surprisingly, what we began with in (2.318).

&

2.9.5 Complex Envelope Representation of Bandpass Systems

Consider a bandpass system with impulse response h tð Þ that is represented in terms of a

complex envelope ~h tð Þ as
h tð Þ ¼ Re ~h tð Þe j2pf0t

� �
ð2:324Þ

where ~h tð Þ ¼ hR tð Þþ jhI tð Þ. Assume that the input is also bandpass with representation

(2.314). The output, by the superposition integral, is

y tð Þ ¼ x tð Þ 
 h tð Þ ¼
ð¥
�¥

h lð Þx t�lð Þdl ð2:325Þ

By Euler�s theorem, we can represent h tð Þ and x tð Þ as

h tð Þ ¼ 1

2
~h tð Þe j2pf0tþ c:c: ð2:326Þ

and

x tð Þ ¼ 1

2
~x tð Þe j2pf0tþ c:c: ð2:327Þ

respectively, where c.c. stands for the complex conjugate of the immediately preceding term.

Using these in (2.325), the output can be expressed as

y tð Þ ¼
ð¥
�¥

�
1

2
~h tð Þe j2pf0lþ c:c:

��
1

2
~x t�lð Þe j2pf0 t�lð Þ þ c:c:

�
dl

¼ 1

4

ð¥
�¥

~h lð Þ~x t�lð Þdle j2pf0tþ c:c:

þ 1

4

ð¥
�¥

~h lð Þ~x 
 t�lð Þe j4pf0l dle�j2pf0tþ c:c:

ð2:328Þ
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The second pair of terms, 1
4

Ð¥
�¥

~h lð Þ~x 
 t� lð Þe j4pf0l dle�j2pf0tþ c:c, is approximately zero by

virtue of the factor e j4pf0l ¼ cos 4pf0lð Þþ j sin 4pf0lð Þ in the integrand (~h and ~x are slowly

varying with respect to this complex exponential, and therefore, the integrand cancels to zero,

half-cycle by half-cycle). Thus

y tð Þ ffi 1

4

ð¥
�¥

~h lð Þ~x t�lð Þdle j2pf0tþ c:c:

¼ 1

2
Re ~h tð Þ 
 ~x tð Þ

h i
e j2pf0t

� �
/

1

2
Re y~ tð Þe j2pf0t

 � ð2:329Þ

where

y~ tð Þ ¼ ~h tð Þ 
 ~x tð Þ ¼ =�1 ~H fð Þ~X fð Þ � ð2:330Þ
in which ~H fð Þ and ~X fð Þ are the respective Fourier transforms of ~h tð Þ and ~x tð Þ.

EXAMPLE 2.31

As an example of the application of (2.329), consider the input

x tð Þ ¼ P
�
t

t

�
cos 2pf0tð Þ ð2:331Þ

to a filter with impulse response

h tð Þ ¼ ae�atu tð Þ cos 2pf0tð Þ ð2:332Þ
Using the complex envelope analysis just developed with ~x tð Þ ¼ P t=tð Þ and ~h tð Þ ¼ ae�atu tð Þ, we have
as the complex envelope of the filter output

~y tð Þ ¼ P t=tð Þ 
 ae�atu tð Þ
¼ 1�e�a tþ t=2ð Þ
h i

u

�
tþ t

2

�
� 1�e� t�t=2ð Þ
h i

u

�
t� t

2

�
ð2:333Þ

Multiplying this by 1
2
e j2pf0t and taking the real part results in the output of the filter in accordance with

(2.329). The result is

y tð Þ ¼ 1

2
1�e�a tþ t=2ð Þ
� �

u t þ t=2ð Þ� 1� e� t�t=2ð Þ
� �

u t� t=2ð Þ
h i

cos 2pf0tð Þ ð2:334Þ

To check this result, we convolve (2.331) and (2.332) directly. The superposition integral becomes

y tð Þ ¼ x tð Þ 
 h tð Þ
¼
ð¥
�¥

P l=tð Þ cos 2pf0lð Þae�a t�lð Þu t�lð Þ cos 2pf0 t�lð Þ½ � dl ð2:335Þ

However,

cos 2pf0lð Þ cos 2pf0 t�lð Þ½ � ¼ 1

2
cos 2pf0tð Þþ 1

2
cos 2pf0 t�2lð Þ½ � ð2:336Þ

so that the superposition integral becomes

y tð Þ ¼ 1

2

ð¥
�¥

P l=tð Þae�a t�lð Þu t�lð Þdl cos 2pf0tð Þ

þ 1

2

ð¥
�¥

P l=tð Þae�a t�lð Þu t�lð Þ cos 2pf0 t�2lð Þ½ � dl
ð2:337Þ
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If f�10 � t and f�10 � a�1, the second integral is approximately zero, so that we have only the first

integral, which isP t=tð Þ convolvedwithae�atu tð Þ and the result multiplied by 1
2
cos 2pf0tð Þ, which is the

same as (2.334).

&

n 2.10 DISCRETE FOURIER TRANSFORM AND FAST FOURIER TRANSFORM

In order to compute the Fourier spectrum of a signal by means of a digital computer, the time-

domain signal must be represented by sample values, and the spectrum must be computed at a

discrete number of frequencies. It can be shown that the following sum gives an approximation

to the Fourier spectrum of a signal at frequencies k= NTsð Þ; k ¼ 0; 1; . . . ;N�1:

Xk ¼
XN�1
n¼0

xne
�j2pnk=N ; k ¼ 0; 1; . . . ;N�1 ð2:338Þ

wherex0; x1; x2; . . . ; xN�1 areN sample values of the signal taken atTs-s intervals forwhich the

Fourier spectrum is desired. The sum (2.338) is called the discrete Fourier transform (DFT) of

the sequence xnf g. According to the sampling theorem, if the samples are spaced by Ts, the

spectrum repeats every fs ¼ T�1s Hz. Since there are N frequency samples in this interval, it

follows that the frequency resolution of (2.338) is fs=N ¼ 1= NTsð Þ/1=T . To obtain the sample

sequence xnf g from the DFT sequence Xkf g, the sum

xn ¼ 1

N

XN�1
k¼0

Xke
j2pnk=N ; k ¼ 0; 1; 2; . . . ;N�1 ð2:339Þ

is used. That (2.338) and (2.339) form a transform pair can be shown by substituting (2.338)

into (2.339) and using the sum formula for a geometric series:

SN �
XN�1
k¼0

xk ¼
1�xN
1�x ; x 6¼ 1

N; x ¼ 1

8<: ð2:340Þ

As indicated above, the DFT and inverse DFT are approximations to the true Fourier

spectrum of a signal x tð Þ at the discrete set of frequencies 0; 1=T ; 2=T ; . . . ; N�1ð Þ=Tf g. The
error can be small if the DFT and its inverse are applied properly to a signal. To indicate the

approximations involved,wemust visualize the spectrumof a sampled signal that is truncated to

a finite number of sample values and whose spectrum is then sampled at a discrete numberN of

points. To see the approximations involved, we use the following Fourier transform theorems:

1. The Fourier transform of an ideal sampling waveform (Example 2.14):

ys tð Þ ¼
X¥
m¼�¥

d t�mTsð Þ$ f�1s

X¥
n¼�¥

d f�nfsð Þ; fs ¼ T�1s

2. The Fourier transform of a rectangular window function:

P t=Tð Þ$ T sinc fTð Þ
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3. The convolution theorem of Fourier transforms:

x1 tð Þ 
 x2 tð Þ$X1 fð ÞX2 fð Þ
4. The multiplication theorem of Fourier transforms:

x1 tð Þx2 tð Þ$X1 fð Þ 
 X2 fð Þ
The approximations involved are illustrated by the following example.

EXAMPLE 2.32

An exponential signal is to be sampled, the samples truncated to a finite number, and the result represented

by a finite number of samples of the Fourier spectrum of the sampled truncated signal. The continuous-

time signal and its Fourier transform are

xðtÞ ¼ e�jtj=t$Xðf Þ ¼ 2t

1þ ð2pf tÞ2 ð2:341Þ

This signal and its spectrum are shown in Figure 2.32(a). However, we are representing the signal by

sample values spaced by Ts s, which entails multiplying the original signal by the ideal sampling

waveform ys tð Þ, given by (2.131). The resulting spectrumof this sampled signal is the convolution ofX fð Þ
with the Fourier transform of ys tð Þ, given by (2.136), which is Ys fð Þ ¼ fs

P¥
n¼�¥ d f�nfsð Þ: The result of

this convolution in the frequency domain is

Xs fð Þ ¼ fs
X¥
n¼�¥

2t

1þ 2pt f�fsð Þ½ �2 ð2:342Þ

The resulting sampled signal and its spectrum are shown in Figure 2.32(b).

In calculating theDFT, only a T-s segment ofx tð Þ can be used (N samples spaced byTs ¼ T=N). This
means that the sampled time-domain signal is effectively multiplied by a window functionP t=Tð Þ. In the
frequency domain, this corresponds to convolution with the Fourier transform of the rectangular window

function, which is use Tsinc f Tð Þ. The resulting windowed, sampled signal and its spectrum are sketched

in Figure 2.32(c). Finally, the spectrum is available only at N discrete frequencies separated by the

reciprocal of the window duration 1=T . This corresponds to convolution in the time domain with a

sequence of delta functions. The resulting signal and spectrum are shown in Figure 2.32(d). It can be seen

that unless one is careful, there is indeed a considerable likelihood that the DFT spectrum will look

nothing like the spectrum of the original continuous-time signal. Means for minimizing these errors are

discussed in several references on the subject.18

A little thought will indicate that to compute the complete DFT spectrum of a signal, approximately

N2 complexmultiplications are required in addition to a number of complex additions. It is possible to find

algorithms that allow the computation of the DFT spectrum of a signal using only approximatelyN log2N

complex multiplications, which gives significant computational savings for N large. Such algorithms are

referred to as fast Fourier transform (FFT) algorithms. Twomain types of FFTalgorithms are those based

on decimation in time (DIT) and those based on decimation in frequency (DIF).

Fortunately, FFT algorithms are included in most computer mathematics packages such as

MATLAB, so we do not have to go to the trouble of writing our own FFT programs, although it is

an instructive exercise to do so. The following computer example computes the FFTof a sampled double-

sided exponential pulse and compares spectra of the continuous-time and sampled pulses.

18Ziemer et al. (1998), Chapter 10.
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&

COMPUTER EXAMPLE 2.3

The MATLAB program given below computes the fast Fourier transform (FFT) of a double-sided

exponentially decaying signal truncated to �15:5 � t � 15:5 sampled each Ts ¼ 1 s. The periodicity

property of the FFTmeans that the resulting FFT coefficients correspond to awaveform that is the periodic
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Figure 2.32

Signals and spectra illustrating the computation of the DFT. (a) Signal to be sampled and its spectrum

ðt ¼ 1 sÞ. (b) Sampled signal and its spectrum ( fs ¼ 1 Hz). (c) Windowed, sampled signal and its spectrum

T 	 4 s). (d)Sampled signal spectrumandcorrespondingperiodic repetitionof the sampled,windowedsignal.
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extension of this exponential waveform. (Figure 2.33). The frequency extent of the FFT is 0; fs 1�1=Nð Þ½ �
with the frequencies above fs=2 corresponding to negative frequencies.

% file: c2ce3
%
clf
tau ¼ 2;
Ts ¼ 1;
fs ¼ 1/Ts;
ts ¼ -15.5:Ts:15.5;
N ¼ length(ts);
fss ¼ 0:fs/N:fs-fs/N;
xss ¼ exp(-abs(ts)/tau);
Xss ¼ fft(xss);
t ¼ -15.5:.01:15.5;
f ¼ 0:.01:fs-fs/N;
X ¼ 2*fs*tau./(1þ(2*pi*f*tau).^2);
subplot(2,1,1), stem(ts, xss)
hold on
subplot(2,1,1), plot(t, exp(-abs(t)/tau), ’–’), xlabel(’t, s’), ylabel
(’Signal & samples’),...
legend(’x(nT_s)’, ’x(t)’)
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Figure 2.33

(a) x tð Þ ¼ exp �jtj=tð Þ and samples taken each Ts ¼ 1 s for t ¼ 2 s. (b)Magnitude of the 32-point FFTof

the sampled signal comparedwith the Fourier transformofx tð Þ. The spectral plots deviate from each other

around fs=2 due to aliasing.
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subplot(2,1,2), stem(fss, abs(Xss))
hold on
subplot(2,1,2), plot(f, X, ’–’), xlabel(’f, Hz’), ylabel(’FFT and Fourier
transform’)
legend(‘|tX_k|’. ’|X(f)|’)

&

Summary
1. Two general classes of signals are deterministic and random. The former can

bewritten as a completely known function of time,whereas the amplitudes of

random signals must be described probabilistically.

2. A periodic signal of period T0 is one for which x tð Þ ¼ x tþ T0ð Þ for all t.
3. A single-sided spectrum for a rotating phasor ~x tð Þ ¼ Ae j 2pf0tþ uð Þ shows A

(amplitude) and u (phase) versus f (frequency). The real, sinusoidal signal

corresponding to this phasor is obtained by taking the real part of ~x tð Þ: A
double-sided spectrum results if we think of formingx tð Þ ¼ 1

2
~x tð Þþ 1

2
~x 
 tð Þ.

Graphs of amplitude and phase (two plots) of this rotating phasor sum versus

f are known as two-sided amplitude and phase spectra, respectively. Such

spectral plots are referred to as frequency-domain representations of the

signal Acos 2pf0tþ uð Þ.
4. The unit impulse function, d tð Þ, can be thought of as a zero-width, infinite-

height pulse with unity area. The sifting property,
Ð¥
�¥ x lð Þd l�t0ð Þdl ¼

x t0ð Þ, where x tð Þ is continuous at t ¼ t0, is a generalization of the defining

relation for a unit impulse. The unit step function u tð Þ is the integral of a unit
impulse.

5. A signal x tð Þ for which E ¼ Ð¥�¥ jx tð Þj2 dt is finite is called an energy signal.
If x tð Þ is such that P ¼ limT!¥ð1=2TÞ

Ð T
�T jx tð Þj2dt is finite, the signal is

known as a power signal. Example signals may be either or neither.

6. Aset of orthogonal functions,f1 tð Þ;f2 tð Þ; . . . ;fN tð Þ, can be used as a series
approximation of the form

xa tð Þ ¼
XN
n¼0

Xnfn tð Þ

for a signal x tð Þ, which has finite energy in the interval t0; t0þ Tð Þ. The ISE
between xa tð Þ and x tð Þ is minimized if the coefficients are chosen as

Xn ¼ 1

cn

ðt0 þT

t0

x tð Þf 
n tð Þdt

where ðt0 þT0

t0

fn tð Þf 
m tð Þdt ¼ cndnm; cn ¼ real constant

Summary 95

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


For a complete set of fn tð Þs, the ISE approaches zero as N approaches

infinity, and Parseval�s theorem then holds:ðt0 þT

t0

jx tð Þj2 dt ¼
X¥
n ¼ 0

cnjXnj2

7. If fn tð Þ ¼ e jnv0t, n ¼ 0; �1; �2; . . . ; where v0 ¼ 2p=T0 and T0 is the ex-

pansion interval, is used in an orthogonal function series, the result is the

complex exponential Fourier series. If x tð Þ is periodic with period T0, the

exponential Fourier series represents x tð Þ exactly for all t, except at points of

discontinuity.

8. For exponential Fourier series of real signals, the Fourier coefficients obey

Xn ¼ X 
�n, which implies that jXnj ¼ jX�nj and ___=Xn ¼ �____=X�n . Plots of jXnj
and ___=Xn versus nf0 are referred to as the discrete, double-sided amplitude

and phase spectra, respectively, of x tð Þ. If x tð Þ is real, the amplitude

spectrum is even and the phase spectrum is odd as functions of nf0.

9. Parseval�s theorem for periodic signals is

1

T0

ð
T0

jx tð Þj2 dt ¼
X¥
n¼�¥

jXnj2

10. The Fourier transform of a signal x tð Þ is

X fð Þ ¼
ð¥
�¥

x tð Þe�j2pft dt

and the inverse Fourier transform is

x tð Þ ¼
ð¥
�¥

X fð Þe j2pft df

For real signals, jX fð Þj ¼ jX �fð Þj and _____=X fð Þ ¼ �______=X �fð Þ.
11. Plots of jX fð Þj and _____=X fð Þ versus f are referred to as the double-sided

amplitude and phase spectra, respectively, ofx tð Þ. As functions of frequency,
the amplitude spectrum of a real signal is even and its phase spectrum is odd.

12. The energy of a signal isð¥
�¥
jx tð Þj2 dt ¼

ð¥
�¥
jX fð Þj2df

This is known as Rayleigh�s energy theorem. The energy spectral density of a

signal isG fð Þ ¼ jX fð Þj2. It is the density of energywith frequency of the signal.
13. The convolution of two signals, x1 tð Þ and x2 tð Þ, is

x tð Þ ¼ x1 
 x2 ¼
ð¥
�¥

x1 lð Þx2 t�lð Þdl ¼
ð¥
�¥

x1 t�lð Þx2 lð Þdl

The convolution theorem of Fourier transforms states that X fð Þ ¼
X1 fð ÞX2 fð Þ, where X fð Þ, X1 fð Þ, and X2 fð Þ are the Fourier transforms of

x tð Þ, x1 tð Þ, and x2 tð Þ, respectively.
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14. The Fourier transform of a periodic signal can be obtained formally by

Fourier transforming its exponential Fourier series term by term using

Ae j2pf0t$Ad f � f0ð Þ, even though, mathematically speaking, Fourier

transforms of power signals do not exist.

15. The power spectrum S fð Þ of a power signal x tð Þ is a real, even, nonnegative
function that integrates to give total average power: hx2 tð Þi ¼Ð¥
�¥ S fð Þdf ;where hw tð Þi/limT!¥ð1=2TÞ

Ð T
�T w tð Þdt: The time-average

autocorrelation function of a power signal is defined as R tð Þ ¼
hx tð Þx tþ tð Þi. The Wiener–Khinchine theorem states that S fð Þ and R tð Þ
are Fourier transform pairs.

16. A linear system, denoted operationally as HðÞ, is one for which superposition

holds; that is, if y1 ¼ H x1ð Þ and y2 ¼ H x2ð Þ, then H a1x1þð a2x2Þ ¼
a1y1þa2y2, where x1 and x2 are inputs and y1 and y2 are outputs (the time

variable t is suppressed for simplicity). A system is fixed, or time invariant, if,

given y tð Þ ¼ H x tð Þ½ �, the input x t�t0ð Þ results in the output y t�t0ð Þ.
17. The impulse response h tð Þ of a linear, time-invariant (LTI) system is

its response to an impulse applied at t ¼ 0: h tð Þ ¼ H d tð Þ½ �. The output of

an LTI system to an input x tð Þ is given by y tð Þ ¼ h tð Þ 
 x tð Þ ¼Ð¥
�¥ h tð Þx t�tð Þdt:

18. A causal system is one which does not anticipate its input. For such an LTI

system, h tð Þ ¼ 0 for t < 0. A stable system is one for which every bounded

input results in a bounded output. An LTI system is stable if and only ifÐ¥
�¥ jh tð Þjdt < ¥.

19. The frequency-response function H fð Þ of an LTI system is the Fourier

transform of h tð Þ. The Fourier transform of the system output y tð Þ due to an
input x tð Þ is Y fð Þ ¼ H fð ÞX fð Þ, where X fð Þ is the Fourier transform of the

input. jH fð Þj ¼ jH �fð Þj is called the amplitude response of the system, and

_____=H fð Þ ¼ �______=H �fð Þ is called the phase response.

20. For a fixed linear systemwith a periodic input, the Fourier coefficients of the

output are given by Yn ¼ H nf0ð ÞXn, where Xn represents the Fourier coeffi-

cients of the input.

21. Input and output spectral densities for a fixed linear system are related

by

Gy fð Þ ¼ jH fð Þj2Gx fð Þ ðenergy signalsÞ
Sy fð Þ ¼ jH fð Þj2Sx fð Þ ðpower signalsÞ

22. A system is distortionless if its output looks like its input except for a time

delay and amplitude scaling: y tð Þ ¼ H0x t�t0ð Þ. The frequency response

function of a distortionless system is H fð Þ ¼ H0e
�j2pft0 . Such a system�s

amplitude response is jH fð Þj ¼ H0 and its phase response is

_____=H fð Þ ¼ �2pt0f over the band of frequencies occupied by the input. Three
types of distortion that a system may introduce are amplitude, phase (or

delay), and nonlinear, depending on whether jH fð Þj 6¼ constant, _____=H fð Þ 6¼
� constant�f , or the system is nonlinear, respectively. Two other important
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properties of a linear system are the group and phase delays. These are

defined by

Tg fð Þ ¼ � 1

2p

du fð Þ
df

and Tp fð Þ ¼ � u fð Þ
2pf

respectively, in which u fð Þ is the phase response of the LTI system. Phase

distortionless systems have equal group and phase delays (constant).

23. Ideal filters are convenient in communication system analysis, even though

they are unrealizable. Three types of ideal filters are lowpass, bandpass, and

highpass. Throughout their passband, ideal filters have constant amplitude

response and linear phase response. Outside their passbands, ideal filters

perfectly reject all spectral components of the input. In the stop band the

phase response is arbitrary.

24. Approximations to ideal filters are Butterworth, Chebyshev, and Bessel

filters. The first two are attempts at approximating the amplitude response of

an ideal filter, and the latter is an attempt to approximate the linear phase

response of an ideal filter.

25. An inequality relating the duration T of a pulse and its single-sided

bandwidth W is W 	 1=2T . Pulse risetime TR and signal bandwidth are

related approximately by W ¼ 1=2TR. These relationships hold for the

lowpass case. For bandpass filters and signals, the required bandwidth is

doubled, and the risetime is that of the envelope of the signal.

26. The sampling theoremfor lowpass signals of bandwidthW states that a signal can

be perfectly recovered by lowpass filtering from sample values taken at a rate of

fs > 2W samples per second. The spectrum of an impulse-sampled signal is

Xd fð Þ ¼ fs
X¥
n¼�¥

X f�nfsð Þ
where X fð Þ is the spectrum of the original signal. For bandpass signals, lower

sampling rates than specified by the lowpass sampling theoremmay be possible.

27. TheHilbert transform bx tð Þ of a signalx tð Þ corresponds to a�90T phase shift

of all the signal�s positive-frequency components. Mathematically,

bx tð Þ ¼
ð¥
�¥

x lð Þ
p t�lð Þ dl

In the frequency domain, bX fð Þ ¼ �jðsgn f ÞX fð Þ, where sgn f is the signum

function, X fð Þ ¼ = x tð Þ½ �, and X̂ fð Þ ¼ = bx tð Þ½ �. The Hilbert transform of

cos ðv0tÞ is sin ðv0tÞ, and the Hilbert transform of sin ðv0tÞ is �cos ðv0tÞ.
The power (or energy) in a signal and itsHilbert transform are equal. A signal

and its Hilbert transform are orthogonal in the range �¥;¥ð Þ. If m tð Þ is a
lowpass signal and c tð Þ is a highpass signal with nonoverlapping spectra,bm tð Þc tð Þ ¼ m tð Þbc tð Þ
The Hilbert transform can be used to define the analytic signal

z tð Þ ¼ x tð Þ � j bx tð Þ
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Themagnitude of the analytic signal, jz tð Þj, is the real envelope of the signal.
The Fourier transform of an analytic signal, Z fð Þ, is identically zero for f<0
or f>0, respectively, depending on whether the þ sign or � sign is chosen

for the imaginary part of z tð Þ.
28. The complex envelope ~x tð Þ of a bandpass signal is defined by

x tð Þþ j bx tð Þ ¼ ~x tð Þe j2pf0t

where f0 is the reference frequency for the signal. Similarly, the complex

envelope ~h tð Þ of the impulse response of a bandpass system is defined by

h tð Þþ jbh tð Þ ¼ ~h tð Þe j2pf0t

The complex envelope of the bandpass system output is conveniently

obtained in terms of the complex envelope of the output which can be

found from either of the operations

~y tð Þ ¼ ~h tð Þ 
 ~x tð Þ
or

~y tð Þ ¼ =�1 ~H fð Þ~X fð Þ �
where ~H fð Þ and ~X fð Þ are the Fourier transforms of ~h tð Þ and ~x tð Þ, respec-
tively. The actual (real) output is then given by

y tð Þ ¼ 1

2
Re y~ tð Þe j2pf0t �

29. The DFT of a signal sequence xnf g is defined as

Xk ¼
XN�1
n¼0

xne
j2pnk=N ¼ DFT xnf g½ �; k ¼ 0; 1; . . . ;N�1

and the inverse DFT can be found from

xn ¼ 1

N
DFT X 
k

� � � 

; k ¼ 0; 1; . . . ;N�1

The DFT can be used to digitally compute spectra of sampled signals and to

approximate operations carried out by the normal Fourier transform, for

example, filtering.

Further Reading

Bracewell (1986) is a text concerned exclusively with Fourier theory and applications. Ziemer et al.

(1998) and Kamen and Heck (2007) are devoted to continuous and discrete signal and system theory and

provide background for this chapter.
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Problems

Section 2.1

2.1. Sketch the single-sided and double-sided ampli-

tude and phase spectra of the following signals:

a. xa tð Þ ¼ 10 cos 4ptþp=8ð Þ
þ 6 sin 8ptþ 3p=4ð Þ:

b. xb tð Þ ¼ 8 cos 2ptþp=3ð Þ
þ 4 cos 6ptþp=4ð Þ:

c. xc tð Þ ¼ 2 sin 4ptþp=8ð Þþ 12 sin 10ptð Þ:
2.2. A signal has the double-sided amplitude and phase

spectra shown in Figure 2.34. Write a time-domain ex-

pression for the signal.

2.3. The sum of two or more sinusoids may or may not

be periodic depending on the relationship of their separate

frequencies. For the sum of two sinusoids, let the frequen-

cies of the individual terms be f1 and f2, respectively. For

the sum to be periodic, f1 and f2 must be commensurable;

i.e., theremust be a number f0 contained in each an integral

number of times. Thus, if f0 is the largest such number,

f1 ¼ n1f0 and f2 ¼ n2f0

where n1 and n2 are integers; f0 is the fundamental

frequency. Which of the signals given below are periodic?

Find the periods of those that are periodic.

a. x1 tð Þ ¼ 2 cos 2tð Þþ 4 sin 6ptð Þ:
b. x2 tð Þ ¼ cos 6ptð Þþ 7 cos 30ptð Þ:
c. x3 tð Þ ¼ cos 4ptð Þþ 9 sin 21ptð Þ:
d. x4 tð Þ ¼ 2 cos 4ptð Þþ 5 cos 6ptð Þþ 6 sin 17ptð Þ:

2.4. Sketch the single-sided and double-sided ampli-

tude and phase spectra of

a. xa tð Þ ¼ 5 cos 12pt�p=6ð Þ:
b. xb tð Þ ¼ 3 sin 12ptð Þþ 4 cos 16ptð Þ:
c. xc tð Þ ¼ 4 cos 8ptð Þ cos 12ptð Þ:

Hint: use anð appropriate trigonometric identity to

write as the sum of cosines:Þ
d. xd tð Þ ¼ 8 sin 2ptð Þ cos2 5ptð Þ:

Hint: use appropriate trigonometric identities:ð Þ
2.5.

a. Show that the function de tð Þ sketched in Figure 2.4
(b) has unity area.

b. Show that

de tð Þ ¼ e�1e�t=eu tð Þ
has unity area. Sketch this function for e ¼ 1; 1

2
; and 1

4
.

Comment on its suitability as an approximation for the unit

impulse function.

c. Show that a suitable approximation for the unit

impulse function as e! 0 is given by

de tð Þ ¼ e�1
�
1� jtj

e

�
; jtj � e

0; otherwise

8><>:
2.6. Use the properties of the unit impulse function

given after (2.14) to evaluate the following relations.

a.
Ð¥
�¥ t2þ sin 2ptð Þ½ �d 2t�5ð Þdt:

b.
Ð 10þ
�10� t2þ 1ð Þ P¥

n¼�¥ d t�5nð Þ �
dt:

(Note:10þ means just to the right of 10;�10� means just

to the left of �10.)

Amplitude

4

2

20–2–4 4
f

Phase

–2 42–4
f

4
π–

2
π

2
π–

4
π

Figure 2.34
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c. 10d tð Þ þ A dd tð Þ=dt ¼ Bd tð Þ þ 5 dd tð Þ=dt;
find A and B:

d.
Ð 11
2

e�4ptþ tan 10ptð Þ½ �d 3tþ 6ð Þdt:
e.
Ð¥
�¥ cos 8ptð Þþ e�2t½ � d2d t� 2ð Þ=dt2½ � dt:

2.7. Which of the following signals are periodic and

which are aperiodic? Find the periods of those which are

periodic. Sketch all signals.

a. x1 tð Þ ¼ cos 5ptð Þþ sin 7ptð Þ:
b. x2 tð Þ ¼P¥

n¼0 L t�2nð Þ:
c. x3 tð Þ ¼P¥

n¼�¥ L t�2nð Þ:
d. x4 tð Þ ¼ sin 3tð Þþ cos 2ptð Þ:
e. x5 tð Þ ¼P¥

n¼�¥ P t�3nð Þ:
f. x6 tð Þ ¼P¥

n¼0 P t�3nð Þ:
2.8. Write the signal x tð Þ ¼ sin 6ptð Þþ 2 cos 10ptð Þ as

a. The real part of a sum of rotating phasors.

b. A sum of rotating phasors plus their complex

conjugates.

c. From your results in parts (a) and (b), sketch the

single-sided and double-sided amplitude and phase spectra

of x tð Þ.

Section 2.2

2.9. Find the normalized power for each signal below

that is a power signal and the normalized energy for each

signal that is an energy signal. If a signal is neither a power

signal nor an energy signal, so designate it. Sketch each

signal (a is a positive constant).

a. x1 tð Þ ¼ 2 cos 4ptþ 2p=3ð Þ:
b. x2 tð Þ ¼ e�atu tð Þ:
c. x3 tð Þ ¼ eatu �tð Þ:
d. x4 tð Þ ¼ a2þ t2ð Þ�1=2:
e. x5 tð Þ ¼ e�ajtj:

f. x6 ¼ e�atu tð Þ�e�a t�1ð Þu t�1ð Þ:
2.10. Classify each of the following signals as an energy

signal or a power signal by calculating the energy E or the

power P (A; u; v; and t are positive constants).

a. Aj sin vtþ uð Þj:
b. At=

ffiffiffiffiffiffiffiffiffiffiffi
tþ jt
p

; j ¼ ffiffiffiffiffiffiffi�1p
:

c. Ate�t=tu tð Þ:
d. P t=tð ÞþP t=2tð Þ:

2.11. Sketch each of the following periodic waveforms

and compute their average powers.

a. x1 tð Þ ¼P¥
n¼�¥ P t�6nð Þ=3½ �:

b. x2 tð Þ ¼P¥
n¼�¥ L t�5nð Þ=2½ �:

c. x3 tð Þ ¼P¥
n¼�¥ L t�3nð Þ=2½ �u t�3nð Þ:

d. x4 tð Þ ¼ 2 sin 5ptð Þ cos 5ptð Þ:
(Hint: use an appropriate trigonometric identy to simplify.

2.12. For each of the following signals, determine both

the normalized energy and power. (Note: 0 and ¥ are

possible answers.)

a. x1 tð Þ ¼ 6e �3þ j4pð Þtu tð Þ:
b. x2 tð Þ ¼ P t�3ð Þ=2½ � þP t�3ð Þ=6½ �:
c. x3 tð Þ ¼ 7e j6ptu tð Þ:
d. x4 tð Þ ¼ 2 cos 4ptð Þ:

2.13. Show that the following are energy signals. Sketch

each signal

a. x1 tð Þ ¼ P t=12ð Þ cos 6ptð Þ
b. x2 tð Þ ¼ e�jtj=3

c. x3 tð Þ ¼ 2u tð Þ�2u t�8ð Þ
d. x4 tð Þ ¼ Ð t�¥ u lð Þdl�2 Ð t�10�¥ u lð Þdl

þ Ð t�20�¥ u lð Þdl
Hint: Consider theð integral of a step function:Þ

Section 2.3

2.14.

a. Fill in the steps for obtaining (2.33) from (2.32).

b. Obtain (2.34) from (2.33).

c. Given the set of orthogonal functions

fn tð Þ ¼ P
4 t� 2n�1ð ÞT=8½ �

T

� �
; n ¼ 1; 2; 3; 4

sketch and dimension accurately these functions.

d. Approximate the ramp signal

x tð Þ ¼ t

T
P

t�T=2
T

� �
by a generalized Fourier series using this set.

e. Do the same for the set

fn tð Þ ¼ P
2 t� 2n�1ð ÞT=4½ �

T

� �
; n ¼ 1; 2

f. Compute the integral-squared error for both part

(b) and part (c). What do you conclude about the depen-

dence of eN on N?
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Section 2.4

2.15. Using the uniqueness property of the Fourier series,

find exponential Fourier series for the following signals (f0
is an arbitrary frequency):

a. x1 tð Þ ¼ sin2 2pf0tð Þ:
b. x2 tð Þ ¼ cos 2pf0tð Þþ sin 4pf0tð Þ:
c. x3 tð Þ ¼ sin 4pf0tð Þ cos 4pf0tð Þ:
d. x4 tð Þ ¼ cos3 2pf0tð Þ:

Hint: Use appropriate trigonometric identities and Euler�s
theorem.

2.16. Expand the signal x tð Þ ¼ 2t2 in a complex expo-

nential Fourier series over the interval jtj � 2. Sketch the

signal to which the Fourier series converges for all t.

2.17. If Xn ¼ jXnjexp j___=Xn
 �

are the Fourier coefficients

of a real signal, x tð Þ, fill in all the steps to show that:

a. jXnj ¼ jX�nj and ___=Xn ¼ � ____=X�n :

b. Xn is a real, even function of n for x tð Þ even.
c. Xn is imaginary and an odd function of n for x tð Þ

odd.

d. x tð Þ ¼ �x tþ T0=2ð Þ (half wave odd symmetry)

implies that Xn ¼ 0; n even.

2.18. Obtain thecomplexexponentialFourier seriescoef-

ficients for the(a)pulse train, (b)half-rectifiedsinewave, (c)

full-rectified sine wave, and (d) triangular waveform as

given in Table 2.1.

2.19. Find the ratio of the power contained in a pulse train

for jnf0j � t�1 to the total power for each of the following
cases:

a. t=T0 ¼ 1
2
:

b. t=T0 ¼ 1:
5

c. t=T0 ¼ 1
10
:

d. t=T0 ¼ 1
20
:

Hint: You can save work by noting the spectra are even

about f ¼ 0.

2.20.

a. If x tð Þ has the Fourier series

x tð Þ ¼
X¥
n¼�¥

Xne
j2pnf0t

and y tð Þ ¼ x t�t0ð Þ, show that

Yn ¼ Xne
�j2pnf0t0

where the Yn are the Fourier coefficients for y tð Þ.
b. Verify the theorem proved in part (a) by examining

the Fourier coefficients for x tð Þ ¼ cos v0tð Þ and y tð Þ ¼
sin v0tð Þ.
Hint:Whatdelay, t0,will convert a cosine into a sine.Use the

uniqueness property to write down the corresponding Four-

ier series.

2.21. Use the Fourier series expansions of periodic

square wave and triangular wave signals to find the sum

of the following series:

a. 1� 1
3
þ 1

5
� 1

7
þ : � � �

b. 1þ 1
9
þ 1

25
þ 1

49
þ : � � �

Hint: Write down the Fourier series in each case

and evaluate it for a particular, appropriately chosen

value of t.

2.22. Using the results given in Table 2.1 for the Fourier

coefficients of a pulse train, plot the double-sided amplitude

and phase spectra for the waveforms shown in Figure 2.35.

Hint: Note that xb tð Þ ¼ �xa tð ÞþA. How is a sign change

and DC level shift manifested in the spectrum of the

waveform?

2.23.

a. Plot the single-sided and double-sided amplitude

and phase spectra of the square wave shown in

Figure 2.36(a).

b. Obtain an expression relating the complex expo-

nential Fourier series coefficients of the triangular

xa(t) xb(t)

A

tt

A
1
4

T0
1
4

T0

T0 2T0 T0 2T000

(b)(a)

Figure 2.35
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waveform shown in Figure 2.36(b) and those of xa tð Þ
shown in Figure 2.35(a).

Hint: Note that xa tð Þ ¼ K dxb tð Þ=dt½ �, where K is an

appropriate scale change.

c. Plot the double-sided amplitude and phase spectra

for xb tð Þ.
Section 2.5

2.24. Sketch each signal given below and find its

Fourier transform. Plot the amplitude and phase spectra

of each signal (A and t are positive constants).

a. x1 tð Þ ¼ Aexp �t=tð Þu tð Þ:
b. x2 tð Þ ¼ Aexp t=tð Þu �tð Þ:
c. x3 tð Þ ¼ x1 tð Þ�x2 tð Þ:
d. x4 tð Þ ¼ x1 tð Þþ x2 tð Þ: Does it check with the

answer found using Fourier transform tables?

2.25.

a. Use the Fourier transform of

x tð Þ ¼ exp �atð Þu tð Þ�exp atð Þu �tð Þ

where a > 0 to find the Fourier transform of the

signum function defined as

sgn t ¼ 1; t > 0

�1; t < 0

�
(Hint: Take the limit as a! 0 of the Fourier transform

found.)

b. Use the result above and the relation u tð Þ ¼
1
2
sgn tþ 1½ � to find the Fourier transform of the unit step.

c. Use the integration theorem and the Fourier

transform of the unit impulse function to find the Fourier

transform of the unit step. Compare the result with part (b).

2.26. Using only the Fourier transform of the unit im-

pulse function and the differentiation theorem, find the

Fourier transforms of the signals shown in Figure 2.37.

2.27.

a. Write the signals of Figure 2.37 as the linear

combination of two delayed triangular functions. That is,

write xa tð Þ ¼ a1L t�t1ð Þ=T1ð Þþ a2L t�t2ð Þ=T2ð Þ by find-
ing appropriate values for a1; a2; t1; t2; T1; and T2. Do

similar expressions for all four signals shown in

Figure 2.37.

b. Given the Fourier transform pairL tð Þ$ sinc2 f ,

find their Fourier transforms using the superposition,

scale change, and time delay theorems. Compare your

results with the answers obtained in Problem 2.26.

2.28.

a. GivenP tð Þ$ sinc f , find the Fourier transforms

of the following signals using the frequency translation

followed by the time delay theorem.

i. x1 tð Þ ¼ P t�1ð Þ exp j4p t�1ð Þ½ �.
ii. x2 tð Þ ¼ P tþ 1ð Þ exp j4p tþ 1ð Þ½ �.

b. Repeat the above, but now applying the

time delay followed by the frequency translation

theorem.

2.29. By applying appropriate theorems and using the

signals defined in Problem 2.28, find Fourier transforms of

the following signals:

a. xa tð Þ ¼ 1
2
x1 tð Þþ 1

2
x1 �tð Þ:

b. xb tð Þ ¼ 1
2
x2 tð Þþ 1

2
x2 �tð Þ:

2.30. Use the scale change and time delay theorems

along with the transform pairs P tð Þ$ sinc f ,

sinc t$ P fð Þ, L tð Þ$ sinc2f , and sinc2t$L fð Þ to

find Fourier transforms of the following:

a. xa tð Þ ¼ P t�1ð Þ=2½ �:
b. xb tð Þ ¼ 2 sinc½2 t�1ð Þ�:
c. xc tð Þ ¼ L t�2ð Þ=8½ �:
d. xd tð Þ ¼ sinc2½ t�3ð Þ=4�:

A

–A
T0–T0 2T0

t

xa(t)

0

(b)(a)

B

B

T0–T0 2T0
t

xb(t)

0

Figure 2.36
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2.31. Without actually computing them, but using appro-

priate sketches, tell if the Fourier transforms of the signals

given below are real, imaginary, or neither; even, odd, or

neither. Give your reasoning in each case.

a. x1 tð Þ ¼ P tþ 1=2ð Þ�P t�1=2ð Þ:
b. x2 tð Þ ¼ P t=2ð ÞþP tð Þ:
c. x3 tð Þ ¼ sin 2ptð ÞP tð Þ:
d. x4 tð Þ ¼ sin 2ptþp=4ð ÞP tð Þ:
e. x5 tð Þ ¼ cos 2ptð ÞP tð Þ:
f. x6 tð Þ ¼ 1=½1þ t=5ð Þ4�:

2.32. Using the sifting property of the delta function, find

the Fourier transforms of the signals given below. Discuss

how any symmetry properties a given signal may have

affect its Fourier transform in terms of being real or purely

imaginary.

a. x1 tð Þ ¼ d tþ 4ð Þþ 3d tð Þþ d t�4ð Þ:
b. x2 tð Þ ¼ 2d tþ 8ð Þ�2d t�8ð Þ:
c. x3 tð Þ ¼P4

n¼0 n2þ 1ð Þd t�2nð Þ:
Hint:Write out the terms for this signal:ð Þ

d. x4 tð Þ ¼P2
n¼�2 n

2d t�2nð Þ
Hint: Write out the terms for this signal:ð Þ
2.33. Find and plot the energy spectral densities of

the following signals. Dimension your plots fully. Use

appropriate Fourier transform pairs and theorems.

a. x1 tð Þ ¼ 2e�3jtj:

b. x2 tð Þ ¼ 20 sinc 30tð Þ:
c. x3 tð Þ ¼ 4P 5tð Þ:
d. x4 tð Þ ¼ 4P 5tð Þ cos 40ptð Þ:

2.34. Evaluate the following integrals using Rayleigh�s
energy theorem (Parseval�s theorem for Fourier

transforms).

a. I1 ¼
Ð¥
�¥

df

a2þ 2pfð Þ2½ � :
Hint: Consider the Fourierð transform of exp �atð Þu tð ÞÞ:

b. I2 ¼
Ð¥
�¥ sinc2 tfð Þdf :

c. I3 ¼
Ð¥
�¥

df

a2 þ 2pfð Þ2½ �2 :
d. I4 ¼

Ð¥
�¥ sinc4 tfð Þdf :

2.35. Obtain and sketch the convolutions of the follow-

ing signals.

2

1.5

1

0.5

0
0 1 2 3 4

t, s

x a
(t

)
1

0.5

0

–0.5

–1
0 1 2 3 4

t, s

x b
(t

)

2

1.5

1

0.5

0
0 1 2 3 4

t, s

x c
(t

)

2

1.5

1

0.5

0
0 1 2 3 4

t, s

x d
(t

)
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a. y1 tð Þ ¼ e�atu tð Þ 
 P t�tð Þ;
a and t positive constants:

b. y2 tð Þ ¼ P t=2ð ÞþP tð Þ½ � 
 P tð Þ:
c. y3 tð Þ ¼ e�ajtj 
 P tð Þ; a > 0:

d. y4 tð Þ ¼ x tð Þ 
 u tð Þ, where x tð Þ is any energy

signal [you will have to assume a particular form for

x tð Þ to sketch this one, but obtain the general result before
doing so].

2.36. Obtain the Fourier transforms of the signals

y1 tð Þ; y2 tð Þ, and y3 tð Þ in Problem 2.35 using the convolu-

tion theorem of Fourier transforms.

2.37. Given the following signals, suppose that all en-

ergy spectral components outside the bandwidth jf j � W

are removed by an ideal filter, while all energy spectral

components within this bandwidth are kept. Find the ratio

of output energy to total energy in each case. (a; b, and t
are positive constants.)

a. x1 tð Þ ¼ e�atu tð Þ.
b. x2 tð Þ ¼ P t=tð Þ (requires numerical integration).

c. x3 tð Þ ¼ e�atu tð Þ�e�btu tð Þ b ¼ 2að Þ.
2.38.

a. Find the Fourier transform of the cosine pulse

x tð Þ ¼ AP
2t

T0

� �
cos v0tð Þ

where v0 ¼ 2p
T0
. Express your answer in terms of a

sum of sinc functions. ProvideMATLAB plots of x tð Þ and
X fð Þ [note that X fð Þ is real].

b. Obtain the Fourier transform of the raised cosine

pulse

y tð Þ ¼ 1

2
AP

2t

T0

� �
1þ cos 2v0tð Þ½ �

Provide MATLAB plots of y tð Þ and Y fð Þ [note that

Y fð Þ is real]. Compare with part (a).

c. Use (2.151) with the result of part (a) to find the

Fourier transform of the half-rectified cosine wave.

2.39. Provide plots of the following functions of time and

find their Fourier transforms. Tell which Fourier trans-

forms should be real and even functions of f and which

ones should be imaginary and odd functions of f. Do your

results bear this out?

a. x1 tð Þ ¼ L t
2


 �þP t
2


 �
.

b. x2 tð Þ ¼ P t=2ð Þ�L tð Þ.
c. x3 tð Þ ¼ P tþ 1

2


 ��P t� 1
2


 �
.

d. x4 tð Þ ¼ L t�1ð Þ�L tþ 1ð Þ.

Section 2.6

2.40.

a. Obtain the time-average autocorrelation function

of x tð Þ ¼ 3þ 6 cos 20ptð Þþ 3 sin 20ptð Þ.
(Hint: Combine the cosine and sine terms into a single

cosine with a phase angle.)

b. Obtain the power spectral density of the signal of

part (a). What is its total average power?

2.41. Find the power spectral densities and average

powers of the following signals.

a. x1 tð Þ ¼ 2 cos 20ptþp=3ð Þ.
b. x2 tð Þ ¼ 3 sin 30ptð Þ.
c. x3 tð Þ ¼ 5 sin 10pt�p=6ð Þ.
d. x4 tð Þ ¼ 3 sin 30ptð Þþ 5 sin 10pt�p=6ð Þ.

2.42. Find the autocorrelation functions of the signals

having the following power spectral densities. Also give

their average powers.

a. S1 fð Þ ¼ 4d f�15ð Þþ 4d f þ 15ð Þ.
b. S2 fð Þ ¼ 9d f�20ð Þþ 9d f þ 20ð Þ.
c. S3 fð Þ ¼ 16d f�5ð Þþ 16d f þ 5ð Þ.
d. S4 fð Þ ¼ 9d f�20ð Þþ 9d f þ 20ð Þ

þ 16d f�5ð Þþ 16d f þ 5ð Þ.
2.43. By applying the properties of the autocorrelation

function, determine whether the following are acceptable

for autocorrelation functions. In each case, tell why or why

not.

a. R1 tð Þ ¼ 2 cos 10ptð Þþ cos 30ptð Þ.
b. R2 tð Þ ¼ 1þ 3 cos 30ptð Þ.
c. R3 tð Þ ¼ 3 cos 20ptþp=3ð Þ.
d. R4 tð Þ ¼ 4L t=2ð Þ.
e. R5 tð Þ ¼ 3P t=6ð Þ.
f. R6 tð Þ ¼ 2 sin 10ptð Þ.

2.44. Find the autocorrelation functions corresponding

to the following signals:

a. x1 tð Þ ¼ 2 cos 10ptþp=3ð Þ.
b. x2 tð Þ ¼ 2 sin 10ptþp=3ð Þ.
c. x3 tð Þ ¼ Re 3 exp j10ptð Þþ 4j exp j10ptð Þð Þ.
d. x4 tð Þ ¼ x1 tð Þþ x2 tð Þ.

2.45. Show that theR tð Þ of Example 2.20 has the Fourier

transform given there. Plot the power spectral density.

Section 2.7

2.46. A system is governed by the differential equation

(a, b, and c are nonnegative constants)
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dy

dt
þ ay ¼ b

dx

dt
þ cx

a. Find H fð Þ.
b. Find and plot jH fð Þj and _____=H fð Þ for c ¼ 0.

c. Find and plot jH fð Þj and _____=H fð Þ for b ¼ 0.

2.47. For each of the following transfer functions, de-

termine the unit impulse response of the system.

a. H1 fð Þ ¼ 1
ð5þ j2pf Þ

b. H2 fð Þ ¼ j2pf
ð5þ j2pf Þ

(Hint: Use long division first.)

c. H3 fð Þ ¼ e�j6pf
ð5þ j2pf Þ.

d. H4 fð Þ ¼ 1�e�j6pf
ð5þ j2pf Þ.

2.48. A filter has frequency-response function

H fð Þ ¼ P f=2Bð Þ and input x tð Þ ¼ 2W sinc 2Wtð Þ.
a. Find the output y tð Þ for W < B.

b. Find the output y tð Þ for W > B.

c. In which case does the output suffer distortion?

What influenced your answer?

2.49. A second-order active bandpass filter (BPF),

known as a bandpass Sallen–Key circuit, is shown in

Figure 2.38.

a. Show that the frequency-response function of this

filter is given by

H jvð Þ ¼ Kv0=
ffiffiffi
2
p
 �

jvð Þ
�v2þ v0=Qð Þ jvð Þþv2

0

; v ¼ 2pf

where
v0 ¼

ffiffiffi
2
p

RCð Þ�1

Q ¼
ffiffiffi
2
p

4�K

K ¼ 1þ Ra

Rb

b. Plot jH fð Þj.
c. Show that the 3-dB bandwidth in hertz of the filter

can be expressed as B ¼ f0=Q, where f0 ¼ v0=2p.

d. Design a BPF using this circuit with center fre-

quency f0 ¼ 1000Hz and 3-dB bandwidth of 300 Hz. Find

values of Ra;Rb;R, and C that will give these desired

specifications.

2.50. For the two circuits shown in Figure 2.39, deter-

mine H fð Þ and h tð Þ. Sketch accurately the amplitude

and phase responses. Plot the amplitude response in dec-

ibels. Use a logarithmic frequency axis.

2.51. Using the Paley–Wiener criterion, show that

jH fð Þj ¼ exp �bf 2
 �
is not a suitable amplitude response for a causal, linear

time-invariant filter.

2.52. Determine whether the filters with impulse

responses given below are BIBO stable.

a. h1 tð Þ ¼ exp �atð Þ cos 2pf0tð Þu tð Þ:
b. h2 tð Þ ¼ cos 2pf0tð Þu tð Þ:
c. h3 tð Þ ¼ t�1u t�1ð Þ:

Output

–

+

Input

Vi R C

C R

Ra

Rb

R

Figure 2.38
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2.53. Given a filter with frequency-response function

H fð Þ ¼ 5

4þ j 2pfð Þ
and input x tð Þ ¼ e�3tu tð Þ, obtain and plot accurately the

energy spectral densities of the input and output.

2.54. A filter with frequency-response function

H fð Þ ¼ 3P
f

26

� �
has, as an input, a half-rectified cosine waveform of

fundamental frequency 10 Hz. Determine the output of

the filter.

2.55. Another definition of bandwidth for a signal is the

90% energy containment bandwidth. For a signal with

energy spectral density G fð Þ ¼ jX fð Þj2, it is given by B90

in the relation

0:9ETotal ¼
ðB90

�B90

G fð Þ df ¼ 2

ðB90

0

G fð Þ df

ETotal ¼
ð¥
�¥

G fð Þ df ¼ 2

ð¥
0

G fð Þ df

ObtainB90 for the following signals if it is defined. If it

is not defined for a particular signal, state why it is not.

a. x1 tð Þ ¼ e�atu tð Þ, where a is a positive constant.

b. x2 tð Þ ¼ 2W sinc 2Wtð Þ.

c. x3 tð Þ ¼ P t=tð Þ (requires numerical integration).

2.56. An ideal quadrature phase shifter has

H fð Þ ¼ e�jp=2; f > 0

eþ jp=2; f < 0

�
Find the outputs for the following inputs:

a. x1 tð Þ ¼ exp j100ptð Þ.
b. x2 tð Þ ¼ cos 100ptð Þ.
c. x3 tð Þ ¼ sin 100ptð Þ.
d. x4 tð Þ ¼ P t=2ð Þ.

2.57. A filter has amplitude response and phase shift

shown in Figure 2.40. Find the output for each of the inputs

given below. For which cases is the transmission distor-

tionless? Tell what type of distortion is imposed for the

others.

a. x1 tð Þ ¼ cos 48ptð Þþ 5 cos 126ptð Þ.
b. x2 tð Þ ¼ cos 126ptð Þþ 0:5 cos 170ptð Þ.
c. x3 tð Þ ¼ cos 126ptð Þþ 3 cos 144ptð Þ.
d. x4 tð Þ ¼ cos 10ptð Þþ 4 cos 50ptð Þ.

2.58. Determine and accurately plot, on the same set of

axes, the group delay and the phase delay for the systems

with unit impulse responses:

a. h1 tð Þ ¼ 3e�5tu tð Þ.
b. h2 tð Þ ¼ 5e�3tu tð Þ�2e�5tu tð Þ.

R1 R1

R2

R2 L

L

x(t) y(t) y(t)

+

–

x(t)

+

–

+

–

Figure 2.39
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2.59. A system has the frequency-response function

H fð Þ ¼ 4pþ j2pf

8pþ j2pf

Determine and accurately plot the group delay and the

phase delay.

2.60. The nonlinear system defined by

y tð Þ ¼ x tð Þþ 0:1x2 tð Þ
has an input signal with the bandpass spectrum

X fð Þ ¼ 4P
f�20
6

� �
þ 4P

f þ 20

6

� �
Sketch the spectrum of the output, labeling all important

frequencies and amplitudes.

2.61.

a. Consider a nonlinear device with the transfer

characteristic y tð Þ ¼ x tð Þþ 0:1x3 tð Þ. The frequency of

the input signal x tð Þ ¼ cos 2000ptð Þ is to be tripled by

passing the signal through the nonlinearity and then

through a second-order BPF with a frequency response

function approximated by

H fð Þ ¼ 1

1þ j2Q f�3000ð Þ þ
1

1þ j2Q f þ 3000ð Þ
Neglecting negative frequency contributions, compute, in

terms of the parameter Q, the total harmonic distortion

(THD) at the tripler output, defined as

THD ¼ total power in all output distortion terms

power in desired output component
� 100%

Note that the desired output component in this case is the

third harmonic of the input frequency.

b. Find the minimum value of Q that will result in

THD � 0:001%.

2.62. A nonlinear device has y tð Þ ¼ a0þ a1x tð Þ
þ a2x

2 tð Þþ a3x
3 tð Þ. If x tð Þ ¼ cos ðv1tÞþ cos ðv2Þt, list

all the frequency components present in y tð Þ. Discuss the
use of this device as a frequency multiplier.

2.63. Find the impulse response of an ideal highpass

filter with the frequency response function

HHP fð Þ ¼ H0 1�P f

2W

� �� �
e�j2pft0

2.64. Verify the pulsewidth–bandwidth relationship of

(2.250) for the following signals. Sketch each signal and its

spectrum.

a. x tð Þ ¼ A exp �t2=2t2ð Þ (Gaussian pulse)

b. x tð Þ ¼ A exp �ajtjð Þ; a > 0

(double-sided exponential).

2.65.

a. Show that the frequency response function of a

second-order Butterworth filter is

H fð Þ ¼ f 23

f 23 þ j
ffiffiffi
2
p

f3f�f 2

where f3 is the 3-dB frequency in hertz.

b. Find an expression for the group delay of this filter.

Plot the group delay as a function of f=f3.

c. Given that the step response for a second-order

Butterworth filter is

ys tð Þ ¼ 1�exp � 2pf3tffiffiffi
2
p

� �
cos

2pf3tffiffiffi
2
p

� ���
þ sin

2pf3tffiffiffi
2
p

��� �
u tð Þ

where u tð Þ is the unit step function, find the 10% to 90%

risetime in terms of f3.

Section 2.8

2.66. A sinusoidal signal of frequency 1 Hz is to be

sampled periodically.

a. Find the maximum allowable time interval

between samples.

b. Samples are taken at 1
3
-s intervals (i.e., at a rate of

fs ¼ 3 sps). Construct a plot of the sampled signal spec-

trum that illustrates that this is an acceptable sampling rate

to allow recovery of the original sinusoid.

c. The samples are spaced 2
3
s apart. Construct a plot

of the sampled signal spectrum that shows what the

recovered signal will be if the samples are passed through

a lowpass filter such that only the lowest frequency spectral

lines are passed.

2.67. A flat-top sampler can be represented as the block

diagram of Figure 2.41.

a. Assuming T � Ts, sketch the output for a typical

x tð Þ.
b. Find the spectrum of the output, Y fð Þ, in terms of

the spectrum of the input, X fð Þ. Determine relationship

between t and Ts required to minimize distortion in the

recovered waveform?

2.68. Figure 2.42 illustrates so-called zero-order-hold

reconstruction.
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a. Sketch y tð Þ for a typical x tð Þ. Under what condi-
tions is y tð Þ a good approximation to x tð Þ?

b. Find the spectrum of y tð Þ in terms of the spectrum

of x tð Þ. Discuss the approximation of y tð Þ to x tð Þ in terms

of frequency-domain arguments.

2.69. Determine the range of permissible cutoff frequen-

cies for the ideal lowpass filter used to reconstruct the signal

x tð Þ ¼ 10 cos 600ptð Þ cos2 2400ptð Þ
which is sampled at 6000 samples per second. Sketch X fð Þ
and Xd fð Þ. Find the minimum allowable sampling

frequency.

2.70. Given the bandpass signal spectrum shown in

Figure 2.43, sketch spectra for the following sampling

rates fs and indicate which ones are suitable: (a) 2B, (b)

2.5B, (c) 3B, (d) 4B, (e) 5B, (f) 6B.

Section 2.9

2.71. Using appropriate Fourier transform theorems and

pairs, express the spectrum Y fð Þ of
y tð Þ ¼ x tð Þ cos v0tð Þþ bx tð Þ sin v0tð Þ

in terms of the spectrum X fð Þ of x tð Þ, where X fð Þ is
lowpass with bandwidth

B < f0 ¼ v0

2p
Sketch Y fð Þ for a typical X fð Þ.

2.72. Show that x tð Þ and bx tð Þ are orthogonal for the

following signals v0 > 0ð Þ:
a. xa tð Þ ¼ sin v0tð Þ
b. xb tð Þ ¼ 2 cos v0tð Þþ sin v0tð Þ cos 2v0tð Þ
c. xc tð Þ ¼ A exp jv0tð Þ

2.73. Assume that the Fourier transform of x tð Þ is real
and has the shape shown in Figure 2.44. Determine and

plot the spectrum of each of the following signals:

a. x1 tð Þ ¼ 2
3
x tð Þþ 1

3
j bx tð Þ.

b. x2 tð Þ ¼ 3
4
x tð Þþ 3

4
j bx tð Þ �

ej2pf0t; f0  W .

c. x3 tð Þ ¼ 2
3
x tð Þþ 1

3
j bx tð Þ �

ej2pWt.

d. x4 tð Þ ¼ 2
3
x tð Þ� 1

3
j bx tð Þ �

ejpWt.

2.74. Consider the signal

x tð Þ ¼ 2W sinc 2Wtð Þ cos 2pf0tð Þ; f0 > W

a. Obtain and sketch the spectrum of xp tð Þ ¼
x tð Þþ j bx tð Þ.

b. Obtain and sketch the spectrum of xn tð Þ ¼
x tð Þ�j bx tð Þ.

c. Obtain and sketch the spectrum of the complex

envelope ~x tð Þ, where the complex envelope is defined by

(2.310).

d. Find the complex envelope ~x tð Þ.

y(t) = x (t) * ∏[(t –     )/  ]τ τ1
2δ

δ

δx(t) x (t)

(t – nTs)Σ
n=–∞

∞

h(t) = ∏[(t –     )/  ]τ τ1
2

×

Figure 2.41

y(t)δΣ
m=–∞

∞
h(t) = ∏[(t –       )/    ]1

2 Ts Tsx(mTs)   (t – mTs)x (t) =δ

Figure 2.42

X( f )

f (Hz)

A

–3B –2B –B 0 B 2B 3B

Figure 2.43

X( f )

A

W
f

–W 0

Figure 2.44
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2.75. Consider the input

x tð Þ ¼ P t=tð Þ cos 2p f0þDfð Þt½ �; Df � f0

to a filter with impulse response

h tð Þ ¼ ae�at cos 2pf0tð Þu tð Þ

Find the output using complex envelope techniques.

Computer Exercises19

2.1.

a. Write a computer program to obtain the general-

ized Fourier series for an energy signal using the ortho-

normal basis set

Fn tð Þ ¼ P t�0:5�nð Þ; n ¼ 0; 1; 2; � � � ; T�1;
T integer

where the signal extent is 0; Tð Þwith T assumed to be integer

valued. Your program should compute the generalized Four-

ier coefficients and the integral-squared error and should

make a plot of the signal being approximated and the

approximating waveform. Test your program with the signal

e�2tu tð Þ; 0 � t � 5.

b. Repeat part (a) with the orthonormal basis set

Fn tð Þ ¼
ffiffiffi
2
p

P
t�0:5�n

0:5

� �
; n ¼ 0; 1; 2; � � � ; 2T�1;

T integer

What is the ISE now?

c. Can you deduce whether the basis set resulting

from repeatedly halving the pulse width and doubling the

amplitude is complete?

2.2. Generalize the computer program of Computer Ex-

ample 2.1 to evaluate the coefficients of the complex

exponential Fourier series of several signals. Include a

plot of the amplitude and phase spectrum of the signal for

which the Fourier series coefficients are evaluated. Check

by evaluating the Fourier series coefficients of a square

wave. Plot the square-wave approximation by summing

the series through the seventh harmonic.

2.3. Write a computer program to evaluate the coeffi-

cients of the complex exponential Fourier series of a

signal by using the FFT. Check it by evaluating the

Fourier series coefficients of a square-wave and compar-

ing your results with Computer Exercise 2.2.

2.4. How would you use the same approach as in Com-

puter Exercise 2.3 to evaluate the Fourier transform of a

pulse-type signal. How do the two outputs differ? Compute

an approximation to the Fourier transform of a square pulse

signal 1 unit wide and compare with the theoretical result.

2.5. Write a computer program to find the bandwidth of a

lowpass energy signal that contains a certain specified

percentage of its total energy, for example, 95%. In other

words, write a program to find W in the equation

EW ¼
ÐW
0

Gx fð Þ dfÐ¥
0
Gx fð Þ df � 100%

with EW set equal to a specified value, whereGX fð Þ is the
energy spectral density of the signal.

2.6. Write a computer program to find the time duration

of a lowpass energy signal that contains a certain specified

percentage of its total energy, for example, 95%. In other

words, write a program to find T in the equation

ET ¼
Ð T
0
jx tð Þj2 dtÐ¥

0
jx tð Þj2 dt� 100%

with ET set equal to a specified value, where it is assumed

that the signal is zero for t < 0.

2.7. Use a MATLAB program like Computer Example

2.2 to investigate the frequency response of the Sallen–Key

circuit for various Q-values.

19When doing these computer exercises, we suggest that the

student make use of a mathematics package such as MA-

TLAB. Considerable time will be saved in being able to use

the plotting capability of MATLAB. You should strive to use

the vector capability of MATLAB as well.
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CHAPTER3

BASIC MODULATION TECHNIQUES

Before an information-bearing signal is transmitted through a communication channel, some type

of modulation process is typically utilized to produce a signal that can easily be accommodated by

the channel. In this chapter wewill discuss various types ofmodulation techniques. Themodulation

process commonly translates an information-bearing signal, usually referred to as the message

signal, to a new spectral location depending upon the intended frequency for transmission. For

example, if the signal is to be transmitted through the atmosphere or free space, frequency

translation is necessary to raise the signal spectrum to a frequency that can be radiated efficiently

with antennas of reasonable size. If more than one signal utilizes a channel, modulation allows

translation of different signals to different spectral locations, thus allowing the receiver to select the

desired signal. Multiplexing allows two or more message signals to be transmitted by a single

transmitter and received by a single receiver simultaneously. The logical choice of a modulation

technique for a specific application is influenced by the characteristics of the message signal, the

characteristics of the channel, the performance desired from the overall communication system, the

use to be made of the transmitted data, and the economic factors that are always important in

practical applications.

The two basic types of analog modulation are continuous-wave modulation and pulse modula-

tion. In continuous-wave modulation, a parameter of a high-frequency carrier is varied propor-

tionally to the message signal such that a one-to-one correspondence exists between the parameter

and themessage signal. The carrier is usually assumed to be sinusoidal, but aswill be illustrated, this

is not a necessary restriction. For a sinusoidal carrier, a general modulated carrier can be

represented mathematically as

xc(t) ¼ A(t) cos[2p fctþf(t)] (3:1)

where fc is the carrier frequency. Since a sinusoid is completely specified by its amplitude, A(t), and

instantaneous phase, 2p f cþf(t), it follows that once the carrier frequency is specified, only two

parameters are candidates to be varied in themodulationprocess: the instantaneous amplitude A(t)

and the phase deviation f(t). When the amplitude A(t) is linearly related to the modulating signal,

the result is linear modulation. Letting f(t) or the time derivative of f(t) be linearly related to the

modulating signal yields phase or frequency modulation, respectively. Collectively, phase and

frequency modulation are referred to as angle modulation, since the instantaneous phase angle of

the modulated carrier conveys the information.
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In analog pulse modulation, the message waveform is sampled at discrete time intervals,

and the amplitude, width, or position of a pulse is varied in one-to-one correspondencewith the

values of the samples. Since the samples are taken at discrete times, the periods between the

samples are available for other uses, such as insertion of samples from other message signals.

This is referred to as time-division multiplexing. If the value of each sample is quantized and

encoded, pulse-code modulation results. We also briefly consider delta modulation. Pulse-

code modulation and delta modulation are digital rather than analog modulation techniques,

but they are considered in this chapter for completeness and as an introduction to the digital

systems that are to be considered in following chapters of this book.

n 3.1 LINEAR MODULATION

Ageneral linearlymodulated carrier is represented by setting the instantaneous phase deviation

f tð Þ in (3.1) equal to zero. Thus, a linearly modulated carrier is represented by

xc tð Þ ¼ A tð Þ cos 2p fctð Þ ð3:2Þ
in which the carrier amplitude A tð Þ varies in one-to-one correspondence with the message

signal. We next discuss several different types of linear modulation as well as techniques that

can be used for demodulation.

3.1.1 Double-Sideband Modulation

Double-sideband (DSB) modulation results when A tð Þ is proportional to the message signal

m tð Þ. Thus the output of a DSB modulator can be represented as

xc tð Þ ¼ Acm tð Þ cos 2p fctð Þ ð3:3Þ
which illustrates that DSB modulation is simply the multiplication of a carrier, Ac cos 2p fctð Þ,
by the message signal. It follows from the modulation theorem for Fourier transforms that the

spectrum of a DSB signal is given by

Xc fð Þ ¼ 1

2
AcM f þ fcð Þþ 1

2
AcM f� fcð Þ ð3:4Þ

The process of DSBmodulation is described in Figure 3.1. Figure 3.1(a) illustrates a DSB

system and shows that aDSB signal is demodulated bymultiplying the received signal, denoted

by xr tð Þ, by the demodulation carrier 2 cos 2p fctð Þ and lowpass filtering. For the idealized

system that we are considering here, the received signal xr tð Þ is identical to the transmitted

signal xc tð Þ. The output of the multiplier is

d tð Þ ¼ 2Ac m tð Þ cos 2p fctð Þ½ � cos 2p fctð Þ ð3:5Þ
or

d tð Þ ¼ Acm tð ÞþAcm tð Þ cos 4p fctð Þ ð3:6Þ
where we have used the trigonometric identity 2 cos2 x ¼ 1þ cos 2x.

The time-domain signals are shown in Figure 3.1(b) for an assumed m tð Þ. The message

signal m tð Þ forms the envelope, or instantaneous magnitude, of xc tð Þ. The waveform for d tð Þ
can be best understood by realizing that since cos2 2p fctð Þ is nonnegative for all t, d tð Þ is
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positive if m tð Þ is positive and d tð Þ is negative if m tð Þ is negative. Also note that m tð Þ
(appropriately scaled) forms the envelope of d tð Þ and that the frequency of the sinusoid under
the envelope is 2 fc rather than fc.

The spectra of the signalsm tð Þ, xc tð Þ, and d tð Þ, are shown in Figure 3.1(c) for an assumed

M fð Þ having a bandwidth W . The spectra M f þ fcð Þ and M f� fcð Þ are simply the message

spectrum translated to f ¼ � fc. The portion ofM f� fcð Þ above the carrier frequency is called

(b)

(a)

d(
t

t

t

t

)
x c

(t
)

m
(t

)

× ×
m(t) d(t)xc(t)

Ac cos ct

xr(t) yD(t)

Modulator Demodulator

Lowpass
filter

ω 2 cos ctω

M(f )

Xc(f )

D(f )

f
W−W

f

f

fc

M(f − fc)M(f + fc)

−fc

−2fc 2fc

0

0

0
(c)

Figure 3.1

Double-sideband modulation.

(a) System. (b) Waveforms.

(c) Spectra.
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the upper sideband (USB), and the portion below the carrier frequency is called the lower

sideband (LSB). Since the carrier frequency fc is typically much greater than the bandwidth of

the message signal W , the spectra of the two terms in d tð Þ do not overlap. Thus d tð Þ can be

lowpass filtered and amplitude scaled by Ac to yield the demodulated output yD tð Þ. In practice,
any amplitude scaling factor can be used since, as we saw in Chapter 2, multiplication by a

constant does not induce amplitude distortion and the amplitude can be adjusted as desired. A

volume control is an example. Thus, for convenience, Ac is usually set equal to unity at the

demodulator output. For this case, the demodulated output yD tð Þwill equal the message signal

m tð Þ. The lowpass filter that removes the term at 2 fc must have a bandwidth greater than or

equal to the bandwidth of the message signal W . We will see in Chapter 7 that when noise is

present, this lowpass filter, known as the postdetection filter, should have the smallest possible

bandwidth sinceminimizing the bandwidth of the postdetection filter is important for removing

out-of-band noise or interference.

Wewill see later that DSB is 100%power efficient because all of the transmitted power lies

in the sidebands and it is the sidebands that carry the message signal m tð Þ. This makes DSB

modulation power efficient and therefore attractive. Demodulation of DSB is difficult,

however, because the presence of a demodulation carrier, phase coherent with the carrier

used for modulation at the transmitter, is required at the receiver. Demodulation utilizing a

coherent reference is known as synchronous or coherent demodulation. The generation of a

phase coherent demodulation carrier can be accomplished using a variety of techniques,

including the use of aCostas phase-locked loop to be considered in Section 3.4. The use of these

techniques complicate receiver design. In addition, careful attention is required to ensure that

phase errors in the demodulation carrier are minimized since even small phase errors can result

in serious distortion of the demodulated message waveform. This effect will be thoroughly

analyzed in Chapter 7, but a simplified analysis can be carried out by assuming a demodulation

carrier in Figure 3.1(a) of the form2 cos 2p fctþ u tð Þ½ �, where u tð Þ is a time-varying phase error.

Applying the trigonometric identity 2 cosx cosy ¼ cos xþ yð Þþ cos x� yð Þ, yields
d tð Þ ¼ Acm tð Þ cos u tð ÞþAcm tð Þ cos 4p fctþ u tð Þ½ � ð3:7Þ

which, after lowpass filtering and amplitude scaling to remove the carrier amplitude, becomes

yD tð Þ ¼ m tð Þ cos u tð Þ ð3:8Þ
assuming, once again, that the spectra of the two terms of d tð Þ do not overlap. If the phase error
u tð Þ is a constant, the effect of the phase error is an attenuation of the demodulated message

signal. This does not represent distortion, since the effect of the phase error can be removed by

amplitude scaling unless u tð Þ is p=2. However, if u tð Þ is time varying in an unknown and

unpredictable manner, the effect of the phase error can be serious distortion of the demodulated

output.

A simple technique for generating a phase coherent demodulation carrier is to square the

received DSB signal, which yields

x2r tð Þ ¼ A2
cm

2 tð Þ cos2 2p fctð Þ
¼ 1

2
A2
cm

2 tð Þþ 1

2
A2
cm

2 tð Þ cos 4p fctð Þ ð3:9Þ

Ifm tð Þ is a power signal,m2 tð Þ has a nonzeroDCvalue. Thus, by themodulation theorem,x2r tð Þ
has a discrete frequency component at 2 fc, which can be extracted from the spectrum of x2r tð Þ
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using a narrowband bandpass filter. The frequency of this component can be divided by 2 to

yield the desired demodulation carrier. Later we will discuss a convenient technique for

implementing the required frequency divider.

The analysis of DSB illustrates that the spectrum of a DSB signal does not contain a

discrete spectral component at the carrier frequency unlessm tð Þ has a DC component. For this

reason, DSB systems with no carrier frequency component present are often referred to as

suppressed carrier systems. However, if a carrier component is transmitted alongwith theDSB

signal, demodulation can be simplified. The received carrier component can be extracted using

a narrowband bandpass filter and can be used as the demodulation carrier. If the carrier

amplitude is sufficiently large, the need for generating a demodulation carrier can be

completely avoided. This naturally leads to the subject of amplitude modulation.

3.1.2 Amplitude Modulation

Amplitude modulation results when a DC bias A is added to m tð Þ prior to the modulation

process. The result of theDCbias is that a carrier component is present in the transmitted signal.

For AM, the transmitted signal is typically defined as

xc tð Þ ¼ Ac 1þ amn tð Þ½ � cos 2p fctð Þ ð3:10Þ
in which Ac is the amplitude of the unmodulated carrier Accos 2p fctð Þ,mn tð Þ is the normalized

message signal to be discussed in the following paragraph, and the parameter a � 1 is known as

the modulation index.1 We shall assume that m tð Þ has zero DC value so that the carrier

component in the transmitted signal arises entirely from the bias. The time-domain representa-

tion of AM is illustrated in Figure 3.2(a) and (b), and the block diagram of the modulator for

producing AM is shown in Figure 3.2(c).

An AM signal can be demodulated using the same coherent demodulation technique that

was used for DSB (see Problem 3.2). However, the use of coherent demodulation negates the

advantage of AM. The advantage of AM over DSB is that a very simple technique, known as

envelope detection or envelope demodulation, can be used. An envelope demodulator is

implemented as shown in Figure 3.3(a). It can be seen from Figure 3.3(b) that as the carrier

frequency is increased, the envelope, defined as Ac 1þ amn tð Þ½ �, becomes easier to observe.

More importantly, it also follows from observation of Figure 3.3(b) that, if the envelope of the

AM signal Ac 1þ amn tð Þ½ � goes negative, distortion will result in the demodulated signal

assuming that envelope demodulation is used. The normalizedmessage signal is defined so that

this distortion is prevented. Thus, for a ¼ 1, the minimum value of 1þ amn tð Þ is zero. In order
to ensure that the envelope is nonnegative for all t we require that 1þmn tð Þ 	 0 or,

equivalently, mn tð Þ 	 �1 for all t. The normalized message signal mn tð Þ is therefore found
by dividing m tð Þ by a positive constant so that the condition mn tð Þ 	 �1 is satisfied. This

normalizing constant is jminm tð Þj. In many cases of practical interest, such as speech or music

signals, the maximum and minimum values of the message signal are equal. We will see why

this is true when we study probability and random signals in Chapters 5 and 6.

In order for the envelope detection process to operate properly, the RC time constant of the

detector, shown in Figure 3.3(a), must be chosen carefully. The appropriate value for the time

constant is related to the carrier frequency and to the bandwidth of m tð Þ. In practice,

1The parameter a as used here is sometimes called the negative modulation factor. Also, the quantity a� 100% is

often referred to as the percent modulation.
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Figure 3.2

Amplitude modulation. (a) Message signal. (b) Modulator output for a < 1. (c) Modulator.
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Envelope detection. (a) Circuit. (b) Waveforms. (c) Effect of RC time constant.
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satisfactory operation requires a carrier frequency of at least 10 times the bandwidth of m tð Þ,
W . Also, the cutoff frequency of the RC circuit must lie between fc and W and must be well

separated from both. This is illustrated in Figure 3.3(c).

All information in the modulator output is contained in the sidebands. Thus, the carrier

component of (3.10), Ac cosvct, is wasted power as far as information transfer is concerned.

This fact can be of considerable importance in an environment where power is limited and

can completely preclude the use of AM as a modulation technique in power-limited

applications.

From (3.10) we see that the total power contained in the AM modulator output is

hx2c tð Þi ¼ hA2
c 1þ amn tð Þ½ �2 cos2 2p fctð Þi ð3:11Þ

where h � i denotes the time average value. Ifmn tð Þ is slowly varying with respect to the carrier

hx2c tð Þi ¼
�
A2
c 1þ amn tð Þ½ �2

�
1

2
þ 1

2
cos 4p fctð Þ

��
¼
�
1

2
A2
c 1þ 2amn tð Þþ a2m2

n tð Þ �� ð3:12Þ

Assuming mn tð Þ to have zero average value and taking the time average term-by-term

gives

hx2c tð Þi ¼ 1

2
A2
c þ

1

2
A2
ca

2hm2
n tð Þi ð3:13Þ

The first term in the preceding expression represents the carrier power, and the second term

represents the sideband (information) power. The efficiency of the modulation process is

defined as the ratio of the power in the information-bearing signal (the sideband power) to the

total power in the transmitted signal. This is

Ef f ¼ a2hm2
n tð Þi

1þ a2hm2
n tð Þi ð3:14Þ

The efficiency is typically multiplied by 100 so that efficiency can be expressed as a percent.

If the message signal has symmetrical maximum and minimum values, such that

jminm tð Þj and jmaxm tð Þj are equal, then hm2
n tð Þi � 1. It follows that for a � 1, the maximum

efficiency is 50% and is achieved for square-wave-type message signals. Ifm tð Þ is a sinewave,
hm2

n tð Þi ¼ 1
2
and the efficiency is 33:3% for a ¼ 1. Note that if we allow themodulation index to

exceed 1, efficiency can exceed 50% and thatEf f ! 100% as a!¥. Values of a greater than 1,

as we have seen, preclude the use of envelope detection. Efficiency obviously declines rapidly

as the index is reduced below unity. If themessage signal does not have symmetrical maximum

and minimum values, then higher values of efficiency can be achieved (see Problem 3.6).

The main advantage of AM is that since a coherent reference is not needed for

demodulation as long as a � 1, the demodulator becomes simple and inexpensive. In many

applications, such as commercial radio, this fact alone is sufficient to justify its use.

The AMmodulator output xc tð Þ is shown in Figure 3.4 for three values of the modulation

index: a ¼ 0:5; a ¼ 1:0; and a ¼ 1:5. The message signal m tð Þ is assumed to be a unity

amplitude sinusoid with a frequency of 1 Hz. A unity amplitude carrier is also assumed. The

envelope detector output eo tð Þ, as identified in Figure 3.3, is also shown for each value of the
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modulation index. Note that for a ¼ 0:5 the envelope is always positive. For a ¼ 1:0 the

minimumvalue of the envelope is exactly zero. Thus, envelope detection can be used for both of

these cases. For a ¼ 1:5 the envelope goes negative and eo tð Þ, which is the absolute value of the
envelope, is a badly distorted version of the message signal.

EXAMPLE 3.1

In this examplewedetermine the efficiency and the output spectrum for anAMmodulator operatingwith a

modulation index of 0.5. The carrier power is 50W , and the message signal is

m tð Þ ¼ 4 cos 2p fmt�p

9

� �
þ 2 sin 4p fmtð Þ ð3:15Þ

The first step is to determine the minimum value ofm tð Þ. There are a number of ways to accomplish this.

Perhaps the easiest way is to simply plotm tð Þ and pick off theminimumvalue.MATLAB is very useful for

this purpose as shown in the following program.

(a)

(b)

(c)

3

0

–3

3

0

–3

3

0

–3

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

t

t

t

x c
(t

),
e 0

(t
)

x c
(t

),
e 0

(t
)

x c
(t

),
e 0

(t
)

Figure 3.4

Modulated carrier and envelope

detector outputs for various

values of the modulation index.

(a) a ¼ 0:5. (b) a ¼ 1:0. (c)
a ¼ 1:5.
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% File: c3ex1.m
fmt ¼ 0:0.0001:1;
m ¼ 4*cos(2*pi*fmt-pi/9) þ 2*sin(4*pi*fmt);
[minmessage,index] ¼ min(m);
plot(fmt,m,‘k’),
grid, xlabel(‘Normalized Time’), ylabel(‘Amplitude’)
minmessage, mintime ¼ 0.0001*(index-1)
% End of script file.

Executing the program yields the plot of the message signal, the minimum value of m tð Þ, and the

occurrence time for the minimum value as follows:

c3ex1
minmessage ¼ - 4.3642
mintime ¼ 0.4352

The message signal as generated by the MATLAB program is shown in Figure 3.5(a). Note that the time

axis is normalized by dividing by fm. As shown, the minimum value of m tð Þ is �4:364 and occurs at

fmt ¼ 0:435, as shown. The normalized message signal is therefore given by

mn tð Þ ¼ 1

4:364
4 cos 2p fmt�p

9

� �
þ 2 sin 4p fmtð Þ

h i
ð3:16Þ

or

mn tð Þ ¼ 0:9166 cos 2p fmt�p

9

� �
þ 0:4583 sin 4p fmtð Þ ð3:17Þ

The mean-square value of mn tð Þ is

hm2
n tð Þi ¼ 1

2
0:9166ð Þ2þ 1

2
0:4583ð Þ2 ¼ 0:5251 ð3:18Þ

Thus, the efficiency is

Ef f ¼ 0:25ð Þ 0:5251ð Þ
1þ 0:25ð Þ 0:5251ð Þ ¼ 0:116 ð3:19Þ

or 11.6%.

Since the carrier power is 50 W, we have

1

2
Acð Þ2 ¼ 50 ð3:20Þ

from which

Ac ¼ 10 ð3:21Þ
Also, since sinx ¼ cos x�p=2ð Þ, we can write xc tð Þ as

xc tð Þ ¼ 10 1þ 0:5 0:9166 cos 2p fmt�p

9

� �
þ 0:4583 cos 4p fmt�p

2

� �h in o
cos 2p fctð Þ ð3:22Þ

In order to plot the spectrum of xc tð Þ, we write the preceding equation as

xc tð Þ ¼ 10 cos 2p fctð Þ

þ 2:292

�
cos

�
2p fcþ fmð Þt�p

9

�
þ cos

�
2p fcþ fmð Þtþ p

9

��

þ 1:146

�
cos

�
2p fcþ 2 fmð Þt�p

2

�
þ cos

�
2p fcþ 2 fmð Þtþ p

2

�� ð3:23Þ
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Figure 3.5 (b) and (c) shows the amplitude and phase spectra of xc tð Þ: Note that the amplitude spectrum

has even symmetry about the carrier frequency and that the phase spectrum has odd symmetry about the

carrier frequency. Of course, since xc tð Þ is a real signal, the overall amplitude spectrum is also even about

f ¼ 0, and the overall phase spectrum is odd about f ¼ 0.
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Waveform and spectra for Example 3.1. (a)Message signal. (b) Amplitude spectrum ofmodulator output.

(c) Phase spectrum of modulator output.
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3.1.3 Single-Sideband Modulation

In our development of DSB, we saw that the USB and LSB have even amplitude and odd phase

symmetry about the carrier frequency. Thus transmission of both sidebands is not necessary,

since either sideband contains sufficient information to reconstruct the message signal m tð Þ.
Eliminationofoneof the sidebandsprior to transmission results in single sideband (SSB),which

reduces thebandwidthof themodulatoroutput from2W toW ,whereW is thebandwidthofm tð Þ.
However, this bandwidth savings is accompanied by a considerable increase in complexity.

On the following pages, two different methods are used to derive the time-domain

expression for the signal at the output of an SSB modulator. Although the two methods are

equivalent, they do present different viewpoints. In the first method, the transfer function of the

filter used to generate an SSB signal from a DSB signal is derived using the Hilbert transform.

The second method derives the SSB signal directly from m tð Þ using the results illustrated in

Figure 2.30 and the frequency-translation theorem.

The generation of an SSB signal by sideband filtering is illustrated in Figure 3.6. First, a

DSB signal, xDSB tð Þ, is formed. Sideband filtering of the DSB signal then yields an upper-

sideband or a lower-sideband SSB signal, depending on the filter passband selected.

The filtering process that yields lower-sideband SSB is illustrated in detail in Figure 3.7. A

lower-sideband SSB signal can be generated by passing aDSB signal through an ideal filter that

passes the LSB and rejects the USB. It follows from Figure 3.7(b) that the transfer function of

this filter is

HL fð Þ ¼ 1

2
sgn f þ fcð Þ� sgn f� fcð Þ½ � ð3:24Þ

f

f

f

f

fc – W

fc – W

fc + Wfc

fc f c +Wfc

0

0

XDSB( f )

xDSB (t) xSSB (t)

XSSB( f ); LSB XSSB( f ); USB

M( f )

m(t)

W0

0

(a)

(b)

Ac cos ctω

Sideband
filter

×

Figure 3.6

Generation of SSB by sideband filtering. (a) SSB modulator. (b) Spectra (single sided).
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Since the Fourier transform of a DSB signal is

XDSB fð Þ ¼ 1

2
AcM f þ fcð Þþ 1

2
ACM f� fcð Þ ð3:25Þ

the transform of the lower-sideband SSB signal is

Xc fð Þ ¼ 1

4
Ac M f þ fcð Þ sgn f þ fcð ÞþM f� fcð Þ sgn f þ fcð Þ½ �

� 1

4
Ac M f þ fcð Þ sgn f�fcð ÞþM f� fcð Þ sgn f� fcð Þ½ �

ð3:26Þ

which is

Xc fð Þ ¼ 1

4
Ac M f þ fcð ÞþM f� fcð Þ½ �

þ 1

4
Ac M f þ fcð Þ sgn f þ fcð Þ�M f� fcð Þ sgn f�fcð Þ½ �

ð3:27Þ

From our study of DSB, we know that

1

2
Acm tð Þ cos 2p fctð Þ $ 1

4
Ac M f þ fcð ÞþM f�fcð Þ½ � ð3:28Þ
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Figure 3.7

Generation of lower-sideband SSB. (a) Sideband

filtering process. (b) Generation of lower-side-

band filter.
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and from our study of Hilbert transforms in Chapter 2, we recall thatbm tð Þ $ �j sgn fð ÞM fð Þ
By the frequency-translation theorem, we have

m tð Þe�j2p fct $ M f � fcð Þ ð3:29Þ
Replacing m tð Þ by bm tð Þ in the previous equation yields

bm tð Þe�j2p fct $ �jM f � fcð Þsgn f � fcð Þ ð3:30Þ
Thus

=�1
�
1

4
Ac M f þ fcð Þsgn f þ fcð Þ�M f� fcð Þsgn f� fcð Þ½ �

�
¼ �Ac

1

4j
bm tð Þe�j2p fctþAc

1

4j
bm tð Þeþ j2p fct ¼ 1

2
Acbm tð Þ sin 2p fctð Þ ð3:31Þ

Combining (3.28) and (3.31), we get the general form of a lower-sideband SSB signal:)

xc tð Þ ¼ 1

2
Acm tð Þ cos 2p fctð Þþ 1

2
Acbm tð Þ sin 2p fctð Þ ð3:32Þ

A similar development can be carried out for upper-sideband SSB. The result is

xc tð Þ ¼ 1

2
Acm tð Þ cos 2p fctð Þ� 1

2
Acbm tð Þ sin 2p fctð Þ ð3:33Þ

which shows that LSB and USB modulators have the same defining equations except for the

sign of the term representing the Hilbert transform of the modulation. Observation of the

spectrum of an SSB signal illustrates that SSB systems do not have DC response.

The generation of SSB by the method of sideband filtering the output of DSB modulators

requires the use of filters that are very nearly ideal if low-frequency information is contained in

m tð Þ. Another method for generating an SSB signal, known as phase-shift modulation, is

illustrated in Figure 3.8. This system is a term-by-term realization of (3.32) or (3.33). Like the

ideal filters required for sideband filtering, the ideal wideband phase shifter, which performs

the Hilbert transforming operation, is impossible to implement exactly. However, since the

+
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+
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Figure 3.8

Phase-shift modulator.
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frequency at which the discontinuity occurs is f ¼ 0 instead of f ¼ fc, ideal phase shift devices

can be closely approximated.

An alternative derivation of xc tð Þ for an SSB signal is based on the concept of the analytic

signal. The positive-frequency portion of M fð Þ is given by

Mp fð Þ ¼ 1

2
= m tð Þþ jbm tð Þf g ð3:34Þ

and the negative-frequency portion of M fð Þ is given by

Mn fð Þ ¼ 1

2
= m tð Þ� jbm tð Þf g ð3:35Þ

By definition, an upper-sideband SSB signal is given in the frequency domain by

Xc fð Þ ¼ 1

2
AcMp f� fcð Þþ 1

2
AcMn f þ fcð Þ ð3:36Þ

Inverse Fourier-transforming yields

xc tð Þ ¼ 1

4
Ac m tð Þþ jbm tð Þ½ �e j2p fctþ 1

4
Ac m tð Þ�jbm tð Þ½ �e�j2p fct ð3:37Þ

which is

xc tð Þ ¼ 1

4
Acm tð Þ e j2p fctþ e�j2p fct

 �þ j
1

4
Acbm tð Þ e j2p fct�e�j2p fct

 �
¼ 1

2
Acm tð Þ cos 2p fctð Þ� 1

2
Acbm tð Þ sin 2p fctð Þ

ð3:38Þ

The preceding expression is clearly equivalent to (3.33).

The lower-sideband SSB signal is derived in a similar manner. By definition, for a lower-

sideband SSB signal,

Xc fð Þ ¼ 1

2
AcMp f þ fcð Þþ 1

2
AcMn f� fcð Þ ð3:39Þ

This becomes, after inverse Fourier-transforming,

xc tð Þ ¼ 1

4
Ac m tð Þþ jbm tð Þ½ �e�j2p fctþ 1

4
Ac m tð Þ� jbm tð Þ½ �e j2p fct ð3:40Þ

which can be written as

xc tð Þ ¼ 1

4
Acm tð Þ e j2p fctþ e�j2p fct

 ��j 1
4
Acbm tð Þ e j2p fct�e�j2p fct

 �
¼ 1

2
Acm tð Þ cos 2p fctð Þþ 1

2
Acbm tð Þ sin 2p fctð Þ

ð3:41Þ

This expression is clearly equivalent to (3.32). Figure 3.9(b) and (c) show the four signal spectra

used in this development: Mp f þ fcð Þ; Mp f� fcð Þ; Mn f þ fcð Þ, and Mn f� fcð Þ.
There are several methods that can be employed to demodulate SSB. The simplest

technique is to multiply xc tð Þ by a demodulation carrier and lowpass filter the result, as
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illustrated in Figure 3.1(a). We assume a demodulation carrier having a phase error u tð Þ that
yields

d tð Þ ¼ 1

2
Acm tð Þ cos 2p fctð Þ � 1

2
Acbm tð Þ sin 2p fctð Þ

� �
4 cos 2p fctþ u tð Þ½ �f g ð3:42Þ

where the factor of 4 is chosen formathematical convenience. The preceding expression can be

written as

d tð Þ ¼ Acm tð Þ cos u tð ÞþAcm tð Þ cos 4p fctþ u tð Þ½ �
�Acbm tð Þ sin u tð Þ � Acbm tð Þ sin 4p fctþ u tð Þ½ � ð3:43Þ

Lowpass filtering and amplitude scaling yield

yD tð Þ ¼ m tð Þ cos u tð Þ � bm tð Þ sin u tð Þ ð3:44Þ
for the demodulated output. Observation of (3.44) illustrates that for u tð Þ equal to zero, the

demodulated output is the desired message signal. However, if u tð Þ is nonzero, the output

consists of the sum of two terms. The first term is a time-varying attenuation of the message

signal and is the output present in aDSB system operating in a similarmanner. The second term

is a crosstalk term and can represent serious distortion if u tð Þ is not small.

Another useful technique for demodulating an SSB signal is carrier reinsertion, which is

illustrated in Figure 3.10. The output of a local oscillator is added to the received signal xr tð Þ.

M(f ) Mp(f )

Xc(f )

Xc(f )

Mn(f )

Mn(f  + fc)

Mp(f  + fc) Mn(f – fc)

Mp(f – fc)

– fc fc

– fc fc

f ff

f

f

WW–W 00 –W 0

(a)

(b)

(c)

Figure 3.9

Alternative derivation of SSB signals. (a) M fð Þ;Mp fð Þ, and Mn fð Þ. (b) Upper-sideband SSB signal.

(c) Lower-sideband SSB signal.

3.1 Linear Modulation 125

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


This yields

e tð Þ ¼ 1

2
Acm tð ÞþK

� �
cos 2p fctð Þ � 1

2
Acbm tð Þ sin 2p fctð Þ ð3:45Þ

which is the input to the envelope detector. The output of the envelope detector must next be

computed. This is slightly more difficult for signals of the form of (3.45) than for signals of the

form of (3.10) because both cosine and sine terms are present. In order to derive the desired

result, consider the signal

x tð Þ ¼ a tð Þ cos 2p fctð Þ�b tð Þ sin 2p fctð Þ ð3:46Þ
which can be represented as illustrated in Figure 3.11. Figure 3.11 shows the amplitude of the

direct component a tð Þ, the amplitude of the quadrature component b tð Þ, and the resultant R tð Þ.
It follows from Figure 3.11 that

a tð Þ ¼ R tð Þ cos u tð Þ and b tð Þ ¼ R tð Þ sin u tð Þ
This yields

x tð Þ ¼ R tð Þ cos u tð Þ cos 2p fctð Þ�sin u tð Þ sin 2p fctð Þ½ � ð3:47Þ
which is

x tð Þ ¼ R tð Þ cos 2p fctþ u tð Þ½ � ð3:48Þ
where

u tð Þ ¼ tan�1
b tð Þ
a tð Þ
� �

ð3:49Þ

The instantaneous amplitude R tð Þ, which is the envelope of the signal, is given by

R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 tð Þþ b2 tð Þ

p
ð3:50Þ

Figure 3.10

Demodulation using carrier reinsertion.
e(t)

Σ
yD(t)xr(t)

K cos ctω

Envelope
detector

Figure 3.11

Direct-quadrature signal representation.
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R(t)
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and will be the output of an envelope detector with x tð Þ on the input if a tð Þ and b tð Þ are slowly
varying with respect to cosvct:

A comparison of (3.45) and (3.50) illustrates that the envelope of an SSB signal, after

carrier reinsertion, is given by

yD tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Acm tð ÞþK

� �2
þ 1

2
Acbm tð Þ

� �2s
ð3:51Þ

which is the demodulated output yD tð Þ in Figure 3.10. If K is chosen large enough such that

1

2
Acm tð ÞþK

� �2
 1

2
Acbm tð Þ

� �2
the output of the envelope detector becomes

yD tð Þ ffi 1

2
Acm tð ÞþK ð3:52Þ

from which the message signal can easily be extracted. The development shows that carrier

reinsertion requires that the locally generated carrier must be phase coherent with the original

modulation carrier. This is easily accomplished in speech-transmission systems. The frequency

and phase of the demodulation carrier can be manually adjusted until intelligibility of the

speech is obtained.

EXAMPLE 3.2

As we saw in the preceding analysis, the concept of single sideband is probably best understood by using

frequency-domain analysis. However, the SSB time-domain waveforms are also interesting and are the

subject of this example. Assume that the message signal is given by

m tð Þ ¼ cos 2p f1tð Þ�0:4 cos 4p f1tð Þþ 0:9 cos 6p f1tð Þ ð3:53Þ
The Hilbert transform of m tð Þ isbm tð Þ ¼ sin 2p f1tð Þ�0:4 sin 4p f1tð Þþ 0:9 sin 6p f1tð Þ ð3:54Þ
These two waveforms are shown in Figures 3.12(a) and (b).

As we have seen, the SSB signal is given by

xc tð Þ ¼ Ac

2
m tð Þ cos 2p fctð Þ � bm tð Þ sin 2p fctð Þ½ � ð3:55Þ

with the choice of sign depending upon the sideband to be used for transmission.Using (3.46) to (3.50), we

can place xc tð Þ in the standard form of (3.1). This gives

xc tð Þ ¼ R tð Þ cos 2p fctþ u tð Þ½ � ð3:56Þ
where the envelope R tð Þ is

R tð Þ ¼ Ac

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 tð Þþ bm2

tð Þ
q

ð3:57Þ

and u tð Þ, which is the phase deviation of xc tð Þ, is given by

u tð Þ ¼ �tan�1 bm tð Þ
m tð Þ
� �

ð3:58Þ
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The instantaneous frequency of u tð Þ is therefore
d

dt
2p fctþ u tð Þ½ � ¼ 2p fc � d

dt
tan�1

bm tð Þ
m tð Þ
� �� �

ð3:59Þ

(a)
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(e)
t

t
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0

Figure 3.12

Time-domain signals for SSB system.

(a) Message signal. (b) Hilbert trans-

form of message signal. (c) Envelope

of SSB signal. (d)Upper-sidebandSSB

signal with message signal. (e) Lower-

sideband SSB signal with message

signal.
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From (3.57) we see that the envelope of the SSB signal is independent of the choice of the sideband.

The instantaneous frequency, however, is a rather complicated function of the message signal and also

depends upon the choice of sideband. We therefore see that the message signal m tð Þ affects both the

envelope and phase of the modulated carrier xc tð Þ. In DSB and AM the message signal affected only the

envelope of xc tð Þ.
The envelope of the SSB signal, R tð Þ, is shown in Figure 3.12(c). The upper-sideband SSB signal is

illustrated in Figure 3.12(d) and the lower-sideband SSB signal is shown in Figure 3.12(e). It is easily seen

that both the upper-sideband and lower-sideband SSB signals have the envelope shown in Figure 3.12(c).

The message signal m tð Þ is also shown in Figure 3.12 (d) and (e).

&

3.1.4 Vestigial-Sideband Modulation

Vestigial-sideband (VSB) modulation overcomes two of the difficulties present in SSB

modulation. By allowing a small amount, or vestige, of the unwanted sideband to appear at

the output of an SSBmodulator, the design of the sideband filter is simplified, since the need for

sharp cutoff at the carrier frequency is eliminated. In addition, aVSB systemhas improved low-

frequency response compared to SSB and can even have DC response. A simple example will

illustrate the technique.

EXAMPLE 3.3

For simplicity, let the message signal be the sum of two sinusoids:

m tð Þ ¼ A cos 2p f1tð ÞþB cos 2p f2tð Þ ð3:60Þ
This message signal is then multiplied by a carrier, cos 2p fctð Þ, to form a DSB signal

eDSB tð Þ ¼ 1

2
A cos 2p fc� f1ð Þt½ � þ 1

2
A cos 2p fcþ f1ð Þt½ �

þ 1

2
B cos 2p fc� f2ð Þt½ � þ 1

2
B cos 2p fcþ f2ð Þt½ �

ð3:61Þ

Figure 3.13(a) shows the single-sided spectrum of this signal. Prior to transmission a VSB filter is

used to generate the VSB signal. Figure 3.13(b) shows the assumed amplitude response of the VSB filter.

The phase response will be the subject of the next example. The skirt of the VSB filter must have the

symmetry about the carrier frequency as shown. Figure 3.13(c) shows the single-sided spectrum of the

VSB filter output. The spectrum shown in Figure 3.13(c) corresponds to the VSB signal

xc tð Þ ¼ 1

2
Ae cos 2p fc� f1ð Þt½ �

þ 1

2
A 1�eð Þ cos 2p fcþ f1ð Þt½ � þ 1

2
B cos 2p fcþ f2ð Þt½ �

ð3:62Þ

This signal can be demodulated bymultiplying by 4 cos 2p fctð Þ and lowpass filtering to remove the terms

about 2 fc. The result is

e tð Þ ¼ Ae cos 2p f1tð ÞþA 1�eð Þ cos 2p f1tð ÞþB cos 2p f2tð Þ ð3:63Þ
or, combining the first two terms in the preceding expression,

e tð Þ ¼ A cos 2p f1tð ÞþB cos 2p f2tð Þ ð3:64Þ
which is the assumed message signal.
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&

EXAMPLE 3.4

The preceding example demonstrated the required amplitude response of the VSB filter.We now consider

the phase response. Assume that theVSBfilter has the following amplitude and phase responses for f > 0:

H fc� f1ð Þ ¼ ee�jua H fcþ f1ð Þ ¼ 1�eð Þe�jub ; H fcþ f2ð Þ ¼ 1e�juc ð3:65Þ
The VSB filter input is the DSB signal that, in complex envelope form, can be expressed as

xDSB tð Þ ¼ Re
A

2
e�j2p f1tþ A

2
e j2p f1tþ B

2
e�j2p f2tþ B

2
e j2p f2t

� �
e j2p fct

� �
ð3:66Þ

Using the amplitude and phase characteristics of the VSB filter yields the VSB signal

xc tð Þ ¼ Re
A

2
ee�j 2p f1tþ uað Þ þ A

2
1�eð Þe j 2p f1t� ubð Þ þ B

2
e j 2p f2t� ucð Þ

� �
e j2p fct

� �
ð3:67Þ

Demodulation is accomplished by multiplying by 2e�j2p fct and taking the real part. This gives

e tð Þ ¼ Ae cos 2p f1tþ uað ÞþA 1�eð Þ cos 2p f1t�ubð ÞþB cos 2p f2t�ucð Þ ð3:68Þ
In order for the first two terms to combine as in (3.64), we must satisfy

ua ¼ �ub ð3:69Þ
which shows that the phase response must have odd symmetry about fc and, in addition, since e tð Þ is
real, the phase response of the VSB filter must also have odd phase response about f ¼ 0. With ua ¼ �ub

fc – f2 fc – f1 fc fc + f1 fc + f2
f

f

B
1
2 B

1
2A

1
2

(a)

A
1
2

A
1
2

0

fc – f2 fc – f1 fc fc + f1 fc + f2
(b)

0

f
fc – f2 fc – f1 fc fc + f1 fc + f2

(c)

0

1
1 –

H( f )

∋

∋

∋
∋

B
1
21

2
[A(1 –   )]

Figure 3.13

Generation of vestigial sideband. (a) DSB

spectrum (single-sided). (b) VSB filter

characteristic near fc. (c) VSB spectrum.
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we have

e tð Þ ¼ A cos 2p f1t�ubð ÞþB cos 2p f2t�ucð Þ ð3:70Þ
We still must determine the relationship between uc and ub.

Aswe saw inChapter 2, in order for the demodulated signal e tð Þ to be an undistorted (no amplitude or

phase distortion) version of the original message signalm tð Þ, e tð Þmust be an amplitude scaled and time-

delayed version of m tð Þ. In other words

e tð Þ ¼ Km t�tð Þ ð3:71Þ
Clearly the amplitude scaling K ¼ 1. With time delay t, e tð Þ is

e tð Þ ¼ A cos 2p f1 t�tð Þ½ � þB cos 2p f2 t�tð Þ½ � ð3:72Þ
Comparing (3.70) and (3.72) shows that

ub ¼ 2p f1t ð3:73Þ
and

uc ¼ 2p f2t ð3:74Þ
In order to have no phase distortion, the time delay must be the same for both components of e tð Þ. This
gives

uc ¼ f2

f1
ub ð3:75Þ

We therefore see that the phase response of the VSB filter must be linear over the bandwidth of the input

signal, which was to be expected from our discussion of distortionless systems in Chapter 2.

&

The slight increase in bandwidth required forVSB over that required for SSB is oftenmore

than offset by the resulting electronic simplifications. As amatter of fact, if a carrier component

is added to a VSB signal, envelope detection can be used. The development of this technique is

similar to the development of envelope detection of SSB with carrier reinsertion and is

relegated to the problems. The process, however, is demonstrated in the following example.

EXAMPLE 3.5

In this examplewe consider the time-domain waveforms corresponding to VSBmodulation and consider

demodulation using envelope detection or carrier reinsertion.We assume the samemessage signal as was

assumed Example 3.4. In other words,

m tð Þ ¼ cos 2p f1tð Þ�0:4 cos 4p f1tð Þþ 0:9 cos 6p f1tð Þ ð3:76Þ
The message signal m tð Þ is shown in Figure 3.14(a). The VSB signal can be expressed as

xc tð Þ ¼ Ac e1 cos 2p fc� f1ð Þt½ � þ 1� e1ð Þ cos 2p fc� f1ð Þt½ �½ �
�0:4e2 cos 2p fc�2 f1ð Þt½ ��0:4 1�e2ð Þ cos 2p fc�2 f1ð Þt½ �
þ 0:9e3 cos 2p fc�3 f1ð Þt½ � þ 0:9 1�e3ð Þ cos2p fc�3 f1ð Þt�

� ð3:77Þ

Themodulated carrier, alongwith themessage signal, is shown in Figure 3.14(b) for e1 ¼ 0:64; e2 ¼ 0:78;
and e3 ¼ 0:92. The result of carrier reinsertion and envelope detection is shown in Figure 3.14(c). The

message signal, biased by the amplitude of the carrier component, is clearly shown and will be the output

of an envelope detector.
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&

Vestigial sideband is currently used (at least until March 2009, when TV transmission

becomes digital) in the United States for transmission of the video signal in commercial analog

television broadcasting. However, exact shaping of the vestigial sideband is not carried out at

the transmitter, but at the receiver, where signal levels are low. The filter in the transmitter

simply bandlimits the video signal, as shown in Figure 3.15(a). The video carrier frequency is

denoted fv , and, as can be seen, the bandwidth of the video signal is approximately 5.25 MHz.

The spectrumof the audio signal is centered about the audio carrier,which is 4.5MHz above the

video carrier. Themodulationmethod used for audio transmission is FM.Whenwe studyFM in

the following sections, youwill understand the shape of the audio spectrum. Since the spectrum

centered on the audio carrier is a line spectrum in Figure 3.15(a), a periodic audio signal is

implied. This was done for clarity, and in practice the audio signal will have a continuous

spectrum. Figure 3.15(b) shows the amplitude response of the receiver VSB filter.

Also shown in Figure 3.15(a), at a frequency 3.58 MHz above the video carrier, is the

color carrier. Quadrature multiplexing, which we shall study in Section 3.6, is used with the

color subcarrier so that two different signals are transmitted with the color carrier. These two

signals, commonly referred to as the I-channel and Q-channel signals, carry luminance and

chrominance (color) information necessary to reconstruct the image at the receiver. One

t
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Figure 3.14

Time-domain signals for VSB system. (a)Message signal. (b) VSB signal andmessage signal. (c) Sum of

VSB signal and carrier signal.
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problem faced by the designers of a system for the transmission of a color TV signalwas that the

transmitted signal was required to be compatible with existing black-and-white television

receivers. Such a consideration is a significant constraint in the design process. A similar

problemwas faced by the designers of stereophonic radio receivers.We shall study this system

in Section 3.7, and since the audio system is simpler than a color TV system,we can see how the

compatibility problem was solved.

3.1.5 Frequency Translation and Mixing

It is often desirable to translate a bandpass signal to a new center frequency. Frequency

translation is used in the implementation of communications receivers as well as in a number of

other applications. The process of frequency translation can be accomplished bymultiplication

of the bandpass signal by a periodic signal and is referred to as mixing. A block diagram of a

mixer is given in Figure 3.16. As an example, the bandpass signal m tð Þ cos 2p f1tð Þ can be

translated from f1 to a new carrier frequency f2 by multiplying it by a local oscillator signal of

Luminance
spectrum

Video
carrier

Color
subcarrier

Audio
subcarrier

f

f

fa

fafv

fv

4 MHz

4.5 MHz

3.58 MHz
0.5 MHz

0.25 MHz

1.25 MHz

1.5 MHz

(a)

(b)

Figure 3.15

Transmitted spectrum and

VSB filtering for television.

(a) Spectrum of transmitted

signal. (b) VSB filter in

receiver.

Bandpass
filter

Center
frequency

2ω

ωω

ωm(t) cos 2tωm(t) cos 1t e(t)

Local
oscillator

2 cos ( 1 ±    2)t

×

Figure 3.16

Mixer.
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the form 2 cos 2p f1 � f2ð Þt½ �: By using appropriate trigonometric identities, we can easily

show that the result of the multiplication is

e tð Þ ¼ m tð Þ cos 2p f2tð Þþm tð Þ cos 4p f1 � 2p f2ð Þt ð3:78Þ
The undesired term is removed by filtering. The filter should have a bandwidth at least 2W for

the assumed DSB modulation, where W is the bandwidth of m tð Þ.
A commonproblemwithmixers results from the fact that two different input signals can be

translated to the same frequency, f2. For example, inputs of the form k tð Þ cos 2p f1 � 2 f2ð Þt½ �
are also translated to f2, since

2k tð Þ cos 2p f1 � 2 f2ð Þt½ � cos 2p f1 � f2ð Þt½ �¼ k tð Þ cos 2p f2tð Þ
þ k tð Þ cos 2p 2 f1 � 3 f2ð Þt½ � ð3:79Þ

In (3.79), all three signs must be plus or all three signs must be minus. The input frequency

f1 � 2 f2, which results in an output at f2, is referred to as the image frequency of the desired

frequency f1.

To illustrate that image frequencies must be considered in receiver design, consider the

superheterodyne receiver shown in Figure 3.17. The carrier frequency of the signal to be

demodulated is fc, and the intermediate-frequency (IF) filter is a bandpass filter with center

frequency fIF, which is fixed. The superheterodyne receiver has good sensitivity (the ability to

detect weak signals) and selectivity (the ability to separate closely spaced signals). This

results because the IF filter, which provides most of the predetection filtering, need not be

tunable. Thus it can be a rather complex filter. Tuning of the receiver is accomplished by

varying the frequency of the local oscillator. The superheterodyne receiver of Figure 3.17 is

the mixer of Figure 3.16 with fc ¼ f1 and fIF ¼ f2. The mixer translates the input frequency

fc to the IF frequency fIF. As shown previously, the image frequency fc � 2 fIF, where the sign

depends on the choice of local oscillator frequency, also will appear at the IF output. This

means that if we are attempting to receive a signal having carrier frequency fc, we can also

receive a signal at fcþ 2 fIF if the local oscillator frequency is fcþ fIF or a signal at fc�2 fIF if
the local oscillator frequency is fc� fIF. There is only one image frequency, and it is always

Radio-
frequency
(RF) filter

and
amplifier

Intermediate-
frequency
(IF) filter

and
amplifier

Demodulator
Output

Local
oscillator

×

Figure 3.17

Superheterodyne receiver.
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separated from the desired frequency by 2 fIF. Figure 3.18 shows the desired signal and image

signal for a local oscillator having the frequency

fLO ¼ fcþ fIF ð3:80Þ
The image frequency can be eliminated by the radio-frequency (RF) filter. A standard IF

frequency for AM radio is 455 kHz. Thus the image frequency is separated from the desired

signal by almost 1 MHz. This shows that the RF filter need not be narrowband. Furthermore,

since the AM broadcast band occupies the frequency range 540 kHz to 1.6 MHz, it is apparent

that a tunable RF filter is not required, provided that stations at the high end of the band are not

located geographically near stations at the low end of the band. Some inexpensive receivers

take advantage of this fact. Additionally, if the RF filter is made tunable, it need be tunable only

over a narrow range of frequencies.

One decision to be made when designing a superheterodyne receiver is whether the

frequency of the local oscillator is to be below the frequency of the input carrier (low-side

tuning) or above the frequency of the input carrier (high-side tuning). A simple example based

on the standard AM broadcast band illustrates one major consideration. The standard AM

broadcast band extends from 540 kHz to 1600 kHz. For this example, let us choose a common

intermediate frequency, 455 kHz. As shown in Table 3.1, for low-side tuning, the frequency of

the local oscillatormust bevariable from85 to 1600 kHz,which represents a frequency range in

excess of 13 to 1. If high-side tuning is used, the frequency of the local oscillator must be

variable from 995 to 2055 kHz, which represents a frequency range slightly in excess of 2 to 1.

Oscillators whose frequency must vary over a large ratio are much more difficult to implement

than are those whose frequency varies over a small ratio.

f

f
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signal at
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mixer
output
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Figure 3.18

Illustration of image frequency (high-side tuning).
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The relationship between the desired signal to be demodulated and the image signal is

summarized in Figure 3.19 for low-side and high-side tuning. The desired signal to

be demodulated has a carrier frequency of fc and the image signal has a carrier frequency of fi.

n 3.2 ANGLE MODULATION

To generate angle modulation, the amplitude of the modulated carrier is held constant and

either the phase or the time derivative of the phase of the carrier is varied linearly with the

message signal m tð Þ. Thus the general angle-modulated signal is given by

xc tð Þ ¼ Ac cos 2p fctþf tð Þ½ � ð3:81Þ
The instantaneous phase of xc tð Þ is defined as

ui tð Þ ¼ 2p fctþf tð Þ ð3:82Þ
and the instantaneous frequency, in hertz, is defined as

fi tð Þ ¼ 1

2p

dui
dt
¼ fcþ 1

2p

df

dt
ð3:83Þ

The functions f tð Þ and df=dt are known as the phase deviation and frequency deviation (in

radians per second), respectively.

2 lFƒ

2 lFƒ

LOƒ

LOƒ

ƒ
ƒ

ƒ

ƒ ƒc = LO + lFƒ ƒ ƒi = LO – lF

ƒ ƒ ƒi = LO + lFƒ ƒ ƒc = LO – lF

(a)

(b)

Image signal

Image signal

Desired signal

Desired signal

Figure 3.19

Relationship between fc and fi
for (a) low-side tuning and

(b) high-side tuning.

Table 3.1 Low-Side and High-Side Tuning for AM Broadcast Band with fIF= 455 kHz

Lower

frequency

Upper

frequency

Tuning range

of local oscillator

Standard AM broadcast band 540 kHz 1600 kHz

Frequencies of local oscillator

for low-side tuning

540 kHz�455 kHz
¼ 85 kHz

1600 kHz�455 kHz
¼ 1145 kHz

13.47 to 1

Frequencies of local oscillator

for high-side tuning

540 kHzþ 455 kHz

¼ 995 kHz

1600 kHzþ 455 kHz

¼ 2055 kHz

2.07 to 1
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The two basic types of angle modulation are phase modulation (PM) and frequency

modulation (FM). Phase modulation implies that the phase deviation of the carrier is

proportional to the message signal. Thus, for phase modulation,

f tð Þ ¼ kpm tð Þ ð3:84Þ
where kp is the deviation constant in radians per unit of m tð Þ. Similarly, FM implies

that the frequency deviation of the carrier is proportional to the modulating signal. This

yields

df

dt
¼ kfm tð Þ ð3:85Þ

The phase deviation of a frequency-modulated carrier is given by

f tð Þ ¼ kf

ðt
t0

m að Þ daþf0 ð3:86Þ

in which f0 is the phase deviation at t ¼ t0. It follows from (3.85) that kf is the frequency-

deviation constant, expressed in radians per second per unit of m tð Þ. Since it is often more

convenient to measure frequency deviation in hertz, we define

kf ¼ 2p fd ð3:87Þ
where fd is known as the frequency-deviation constant of the modulator and is expressed in

hertz per unit of m tð Þ.
With these definitions, the phase modulator output is

xc tð Þ ¼ Ac cos 2p fctþ kpm tð Þ � ð3:88Þ
and the frequency modulator output is

xc tð Þ ¼ Ac cos 2p fctþ 2p fd

ðt
m að Þ da

24 35 ð3:89Þ

The lower limit of the integral is typically not specified, since to do so would require the

inclusion of an initial condition as shown in (3.86).

Figures 3.20 and 3.21 illustrate the outputs of PM and FM modulators. With a unit step

message signal, the instantaneous frequency of the PM modulator output is fc for both t < t0
and t > t0. The phase of the unmodulated carrier is advanced by kp ¼ p=2 radians for t > t0
giving rise to a signal that is discontinuous at t ¼ t0. The frequency of the output of the FM

modulator is fc for t < t0; and the frequency is fcþ fd for t > t0. The modulator output phase

is, however, continuous at t ¼ t0.

With a sinusoidal message signal, the phase deviation of the PM modulator output is

proportional to m tð Þ. The frequency deviation is proportional to the derivative of the phase

deviation. Thus the instantaneous frequency of the output of the PM modulator is maximum

when the slope of m tð Þ is maximum and minimum when the slope of m tð Þ is minimum. The

frequency deviation of the FM modulator output is proportional to m tð Þ. Thus the instanta-

neous frequency of the FM modulator output is maximum when m tð Þ is maximum and

minimum when m tð Þ is minimum. It should be noted that if m tð Þ were not shown along with

the modulator outputs, it would not be possible to distinguish the PM and FM modulator

3.2 Angle Modulation 137

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


outputs. In the following sections we will devote considerable attention to the case in which

m tð Þ is sinusoidal.

3.2.1 Narrowband Angle Modulation

An angle-modulated carrier can be represented in exponential form by writing (3.85) as

xc tð Þ ¼ Re Ace
jf tð Þe j2p fct

� �
ð3:90Þ

whereRe �ð Þimplies that the real part of the argument is to be taken. Expanding e jf tð Þ in a power
series yields

xc tð Þ ¼ Re Ac 1þ jf tð Þ�f2 tð Þ
2!
� � � �

� �
e j2p fct

� �
ð3:91Þ

If the maximum value of jf tð Þj is much less than unity, the modulated carrier can be

approximated as

xc tð Þ ffi Re Ace
j2p fctþAcf tð Þje j2p fct

 �

m(t)

1

t0
t

t

t

t

(a)

t0
(b)

t0
(c)

t0
(d)

Frequency = fc + fdFrequency = fc

Figure 3.20

Comparison of PM and FM modulator

outputs for a unit-step input. (a) Message

signal. (b) Unmodulated carrier.

(c) Phase modulator output kp ¼ 1
2
p


 �
.

(d) Frequency modulator output.
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Taking the real part yields

xc tð Þ ffi Ac cos 2p fctð Þ�Acf tð Þ sin 2p fctð Þ ð3:92Þ
The form of (3.92) is reminiscent of AM. The modulator output contains a carrier

component and a term in which a function of m tð Þ multiplies a 90T phase-shifted carrier.

This multiplication generates a pair of sidebands. Thus, if f tð Þ has a bandwidth W , the

bandwidth of a narrowband anglemodulator output is 2W . It is important to note, however, that

the carrier and the resultant of the sidebands for narrowband angle modulation with sinusoidal

modulation are in phase quadrature, whereas for AM they are not. This will be illustrated in

Example 3.6.

The generation of narrowband angle modulation is easily accomplished using the method

shown in Figure 3.22. The switch allows for the generation of either narrowband FM or

narrowband PM. We will show later that narrowband angle modulation is useful for the

generation of angle-modulated signals that are not necessarily narrowband, through a process

called narrowband-to-wideband conversion.

(a)

(b)

(c)

(d)

Figure 3.21

Angle modulation with sinusoidal message signal. (a) Message signal m tð Þ. (b) Unmodulated carrier

Ac cos 2p fctð Þ. (c) Output of phase modulator with m tð Þ. (d) Output of frequency modulator with m tð Þ.
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EXAMPLE 3.6

Consider an FM system operating with

m tð Þ ¼ A cos 2p fmtð Þ ð3:93Þ
From (3.86), with t0 equal to zero,

f tð Þ ¼ kf

ðt
0

cos 2p fmað Þ da ¼ Akf

2p fm
sin 2p fmtð Þ ¼ A fd

fm
sin 2p fmtð Þ ð3:94Þ

so that

xc tð Þ ¼ Ac cos 2p fctþ A fd

fm
sin 2p fmtð Þ

� �
ð3:95Þ

If A fd= fm � 1, the modulator output can be approximated as

xc tð Þ ¼ Ac cos 2p fctð Þ�A fd

fm
sin 2p fctð Þ sin 2p fmtð Þ

� �
ð3:96Þ

which is

xc tð Þ ¼ Ac cos 2p fctð Þþ Ac

2

A fd

fm
cos 2p fcþ fmð Þt½ ��cos 2p fc� fmð Þt½ �f g ð3:97Þ

Thus, xc tð Þ can be written as

xc tð Þ ¼ Ac Re 1þ A fd

2 fm
e j2p fmt�e�j2p fmt

 �� �

e j2p fct

� �
ð3:98Þ

It is interesting to compare this result with the equivalent result for an AM signal. Since sinusoidal

modulation is assumed, the AM signal can be written as

xc tð Þ ¼ Ac 1þ a cos 2p fmtð Þ½ � cos 2p fctð Þ ð3:99Þ
where a ¼ A fd=fm is the modulation index. Combining the two cosine terms yields

xc tð Þ ¼ Ac cos 2p fctð Þþ Aca

2
cos2p fcþ fmð Þtþ cos2p fc� fmð Þt½ � ð3:100Þ

This can be written in exponential form as

xc tð Þ ¼ Ac Re 1þ a

2
e j2p fmtþ e�j2p fmt

 �h i

e j2p fct
n o

ð3:101Þ

Comparing (3.98) and (3.101) illustrates the similarity between the two signals. The first, and most

important, difference is the sign of the term at frequency fc� fm, which represents the lower sideband. The

other difference is that the index a in the AM signal is replaced by A fd= fm in the narrowband FM signal.

m(t)

(.)dt∫
2   fd

kp

Ac

π

φ

ω ω

FM

PM

(t) ×

−sin   ct cos ct

Σ
xc(t)

Carrier
oscillator

90° phase
shifter

Figure 3.22

Generation of narrowband angle modulation.
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Wewill see in the following section that A fd= fm determines the modulation index for an FM signal. Thus

these two parameters are in a sense equivalent since each defines the modulation index.

Additional insight is gained by sketching the phasor diagrams and the amplitude and phase spectra

for both signals. These are given in Figure 3.23. The phasor diagrams are drawnusing the carrier phase as a

reference. The difference between AM and narrowband angle modulation with a sinusoidal message

signal lies in the fact that the phasor resulting from theLSBandUSBphasors adds to the carrier forAMbut

is in phase quadraturewith the carrier for anglemodulation. This difference results from theminus sign in

the LSB component and is also clearly seen in the phase spectra of the two signals. The amplitude spectra

are equivalent.

&

3.2.2 Spectrum of an Angle-Modulated Signal

The derivation of the spectrum of an angle-modulated signal is typically a very difficult task.

However, if the message signal is sinusoidal, the instantaneous phase deviation of the

modulated carrier is sinusoidal for both FM and PM, and the spectrum can be obtained with

ease. This is the case we will consider. Even though we are restricting our attention to a very

special case, the results provide much insight into the frequency-domain behavior of angle

modulation. In order to compute the spectrum of an angle-modulated signal with a sinusoidal

message signal, we assume that

f tð Þ ¼ b sin 2p fmtð Þ ð3:102Þ
The parameter b is known as the modulation index and is the maximum value of phase

deviation for both FM and PM. The signal

xc tð Þ ¼ Ac cos 2p fctþb sin 2p fmtð Þ½ � ð3:103Þ
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Figure 3.23

Comparison of AM and narrowband angle modulation. (a) Phasor diagrams. (b) Single-sided amplitude

spectra. (c) Single-sided phase spectra.
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can be expressed as

xc tð Þ ¼ Re½Ace
jb sin 2p fmtð Þe j2p fct� ð3:104Þ

Note from Section 2.9 that the preceding expression has the form

xc tð Þ ¼ Re ~xc tð Þe j2p fct
 � ð3:105Þ

where

~xc tð Þ ¼ Ace
jb sin 2p fmtð Þ ð3:106Þ

is the complex envelope of themodulated carrier signal. The complex envelope is periodicwith

frequency fm and can therefore be expanded in a Fourier series. The Fourier coefficients are

given by

fm

ð1=2 fm
�1=2 fm

e jb sin 2p fmtð Þe�j2pn fmt dt ¼ 1

2p

ðp
�p

e� jnx�b sin xð Þ½ � dx ð3:107Þ

This integral cannot be evaluated in closed form. However, it has been well tabulated. The

integral is a function of n and b and is known as the Bessel Function of the first kind of order n

and argument b. It is denoted Jn bð Þ and is tabulated for several values of n and b in Table 3.2.

The significance of the underlining of various values in the table will be explained later.

Thus, with the aid of Bessel functions, the Fourier series for the complex envelope can be

written as

e jb sin 2p fmtð Þ ¼
X¥
n¼�¥

Jn bð Þe j2pn fmt ð3:108Þ

Table 3.2 Bessel Functions

n b= 0.05 b= 0.1 b= 0.2 b= 0.3 b= 0.5 b= 0.7 b= 1.0 b= 2.0 b= 3.0 b= 5.0 b= 7.0 b= 8.0 b= 10.0

0 0.999 0.998 0.990 0.978 0.938 0.881 0.765 0.224 �0.260 �0.178 0.300 0.172 �0.246
1 0.025 0.050 0.100 0.148 0.242 0.329 0.440 0.577 0.339 �0.328 �0.005 0.235 0.043

2 0.001 0.005 0.011 0.031 0.059 0.115 0.353 0.486 0.047 �0.301 �0.113 0.255

3 0.001 0.003 0.007 0.020 0.129 0.309 0.365 �0.168 �0.291 0.058

4 0.001 0.002 0.034 0.132 0.391 0.158 �0.105 �0.220
5 0.007 0.043 0.261 0.348 0.186 �0.234
6 0.001 0.011 0.131 0.339 0.338 �0.014
7 0.003 0.053 0.234 0.321 0.217

8 0.018 0.128 0.223 0.318

9 0.006 0.059 0.126 0.292

10 0.001 0.024 0.061 0.207

11 0.008 0.026 0.123

12 0.003 0.010 0.063

13 0.001 0.003 0.029

14 0.001 0.012

15 0.005

16 0.002

17 0.001
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which allows the modulated carrier to be written as

xc tð Þ ¼ Re Ac

X¥
n¼�¥

Jn bð Þe j2pn fmt
 !

e j2p fct

" #
ð3:109Þ

Taking the real part yields

xc tð Þ ¼ Ac

X¥
n¼�¥

Jn bð Þ cos 2p fcþ n fmð Þt½ � ð3:110Þ

from which the spectrum of xc tð Þ can be determined by inspection. The spectrum has

components at the carrier frequency and has an infinite number of sidebands separated from

the carrier frequency by integer multiples of the modulation frequency fm: The amplitude of

each spectral component can be determined from a table of values of the Bessel function. Such

tables typically give Jn bð Þ only for positive values of n. However, from the definition of Jn bð Þ it
can be determined that

J�n bð Þ ¼ Jn bð Þ; n even ð3:111Þ
and

J�n bð Þ ¼ �Jn bð Þ; n odd ð3:112Þ
These relationships allow us to plot the spectrumof (3.110), which is shown in Figure 3.24. The

single-sided spectrum is shown for convenience.

A useful relationship between values of Jn bð Þ for various values of n is the recursion

formula

Jnþ 1 bð Þ ¼ 2n

b
Jn bð Þþ Jn�1 bð Þ ð3:113Þ
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Figure 3.24

Spectra of an angle-modulated signal. (a) Single-sided amplitude spectrum. (b) Single-sided phase

spectrum.
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Thus, Jnþ 1 bð Þ can be determined fromknowledge of Jn bð Þ and Jn�1 bð Þ:This enables us to
compute a table of values of the Bessel function, as shown in Table 3.2, for any value of n from

J0 bð Þ and J1 bð Þ:
Figure 3.25 illustrates the behavior of the Fourier Bessel coefficients Jn bð Þ, for

n ¼ 0; 1; 2; 4, and 6 with 0 � b � 9. Several interesting observations can be made. First, for

b� 1, it is clear that J0 bð Þ predominates, giving rise to narrowband angle modulation. It also

can be seen that Jn bð Þ oscillates for increasing b but that the amplitude of oscillation decreases

with increasing b. Also of interest is the fact that the maximum value of Jn bð Þ decreases with
increasing n.

As Figure 3.25 shows, Jn bð Þ is equal to zero at several values ofb. Denoting these values of
b by bnk, where k ¼ 0; 1; 2;we have the results in Table 3.3. As an example, J0 bð Þ is zero for b
equal to 2:4048; 5:5201, and 8:6537. Of course, there are an infinite number of points at which

Jn bð Þ is zero for any n, but consistent with Figure 3.25, only the values in the range 0 � b � 9

are shown in Table 3.3. It follows that since J0 bð Þ is zero at b equal to 2.4048, 5.5201, and

8.6537, the spectrum of the modulator output will not contain a component at the carrier

frequency for these values of themodulation index. These points are referred to as carrier nulls.

In a similar manner, the components at f ¼ fc � fm are zero if J1 bð Þ is zero. The values of the
modulation index giving rise to this condition are 0, 3.8317 and 7.0156. It should be obvious

why only J0 bð Þ is nonzero at b ¼ 0. If the modulation index is zero, then eitherm tð Þ is zero or
the deviation constant fd is zero. In either case, themodulator output is the unmodulated carrier,
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Figure 3.25

Jn bð Þ as a function of b.

Table 3.3 Values of b for Which Jn (b)= 0 for 0 � b � 9

n bn0 bn1 bn2

0 J0 bð Þ ¼ 0 2.4048 5.5201 8.6537

1 J1 bð Þ ¼ 0 0.0000 3.8317 7.0156

2 J2 bð Þ ¼ 0 0.0000 5.1356 8.4172

4 J4 bð Þ ¼ 0 0.0000 7.5883 —

6 J6 bð Þ ¼ 0 0.0000 — —
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which has frequency components only at the carrier frequency. In computing the spectrum of

the modulator output, our starting point was the assumption that

f tð Þ ¼ b sin 2p fmtð Þ ð3:114Þ
Note that in deriving the spectrum of the angle modulated signal defined by (3.110), the

modulator type (FM or PM) was not specified. The assumed f tð Þ, defined by (3.114), could

represent either the phase deviation of a PM modulator with m tð Þ ¼ A sin vmtð Þ and an index
b ¼ kpA, or an FM modulator with m tð Þ ¼ A cos vmtð Þ with index

b ¼ 2p fdA

vm

¼ fdA

fm
ð3:115Þ

Equation (3.115) shows that the modulation index for FM is a function of the modulation

frequency.This isnot thecase forPM.Thebehaviorof the spectrumofanFMsignal is illustrated

inFigure 3.26, as fm is decreasedwhile holdingA fd constant. For largevalues of fm, the signal is

narrowband FM, since only two sidebands are significant. For small values of fm, many

sidebands have significant value. Figure 3.26 is derived in the following computer example.

COMPUTER EXAMPLE 3.1

In this computer example we determine the spectrum of the complex envelope signal given by (3.106). In

the next computer example wewill determine and plot the two-sided spectrum which is determined from

the complex envelope by writing the real bandpass signal as

xc tð Þ ¼ 1

2
~x tð Þe j2p fctþ 1

2
~x*c tð Þe�j2p fct

2
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Figure 3.26

Amplitude spectrum of an FM complex envelope signal for increasing b and decreasing fm.
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Note once more that knowledge of the complex envelope signal and the carrier frequency fully determine

the bandpass signal.

In this example the spectrum of the complex envelope signal is determined for three different values

of the modulation index. The MATLAB program follows.

% file c3ce1.m

fs ¼ 1000;

delt ¼ 1/fs;

t ¼ 0:delt:1-delt;

npts ¼ length(t);

fm ¼ [200 100 20];

fd ¼ 100;

for k¼1:3
beta ¼ fd/fm(k);

cxce ¼ exp(i*beta*sin(2*pi*fm(k)*t));

as ¼ (1/npts)*abs(fft(cxce));

evenf ¼ [as(fs/2:fs) as(1:fs/2-1)];

fn ¼ -fs/2:fs/2-1;

subplot(3,1,k); stem(fn,2*evenf,’.’)

ylabel(’Amplitude’)

end

% End of script file.

Note that themodulation index is set by varying the frequency of the sinusoidalmessage signal fm with the

peak deviation held constant at 100Hz. Since fm takes on thevalues of 200, 100, and 20, the corresponding

values of the modulation index are 0.5, 1, and 5, respectively. The corresponding spectra of the complex

envelope signal are illustrated as a function of frequency in Figure 3.26.

&

COMPUTER EXAMPLE 3.2

We now consider the calculation of the two-sided amplitude spectrum of an FM (or PM) signal using

the FFTalgorithm. As can be seen from theMATLAB code, a modulation index of 3 is assumed. Note

the manner in which the amplitude spectrum is divided into positive frequency and negative

frequency segments (line nine in the following program). The student should verify that the various

spectral components fall at the correct frequencies and that the amplitudes are consistent with Bessel

function values given in Table 3.2. The output of the MATLAB program are illustrated in

Figure 3.27.

% File: c3ce2.m

fs ¼ 1000; % sampling frequency

delt ¼ 1/fs; % sampling increment

t ¼ 0:delt:1-delt; % time vector

npts ¼ length(t); % number of points

fn ¼ (0:npts)-(fs/2); % frequency vector for plot

m ¼ 3*cos(2*pi*25*t); % modulation

xc ¼ sin(2*pi*200*tþm); % modulated carrier

asxc ¼ (1/npts)*abs(fft(xc)); % amplitude spectrum

evenf ¼ [asxc((npts/2):npts) asxc(1:npts/2)]; % even amplitude spectrum

stem(fn,evenf,‘.’);

xlabel(‘Frequency - Hz’)

ylabel(‘Amplitude’)

% End of script.file.
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&

3.2.3 Power in an Angle-Modulated Signal

The power in an angle-modulated signal is easily computed from (3.81). Squaring (3.81) and

taking the time-average value yields

hx2c tð Þi ¼ A2
chcos2 vctþf tð Þ½ �i ð3:116Þ

which can be written as

hx2c tð Þi ¼ 1

2
A2
c þ

1

2
A2
chcos 2 vctþf tð Þ½ �f gi ð3:117Þ

If the carrier frequency is large so that xc tð Þ has negligible frequency content in the region of
DC, the second term in (3.117) is negligible and

hx2c tð Þi ¼ 1

2
A2
c ð3:118Þ

Thus the power contained in the output of an angle modulator is independent of the

message signal. Constant transmitter power, independent of the message signal, is one

important difference between angle modulation and linear modulation.

3.2.4 Bandwidth of Angle-Modulated Signals

Strictly speaking, the bandwidth of an angle-modulated signal is infinite, since angle

modulation of a carrier results in the generation of an infinite number of sidebands. However,

it can be seen from the series expansion of Jn bð Þ (Appendix G, Table G.3) that for large n

Jn bð Þ � bn

2nn!
ð3:119Þ
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Two-sided amplitude spectrum computed using the FFT algorithm.
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Thus for fixed b,

lim
n!¥

Jn bð Þ ¼ 0 ð3:120Þ

This behavior can also be seen from the values of Jn bð Þ given in Table 3.2. Since the

values of Jn bð Þ become negligible for sufficiently large n, the bandwidth of an angle-

modulated signal can be defined by considering only those terms that contain significant

power. The power ratio Pr is defined as the ratio of the power contained in the carrier

n ¼ 0ð Þ component and the k components on each side of the carrier to the total power in

xc tð Þ. Thus

Pr ¼
1

2
A2
c

Xk

n¼�k J
2
n bð Þ

1

2
A2
c

¼
Xk
n¼�k

J2n bð Þ ð3:121Þ

or simply

Pr ¼ J20 bð Þþ 2
Xk
n¼1

J2n bð Þ ð3:122Þ

Bandwidth for a particular application is often determined by defining an acceptable power

ratio, solving for the required value of k using a table of Bessel functions, and then recognizing

that the resulting bandwidth is

B ¼ 2k fm ð3:123Þ
The acceptable value of the power ratio is dictated by the particular application of the system.

Two power ratios are depicted in Table 3.2: Pr 	 0:7 and Pr 	 0:98. The value of n

corresponding to k for Pr 	 0:7 is indicated by a single underscore, and the value of n

corresponding to k for Pr 	 0:98 is indicated by a double underscore. For Pr 	 0:98 it is noted
that n is equal to the integer part of 1þb, so that

B ffi 2 bþ 1ð Þ fm ð3:124Þ
which will take on greater significance when Carson’s rule is discussed in the following

paragraph.

The preceding expression assumes sinusoidal modulation, since the modulation indexb is

defined only for sinusoidal modulation. For arbitrarym tð Þ, a generally accepted expression for
bandwidth results if the deviation ratio D is defined as

D ¼ peak frequency deviation

bandwidth of m tð Þ ð3:125Þ

which is

D ¼ fd

W
max jm tð Þjð Þ ð3:126Þ

The deviation ratio plays the same role for nonsinusoidal modulation as the modulation

index plays for sinusoidal systems. Replacing b by D and replacing fm by W in (3.124), we

obtain

B ¼ 2 Dþ 1ð ÞW ð3:127Þ
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This expression for bandwidth is generally referred to as Carson’s rule. If D� 1, the

bandwidth is approximately 2W, and the signal is known as a narrowband angle-modulated

signal. Conversely, ifD 1, the bandwidth is approximately 2DW ¼ 2 fd maxjm tð Þjð Þ, which
is twice the peak frequency deviation. Such a signal is known as a wideband angle-modulated

signal.

EXAMPLE 3.7

In this example we consider an FM modulator with output

xc tð Þ ¼ 100 cos 2p 1000ð Þtþf tð Þ½ � ð3:128Þ
The modulator operates with fd ¼ 8 and has the input message signal

m tð Þ ¼ 5 cos 2p 8ð Þt ð3:129Þ
The modulator is followed by a bandpass filter with a center frequency of 1000 Hz and a bandwidth of

56 Hz, as shown in Figure 3.28(a). Our problem is to determine the power at the filter output.

The peak deviation is 5 fd or 40 Hz, and fm ¼ 8 Hz. Thus, the modulation index is 40=5 ¼ 8. This

yields the single-sided amplitude spectrum shown in Figure 3.28(b). Figure 3.28(c) shows the passband of

m(t) = 5 cos 2   (8)tπ xc(t tuptuO)
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System and spectra for Example 3.5. (a) FM system. (b) Single-sided spectrum of modulator output.

(c) Amplitude response of bandpass filter.
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the bandpass filter. The filter passes the component at the carrier frequency and three components on each

side of the carrier. Thus the power ratio is

Pr ¼ J20 5ð Þþ 2 J21 5ð Þþ J22 5ð Þþ J23 5ð Þ � ð3:130Þ
which is

Pr¼ 0:178ð Þ2þ 2 0:328ð Þ2þ 0:047ð Þ2þ 0:365ð Þ2
h i

ð3:131Þ

This yields

Pr ¼ 0:518 ð3:132Þ
The power at the output of the modulator is

x2c ¼
1

2
A2
c ¼

1

2
100ð Þ2 ¼ 5000W ð3:133Þ

The power at the filter output is the power of the modulator output multiplied by the power ratio. Thus the

power at the filter output is

Prx2c ¼ 2589W ð3:134Þ
&

EXAMPLE 3.8

In the development of the spectrum of an angle-modulated signal, it was assumed that the message signal

was a single sinusoid.We now consider a somewhat more general problem in which the message signal is

the sum of two sinusoids. Let the message signal be

m tð Þ ¼ A cos 2p f1tð ÞþB cos 2p f2tð Þ ð3:135Þ
For FM modulation the phase deviation is therefore given by

f tð Þ ¼ b1 sin 2p f1tð Þþb2 sin 2p f2tð Þ ð3:136Þ
where b1 ¼ A fd= f1 > 1 and b2 ¼ B fd= f2. The modulator output for this case becomes

xc tð Þ ¼ Ac cos 2p fctþ b1 sin 2p f1tð Þþ b2 sin 2p f2tð Þ½ � ð3:137Þ
which can be expressed as

xc tð Þ ¼ Ac Re e jb1sin 2p f1tð Þe jb2sin 2p f2tð Þe j2p fct
� �

ð3:138Þ

Using (3.108), we can write

e jb1sin 2p f1tð Þ ¼
X¥
n¼�¥

Jn b1ð Þe j2pn f1t ð3:139Þ

and

e jb2 sin 2p f2tð Þ ¼
X¥

m¼�¥
Jm b2ð Þe j2pm f2t ð3:140Þ

The modulator output can therefore be written

xc tð Þ ¼ Ac Re
X¥
n¼�¥

Jn b1ð Þe j2pn f1t
X¥

m¼�¥
Jm; b2ð Þe j2pm f2t

#
e j2p fct

)"(
ð3:141Þ
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which, upon taking the real part, can be expressed

xc tð Þ ¼ Ac

X¥
n¼�¥

X¥
m¼�¥

Jn b1ð ÞJm b2ð Þ cos 2p fcþ n f1þm f2ð Þt½ � ð3:142Þ

Examination of the signal xc tð Þ shows that it not only contains frequency components at fcþ n f1 and

fcþm f2 but also contains frequency components at fcþ n f1þm f2 for all combinations of n and m.

Therefore, the spectrum of the modulator output due to a message signal consisting of the sum of two

sinusoids contains additional components over the spectrum formed by the superposition of the two

spectra resulting from the individual message components. This example therefore illustrates the

nonlinear nature of angle modulation. The spectrum resulting from a message signal consisting of the

sum of two sinusoids is shown in Figure 3.29 for the case in which b1 ¼ b2 and f2 ¼ 12 f1.

&

COMPUTER EXAMPLE 3.3

In this computer example we consider a MATLAB program for computing the amplitude spectrum of an

FM (or PM) signal having a message signal consisting of a pair of sinusoids. The single-sided amplitude

spectrum is calculated (Note the multiplication by 2 in lines 10 and 11 in the following computer

program.) The single sided spectrum is determined by using only the positive portion of the spectrum

represented by the first N=2 points generated by the FFT program. In the following program N is

represented by the variable npts.

Two plots are generated for the output. Figure 3.30(a) illustrates the spectrum with a single sinusoid

for the message signal. The frequency of this sinusoidal component (50 Hz) is evident. Figure 3.30(b)

illustrates the amplitude spectrum of themodulator output when a second component, having a frequency

of 5 Hz, is added to the message signal. For this exercise the modulation index associated with each

component of the message signal was carefully chosen to insure that the spectra were essentially

constrained to lie within the bandwidth defined by the carrier frequency (250 Hz).

% File: c3ce3.m
fs ¼ 1000; % sampling frequency
delt ¼ 1/fs; % sampling increment
t ¼ 0:delt:1-delt; % time vector
npts ¼ length(t); % number of points
fn ¼ (0:(npts/2))*(fs/npts); % frequency vector for plot
m1 ¼ 2*cos(2*pi*50*t); % modulation signal 1
m2 ¼ 2*cos(2*pi*50*t)þ1*cos(2*pi*5*t); % modulation signal 2

|X( f )|

fc
f

Figure 3.29

Amplitude spectrum for (3.142) with b1 ¼ b2 and f2 ¼ 12f1.
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xc1 ¼ sin(2*pi*250*tþm1); % modulated carrier 1
xc2 ¼ sin(2*pi*250*tþm2); % modulated carrier 2
asxc1 ¼ (2/npts)*abs(fft(xc1)); % amplitude spectrum 1
asxc2 ¼ (2/npts)*abs(fft(xc2)); % amplitude spectrum 2
ampspec1 ¼ asxc1(1:((npts/2)þ1)); % positive frequency portion 1
ampspec2 ¼ asxc2(1:((npts/2)þ1)); % positive frequency portion 2
subplot(211)
stem(fn,ampspec1,‘.k’);
xlabel(‘Frequency - Hz’)
ylabel(‘Amplitude’)
subplot(212)
stem(fn,ampspec2,‘.k’);
xlabel(‘Frequency - Hz’)
ylabel(‘Amplitude’)
subplot(111)
% End of script file.

&

3.2.5 Narrowband-to-Wideband Conversion

One technique for generating wideband FM is illustrated in Figure 3.31. The carrier frequency

of the narrowband frequency modulator is fc1; and the peak frequency deviation is fd1. The

frequency multiplier multiplies the argument of the input sinusoid by n. In other words, if the

input of a frequency multiplier is

x tð Þ ¼ Ac cos 2p f0tþf tð Þ½ � ð3:143Þ
the output of the frequency multiplier is

y tð Þ ¼ Ac cos 2pn f0tþ nf tð Þ½ � ð3:144Þ
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Figure 3.30

Frequency modulation spectra. (a) Single-tone modulating signal. (b) Two-tone modulating signal.
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Assuming that the output of the local oscillator is

eLO tð Þ ¼ 2 cos 2p fLOtð Þ ð3:145Þ
results in

e tð Þ ¼ Ac cos 2p n f0þ fLOð Þtþ nf tð Þ½ �
þAc cos 2p n f0� fLOð Þtþ nf tð Þ½ �

ð3:146Þ

for the multiplier output. This signal is then filtered, using a bandpass filter having center

frequency fc, given by

fc ¼ n f0þ fLO or fc ¼ n f0� fLO

This yields the output

xc tð Þ ¼ Ac cos 2p fctþ nf tð Þ½ � ð3:147Þ
The bandwidth of the bandpass filter is chosen in order to pass the desired term in (3.146). One

can use Carson�s rule to determine the bandwidth of the bandpass filter if the transmitted signal

is to contain 98% of the power in xc tð Þ.
The central idea in narrowband-to-wideband conversion is that the frequency multiplier

changes both the carrier frequency and the deviation ratio by a factor of n, whereas the mixer

changes the effective carrier frequency but does not affect the deviation ratio. This technique of

implementing wideband frequency modulation is known as indirect frequency modulation.

EXAMPLE 3.9

Anarrowband-to-widebandconverter is implementedasshowninFigure3.31.Theoutputof thenarrowband

frequencymodulator is given by (3.143)with f0 ¼ 100; 000Hz. The peak frequency deviation off tð Þ is 50
Hzand the bandwidth off tð Þ is 500Hz.Thewidebandoutputxc tð Þ is to have a carrier frequencyof 85MHz

and a deviation ratio of 5. Determine the frequency multiplier factor, n. Also determine two possible local

oscillator frequencies. Finally, determine the center frequency and the bandwidth of the bandpass filter.

S o l u t i o n

The deviation ratio at the output of the narrowband FM modulator is

D ¼ fd1

W
¼ 50

500
¼ 0:1 ð3:148Þ

Bandpass
filter

Local
oscillator

xc(t)Frequency
multiplier

Narrowband
frequency

modulator system
of Figure 3.22

Mixer

Narrowband FM signal:
Carrier frequency = fc1
Peak frequency deviation = fd1
Deviation ratio = D1

Wideband FM signal:
Carrier frequency = fc2 = nfc1
Peak frequency deviation = fd2 = nfd1
Deviation ratio = D2 = nD1

× n
×

Figure 3.31

Frequency modulation utilizing narrowband-to-wideband conversion.
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The frequency multiplier factor is therefore

n ¼ D2

D1

¼ 5

0:1
¼ 50 ð3:149Þ

Thus, the carrier frequency at the output of the narrowband FM modulator is

n f0 ¼ 50 100; 000ð Þ ¼ 5MHz ð3:150Þ
The two permissible frequencies for the local oscillator are

85þ 5 ¼ 90MHz ð3:151Þ
and

85� 5 ¼ 80MHz ð3:152Þ
The center frequency of the bandpass filter must be equal to the desired carrier frequency of thewideband

output. Thus the center frequency of the bandpass filter is 85MHz. The bandwidth of the bandpass filter is

established using Carson�s rule. From (3.127) we have

B ¼ 2 Dþ 1ð ÞW ¼ 2 5þ 1ð Þ 500ð Þ ð3:153Þ
Thus

B ¼ 6000 Hz ð3:154Þ
&

3.2.6 Demodulation of Angle-Modulated Signals

The demodulation of an FM signal requires a circuit that yields an output proportional to the

frequency deviation of the input. Such circuits are known as frequency discriminators. If the

input to an ideal discriminator is the angle modulated signal

xr tð Þ ¼ Ac cos 2p fctþf tð Þ½ � ð3:155Þ
the output of the ideal discriminator is

yD tð Þ ¼ 1

2p
KD

df

dt
ð3:156Þ

For FM, f tð Þ is given by

f tð Þ ¼ 2p fd

ðt
m að Þ da ð3:157Þ

so that (3.156) becomes

yD tð Þ ¼ KD fdm tð Þ ð3:158Þ
The constant KD is known as the discriminator constant and has units of volts per hertz. Since

an ideal discriminator yields an output signal proportional to the frequency deviation from a

carrier, it has a linear frequency-to-voltage transfer function, which passes through zero at

f ¼ fc. This is illustrated in Figure 3.32.

The system characterized by Figure 3.32 can also be used to demodulate PM signals. Since

f tð Þ is proportional tom tð Þ for PM, yD tð Þ given by (3.156) is proportional to the time derivative
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of m tð Þ for PM inputs. Integration of the discriminator output yields a signal proportional to

m tð Þ. Thus a demodulator for PM can be implemented as an FM discriminator followed by an

integrator. We define the output of a PM discriminator as

yD tð Þ ¼ KDkpm tð Þ ð3:159Þ
It will be clear from the context whether yD tð Þ and KD refer to an FM or a PM system.

An approximation to the characteristic illustrated in Figure 3.32 can be obtained by the use

of a differentiator followed by an envelope detector, as shown in Figure 3.33. If the input to the

differentiator is

xr tð Þ ¼ Ac cos 2p fctþf tð Þ½ � ð3:160Þ
the output of the differentiator is

e tð Þ ¼ �Ac 2p fcþ df

dt

� �
sin 2p fctþf tð Þ½ � ð3:161Þ

This is exactly the same form as an AM signal, except for the phase deviation f tð Þ. Thus, after
differentiation, envelope detection can be used to recover the message signal. The envelope of

e tð Þ is

y tð Þ ¼ Ac 2p fcþ df

dt

� �
ð3:162Þ

and is always positive if

fc > � 1

2p

df

dt
for all t

which is usually satisfied since fc is typically significantly greater than the bandwidth of the

message signal. Thus, the output of the envelope detector is

yD tð Þ ¼ Ac

df

dt
¼ 2pAc fdm tð Þ ð3:163Þ

Figure 3.32

Ideal discriminator characteristic.
Output voltage

f
fc

KD

1

Input
frequency

Envelope
detectorDifferentiator

e(t) yD(t)xr(t) Figure 3.33

Frequency modulation discriminator.
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assuming that the DC term, 2pAc fc, is removed. Comparing (3.163) and (3.158) shows that the

discriminator constant for this discriminator is

KD ¼ 2pAc ð3:164Þ
Wewill see later that interference and channel noise perturb the amplitude Ac of xr tð Þ. In order
to ensure that the amplitude at the input to the differentiator is constant, a limiter is placed

before the differentiator. The output of the limiter is a signal of square-wave type, which is

K sgn xr tð Þ½ �. A bandpass filter having center frequency fc is then placed after the limiter to

convert the signal back to the sinusoidal form required by the differentiator to yield the

response defined by (3.161). The cascade combination of a limiter and a bandpass filter is

known as a bandpass limiter. The complete discriminator is illustrated in Figure 3.34.

The process of differentiation can often be realized using a time-delay implementation, as

shown in Figure 3.35. The signal e tð Þ, which is the input to the envelope detector, is given by
e tð Þ ¼ xr tð Þ�xr t�tð Þ ð3:165Þ

which can be written

e tð Þ
t
¼ xr tð Þ�xr t�tð Þ

t
ð3:166Þ

Since, by definition,

lim
t! 0

e tð Þ
t
¼ lim

t! 0

xr tð Þ�xr t�tð Þ
t

¼ dxr tð Þ
dt

ð3:167Þ

it follows that for small t,

e tð Þ ffi t
dxr tð Þ
dt

ð3:168Þ

This is, except for the constant factor t, identical to the envelope detector input shown in Figure
3.33 and defined by (3.161). The resulting discriminator constantKD is 2pAct. There are many

Envelope
detectorDifferentiator

yD(t)Bandpass
filter

Bandpass limiter

Limiter
xr(t)

Figure 3.34

Frequency modulation discriminator with bandpass limiter.

Envelope
detector

Time delay

Approximation to differentiator

τ

Σ
+
−

e(t) yD(t)xr(t)

Figure 3.35

Discriminator implementation using delay and envelope detection.
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other techniques that can be used to implement a discriminator. In Section 3.4 wewill examine

the phase-locked loop, which is an especially attractive implementation.

EXAMPLE 3.10
Consider the simple RC network shown in Figure 3.36(a). The transfer function is

H fð Þ ¼ R

Rþ 1=j2p fC
¼ j2pf RC

1þ j2pf RC
ð3:169Þ

The amplitude response is shown in Figure 3.36(b). If all frequencies present in the input are low, so that

f � 1

2pRC

the transfer function can be approximated by

H fð Þ ¼ j2pf RC ð3:170Þ
Thus, for small f, the RC network has the linear amplitude–frequency characteristic required of an ideal

discriminator. Equation (3.170) illustrates that for small f, the RC filter acts as a differentiator with gain RC.

Thus, the RC network can be used in place of the differentiator in Figure 3.34 to yield a discriminator with

KD ¼ 2pAcRC ð3:171Þ

&

Example 3.10 illustrates the essential components of a frequency discriminator, a circuit

that has an amplitude response linear with frequency and an envelope detector. However, a

highpass filter does not in general yield a practical implementation. This can be seen from the

C

R

)b()a(

(c)

|H( f )|

f
fc

1

0.707

1
2 RCπ

Filter Envelope detector

Figure 3.36

Implementation of a simple

discriminator. (a) RC network.

(b) Transfer function. (c)

Simple discriminator.
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expression for KD. Clearly the 3-dB frequency of the filter, 1=2pRC, must exceed the carrier

frequency fc. In commercial FM broadcasting, the carrier frequency at the discriminator input,

i.e., the IF frequency, is on the order of 10 MHz. As a result, the discriminator constant KD is

very small indeed.

A solution to the problem of a very small KD is to use a bandpass filter, as illustrated in

Figure 3.37. However, as shown in Figure 3.37(a), the region of linear operation is often

|H1( f )|

|H2( f )|

f1

f2 f1
f

f

f
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xc(t) yD(t)

Bandpass Envelope detectors

Figure 3.37

Derivation of balanced discriminator.

(a) Bandpass filter. (b) Stagger-tuned

bandpass filters. (c) Amplitude res-

ponse H fð Þ of balanced discriminator.

(d) Balanced discriminator.
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unacceptably small. In addition, use of a bandpass filter results in aDCbias on the discriminator

output. This DC bias could of course be removed by a blocking capacitor, but the blocking

capacitor would negate an inherent advantage of FM—namely, that FM has DC response. One

can solve these problems by using two filters with staggered center frequencies f1 and f2, as

shown in Figure 3.37(b). The magnitudes of the envelope detector outputs following the two

filters are proportional to jH1 fð Þj and jH2 fð Þj. Subtracting these two outputs yields the overall
characteristic

H fð Þ ¼ jH1 fð Þj�jH2 fð Þj ð3:172Þ
as shown in Figure 3.37(c). The combination is linear over a wider frequency range

than would be the case for either filter used alone, and it is clearly possible to make

H fcð Þ ¼ 0.

There are several techniques that can be used to combine the outputs of two envelope

detectors. A differential amplifier can be used, for example. Another alternative, using a strictly

passive circuit, is shown in Figure 3.37(d). A center-tapped transformer supplies the input

signal xc tð Þ to the inputs of the two bandpass filters. The center frequencies of the two bandpass
filters are given by

fi ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
LiCi

p ð3:173Þ

for i ¼ 1; 2. The envelope detectors are formed by the diodes and the resistor–capacitor

combinations ReCe. The output of the upper envelope detector is proportional to jH1 fð Þj, and
the output of the lower envelope detector is proportional to jH2 fð Þj. The output of the upper
envelope detector is the positive portion of its input envelope, and the output of the lower

envelope detector is the negative portion of its input envelope. Thus yD tð Þ is proportional to
jH1 fð Þj�jH2 fð Þj. This system is known as a balanced discriminator because the response to

the undeviated carrier is balanced so that the net response is zero.

n 3.3 INTERFERENCE

We now consider the effect of interference in communication systems. In real-world systems

interference occurs from various sources, such as RF emissions from transmitters having

carrier frequencies close to that of the carrier being demodulated. We also study interference

because the analysis of systems in the presence of interference provides us with important

insights into the behavior of systems operating in the presence of noise, which is the topic of

Chapter 7. In this section we consider both linear modulation and angle modulation. It is

important to understand the very different manner in which these two systems behave in the

presence of interference.

3.3.1 Interference in Linear Modulation

As a simple case of linear modulation in the presence of interference, we consider the received

signal having the spectrum (single sided) shown in Figure 3.38. The received signal consists of

three components: a carrier component, a pair of sidebands representing a sinusoidal message
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signal, and an undesired interfering tone of frequency fcþ fi. The input to the demodulator is

therefore

xc tð Þ ¼ Ac cos 2p fctð ÞþAi cos 2p fcþ fið Þt½ � þAm cos 2p fmtð Þ cos 2p fctð Þ ð3:174Þ
Multiplying xc tð Þ by 2 cos 2p fctð Þ and lowpass filtering (coherent demodulation) yields

yD tð Þ ¼ Am cos 2p fmtð ÞþAi cos 2p fitð Þ ð3:175Þ
where we have assumed that the interference component is passed by the filter and that the DC

term resulting from the carrier is blocked. From this simple example we see that the signal and

interference are additive at the receiver output if the interference is additive at the receiver

input. This result was obtained because the coherent demodulator operates as a linear

demodulator.

Theeffect of interferencewith envelopedetection isquite different becauseof thenonlinear

nature of the envelopedetector.The analysiswithenvelopedetection ismuchmoredifficult than

the coherent demodulation case. Some insight can begained bywritingxc tð Þ in a form that leads

to the phasor diagram. In order to develop the phasor diagram, we write (3.174) in the form

xr tð Þ ¼ Re AcþAie
j2p fitþ 1

2
Ame

j2p fmtþ 1

2
Ame

�j2p fmt

� �
e j2p fct

� �
ð3:176Þ

The phasor diagram is constructed with respect to the carrier by taking the carrier frequency as

equal to zero. In other words, we plot the phasor diagram corresponding to the complex

envelope signal. The phasor diagrams are illustrated in Figure 3.39, both with and without

interference. The output of an ideal envelope detector is R tð Þ in both cases. The phasor

diagrams illustrate that interference induces both an amplitude distortion and a phase deviation.

The effect of interference with envelope detection is determined by writing (3.174) as

xr tð Þ ¼ Ac cos 2p fctð ÞþAm cos 2p fmtð Þ cos 2p fctð Þ
þAi cos 2p fctð Þ cos 2p fitð Þ�sin 2p fctð Þ sin 2p fitð Þ½ �

ð3:177Þ

which is

xr tð Þ ¼ AcþAm cos 2p fctð ÞþAi cos 2p fitð Þ½ � cos 2p fctð Þ�Ai sin 2p fitð Þ sin 2p fctð Þ
ð3:178Þ

IfAc  Ai, which is the usual case of interest, the last term in (3.178) is negligible compared to

the first term and the output of the envelope detector is

yD tð Þ ffi Am cos 2p fmtð ÞþAi cos 2p fitð Þ ð3:179Þ

1
2 Am

Ac

1
2 Am

Ai

f
fc + fifc + fmfc – fm fc

Figure 3.38

Assumed received-signal spectrum.
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assuming that the DC term is blocked. Thus, for the small interference case, envelope detection

and coherent demodulation are essentially equivalent.

If Ac � Ai, the assumption cannot be made that the last term of (3.178) is negligible, and

the output is significantly different. To show this, (3.174) is rewritten as

xr tð Þ ¼ Ac cos 2p fcþ fi� fið Þt½ � þAi cos 2p fcþ fið Þt½ �
þ Am cos 2p fmtð Þ cos 2p fcþ fi� fið Þt½ �

ð3:180Þ

which, when we use appropriate trigonometric identities, becomes

xr tð Þ ¼ Ac cos 2p fcþ fið Þt½ � cos 2p fitÞþ sin 2p fcþ fið Þt½ � sin 2p fitð Þð gf
þAi cos 2p fcþ fið Þt½ � þAm cos 2p fmtð Þ cos 2p fcþ fið Þt½ � cos 2p fitð Þf
þ sin 2p fcþ fið Þt½ � sin 2p fitð Þg ð3:181Þ

Equation (3.181) can also be written as

xr tð Þ ¼ Ai þ Ac cos 2p fitð Þþ Am cos 2p fmtð Þ cos 2p fitð Þ½ � cos 2p fcþ fið Þt½ �
þ Ac sin 2p fitð ÞþAm cos 2p fmtð Þ sin 2p fitð Þ½ � sin 2p fcþ fið Þt½ � ð3:182Þ

If Ai  Ac, the last term in (3.182) is negligible with respect to the first term. It follows that the

envelope detector output is approximated by

yD tð Þ ffi Ac cos 2p fitð ÞþAm cos 2p fmtð Þ cos 2p fitð Þ ð3:183Þ
At this point, several observations are in order. In envelope detectors, the largest high-

frequency component is treated as the carrier. If Ac  Ai, the effective demodulation carrier

has a frequency fc, whereas ifAi  Ac, the effective carrier frequency becomes the interference

frequency fcþ fi.

The spectra of the envelope detector output are illustrated in Figure 3.40 for Ac  Ai and

for Ac � Ai. For Ac  Ai the interfering tone simply appears as a sinusoidal component,

having frequency fi at the output of the envelope detector. This illustrates that for Ac  Ai, the

envelope detector performs as a linear demodulator. The situation is much different for

1
2
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m 1
2

Am

R(t)
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ω

mω

(a)

(b)

1
2
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R(t)Ai
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Figure 3.39

Phasor diagrams illustrating interference.

(a) Phasor diagram without interference.

(b) Phasor diagram with interference.
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Ac � Ai, as can be seen from (3.183) and Figure 3.40(b). For this casewe see that the sinusoidal

message signal, having frequency fm, modulates the interference tone. The output of the

envelope detector has a spectrum that reminds us of the spectrum of an AM signal with carrier

frequency fi and sideband components at fiþ fm and fi � fm. The message signal is effectively

lost. This degradation of the desired signal is called the threshold effect and is a consequence of

the nonlinear nature of the envelope detector. We shall study the threshold effect in detail in

Chapter 7 when we investigate the effect of noise in analog systems.

3.3.2 Interference in Angle Modulation

We now consider the effect of interference in angle modulation. We will see that the effect of

interference in angle modulation is quite different from what was observed in linear modula-

tion. Furthermore, wewill see that the effect of interference in an FM system can be reduced by

placing a lowpass filter at the discriminator output. We will consider this problem in

considerable detail since the results will provide significant insight into the behavior of FM

discriminators operating in the presence of noise.

Assume that the input to a PM or FM ideal discriminator is an unmodulated carrier plus an

interfering tone at frequency fcþ fi. Thus the input to the discriminator is assumed to have the

form

xt tð Þ ¼ Accos 2p fctð ÞþAicos 2p fcþ fið Þt½ � ð3:184Þ
which can be written as

xt tð Þ ¼ Ac cosvctþAi cos 2p fitð Þ cos 2p fctð Þ�Ai sin 2p fið Þ sin 2p fctð Þ ð3:185Þ
Using (3.46) through (3.50), the preceding expression can be written as

xr tð Þ ¼ R tð Þ cos 2p fctþc tð Þ½ � ð3:186Þ
in which the amplitude R tð Þ is given by

R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AcþAi cos 2p fitð Þ½ �2þ Ai sin ð2p fitÞ½ �2

q
ð3:187Þ

and the phase deviation c tð Þ is given by

c tð Þ ¼ tan�1
Ai sin 2p fitð Þ

AcþAi cos 2p fitð Þ
� �

ð3:188Þ

Am

Ai

ff
fm fi + fmfi – fmfi fi

Ac
Am

00

(b)(a)

1
2Am

1
2

Figure 3.40

Envelope detector output spectra. (a) Ac  Ai. (b) Ac � Ai.
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If Ac  Ai, Equations (3.187) and (3.188) can be approximated

R tð Þ ¼ AcþAi cos 2p fitð Þ ð3:189Þ
and

c tð Þ ¼ Ai

Ac

sin 2p fitð Þ ð3:190Þ

Thus (3.186) is

xr tð Þ ¼ Ac 1þ Ai

Ac

cos 2p fitð Þ
� �

cos 2p fitþ Ai

Ac

sin 2p fitð Þ
� �

ð3:191Þ

The instantaneous phase deviation c tð Þ is given by

c tð Þ ¼ Ai

Ac

sin 2p fitð Þ ð3:192Þ

Thus, the ideal discriminator output for PM is

yD tð Þ ¼ KD

Ai

Ac

sin 2p fitð Þ ð3:193Þ

and the output for FM is

yD tð Þ ¼ 1

2p
KD

d

dt

Ai

Ac

sin 2p fitð Þ

¼ KD

Ai

Ac

fi cos 2p fitð Þ
ð3:194Þ

For both cases, the discriminator output is a sinusoid of frequency fi. The amplitude of the

discriminator output, however, is proportional to the frequency fi for the FMcase. It can be seen

that for small fi, the interfering tone has less effect on the FM system than on the PMsystem and

that the opposite is true for large values of fi. Values of fi > W , the bandwidth of m tð Þ, are of
little interest, since they can be removed by a lowpass filter following the discriminator.

For larger values of Ai the assumption that Ai � Ac cannot be made and (3.194) no longer

can describe the discriminator output. If the conditionAi � Ac does not hold, the discriminator

is not operating above threshold and the analysis becomes much more difficult. Some insight

into this case can be obtained from the phasor diagram, which is obtained by writing (3.184) in

the form

xr tð Þ ¼ Re AcþAie
j2p fi t


 �
e j2p fct

 � ð3:195Þ
The term in parentheses defines a phasor, which is the complex envelope signal. The phasor

diagram is shown in Figure 3.41(a). The carrier phase is taken as the reference and the

interference phase is

u tð Þ ¼ 2p fit ð3:196Þ
Approximations to the phase of the resultant c tð Þ can be determined using the phasor diagram.

From Figure 3.41(b) we see that the magnitude of the discriminator output will be small

when u tð Þ is near zero. This results because for u tð Þ near zero, a given change in u tð Þwill result
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in a much smaller change in c tð Þ. Using the relationship between arc length s, angle u and

radius r, which is s ¼ ur, we obtain

s ¼ u tð ÞAi � Acþ Aið Þc tð Þ; u tð Þ � 0 ð3:197Þ
Solving for c tð Þ yields

c tð Þ � Ai

AcþAi

vit ð3:198Þ

Since the discriminator output is defined by

yD tð Þ ¼ KD

2p

dc

dt
ð3:199Þ

we have

yD tð Þ ¼ KD

Ai

Ac�Ai

fi; u tð Þ � 0 ð3:200Þ

This is a positive quantity for fi > 0 and a negative quantity for fi < 0.

If Ai is slightly less than Ac, denoted Ai
<�Ac, and u tð Þ is near p, a small positive change in

u tð Þwill result in a large negative change in c tð Þ. The result will be a negative spike appearing
at the discriminator output. From Figure 3.41 (c) we can write

s ¼ Ai p�u tð Þð Þ � Ac�Aið Þc tð Þ; u tð Þ � p ð3:201Þ
which can be expressed

c tð Þ � Ai p�2p fitð Þ
Ac�Ai

ð3:202Þ

Using (3.199), we see that the discriminator output is

yD tð Þ ¼ �KD

Ai

Ac�Ai

fi; u tð Þ � p ð3:203Þ

This is a negative quantity for fi > 0 and a positive quantity for fi < 0.

(a)

(c)

(b)

(d)

R(t)

R(t)

R(t)
Ai

R(t) Ai Ai

Ai

Ac

AcAc

Ac

(t)ψ (t)ψ

(t)ψ
(t)ψ

θ ω(t) = it

θ ω(t) = it θ ω(t) = it

θ (t)

s
s

s

0

Figure 3.41

Phasor diagram for carrier plus single-tone interference. (a) Phasor diagram for general u tð Þ. (b) Phasor
diagram for u tð Þ � 0. (c) Phasor diagram for u tð Þ � p and Ai

<�Ac. (d) Phasor diagram for u tð Þ � p and

Ai
>�Ac.
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If Ai is slightly greater than Ac, denoted Ai
>�Ac, and u tð Þ is nearp, a small positive change

in u tð Þwill result in a large positive change inc tð Þ. The result will be a positive spike appearing
at the discriminator output. From Figure 3.41(d) we can write

s ¼ Ai p�u tð Þ½ � � Ai�Acð Þ p�c tð Þ½ �; u tð Þ � p ð3:204Þ
Solving for c tð Þ and differentiating gives the discriminator output

yD tð Þ � �KD

Ai

Ac�Ai

fi ð3:205Þ

Note that this is a positive quantity for fi > 0 and a negative quantity for fi < 0.

The phase deviation and discriminator output waveforms are shown in Figure 3.42 for

Ai ¼ 0:1Ac; Ai ¼ 0:9Ac, and Ai ¼ 1:1Ac. Figure 3.42(a) illustrates that for small Ai the phase

deviation and the discriminator output are nearly sinusoidal as predicted by the results of the

small interference analysis given in (3.192) and (3.194). For Ai ¼ 0:9Ac, we see that we have a

negative spike at the discriminator output as predicted by (3.203). For Ac ¼ 1:1Ac, we have a
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Phase deviation and discriminator outputs due to interference. (a) Phase deviation and discriminator

output for Ai ¼ 0:1Ac. (b) Phase deviation and discriminator output for Ai ¼ 0:9Ac. (c) Phase deviation

and discriminator output for Ai ¼ 1:1Ac.
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positive spike at the discriminator output as predicted by (3.205). Note that for Ai > Ac, the

origin of the phasor diagram is encircled as u tð Þ goes from 0 to 2p. In other words, c tð Þ goes
from 0 to 2p as u tð Þ goes from 0 to 2p. The origin is not encircled if Ai < Ac. Thus the integralð

T

dc

dt

� �
dt ¼ 2p; Ai > Ac

0; Ai < Ac

�
ð3:206Þ

where T is the time required for u tð Þ to go from u tð Þ ¼ 0 to u tð Þ ¼ 2p. In other words,

T ¼ 1= fi. Thus the area under the discriminator output curve is 0 for parts (a) and (b) of Figure

3.42 and 2pKD for the discriminator output curve in Figure 3.42(c).The origin encirclement

phenomenonwill be revisited inChapter 7when demodulation of FM signals in the presence of

noise is examined. An understanding of the interference results presented here will provide

valuable insights when noise effects are considered.

For operation above thresholdAi � Ac, the severe effect of interference on FM for large fi
can be reduced by placing a filter, called a de-emphasis filter, at the FM discriminator output.

This filter is typically a simple RC lowpass filter with a 3-dB frequency considerably less than

the modulation bandwidth W. The de-emphasis filter effectively reduces the interference for

large fi, as shown in Figure 3.43. For large frequencies, the magnitude of the transfer function

of a first-order filter is approximately 1=f . Since the amplitude of the interference increases

linearly with fi for FM, the output is constant for large fi, as shown in Figure 3.43.

Since f3 < W , the lowpass de-emphasis filter distorts the message signal in addition to

combating interference. The distortion can be avoided by passing the message through a

highpass pre-emphasis filter that has a transfer function equal to the reciprocal of the transfer

function of the lowpass de-emphasis filter. Since the transfer function of the cascade

combination of the pre-emphasis and de-emphasis filters is unity, there is no detrimental

effect on the modulation. This yields the system shown in Figure 3.44.

The improvement offered by the use of pre-emphasis and de-emphasis is not gained

without a price. The highpass pre-emphasis filter amplifies the high-frequency components

relative to lower frequency components, which can result in increased deviation and bandwidth

Amplitude of
output signal
due to interference

FM without
deemphasis

FM with
deemphasis

PM without
deemphasis

f3 W Interference
frequency offset fi

Figure 3.43

Amplitude of discriminator output due to

interference.
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requirements. We shall see in Chapter 7, when the impact of channel noise is studied, that the

use of pre-emphasis and de-emphasis often provides significant improvement in system

performance with very little added complexity or implementation costs.

The idea of pre-emphasis and/or de-emphasis filtering has found application in a number

of areas. For example, signals recorded on long playing (LP) records are, prior to recording,

filtered using a highpass pre-emphasis filter. This attenuates the low-frequency content of the

signal being recorded. Since the low-frequency components typically have large amplitudes,

the distance between the groves on the record must be increased to accommodate these large

amplitude signals if pre-emphasis filtering were not used. The impact of more widely spaced

record groves is reduced recording time. The playback equipment applies de-emphasis filtering

to compensate for the pre-emphasis filtering used in the recording process. In the early days of

LP recording, several different pre-emphasis filter designs were used among different record

manufacturers. The playback equipment was consequently required to provide for all of the

different pre-emphasis filter designs in common use. This later became standardized. With

modern digital recording techniques this is no longer an issue.

n 3.4 FEEDBACK DEMODULATORS: THE PHASE-LOCKED LOOP

We have previously studied the technique of FM toAM conversion for demodulating an angle-

modulated signal.We shall see inChapter 7 that improved performance in the presence of noise

can be gained by utilizing a feedback demodulator. The subject of this section is the phase-

locked loop (PLL), which is a basic form of the feedback demodulator. Phase-locked loops are

widely used in today�s communication systems, not only for demodulation of angle modulated

signals but also for carrier and symbol synchronization, for frequency synthesis, and as the

basic building block for a variety of digital demodulators. Phase-locked loops are flexible in

that they can be used in a wide variety of applications, are easily implemented, and PLLs give

superior performance to many other techniques. It is therefore not surprising that they are

ubiquitous in modern communications systems. Therefore, a detailed look at the PLL is

justified.

3.4.1 Phase-Locked Loops for FM and PM Demodulation

Ablock diagram of a PLL is shown in Figure 3.45. The basic PLL contains four basic elements.

These are

1. Phase detector

2. Loop filter

3. Loop amplifier (assume m¼ 1)

4. Voltage-controlled oscillator (VCO).

m(t)m(t)
De-emphasis

filter
1

Hp(f )
Hd(f ) =

DiscriminatorFM
modulator

Pre-emphasis
filter
Hp( f )

Figure 3.44

Frequency modulation system with pre-emphasis and de-emphasis.
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In order to understand the operation of the PLL, assume that the input signal is given by

xr tð Þ ¼ Ac cos 2p fctþf tð Þ½ � ð3:207Þ
and that the VCO output signal is given by

e0 tð Þ ¼ Av sin 2p fctþ u tð Þ½ � ð3:208Þ
There aremany different types of phase detectors, all having different operating properties. For

our application, we assume that the phase detector is amultiplier followed by a lowpass filter to

remove the second harmonic of the carrier.We also assume that an inverter is present to remove

the minus sign resulting from the multiplication. With these assumptions, the output of the

phase detector becomes

ed tð Þ ¼ 1

2
AcAvKd sin f tð Þ�u tð Þ½ � ¼ 1

2
AcAvKd sin c tð Þ½ � ð3:209Þ

where Kd is the phase detector constant and c tð Þ ¼ f tð Þ� u tð Þ is the phase error. Note that for
small phase error the two inputs to themultiplier are approximately orthogonal so that the result

of the multiplication is an odd function of the phase error f tð Þ�u tð Þ. This is a necessary

requirement so that the phase detector can distinguish between positive and negative phase

errors.

The output of the phase detector is filtered, amplified, and applied to the VCO. AVCO is

essentially a frequency modulator in which the frequency deviation of the output, du=dt, is
proportional to the VCO input signal. In other words,

du

dt
¼ Kvev tð Þ rad=s ð3:210Þ

which yields

u tð Þ ¼ Kv

ðt
ev að Þ da ð3:211Þ

The parameterKv is known as theVCO constant and is measured in radians per second per unit

of input.

From the block diagram of the PLL it is clear that

Ev sð Þ ¼ F sð ÞEd sð Þ ð3:212Þ
where F sð Þ is the transfer function of the loop filter. In the time domain the preceding

expression is

ev að Þ ¼
ðt
ed lð Þf a�lð Þ dl ð3:213Þ

Phase
detector

Loop
filter

VCO

Loop
amplifier

xr(t) ed(t)

ev(t)e0(t)

Demodulated output

Figure 3.45

Phase-locked loop.
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which follows by simply recognizing that multiplication in the frequency domain is convolu-

tion in the time domain. Substitution of (3.209) into (3.213) and this result into (3.211) gives

u tð Þ ¼ Kt

ðtða
sin f lð Þ�u lð Þ½ � f a�lð Þ dl da ð3:214Þ

where Kt is the total loop gain defined by

Kt ¼ 1

2
AvAcKdKv ð3:215Þ

Equation (3.214) is the general expression relating the VCO phase u tð Þ to the input phasef tð Þ.
The system designer must select the loop filter transfer functionF sð Þ, thereby defining the filter
impulse response f tð Þ, and the loop gainKt.We see from (3.215) that the loop gain is a function

of the input signal amplitudeAv . Thus PLL design requires knowledge of the input signal level,

which is often unknown and timevarying. This dependency on the input signal level is typically

removed by placing a hard limiter at the loop input. If a limiter is used, the loop gain Kt is

selected by appropriately choosing Av , Kd , and Kv , which are all parameters of the PLL. The

individual values of these parameters are arbitrary so long as their product gives the desired

loop gain. However, hardware considerations typically place constraints on these parameters.

Equation (3.214) defines the nonlinear model of the PLL, which is illustrated in Figure

3.46. Since (3.214) is nonlinear, analysis of the PLL using (3.214) is difficult and often involves

a number of approximations. In practice, we typically have interest in PLL operation in either

the tracking mode or in the acquisition mode. In the acquisition mode the PLL is attempting to

acquire a signal by synchronizing the frequency and phase of the VCOwith the input signal. In

the acquisition mode of operation, the phase errors are typically large, and the nonlinear model

is required for analysis.

In the tracking mode, however, the phase error f tð Þ�u tð Þ is often small and (3.214)

simplifies to the linear model defined by

u tð Þ ¼ Kt

ðtða
f lð Þ�u lð Þ½ � f a�lð Þ dl da ð3:216Þ

Thus, if the phase error is sufficiently small, the sinusoidal nonlinearity can be neglected, and

the PLL becomes a linear feedback control system, which is easily analyzed. The linear model

that results is illustrated in Figure 3.47.While both the nonlinear and linearmodels involve u tð Þ

Loop
filter

Amplifier

+

–

(t)φ

(t)θ

sin (  )Σ

Phase detector

Demodulated output

Kv ( )dtt∫

AvAcKd
1
2

ed(t)

ev(t)

Figure 3.46

Nonlinear PLL model.
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and f tð Þ rather than xr tð Þ and e0 tð Þ, knowledge of u tð Þ and f tð Þ fully determines xr tð Þ and
e0 tð Þ, as can be seen from (3.207) and (3.208). If u tð Þ ffi f tð Þ, it follows that

du tð Þ
dt
ffi df tð Þ

dt
ð3:217Þ

and the VCO frequency deviation is a good estimate of the input frequency deviation. For an

FM system, the frequency deviation of the PLL input signal is proportional to the message

signal m tð Þ. Since the VCO frequency deviation is proportional to the VCO input ev tð Þ, it
follows that ev tð Þ is proportional to m tð Þ if (3.217) is satisfied. Thus ev tð Þ is the demodulated

output for FM systems.

The form of the loop filter transfer functionF sð Þ has a profound effect on both the tracking
and acquisition behavior of the PLL. In the work to follow we will have interest in first-order,

second-order, and third-order PLLs. The loop filter transfer functions for these three cases are

given in Table 3.4. Note that the order of the PLL exceeds the order of the loop filter by one. The

extra integration results from the VCO as we will see in the next section. We now consider the

PLL in both the tracking and acquisition mode. Tracking mode operation is considered first

since it is more straightforward.

3.4.2 Phase-Locked Loop Operation in the Tracking Mode:
The Linear Model

Aswehave seen, in the trackingmode the phase error is small, and linear analysis can be used to

define PLL operation. Considerable insight into PLL operation can be gained by investigating

the steady-state errors for first-order, second-order, and third-order PLLswith a variety of input

signals.

Loop
filter

Loop
amplifier

+

−

(t)
Σ

Phase detector

Demodulated output

Kv ( )dtt∫

AvAcKd
1
2

φ

(t)θ

Figure 3.47

Linear PLL model.

Table 3.4 Loop Filter Transfer Functions

PLL order Loop filter transfer function, F(s)

1 1

2 1þ a=s ¼ sþ að Þ=s
3 1þ a=sþ b=s2 ¼ s2þ asþ bð Þ=s2
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The Loop Transfer Function and Steady-State Errors

The frequency-domain equivalent of Figure 3.47 is illustrated in Figure 3.48. It follows from

Figure 3.48 and (3.216) that

Q sð Þ ¼ Kt F sð Þ�Q sð Þ½ �F sð Þ
s

ð3:218Þ

from which the transfer function relating the VCO phase to the input phase is

H sð Þ ¼ Q sð Þ
F sð Þ ¼

KtF sð Þ
sþKtF sð Þ ð3:219Þ

immediately follows. Since the Laplace transform of the phase error is

Y sð Þ ¼ F sð Þ�Q sð Þ ð3:220Þ
we can write the transfer function relating the phase error to the input phase as

G sð Þ ¼ Y sð Þ
F sð Þ ¼

F sð Þ�Q sð Þ
F sð Þ ¼ 1�H sð Þ ð3:221Þ

so that

G sð Þ ¼ s

sþKtF sð Þ ð3:222Þ

The steady-state error can be determined through the final value theorem from Laplace

transform theory. The final value theorem states that the limt!¥ a tð Þ is given by lims! 0 sA sð Þ,
where a tð Þ and A sð Þ are a Laplace transform pair.

In order to determine the steady-state errors for various loop orders, we assume that the

phase deviation has the somewhat general form

f tð Þ ¼ pRt2þ 2p fDtþ u0; t > 0 ð3:223Þ
The corresponding frequency deviation is

1

2p

df

dt
¼ Rtþ fD; t > 0 ð3:224Þ

Loop
filter F(s)

Loop
gain Kt+ −

Φ(s)
Σ

Demodulated output

Ψ(s)

Θ(s)

VCO
1/s

Figure 3.48

Linear PLL model in the frequency domain.
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We see that the frequency deviation is the sum of a frequency ramp, R Hz=s, and a frequency
step fD. The Laplace transform of f tð Þ is

F sð Þ ¼ 2pR

s3
þ 2p fD

s2
þ u0

s
ð3:225Þ

Thus, the steady-state phase error is given by

css ¼ lim
s! 0

s
2pR

s3
þ 2p fD

s2
þ u0

s

� �
G sð Þ ð3:226Þ

where G sð Þ is given by (3.222).

In order to generalize, consider the third-order filter transfer function defined in Table 3.4:

F sð Þ ¼ 1

s2
ðs2þ asþ bÞ ð3:227Þ

If a ¼ 0 and b ¼ 0, F sð Þ ¼ 1, the loop filter transfer function for a first-order PLL. If a „ 0, and
b ¼ 0, F sð Þ ¼ sþ að Þ=s, which defines the loop filter for second-order PLL. With a „ 0 and

b „ 0 we have a third-order PLL. We can therefore use F sð Þ, as defined by (3.227) with a and b
taking on appropriate values, to analyze first-order, second-order, and third-order PLLs.

Substituting (3.227) into (3.222) yields

G sð Þ ¼ s3

s3þKts2þKtasþKtb
ð3:228Þ

Using the expression for G sð Þ in (3.226) gives the steady-state phase error expression

css ¼ lim
s! 0

s u0s
2þ 2p fDsþ 2pRð Þ

s3þKts2þKtasþKtb
ð3:229Þ

Wenowconsider the steady-state phase errors for first-order, second-order, and third-order

PLLs. For various input signal conditions, defined by u0, fD, andR and the loop filter parameters

a and b, the steady-state errors given in Table 3.5 can be determined. Note that a first-order PLL

can track a phase step with a zero steady-state error. A second-order PLL can track a frequency

step with zero steady-state error, and a third-order PLL can track a frequency ramp with zero

steady-state error.

Note that for the cases given in Table 3.5 for which the steady-state error is nonzero and

finite, the steady-state error can be made as small as desired by increasing the loop gain Kt.

However, increasing the loop gain increases the loop bandwidth.When we consider the effects

of noise in later chapters, we will see that increasing the loop bandwidth makes the PLL

Table 3.5 Steady-State Errors

PLL order

u0 „ 0
fD =0

R=0

u0 „ 0
fD „ 0

R=0

u0 „ 0
fD „ 0

R „ 0

1 a ¼ 0; b ¼ 0ð Þ 0 2pfD=Kt ¥
2 a „ 0; b ¼ 0ð Þ 0 0 2pR=Kt

3 a „ 0; b„ 0ð Þ 0 0 0
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performance more sensitive to the presence of noise. We therefore see a trade-off between

steady-state error and loop performance in the presence of noise.

EXAMPLE 3.11

Wenowconsider a first-order PLL,which from (3.222) and (3.227), with a ¼ 0 and b ¼ 0, has the transfer

function

H sð Þ ¼ Q sð Þ
F sð Þ ¼

Kt

sþKt

ð3:230Þ

The loop impulse response is therefore

h tð Þ ¼ Kte
�Ktt u tð Þ ð3:231Þ

The limit of h tð Þ as the loop gainKt tends to infinity satisfies all properties of the delta function. Therefore,

lim
Kt!¥

Kte
�Ktt u tð Þ ¼ d tð Þ ð3:232Þ

which illustrates that for large loop gain u tð Þ � f tð Þ. This also illustrates that the PLL serves as a

demodulator for angle-modulated signals. Used as an FMdemodulator, theVCO input is the demodulated

output since the VCO input signal is proportional to the frequency deviation of the PLL input signal. For

PM the VCO input is simply integrated to form the demodulated output, since phase deviation is the

integral of frequency deviation.

&

EXAMPLE 3.12

As an extension of the preceding example, assume that the input to an FMmodulator ism tð Þ ¼ Au tð Þ. The
resulting modulated carrier

xc tð Þ ¼ Ac cos 2p fctþ kf A

ðt
u að Þ da

� �
ð3:233Þ

is to be demodulated using a first-order PLL. The demodulated output is to be determined.

This problem will be solved using linear analysis and the Laplace transform. The loop transfer

function (3.230) is

Q sð Þ
F sð Þ ¼

Kt

sþKt

ð3:234Þ

The phase deviation of the PLL input f tð Þ is
f tð Þ ¼ A kf

ðt
u að Þ da ð3:235Þ

The Laplace transform of f tð Þ is
F sð Þ ¼ Akf

s2
ð3:236Þ

which gives

Q sð Þ ¼ AKf

s2
Kt

sþKt

ð3:237Þ

The Laplace transform of the defining equation of the VCO, (3.211), yields

Ev sð Þ ¼ s

Kv
Q sð Þ ð3:238Þ

3.4 Feedback Demodulators: The Phase-Locked Loop 173

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


so that

Ev sð Þ ¼ Akf

Kv

Kt

s sþKtð Þ ð3:239Þ

Partial fraction expansion gives

Ev sð Þ ¼ Akf

Kv

1

s
� 1

sþKt

� �
ð3:240Þ

Thus the demodulated output is given by

ev tð Þ ¼ Akf

Kv
1�e�Ktt

 �

u tð Þ ð3:241Þ

Note that for t 1=Kt and kf ¼ Kv we have ev tð Þ ¼ Au tð Þ as the demodulated output. The transient time

is set by the total loop gainKt, and kf =Kv is simply an amplitude scaling of the demodulated output signal.

&

As previously mentioned, very large values of loop gain cannot be used in practical

applications without difficulty. However, the use of appropriate loop filters allows good

performance to be achieved with reasonable values of loop gain and bandwidth. These filters

make the analysis more complicated than our simple example, as we shall soon see.

Even though the first-order PLL can be used for demodulation of angle-modulated signals

and for synchronization, the first-order PLL has a number of drawbacks that limit its use for

most applications. Among these drawbacks are the limited lock range and the nonzero steady-

state phase error to a step-frequency input. Both these problems can be solved by using a

second-order PLL, which is obtained by using a loop filter of the form

F sð Þ ¼ sþ a

s
¼ 1þ a

s
ð3:242Þ

This choice of loop filter results in what is generally referred to as a perfect second-order PLL.

Note that the loop filter defined by (3.242) can be implemented using a single integrator, as will

be demonstrated in a computer example to follow.

The Second-Order PLL: Loop Natural Frequency and Damping Factor

With F sð Þ given by (3.242), the transfer function (3.219) becomes

H sð Þ ¼ Q sð Þ
F sð Þ ¼

Kt sþ að Þ
s2þKtsþKta

ð3:243Þ

Wealso canwrite the relationship between the phase errorY sð Þ and the input phaseF sð Þ. From
Figure 3.48 or (3.222), we have

G sð Þ ¼ Y sð Þ
F sð Þ ¼

s2

s2þKtasþKta
ð3:244Þ

Since the performance of a linear second-order system is typically parameterized in terms

of the natural frequency and damping factor, we now place the transfer function in the standard

form for a second-order system. The result is

Y sð Þ
F sð Þ ¼

s2

s2þ 2zvnsþv2
n

ð3:245Þ
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in which z is the damping factor and vn is the natural frequency. It follows from the preceding

expression that the natural frequency is

vn ¼
ffiffiffiffiffiffiffi
Kta
p ð3:246Þ

and that the damping factor is

z ¼ 1

2

ffiffiffiffiffi
Kt

a

r
ð3:247Þ

A typical value of the damping factor is 1=
ffiffiffi
2
p ¼ 0:707. Note that this choice of damping factor

gives a second-order Butterworth response.

In simulating a second-order PLL, one usually specifies the loop natural frequency and the

damping factor and determines loop performance as a function of these two fundamental

parameters. The PLL simulation model, however, is a function of the physical parameters Kt

and a. Equations (3.246) and (3.247) allow Kt and a to be written in terms of vn and z. The
results are

a ¼ vn

2z
¼ p fn

z
ð3:248Þ

and

Kt ¼ 4pz fn ð3:249Þ
where 2p fn ¼ vn. These last two expressions will be used to develop the simulation program

for the second-order PLL that is given in Computer Example 3.4.

EXAMPLE 3.13

Wenowwork a simple second-order example.Assume that the input signal to the PLL experiences a small

step change in frequency. (The step in frequency must be small to ensure that the linear model is

applicable. We will consider the result of large step changes in PLL input frequency when we consider

operation in the acquisition mode.) Since instantaneous phase is the integral of instantaneous frequency

and integration is equivalent to division by s, the input phase due to a step in frequency of magnitude Df is

F sð Þ ¼ 2pDf
s2

ð3:250Þ

From (3.245) we see that the Laplace transform of the phase error c tð Þ is

Y sð Þ ¼ Dv
s2þ 2zvnsþv2

n

ð3:251Þ

Inverse transforming and replacing vn by 2p fn yields, for z < 1,

c tð Þ ¼ Df
fn

ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p e�2pz fnt sin 2p fn

ffiffiffiffiffiffiffiffiffiffiffi
1�z2

q
t

� �� �
u tð Þ ð3:252Þ

and we see that c tð Þ! 0 as t!¥. Note that the steady-state phase error is zero as we first saw in

Table 3.5.

&
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3.4.3 Phase-Locked Loop Operation in the Acquisition Mode

In the acquisition mode we must determine that the PLL actually achieves phase lock and the

time required for the PLL to achieve phase lock. In order to show that the phase error signal

tends to drive the PLL into lock, wewill simplify the analysis by assuming a first-order PLL for

which the loop filter transfer function F sð Þ ¼ 1 or f tð Þ ¼ d tð Þ. Simulation will be used for

higher-order loops. Using the general nonlinear model defined by (3.214) with h tð Þ ¼ d tð Þ and
applying the sifting property of the delta function yields

u tð Þ ¼ Kt

ðt
sin f að Þ�u að Þ½ � da ð3:253Þ

Taking the derivative of u tð Þ gives
du

dt
¼ Kt sin f tð Þ�u tð Þ½ � ð3:254Þ

Assume that the input to the FMmodulator is a unit step so that the frequency deviation df=dt
is a unit step of magnitude 2pDf ¼ Dv. Let the phase error f tð Þ�u tð Þ be denoted c tð Þ. This
yields

du

dt
¼ df

dt
� dc

dt
¼ Dv� dc

dt
¼ Kt sinc tð Þ; t 	 0 ð3:255Þ

or

dc

dt
þKt sinc tð Þ ¼ Dv ð3:256Þ

This equation is sketched in Figure 3.49. It relates the frequency error and the phase error.

A plot of the derivative of a functionversus the function is known as a phase-plane plot and

tells us much about the operation of a nonlinear system. The PLL must operate with a phase

error c tð Þ and a frequency error dc=dt that are consistent with (3.256). To demonstrate that the

PLL achieves lock, assume that the PLL is operating with zero phase and frequency error prior

to the application of the frequency step. When the step in frequency is applied, the frequency

error becomes Dv. This establishes the initial operating point, pointB in Figure 3.49, assuming

Dv > 0. In order to determine the trajectory of the operating point, we need only recognize that

since dt, a time increment, is always a positive quantity, dc must be positive if dc=dt is
positive. Thus, in the upper half plane c increases. In other words, the operating point moves

from left-to-right in the upper half plane. In the same manner, the operating point moves from

right-to-left in the lower half plane, the region for which dc=dt is less than zero. Thus the

operating point must move from point B to point A. When the operating point attempts to move

ψ

ψ

ψ

Δω

Δω

+ Kt

Δω – Kt
ss

d   /dt

A

B

Figure 3.49

Phase-plane plot.
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from point A by a small amount, it is forced back to point A. Thus point A is a stable operating

point and is the steady-state operating point of the system. The steady-state phase error is css,

and the steady-state frequency error is zero as shown.

The preceding analysis illustrates that the loop locks only if there is an intersection of the

operating curve with the dc=dt ¼ 0 axis. Thus, if the loop is to lock, Dvmust be less than Kt.

For this reason, Kt is known as the lock range for the first-order PLL.

The phase-plane plot for a first-order PLL with a frequency-step input is illustrated in

Figure 3.50. The loop gain is 2p 50ð Þ, and four values for the frequency step are shown:

Df ¼ 12; 24; 48, and 55 Hz. The steady-state phase errors are indicated by A, B, and C for

frequency-step values of 12, 24, and 48 Hz, respectively. For Df ¼ 55, the loop does not lock

but forever oscillates.

Amathematical development of the phase-plane plot of a second-order PLL iswell beyond

the level of our treatment here. However, the phase-plane plot is easily obtained, using

computer simulation. For illustrative purposes, assume a second-order PLL having a damping

factor z of 0.707 and a natural frequency fn of 10 Hz. For these parameters, the loop gain Kt is

88.9, and the filter parameter a is 44.4. The input to the PLL is assumed to be a step change in

frequency at time t ¼ t0. Four values were used for the step change in frequencyDv ¼ 2p Dfð Þ.
These were Df ¼ 20; 35; 40, and 45 Hz.

The results are illustrated in Figure 3.51. Note that for Df ¼ 20 Hz, the operating point

returns to a steady-state value for which the frequency and phase error are both zero, as

should be the case from Table 3.5. For Df ¼ 35 Hz, the phase plane is somewhat more

complicated. The steady-state frequency error is zero, but the steady-state phase error is 2p
rad. We say that the PLL has slipped one cycle. Note that the steady-state error is zero

mod 2pð Þ. The cycle-slipping phenomenon accounts for the nonzero steady-state phase error.

The responses for Df ¼ 40 and 45 Hz illustrate that three and four cycles are slipped,

respectively. The instantaneous VCO frequency is shown in Figure 3.52 for these four cases.

The cycle-slipping behavior is clearly shown. The second-order PLL does indeed have an

infinite lock range, and cycle slipping occurs until the phase error is within p rad of the

steady-state value.
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voltage-controlled oscillator frequency for four values of input frequency step. (a) VCO frequency for

Df ¼ 20Hz. (b) VCO frequency forDf ¼ 35Hz. (c) VCO frequency forDf ¼ 40Hz. (d) VCO frequency

for Df ¼ 45 Hz.
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COMPUTER EXAMPLE 3.4

A simulation program is easily developed for the PLL. Two integration routines are required; one for the

loop filter and one for the VCO. The trapezoidal approximation is used for these integration routines. The

trapezoidal approximation is

y[n] ¼ y[n-1] þ (T/2)[x[n] þ x[n-1]

where y[n] represents the current output of the integrator, y[n-1] represents the previous integrator

output, x[n] represents the current integrator input, x[n-1] represents the previous integrator input,

and T represents the simulation step size, which is the reciprocal of the sampling frequency. The values of

y[n-1] andx[n-1]must be initialized prior to entering the simulation loop. Initializing the integrator

inputs and outputs usually result in a transient response. The parametersettle, which in the simulation

program to follow is set equal to 10% of the simulation run length, allows any initial transients to decay to

negligible values prior to applying the loop input.

The following simulation program is divided into three parts. The preprocessor defines the

system parameters, the system input, and the parameters necessary for execution of the simulation,

such as the sampling frequency. The simulation loop actually performs the simulation. Finally, the

postprocessor allows for the data generated by the simulation to be displayed in a manner convenient

for interpretation by the simulation user. Note that the postprocessor used here is interactive in that a

menu is displayed and the simulation user can execute postprocessor commands without typing

them.

The simulation program given here assumes a frequency step on the loop input and can therefore be

used to generate Figures 3.51 and 3.52.

% File: c3ce4.m
% beginning of preprocessor
clear all % be safe
fdel ¼ input(‘Enter frequency step size in Hz > ’);
fn ¼ input(‘Enter the loop natural frequency in Hz > ’);
zeta ¼ input(‘Enter zeta (loop damping factor) > ’);
npts ¼ 2000; % default number of simulation points
fs ¼ 2000; % default sampling frequency
T ¼ 1/fs;
t ¼ (0:(npts-1))/fs; % time vector
nsettle ¼ fix(npts/10); % set nsettle time as 0.1*npts

Kt ¼ 4*pi*zeta*fn; % loop gain
a ¼ pi*fn/zeta; % loop filter parameter

filt_in_last ¼ 0; filt_out_last¼0;
vco_in_last ¼ 0; vco_out ¼ 0; vco_out_last¼0;
% end of preprocessor

% beginning of simulation loop
for i¼1:npts

if i < nsettle
fin(i) ¼ 0;
phin ¼ 0;

else
fin(i) ¼ fdel;
phin ¼ 2*pi*fdel*T*(i-nsettle);

end
s1¼phin - vco_out;
s2¼sin(s1); % sinusoidal phase detector
s3¼Kt*s2;

filt_in ¼ a*s3;
filt_out ¼ filt_out_last þ (T/2)*(filt_in þ filt_in_last);
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filt_in_last ¼ filt_in;
filt_out_last ¼ filt_out;
vco_in ¼ s3 þ filt_out;
vco_out ¼ vco_out_last þ (T/2)*(vco_in þ vco_in_last);
vco_in_last ¼ vco_in;
vco_out_last ¼ vco_out;
phierror(i)¼s1;
fvco(i)¼vco_in/(2*pi);
freqerror(i) ¼ fin(i)-fvco(i);

end
% end of simulation loop

% beginning of postprocessor
kk ¼ 0;
while kk ¼¼ 0

k ¼ menu(‘Phase Lock Loop Postprocessor’,...
‘Input Frequency and VCO Frequency’,...
‘Phase Plane Plot’,...
‘Exit Program’);
if k ¼¼ 1

plot(t,fin,t,fvco)
title(‘Input Frequency and VCO Freqeuncy’)
xlabel(‘Time - Seconds’)
ylabel(‘Frequency - Hertz’)
pause

elseif k ¼¼ 2
plot(phierror/2/pi,freqerror)
title(‘Phase Plane’)
xlabel(‘Phase Error / pi’)
ylabel(‘Frequency Error - Hz’)
pause

elseif k ¼¼ 3
kk ¼ 1;

end
end
% end of postprocessor

&

3.4.4 Costas PLLs

We have seen that systems utilizing feedback can be used to demodulate angle-modulated

carriers. A feedback system also can be used to generate the coherent demodulation

carrier necessary for the demodulation of DSB signals. One system that accomplishes this

is the Costas PLL illustrated in Figure 3.53. The input to the loop is the assumed DSB

signal

xr tð Þ ¼ m tð Þ cos 2p fctð Þ ð3:257Þ

The signals at the various points within the loop are easily derived from the assumed

input and VCO output and are included in Figure 3.53. The lowpass filter preceding the

VCO is assumed sufficiently narrow so that the output is K sinð2uÞ, essentially the DC

value of the input. This signal drives the VCO such that u is reduced. For sufficiently

small u, the output of the top lowpass filter is the demodulated output, and the output of
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the lower filter is negligible. We will see in Chapter 8 that the Costas PLL is useful in the

implementation of digital receivers.

3.4.5 Frequency Multiplication and Frequency Division

Phase-locked loops also allow for simple implementation of frequency multipliers and

dividers. There are two basic schemes. In the first scheme, harmonics of the input are

generated, and the VCO tracks one of these harmonics. This scheme is most useful for

implementing frequency multipliers. The second scheme is to generate harmonics of the VCO

output and to phase lock one of these frequency components to the input. This scheme can be

used to implement either frequency multipliers or frequency dividers.

Figure 3.54 illustrates the first technique. The limiter is a nonlinear device and therefore

generates harmonics of the input frequency. If the input is sinusoidal, the output of the limiter is

a square wave; therefore, odd harmonics are present. In the example illustrated, the VCO

quiescent frequency [VCO output frequency fc with ev tð Þ equal to zero] is set equal to 5 f0. The
result is that the VCO phase locks to the fifth harmonic of the input. Thus the system shown

multiplies the input frequency by 5.

Figure 3.55 illustrates frequency division by a factor of 2. TheVCO quiescent frequency is

f0=2 Hz, but the VCO output waveform is a narrow pulse that has the spectrum shown. The

component at frequency f0 phase locks to the input. A bandpass filter can be used to select the

component desired from the VCO output spectrum. For the example shown, the center

frequency of the bandpass filter should be f0=2. The bandwidth of the bandpass filter must

be less than the spacing between the components in the VCO output spectrum; in this case, this

spacing is f0=2: It is worth noting that the system shown in Figure 3.55 could be used to

multiply the input frequency by 5 by setting the center frequency of the bandpass filter to 5 f0.

Thus this system could also serve as a �5 frequency multiplier, like the first example. Many

variations of these basic techniques are possible.
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Costas PLL.
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n 3.5 ANALOG PULSE MODULATION

In Section 2.8 we saw that continuous bandlimited signals can be represented by a sequence of

discrete samples and that the continuous signal can be reconstructed with negligible error if the

sampling rate is sufficiently high. Consideration of sampled signals leads us to the topic of pulse

modulation. Pulse modulation can be either analog, in which some attribute of a pulse varies

continuously in one-to-one correspondence with a sample value, or digital, in which some
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Phase-locked loop used as a frequency multiplier.
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attribute of a pulse can take on a certain value from a set of allowable values. In this section we

examine analog pulsemodulation. In the following sectionwe examine a couple of examples of

digital pulse modulation.

As mentioned, analog pulse modulation results when some attribute of a pulse varies

continuously in one-to-one correspondence with a sample value. Three attributes can be

readily varied: amplitude, width, and position. These lead to pulse amplitude modulation

(PAM), pulse-width modulation (PWM), and pulse-position modulation (PPM) as illustrated

in Figure 3.56.

3.5.1 Pulse-Amplitude Modulation

A PAMwaveform consists of a sequence of flat-topped pulses designating sample values. The

amplitude of each pulse corresponds to the value of themessage signalm tð Þ at the leading edge
of the pulse. The essential difference between PAMand the sampling operation discussed in the

previous chapter is that in PAM we allow the sampling pulse to have finite width. The finite-

width pulse can be generated from the impulse-train sampling function by passing the impulse-

train samples through a holding circuit as shown in Figure 3.57. The impulse response of the

ideal holding circuit is given by

t

t

t

t
0 Ts 2Ts 9Ts

Analog
signal

(Samples)
PAM signal

PWM
signal

PPM
signal

Figure 3.56

Illustration of PAM, PWM, and

PPM.
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h tð Þ ¼ P
t� 1

2
t

t

� �
ð3:258Þ

The holding circuit transforms the impulse function samples, given by

md tð Þ ¼
X¥
n¼�¥

m nTsð Þd t�nTsð Þ ð3:259Þ

to the PAM waveform given by

mc tð Þ ¼
X¥
n¼�¥

m nTsð ÞP t� nTsþ 1
2
t


 �
t

� �
ð3:260Þ

as illustrated in Figure 3.57. The transfer function of the holding circuit is

H fð Þ ¼ t sinc f tð Þ e�jpf t ð3:261Þ
Since the holding network does not have a constant amplitude response over the bandwidth of

m tð Þ, amplitude distortion results. This amplitude distortion, which can be significant unless

the pulse width t is very small, can be removed by passing the samples, prior to reconstruction

ofm tð Þ, through a filter having an amplitude response equal to 1=jH fð Þj, over the bandwidth of
m tð Þ. This process is referred to as equalization and will be treated in more detail in Chapters 5

and 8. Since the phase response of the holding network is linear, the effect is a time delay and

can usually be neglected.

3.5.2 Pulse-Width Modulation (PWM)

A PWM waveform, as illustrated in Figure 3.56, consists of a sequence of pulses with

each pulse having a width proportional to the values, and of a message signal at the
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Figure 3.57

Generation of PAM. (a) Holding network. (b) Impulse response of holding network. (c) Amplitude

response of holding network. (d) Phase response of holding network.
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sampling instants. If the message is 0 at the sampling time, the width of the PWM pulse

is typically 1
2
Ts. Thus, pulse widths less than 1

2
Ts correspond to negative sample values,

and pulse widths greater than 1
2
Ts correspond to positive sample values. The modulation

index b is defined so that for b ¼ 1, the maximum pulse width of the PWM pulses is

exactly equal to the sampling period 1=Ts. Pulse-Width Modulation is seldom used in

modern communications systems. Pulse-Width Modulation is used extensively for DC

motor control in which motor speed is proportional to the width of the pulses. Since the

pulses have equal amplitude, the energy in a given pulse is proportional to the pulse

width. Thus, the sample values can be recovered from a PWM waveform by lowpass

filtering.

COMPUTER EXAMPLE 3.5

In this computer example we determine the spectrum of a PWM signal. The MATLAB code

follows:

% File: c3ce5.m
clear all; % be safe
N ¼ 20000; % FFT size
N_samp ¼ 200; % 200 samples per period
f ¼ 1; % frequency
beta ¼ 0.7; % modulation index
period ¼ N/N_samp; % sample period (Ts)
Max_width ¼ beta*N/N_samp; % maximum width
y ¼ zeros(1,N); % initialize
for n¼1:N_samp

x ¼ sin(2*pi*f*(n-1)/N_samp);
width ¼ (period/2)þround((Max_width/2)*x);
for k¼1:Max_width

nn ¼ (n-1)*periodþk;
if k<width

y(nn) ¼ 1; % pulse amplitude
end

end
end
ymm ¼ y-mean(y); % remove mean
z ¼ (1/N)*fft(ymm,N); % compute FFT
subplot(211)
stem(0:999,abs(z(1:1000)),‘.k’)
xlabel(‘Frequency - Hz.’)
ylabel(‘Amplitude’)
subplot(212)
stem(180:220,abs(z(181:221)),‘.k’)
xlabel(‘Frequency - Hz.’)
ylabel(‘Amplitude’)
% End of script file.

In the preceding program the message signal is a sinusoid having a frequency of 1 Hz. The message

signal is sampled at 200 samples per period or 200 Hz. The FFT covers 10 periods of the waveform. The

spectrum, as determined by the FFT, is illustrated in Figure 3.58(a) and (b). Figure 3.58(a) illustrates the

spectrum in the range 0 � f � 1000. Since the individual spectral components are spaced 1 Hz apart,

corresponding to the 1-Hz sinusoid, they cannot be clearly seen. Figure 3.58(b) illustrates the spectrum in

the neighborhood of f ¼ 200Hz. The spectrum in this region reminds us of a Fourier–Bessel spectrum for

a sinusoid FM modulated by a pair of sinusoids (see Figure 3.29). We observe that PWM is a nonlinear

modulation process.
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&

3.5.3 Pulse-Position Modulation (PPM)

APPM signal consists of a sequence of pulses in which the pulse displacement from a specified

time reference is proportional to the sample values of the information-bearing signal. A PPM

signal is illustrated in Figure 3.56 and can be represented by the expression

x tð Þ ¼
X¥
n¼�¥

g t�tnð Þ ð3:262Þ

where g tð Þ represents the shape of the individual pulses, and the occurrence times tn are related

to the values of the message signal m tð Þ at the sampling instants nTs, as discussed in the

preceding paragraph. The spectrum of a PPM signal is very similar to the spectrum of a PWM

signal. (See the computer examples at the end of the chapter.)

If the time axis is slotted so that a given range of sample values is associated with each slot,

the pulse positions are quantized, and a pulse is assigned to a given slot depending upon the

sample value. Slots are nonoverlaping and are therefore orthogonal. If a given sample value is

assigned to one of M slots, the result is M-ary orthogonal communications, which will be

studied in detail in Chapter 10. Pulse-Position Modulation is finding a number of applications

in the area of ultra-wideband communications.2

0.25

0.2

0.15

0.1

0.05

0
0 100 200 300 400 500

Frequency-Hz.

Frequency-Hz.

600 700 800 900 1000

A
m

pl
itu

de

0.25

0.2

0.15

0.1

0.05

0
180 185 190 195 200 205 210 215 220

A
m

pl
itu

de

Figure 3.58

Spectrum of a PWM signal. (a) Spectrum for 0 � f � 1000 Hz. (b) Spectrum in the neighborhood of

f ¼ 200 Hz.

2See, for example, R. A. Scholtz,Multiple Access withTime-Hopping ImpulseModulation,Proceedings of the IEEE

1993 MILCOM Conference, 1993, and J. H. Reed (ed.), An Introduction to Ultra Wideband Communicaion

Systems, Prentice Hall PTR, 2005.
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n 3.6 DELTA MODULATION AND PCM

In analog pulsemodulation systems, the amplitude, width, or position of a pulse canvary over a

continuous range of values in accordance with the message amplitude at the sampling instant.

In systems utilizing digital pulse modulation, the transmitted samples take on only discrete

values. We now examine two types of digital pulse modulation: delta modulation and pulse-

code modulation (PCM).

3.6.1 Delta Modulation

Delta modulation (DM) is a modulation technique in which the message signal is encoded into

a sequence of binary symbols. These binary symbols are represented by the polarity of impulse

functions at the modulator output. The electronic circuits to implement both the modulator and

the demodulator are extremely simple. This simplicity makes DM an attractive technique for a

number of applications.

A block diagram of a delta modulator is illustrated in Figure 3.59(a). The input to the pulse

modulator portion of the circuit is

d tð Þ ¼ m tð Þ�ms tð Þ ð3:263Þ
where m tð Þ is the message signal and ms tð Þ is a reference waveform. The signal d tð Þ is hard-
limited and multiplied by the pulse-generator output. This yields

xc tð Þ ¼ D tð Þ
X¥
n¼�¥

d t�nTsð Þ ð3:264Þ

where D tð Þ is a hard-limited version of d tð Þ. The preceding expression can be written as

xc tð Þ ¼
X¥
n¼�¥

D nTsð Þd t�nTsð Þ ð3:265Þ

Thus the output of the delta modulator is a series of impulses, each having positive or negative

polarity depending on the sign of d tð Þ at the sampling instants. In practical applications, the

output of the pulse generator is not, of course, a sequence of impulse functions but rather a

sequence of pulses that are narrowwith respect to their periods. Impulse functions are assumed

here because of the resulting mathematical simplicity. The reference signalms tð Þ is generated
by integrating xc tð Þ. This yields at

ms tð Þ ¼
X¥
n¼�¥

D nTsð Þ
ðt
d a�nTsð Þda ð3:266Þ

which is a stairstep approximation ofm tð Þ. The reference signalms tð Þ is shown in Figure 3.59
(b) for an assumed m tð Þ. The transmitted waveform xc tð Þ is illustrated in Figure 3.59(c).

Demodulation of DM is accomplished by integrating xc tð Þ to form the stairstep

approximation ms tð Þ. This signal can then be lowpass filtered to suppress the discrete jumps

inms tð Þ. Since a lowpass filter approximates an integrator, it is often possible to eliminate the

integrator portion of the demodulator and to demodulate DM simply by lowpass filtering, as

was done for PAM and PWM. A difficulty with DM is the problem of slope overload. Slope
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overload occurs when the message signalm tð Þ has a slope greater than can be followed by the
stairstep approximation ms tð Þ. This effect is illustrated in Figure 3.60(a), which shows a step

change in m tð Þ at time t0. Assuming that each pulse in xc tð Þ has weight d0, the maximum

slope that can be followed by ms tð Þ is d0=Ts, as shown. Figure 3.60(b) shows the resulting

error signal due to a step change in m tð Þ at t0. It can be seen that significant error exists

for some time following the step change in m tð Þ. The duration of the error due to slope

overload depends on the amplitude of the step, the impulse weights d0, and the sampling

period Ts.

A simple analysis can be carried out assuming that the message signal m tð Þ is the

sinusoidal signal

m tð Þ ¼ A sin 2p f1tð Þ ð3:267Þ
The maximum slope that ms tð Þ can follow is

Sm ¼ d0
Ts

ð3:268Þ
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and the derivative of m tð Þ is
d

dt
m tð Þ ¼ 2pA f1 cos 2p f1tð Þ ð3:269Þ

It follows that ms tð Þ can follow m tð Þ without slope overload if

d0
Ts
	 2pA f1 ð3:270Þ

This example illustrates the bandwidth constraint on m tð Þ if slope overload is to be

avoided.

One technique for overcoming the problem of slope overload is to modify the

modulator as shown in Figure 3.61. The result is known as adaptive delta modulation.

The system is explained by recognizing that the weights d0, and consequently the step size

of ms tð Þ, can be very small if m tð Þ is nearly constant. A rapidly changing m tð Þ requires a
larger value of d0 if slope overload is to be avoided. A lowpass filter is used as shown, with

xc tð Þ as input. If m tð Þ is constant or nearly constant, the pulses constituting xc tð Þ will
alternate in sign. Thus the DC value, determined over the time constant of the lowpass filter,

is nearly zero. This small value controls the gain of the variable-gain amplifier such that it is

very small under this condition. Thus, d0 is made small at the integrator input. The square-

law or magnitude device is used to ensure that the control voltage and amplifier gain g tð Þ
are always positive. If m tð Þ is increasing or decreasing rapidly, the pulses xc tð Þ will have the
same polarity over this period. Thus the magnitude of the output of the lowpass filter will be

relatively large. The result is an increase in the gain of the variable-gain amplifier and

consequently an increase in d0. This in turn reduces the time span of significant slope

overload. The use of an adaptive delta modulator requires that the receiver be adaptive also,

so that the step size at the receiver changes to match the changes in d0 at the modulator.

This is illustrated in Figure 3.62.

(a)

(b)

Slope = 0/Tsδ

Ts
t0

t0

t

t

ms(t)

m(t)

d(t)

0δ

Figure 3.60

Illustration of slope overload.

(a) Illustration of m tð Þ and ms tð Þ
with step change in m tð Þ. (b) Error
between m tð Þ and ms tð Þ.
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3.6.2 Pulse-Code Modulation

The generation of PCM is a three-step process, as illustrated in Figure 3.63(a). The message

signal m tð Þ is first sampled, and the resulting sample values are then quantized. In PCM, the

quantizing level of each sample is the transmitted quantity instead of the sample value.

Typically, the quantization level is encoded into a binary sequence, as shown in Figure 3.63(b).

Themodulator output is a pulse representation of the binary sequence, which is shown in Figure

3.63(c). A binary ‘‘one’’ is represented as a pulse, and a binary ‘‘zero’’ is represented as the

absence of a pulse. This absence of a pulse is indicated by a dashed line in Figure 3.63(c).

The PCM waveform of Figure 3.63(c) shows that a PCM system requires synchronization so

that the starting points of the digital words can be determined at the demodulator.

To consider the bandwidth requirements of a PCM system, suppose that q quantization

levels are used, satisfying

q¼ 2n ð3:271Þ
where n, the word length, is an integer. For this case, n ¼ log2q binary pulses must be

transmitted for each sample of the message signal. If this signal has bandwidth W and the
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sampling rate is 2W, then 2nW binary pulses must be transmitted per second. Thus the

maximum width of each binary pulse is

Dtð Þmax ¼
1

2nW
ð3:272Þ

We saw in Section 2.7 that the bandwidth required for transmission of a pulse is inversely

proportional to the pulse width, so that

B ¼ 2knW ð3:273Þ
where B is the required bandwidth of the PCM system and k is a constant of proportionality.

Note that we have assumed both a minimum sampling rate and a minimum value of bandwidth

for transmitting a pulse. Equation (3.273) shows that the PCM signal bandwidth is proportional

to the product of the message signal bandwidth W and the wordlength n.

If the major source of error in the system is quantizing error, it follows that a small error

requirement dictates large word length resulting in large transmission bandwidth. Thus, in a

PCM system, quantizing error can be exchanged for bandwidth.We shall see that this behavior

is typical of many nonlinear systems operating in noisy environments. However, before noise

effects can be analyzed, we must take a detour and develop the theory of probability and

random processes. Knowledge of this area enables one to accurately model realistic and

practical communication systems operating in everyday, nonidealized environments.

n 3.7 MULTIPLEXING

In many applications, a large number of data sources are located at a common point, and it

is desirable to transmit these signals simultaneously using a single communication channel.
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This is accomplished using multiplexing. We will now examine several different types of

multiplexing, each having advantages and disadvantages.

3.7.1 Frequency-Division Multiplexing

Frequency-division multiplexing (FDM) is a technique whereby several message signals are

translated, using modulation, to different spectral locations and added to form a baseband

signal. The carriers used to form the baseband are usually referred to as subcarriers. If desired,

the baseband signal can be transmitted over a single channel using a singlemodulation process.

Several different types of modulation can be used to form the baseband, as illustrated in

Figure 3.64. In this example, there are N information signals contained in the baseband.

Observation of the baseband spectrum in Figure 3.64(c) suggests that basebandmodulator 1 is a

DSB modulator with subcarrier frequency f1. Modulator 2 is an upper-sideband SSB

modulator, and modulator N is an angle modulator.

An FDM demodulator is shown in Figure 3.64(b). The RF demodulator output is ideally

the baseband signal. The individual channels in the baseband are extracted using bandpass

filters. The bandpass filter outputs are demodulated in the conventional manner.

Observation of the baseband spectrum illustrates that the baseband bandwidth is equal to

the sum of the bandwidths of the modulated signals plus the sum of the guardbands, the empty
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spectral bands between the channels necessary for filtering. This bandwidth is lower bounded

by the sum of the bandwidths of the message signals. This bandwidth,

B ¼
XN
i¼1

Wi ð3:274Þ

whereWi is the bandwidth ofmi tð Þ, is achieved when all baseband modulators are SSB and all

guardbands have zero width.

3.7.2 Example of FDM: Stereophonic FM Broadcasting

As an example of FDM, we now consider stereophonic FM broadcasting. A necessary con-

dition established in the early development of stereophonic FM is that stereo FMbe compatible

with monophonic FM receivers. In other words, the output from a monophonic FM receiver

must be the composite (left-channel plus right-channel) stereo signal.

The scheme adopted for stereophonic FM broadcasting is shown in Figure 3.65(a). As can

be seen, the first step in the generation of a stereo FM signal is to first form the sum and the

difference of the left- and right-channel signals, l tð Þ � r tð Þ. The difference signal, l tð Þ� r tð Þ, is
then translated to 38 kHz using DSB modulation with a carrier derived from a 19-kHz

oscillator. A frequency doubler is used to generate a 38-kHz carrier from a 19-kHz oscillator.

We previously saw that a PLL could be used to implement this frequency doubler.

The baseband signal is formed by adding the sum and difference signals and the 19-kHz

pilot tone. The spectrum of the baseband signal is shown in Figure 3.65 for assumed

left-channel and right-channel signals. The baseband signal is the input to the FM modulator.

It is important to note that if a monophonic FM transmitter, having a message bandwidth of

15 kHz, and a stereophonic FM transmitter, having a message bandwidth of 53 kHz, both have

the same constraint on the peak deviation, the deviation ratio D, of the stereophonic FM

transmitter is reduced by a factor of 53=15 ¼ 3:53. The impact of this reduction in the deviation

ratio will be seen when we consider noise effects in Chapter 7.

The block diagram of a stereophonic FM receiver is shown in Figure 3.65(c). The output of

the FM discriminator is the baseband signal xb tð Þwhich, under ideal conditions, is identical to
the baseband signal at the input to the FMmodulator. As can be seen from the spectrum of the

baseband signal, the left-plus right-channel signal can be generated by filtering the baseband

signal with a lowpass filter having a bandwidth of 15 kHz. Note that this signal constitutes the

monophonic output. The left-minus right-channel signal is obtained by coherently demodulat-

ing the DSB signal using a 38-kHz demodulation carrier. This coherent demodulation carrier is

obtained by recovering the 19-kHz pilot using a bandpass filter and then using a frequency

doubler as was done in the modulator. The left-plus right-channel signal and the left-minus

right-channel signal are added and subtracted, as shown in Figure 3.65(c) to generate the left-

channel signal and the right-channel signal.

3.7.3 Quadrature Multiplexing

Another type of multiplexing is quadrature multiplexing (QM), in which quadrature carriers

are used for frequency translation. For the system shown in Figure 3.66, the signal

xc tð Þ ¼ Ac m1 tð Þ cos 2p fctð Þþ m2 tð Þ sin 2p fctð Þ½ � ð3:275Þ
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is a quadrature-multiplexed signal. By sketching the spectra of xc tð Þ we see that these

spectra overlap in frequency if the spectra of m1 tð Þ and m2 tð Þ overlap. Even though

frequency translation is used in QM, it is not a FDM technique since the two channels

do not occupy disjoint spectral locations. Note that SSB is a QM signal with m1 tð Þ ¼ m tð Þ
and m2 tð Þ ¼ � bm tð Þ.

A QM signal is demodulated by using quadrature demodulation carriers. To show this,

multiply xr tð Þ by 2 cos 2p fctþ uð Þ. This yields

l (t) l (t) + r (t)

r (t) xb(t)

Xb(f )

xc(t)l (t) − r (t)

l (t) + r (t)

l (t) − r (t)

l (t)

r (t)

Σ

ΣΣ

Σ
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Figure 3.65

Stereophonic FM transmitter and receiver. (a) Stereophonic FM transmitter. (b) Single-sided spectrum of

FM baseband signal. (c) Stereophonic FM receiver.
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2xr tð Þ cos 2p fctþ uð Þ ¼ Ac m1 tð Þ cos u�m2 tð Þ sin u½ �
þAc m1 tð Þ cos 4p fctþ uð Þþm2 tð Þ sin 4p fctþ uð Þ½ �

ð3:276Þ

The terms on the second line of the preceding equation have spectral content about 2 fc and can

be removed by using a lowpass filter. The output of the lowpass filter is

yDD tð Þ ¼ Ac m1 tð Þ cos u�m2 tð Þ sin u½ � ð3:277Þ
which yieldsm1 tð Þ, the desired output for u ¼ 0. The quadrature channel is demodulated using

a demodulation carrier of the form 2 sin 2p fctð Þ.
The preceding result illustrates the effect of a demodulation phase error onQM. The result

of this phase error is both an attenuation, which can be time varying, of the desired signal and

crosstalk from the quadrature channel. It should be noted that QM can be used to represent both

DSB and SSB with appropriate definitions of m1 tð Þ and m2 tð Þ. We will take advantage of this

observation when we consider the combined effect of noise and demodulation phase errors in

Chapter 7.

Frequency-division multiplexing can be used with QM by translating pairs of signals,

using quadrature carriers, to each subcarrier frequency. Each channel has bandwidth 2W and

accommodates two message signals, each having bandwidth W. Thus, assuming zero-width

guardbands, a baseband of bandwidth NW can accommodate N message signals, each of

bandwidth W, and requires 1
2
N separate subcarrier frequencies.

3.7.4 Time-Division Multiplexing

Time-division multiplexing (TDM) is best understood by considering Figure 3.67(a). The data

sources are assumed to have been sampled at the Nyquist rate or higher. The commutator then

interlaces the samples to form the baseband signal shown in Figure 3.67(b). At the channel

output, the baseband signal is demultiplexed by using a second commutator as illustrated.

Proper operation of this system obviously depends on proper synchronization between the two

commutators.

If all message signals have equal bandwidth, then the samples are transmitted sequentially,

as shown in Figure 3.67(b). If the sampled data signals have unequal bandwidths,more samples

must be transmitted per unit time from the wideband channels. This is easily accomplished if

Lowpass
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×
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Quadrature multiplexing.
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the bandwidths are harmonically related. For example, assume that a TDM system has four

channels of data. Also assume that the bandwidth of the first and second data sources, s1 tð Þ and
s2 tð Þ, isWHz, the bandwidth of s3 tð Þ is 2WHz, and the bandwidth of s4 tð Þ is 4WHz. It is easy to

show that a permissible sequence of baseband samples is a periodic sequence, one period of

which is . . . s1s4s3s4s2s4s3s4 . . .
The minimum bandwidth of a TDM baseband is easy to determine using the sampling

theorem. Assuming Nyquist rate sampling, the baseband contains 2WiT samples from the ith

channel in each T-s interval, whereW is the bandwidth of the ith channel. Thus the total number

of baseband samples in a T-s interval is

ns ¼
XN
i¼1

2WiT ð3:278Þ

Assuming that the baseband is a lowpass signal of bandwidth B, the required sampling rate is

2B. In a T-s interval, we then have 2BT total samples. Thus

ns ¼ 2BT ¼
XN
i¼1

2WiT ð3:279Þ

or

B ¼
XN
i¼1

Wi ð3:280Þ

which is the same as the minimum required bandwidth obtained for FDM.
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Time-division multiplexing. (a) TDM system. (b) Baseband signal.
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3.7.5 An Example: The Digital Telephone System

As an example of a digital TDM system, we consider a multiplexing scheme common to many

telephone systems. The sampling format is illustrated in Figure 3.68(a). A voice signal is

sampled at 8000 samples per second, and each sample is quantized into seven binary digits. An

additional binary digit, known as a signaling bit, is added to the basic seven bits that represent

the sample value. The signaling bit is used in establishing calls and for synchronization. Thus

eight bits are transmitted for each sample value, yielding a bit rate of 64,000 bit/s (64 kbps).

Twenty-four of these 64-kbps voice channels are grouped together to yield a T1 carrier. The T1

frame consists of 24 8ð Þþ1¼193 bits. The extra bit is used for frame synchronization. The frame

duration is the reciprocal of the fundamental sampling frequency, or 0.125 ms. Since the frame

rate is 8000 frames per second, with 193 bits per frame, the T1 data rate is 1.544 Mbps.

As shown in Figure 3.68(b), four T1 carriers can bemultiplexed to yield a T2 carrier, which

consists of 96 voice channels. SevenT2 carriers yield a T3 carrier, and six T3 carriers yield a T4

carrier. The bit rate of a T4 channel, consisting of 4032 voice channels with signaling bits and

framing bits, is 274.176 Mbps. AT1 link is typically used for short transmission distances in

areas of heavy usage. T4 and T5 channels are used for long transmission distances.
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Digital multiplexing scheme for digital telephone. (a) T1 frame. (b) Digital multiplexing.
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3.7.6 Comparison of Multiplexing Schemes

We have seen that for all three types of multiplexing studied, the baseband bandwidth is lower-

bounded by the total information bandwidth. However there are advantages and disadvantages

to each multiplexing technique.

The basic advantage of FDM is simplicity of implementation, and if the channel is linear,

disadvantages are difficult to identify. However, many channels have small, but nonnegligible

nonlinearities. As we saw in Chapter 2, nonlinearities lead to intermodulation distortion. In

FDM systems, the result of intermodulation distortion is crosstalk between channels in the

baseband. This problem is avoided in TDM systems.

However, TDM also has inherent disadvantages. Samplers are required, and if continuous

data are required by the data user, the continuous waveforms must be reconstructed from the

samples. One of the biggest difficulties with TDM is maintaining synchronism between the

multiplexing and demultiplexing commutators. The basic advantage of QM is that QM allows

simple DSB modulation to be used while at the same time making efficient use of baseband

bandwidth. It also allows DC response, which SSB does not. The basic problem with QM is

crosstalk between the quadrature channels, which results if perfectly coherent demodulation

carriers are not available.

Other advantages and disadvantages of FDM, QM, and TDMwill become apparent when

we study performance in the presence of noise in Chapter 7.

Summary
1. Modulation is the process by which a parameter of a carrier is varied in one-

to-one correspondence with an information-bearing signal usually referred

to as the message. Several uses of modulation are to achieve efficient

transmission, to allocate channels, and for multiplexing.

2. If the carrier is continuous, the modulation is continuous-wave modulation.

If the carrier is a sequence of pulses, the modulation is pulse modulation.

3. There are two basic types of continuous-wavemodulation: linearmodulation

and angle modulation.

4. Assume that a general modulated carrier is given by

xc tð Þ ¼ A tð Þ cos 2p fctþf tð Þ½ �
IfA tð Þ is proportional to themessage signal, the result is linearmodulation. If

f tð Þ is proportional to the message signal, the result is PM. If the time

derivative off tð Þ is proportional to themessage signal, the result is FM.Both

PM and FM are examples of angle modulation. Angle modulation is a

nonlinear process.

5. The simplest example of linear modulation is DSB. Double sideband is

implemented as a simple product device, and coherent demodulationmust be

used, where coherent demodulation means that a local reference at the

receiver that is of the same frequency and phase as the incoming carrier is

used in demodulation.

6. If a carrier component is added to a DSB signal, the result is AM. This is a

useful modulation technique because it allows simple envelope detection to

be used.
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7. The efficiency of a modulation process is defined as the percentage of total

power that conveys information. For AM, this is given by

E ¼ a2hm2
n tð Þi

1þ a2hm2
n tð Þi 100%ð Þ

where the parameter a is known as the modulation index and mn tð Þ is m tð Þ
normalized so that the peak value is unity. If envelope demodulation is used,

the index must be less than unity.

8. ASSB signal is generated by transmitting only one of the sidebands in aDSB

signal. Single-sideband signals are generated either by sideband filtering a

DSB signal or by using a phase-shift modulator. Single-sideband signals can

be written as

xc tð Þ ¼ 1

2
Acm tð Þ cos 2p fctð Þ � 1

2
Acbm tð Þ sin 2p fctð Þ

in which the plus sign is used for lower-sideband SSB and the minus sign is

used for upper-sideband SSB. These signals can be demodulated either

through the use of coherent demodulation or through the use of carrier

reinsertion.

9. Vestigial sideband results when a vestige of one sideband appears on an

otherwise SSB signal. Vestigial sideband is easier to generate than SSB.

Demodulation can be coherent, or carrier reinsertion can be used.

10. Frequency translation is accomplished by multiplying a signal by a carrier

and filtering. These systems are known as mixers.

11. The concept of mixing is used in superheterodyne receivers. Mixing results

in image frequencies, which can be troublesome.

12. The general expression for an angle-modulated signal is

xc tð Þ ¼ Ac cos 2p fctþf tð Þ½ �
For a PM signal, f tð Þ is given by

f tð Þ ¼ kpm tð Þ
and for an FM signal, it is

f tð Þ ¼ 2p fd

ðt
m að Þ da

where kp and fd are the phase and frequency deviation constants,

respectively.

13. Angle modulation results in an infinite number of sidebands for sinusoidal

modulation. If only a single pair of sidebands is significant, the result is

narrowband angle modulation. Narrowband angle modulation, with sinu-

soidal message, has approximately the same spectrum as an AM signal

except for a 180� phase shift of the lower sideband.
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14. An angle-modulated carrier with a sinusoidal message signal can be

expressed as

xc tð Þ ¼ Ac

X¥
n¼�¥

Jn bð Þ cos 2p fcþ n fmð Þt½ �

The term Jn bð Þ is theBessel function of the first kind of order n and argument

b. The parameter b is known as themodulation index. Ifm tð Þ ¼ A sinvmt,

then b ¼ kpA for PM, and b ¼ fdA= fm for FM.

15. The power contained in an angle-modulated carrier is hx2c tð Þi ¼ 1
2
A2
c , if the

carrier frequency is large compared to the bandwidth of the modulated

carrier.

16. The bandwidth of an angle-modulated signal is, strictly speaking, infinite.

However, a measure of the bandwidth can be obtained by defining the power

ratio

Pr ¼ J20 bð Þþ 2
Xk
n¼1

J2n bð Þ

which is the ratio of the total power 1
2
A2
c to the power in the bandwidth

B ¼ 2k fm. A power ratio of 0.98 yields B ¼ 2 bþ 1ð Þ fm.
17. The deviation ratio of an angle-modulated signal is

D ¼ peak frequency deviation

bandwith of m tð Þ
18. Carson�s rule for estimating the bandwidth of an angle-modulated carrier

with an arbitrary message signal is B ¼ 2 Dþ 1ð ÞW :

19. Narrowband-to-wideband conversion is a technique whereby a wideband

FM signal is generated from a narrowband FM signal. The systemmakes use

of a frequency multiplier, which, unlike a mixer, multiplies the deviation as

well as the carrier frequency.

20. Demodulation of an angle-modulated signal is accomplished through the use

of a frequency discriminator. This device yields an output signal proportional

to the frequency deviation of the input signal. Placing an integrator at the

discriminator output allows PM signals to be demodulated.

21. An FM discriminator can be implemented as a differentiator followed by an

envelope detector. Bandpass limiters are used at the differentiator input to

eliminate amplitude variations.

22. Interference, the presence of undesired signal components, can be a problem

in demodulation. Interference at the input of a demodulator results in

undesired components at the demodulator output. If the interference is large

and if the demodulator is nonlinear, thresholding can occur. The result of this

is a drastic loss of the signal component.

23. Interference is also a problem in anglemodulation. In FM systems, the effect

of interference is a function of both the amplitude and frequency of the

interfering tone. In PM systems, the effect of interference is a function only
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of the amplitude of the interfering tone. In FM systems interference

can be reduced by the use of pre-emphasis and de-emphasis wherein the

high-frequency message components are boosted at the transmitter before

modulation and the inverse process is done at the receiver after demodulation.

24. A PLL is a simple and practical system for the demodulation of angle-

modulated signals. It is a feedback control system and is analyzed as such.

Phase-locked loops also provide simple implementations of frequency

multipliers and frequency dividers.

25. The Costas PLL, which is a variation of the basic PLL, is a system for the

demodulation of DSB signals.

26. Analog pulse modulation results when the message signal is sampled and a

pulse train carrier is used. A parameter of each pulse is varied in one-to-one

correspondence with the value of each sample.

27. Pulse-amplitudemodulation results when the amplitude of each carrier pulse

is proportional to the value of the message signal at each sampling instant.

Pulse-amplitude modulation is essentially a sample-and-hold operation.

Demodulation of PAM is accomplished by lowpass filtering.

28. Pulse-width modulation results when the width of each carrier pulse is

proportional to the value of the message signal at each sampling instant.

Demodulation of PWM is also accomplished by lowpass filtering.

29. Pulse-position modulation results when the position of each carrier pulse, as

measured by the displacement of each pulse from a fixed reference, is

proportional to the value of the message signal at each sampling instant.

30. Digital pulse modulation results when the sample values of the message

signal are quantized and encoded prior to transmission.

31. Deltamodulation is an easily implemented form of digital pulsemodulation.

InDM, themessage signal is encoded into a sequence of binary symbols. The

binary symbols are represented by the polarity of impulse functions at the

modulator output. Demodulation is ideally accomplished by integration, but

lowpass filtering is often a simple and satisfactory substitute.

32. Pulse-code modulation results when the message signal is sampled and

quantized, and each quantized sample value is encoded as a sequence of

binary symbols. Pulse-codemodulation differs fromDM in that in PCMeach

quantized sample value is transmitted but in DM the transmitted quantity is

the polarity of the change in the message signal from one sample to the next.

33. Multiplexing is a scheme allowing two or more message signals to be

communicated simultaneously using a single system.

34. Frequency-division multiplexing results when simultaneous transmission is

accomplished by translating message spectra, using modulation to non-

overlapping locations in a baseband spectrum. The baseband signal is then

transmitted using any carrier modulation method.

35. Quadrature multiplexing results when two message signals are translated,

using linear modulation with quadrature carriers, to the same spectral
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locations. Demodulation is accomplished coherently using quadrature de-

modulation carriers. A phase error in a demodulation carrier results in

serious distortion of the demodulated signal. This distortion has two

components: a time-varying attenuation of the desired output signal and

crosstalk from the quadrature channel.

36. Time-division multiplexing results when samples from two or more data

sources are interlaced, using commutation, to form a baseband signal.

Demultiplexing is accomplished by using a second commutator, which

must be synchronous with the multiplexing commutator.

Further Reading

One can find basic treatments of modulation theory at about the same technical level of this text in a wide

variety of books. Examples are Carlson et al. (2001), Haykin (2000), Lathi (1998), and Couch (2007).

Taub and Schilling (1986) have an excellent treatment of PLLs. The performance of the PLL in the

absence of noise is discussed byViterbi (1966, Chapters 2 and 3) andGardner (1979). The simulation of a

PLL is treated by Tranter et al. (2004).

Problems

Section 3.1

3.1. Assume that a DSB signal

xc tð Þ ¼ Acm tð Þ cos 2p fctþ f0ð Þ
is demodulated using the demodulation carrier

2 cos 2p fctþ u tð Þ½ �. Determine, in general, the demodu-

lated output yD tð Þ. Let Ac ¼ 1 and u tð Þ ¼ u0, where u0 is a
constant, and determine the mean-square error between

m tð Þ and the demodulated output as a function of f0 and

u0. Now let u tð Þ ¼ 2p f0t and compute the mean-square

error between m tð Þ and the demodulated output.

3.2. Show that an AM signal can be demodulated using

coherent demodulation by assuming a demodulation car-

rier of the form

2 cos 2p fctþ u tð Þ½ �
where u tð Þ is the demodulation phase error.

3.3. Design an envelope detector that uses a full-wave

rectifier rather than the half-wave rectifier shown in Figure

3.3. Sketch the resulting waveforms, as was done in Figure

3.3(b) for a half-wave rectifier. What are the advantages of

the full-wave rectifier?

3.4. Three message signals are periodic with period T,

as shown in Figure 3.69. Each of the three message signals

is applied to an AM modulator. For each message signal,

determine the modulation efficiency for a ¼ 0:2, a ¼ 0:4,
a ¼ 0:7, and a ¼ 1.

3.5. The positive portion of the envelope of the output

of an AMmodulator is shown in Figure 3.70. The message

signal is a waveform having zero DC value. Determine the

modulation index, the carrier power, the efficiency, and the

power in the sidebands.

3.6. In this problem we examine the efficiency of AM

for the case in which the message signal does not have

symmetrical maximum and minimum values. Two mes-

sage signals are shown in Figure 3.71. Each is periodic

with period T, and t is chosen such that the DC value of

m tð Þ is zero. Calculate the efficiency for each m tð Þ for
a ¼ 1.

3.7. An AM modulator operates with the message

signal

m tð Þ ¼ 9 cos 20ptð Þ�8 cos 60ptð Þ
The unmodulated carrier is given by 110 cos 200ptð Þ, and
the system operates with an index of 1

2
.

a. Write the equation for mn tð Þ, the normalized

signal with a minimum value of �1.
b. Determine hm2

n tð Þi, the power in mn tð Þ.
c. Determine the efficiency of the modulator.
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d. Sketch the double-sided spectrum of xc tð Þ, the
modulator output, giving theweights and frequencies of all

components.

3.8. Rework Problem 3.7 for the message signal

m tð Þ ¼ 9 cos 20ptð Þþ 8 cos 60ptð Þ
3.9. An AM modulator has output

xc tð Þ ¼ 30 cos 2p 200ð Þt½ � þ 4 cos 2p 180ð Þt½ �
þ 4 cos 2p 220ð Þt½ �

Determine the modulation index and the

efficiency.

3.10. An AM modulator has output

xc tð Þ ¼ Acos 2p 200ð Þt½ � þBcos 2p 180ð Þt½ �
þBcos 2p 220ð Þt½ �

The carrier power is P0 and the efficiency is Eff . Derive

an expression forEff in terms ofP0,A, andB. DetermineA,

B, and the modulation index for P0 ¼ 100W and

Eff ¼ 40 %.

K1

–K1

0 t
T

(a)

K2

–K2

0 t
T

(b)

K3

–K3

0 t
T

(c)

Figure 3.69

40

25

10

0
0 T T 3T

22

Figure 3.70

m(t)

T t

m(t)

5

0

–1

1

–5

0

τ

T tτ

Figure 3.71
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3.11. An AM modulator has output

xc tð Þ ¼ 25 cos 2p 150ð Þt½ � þ 5 cos 2p 160ð Þt½ �
þ 5 cos 2p 140ð Þt½ �

Determine the modulation index and the efficiency.

3.12. An AM modulator is operating with an index of

0.7. The modulating signal is

m tð Þ ¼ 2 cos 2p fmtð Þþ cos 4p fmtð Þ
þ 2 cos 10p fmtð Þ

a. Sketch the spectrum of the modulator output

showing the weights of all impulse functions.

b. What is the efficiency of the modulation process?

3.13. Consider the system shown in Figure 3.72. Assume

that the averagevalue ofm tð Þ is zero and that themaximum

value of jm tð Þj is M. Also assume that the square-law

device is defined by y tð Þ ¼ 4x tð Þþ 2x2 tð Þ.
a. Write the equation for y tð Þ.
b. Describe the filter that yields an AM signal for

g tð Þ. Give the necessary filter type and the frequencies of

interest.

c. What value ofM yields a modulation index of 0.1?

d. What is an advantage of this method of modula-

tion?

3.14. Assume that a message signal is given by

m tð Þ ¼ 2 cos 2p fmtð Þþ cos 4p fmtð Þ
Calculate an expression for

xc tð Þ ¼ 1

2
Acm tð Þ cos 2p fctð Þ � 1

2
Ac bm tð Þ sin 2p fctð Þ

forAc ¼ 4. Show that the result is upper-sideband or lower-

sideband SSB depending upon the choice of the algebraic

sign.

3.15. Redraw Figure 3.7 to illustrate the generation of

upper-sideband SSB.Give the equation defining the upper-

sideband filter. Complete the analysis by deriving the

expression for the output of an upper-sideband SSB

modulator.

3.16. Prove that carrier reinsertion with envelope detec-

tion can be used for demodulation of VSB.

3.17. SketchFigure3.18 for the casewhere fLO ¼ fc� fIF.

3.18. A mixer is used in a short-wave superheterodyne

receiver. The receiver is designed to receive transmitted

signals between 5 and 25 MHz. High-side tuning is to be

used. Determine the tuning range of the local oscillator for

IF frequencies varying between 400 kHz and 2 MHz. Plot

the ratio defined by the tuning range over this range of IF

frequencies as in Table 3.1.

3.19. A superheterodyne receiver uses an IF frequency of

455 kHz. The receiver is tuned to a transmitter having a

carrier frequency of 1120 kHz. Give two permissible fre-

quencies of the local oscillator and the image frequency for

each. Repeat assuming that the IF frequency is 2500 kHz.

Section 3.2

3.20. Let the input to a phase modulator be m tð Þ ¼
u t�t0ð Þ, as shown in Figure 3.20(a). Assume that the un-

modulated carrier is Accos 2p fctð Þ and that fct0 ¼ n,

where n is an integer. Sketch accurately the phase modula-

tor output for kp ¼ p and 1
4
p as was done in Figure 3.20(c)

for kp ¼ 1
2
p. Repeat for kp ¼ �p and � p

4
.

3.21. We previously computed the spectrum of the FM

signal defined by

xc1 tð Þ ¼ Ac cos 2p fctþb sin 2p fmtð Þ½ �
[see (3.103)]. The amplitude and phase spectra (single

sided) was illustrated in Figure 3.24. Now assume that the

modulated signal is given by

xc2 tð Þ ¼ Ac cos 2p fctþb cos 2p fmtð Þ½ �
Show that the amplitude spectrum of xc1 tð Þ and xc2 tð Þ are
identical. Compute the phase spectrum of xc2 tð Þ and

compare with the phase spectrum of xc1 tð Þ.
3.22. Compute the single-sided amplitude and phase

spectra of

xc3 tð Þ ¼ A sin 2p fctþb sin 2p fmtð Þ½ �
and

xc4 tð Þ ¼ Ac sin 2p fctþb cos 2p fmtð Þ½ �

Compare the results with Figure 3.24.

3.23. The power of an unmodulated carrier signal is 50

W, and the carrier frequency is fc ¼ 50 Hz. A sinusoidal

Σ
y (t)x(t) g(t)m(t)

cos ctω

Square-law
device Filter

+

+

Figure 3.72
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message signal is used to FM modulate it with index

b ¼ 10. The sinusoidal message signal has a frequency

of 5 Hz. Determine the average value of xc tð Þ. By drawing
appropriate spectra, explain this apparent contradiction.

3.24. Given that J0 3ð Þ ¼ �0:2601 and that J1 3ð Þ ¼
0:3391, determine J4 3ð Þ. Use this result to calculate J5 3ð Þ.
3.25. Determine and sketch the spectrum (amplitude

and phase) of an angle-modulated signal assuming that

the instantaneous phase deviation is f tð Þ ¼ bsin 2p fmtð Þ.
Also assume b ¼ 10, fm ¼ 20 Hz, and fc ¼ 1000 Hz.

3.26. A modulated signal is given by

xc tð Þ ¼ 6 cos 2p 70ð Þt½ � þ 6 cos 2p 100ð Þt½ �
þ 6 cos 2p 130ð Þt½ �

Assuming a carrier frequency of 100 Hz, write this signal

in the form of (3.1). Give equations for the envelope R tð Þ
and the phase deviation f tð Þ.
3.27. A transmitter uses a carrier frequency of 1000 Hz

so that the unmodulated carrier is Accos 2p fctð Þ. Deter-
mine both the phase and frequency deviation for each of

the following transmitter outputs:

a. xc tð Þ ¼ cos 2p 1000ð Þtþ 40t2½ �
b. xc tð Þ ¼ cos 2p 500ð Þt2½ �
c. xc tð Þ ¼ cos 2p 1200ð Þt½ �
d. xc tð Þ ¼ cos 2p 900ð Þtþ 10

ffiffi
t
p �

3.28. An FM modulator has output

xc tð Þ ¼ 100 cos 2p fctþ 2p fd

ðt
m að Þ da

� �
where fd ¼ 20 Hz/V. Assume that m tð Þ is the rectangular
pulse m tð Þ ¼ 4P 1

8
t�4ð Þ �

a. Sketch the phase deviation in radians.

b. Sketch the frequency deviation in hertz.

c. Determine the peak frequency deviation in hertz.

d. Determine the peak phase deviation in radians.

e. Determine the power at the modulator output.

3.29. Repeat the preceding problem assuming that m tð Þ
is the triangular pulse 4L 1

3
t�6ð Þ �

.

3.30. An FM modulator with fd ¼ 10 Hz=V. Plot the
frequency deviation in hertz and the phase deviation in

radians for the three message signals shown in Figure

3.73.

3.31. An FM modulator has fc ¼ 2000 Hz and fd ¼
14 Hz/V. The modulator has input m tð Þ ¼ 5 cos 2p 10ð Þt.

a. What is the modulation index?

b. Sketch, approximately to scale, the magnitude

spectrum of the modulator output. Show all frequencies

of interest.

c. Is this narrowband FM? Why?

d. If the same m tð Þ is used for a phase modulator,

what must kp be to yield the index given in (a)?

3.32. An audio signal has a bandwidth of 12 kHz. The

maximum value of jm tð Þj is 6 V. This signal frequency

modulates a carrier. Estimate the peak deviation and the

bandwidth of the modulator output, assuming that the

deviation constant of the modulator is

a. 20 Hz/V

b. 200 Hz/V

c. 2 kHz/V

d. 20 kHz/V.

3.33. By making use of (3.110) and (3.118), show thatX¥
n¼�¥

J2n bð Þ ¼ 1

3.34. Prove that Jn bð Þ can be expressed as

Jn bð Þ ¼ 1

p

ðp
0

cos b sin x� nxð Þ dx

and use this result to show that

J�n bð Þ ¼ �1ð ÞnJn bð Þ
3.35. An FM modulator is followed by an ideal band-

pass filter having a center frequency of 500 Hz and a

bandwidth of 70 Hz. The gain of the filter is 1 in the

passband. The unmodulated carrier is given by

10 cos 1000ptð Þ, and the message signal is m tð Þ ¼
10 cos 20ptð Þ. The transmitter frequency deviation con-

stant fd is 8 Hz/V.

a. Determine the peak frequency deviation in hertz.

b. Determine the peak phase deviation in radians.

c. Determine the modulation index.

d. Determine the power at the filter input and the

filter output

e. Draw the single-sided spectrum of the signal at the

filter input and the filter output. Label the amplitude and

frequency of each spectral component.

3.36. Asinusoidalmessage signal has a frequency of 150

Hz. This signal is the input to an FM modulator with an

index of 10. Determine the bandwidth of the modulator
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output if a power ratio, Pr, of 0.8 is needed. Repeat for a

power ratio of 0.9.

3.37. Anarrowband FM signal has a carrier frequency of

110 kHz and a deviation ratio of 0.05. The modulation

bandwidth is 10 kHz. This signal is used to generate a

wideband FM signal with a deviation ratio of 20 and a

carrier frequency of 100 MHz. The scheme utilized to

accomplish this is illustrated in Figure 3.31. Give the

required value of frequency multiplication, n. Also, fully

define the mixer by giving two permissible frequencies for

the local oscillator, and define the required bandpass filter

(center frequency and bandwidth).

3.38. Consider the FM discriminator shown in Figure

3.74. The envelope detector can be considered ideal with

an infinite input impedance. Plot the magnitude of the

transfer function E fð Þ=Xr fð Þ. From this plot, determine a

4

3

2

1

0
0 1 2 3 4

m(t)

t

3

2

1

1 2 3 4
0

–1

–2

–3

t

m(t)

3

2

1

1 2

2.5

3 4
0

−1

−2

−3

t

m(t)

Figure 3.73

R = 103 Ω

L = 10–3 H C = 10–9 F

xr(t) yD(t)e(t)
Envelope
detector

Figure 3.74
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suitable carrier frequency and the discriminator constant

KD, and estimate the allowable peak frequency deviation

of the input signal.

3.39. By adjusting the values of R, L, and C in Problem

3.38, design a discriminator for a carrier frequency of 100

MHz, assuming that the peak frequency deviation is 4MHz.

What is the discriminator constant KD for your design?

Section 3.3

3.40. Assume that an FM demodulator operates in the

presence of sinusoidal interference. Show that the discrimi-

nator output is a nonzero constant for each of the following

cases:Ai ¼ Ac,Ai ¼ �Ac, andAi  Ac. Determine the FM

demodulator output for each of these three cases.

Section 3.4

3.41. Starting with (3.229) verify the steady-state errors

given in Table 3.5.

3.42. Rework Example 3.12 for m tð Þ¼A cos 2p fmtð Þ
u tð Þ.
3.43. Using xr tð Þ ¼ m tð Þcos 2p fctð Þ and e0 tð Þ ¼ 2 cos

2p fctþ uð Þ for the assumed Costas PLL input and VCO

output, respectively, verify that all signals shownat thevarious

points in Figure 3.53 are correct. Assuming that the VCO

frequency deviation is defined by du=dt ¼ �Kvev tð Þ, where
ev tð Þ is theVCOinput andKv is a positive constant, derive the

phase plane. Using the phase plane, verify that the loop locks.

3.44. Using a single PLL, design a system that has an

output frequency equal to 7
3
f0, where f0 is the input

frequency. Describe fully, by sketching, the output of the

VCO for your design. Draw the spectrum at the VCO

output and at any other point in the system necessary to

explain the operation of your design. Describe any filters

used in your design by defining the center frequency and

the appropriate bandwidth of each.

3.45. A first-order PLL is operating with zero frequency

and phase error when a step in frequency of magnitude Dv
is applied. The loop gain Kt is 2p 100ð Þ. Determine the

steady-state phase error, in degrees, for Dv ¼ 2p 30ð Þ,
2p 50ð Þ, 2p 80ð Þ, and �2p 80ð Þ rad/s. What happens if

Dv ¼ 2p 120ð Þ rad/s?
3.46. Verify (3.232) by showing thatKte

�Kttu tð Þ satisfies
all properties of an impulse function in the limit asKt!¥.

3.47. The imperfect second-order PLL is defined as a

PLL with the loop filter

F sð Þ ¼ sþ a

sþ la

in which l is the offset of the pole from the origin

relative to the zero location. In practical implementa-

tions l is small but often cannot be neglected. Use the

linear model of the PLL and derive the transfer function

for Q sð Þ=F sð Þ. Derive expressions for vn and z in terms

of Kt, a, and l.

3.48. Assuming the loop filter model for an imperfect

second-order PLL described in the preceding problem,

derive the steady-state phase errors under the three con-

ditions of u0, fD, and R given in Table 3.5.

3.49. ACostas PLL operates with a small phase error so

that sinc � c and cosc � 1. Assuming that the lowpass

filter preceding the VCO is modeled as a= sþ að Þ, where a
is an arbitrary constant, determine the response to

m tð Þ ¼ u t�t0ð Þ.
3.50. In this problem we wish to develop a baseband

(lowpass equivalent model) for a Costas PLL. We assume

that the loop input is the complex envelope signal

~x tð Þ ¼ Acm tð Þe jf tð Þ

and that the VCO output is e ju tð Þ. Derive and sketch the

model giving the signals at each point in the model.

Section 3.6

3.51. A continuous data signal is quantized and trans-

mitted using a PCM system. If each data sample at the

receiving end of the system must be known to within

�0:25 % of the peak-to-peak full-scale value, how many

binary symbols must each transmitted digital word con-

tain? Assume that the message signal is speech and has a

bandwidth of 4 kHz. Estimate the bandwidth of the

resulting PCM signal (choose k).

3.52. A delta modulator has the message signal

m tð Þ ¼ 3 sin 2p 10ð Þt½ � þ 4 sin 2p 20ð Þt½ �
Determine the minimum sampling frequency required to

prevent slope overload, assuming that the impulse weights

d0 are 0:05p.

Section 3.7

3.53. Five messages bandlimited to W, W, 2W, 4W, and

4W Hz, respectively, are to be time-division multiplexed.

Devise a commutator configuration such that each

signal is periodically sampled at its own minimum rate

and the samples are properly interlaced. What is the

minimum transmission bandwidth required for this TDM

signal?
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3.54. In an FDMcommunication system, the transmitted

baseband signal is

x tð Þ ¼ m1 tð Þ cos 2p f1tð Þþm2 tð Þ cos 2p f2tð Þ

This system has a second-order nonlinearity between

transmitter output and receiver input. Thus the received

baseband signal y tð Þ can be expressed as

y tð Þ ¼ a1x tð Þþ a2x
2 tð Þ

Assuming that the two message signals, m1 tð Þ and m2 tð Þ,
have the spectra

M1 fð Þ ¼ M2 fð Þ ¼ P
f

W

� �
sketch the spectrum of y tð Þ. Discuss the difficulties en-

countered in demodulating the received baseband signal.

InmanyFDMsystems, the subcarrier frequencies f1 and f2
are harmonically related. Describe any additional pro-

blems this presents.

Computer Exercises

3.1. In Example 3.1 we determined the minimum value

of m tð Þ using MATLAB. Write a MATLAB program that

provides a complete solution for Example 3.1. Use the FFT

for finding the amplitude and phase spectra of the trans-

mitted signal xc tð Þ.
3.2. The purpose of the exercise is to demonstrate the

properties of SSB modulation. Develop a computer pro-

gram to generate both upper-sideband and lower-sideband

SSB signals and display both the time-domain signals and

the amplitude spectra of these signals. Assume the mes-

sage signal

m tð Þ ¼ 2 cos 2p fmtð Þþ cos 4p fmtð Þ

Select both fm and fc so that both the time and frequency

axes can be easily calibrated. Plot the envelope of the SSB

signals, and show that both the upper-sideband and the

lower-sideband SSB signals have the same envelope. Use

the FFT algorithm to generate the amplitude spectrum for

both the upper-sideband and the lower sideband SSB

signal.

3.3. Using the samemessage signal and value for fm used

in the preceding computer exercise, show that carrier

reinsertion can be used to demodulate a SSB signal.

Illustrate the effect of using a demodulation carrier with

insufficient amplitude when using the carrier reinsertion

technique.

3.4. In this computer exercise we investigate the proper-

ties of VSB modulation. Develop a computer program

(using MATLAB) to generate and plot a VSB signal and

the corresponding amplitude spectrum. Using the pro-

gram, show that VSB can be demodulated using carrier

reinsertion.

3.5. UsingComputer Example 3.1 as a guide, reconstruct

Figure 3.26 for the case in which 3 values of the modula-

tion index (0.5, 1, and 5) are achieved by adjusting the peak

frequency deviation while holding fm constant.

3.6. Develop a computer program to generate the am-

plitude spectrum at the output of an FMmodulator assum-

ing a square-wave message signal. Plot the output for

various values of the peak deviation. Compare the result

with Figure 3.29 and comment on your observations.

3.7. Develop a computer program and use the pro-

gram to verify the simulation results shown in

Figure 3.42.

3.8. Referring to Computer Example 3.4, draw the block

diagram of the system represented by the simulation loop,

and label the inputs and outputs of the various loop

components with the names used in the simulation code.

Using this block diagram, verify that the simulation pro-

gram is correct. What are the sources of error in the

simulation program?

3.9. Modify the simulation program given in Computer

Example 3.4 to allow the sampling frequency to be entered

interactively. Examine the effect of using different sam-

pling frequencies by executing the simulation with a range

of sampling frequencies. Be sure that you start with a

sampling frequency that is clearly too low and gradually

increase the sampling frequency until you reach a sam-

pling frequency that is clearly higher than is required for an

accurate simulation result. Comment on the results. How

do you know that the sampling frequency is sufficiently

high?

3.10. Modify the simulation program given in Com-

puter Example 3.4 so that the phase detector includes a
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limiter so that the phase detector characteristic is

defined by

ed tð Þ ¼

sin c tð Þ½ �; �1 < �A � sin c tð Þ½ �
� A < 1

A; sin c tð Þ½ � > A

�A; sin c tð Þ½ � < �A

8>>>><>>>>:

where c tð Þ is the phase error f tð Þ�u tð Þ and A is a

parameter that can be adjusted by the simulation user.

Adjust the value of A and comment on the impact that

decreasing A has on the number of cycles slipped and

therefore on the time required to achieve phase lock.

3.11. Using Computer Example 3.5 as a guide, develop a

simulation program for PAM and PPM
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CHAPTER4

PRINCIPLES OF BASEBAND DIGITAL
DATA TRANSMISSION

So farwe have dealt primarilywith the transmission of analog signals. In this chapterwe introduce

the idea of transmission of digital data—that is, signals that can assume one of only a finite number

of values during each transmission interval. This may be the result of sampling and quantizing an

analog signal, as in the case of pulse-codemodulationdiscussed inChapter 3, or itmight be the result

of the need to transmit amessage that is naturally discrete, such as a data or text file. In this chapter,

we will discuss several features of a digital data transmission system. One feature that will not be

covered in this chapter is the effect of random noise. This will be dealt with in Chapter 8 and

following chapters. Another restriction of our discussion is that modulation onto a carrier signal is

not assumed—hence themodifier baseband. Thus the types of data transmission systems to be dealt

with utilize signals with power concentrated from 0 Hz to a few kilohertz or megahertz, depending

on the application.Digital data transmission systems that utilize bandpass signalswill be considered

in Chapter 8 and following.

n 4.1 BASEBAND DIGITAL DATA TRANSMISSION SYSTEMS

Figure 4.1 shows a block diagram of a baseband digital data transmission system which

includes several possible signal processing operations. Eachwill be discussed in detail in future

sections of the chapter. For now we give only a short description.

As already mentioned, the analog-to-digital converter (ADC) block is present only if the

source produces analog messages. It can be thought of as consisting of two operations:

sampling and quantization. The quantization operation can be thought of as broken up into

rounding the samples to the nearest quantizing level and then converting them to a binary

number representation (designated as 0s and 1s, although their actual waveform representation

will be determined by the line code used, to be discussed shortly). The requirements of

sampling in order to minimize errors were discussed in Chapter 2, where it was shown that, in

order to avoid aliasing, the source had to be lowpass bandlimited, say toWHz, and the sampling

rate had to satisfy fs > 2W samples per second (sps). If the signal being sampled is not strictly

bandlimited or if the sampling rate is less than 2W sps, aliasing results. Error characterization

due to quantizing will be dealt with in Chapter 7. If the message is analog, necessitating the use

of an ADC at the transmitter, the inverse operation must take place at the receiver output in

order to convert the digital signal back to analog form (called digital-to-analog conversion,
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or DAC). As seen in Chapter 2, after converting from binary format to quantized samples, this

can be as simple as a lowpass filter or, as analyzed in Problem 2.68, a zero- or higher-order hold

operation can be used.

The next block, line coding, will be dealt with in the next section. It is sufficient for now to

simply state that the purposes of line coding are varied and include spectral shaping,

synchronization considerations, and bandwidth considerations, among other reasons.

Pulse shaping might be used to shape the transmitted signal spectrum in order for it to be

better accommodated by the transmission channel available. In fact, wewill discuss the effects

of filtering and how, if inadequate attention is paid to it, severe degradation can result from

transmitted pulses interfering with each other. This is termed intersymbol interference (ISI)

and can very severely impact overall system performance if steps are not taken to counteract it.

On the other hand, we will also see that careful selection of the combination of pulse shaping

(transmitter filtering) and receiver filtering (it is assumed that any filtering done by the channel

is not open to choice) can completely eliminate ISI.

At the output of the receiver filter, it is necessary to synchronize the sampling times to

coincidewith the received pulse epochs. The samples of the received pulses are then compared

with a threshold in order to make a decision as to whether a 0 or a 1 was sent (depending on the

line code used, this may require some additional processing). If the data transmission system is

operating reliably, these 1–0 decisions are correct with high probability, and the resulting DAC

output is a close replica of the input message waveform.

Although the present discussion is couched in terms of two possible levels, designated as a

0 or 1, being sent, it is found to be advantageous in certain situations to utilize more than two

levels. If two levels are used, the data format is referred to as binary; ifM > 2 levels are utilized,

the data format is calledM-ary. If a binary format is used, the 0–1 symbols are called bits. If an

M-ary format is used, each transmission is called a symbol.

n 4.2 LINE CODES AND THEIR POWER SPECTRA

4.2.1 Description of Line Codes

The spectrum of a digitally modulated signal is influenced both by the particular baseband data

format used to represent the digital data and any additional pulse shaping (filtering) used to

prepare the signal for transmission. Several commonlyused basebanddata formats are illustrated

in Figure 4.2. Names for the various data formats shown are given on the vertical axis of the

respective sketch of a particular waveform, although these are not the only terms applied to

certain of these. Briefly, during each signaling interval, the following descriptions apply:

. Nonreturn-to-zero (NRZ) change: A 1 is represented by a positive level, A; a 0 is

represented by �A.

Message
source

ADC
(if source
is analog)

Line
coding

Pulse
shaping

Channel
(filtering)

Receiver
filter

Syncronization

Sampler

Thres-
holder

DAC
(if source
is analog)

Figure 4.1

Block diagram of a baseband digital data transmission system.
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. NRZmark: A 1 is represented by a change in level (i.e., if the previous level sentwasA,�A
is sent to represent a 1 and vice versa); a 0 is represented by no change in level.

. Unipolar return-to-zero (RZ): A 1 is represented by a 1
2
-width pulse (i.e., a pulse that

‘‘returns to zero’’); a 0 is represented by no pulse.

. PolarRZ:A1is representedbyapositiveRZpulse;a0 is representedbyanegativeRZpulse.

. Bipolar RZ:A0 is represented by a 0 level; 1s are represented byRZpulses that alternate in

sign.

. Split phase (Manchester): A 1 is represented by A switching to�A at 1
2
the symbol period;

a 0 is represented by �A switching to A at 1
2
the symbol period.
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Figure 4.2

Abbreviated list of binary data formats.

Adapted from Holmes 1982.
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Two of the most commonly used formats are NRZ and split phase. Split phase, we note,

can be thought of as being obtained from NRZ by multiplication by a square-wave clock

waveform with a period equal to the symbol duration.

Several considerations should be taken into account in choosing an appropriate data format

for a given application. Among these are

. Self-synchronization: Is there sufficient timing information built into the code so that

synchronizers can be easily designed to extract a timing clock from the code?

. Power spectrum suitable for the particular channel available: For example, if the channel

does not pass low frequencies, does the power spectrum of the chosen data format have a

null at zero frequency?

. Transmission bandwidth: If the available transmission bandwidth is scarce, which it often

is, a data format should be conservative in terms of bandwidth requirements. Sometimes

conflicting requirements may force difficult choices.

. Transparency: Every possible data sequence should be faithfully and transparently

received, regardless of whether it is infrequent or not.

. Error detection capability: Although the subject of forward error correction deals with

the design of codes to provide error correction, inherent data correction capability is an

added bonus for a given data format.

. Good bit error probability performance: There should be nothing about a data format that

makes it difficult to implement minimum error probability receivers.

4.2.2 Power Spectra for Line Coded Data

It is important to know the spectral occupancy of line-coded data in order to predict the

bandwidth requirements for the data transmission system (conversely, given a certain system

bandwidth specification, the line code used will imply a certain maximum data rate). We now

consider the power spectra for line-coded data assuming that the data source produces a random

coin-toss sequence of 1s and 0s, with a binary digit being produced each T (recall that each

binary digit is referred to as a bit which is a contraction for ‘‘binary digit’’).

To compute the power spectra for line-coded data, we use a result to be derived in

Section 6.3.4 for the autocorrelation function of pulse-train-type signals. While it may be

pedagogically unsound to use a result yet to be described, the avenue suggested to the student is

to simply accept the result of Section 6.3.4 for now and concentrate on the results to be derived

and the system implications of these results. In particular, this result is shown in Section 6.3.4

for a pulse train signal of the form

XðtÞ ¼
X¥

k¼�¥
akpðt� kT �DÞ ð4:1Þ

where . . . a�1; a0; a1; . . . ; ak; . . . is a sequence of random variables with the averages

Rm ¼ hakakþmi m ¼ 0; �1; �2; . . . ð4:2Þ
The function pðtÞ is a deterministic pulse-type waveform, where T is the separation between

pulses and D is a random variable that is independent of the value of ak and uniformly
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distributed in the interval ð�T=2; T=2Þ. The autocorrelation function of this waveform is

RXðtÞ ¼
X¥

m¼�¥
Rmrðt�mTÞ ð4:3Þ

in which

rðtÞ ¼ 1

T

Z ¥

�¥
pðtþ tÞpðtÞdt ð4:4Þ

The power spectral density is the Fourier transform of RXðtÞ, which is

SXð f Þ ¼ = ½RXðtÞ� ¼ =
X¥

m¼�¥
Rmrðt�mTÞ

" #
¼
X¥

m¼�¥
Rm=½rðt�mTÞ�

¼
X¥

m¼�¥
RmSrð f Þe�j2pmTf

¼ Srð f Þ
X¥

m¼�¥
Rme

�j2pmTf

ð4:5Þ

where Srð f Þ ¼ =½rðtÞ�. Noting that rðtÞ ¼ 1=T
R¥
�¥ pðtþ tÞpðtÞdt ¼ 1=Tpð�tÞ 
 pðtÞ, we

obtain

Srð f Þ ¼ jPð f Þj
2

T
ð4:6Þ

where Pð f Þ ¼ =½pðtÞ�.

EXAMPLE 4.1

In this example we apply the above result to find the power spectral density of NRZ. For NRZ, the pulse

shape function is pðtÞ ¼ Pðt/TÞ so that

Pð f Þ ¼ T sincðT f Þ ð4:7Þ
and

Srð f Þ ¼ 1

T
jT sincðT f Þj2 ¼ T sinc2ðT f Þ ð4:8Þ

The time average Rm ¼ hakakþmi can be deduced by noting that for a given pulse, the amplitude is þA

half the time and�A half the time, while, for a sequence of two pulses with a given sign on the first pulse,

the second pulse is þA half the time and �A half the time. Thus

Rm ¼

1

2
A2þ 1

2
ð�AÞ2 ¼ A2; m ¼ 0

1

4
AðAÞþ 1

4
Að�AÞþ 1

4
ð�AÞAþ 1

4
ð�AÞð�AÞ ¼ 0; m 6¼ 0

8>>><>>>: ð4:9Þ

Thus the power spectral density, from (4.5) and (4.6), for NRZ is

SNRZð f Þ ¼ A2T sinc2ðT f Þ ð4:10Þ
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This is plotted in Figure 4.3(a) where it is seen that the bandwidth to the first null of the power spectral

density is BNRZ ¼ 1=T Hz. Note that A ¼ 1 gives unit power as seen from squaring and averaging the

time-domain waveform.

&

EXAMPLE 4.2

The computation of the power spectral density for split phase differs from that for NRZ only in the

spectrumof the pulse shape function because the coefficientsRm are the same as for NRZ. The pulse shape

function for split phase is given by

pðtÞ ¼ P
tþ T=4

T=2

� �
�P

t� T=4

T=2

� �
ð4:11Þ

By applying the time-delay and superposition theorems of Fourier transforms, we have

Pð f Þ¼ T

2
sinc

�
T

2
f

�
e j2pðT=4Þf� T

2
sinc

�
T

2
f

�
e�j2pðT=4Þf

¼ T

2
sinc

�
T

2
f

��
e jpTf /2�e�jpTf /2

�

¼ j T sinc

�
T

2
f

�
sin

�
pT

2
f

� ð4:12Þ

Thus

Srð f Þ¼ 1

T
j T sinc

�
T

2
f

�
sin

�
pT

2
f

�						
						
2

¼ T sinc2
�
T

2
f

�
sin2
�
pT

2
f

� ð4:13Þ

Hence, for split phase the power spectral density is

SSPð f Þ ¼ A2T sinc2
T

2
f

� �
sin2

pT

2
f

� �
ð4:14Þ

This is plotted in Figure 4.3(b) where it is seen that the bandwidth to the first null of the power spectral

density is BSP ¼ 2=T Hz. However, unlike NRZ, split phase has a null at f ¼ 0, which might have

favorable implications if the transmission channel does not pass DC. Note that by squaring the time

waveform and averaging the result, it is evident that A ¼ 1 gives unit power.

&

EXAMPLE 4.3

In this example, we compute the power spectrum of unipolar RZ, which provides the additional

challenge of discrete spectral lines. For unipolar RZ, the data correlation coefficients are

Rm ¼

1

2
A2þ 1

2
0ð Þ2 ¼ 1

2
A2; m ¼ 0

1

4
Að Þ Að Þþ 1

4
Að Þ 0ð Þþ 1

4
0ð Þ Að Þþ 1

4
0ð Þ 0ð Þ ¼ 1

4
A2; m 6¼ 0

8>>><>>>: ð4:15Þ
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The pulse shape function is given by

pðtÞ ¼ P
2t

T

� �
ð4:16Þ

Therefore, we have

Pð f Þ ¼ T

2
sinc

T

2
f

� �
ð4:17Þ

and

Srð f Þ ¼ 1

T

T

2
sinc

T

2
f

0@ 1A						
						
2

¼ T

4
sinc2

T

2
f

0@ 1A ð4:18Þ

For unipolar RZ, we therefore have

SURZð f Þ ¼ T

4
sinc2

�
T

2
f

��
1

2
A2þ 1

4
A2

X¥
m¼�¥; m 6¼ 0

e�j2pmTf

�
¼ T

4
sinc2

�
T

2
f

��
1

4
A2þ 1

4
A2
X¥

m¼�¥
e�j2pmTf

� ð4:19Þ

However, from (2.138) we have

X¥
m¼�¥

e�j2pmTf ¼
X¥
m¼�¥

e j2pmTf ¼ 1

T

X¥
n¼�¥

d f� n

T

� �
ð4:20Þ

Thus, SURZð f Þ can be written as

SURZð f Þ ¼ T

4
sinc2

�
T

2
f

��
1

4
A2þ 1

4

A2

T

X¥
n¼�¥

d

�
f� n

T

��

¼ A2T

16
sinc2

�
T

2
f

�
þ A2

16
d fð Þþ A2

16
sinc2

�
1

2

��
d

�
f� 1

T

�
þ d

�
f þ 1

T

��

þA2

16
sinc2

�
3

2

��
d

�
f� 3

T

�
þ d

�
f þ 3

T

��
þ � � �

ð4:21Þ

where the fact that Yð f Þ d ð f� fnÞ ¼ Yð fnÞ d ð f� fnÞ for Yð f Þ continuous at f ¼ fn has been used to

simplify the sinc2½Tf=2� d ð f� n=TÞ terms.

The power spectrum of unipolar RZ is plotted in Figure 4.3(c) where it is seen that the bandwidth to

the first null of the power spectral density is BURZ ¼ 2=T Hz. The reason for the impulses in the spectrum

is because the unipolar nature of thiswaveform is reflected in finite power atDC and harmonics of 1=T Hz.

This can be a useful feature for synchronization purposes.

Note that for unit power in unipolar RZ, A ¼ 2 because the average of the time-domain waveform

squared is

1

T

1

2
A2 T

2
þ 02

T

2

� �
þ 1

2
02T

� �
¼ A2

4 &
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EXAMPLE 4.4

The power spectral density of polar RZ is straightforward to compute based on the results for NRZ. The

data correlation coeffients are the same as for NRZ. The pulse shape function is pðtÞ ¼ Pð2t/TbÞ, the same

as for unipolar RZ, so Srð f Þ ¼ T
4
sinc2 T

2
f


 �
. Thus

SPRZð f Þ ¼ A2T

4
sinc2

T

2
f

� �
ð4:22Þ

Thepower spectrumofpolarRZ is plotted inFigure 4.3(d)where it is seen that the bandwidth to thefirst null

of the power spectral density is BPRZ ¼ 2=T Hz. Unlike unipolar RZ, there are no discrete spectral lines.

Note that by squaring and averaging the time-domain waveform, we get 1=TðA2T=2þ 02T=2Þ ¼ A2=2, so
A ¼ ffiffiffi

2
p

for unit average power.

&

EXAMPLE 4.5

The final line code for which we will compute the power spectrum is bipolar RZ. Form ¼ 0, the possible

akak products are AA ¼ ð�AÞð�AÞ ¼ A2, each of which occurs 1
4
the time, and ð0Þð0Þ ¼ 0, which occurs 1

2

the time. Form ¼ �1, the possible data sequences are (1, 1), (1, 0), (0, 1), and (0, 0) for which the possible
akakþ 1 products are�A2, 0, 0, and 0, respectively, each of which occurs with probability 1

4
. Form > 1 the

possible products areA2 and�A2, each of which occurs with probability 1
8
, and�Að0Þ, and ð0Þð0Þ, each of

which occur with probability 1
4
: Thus the data correlation coefficients become

Rm ¼

1

4
A2þ 1

4
�Að Þ2þ 1

2
0ð Þ2 ¼ 1

2
A2; m ¼ 0

�Að Þ2
�
1

4

�
þ Að Þ 0ð Þ

�
1

4

�
þ 0ð Þ Að Þ

�
1

4

�
þ 0ð Þ 0ð Þ

�
1

4

�
¼ �A2

4
; m ¼ �1

A2

�
1

8

�
þ �A2

 �� 1

8

�
þ Að Þ 0ð Þ

�
1

4

�
þ �Að Þ 0ð Þ

�
1

4

�
þ 0ð Þ 0ð Þ

�
1

4

�
¼ 0; jmj > 1

8>>>>>>>>>>><>>>>>>>>>>>:
ð4:23Þ

The pulse shape function is

pðtÞ ¼ P
2t

T

� �
ð4:24Þ

Therefore, we have

Pð f Þ ¼ T

2
sinc

T

2
f

� �
ð4:25Þ

and

Srð f Þ ¼ 1

T

T

2
sinc

T

2
f

0@ 1A						
						
2

¼ T

4
sinc2

T

2
f

0@ 1A
ð4:26Þ
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Therefore, for bipolar RZ we have

SBRZð f Þ ¼ Srð f Þ
X¥

m¼�¥
Rme

�j2pmTf

¼ A2T

8
sinc2

�
T

2
f

��
1� 1

2
e j2pTf� 1

2
e�j2pTf

�

¼ A2T

8
sinc2

�
T

2
f

�
½1�cosð2pTf Þ�

¼ A2T

4
sinc2

�
T

2
f

�
sin2ðpTf Þ

ð4:27Þ

which is shown in Figure 4.3(f ).

Note that by squaring the time-domain waveform and accounting for it being 0 for the time when

logic 0s are sent and it being 0 half the time when logic 1s are sent, we get for the power

1

T

1

2

1

2
A2 T

2
þ 1

2
ð�AÞ2 T

2
þ 02

T

2

� �
þ 1

2
02T

� �
¼ A2

4
ð4:28Þ

so A ¼ 2 for unit average power.

&

Typical power spectra are shown in Figure 4.3 for all of the datamodulation formats shown

in Figure 4.2, assuming a random (coin toss) bit sequence. For data formats lacking power

spectra with significant frequency content at multiples of the bit rate 1=T ; nonlinear operations
are required to generate power at a frequency of 1=T Hz or multiples thereof for symbol

synchronization purposes. Note that split phase guarantees at least one zero crossing per bit

interval but requires twice the transmission bandwidth of NRZ. Around 0 Hz, NRZ possesses

significant power. Generally, no data format possesses all the desired features listed in Section

4.2.1, and the choice of a particular data format will involve trade-offs.

COMPUTER EXAMPLE 4.1

A MATLAB script file for plotting the power spectra of Figure 4.3 is given below.

% File: c4ce1.m
%
clf
ANRZ = 1;
T = 1;
f = -40:.005:40;
SNRZ = ANRZ^2*T*(sinc(T*f)).^2;
areaNRZ = trapz(f, SNRZ) % Area of NRZ spectrum as check
ASP = 1;
SSP = ASP^2*T*(sinc(T*f/2)).^2.*(sin(pi*T*f/2)).^2;
areaSP = trapz(f, SSP) % Area of split phase spectrum as check
AURZ = 2;
SURZc = AURZ^2*T/16*(sinc(T*f/2)).^2;
areaRZc = trapz(f, SURZc)
fdisc = -40:1:40;
SURZd = zeros(size(fdisc));
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SURZd = AURZ^2/16*(sinc(fdisc/2)).
^2;

areaRZ=sum(SURZd)+areaRZc %Areaofunipolar return-to-zerospectascheck
APRZ = sqrt(2);
SPRZ = APRZ^2*T/4*(sinc(T*f/2)).

^2;
areaSPRZ = trapz(f, SPRZ) % Area of polar return-to-zero spectrum as check
ABPRZ = 2;
SBPRZ = ABPRZ^2*T/4*((sinc(T*f/2)).

^2).*(sin(pi*T*f)).
^2;

areaBPRZ = trapz(f, SBPRZ) % Area of bipolar return-to-zero
spectrum as check
subplot(5,1,1), plot(f, SNRZ), axis([-5, 5, 0, 1]), ylabel
(‘S_N_R_Z(f)’)
subplot(5,1,2), plot(f, SSP), axis([-5, 5, 0, 1]), ylabel
(‘S_S_P(f)’)
subplot(5,1,3), plot(f, SURZc), axis([-5, 5, 0, 1]),
ylabel(‘S_U_R_Z(f)’)
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Figure 4.3

Power spectra for line-coded binary data formats.

4.2 Line Codes and Their Power Spectra 219

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


hold on
subplot(5,1,3), stem(fdisc, SURZd, ‘^’), axis([-5, 5, 0, 1])
subplot(5,1,4), plot(f, SPRZ), axis([-5, 5, 0, 1]), ylabel
(‘S_P_R_Z(f)’)
subplot(5,1,5), plot(f, SBPRZ), axis([-5, 5, 0, 1]),
xlabel(‘T_bf, Hz’), ylabel(‘S_B_P_R_Z(f)’)

&

n 4.3 EFFECTS OF FILTERING OF DIGITAL DATA: ISI

One source of degradation in a digital data transmission system has already been mentioned

and termed intersymbol interference. Intersymbol interference results when a sequence of

signal pulses are passed through a channel with a bandwidth insufficient to pass the significant

spectral components of the signal. Example 2.20 illustrated the response of a lowpass RC filter

to a rectangular pulse. For an input of

x1ðtÞ ¼ AP
t� T=2

T

� �
¼ A½uðtÞ� uðt� TÞ� ð4:29Þ

the output of the filter was found to be

y1ðtÞ ¼ A 1� exp � t

RC

� �h i
uðtÞ�A 1�exp � t� T

RC

� �� �
uðt� TÞ ð4:30Þ

This is plotted in Figure 2.17(a), which shows that the output ismore ‘‘smeared out’’ the smaller

T=RC is [although not in exactly the same form as (2.199), they are in fact equivalent]. In fact,

by superposition, a sequence of two pulses of the form

x2ðtÞ ¼ AP
�
t�T=2

T

�
�AP

�
t�3T=2

T

�
¼ A½uðtÞ�2uðt�TÞþ uðt�2TÞ�

ð4:31Þ

will result in the response

y2ðtÞ ¼ A

�
1�exp

�
� t

RC

��
uðtÞ�2A

�
1�exp

�
� t�T

RC

��
uðt�TÞ

þA

�
1�exp

�
� t�2T

RC

��
uðt�2TÞ

ð4:32Þ

At a simple level, this illustrates the idea of ISI. If the channel, represented by the

lowpass RC filter, has only a single pulse at its input, there is no problem from the transient

response of the channel. However, when two or more pulses are input to the channel in time

sequence [in the case of the input x2ðtÞ, a positive pulse followed by a negative one], the

transient response due to the initial pulse interferes with the responses due to the second and
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following pulses. This is illustrated in Figure 4.4, where the two-pulse response (4.32) is

plotted for two values of T=RC, the first of which results in negligible ISI and the second of

which results in significant ISI in addition to distortion of the output pulses. In fact, the

smaller T=RC, the more severe the ISI effects are because the time constant, RC, of the filter

is large compared with the pulse width, T .

To consider a more realistic example, we reconsider the line codes of Figure 4.2.

These waveforms are shown filtered by a lowpass, second-order Butterworth filter in Figure

4.5 for the filter 3-dB frequency equal to f3 ¼ 1=T and in Figure 4.6 for f3 ¼ 0:5=T. The
effects of ISI are evident. In Figure 4.5 the bits are fairly discernable, even for data formats

using pulses of width T=2 (i.e., all the RZ cases and split phase). In Figure 4.6, the NRZ

cases have fairly distinguishable bits, but the RZ and split-phase formats suffer greatly

from ISI. Recall that from the plots of Figure 4.3 and the analysis that led to them, the RZ

and split-phase formats occupy essentially twice the bandwidth of the NRZ formats for a

given data rate.

The question about what can be done about ISI naturally arises. One perhaps surprising

solution is that with proper transmitter and receiver filter design (the filter representing the

channel is whatever it is) the effects of ISI can be completely eliminated. We investigate this

solution in the following section. Another somewhat related solution is the use of special

filtering at the receiver called equalization. At a very rudimentary level, an equalization filter

can be looked upon as the inverse of the channel filter, or a close approximation to it. We

consider one form of equalization filtering in Section 4.5.
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Figure 4.4

Response of a lowpass RC filter to a positive rectangular pulse followed by a negative rectangular pulse to

illustrate the concept of ISI. (a) T=RC ¼ 20. (b) T=RC ¼ 2.
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n 4.4 PULSE SHAPING: NYQUIST’S CRITERION FOR ZERO ISI

In this section we examine designs for the transmitter and receiver filters that shape the overall

signal pulse shape function so as to ideally eliminate interference between adjacent pulses. This

is formally stated as Nyquist�s criterion for zero ISI.

4.4.1 Pulses Having the Zero-ISI Property

To see how one might implement this approach, we recall the sampling theorem, which gives a

theoretical minimum spacing between samples to be taken from a signal with an ideal lowpass

spectrum in order that the signal can be reconstructed exactly from the sample values. In

particular, the transmission of a lowpass signal with bandwidthW Hz can be viewed as sending

a minimum of 2W independent samples per second. If these 2W samples per second represent

2W independent pieces of data, this transmission can be viewed as sending 2W pulses per

second through a channel represented by an ideal lowpass filter of bandwidth W. The

transmission of the nth piece of information through the channel at time t ¼ nT ¼ n=2W is

accomplished by sending an impulse of amplitude an. The output of the channel due to this

impulse at the input is

yn tð Þ ¼ ansinc 2W t� n

2W

� �h i
ð4:33Þ
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Figure 4.5

Data sequences formattedwith various line codes passed through a channel represented by a second-order

lowpass Butterworth filter of bandwidth 1 bit rate.
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For an input consisting of a train of impulses spaced by T ¼ 1=2W s, the channel output is

y tð Þ ¼
X
n

yn tð Þ ¼
X
n

an sinc 2W t� n

2W

� �h i
ð4:34Þ

where fang is the sequence of sample values (i.e., the information). If the channel output is

sampled at time tm ¼ m=2W , the sample value is am because

sincðm�nÞ ¼
n
1; m ¼ n

0; m 6¼ n
ð4:35Þ

which results in all terms in (4.34) except the mth being zero. In other words, the mth sample

value at the output is not affected by preceding or succeeding sample values; it represents an

independent piece of information.

Note that the bandlimited channel implies that the time response due to the nth impulse at

the input is infinite in extent; a waveform cannot be simultaneously bandlimited and time

limited. It is of interest to inquire if there are any bandlimited waveforms other than sinc ð2WtÞ
that have the property of (4.35), that is, that their zero crossings are spaced by T ¼ 1=2Ws. One

such family of pulses are those having raised cosine spectra. Their time response is given by

pRCðtÞ ¼ cosðpbt=TÞ
1�ð2bt=TÞ2 sinc

� t

T

�
ð4:36Þ
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Data sequences formattedwith various line codes passed through a channel represented by a second-order

lowpass Butterworth filter of bandwidth 1
2
bit rate.
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and their spectra by

PRCð f Þ ¼

T ; j f j � 1�b
2T

T

2

(
1þ cos

"
pT

b

�
j f j� 1�b

2T

�#)
;

1�b
2T

< j f j � 1þb

2T

0; j f j > 1þb

2T

8>>>>>>>>><>>>>>>>>>:
ð4:37Þ

where b is called the roll-off factor. Figure 4.7 shows this family of spectra and the

corresponding pulse responses for several values of b. Note that zero crossings for pRCðtÞ
occur at least every T s. If b ¼ 1, the single-sided bandwidth of PRCð f Þ is 1=T Hz [just

substitute b ¼ 1 into (4.37)], which is twice that for the case of b ¼ 0 ½sincðt=TÞpulse�. The
price paid for the raised cosine roll-off with increasing frequency of PRCð f Þ, which may be

easier to realize as practical filters in the transmitter and receiver, is increased bandwidth. Also,

pRCðtÞ for b ¼ 1 has a narrow main lobe with very low side lobes. This is advantageous in that

interference with neighboring pulses is minimized if the sampling instants are slightly in error.

Pulses with raised cosine spectra are used extensively in the design of digital communication

systems.
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Figure 4.7

(a) Raised cosine spectra and (b) corresponding pulse responses.
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4.4.2 Nyquist’s Pulse Shaping Criterion

Nyquist�s pulse shaping criterion states that a pulse shape function pðtÞ, having a Fourier

transform Pð f Þ that satisfies the criterionX¥
k¼�¥

P f þ k

T

� �
¼ T; j f j � 1

2T
ð4:38Þ

results in a pulse shape function with sample values

pðnTÞ ¼ 1; n ¼ 0

0; n 6¼ 0

�
ð4:39Þ

Using this result, we can see that no adjacent pulse interferencewill be obtained if the received

data stream is represented as

yðtÞ ¼
X¥

n¼�¥
anpðt� nTÞ ð4:40Þ

and the sampling at the receiver occurs at integer multiples of T s, at the pulse epochs. For

example, to obtain the n ¼ 10th sample, one simply sets t ¼ 10T in (4.40), and the resulting

sample is a10, given that the result of Nyquist�s pulse shaping criterion of (4.39) holds.

The proof of Nyquist�s pulse shaping criterion follows easily by making use of the inverse

Fourier representation for pðtÞ, which is

pðtÞ ¼
Z ¥

�¥
Pð f Þexpð j2pftÞ df ð4:41Þ

For the nth sample value, this expression can be written as

pðnTÞ ¼
X¥

k¼�¥

Z ð2kþ 1Þ=2T

�ð2kþ 1Þ=2T
P


f
�
exp


j2pfnT

�
df ð4:42Þ

where the inverse Fourier transform integral for pðtÞ has been broken up into contiguous frequency
intervals of length 1=T Hz. By the change of variables u ¼ f�k=T , Equation (4.42) becomes

pðnTÞ ¼
X¥

k¼�¥

Z 1=2T

�1=2T
P uþ k

T

� �
exp j2pnTuð Þ du

¼
Z 1=2T

�1=2T

X¥
k¼�¥

P uþ k

T

� �
exp j2pnTuð Þ du

ð4:43Þ

where the order of integration and summation has been reversed. By hypothesisX¥
k¼�¥

P uþ k

T

� �
¼ T ð4:44Þ

between the limits of integration, so that (4.43) becomes

pðnTÞ ¼
Z 1=2T

�1=2T
Texpð j2pnTuÞ du ¼ sincðnÞ

¼ 1; n ¼ 0

0; n 6¼ 0

� ð4:45Þ

which completes the proof of Nyquist�s pulse shaping criterion.
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With the aid of this result, it is now apparent why the raised cosine pulse family is free of

ISI, even though the family is by no means unique. Note that what is excluded from the raised

cosine spectra for j fj < 1=T Hz is filled by the spectral translate tail for j fj > 1=T Hz. Example

4.6 illustrates this for a simpler, although more impractical, spectrum than the raised cosine

spectrum.

EXAMPLE 4.6

Consider the triangular spectrum

PDð f Þ ¼ T LðTf Þ ð4:46Þ
It is shown in Figure 4.8(a) and in Figure 4.8(b)

P¥
k¼�¥ PDð f þ k=TÞ is shown,where it is evident that the

sum is a constant. Using the transform pair Lðt=BÞ $ B sinc2ðBf Þ and duality to get the transform pair

pDðtÞ ¼ sinc2ðt=TÞ $ TLðT=f Þ ¼ PDð f Þ, we see that this pulse shape function does indeed have the

zero-ISI property because pDðnTÞ ¼ sinc2ðnÞ ¼ 0; n 6¼ 0 integer.

&

4.4.3 Transmitter and Receiver Filters for Zero ISI

Consider the simplified pulse transmission system of Figure 4.9. A source produces a sequence

of sample values fang. Note that these are not necessarily quantized or binary digits, but they
could be. For example, two bits per sample could be sent with four possible levels, representing

00, 01, 10, and 11. In the simplified transmitter model under consideration here, the kth sample
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Illustration that (a) a triangular spec-

trum satisfies (b) Nyquist�s zero ISI

criterion.
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Figure 4.9

Transmitter, channel, and receiver cascade illustrating the implementation of a zero-ISI communication

system.

value multiplies a unit impulse occuring at time kT and this weighted impulse train is the

input to a transmitter filter with impulse response hTðtÞ and corresponding frequency res-

ponse HTð f Þ. The noise for now is assumed to be zero (effects of noise will be considered in

Chapter 8). Thus, the input signal to the transmission channel, represented by a filter having

impulse response hCðtÞ and corresponding frequency response HCð f Þ, for all time is

xðtÞ ¼
X¥

k¼�¥
akdðt�kTÞ 
 hTðtÞ

¼
X¥

k¼�¥
akhTðt�kTÞ

ð4:47Þ

The output of the channel is

yðtÞ ¼ x


t
� 
 hCðtÞ ð4:48Þ

and the output of the receiver filter is

vðtÞ ¼ y


t
� 
 hRðtÞ ð4:49Þ

Wewant the output of the receiver filter to have the zero-ISI property, and to be specific, we set

vðtÞ ¼
X¥
k¼�¥

akApRCðt� kT� tdÞ ð4:50Þ

where pRCðtÞ is the raised cosine pulse function, td represents the delay introduced by the

cascade of filters and A represents an amplitude scale factor. Putting this all together, we

have

ApRC


t�tdÞ ¼ hTðtÞ 
 hCðt

� 
 hRðt� ð4:51Þ

or, by Fourier transforming both sides, we have

APRCð f Þexpð�j2pftdÞ ¼ HTð f ÞHCð f ÞHRð f Þ ð4:52Þ
In terms of amplitude responses this becomes

APRC



f
� ¼ jHTð f ÞjjHCð f ÞjjHRð f Þj ð4:53Þ
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Now jHCð f Þj is fixed (the channel is whatever it is), and PRCð f Þ is specified. Suppose we
want the transmitter and receiver filter amplitude responses to be the same. Then, solving (4.53)

with jHTð f Þj ¼ jHRð f Þj, we have

jHTð f Þj2 ¼ jHRð f Þj2 ¼ APRCð f Þ
jHCð f Þj ð4:54Þ

or

jHTð f Þj ¼ jHRð f Þj ¼ AP
1=2
RC ð f Þ

jHCð f Þj1/2
ð4:55Þ

This amplitude response is shown in Figure 4.10 for raised cosine spectra of various roll-

off factors and for a channel filter assumed to have a first-order Butterworth amplitude

response. We have not accounted for the effects of additive noise. If the noise spectrum is flat,

the only change would be another multiplicative constant. The constants are arbitrary since

they multiply both signal and noise alike.

n 4.5 ZERO-FORCING EQUALIZATION

In the previous section, it was shown how to choose transmitter and receiver filter amplitude

responses, given a certain channel filter, to provide output pulses satisfying the zero-ISI

condition. In this section,we present a procedure for designing a filter that will accept a channel
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Figure 4.10

Transmitter and receiver filter amplitude responses that implement the zero-ISI condition assuming a first-

order Butterworth channel filter and raised cosine pulse shapes.
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output pulse response not satisfying the zero-ISI condition and produce a pulse at its output that

has N zero-valued samples on either side of its maximum sample value taken to be 1 for

convenience. This filter will be called a zero-forcing equalizer. We specialize our considera-

tions of an equalization filter to a particular form—a transversal or tapped-delay-line filter.

Figure 4.11 is a block diagram of such a filter.

There are at least two reasons for considering a transversal structure for the purpose of

equalization. First, it is simple to analyze. Second, it is easy to mechanize by electronic means

(i.e., transmission line delays and analog multipliers) at high frequencies and by digital signal

processors at lower frequencies.

Let the pulse response of the channel output be pcðtÞ. The output of the equalizer in

response to pcðtÞ is

peqðtÞ ¼
XN
n¼�N

anpcðt�nDÞ ð4:56Þ

where D is the tap spacing and the total number of transversal filter taps is 2N þ 1. We want

peqðtÞ to satisfy Nyquist�s pulse shaping criterion, which we will call the zero-ISI condition.

Since the output of the equalizer is sampled every T s, it is reasonable that the tap spacing be

D ¼ T . The zero-ISI condition therefore becomes

peqðmTÞ ¼
XN
n¼�N

anpc½ðm� nÞT�

¼
(
1; m ¼ 0

0; m 6¼ 0
m ¼ 0;�1;�2; . . . ;�N

ð4:57Þ

Note that the zero-ISI condition can be satisfied at only 2N time instants because there

are only 2N þ 1 coefficients to be selected in (4.57) and the output of the filter for t ¼ 0

+
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Figure 4.11

A transversal filter implementation for equalization of ISI.
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is forced to be 1. Defining the matrices (actually column matrices or vectors for the first

two)

Peq

 � ¼

0

0

..

.

0

1

0

0

..

.

0

266666666666664

377777777777775

)
N zeros

)
N zeros

ð4:58Þ

½A� ¼
a�N

a�Nþ 1

..

.

aN

26664
37775 ð4:59Þ

and

½Pc� ¼
pcð0Þ pcð�TÞ � � � pcð�2NTÞ
pcðTÞ pcð0Þ � � � pcð�2Nþ 1ÞT
..
. ..

.

pcð2NTÞ pcð0Þ

26664
37775 ð4:60Þ

it follows that (4.57) can be written as the matrix equation

½Peq� ¼ ½Pc�½A� ð4:61Þ

Themethod of solution of the zero-forcing coefficients is now clear. Since ½Peq� is specified
by the zero-ISI condition, all wemust do is multiply through by the inverse of ½Pc�. The desired
coefficient matrix ½A� is then the middle column of ½Pc��1, which follows bymultiplying ½Pc��1
times ½Peq�:

A ¼ ½Pc��1½Peq� ¼ ½Pc��1

0

0

..

.

0

1

0

0

..

.

0

266666666666664

377777777777775
¼ middle column of ½Pc��1 ð4:62Þ
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EXAMPLE 4.7

Consider a channel for which the following sample values of the channel pulse response are obtained:

pcð�3TÞ ¼ 0:02 pcð�2TÞ ¼ �0:05 pcð�TÞ ¼ 0:2 pcð0Þ ¼ 1:0
pcðTÞ ¼ 0:3 pcð2TÞ ¼ �0:07 pcð3TÞ ¼ 0:03

The matrix ½Pc� for N¼ 1 is

½Pc� ¼
1:0 0:2 �0:05
0:3 1:0 0:2
�0:07 0:3 1:0

24 35 ð4:63Þ

and the inverse of this matrix is

½Pc��1 ¼
1:0815 �0:2474 0:1035
�0:3613 1:1465 �0:2474
0:1841 �0:3613 1:0815

24 35 ð4:64Þ

Thus, by (4.62)

A ¼
1:0815 �0:2474 0:1035
�0:3613 1:1465 �0:2474
0:1841 �0:3613 1:0815

24 35 0

1

0

24 35 ¼ �0:2474
1:1465
�0:3613

24 35 ð4:65Þ

Using these coefficients, the equalizer output is

peqðmÞ ¼ �0:2474pc½ðmþ 1ÞT� þ 1:1465pcðmTÞ
�0:3613pc½ðm� 1ÞT �; m ¼ . . . ;�1; 0; 1; . . .

Putting values in shows that peqð0Þ ¼ 1 and that the single samples on either side of peqð0Þ are zero.

Samplesmore than one away from the center sample are not necessarily zero for this example. Calculation

using the extra samples for pcðnTÞ gives pcð�2TÞ ¼ �0:1140 and pcð2TÞ ¼ �0:1961. Samples for the

channel and the equalizer outputs are shown in Figure 4.12.
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Figure 4.12

Samples for (a) an assumed channel response and for (b) the output of a zero-forcing equalizer of length 3.
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n 4.6 EYE DIAGRAMS

We now consider eye diagrams which, although not a quantitative measure of system

performance, are simple to construct and give significant insight into system performance.

An eye diagram is constructed by plotting overlapping k-symbol segments of a baseband

signal. In other words, an eye diagram can be displayed on an oscilloscope by triggering

the time sweep of the oscilloscope, as shown in Figure 4.13, at times t ¼ nkTs, where Ts is the

symbol period, kTs is the eye period, and n is an integer. A simple examplewill demonstrate the

process of generating an eye diagram.

EXAMPLE 4.8

Consider the eye diagram of a bandlimited digital NRZ baseband signal. In this example the signal is

generated by passing a NRZwaveform through a third-order Butterworth filter as illustrated in Figure 4.13.

The filter bandwidth is normalized to the symbol rate. In other words, if the symbol rate of the NRZ

waveform is 1000 symbols per second and the normalized filter bandwidth isBN ¼ 0:6, the filter bandwidth
is 600Hz.The eye diagramscorresponding to the signal at the filter output are those illustrated inFigure 4.14

0

1

0

A
m

pl
itu

de

–1
20 40 60 80 100 120 140 160 180 200

0

1

0

A
m

pl
itu

de

–1
20 40 60 80 100 120 140 160 180 200

BN = 0.6

0

1

0

A
m

pl
itu

de

–1

20 40 60 80 100 120 140 160 180 200

BN = 1

0

1

0

A
m

pl
itu

de

–1

20 40 60 80 100
t/Tsamp

120 140 160 180 200

BN = 2

BN = 0.4

Figure 4.14

Eye diagrams for BN ¼ 0:4, 0.6, 1.0, and 2.0.
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Figure 4.13

Simple technique for generating an eye diagram for a

bandlimited signal.
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for normalized bandwidths,BN , of 0.4, 0.6, 1.0, and 2.0. Each of the four eye diagrams span k ¼ 4 symbols.

Sampling is performed at 50 samples per symbol and therefore the sampling index ranges from 1 to 200 as

shown. The effect of bandlimiting by the filter, leading to ISI, on the eye diagram is clearly seen.

&

We now look at an eye diagram in more detail. Figure 4.15 shows the top pane of Figure

4.14 (BN ¼ 0:4), in which two symbols are illustrated rather than four. Observation of Figure

4.15 suggests that the eye diagram is composed of two fundamental waveforms, each of which

approximates a sinewave. Onewave form goes through two periods in the two-symbol eye and

the otherwaveformgoes through a single period. A little thought shows that the high-frequency

waveform corresponds to the binary sequences 01 or 10, while the low frequency waveform

corresponds to the binary sequences 00 or 11.

Also shown in Figure 4.15 is the optimal sampling time, which is when the eye is most

open. Note that for significant bandlimiting the eye will be more closed due to ISI. This

shrinkage of the eye opening due to ISI is labeled amplitude jitter, Aj . Referring back to

Figure 4.14, we see that increasing the filter bandwidth decreases the amplitude jitter.Whenwe

consider the effects of noise in later chapters of this book, we will see that if the vertical eye

opening is reduced, the probability of symbol error increases. Note also that ISI leads to timing

jitter, denoted Tj in Figure 4.15, which is a perturbation of the zero crossings of the filtered

signal. Also note that a large slope of the signal at the zero crossings will result in a more open

eye and that increasing this slope is accomplished by increasing the signal bandwidth. If the

signal bandwidth is decreased leading to increased ISI, Tj increases and synchronization

becomes more difficult. As we will see in later chapters, increasing the bandwith of a channel

often results in increased noise levels. This leads to both an increase in timing jitter and

amplitude jitter. Thusmany trade-offs exist in the design of communication systems, several of

which will be explored in later sections of this book.

COMPUTER EXAMPLE 4.2

The eye diagrams illustrated in Figure 4.14 were generated using the following MATLAB code:

% File: c4ce2.m
clf
nsym = 1000; nsamp = 50; bw = [0.4 0.6 1 2];

+1

–1

Tj Ts, optimal

Aj

0

Figure 4.15

Two-symbol eye diagrams for BN ¼ 0:4.
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for k = 1:4
lambda = bw(k);
[b,a] = butter(3,2*lambda/nsamp);
l = nsym*nsamp; % Total sequence length
y = zeros(1,l-nsampþ1); % Initalize output vector
x = 2*round(rand(1,nsym))-1; % Components of x = þ1 or -1
for i = 1:nsym % Loop to generate info symbols

kk = (i-1)*nsamp+1;
y(kk) = x(i);

end
datavector=conv(y,ones(1,nsamp)); % Each symbol is nsamp long
filtout = filter(b, a, datavector);
datamatrix = reshape(filtout, 4*nsamp, nsym/4);
datamatrix1 = datamatrix(:, 6:(nsym/4));
subplot(4,1,k),plot(datamatrix1,‘k’),ylabel(‘Amplitude’),...
axis([0200-1.41.4]),legend([‘{itB_N}=’,num2str(lambda)])
ifk==4

xlabel(‘{\itt/T}_s_a_m_p’)
end

end
% Endofscriptfile.

&

n 4.7 SYNCHRONIZATION

We now briefly look at the important subject of synchronization. There are many different

levels of synchronization in a communications system. Coherent demodulation requires

carrier synchronization as we discussed in the preceding chapter, wherewe noted that a Costas

PLL could be used to demodulate a DSB signal. In a digital communications system bit or

symbol synchronization gives us knowledge of the starting and ending times of discrete-time

symbols.This is a necessary step in data recovery. When block coding is used for error

correction in a digital communications system, knowledge of the initial symbols in the code

words must be identified for decoding. This process is known as word synchronization. In

addition, symbols are often grouped together to form data frames, and frame synchronization

is required to identify the starting and ending symbols in each data frame. In this section we

focus on symbol synchronization. Other types of synchronization will be considered later in

this book.

Three general methods exist by which bit synchronization1 can be obtained. These are (1)

derivation from a primary or secondary standard (for example, transmitter and receiver slaved

to amaster timing source), (2) utilization of a separate synchronization signal (pilot clock), and

(3) derivation from the modulation itself, referred to as self-synchronization. In this section we

explore two self-synchronization techniques.

As we saw earlier in this chapter (see Figure 4.2), several binary data formats, such as

polar RZ and split phase, guarantee a level transition within every symbol period. For these

data formats a discrete spectral component is generated at the symbol frequency. A PLL,

such as we studied in the preceding chapter, can then be used to track this component in

1See Stiffler (1971), Part II, or Lindsey and Simon (1973), Chapter 9, for a more extensive discussion.
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order to recover symbol timing. Symbol synchronization is therefore easy but comes at the

cost of increased bandwidth. For data formats that do not have a level transition within each

symbol period, a nonlinear operation is performed on the signal in order to generate a

spectral component at the symbol frequency. A number of techniques are in common use for

accomplishing this. The following examples illustrate two basic techniques, both of which

make use of the PLL for timing recovery. Techniques for acquiring symbol synchronization

that are similar in form to the Costas loop are also possible but will not be discussed here

(see Chapter 9).2

COMPUTER EXAMPLE 4.3

To demonstrate the first method, we assume that a data signal is represented by an NRZ signal that has

been bandlimited by passing it through a bandlimited channel. If this NRZ signal is squared, a component

is generated at the symbol frequency. The component generated at the symbol frequency can then be phase

tracked by a PLL in order to generate the symbol synchronization, as illustrated by the following

MATLAB simulation:

% File: c4ce3.m
nsym = 1000; nsamp = 50; lambda = 0.7;
[b,a] = butter(3,2*lambda/nsamp);
l = nsym*nsamp; % Total sequence length
y = zeros(1,l-nsampþ1); % Initalize output vector
x =2*round(rand(1,nsym))-1; % Components of x = þ1 or -1
for i = 1:nsym % Loop to generate info symbols

k = (i-1)*nsampþ1;
y(k) = x(i);

end
datavector1 = conv(y,ones(1,nsamp)); % Each symbol is nsamp long
subplot(3,1,1), plot(datavector1(1,200:799),‘k’, ’LineWidth’, 1.5)
axis([0 600 -1.4 1.4]), ylabel(‘Amplitude’)
filtout = filter(b,a,datavector1);
datavector2 = filtout.*filtout;
subplot(3,1,2), plot(datavector2(1,200:799),‘k’, ’LineWidth’, 1.5)
ylabel(‘Amplitude’)
y = fft(datavector2);
yy = abs(y)/(nsym*nsamp);
subplot(3,1,3), stem(yy(1,1:2*nsym),‘k.’)
xlabel(‘FFT Bin’), ylabel(‘Spectrum’)
% End of script file.

The results of executing the precedingMATLAB program are illustrated in Figure 4.16. Assume that the

1000 symbols generated by the MATLAB program occur in a time span of 1 s. Thus the symbol rate is

1000 symbols/s, and since the NRZ signal is sampled at 10 samples/symbol, the sampling frequency is

10,000 Hz. Figure 4.16(a) illustrates 600 samples of the NRZ signal. Filtering by a third-order

Butterworth filter having a bandwidth of twice the symbol rate and squaring this signal results in the

signal shown in Figure 4.16(b). The second-order harmonic created by the squaring operation can clearly

be seen by observing a data segment consisting of alternating data symbols. The spectrum, generated

using the FFTalgorithm, is illustrated in Figure 4.16(c). Two spectral components can clearly be seen; a

2Again, see Stiffler (1971) or Lindsey and Simon (1973)
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component at DC (0 Hz), which results from the squaring operation, and a component at 1000 Hz, which

represents the component at the symbol rate. This component is tracked by a PLL to establish symbol

timing.

It is interesting to note that a sequence of alternating data states, e.g., 101010. . ., will result in anNRZ
waveform that is a square wave. If the spectrum of this square wave is determined by forming the Fourier

series, the period of the square wave will be twice the symbol period. The frequency of the fundamental

will therefore be one-half the symbol rate. The squaring operation doubles the frequency to the symbol

rate of 1000 symbols/s.

&

COMPUTER EXAMPLE 4.4

To demonstrate a second self-synchronization method, consider the system illustrated in Figure 4.17.

Because of the nonlinear operation provided by the delay-and-multiply operation, power is produced at

the symbol frequency. The following MATLAB program simulates the symbol synchronizer:

% File: c4ce4.m
nsym = 1000; nsamp = 50; % Make nsamp even
m = nsym*nsamp;
y = zeros(1,m-nsampþ1); % Initalize output vector
x =2*round(rand(1,nsym))-1; % Components of x = þ1 or -1
for i = 1:nsym % Loop to generate info symbols

k = (i-1)*nsampþ1;
y(k) = x(i);

end
datavector1 = conv(y,ones(1,nsamp)); % Make symbols nsamp samples long
subplot(3,1,1), plot(datavector1(1,200:10000),‘k’, ‘LineWidth’, 1.5)
axis([0 600 -1.4 1.4]), ylabel(‘Amplitude’)
datavector2 = [datavector1(1,m-nsamp/2þ1:m) datavector1(1,1:
m-nsamp/2)];
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Simulation results for Com-

puter Example 4.3. (a) NRZ
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filtered and squared. (c) FFTof

squared NRZ waveform.
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datavector3 = datavector1.*datavector2;
subplot(3,1,2), plot(datavector3(1,200:10000),‘k’, ‘LineWidth’, 1.5),
axis([0 600 -1.4 1.4]), ylabel(‘Amplitude’)
y = fft(datavector3);
yy=abs(y)/(nsym*nsamp);
subplot(3,1,3), stem(yy(1,1:4*nsym),‘k.’)
xlabel(‘FFT Bin’), ylabel(‘Spectrum’)
% End of script file.

The datawaveform is shown in Figure 4.18(a), and thiswaveformmultiplied by its delayed version is

shown in Figure 4.18(b). The spectral component at 1000 Hz, as seen in Figure 4.18(c), represents the

symbol-rate component and is tracked by a PLL for timing recovery.

&

Phase
detector

Loop filter
and amplifier

Delay,
Tb/2

VCO

Clock

From data demodulator
×

Figure 4.17

System for deriving a symbol clock simulated in Computer Example 4.3.
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Example 4.4. (a) Data

waveform. (b) Data waveform

multiplied by a half-bit delayed

version of itself. (c) FFT

spectrum of (b).

4.7 Synchronization 237

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


n 4.8 CARRIER MODULATION OF BASEBAND DIGITAL SIGNALS

The baseband digital signals considered in this chapter are typically transmitted using RF

carrier modulation. As in the case of analog modulation considered in the preceding chapter,

the fundamental techniques are based on amplitude, phase, or frequency modulation. This is

illustrated in Figure 4.19 for the case in which the data bits are represented by an NRZ data

format. Six bits are shown corresponding to the data sequence 101001. For digital AM, known

as amplitude-shift keying (ASK), the carrier amplitude is determined by the data bit for that

interval. For digital PM, known as phase-shift keying (PSK), the excess phase of the carrier is

established by the data bit. The phase changes can clearly be seen in Figure 4.19. For digital

frequencymodulation, known as frequency-shift keying (FSK), the carrier frequency deviation

is established by the data bit.

To illustrate the similarity to thematerial studied in Chapter 3, note that theASKRF signal

can be represented by

xASKðtÞ ¼ Ac½1þ dðtÞ� cosð2pfctÞ ð4:67Þ

t

t

t

t

0001 11

Data

ASK

PSK

FSK

Figure 4.19

Examples of digital modulation schemes.
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where dðtÞ is the NRZ waveform. Note that this is identical to AM with the only essential

difference being the definition of the message signal. Phase-shift keying and FSK can be

similarly represented by

xPSK tð Þ ¼ Ac cos 2pfctþ p

2
d tð Þ

h i
ð4:68Þ

and

xFSK


t
� ¼ Ac cos

�
2pfctþ kf

Z t

dðaÞ da
�

ð4:69Þ

respectively. We therefore see that many of the concepts introduced in Chapter 3 carry over to

digital data systems. These techniques will be studied in detail in Chapters 8 and 9.

Amajor concern of both analog and digital communication systems is systemperformance

in the presence of channel noise and other random disturbances. In order to have the tools

required to undertake a study of system performance, we interrupt our discussion of com-

munication systems to study random variables and stochastic processes.

Summary
1. The block diagramof the basebandmodel of a digital communications systems

contains several components not present in the analog systems studied in the

preceding chapter. The underlying message signal may be analog or digital. If

the message signal is analog, an analog-to-digital converter must be used to

convert the signal from analog to digital form. In such cases a digital-to-analog

converter is usually used at the receiver output to convert the digital data back to

analog form. Three operations covered in detail in this chapter were line

coding, pulse shaping, and symbol synchronization.

2. Digital data can be represented using a number of formats, generally referred

to as line codes. The two basic classifications of line codes are those that do not

have an amplitude transition within each symbol period and those that do have

an amplitude transition within each symbol period. A number of possibilities

existwithin each of these classifications. Two of themost popular data formats

are nonreturn to zero (NRZ), which does not have an amplitude transition

within each symbol period and split phase, which does have an amplitude

transition within each symbol period. The power spectral density correspond-

ing to various data formats is important because of the impact on transmission

bandwidth. Data formats having an amplitude transition within each symbol

period have a discrete line at the symbol rate. This simplifies symbol

synchronization at the cost of increased bandwidth. Thus, a number of design

trade-offs exist.

3. Amajor source of performance degradation in a digital system is intersymbol

interference (ISI). Distortion due to ISI resultswhen the bandwith of a channel

is not sufficient to pass all significant components of the channel input signal.

Channel equalization is often used to combat the effects of ISI. Equalization,
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in its simplest form, can be viewed as filtering the channel output using a filter

having a transfer function that is the inverse of the transfer function of the

channel.

4. Anumber of pulse shapes satisfy Nyquist pulse-shaping criterion and result in

zero ISI. A simple example is the pulse defined by pðtÞ ¼ sincðt=TÞ;where T
is the sampling period. Zero ISI results since pðtÞ ¼ 1 for t ¼ 0 and pðtÞ ¼ 0

for t ¼ nT, n 6¼ 0.

5. A popular technique for implementing zero-ISI conditions is to use identical

filters in both the transmitter and receiver. If the transfer function of the

channel is known and the underlying pulse shape is defined, the transfer

function of the transmitter–receiver filters can easily be found so that the

Nyquist zero-ISI condition is satisfied. This technique is typically used with

raised cosine pulses.

6. A zero-forcing equalizer is a digital filter which operates upon a channel

output to produce a sequence of samples satisfying the Nyquist zero-

ISI condition. The implementation takes the form of an tapped delay

line, or transversal, filter. The tap weights are determined by the inverse of

the matrix defining the pulse response of the channel. Attributes of the zero-

forcing equalizer include ease of implementation and ease of analysis.

7. Eye diagrams are formed by overlaying segments of signals representing k

data symbols. The eye diagrams, while not a quantitative measure of system

performance, provide a qualitative mesure of system performance. Signals

with large vertical eye openings display lower levels of ISI than those

with smaller vertical openings. Eyes with small horizontal openings have

high levels of timing jitter, which makes symbol synchronization more

difficult.

8. Many levels of synchronization are required in digital communication

systems, including carrier, symbol, word, and frame synchronization. In this

chapterwe considered only symbol synchronization. Symbol synchronization

is typically accomplished by using a PLL to track a component in the data

signal at the symbol frequency. Data signals in which the data format has an

amplitude transition in every symbol period have a naturally occuring spectral

component at the symbol rate. If the data format does not have an amplitude

transition within symbol periods, such as NRZ, a nonlinear operation must be

applied to the data signal in order to generate a spectral component at the

symbol rate.

Further Reading

Further discussions on the topics of this chapter may be found in to Ziemer and Peterson (2001), Couch

(2007), and Proakis and Salehi (2005).
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Problems

Section 4.2

4.1. Given the channel features or objectives below. For

each part, tell which line code(s) is (are) the best choice(s).

a. The channel frequency response has a null at f ¼
0 Hz.

b. The channel has a passband from 0 to 10 kHz,

and it is desired to transmit data through it at 10,000 bps.

c. At least one zero crossing per bit is desired for

synchronization purposes.

d. Built in redundancy is desired for error checking

purposes.

e. For simplicity of detection, distinct positive pulses

are desired for ones and distinct negative pulses are desired

for zeros.

f. A discrete spectral line at the bit rate is desired

from which to derive a clock at the bit rate.

4.2. For the �1-amplitude waveforms of Figure 4.2,

show that the average powers are

a. NRZ change � Pave ¼ 1 W.

b. NRZ mark � Pave ¼ 1 W.

c. Unipolar RZ � Pave ¼ 1
4
W.

d. Polar RZ � Pave ¼ 1
2
W.

e. Bipolar RZ � Pave ¼ 1
4
W.

f. Split phase � Pave ¼ 1 W.

4.3.

a. Given the random binary data sequence 0 1 1 0 0 0

1 0 1 1, providewaveform sketches for (i) NRZ change and

(ii) split phase.

b. Demonstrate satisfactorily that the split-phase

waveform can be obtained from the NRZ waveform by

multiplying the NRZ waveform by a �1-valued clock

signal of period T .

4.4. For the data sequence of Problem 4.3 provide a

waveform sketch for NRZ mark.

4.5. For the data sequence of Problem 4.3 provide

waveform sketches for

a. Unipolar RZ

b. Polar RZ

c. Bipolar RZ

4.6. A channel of bandwidth 4 kHz is available. De-

termine the data rate that can be accommodated for the

following line codes (assume a bandwidth to the first

spectral null):

a. NRZ change

b. Split phase

c. Unipolar RZ and polar RZ

d. Bipolar RZ

Section 4.3

4.7. Using the superposition and time-invariance

properties of an RC filter, show that (4.30) is the response

of a lowpass RC filter to (4.29) given that the filter�s
response to a unit step is ½1�expð�t=RCÞ� uðtÞ:

Section 4.4

4.8. Show that (4.37) is an ideal rectangular spectrum

forb ¼ 0.What is the corresponding pulse shape function?

4.9. Show that (4.36) and (4.37) are Fourier transform

pairs.

4.10. Sketch the following spectra and tell which ones

satisfy Nyquist�s pulse shape criterion. For those that do,
find the appropriate sample interval, T , in terms ofW . Find

the corresponding pulse shape function pðtÞ: (Recall that
Pðf=AÞ is a unit-high rectangular pulse from�A=2 toA=2;
Lð f=BÞ is a unit-high triangle from �B to B.)

a. P1ð f Þ ¼ Pð f=2WÞþPð f=WÞ:
b. P2ð f Þ ¼ Lð f=2WÞþPð f=WÞ:
c. P3ð f Þ ¼ Pð f=4WÞ�Lð f=WÞ:
d. P4ð f Þ ¼ P½ð f�WÞ=W � þP½ð f þWÞ=W �:
e. P5ð f Þ ¼ Lð f=2WÞ�Lð f=WÞ:

4.11. If jHCð f Þj ¼ ½1þð f=5000Þ2��1/2, provide a plot

for jHTð f Þj ¼ jHRð f Þj assuming the pulse spectrum

PRCð f Þ with 1=T ¼ 5000 Hz for (a) b ¼ 1 and (b) b ¼ 1
2
.

4.12. It is desired to transmit data at 9 kbps over a

channel of bandwidth 7 kHz using raised-cosine pulses.

What is themaximum value of the roll-off factorb that can

be used?

4.13.

a. Show by a suitable sketch that the triangular

spectrum of Figure 4.8(a) satisfies Nyquist�s pulse shaping
criterion.

b. Find the pulse shape function corresponding to

this spectrum.
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Section 4.5

4.14. Given the following channel pulse-response

samples:

a. Find the tap coefficients for a three-tap zero-

forcing equalizer.

b. Find the output samples for mT ¼ �2T; �T; 0;
T; and 2T .

4.15. Repeat Problem 4.14 for a five-tap zero-forcing

equalizer.

4.16. A simple model for a multipath communications

channel is shown in Figure 4.20(a).

a. Find Hcð f Þ ¼ Yð f Þ=Xð f Þ for this channel and

plot jHcð f Þj for b ¼ 1 and 0.5.

b. In order to equalize, or undo, the channel-induced

distortion, an equalization filter is used. Ideally, its transfer

function should be

Heq fð Þ ¼ 1

Hcðf Þ
if the effects of noise are ignored and only distortion

caused by the channel is considered. A tapped delay-line

or transversal filter, as shown in Figure 4.20(b), is com-

monly used to approximate Heqð f Þ. Write down a series

expression for H0eqð f Þ ¼ Zð f Þ=Yð f Þ.

c. Using ð1þ xÞ�1 ¼ 1�xþ x2�x3þ . . . ; jxj < 1;
find a series expression for 1=Hcðf Þ. Equating this with

Heqðf Þ found in part (b), find the values forb1; b2; . . . ;bN,

assuming tm ¼ D.

Section 4.6

4.17. In a certain digital data transmission system the

probability of a bit error as a function of timing jitter is

given by

PE ¼ 1

4
expð�zÞþ 1

4
exp �z 1�2 jDT j

T

� �� �
where z is the signal-to-noise ratio, jDT j is the timing jitter,

and T is the bit period. From observations of an eye

diagram for the system, it is determined that

jDTj=T ¼ 0:05 (5%).

a. Find the value of signal-to-noise ratio, z0; that
gives a probability of error of 10�6 for a timing jitter of 0.

b. With the jitter of 5%, tell what value of signal-

to-noise ratio, z1; is necessary to maintain the probability

of error at 10�6: Express the ratio z1=z0 in decibels, where

Pcð�4TÞ ¼ �0:001 pcð�3TÞ ¼ 0:001 pcð�2TÞ ¼ �0:01 pcð�TÞ ¼ 0:1 pcð0Þ ¼ 1:0

pcðTÞ ¼ 0:2 pcð2TÞ ¼ �0:02 pcð3TÞ ¼ 0:005 Pcð4TÞ ¼ �0:003

∑

∑
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Figure 4.20
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½z1=z0�dB ¼ 10 log10ðz1=z0Þ: Call this the degradation due
to jitter.

c. Recalculate (a) and (b) for a probability of error of

10�4: Is the degradation due to jitter better or worse than

for a probability of error of 10�6?

Section 4.7

4.18. Rewrite the MATLAB simulation of Computer

Example 4.3 for the case of an absolute-value type of

nonlinearity. Is the spectral line at the bit rate stronger or

weaker than for the square-law type of nonlinearity?

4.19. Assume that the bit period of Computer Example

4.3 is T ¼ 1 s. That means that the sampling rate is fs ¼ 50

samples per second because nsamp ¼ 50 in the program.

Assuming that a NFFT ¼ 10; 000-point FFT was used to

produce Figure 4.16 and that the 10,000th point corre-

sponds to fs, justify that the FFT output at bin 1000 corre-

sponds to the bin rate of 1=T ¼ 1 bps in this case.

Section 4.8

4.20. Referring to (4.68), it is sometimes desirable to

leave a residual carrier component in a PSK-modulated

waveform for carrier synchronization purposes at the re-

ceiver. Thus, instead of (4.68), we would have

xPSKðtÞ ¼ Accos 2pfctþa
p

2
dðtÞ

h i
; 0 <a < 1

Find a so that 10% of the power of xPSKðtÞ is in the carrier
(unmodulated) component.

(Hint: Use cosðuþ vÞ to write xPSKðtÞ as two terms, one

dependent on dðtÞ and the other independent of dðtÞ.Make

use of the facts that dðtÞ ¼ �1 and cosine is even and sine
is odd.)

4.21. Referring to (4.69) and using the fact that

dðtÞ ¼ �1 in T-second intervals, find the value of kf such
that the peak frequency deviation of xFSK tð Þ is 10,000 Hz
if the bit rate is 1,000 bits per second.

Computer Exercises

4.1. Write a MATLAB program that will produce plots

like those shown in Figure 4.2, assuming a random binary

data sequence. Include as an option a Butterworth channel

filterwhose number of poles and bandwidth (in terms of bit

rate) are inputs.

4.2. Write a MATLAB program that will produce plots

like those shown in Figure 4.10. The Butterworth channel

filter poles and 3-dB frequency should be inputs as well as

the roll-off factor, b.

4.3. Write a MATLAB program that will compute the

weights of a transversal-filter zero forcing equalizer for a

given input pulse sample sequence.

4.4. A symbol synchronizer uses a fourth-power de-

vice instead of a squarer. Modify the MATLAB program

of Computer Example 4.3 accordingly, and show that a

useful spectral component is generated at the output of

the fourth-power device.
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CHAPTER5

OVERVIEW OF PROBABILITY
AND RANDOM VARIABLES

The objective of this chapter is to review probability theory in order to provide a background for

the mathematical description of random signals. In the analysis and design of communication

systems it is necessary to develop mathematical models for random signals and noise, or random

processes, which will be accomplished in Chapter 6.

n 5.1 WHAT IS PROBABILITY?

Two intuitive notions of probability may be referred to as the equally likely outcomes and

relative-frequency approaches.

5.1.1 Equally Likely Outcomes

The equally likely outcomes approach defines probability as follows: if there are N possible

equally likely and mutually exclusive outcomes (that is, the occurrence of a given outcome

precludes the occurrence of any of the others) to a random, or chance, experiment and if NA of

these outcomes correspond to an event A of interest, then the probability of eventA , or PðAÞ, is

P Að Þ ¼ NA

N
ð5:1Þ

There are practical difficulties with this definition of probability. One must be able to break the

chance experiment up into two ormore equally likely outcomes, and this is not always possible.

The most obvious experiments fitting these conditions are card games, dice, and coin tossing.

Philosophically, there is difficulty with this definition in that use of the words equally likely

really amounts to saying something about being equally probable, which means we are using

probability to define probability.

Although there are difficulties with the equally likely definition of probability, it is useful

in engineering problems when it is reasonable to list N equally likely, mutually exclusive

outcomes. The following example illustrates its usefulness in a situation where it applies.
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EXAMPLE 5.1

Given a deck of 52 playing cards, (a)What is the probability of drawing the ace of spades? (b)What is the

probability of drawing a spade?

S o l u t i o n

(a) Using the principle of equal likelihood, we have one favorable outcome in 52 possible outcomes.

Therefore, P ace of spadesð Þ ¼ 1
52
. (b) Again using the principle of equal likelihood, we have 13 favorable

outcomes in 52, and P spadeð Þ ¼ 13
52
¼ 1

4
.

&

5.1.2 Relative Frequency

Suppose we wish to assess the probability of an unborn child being a boy. Using the classical

definition, we predict a probability of 1
2
, since there are two possible mutually exclusive

outcomes, which from outward appearances appear equally probable. However, yearly birth

statistics for theUnited States consistently indicate that the ratio ofmales to total births is about

0.51. This is an example of the relative-frequency approach to probability.

In the relative-frequency approach, we consider a random experiment, enumerate all

possible outcomes, repeatedly perform the experiment, and take the ratio of the number of

outcomes, NA, favorable to an event of interest, A, to the total number of trials, N. As an

approximation of the probability of A, P Að Þ, we define the limit of NA=N, called the relative

frequency of A, as N!¥, as P Að Þ:

P Að Þ¼D lim
N!¥

NA

N
ð5:2Þ

This definition of probability can be used to estimate P Að Þ. However, since the infinite

number of experiments implied by (5.2) cannot be performed, only an approximation toP Að Þ is
obtained. Thus the relative-frequency notion of probability is useful for estimating a prob-

ability but is not satisfactory as a mathematical basis for probability.

The following example fixes these ideas and will be referred to later in this chapter.

EXAMPLE 5.2

Consider the simultaneous tossing of two fair coins. Thus, on any given trial, we have the possible

outcomes HH, HT, TH, and TT, where, for example, HT denotes a head on the first coin and a tail on the

second coin. (We imagine that numbers are painted on the coins so we can tell them apart.) What is the

probability of two heads on any given trial?

S o l u t i o n

By distinguishing between the coins, the correct answer, using equal likelihood, is 1
4
. Similarly, it follows

that P HTð Þ ¼ P THð Þ ¼ P TTð Þ ¼ 1
4
:

&

5.1.3 Sample Spaces and the Axioms of Probability

Because of the difficulties mentioned for the preceding two definitions of probability,

mathematicians prefer to approach probability on an axiomatic basis. The axiomatic approach,
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which is general enough to encompass both the equally likely and relative-frequency defini-

tions of probability, will now be briefly described.

A chance experiment can be viewed geometrically by representing its possible outcomes

as elements of a space referred to as a sample space S. An event is defined as a collection of

outcomes.An impossible collection of outcomes is referred to as the null event,f. Figure 5.1(a)
shows a representation of a sample space. Three events of interest, A, B, and C, which do not

encompass the entire sample space, are shown.

A specific example of a chance experiment might consist of measuring the direct current

(DC) voltage at the output terminals of a power supply. The sample space for this experiment

would be the collection of all possible numerical values for this voltage. On the other hand, if

the experiment is the tossing of two coins, as in Example 5.2, the sample spacewould consist of

the four outcomes HH, HT, TH, and TTenumerated earlier. A sample-space representation for

this experiment is shown in Figure 5.1(b). Two events of interest, A and B, are shown. Event A

denotes at least one head, and event B consists of the coins matching. Note that A and B

encompass all possible outcomes for this particular example.

Before proceeding further, it is convenient to summarize some useful notation from set

theory. The event ‘‘A or B or both’’ will be denoted as A [ B or sometimes as AþB. The

event ‘‘both A and B’’ will be denoted either as A \ B or sometimes as A,Bð Þ or AB (called the

joint event A and B). The event ‘‘not A’’ will be denoted A. An event such as A [ B, which is

composed of two or more events, will be referred to as a compound event. In set theory

terminology, mutually exclusive events are referred to as disjoint sets; if two events, A and B,

are mutually exclusive, then A \ B ¼ f where f is the null set.

In the axiomatic approach, a measure, called probability is somehow assigned to the

events of a sample space1 such that this measure possesses the properties of probability. The

properties or axioms of this probability measure are chosen to yield a satisfactory theory such

that results from applying the theory will be consistent with experimentally observed

phenomena. A set of satisfactory axioms is the following:

Axiom 1

P Að Þ 	 0 for all events A in the sample space S.

Axiom 2

The probability of all possible events occurring is unity, P Sð Þ ¼ 1.

Outcome 0
Null
event

Event C

Event B

Event B

Event A

Event A

Sample space Sample
space

TH

HH

HT

TT

(b)(a)

Figure 5.1

Sample spaces.(a) Pictorial

representation of an arbitrary

sample space. Points show

outcomes; circles show events.

(b) Sample space representa-

tion for the tossing of twocoins.

1For example, by the relative-frequency or the equally likely approaches.
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Axiom 3

If the occurrence of A precludes the occurrence of B, and vice versa (that is, A and B are

mutually exclusive), then P A [ Bð Þ ¼ P Að ÞþP Bð Þ.2

It is emphasized that this approach to probability does not give us the number P Að Þ; it must be

obtained by some other means.

5.1.4 Venn Diagrams

It is sometimes convenient to visualize the relationships between various events for a chance

experiment in terms of a Venn diagram. In such diagrams, the sample space is indicated as a

rectangle, with the various events indicated by circles or ellipses. Such a diagram looks exactly

as shown in Figure 5.1(a), where it is seen that events B and C are not mutually exclusive, as

indicated by the overlap between them, whereas event A is mutually exclusive of events B

and C.

5.1.5 Some Useful Probability Relationships

Since it is true that A [ A ¼ S and that A and A are mutually exclusive, it follows by Axioms 2

and 3 that P Að ÞþPðAÞ ¼ P Sð Þ ¼ 1, or

PðAÞ ¼ 1�P Að Þ ð5:3Þ
Ageneralization of Axiom 3 to events that are not mutually exlcusive is obtained by noting that

A [ B ¼ A [ ðB \ AÞ, where A and B \ A are disjoint (this is most easily seen by using a Venn

diagram). Therefore, Axiom 3 can be applied to give

P A [ Bð Þ ¼ P Að ÞþPðB \ AÞ ð5:4Þ
Similarly, we note from a Venn diagram that the events A \ B and B \ A are disjoint and that

A \ Bð Þ [ ðB \ AÞ ¼ B so that

P A \ Bð ÞþPðB \ AÞ ¼ P Bð Þ ð5:5Þ
Solving for P B \ A


 �
from (5.5) and substituting into (5.4) yields the following for P A [ Bð Þ:

P A [ Bð Þ ¼ P Að ÞþP Bð Þ�P A \ Bð Þ ð5:6Þ
This is the desired generalization of Axiom 3.

Now consider two events A and B, with individual probabilities P Að Þ > 0 and P Bð Þ > 0,

respectively, and joint event probability P A \ Bð Þ. We define the conditional probability of

event A given that event B occurred as

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ ð5:7Þ

2This can be generalized to P A [ B [ Cð Þ ¼ P Að ÞþP Bð ÞþP Cð Þ for A, B, and C mutually exclusive by considering

B1 ¼ B [ C to be a composite event in Axiom 3 and applying Axiom 3 twice: i.e., P A [ B1ð Þ ¼ P Að ÞþP B1ð Þ ¼
P Að ÞþP Bð ÞþP Cð Þ. Clearly, in this way we can generalize this result to any finite number of mutually exclusive

events.

5.1 What is Probability? 247

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Similarly, the conditional probability of event B given that event A has occurred is defined as

P BjAð Þ ¼ P A \ Bð Þ
P Að Þ ð5:8Þ

Putting (5.7) and (5.8) together, we obtain

P AjBð Þ P Bð Þ ¼ P BjAð Þ P Að Þ ð5:9Þ
or

P BjAð Þ ¼ P Bð Þ P AjBð Þ
P Að Þ ð5:10Þ

This is a special case of Bayes� rule.
Finally, suppose that the occurrence or nonoccurrence of B in no way influences the

occurrence or nonoccurrence ofA. If this is true,A andB are said to be statistically independent.

Thus, if we are given B, this tells us nothing about A, and therefore, P AjBð Þ ¼ P Að Þ. Similarly,

P BjAð Þ ¼ P Bð Þ. From (5.7) or (5.8) it follows that, for such events,

P A \ Bð Þ ¼ P Að ÞP Bð Þ ð5:11Þ
Equation (5.11) will be taken as the definition of statistically independent events.

EXAMPLE 5.3

Referring to Example 5.2, supposeA denotes at least one head andB denotes amatch. The sample space is

shown in Figure 5.1(b). To find P Að Þ and P Bð Þ, we may proceed in several different ways.

S o l u t i o n

First, if we use equal likelihood, there are three outcomes favorable to A (that is, HH, HT, and TH) among

four possible outcomes, yielding P Að Þ ¼ 3
4
. For B, there are two favorable outcomes in four possibilities,

giving P Bð Þ ¼ 1
2
.

As a second approach, we note that, if the coins do not influence each other when tossed, the

outcomes on separate coins are statistically independent withP Hð Þ ¼ P Tð Þ ¼ 1
2
. Also, eventA consists of

any of the mutually exclusive outcomes HH, TH, and HT, giving

P Að Þ ¼ 1

2

1

2

� �
þ 1

2

1

2

� �
þ 1

2

1

2

� �
¼ 3

4
ð5:12Þ

by (5.11) and Axiom 3, generalized. Similarly, since B consists of the mutually exclusive outcomes HH

and TT,

P Bð Þ ¼ 1

2

1

2

� �
þ 1

2

1

2

� �
¼ 1

2
ð5:13Þ

again through the use of (5.11) and Axiom 3. Also, P A \ Bð Þ ¼ P (at least one head and a match) ¼
P HHð Þ ¼ 1

4
.

Next, consider the probability of at least one head given a match, P AjBð Þ. Using Bayes� rule, we
obtain

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ ¼

1
4
1
2

¼ 1

2
ð5:14Þ
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which is reasonable, since given B, the only outcomes under consideration are HH and TT, only one of

which is favorable to event A. Next, finding P BjAð Þ, the probability of a match given at least one head, we

obtain

P BjAð Þ ¼ P A \ Bð Þ
P Að Þ ¼

1
4
3
4

¼ 1

3
ð5:15Þ

Checking this result using the principle of equal likelihood, we have one favorable event among three

candidate events (HH, TH, and HT), which yields a probability of 1
3
. We note that

P A \ Bð Þ 6¼ P Að ÞP Bð Þ ð5:16Þ
Thus events A and B are not statistically independent, although the events H and T on either coin are

independent.

Finally, consider the joint probability P A [ Bð Þ. Using (5.6), we obtain

P A [ Bð Þ ¼ 3

4
þ 1

2
� 1

4
¼ 1 ð5:17Þ

Remembering that P A [ Bð Þ is the probability of at least one head or a match or both, we see that this

includes all possible outcomes, thus confirming the result.
&

EXAMPLE 5.4

This example illustrates the reasoning tobeappliedwhen trying todetermine if twoevents are independent.

A single card is drawn at random from a deck of cards. Which of the following pairs of events are

independent? (a) The card is a club, and the card is black. (b) The card is a king, and the card is black.

S o l u t i o n

We use the relationship P A \ Bð Þ ¼ P AjBð ÞP Bð Þ (always valid) and check it against the relation

P A \ Bð Þ ¼ P Að ÞP Bð Þ (valid only for independent events). For part (a), we let A be the event that the

card is a club andB be the event that it is black. Since there are 26 black cards in an ordinary deck of cards,

13 of which are clubs, the conditional probability P AjBð Þ is 13
26
(given we are considering only black cards,

we have 13 favorable outcomes for the card being a club). The probability that the card is black is

P Bð Þ ¼ 26
52
, because half the cards in the 52-card deck are black. The probability of a club (eventA), on the

other hand, is P Að Þ ¼ 13
52
(13 cards in a 52-card deck are clubs). In this case,

P AjBð ÞP Bð Þ ¼ 13

26

26

52

� �
6¼ P Að ÞP Bð Þ ¼ 13

52

26

52

� �
ð5:18Þ

so the events are not independent.

For part (b), we let A be the event that a king is drawn and event B be that it is black. In this case, the

probabilityofakinggiventhat thecardisblackisP AjBð Þ ¼ 2
26
(twocardsof the26blackcardsarekings).The

probabilityofaking issimplyP Að Þ ¼ 4
52
(fourkings in the52-carddeck)andP Bð Þ ¼ P blackð Þ ¼ 26

52
.Hence,

P AjBð ÞP Bð Þ ¼ 2

26

26

52

� �
¼ P Að ÞP Bð Þ ¼ 4

52

26

52

� �
ð5:19Þ

which shows that the events king and black are statistically independent.
&

EXAMPLE 5.5

As an example more closely related to communications, consider the transmission of binary digits

through a channel as might occur, for example, in computer networks. As is customary, we denote the

5.1 What is Probability? 249

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


two possible symbols as 0 and 1. Let the probability of receiving a zero, given a zero was sent,

P 0rj0sð Þ, and the probability of receiving a 1, given a 1 was sent, P 1rj1sð Þ, be
P 0rj0sð Þ ¼ P 1rj1sð Þ ¼ 0:9 ð5:20Þ

Thus the probabilities P 1rj0sð Þ and P 0rj1sð Þ must be

P 1rj0sð Þ ¼ 1�P 0rj0sð Þ ¼ 0:1 ð5:21Þ
and

P 0rj1sð Þ ¼ 1�P 1rj1sð Þ ¼ 0:1 ð5:22Þ
respectively. These probabilities characterize the channel and would be obtained through experimental

measurement or analysis. Techniques for calculating them for particular situations will be discussed in

Chapters 8 and 9.

In addition to these probabilities, suppose that we have determined through measurement that the

probability of sending a 0 is

P 0sð Þ ¼ 0:8 ð5:23Þ
and therefore the probability of sending a 1 is

P 1sð Þ ¼ 1�P 0sð Þ ¼ 0:2 ð5:24Þ
Note that once P 0rj0sð Þ, P 1rj1sð Þ, and P 0sð Þ are specified, the remaining probabilities are calculated

using Axioms 2 and 3.

The next question we ask is, If a 1 was received, what is the probability, P 1sj1rð Þ, that a 1 was sent?
Applying Bayes� rule, we find that

P 1sj1rð Þ ¼ P 1rj1sð ÞP 1sð Þ
P 1rð Þ ð5:25Þ

To find P 1rð Þ, we note that
P 1r, 1sð Þ ¼ P 1rj1sð ÞP 1sð Þ ¼ 0:18 ð5:26Þ

and

P 1r, 0sð Þ ¼ P 1rj0sð ÞP 0sð Þ ¼ 0:08 ð5:27Þ
Thus

P 1rð Þ ¼ P 1r, 1sð ÞþP 1r, 0sð Þ ¼ 0:18þ 0:08 ¼ 0:26 ð5:28Þ
and

P 1sj1rð Þ ¼ 0:9 0:2ð Þ
0:26

¼ 0:69 ð5:29Þ

Similarly, one can calculate P 0sj1rð Þ ¼ 0:31, P 0sj0rð Þ ¼ 0:97, and P 1sj0rð Þ ¼ 0:03. For practice, you
should go through the necessary calculations.

&

5.1.6 Tree Diagrams

Another handy device for determining probabilities of compound events is a tree diagram,

particularly if the compound event can be visualized as happening in time sequence. This

device is illustrated by the following example.
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EXAMPLE 5.6

Suppose five cards are drawn without replacement from a standard 52-card deck. What is the probability

that three of a kind results (e.g., three kings)?

S o l u t i o n

The tree diagram for this chance experiment is shown in Figure 5.2. On the first draw we focus on a

particular card, denoted as X, which we either draw or do not. The second draw results in four possible

events of interest: a card is drawn that matches the first card with probability 3
51
, or a match is not obtained

with probability 48
51
. If some card other thanXwas drawnon the first draw, thenX resultswith probability 4

51

on the second draw (lower half of Figure 5.2). At this point, 50 cards are left in the deck. If we follow the

upper branch, which corresponds to a match of the first card, two events of interest are again possible:

another match that will be referred to as a triplewith probability of 2
50
on that draw or a card that does not

match the first two with probability 48
50
. If a card other than X was obtained on the second draw, then X

occurswith probability 4
50
ifXwas obtained on the first draw, and probability 46

50
if it was not. The remaining

branches are filled in similarly. Each path through the tree will either result in success or failure, and the

probability of drawing the cards along a particular path will be the product of the separate probabilities

along each path. Since a particular sequence of draws resulting in success is mutually exclusive of the

sequence of draws resulting in any other success, we simply add up all the products of probabilities along

all paths that result in success. In addition to these sequences involving card X, there are 12 others

involving other face values that result in three of a kind. Thus we multiply the result obtained from

Figure 5.2 by 13. The probability of drawing three cards of the same value, in any order, is then given by

P 3 of a kindð Þ ¼ 13
10 4ð Þ 3ð Þ 2ð Þ 48ð Þ 47ð Þ
52 51ð Þ 50ð Þ 49ð Þ 48ð Þ

¼ 0:02257

ð5:30Þ

&

EXAMPLE 5.7

Another type of problem very closely related to those amenable to tree-diagram solutions is a reliability

problem. Reliability problems can result from considering the overall failure of a system composed of

several components each of which may fail with a certain probability p. An example is shown in

Figure 5.3, where a battery is connected to a load through the series–parallel combination of relay

switches each of which may fail to close with probability p (or close with probability q ¼ 1� p). The

problem is to find the probability that current flows in the load. From the diagram, it is clear that a circuit is

completed if S1 or S2 and S3 are closed. Therefore

P successð Þ ¼ P Sl or S2 and S3 closedð Þ
¼ P S1 or S2 or both closedð ÞP S3 closedð Þ
¼ 1�P both switches openð Þ½ �P S3 closedð Þ
¼ 1� p2

 �

q

ð5:31Þ

where it is assumed that the separate switch actions are statistically independent.

&

5.1.7 Some More General Relationships

Someuseful formulas forasomewhatmoregeneral case than thoseconsideredabovewillnowbe

derived.Consider an experiment that is composedof compoundevents ðAi,BjÞ that aremutually

exclusive. The totality of all these compound events, i ¼ 1, 2, . . . ,M, j ¼ 1, 2, . . . ,N, com-

poses the entire sample space (that is, the events are said to be exhaustiveor to formapartition of
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Figure 5.2

A card-drawing problem illustrating the use of a tree diagram.
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the sample space). For example, the experiment might consist of rolling a pair of dice with

ðAi,BjÞ ¼ (number of spots showing on die 1, number of spots showing on die 2).

Suppose the probability of the joint event ðAi,BjÞ isPðAi,BjÞ. Each compound event can be

thought of as a simple event, and if the probabilities of all these mutually exclusive, exhaustive

events are summed, a probability of 1 will be obtained, since the probabilities of all possible

outcomes have been included. That is,XM
i¼1

XN
j¼1

PðAi,BjÞ ¼ 1 ð5:32Þ

Now consider a particular event Bj . Associated with this particular event, we haveM possible

mutually exclusive, but not exhaustive outcomes ðA1,BjÞ, ðA2,BjÞ, . . . , ðAM ,BjÞ. If we sum

over the corresponding probabilities, we obtain the probability of Bj irrespective of the

outcome on A. Thus

P Bj


 � ¼XM
i¼1

PðAi,BjÞ ð5:33Þ

Similar reasoning leads to the result

P Aið Þ ¼
XN
j¼ 1

PðAi,BjÞ ð5:34Þ

PðAiÞ and PðBjÞ are referred to as marginal probabilities.

Suppose the conditional probability of Bm given An, P BmjAnð Þ, is desired. In terms of the

joint probabilities PðAi,BjÞ, we can write this conditional probability as

P BmjAnð Þ ¼ P An, Bmð ÞP
N
j¼1PðAn,BjÞ ð5:35Þ

which is a more general form of Bayes� rule than that given by (5.10).

EXAMPLE 5.8

A certain experiment has the joint and marginal probabilities shown in Table 5.1. Find the missing

probabilities.

S o l u t i o n

Using P B1ð Þ ¼ P A1, B1ð ÞþP A2, B1ð Þ, we obtain P B1ð Þ ¼ 0:1þ 0:1 ¼ 0:2. Also, since P B1ð Þþ
P B2ð ÞþP B3ð Þ ¼ 1, we have P B3ð Þ ¼ 1� 0:2� 0:5 ¼ 0:3. Finally, using P A1, B3ð ÞþP A2, B3ð Þ ¼
P B3ð Þ, we get P A1, B3ð Þ ¼ 0:3� 0:1 ¼ 0:2, and therefore, P A1ð Þ ¼ 0:1þ 0:4þ 0:2 ¼ 0:7.

Figure 5.3

Circuit illustrating the calculation of reliability

q

E RL
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q

q
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S1
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&

n 5.2 RANDOM VARIABLES AND RELATED FUNCTIONS

5.2.1 Random Variables

In the applications of probability it is often more convenient to work in terms of numerical

outcomes (for example, the number of errors in a digital data message) rather than

nonnumerical outcomes (for example, failure of a component). Because of this, we introduce

the idea of a random variable, which is defined as a rule that assigns a numerical value to each

possible outcome of a chance experiment. (The term random variable is a misnomer; a random

variable is really a function, since it is a rule that assigns the members of one set to those of

another.)

As an example, consider the tossing of a coin. Possible assignments of random variables

are given in Table 5.2. These are examples of discrete random variables and are illustrated in

Figure 5.4(a).

As an example of a continuous random variable, consider the spinning of a pointer, such as

is typically found in children�s games.A possible assignment of a randomvariablewould be the

angle Q1 in radians, that the pointer makes with the vertical when it stops. Defined in this

fashion,Q1 has values that continuously increasewith rotation of the pointer. A second possible

random variable, Q2, would beQ1 minus integer multiples of 2p rad, such that 0 � Q2 < 2p,
which is commonly denoted as Q1 modulo 2p. These random variables are illustrated in

Figure 5.4(b).

At this point, we introduce a convention that will be adhered to, for the most part,

throughout this book. Capital letters (X, Q, and so on) denote random variables, and the

corresponding lowercase letters (x, u, and so on) denote the values that the random variables

take on or running values for them.

5.2.2 Probability (Cumulative) Distribution Functions

Weneed someway of probabilistically describing random variables that works equallywell for

discrete and continuous random variables. One way of accomplishing this is by means of the

cumulative distribution function (cdf).

Consider a chance experimentwithwhichwe have associated a randomvariableX. The cdf

Table 5.1 P (Ai, Bj)

Ai Bj B1 B2 B3 P Aið Þ
A1 0.1 0.4 ? ?

A2 0.1 0.1 0.1 0.3

P Bj


 �
? 0.5 ? 1

Table 5.2 Possible Random Variables (RV)

Outcome: Si RV No. 1: X1 (Si) RV No. 2: X2 (Si)

S1 ¼ heads X1 S1ð Þ ¼ 1 X2 S1ð Þ ¼ p
S2 ¼ tails X1 S2ð Þ ¼ � 1 X2 S2ð Þ ¼

ffiffiffi
2
p
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FX xð Þ is defined as

FX xð Þ ¼ probability that X � x ¼ P X � xð Þ ð5:36Þ
We note that FX xð Þ is a function of x, not of the random variable X. However, FX xð Þ also
depends on the assignment of the random variable X, which accounts for the subscript.

The cdf has the following properties:

Property 1

0 � FX xð Þ � 1, with FX �¥ð Þ ¼ 0 and FX ¥ð Þ ¼ 1.

Property 2

FX xð Þ is continuous from the right; that is, limx! x0þ FX xð Þ ¼ FX x0ð Þ.

Property 3

FX xð Þ is a nondecreasing function of x; that is, FX x1ð Þ � FX x2ð Þ if x1 < x2.

The reasonableness of the preceding properties is shown by the following considerations.

Since FX xð Þ is a probability, it must, by the previously stated axioms, lie between 0 and 1,

inclusive. Since X ¼ �¥ excludes all possible outcomes of the experiment, FX �¥ð Þ ¼ 0, and

since X ¼ ¥ includes all possible outcomes, FX ¥ð Þ ¼ 1, which verifies Property 1.

(a)

(b)

Up side is
head

Up side is
tail

Sample space

10 10 3π2√⎯2−1

X2 (S2) X2 (S1)X1 (S2) X1 (S1)

0

0

Turn 1
Turn 2
Turn 3
Turn 4

Sample
space

Pointer
up

Pointer
down

Pointer
up

2π

2π 4π 6π 8π

Θ2

Θ1

Figure 5.4

Pictorial representation of sample

spaces and random variables.

(a) Coin-tossing experiment.

(b) Pointer-spinning experiment.
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For x1 < x2, the events X � x1 and x1 < X � x2 are mutually exclusive; furthermore,

X � x2 implies X � x1 or x1 < X � x2. By Axiom 3, therefore,

P X � x2ð Þ ¼ P X � x1ð ÞþP x1 < X � x2ð Þ
or

P x1 < X � x2ð Þ ¼ FX x2ð Þ�FX x1ð Þ ð5:37Þ

Since probabilities are nonnegative, the left-hand side of (5.37) is nonnegative. Thus we see

that Property 3 holds.

The reasonableness of the right-continuity property is shown as follows. Suppose the

random variableX takes on the value x0 with probabilityP0 . ConsiderP X � xð Þ. If x < x0, the

eventX ¼ x0 is not included, nomatter how closex is tox0.When x ¼ x0, we include the event

X ¼ x0, which occurs with probability P0. Since the events X � x < x0 and X ¼ x0 are

mutually exclusive, P X � xð Þ must jump by an amount P0 when x ¼ x0, as shown in

Figure 5.5. Thus FX xð Þ ¼ P X � xð Þ is continuous from the right. This is illustrated in Fig 5.5

by the dot on the curve to the right of the jump.What is more useful for our purposes, however,

is that themagnitude of any jump of FX xð Þ, say at x0, is equal to the probability that X ¼ x0.

5.2.3 Probability Density Function

From (5.37) we see that the cdf of a randomvariable is a complete and useful description for the

computation of probabilities. However, for purposes of computing statistical averages, the

probability density function (pdf), fX xð Þ, of a random variable, X, is more convenient. The pdf

of X is defined in terms of the cdf of X by

fX xð Þ ¼ dFX xð Þ
dx

ð5:38Þ

Since the cdf of a discrete random variable is discontinuous, its pdf, mathematically speaking,

does not exist at the points of discontinuity. By representing the derivative of a jump-

discontinuous function at a point of discontinuity by a delta function of area equal to the

magnitude of the jump, we can define pdfs for discrete random variables. In some books, this

problem is avoided by defining a probability mass function for a discrete random variable,

which consists simply of lines equal in magnitude to the probabilities that the random variable

takes on at its possible values.

0

1

x0
x

Fx (x)

P0 = P(X = x0)

Figure 5.5

Illustration of the jump property of FX xð Þ.
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Recalling that FX �¥ð Þ ¼ 0, we see from (5.38) that

FX xð Þ ¼
ðx
�¥

fX hð Þ dh ð5:39Þ

That is, the area under the pdf from �¥ to x is the probability that the observed value will be

less than or equal to x.

From (5.38), (5.39), and the properties of FX xð Þ, we see that the pdf has the following

properties:

fX xð Þ ¼ dFX xð Þ
dx

	 0 ð5:40Þð¥
�¥

fX xð Þ dx ¼ 1 ð5:41Þ

P x1 < X � x2ð Þ ¼ FX x2ð Þ�FX x1ð Þ ¼
ðx2
x1

fX xð Þ dx ð5:42Þ

To obtain another enlightening and very useful interpretation of fX xð Þ, we consider (5.42) with
x1 ¼ x� dx and x2 ¼ x. The integral then becomes fX xð Þ dx, so

fX xð Þ dx ¼ P x� dx < X � xð Þ ð5:43Þ
That is, the ordinate at any point x on the pdf curvemultiplied by dx gives the probability of the

random variable X lying in an infinitesimal range around the point x assuming that fX xð Þ is
continuous at x.

The following two examples illustrate cdfs and pdfs for discrete and continuous cases,

respectively.

EXAMPLE 5.9

Suppose two fair coins are tossed and X denotes the number of heads that turn up. The possible outcomes,

the corresponding values of X, and the respective probabilities are summarized in Table 5.3. The cdf and

pdf for this experiment and random variable definition are shown in Figure 5.6. The properties of the cdf

and pdf for discrete randomvariables are demonstrated by this figure, as a careful examinationwill reveal.

It is emphasized that the cdf and pdf change if the definition of the random variable or the probability

assigned is changed.

Table 5.3 Outcomes and Probabilities

Outcome X P X ¼ xj

 �

TT x1 ¼ 0 1
4

TH

HT
g x2 ¼ 1 1

2

HH x3 ¼ 2 1
4
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&

EXAMPLE 5.10

Consider the pointer-spinning experiment described earlier.We assume that any one stopping point is not

favored over any other and that the random variableQ is defined as the angle that the pointer makes with

the vertical, modulo 2p. ThusQ is limited to the range 0, 2p½ Þ, and for any two angles u1 and u2 in 0, 2p½ Þ,
we have

P u1�Du < Q � u1ð Þ ¼ P u2�Du < Q � u2ð Þ ð5:44Þ
by the assumption that the pointer is equally likely to stop at any angle in 0, 2p½ Þ. In terms of the pdf fQ uð Þ,
this can be written, using (5.43), as

fQ u1ð Þ ¼ fQ u2ð Þ, 0 � u1, u2 < 2p ð5:45Þ
Thus, in the interval 0, 2p½ Þ, fQ uð Þ is a constant, and outside 0, 2p½ Þ, fQ uð Þ is zero by the modulo 2p

condition (this means that angles less than or equal to 0 or greater than 2p are impossible). By (5.41), it

follows that

fQ uð Þ ¼
1

2p
, 0 � u < 2p

0, otherwise

8<: ð5:46Þ

The pdf fQ uð Þ is shown graphically in Figure 5.7(a). The cdf FQ uð Þ is easily obtained by performing a

graphical integration of fQ uð Þ and is shown in Figure 5.7(b).

To illustrate the use of these graphs, suppose we wish to find the probability of the pointer landing

anyplace in the interval 1
2
p,p

 �
. The desired probability is given either as the area under the pdf curve

from 1
2
p to p, shaded in Figure 5.7(a), or as the value of the ordinate at u ¼ p minus the value of the

ordinate at u ¼ 1
2
p on the cdf curve. The probability that the pointer lands exactly at 1

2
p, however, is 0.

&

fdp)b(fdc)a(
0 1

4
4
3
4
2
4
1
4

2 0 1 2

Fx(x) fx(x)

xx

1
4

Area =

1
2

Area =

Figure 5.6

The cdf and pdf for a coin-tossing

experiment.

)b()a(
0 0

1.0

π θθ
2π

1
2π

2π

f (θ)θΘ F (θ)θΘ Figure 5.7

The (a) pdf and (b) cdf for a pointer-

spinning experiment.

258 Chapter 5 . Overview of Probability and Random Variables

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


5.2.4 Joint cdfs and pdfs

Some chance experiments must be characterized by two or more random variables. The cdf or

pdf description is readily extended to such cases. For simplicity, wewill consider only the case

of two random variables.

To give a specific example, consider the chance experiment in which darts are repeatedly

thrown at a target, as shown schematically in Figure 5.8. The point at which the dart lands on the

target must be described in terms of two numbers. In this example, we denote the impact point

by the two randomvariablesX and Y, whosevalues are the xy coordinates of the point where the

dart sticks, with the origin being fixed at the bull�s eye. The joint cdf of X and Y is defined as

FXY x, yð Þ ¼ P X � x,Y � yð Þ ð5:47Þ
where the comma is interpreted as ‘‘and.’’ The joint pdf of X and Y is defined as

fXY x, yð Þ ¼ q2FXY x, yð Þ
qx qy

ð5:48Þ

Just as we did in the case of single random variables, we can show that

P x1<X� x2, y1 < Y � y2ð Þ ¼
ðy2
y1

ðx2
x1

fXY x, yð Þ dx dy ð5:49Þ

which is the two-dimensional equivalent of (5.42). Letting x1 ¼ y1 ¼ �¥ and x2 ¼ y2 ¼ ¥,
we include the entire sample space. Thus

FXY ¥,¥ð Þ ¼
ð¥
�¥

ð¥
�¥

fXY x, yð Þ dx dy ¼ 1 ð5:50Þ

Letting x1 ¼ x� dx, x2 ¼ x, y1 ¼ y� dy, and y2 ¼ y, we obtain the following enlightening

special case of (5.49):

fXY x, yð Þ dx dy ¼ P x� dx < X � x, y� dy < Y � yð Þ ð5:51Þ
Thus the probability of finding X in an infinitesimal interval around x while simultaneously

finding Y in an infinitesimal interval around y is fXY x, yð Þ dx dy assuming a continuous pdf.

Given a joint cdf or pdf, we can obtain the cdf or pdf of one of the random variables using

the following considerations. The cdf for X irrespective of the value Y takes on is simply

FX xð Þ ¼ P X � x,Y < ¥ð Þ
¼ FXY x,¥ð Þ ð5:52Þ

Figure 5.8

The dart-throwing experiment.

0

Target

X

Y

(x, y)
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By similar reasoning, the cdf for Y alone is

FY yð Þ ¼ FXY ¥, yð Þ ð5:53Þ
FX xð Þ andFY yð Þ are referred to asmarginal cdfs. Using (5.49) and (5.50),we can express (5.52)

and (5.53) as

FX xð Þ ¼
ð¥
�¥

ðx
�¥

fXY x0, y0ð Þ dx0 dy0 ð5:54Þ

and

FY yð Þ ¼
ðy
�¥

ð¥
�¥

fXY x0, y0ð Þ dx0 dy0 ð5:55Þ

respectively. Since

fX xð Þ ¼ dFX xð Þ
dx

and fY yð Þ ¼ dFY yð Þ
dy

ð5:56Þ

we obtain

fX xð Þ ¼
ð¥
�¥

fXY x, y0ð Þ dy0 ð5:57Þ

and

fY yð Þ ¼
ð¥
�¥

fXY x0, yð Þ dx0 ð5:58Þ

from (5.54) and (5.55), respectively. Thus, to obtain the marginal pdfs fX xð Þ and fY yð Þ from the

joint pdf fXY x, yð Þ, we simply integrate out the undesired variable (or variables for more than

two random variables). Hence the joint cdf or pdf contains all the information possible about

the joint random variables X and Y. Similar results hold for more than two random variables.

Two random variables are statistically independent (or simply independent) if the values

one takes on do not influence the values that the other takes on. Thus, for any x and y, it must be

true that

P X � x, Y � yð Þ ¼ P X � xð ÞP Y � yð Þ ð5:59Þ
or, in terms of cdfs,

FXY x, yð Þ ¼ FX xð ÞFY yð Þ ð5:60Þ
That is, the joint cdf of independent random variables factors into the product of the separate

marginal cdfs. Differentiating both sides of (5.59) with respect to first x and then y, and using

the definition of the pdf, we obtain

fXY x, yð Þ ¼ fX xð Þ fY yð Þ ð5:61Þ
which shows that the joint pdf of independent random variables also factors. If two random

variables are not independent, we can write their joint pdf in terms of conditional pdfs fXjY xjyð Þ
and fY jX yjxð Þ as

fXY x, yð Þ ¼ fX xð Þ fY jX yjxð Þ
¼ fY yð Þ fXjY xjyð Þ ð5:62Þ
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These relations define the conditional pdfs of two random variables. An intuitively satisfying

interpretation of fXjY xjyð Þ is
fXjY xjyð Þdx ¼ P x� dx < X � x given Y ¼ yð Þ ð5:63Þ

with a similar interpretation for fY jX yjxð Þ. Equation (5.62) is reasonable in that if X and Y are

dependent, a given value of Y should influence the probability distribution for X. On the other

hand, ifX andY are independent, information about one of the randomvariables tells us nothing

about the other. Thus, for independent random variables,

fXjY xjyð Þ ¼ fX xð Þ and fY jX yjxð Þ ¼ fY yð Þ ð5:64Þ
which could serve as an alternative definition of statistical independence. The following

example illustrates the preceding ideas.

EXAMPLE 5.11

Two random variables X and Y have the joint pdf

fXY x, yð Þ ¼ Ae� 2xþ yð Þ, x, y 	 0

0, otherwise

�
ð5:65Þ

where A is a constant. We evaluate A fromð¥
�¥

ð¥
�¥

fXY x, yð Þ dx dy ¼ 1 ð5:66Þ

Since ð¥
0

ð¥
0

e� 2xþ yð Þ dx dy ¼ 1

2
ð5:67Þ

A ¼ 2. We find the marginal pdfs from (5.57) and (5.58) as follows:

fX xð Þ ¼
ð¥
�¥

fXY x, yð Þ dy ¼
(Ð¥

0
2e� 2xþ yð Þdy, x 	 0

0, x < 0
:

¼
(
2e�2x, x 	 0

0, x < 0

ð5:68Þ

fY yð Þ ¼ e�y, y 	 0

0, y < 0

�
ð5:69Þ

These joint and marginal pdfs are shown in Figure 5.9. From these results, we note that X and Y are

statistically independent since fXY x, yð Þ ¼ fX xð ÞfY yð Þ:
We find the joint cdf by integrating the joint pdf on both variables, using (5.42) and (5.40), which

gives

FXY x, yð Þ ¼
ðy
�¥

ðx
�¥

fXY x0, y0ð Þ dx0, dy0

¼ 1� e� 2x

 �

1� e�yð Þ, x, y 	 0

0, otherwise
ð5:70Þ

(
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Dummy variables are used in the integration to avoid confusion. Note that FXY �¥, �¥ð Þ ¼ 0 and

FXY ¥,¥ð Þ ¼ 1, as they should, since the first case corresponds to the probability of an impossible event

and the latter corresponds to the inclusion of all possible outcomes.We also can use the result forFXY x, yð Þ
to obtain

FX xð Þ ¼ FXY x,¥ð Þ ¼ 1� e�2x

 �

, x 	 0

0, otherwise

�
ð5:71Þ

and

FY yð Þ ¼ FXY ¥, yð Þ ¼ 1� e�yð Þ, y 	 0

0, otherwise

�
ð5:72Þ

Also note that the joint cdf factors into the product of the marginal cdfs, as it should, for statistically

independent random variables.

The conditional pdfs are

fXjY xjyð Þ ¼ fXY x, yð Þ
fY yð Þ ¼

2e�2x, x 	 0

0, x < 0

�
ð5:73Þ

and

fYjX yjxð Þ ¼ fXY x, yð Þ
fX xð Þ ¼

e� y, y 	 0

0, y < 0

�
ð5:74Þ

They are equal to the respective marginal pdfs, as they should be for independent random variables.

&

EXAMPLE 5.12

To illustrate the processes of normalization of joint pdfs, finding marginal from joint pdfs, and checking

for statistical independence of the corresponding random variables, we consider the joint pdf

fXY x, yð Þ ¼ bxy, 0 � x � y, 0 � y � 4

0, otherwise

�
ð5:75Þ

For independence, the joint pdf should be the product of the marginal pdfs.

S o l u t i o n

This example is somewhat tricky because of the limits; so a diagram of the pdf is given in Figure 5.10.We

find the constant b by normalizing the volume under the pdf to unity by integrating fXY x, yð Þ over allx and

(b) )c()a(
0

0

1

1

2

1 0

1

2

0

fX(x)fXY(x, y) fY(y)

yx
xy

1

0

Figure 5.9

Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for X. (c) Marginal pdf

for Y.
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y. This gives

b

ð4
0

y

ðy
0

x dx

� �
dy¼ b

ð4
0

y
y2

2
dy

¼ b
y4

2� 4

				4
0

¼ 32b ¼ 1

so b ¼ 1
32
.

We next proceed to find the marginal pdfs. Integrating over x first and checking Figure 5.10 to

obtain the proper limits of integration, we obtain

fY yð Þ¼
ðy
0

xy

32
dx, 0 � y � 4

¼
y3

64
, 0 � y � 4

0, otherwise

8><>:
ð5:76Þ

The pdf on X is similarly obtained as

fX xð Þ¼
ð4
x

xy

32
dy, 0 � y � 4

¼
x

4

�
1�

�
x

4

�2�
, 0 � x � 4

0, otherwise

ð5:77Þ
8><>:

A little work shows that both marginal pdfs integrate to 1, as they should.

It is clear that the product of the marginal pdfs is not equal to the joint pdf so the random variables X

and Y are not statistically independent.
&

5.2.5 Transformation of Random Variables

Situations are often encountered where the pdf (or cdf) of a random variableX is known andwe

desire the pdf of a second random variable Y defined as a function of X, for example,

Y ¼ g Xð Þ ð5:78Þ

fXY (x, y)

(0, 4, 0)

(4, 4, 0)

(4, 4, 0.5)

x = y

x

y

Figure 5.10

Probability density function for Example 5.12.
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Y = g(X )

y − dy
y

x − dx x
X

0

Figure 5.11

A typical monotonic transformation of a random

variable.

We initially consider the casewhere g Xð Þ is amonotonic function of its argument (for example,

it is either nondecreasing or nonincreasing as the independent variable ranges from �¥ to¥), a
restriction that will be relaxed shortly.

A typical function is shown in Figure 5.11. The probability that X lies in the range

x� dx,xð Þ is the same as the probability that Y lies in the range y� dy, yð Þ, where y ¼ g xð Þ.
Therefore, we obtain

fX xð Þ dx ¼ fY yð Þ dy ð5:79Þ
if g Xð Þ is monotonically increasing, and

fX xð Þ dx ¼ � fY yð Þ dy ð5:80Þ
if g Xð Þ is monotonically decreasing, since an increase in x results in a decrease in y. Both cases

are taken into account by writing

fY yð Þ ¼ fX xð Þ
				 dxdy

				
x¼g� 1 yð Þ

ð5:81Þ

where x ¼ g�1 yð Þ denotes the inversion of (5.78) for x in terms of y.

EXAMPLE 5.13

To illustrate the use of (5.81), let us consider the pdf of Example 5.10, namely

fQ uð Þ ¼
1

2p
, 0 � u � 2p

0, otherwise

ð5:82Þ

8><>:
Assume that the random variable Q is transformed to the random variable Y according to

Y ¼ � 1

p

� �
Qþ 1 ð5:83Þ

Since, u ¼ �pyþp, du
dy
¼ �p and the pdf of Y, by (5.81) and (5.83), is

fY yð Þ ¼ fQ u ¼ �pyþpð Þj �pj ¼
1

2
, � 1 � y � 1

0, otherwise

8<: ð5:84Þ
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Note that from (5.83),Q ¼ 2p gives Y ¼ �1 andQ ¼ 0 gives Y ¼ 1, so wewould expect the pdf of Y to

be nonzero only in the interval �1, 1½ Þ; furthermore, since the transformation is linear, it is not surprising

that the pdf of Y is uniform as is the pdf of Q.
&

Consider next the case of g xð Þ nonmonotonic as illustrated in Figure 5.12. For the case

shown, the infinitesimal interval y� dy, yð Þ corresponds to three infinitesimal intervals on the

x-axis: x1� dx1, x1ð Þ, x2� dx2, x2ð Þ, and x3� dx3, x3ð Þ. The probability that X lies in any

one of these intervals is equal to the probability that Y lies in the interval y� dy, yð Þ. This can be
generalized to the case of N disjoint intervals where it follows that

P y� dy < Y � yð Þ ¼
XN
i¼1

P xi � dxi < X� xið Þ ð5:85Þ

wherewe have generalized toN intervals on the X axis corresponding to the interval y� dy, yð Þ
on the Y axis. Since

P y� dy < Y � yð Þ ¼ fY yð Þjdyj ð5:86Þ
and

P xi � dxi < X� xið Þ ¼ fX xið Þjdxij ð5:87Þ
we have

fY yð Þ ¼
XN
i¼1

fX xið Þ
				 dxidy

				
xi ¼ g�1

i
yð Þ

ð5:88Þ

where the absolute value signs are used because a probabilitymust be positive, andxi ¼ g�1i yð Þ
is the ith solution to g yð Þ ¼ x.

EXAMPLE 5.14

Consider the transformation

y ¼ x2 ð5:89Þ
If fX xð Þ ¼ 0:5 exp � jxjð Þ, find fY yð Þ.
S o l u t i o n

There are two solutions to x2 ¼ y; these are

x1 ¼ ffiffiffi
y
p

for x1 	 0 and x2 ¼ � ffiffiffi
y
p

for x2 < 0, y 	 0 ð5:90Þ

Y = g(X )

y − dy
y

x3 − dx3x3x1 − dx1x1 x2 − dx2
x2

X
0

Figure 5.12

A nonmonotonic transformation

of a random variable.
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Their derivatives are

dx1

dy
¼ 1

2
ffiffiffi
y
p for x1 	 0 and

dx2

dy
¼ � 1

2
ffiffiffi
y
p for x2 < 0, y > 0 ð5:91Þ

Using these results in (5.88), we obtain fY yð Þ to be

fY yð Þ ¼ 1

2
e�

ffiffi
y
p � 1

2
ffiffiffi
y
p

				 				þ 1

2
e�

ffiffi
y
p 1

2
ffiffiffi
y
p

				 				 ¼ e�
ffiffi
y
p

2
ffiffiffi
y
p , y > 0 ð5:92Þ

Since Y cannot be negative, fY yð Þ ¼ 0, y < 0.
&

For two or more random variables, we consider only one-to-one transformations and the

probability of the joint occurrence of random variables lying within infinitesimal areas (or

volumes for more than two random variables). Thus, suppose two new random variablesU and

V are defined in terms of two original joint random variables X and Y by the relations

U ¼ g1 X, Yð Þ and V ¼ g2 X, Yð Þ ð5:93Þ
The new pdf fUV u, vð Þ is obtained from the old pdf fXY x, yð Þ by using (5.51) to write

P u� du < U � u, v� dv < V � vð Þ ¼ P x� dx < X � x, y� dy < Y � yð Þ
or

fUV u, vð Þ dAUV ¼ fXY x, yð Þ dAXY ð5:94Þ
where dAUV is the infinitesimal area in the uv plane corresponding to the infinitesimal area dAXY

in the xy plane through the transformation (5.93).

The ratio of elementary area dAXY to dAUV is given by the Jacobian

q x, yð Þ
q u, vð Þ ¼

qx
qu

qx
qv

qy
qu

qy
qv

									

									 ð5:95Þ

so that

fUV u, vð Þ ¼ fXY x, yð Þ
					 q x, yð Þ
q u, vð Þ

					 x ¼ g�11 u, vð Þ
y ¼ g�12 u, vð Þ

ð5:96Þ

where the inverse functions g�11 u, vð Þ and g�12 u, vð Þ exist because the transformations defined

by (5.93) are assumed to be one to one. An example will help clarify this discussion.

EXAMPLE 5.15

Consider the dart-throwing game discussed in connection with joint cdfs and pdfs. We assume that the

joint pdf in terms of rectangular coordinates for the impact point is

fXY x, yð Þ ¼ exp � x2þ y2ð Þ=2s2½ �
2ps2

, �¥ < x, y < ¥ ð5:97Þ
wheres2 is a constant. This is a special case of the jointGaussian pdf, whichwewill discuss inmore detail

shortly.
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Instead of cartesian coordinates, we wish to use polar coordinates R and Q, defined by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þ Y2

p
ð5:98Þ

and

Q ¼ tan� 1 Y

X
ð5:99Þ

so that

X ¼ RcosQ ¼ g� 1
1 R,Qð Þ ð5:100Þ

and

Y ¼ RsinQ ¼ g�12 R,Qð Þ ð5:101Þ
where 0 � Q < 2p, and 0 � R < ¥, so that the whole plane is covered. Under this transformation, the

infinitesimal area dx dy in the xy plane transforms to the area r dr du in the ru plane, as determined by the

Jacobian, which is

q x, yð Þ
q r, uð Þ ¼

qx
qr

qx
qu

qy
qr

qy
qu

										

										
¼
					 cos u �r sin u
sin u r cos u

					 ¼ r ð5:102Þ

Thus the joint pdf of R and u is

fRQ r, uð Þ ¼ re�r
2=2s2

2ps2
, 0 � u < 2p, 0 � r < ¥ ð5:103Þ

which follows from (5.96), which for this case takes the form

fRQ r, uð Þ ¼ rfXY x, yð Þ		
x¼ rcos u
y¼ rsin u

ð5:104Þ

If we integrate fRQ r, uð Þ over u to get the pdf for R alone, we obtain

fR rð Þ ¼ r

s2
e� r2=2s2

, 0 � r < ¥ ð5:105Þ

which is referred to as the Rayleigh pdf. The probability that the dart lands in a ring of radius r from the

bull�s eye and having thickness dr is given by fR rð Þ dr. From the sketch of the Rayleigh pdf given in

Figure 5.13, we see that the most probable distance for the dart to land from the bull�s eye is R ¼ s. By
integrating (5.103) over r, it can be shown that the pdf of Q is uniform in 0, 2p½ Þ.

&

Figure 5.13

The Rayleigh pdf.

√⎯  eσ
1

fR (r)

r
σ0
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n 5.3 STATISTICAL AVERAGES

The probability functions (cdf and pdf) we have just discussed provide us with all the

information possible about a random variable or a set of random variables. Often, such

complete descriptions as provided by the pdf or cdf are not required, or in many cases, we are

not able to obtain the cdf or pdf. A partial description of a random variable or set of random

variables is then used and is given in terms of various statistical averages or mean values.

5.3.1 Average of a Discrete Random Variable

The statistical average, or expectation, of a discrete random variable X, which takes on the

possible values x1,x2, . . . , xM with the respective probabilities P1,P2, . . . ,PM , is defined as

X ¼ E X½ � ¼
XM
j¼ 1

xjPj ð5:106Þ

To show the reasonableness of this definition, we look at it in terms of relative frequency. If the

underlying chance experiment is repeated a large number of timesN, andX ¼ x1 is observed n1
times and X ¼ x2 is observed n2 times, etc., the arithmetical average of the observed values is

n1x1þ n2x2þ � � � þ nMxM

N
¼
XM
j¼ 1

xj
nj

N
ð5:107Þ

By the relative-frequency interpretation of probability (5.2), nj=N approaches Pj , j ¼
1, 2, . . .,M, the probability of the event X ¼ xj , as N becomes large. Thus, in the limit as

N!¥, (5.107) becomes (5.106).

5.3.2 Average of a Continuous Random Variable

For the casewhere X is a continuous random variablewith the pdf fX xð Þ, we consider the range
of values that X may take on, say x0 to xM , to be broken up into a large number of small

subintervals of length Dx, as shown in Figure 5.14.

For example, consider a discrete approximation for finding the expectation of a continuous

random variable X. The probability that X lies between xi �Dx and xi is, from (5.43), given by

P xi�Dx < X � xið Þ ffi fX xið Þ Dx, i ¼ 1, 2, . . . ,M ð5:108Þ
for Dx small. Thus we have approximated X by a discrete random variable that takes

on the values x0, x1, . . . ,xM with probabilities fX x0ð Þ Dx, . . . , fX xMð Þ Dx, respectively.

Figure 5.14

A discrete approximation for a continuous

random variable X.

0 x0 xMxi
x

xi − xΔ
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Using (5.106), the expectation of this random variable is

E X½ � ffi
XM
i¼ 0

xi fX xið Þ Dx ð5:109Þ

As Dx! 0, this becomes a better and better approximation for E X½ �. In the limit, as Dx! dx,

the sum becomes an integral, giving

E X½ � ¼
ð¥
�¥

x fX xð Þ dx ð5:110Þ
for the expectation of X.

5.3.3 Average of a Function of a Random Variable

Weare interested not only inE X½ �, which is referred to as themean or firstmoment ofX, but also

in statistical averages of functions ofX. Letting Y ¼ g Xð Þ, the statistical average or expectation
of the new random variable Y could be obtained as

E Y½ � ¼
ð¥
�¥

y fY yð Þ dy ð5:111Þ

where fY yð Þ is the pdf of Y, which can be found from fX xð Þ by application of (5.81). However, it
is often more convenient simply to find the expectation of the function g Xð Þ as given by

g Xð Þ ¼D E g Xð Þ½ � ¼
ð¥
�¥

g xð ÞfX xð Þdx ð5:112Þ

which is identical to E Y½ � as given by (5.111). Two examples follow to illustrate the use of

(5.111) and (5.112).

EXAMPLE 5.16

Suppose the random variable Q has the pdf

fQ uð Þ ¼
1

2p
, juj � p

0, otherwise

8<: ð5:113Þ

Then E Qn½ � is referred to as the nth moment of Q and is given by

E Qn½ � ¼
ð¥
�¥

unfQ uð Þ du ¼
ðp
�p

un
du

2p
ð5:114Þ

Since the integrand is odd if n is odd, E Qn½ � ¼ 0 for n odd. For n even,

E Qn½ � ¼ 1

p

ðp
0

un du ¼ 1

p

unþ 1

nþ 1

				p
0

¼ pn

nþ 1
ð5:115Þ

The first moment or mean ofQ, E Q½ �, is a measure of the location of fQ uð Þ (that is, the ‘‘ center of mass’’).

Since fQ uð Þ is symmetrically located about u ¼ 0, it is not surprising that E Q½ � ¼ 0.
&

EXAMPLE 5.17

Later we shall consider certain random waveforms that can be modeled as sinusoids with random phase

angles having uniform pdf in �p,p½ Þ. In this example, we consider a random variable X that is defined in
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terms of the uniform random variable Q considered in Example 5.16 by

X ¼ cosQ ð5:116Þ
The density function of X, fX xð Þ, is found as follows. First � 1 � cos u � 1; so fX xð Þ ¼ 0 for jxj > 1.

Second, the transformation is not one-to-one, there being two values of Q for each value of X, since

cos u ¼ cos �uð Þ. However, we can still apply (5.81) by noting that positive and negative angles have

equal probabilities and writing

fX xð Þ ¼ 2fQ uð Þ
				 dudx

				, jxj < 1 ð5:117Þ

Now u ¼ cos�1x and jdu=dxj ¼ 1� x2ð Þ�1=2, which yields

fX xð Þ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p , jxj < 1

0; jxj > 1

8><>: ð5:118Þ

This pdf is illustrated in Figure 5.15. The mean and second moment of X can be calculated using either

(5.111) or (5.112). Using (5.111), we obtain

X ¼
ð1
�1

x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ 0 ð5:119Þ

because the integrand is odd, and

X2 ¼
ð1
�1

x2 dx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ 1

2
ð5:120Þ

by a table of integrals. Using (5.112), we find that

X ¼
ðp
�p

cos u
du

2p
¼ 0 ð5:121Þ

and

X2 ¼
ðp
�p

cos2 u
du

2p
¼
ðp
�p

1

2
1þ cos 2uð Þ du

2p
¼ 1

2
ð5:122Þ

as obtained by finding E X½ � and E X2½ � directly.

&

Figure 5.15

Probability density function of a sinusoid with

uniform random phase.

fX (x)

−0.5 0 0.5

0.5

1.0

1.5
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x
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5.3.4 Average of a Function of More Than One Random Variable

The expectation of a function g X,Yð Þ of two random variables X and Y is defined in a manner

analogous to the case of a single random variable. If fXY x, yð Þ is the joint pdf of X and Y, the

expectation of g X,Yð Þ is

E g X,Yð Þ½ � ¼
ð¥
�¥

ð¥
�¥

g x, yð ÞfXY x, yð Þ dx dy ð5:123Þ

The generalization to more than two random variables should be obvious.

Equation (5.123) and its generalization to more than two random variables include the

single-random-variable case, for suppose g X, Yð Þ is replaced by a function ofX alone, say h Xð Þ.
Then using (5.57) we obtain the following from (5.123):

E h Xð Þ½ � ¼
ð¥
�¥

ð¥
�¥

h xð ÞfXY x, yð Þ dx dy

¼
ð¥
�¥

h xð ÞfX xð Þ dx
ð5:124Þ

where the fact that
Ð¥
�¥ fXY x, yð Þ dy ¼ fX xð Þ has been used.

EXAMPLE 5.18

Consider the joint pdf of Example 5.11 and the expectation of g X, Yð Þ ¼ XY . From (5.123), this

expectation is

E XY½ � ¼
ð¥
�¥

ð¥
�¥

xyfXY x, yð Þ dx dy

¼
ð¥
0

ð¥
0

2xye� 2xþ yð Þ dx dy ð5:125Þ

¼ 2

ð¥
0

xe�2xdx
ð¥
0

ye�y dy ¼ 1

2

We recall fromExample 5.11 thatX and Y are statistically independent. From the last line of the preceding

equation for E XY½ �, we see that

E XY½ � ¼ E X½ �E Y½ � ð5:126Þ

a result that holds in general for statistically independent randomvariables. In fact, forX andY statistically

independent random variables, it readily follows that

E h Xð Þg Yð Þ½ � ¼ E h Xð Þ½ �E g Yð Þ½ � ð5:127Þ
where h Xð Þ and g Yð Þ are two functions of X and Y, respectively.

&

In the special case where h Xð Þ ¼ Xm and g Yð Þ ¼ Yn and X and Y are not necessarily statis-

tically independent in general, the expectations E Xm Yn½ � are referred to as the joint moments

of ordermþ n of X and Y. According to (5.127), the joint moments of statistically independent

random variables factor into the products of the corresponding marginal moments.
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When finding the expectation of a function of more than one random variable, it may be

easier to use the concept of conditional expectation. Consider, for example, a function

g X,Yð Þ of two random variables X and Y, with the joint pdf fXY x, yð Þ. The expectation of

g X,Yð Þ is

E g X,Yð Þ½ � ¼
ð¥
�¥

ð¥
�¥

g x, yð ÞfXY x, yð Þ dx dy

¼
ð¥
�¥

ð¥
�¥

g x, yð ÞfXjY xjyð Þ dx
� �

fY yð Þ dy ð5:128Þ
¼ E E g X,Yð ÞjY½ �½ �

where fXjY xjyð Þ is the conditional pdf of X given Y, and E g X, Yð ÞjY½ � ¼ Ð¥�¥ g x, yð ÞfXjY xjyð Þ dx
is called the conditional expectation of g X,Yð Þ given Y ¼ y.

EXAMPLE 5.19

As a specific application of conditional expectation, consider the firing of projectiles at a target. Projectiles

are fired until the target is hit for the first time, after which firing ceases. Assume that the probability of a

projectile�s hitting the target is p and that the firings are independent of one another. Find the average

number of projectiles fired at the target.

S o l u t i o n

To solve this problem, letN be a random variable denoting the number of projectiles fired at the target. Let

the random variable H be 1 if the first projectile hits the target and 0 if it does not. Using the concept of

conditional expectation, we find the average value of N is given by

E N½ �¼ E E NjH½ �½ � ¼ pE NjH ¼ 1½ � þ 1� pð ÞE NjH ¼ 0½ �
¼ p� 1þ 1� pð Þ 1þE N½ �ð Þ ð5:129Þ

where E NjH ¼ 0½ � ¼ 1þE N½ � because N 	 1 if a miss occurs on the first firing. By solving the last

expression for E N½ �, we obtain
E N½ � ¼ 1

p
ð5:130Þ

If E N½ � is evaluated directly, it is necessary to sum the series:

E N½ � ¼ 1� pþ 2� 1� pð Þpþ 3� 1� pð Þ2pþ � � � ð5:131Þ
which is not too difficult in this instance.3 However, the conditional-expectation method clearly makes it

easier to keep track of the bookkeeping.
&

5.3.5 Variance of a Random Variable

The statistical average

s2
x¼D E X�E X½ �ð Þ2

h i
ð5:132Þ

3Consider E Nð Þ ¼ p 1þ 2qþ 3q2 þ 4q4 þ � � �ð Þ where q ¼ 1� p. The sum S ¼ 1þ qþ q2þ q3þ � � � ¼ 1=ð1� qÞ
can be used to derive the sum of 1þ 2qþ 3q2 þ 4q4 þ � � � by differentiation with respect to q: dS=dq ¼ 1þ 2qþ
3q2þ � � � ¼ d=dqð1=ð1� qÞÞ ¼ 1= 1� qð Þ2 so that E Nð Þ ¼ p½1= 1� qð Þ2� ¼ 1=p.
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is called the variance of the random variableX;sx is called the standard deviation ofX and is a

measure of the concentration of the pdf of X, or fX xð Þ, about the mean. The notation var X½ � for
s2
x is sometimes used. A useful relation for obtaining s2

x is

s2
x ¼ E X2

 ��E2 X½ � ð5:133Þ
which, in words, says that the variance of X is simply its second moment minus its mean,

squared. To prove (5.133), let E X½ � ¼ mx. Then

s2
x ¼

ð¥
�¥

x�mxð Þ2fX xð Þ dx ¼
ð¥
�¥

x2� 2xmxþm2
x


 �
fX xð Þ dx

¼ E X2
 �� 2m2

xþm2
x ¼ E X2

 ��E2 X½ �
ð5:134Þ

which follows because
Ð¥
�¥ x fX xð Þ dx ¼ mx.

EXAMPLE 5.20

Let X have the uniform pdf

fX xð Þ ¼
1

b� a
, a � x � b

0; otherwise

8<: ð5:135Þ

Then

E X½ � ¼
ðb
a

x
dx

b� a
¼ 1

2
aþ bð Þ ð5:136Þ

and

E X2
 � ¼ ðb

a

x2
dx

b� a
¼ 1

3
b2þ abþ a2

 � ð5:137Þ

which follows after a little work. Thus

s2
x ¼

1

3
b2þ abþ a2

 �� 1

4
a2þ 2abþ b2

 � ¼ 1

12
a� bð Þ2 ð5:138Þ

Consider the following special cases:

1. a ¼ 1 and b ¼ 2, for which s2
x ¼ 1

12
.

2. a ¼ 0 and b ¼ 1, for which s2
x ¼ 1

12
.

3. a ¼ 0 and b ¼ 2, for which s2
x ¼ 1

3
.

For cases 1 and 2, the pdf ofX has the samewidth but is centered about different means; the variance is the

same for both cases. In case 3, the pdf is wider than it is for cases 1 and 2, which is manifested by the larger

variance.
&

5.3.6 Average of a Linear Combination of N Random Variables

It is easily shown that the expected value, or average, of an arbitrary linear combination

of random variables is the same as the linear combination of their respective means. That is,
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E
XN
i¼1

aiXi

" #
¼
XN
i¼1

aiE Xi½ � ð5:139Þ

where X1,X2, . . . ,XN are random variables and a1, a2, . . . , aN are arbitrary constants.

Equation (5.139) will be demonstrated for the special case N ¼ 2; generalization to the

case N > 2 is not difficult, but results in unwieldy notation (proof by induction can also be

used).

Let fX1X2
x1, x2ð Þ be the joint pdf ofX1 andX2. Then, using the definition of the expectation

of a function of two random variables in (5.123), it follows that

E a1 X1þ a2 X2½ � ¼D
ð¥
�¥

ð¥
�¥

a1 x1þ a2 x2ð ÞfX1X2
x1, x2ð Þ dx1 dx2

¼ a1

ð¥
�¥

ð¥
�¥

x1fX1X2
x1, x2ð Þ dx1 dx2 ð5:140Þ

þ a2

ð¥
�¥

ð¥
�¥

x2fX1X2
x1, x2ð Þ dx1 dx2

Considering the first double integral and using (5.57) (with x1 ¼ x and x2 ¼ y) and (5.110), we

find that ð¥
�¥

ð¥
�¥

x1fX1X2
x1, x2ð Þ dx1 dx2 ¼

ð¥
�¥

x1

ð¥
�¥

fX1X2
x1, x2ð Þ dx2

� �
dx1

¼
ð¥
�¥

x1fX x1ð Þ dx1 ð5:141Þ
¼ E X1½ �

Similarly, it can be shown that the second double integral reduces to E X2½ �. Thus (5.139)
has been proved for the case N ¼ 2. Note that (5.139) holds regardless of whether the Xi terms

are independent. Also, it should be noted that a similar result holds for a linear combination of

functions of N random variables.

5.3.7 Varianceof a LinearCombinationof IndependentRandomVariables

If X1,X2, . . . ,XN are statistically independent random variables, then

var
XN
i¼1

aiXi

" #
¼
XN
i¼1

a2i var Xi½ � ð5:142Þ

where a1, a2, . . . , aN are arbitrary constants and var Xi½ � ¼ E½ Xi � Xi


 �2�. This relation will

be demonstrated for the case N ¼ 2. Let Z ¼ a1X1þ a2X2, and let fXi
xið Þ be the marginal pdf

of Xi. Then the joint pdf of X1 and X2 is fX1
x1ð ÞfX2

x2ð Þ by the assumption of statistical

independence. Also, Z ¼ a1X1þ a2X2 by (5.139). Also, var Z½ � ¼ E½ðZ � ZÞ2�. However,
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since Z ¼ a1X1þ a2X2, we may write var Z½ � as

var Z½ � ¼ E a1 X1þ a2 X2ð Þ� a1 X1þ a2 X2


 � �2n o
¼ E a1 X1� X1


 �þ a2 X2� X2


 � �2n o
¼ a21E


X1� X1


 �2�þ 2a1a2E X1� X1


 �
X2� X2


 � �
þ a22E


X2� X2


 �2�
ð5:143Þ

The first and last terms in the preceding equation are a21 var X1½ � and a22 var X2½ �, respec-
tively. The middle term is zero, since

E X1� X1


 �
X2� X2


 � �¼ ð¥
�¥

ð¥
�¥

x1� X1


 �
x2� X2


 �
fX1

x1ð ÞfX2
x2ð Þ dx1 dx2

¼
ð¥
�¥

x1� X1


 �
fX1

x1ð Þ dx1
ð¥
�¥

x2� X2


 �
fX2

x2ð Þ dx2
¼ X1�X1


 �
X2�X2


 � ¼ 0

ð5:144Þ

Note that the assumption of statistical independence was used to show that the middle

term above is zero (it is a sufficient, but not necessary, condition).

5.3.8 Another Special Average: The Characteristic Function

Letting g Xð Þ ¼ e jvX in (5.112), we obtain an average known as the characteristic function ofX,

or MX jvð Þ, defined as

MX jvð Þ¼D E e jvX
 � ¼ ð¥

�¥
fX xð Þe jvx dx ð5:145Þ

It is seen thatMXð jvÞwould be the Fourier transform of fX xð Þ, as we have defined the Fourier
transform in Chapter 2, provided a minus sign were used in the exponent instead of a plus sign.

Thus, if jv is replaced by � jv in Fourier transform tables, they can be used to obtain

characteristic functions from pdfs (sometimes it is convenient to use the variable s in place of

jv; the resulting function is called the moment generating function).

A pdf is obtained from the corresponding characteristic function by the inverse transform

relationship

fX xð Þ ¼ 1

2p

ð¥
�¥

MX jvð Þe� jvx dv ð5:146Þ

This illustrates one possible use of the characteristic function. It is sometimes easier to obtain

the characteristic function than the pdf, and the latter is then obtained by inverse Fourier

transformation, either analytically or numerically.

Another use for the characteristic function is to obtain the moments of a random variable.

Consider the differentiation of (5.145) with respect to �. This gives

qMX jvð Þ
qv

¼ j

ð¥
�¥

x fX xð Þe jvx dx ð5:147Þ
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Setting v ¼ 0 after differentiation and dividing by j, we obtain

E X½ � ¼ �jð Þ qMX jvð Þ
qv

				
v¼ 0

ð5:148Þ

For the nth moment, the relation

E Xn½ � ¼ �jð Þn qnMX jvð Þ
qv n

				
v¼ 0

ð5:149Þ

can be proved by repeated differentiation.

EXAMPLE 5.21

By use a table of Fourier transforms, the one-sided exponential pdf

fX xð Þ ¼ exp �xð Þu xð Þ ð5:150Þ
is found to have the characteristic function

MX jvð Þ ¼
ð¥
0

e�xe jvxdx ¼ 1

1� jv
ð5:151Þ

By repeated differentiation or expansion of the characteristic function in a power series in jv, it follows
from (5.149) that E Xn½ � ¼ n! for this random variable.

&

5.3.9 The pdf of the Sum of Two Independent Random Variables

Given two statistically independent randomvariablesX andYwith known pdfs fX xð Þ and fY yð Þ,
respectively, the pdf of their sum Z ¼ Xþ Y is often of interest. The characteristic functionwill

be used to find the pdf of Z, or fZ zð Þ, even though we could find the pdf of Z directly.

From the definition of the characteristic function of Z, we write

MZ jvð Þ ¼ E e jvZ
 � ¼ E e jv XþYð Þ

h i
¼
ð¥
�¥

ð¥
�¥

e jv xþ yð ÞfX xð ÞfY yð Þ dx dy
ð5:152Þ

since the joint pdf of X and Y is fX xð ÞfY yð Þ by the assumption of statistical independence of X

and Y. We can write (5.152) as the product of two integrals since e jv xþ yð Þ ¼ e jvxe jvy. This

results in

MZ jvð Þ ¼
ð¥
�¥

fX xð Þe jvx dx
ð¥
�¥

fY yð Þe jvy dy

¼ E e jvX
 �

E e jvY
 � ð1:153Þ

From the definition of the characteristic function, given by (5.145), we see that

MZ jvð Þ ¼ MX jvð ÞMY jvð Þ ð5:154Þ
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where MX jvð Þ and MY jvð Þ are the characteristic functions of X and Y, respectively. Remem-

bering that the characteristic function is the Fourier transform of the corresponding pdf and

that a product in the frequency domain corresponds to convolution in the time domain, it

follows that

fZ zð Þ ¼ fX xð Þ * fY yð Þ ¼
ð¥
�¥

fX z� uð ÞfY uð Þ du ð5:155Þ

This result generalizes to more than two random variables. The following example illustrates

the use of (5.155).

EXAMPLE 5.22

Consider the sum of four identically distributed, independent random variables,

Z ¼ X1þX2þX3þX4 ð5:156Þ
where the pdf of each Xi is

fXi
xið Þ ¼ P xið Þ ¼

1, jxij � 1

2

0, otherwise, i ¼ 1, 2, 3, 4

8<: ð5:157Þ

whereP xið Þ is the unit rectangular pulse function defined in Chapter 2.We find fZ zð Þ by applying (5.155)
twice. Thus, let

Z1 ¼ X1þX2 and Z2 ¼ X3þX4 ð5:158Þ
The pdfs of Z1 and Z2 are identical, both being the convolution of a uniform density with itself. From

Table 2.2, we can immediately write down the following result:

fZi zið Þ ¼ L zið Þ ¼ 1� jzij, jzij � 1

0, otherwise

�
ð5:159Þ

where fZi zið Þ is the pdf of Zi, i ¼ 1, 2. To find fZ zð Þ, we simply convolve fZi zið Þ with itself. Thus

fZ zð Þ ¼
ð¥
�¥

fZi z� uð ÞfZi uð Þ du ð5:160Þ

The factors in the integrand are sketched in Figure 5.16(a). Clearly, fZ zð Þ ¼ 0 for z < 2 or z > 2. Since

fZi zið Þ is even, fZ zð Þ is also even. Thuswe need not consider fZ zð Þ for z < 0. FromFigure 5.16(a) it follows

that for 1 � z � 2,

fZ zð Þ ¼
ð1
z�1

1� uð Þ 1þ u� zð Þ du ¼ 1

6
2� zð Þ3 ð5:161Þ

and for 0 � z � 1, we obtain

fZ zð Þ ¼
ð0
z� 1

1þ uð Þ 1þ u� zð Þ duþ
ðz
0

1� uð Þ 1þ u� zð Þ du

þ
ð1
z

1� uð Þ 1� uþ zð Þ du

¼ 1� zð Þ� 1

3
1� zð Þ3þ 1

6
z3

ð5:162Þ
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A graph of fZ zð Þ is shown in Figure 5.16(b) along with the graph of the function

exp � 3
2
z2


 �ffiffiffiffiffiffi
2
3
p

q ð5:163Þ

which represents a marginal Gaussian pdf of mean 0 and variance 1
3
, the same variance as

Z ¼ X1þX2þX3þX4 [the results of Example 5.20 and (5.142) can be used to obtain the variance

of Z]. We will describe the Gaussian pdf more fully later.

The reason for the striking similarity of the two pdfs shown in Figure 5.16(b) will become apparent

when the central-limit theorem is discussed in Section 5.4.5.
&

5.3.10 Covariance and the Correlation Coefficient

Two useful joint averages of a pair of random variables X and Y are their covariance mXY ,

defined as

mXY ¼ E X�X

 �

Y � Y

 � � ¼ E XY½ � �E X½ �E Y½ � ð5:164Þ

and their correlation coefficient rXY , which is written in terms of the covariance as

rXY ¼
mXY

sXsY

ð5:165Þ

From the preceding two expressions we have the relationship

E XY½ � ¼ sXsYrXY þE X½ �E Y½ � ð5:166Þ
BothmXY and rXY aremeasures of the interdependence ofX andY. The correlation coefficient is

more convenient because it is normalized such that �1 � rXY � 1. If rXY ¼ 0,X and Y are said

to be uncorrelated. (Note that this does not imply statistical independence.)

It is easily shown that rXY ¼ 0 for statistically independent randomvariables. IfX andY are

independent, their joint pdf fXY x, yð Þ is the product of the respective marginal pdfs; that is,

)b()a(

zu
−1 0 −2 −1 0

0.1

0.2

0.3

0.4

0.01
0.02

0.03

0.04

0.5

0.6

0.7

1 21

1

z − 1 z z + 1

fzi
(u) fzi

(z − u)

Actual pdf

2
3

3
2

π

exp (− z2)

Figure 5.16

The pdf for the sum of four independent uniformly distributed random variables. (a) Convolution of two

triangular pdfs. (b) Comparison of actual and Gaussian pdfs.
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fXY x, yð Þ ¼ fX xð ÞfY yð Þ. Thus

mXY ¼
ð¥
�¥

ð¥
�¥

x�X

 �

y� Y

 �

fX xð ÞfY yð Þ dx dy

¼
ð¥
�¥

x�X

 �

fX xð Þ dx
ð¥
�¥

y� Y

 �

fY yð Þ dy
¼ X�X

 �

Y � Y

 � ¼ 0

ð5:167Þ

Considering next the casesX ¼ �aY , so thatX ¼ �aY , wherea is a positive constant, we

obtain

mXY ¼
ð¥
�¥

ð¥
�¥
�ay� aY

 �

y� Y

 �

fXY x, yð Þ dx dy

¼ �a
ð¥
�¥

ð¥
�¥

y� Y

 �2

fXY x, yð Þ dx dy

¼ �as2
Y

ð5:168Þ

Using (5.142) with N ¼ 1, we can write the variance of X as s2
X ¼ a2s2

Y . Thus the correlation

coefficient is

rXY ¼ þ 1 for X ¼ þaY and rXY ¼ �1 for X ¼ �aY
To summarize, the correlation coefficient of two independent random variables is zero.

When two random variables are linearly related, their correlation is þ1 or �1 depending on

whether one is a positive or a negative constant times the other.

n 5.4 SOME USEFUL pdfs

We have already considered several often used probability distributions in the examples.4

These have included the Rayleigh pdf (Example 5.15), the pdf of a sine wave of random phase

(Example 5.17), and the uniform pdf (Example 5.20). Some others, which will be useful in our

future considerations, are given below.

5.4.1 Binomial Distribution

One of the most common discrete distributions in the application of probability to systems

analysis is the binomial distribution. We consider a chance experiment with two mutually

exclusive, exhaustive outcomes A and A, where A denotes the compliment of A, with

probabilities P Að Þ ¼ p and P A

 � ¼ q ¼ 1� p, respectively. Assigning the discrete random

variable K to be numerically equal to the number of times event A occurs in n trials of our

chance experiment, we seek the probability that exactly k � n occurrences of the eventA occur

in n repetitions of the experiment. (Thus our actual chance experiment is the replication of the

basic experiment n times.) The resulting distribution is called the binomial distribution.

Specific examples in which the binomial distribution is the result are the following: In n

tosses of a coin, what is the probability of k � n heads? In the transmission of n messages

4Useful probability distributions are summarized in Table 5.5 at the end of this chapter.
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through a channel, what is the probability of k � n errors? Note that in all cases we are

interested in exactly k occurrences of the event, not, for example, at least k of them, although

we may find the latter probability if we have the former.

Although the problembeing considered is very general, we solve it by visualizing the coin-

tossing experiment. We wish to obtain the probability of k heads in n tosses of the coin if the

probability of a head on a single toss is p and the probability of a tail is 1� p ¼ q. One of the

possible sequences of k heads in n tosses is

H H . . .H|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k heads

T . . . T|fflfflffl{zfflfflffl}
n� k tails

Since the trials are independent, the probability of this particular sequence is

p � p � p. . .p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k factors

� q � q � q. . . q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n� k factors

¼ pkqn� k ð5:169Þ

The preceding sequence of k heads in n trials is only one of

n

k

� �
¼D n!

k! n� kð Þ! ð5:170Þ

possible sequences, where


n
k

�
is the binomial coefficient. To see this, we consider the number

of ways k identifiable heads can be arranged in n slots. The first head can fall in any of the n

slots, the second in anyof n� 1 slots (the first head already occupies one slot), the third in anyof

n� 2 slots, and so on for a total of

n n� 1ð Þ n� 2ð Þ. . . n� kþ 1ð Þ ¼ n!

n� kð Þ! ð5:171Þ

possible arrangements in which each head is identified. However, we are not concerned

about which head occupies which slot. For each possible identifiable arrangement, there are

k! arrangements for which the heads can be switched with the same slots occupied. Thus

the total number of arrangements, if we do not identify the particular head occupying each

slot, is

n n� 1ð Þ. . . n� kþ 1ð Þ
k!

¼ n!

k! n� kð Þ! ¼
n

k

� �
ð5:172Þ

Since the occurrence of any of these


n
k

�
possible arrangements precludes the occurrence of

any other [that is, the


n
k

�
outcomes of the experiment are mutually exclusive], and since each

occurs with probability pkqn� k, the probability of exactly k heads in n trials in any order is

P K ¼ kð Þ¼D Pn kð Þ ¼ n

k

� �
pkqn� k, k ¼ 0, 1, . . . , n ð5:173Þ

Equation (5.173), known as the binomial probability distribution (note that it is not a pdf or a

cdf but rather a probability distribution), is plotted in Figure 5.17(a) to (e) for six different

values of p and n.
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The mean of a binomially distributed random variable K, by (5.109), is given by

E K½ � ¼
Xn
k¼0

k
n!

k! n� kð Þ! p
kqn� k ð5:174Þ

Noting that the sum can be started at k ¼ 1 since the first term is zero, we can write

E K½ � ¼
Xn
k¼1

n!

k� 1ð Þ! n� kð Þ! p
kqn� k ð5:175Þ

where the relation k! ¼ k k� 1ð Þ! has been used. Letting m ¼ k� 1, we get the sum

E K½ � ¼
Xn� 1

m¼0

n!

m! n�m� 1ð Þ! p
mþ 1qn�m� 1

¼ np
Xn� 1

m¼0

n� 1ð Þ!
m! n�m� 1ð Þ! p

mqn�m� 1

ð5:176Þ

Finally, letting l ¼ n� 1 and recalling that, by the binomial theorem,

xþ yð Þl ¼
Xl
m¼0

l

m

� �
xmyl�m ð5:177Þ

we obtain

K ¼ E K½ � ¼ np pþ qð Þl ¼ np ð5:178Þ
since pþ q ¼ 1. The result is reasonable; in a long sequence of n tosses of a fair coin

( p ¼ q ¼ 1
2
), we would expect about np ¼ 1

2
n heads.

(f )
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0.5
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0 1 2 3 4 5
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0.3
0.2
0.1

0 1 2 3 4
k

(c)

0.5

0 1 2 3
k

(b)

0.5

0 1 2
k

(a)

0.5

0 1
k

Figure 5.17

The binomial distribution with comparison to Laplace and Poisson approximations. (a) n ¼ 1, p ¼ 0:5.
(b) n ¼ 2, p ¼ 0:5.(c) n ¼ 3, p ¼ 0:5. (d) n ¼ 4, p ¼ 0:5. (e) n ¼ 5, p ¼ 0:5. Circles are Laplace

approximations. (f) n ¼ 5, p ¼ 1
10
. Circles are Poisson approximations.
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We can go through a similar series of manipulations to show that E K2½ � ¼ np npþ qð Þ.
Using this result, it follows that the variance of a binomially distributed random variable is

s2
K ¼ E K2

 ��E2 K½ � ¼ npq ¼ K 1� pð Þ ð5:179Þ

EXAMPLE 5.23

The probability of having two girls in a four-child family, assuming single births and equal probabilities of

male and female births, from (5.173), is

P4 2ð Þ ¼ 4

2

� �
1

2

� �4

¼ 3

8
ð5:180Þ

Similarly, it can be shown that the probability of 0, 1, 3, and 4 girls is 1
16
, 1
4
, 1
4
, and 1

16
, respectively. Note that

the sum of the probabilities for 0, 1, 2, 3, and 4 girls (or boys) is 1, as it should be.
&

5.4.2 Laplace Approximation to the Binomial Distribution

When n becomes large, computations using (5.173) become unmanageable. In the limit as

n!¥, it can be shown that for jk� npj � ffiffiffiffiffiffiffiffi
npq
p

Pn kð Þ ffi 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnpq
p exp � k� npð Þ2

2npq

 !
ð5:181Þ

which is called the Laplace approximation to the binomial distribution. A comparison of the

Laplace approximation with the actual binomial distribution is given in Figure 5.17(e)

5.4.3 Poisson Distribution and Poisson Approximation
to the Binomial Distribution

Consider a chance experiment in which an event whose probability of occurrence in a very

small time interval DT is P ¼ aDT , where a is a constant of proportionality. If successive

occurrences are statistically independent, then the probability of k events in time T is

PT kð Þ ¼ aTð Þk
k!

e�aT ð5:182Þ

For example, the emission of electrons from a hot metal surface obeys this law, which is called

the Poisson distribution.

The Poisson distribution can be used to approximate the binomial distribution when the

number of trials n is large, the probability of each event p is small, and the product np ffi npq.

The approximation is

Pn kð Þ ffi K

 �k
k!

e�K ð5:183Þ

where, as calculated previously, K ¼ E K½ � ¼ np and s2
k ¼ E K½ �q ¼ npq ffi E K½ � for q ¼

1� p ffi 1. This approximation is compared with the binomial distribution in Figure 5.17(f)
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EXAMPLE 5.24

The probability of error on a single transmission in a digital communication system isPE ¼ 10� 4.What is

the probability of more than three errors in 1000 transmissions?

S o l u t i o n

We find the probability of three errors or less from (5.183):

P K � 3ð Þ ¼
X3
k¼0

K

 �k
k!

e�K ð5:184Þ

where K ¼ 10� 4

 �

1000ð Þ ¼ 0:1. Hence

P K � 3ð Þ ¼ e� 0:1 0:1ð Þ0
0!
þ 0:1ð Þ1

1!
þ 0:1ð Þ2

2!
þ 0:1ð Þ3

3!

 !
ffi 0:999996 ð5:185Þ

Therefore, P K > 3ð Þ ¼ 1�P K � 3ð Þ ffi 4� 10�6.
&

COMPUTER EXAMPLE 5.1

TheMATLAB program given below does aMonte Carlo simulation of the digital communication system

described in the above example.

% file: c5ce1
% Simulation of errors in a digital communication system
%
N_sim ¼ input(’Enter number of trials ’);
N ¼ input(’Bit block size for simulation ’);
N_errors ¼ input(’Simulate the probability of more than __ errors
occurring ’);
PE ¼ input(’Error probability on each bit ’);
count ¼ 0;
for n ¼ 1:N_sim

U ¼ rand(1, N);
Error ¼ (-sign(U-PE)þ1)/2; % Error array - elements are 1 where

errors occur
if sum(Error) > N_errors

count ¼ count þ 1;
end

end
P_greater ¼ count/N_sim

A typical run follows. To cut down on the simulation time, blocks of 1000 bits are simulated with a

probability of error on each bit of 10� 3. Note that the Poisson approximation does not hold in this case

because K ¼ 10� 3

 �

1000ð Þ ¼ 1 is not much less than 1. Thus, to check the results analytically, we must

use the binomial distribution. Calculation gives P 0 errorsð Þ ¼ 0:3677, P 1 errorð Þ ¼ 0:3681,
P 2 errorsð Þ ¼ 0:1840, and P 3 errorsð Þ ¼ 0:0613 so that P > 3 errorsð Þ ¼ 1� 0:3677� 0:3681�
0:1840� 0:0613 ¼ 0:0189. This matches with the simulated result if both are rounded to two decimal

places.

error_sim
Enter number of trials 10000
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Bit block size for simulation 1000
Simulate the probability of more than __ errors occurring 3
Error probability on each bit.001
P_greater ¼ 0.0199

&

5.4.4 Geometric Distribution

Suppose we are interested in the probability of the first head in a series of coin tossings or the

first error in a long string of digital signal transmissions occurring on the kth trial. The

distribution describing such experiments is called the geometric distribution and is

P kð Þ ¼ pqk� 1, 1 � k < ¥ ð5:186Þ
where p is the probability of the event of interest occurring (i.e., head, error, etc.) and q is the

probability of it not occurring.

EXAMPLE 5.25

The probability of the first error occurring at the 1000th transmission in a digital data transmission system

where the probability of error is p ¼ 10�6 is

P 1000ð Þ ¼ 10�6 1� 10�6

 �999 ¼ 9:99� 10�7 ffi 10� 6

&

5.4.5 Gaussian Distribution

In our future considerations, the Gaussian pdf will be used repeatedly. There are at least two

reasons for this. One is that the assumption of Gaussian statistics for random phenomena often

makes an intractable problem tractable. The other, more fundamental reason, is that because of

a remarkable phenomenon summarized by a theorem called the central-limit theorem, many

naturally occurring random quantities, such as noise or measurement errors, are Gaussianly

distributed. The following is a statement of the central-limit theorem.

Theorem 5.1. The Central-Limit Theorem

Let X1,X2, . . . be independent, identically distributed random variables, each with finite mean

m and finite variance s2. Let Zn be a sequence of unit-variance, zero-mean random variables,

defined as

Zn/

Pn
i¼1

Xi � nm

s
ffiffiffi
n
p ð5:187Þ

Then

lim
n!¥

P Zn � zð Þ ¼
ðz
�¥

e� t2=2ffiffiffiffiffiffi
2p
p dt ð5:188Þ
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In other words, the cdf of the normalized sum (5.187) approaches a Gaussian cdf, no matter

what the distribution of the component random variables. The only restriction is that they be

independent and that their means and variances be finite. In some cases the independence

assumption can be relaxed. It is important, however, that no one of the component random

variables or a finite combination of them dominate the sum.

Wewill not prove the central-limit theoremor use it in later work.We state it here simply to give

partial justification for our almost exclusive assumption ofGaussian statistics from nowon. For

example, electrical noise is often the result of a superposition of voltages due to a large number

of charge carriers. Turbulent boundary-layer pressure fluctuations on an aircraft skin are the

superposition of minute pressures due to numerous eddies. Random errors in experimental

measurements are due to many irregular fluctuating causes. In all these cases, the Gaussian

approximation for the fluctuating quantity is useful and valid. Example 5.22 illustrates that

surprisingly few terms in the sum are required to give aGaussian-appearing pdf, evenwhere the

component pdfs are far from Gaussian.

The generalization of the joint Gaussian pdf first introduced in Example 5.15 is

fXY x,yð Þ¼ 1

2psxsy

ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
�exp �½



x�mxÞ=sx�2�2r½ðx�mxÞ=sx�½ðy�myÞ=sy�þ½ðy�myÞ=sy�2

2 1�r2ð Þ

 ! ð5:189Þ

where, through straightforward but tedious integrations, it can be shown that

mx¼E X½ � and my¼E Y½ � ð5:190Þ
s2
x¼var X½ � ð5:191Þ

s2
y¼var Y½ � ð5:192Þ

and

r¼E X�mxð Þ Y�my


 � �
sxsy

ð5:193Þ

The joint pdf forN>2Gaussian randomvariablesmay bewritten in a compact fashion through

the use of matrix notation. The general form is given in Appendix B.

Figure 5.18 illustrates the bivariate Gaussian density function, and the associated contour

plots, as the five parameters mx, my, s
2
x, s

2
y , and r are varied. The contour plots provide

information on the shape and orientation of the pdf that is not always apparent in a three-

dimensional illustration of the pdf from a single viewing point. Figure 5.18(a) illustrates the

bivariate Gaussian pdf for which X and Y are zero mean, unit variance, and uncorrelated. Since

the variances of X and Y are equal and since X and Y are uncorrelated, the contour plots are

circles in the XY plane. We can see why two-dimensional Gaussian noise, in which the two

components have equal variance and are uncorrelated, is said to exhibit circular symmetry.

Figure 5.18(b) shows the case in which X and Y are uncorrelated but mx ¼ 1, my ¼ �2,
s2
x ¼ 2, and s2

y ¼ 1. The means are clear from observation of the contour plot. In addition the

spread of the pdf is greater in the X direction than in the Y direction because s2
x > s2

y . In

Figure 5.18(c) the means of X and Y are both zero, but the correllation coefficient is set equal to

0.9. We see that the contour lines denoting a constant value of the density function are
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Figure 5.18

Bivariate Gaussian pdfs and corresponding contour plots. (a) mx ¼ 0, my ¼ 0, s2
x ¼ 1, s2

y ¼ 1 and

r ¼ 0. (b) mx ¼ 1, my ¼ �2, s2
x ¼ 2, s2

y ¼ 1, and r ¼ 0.(c) mx ¼ 0, my ¼ 0, s2
x ¼ 1, s2

y ¼ 1, and

r ¼ 0:9:
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symmetrical about the line X ¼ Y in the XY plane. This results, of course, because the

correlation coefficient is a measure of the linear relationship betweenX and Y. In addition, note

that the pdfs described in Figures 5.18(a) and (b) can be factored into the product of two

marginal pdfs since, for these two cases, X and Y are uncorrelated.

The marginal pdf for X (or Y) can be obtained by integrating (5.189) over y (or x). Again,

the integration is tedious. The marginal pdf for X is

n mx, sxð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

x

p exp
� x�mxð Þ2

2s2
x

 !
ð5:194Þ

where the notation n mx, sxð Þ has been introduced to denote a Gaussian pdf of mean mx and

standard deviation sx. A similar expression holds for the pdf of Y with appropriate parameter

changes. This function is shown in Figure 5.19.

We will sometimes assume in the discussions to follow that mx ¼ my ¼ 0 in (5.189) and

(5.194), for if they are not zero, we can consider new random variables X0 and Y 0 defined as

X0 ¼ X�mx and Y
0 ¼ Y �my that do have zero means. Thus no generality is lost in assuming

zero means.

For r ¼ 0, that is, X and Y uncorrelated, the cross term in the exponent of (5.189) is zero,

and fXY x, yð Þ, with mx ¼ my ¼ 0, can be written as

fXY x, yð Þ ¼ exp �x2=2s2
x


 �ffiffiffiffiffiffiffiffiffiffiffi
2ps2

x

p exp

�y2=2s2

y

�ffiffiffiffiffiffiffiffiffiffiffi
2ps2

y

q ¼ fX xð ÞfY yð Þ ð5:195Þ

Thus uncorrelated Gaussian random variables are also statistically independent. We em-

phasize that this does not hold for all pdfs, however.

It can be shown that the sum of any number of Gaussian random variables, independent or

not, is Gaussian. The sum of two independent Gaussian random variables is easily shown to be

Gaussian. LetZ ¼ X1þX2, where the pdf ofXi is n mi, sið Þ. Using a table of Fourier transforms

or completing the square and integrating, we find that the characteristic function of Xi is

2 X
2

1

πσ

2 X
2e

1

πσ

n (mX, X)σ

mX − xσ mX + xσ
mX − a mX mX + a0

x

Figure 5.19

The Gaussian pdf with mean mx and

variance s2
x:

MXi
jvð Þ ¼

ð¥
�¥

2ps2
i


 ��1=2
exp

� � xi �mið Þ2
2s2

i

�
exp jvxið Þ dxi

¼ exp

�
jmiv� s2

i v
2

2

�
ð5:196Þ

ð5:196Þ
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Thus the characteristic function of Z is

MZ jvð Þ ¼ MX1
vð ÞMX2

jvð Þ ¼ exp j m1þm2ð Þv� s2
1þs2

2


 �
v2

2

� �
ð5:197Þ

which is the characteristic function (5.196) of a Gaussian random variable of mean m1þm2

and variance s2
1þs2

2:

5.4.6 Gaussian Q-Function

As Figure 5.19 shows, n mx, sxð Þ describes a continuous random variable that may take on any

value in �¥,¥ð Þ but is most likely to be found near X ¼ mx. The even symmetry of n mx, sxð Þ
about x ¼ mx leads to the conclusion that P X � mxð Þ ¼ P X 	 mxð Þ ¼ 1

2
.

Suppose we wish to find the probability that X lies in the interval mx� a, mxþ a½ �. Using
(5.42), we can write this probability as

P mx� a � X � mxþ að Þ ¼
ðmx þ a

mx � a

exp � x�mxð Þ2=2s2
x

h i
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

x

p dx ð5:198Þ

which is the shaded area in Figure 5.19. With the change of variables y ¼ x�mxð Þ=sx, this

gives

P mx� a � X � mxþ að Þ ¼
ða=sx

� a=sx

e� y2=2ffiffiffiffiffiffi
2p
p dy

¼ 2

ða=sx

0

e� y2=2ffiffiffiffiffiffi
2p
p dy ð5:199Þ

where the last integral follows by virtue of the integrand being even.Unfortunately, this integral

cannot be evaluated in closed form.

The Gaussian Q-function, or simply Q-function, is defined as5

Q uð Þ ¼
ð¥
u

e� y2=2ffiffiffiffiffiffi
2p
p dy ð5:200Þ

This function has been evaluated numerically, and rational and asymptotic approximations are

available to evaluate it for moderate and large arguments, respectively.6 Using this transcen-

dental function definition, we may rewrite (5.199) as

P mx� a � X � mxþ að Þ ¼ 2
1

2
�
ð¥
a=sx

e� y2=2ffiffiffiffiffiffi
2p
p dy

0@ 1A
¼ 1� 2Q

�
a

sx

�
ð5:201Þ

5An integral representation with finite limits for the Q-function is QðxÞ ¼ 1
p

Ð p=2
0

exp½ �x2=ð2sin2fÞ�df.
6These are provided in M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions with Formulas,

Graphs, andMathematical Tables. National Bureau of Standards, AppliedMathematics Series No. 55, issued June

1964 (pp. 931ff); also New York: Dover, 1972.
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A useful approximation for the Q-function for large arguments is

Q uð Þ ffi e� u2=2

u
ffiffiffiffiffiffi
2p
p , u 1 ð5:202Þ

Numerical comparison of (5.200) and (5.202) shows that less than a 6% error results for u 	 3

in using this approximation. This, and other results for theQ-function, are given inAppendixG

(See Section G.1).

Related integrals are the error function and the complementary error function, defined as

erf uð Þ ¼ 2ffiffiffiffi
p
p

ðu
0

e� y2 dy

erfc uð Þ ¼ 1� erf uð Þ ¼ 2ffiffiffiffi
p
p

ð¥
u

e� y2 dy

ð5:203Þ

respectively. The latter can be shown to be related to the Q-function by

Q uð Þ ¼ 1

2
erfc

uffiffiffi
2
p
� �

or erfc vð Þ ¼ 2Q
ffiffiffi
2
p

v
� �

ð5:204Þ

MATLAB includes function programs for erf and erfc, and the inverse error and comple-

mentary error functions, erfinv and erfcinv, respectively.

5.4.7 Chebyshev�s Inequality

The difficulties encountered above in evaluating (5.198) and probabilities like it make an

approximation to such probabilities desirable. Chebyshev�s inequality gives us a lower bound,
regardless of the specific form of the pdf involved, provided its second moment is finite. The

probability of finding a random variable Xwithin� k standard deviations of its mean is at least

1� 1=k2, according to Chebyshev�s inequality. That is,

P jX�mxj � ksxð Þ 	 1� 1

k2
, k > 0 ð5:205Þ

Considering k ¼ 3, we obtain

P jX�mxj � 3sxð Þ 	 8

9
ffi 0:889 ð5:206Þ

Assuming X is Gaussian and using the Q-function, this probability can be computed to be

0.9973. In words, according to Chebyshev�s inequality, the probability that a random variable

deviates from its mean by more than �3 standard deviations is not greater than 0.111,

regardless of its pdf. (There is the restriction that its second moment must be finite.) Note that

the bound for this example is not very tight.

5.4.8 Collection of Probability Functions and Their Means and Variances

The probability functions (pdfs and probability distributions) discussed above are collected in

Table 5.4 along with some additional functions that come up from time to time. Also given are

the means and variances of the corresponding random variables.
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Summary
1. The objective of probability theory is to attach real numbers between 0 and 1,

called probabilities, to the outcomes of chance experiments—that is,

experiments in which the outcomes are not uniquely determined by the

causes but depend on chance—and to interrelate probabilities of events,

which are defined to be combinations of outcomes.

2. Two events aremutually exclusive if the occurrence of one of themprecludes

the occurrence of the other. A set of events is said to be exhaustive if one of

them must occur in the performance of a chance experiment. The null event

happenswith probability zero, and the certain event happenswith probability

one in the performance of a chance experiment.

3. The equally likely definition of the probability P Að Þ of an event A states that

if a chance experiment can result in a number N of mutually exclusive,

equally likely outcomes, then P Að Þ is the ratio of the number of outcomes

favorable to A, or NA, to the total number. It is a circular definition in that

Table 5.4 Probability Distributions of Some Random Variables with Means and Variances

Probability density or mass function Mean Variance

Uniform: fX xð Þ ¼
1

b� a
, a � x � b

0, otherwise

8<: 1
2
aþ bð Þ 1

12
b� að Þ2

Gaussian: fX xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2ps2
p exp

� x�mð Þ2
2s2

� �
m s2

Rayleigh: fR rð Þ ¼ r
s2 exp

� r2

2s2

� �
, r 	 0

ffiffiffi
p
2

p
s 1

2
4�pð Þs2

Laplacian: fX xð Þ ¼ a
2
exp �ajxjð Þ, a > 0 0 2=a2

One-sided exponential: fX xð Þ ¼ aexp �axð Þu xð Þ 1=a 1=a2

Hyperbolic: fX xð Þ ¼ m� 1ð Þhm� 1

2 jxj þ hð Þm , m > 3, h > 0 0 2h2

m� 3ð Þ m� 2ð Þ

Nakagami-m: fX xð Þ ¼ 2mm

G mð Þ x
2m� 1exp �mx2ð Þ, x 	 0

1�3� ...� 2m� 1ð Þ
2mG mð Þ

G mþ 1ð Þ
G mð Þ ffiffiffimp

Central chi-square (n ¼ degrees of freedom):
 fX xð Þ ¼ xn=2� 1

sn2n=2G n=2ð Þ exp
� x
2s2


 �
ns2 2ns4

Lognormal:† fX xð Þ ¼ 1

x
ffiffiffiffiffiffiffiffi
2ps2

y

p exp
� ln x�myð Þ2

2s2
y

� �
exp myþ 2s2

y

� � expð2myþs2
yÞ

�½exp s2
y � 1�

Binomial: Pn kð Þ ¼ n

k

� �
pkqn� k, k ¼ 0, 1, 2, . . ., n; pþ q ¼ 1 np npq

Poisson: P kð Þ ¼ lk
k!
exp � lð Þ, k ¼ 0, 1, 2, . . . l l

Geometric: P kð Þ ¼ pqk� 1, k ¼ 1, 2, . . . 1=p q=p2


G mð Þ is the gamma function and equals m� 1ð Þ! for m an integer.
†The lognormal random variable results from the transformation Y ¼ lnX, where Y is a Gaussian random variable with mean my and

variance s2
y .
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probability is used to define probability, but it is nevertheless useful in many

situations such as drawing cards from well-shuffled decks.

4. The relative-frequency definition of the probability of an event A assumes

that the chance experiment is replicated a large number of times N and

P Að Þ ¼ lim
N!¥

NA

N

where NA is the number of replications resulting in the occurrence of A.

5. The axiomatic approach defines the probability P Að Þ of an event A as a real

number satisfying the following axioms:

a. P Að Þ 	 0

b. P certain eventð Þ ¼ 1.

c. If A and B are mutually exclusive events, P A [ Bð Þ ¼ P Að ÞþP Bð Þ.
The axiomatic approach encompasses the equally likely and relative-

frequency definitions.

6. Given two eventsA andB, the compound event ‘‘A orB or both’’ is denoted as

A [ B, the compound event ‘‘both A and B’’ is denoted as A \ Bð Þ or as AB,
and the event ‘‘notA’’ is denoted asA. IfA andB are not necessarilymutually

exclusive, the axioms of probability may be used to show that

P A [ Bð Þ ¼ P Að ÞþP Bð Þ�P A \ Bð Þ. Letting P AjBð Þ denote the probabil-
ity ofA occurring given that B occurred andP BjAð Þ denote the probability of
B given A, these probabilities are defined, respectively, as

P AjBð Þ ¼ P ABð Þ
P Bð Þ and P BjAð Þ ¼ P ABð Þ

P Að Þ
A special case of Bayes� rule results by putting these two definitions

together:

P BjAð Þ ¼ P AjBð ÞP Bð Þ
P Að Þ

Statistically independent events are events for which P ABð Þ ¼ P Að ÞP Bð Þ.
7. A random variable is a rule that assigns real numbers to the outcomes of a

chance experiments. For example, in flipping a coin, assigning X ¼ þ1 to

the occurrence of a head and X ¼ �1 to the occurrence of a tail constitutes
the assignment of a discrete-valued random variable.

8. The cumulative distribution function (cdf) FX xð Þ of a random variable X is

defined as the probability that X � x, where x is a running variable. FX xð Þ
lies between 0 and 1 with FX �¥ð Þ ¼ 0 and FX ¥ð Þ ¼ 1, is continuous from

the right, and is a nondecreasing function of its argument. Discrete random

variables have step-discontinuous cdfs, and continuous random variables

have continuous cdfs.

9. The probability density function (pdf) fX Xð Þ of a random variable X is

defined to be the derivative of the cdf. Thus
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FX xð Þ ¼
ðx
�¥

fX hð Þ dh

The pdf is nonnegative and integrates over all x to unity. A useful inter-

pretation of the pdf is that fX xð Þ dx is the probability of the randomvariableX

lying in an infinitesimal range dx about x.

10. The joint cdf FXY x, yð Þ of two random variables X and Y is defined as the

probability that X � x and Y � y, where x and y are particular values of X

and Y. Their joint pdf fXY x, yð Þ is the second partial derivative of the cdf first
with respect to x and thenwith respect to y. The cdf ofXðYÞ alone (that is, the
marginal cdf) is found by setting y xð Þ to infinity in the argument of FXY . The

pdf of X Yð Þ alone (that is, the marginal pdf) is found by integrating fXY over

all y xð Þ.
11. Two statistically independent random variables have joint cdfs and pdfs that

factor into the respective marginal cdfs or pdfs.

12. The conditional pdf of X given Y is defined as

fXjY xjyð Þ ¼ fXY x, yð Þ
fY yð Þ

with a similar definition for fY jX yjxð Þ. The expression fXjY xjyð Þ dx can be

interpreted as the probability that x� dx < X � x given Y ¼ y.

13. Given Y ¼ g Xð Þ where g Xð Þ is a monotonic function,

fY yð Þ ¼ fX xð Þ
				 dxdy

				
x¼g�1 yð Þ

where g�1 yð Þ is the inverse of y ¼ g xð Þ. Joint pdfs of functions of more than

one random variable can be transformed similarly.

14. Important probability functions defined in Chapter 5 are the Rayleigh

pdf (5.105), the pdf of a random-phased sinusoid (Example 5.17), the

uniform pdf [Example 5.20, (5.135)], the binomial probability distribution

(5.174), the Laplace and Poisson approximations to the binomial distribu-

tion [(5.181) and (5.183), respectively] and the Gaussian pdf (5.189) and

(5.194).

15. The statistical average, or expectation, of a function g Xð Þ of a random

variable X with pdf fX xð Þ is defined as

E g Xð Þ½ � ¼ g Xð Þ ¼
ð¥
�¥

g xð ÞfX xð Þ dx

The average of g Xð Þ ¼ Xn is called the nthmoment of X. The first moment is

known as the mean of X. Averages of functions of more than one random

variable are found by integrating the function times the joint pdf over the

ranges of its arguments. The averages g X, Yð Þ ¼ XnYn/E XnYm½ � are called
the joint moments of the ordermþ n. The variance of a random variable X is

the averageðX�XÞ2 ¼ X2 �X
2
.
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16. The average E
P

aiXi½ � isP aiE Xi½ �; that is, the operations of summing and

averaging can be interchanged. The variance of a sum of random variables is

the sum of the respective variances if the random variables are statistically

independent.

17. The characteristic function MX jvð Þ of a random variable X that has the pdf

fX xð Þ is the expectation of exp jvXð Þ or, equivalently, the Fourier transform of

fX xð Þ with a plus sign in the exponential of the Fourier transform integral.

Thus the pdf is the inverse Fourier transform (with the sign in the exponent

changed from plus to minus) of the characteristic function.

18. The nth moment of X can be found from MX jvð Þ by differentiating with

respect to v for n times, multiplying by � jð Þn, and setting v ¼ 0. The

characteristic function of Z ¼ Xþ Y , where X and Y are independent, is

the product of the respective characteristic functions ofX and Y. Thus, by the

convolution theorem of Fourier transforms, the pdf of Z is the convolution of

the pdfs of X and Y.

19. The covariance mXY of two random variables X and Y is the average

mXY ¼ E X�X

 �

Y � Y

 � �

The correlation coefficient rXY is

rXY ¼
mXY

sXsY

Both give a measure of the linear interdependence of X and Y, but rXY is

handier because it is bounded by �1. If rXY ¼ 0, the random variables are

said to be uncorrelated.

20. The central-limit theorem states that under suitable restrictions, the sum of a

large number N of independent random variables with finite variances (not

necessarily with the same pdfs) tends to a Gaussian pdf as N becomes large.

21. The Q-function can be used to compute probabilities of Gaussian random

variables being in certain ranges. The Q-function is tabulated in Appendix

G.1, and an asymptotic approximation is given for computing it. It can be

related to the error function through (5.204).

22. Chebyshev�s inequality gives the lower bound of the probability that a

random variable is within k standard deviations of its mean as 1� 1=k2,
regardless of the pdf of the random variable (its second moment must be

finite).

23. Table 5.4 summarizes a number of useful probability distributions with their

means and variances.

Further Reading

Several books are available that deal with probability theory for engineers. Among these are

Leon-Garcia (1994), Ross (2002), and Walpole, et al. (2007). A good overview with many
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examples is Ash (1992). Simon (2002) provides a compendium of relations involving the Gaussian

distribution.

Problems

Section 5.1

5.1. A circle is divided into 21 equal parts. A pointer is

spun until it stops on one of the parts, which are numbered

from 1 through 21. Describe the sample space, and assum-

ing equally likely outcomes, find

a. P(an even number)

b. P(the number 21)

c. P(the numbers 4, 5, or 9)

d. P(a number greater than 10)

5.2. If five cards are drawn without replacement from

an ordinary deck of cards, what is the probability that

a. Three kings and two aces result.

b. Four of a kind result.

c. All are of the same suit.

d. An ace, king, queen, jack, and 10 of the same suit

result.

e. Given that an ace, king, jack, and 10 have been

drawn, what is the probability that the next card drawnwill

be a queen (not all of the same suit)?

5.3. What equations must be satisfied in order for three

events A, B, and C to be independent?

(Hint: They must be independent by pairs, but this is not

sufficient.)

5.4. Two events, A and B, have marginal probabilities

P Að Þ ¼ 0:2 andP Bð Þ ¼ 0:5, respectively. Their joint prob-
ability is P A \ Bð Þ ¼ 0:4.

a. Are they statistically independent?Whyorwhynot?

b. What is the probability of A or B or both

occurring?

c. In general, what must be true for two events be

both statistically independent and mutually exclusive?

5.5. Figure 5.20 is a graph that represents a commu-

nication network, where the nodes are receiver–repeater

boxes and the edges (or links) represent communication

channels which, if connected, convey the message per-

fectly. However, there is the probability p that a linkwill be

broken and the probability q ¼ 1� p that it will be whole.

Hint: Use a tree diagram like Figure 5.2.

A

B
4

3

2 51

a. What is the probability that at least one working

path is available between the nodes labeled A and

B?

b. Remove link 4. Nowwhat is the probability that at

least one working path is available between nodes

A and B?

c. Remove link 2.What is the probability that at least

oneworking path is available between nodesA and

B?

d. Which is themore serious situation, the removal of

link 4 or link 2? Why?

5.6. Given a binary communication channel where

A ¼ input and B ¼ output, let P Að Þ ¼ 0:45, P BjAð Þ ¼
0:95, and P BjA
 � ¼ 0:65. Find P AjBð Þ and P AjB
 �

.

5.7. Given the table of joint probabilities of Table 5.5.

a. Find the probabilities omitted from Table 5.5.

b. Find the probabilities P A3jB3ð Þ,P B2jA1ð Þ, and
P B3jA2ð Þ.

Figure 5.20

Table 5.5 Probabilities for Problem 5.7

B1 B2 B3 P(Ai)

A1 0.05 0.45 0.55

A2 0.15 0.10

A3 0.05 0.05 0.15

P Bj


 �
1.0
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Section 5.2

5.8. Two dice are tossed.

a. Let X1 be a random variable that is numerically

equal to the total number of spots on the up faces of the

dice. Construct a table that defines this random variable.

b. Let X2 be a random variable that has the value of 1

if the sum of the number of spots up on both dice is even

and the value zero if it is odd. Repeat part (a) for this case.

5.9. Three fair coins are tossed simultaneously such that

they don�t interact. Define a random variable X ¼ 1 if an

even number of heads is up and X ¼ 0 otherwise. Plot the

cumulative distribution function and the probability den-

sity function corresponding to this random variable.

5.10. A certain continuous random variable has the

cumulative distribution function

FX xð Þ ¼
0, x < 0

Ax4, 0 � x � 12

B, x > 12

8<:
a. Find the proper values for A and B.

b. Obtain and plot the pdf fX xð Þ.
c. Compute P X > 5ð Þ.
d. Compute P 4 � X < 6ð Þ.

5.11. The following functions can be pdfs if constants are

chosen properly. Find the proper conditions on the con-

stants [A, B,C,D, a, b, g , and t are positive constants, and
u xð Þ is the unit step function.]

a. f xð Þ ¼ Ae�axu xð Þ, where u xð Þ is the unit step.
b. f xð Þ ¼ Bebxu � xð Þ:
c. f xð Þ ¼ Ce� gxu x� 1ð Þ:
d. f xð Þ ¼ D u xð Þ� u x� tð Þ½ �:

5.12. Test X and Y for independence if

a. fXY x, yð Þ ¼ Ae� jxj � 2jyj:

b. fXY x, yð Þ ¼ C 1� x� yð Þ, 0 � x � 1� y and

0 � y � 1:

Prove your answers.

5.13. The joint pdf of two random variables is

fXY x,yð Þ¼ C 1þxyð Þ, 0 �x�4,0�y�2

0, otherwise

�
Find the following:

a. The constant C.

b. fXY 1, 1:5ð Þ.

c. fXY x, 3ð Þ.
d. fXjY xj1ð Þ.

5.14. The joint pdf of the random variables X and Y is

fXY x, yð Þ ¼ Axye� xþ yð Þ, x 	 0 and y 	 0

a. Find the constant A.

b. Find the marginal pdfs of X and Y , fX xð Þ and
fY yð Þ.

c. Are X and Y statistically independent? Justify

your answer.

5.15.

a. For what value of a > 0 is the function

f xð Þ ¼ ax�2u x�að Þ
a probability density function? Use a sketch to illustrate

your reasoning and recall that a pdf has to integrate to 1.

[u xð Þ is the unit step function.]

b. Find the corresponding cumulative distribution

function.

c. Compute P X 	 10ð Þ.
5.16. Given the Gaussian random variable with the pdf

fX xð Þ ¼ e�x
2=2s2ffiffiffiffiffiffi
2p
p

s

where s > 0 is the standard deviation. If Y ¼ X2 find the

pdf of Y. Hint: Note that Y ¼ X2 is symmetrical about

X ¼ 0 and that it is impossible for Y to be less than zero.

5.17. A nonlinear system has input X and output Y.

The pdf for the input is Gaussian as given in Problem

5.16. Determine the pdf of the output, assuming that the

nonlinear system has the following input–output

relationship:

a. Y ¼ aX, X 	 0

0, X < 0

�
Hint: When X < 0, what is Y? How is this manifested in

the pdf for Y?

b. Y ¼ jXj.
c. Y ¼ X�X3=3.

Section 5.3

5.18. Let fX xð Þ ¼ Aexp � bxð Þu x� 2ð Þ for all xwhereA
and b are positive constants.

a. Find the relationship between A and b such that

this function is a pdf.
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b. Calculate E Xð Þ for this random variable.

c. Calculate E X2ð Þ for this random variable.

d. What is the variance of this random variable?

5.19.
a. Consider a random variable uniformly distribu-

ted between 0 and 2. Show that E X2ð Þ > E2 Xð Þ.
b. Consider a random variable uniformly distribu-

ted between 0 and 4. Show that E X2ð Þ > E2 Xð Þ.
c. Can you show in general that for any random

variable it is true that E X2ð Þ > E2 Xð Þ unless the random
variable is zero almost always?

(Hint: Expand E½ X�E X½ �ð Þ2� 	 0, and note that it is 0

only if X ¼ 0 with probability 1.)

5.20. Verify the entries in Table 5.5 for the mean and

variance of the following probability distributions:

a. Rayleigh

b. One-sided exponential

c. Hyperbolic

d. Poisson

e. Geometric

5.21. A random variable X has the pdf

fX xð Þ ¼ Ae� bx u xð Þ� u x�Bð Þ½ �
where u xð Þ is the unit step function and A, B, and b are

positive constants.

a. Find the proper relationship between the con-

stants A, b, and B. Express b in terms of A and B.

b. Determine and plot the cdf.

c. Compute E X½ �.
d. Determine E X2½ �.
e. What is the variance of X?

5.22. If

fX xð Þ ¼ 2ps2

 ��1=2

exp � x2

2s2

� �
show that

a. E X2n½ � ¼ 1�3�5�. . . 2n� 1ð Þs2n, for

n ¼ 1, 2, . . .

b. E X2n� 1½ � ¼ 0 for n ¼ 1, 2, . . .

5.23. The random variable has pdf

fX xð Þ ¼ 1

2
d x� 5ð Þþ 1

8
u x� 4ð Þ� u x� 8ð Þ½ �

where u xð Þ is the unit step. Determine the mean and the

variance of the random variable thus defined.

5.24. Two random variables X and Y have means and

variances given below:

mx ¼ 1; s2
x ¼ 4; my ¼ 3; s2

y ¼ 7

A new random variable Z is defined as

Z ¼ 3X� 4Y

Determine the mean and variance of Z for each of the

following cases of correlation between the random vari-

ables X and Y:

a. rXY ¼ 0:

b. rXY ¼ 0:2:

c. rXY ¼ 0:7:

d. rXY ¼ 1:0:

5.25. TwoGaussian random variables X and Y, with zero

means and variances s2, between which there is a correla-

tion coefficient r, have a joint probability density function
given by

f x,yð Þ¼ 1

2ps2
ffiffiffiffiffiffiffiffiffiffiffi
1�r2

p exp �x
2�2rxyþy2
2s2 1�r2ð Þ

� �
The marginal pdf of Y can be shown to be

fY yð Þ¼exp �y
2=2s2ð Þffiffiffiffiffiffiffiffiffiffiffi

2ps2
p

Find the conditional pdf fXjY x j yð Þ. Simplify.

5.26. Using the definition of a conditional pdf given by

(5.62) and the expressions for the marginal and joint

Gaussian pdfs, show that for two jointly Gaussian random

variables X and Y, the conditional density function of X

givenY has the formof aGaussian densitywith conditional

mean and the conditional variance given by

E XjY½ � ¼ mxþ rsx

sy

Y �my


 �
and

var XjYð Þ ¼ s2
x 1� r2

 �

respectively.

5.27. The random variable X has a probability density

function uniform in the range 0 � x � 2 and zero else-

where. The independent variableYhas a density uniform in

the range 1 � y � 5 and zero elsewhere. Find and plot the

density of Z ¼ Xþ Y .

5.28. A random variable X is defined by

fX xð Þ ¼ 4e� 8jxj

The random variable Y is related to X by Y ¼ 4þ 5X.
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a. Determine E X½ �,E X2½ �, and s2
x.

b. Determine fY yð Þ.
c. DetermineE Y½ �,E Y2½ �, ands2

y . (Hint: The result of

part (b) is not necessary to do this part, although it may be

used)

5.29. A random variable X has the probability density

function

fX xð Þ ¼ ae� ax, x 	 0

0, x < 0

�
where a is an arbitrary positive constant.

a. Determine the characteristic function Mx jvð Þ.
b. Use the characteristic function to determine E X½ �

and E X2½ �.
c. Check your results by computingð¥

�¥
xnfX xð Þ dx

for n ¼ 1 and 2.

d. Compute s2
x.

Section 5.4

5.30. Compare the binomial, Laplace, and Poisson dis-

tributions for

a. n ¼ 3 and p ¼ 1
5
:

b. n ¼ 3 and p ¼ 1
10
:

c. n ¼ 10 and p ¼ 1
5
:

d. n ¼ 10 and p ¼ 1
10
:

5.31. An honest coin is flipped 10 times.

a. Determine the probability of the occurrence of

either five or six heads.

b. Determine the probability of the first head oc-

curring at toss number 5.

c. Repeat parts (a) and (b) for flipping 100 times and

the probability of the occurrence of 50 to 60 heads

inclusive and the probability of the first head occurring

at toss number 50.

5.32. Passwords in a computer installation take the form

X1X2X3X4, where each character Xi is one of the 26 letters

of the alphabet. Determine the maximum possible number

of different passwords available for assignment for each of

the two following conditions:

a. A given letter of the alphabet can be used only

once in a password.

b. Letters can be repeated if desired, so that each Xi

is completely arbitrary.

c. If selection of letters for a given password is

completely random, what is the probability that your

competitor could access, on a single try, your computer in

part (a)? and part (b)?

5.33. Assume that 20 honest coins are tossed.

a. By applying the binomial distribution, find the

probability that there will be fewer than three heads.

b. Do the same computation using the Laplace

approximation.

c. Compare the results of parts (a) and (b) by com-

puting the percent error of the Laplace approximation.

5.34. A digital data transmission system has an error

probability of 10�5 per digit.

a. Find the probability of exactly one error in 105

digits.

b. Find the probability of exactly two errors errors

in 105 digits.

c. Find the probability of more than five errors in

105 digits.

5.35. Assume that two random variables X and Y are

jointly Gaussian with mx ¼ my ¼ 1, s2
x ¼ s2

y ¼ 4, and

correlation coeficient r ¼ 0:5.

a. Making use of (5.194), write down an expression

for the margininal pdfs of X and of Y.

b. Write down an expression for the conditional pdf

fXjY xjyð Þ by using the result of (a) and an expression for

fXY x, yð Þ written down from (5.189). Deduce that

fYjX yjxð Þ has the same form with y replacing x.

c. Put fXjY xjyð Þ into the form of a marginal

Gaussian pdf. What is its mean and variance? (The mean

will be a function of y.)

5.36. Consider the Cauchy density function

fX xð Þ ¼ K

1þ x2
, �¥ � x � ¥

a. Find K.

b. Show that var X½ � is not finite.
c. Show that the characteristic function of a Cauchy

random variable is Mx jvð Þ ¼ pKe� jvj.

d. Now consider Z ¼ X1þ . . .þXN where the Xi�s
are independent Cauchy random variables. Thus their

characteristic function is

MZ jvð Þ ¼ pKð ÞNexp �Njvjð Þ
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Show that fZ zð Þ is Cauchy. (Comment: fZ zð Þ is not Gaus-
sian as N!¥ because var Xi½ � is not finite and the con-

ditions of the central-limit theorem are therefore violated.)

5.37. (Chi-squared pdf) Consider the random variable

Y ¼PN
i¼1 X

2
i , where the Xi�, are independent Gaussian

random variables with pdfs n 0,sð Þ.
a. Show that the characteristic function of X2

i is

MX2
i
jvð Þ ¼ 1� 2jvs2


 �� 1=2

b. Show that the pdf of Y is

fY yð Þ ¼
yN=2� 1e� y=2s2

2N=2sNG N=2ð Þ , y 	 0

0, y < 0

8><>:
where G xð Þ is the gamma function, which, for x ¼ n an

integer, is G nð Þ ¼ n� 1ð Þ!. This pdf is known as the x2

(chi-squared) pdf with N degrees of freedom. Hint: Use

the Fourier transform pair

yN=2� 1e� y=a

aN=2G N=2ð Þ $ 1� javð Þ�N=2

c. Show that for N large, the x2 pdf can be approxi-

mated as

fY yð Þ ffi
exp � 1

2

y�Ns2ð Þffiffiffiffiffiffiffiffi
4Ns4
p

� �2( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nps4
p , N  1

Hint: Use the central-limit theorem. Since the xi�s are

independent,

Y ¼
XN
i¼1

X2
i ¼ Ns2

and

var Y½ � ¼
XN
i¼1

var X2
i

 � ¼ Nvar X2
i

 �
d. Compare the approximation obtained in part

(c) with fY yð Þ for N ¼ 2, 4, 8.

e. Let R2 ¼ Y . Show that the pdf of R for N ¼ 2 is

Rayleigh.

5.38. Compare the Q-function and the approximation to

it for large arguments given by (5.202) by plotting both

expressions on a log–log graph. (Note: MATLAB is handy

for this problem.)

5.39. Determine the cdf for a Gaussian random variable

of mean m and variance s2. Express in terms of the

Q-function. Plot the resulting cdf for m ¼ 0 and

s ¼ 0:5, 1, and 2.

5.40. Prove that the Q function may also be represented

as

Q xð Þ ¼ 1
p

Ð p=2
0

exp � x2

2sin2f

� �
df.

5.41. A random variable X has the

fX xð Þ ¼ e� x� 10ð Þ2=50ffiffiffiffiffiffiffiffiffi
50p
p

Express the following probabilities in terms of the Q

function and calculate numerical answers for each:

a. P jXj � 15ð Þð
b. P 10 < X � 20ð Þ
c. P 5 < X � 25ð Þ
d. P 20 < X � 30ð Þ

5.42.

a. Prove Chebyshev�s inequality. Hint: Let

Y ¼ X�mxð Þ=sx, and find a bound for P jYj < kð Þ in
terms of k.

b. Let X be uniformly distributed over jxj � 1. Plot

P jXj � ksxð Þ versus k and the corresponding bound

given by Chebyshev�s inequality.

5.43. If the random variable X is Gaussian with zero

mean and variance s2, obtain numerical values for the

following probabilities:

a. P jXj > sð Þ
b. P jXj > 2sð Þ
c. P jXj > 3sð Þ

5.44. Speech is sometimes idealized as having a Lapla-

cian-amplitude pdf. That is, the amplitude is distributed

according to
fX xð Þ ¼ a

2
exp � ajxjð Þ

a. Express the variance ofX,s2, in terms of a. Show

your derivation; don�t just simply copy the result given in

Table 5.4.

b. Compute the following probabilities: P jXj >ð
sÞ; P jXj > 2sð Þ; P jXj > 3sð Þ.

5.45. Two jointlyGaussian zero-mean randomvariables,

X and Y, have respective variances of 3 and 4 and correla-

tion coefficient rXY ¼ � 0:4. A new random variable is

defined as Z ¼ Xþ 2Y . Write down an expression for the

pdf of Z.
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5.46. Two jointly Gaussian random variables, X and Y,

have means of 1 and 2, and variances of 3 and 2, respec-

tively. Their correlation coefficient is rXY ¼ 0:2. A new

random variable is defined as Z ¼ 3Xþ Y . Write down an

expression for the pdf of Z.

5.47. Two Gaussian random variables, X and Y, are

independent. Their respective means are 5 and 3, and their

respective variances are 1 and 2.

a. Write down expressions for their marginal pdfs.

b. Write down an expression for their joint pdf.

c. What is the mean of Z1 ¼ Xþ Y? Z2 ¼ X� Y?

d. What is the variance of Z1 ¼ Xþ Y?

Z2 ¼ X� Y?

e. Write down an expression for the pdf of

Z1 ¼ Xþ Y .

f. Write down an expression for the pdf of

Z2 ¼ X� Y .

5.48. Two Gaussian random variables, X and Y, are

independent. Their respective means are 4 and 2, and their

respective variances are 3 and 5.

a. Write down expressions for their marginal pdfs.

b. Write down an expression for their joint pdf.

c. What is themean ofZ1 ¼ 3Xþ Y?Z2 ¼ 3X� Y?

d. What is the variance of Z1 ¼ 3Xþ Y? Z2 ¼
3X� Y?

e. Write down an expression for the pdf of Z1
¼ 3Xþ Y .

f. Write down an expression for the pdf of Z2
¼ 3X� Y .

5.49. Find the probabilities of the following random

variables, with pdfs as given in Table 5.4, exceeding their

means. That is, in each case, find the probability that

X 	 mX , where X is the respective random variable and

mX is its mean.

a. Uniform

b. Rayleigh

c. One-sided exponential

Computer Exercises

5.1. In this exercise we examine a useful technique for

generating a set of samples having a given pdf.

a. First, prove the following theorem: If X is a

continuous random variable with cdf FX xð Þ, the random

variable
Y ¼ FX Xð Þ

is a uniformly distributed random variable in the interval

[0,1).

b. Using this theorem, design a random number

generator to generate a sequence of exponentially distrib-

uted random variables having the pdf

fX xð Þ ¼ ae�axu xð Þ
where u xð Þ is the unit step. Plot histograms of the random

numbers generated to check the validity of the random

number generator you designed.

5.2. An algorithm for generating a Gaussian random

variable from two independent uniform random variables

is easily derived.

a. Let U and V be two statistically independent

random numbers uniformly distributed in 0, 1½ �. Show that

the following transformation generates two statistically

independent Gaussian random numbers with unit variance

and zero mean:

X ¼ R cos 2pUð Þ
Y ¼ R sin 2pUð Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 ln V
p

Hint: First show that R is Rayleigh.

b. Generate 1000 random variable pairs according to

the above algorithm. Plot histograms for each set (i.e., X

and Y), and compare with Gaussian pdfs after properly

scaling the histograms (i.e., divide each cell by the total

number of counts times the cell width so that the histogram

approximates a probability density function).

Hint: Use the hist function of MATLAB.

5.3. Using the results of Problem 5.26 and the Gaussian

random number generator designed in Computer Exercise

5.2, design a Gaussian random number generator that will

provide a specified correlation between adjacent samples.
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Let

r tð Þ ¼ e�ajtj

and plot sequences of Gaussian random numbers for

various choices of a. Show how stronger correlation

between adjacent samples affects the variation from sam-

ple to sample. (Note: To get memory over more than

adjacent samples, a digital filter should be used with

independent Gaussian samples at the input.)

5.4. Check the validity of the central-limit theorem by

repeatedly generating n independent uniformly distributed

random variables in the interval � 0:5, 0:5ð Þ, forming the

sum given by (5.187), and plotting the histogram. Do this

for N ¼ 5, 10, and 20. Can you say anything qualitatively

and quantitatively about the approach of the sums to

Gaussian random numbers? Repeat for exponentially dis-

tributed component random variables (do Computer Ex-

ercise 5.1 first). Can you think of a drawback to the

approach of summing uniformly distributed random vari-

ables to generating Gaussian random variables? (Hint:

Consider the probability of the sum of uniform random

variables being greater than 0:5N or less than �0:5N.What

are the same probabilities for a Gaussian random variable?)
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CHAPTER6

RANDOM SIGNALS AND NOISE

Themathematical background reviewed in Chapter 5 on probability theory provides the basis for

developing the statistical description of random waveforms. The importance of considering such

waveforms, as pointed out inChapter 1, lies in the fact that noise in communication systems is due to

unpredictable phenomena, such as the random motion of charge carriers in conducting materials

and other unwanted sources.

In therelative-frequencyapproachtoprobability,we imaginedrepeating theunderlyingchance

experimentmanytimes,theimplicationbeingthatthereplicationprocesswascarriedoutsequentially

in time. In the study of random waveforms, however, the outcomes of the underlying chance

experiments are mapped into functions of time, or waveforms, rather than numbers, as in the case

of randomvariables.Theparticularwaveformisnotpredictable inadvanceof theexperiment, justas

the particular value of a random variable is not predictable before the chance experiment is

performed.Wenowaddressthestatisticaldescriptionofchanceexperiments thatresult inwaveforms

as outputs. To visualize how thismaybe accomplished,we again think in terms of relative frequency.

n 6.1 A RELATIVE-FREQUENCY DESCRIPTION OF RANDOM PROCESSES

For simplicity, consider a binary digital waveform generator whose output randomly switches

between þ1 and �1 in T0 intervals as shown in Figure 6.1. Let X t; zið Þ be the random

waveform corresponding to the output of the ith generator. Suppose relative frequency is used

to estimate P X ¼ þ1ð Þ by examining the outputs of all generators at a particular time. Since

the outputs are functions of time, we must specify the time when writing down the relative

frequency. The following table may be constructed from an examination of the generator

outputs in each time interval shown:

Time interval (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10)

Relative frequency 5
10

6
10

8
10

6
10

7
10

8
10

8
10

8
10

8
10

9
10

From this table it is seen that the relative frequencies change with the time interval.

Although this variation in relative frequency could be the result of statistical irregularity, we

highly suspect that some phenomenon is making X ¼ þ1 more probable as time increases. To

reduce the possibility that statistical irregularity is the culprit, we might repeat the experiment

with 100 generators or 1000 generators. This is obviously a mental experiment in that it would

be very difficult to obtain a set of identical generators and prepare them all in identical fashions.
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n 6.2 SOME TERMINOLOGY OF RANDOM PROCESSES

6.2.1 Sample Functions and Ensembles

In the same fashion as is illustrated in Figure 6.1, we could imagine performing any chance

experiment many times simultaneously. If, for example, the random quantity of interest is the

voltage at the terminals of a noise generator, the random variable X1 may be assigned to

represent the possible values of this voltage at time t1 and the random variable X2 the values at

1

2

3

4

5

6

7

8

9

10

t = 0

t

t

t

t

t

t

t

t

t

t

1Gen. No. 2 3 4 5 6 7 8 9 10 Figure 6.1

A statistically identical set of

binary waveform generators

with typical outputs.
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time t2. As in the case of the digitalwaveformgenerator, we can imaginemanynoise generators

all constructed in an identical fashion, insofar as we can make them, and run under identical

conditions. Figure 6.2(a) shows typical waveforms generated in such an experiment. Each

waveformX t; zið Þ, is referred to as a sample function, where zi is amember of a sample space S.

The totality of all sample functions is called an ensemble. The underlying chance experiment

that gives rise to the ensemble of sample functions is called a random, or stochastic, process.

Thus, to every outcome z we assign, according to a certain rule, a time function X t; zð Þ. For a
specific z, say zi,X t; zið Þ signifies a single time function. For a specific time tj ,Xðtj; zÞ denotes a
random variable. For fixed t ¼ tj and fixed z ¼ zi, Xðtj; ziÞ is a number. In what follows, we

often suppress the z.
To summarize, the difference between a randomvariable and a random process is that for a

random variable, an outcome in the sample space is mapped into a number, whereas for a

random process it is mapped into a function of time.

6.2.2 Description of Random Processes in Terms of Joint pdfs

A complete description of a random process X t; zð Þf g is given by the N-fold joint pdf that

probabilistically describes the possible values assumed by a typical sample function at times

tN > tN� 1 > � � � > t1, where N is arbitrary. For N ¼ 1, we can interpret this joint pdf

fX1
x1; t1ð Þ as

fX1
x1; t1ð Þ dx1 ¼ P x1� dx1 < X1 � x1 at time t1ð Þ ð6:1Þ

Noise

Gen. 1

X (t, 1)ζ
x1
x1 − Δx1

x2
x2 − Δx2

Noise

Gen. 2

X (t, 2)ζ x1
x1 − Δx1

x2
x2 − Δx2 

Noise

Gen. M

X (t, M)ζ
x1
x1 − Δx1 x2

x2 − Δx2

t

t

t

t

t1 t2

t1 t2

(a)

(b)

Figure 6.2

Typical sample functions of a

random process and illustration

of the relative-frequency

interpretation of its joint pdf.

(a) Ensemble of sample func-

tions. (b) Superposition of the

sample functions shown in (a).
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where X1 ¼ X t1; zð Þ. Similarly, forN ¼ 2, we can interpret the joint pdf fX1X2
x1; t1; x2; t2ð Þ as

fX1X2
x1; t1; x2; t2ð Þdx1dx2 ¼ Pðx1� dx1 < X1 � x1 at time t1;

and x2� dx2 < X2 � x2 at time t2Þ
ð6:2Þ

where X2 ¼ X t2; zð Þ.
To help visualize the interpretation of (6.2), Figure 6.2(b) shows the three sample functions

of Figure 6.2(a) superimposed with barriers placed at t ¼ t1 and t ¼ t2. According to the

relative-frequency interpretation, the joint probability given by (6.2) is the number of sample

functions that pass through the slits in both barriers divided by the total number M of sample

functions as M becomes large without bound.

6.2.3 Stationarity

We have indicated the possible dependence of fX1X2
on t1 and t2 by including them in its

argument. If X tð Þf g were a Gaussian random process, for example, its values at time t1 and t2
would be described by (5.189), where mX ;mY ;s

2
X ;s

2
Y ; and r would, in general, depend on t1

and t2.
1 Note that we need a general N-fold pdf to completely describe the random process

X tð Þf g. In general, such a pdf depends on N time instants t1; t2; . . . ; tN . In some cases, these

joint pdfs depend only on the time differences t2� t1; t3� t1; . . . ; tN � t1; that is, the choice of
time origin for the random process is immaterial. Such random processes are said to be

statistically stationary in the strict sense, or simply stationary.

For stationary processes, means and variances are independent of time, and the correlation

coefficient (or covariance) depends only on the time difference t2� t1.
2 Figure 6.3 contrasts

sample functions of stationary and nonstationary processes. It may happen that in some cases

the mean and variance of a random process are time independent and the covariance is a

function only of the time difference, but the N-fold joint pdf depends on the time origin. Such

random processes are called wide-sense stationary processes to distinguish them from strictly

stationary processes (that is, processes whose N-fold pdf is independent of time origin). Strict-

sense stationarity implies wide-sense stationarity, but the reverse is not necessarily true. An

exception occurs forGaussian random processes for which wide-sense stationarity does imply

strict-sense stationarity, since the joint Gaussian pdf is completely specified in terms of the

means, variances, and covariances of X t1ð Þ;X t2ð Þ; . . . ;X tNð Þ:

6.2.4 Partial Description of Random Processes: Ergodicity

As in the case of randomvariables, wemay not always require a complete statistical description

of a random process, or wemay not be able to obtain theN-fold joint pdf even if desired. In such

cases, we work with various moments, either by choice or by necessity. The most important

averages are the mean,

mX tð Þ ¼ E X tð Þ½ � ¼ X tð Þ ð6:3Þ
the variance,

1For a stationary process, all joint moments are independent of time origin. We are interested primarily in the

covariance, however.
2At N instants of time, if Gaussian, its values would be described by (B.1 ) of Appendix B.
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s2
X tð Þ ¼ E X tð Þ�X tð Þ

h i2� �
¼ X2 tð Þ � X tð Þ½ �2 ð6:4Þ

and the covariance,

mX t; tþ tð Þ ¼ E X tð Þ�X tð Þ
h i

X tþ tð Þ�X tþ tð Þ
h ih i

¼ E X tð ÞX tþ tð Þ½ � �X tð Þ X tþ tð Þ
ð6:5Þ

In (6.5), we let t ¼ t1 and tþ t ¼ t2. The first term on the right-hand side is the

autocorrelation function computed as a statistical, or ensemble, average (that is, the average

is across the sample functions at times t and tþ t). In terms of the joint pdf of the random

(b)

y(t)

0 2 4 6
t

8 10
−10

0

10

(c)

x(t)

0 2 4 6
t

8 10
−10

0

10

(a)

x(t)

0 2 4 6
t

8 10
−10

0

10

Figure 6.3

Sample functions of nonstationary processes contrasted with a sample function of a stationary process.

(a) Time-varying mean. (b) Time-varying variance. (c) Stationary.
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process, the autocorrelation function is

RX t1; t2ð Þ ¼
ð¥
�¥

ð¥
�¥

x1x2 fX1X2
x1; t1; x2;t2ð Þdx1 dx2 ð6:6Þ

whereX1 ¼ X t1ð Þ andX2 ¼ X t2ð Þ. If the process iswide-sense stationary, fX1X2
does not depend

on t but rather on the time difference, t ¼ t2� t1 and as a result, RX t1; t2ð Þ ¼ RX tð Þ is a

function only of t. A very important question is: If the autocorrelation function using the

definition of a time average as given in Chapter 2 is used, will the result be the same as the

statistical average given by (6.6)? For many processes, referred to as ergodic, the answer is

affirmative. Ergodic processes are processes for which time and ensemble averages are

interchangeable. Thus, if X tð Þ is an ergodic process, all time and the corresponding ensemble

averages are interchangeable. In particular,

mX ¼ E X tð Þ½ � ¼ hX tð Þi ð6:7Þ

s2
X ¼ E X tð Þ�X tð Þ

h i2� �
¼ h X tð Þ� hX tð Þi½ �2i ð6:8Þ

and

RX tð Þ ¼ E X tð ÞX tþ tð Þ½ � ¼ hX tð ÞX tþ tð Þi ð6:9Þ
where

hv tð Þi/ lim
T!¥

1

2T

ðT
� T

v tð Þdt ð6:10Þ

as defined in Chapter 2. We emphasize that for ergodic processes all time and ensemble

averages are interchangeable, not just the mean, variance, and autocorrelation function.

EXAMPLE 6.1

Consider the random process with sample functions3

n tð Þ ¼ A cos 2pf0tþ uð Þ
where f0 is a constant and Q is a random variable with the pdf

fQ uð Þ ¼
1

2p
; juj � p

0; otherwise

8<: ð6:11Þ

Computed as statistical averages, the first and second moments are

n tð Þ ¼
ð¥
�¥

A cos 2pf0tþ uð ÞfQ uð Þdu

¼
ðp
�p

A cos 2pf0tþ uð Þ du
2p
¼ 0

ð6:12Þ

3In this example we violate our earlier established convention that sample functions are denoted by capital letters.

This is quite often done if confusion will not result.
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and

n2 tð Þ ¼
ðp
�p

A2 cos2 2pf0tþ uð Þ du
2p
¼ A2

4p

ðp
�p

1þ cos 4pf0tþ 2uð Þ½ � du ¼ A2

2
ð6:13Þ

respectively. The variance is equal to the second moment, since the mean is zero.

Computed as time averages, the first and second moments are

hn tð Þi ¼ lim
T!¥

1

2T

ðT
� T

A cos 2pf0tþ uð Þdt ¼ 0 ð6:14Þ

and

hn2 tð Þi ¼ lim
T!¥

1

2T

ðT
� T

A2 cos2 2pf0tþ uð Þdt ¼ A2

2
ð6:15Þ

respectively. In general, the time average of some function of an ensemblemember of a random process is

a randomvariable. In this example, hn tð Þi and hn2 tð Þi are constants!We suspect that this randomprocess is

stationary and ergodic, even though the preceding results do not prove this. It turns out that this is indeed

true.

To continue the example, consider the pdf

fQ uð Þ ¼
2

p
; juj � 1

4
p

0; otherwise

8<: ð6:16Þ

For this case, the expected value, or mean, of the random process computed at an arbitrary time t is

n2 tð Þ ¼
ðp=4
�p=4

A cos 2pf0tþ uð Þ 2
p
du

¼ 2

p
A sin 2p f0tþ uð Þ

				p=4
�p=4

¼ 2
ffiffiffi
2
p

A

p
cos 2pf0tð Þ

ð6:17Þ

The second moment, computed as a statistical average, is

n2 tð Þ ¼
ðp=4
�p=4

A2 cos2 2pf0tþ uð Þ 2
p
du

¼
ðp=4
�p=4

A2

p
1þ cos 4pf0tþ 2uð Þ½ �du

¼ A2

2
þ A2

p
cos 4pf0tð Þ

ð6:18Þ

Since stationarity of a random process implies that all moments are independent of time origin, these

results show that this process is not stationary. In order to comprehend the physical reason for this, you

should sketch some typical sample functions. In addition, this process cannot be ergodic, since ergodicity

requires stationarity. Indeed, the time-average first and second moments are still hn tð Þi ¼ 0 and

hn2 tð Þi ¼ 1
2
A2, respectively. Thus we have exhibited two time averages that are not equal to the

corresponding statistical averages.

&
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6.2.5 Meanings of Various Averages for Ergodic Processes

It is useful to pause at this point and summarize themeanings of various averages for an ergodic

process:

1. The mean X tð Þ ¼ hX tð Þi is the DC component.

2. X tð Þ2 ¼ hX tð Þi2 is the DC power.

3. X2 tð Þ ¼ hX2 tð Þi is the total power.
4. s2

X ¼ X2 tð Þ �X tð Þ2 ¼ hX2 tð Þi� hX tð Þi2 is the power in the alternating current (AC) (time-

varying) component.

5. The total power X2 tð Þ ¼ s2
X þX tð Þ2 is the AC power plus the direct current (DC) power.

Thus, in the case of ergodic processes, we see that these moments are measurable quantities in

the sense that they can be replaced by the corresponding time averages and that a finite-time

approximation to these time averages can be measured in the laboratory.

EXAMPLE 6.2

Consider a random telegraph waveform X tð Þ, as illustrated in Figure 6.4. The sample functions of this

random process have the following properties:

1. The values taken on at any time instant t0 are either X t0ð Þ ¼ A or X t0ð Þ ¼ �Awith equal probability.

2. The number k of switching instants in any time interval T obeys a Poisson distribution, as defined by

5:182ð Þ, with the attendant assumptions leading to this distribution. (That is, the probability of more

than one switching instant occurring in an infinitesimal time interval dt is zero, with the probability of

exactly one switching instant occurring in dt beingadt, wherea is a constant. Furthermore, successive

switching occurrences are independent.)

If t is any positive time increment, the autocorrelation function of the random process defined by the

preceding properties can be calculated as

RX tð Þ ¼ E X tð ÞX tþ tð Þ½ �
¼ A2P X tð Þ and X tþ tð Þ have the same sign½ �
þ �A2

 �

P X tð Þ and X tþ tð Þ have different signs½ �
¼ A2P even number of switching instants in t; tþ tð Þ½ �
�A2P odd number of switching instants in t; tþ tð Þ½ �

¼ A2
X¥
k¼0
k even

atð Þk
k!

exp �atð Þ�A2
X¥
k¼0
k odd

atð Þk
k!

exp �atð Þ

¼ A2 exp �atð Þ
X¥
k¼0

�atð Þk
k!

¼ A2 exp �atð Þ exp �atð Þ ¼ A2 exp � 2atð Þ

ð6:19Þ

X(t)

A

−A

t1 t2 t3 t4 t5 t6 t7
t

Figure 6.4

Sample function of a random

telegraph waveform.
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The preceding development was carried out under the assumption that twas positive. It could have been
similarly carried out with t negative, such that

RX tð Þ ¼ E X tð ÞX t� jtjð Þ½ � ¼ E X t� jtjð ÞX tð Þ½ � ¼ A2 exp � 2ajtjð Þ ð6:20Þ
This is a result that holds for all t. That is, RX tð Þ is an even function of t, which we will show in general

shortly.

&

n 6.3 CORRELATION AND POWER SPECTRAL DENSITY

The autocorrelation function, computed as a statistical average, has been defined by (6.6). If a

process is ergodic, the autocorrelation function computed as a time average, as first defined in

Chapter 2, is equal to the statistical average of (6.6). In Chapter 2, we defined the power spectral

density S fð Þ as the Fourier transform of the autocorrelation function R tð Þ. The Wiener–

Khinchine theorem is a formal statement of this result for stationary random processes, for

which R t1; t2ð Þ ¼ R t2� t1ð Þ ¼ R tð Þ. For such processes, previously defined as wide-sense

stationary, the power spectral density and autocorrelation function are Fourier transform pairs.

That is,

S fð Þ  ! R tð Þ ð6:21Þ
If the process is ergodic, R tð Þ can be calculated as either a time or an ensemble average.

Since RX 0ð Þ ¼ X2 tð Þ is the average power contained in the process, we have from the

inverse Fourier transform of SX fð Þ that
Average power ¼ RX 0ð Þ ¼

ð¥
�¥

SX fð Þ df ð6:22Þ

which is reasonable, since the definition of SX fð Þ is that it is power density with respect to

frequency.

6.3.1 Power Spectral Density

An intuitively satisfying, and in some cases computationally useful, expression for the power

spectral density of a stationary random process can be obtained by the following approach.

Consider a particular sample function n t; zið Þ of a stationary random process. To obtain a

function giving power density versus frequency using the Fourier transform, we consider a

truncated version, nT t; zið Þ, defined as4

nT t; zið Þ ¼ n t; zið Þ jtj < 1

2
T

0; otherwise

8<: ð6:23Þ

Since sample functions of stationary randomprocesses are power signals, the Fourier transform

of n t; zið Þ does not exist, which necessitates defining nT t; zið Þ. The Fourier transform of a

4Again, we use a lowercase letter to denote a random process for the simple reason that we need to denote the Fourier

transform of n(t) by an uppercase letter.
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truncated sample function is

NT f ; zið Þ ¼
ðT=2
�T=2

n t; zið Þe� j2pf t dt ð6:24Þ

and its energy spectral density, according to (2.90), is jNT f ; zið Þj2. The time-average power

density over the interval �1
2
T; 1

2
T

 �
for this sample function is jNT f ; zið Þj2=T . Since this time-

average power density depends on the particular sample function chosen, we perform an

ensemble average and take the limit as T!¥ to obtain the distribution of power density with

frequency. This is defined as the power spectral density Sn fð Þ which can be expressed as

Sn fð Þ ¼ lim
T!¥

jNT f ; zið Þj2
T

ð6:25Þ

The operations of taking the limit and taking the ensemble average in (6.25) cannot be

interchanged.

EXAMPLE 6.3

Let us find the power spectral density of the random process considered in Example 6.1 using (6.25). In

this case,

nT t;Qð Þ ¼ AP
�

t

T

�
cos 2pf0 tþ Q

2pf0

� �� �
ð6:26Þ

By the time-delay theorem of Fourier transforms and using the transform pair

cos 2pf 0tð Þ ! 1

2
d f � f0ð Þþ 1

2
d f þ f0ð Þ ð6:27Þ

we obtain

= cos 2pf0tþQð Þ½ � ¼ 1

2
d f � f0ð Þe jQþ 1

2
d f þ f0ð Þe�jQ ð6:28Þ

We also recall fromChapter 2 (Example 2.8) thatP t=Tð Þ ! T sinc Tf , so by themultiplication theorem

of Fourier transforms,

NT f ;Qð Þ ¼ ATsinc Tfð Þ*
�
1

2
d f � f0ð Þe jQþ 1

2
d f þ f0ð Þe� jQ

�
¼ 1

2
AT e jQsinc f � f0ð ÞT þ e� jQsinc f þ f0ð ÞT � ð6:29Þ

Therefore, the energy spectral density of the sample function is

jNTð f ;QÞj2 ¼
�
1

2
AT

�2
sinc2T



f � f0

�þ e2jQsincT


f � f0

�
sincT



f þ f0

�
þe� 2jQsincT



f � f0

�
sincT



f þ f0

�þ sinc2T


f þ f0

�� ð6:30Þ

In obtaining jNT f ;Qð Þj2
h i

, we note that

exp �j2Qð Þ ¼
ðp
�p

e�j2Q
du

2p
¼
ðp
�p

cos 2u� j sin 2uð Þ du
2p
¼ 0 ð6:31Þ
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Thus we obtain

jNT f ;Qð Þj2 ¼ 1

2
AT

� �2

sinc2T f � f0ð Þþ sinc2T f þ f0ð Þ � ð6:32Þ

and the power spectral density is

Sn fð Þ ¼ lim
T!¥

1

4
A2 T sinc2T f � f0ð Þþ T sinc2T f þ f0ð Þ � ð6:33Þ

However, a representation of the delta function is limT!¥Tsinc
2 Tu ¼ d uð Þ. [See Figure 2.4(b).]

Thus

Sn fð Þ ¼ 1

4
A2d f � f0ð Þþ 1

4
A2d f þ f0ð Þ ð6:34Þ

The average power is
Ð¥
�¥ Sn fð Þdf ¼ 1

2
A2, the same as obtained in Example 6.1.

&

6.3.2 The Wiener–Khinchine Theorem

The Wiener–Khinchine theorem states that the autocorrelation function and power spectral

density of a stationary random process are Fourier transform pairs. It is the purpose of this

subsection to provide a formal proof of this statement.

To simplify the notation in the proof of theWiener–Khinchine theorem, we rewrite (6.25)

as

Sn fð Þ ¼ lim
T!¥

E j= n2T tð Þ½ �j2
h i

2T
ð6:35Þ

where, for convenience, we have truncated over a 2T-s interval and dropped z in the argument

of n2T tð Þ. Note that

j= n2T tð Þ½ �j2 ¼
				 ðT� T

n tð Þe� jvt dt

				2; v ¼ 2pf

¼
ðT
� T

ðT
�T

n tð Þn sð Þe� jv t�sð Þ dtds
ð6:36Þ

where the product of two integrals has been written as an iterated integral. Taking the ensemble

average and interchanging the orders of averaging and integration, we obtain

E j= n2T tð Þ½ �j2
n o

¼
ðT
� T

ðT
�T

E n tð Þn sð Þf ge� jv t�sð Þ dtds

¼
ðT
�T

ðT
� T

Rn t�sð Þe� jv t�sð Þ dtds
ð6:37Þ

by the definition of the autocorrelation function. The change of variables u ¼ t � s and v ¼ t

is nowmadewith the aid of Figure 6.5. In the uv plane, we integrate over v first and then over u

by breaking the integration over u up into two integrals, one for u negative and one for u
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positive. Thus

E j= n2T tð Þ½ �j2
n o

¼
ð0
u¼� 2T

Rn uð Þe� jvu

ðuþ T

�T

dv

� �
duþ

ð2T
u¼0

Rn uð Þe� jvu

ðT
u�T

dv

� �
du

¼
ð0
� 2T

2T þ uð ÞRn uð Þe� jvuþ
ð2T
0

2T � uð ÞRn uð Þe� jvu du

¼ 2T

ð2T
� 2T

�
1� juj

2T

�
Rn uð Þe� jvu du

ð6:38Þ

ð6:38Þ
The power spectral density is, by (6.35),

Sn fð Þ ¼ lim
T!¥

ð2T
�2T

1� juj
2T

� �
Rn uð Þe� jvu du ð6:39Þ

which is the limit as T!¥ results in (6.21).

EXAMPLE 6.4

Since the power spectral density and the autocorrelation function are Fourier transform pairs, the

autocorrelation function of the random process defined in Example 6.1 is, from the result of Example 6.3,

given by

Rn tð Þ ¼ =�1
�
1

4
A2d f � f0ð Þþ 1

4
A2d f þ f0ð Þ

�
¼ 1

2
A2cos 2p f0tð Þ

ð6:40Þ

Computing Rn tð Þ as an ensemble average, we obtain

Rn tð Þ ¼ E n tð Þn tþ tð Þ½ �
¼
ðp
�p

A2cos 2p f0tþ uð Þ cos 2p f0 tþ tð Þþ u½ � du
2p

¼ A2

4p

ðp
�p

�
cos2p f0tþ cos½2p f0 2tþ tð Þþ 2u�

�
du ð6:41Þ

¼ 1

2
A2 cos 2pf0tð Þ

which is the same result as that obtained using the Wiener–Khinchine theorem.

&

2T
−2T

−T

T

−T

T

−T
ut

v

T

σ Figure 6.5

Regions of integration

for (6.37).
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6.3.3 Properties of the Autocorrelation Function

The properties of the autocorrelation function for a stationary random process X tð Þwere stated
in Chapter 2, at the end of Section 2.6, and all time averages may now be replaced by statistical

averages. These properties are now easily proved.

Property 1 states that jR tð Þj � R 0ð Þ for all t. To show this, consider the nonnegative

quantity

X tð Þ � X tþ tð Þ½ �2 	 0 ð6:42Þ
where X tð Þf g is a stationary random process. Squaring and averaging term by term, we obtain

X2 tð Þ � 2X tð ÞX tþ tð Þ þX2 tþ tð Þ 	 0 ð6:43Þ
which reduces to

2R 0ð Þ � 2R tð Þ 	 0 or �R 0ð Þ � R tð Þ � R 0ð Þ ð6:44Þ
because X2 tð Þ ¼ X2 tþ tð Þ ¼ R 0ð Þ by the stationarity of X tð Þf g.

Property 2 states that R � tð Þ ¼ R tð Þ. This is easily proved by noting that

R tð Þ/X tð ÞX tþ tð Þ ¼ X t0 � tð ÞX t0ð Þ ¼ X t0ð ÞX t0 � tð Þ/R � tð Þ ð6:45Þ
where the change of variables t0 ¼ tþ t has been made.

Property 3 states that limjtj!¥R tð Þ ¼ X tð Þ2 if X tð Þf g does not contain a periodic

component. To show this, we note that

lim
jtj!¥

R tð Þ / lim
jtj!¥

X tð ÞX tþ tð Þ
ffi XðtÞX tþ tð Þ; where jtj is large
¼ X tð Þ 2

ð6:46Þ

where the second step follows intuitively because the interdependence between X tð Þ and
X tþ tð Þ becomes smaller as jtj!¥ (if no periodic components are present) and the last step

results from the stationarity of X tð Þf g:
Property 4, which states that R tð Þ is periodic if X tð Þf g is periodic, follows by noting from

the time-average definition of the autocorrelation function given by 2:161ð Þ that periodicity of
the integrand implies periodicity of R tð Þ.

Property 5, which says that = R tð Þ½ � is nonnegative, is a direct consequence of the

Wiener–Khinchine theorem (6.21) and (6.25) from which it is seen that the power spectral

density is nonnegative.

EXAMPLE 6.5

Processes for which

S fð Þ ¼
1

2
N0; j f j � B

0; otherwise

8<: ð6:47Þ

whereN0 is constant, are commonly referred to as bandlimitedwhite noise, since asB!¥, all frequencies
are present, in which case the process is simply calledwhite.N0 is the single-sided power spectral density

of the nonbandlimited process. For a bandlimited white-noise process,
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R tð Þ ¼
ðB
�B

1

2
N0 exp j2p f tð Þdf

¼ N0

2

exp j2p f tð Þ
j2pt

				B
�B

¼ BN0

sin 2pBtð Þ
2pBt

¼ BN0 sinc 2Btð Þ

ð6:48Þ

As B!¥;R tð Þ! 1
2
N0d tð Þ. That is, no matter how close together we sample a white-noise process, the

samples have zero correlation. If, in addition, the process is Gaussian, the samples are independent. A

white-noise process has infinite power and is therefore a mathematical idealization, but it is nevertheless

useful in systems analysis.

&

6.3.4 Autocorrelation Functions for Random Pulse Trains

As another example of calculating autocorrelation functions, consider a random process with

sample functions that can be expressed as

X tð Þ ¼
X¥
k¼�¥

akp t� kT �Dð Þ ð6:49Þ

where . . . ; a�1; a0; a1; . . . ; ak; . . . is a doubly infinite sequence of random variables with

E ak akþm½ � ¼ Rm ð6:50Þ
The function p tð Þ is a deterministic pulse-type waveform, where T is the separation between

pulses;D is a random variable that is independent of the value of ak and uniformly distributed in

the interval �T=2; T=2ð Þ.5 The autocorrelation function of this waveform is

RX tð Þ ¼ E X tð ÞX tþ tð Þ½ �

¼ E
X¥
k¼�¥

X¥
m¼�¥

akakþmp t� kT �Dð Þp tþ t� kþmð ÞT �D½ �
" #

ð6:51Þ

Taking the expectation inside the double sum and making use of the independence of the

sequence ak akþmf g and the delay variable D, we obtain

RX tð Þ ¼
X¥
k¼�¥

X¥
m¼�¥

E akakþm½ �E p t� kT �Dð Þp tþ t� kþmð ÞT �D½ �½ �

¼
X¥

m¼�¥
Rm

X¥
k¼�¥

ðT=2
� T=2

p t� kT �Dð Þp tþ t� kþmð ÞT �D½ � dD
T

ð6:52Þ

The change of variables u ¼ t� kT �D inside the integral results in

5Including the random variable D in the definition of the sample functions for the process guarantees wide-sense

stationarity. If it was not included, X(t) would be what is referred to as a cyclostationary random process.
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RX tð Þ ¼
X¥

m¼�¥
Rm

X¥
k¼�¥

ðt� k� 1=2ð ÞT

t� kþ 1=2ð ÞT
p uð Þp uþ t�mTð Þ du

T

¼
X¥

m¼�¥
Rm

�
1

T

ð¥
�¥

p uþ t�mTð Þp uð Þdu
� ð6:53Þ

Finally, we have

RX tð Þ ¼
X¥

m¼�¥
Rm r t�mTð Þ ð6:54Þ

where

r tð Þ/ 1

T

ð¥
�¥

p tþ tð Þp tð Þdt ð6:55Þ

is the pulse-correlation function. We consider the following example as an illustration.

EXAMPLE 6.6

In this example we consider a situation where the sequence akf g has memory built into it by the

relationship

ak ¼ g0Ak þ g1Ak� 1 ð6:56Þ
where g0 and g1 are constants and the Ak are random variables such that Ak ¼ � A, where the sign is

determined by a randomcoin toss independently frompulse to pulse for allk (note that if g1 ¼ 0 there is no

memory). It can be shown that

E ak akþm½ � ¼
g20þ g21

 �

A2; m ¼ 0

g0g1A
2; m ¼ �1

0; otherwise

8<: ð6:57Þ

The assumed pulse shape is p tð Þ ¼ P t=tð Þ so that the pulse-correlation function is

r tð Þ ¼ 1

T

ð¥
�¥

P
�
tþ t
T

�
P
�

t

T

�
dt

¼ 1

T

ðT=2
�T=2

P
�
tþ t
T

�
dt ¼ L

�
t
T

� ð6:58Þ

where, from Chapter 2, L t=Tð Þ is a unit-height triangular pulse symmetrical about t ¼ 0 of width 2T .

Thus, the autocorrelation function (6.54) becomes

RX tð Þ ¼ A2 g20þ g21

 �

L
t
T

� �
þ g0g1 L

tþ T

T

� �
þL

t� T

T

� �� �� �
ð6:59Þ

Applying the Wiener–Khinchine theorem, the power spectral density of X tð Þ is found to be

SX fð Þ ¼ = RX tð Þ½ � ¼ A2Tsinc2 f Tð Þ g20þ g21þ 2g0g1cos 2pf Tð Þ � ð6:60Þ
Figure 6.6 compares the power spectra for the two cases: (1) g0 ¼ 1 and g1 ¼ 0 (i.e., no memory), and (2)

g0 ¼ g1 ¼ 1=
ffiffiffi
2
p

(reinforcing memory between adjacent pulses). For case (1), the resulting power
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spectral density is

SX fð Þ ¼ A2T sinc2 f Tð Þ ð6:61Þ
while for case (2) it is

SX fð Þ ¼ 2A2T sinc2 f Tð Þ cos2 pf Tð Þ ð6:62Þ
In both cases, g0 and g1 have been chosen to give a total power of 1W, which is verified from the plots by

numerical integration. Note that in case (2) memory has confined the power sepectrummore than without

it. Yet a third case is shown in the bottom plot for which (3) g0 ¼ � g1 ¼ 1=
ffiffiffi
2
p

. Now the spectral width is

doubled over case (2), but a spectral null appears at f ¼ 0.

Other values for g0 and g1 can be assumed, andmemory betweenmore than just adjacent pulses also

can be assumed.

&

6.3.5 Cross-Correlation Function and Cross-Power Spectral Density

Supposewewish to find the power in the sumof two noise voltagesX tð Þ andY tð Þ.Wemight ask

if we can simply add their separate powers. The answer is, in general, no. To see why, consider

n tð Þ ¼ X tð Þþ Y tð Þ ð6:63Þ
whereX tð Þ and Y tð Þ are two stationary random voltages that may be related (that is, that are not

necessarily statistically independent). The power in the sum is

2

1.5

1

0.5

S X
1(

f)
, W

/H
z

0
–5 –4 –3 –2 –1 0 1
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2 3 4 5

2
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1

0.5

S X
2(

f)
, W

/H
z

0
–5 –4 –3 –2 –1

fT

fT

0 1

g0 = 0.707; g1 = 0.707
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2

1.5
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0.5
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3(

f)
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/H
z

0
–5 –4 –3 –2 –1 0 1

g0 = 0.707; g1 = –0.707
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Figure 6.6

Power spectra of binary-valued waveforms. (a) Case in which there is nomemory. (b) Case in which there

is reinforcing memory between adjacent pulses.(c) Case where the memory between adjacent pulses is

antipodal.
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E n2 tð Þ � ¼ E X tð Þþ Y tð Þ½ �2
h i

¼ E X2 tð Þ �þ 2E X tð ÞY tð Þ½ � þE Y2 tð Þ �
¼ PX þ 2PXY þPY

ð6:64Þ

wherePX andPY are the powers ofX tð Þ andY tð Þ, respectively, andPXY is the cross power.More

generally, we define the cross-correlation function as

RXY tð Þ ¼ E X tð ÞY tþ tð Þ½ � ð6:65Þ
In terms of the cross-correlation function, PXY ¼ RXY 0ð Þ. A sufficient condition for PXY to

be zero, so that we may simply add powers to obtain total power, is that

RXY tð Þ ¼ 0 for all t ð6:66Þ
Such processes are said to be orthogonal. If processes are statistically independent and at least

one of them has zero mean, they are orthogonal. However, orthogonal processes are not

necessarily statistically independent.

Cross-correlation functions can be defined for nonstationary processes also, in which case

we have a function of two independent variables. We will not need to be this general in our

considerations.

A useful symmetry property of the cross-correlation function for jointly stationary

processes is

RXY tð Þ ¼ RYX �tð Þ ð6:67Þ
which can be shown as follows. By definition,

RXY tð Þ ¼ E X tð ÞY tþ tð Þ½ � ð6:68Þ
Defining t0 ¼ tþ t; we obtain

RXY tð Þ ¼ E Y t0ð ÞX t0 � tð Þ½ �/RYX �tð Þ ð6:69Þ
since the choice of time origin is immaterial for stationary processes.

The cross-power spectral density of two stationary random processes is defined as the

Fourier transform of their cross-correlation function:

SXY fð Þ ¼ = RXY tð Þ½ � ð6:70Þ
It provides, in the frequency domain, the same information about the random processes as does

the cross-correlation function.

n 6.4 LINEAR SYSTEMS AND RANDOM PROCESSES

6.4.1 Input–Output Relationships

In the consideration of the transmission of stationary random waveforms through fixed linear

systems, a basic tool is the relationship of the output power spectral density to the input power

spectral density, given as

Sy fð Þ ¼ jH fð Þj2Sx fð Þ ð6:71Þ
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The autocorrelation function of the output is the inverse Fourier transform of Sy fð Þ:6

Ry tð Þ ¼ =� 1 Sy fð Þ � ¼ ð¥
�¥
jH fð Þj2Sx fð Þe j2pf tdf ð6:72Þ

H fð Þ is the system�s frequency-response function, Sx fð Þ is the power spectral density of the

inputx tð Þ, Sy fð Þ is the power spectral density of the output y tð Þ, andRy tð Þ is the autocorrelation
function of the output. The analogous result for energy signals was proved in Chapter 2 (2.200),

and the result for power signals was simply stated.

A proof of (6.71) could be carried out by employing (6.25). We will take a somewhat

longer route, however, and obtain several useful intermediate results. In addition, the proof

provides practice in manipulating convolutions and expectations.

We begin by obtaining the cross-correlation function between input and output, Rxy tð Þ,
defined as

Rxy tð Þ ¼ E x tð Þy tþ tð Þ½ � ð6:73Þ
Using the superposition integral, we have

y tð Þ ¼
ð¥
�¥

h uð Þx t� uð Þdu ð6:74Þ

where h tð Þ is the system�s impulse response. Equation (6.74) relates each sample function of

the input and output processes, so we can write (6.73) as

Rxy tð Þ ¼ E x tð Þ
ð¥
�¥

h uð Þx tþ t� uð Þdu
� �

ð6:75Þ

Since the integral does not depend on t, we can take x tð Þ inside and interchange the operations
of expectation and convolution. (Both are simply integrals over different variables.) Since h uð Þ
is not random, (6.75) becomes

Rxy tð Þ ¼
ð¥
�¥

h uð ÞE x tð Þx tþ t� uð Þ½ �du ð6:76Þ

By definition of the autocorrelation function of x tð Þ,
E x tð Þx tþ t� uð Þ½ � ¼ Rx t� uð Þ ð6:77Þ

Thus (6.76) can be written as

Rxy tð Þ ¼
ð¥
�¥

h uð ÞRx t� uð Þdu/h tð Þ*Rx tð Þ ð6:78Þ

That is, the cross-correlation function of input x tð Þ with output y tð Þ is the autocorrelation

function of the input convolved with the system�s impulse response, an easily remembered

result. Since (6.78) is a convolution, the Fourier transform of Rxy tð Þ, the cross-power spectral
density of x tð Þ with y tð Þ; is

Sxy fð Þ ¼ H fð ÞSx fð Þ ð6:79Þ

6For the remainder of this chapter we use lower case x and y to denote input and output random-process signals in

keeping with Chapter 2 notation.
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From the time-reversal theorem of Table G.6, the cross-power spectral density Syx fð Þ is
Syx fð Þ ¼ = Ryx tð Þ � ¼ = Rxy � tð Þ � ¼ S*xy fð Þ ð6:80Þ

Employing (6.79) and using the relationships H* fð Þ ¼ H �fð Þ and S*x fð Þ ¼ Sx fð Þ (where
Sx fð Þ is real), we obtain

Syx fð Þ ¼ H �fð ÞSx fð Þ ¼ H* fð ÞSx fð Þ ð6:81Þ
where the order of the subscripts is important. Taking the inverse Fourier transform of (6.81)

with the aid of the convolution theorem of Fourier transforms in Table G.6, and again using the

time-reversal theorem, we obtain

Ryx tð Þ ¼ h � tð Þ*Rx tð Þ ð6:82Þ
Let us pause to emphasize what we have obtained. By definition, Rxy tð Þ can be written as

Rxy tð Þ/E½x tð Þ h tð Þ*x tþ tð Þ½ ��|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
y tþ tð Þ

ð6:83Þ

Combining this with (6.78), we have

E x tð Þ h tð Þ*x tþ tð Þ½ �½ � ¼ h tð Þ*Rx tð Þ/h tð Þ*E x tð Þx tþ tð Þ½ � ð6:84Þ
Similarly, (6.82) becomes

Ryx tð Þ / E½ h tð Þ*x tð Þ½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
y tð Þ

x tþ tð Þ� ¼ h � tð Þ*Rx tð Þ

/ h �tð Þ*E x tð Þx tþ tð Þ½ � ð6:85Þ
Thus, bringing the convolution operation outside the expectation gives a convolution of h tð Þ
with the autocorrelation function if h tð Þ*x tþ tð Þ is inside the expectation, or a convolution of
h �tð Þ with the autocorrelation function if h tð Þ*x tð Þ is inside the expectation.

These results are combined to obtain the autocorrelation function of the output of a linear

system in terms of the input autocorrelation function as follows:

Ry tð Þ/E y tð Þy tþ tð Þ½ � ¼ E y tð Þ h tð Þ*x tþ tð Þ½ �½ � ð6:86Þ

which follows because y tþ tð Þ ¼ h tð Þ*x tþ tð Þ. Using (6.84) with x tð Þ replaced by y tð Þ, we
obtain

Ry tð Þ ¼ h tð Þ*E y tð Þx tþ tð Þ½ �
¼ h tð Þ*Ryx tð Þ
¼ h tð Þ* h � tð Þ*Rx tð Þ½ �

ð6:87Þ

where the last line follows by substituting from (6.82). Written in terms of integrals, (6.87) is

Ry tð Þ ¼
ð¥
�¥

ð¥
�¥

h uð Þh vð ÞRx tþ v� uð Þdvdu ð6:88Þ

ð6:85Þ
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The Fourier transform of (6.87) or (6.88) is the output power spectral density and is easily

obtained as follows:

Sy fð Þ/ = Ry tð Þ � ¼ = h tð Þ*Ryx tð Þ �
¼ H fð ÞSyx fð Þ
¼ jH fð Þj2Sx fð Þ

ð6:89Þ

where (6.81) has been substituted to obtain the last line.

EXAMPLE 6.7

The input to a filter with impulse response h tð Þ and frequency response function H fð Þ is a white-noise
process with power spectral density,

Sx fð Þ ¼ 1

2
N0; �¥ < f < ¥ ð6:90Þ

The cross-power spectral density between input and output is

Sxy fð Þ ¼ 1

2
N0H fð Þ ð6:91Þ

and the cross-correlation function is

Rxy tð Þ ¼ 1

2
N0h tð Þ ð6:92Þ

Hence, we could measure the impulse response of a filter by driving it with white noise and determining

the cross-correlation function of inputwith output.Applications include system identification and channel

measurement.

&

6.4.2 Filtered Gaussian Processes

Suppose the input to a linear system is a stationary random process. What can we say about the

output statistics? For general inputs and systems, this is usually a difficult question to answer.

However, if the input to a linear system is Gaussian, the output is also Gaussian.

A nonrigorous demonstration of this is carried out as follows. The sum of two independent

Gaussian random variables has already been shown to be Gaussian. By repeated application of

this result, we can find that the sumof any number of independent Gaussian randomvariables is

Gaussian.7 For a fixed linear system, the output y tð Þ in terms of the input x tð Þ is given by

y tð Þ ¼
ð¥
�¥

x tð Þh t� tð Þdt

¼ lim
Dt! 0

X¥
k¼�¥

x kDtð Þh t� kDtð ÞDt
ð6:93Þ

where h tð Þ is the impulse response. Bywriting the integral as a sum,we have demonstrated that

if x tð Þ is a white Gaussian process, the output is also Gaussian (but not white) because, at any
time t, the right-hand side of (6.93) is simply a linear combination of independent Gaussian

7This also follows from Appendix B (B.13).
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random variables. (Recall Example 6.5, where the autocorrelation function of white noise was

shown to be a constant times an impulse. Also recall that uncorrelated Gaussian random

variables are independent.)

If the input is not white, we can still show that the output is Gaussian by considering the

cascade of two linear systems, as shown in Figure 6.7. The system in question is the onewith the

impulse response h tð Þ. To show that its output is Gaussian, we note that the cascade of h1 tð Þ
with h tð Þ is a linear system with the impulse response

h2 tð Þ ¼ h1 tð Þ*h tð Þ ð6:94Þ
This system�s input, z tð Þ, is Gaussian and white. Therefore, its output, y tð Þ, is also Gaussian by
application of the theorem just proved. However, the output of the system with impulse

response h1 tð Þ is Gaussian by application of the same theorem, but not white. Hence the output

of a linear system with nonwhite Gaussian input is Gaussian.

EXAMPLE 6.8

The input to the lowpass RC filter shown in Figure 6.8 is white Gaussian noise with the power spectral

density Sni fð Þ ¼ 1
2
N0; �¥ < f < ¥. The power spectral density of the output is

Sn0 fð Þ ¼ Sni fð ÞjH fð Þj2 ¼
1
2
N0

1þ f=f3ð Þ2 ð6:95Þ

where f3 ¼ 2pRCð Þ� 1
is the filter�s 3-dB cutoff frequency. Inverse Fourier transforming Sn0 fð Þ, we

obtain Rn0 tð Þ, the output autocorrelation function, which is

Rn0 tð Þ ¼ pf3N0

2
e� 2p f3jtj ¼ N0

4RC
e� jtj=RC;

1

RC
¼ 2p f3 ð6:96Þ

The square of the mean of n0 tð Þ is
n0 tð Þ2 ¼ lim

jtj!¥
Rn0 tð Þ ¼ 0 ð6:97Þ

and the mean-squared value, which is also equal to the variance since the mean is zero, is

n20 tð Þ ¼ s2
n0
¼ Rn0 0ð Þ ¼ N0

4RC
ð6:98Þ

h(t)

H( f )
y(t)z(t) x(t)

h1 (t)

H1 ( f )
(White and
Gaussian)

(Nonwhite and
Gaussian)

Figure 6.7

Cascade of two linear systems with

Gaussian input.

~ ni(t) n0(t)

R

C

Figure 6.8

A lowpass RC filter with a white-noise

input.
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Alternatively,we can find the average power at the filter output by integrating the power spectral density of

n0 tð Þ. The same result is obtained as above:

n20 tð Þ ¼
ð¥
�¥

1
2
N0

1þ f=f3ð Þ2 df ¼
N0

2pRC

ð¥
0

dx

1þ x2
¼ N0

4RC
ð6:99Þ

Since the input is Gaussian, the output is Gaussian as well. The first-order pdf is

fn0 y; tð Þ ¼ fn0 yð Þ ¼ e� 2RCy2=N0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pN0=2RC

p ð6:100Þ

by employing (5.194). The second-order pdf at time t and tþ t is found by substitution into (5.189).

Letting X be a random variable that refers to the values the output takes on at time t and Y be a random

variable that refers to the values the output takes on at time tþ t, we have, from the preceding results,

mx ¼ my ¼ 0 ð6:101Þ

s2
x ¼ s2

y ¼
N0

4RC
ð6:102Þ

and the correlation coefficient is

r tð Þ ¼ Rn0 tð Þ
Rn0 0ð Þ ¼ e� jtj=RC ð6:103Þ

Referring to Example 6.2, one can see that the random telegraph waveform has the same autocorrelation

function as that of the output of the lowpass RC filter of Example 6.8 (with constants appropriately

chosen). This demonstrates that processes with drastically different sample functions can have the same

second-order averages.

&

6.4.3 Noise-Equivalent Bandwidth

If we pass white noise through a filter that has the frequency-response function H fð Þ, the
average power at the output, by (6.72) with t ¼ 0, is

Pn0 ¼
ð¥
�¥

1

2
N0jH fð Þj2 df ¼ N0

ð¥
0

jH fð Þj2 df ð6:104Þ

where 1
2
N0 is the two-sided power spectral density of the input. If the filter were ideal with

bandwidthBN andmidband (maximum) gain8H0, as shown in Figure 6.9, the noise power at the

output would be

Pn0 ¼ H2
0

1

2
N0

� �
2BNð Þ ¼ N0BNH

2
0 ð6:105Þ

The questionwe now ask is the following:What is the bandwidth of an ideal, fictitious filter that

has the same midband gain asH fð Þ and that passes the same noise power? If the midband gain

of H fð Þ is H0, the answer is obtained by equating the preceding two results. Thus

8Assumed to be finite.
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BN ¼ 1

H2
0

ð¥
0

jH fð Þj2 df ð6:106Þ

is the single-side bandwidth of the fictitious filter. BN is called the noise-equivalent bandwidth

of H fð Þ.
It is sometimes useful to determine the noise-equivalent bandwidth of a system using time-

domain integration. Assume a lowpass system with maximum gain at f ¼ 0 for simplicity. By

Rayleigh�s energy theorem [see 2:89ð Þ], we haveð¥
�¥
jH fð Þj2 df ¼

ð¥
�¥
jh tð Þj2 dt ð6:107Þ

Thus, (6.106) can be written as

BN ¼ 1

2H2
0

ð¥
0

jh tð Þj2 dt ¼
Ð¥
�¥ jh tð Þj2 dt

2
Ð¥
�¥ h tð Þdt �2 ð6:108Þ

where it is noted that

H0 ¼ H fð Þjf¼0 ¼
ð¥
�¥

h tð Þe� j2p ftdt jf¼0 ¼
ð¥
�¥

h tð Þdt ð6:109Þ

For some systems, (6.108) is easier to evaluate than (6.106).

EXAMPLE 6.9

Assume that a filter has the amplitude-response function illustrated in Figure 6.10(a). Note that assumed

filter is not realizable. The purpose of this problem is to provide an illustration of the computation ofBN for

a simple filter. The first step is to square jH fð Þj to give jH fð Þj2, as shown in Figure 6.10(b). By simple

geometry, the area under jH fð Þj2 for nonnegative frequencies is

A ¼
ð¥
0

jH fð Þj2df ¼ 50 ð6:110Þ

Note also that the maximum gain of the actual filter isH0 ¼ 2. For the ideal filter with amplitude response

denoted byHe fð Þ, which is ideal bandpass centered at 15 Hz of single-sided bandwidth BN and passband

gain H0, we want ð¥
0

jH fð Þj2df ¼ H2
0BN ð6:111Þ

or

50 ¼ 22BN ð6:112Þ

Figure 6.9

Comparison between jH fð Þj2 and an

idealized approximation.

|H( f )|2

H0
2

BN

f
0
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from which

BN ¼ 12:5 Hz ð6:113Þ

&

EXAMPLE 6.10

The noise-equivalent bandwidth of an nth-order Butterworth filter for which

jHn fð Þj2 ¼ 1

1þ f=f3ð Þ2n ð6:114Þ

is

BN nð Þ ¼
ð¥
0

1

1þ f=f3ð Þ2n df ¼ f3

ð¥
0

1

1þ x2n
dx

¼ p f3=2n

sin p=2nð Þ ; n ¼ 1; 2; . . .

ð6:115Þ

where f3 is the 3-dB frequency of the filter. For n ¼ 1, Equation (6.115) gives the result for a lowpass RC

filter, namely, BN 1ð Þ ¼ p
2
f3. As n approaches infinity,Hn fð Þ approaches the frequency-response function

of an ideal lowpass filter of single-sided bandwidth f3. The noise-equivalent bandwidth is

lim
n!¥

BN nð Þ ¼ f3 ð6:116Þ

as it should be by its definition. As the cutoff of a filter becomes sharper, its noise-equivalent bandwidth

approaches its 3-dB bandwidth.

&

EXAMPLE 6.11

To illustrate the application of (6.108), consider the computation of the noise-equivalent bandwidth of a

first-order Butterworth filter computed in the time domain. Its impulse response is

h tð Þ ¼ =� 1 1

1þ jf=f3

� �
¼ 2pf3e

�2p f3t u tð Þ ð6:117Þ

|H( f )| |H( f )|2

|He( f )|

–25

–21.25 21.25 f, Hz

2

–15 –8.75 8.75 15

–20 –25 –20–10 –5 –10 –55
(a) (b)

(c)

10 20

2

4

11

25 5 10 20 25f, Hz f, Hz

Figure 6.10

Illustrations for Example 6.9.

324 Chapter 6 . Random Signals and Noise

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


According to (6.108), the noise-equivalent bandwidth of this filter is

BN ¼
Ð¥
0

2p f3ð Þ2e�4p f3t dt

2
Ð¥
0
2p f3e�2p f3t dt

 �2 ¼ p f3

2

Ð¥
0
e�vdv

2
Ð¥
0
e� u du


 �2 ¼ p f3

2
ð6:118Þ

which checks with (6.115) if n ¼ 1 is substituted.

&

n 6.5 NARROWBAND NOISE

6.5.1 Quadrature-Component and Envelope-Phase Representation

In most communication systems operating at a carrier frequency f0, the bandwidth of the

channel, B, is small compared with f0. In such situations, it is convenient to represent the noise

in terms of quadrature components as

n tð Þ ¼ nc tð Þ cos 2p f0tþ uð Þ� ns tð Þ sin 2p f0tþ uð Þ ð6:119Þ
where u is an arbitrary phase angle. In terms of envelope and phase components, n tð Þ can be

written as

n tð Þ ¼ R tð Þ cos 2p f0tþf tð Þþ u½ � ð6:120Þ
where

R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2c þ n2s

q
ð6:121Þ

and

f tð Þ ¼ tan�1
ns tð Þ
nc tð Þ
� �

ð6:122Þ

Actually, any random process can be represented in either of these forms, but if a process is

narrowband, R tð Þ and f tð Þ can be interpreted as the slowly varying envelope and phase,

respectively, as sketched in Figure 6.11.

Figure 6.12 shows the block diagram of a system for producing nc tð Þ and ns tð Þwhere u is,
as yet, an arbitrary phase angle. Note that the composite operations used in producing nc tð Þ and
ns tð Þ constitute linear systems (superposition holds from input to output). Thus, if n tð Þ is a
Gaussian process, so are nc tð Þ and ns tð Þ. (The system of Figure 6.12 is to be interpreted as

relating input and output processes sample function by sample function.)

We will prove several properties of nc tð Þ and ns tð Þ. Most important, of course, is whether

equality really holds in (6.119) and in what sense. It is shown in Appendix C that

n(t)

R(t)

≅1/B

≅1/f0

t

Figure 6.11

A typical narrowband noise

waveform.
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E n tð Þ� nc tð Þ cos 2p f0tþ uð Þ� ns tð Þ sin 2p f0tþ uð Þ½ �f g2
h i

¼ 0 ð6:123Þ

That is, the mean-squared error between a sample function of the actual noise process and the

right-hand side of (6.119) is zero (averaged over the ensemble of sample functions).

More useful when using the representation in (6.119), however, are the following

properties:

Means
n tð Þ ¼ nc tð Þ ¼ ns tð Þ ¼ 0 ð6:124Þ

Variances

n2 tð Þ ¼ n2c tð Þ ¼ n2s tð Þ/N ð6:125Þ
Power spectral densities

Snc fð Þ ¼ Sns fð Þ ¼ Lp Sn f � f0ð Þþ Sn f þ f0ð Þ½ � ð6:126Þ
Cross-power spectral density

Sncns fð Þ ¼ jLp Sn f � f0ð Þ� Sn f þ f0ð Þ½ � ð6:127Þ
where Lp[ ] denotes the lowpass part of the quantity in brackets; Sn fð Þ, Snc fð Þ, and Sns fð Þ are
the power spectral densities of n tð Þ, nc tð Þ, and ns tð Þ, respectively; Sncns fð Þ is the cross-power
spectral density of nc tð Þ and ns tð Þ. From (6.127), we see that

Rncns tð Þ � 0 for all t if Lp Sn f � f0ð Þ� Sn f þ f0ð Þ½ � ¼ 0 ð6:128Þ
This is an especially useful property in that it tells us that nc tð Þ and ns tð Þ are uncorrelated if the
power spectral density of n tð Þ is symmetrical about f ¼ f0, where f > 0. If, in addition, n tð Þ is
Gaussian, nc tð Þ and ns tð Þ will be independent Gaussian processes because they are uncorre-

lated, and the joint pdf of nc tð Þ and ns tþ tð Þ for any delay t, will simply be of the form

f nc; t; ns; tþ tð Þ ¼ 1

2pN
e� n2c þ n2sð Þ=2N ð6:129Þ

If Sn fð Þ is not symmetrical about f ¼ f0, where f 	 0, then (6.129) holds only for t ¼ 0 or

other values of t for which Rncns tð Þ ¼ 0.

Using the results of Example 5.15, the envelope and phase functions of (6.120) have the

joint pdf

f r;fð Þ ¼ r

2pN
e�r

2=2N for r > 0 and jfj � p ð6:130Þ

which holds for the same conditions as for (6.129).

nc(t)f

n(t)

H( f )

01
2−    B 1

2    B

LPF:

2 cos ( 0t + )ω θ

−2 sin ( 0t + )ω θ

ns(t)f

H( f )

01
2−    B 1

2    B

LPF:

z1

z2

×

×

Figure 6.12

The operations involved in

producing nc tð Þ and ns tð Þ.
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6.5.2 The Power Spectral Density Function of nc(t) and ns(t)

To prove (6.126), we first find the power spectral density of z1 tð Þ, as defined in Figure 6.12, by
computing its autocorrelation function and Fourier transforming the result. To simplify the

derivation, it is assumed that u is a uniformly distributed random variable in 0; 2p½ � and is

statistically independent of n tð Þ.9
The autocorrelation function of z1 tð Þ ¼ 2n tð Þcos v0tþ uð Þ is

Rz1 tð Þ ¼ E 4n tð Þn tþ tð Þ cos 2p f0tþ uð Þ cos 2p f0 tþ tð Þþ u½ �½ �
¼ 2E n tð Þn tþ tð Þ½ � cos 2p f0tð Þ
þ 2E n tð Þn tþ tð Þ cos 4p f0tþ 2p f0tþ 2uð Þ½ �

¼ 2Rn tð Þ cos 2p f0tð Þ ð6:131Þ
where Rn tð Þ is the autocorrelation function of n tð Þ and v0 ¼ 2p f0 in Figure 6.12. In obtaining

(6.131),weusedappropriate trigonometric identities inadditionto the independenceofn tð Þandu.
Thus, by the multiplication theorem of Fourier transforms, the power spectral density of z1 tð Þ is

Sz1 fð Þ ¼ Sn fð Þ* d f � f0ð Þþ d f þ f0ð Þ½ �
¼ Sn f � f0ð Þþ Sn f þ f0ð Þ ð6:132Þ

ofwhich only the lowpass part is passed byH fð Þ. Thus the result for Snc fð Þ expressed by (6.126)
follows. A similar proof can be carried out for Sns fð Þ. Equation (6.125) follows by integrating

(6.126) over all f.

Next, let us consider (6.127). To prove it, we need an expression for Rz1z2 tð Þ, the cross-
correlation function of z1 tð Þ and z2 tð Þ. (See Figure 6.12.) By definition, and from Figure 6.12,

Rz1z2 tð Þ ¼ E z1 tð Þz2 tþ tð Þ½ �
¼ E 4n tð Þ n tþ tð Þ cos 2p f0tþ uð Þ sin 2p f0 tþ tð Þþ u½ �½ �
¼ 2Rn tð Þ sinð2pf0tÞ

ð6:133Þ

where we again used appropriate trigonometric identities and the independence of n tð Þ and u.
Letting h tð Þ be the impulse response of the lowpass filters in Figure 6.12 and employing (6.84)

and (6.85), the cross-correlation function of nc tð Þ and ns tð Þ can be written as

Rncns tð Þ/ E nc tð Þns tþ tð Þ½ � ¼ E h tð Þ*z1 tð Þ½ �ns tþ tð Þ½ �
¼ h �tð Þ*E z1 tð Þns tþ tð Þ½ �
¼ h �tð Þ*E z1 tð Þ h tð Þ*z2 tþ tð Þ½ �½ �
¼ h �tð Þ*h tð Þ*E z1 tð Þz2 tþ tð Þ½ �
¼ h �rð Þ* h tð Þ*Rz1z2 tð Þ½ �

ð6:134Þ

The Fourier transform of Rncns tð Þ is the cross-power spectral density, Sncns fð Þ, which, from the

convolution theorem, is given by

Sncns fð Þ ¼ H fð Þ= h � tð Þ*Rz1z2 tð Þ½ �
¼ H fð ÞH* fð ÞSz1z2 fð Þ
¼ jH fð Þj2Sz1z2 fð Þ

ð6:135Þ

9This might be satisfactory for modeling noise where the phase can be viewed as completely random. In other

situations, where knowledge of the phase makes this an inappropriate assumption, a cyclostationary model may be

more appropriate.
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From (6.133) and the frequency-translation theorem, it follows that

Sz1z2 fð Þ ¼ = jRn tð Þ e j2pf0t� e� j2pf0t

 � �

¼ j Sn f � f0ð Þ� Sn f þ f0ð Þ½ � ð6:136Þ

Thus, from (6.135),

Sncns fð Þ ¼ jjH fð Þj2 Sn f � f0ð Þ� Sn f þ f0ð Þ½ �
¼ jLp Sn f � f0ð Þ� Sn f þ f0ð Þ½ � ð6:137Þ

which proves (6.127).Note that since the cross-power spectral density Sncns fð Þ is imaginary, the

cross-correlation functionRncns tð Þ is odd. ThusRncns 0ð Þ is zero if the cross-correlation function
is continuous at t ¼ 0, which is the case for bandlimited signals.

EXAMPLE 6.12

Let us consider a bandpass random process with the power spectral density shown in Figure 6.13(a).

Choosing the center frequency of f0 ¼ 7 Hz results in nc tð Þ and ns tð Þ being uncorrelated. Figure 6.13(b)
shows Sz1 fð Þ [or Sz2 fð Þ] for f0 ¼ 7 Hz with Snc fð Þ [or Sns fð Þ], that is, the lowpass part of Sz1 fð Þ, shaded.
The integral of Sn fð Þ is 2 6ð Þ 2ð Þ ¼ 24 W, which is the same result obtained from integrating the shaded

portion of Figure 6.13(b).

Now suppose f0 is chosen as 5 Hz. Then Sz1 fð Þ and Sz2 tð Þ are as shown in Figure 6.12(c), with Snc fð Þ
shown shaded. From (6.127), it follows that � jSncns fð Þ is the shaded portion of Figure 6.12(d). Because of
the asymmetry that results from the choice of f0, nc tð Þ and ns tð Þ are not uncorrelated. As a matter of

interest, we can calculate Rncns tð Þ easily by using the transform pair

2AW sinc 2Wtð Þ !AP
f

2W

� �
ð6:138Þ

and the frequency-translation theorem. From Figure 6.12(d), it follows that

Sncns fð Þ ¼ 2j �P
1

4
f � 3ð Þ

� �
þP

1

4
f þ 3ð Þ

� �� �
ð6:139Þ

which results in the cross-correlation function

Rncns tð Þ ¼ 2j � 4 sinc 4tð Þe j6ptþ 4 sinc 4tð Þe� j6pt �
¼ 16 sinc 4tð Þ sin 6ptð Þ ð6:140Þ

(b)

Sz1
( f ) [Sz2

( f )]

Sn( f )

Snc
( f ) [Sns

( f )]

f (Hz)

2 2

4

2

50 10−5−10

(a)

f (Hz)
50 10−5−10

− 5151
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This cross-correlation function is shown in Figure 6.14. Although nc tð Þ and ns tð Þ are not uncorrelated, we
see that t may be chosen such that Rncns tð Þ ¼ 0 for particular values of t ðt ¼ 0; � 1

6
; � 1

3
; . . .Þ.

&

6.5.3 Ricean Probability Density Function

Auseful random processmodel formany applications, for example, signal fading, is the sumof

a random phased sinusoid and bandlimited Gaussian random noise. Thus, consider a sample

function of this process expressed as

z tð Þ ¼ A cos 2pf0tþ uð Þþ nc tð Þ cos 2pf0tð Þ� ns tð Þ sin 2pf0tð Þ ð6:141Þ
where nc tð Þ and ns tð Þ are Gaussian quadrature components of the bandlimited, stationary,

Gaussian random process nc tð Þ cos 2pf0tð Þ� ns tð Þ sin 2pf0tð Þ, A is a constant amplitude, and u
is a random variable uniformly distributed in 0; 2p½ �. The pdf of the envelope of this stationary
random process at any time t is said to beRicean after its originator, S. O. Rice. The first term is

often referred to as the specular component and the latter two terms make up the diffuse

component. This is in keeping with the idea that (6.141) results from transmitting an

unmodulated sinusoidal signal through a dispersive channel, with the specular component

τ
−0.4

−0.3

−0.2 −0.1

10

−10

0.1

0.2

0.3

0.4

Rncns
( )τ Figure 6.14

Cross-correlation function of nc tð Þ and
ns tð Þ for Example 6.11.

(c)

Sz1
( f ) [Sz2

( f )]

Snc
( f ) [Sns

( f )]

f (Hz)

4

2

2

50 10−5

−2

−10− 5151

(d)

−jSz1z2
( f )

−jSncns
( f )

f (Hz)
50 10−5

−10−15

15

Figure 6.13

Spectra for Example 6.11. (a) Bandpass spectrum. (b) Lowpass spectra for f0 ¼ 7Hz. (c) Lowpass spectra

for f0 ¼ 5 Hz. (d) Cross-spectra for f0 ¼ 5 Hz.
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being a direct-ray reception of that signal, while the diffuse component is the resultant of

multiple independent reflections of the transmitted signal (the central limit theorem of

probability can be invoked to justify that the quadrature components of this diffuse part

are Gaussian random processes). Note that if A ¼ 0; the pdf of the envelope of (6.141) is

Rayleigh.

The derivation of the Ricean pdf proceeds by expanding the first term of (6.141) using the

trigonometric identity for the cosine of the sum of two angles to rewrite it as

z tð Þ ¼ A cos u cos 2pf0tð Þ�A sin u sin 2pf0tð Þþ nc tð Þ cos 2pf0tð Þ� ns tð Þ sin 2pf0tð Þ
¼ A cos uþ nc tð Þ½ � cos 2pf0tð Þ� A sin uþ ns tð Þ½ � sin 2pf0tð Þ
¼ X tð Þ cos 2pf0tð Þ� Y tð Þ sin 2pf0tð Þ

ð6:142Þ

where

X tð Þ ¼ A cos uþ nc tð Þ and Y tð Þ ¼ A sin uþ ns tð Þ ð6:143Þ
These random processes, given u, are independent Gaussian random processes with variance

s2. Their means are E X tð Þ½ � ¼ A cos u and E Y tð Þ½ � ¼ A sin u, respectively. The goal is to find
the pdf of

R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 tð Þþ Y2 tð Þ

p
ð6:144Þ

Given u, the joint pdf ofX tð Þ and Y tð Þ is the product of their respectivemarginal pdfs since they

are independent. Using the means and variance given above, this becomes

fXY x; yð Þ ¼
exp � x�A cos uð Þ2=2s2
h i

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

exp � y�A sin uð Þ2=2s2
h i

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

¼ exp � x2þ y2� 2A cos uþ sin uð ÞþA2½ �=2s2
� �

2ps2

ð6:145Þ

Now make the change of variables

x ¼ r cos f;
y ¼ r sin f;

r 	 0 and 0 � f < 2p ð6:146Þ

Recall that transformation of a joint pdf requires multiplication by the Jacobian of the

transformation, which in this case is just r. Thus, the joint pdf of the random variables R

and F is

fRF r; fð Þ ¼ exp � r2þA2� 2rA cosu cos fþ sinu sinfð Þ½ �=2s2
� �

2ps2

¼ r

2ps2
exp � r2þA2� 2rA cos u�fð Þ �

=2s2
� � ð6:147Þ

The pdf over R alone may be obtained by integrating over f with the aid of the definition

I0 uð Þ ¼ 1

2p

ð2p
0

exp u cos að Þda ð6:148Þ

where I0 uð Þ is referred to as the modified Bessel function of order zero. Since the integrand of

(6.148) is periodic with period 2p, the integral can be over any 2p range. The result of the
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integration of (6.147) over f produces

fR rð Þ ¼ r

s2
exp � r2þA2


 �
=2s2

 �
I0

Ar

s2

� �
; r 	 0 ð6:149Þ

Since the result is independent of u, this is the marginal pdf of R alone. From (6.148), it follows

that I0 0ð Þ ¼ 1 so that with A ¼ 0 (6.149) reduces to the Rayleigh pdf, as it should.

Often, (6.149) is expressed in terms of the parameterK ¼ A2=2s2, which is the ratio of the

powers in the steady component [first term of (6.141)] to the random Gaussian component

[second and third terms of (6.141)] When this is done, (6.149) becomes

fR rð Þ ¼ r

s2
exp � r2

2s2
þK

� �� �
I0

ffiffiffiffiffiffi
2K
p r

s

� �
; r 	 0 ð6:150Þ

AsK becomes large, (6.150) approaches a Gaussan pdf. The parameterK is often referred to as

the Ricean K-factor.

From (6.144) it follows that

E R2
 � ¼ E X2

 �þE Y2
 �

¼ E A cos uþ nc tð Þ½ �2þ A sin uþ ns tð Þ½ �2
h i

¼ E A2cos2uþA2sin2u
 �þ 2AE nc tð Þ cos uþns tð Þ sin u½ �þE n2c tð Þ �þE n2s tð Þ �

¼ A2þ 2s2

¼ 2s2 1þKð Þ

ð6:151Þ

Other moments for a Ricean random variable must be expressed in terms of confluent

hypergeometric functions.10

Summary
1. A random process is completely described by the N-fold joint pdf of its

amplitudes at the arbitrary times t1; t2; . . . ; tN . If this pdf is invariant under a
shift of the time origin, the process is said to be statistically stationary in the

strict sense.

2. The autocorrelation function of a random process, computed as a statistical

average, is defined as

R t1; t2ð Þ ¼
ð¥
�¥

ð¥
�¥

x1x2fX1X2
x1; t1; x2; t2ð Þdx1 dx2

where fX1X2
x1; t1; x2; t2ð Þ is the joint amplitude pdf of the process at times t1

and t2. If the process is strict-sense stationary,

R t1; t2ð Þ ¼ R t2� t1ð Þ ¼ R tð Þ
where t/t2� t1:

3. A process whose statistical averagemean and variance are time independent

andwhose autocorrelation function is a function only of t2� t1 ¼ t is termed

10See, for example, J. Proakis and M. Saleni, Digital Communications, 5th ed., New York: McGraw Hill, 2007.
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wide-sense stationary. Strict-sense stationary processes are also wide-sense

stationary. The converse is true only for special cases; for example,wide-sense

stationarity for a Gaussian process guarantees strict-sense stationarity.

4. Aprocess for which statistical averages and time averages are equal is called

ergodic. Ergodicity implies stationarity, but the reverse is not necessarily

true.

5. The Wiener-Khinchine theorem states that the autocorrelation function and

the power spectral density of a stationary random process are a Fourier

transform pair. An expression for the power spectral density of a random

process that is often useful is

Sn fð Þ ¼ lim
T!¥

1

T
E j= nT tð Þ½ �j2
h i

where nT tð Þ is a sample function truncated to T s, centered about t ¼ 0.

6. The autocorrelation function of a random process is a real, even function of

the delay variable t with an absolute maximum at t ¼ 0. It is periodic for

periodic random processes, and its Fourier transform is nonnegative for all

frequencies. As t! � ¥, the autocorrelation function approaches the

square of the mean of the random process unless the random process is

periodic. R 0ð Þ gives the total average power in a random process.

7. White noise has a constant power spectral density 1
2
N0 for all f. Its auto-

correlation function is 1
2
N0d tð Þ. For this reason, it is sometimes called delta-

correlated noise. It has infinite power and is therefore a mathematical

idealization. However, it is, nevertheless, a useful approximation in many

cases.

8. The cross-correlation function of two stationary random processes X tð Þ and
Y tð Þ is defined as

RXY tð Þ ¼ E X tð ÞY tþ tð Þ½ �
Their cross-power spectral density is

SXY fð Þ ¼ = RXY tð Þ½ �
They are said to be orthogonal if RXY tð Þ ¼ 0 for all t.

9. Consider a linear system with the impulse response h tð Þ and the frequency-
response function H fð Þ with random input x tð Þ and output y tð Þ. Then

SY fð Þ ¼ jH fð Þj2SX fð Þ
RY tð Þ ¼ =� 1 SY fð Þ½ � ¼

ð¥
�¥
jH fð Þj2SX fð Þe j2pf tdf

RXY tð Þ¼ h tð Þ*RX tð Þ
SXY fð Þ¼ H fð ÞSX fð Þ
RYX tð Þ¼ h �tð Þ*RX tð Þ
SYX fð Þ¼ H* fð ÞSX fð Þ

where S fð Þ denotes the spectral density andR tð Þ denotes the autocorrelation
function.
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10. The output of a linear system with Gaussian input is Gaussian.

11. The noise-equivalent bandwidth of a linear system with a frequency-

response function H fð Þ is defined as

BN ¼ 1

H2
0

ð¥
0

jH fð Þj2 df

whereH0 represents themaximumvalue of jH fð Þj. If the input is white noise
with the single-sided power spectral density N0, the output power is

P0 ¼ H2
0N0BN

An equivalent expression for the noise-equivalent bandwidth written in

terms of the impulse response of the filter is

BN ¼
Ð¥
�¥ jh tð Þj2 dt

2
Ð¥
�¥ h tð Þdt �2

12. The quadrature-component representation of a bandlimited random process

n tð Þ is
n tð Þ ¼ nc tð Þ cos 2pf0tþ uð Þ� ns tð Þ sin 2pf0tþ uð Þ

where u is an arbitrary phase angle. The envelope-phase representation is

n tð Þ ¼ R tð Þ cos 2pf0tþf tð Þþ u½ �
where R2 tð Þ ¼ n2c tð Þþ n2s tð Þ and tan f tð Þ½ � ¼ ns tð Þ=nc tð Þ. If the process is

narrowband, nc, ns, R, and f vary slowly with respect to cos 2pf0tð Þ and
sin 2pf0tð Þ. If the power spectral density of n tð Þ is Sn fð Þ, the power spectral
densities of nc tð Þ and ns tð Þ are

Snc fð Þ ¼ Sns fð Þ ¼ Lp Sn f � f0ð Þþ Sn f þ f0ð Þ½ �
where Lp[ ] denotes the low-frequency part of the quantity in the brackets. If

Lp Sn f þ f0ð Þ� Sn f � f0ð Þ½ � ¼ 0, then nc tð Þ and ns tð Þ are orthogonal. The

average powers of nc tð Þ, ns tð Þ, and n tð Þ are equal. The processes nc tð Þ and
ns tð Þ are given by

nc tð Þ ¼ Lp 2n tð Þ cos 2pf0tþ uð Þ½ �
and

ns tð Þ ¼ �Lp 2n tð Þ sin 2pf0tþ uð Þ½ �
Since these operations are linear, nc tð Þ and ns tð Þ will be Gaussian if n tð Þ is
Gaussian. Thus, nc tð Þ and ns tð Þ are independent if n tð Þ is zero-mean

Gaussian with a power spectral density that is symmetrical about f ¼ f0
for f > 0.

13. TheRicean pdf gives the distribution of envelope values assumed by the sum

of a sinusoid with phase uniformly distributed in 0; 2p½ � plus bandlimited

Gaussian noise. It is convenient in various applications including modeling

of fading channels.
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Further Reading

Papoulis (1991) is a recommended book for random processes. The references given in Chapter 5 also

provide further reading on the subject matter of this chapter.

Problems

Section 6.1

6.1. A fair die is thrown. Depending on the number of

spots on the up face, the following random processes are

generated. Sketch several examples of sample functions

for each case. (A is a constant.)

a. X t; zð Þ ¼
2A; 1 or 2 spots up

0; 3 or 4 spots up

� 2A; 5 or 6 spots up

8<:

b. X t; zð Þ ¼

3A; 1 spot up

2A; 2 spots up

A; 3 spots up

�A; 4 spots up

� 2A; 5 spots up

� 3A; 6 spots up

8>>>>>><>>>>>>:

c. X t; zð Þ ¼

4A; 1 spot up

2A; 2 spots up

At; 3 spots up

�At; 4 spots up

� 2A; 5 spots up

� 4A; 6 spots up

8>>>>>><>>>>>>:
Section 6.2

6.2. Referring to Problem 6.1, what are the following

probabilities for each case?

a. FX X � 2A; t ¼ 4ð Þ
b. FX X � 0; t ¼ 4ð Þ
c. FX X � 2A; t ¼ 2ð Þ

6.3. A random process is composed of sample func-

tions that are square waves, each with constant amplitude

A, period T0, and random delay t as sketched in Figure

6.15. The pdf of t is

f tð Þ ¼ 1=T0; jtj � T0=2
0; otherwise

�
a. Sketch several typical sample functions.

b. Write the first-order pdf for this random process at

some arbitrary time t0.

(Hint: Because of the random delay t, the pdf is indepen-
dent of t0. Also, it might be easier to deduce the cdf and

differentiate it to get the pdf.)

6.4. Let the sample functions of a random process be

given by

X tð Þ ¼ A cos 2pf0tð Þ

where f0 is fixed and A has the pdf

fA að Þ ¼ e�a2=2s2
affiffiffiffiffiffi

2p
p

sa

This random process is passed through an ideal integrator

to give a random process Y tð Þ.
a. Find an expression for the sample functions of the

output process Y tð Þ:
b. Write down an expression for the pdf of Y tð Þ at

time t0.

Hint: Note that sin 2pf0t0 is just a constant.

c. Is Y tð Þ stationary? Is it ergodic?
6.5. Consider the random process of Problem 6.3.

a. Find the time-average mean and the autocorrela-

tion function.

b. Find the ensemble-average mean and the auto-

correlation function.

X(t)

t

T0

A

−A

τ

Figure 6.15
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c. Is this process wide-sense stationary?Why or why

not?

6.6. Consider the random process of Example 6.1 with

the pdf of u given by

p uð Þ ¼ 2=p; p=2 � u � p
0; otherwise

�

a. Find the statistical-average and time-average

mean and variance.

b. Find the statistical-average and time-average

autocorrelation functions.

c. Is this process ergodic?

6.7. Consider the random process of Problem 6.4.

a. Find the time-average mean and autocorrelation

function.

b. Find the ensemble-averagemean and autocorrela-

tion function.

c. Is this process wide-sense stationary?Why or why

not?

6.8. The voltage of the output of a noise generator

whose statistics are known to be closely Gaussian and

stationary ismeasuredwith aDC voltmeter and a true root-

mean-square (rms) voltmeter that is AC coupled. The DC

meter reads 6 V, and the true rms meter reads 7 V. Write

down an expression for the first-order pdf of the voltage at

any time t ¼ t0. Sketch and dimension the pdf.

Section 6.3

6.9. Which of the following functions are suitable

autocorrelation functions? Tell why or why not. (v0, t0,
t1, A, B, C, and f0 are positive constants.)

a. A cos v0tð Þ.
b. AL t=t0ð Þ, where L xð Þ is the unit-area triangular

function defined in Chapter 2.

c. AP t=t0ð Þ, whereP xð Þ is the unit-area pulse func-
tion defined in Chapter 2.

d. A exp � t=t0ð Þu tð Þ, where u xð Þ is the unit step

function.

e. A exp � jtj=t0ð Þ.
f. A sinc f0tð Þ ¼ A sin pf0tð Þ=pf0t.

6.10. A bandlimited white-noise process has a double-

sided power spectral density of 2�10� 5 W/Hz in the

frequency range j f j � 1 kHz. Find the autocorrelation

function of the noise process. Sketch and fully dimension

the resulting autocorrelation function.

6.11. Consider a random binary pulse waveform as

analyzed in Example 6.6, butwith half-cosine pulses given

by p tð Þ ¼ cos 2pt=2Tð ÞP t=Tð Þ: Obtain and sketch the

autocorrelation function for the two cases considered in

Example 6.6, namely,

a. ak ¼ �A for all k, where A is a constant, with

Rm ¼ A2, m ¼ 0, and Rm ¼ 0 otherwise.

b. ak ¼ AkþAk� 1 withAk ¼�A andE Ak Akþm½ �¼
A2;m ¼ 0, and zero otherwise.

c. Find and sketch the power spectral density for

each preceding case.

6.12. Two random processes are given by

X tð Þ ¼ n tð ÞþA cos 2pf0tþ uð Þ

and

Y tð Þ ¼ n tð ÞþA sin 2pf0tþ uð Þ
where A and f0 are constants and u is a random variable

uniformly distributed in the interval �p;p½ �. The first

term, n tð Þ, represents a stationary random noise process

with autocorrelation function Rn tð Þ ¼ BL t=ð t0Þ, where B
and t0 are nonnegative constants.

a. Find and sketch their autocorrelation functions.

Assume values for the various constants involved.

b. Find and sketch the cross-correlation function of

these two random processes.

6.13. Given two independent, wide-sense stationary ran-

dom processes X tð Þ and Y tð Þ with autocorrelation func-

tions RX tð Þ and RY tð Þ, respectively.
a. Show that the autocorrelation function RZ tð Þ of

their product Z tð Þ ¼ X tð ÞY tð Þ is given by

RZ tð Þ ¼ RX tð ÞRY tð Þ

b. Express the power spectral density of Z tð Þ in
terms of the power spectral densities of X tð Þ and Y tð Þ,
denoted as SX fð Þ and SY fð Þ, respectively.

c. Let X tð Þ be a bandlimited stationary noise pro-

cess with power spectral density SX fð Þ ¼ 10P f=200ð Þ,
and let Y tð Þ be the process defined by sample functions of

the form

Y tð Þ ¼ 5 cos 50ptþ uð Þ

where u is a uniformly distributed random variable in the

interval ½0; 2pÞ. Using the results derived in parts (a) and

(b), obtain the autocorrelation function and power spectral

density of Z tð Þ ¼ X tð ÞY tð Þ.
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6.14. A random signal has the autocorrelation function

R tð Þ ¼ 9þ 3L t=5ð Þ
where L xð Þ is the unit-area triangular function defined in

Chapter 2. Determine the following:

a. The AC power.

b. The DC power.

c. The total power.

d. The power spectral density. Sketch it and label

carefully.

6.15. A random process is defined as Y tð Þ ¼
X tð ÞþX t� Tð Þ, where X tð Þ is a wide-sense stationary

random process with autocorrelation function RX tð Þ and
power spectral density Sx fð Þ:

a. Show that RY tð Þ ¼ 2RX tð ÞþRX tþ Tð Þþ
RX t� Tð Þ:

b. Show that SY fð Þ ¼ 4SX fð Þ cos2 pf Tð Þ.
c. If X tð Þ has autocorrelation function RX tð Þ ¼

5L tð Þ, where L tð Þ is the unit-area triangular function,

and T ¼ 0:5, find and sketch the power spectral density of
Y tð Þ as defined in the problem statement.

6.16. The power spectral density of a wide-sense sta-

tionary random process is given by

SX fð Þ ¼ 10d fð Þþ 25 sinc2 5fð Þþ 5d f � 10ð Þ
þ 5d f þ 10ð Þ

a. Sketch and fully dimension this power spectral

density function.

b. Find the power in the DC component of the

random process.

c. Find the total power.

d. Given that the area under the main lobe of the

sinc-squared function is approximately 0.9 of the total

area, which is unity if it has unity amplitude, find the

fraction of the total power contained in this process for

frequencies between 0 and 0.2 Hz.

6.17. Given the following functions of t;

RX1
tð Þ ¼ 4 exp �ajtjð Þ cos 2pt

RX2
tð Þ ¼ 2 exp �ajtjð Þþ 4 cos 2pbt

RX3
fð Þ ¼ 5 exp � 4t2ð Þ

a. Sketch each function and fully dimension.

b. Find the Fourier transforms of each and sketch.

With the information of part (a) and the Fourier trans-

forms justify that each is suitable for an autocorrelation

function.

c. Determine the value of the DC power, if any, for

each one.

d. Determine the total power for each.

e. Determine the frequency of the periodic compo-

nent, if any, for each.

Section 6.4

6.18. A stationary random process n tð Þ has a power

spectral density of 10� 6 W/Hz, �¥ < f < ¥. It is passed
through an ideal lowpass filter with frequency-response

function H fð Þ ¼ P f=500 kHzð Þ, where P xð Þ is the unit-
area pulse function defined in Chapter 2.

a. Find and sketch the power spectral density of the

output?

b. Obtain sketch the autocorrelation function of the

output.

c. What is the power of the output process? Find it

two different ways.

6.19. An ideal finite-time integrator is characterized by

the input-output relationship

Y tð Þ ¼ 1

T

ðt
t� T

X að Þda

a. Justify that its impulse response is h tð Þ ¼
1
T
u tð Þ� u t� Tð Þ½ �.

b. Obtain its frequency response function. Sketch it.

c. The input is white noise with two-sided power

spectral density N0=2. Find the power spectral density of
the output of the filter.

d. Show that the autocorrelation function of the

output is

R0 tð Þ ¼ N0

2T
L t=Tð Þ

where L xð Þ is the unit-area triangular function defined in

Chapter 2.

e. What is the equivalent noise bandwidth of the

integrator?

f. Show that the result for the output noise power

obtained using the equivalent noise bandwidth found in

part (e) coincides with the result found from the auto-

correlation function of the output found in part (d).

6.20. White noise with two-sided power spectral density

N0=2 drives a second-order Butterworth filter with fre-

quency-response function magnitude
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jH2bu fð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f3ð Þ4

q
where f3 is its 3-dB cutoff frequency.

a. What is the power spectral density of the filter�s
output?

b. Show that the autocorrelation function of the

output is

R0 rð Þ ¼ pf3N0

2
exp � ffiffiffi

2
p

pf3jtj

 �

cos
ffiffiffi
2
p

pf3jtj �p=4

 �

Plot as a function of f3t.Hint: Use the integral given below:ð¥
0

cos axð Þ
b4þ x4

dx ¼
ffiffiffi
2
p

p

4b3
exp � ab

� ffiffiffi
2
p� �
�

cos ab
� ffiffiffi

2
p� �

þ sin ab
� ffiffiffi

2
p� �h i

; a; b > 0

c. Does the output power obtained by taking

limt! 0R0 tð Þ check with that calculated using the equiva-
lent noise bandwidth for a Butterworth filter as given by

(6.115)?

6.21. A power spectral density given by

SY fð Þ ¼ f 2

f 4þ 100

is desired. Awhite-noise source of two-sided power spec-

tral density 1 W/Hz is available. What is the frequency

response function of the filter to be placed at the noise-

source output to produce the desired power spectral

density?

6.22. Obtain the autocorrelation functions and power

spectral densities of the outputs of the following systems

with the input autocorrelation functions or power spectral

densities given.

a.

Transfer function

H fð Þ ¼ P f=2Bð Þ
Autocorrelation function of input

RX tð Þ ¼ N0

2
d tð Þ

N0 and B are positive constants.

b.

Impulse response
h tð Þ ¼ A exp �atð Þu tð Þ

Power spectral density of input :

SX fð Þ ¼ B

1þ 2pbfð Þ2

A;a;B; and b are positive constants.

6.23. The input to a lowpass filter with impulse response

h tð Þ ¼ exp � 10tð Þu tð Þ
is white, Gaussian noise with single-sided power spectral

density of 2 W/Hz. Obtain the following:

a. The mean of the output

b. The power spectral density of the output

c. The autocorrelation function of the output

d. The probability density function of the output at

an arbitrary time t1

e. The joint probability density function of the out-

put at times t1 and t1þ 0:03 s

6.24. Find the noise-equivalent bandwidths for the fol-

lowing first-and second-order lowpass filters in terms of

their 3-dB bandwidths. Refer to Chapter 2 to determine the

magnitudes of their transfer functions.

a. Chebyshev

b. Butterworth

6.25. A second-order Butterworth filter, has 3-dB band-

width of 500 Hz. Determine the unit impulse response of

the filter, and use it to compute the noise-equivalent

bandwidth of the filter. Check your result against the

appropriate special case of Example 6.9.

6.26. Determine the noise-equivalent bandwidths for the

filters having transfer functions given below:

a. Ha fð Þ ¼ P f=4ð ÞþP f=2ð Þ.
b. Hb fð Þ ¼ 2L f=50ð Þ.
c. Hc fð Þ ¼ 10=ð10þ j2pf Þ.
d. Hd fð Þ ¼ P f=10ð ÞþL f=5ð Þ.

6.27. A filter has frequency-response function

H fð Þ ¼ H0 f � 500ð ÞþH0 f þ 500ð Þ
where

H0 fð Þ ¼ 2L f=100ð Þ
Find the noise-equivalent bandwidth of the filter.
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6.28. Determine the noise-equivalent bandwidths of the

systems having the following transfer functions.

Hint: Use the time-domain approach.

a. Ha fð Þ ¼ 10= j2pf þ 2ð Þ j2pf þ 25ð Þ�½ .

b. Hb fð Þ ¼ 100= j2pf þ 10ð Þ2.
Section 6.5

6.29. Noise n tð Þ has the power spectral density shown in
Figure 6.16. We write

n tð Þ ¼ nc tð Þ cos 2pf0tþ uð Þ� ns tð Þ sin 2pf0tþ uð Þ
Make plots of the power spectral densities of nc tð Þ and
ns tð Þ for the following cases:

a. f0 ¼ f1.

b. f0 ¼ f2.

c. f0 ¼ 1
2
f2þ f1ð Þ.

d. For which of these cases are nc tð Þ and ns tð Þ
uncorrelated?

6.30.

a. If Sn fð Þ ¼ a2= a2þ 4p2 f 2ð Þ, show that Rn tð Þ ¼
Ke�ajtj. Find K.

b. Find Rn tð Þ if

Sn fð Þ ¼
1
2
a2

a2þ 4p2 f � f0ð Þ2 þ
1
2
a2

a2þ 4p2 f þ f0ð Þ2

c. if n tð Þ ¼ nc tð Þ cos 2pf0tþ uð Þ
� ns tð Þsin 2pf0tð þ uÞ, find Snc fð Þ, and Sncns fð Þ, where
Sn fð Þ is as given in part (b). Sketch each spectral density.
6.31. The double-sided power spectral density of noise

n tð Þ is shown in Figure 6.17. If n tð Þ ¼
nc tð Þ cos 2pf0tþ uð Þ� ns tð Þsin 2pf0tþ uð Þ, find and plot

Snc fð Þ, Sns fð Þ, and Sncns fð Þ for the following cases:

a. f0 ¼ 1
2
f1þ f2ð Þ.

b. f0 ¼ f1.

c. f0 ¼ f2.

d. Find Rncns tð Þ for each case where Sncns fð Þ is not
zero. Plot.

6.32. A noise waveform n1 tð Þ has the bandlimited

power spectral density shown in Figure 6.18. Find

and plot the power spectral density of n2 tð Þ ¼
n1 tð Þ cos v0tþ uð Þ� n1 tð Þ sin v0tþ uð Þ, where u is a uni-

formly distributed random variable in ½0; 2pÞ.

Section 6.5

Problems Extending Text Material

6.33. Consider a signal-plus-noise process of the form

z tð Þ ¼ A cos 2p f0þ fdð Þt½ � þ n tð Þ
with

n tð Þ ¼ nc tð Þ cos 2pf0tð Þ� ns tð Þ sin 2pf0tð Þ
an ideal bandlimited Gaussian white-noise process with

double-sided power spectral density equal to N0=2 for

f0�B=2 � jf j � f0þB=2 and zero otherwise. Write z tð Þ
as

z tð Þ¼A cos 2p f0þfdð Þt½ �þn0c tð Þcos 2p f0þfdð Þt½ �
�n0s tð Þ sin 2p f0þfdð Þt½ �

a. Express n0c tð Þ and n0s tð Þ in terms of nc tð Þ and ns tð Þ.
Using the techniques developed in Section 6.5, find the

power spectral densities of n0c tð Þ and n0s tð Þ, Sn0c tð Þ and
Sn0s fð Þ, respectively.

f
f1 f2−f2 −f1

Sn( f )

N0
1
2

0

Figure 6.16

f
f1 f2−f2 −f1

N0
1
2

0

Sn2
( f ) Figure 6.17

f
fM−fM 0

a

Sn1
( f ) Figure 6.18
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b. Find the cross-spectral density of n0c tð Þ and n0s tð Þ,
Sn0cn0s fð Þ, and the cross-correlation function, Rn0cn0s tð Þ. Are
n0c tð Þ and n0s tð Þ correlated? Are n0c tð Þ and n0s tð Þ sampled at

the same time instant independent?

6.34. Arandomprocess is composed of sample functions

of the form

x tð Þ ¼ n tð Þ
X¥
k¼�¥

d t� kTsð Þ ¼
X¥
k¼�¥

nkd t� kTsð Þ

where n tð Þ is a wide-sense stationary random process with

the autocorrelation function Rn tð Þ, and nk ¼ n kTsð Þ.
a. If Ts is chosen to satisfy

Rn kTsð Þ ¼ 0; k ¼ 1; 2; . . .

so that the samples nk ¼ n kTsð Þ are orthogonal, use (6.35)
to show that the power spectral density of tx tð Þ is

Sx fð Þ¼Rn 0ð Þ
Ts
¼ fsRn 0ð Þ¼ fs n2 tð Þ; �¥< f <¥

b. If x tð Þ is passed through a filter with impulse

response h tð Þ and frequency-response function H fð Þ,
show that the power spectral density of the output random

process y tð Þ is
Sy fð Þ ¼ fs n2 tð Þ jH fð Þj2; �¥ < f < ¥

6.35. Consider the system shown in Figure 6.19 as a

means of approximately measuring Rx tð Þ, where x tð Þ is
stationary.

a. Show that E y½ � ¼ Rx tð Þ.
b. Find an expression for s2

y if x tð Þ is Gaussian and
has zero mean.

Hint: If x1; x2; x3; and x4 are Gaussian with zero mean, it

can be shown that

E x1 x2 x3 x4½ � ¼ E x1x2½ �E x3x4½ � þE x1x3½ �E x2x4½ �
þE x1x4½ �E x2x3½ �

6.36. A useful average in the consideration of noise in

FM demodulation is the cross-correlation

Ry�y tð Þ/E y tð Þ dy tþ tð Þ
dt

� �
where y tð Þ is assumed stationary.

a. Show that

Ry�y tð Þ ¼ dRy tð Þ
dt

where Ry tð Þ is the autocorrelation function of y tð Þ.
(Hint: The frequency-response function of a differentia-

tor is H fð Þ ¼ j2pf .)

b. If y tð Þ is Gaussian, write down the joint pdf of

Y/y tð Þ and Z/
dy tð Þ
dt

at any time t, assuming the ideal lowpass power spectral

density

Sy fð Þ ¼ 1

2
N0P

f

2B

� �
Express your answer in terms of N0 and B.

c. Can one obtain a result for the joint pdf of y(t) and

dy tð Þ=dt if y tð Þ is obtained by passing white noise

through a lowpass RC filter? Why or why not?

Computer Exercises

6.1. In this computer exercise we reexamine Example

6.1. A random process is defined by

X tð Þ ¼ A cos 2pf0tþ uð Þ

Using a random number generator program generate 20

values of u uniformly distributed in the range 0 � u < 2p.
Using these 20 values of u generate 20 sample functions of
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Delay
(variable)

τ

yx(t) t0 + T

t0
( )dt1

T ∫×
Figure 6.19
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the process X tð Þ. Using these 20 sample functions do the

following:

a. Plot the sample functions on a single set of axes.

b. DetermineE X tð Þ½ � andE X2 tð Þ½ � as time averages.

c. Determine E X tð Þ½ � and E X2 tð Þ½ � as ensemble

averages.

d. Compare the results with those obtained in Ex-

ample 6.1.

6.2. Repeat the previous computer exercise with 20

values of u uniformly distributed in the range

�p=4 � u < p=4.

6.3. Check the correlation between the random variable

X and Y generated by the random number generator of

Computer Exercise 5.2 by computing the sample correla-

tion coefficient of 1000 pairs according to the definition

r X; Yð Þ ¼ 1

N� 1ð Þbs1bs2

XN
n¼1

Xn� bmXð Þ Yn� bmYð Þ

where

bmX ¼
1

N

XN
n¼1

Xn

bmY ¼
1

N

XN
n¼1

Yn

bs2
X ¼

1

N� 1

XN
n¼1

Xn� bmXð Þ2

and

bs2
Y ¼

1

N � 1

XN
n¼1

Yn� bmXð Þ2

6.4. Write a MATLAB program to plot the Ricean pdf.

Use the form (6.150) and plot for K ¼ 1; 10; and 100 on

the same axes. Use r=s as the independent variable and

plot s2f rð Þ:
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CHAPTER7

NOISE IN MODULATION SYSTEMS

InChapters 5 and 6 the subjects of probability and randomprocesses were studied. These concepts

led to a representation for bandlimited noise, whichwill now be used for the analysis of basic analog

communication systems and for introductory considerations of digital systems operating in the

presence of noise. The remaining chapters of this book will focus on digital systems in more detail.

This chapter is essentially a large number of example problems, most of which focus on different

systems and modulation techniques.

Noise is present in varying degrees in all electrical systems. This noise is often low level and can

often be neglected in those portions of a system where the signal level is high. However, in many

communications applications the receiver input signal level is very small, and the effects of noise

significantly degrade system performance. Noise can take several different forms, depending upon

the source, but themost common form is due to the randommotion of charge carriers. As discussed

in more detail in Appendix A, whenever the temperature of a conductor is above 0 K, the random

motion of charge carriers results in thermal noise. The variance of thermal noise, generated by a

resistive element, such as a cable, and measured in a bandwidth B, is given by

(7.1)s2
n = 4kTRB V2

where k is Boltzman�s constant (1.38� 10�23 J=K), T is the temperature of the element in degrees

kelvin, and R is the resistance in ohms. Note that the noise variance is directly proportional to

temperature, which illustrates the reason for using supercooled amplifiers in low-signal environ-

ments, such as for radio astronomy. Note also that the noise variance is independent of frequency,

which implies that the noise power spectral density may be treated as constant or white. The range

of B over which the thermal noise can be assumed white is a function of temperature. However, for

temperatures greater than approximately 3K, thewhite noise assumption holds for bandwidths less

than approximately 10 GHz. As the temperature increases, the bandwidth over which the white-

noise assumption is valid increases. At standard temperature (290 K) the white-noise assumption is

valid to bandwidths exceeding 1000 GHz. At very high frequencies other noise sources, such as

quantum noise, become significant, and the white-noise assumption is no longer valid. These ideas

are discussed in more detail in Appendix A.

We also assume that thermal noise is Gaussian (has a Gaussian amplitude pdf). Since thermal

noise results from the randommotion of a large number of charge carriers, with each charge carrier

making a small contribution to the noise, the Gaussian assumption is justified through the central-

limit theorem. Thus, if we assume that the noise of interest is thermal noise, and the bandwidth is
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smaller than 10 to 1000 GHz (depending on temperature), the additive white Gaussian noise

(AWGN) model is a valid and useful noise model. We will make this assumption throughout this

chapter.

As pointed out in Chapter 1, system noise results from sources external to the system as well as

from sources internal to the system. Since noise is unavoidable in any practical system, techniques

for minimizing the impact of noise on system performance must often be used if high-performance

communications are desired. In the present chapter, appropriate performance criteria for system

performance evaluation will be developed. After this, a number of systems will be analyzed to

determine the impact of noise on system operation. It is especially important to note the differences

between linear and nonlinear systems. We will find that the use of nonlinear modulation, such as

FM, allows improved performance to be obtained at the expense of increased transmission

bandwidth. Such trade-offs do not exist when linear modulation is used.

n 7.1 SIGNAL-TO-NOISE RATIOS

InChapter 3, systems that involve the operations ofmodulation anddemodulationwere studied.

In this sectionwe extend that study to the performance of linear demodulators in the presence of

noise.We concentrate our efforts on the calculation of signal-to-noise ratios since the signal-to-

noise ratio is often a useful and easily determined figure of merit of system performance.

7.1.1 Baseband Systems

In order to have a basis for comparing system performance, we determine the signal-to-noise

ratio at the output of a baseband system. Recall that a baseband system involves nomodulation

or demodulation. Consider Figure 7.1(a). Assume that the signal power is finite atPT Wand that

the additive noise has the double-sided power spectral density 1
2
N0 W=Hz over a bandwidth B,

(b)

(a)

∑

Signal Noise

Noise

Lowpass
filter

bandwidth = W

0

1
2 N0

−W W B−B
f

(c)

Signal

Noise

0−W W
f

Message signal = m(t)

Message bandwidth = W
yD(t)

Figure 7.1

Baseband system. (a) Diagram. (b) Spectra at filter input. (c) Spectra at filter output.
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which is assumed to exceed W , as illustrated in Figure 7.1(b). The total noise power in the

bandwidth B is ðB
�B

1

2
N0 df ¼ N0B ð7:2Þ

and, therefore, the signal-to-noise ratio (SNR) at the filter input is

SNRð Þi ¼
PT

N0B
ð7:3Þ

Since the message signal m tð Þ is assumed to be bandlimited with bandwidth W < B,

a simple lowpass filter can be used to enhance the SNR. This filter is assumed to pass the signal

component without distortion but removes the out-of-band noise as illustrated in Figure 7.1(c).

Assuming an ideal filter with bandwidth W , the signal is passed without distortion. Thus the

signal power at the lowpass filter output is PT , which is the signal power at the filter input. The

noise at the filter output is ðW
�W

1

2
N0 df ¼ N0W ð7:4Þ

which is less than N0B since W < B. Thus the SNR at the filter output is

SNRð Þo ¼
PT

N0W
ð7:5Þ

The filter therefore enhances the SNR by the factor

SNRð Þo
SNRð Þi

¼ PT

N0W

N0B

PT

¼ B

W
ð7:6Þ

Since (7.5) describes the SNR achievedwith a simple baseband system inwhich all out-of-band

noise is removed by filtering, it is a reasonable standard for making comparisons of system

performance. This reference,PT=N0W , will be used extensively in thework to follow, in which

the output SNR is determined for a variety of basic systems.

7.1.2 Double-Sideband Systems

As a first example, we compute the noise performance of the coherent DSB demodulator

first considered in Chapter 3. Consider the block diagram in Figure 7.2, which illustrates a

coherent demodulator preceded by a predetection filter. Typically, the predetection filter is

the IF filter as discussed in Chapter 3. The input to this filter is the modulated signal plus

white Gaussian noise of double-sided power spectral density 1
2
N0 W=Hz. Since the

Postdetection
lowpass

filter

Predetection
(IF)
filter

yD(t)
e3(t)e2(t)xr(t) = xc(t) + n(t)

2 cos ( ct + )ω θ

×

Figure 7.2

Double-sideband demodulator.
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transmitted signal xc tð Þ is assumed to be a DSB signal, the received signal xr tð Þ can be

written as

xr tð Þ ¼ Acm tð Þ cos 2pfctþ uð Þþ n tð Þ ð7:7Þ
where m tð Þ is the message and u is used to denote our uncertainty of the carrier phase or,

equivalently, the time origin. Note that, using this model, the SNR at the input to the

predetection filter is zero since the power in white noise is infinite. If the predetection filter

bandwidth is (ideally) 2W , the DSB signal is completely passed by the filter. Using the

technique developed in Chapter 6, the noise at the predetection filter output can be expanded

into its direct and quadrature components. This gives

e2 tð Þ ¼ Acm tð Þ cos 2pfctþ uð Þ
þ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:8Þ

where the total noise power is n20 tð Þ ¼ 1
2
n2c tð Þ þ 1

2
n2s tð Þ and is equal to 2N0W .

The predetection SNR, measured at the input to the multiplier, is easily determined. The

signal power is 1
2
A2
cm

2 , wherem is understood to be a function of t and the noise power is 2N0W

as shown in Figure 7.3(a). This yields the predetection SNR,

SNRð ÞT ¼
A2
cm

2

4WN0

ð7:9Þ

In order to compute the postdetection SNR, e3 tð Þ is first computed. This gives

e3 tð Þ ¼ Acm tð Þþ nc tð ÞþAcm tð Þ cos 2 2pfctþ uð Þ½ �
þ nc tð Þ cos 2 2pfctþ uð Þ½ � � ns tð Þ sin 2 2pfctþ uð Þ½ � ð7:10Þ

The double-frequency terms about 2fc are removed by the postdetection filter to produce the

baseband (demodulated) signal

yD tð Þ ¼ Acm tð Þþ nc tð Þ ð7:11Þ
Note that additive noise on the demodulator input gives rise to additive noise at the demodulator

output. This is a property of linearity.

The postdetection signal power is A2
cm

2 , and the postdetection noise power is n2c or 2N0W,

as shown on Figure 7.3(b). This gives the postdetection SNR as

SNRð ÞD ¼
A2
cm

2

2N0W
ð7:12Þ

(a)
0

1
2 N0

f

(b)
0−W W−fc − W −fc −fc + W fc − W fc fc + W

f

N0

Sn0
( f ) Snc

( f )

Figure 7.3

(a) Predetection and (b) postdetection filter output noise spectra for DSB demodulation.
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Since the signal power is 1
2
A2
cm

2 ¼ PT , we can write the postdetection SNR as

SNRð ÞD ¼
PT

N0W
ð7:13Þ

which is equivalent to the ideal baseband system.

The ratio of SNRð ÞD to SNRð ÞT is referred to as detection gain and is often used as a

figure of merit for a demodulator. Thus, for the coherent DSB demodulator, the detection

gain is

SNRð ÞD
SNRð ÞT

¼ A2
cm

2

2N0W

4N0W

A2
cm

2
¼ 2 ð7:14Þ

At first sight, this result is somewhatmisleading, for it appears that we have gained 3 dB. This is

true for the demodulator because it suppresses the quadrature noise component. However, a

comparison with the baseband system reveals that nothing is gained, insofar as the SNR at the

system output is concerned. The predetection filter bandwidth must be 2W if DSB modulation

is used. This results in double the noise bandwidth at the output of the predetection filter and,

consequently, double the noise power. The 3 dB detection gain is exactly sufficient to overcome

this effect and give an overall performance equivalent to the baseband reference given by (7.5).

Note that this ideal performance is only achieved if all out-of-band noise is removed and if

the demodulation carrier is perfectly phase coherent with the original carrier used for

modulation.

In practice PLLs, as we studied in Chapter 3, are used to establish carrier recovery at the

demodulator. If noise is present in the loop bandwidth, phase jitter will result.Wewill consider

the effect on performance resulting from a combination of additive noise and demodulation

phase errors in a later section.

7.1.3 Single-Sideband Systems

Similar calculations are easily carried out for SSB systems. For SSB, the predetection filter

input can be written as

xr tð Þ ¼ Ac m tð Þ cos 2pfctþ uð Þ � bm tð Þ sin 2pfctþ uð Þ� þ n tð Þ½ ð7:15Þ
where bm tð Þ denotes the Hilbert transform of m tð Þ. Recall from Chapter 3 that the plus sign is

used for LSB SSB and the minus sign is used for USB SSB. Since the minimum bandwidth of

the predetection bandpass filter isW for SSB, the center frequency of the predetection filter is

fx ¼ fc � 1
2
W , where the sign depends on the choice of sideband.

We could expand the noise about the center frequency fx ¼ fc � 1
2
W since, as we saw in

Chapter 6, we are free to expand the noise about any frequency we choose. It is slightly more

convenient, however, to expand the noise about the carrier frequency fc. For this case, the

predetection filter output can be written as

e2 tð Þ ¼ Ac m tð Þ cos 2pfctþ uð Þ � bm tð Þ sin 2pfctþ uð Þ�½
þ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:16Þ

where, as can be seen from Figure 7.4(a),

NT ¼ n2 ¼ n2c ¼ n2s ¼ N0W ð7:17Þ
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Equation (7.16) can be written

e2 tð Þ ¼ Acm tð Þþ nc tð Þ½ � cos 2pfctþ uð Þ
þ Acbm tð Þ � ns tð Þ½ � sin 2pfctþ uð Þ ð7:18Þ

As discussed in Chapter 3, demodulation is accomplished by multiplying e2 tð Þ by the

demodulation carrier 2 cos 2pfctþ uð Þ and lowpass filtering. Thus the coherent demodulator

illustrated in Figure 7.2 also accomplishes demodulation of SSB. It follows that

yD tð Þ ¼ Acm tð Þþ nc tð Þ ð7:19Þ
We see that coherent demodulation removes bm tð Þ as well as the quadrature noise component

ns tð Þ. The power spectral density of nc tð Þ is illustrated in Figure 7.4(b) for the case of

LSB SSB. Since the postdetection filter passes only nc tð Þ, the postdetection noise power is

ND ¼ n2c ¼ N0W ð7:20Þ

From (7.19) it follows that the postdetection signal power is

SD ¼ A2
cm

2 ð7:21Þ
We now turn our attention to the predetection terms.

The predetection signal power is

ST ¼ Ac m tð Þ cos 2pfctþ uð Þ � bm tð Þ sin 2pfctþ uð Þ½ �f g2 ð7:22Þ

InChapter 2we pointed out that a function and itsHilbert transform are orthogonal. Ifm tð Þ¼ 0,

it follows that m tð Þbm tð Þ ¼ E m tð Þf gE bm tð Þf g ¼ 0. Thus the preceding expression becomes

ST ¼ A2
c

1

2
m2 tð Þ

� �
þ 1

2
bm2 tð Þ

� �� �
ð7:23Þ

It was also shown in Chapter 2 that a function and its Hilbert transform have equal power.

Applying this to (7.23) yields

ST ¼ A2
cm

2 ð7:24Þ

(a)
0

1
2 N0 1

2 N0

f

(b)
0−W W−fc −fc + W fc − W fc

f

Sn0
( f ) Snc

( f )

++− −

Figure 7.4

(a) Predetection and (b) postdetection filter output spectra for lower-sideband SSB (þ and� signs denote

spectral translation of positive and negative portions of Sn0 fð Þ due to demodulation, respectively).
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Since both the predetection and postdetection bandwidths areW , it follows that they have equal

power. Therefore,

NT ¼ ND ¼ N0W ð7:25Þ
and the detection gain is

SNRð ÞD
SNRð ÞT

¼ A2
cm

2

N0W

N0W

A2
cm

2
¼ 1 ð7:26Þ

The SSB system lacks the 3-dB detection gain of the DSB system. However, the

predetection noise power of the SSB system is 3 dB less than that for the DSB system if

the predetection filters have minimum bandwidth. This results in equal performance, given by

SNRð ÞD ¼
A2
cm

2

N0W
¼ PT

N0W
ð7:27Þ

Thus coherent demodulation of both DSB and SSB results in performance equivalent to

baseband.

7.1.4 Amplitude Modulation Systems

Themain reason for using AM is that simple envelope demodulation (or detection) can be used

at the receiver. In many applications the receiver simplicity more than makes up for the loss in

efficiency that we observed in Chapter 3. Therefore, coherent demodulation is not often used in

AM. Despite this fact, we consider coherent demodulation briefly since it provides a useful

insight into performance in the presence of noise.

Coherent Demodulation of AM Signals

We saw in Chapter 3 that an AM signal is defined by

xc tð Þ ¼ Ac 1þ amn tð Þ½ � cos 2pfctþ uð Þ ð7:28Þ
wheremn tð Þ is the modulation signal normalized so that the maximum value of jmn tð Þj is unity
(assuming m tð Þ has a symmetrical pdf about zero) and a is the modulation index. Assuming

coherent demodulation, it is easily shown, by using a development parallel to that used for DSB

systems, that the demodulated output in the presence of noise is

yD tð Þ ¼ Acamn tð Þþ nc tð Þ ð7:29Þ
The DC term resulting frommultiplication of xc tð Þ by the demodulation carrier is not included

in (7.29) for two reasons. First, this term is not considered part of the signal since it contains no

information. [Recall that we have assumed m tð Þ ¼ 0.] Second, most practical AM demodu-

lators are not DC-coupled, so a DC term does not appear on the output of a practical system. In

addition, the DC term is frequently used for automatic gain control (AGC) and is therefore held

constant at the transmitter.

From (7.29) it follows that the signal power in yD tð Þ is
SD ¼ A2

ca
2m2

n ð7:30Þ
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and, since the bandwidth of the transmitted signal is 2W , the noise power is

ND ¼ n2c ¼ 2N0W ð7:31Þ
For the predetection case, the signal power is

ST ¼ PT ¼ 1

2
A2
c 1þ a2m2

n

� �
ð7:32Þ

and the predetection noise power is

NT ¼ 2N0W ð7:33Þ
Thus the detection gain is

SNRð ÞD
SNRð ÞT

¼ A2
ca

2m2
n=2N0W

A2
c þA2

ca
2m2

n

� �
=4N0W

¼ 2a2m2
n

1þ a2m2
n

ð7:34Þ

which is dependent on the modulation index.

Recall that whenwe studied AM inChapter 3 the efficiency of anAM transmission system

was defined as the ratio of sideband power to total power in the transmitted signal xc tð Þ. This
resulted in the efficiency Eff being expressed as

Eff ¼ a2m2
n

1þ a2m2
n

ð7:35Þ

where the overbar, denoting a statistical average, has been substituted for the time-average

notation h � i used in Chapter 3. It follows from (7.34) and (7.35) that the detection gain can be

expressed as

SNRð ÞD
SNRð ÞT

¼ 2Eff ð7:36Þ

Since the predetection SNR can be written as

SNRð ÞT ¼
ST

2N0W
¼ PT

2N0W
ð7:37Þ

it follows that the SNR at the demodulator output can be written as

SNRð ÞD ¼ Eff

PT

N0W
ð7:38Þ

Recall that in Chapter 3 we defined the efficiency of an AM system as the ratio of sideband

power to the total power in an AM signal. The preceding expression gives another, and perhaps

better, way to view efficiency.

If the efficiency could be 1, AMwould have the same postdetection SNR as the ideal DSB

and SSB systems.Of course, aswe saw inChapter 3, the efficiency ofAM is typicallymuch less

than 1 and the postdetection SNR is correspondingly lower. Note that an efficiency of 1 requires

that the modulation index a!¥ so that the power in the ummodulated carrier is negligible

compared to the total transmitted power. However, for a>1 envelope demodulation cannot be

used and AM loses its advantage.

348 Chapter 7 . Noise in Modulation Systems

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


EXAMPLE 7.1

An AM system operates with a modulation index of 0.5, and the power in the normalized message

signal is 0.1W. The efficiency is

Eff ¼ 0:5ð Þ2 0:1ð Þ
1þ 0:5ð Þ2 0:1ð Þ ¼ 0:0244 ð7:39Þ

and the postdetection SNR is

SNRð ÞD ¼ 0:0244
PT

N0W
ð7:40Þ

The detection gain is

SNRð ÞD
SNRð ÞT

¼ 2Eff ¼ 0:0488 ð7:41Þ

This is more than 16 dB inferior to the ideal system requiring the same bandwidth. It should be

remembered, however, that the motivation for using AM is not noise performance but rather that AM

allows the use of simple envelope detectors for demodulation. The reason, of course, for the poor

efficiency of AM is that a large fraction of the total transmitted power lies in the carrier component, which

conveys no information since it is not a function of the message signal.
&

Envelope Demodulation of AM Signals

Since envelope detection is the usual method of demodulating an AM signal, it is important to

understand how envelope demodulation differs from coherent demodulation in the presence of

noise. The received signal at the input to the envelope demodulator is assumed to be xc tð Þ plus
narrowband noise. Thus

xr tð Þ ¼ Ac 1þ amn tð Þ½ � cos 2pfctþ uð Þ
þ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:42Þ

where, as before, n2c ¼ n2s ¼ 2N0W . The signal xr tð Þ can be written in terms of envelope and

phase as

xr tð Þ ¼ r tð Þ cos 2pfctþ uþf tð Þ½ � ð7:43Þ
where

r tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac 1þ amn tð Þ½ � þ nc tð Þf g2þ n2s tð Þ

q
ð7:44Þ

and

f tð Þ ¼ tan�1
 

ns tð Þ
Ac 1þ amn tð Þ½ � þ nc tð Þ

!
ð7:45Þ

Since the output of an ideal envelope detector is independent of phase variations of the input,

the expression forf tð Þ is of no interest, and wewill concentrate on r tð Þ. The envelope detector
is assumed to be AC coupled so that

yD tð Þ ¼ r tð Þ� r tð Þ ð7:46Þ
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where r tð Þ is the average value of the envelope amplitude. Equation (7.46) will be evaluated for

two cases. First, we consider the case inwhich (SNR)T is large, and thenwe briefly consider the

case in which the (SNR)T is small.

Envelope Demodulation: Large SNRð ÞT For SNRð ÞT sufficiently large, the solution is

simple. From (7.44), we see that if

jAc 1þ amn tð Þ½ � þ nc tð Þj  jns tð Þj ð7:47Þ
then most of the time

r tð Þ ffi Ac 1þ amn tð Þ½ � þ nc tð Þ ð7:48Þ
yielding, after removal of the DC component,

yD tð Þ ffi Acamn tð Þþ nc tð Þ ð7:49Þ
This is the final result for the case in which the SNR is large.

Comparing (7.49) and (7.29) illustrates that the output of the envelope detector is

equivalent to the output of the coherent detector if SNRð ÞT is large. The detection gain for

this case is therefore given by (7.34).

EnvelopeDemodulation: Small SNRð ÞT For the case inwhich SNRð ÞT is small, the analysis

is somewhat more complex. In order to analyze this case, we recall from Chapter 6 that

nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ can be written in terms of envelope and phase, so

that the envelope detector input can be written as

e tð Þ ¼ Ac 1þ amn tð Þ½ � cos 2pfctþ uð Þ
þ rn tð Þ cos 2pfctþ uþ fn tð Þ½ � ð7:50Þ

For SNRð ÞT � 1, the amplitude of Ac 1þ amn tð Þ½ � will usually be much smaller than rn tð Þ.
Consider the phasor diagram illustrated in Figure 7.5, which is drawn for rn tð Þ greater than
Ac 1þ amn tð Þ½ �. It can be seen that r tð Þ is approximated by

r tð Þ ffi rn tð ÞþAc lþ amn tð Þ½ � cos fn tð Þ½ � ð7:51Þ
yielding

yD tð Þ ffi rn tð ÞþAc 1þ amn tð Þ½ � cos fn tð Þ½ � � r tð Þ ð7:52Þ
The principal component of yD tð Þ is the Rayleigh-distributed noise envelope, and no

component of yD tð Þ is proportional to the signal. Note that since nc tð Þ and ns tð Þ are random,

Figure 7.5

Phasor diagram for AM with SNRð ÞT � 1

(drawn for u ¼ 0).

rn(t)

Ac [1 + amn(t)]

n(t)φr (t)
≅ r n

(t)
+ A c

[1
+ am n

(t)]
 co

s n
(t)φ
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cos fn tð Þ½ � is also random. Thus the signal mn tð Þ is multiplied by a random quantity. This

multiplication of the signal by a function of the noise has a significantly worse degrading effect

than does additive noise.

This severe loss of signal at low-input SNR is known as the threshold effect and results

from the nonlinear action of the envelope detector. In coherent detectors, which are linear, the

signal and noise are additive at the detector output if they are additive at the detector input. The

result is that the signal retains its identity even when the input SNR is low. For this reason,

coherent detection is often desirable when the noise is large.

Square-Law Demodulation of AM Signals

The determination of the SNR at the output of a nonlinear system is often a very difficult task.

The square-law detector, however, is one system for which this is not the case. In this section,

we conduct a simplified analysis to illustrate the phenomenon of thresholding, which is

characteristic of nonlinear systems.

In the analysis to follow, the postdetection bandwidth will be assumed twice the message

bandwidth W . This is not a necessary assumption, but it does result in a simplification of the

analysis without impacting the threshold effect. We will also see that harmonic and/or

intermodulation distortion is a problem with square-law detectors, an effect that may preclude

their use.

Square-law demodulators are implemented as a squaring device followed by a lowpass

filter. The response of a square-law demodulator to an AM signal is r2 tð Þ, where r tð Þ is defined
by (7.44). Thus, the output of the square-law device can be written as

r2 tð Þ ¼ Ac 1þ amn tð Þ½ � þ nc tð Þf g2þ n2s tð Þ ð7:53Þ

We now determine the output SNR. Carrying out the indicated squaring operation gives

r2 tð Þ ¼ A2
c þ 2A2

camn tð ÞþA2
ca

2m2
n tð Þ

þ 2Acnc tð Þþ 2Acanc tð Þmn tð Þþ n2c tð Þþ n2s tð Þ ð7:54Þ

First consider the first line of the preceding equation. The first term, A2
c , is a DC term and is

neglected. It is not a function of the signal and is not a function of noise. In addition, in most

practical cases, the detector output is assumed AC coupled, so that DC terms are blocked. The

second term is proportional to the message signal and represents the desired output. The third

term is signal-induced distortion (harmonic and intermodulation) and will be considered

separately. All four terms on the second line of (7.54) represent noise. We now consider the

calculation of SNRð ÞD.
The signal and noise components of the output are written as

sD tð Þ ¼ 2A2
camn tð Þ ð7:55Þ

and

nD tð Þ ¼ 2Acnc tð Þþ 2Acanc tð Þmn tð Þþ n2c tð Þþ n2s tð Þ ð7:56Þ
respectively. The power in the signal component is

SD ¼ 4A4
ca

2m2
n ð7:57Þ
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and the noise power is

ND ¼ 4A2
cn

2
c þ 4A2

ca
2n2c m

2
n þs2

n2c þ n2s
ð7:58Þ

The last term is given by

s2
n2c þ n2s

¼ E n2c tð Þþ n2s tð Þ �2h i
� E2 n2c tð Þþ n2s tð Þ � ¼ 4s2

n ð7:59Þ

where, as always, s2
n ¼ n2c ¼ n2s . Thus,

ND ¼ 4A2
cs

2
nþ 4A2

ca
2m2

n tð Þs2
nþ 4s4

n ð7:60Þ
This gives

SNRð ÞD ¼
a2m2

n A2
c=s

2
n


 �
1þ a2m2

n

� �
þ s2

n=A
2
c


 � ð7:61Þ

Recognizing that PT ¼ 1
2
A2
c 1þ a2m2

n

� �
and s2

n ¼ 2N0W , A2
c=s

2
n can be written

A2
c

s2
n

¼ PT

1þ a2m2
n tð Þ

h i
N0W

ð7:62Þ

Substitution into (7.61) gives

SNRð ÞD ¼
a2m2

n

1þ a2m2
n

� �2 PT=N0W

1þN0W=PT

ð7:63Þ

For high SNR operation PT  N0W and the last term in the denominator is negligible. For this

case,

SNRð ÞD ¼
a2m2

n

1þ a2m2
n

� �2 PT

N0W
; PT  N0W ð7:64Þ

while for low SNR operation N0W  PT and

SNRð ÞD ¼
a2m2

n

1þ a2m2
n

� �2 PT

N0W

0@ 1A2; N0W  PT ð7:65Þ

Figure 7.6 illustrates (7.63) for several values of the modulation index a assuming sinusoidal

modulation. We see that, on a log (decibel) scale, the slope of the detection gain characteristic

below threshold is double the slope above threshold. The threshold effect is therefore obvious.

Recall that in deriving (7.63), from which (7.64) and (7.65) followed, we neglected the

third term in (7.54), which represents signal-induced distortion. From (7.54) and (7.57) the

distortion-to-signal-power ratio, denoted DD=SD, is

DD

SD
¼ A4

ca
4m4

n

4A4
ca

2m2
n

¼ a2

4

m4
n

m2
n

ð7:66Þ
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If themessage signal is Gaussian with variances2
m, the preceding becomes (see Problem 5.22.)

DD

SD
¼ 3

4
a2s2

m ð7:67Þ

We see that signal-induced distortion can be reduced by decreasing the modulation index.

However, as illustrated in Figure 7.6, a reduction of the modulation index also results in a

decrease in the output SNR.

The linear envelope detector defined by (7.44) is much more difficult to analyze over a

wide range of SNRs because of the square root. However, to a first approximation, the

performance of a linear envelope detector and a square-law envelope detector are the same.

Harmonic distortion is also present in linear envelope detectors, but the amplitude of the

distortion component is significantly less than that observed for square-law detectors. In

addition, it can be shown that for high SNRs and a modulation index of unity, the performance

of a linear envelope detector is better by approximately 1.8 dB than the performance of a

square-law detector. (See Problem 7.16.)1

n 7.2 NOISE AND PHASE ERRORS IN COHERENT SYSTEMS

In the preceding sectionwe investigated the performance of various types of demodulators. Our

main interests were detection gain and calculation of the demodulated output SNR. Where

coherent demodulation was used, the demodulation carrier was assumed to have perfect phase

coherence with the carrier used for modulation. In a practical system, as we briefly discussed,
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Figure 7.6

Performance of a square-law detector assuming

sinusoidal modulation.

1For a detailed study of linear envelope detectores, see Bennett (1974).
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Postdetection
lowpass filter

bandwidth = W

Demodulation
carrier

Predetection
filter

bandwidth = BT

yD(t)
e(t)xr(t) = xc(t) + n(t)

2 cos [ ct + +  (t)]ω θ     φ

×

Figure 7.7

Coherent demodulator with phase error.

the presence of noise in the carrier recovery system prevents perfect estimation of the carrier

phase. Thus, system performance in the presence of both additive noise and demodulation

phase errors is of interest.

The demodulatormodel is illustrated in Figure 7.7. The signal portion of e tð Þ is assumed to

be the quadrature double-sideband (QDSB) signal

m1 tð Þ cos 2pfctþ uð Þþm2 tð Þ sin 2pfctþ uð Þ
where any constant Ac is absorbed into m1 tð Þ and m2 tð Þ for notational simplicity. Using this

model, a general representation for the error in the demodulated signal yD tð Þ is obtained. After
the analysis is complete, theDSB result is obtained by lettingm1 tð Þ ¼ m tð Þ andm2 tð Þ ¼ 0. The

SSB result is obtained by letting m1 tð Þ ¼ m tð Þ and m2 tð Þ ¼ �bm tð Þ, depending upon the

sideband of interest. For the QDSB system, yD tð Þ is the demodulated output for the direct

channel. The quadrature channel can be demodulated using a demodulation carrier of the form

2 sin 2pfctþ uþf tð Þ½ �.
The noise portion of e tð Þ is represented using the narrowband model

nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ
in which

n2c ¼ n2s ¼ N0BT ¼ n2 ¼ s2
n ð7:68Þ

where BT is the bandwidth of the predetection filter, 1
2
N0 is the double-sided power spectral

density of the noise at the filter input, and s2
n is the noise variance (power) at the output of the

predetection filter. The phase error of the demodulation carrier is assumed to be a sample

function of a zeromeanGaussian process of knownvariances2
f. As before, themessage signals

are assumed to have zero mean.

With the preliminaries of defining the model and stating the assumptions disposed of, we

now proceed with the analysis. The assumed performance criterion is mean-square error in the

demodulated output yD tð Þ. Therefore, we will compute

e2 ¼ m1 tð Þ� yD tð Þf g2 ð7:69Þ
for DSB, SSB, and QDSB. The multiplier input signal e tð Þ in Figure 7.7 is

e tð Þ ¼ m1 tð Þ cos 2pfctþ uð Þþm2 tð Þ sin 2pfctþ uð Þ
þ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:70Þ
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Multiplying by 2 cos 2pfctþ uþf tð Þ½ � and lowpass filtering gives us the output

yD tð Þ ¼ m1 tð Þþ nc tð Þ½ � cos f tð Þ� m2 tð Þ� ns tð Þ½ � sin f tð Þ ð7:71Þ
The error m1 tð Þ� yD tð Þ can be written as

e ¼ m1� m1þ ncð Þ cos fþ m2� nsð Þ sin f ð7:72Þ
where it is understood that e;m1;m2; nc; ns; and f are all functions of time. The mean-square

error can be written as

e2 ¼ m2
1 � 2m1 m1þ ncð Þ cos f
þ 2m1 m2� nsð Þ sin f

þ m1þ ncð Þ2 cos2 f
� 2 m1þ ncð Þ m2� nsð Þ sin f cos f

þ m2� nsð Þ2 sin2 f

ð7:73Þ

The variablesm1;m2; nc; ns; and f are all assumed to be uncorrelated. It should be pointed out

that for the SSB case, the power spectra of nc tð Þ and ns tð Þ will not be symmetrical about fc.

However, as pointed out in Section 6.5, nc tð Þ and ns tð Þ are still uncorrelated, since there is no
time displacement. Thus, the mean-square error can be written as

e2 ¼ m2
1 � 2m2

1 cos fþm2
1 cos

2 fþm2
2 sin

2 fþ n2 ð7:74Þ
and we are in a position to consider specific cases.

First, let us assume the system of interest is QDSB with equal power in each modulating

signal. Under this assumption, m2
1 ¼ m2

2 ¼ s2
m, and the mean-square error is

e2Q ¼ 2s2
m� 2s2

m cos fþs2
n ð7:75Þ

This expression can be easily evaluated for the case in which themaximum value of jf tð Þj � 1

so that f tð Þ can be represented by the first two terms in a power series expansion. Using the

approximation

cos f ffi 1� 1

2
f2 ¼ 1� 1

2
s2
f ð7:76Þ

gives

e2Q ¼ s2
ms

2
fþs2

n ð7:77Þ
In order to have an easily interpreted measure of system performance, the mean-square error is

normalized by s2
m. This yields

e2NQ ¼ s2
fþ

s2
n

s2
m

ð7:78Þ

Note that the first term is the phase error variance and the second term is simply the reciprocal of

the SNR. Note that for high SNR the important error source is the phase error.

The preceding expression is also valid for the SSB case, since an SSB signal is a QDSB

signalwith equal power in the direct and quadrature components. However,s2
nmay be different

for the SSB and QDSB cases, since the SSB predetection filter bandwidth need only be half the

bandwidth of the predetection filter for the QDSB case. Equation (7.78) is of such general

interest that it is illustrated in Figure 7.8.
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In order to compute the mean-square error for a DSB system, we simply let m2 ¼ 0 and

m1 ¼ m in (7.74). This yields

e2D ¼ m2 � 2m2 cos fþm2 cos2 fþ n2 ð7:79Þ
or

e2D ¼ s2
m 1� cos fð Þ2 þ n2 ð7:80Þ

which, for small f, can be approximated as

e2D ffi s2
m

1

4

� �
f4 þ n2 ð7:81Þ

If f is zero-mean Gaussian with variance s2
f (see problem 5.22),

f4 ¼ f2

 �2 ¼ 3s4

f ð7:82Þ
Thus

e2D ffi
3

4
s2
ms

4
fþs2

n ð7:83Þ

and the normalized mean-square error becomes

e2ND ¼
3

4
s4
fþ

s2
n

s2
m

ð7:84Þ

Several items are of interest when comparing (7.84) and (7.78). First, equal output SNRs

imply equal normalized mean-square errors for s2
f ¼ 0. This is easy to understand since the

noise is additive at the output. The general expression for yD tð Þ is yD tð Þ ¼ m tð Þþ n tð Þ. The
error is n tð Þ, and the normalized mean-square error is s2

n=s
2
m. The analysis also illustrates that

DSB systems aremuch less sensitive to demodulation phase errors than SSB orQDSB systems.

0.002

0.004

0.006

0.008

0.010

0.012

0.014

20 24 28 32
10 log10 ( m

2/ n
2)σ σ

N
or

m
al

iz
ed

 m
ea

n-
sq

ua
re

 e
rr

or

36 40

σφ
2 = 0.005

σφ
2 = 0.002

σφ
2 = 0.0005

σφ
2 = 0.00005

Figure 7.8

Mean-square error versus SNR for QDSB

system.
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This follows from the fact that if f� 1, the basic assumption made in the analysis, then

s4
f � s2

f.

EXAMPLE 7.2

Assume that the demodulation phase-error variance of a coherent demodulator is described bys2
f ¼ 0:01.

The SNR s2
m=s

2
n is 20 dB. If a DSB system is used, the normalized mean-square error is

e2ND ¼
3

4
0:01ð Þ2þ 10�20=10 ¼ 0:000075 DSBð Þ ð7:85Þ

while for the SSB case the normalized mean-square error is

e2ND ¼ 0:01ð Þþ 10�20=10 ¼ 0:02 SSBð Þ ð7:86Þ
Note that for the DSB demodulator, the demodulation phase error can probably be neglected for most

applications. For the SSB case the phase error contributes more significantly to the error in the

demodulated output, and therefore, the phase error variance must clearly be considered. Recall that

demodulation phase errors in a QDSB system result in crosstalk between the direct and quadrature

message signals. Thus in SSB, demodulation phase errors result in a portion of bm tð Þ appearing in the

demodulated output for m tð Þ. Since m tð Þ and bm tð Þ are independent, this crosstalk can be a severely

degrading effect unless the demodulation phase error is very small.
&

n 7.3 NOISE IN ANGLE MODULATION

Now that we have investigated the effect of noise on a linear modulation system, we turn our

attention to angle modulation.Wewill find that there are significant differences between linear

and angle modulation when noise effects are considered. We will also find significant

differences between PM and FM. Finally, we will see that FM can offer greatly improved

performance over both linear modulation and PM systems in noisy environments, but that this

improvement comes at the cost of increased transmission bandwidth.

7.3.1 The Effect of Noise on the Receiver Input

Consider the system shown in Figure 7.9. The predetection filter bandwidth isBT and is usually

determined by Carson�s rule. Recall from Chapter 3 that BT is approximately 2 Dþ 1ð ÞW Hz,

whereW is the bandwidth of the message signal andD is the deviation ratio, which is the peak

frequency deviation divided by the bandwidthW . The input to the predetection filter is assumed

to be the modulated carrier

xc tð Þ ¼ Ac cos 2pfctþ uþf tð Þ½ � ð7:87Þ

yD(t)xr(t)
e1(t) Postdetection

filter
DiscriminatorPredetection

filter

Figure 7.9

Angle demodulation system.
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plus additivewhite noise that has the double-sided power spectral density 1
2
N0 W=Hz. For angle

modulation the phase deviation f tð Þ is a function of the message signal m tð Þ.
The output of the predetection filter can be written as

e1 tð Þ ¼ Ac cos 2pfctþ uþf tð Þ½ �
þ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:88Þ

where

n2c ¼ n2s ¼ N0BT ð7:89Þ
Equation (7.88) can be written as

e1 tð Þ ¼ Ac cos 2pfctþ uþf tð Þ½ � þ rn tð Þ cos 2pfctþ uþ fn tð Þ½ � ð7:90Þ
where rn tð Þ is the Rayleigh-distributed noise envelope and fn tð Þ is the uniformly distributed

phase. By replacing 2pfctþfn tð Þ with 2pfctþf tð Þþfn tð Þ�f tð Þ, we can write (7.90) as

e1 tð Þ ¼ Ac cos 2pfctþ uþf tð Þ½ �
þ rn tð Þ cos fn tð Þ�f tð Þ½ � cos 2pfctþ uþf tð Þ½ �
� rn tð Þ sin fn tð Þ�f tð Þ½ � sin 2pfctþ uþf tð Þ½ �

ð7:91Þ

which is

e1 tð Þ ¼ Acþ rn tð Þ cos fn tð Þ�f tð Þ½ �f g cos 2pfctþ uþf tð Þ½ �
� rn tð Þ sin fn tð Þ�f tð Þ½ � sin 2pfctþ uþf tð Þ½ � ð7:92Þ

Since the purpose of the receiver is to recover the phase, wewrite the preceding expression

as

e1 tð Þ ¼ R tð Þ cos 2pfctþ uþf tð Þþ fe tð Þ½ � ð7:93Þ
where fe tð Þ is the phase deviation error due to noise and is given by

fe tð Þ ¼ tan�1
rn tð Þ sin fn tð Þ�f tð Þ½ �

Acþ rn tð Þ cos fn tð Þ�f tð Þ½ �
� �

ð7:94Þ

Since fe tð Þ adds to f tð Þ, which conveys the message signal, it is the noise component of

interest.

If e1 tð Þ is expressed as

e1 tð Þ ¼ R tð Þ cos 2pfctþ uþc tð Þ½ � ð7:95Þ
the phase deviation of the discriminator input due to the combination of signal and noise is

c tð Þ ¼ f tð Þþfe tð Þ ð7:96Þ
wherefe tð Þ is the phase error due to noise. Since the demodulated output is proportional toc tð Þ
for PM, or dc=dt for FM,wemust determine ðSNRÞT for PMand for FMas separate cases. This

will be addressed in following sections.

If the predetection SNR, ðSNRÞT , is large,Ac  rn tð Þmost of the time. For this case (7.94)

becomes

fe tð Þ ¼ rn tð Þ
Ac

sin fn tð Þ�f tð Þ½ � ð7:97Þ
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so that c tð Þ is
c tð Þ ¼ f tð Þþ rn tð Þ

Ac

sin fn tð Þ�f tð Þ½ � ð7:98Þ

It is important to note that the effect of the noise rn tð Þ is suppressed if the transmitted signal

amplitudeAc is increased. Thus the output noise is affected by the transmitted signal amplitude

even for above-threshold operation.

In (7.98) note that fn tð Þ, for a given value of t, is uniformly distributed over a 2p range.

Also, for a given t, f tð Þ is a constant that biases fn tð Þ, and fn tð Þ�f tð Þ is in the same range

mod(2p). We therefore neglect f tð Þ in (7.98) and express c tð Þ as

c tð Þ ¼ f tð Þþ ns tð Þ
Ac

ð7:99Þ

where ns tð Þ is the quadrature noise component at the input to the receiver.

7.3.2 Demodulation of PM

Recall that for PM, the phase deviation is proportional to the message signal so that

f tð Þ ¼ kpmn tð Þ ð7:100Þ
where kp is the phase-deviation constant in radians per unit ofmn tð Þ andmn tð Þ is the message

signal normalized so that the peak value of jm tð Þj is unity. The demodulated output yD tð Þ for
PM is given by

yD tð Þ ¼ KDc tð Þ ð7:101Þ
where c tð Þ represents the phase deviation of the receiver input due to the combined effects of

signal and noise. Using (7.99) gives

yDP tð Þ ¼ KDkpmn tð ÞþKD

ns tð Þ
Ac

ð7:102Þ

The output signal power for PM is

SDP ¼ K2
Dk

2
Pm

2
n ð7:103Þ

The power spectral density of the predetection noise is N0, and the bandwidth of the

predetection noise isBT which, by Carson�s rule, exceeds 2W . We therefore remove the out-of-

band noise by following the discriminator with a lowpass filter of bandwidthW . This filter has

no effect on the signal but reduces the output noise power to

NDP ¼ K2
D

A2
c

ðW
�W

N0 df ¼ 2
K2
D

A2
c

N0W ð7:104Þ

Thus the SNR at the output of the phase discriminator is

SNRð ÞD ¼
SDP

NDP

¼ K2
Dk

2
Pm

2
n

2K2
D=A

2
c


 �
N0W

ð7:105Þ

Since the transmitted signal power PT is A2
c=2, we have

SNRð ÞD ¼ k2pm
2
n

PT

N0W
ð7:106Þ
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The above expression shows that the improvement of PM over linear modulation depends

on the phase-deviation constant and the power in the modulating signal. It should be

remembered that if the phase deviation of a PM signal exceedsp radians, unique demodulation

cannot be accomplished unless appropriate signal processing is used to ensure that the phase

deviation due tom tð Þ is continuous. If, however, we assume that the peak value of jkpmn tð Þj is
p, the maximum value of k2pm

2
n is p

2. This yields amaximum improvement of approximately

10 dB over baseband. In reality, the improvement is significantly less because k2pm
2
n is

typically much less than the maximum value of p2. It should be pointed out that if the

constraint that the output of the phase demodulator is continuous is imposed, it is possible

for jkpmn tð Þj to exceed p.

7.3.3 Demodulation of FM: Above Threshold Operation

For the FM case,

f tð Þ ¼ 2pfd

ðt
mn að Þda ð7:107Þ

where fd is the deviation constant in Hz per unit amplitude of the message signal. If the

maximum value of jm tð Þj is not unity, as is usually the case, the scaling constant K, defined by
m tð Þ ¼ Kmn tð Þ, is contained in kp or fd. The discriminator output yD tð Þ for FM is given by

yD tð Þ ¼ 1

2p
KD

dc

dt
ð7:108Þ

where KD is the discriminator constant. Substituting (7.99) into (7.108) and using (7.107) for

f tð Þ yields

yDF tð Þ ¼ KDfmmn tð Þþ KD

2pAc

dns tð Þ
dt

ð7:109Þ

The output signal power at the output of the FM demodulator is

SDF ¼ K2
D f 2d m

2
n ð7:110Þ

Before the noise power can be calculated, the power spectral density of the output noise must

first be determined.

The noise component at the output of the FM demodulator is, from (7.109), given by

nF tð Þ ¼ KD

2pAc

dns tð Þ
dt

ð7:111Þ

It was shown in Chapter 6 that if y tð Þ ¼ dx=dt, then Sy fð Þ ¼ 2pfð Þ2Sx fð Þ. Applying this result
to (7.111) yields

SnF fð Þ ¼ K2
D

2pð Þ2A2
c

2pfð Þ2N0 ¼ K2
D

A2
c

N0 f
2 ð7:112Þ

for j f j < 1
2
BT and zero otherwise. This spectrum is illustrated in Figure 7.10(b). The parabolic

shape of the noise spectrum results from the differentiating action of the FM discriminator and

has a profound effect on the performance of FM systems operating in the presence of noise. It is

clear from Figure 7.10(b) that low-frequency message-signal components are subjected to
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lower noise levels than are high-frequency components. Once again, assuming that a lowpass

filter having only sufficient bandwidth to pass themessage follows the discriminator, the output

noise power is

NDF ¼ K2
D

A2
c

N0

ðW
�W

f 2 df ¼ 2

3

K2
D

A2
c

N0W
3 ð7:113Þ

This quantity is indicated by the shaded area in Figure 7.10(b).

As usual, it is useful to write (7.113) in terms of PT=N0W . Since PT ¼ A2
c=2 we have

PT

N0W
¼ A2

c

2N0W
ð7:114Þ

and from (7.113) the noise power at the output of the FM demodulator is

NDF ¼ 1

3
K2
DW

2 PT

N0W

� ��1
ð7:115Þ

Note that for both PM and FM the noise power at the discriminator output is inversely

proportional to PT=N0W .

The SNR at the FM demodulator output is now easily determined. Dividing the signal

power, defined by (7.110), by the noise power, defined by (7.115), gives

SNRð ÞDF ¼
K2
D f 2d m

2
n

1
3
K2
DW

2 PT

N0W

� ��1 ð7:116Þ

which can be expressed as

SNRð ÞDF ¼ 3
fd

W

� �2

m2
n

PT

N0W
ð7:117Þ

where PT is the transmitted signal power 1
2
A2
c. Since the ratio of peak deviation to W is the

deviation ratio D, the output SNR can be expressed

SNRð ÞDF ¼ 3D2m2
n

PT

N0W
ð7:118Þ

where, as always, themaximumvalue of jmn tð Þj is unity. Note that themaximumvalue ofm tð Þ,
together with fd and W , determines D.
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Figure 7.10

(a) Power spectral density for PM discriminator output, with portion for j f j < W shaded. (b) Power

spectral density for FM discriminator output, with portion for j f j < W shaded.
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At first glance itmight appear thatwe can increaseDwithout bound, thereby increasing the

output SNR to an arbitrarily large value. One price we pay for this improved SNR is excessive

transmission bandwidth. ForD 1, the required bandwidth BT is approximately 2DW, which

yields

SNRð ÞDF ¼
3

4

BT

W

� �2

m2
n

PT

N0W

� �
ð7:119Þ

This expression illustrates the trade-off that exists between bandwidth and output SNR.

However, (7.119) is valid only if the discriminator input SNR is sufficiently large to result in

operation above threshold. Thus the output SNR cannot be increased to any arbitrary value by

simply increasing the deviation ratio and thus the transmission bandwidth. This effect will be

studied in detail in a later section. First, however, we will study a simple technique for gaining

additional improvement in the output SNR.

7.3.4 Performance Enhancement through the Use of De-emphasis

In Chapter 3 we saw that pre-emphasis and de-emphasis can be used to partially combat the

effects of interference. These techniques can also be used to advantagewhen noise is present in

angle modulation systems.

As we saw in Chapter 3, the de-emphasis filter is usually a first-order lowpass RC filter

placed directly at the discriminator output. Prior to modulation, the signal is passed through a

highpass pre-emphasis filter having a transfer function so that the combination of the pre-

emphasis and de-emphasis filters has no net effect on themessage signal. The de-emphasis filter

is followed by a lowpass filter, assumed to be idealwith bandwidthW , which eliminates the out-

of-band noise. Assume the de-emphasis filter to have the amplitude response

jHDE fð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f3ð Þ2

q ð7:120Þ

where f3 is the 3-dB frequency 1= 2pRCð ÞHz. The total noise power outputwith de-emphasis is

NDF ¼
ðW
�W
jHDE fð Þj2SnF fð Þdf ð7:121Þ

Substituting SnF fð Þ from (7.112) and jHDE fð Þj from (7.120) yields

NDF ¼ K2
D

A2
c

N0 f
2
3

ðW
�W

f 2

f 23 þ f 2
df ð7:122Þ

or

NDF ¼ 2
K2
D

A2
c

N0 f
3
3

W

f3
� tan�1

W

f3

� �
ð7:123Þ

In a typical situation, f3 � W , so tan�1 W=f3ð Þ ffi 1
2
p, which is small compared to W=f3. For

this case,

NDF ¼ 2
K2
D

A2
c

� �
N0 f

2
3W ð7:124Þ
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and the output SNR becomes

SNRð ÞDF ¼ 3
fd

f3

� �2
m2

n

PT

N0W
ð7:125Þ

A comparison of (7.125) with (7.117) illustrates that for f3 � W, the improvement gained

through the use of pre-emphasis and de-emphasis is approximately W=f3ð Þ2, which can be very
significant in noisy environments.

EXAMPLE 7.3

Commercial FMoperates with fd ¼ 75 kHz,W ¼ 15 kHz,D ¼ 5, and the standard value of 2.1 kHz for f3.

Assuming that m2
n ¼ 0:1, we have, for FM without pre-emphasis and de-emphasis,

SNRð ÞDF ¼ 7:5
PT

N0W
ð7:126Þ

With pre-emphasis and de-emphasis, the result is

SNRð ÞDF;pe ¼ 128
PT

N0W
ð7:127Þ

With the chosen values, FM without de-emphasis is 8.75 dB superior to baseband, and FM with de-

emphasis is 21 dB superior to baseband. The difference of 12.25 dB is approximately equivalent to a factor

of 16. Thus, with the use of pre-emphasis and de-emphasis, the transmitter power can be reduced by a

factor of 16. This improvement is obviously significant andmore than justifies the use of pre-emphasis and

de-emphasis.
&

As mentioned in Chapter 3, a price is paid for the SNR improvement gained by the use of

pre-emphasis. The action of the pre-emphasis filter is to accentuate the high-frequency portion

of the message signal relative to the low-frequency portion of the message signal. Thus pre-

emphasismay increase the transmitter deviation and, consequently, the bandwidth required for

signal transmission. Fortunately, many message signals of practical interest have relatively

small energy in the high-frequency portion of their spectrum, so this effect is often of little or no

importance.

n 7.4 THRESHOLD EFFECT IN FM DEMODULATION

Since angle modulation is a nonlinear process, demodulation of an angle-modulated signal

exhibits a threshold effect. We now take a closer look at this threshold effect concentrating on

FM demodulators or, equivalently, discriminators.

7.4.1 Threshold Effects in FM Demodulators

Significant insight into the mechanism by which threshold effects take place can be gained by

performing a relatively simple laboratory experiment. We assume that the input to an FM

discriminator consists of an unmodulated sinusoid plus additive bandlimited white noise

having a power spectral density symmetrical about the frequency of the sinusoid. Starting out
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with a high SNR at the discriminator input, the noise power is gradually increased while

continually observing the discriminator output on an oscilloscope. Initially, the discriminator

output resembles bandlimited white noise. As the noise power spectral density is increased,

thereby reducing the input SNR, a point is reached at which spikes or impulses appear in the

discriminator output. The initial appearance of these spikes denotes that the discriminator is

operating in the region of threshold.

The statistics for these spikes are examined in Appendix D. In this section we review the

phenomenon of spike noise with specific application to FM demodulation. The system under

consideration is that of Figure 7.9. For this case,

e1 tð Þ ¼ Ac cos 2pfctþ uð Þþ nc tð Þ cos 2pfctþ uð Þ� ns tð Þ sin 2pfctþ uð Þ ð7:128Þ
which is

e1 tð Þ ¼ Ac cos 2pfctþ uð Þþ rn tð Þ cos 2pfctþ uþ fn tð Þ½ � ð7:129Þ
or

e1 tð Þ ¼ R tð Þ cos 2pfctþ uþc tð Þ½ � ð7:130Þ
The phasor diagram of this signal is given in Figure 7.11. Like Figure D.2 in

Appendix D, it illustrates the mechanism by which spikes occur. The signal amplitude is

Ac and the angle is u, since the carrier is assumed unmodulated. The noise amplitude is rn tð Þ.
The angle difference between signal and noise is fn tð Þ: As threshold is approached, the noise
amplitude grows until, at least part of the time, jrn tð Þj > Ac. Also, since fn tð Þ is uniformly

distributed, the phase of the noise is sometimes in the region of �p. Thus the resultant

phasor R tð Þ can occasionally encircle the origin. When R tð Þ is in the region of the origin, a

relatively small change in the phase of the noise results in a rapid change in c tð Þ. Since the
discriminator output is proportional to the time rate of change c tð Þ, the discriminator output

is very large as the origin is encircled. This is essentially the same effect that was observed in

Chapter 3 where the behavior of an FM discriminator operating in the presence of

interference was studied.

The phase deviationc tð Þ is illustrated in Figure 7.12 for the case in which the input SNR is

�4.0 dB. The origin encirclements can be observed by the 2p jumps in c tð Þ. The output of an
FM discriminator for several predetection SNRs is shown in Figure 7.13. The decrease in spike

noise as the SNR is increased is clearly seen.

In Appendix D it is shown that the power spectral density of spike noise is given by

Sdc=dt fð Þ ¼ 2pð Þ2 nþ dn

 � ð7:131Þ

rn(t)

Ac

R(t)

n(t)φ(t)ψ

Possible phasor
trajectory

Figure 7.11

Phasor diagram near threshold (spike output)

(drawn for u ¼ 0).
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where n is the average number of impulses per second resulting from an unmodulated carrier

plus noise and dn is the net increase of the spike rate due tomodulation. Since the discriminator

output is given by

yD tð Þ ¼ 1

2p
KD

dc

dt
ð7:132Þ

−4π

−2π

0
Ph

as
e 

de
vi

at
io

n

2π

4π

t

Figure 7.12

Phase deviation for a predetection SNR of �4:0 dB.

Figure 7.13

Output of FM discriminator due to

input noise for various predetection

SNRs.

(a) Predetection SNR ¼�10 dB.

(b) Predetection SNR ¼ �4 dB.

(c) Predetection SNR ¼ 0 dB.

(d) Predetection SNR ¼ 6 dB.

(e) Predetection SNR ¼ 10 dB.

t

t

t

t

t

(a)

(b)

(c)

(e)

(d)
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the power spectral density due to spike noise at the discriminator output is

NDd ¼ K2
DnþK2

Ddn ð7:133Þ
Using (D.23) from Appendix D for n yields

K2
Dn ¼ K2

D

BTffiffiffi
3
p Q

ffiffiffiffiffiffiffiffiffiffiffi
A2
c

N0BT

s !
ð7:134Þ

where Q xð Þ is the Gaussian Q-function defined in Chapter 5. Using (D.28) for dn yields

K2
Ddn ¼ K2

D jdf j exp
�A2

c

2N0BT

� �
ð7:135Þ

Since the spike noise at the discriminator output is white, the spike noise power at the

discriminator output is found by multiplying the power spectral density by the two-sided

postdetection bandwidth 2W . Substituting (7.134) and (7.135) into (7.133) and multiplying by

2W yields

NDd ¼ K2
D

2BTWffiffiffi
3
p Q

ffiffiffiffiffiffiffiffiffiffiffi
A2
c

N0BT

s !
þK2

D 2Wð Þ jdf j exp �A2
c

2N0BT

� �
ð7:136Þ

for the spike noise power. Now that the spike noise power is known, we can determine the total

noise power at the discriminator output. After this is accomplished the output SNR at the

discriminator output is easily determined.

The total noise power at the discriminator output is the sum of the Gaussian noise power

and spike noise power. The total noise power is therefore found by adding (7.136) to (7.115).

This gives

ND ¼ 1

3
K2
DW

2 PT

N0W

� ��1
þK2

D

2BTWffiffiffi
3
p Q

 ffiffiffiffiffiffiffiffiffiffiffi
A2
c

N0BT

s !

þK2
D 2Wð Þ jdf j exp �A2

c

2N0BT

� � ð7:137Þ

The signal power at the discriminator output is given by (7.110). Dividing the signal power by

the noise power given above yields, after canceling the KD terms,

SNRð ÞD ¼
f 2d m

2
n

1
3
W2 PT=N0Wð Þ� 1þð2BTW=

ffiffiffi
3
p Þ Q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
c=N0BT

p
 �þ 2W jdf j exp �A2
c=2N0BT


 �
ð7:138Þ

This result can be placed in standard form by dividing numerator and denominator by the

leading term in the denominator. This gives the final result

SNRð ÞD

¼ 3 fd=Wð Þ2m2
n

PT

N0W

1þ2 ffiffiffi
3
p

BT=Wð Þ PT=N0Wð Þ Q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
c=N0BT

p
 �þ6 jdf j=W
 �
PT=N0Wð Þ exp �A2

c=2N0BT


 �
ð7:139Þ
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For operation above threshold, the region of input SNRs where spike noise is negligible,

the last two terms in the denominator of the preceding expression are much less than one and

may therefore be neglected. For this case the postdetection SNR is the above threshold result

given by (7.117). It is worth noting that the quantity A2
c= 2N0 BTð Þ appearing in the spike noise

terms is the predetection SNR. Note that the message signal explicitly affects two terms in

the expression for the postdetection SNR through m2
n and jdf j. Thus, before SNRð ÞD can be

determined, a message signal must be assumed. This is the subject of the following example.

EXAMPLE 7.4

In this example the detection gain of an FM discriminator is determined assuming the sinusoidal message

signal

mn tð Þ ¼ sin 2pWtð Þ ð7:140Þ
The instantaneous frequency deviation is given by

fdmn tð Þ ¼ fd sin 2pWtð Þ ð7:141Þ
and the average of the absolute value of the frequency deviation is therefore given by

jdf j ¼ 2W

ð1=2W
0

fd sin 2pWtð Þdt ð7:142Þ

Carrying out the integration yields

jdf j ¼ 2

p
fd ð7:143Þ

Note that fd is the peak frequency deviation, which by definition of the modulation index, b, is bW . (We

use the modulation index b rather than the deviation ratio D since m tð Þ is a sinusoidal signal.) Thus

jdf j ¼ 2

p
bW ð7:144Þ

From Carson�s rule we have

BT

W
¼ 2 bþ 1ð Þ ð7:145Þ

Since the message signal is sinusoidal b ¼ fd=W and m2
n ¼ 1=2. Thus

fd

W

� �2

m2
n ¼

1

2
b2 ð7:146Þ

Finally, the predetection SNR can be written

A2
c

2N0BT

¼ 1

2 bþ 1ð Þ
PT

N0W
ð7:147Þ

Substituting (7.146) and (7.147) into (7.139) yields

SNRð ÞD

¼ 1:5b2PT=N0W

1þ4 ffiffiffi
3
p

bþ1ð Þ PT=N0Wð ÞQ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1= bþ1ð Þ� PT=N0Wð Þp þð12=pÞbexp ½�1=2 bþ1ð Þ�ðPT=N0WÞf g

ð7:148Þ

for the postdetection SNR.
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The postdetection SNR is illustrated in Figure 7.14 as a function of PT=N0W . The threshold value of

PT=N0W is defined as the value ofPT=N0W at which the postdetection SNR is 3 dB below the value of the

postdetection SNR given by the above threshold analysis. In other words, the threshold value of PT=N0W

is the value of PT=N0W for which the denominator of (7.148) is equal to 2. It should be noted from

Figure 7.14 that the threshold value of PT=N0W increases as the modulation index b increases. The study

of this effect is the subject of one of the computer exercises at the end of this chapter.

Satisfactory operation of FM systems requires that operation be maintained above threshold.

Figure 7.14 shows the rapid convergence to the result of the above threshold analysis described by

(7.117), with (7.146) used to allow (7.117) to bewritten in terms of themodulation index. Figure 7.14 also

shows the rapid deterioration of system performance as the operating point moves into the below-

threshold region.
&

COMPUTER EXAMPLE 7.1

The MATLAB program to generate the performance curves illustrated in Figure 7.14 follows.

% File: c7ce1.m
zdB ¼ 0:50; % predetection SNR in dB
z ¼ 10.b(zdB/10); % predetection SNR
beta ¼ [1 5 10 20]; % modulation index vector
hold on % hold for plots
for j¼1:length(beta)
bta ¼ beta(j); % current index
a1 ¼ exp(-(0.5/(btaþ1)*z)); % temporary constant
a2 ¼ q(sqrt(z/(btaþ1))); % temporary constant
num ¼ (1.5*bta*bta)*z;
den ¼ 1þ(4*sqrt(3)*(btaþ1))*(z.*a2)þ(12/pi)*bta*(z.*a1);
result ¼ num./den;
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Figure 7.14

Frequency modulation system performance with sinusoidal modulation.
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resultdB ¼ 10*log10(result);
plot(zdB,resultdB,‘k’)

end
hold off
xlabel(‘Predetection SNR in dB’)
ylabel(‘Postdetection SNR in dB’)
% End of script file.

&

EXAMPLE 7.5

Equation (7.148) gives the performance of an FM demodulator taking into account both modulation and

additive noise. It is of interest to determine the relative effects of modulation and noise. In order to

accomplish this, (7.148) can be written

SNRð ÞD ¼
1:5b2z

1þD2 b; zð ÞþD3 b; zð Þ ð7:149Þ

where z ¼ PT=N0W and where D2 b; zð Þ and D3 b; zð Þ represent the second term (due to noise) and third

term (due to modulation) in (7.148), respectively. The ratio of D3 b; zð Þ to D2 b; zð Þ is
D3 b; zð Þ
D2 b; zð Þ ¼

ffiffiffi
3
p

p

b

bþ 1

exp �z=2 bþ 1ð Þ½ �
Q z=ðbþ 1Þ½ � ð7:150Þ

This ratio is plotted in Figure 7.15. It is clear that for z > 10, the effect of modulation on the denominator

of (7.148) is considerably greater than the effect of noise. However, both D2 b; zð Þ and D3 b; zð Þ are
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Figure 7.15

Ratio of D3 b; zð Þ to D2 b; zð Þ.
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much smaller than 1 above threshold. This is shown in Figure 7.16. Operation above threshold

requires that

D2 b; zð ÞþD3 b; zð Þ � 1 ð7:151Þ

Thus, the effect of modulation is to raise the value of the predetection SNR required for above threshold

operation.
&

COMPUTER EXAMPLE 7.2

The following MATLAB program generates Figure 7.15.

%File: c7ce2a.m
zdB ¼ 0:2:50;
z ¼ 10.b(zdB/10);
beta ¼ [1 5 10 20];
hold on
for j¼1:4
K ¼ (sqrt(3)/pi)*(beta(j)/(beta(j)þ1));
a1 ¼ exp(-(0.5/(beta(j)þ1)*z));
a2 ¼ q(sqrt((1/(beta(j)þ1))*z));

 = 20β

 = 5β

103

102

101

100

504540353025
z – dB 
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1 + D2( , z) + D3( , z)ββ
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Figure 7.16

1þD3 b; zð Þ and 1þD2 b; zð ÞþD3 b; zÞð .

370 Chapter 7 . Noise in Modulation Systems

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


result ¼ K*a1./a2;
plot(zdB,result)
end
hold off
xlabel(‘Predetection SNR in dB’)
ylabel(‘D_3 / D_2’)
% End of script file.

In addition, the following MATLAB program generates Figure 7.16.

File: c7ce2b.m
zdB ¼ 0:0.1:40; % predetection SNR in dB
z ¼ 10.b(zdB/10); % predetection SNR
beta ¼ [5 20]; % modulation index vector
hold on % hold for plots
for j¼1:2
a2 ¼ exp(-(0.5/(beta(j)þ1)*z));
a1 ¼ q(sqrt((1/(beta(j)þ1))*z));
r1 ¼ 1þ(4*sqrt(3)*(beta(j)þ1)*a2);
r2 ¼ r1þ((12/pi)*beta(j)*a2);
semilogy(zdB,r1,‘k’,zdB,r2,‘k--’)

end
hold off % release
xlabel(‘Predetection SNR in dB’)
ylabel(‘1þD_3 and 1þD_2þD_3’)

&

The threshold extension provided by a PLL is somewhat difficult to analyze, and many

developments have been published.2 Thus wewill not cover it here.We state, however, that the

threshold extension obtainedwith the PLL is typically on the order of 2 to 3 dB compared to the

demodulator just considered. Even though this is a moderate extension, it is often important in

high-noise environments.

n 7.5 NOISE IN PULSE-CODE MODULATION

Pulse-code modulation was briefly discussed in Chapter 3, and we now consider a simplified

performance analysis. There are twomajor error sources in PCM. The first of these results from

quantizing the signal, and the other results from channel noise. As we saw in Chapter 3,

quantizing involves representing each input sample by one of q quantizing levels. Each

quantizing level is then transmitted using a sequence of symbols, usually binary, to uniquely

represent each quantizing level.

7.5.1 Postdetection SNR

The sampled and quantized message waveform can be represented as

mdq tð Þ ¼
X

m tð Þd t� iTsð Þþ
X

e tð Þd t� iTsð Þ ð7:152Þ

2See Taub and Schilling (1986), pp. 419–422, for an introductory treatment.
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where the first term represents the sampling operation and the second term represents the

quantizing operation. The ith sample of mdq tð Þ is represented by

mdq tið Þ ¼ m tið Þþ eq tið Þ ð7:153Þ
where ti ¼ iTs. Thus the SNR resulting from quantizing is

SNRð ÞQ ¼
m2 tið Þ
e2q tið Þ

¼ m2

e2q
ð7:154Þ

assuming stationarity. The quantizing error is easily evaluated for the case in which the

quantizing levels have uniform spacing, S. For the uniform spacing case the quantizing error is

bounded by � 1
2
S. Thus, assuming that eq tð Þ is uniformly distributed in the range

�1
2
S � eq � 1

2
S

the mean-square error due to quantizing is

e2q ¼
1

S

ðS=2
�S=2

x2 dx ¼ 1

12
S2 ð7:155Þ

so that

SNRð ÞQ ¼ 12
m2

S2
ð7:156Þ

The next step is to expressm2 in terms of q and S. If there are q quantizing levels, each of

width S, it follows that the peak-to-peak value ofm tð Þ, which is referred to as the dynamic range

of the signal, is qS. Assuming that m tð Þ is uniformly distributed in this range,

m2 ¼ 1

qS

ðqS=2
�qS=2

x2dx ¼ 1

12
q2S2 ð7:157Þ

Substituting (7.157) into (7.156) yields

SNRð ÞQ ¼ q2¼ 22n ð7:158Þ
where n is the number of binary symbols used to represent each quantizing level.We havemade

use of the fact that q ¼ 2n for binary quantizing.

If the additive noise in the channel is sufficiently small, system performance is limited

by quantizing noise. For this case (7.158) becomes the postdetection SNR and is independent

of PT=N0W . If quantizing is not the only error source, the postdetection SNR depends on

both PT=N0W and on quantizing noise. In turn, the quantizing noise is dependent on the

signaling scheme.

An approximate analysis of PCM is easily carried out by assuming a specific signaling

scheme and borrowing a result fromChapter 8. Each sample value is transmitted as a group of n

pulses, and as a result of channel noise, any of these n pulses can be in error at the receiver

output. The group of n pulses defines the quantizing level and is referred to as a digital word.

Each individual pulse is a digital symbol, or bit assuming a binary system. We assume that the

bit-error probability Pb is known, as it will be after the next chapter. Each of the n bits in the

digital word representing a sample value is received correctly with probability 1�Pb.

Assuming that errors occur independently, the probability that all n bits representing a digital
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word are received correctly is 1�Pbð Þn. The word-error probability Pw is therefore given by

Pw ¼ 1� 1�Pbð Þn ð7:159Þ
The effect of a word error depends on which bit of the digital word is in error. We assume that

the bit error is themost significant bit (worst case). This results in an amplitude error of 1
2
qS. The

effect of a word error is therefore an amplitude error in the range

�1

2
qS � ew � 1

2
qS

For simplicity we assume that ew is uniformly distributed in this range. The resulting mean-

square word error is

e2w ¼
1

12
q2S2 ð7:160Þ

which is equal to the signal power.

The total noise power at the output of a PCM system is given by

ND ¼ e2q 1�Pwð Þþ e2wPw ð7:161Þ
The first term on the right-hand side of (7.161) is the contribution to ND due to quantizing

error, which is (7.155) weighted by the probability that all bits in a word are received

correctly. The second term is the contribution to ND due to word error weighted by

the probability of word error. Using (7.161) for the noise power and (7.157) for signal power

yields

SNRð ÞD ¼
1
12
q2S2

1
12
S2 1�Pwð Þþ 1

12
q2S2Pw

ð7:162Þ

which can be written as

SNRð ÞD ¼
1

q�2 1�Pwð ÞþPw

ð7:163Þ

In terms of the wordlength n, using (7.158) the preceding result is

SNRð ÞD ¼
1

2�2nþPwð1� 2� 2nÞ ð7:164Þ

The term 2�2n is completely determined by the wordlength n, while the word-error probability

Pw is a function of the SNR PT=N0W and the wordlength n.

If theword-error probability Pw is negligible, which is the case for a sufficiently high SNR

at the receiver input,

SNRð ÞD ¼ 22n ð7:165Þ
which, expressed in decibels, is

10 log10 SNRð ÞD ¼ 6:02n ð7:166Þ
We therefore gain 6 dB in SNR for every bit added to the quantizer wordlength. The region of

operation in which Pw is negligible and system performance is limited by quantization error is

referred to as the above-threshold region.
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Quantizing, and the effects of quantizing, play an important role in the design and

implementation of digital communication systems. The subject of quantizing is covered in

more detail in Appendix F. In Appendix F we will consider quantizing for the case in

which the message signal is not uniformly distributed over the full dynamic range of the

quantizer.

COMPUTER EXAMPLE 7.3

The purpose of this example is to examine the postdetection SNR for a PCM system. Before the

postdetection SNR, SNRð ÞD, can be numerically evaluated, theword-error probabilityPw must be known.

As shown by (7.159) theword-error probability depends upon the bit-error probability. Borrowing a result

from Chapter 8, however, will allow us to illustrate the threshold effect of PCM. If we assume frequency-

shift keying (FSK), in which transmission using one frequency is used to represent a binary zero and a

second frequency is used to represent abinaryone, and anoncoherent receiver, theprobability of bit error is

Pb ¼ 1

2
exp � PT

2N0BT

� �
ð7:167Þ

In the preceding expression BT is the bit-rate bandwidth, which is the reciprocal of the time required for

transmission of a single bit in the n-symbol PCM digital word. The quantity PT=N0BT is the predetection

SNR. Substitution of (7.167) into (7.159) and substitution of the result into (7.164) yields the

postdetection SNR, SNRð ÞD. This result is shown in Figure 7.17. The threshold effect can easily be

seen. The following MATLAB program generates Figure 7.17.
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Figure 7.17

Signal-to-noise ratio at output of PCM system

(FSK modulation used with noncoherent

receiver).
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% File c7ce3.m
n ¼ [4 8 12]; % wordlengths
snrtdB ¼ 0:0.1:30; % predetection snr in dB
snrt ¼ 10.b(snrtdB/10); % predetection snr
Pb ¼0.5*exp(-snrt/2); % bit error probability
hold on % hold for multiple plots
for k¼1:length(n)
Pw ¼ 1-(1-Pb).bn(k); % current value of Pw
a ¼ 2b(-2*n(k)); % temporary constant
snrd ¼ 1./(aþPw*(1-a)); % postdetection snr
snrddB ¼ 10*log10(snrd); % postdetection snr in dB
plot(snrtdB,snrddB)

end
hold off % release
xlabel(‘Predetection SNR in dB’)
ylabel(‘Postdetection SNR in dB’)
% End of script file.

Note that longer digital words give a higher value of SNRð ÞD above threshold due to reduced

quantizing error. However, the longer digital word means that more bits must be transmitted for each

sample of the original time-domain signal,m tð Þ. This increases the bandwidth requirements of the system.

Thus, the improved SNR comes at the expense of a higher bit-rate or system bandwidth. We see again the

threshold effect that occurs in nonlinear systems and the resulting trade-off between SNR and

transmission bandwidth.
&

7.5.2 Companding

As we saw in Chapter 3, a PCM signal is formed by sampling, quantizing, and encoding an

analog signal. These three operations are collectively referred to as analog-to-digital con-

version. The inverse process of forming an analog signal from a digital signal is known as

digital-to-analog conversion.

In the preceding section we saw that significant errors can result from the quantizing

process if the wordlength n is chosen too small for a particular application. The result of these

errors is described by the signal-to-quantizing-noise ratio expressed by (7.158). Keep in mind

that (7.158) was developed for the case of a uniformly distributed signal.

The level of quantizing noise added to a given sample, (7.155), is independent of the signal

amplitude, and small amplitude signals will therefore suffer more from quantizing effects than

large amplitude signals. This can be seen from (7.156). There are essentially two ways to

combat this problem. First, the quantizing steps can be made small for small amplitudes and

large for large amplitude portions of the signal. This scheme is known as nonuniform

quantizing. An example of a nonuniform quantizer is the Max quantizer, in which the

quantizing steps are chosen so that the mean-square quantizing error is minimized. The Max

quantizer is examined in detail in Appendix F.

The second technique, and the one of interest here, is to pass the analog signal through a

nonlinear amplifier prior to the sampling process. The input–output characteristics of the

amplifier are shown in Figure 7.18. For small values of the input xin, the slope of the

input–output characteristic is large. A change in a low-amplitude signal will therefore force

the signal throughmore quantizing levels than the same change in a high-amplitude signal. This

essentially yields smaller step sizes for small amplitude signals and therefore reduces the

quantizing error for small amplitude signals. It can be seen from Figure 7.18 that the peaks of
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the input signal are compressed. For this reason the characteristic shown in Figure 7.18 is

known as a compressor.

The effect of the compressor must be compensated when the signal is returned to analog

form. This is accomplished by placing a second nonlinear amplifier at the output of the DA

converter. This second nonlinear amplifier is known as an expander and is chosen so that the

cascade combination of the compressor and expander yields a linear characteristic, as shown by

the dashed line in Figure 7.18. The combination of a compressor and an expander is known as a

compander. A companding system is shown in Figure 7.19.

The concept of predistorting amessage signal in order to achieve better performance in the

presence of noise, and then removing the effect of the predistortion, should remind us of the use

of pre-emphasis and de-emphasis filters in the implementation of FM systems.

Summary
1. The AWGN model is frequently used in the analysis of communications

systems. However, the AWGN assumption is only valid over a certain

bandwidth, and this bandwidth is a function of temperature. At a tem-

perature of 3K this bandwidth is approximately 10GHz. If the temperature

increases the bandwidth overwhich thewhite noise assumption is valid also

increases. At standard temperature (290 K), the white noise assumption is

valid to bandwidths exceeding 1000 GHz. Thermal noise results from the

Compression
characteristic

Linear (no
compression)
characteristic

Max xin

−Max xin

Max xout

–Max xout

Figure 7.18

Input–output compression characteristic.

Compressor
A/D

converter
Communication

system

D/A
converter

Expander

xin(t) xout(t)Input
message

Output
message

Figure 7.19

Example of companding.
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combined effect of many charge carries. The Gaussian assumption follows

from the central-limit theorem.

2. TheSNRat the output of a baseband communication systemoperating in an

additive Gaussian noise environment is PT=N0W , where PT is the signal

power,N0 is the single-sided power spectral density of the noise (
1
2
N0 is the

two-sided power spectral density), and W is the signal bandwidth.

3. A DSB system has an output SNR of PT=N0W assuming perfect phase

coherence of the demodulation carrier and a noise bandwidth of W .

4. A SSB system also has an output SNR of PT=N0W assuming perfect phase

coherence of the demodulation carrier and a bandwidth ofW . Thus, under

ideal conditions, both SSB and DSB have performance equivalent to the

baseband system.

5. An AM system with coherent demodulation achieves an output SNR of

Eff PT=N0W , where Eff is the efficiency of the system. An AM system with

envelope detection achieves the same output SNR as an AM system with

coherent demodulation if the SNR is high. If the predetection SNR is small,

the signal andnoise at thedemodulationoutput becomemultiplicative rather

than additive.Theoutput exhibits severe loss of signal for a small decrease in

the input SNR. This is known as the threshold effect.

6. The square-law detector is a nonlinear system that can be analyzed for all

values of PT=N0W . Since the square-law detector is nonlinear, a threshold

effect is observed.

7. Using a quadrature double-sideband (QDSB) signal model, a generalized

analysis is easily carried out to determine the combined effect of both

additive noise and demodulation phase errors on a communication system.

The result shows that SSB andQDSB are equally sensitive to demodulation

phase errors if the power in the two QDSB signals are equal. Double-

sideband is much less sensitive to demodulation phase errors than SSB or

QDSB because SSB and QDSB both exhibit crosstalk between the quad-

rature channels for nonzero demodulation phase errors.

8. The analysis of angle modulation systems shows that the output noise is

suppressed as the signal carrier amplitude is increased for system operation

above threshold. Thus the demodulator noise power output is a function of

the input signal power.

9. The demodulator output power spectral density is constant over the range

j f j < W for PM and is parabolic over the range if jf j < W for FM. The

parabolic power spectral density for an FM system is due to the fact that FM

demodulation is essentially a differentiation process.

10. The demodulated output SNR is proportional to k2p for PM, where kp is the

phase-deviation constant. The output SNR is proportional toD2 for an FM

system, where D is the deviation ratio. Since increasing the deviation ratio

also increases the bandwidth of the transmitted signal, the use of angle

modulation allows us to achieve improved system performance at the cost

of increased bandwidth.
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11. The use of pre-emphasis and de-emphasis can significantly improve the

noise performance of an FM system. Typical values result in a better than

10-dB improvement in the SNR of the demodulated output.

12. As the input SNR of an FM system is reduced, spike noise appears. The

spikes are due to origin encirclements of the total noise phasor. The area of

the spikes is constant at 2p, and the power spectral density is proportional to
the spike frequency. Since the predetection bandwidthmust be increased as

the modulation index is increased, resulting in a decreased predetection

SNR, the threshold value of PT=N0W increases as the modulation index

increases.

13. An analysis of PCM, which is a nonlinear modulation process due to

quantizing, shows that, like FM, a trade-off exists between bandwidth and

output SNR. PCM system performance above threshold is dominated by

the wordlength or, equivalently, the quantizing error. PCM performance

below threshold is dominated by channel noise.

14. A most important result for this chapter is the postdetection SNRs for

various modulation methods. A summary of these results is given in

Table 7.1. Given in this table is the postdetection SNR for each technique

as well as the required transmission bandwidth. The trade-off between

postdetection SNR and transmission bandwidth is evident for nonlinear

systems.

Further Reading

All the books cited at the end ofChapter 3 containmaterial about noise effects in the systems studied in this

chapter. The books by Lathi (1998) and Haykin (2000) are especially recommended for their complete-

ness. The book by Taub and Schilling (1986), although an older book, contains excellent sections on both

PCM systems and threshold effects in FM systems. The book by Tranter et al. (2004) discusses quantizing

in some depth.

Table 7.1 Noise Performance Characteristics

System Postdetection SNR Transmission bandwidth

Baseband PT

N0W
W

DSB with coherent demodulation PT

N0W
2W

SSB with coherent demodulation PT

N0W
W

AM with envelope detection (above threshold) or

AM with coherent demodulation. Note: E is efficiency

EPT

N0W
2W

AM with square-law detection 2 a2

2þ a2

� �2
PT=N0W

1þ N0W=PTð Þ 2W

PM above threshold k2p m
2
n

PT

N0W
2 Dþ 1ð ÞW

FM above threshold (without preemphasis) 3D2 m2
n

PT

N0W
2 Dþ 1ð ÞW

FM above threshold (with preemphasis) fd
f3

� �2
m2

n
PT

N0W
2 Dþ 1ð ÞW
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Problems

Section 7.1

7.1. In discussing thermal noise at the beginning of this

chapter, we stated that at standard temperature (290 K) the

white noise assumption is valid to bandwidths exceeding

1000 GHz. If the temperature is reduced to 3 K, the

variance of the noise is reduced, but the bandwidth over

which the white noise assumption is valid is reduced to

approximately 10 GHz. Express both of these reference

temperatures (3 and 290 K) in degrees fahrenheit.

7.2. The waveform at the input of a baseband system

has signal power PT and white noise with single-sided

power spectral density N0. The signal bandwidth is W . In

order to pass the signal without significant distortion, we

assume that the input waveform is bandlimited to a band-

width B ¼ 3W using a Butterworth filter with order n.

Compute the SNR at the filter output for n ¼ 1; 3; 5, and
10 as a function ofPT=N0W . Also compute the SNR for the

case in which n!¥. Discuss the results.
7.3. Derive the equation for yD tð Þ for an SSB system

assuming that the noise is expanded about the frequency

fx ¼ fc � 1
2
W . Derive the detection gain and (SNR)D. De-

termine and plot Snc fð Þ and Sns fð Þ.
7.4. Derive an expression for the detection gain of a

DSB system for the case in which the bandwidth of the

bandpass predetection filter is BT and the bandwidth of the

lowpass postdetection filter is BD. Let BT >2W and let

BD>W simultaneously, where W is the bandwidth of the

modulation. (There are two reasonable cases to consider.)

Repeat for an AM signal.

7.5. A message signal is defined by

m tð Þ ¼ A cos 2pf1tþ u1ð ÞþB cos 2pf2tþ u2ð Þ
where A and B are constants, f1 6¼ f2, and u1 and u2 are

random phases uniformly distributed in [0, 2p). Computebm tð Þ and show that the power in m tð Þ and bm tð Þ are equal.
Compute E m tð Þbm tð Þ½ �, where E �½ � denotes statistical ex-
pectation. Comment on the results.

7.6. In Section 7.1.3we expanded the noise component

about fc.We observed, however, that the noise components

for SSB could be expanded about fc � 1
2
W , depending on

the choice of sidebands. Plot the power spectral density for

each of these two cases and for each case write the

expressions corresponding to (7.16) and (7.17).

7.7. A message signal has the Fourier transform

M fð Þ ¼ A; f1 � j f j � f2
0; otherwise

�
Determine m tð Þ and bm tð Þ. Plot m tð Þ and bm tð Þ, and for f2
fixed and f1 ¼ 0, f1 ¼ � f2=2 and f1 ¼ � f2. Comment on

the results.

7.8. Assume that an AM system operates with an index

of 0.6 and that the message signal is 12 cos 8pð Þ. Compute

the efficiency, the detection gain in dB, and the output SNR

in decibels relative to the baseband performance PT=N0W .

Determine the improvement (in decibels) in the output

SNR that results if the modulation index is increased from

0.6 to 0.9.

7.9. An AM system has a message signal that has a

zero-mean Gaussian amplitude distribution. The peak

value of m tð Þ is taken as that value that jm tð Þj exceeds
0.5% of the time. If the index is 0.7, what is the detection

gain?

7.10. The threshold level for an envelope detector is

sometimes defined as that value of (SNR)T for which

Ac > rn with probability 0.99. Assuming that a2m2
n ffi 1,

derive the SNR at threshold, expressed in decibels.

7.11. An envelope detector operates above threshold.

The modulating signal is a sinusoid. Plot (SNR)D in

decibels as a function of PT=N0W for the modulation

index equal to 0.4, 0.5, 0.7, and 0.9.

7.12. A square-law demodulator for AM is illustrated in

Figure 7.20. Assuming that xc tð Þ ¼ Ac 1þ amn tð Þ½ �
cos 2pfctð Þ and m tð Þ¼ cos 2pfmtð Þþ cos 4pfmtð Þ, sketch
the spectrum of each term that appears in yD tð Þ. Do not

neglect the noise that is assumed to be bandlimited white

noise with bandwidth 2W . In the spectral plot identify the

desired component, the signal-induced distortion, and the

noise.

7.13. Verify the correctness of (7.59).

7.14. Starting with (7.63) derive an expression for

(SNR)D assuming that the message is the sinusoid

m tð Þ ¼ A sin 2pfmtð Þ. From this result verify the correct-

yD(t)
y(t)

xc(t) + n(t)
x(t) Postdetection

filter

Square-law
device
y = x2

Predetection
filter

Figure 7.20
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ness on Figure 7.6. Assuming this same signal for m tð Þ,
plotDD=SD in decibels as a function of the index a. Finally,

derive an expression for DD=ND as a function of PT=N0W

with a as a parameter. Plot this last result for a ¼ 0:5.What

do you conclude?

7.15. Assume that a zero-mean message signalm tð Þ has
a Gaussian pdf and that in normalizing the message signal

to formmn tð Þ, themaximumvalue ofm tð Þ is assumed to be

ksm, where k is a parameter and sm is the standard

deviation of the message signal. Plot SNRð ÞD as a function

ofPT=N0W with a ¼ 0:5 and k ¼ 1; 3; and 5.What do you

conclude?

7.16. Compute (SNR)D as a function of PT=N0W for a

linear envelope detector assuming a high predetection

SNR and a modulation index of unity. Compare this result

to that for a square-law detector, and show that the square-

law detector is inferior by approximately 1.8 dB. If ne-

cessary, you may assume sinusoidal modulation.

7.17. Consider the system shown in Figure 7.21, in

which an RC highpass filter is followed by an ideal

lowpass filter having bandwidth W. Assume that the input

to the system is A cos 2pfctð Þ, where fc < W , plus white

noise with double-sided power spectral density 1
2
N0.

Determine the SNR at the output of the ideal lowpass

filter in terms of N0, A;R;C;W ; and fc. What is the SNR

in the limit as W!¥?

Section 7.2

7.18. An SSB system is to be operated with a normalized

mean-square error of 0.05 or less. By making a plot of

output SNR versus demodulation phase-error variance for

the case in which normalized mean-square error is 0.4%,

show the region of satisfactory system performance. Re-

peat for a DSB system. Plot both curves on the same set of

axes.

7.19. It was shown in Chapter 2 that the output of a

distortionless linear system is given by

y tð Þ ¼ Ax t� tð Þ

whereA is thegain of the system, t is the system timedelay,

and x tð Þ is the system input. It is often convenient to

evaluate the performance of a linear system by comparing

the system output with an amplitude-scaled and time-

delayed version of the input. The mean-square error is

then

e2 A; tð Þ ¼ y tð Þ�Ax t� tð Þ½ �2

The values of A and t that minimize this expression,

denoted Am and tm, respectively, are defined as the system
gain and the system time delay. Show that with these

definitions, the system gain is

Am ¼ Rxy tmð Þ
Rx 0ð Þ

and the resulting system mean-square error is

e2 Am; tmð Þ ¼ Ry 0ð Þ� R2
xy tmð Þ
Rx 0ð Þ

Also show that the signal power at the system output is

SD ¼ A2
mRx 0ð Þ ¼ R2

xy tmð Þ
Rx 0ð Þ

and the output SNR is

SD

ND

¼ R2
xy tmð Þ

Rx 0ð ÞRy 0ð Þ�R2
xy tmð Þ

in which ND is the mean-square error.3

Section 7.3

7.20. Draw a phasor diagram for an angle-modulated

signal for SNRð ÞT  1 illustrating the relationship be-

tween R tð Þ, Ac, and rn tð Þ. Show on this phasor diagram the

relationship between c tð Þ, f tð Þ, and fn tð Þ. Using the

phasor diagram, justify that for SNRð ÞT  1, the approx-

imation

c tð Þ � f tð Þþ rn tð Þ
Ac

sin fn tð Þ�f tð Þ½ �

is valid. Draw a second phasor diagram for the case in

which SNRð ÞT � 1 and show that

c tð Þ � fn tð Þ� Ac

rn tð Þ sin fn tð Þ�f tð Þ½ �

What do you conclude?

tuptuOtupnI

C

R
Ideal

lowpass
filter

Figure 7.21

3For a discussion of these techniques, see Houts and Simpson

(1968).
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7.21. An FM demodulator operates above threshold, and

therefore the output SNR is defined by (7.118). Using

Carson�s rule, write this expression in terms of BT=W , as

was done in (7.119). Plot (SNR)T in decibels as a function

of BT=W with PT=N0W fixed at 30 dB. Determine the

value of BT=W that yields a value of (SNR)T that is within

0.5 dB of the asymptotic value defined by (7.119).

7.22. The process of stereophonic broadcasting was illu-

strated in Chapter 3. By comparing the noise power in the

l tð Þ� r tð Þ channel to the noise power in the l tð Þþ r tð Þ
channel, explain why stereophonic broadcasting is more

sensitive to noise than nonstereophonic broadcasting.

7.23. An FDM communication system uses DSB mod-

ulation to form the baseband and FM modulation for

transmission of the baseband. Assume that there are eight

channels and that all eight message signals have equal

power P0 and equal bandwidth W . One channel does not

use subcarrier modulation. The other channels use sub-

carriers of the form

Ak cos 2pkf1tð Þ; 1 � k � 7

The width of the guardbands is 3W . Sketch the power

spectrum of the received baseband signal showing both the

signal and noise components. Calculate the relationship

between the values of Ak if the channels are to have equal

SNRs.

7.24. Using(7.123),deriveanexpressionfortheratioofthe

noise power in yD tð Þwith de-emphasis to the noise power in

yD tð Þ without de-emphasis. Plot this ratio as a function of

W=f3. Evaluate the ratio for the standard values of f3 ¼ 2:1
kHz and W ¼ 15 kHz, and use the result to determine the

improvement, in decibels, that results through the use of de-

emphasis.ComparetheresultwiththatfoundinExample7.3.

7.25. White noise with two-sided power spectral den-

sity 1
2
N0 is added to a signal having the power spectral

density shown in Figure 7.22. The sum (signal plus

noise) is filtered with an ideal lowpass filter with unity

passband gain and bandwidth B > W . Determine the

SNR at the filter output. By what factor will the SNR

increase if B is reduced to W?

7.26. Consider the system shown in Figure 7.23. The

signal x tð Þ is defined by

x tð Þ ¼ A cos 2pfctð Þ

The lowpass filter has unity gain in the passband and

bandwidthW , where fc < W . The noise n tð Þ is white with
two-sided power spectral density 1

2
N0. The signal compo-

nent of y tð Þ is defined to be the component at frequency fc.

Determine the SNR of y tð Þ.
7.27. Repeat the preceding problem for the system

shown in Figure 7.24.

7.28. Consider the system shown in Figure 7.25. The

noise is white with two-sided power spectral density 1
2
N0.

The power spectral density of the signal is

Sx fð Þ ¼ A

1þ f=f3ð Þ2 ; �¥ < f < ¥

∑x(t)

n(t)

y(t)d
dt

d
dt

Lowpass
filter

Figure 7.23

∑x(t)

n(t)

∫ (•)dt ∫ (•) ytd (t)d
dt

d
dt

Lowpass
filter

Figure 7.24

− WW

Sx( f )

Sx( f ) = kf 2

0
f

A

Figure 7.22
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The parameter f3 is the 3-dB bandwidth of the signal. The

bandwidth of the ideal lowpass filter is W . Determine the

SNR of y tð Þ. Plot the SNR as a function of W=f3.

Section 7.4

7.29. Derive an expression, similar to (7.148), that gives

the output SNR of an FM discriminator for the case in

which the message signal is random with a Gaussian

amplitude pdf. Assume that the message signal is zero

mean and has variance s2
m.

7.30. In Example 7.4 we calculated the output SNR for

an FM demodulator. We considered the effect of modula-

tion on thresholding assuming that the message signal was

a sinusoid. We now assume that the message signal is

represented by the Fourier series

m tð Þ ¼
XN
n¼1

Cn cos 2pnfo tþ unð Þ

Generalize (7.143) and (7.148) for this case.

7.31. Assume that the input to a perfect second-order PLL

is an unmodulated sinusoid plus bandlimited AWGN.

In other words, the PLL input is represented by

xc tð Þ ¼ Ac cos 2pfctþ uð Þ
þ nc tð Þ cos 2pfctþ uð Þ
� ns tð Þ sin 2pfctþ uð Þ

Also assume that the SNR at the loop input is large so

that the phase jitter (error) is sufficiently small to justify

use of the linear PLL model. Using the linear model

derive an expression for the variance of the loop phase

error due to noise in terms of the standard PLL para-

meters defined in Chapter 3. Show that the probability

density function of the phase error is Gaussian and that

the variance of the phase error is inversely proportional

to the SNR at the loop input.

Section 7.5

7.32. Assume that a PPM system uses Nyquist rate

sampling and that the minimum channel bandwidth is

used for a given pulse duration. Show that the postdetec-

tion SNR can be written as

SNRð ÞD ¼ K
BT

W

� �2
PT

N0W

and evaluate K.

7.33. The message signal on the input to an ADC is a

sinusoid of 25 V peak to peak. Compute the signal-to-

quantizing-noise power ratio as a function of the word-

length of the ADC. State any assumptions you make.

Computer Exercises

7.1. Develop a set of performance curves, similar to

those shown in Figure 7.8, that illustrate the performance

of a coherent demodulator as a function of the phase-error

variance. Let the SNR be a parameter and express the SNR

in decibels. As in Figure 7.8, assume a QDSB system.

Repeat this exercise for a DSB system.

7.2. Execute the computer program used to generate the

FM discriminator performance characteristics illustrated

in Figure 7.14. Add to the performance curves for

b ¼ 1; 5; 10; and 20 the curve for b ¼ 0:1. Is the threshold
effect more or less pronounced? Why?

7.3. The value of the input SNR at threshold is often

defined as the value of PT=N0W at which the denominator

of (7.148) is equal to 2. Note that this value yields a

postdetection SNR, (SNR)D, that is 3 dB below the value

of (SNR)D predicted by the above threshold (linear)

analysis. Using this definition of threshold, plot the

threshold value of PT=N0W (in decibels) as a function

of b. What do you conclude?

7.4. In analyzing the performance of an FM discrimi-

nator, operating in the presence of noise, the postdetection

SNR, (SNR)D, is often determined using the approxima-

tion that the effect of modulation on (SNR)D is negligible.

In other words, jdf j is set equal to zero. Assuming sinu-

soidalmodulation, investigate the error induced bymaking

this approximation. Start by writing a computer program

for computing and plotting the curves shown in Figure 7.14

with the effect of modulation neglected.

∑x(t)

n(t)

y(t)Lowpass
filter

Figure 7.25
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7.5. InChapter 3we developed aMATLABprogram that

can be used to investigate the acquisition performance of a

PLL. Using the same baseband model developed in Chap-

ter 3, we now wish to examine acquisition performance in

the presence of noise. Assume a perfect second-order PLL.

Test the model by observing the number of cycles slipped

in the acquisition process due to a step in the input

frequency both with and without noise. It is your job to

select the noise levels so that the impact of noise is

satisfactory demonstrated.

7.6. Thepreceding computer exercise problemexamined

the behavior of a PLL in the acquisition mode. We now

consider the performance in the tracking mode. Develop a

computer simulation in which the PLL is tracking an

unmodulated sinusoidplusnoise.Let thepredetectionSNR

besufficientlyhightoensure that thePLLdoesnot lose lock.

Using MATLAB and the histogram routine, plot the esti-

mate of the pdf at theVCOoutput. Comment on the results.

7.7. Develop a computer program to verify the perfor-

mance curves shown in Figure 7.17. Compare the perfor-

mance of the noncoherent FSK system to the performance

of both coherent FSK and coherent PSKwith amodulation

index of 1. We will show in the following chapter that the

bit-error probability for coherent FSK is

Pb ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
PT

N0BT

r� �
and that the bit-error probability for coherent BPSKwith a

unity modulation index is

Pb ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
2PT

N0BT

r� �
where BT is the system bit-rate bandwidth. Compare the

results of the three systems studied in this example for

n ¼ 8 and n ¼ 16.

7.8. In Problem 7.19 we described a technique for esti-

mating the gain, delay, and the SNR at a point in a system

given a reference signal. Develop aMATLAB program for

implementing this technique. The delay tm is typically

defined as the lag t forwhich the cross-correlationRxy tð Þ is
maximized. Develop and execute a testing strategy to

illustrate that the technique is performing correctly. What

is themain source of error in applying this technique?How

can this error source be reduced, andwhat is the associated

cost?

7.9. Assume a three-bit ADC (eight quantizing levels).

We desire to design a companding system consisting of

both a compressor and expander. Assuming that the input

signal is a sinusoid, design the compressor such that the

sinusoid falls into each quantizing level with equal prob-

ability. Implement the compressor using a MATLAB

program, and verify the compressor design. Complete the

compander by designing an expander such that the cascade

combination of the compressor and expander has the

desired linear characteristic. Using a MATLAB program,

verify the overall design.
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CHAPTER8

PRINCIPLES OF DATA TRANSMISSION
IN NOISE

In Chapter 7 we studied the effects of noise in analog communication systems. We now consider

digital data modulation system performance in noise. Instead of being concerned with continuous-

time, continuous-levelmessage signals, we are concernedwith the transmission of information from

sources that produce discrete-valued symbols. That is, the input signal to the transmitter block of

Figure 1.1 would be a signal that assumes only discrete values. Recall that we started the discussion

of digital data transmission systems in Chapter 4, but without consideration of the effects of noise.

The purpose of this chapter is to consider various systems for the transmission of digital data

and their relative performances. Before beginning, however, let us consider the block diagram of a

digital data transmission system, shown in Figure 8.1, which is somewhatmore detailed thanFigure

1.1. The focus of our attention will be on the portion of the system between the optional blocks

labeled Encoder (or simply coder) and Decoder. In order to gain a better perspective of the overall

problem of digital data transmission, wewill briefly discuss the operations performed by the blocks

shown as dashed lines.

As discussed previously in Chapters 3 and 4, while many sources result in message signals that

are inherently digital, such as from computers, it is often advantageous to represent analog

signals in digital form (referred to as analog-to-digital conversion) for transmission and then

convert them back to analog form upon reception (referred to as digital-to-analog conversion),

as discussed in the preceding chapter. Pulse code modulation, introduced in Chapter 3, is an

example of amodulation technique that can be employed to transmit analogmessages in digital

form. The SNR performance characteristics of a PCM system, which were presented in

Chapter 7, show one advantage of this system to be the option of exchanging bandwidth for

SNR improvement.1

Throughout most of this chapter we will make the assumption that source symbols occur

with equal probability. Many discrete-time sources naturally produce symbols with equal

probability.As an example, a binary computerfile,whichmaybe transmitted through a channel,

frequently contains a nearly equal number of 1s and 0s. If source symbols do not occur with

nearlyequalprobably,wewill see inChapter11 thataprocesscalledsourcecodingcanbeused to

1A device for converting voice signals from analog to digital and from digital to analog form is known as a vocoder.
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create a new set of source symbols in which the binary states, 1 and 0, are equally likely. The

mapping fromtheoriginal set to thenewsetof source symbols isdeterministic so that theoriginal

set of source symbols can be recovered from the data output at the receiver. The use of source

coding is not restricted to binary sources.Wewill seeChapter 11 that the transmissionof equally

likely symbols ensures that the information transmittedwith each source symbol ismaximized,

and therefore, the channel is used efficiently. Inorder tounderstand theprocess of source coding,

we need a rigorous definition of information, which will be accomplished in Chapter 11.

Regardless ofwhether a source is purely digital or an analog source that has been converted

to digital, it may be advantageous to add or remove redundant digits to the digital signal. Such

procedures, referred to as forward error-correction coding, are performed by the encoder–

decoder blocks of Figure 8.1 and also will be considered in Chapter 11.

We now consider the basic system in Figure 8.1, shown as the blocks with solid lines. If

the digital signals at the modulator input take on one of only two possible values, the

communication system is referred to as binary. If one of M > 2 possible values is available,

the system is referred to as M-ary. For long-distance transmission, these digital baseband

signals from the source may modulate a carrier before transmission, as briefly mentioned in

Chapter 4. The result is referred to as amplitude-shift keying (ASK), phase-shift keying (PSK),

or frequency-shift keying (FSK) if it is amplitude, phase, or frequency, respectively, that is

varied in accordance with the baseband signal. An important M-ary modulation scheme,

quadriphase-shift keying (QPSK), is often employed in situations in which bandwidth

efficiency is a consideration. Other schemes related to QPSK include offset QPSK and

minimum-shift keying (MSK). These schemes will be discussed in Chapter 9.

A digital communication system is referred to as coherent if a local reference is available

for demodulation that is in phase with the transmitted carrier (accounting for fixed phase shifts

due to transmission delays). Otherwise, it is referred to as noncoherent. Likewise, if a periodic

signal is available at the receiver that is in synchronismwith the transmitted sequence of digital

signals (referred to as a clock), the system is referred to as synchronous (i.e., the data streams at

transmitter and receiver are in lockstep); if a signaling technique is employed in which such a

clock is unnecessary (e.g., timing markers might be built into the data blocks), the system is

called asynchronous.

(a)

(b)

Source
Analog/
digital

converter

Absent if source
is digital

Optional

To channel

Carrier

Encoder Modulator

Demodulation
Digital/
analog

converter

Absent if sink
(user) needs

digital output

Optional

From channel

Clock
(synch. system)

Decoder

Carrier ref.
(coherent system)

Detector User

Figure 8.1

Block diagram of a digital data transmission system.(a) Transmitter. (b) Receiver.
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The primarymeasure of systemperformance for digital data communication systems is the

probability of error PE. In this chapter we will obtain expressions for PE for various types of

digital communication systems. We are, of course, interested in receiver structures that give

minimum PE for given conditions. Synchronous detection in a white Gaussian-noise back-

ground requires a correlation or amatched-filter detector to give minimum PE for fixed signal

and noise conditions.

We begin our consideration of digital data transmission systems in Section 8.1 with the

analysis of a simple, synchronous baseband system that employs a special case of the matched

filter detector known as an integrate-and-dump detector. This analysis is then generalized in

Section8.2to thematched-filter receiver,andtheseresultsspecialized toconsiderationofseveral

coherent signaling schemes. Section 8.3 considers two schemes not requiring a coherent

reference for demodulation. In Section 8.4, digital pulse-amplitude modulation is considered.

Section 8.5 provides a comparison of the digital modulation schemes on the basis of power and

bandwidth.After analyzing thesemodulationschemes,whichoperate inan ideal environment in

the sense that infinite bandwidth is available,we lookat zero-intersymbol interference signaling

through bandlimited baseband channels in Section 8.6. In Sections 8.7 and 8.8, the effect of

multipath interference and signal fadingondata transmission is analyzed, and inSection8.9, the

use of equalizing filters to mitigate the effects of channel distortion is examined.

n 8.1 BASEBAND DATA TRANSMISSION IN WHITE GAUSSIAN NOISE

Consider the binary digital data communication system illustrated in Figure 8.2(a), inwhich the

transmitted signal consists of a sequence of constant-amplitude pulses of eitherA or�A units in

amplitude and T seconds in duration. A typical transmitted sequence is shown in Figure 8.2(b).

(a)

(b)

∑

1
2

n(t): PSD = N0

s(t)

s(t)

t

(+A, –A)

y(t)
ReceiverTransmitter

"1""0""0""0""1"

5T4T3T2TT
–A

A

(c)

y(t)

t
5T4T3T2TT

Figure 8.2

System model and waveforms

for synchronous baseband

digital data transmission.

(a) Baseband digital data com-

munication system.

(b) Typical transmitted

sequence. (c) Received

sequence plus noise.
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Wemay think of a positive pulse as representing a logic 1 and a negative pulse as representing a

logic 0 from the data source. Each T-s pulse is called a binit for binary digit or, more simply, a

bit. (In Chapter 11, the term bit will take on a new meaning.)

As in Chapter 7, the channel is idealized as simply adding white Gaussian noise with

double-sided power spectral density 1
2
N0 W/Hz to the signal. A typical sample function of the

received signal plus noise is shown in Figure 8.2(c). For sketching purposes, it is assumed that

the noise is bandlimited, although it is modeled as white noise later when the performance of

the receiver is analyzed. It is assumed that the starting and ending times of each pulse are known

by the receiver. The problem of acquiring this information, referred to as synchronization,

briefly discussed in chapter 4, will not be considered at this time.

The function of the receiver is to decide whether the transmitted signal was A or �A
during each bit period. A straightforward way of accomplishing this is to pass the signal

plus noise through a lowpass predetection filter, sample its output at some time within each

T-s interval, and determine the sign of the sample. If the sample is greater than zero, the

decision is made that þA was transmitted. If the sample is less than zero, the decision is that

�A was transmitted. With such a receiver structure, however, we do not take advantage of

everything known about the signal. Since the starting and ending times of the pulses are

assumed known, a better procedure is to compare the area of the received signal-plus-noise

waveform (data) with zero at the end of each signaling interval by integrating the received

data over the T-s signaling interval. Of course, a noise component is present at the output of

the integrator, but since the input noise has zero mean, it takes on positive and negative values

with equal probability. Thus the output noise component has zero mean. The proposed

receiver structure and a typical waveform at the output of the integrator are shown in

Figure 8.3, where t0 is the start of an arbitrary signaling interval. For obvious reasons, this

receiver is referred to as an integrate-and-dump detector.

The question to be answered is the following: Howwell does this receiver perform, and on

what parameters does its performance depend? As mentioned previously, a useful criterion of

performance is probability of error, and it is this we now compute. The output of the integrator

(b)

(a)

t
to + T

–AT

AT Signal

Threshold
device

Signal plus noise

t0

> 0: choose +A

< 0: choose A

t0 + T

t = t0 + T

t0
( )dt∫ Vy(t)

Figure 8.3

Receiver structure and integrator output. (a) Integrate-and-dump receiver. (b) Output from the integrator.
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at the end of a signaling interval is

V ¼
ðt0 þ T

t0

s tð Þþ n tð Þ½ � dt

¼ þAT þN if þ A is sent

�AT þN if � A is sent

� ð8:1Þ

where N is a random variable defined as

N ¼
ðt0 þT

t0

n tð Þ dt ð8:2Þ

Since N results from a linear operation on a sample function from a Gaussian process, it is a

Gaussian random variable. It has mean

E N½ � ¼ E

ðt0 þT

t0

n tð Þ dt
� �

¼
ðt0 þ T

t0

E n tð Þ½ � dt ¼ 0 ð8:3Þ

since n tð Þ has zero mean. Its variance is therefore

var N½ � ¼ E N2
 � ¼ E

ðt0 þT

t0

n tð Þ dt
� �2" #

¼
ðt0 þT

t0

ðt0 þT

t0

E n tð Þn sð Þ½ � dt ds

¼
ðt0 þT

t0

ðt0 þT

t0

1

2
N0d t�sð Þ dt ds

ð8:4Þ

wherewe havemade the substitution E n tð Þn sð Þ½ � ¼ 1
2
N0d t�sð Þ. Using the sifting property of

the delta function, we obtain

var½N� ¼
ðt0 þ T

t0

1

2
N0 ds

¼ 1

2
N0 T

ð8:5Þ

Thus the pdf of N is

fN hð Þ ¼ e�h
2=N0Tffiffiffiffiffiffiffiffiffiffiffiffiffi

p N0T
p ð8:6Þ

where h is used as the dummy variable for N to avoid confusion with n tð Þ.
There are two ways in which errors occur. If þA is transmitted, an error occurs if

AT þN < 0, that is, if N < �AT . From (8.6), the probability of this event is

P errorjA sentð Þ ¼ P EjAð Þ ¼
ð �AT

�¥

e�h
2=N0Tffiffiffiffiffiffiffiffiffiffiffiffi

pN0T
p dh ð8:7Þ

which is the area to the left of h ¼ �AT in Figure 8.4, whereQ �ð Þ is theQ-function.2 Letting
2See Appendix G.1 for a discussion and tabulation of the Q-function.
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u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=N0T

p
h, we can write this as

P EjAð Þ ¼
ð¥ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2A2T=N0

p
e� u2=2ffiffiffiffiffiffi

2p
p du/Q

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s !
ð8:8Þ

The other way in which an error can occur is if �A is transmitted and �AT þN > 0.

The probability of this event is the same as the probability that N > AT , which can be written

as

P E j �Að Þ ¼
ð¥
AT

e�h2=N0Tffiffiffiffiffiffiffiffiffiffiffiffi
pN0T
p dh/Q

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s !
ð8:9Þ

which is the area to the right of h ¼ AT in Figure 8.4. The average probability of error is

PE ¼ P Ej þAð ÞPþAð ÞþP E j�Að ÞP �Að Þ ð8:10Þ
Substituting (8.8) and (8.9) into (8.10) and noting thatP þAð ÞþP �Að Þ ¼ 1, whereP Að Þ is the
probability that þA is transmitted, we obtain

PE ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s !
ð8:11Þ

Thus the important parameter is A2T=N0. We can interpret this ratio in two ways. First,

since the energy in each signal pulse is

Eb ¼
ðt0 þ T

to

A2dt ¼ A2T ð8:12Þ

and the ratio of signal energy per pulse to single-sided noise power spectral density is

z ¼ A2T

N0

¼ Eb

N0

ð8:13Þ

where Eb is called the energy per bit. Second, we recall that a rectangular pulse of duration T s

has amplitude spectrum AT sinc Tf and that Bp ¼ 1=T is a rough measure of its bandwidth.

Thus

z ¼ A2

N0 1=Tð Þ ¼
A2

N0Bp

ð8:14Þ

can be interpreted as the ratio of signal power to noise power in the signal bandwidth.

The bandwidth Bp is sometimes referred to as the bit-rate bandwidth. We will refer to z as the

P (Error |A Sent)
= P (AT + N < 0)

P (Error |–A Sent)
= P (–AT + N > 0)

fN ) (η

–AT AT
η

0

Figure 8.4

Illustration of error probabilities for

binary signaling.
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SNR. An often-used reference to this SNR in the digital communications industry is ‘‘Eb-

over-N0.’’
3

A plot of PE versus z is shown in Figure 8.5, where z is given in decibels. Also shown is an

approximation for PE using the asymptotic expansion for the Q-function:

Q uð ÞD e� u2=2

u
ffiffiffiffiffiffi
2p
p ; u  1 ð8:15Þ

Using this approximation,

PE D
e� z

2
ffiffiffiffiffiffi
pz
p ; z  1 ð8:16Þ

which shows that PE essentially decreases exponentially with increasing z. Figure 8.5 shows

that the approximation of (8.16) is close to the true result of (8.11) for z >� 3 dB.

EXAMPLE 8.1

Digital data are to be transmitted through a baseband system with N0 ¼ 10�7 W/Hz and the received

signal amplitude A ¼ 20 mV. (a) If 103 bps are transmitted, what is PE? (b) If 10
4 bps are transmitted, to

what value must A be adjusted in order to attain the same PE as in part (a)?

S o l u t i o n

To solve part (a), note that

z ¼ A2T

N0

¼ 0:02ð Þ2 10�3

 �

10�7
¼ 4 ð8:17Þ

Figure 8.5

PE for antipodal baseband digital signaling.

3A yet more distasteful term in use by some is ebno.

–10 –5 0
10 log10z

105
10–4

5 × 10–4

10–3

5 × 10–3

10–2

5 × 10–2

5 × 10–1

1.0

P
E

Actual

Approximation (8.16)
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Using (8.16), PE ffi e� 4=2
ffiffiffiffiffiffi
4p
p ¼ 2:58� 10� 3. Part (b) is solved by finding A such that

A2ð10� 4Þ=ð10� 7Þ ¼ 4, which gives A ¼ 63:2 mV.

&

EXAMPLE 8.2

The conditions are the same as in the preceding example, but a bandwidth of 5000Hz is available. (a)What

is the maximum data rate that can be supported by the channel? (b) Find the transmitter power required to

give a probability of error of 10� 6 at the data rate found in part (a).

S o l u t i o n

(a) Since a rectangular pulse has Fourier transform

P t=Tð Þ $ T sinc f Tð Þ
we take the signal bandwidth to be that of the first null of the sinc function. Therefore, 1=T ¼ 5000 Hz,

which implies amaximumdata rate ofR ¼ 5000 bps. (b) To find the transmitter power to givePE ¼ 10� 6,

we solve

10� 6 ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s !
¼ Qð

ffiffiffiffiffi
2z
p
Þ ð8:18Þ

Using the approximation (8.15) for the Q function, we need to solve

10� 6 ¼ e�z

2
ffiffiffiffiffiffi
pz
p

iteratively. This gives the result

z ffi 10:53 dB ¼ 11:31 ratioð Þ
Thus, A2T=N0 ¼ 11:31, or

A2 ¼ 11:31
N0

T
¼ 5:65� 10�3 V2

This corresponds to a signal amplitude of approximately 75.2 mV.

&

n 8.2 BINARY DATA TRANSMISSION WITH ARBITRARY SIGNAL SHAPES

In Section 8.1 we analyzed a simple baseband digital communication system. As in the case of

analog transmission, it is often necessary to utilize modulation to condition a digital message

signal so that it is suitable for transmission through a channel. Thus, instead of the constant-

level signals considered in Section 8.1, wewill let a logic 1 be represented by s1 tð Þ and a logic 0
by s2 tð Þ. The only restriction on s1 tð Þ and s2 tð Þ is that they must have finite energy in a T-s

interval. The energies of s1 tð Þ and s2 tð Þ are denoted by

E1/
ðt0 þ T

t0

s21 tð Þ dt ð8:19Þ
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and

E2/
ðt0 þ T

t0

s22 tð Þ dt ð8:20Þ

respectively. In Table 8.1, three fundamental choices for s1 tð Þ and s2 tð Þ are given.

8.2.1 Receiver Structure and Error Probability

A possible receiver structure for detecting s1 tð Þ or s2 tð Þ in additive white Gaussian noise is

shown in Figure 8.6. Since the signals chosen may have zero average value over a T-s interval

(see the examples in Table 8.1), we can no longer employ an integrator followed by a threshold

device as in the case of constant-amplitude signals. Instead of the integrator, we employ a filter

with, as yet, unspecified impulse response h(t) and corresponding frequency response function

H fð Þ. The received signal plus noise is either

y tð Þ ¼ s1 tð Þþ n tð Þ; t0 � t � t0þ T ð8:21Þ
or

y tð Þ ¼ s2 tð Þþ n tð Þ; t0 � t � t0þ T ð8:22Þ
where the noise, as before, is assumed to be white with power spectral density 1

2
N0. We can

assume that t0 _¼ 0 without loss of generality; that is, the signaling interval under consideration

is 0 � t � T .

To find PE, we again note that an error can occur in either one of two ways. Assume that

s1 tð Þ and s2 tð Þwere chosen such that s01 Tð Þ < s02 Tð Þ, where s01 tð Þ and s02 tð Þ are the outputs of
the filter due to s1 tð Þ and s2 tð Þ, respectively, at the input. If not, the roles of s1 tð Þ and s2 tð Þ at the
input can be reversed to ensure this. Referring to Figure 8.6, if v Tð Þ > k where k is the

threshold, we decide that s2 Tð Þ was sent; if v Tð Þ < k, we decide that s1 tð Þ was sent. Letting
n0 tð Þ be the noise component at the filter output, an error is made if s1 tð Þ is sent and

v Tð Þ ¼ s01 Tð Þþ n0 Tð Þ > k; if s2 tð Þ is sent, an error occurs if v Tð Þ ¼ s02 Tð Þþ n0 Tð Þ < k.

Since n0 tð Þ is the result of passing white Gaussian noise through a fixed linear filter, it is a

Table 8.1 Possible Signal Choices for Binary Digital Signaling

Case s1(t) s2(t) Type of signaling

1 0 A cos vctð Þ Amplitude-shift keying

2 A sin vctþ cos�1mð Þ A sin vct� cos�1mð Þ Phase-shift keying with carrier

cos� 1m/modulation indexð Þ
3 A cos vctð Þ A cos vcþDvð Þt Frequency-shift keying

h(t)
H( f )

y(t) = s1 (t) + n(t)
or y(t) = s2 (t) + n(t)

0 ≤ t ≤ T Threshold
k

t = T

v(t) v(T )

Decision:
v(T ) > k: s2
v(T ) < k: s1

Figure 8.6

A possible receiver structure for detecting binary signals in white Gaussian noise.
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Gaussian process. Its power spectral density is

Sno fð Þ ¼ 1

2
N0jH fð Þj2 ð8:23Þ

Because the filter is fixed, n0 tð Þ is a stationary Gaussian random process with mean zero and

variance

s2
0 ¼

ð¥
�¥

1

2
N0jH fð Þj2df ð8:24Þ

Since n0 tð Þ is stationary, N ¼ n0 Tð Þ is a random variable with mean zero and variance s2
0. Its

pdf is

fN hð Þ ¼ e�h2=2s2
0ffiffiffiffiffiffiffiffiffiffiffi

2ps2
0

p ð8:25Þ

Given that s1 tð Þ is transmitted, the sampler output is

V/v Tð Þ ¼ s01 Tð ÞþN ð8:26Þ
and if s2 tð Þ is transmitted, the sampler output is

V/v Tð Þ ¼ s02 Tð ÞþN ð8:27Þ
These are also Gaussian randomvariables, since they result from linear operations onGaussian

random variables. They have means s01 Tð Þ and s02 Tð Þ, respectively, and the same variance as

N, that is, s2
0. Thus the conditional pdfs of V given s1 tð Þ is transmitted, fV vjs1 tð Þð Þ, and given

s2 tð Þ is transmitted, fV vjs2 tð Þð Þ, are as shown in Figure 8.7. Also illustrated is a decision

threshold k.

From Figure 8.7, we see that the probability of error, given s1 tð Þ is transmitted, is

P Ejs1 tð Þð Þ ¼
ð¥
k

fV vjs1 tð Þð Þ dv

¼
ð¥
k

e� v� s01 Tð Þ½ �2=2s2
0ffiffiffiffiffiffiffiffiffiffiffi

2ps2
0

p dv
ð8:28Þ

which is the area under fV v j s1 tð Þð Þ to the right of v ¼ k. Similarly, the probability of error,

given s2 tð Þ is transmitted, which is the area under fV v j s2 tð Þð Þ to the left of v ¼ k, is given by

P Ejs2 tð Þð Þ ¼
ðk
�¥

e� ½v� s02 Tð Þ�2=2s2
0ffiffiffiffiffiffiffiffiffiffiffi

2ps2
0

p dv ð8:29Þ

fv (v|s1 (t)) fv (v|s2 (t))

s01(T ) s02(T )kopt k
v

0

Figure 8.7

Conditional probability density functions of the filter output at time t¼ T.
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Assuming that s1 tð Þ and s2 tð Þ are a priori equally probable,4 the average probability of error is

PE ¼ 1

2
P½E js1 tð Þ� þ 1

2
P½E js2 tð Þ� ð8:30Þ

The task now is to minimize this error probability by adjusting the threshold k and the impulse

response h tð Þ.
Because of the equal a priori probabilities for s1 tð Þ and s2 tð Þ and the symmetrical shapes of

fV vjs1 tð Þð Þ and fV vjs2 tð Þð Þ, it is reasonable that the optimum choice for k is the intersection of

the conditional pdfs, which is

kopt ¼ 1

2
½s01 Tð Þþ s02 Tð Þ� ð8:31Þ

The optimum threshold is illustrated in Figure 8.7 and can be derived by differentiating (8.30)

with respect tok after substitution of (8.28) and (8.29). Because of the symmetry of the pdfs, the

probabilities of either type of error, (8.28) or (8.29), are equal for this choice of k.

With this choice of k, the probability of error given by (8.30) reduces to

PE ¼ Q
s02 Tð Þ� s01 Tð Þ

2s0

� �
ð8:32Þ

Thus we see that PE is a function of the difference between the two output signals at t ¼ T .

Remembering that the Q-function decreases monotonically with increasing argument, we see

that PE decreases with increasing distance between the two output signals, a reasonable result.

Wewill encounter this interpretation again in Chapters 9 and 10, where we discuss concepts of

signal space.

We now consider the minimization of PE by proper choice of h tð Þ. This will lead us to the
matched filter.

8.2.2 The Matched Filter

For a given choice of s1 tð Þ and s2 tð Þ, we wish to determine anH fð Þ, or equivalently, an h tð Þ in
(8.32), that maximizes

z ¼ s02 Tð Þ� s01 Tð Þ
s0

ð8:33Þ

which follows because theQ-function is monotonically decreasing as its arguement increases.

Letting g tð Þ ¼ s2 tð Þ� s1 tð Þ, the problem is to find the H fð Þ that maximizes z ¼ g0 Tð Þ=s0,

where g0 tð Þ is the signal portion of the output due to the input g tð Þ.5 This situation is illustrated
in Figure 8.8.

4See Problem 8.10 for the case of unequal a priori probabilities.
5Note that g tð Þ is a fictitious signal. How it relates to the detection of digital signals will be apparent later.

t = T

g0(T ) + Ng0(t) + n0(t)h(t)
H( f )

g(t) + n(t)
where

g(t) = s2 (t) – s1 (t)

Figure 8.8

Choosing H fð Þ to minimize PE.
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We can equally well consider the maximization of

z2 ¼ g20 Tð Þ
s2
0

¼ g20 tð Þ
E n20 tð Þ� � 				

t¼T

ð8:34Þ

Since the input noise is stationary,

E n20 tð Þ� � ¼ E n20 Tð Þ� � ¼ N0

2

ð¥
�¥
jH fð Þj2 df ð8:35Þ

We can write g0 tð Þ in terms of H fð Þ and the Fourier transform of g tð Þ, G fð Þ, as
g0 tð Þ ¼ =�1½G fð ÞH fð Þ� ¼

ð¥
�¥

H fð ÞG fð Þe j2pftdf ð8:36Þ

Setting t ¼ T in (8.36) and using this result along with (8.35) in (8.34), we obtain

z2 ¼ j
Ð¥
�¥ H fð ÞG fð Þe j2pfTdf j2
1
2
N0

Ð¥
�¥ jH fð Þj2df ð8:37Þ

To maximize this equation with respect to H fð Þ, we employ Schwarz�s inequality.

Schwarz�s inequality is a generalization of the inequality

jA �Bj ¼ jAB cos uj � jAjjBj ð8:38Þ
where A and B are ordinary vectors, with u the angle between them, and A � B denotes their

inner, or dot, product (A andB are their lengths). Since jcos uj equals unity if and only if u equals
zero or an integer multiple ofp, equality holds if and only ifA equals kB, where k is a constant
k > 0 corresponds to u ¼ 0 while k < 0 corresponds to u ¼ pð Þ. Considering the case of two
complex functions X fð Þ and Y fð Þ, and defining the inner product asð¥

�¥
X fð ÞY* fð Þ df

Schwarz�s inequality assumes the form6				 ð¥�¥ X fð ÞY* fð Þdf
				 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið¥
�¥
jX fð Þj2df

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið¥
�¥
jY fð Þj2df

s
ð8:39Þ

Equality holds if and only if X fð Þ ¼ kY fð Þ, where k is, in general, complex. We will prove

Schwarz�s inequality in Chapter 10 with the aid of signal space notation.

We now return to our original problem, that of finding theH fð Þ that maximizes (8.37).We

replace X fð Þ in (8.39) squared with H fð Þ and Y* fð Þ with G fð Þe j2pTf . Thus

z2 ¼ 2

N0

jÐ¥�¥ X fð ÞY* fð Þdf j2Ð¥
�¥ jH fð Þj2df � 2

N0

Ð¥
�¥ jH fð Þj2df Ð¥�¥ jG fð Þj2dfÐ¥

�¥ jH fð Þj2df ð8:40Þ

Canceling the integral over jH fð Þj2 in the numerator and denominator, we find the maximum

value of z2 to be

z2max ¼
2

N0

ð¥
�¥
jG fð Þj2df ¼ 2Eg

N0

ð8:41Þ

6If more convenient for a given application, one could equally well work with the square of Schwarz�s inequality.
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whereEg ¼
Ð¥
�¥ jG fð Þj2df is the energy contained in g tð Þ, which follows by Rayleigh�s energy

theorem. Equality holds in (8.40) if and only if

H fð Þ ¼ k0G* fð Þe� j2pTf ð8:42Þ
where k0 is an arbitrary constant. Since k0 just fixes the gain of the filter (signal and noise are

amplified the same), we can set it to unity. Thus the optimum choice for H fð Þ, H0 fð Þ, is
H0 fð Þ ¼ G* fð Þ e� j2pTf ð8:43Þ

The impulse response corresponding to this choice of H0 fð Þ is
h0 tð Þ ¼ =�1½H0 fð Þ�

¼
ð¥
�¥

G* fð Þ e� j2pTf e j2pfTdf

¼
ð¥
�¥

G � fð Þ e� j2pf T � tð Þdf

¼
ð¥
�¥

G f 0ð Þ e� j2pf 0 T � tð Þdf 0

ð8:44Þ

Recognizing this as the inverse Fourier transform of g tð Þ with t replaced by T � t, we obtain

h0 tð Þ ¼ g T � tð Þ ¼ s2 T � tð Þ� s1 T � tð Þ ð8:45Þ
Thus, in terms of the original signals, the optimum receiver corresponds to passing the

received signal plus noise through two parallel filters whose impulse responses are the time

reverses of s1 tð Þ and s2 tð Þ, respectively, and comparing the difference of their outputs at time T

with the threshold given by (8.31). This operation is illustrated in Figure 8.9.

EXAMPLE 8.3

Consider the pulse signal

s tð Þ ¼ A; 0 � t � T

0; otherwise

�
ð8:46Þ

A filter matched to this signal has the impulse response

h0 tð Þ ¼ s t0� tð Þ ¼ A; t0� T � t � t0
0; otherwise

�
ð8:47Þ

h(t) =
   s
   0 < t < T

1 (T– t)

h(t) =
   s2 (T– t)

 0 < t < T
Threshold

comparison

t = T

v(t)y(t)

Decision:
V > k opt: s2(t)
V < k opt: s1(t)

∑
V = v(T)

+

–

Figure 8.9

Matched-filter receiver for binary signaling in white Gaussian noise.
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where the parameter t0 will be fixed later.We note that if t0 < T , the filterwill be unrealizable, since it will

have nonzero impulse response for t < 0. The response of the filter to s tð Þ is

y tð Þ ¼ h0 tð Þ * s tð Þ ¼
ð¥
�¥

h0 tð Þs t� tð Þdt ð8:48Þ

The factors in the integrand are shown in Figure 8.10(a). The resulting integrations are familiar from

our previous considerations of linear systems, and the filter output is easily found to be as shown in

Figure 8.10(b). Note that the peak output signal occurs at t ¼ t0. This is also the time of peak-signal-to-

rms-noise ratio, since the noise is stationary. Clearly, in digital signaling, we want t0 ¼ T .

&

EXAMPLE 8.4

For a givenvalue ofN0, consider the peak-signal-to-rms-noise ratio at the output of amatched filter for the

two pulses

g1 tð Þ ¼ AP
t� t0

T

� �
ð8:49Þ

and

g2 tð Þ ¼ B cos
2p t� t0ð Þ

T

� �
P

t� t0

T

� �
ð8:50Þ

Relate A and B such that both pulses provide the same SNR at the matched filter output.

S o l u t i o n

Since the SNR at the matched filter output by (8.41) is 2Eg=N0 and N0 is the same for both cases, we can

obtain equal SNR for both cases by computing the energy of each pulse and setting the two energies

equal. The results are

Eg1 ¼
ðt0 þ T=2

t0 � T=2

A2 dt ¼ A2T ð8:51Þ

and

Eg2 ¼
ðt0 þ T=2

t0 � T=2

B2 cos2
2p t� t0ð Þ

T

� �
dt ¼ B2T

2
ð8:52Þ

Setting these equal, we have thatA ¼ B=
ffiffiffi
2
p

to give equal SNR. The peak signal-squared-to-mean-square-

noise ratio is

2Eg

N0

¼ 2A2T

N0

¼ B2T

N0

ð8:53Þ

&

(b)(a)

τ

s(t – )τ h0 (t)
A

tt – tT 0t0 – T

y(t)

A2T

t
t0t0 – tT 0 + T0

Figure 8.10

Signals pertinent to finding the matched-filter response of Example 8.3.
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8.2.3 Error Probability for the Matched-Filter Receiver

From (8.33) substituted into (8.32), the error probability for the matched-filter receiver of

Figure 8.9 is

PE ¼ Q
z

2

� �
ð8:54Þ

where z has the maximum value

zmax ¼
2

N0

ð¥
�¥
jG fð Þj2df

� �1=2
¼ 2

N0

ð¥
�¥
jS2 fð Þ� S1 fð Þj2df

� �1=2
ð8:55Þ

given by (8.41). Using Parseval�s theorem, we canwrite z2max in terms of g tð Þ ¼ s2 tð Þ� s1 tð Þ as

z2max ¼
2

N0

ð¥
�¥
½s2 tð Þ� s1 tð Þ�2 dt

¼ 2

N0

ð¥
�¥

s22 tð Þ dt þ
ð¥
�¥

s21 tð Þ dt� 2

ð¥
�¥

s1 tð Þs2 tð Þ dt
� � ð8:56Þ

From (8.19) and (8.20), we see that the first two terms inside the braces are E1 and E2,

respectively. We define

r12 ¼
1ffiffiffiffiffiffiffiffiffiffi
E1E2

p
ð¥
�¥

s1 tð Þ s2 tð Þ dt ð8:57Þ

as the correlation coefficient of s1 tð Þ and s2 tð Þ. Just as for random variables, r12 is a measure of

the similarity between s1 tð Þ and s2 tð Þ and is normalized such that �1 � r12 � 1 ( r12 achieves
the end points for s1 tð Þ ¼ �ks2 tð Þ, where k is a constant). Thus

z2max ¼
2

N0

E1þ E2� 2
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
r12


 � ð8:58Þ

and the error probability is

PE ¼ Q
E1þE2� 2

ffiffiffiffiffiffiffiffiffiffi
E1E2

p
r12

N0

� �1=2
" #

¼ Q

"�
2
1
2
E1þ E2ð Þ� ffiffiffiffiffiffiffiffiffiffi

E1E2

p
r12

N0

�1=2
#

¼ Q

(�
2E

N0

1�
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
E

r12

� ��1=2)
ð8:59Þ

where E ¼ 1
2
E1þ E2ð Þ is the average received signal energy per bit, since s1 tð Þ and s2 tð Þ are

transmitted with equal a priori probability. It is apparent from (8.59) that in addition to

depending on the signal energies, as in the constant-signal case, PE also depends on the

similarity between the signals through r12. We note that (8.58) takes on its maximum value of
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2=N0ð Þ ffiffiffiffiffi
E1

p þ ffiffiffiffiffi
E2

p
 �2
for r12 ¼ �1, which gives the minimum value of PE possible through

choice of s1 tð Þ and s2 tð Þ. This is reasonable, for then the transmitted signals are as dissimilar as

possible. Finally, we can write (8.59) as

PE ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z 1�R12ð Þ

ph i
ð8:60Þ

where z ¼ E=N0 is the average energy per bit divided by noise power spectral density as it was

for the baseband system. The parameter R12 is defined as

R12 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
E1þE2

r12 ¼
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
E

r12 ð8:61Þ

and is a convenient parameter related to the correlation coefficient, but that should not be

confused with a correlation function. The minimum value of R12 is �1, which is attained for

E1 ¼ E2 and r12 ¼ �1. For this value of R12,

PE ¼ Q
ffiffiffiffiffi
2z
p� �

ð8:62Þ

which is identical to (8.11), the result for baseband antipodal signals.

The probability of error versus the SNR is compared in Figure 8.11 for R12 ¼ 0

(orthogonal signals) and R12 ¼ �1 (antipodal signals).

COMPUTER EXAMPLE 8.1

AMATLABprogram for computing the error probability for several values of correlation coefficient,R12,

is given below. Entering the vector [�1 0] in response to the first query reproduces the curves of

Figure 8.11. Note that the user-defined function qfn �ð Þ is used because MATLAB includes a function for

erfc(u), but not Q uð Þ ¼ 1
2
erfc u=

ffiffiffi
2
p
 �

.

–10 –5 0
SNR (dB)

105
10–4

5 × 10–4

10–3

5 × 10–3

10–2

10–1

5 × 10–2

5 × 10–1

1.0

P
E

R12 = –1

R12 = 0

Figure 8.11

Probability of error for arbitrary waveshape casewith

R12 ¼ 0 and R12 ¼ � 1:

8.2 Binary Data Transmission with Arbitrary Signal Shapes 399

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


% file: c8ce1
% Bit error probability for binary binary signaling;
% vector of correlation coefficients allowed
%
clf
R12 ¼ input(‘Enter vector of desired R_1_2 values; <¼ 3 values’);
A ¼ char(‘-’,‘-.’,‘:’,‘– -’);
LR ¼ length(R12);
z_dB ¼ 0:.3:15; % Vector of desired values of Eb/N0 in dB
z ¼ 10.b(z_dB/10); % Convert dB to ratios
for k ¼ 1:LR % Loop for various desired values of R12

P_E¼qfn(sqrt(z*(1-R12(k))));% Probability of error for vector
of z-values

% Plot probability of error versus Eb/N0 in dB
semilogy(z_dB,P_E,A(k,:)),axis([0 15 10b(-6) 1]),xlabel

(‘E_b/N_0, dB’),ylabel(‘P_E’),...
if k¼¼1

hold on; grid % Hold plot for plots for other values of
R12

end
end
if LR ¼¼ 1 % Plot legends for R12 values

legend([‘R_1_2 ¼ ’,num2str(R12(1))],1)
elseif LR ¼¼ 2

legend([‘R_1_2 ¼ ’,num2str(R12(1))],[‘R_1_2 ¼ ’,num2str(R12
(2))],1)

elseif LR ¼¼ 3
legend([‘R_1_2 ¼ ’,num2str(R12(1))],[‘R_1_2 ¼ ’;,num2str(R12
(2))],[‘R_1_2 ¼ ’,num2str(R12(3))],1)

% This function computes the Gaussian Q-function
%
function Q¼qfn(x)
Q ¼ 0.5*erfc(x/sqrt(2));

&

8.2.4 Correlator Implementation of the Matched-Filter Receiver

In Figure 8.9, the optimum receiver involves two filters with impulse responses equal to the

time reverse of the respective signals being detected. An alternative receiver structure can

be obtained by noting that the matched filter in Figure 8.12(a) can be replaced by a

Figure 8.12

Equivalence of the matched-

filter and correlator receivers.

(a) Matched-filter sampler.

(b) Correlator sampler.

h(t) =
   s (T– t),

 0 ≤ t ≤ T

t = T 

v(t)y(t) = s(t) + n(t)

y(t) = s(t) + n(t)

v(T)

t = T

v'(t) v'(T)T

0
( )dt∫

s(t)
(b)

(a)

×
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multiplier–integrator cascade as shown in Figure 8.12(b). Such a series of operations is referred

to as correlation detection.

To show that the operations given in Figure 8.12 are equivalent, we will show that v(T ) in
Figure8.12(a) is equal tov0 Tð Þ inFigure8.12(b).Theoutputof thematchedfilter inFigure8.12(a)

is

v tð Þ ¼ h tð Þ*y tð Þ ¼
ðT
0

s T � tð Þy t� tð Þ dt ð8:63Þ

which follows because h tð Þ ¼ s T � tð Þ for 0 � t < T and zero otherwise. Letting t ¼ T and

changing variables in the integrand to a ¼ T � t, we obtain

v Tð Þ ¼
ðT
0

s að Þy að Þ da ð8:64Þ

Considering next the output of the correlator configuration in Figure 8.12(b), we obtain

v0 Tð Þ ¼
ðT
0

y tð Þs tð Þ dt ð8:65Þ

which is identical to (8.64). Thus the matched filters for s1 tð Þ and s2 tð Þ in Figure 8.9 can be

replaced by correlation operations with s1 tð Þ and s2 tð Þ, respectively, and the receiver operation
will not be changed. We note that the integrate-and-dump receiver for the constant signal case

of Section 8.1 is actually a correlation or, equivalently, a matched-filter receiver.

8.2.5 Optimum Threshold

The optimum threshold for binary signal detection is given by (8.31), where s01 Tð Þ and s02 Tð Þ
are the outputs of the detection filter in Figure 8.6 at time T due to the input signals s1 tð Þ and
s2 tð Þ, respectively. We now know that the optimum detection filter is a matched filter, matched

to the difference of the input signals, and has the impulse response given by (8.45). From the

superposition integral, we have

s01 Tð Þ ¼
ð¥
�¥

h lð Þs1 T � lð Þ dl

¼
ð¥
�¥
½s2 T � lð Þ� s1 T � lð Þ � s1 T � lð Þ dl

¼
ð¥
�¥

s2 uð Þ s1 uð Þ du�
ð¥
�¥
½s1 uð Þ�2 du

¼ ffiffiffiffiffiffiffiffiffiffi
E1E2

p
r12�E1

ð8:66Þ

where the substitution u ¼ T � l has been used to go from the second equation to the third, and

the definition of the correlation coefficient (8.57) has been used to get the last equation along

with the definition of energy of a signal. Similarly, it follows that

s02 Tð Þ ¼
ð¥
�¥
½s2 T � lð Þ� s1 T � lð Þ� s2 T � lð Þ dl

¼
ð¥
�¥
½s2 uð Þ�2 du�

ð¥
�¥

s2 uð Þ s1 uð Þ du
¼ E2�

ffiffiffiffiffiffiffiffiffiffi
E1E2

p
r12

ð8:67Þ
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Substituting (8.66) and (8.67) into (8.31), we find the optimum threshold to be

kopt ¼ 1

2
E2 � E1ð Þ ð8:68Þ

Note that equal energy signalswill always result in an optimum threshold of zero.Also note that

thewaveshape of the signals, as manifested through the correlation coefficient, has no effect on

the optimum threshold value. Only the signal energies affect the threshold value.

8.2.6 Nonwhite (Colored) Noise Backgrounds

The question naturally arises about the optimum receiver for nonwhite noise backgrounds.

Usually, the noise in a receiver system is generated primarily in the front-end stages and is due

to thermal agitation of electrons in the electronic components (see Appendix A). This type of

noise is well approximated as white. If a bandlimited channel precedes the introduction of the

white noise, then we need only work with modified transmitted signals. If, for some reason, a

bandlimiting filter follows the introduction of the white noise (for example, an IF amplifier

following the RF amplifier and mixers where most of the noise is generated in a heterodyne

receiver), we can use a simple artifice to approximate the matched-filter receiver. The colored

noise plus signal is passed through a ‘‘whitening filter’’ with a frequency-response function

that is the inverse square root of the noise spectral density. Thus, the output of this whitening

filter is white noise plus a signal component that has been transformed by the whitening filter.

We then build a matched-filter receiver with impulse response that is the difference of the time

reverse of the ‘‘whitened’’ signals. The cascade of a whitening filter and matched filter

(matched to the whitened signals) is called a whitened matched filter. This combination

provides only an approximately optimum receiver for two reasons. Since the whitening filters

will spread the received signals beyond the T-s signaling interval, two types of degradationwill

result:

1. The signal energy spread beyond the interval under consideration is not used by thematched

filter in making a decision.

2. Previous signals spread out by the whitening filter will interfere with the matched filtering

operation on the signal on which a decision is being made.

The latter is referred to as intersymbol interference, as first discussed in Chapter 4, and is

explored further in Sections 8.7 and 8.9. It is apparent that degradation due to these effects is

minimized if the signal duration is short compared with T, such as in a pulsed radar system.

Finally, signal intervals adjacent to the interval being used in the decision process contain

information that is relevant to making a decision on the basis of the correlation of the noise.

In short, the whitened matched-filter receiver is nearly optimum if the signaling interval is

large compared with the inverse bandwidth of the whitening filter. The question of

bandlimited channels, and nonwhite background noise, is explored further in Section 8.6.

8.2.7 Receiver Implementation Imperfections

In the theory developed in this section, it is assumed that the signals are known exactly at

the receiver. This is, of course, an idealized situation. Two possible deviations from this

assumption are (1) the phase of the receiver�s replica of the transmitted signal may be in error
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and (2) the exact arrival time of the received signal may be in error. These are called

synchronization errors. The first case is explored in Section 8.3, and the latter is explored in the

problems. Methods of synchronization are discussed in Chapter 9.

8.2.8 Error Probabilities for Coherent Binary Signaling

We now compare the performance of several fundamental coherent binary signaling schemes.

Then we will examine noncoherent systems. To obtain the error probability for coherent

systems, the results of Section 8.2 will be applied directly. The three types of coherent systems

to be considered in this section are ASK, PSK, and FSK. Typical transmitted waveforms for

these three types of digital modulation are shown in Figure 8.13. We also will consider the

effect of an imperfect phase reference on the performance of a coherent PSK system. Such

systems are often referred to as partially coherent.

Amplitude-Shift Keying

In Table 8.1, s1 tð Þ and s2 tð Þ for ASK are given as 0 and A cos vctð Þ, where fc ¼ vc=2p is the

carrier frequency.We note that the transmitter for such a system simply consists of an oscillator

that is gated on and off; accordingly, ASK is often referred to as on–off keying. It is important to

note that the oscillator runs continuously as the on–off gating is carried out.

The correlator realization for the optimum receiver consists of multiplication of the

received signal plus noise by A cos vctð Þ, integration over (0, T) and comparison of the

integrator output with the threshold 1
4
A2T as calculated from (8.68).

Figure 8.13

Waveforms for ASK, PSK,

and FSK modulation.
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From (8.57) and (8.61), R12 ¼ r12 ¼ 0 and the probability of error, from (8.60), is

PE ¼ Q
ffiffiffi
z
p
 � ð8:69Þ

Because of the lack of a factor
ffiffiffi
2
p

in the argument of the Q-function, ASK is seen to be 3 dB

worse in terms of SNR than antipodal baseband signaling. The probability of error versus SNR

corresponds to the curve for R12 ¼ 0 in Figure 8.11.

Phase-Shift Keying

From Table 8.1, the signals for PSK are

sk tð Þ ¼ A sin ½vct � �1ð Þkcos�1m�; 0 � t � T ; k ¼ 1; 2 ð8:70Þ
where cos�1m, the modulation index, is written in this fashion for future convenience. For

simplicity, we assume that vc ¼ 2pn=T , where n is an integer. Using sin �xð Þ ¼ � sinx and

cos �xð Þ ¼ cos xð Þ, we can write (8.70) as

sk tð Þ ¼ Am sin vctð Þ� �1ð ÞkA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

cos vctð Þ; 0 < t � T; k ¼ 1; 2 ð8:71Þ
where we note that cos cos�1mð Þ ¼ m and sin cos�1mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

.

The first term on the right-hand side of (8.71) represents a carrier component included in

some systems for synchronization of the local carrier reference at the receiver to the transmitted

carrier. The power in the carrier component is 1
2
Amð Þ2, and the power in the modulation

component is 1
2
A2 1�m2ð Þ. Thusm2 is the fraction of the total power in the carrier component.

The correlator receiver is shown in Figure 8.14, where, instead of two correlators, only a single

correlation with s2 tð Þ� s1 tð Þ is used. The threshold, calculated from (8.68), is zero. We

note that the carrier component of sk tð Þ is of no consequence in the correlation operation

because it is orthogonal to the modulation component over the bit interval. For PSK,

E1 ¼ E2 ¼ 1
2
A2 1�m2ð ÞT andffiffiffiffiffiffiffiffiffiffi

E1E2

p
r12 ¼

ðT
0

s1 tð Þs2 tð Þ dt

¼
ðT
0

½Am sin vctð ÞþA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

cos vctð Þ�

�½Am sin vctð Þ�A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

cos vctð Þ� dt
¼ 1

2
A2Tm2� 1

2
A2T 1�m2


 �
¼ 1

2
A2T 2m2�1
 �

ð8:72Þ

sk(t) + n(t)

t = T

T

0
( )dt∫

s2(t) – s1(t) = –2A 1 – m2 cos c tω

±A2T(1 – m2) + N Thresh.
= 0

Decision:
“1” or “0”

×

Figure 8.14

Correlator realization of optimum receiver for PSK.
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Thus R12, from (8.61), is

R12 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
E1þE2

r12 ¼ 2m2�1 ð8:73Þ

and the probability of error for PSK is

PE ¼ Q
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1�m2ð Þz
p � ð8:74Þ

The effect of allocating a fractionm2 of the total transmitted power to a carrier component is to

degrade PE by 10log10 1�m2ð Þ dB from the ideal R12 ¼ �1 curve of Figure 8.11.

Form ¼ 0, the resultant error probability is 3 dB better than ASK and corresponds to the

R12 ¼ �1 curve in Figure 8.11. We will refer to the case for which m ¼ 0 as biphase-shift

keying (BPSK) to avoid confusion with the case for which m� 0.

EXAMPLE 8.5

Consider PSK withm ¼ 1=
ffiffiffi
2
p

. (a) By how many degrees does the modulated carrier shift in phase each

time the binary data changes? (b)What percent of the total power is in the carrier, andwhat percent is in the

modulation component? (c) What value of z ¼ Eb=N0 is required to give PE ¼ 10� 6?

S o l u t i o n

(a) Since the change in phase is from �cos�1m to cos�1m whenever the phase switches, the phase

change of the modulated carrier is

2 cos�1 m ¼ 2 cos�1
1ffiffiffi
2
p ¼ 2 45

�
 � ¼ 90
� ð8:75Þ

(b) The carrier and modulation components are

carrier ¼ Am sin vctð Þ ð8:76Þ
and

modulation ¼ �A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

cos vctð Þ ð8:77Þ
respectively. Therefore, the power in the carrier component is

Pc ¼ A2m2

2
ð8:78Þ

and the power in the modulation component is

Pm ¼ A2 1�m2ð Þ
2

ð8:79Þ

Since the total power is A2=2, the percent power in each of these components is

%Pc ¼ m2 � 100 ¼ 100
1ffiffiffi
2
p
� �2

¼ 50%

and

%Pm ¼ 1�m2

 �� 100 ¼ 100 1� 1

2

� �
¼ 50%

respectively.
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(c) We have, for the probability of error,

PE ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�m2ð Þz

ph i
ffi e� 1�m2ð Þz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1�m2ð Þzp ð8:80Þ

Solving this iteratively, we obtain, for m2 ¼ 0:5; z ¼ 22:6 or Eb=N0 ¼ 13:54 dB. Actually, we do not

have to solve the error probability relationship iteratively again. From Example 8.2 we already know that

z ¼ 10:53 dB gives PE ¼ 10� 6 for BPSK (an antipodal signaling scheme). In this example we simply

note that the required power is twice as much as for BPSK, which is equivalent to adding 3.01 dB on to the

10.53 dB required in Example 8.2.

&

Biphase-Shift Keying with Imperfect Phase Reference

The results obtained earlier for PSK are for the case of a perfect reference at the receiver. If

m ¼ 0, it is simple to consider the case of an imperfect reference at the receiver as represented

by an input of the form�Acos vctþ uð Þþ n tð Þ and the reference by Acos vctþ û

 �

, where u is
an unknown carrier phase and û is the phase estimate at the receiver.

The correlator implementation for the receiver is shown in Figure 8.15. Using appropriate

trigonometric identities, we find that the signal component of the correlator output at the

sampling instant is �ATcosf, where f ¼ u� û is the phase error. It follows that the error

probability given the phase error f is

PE fð Þ ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zcos2f

p� �
ð8:81Þ

We note that the performance is degraded by 20log10ðcos fÞ dB compared with the perfect

reference case.

If we assume f to be fixed at some maximum value, we may obtain an upper bound on PE

due to phase error in the reference. However, a more exact model is often provided by

approximating f as a Gaussian random variable with the pdf7

p fð Þ ¼ e�f2=2s2
fffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
f

p ; jfj � p ð8:82Þ

This is an especially appropriatemodel if the phase reference at the receiver is derivedbymeans

of a PLL operating with high SNR at its input. If this is the case, s2
f is related to the SNR at the

inputof thephaseestimationdevice,whether it isaPLLorabandpass-filter-limitercombination.

t = T

T

0
( )dt∫ Thresh.

= 0
Decision

±AT cos  + N;
 =  –

φ
φ θ θ̂

2 cos ( c t + )ω θ̂

±A cos ( c t + ) + n(t)ω θ
×

Figure 8.15

Effect of phase error in reference signal for correlation detection of BPSK.

7This is an approximation for the actual pdf for the phase error in a first-order PLL, which is known as Tikonov and is

given by p fð Þ ¼ exp zloopcosf

 �

=2pI0 zloop

 �

; jfj � p; and 0 otherwise. zloop is the SNRwithin the loop passband

and I0 uð Þ is themodified Bessel function of the first kind and order zero. Note that (8.82) should be renormalized so

that its area is 1, but the error is small for s2
f small, which it is for z large.
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To find the error probability averaged over all possible phase errors, we simply find the

expectation ofP Ejfð Þ ¼ PE fð Þ, given by (8.81), with respect to the phase-error pdf, p fð Þ, that
is,

PE ¼
ðp
�p

PE fð Þp fð Þ df ð8:83Þ

The resulting integral must be evaluated numerically for typical phase error pdfs.8 Typical

results are given in Table 8.2 for p fð Þ Gaussian.
Frequency-Shift Keying

In Table 8.1, the signals for FSK are given as

or
s1 tð Þ ¼ A cos vctð Þ
s2 tð Þ ¼ A cos vcþDvð Þt 0 � t� T ð8:84Þ

For simplification, we assume that

vc ¼ 2pn

T
ð8:85Þ

and

Dv ¼ 2pm

T
ð8:86Þ

wherem and n are integers withm� n. This ensures that both s1 tð Þ and s2 tð Þwill go through an
integer number of cycles in T s. As a result,ffiffiffiffiffiffiffiffiffiffi

E1E2

p
r12 ¼

ðT
0

A2cos vctð Þ cos vcþDvð Þt dt

¼ 1

2
A2

ðT
0

½cos Dvtð Þþ cos 2vcþDvð Þt� dt
¼ 0

ð8:87Þ

and R12 ¼ 0. Thus

PE ¼ Q
ffiffiffi
z
p
 � ð8:88Þ

which is the same as for ASK. The error probability versus SNR therefore corresponds to the

curve R12 ¼ 0 in Figure 8.11.

Note that the reason ASK and FSK have the same PE versus SNR characteristics is that the

comparison is being made on the basis of average signal power. If peak signal powers are

constrained to be the same, ASK is 3 dB worse than FSK.

Table 8.2 Effect of Gaussian Phase Reference Jitter on the Detection of BPSK

E=N0 , dB PE,s
2
f = 0.01 rad2 PE,s

2
f = 0.05 rad2 PE,s

2
f = 0.1 rad2

9 3:68� 10�5 6:54� 10�5 2:42� 10�4

10 4:55� 10�6 1:08� 10�5 8:96� 10�5

11 3:18� 10�7 1:36� 10�6 3:76� 10�5

12 1:02� 10�8 1:61� 10�7 1:83� 10�5

8See, for example, Van Trees (1968), Chapter 4.
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We denote the three schemes just considered as coherent, binary ASK, PSK, and FSK to

indicate the fact that they are binary. We consider M-ary (M > 2) schemes in Chapter 9.

EXAMPLE 8.6

Compare binary ASK, PSK, and FSK on the basis of Eb=N0 required for PE ¼ 10�6 and on the basis

of transmission bandwidth for a constant data rate. Take the required bandwidth as the null-to-

null bandwidth of the square-pulsemodulated carrier. Assume theminimumbandwidth possible for FSK.

S o l u t i o n

From before, we know that to give PE;BPSK ¼ 10�6, the required Eb=N0 is 10.53 dB. Amplitude-shift

keying, on an average basis, and FSK require an SNR 3.01 dB above that of BPSK, or 13.54 dB, to give

PE¼ 10�6. The Fourier transform of a square-pulse modulated carrier is

P
t

T

� �
cos 2pfctð Þ $ T

2

� �
sinc½T f � fcð Þ� þ sinc½T f þ fcð Þ�f g

The null-to-null bandwidth of the positive-frequency portion of this spectrum is

BRF ¼ 2

T
Hz ð8:89Þ

For binary ASK and PSK, the required bandwidth is

BPSK ¼ BASK ¼ 2

T
¼ 2RHz ð8:90Þ

where R is the data rate in bits per second. For FSK, the spectra for

s1 tð Þ ¼ A cos vctð Þ; 0 � t � T ; vc ¼ 2pfc

and

s2 tð Þ ¼ A cos vctþDvð Þt; 0 � t � T; Dv ¼ 2pDf

are assumed to be separated by 1=2T Hz, which is the minimum spacing for orthogonality of the signals.

Given that a cosinusoidal pulse has main-lobe half bandwidth of 1=T Hz, it can be roughly reasoned that

the required bandwidth for FSK is therefore

BCFSK ¼ 1

T
þ 1

2T|fflfflfflffl{zfflfflfflffl}
fc burst

þ 1

T
¼ 2:5

T
¼ 2:5RHz

ð8:91Þ

We often specify bandwidth efficiency, R=B, in terms of bits per second per hertz. For binary ASK and

PSK the bandwidth efficiency is 0.5 bps/Hz, while for binary coherent FSK it is 0.4 bps/Hz.

&

n 8.3 MODULATION SCHEMES NOT REQUIRING COHERENT REFERENCES

We now consider two modulation schemes that do not require the acquisition of a local

reference signal in phase coherencewith the received carrier. The first scheme to be considered

is referred to as differentially coherent phase-shift keying and may be thought of as the

|fflffl{zfflffl}
fcþ�f burst
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noncoherent version of BPSK considered in Section 8.2. Also considered in this section will be

noncoherent, binary FSK (binary noncoherent ASK is considered in Problem 8.30).

8.3.1 Differential Phase-Shift Keying (DPSK)

Oneway of obtaining a phase reference for the demodulation ofBPSK is to use the carrier phase

of the preceding signaling interval. The implementation of such a scheme presupposes two

things:

1. The mechanism causing the unknown phase perturbation on the signal varies so slowly that

the phase is essentially constant from one signaling interval to the next.

2. The phase during a given signaling interval bears a known relationship to the phase during

the preceding signaling interval.

The former is determined by the stability of the transmitter oscillator, time-varying

changes in the channel, and so on. The latter requirement can be met by employing what is

referred to as differential encoding of the message sequence at the transmitter.

Differential encoding of a message sequence is illustrated in Table 8.3. An arbitrary

reference binary digit is assumed for the initial digit of the encoded sequence. In the example

shown in Table 8.3, a 1 has been chosen. For each digit of the encoded sequence, the present

digit is used as a reference for the following digit in the sequence. A 0 in the message sequence

is encoded as a transition from the state of the reference digit to the opposite state in the encoded

message sequence; a 1 is encoded as no change of state. In the example shown, the first digit in

the message sequence is a 1, so no change in state is made in the encoded sequence, and a 1

appears as the next digit. This serves as the reference for the next digit to be encoded. Since the

next digit appearing in the message sequence is a 0, the next encoded digit is the opposite of

the reference digit, or a 0. The encoded message sequence then phase-shift keys a carrier with

the phases 0 and p as shown in the table.

The block diagram in Figure 8.16 illustrates the generation of DPSK. The equivalence

gate, which is the negation of an EXCLUSIVE-OR, is a logic circuit that performs the

A cos ctω

Level
shift

Equival.
gate

Message
sequence

One-bit
delay

±A cos ctω± 1
×

Figure 8.16

Block diagram of a DPSK modulator.

Table 8.3 Differential Encoding Example

Message sequence: 1 0 0 1 1 1 0 0 0

Encoded sequence: 1 1 0 1 1 1 1 0 1 0

Reference digit: "
Transmitted phase: 0 0 p 0 0 0 0 p 0 p
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operations listed in Table 8.4. By a simple level shift at the output of the logic circuit, so that the

encoded message is bipolar, the DPSK signal is produced by multiplication by the carrier, or

DSB modulation.

A possible implementation of a differentially coherent demodulator for DPSK is shown in

Figure 8.17. The received signal plus noise is first passed through a bandpass filter centered on

the carrier frequency and then correlated bit by bit with a one-bit delayed version of the signal

plus noise. The output of the correlator is finally compared with a threshold set at zero, a

decision beingmade in favor of a 1 or a 0, depending onwhether the correlator output is positive

or negative, respectively.

To illustrate that the received sequence will be correctly demodulated, consider the

example given in Table 8.3, assuming no noise is present. After the first two bits have been

received (the reference bit plus the first encoded bit), the signal input to the correlator is

S1 ¼ A cos vctð Þ, and the reference, or delayed, input is R1 ¼ A cos vctð Þ. The output of the

correlator is

v1 ¼
ðT
0

A2 cos2 vctð Þ dt ¼ 1

2
A2T ð8:92Þ

and the decision is that a 1 was transmitted. For the next bit interval, the inputs are

R2 ¼ S1 ¼ A cos vctð Þ and S2 ¼ A cos vctþpð Þ ¼ �A cos vctð Þ, resulting in a correlator

output of

v2 ¼ �
ðT
0

A2 cos2 vctð Þ dt ¼ � 1

2
A2T ð8:93Þ

and a decision that a 0 was transmitted is made. Continuing in this fashion, we see that the

original message sequence is obtained if there is no noise at the input.

This detector, while simple to implement, is actually not optimum. The optimum detector

for binary DPSK is shown in Figure 8.18. The test statistic for this detector is

Table 8.4 Truth Table for the Equivalence Operation

Input 1 (message) Input 2 (reference) Output

0 0 1

0 1 0

1 0 0

1 1 1

t = t0 + T

Threshold
Decisiont0 + T

t0
( )dt∫

Received
signal

One-bit
delay

×

Figure 8.17

Demodulation of DPSK.
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l ¼ xkxk�1þ ykyk�1 ð8:94Þ
If l > 0, the receiver chooses the signal sequence

s1 tð Þ ¼ A cos vctþ uð Þ; � T � t < 0

A cos vctþ uð Þ; 0 � t < T

�
ð8:95Þ

as having been sent. If l < 0, the receiver chooses the signal sequence

s2 tð Þ ¼ A cos vctþ uð Þ; � T � t < 0

�A cos vctþ uð Þ; 0 � t < T

�
ð8:96Þ

as having been sent.

Without loss of generality, we can choose u ¼ 0 (the noise and signal orientations with

respect to the sine and cosinemixers in Figure 8.18 are completely random). The probability of

error can then be computed from PE ¼ Pr ½xkxk�1þ ykyk�1 < 0 j s1 sent; u ¼ 0� (it is as-

sumed that s1 and s2 are equally likely). Assuming thatvcT is an integermultiple of 2p, we find
the outputs of the integrators at time t ¼ 0 to be

x0 ¼ AT

2
þ n1 and y0 ¼ n3 ð8:97Þ

where

n1 ¼
ð0
�T

n tð Þ cos vctð Þ dt ð8:98Þ

and

n3 ¼
ð0
�T

n tð Þ sin vctð Þ dt ð8:99Þ

Similarly, at time t ¼ T , the outputs are

x1 ¼ AT

2
þ n2 and y1 ¼ n4 ð8:100Þ

x(kT ) = xk

t = kT

t0 = (k – 1)T, k integer

x(t)

Decision
logic

Decision

t0 + T

t0
( )dt∫

Received
signal
plus noise cos ctω

y(kT ) = yk

t = kT

y(t)t0 + T

t0
( )dt∫

sin ctω

×

×

Figure 8.18

Optimum receiver for binary DPSK.
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where

n2 ¼
ðT
0

n tð Þ cos vctð Þ dt ð8:101Þ

and

n4 ¼
ðT
0

n tð Þ sin vctð Þ dt ð8:102Þ

It follows that n1, n2, n3, and n4 are uncorrelated, zero-mean Gaussian random variables

with variances N0T=4. Since they are uncorrelated, they are also independent, and the

expression for PE becomes

PE ¼ Pr
AT

2
þ n1

� �
AT

2
þ n2

� �
þ n3n4 < 0

� �
ð8:103Þ

This can be rewritten as

PE ¼ Pr
AT

2
þ n1

2
þ n2

2

� �2

� n1

2
� n2

2

� �2
þ n3

2
þ n4

2

� �2
� n3

2
� n4

2

� �2
< 0

" #
ð8:104Þ

[To check this, simply square the separate terms in the argument of (8.104), collect like terms,

and compare with the argument of (8.103).] Defining new Gaussian random variables as

w1 ¼ n1

2
þ n2

2

w2 ¼ n1

2
� n2

2

w3 ¼ n3

2
þ n4

2

w4 ¼ n3

2
� n4

2

ð8:105Þ

the probability of error can be written as

PE ¼ Pr
AT

2
þw1

� �2

þw2
3 < w2

2þw2
4

" #
ð8:106Þ

The positive square roots of the quantities on either side of the inequality sign inside the

brackets can be compared just as well as the quantities themselves. From the definitions of w1,

w2,w3, andw4, it can be shown that they are uncorrelated with each other and all are zero mean

with variances N0T=8. Since they are uncorrelated and Gaussian, they are also independent. It
follows that

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AT

2
þw1

� �2

þw2
3

s
ð8:107Þ

is a Ricean random variable (see Section 6.5.3). It is also true that

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
2þw2

4

q
ð8:108Þ
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is a Rayleigh random variable. It follows that the probability of error can be written as the

double integral

PE ¼
ð¥
0

ð¥
r1

fR2
r2ð Þ dr2

� �
fR1

r1ð Þ dr1 ð8:109Þ

where fR1
r1ð Þ is a Ricean pdf and fR2

r2ð Þ is a Rayleigh pdf. Letting s2 ¼ N0T=8 and B ¼ AT=2
and using the Rayleigh and Ricean pdf forms given in Table 5.4 and by (6.149), respectively,

this double integral becomes

PE ¼
ð¥
0

� ð¥
r1

r2

s2
exp � r22

2s2

� �
dr2

�
r1

s2
exp � r21þB2

2s2

� �
I0

Br1

s2

� �
dr1

¼
ð¥
0

exp � r21
2s2

� �� �
r1

s2
exp � r21þB2

2s2

� �
I0

Br1

s2

� �
dr1

¼ exp � B2

2s2

� �ð¥
0

r1

s2
exp � r21

s2

� �
I0

Br1

s2

� �
dr1

¼ 1

2
exp � B2

2s2

� �
exp

C2

2s2
0

� �ð¥
0

r1

s2
0

exp � r21þC2

2s2
0

� �
I0

Cr1

2s2
0

� �
dr1 ð8:110Þ

ð8:110Þ
where C ¼ B=2 and s2 ¼ 2s2

0. Since the integral is over a Ricean pdf, we have

PE ¼ 1

2
exp � B2

2s2

� �
exp

C2

2s2
0

� �
¼ 1

2
exp � B2

4s2

� �
¼ 1

2
exp � A2T

2N0

� �
ð8:111Þ

ð8:111Þ
Defining the bit energy Eb as A

2T=2 gives

PE ¼ 1

2
exp � Eb

N0

� �
ð8:112Þ

for the optimum DPSK receiver of Figure 8.18.

It has been shown in the literature that the suboptimum integrate-and-dump detector of

Figure 8.17 with an input filter bandwidth of B ¼ 2=T gives an asymptotic probability of error

at large Eb=N0 values of

PE ffi Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=N0

p� �
¼ Q

ffiffiffi
z
p
 � ð8:113Þ

The result is about a 1.5-dB degradation in SNR for a specified probability of error from that of

the optimum detector. Intuitively, the performance depends on the input filter bandwidth—a

wide bandwidth results in excess degradation because more noise enters the detector (note that

there is a multiplicative noise from the product of undelayed and delayed signals), and an

excessively narrow bandwidth degrades the detector performance because of the intersymbol

interference (ISI) introduced by the filtering.
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Recalling the result for BPSK, (8.74) withm ¼ 0, and using the asymptotic approximation

Q uð Þ ffi e� u2=2= 2pð Þ1=2u, we obtain the following result for BPSK valid for large Eb=N0:

PE ffi e�Eb=N0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEb=N0

p BPSK; Eb=N0  1ð Þ ð8:114Þ

For large Eb=N0, DPSK and BPSK differ only by the factor pEb=N0ð Þ1=2, or roughly a 1-dB

degradation in SNR of DPSK with respect to BPSK at low probability of error. This makes

DPSK an extremely attractive solution to the problem of carrier reference acquisition required

for demodulation of BPSK. The only significant disadvantages of DPSK are that the signaling

rate is locked to the specific value dictated by the delay elements in the transmitter and receiver

and that errors tend to occur in groups of two because of the correlation imposed between

successive bits by the differential encoding process (the latter is the main reason for the 1-dB

degradation in performance of DPSK over BPSK at high SNR).

COMPUTER EXAMPLE 8.2

A MATLAB Monte Carlo simulation of a delay-and-multiply DPSK detector is given below. A plot of

estimated bit error probability may be made by fixing the desired Eb=N0, simulating a long string of bits

plus noise through the detector, comparing the output bitswith the input bits, and counting the errors. Such

a plot is shown in Figure 8.19 and is compared with the theoretical curves for the optimum detector,

(8.110), as well as the asymptotic result, (8.113), for the suboptimum delay-and-multiply detector shown

in Figure 8.17.

% file: c8ce2.m
% Simulation of suboptimum bandpass filter/delay-and-multiply demodulator
% with integrate-and-dump detection for DPSK; Butterworth filter at
input.

10–4

10–3

10–2

10–1

100

Eb/N0; dB

P
E

8

Simulation; BT = 2; 50000 bits

6420–2–4–6

Theory; optimum differential detector

Theory; delay/multiply detector

Figure 8.19

Simulated performance of a delay-and-multiply DPSK detector compared with theoretical results.
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%
clf
clear all
Eb_N0_dB_max ¼ input(‘Enter maximum Eb/N0 in dB’);
Eb_N0_dB_min ¼ input(‘Enter minimum Eb/N0 in dB’);
samp_bit ¼ input(‘Enter number of samples per bit used in simulation’);
n_order ¼ input(‘Enter order of Butterworth prefilter’);
BWT_bit ¼ input(‘Enter filter bandwidth normalized by bit rate’);
N_bits¼ input(‘Enter total number of bits in simulation’);
ss ¼ sign(rand(1,N_bits)-.5); % Generate random þ-1 sequence

(a digit/bit)
data ¼ 0.5*(ssþ1); % Logical data is sequence of 1s and 0s
data_diff_enc ¼ diff_enc(data); % Differentially encode data for DPSK
s ¼ 2*data_diff_enc-1; % Generate bipolar data for

modulation
T_bit ¼ 1; % Arbitrarily take bit time as 1 second
BW ¼ BWT_bit/T_bit; % Compute filter bandwidth from

BW*T_bit
Eb_N0_dB ¼ Eb_N0_dB_min:Eb_N0_dB_max;
Eb_N0 ¼ 10.b(Eb_N0_dB/10); % Convert desired Eb/N0 from dB to

ratio
Perror¼ zeros(size(Eb_N0_dB));
Eb ¼ T_bit; % Bit energy is T_bit if ampl ¼ 1
[num,den]¼ butter(n_order,
2*BW/samp_bit); % Obtain filter num/den coefficients
for k ¼ 1:length(Eb_N0) % Loop for each desired Eb/N0
Eb_N00¼ Eb_N0(k);

N0¼ Eb/Eb_N00; % Compute noise PSD from Eb/N0
del_t¼ T_bit/samp_bit; % Compute sampling interval
sigma_n ¼ sqrt(N0/(2*del_t)); % Compute standard dev of noise

samples
sig ¼ s(ones(samp_bit,1),:); % Build array with columns samp_bit

long
sig ¼ sig(:); % Convert bit sample matrix to vector
bits_out¼ [];
y_det¼ [];
noise¼ sigma_n*randn (size(sig));

% Form Gaussian noise sample
sequence

y ¼ filter(num,den,sigþnoise); % Filter signal þ noise with chosen
filter

y_ref¼ delay1(y,samp_bit); % Reference signal is 1-bit delayed
S þ N

y_mult ¼ y.*y_ref; %MultiplyreceivedSþNbyreference
bits_out¼int_and_dump(y_mult,samp_bit,N_bits);
error_array¼abs(bits_out-data);

%Comparedetectedbitswithinput
data

error_array(1:5)¼0; %Excludefirst5bitsduetotransients
ss¼sum(error_array); %Sumtogettotalnumberoferrors
Perror(k)¼ss/(N_bits-5); %Subtract5;initial5bitsset¼0

end
disp(‘E_b/N_0,dB;P_E’) %DisplaysimulatedPerrorwithEb/N0
disp([Eb_N0_dB�Perror�])
%Plot simulated bit error probabilities versus Eb/N0
semilogy(Eb_N0_dB,Perror,‘–’,‘LineWidth’,1.5),grid,

xlabel(‘E_b/N_0;dB’),...
ylabel(‘P_E’),hold,...
title(‘SimulationofBEPfordelay-and-multiplydetectorwith

ButterworthprefilterforDPSK’)
%Plot theoretical bit error probability for optimum DPSK detector
semilogy(Eb_N0_dB,0.5*exp(-10.b(Eb_N0_dB/10)),‘-’,
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‘LineWidth’,1.5)
%Plot approximate theoretical result for suboptimum detector
semilogy(Eb_N0_dB,qfn(sqrt(10.b(Eb_N0_dB/10))),‘-.’,
‘LineWidth,1.5)
legend([‘Simulation;BT¼’,num2str(BWT_bit),‘;’,num2str(N_bits),
‘bits’],‘Theory;optimumdifferentialdetector’,‘Theory;delay/
multiply(detector’,3)

%diff_enc(input);functiontodifferentiallyencodebitstreamvector
%
output¼diff_enc(input)
L_in¼length(input);
output¼[];
fork¼1:L_in

ifk¼¼1
output(k)¼not(bitxor(input(k),1));

else
output(k)¼not(bitxor(input(k),output(k-1)));

end
end
%Shifts a vector by n_delay elements
%
function y_out¼delay1(y_in,n_delay);
NN¼length(y_in);
y_out¼zeros(size(y_in));
y_out(n_delayþ1:NN)¼y_in(1:NN-n_delay);
%int_and_dump(input,samp_bit,N_bits);
%Function to integrate-and-dump detect
%
function bits_out¼int_and_dump(input,samp_bit,N_bits)
%Reshape input vector with each bit occupying a column
samp_array¼reshape(input,samp_bit,N_bits);
integrate¼sum(samp_array); %Integrate(sum) each bit (column)
bits_out¼(sign(integrate)þ1)/2;

A typical MATLAB command window interaction is given below:

>>comp_exam8_2
Enter maximum Eb/N0 in dB 8
Enter minimum Eb/N0 in dB -6
Enter number of samples per bit used in simulation 10
Enter order of Butterworth detection filter 2
Enter filter bandwidth normalized by bit rate 2
Enter total number of bits in simulation 50000
E_b/N_0, dB; P_E
-6.0000 0.4179
-5.0000 0.3999
-4.0000 0.3763
-3.0000 0.3465
-2.0000 0.3158
-1.0000 0.2798
0 0.2411
1.0000 0.2000
2.0000 0.1535
3.0000 0.1142
4.0000 0.0784
5.0000 0.0463
6.0000 0.0243
7.0000 0.0115
8.0000 0.0039

Current plot held

&
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8.3.2 Noncoherent FSK

The computation of error probabilities for noncoherent systems is somewhatmore difficult than

it is for coherent systems. Since more is known about the received signal in a coherent system

than in a noncoherent system, it is not surprising that the performance of the latter is worse than

the corresponding coherent system. Even with this loss in performance, noncoherent systems

are often used when simplicity of implementation is a predominent consideration. Only

noncoherent FSK will be discussed here.9

For noncoherent FSK, the transmitted signals are

s1 tð Þ ¼ A cos vctþ uð Þ; 0 � t � T ð8:115Þ
and

s2 tð Þ ¼ A cos vcþDvð Þtþ u½ �; 0 � t � T

whereDv is sufficiently large that s1 tð Þ and s2 tð Þ occupy different spectral regions. The receiver
for FSK is shown in Figure 8.20. Note that it consists of two receivers for noncoherent ASK in

parallel. As such, calculation of the probability of error for FSKproceedsmuch the sameway as

forASK, althoughwe are not facedwith the dilemmaof a threshold thatmust changewith SNR.

Indeed, because of the symmetries involved, an exact result for PE can be obtained. Assuming

s1 tð Þ has been transmitted, the output of the upper detector at time T ; R1/r1 Tð Þ has the

Ricean pdf

fR1 r1ð Þ ¼ r1

N
e� r2

1
þA2ð Þ=2NI0 Ar1

N

� �
; r1 	 0 ð8:116Þ

where I0 �ð Þ is themodifiedBessel function of the first kind of order zero andwe havemade use

of Section 6.5.3. The noise power is N ¼ N0BT . The output of the lower filter at time

T ; R2/r2 Tð Þ, results from noise alone; its pdf is therefore Rayleigh:

fR2
r2ð Þ ¼ r2

N
e� r

2

2
=2N ; r2 	 0 ð8:117Þ

9See Problem 8.30 for a sketch of the derivation of PE for noncoherent ASK.

Threshold
Decision

Bandpass
filter
at cω

Bandpass
filter

at c + ω     Δω

Received
signal

Envelope
detector

Envelope
detector

r2(t )

r1(t )
t = T

∑
+

–

Figure 8.20

Receiver for noncoherent FSK.
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An error occurs if R2 > R1, which can be written as

P Ejs1 tð Þð Þ ¼
ð¥
0

fR1
r1ð Þ

ð¥
r1

fR2
r2ð Þdr2

� �
dr1 ð8:118Þ

By symmetry, it follows that P Ejs1 tð Þð Þ ¼ P Ejs2 tð Þð Þ, so that (8.118) is the average

probability of error. The inner integral in (8.118) integrates to exp � r 21 =2N

 �

, which results

in the expression

PE ¼ e� z

ð¥
0

r1

N
I0

Ar1

N

� �
e� r 2

1
=Ndr1 ð8:119Þ

where z ¼ A2=2N as before. If we use a table of definite integrals (see AppendixG.4.2), we can

reduce (8.119) to

P ¼ 1

2
exp

�z
2

� �
ð8:120Þ

For coherent, binary FSK, the error probability for large SNR, using the asymptotic expansion

for the Q-function, is

PE ffi expð�z=2Þffiffiffiffiffiffiffiffi
2pz
p for z 1

Since these differ only by themultiplicative factor
ffiffiffiffiffiffiffiffiffiffiffi
2=pz

p
, this indicates that the powermargin

over noncoherent detection at large SNR is inconsequential. Thus, because of the comparable

performance and the added simplicity of noncoherent FSK, it is employed almost exclusively

in practice instead of coherent FSK.

For bandwidth, we note that since the signaling bursts cannot be coherently orthogonal, as

for coherent FSK, the minimum frequency separation between tones must be of the order of

2=T Hz for noncoherent FSK, giving a minimum null-to-null RF bandwidth of about

BNCFSK ¼ 1

T
þ 2

T
þ 1

T
¼ 4R ð8:121Þ

resulting in a bandwidth efficiency of 0.25 bps/Hz.

n 8.4 M-ARY PAM

AlthoughM-ary modulation will be taken up in the next chapter, we consider one such scheme

in this chapter because it is simple to do so and it illustrates why one might consider such

schemes.

Consider a signal set given by

si tð Þ ¼ Aip tð Þ; t0 � t � t0þ T ; i ¼ 1; 2; . . . ; M ð8:122Þ
where p tð Þ is the basic pulse shape that is 0 outside the interval t0; t0þ T½ � with energy

Ep ¼
ðt0þT
t0

p2 tð Þdt ¼ 1 ð8:123Þ
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and Ai is the amplitude of the ith possible transmitted signal with A1 < A2 < . . . < AM .

Because of the assumption of unit energy for p tð Þ, the energy of si tð Þ is A2
1. Since we want

to associate an integer number of bits with each pulse amplitude, we will restrict M to be

an integer power of 2. For example, if M ¼ 8, we can label the pulse amplitudes 000,

001, 010, 011, 100, 101, 110, and 111 thereby conveying three bits of information

per transmitted pulse (an encoding technique called Gray encoding will be introduced

later).

The received signal plus AWGN in the signaling interval ½t0; t0þ T � is given by

y tð Þ ¼ si tð Þþ n tð Þ ¼ Aip tð Þþ n tð Þ; t0 � t � t0þ T ð8:124Þ

where for convenience, we set t0 ¼ 0. A reasonable receiver structure is to correlate the

received signal plus noisewith a replica of p tð Þ and sample the output of the correlator at t ¼ T ,

which produces

Y ¼
ðT
0

½si tð Þþ n tð Þ�p tð Þdt ¼ Ai þN ð8:125Þ

where

N ¼
ðT
0

n tð Þp tð Þdt ð8:126Þ

is a Gaussian random variable of zero mean and variance s2
N ¼ N0=2 [the derivation is

similar to (8.5)]. Following the correlation operation, the sample value is compared with a

series of thresholds set at A1þ A2ð Þ=2; A2þ A3ð Þ=2; . . . ; AM�1þ AMð Þ=2. The possible

decisions are

If Y � A1þA2

2
decide that A1p tð Þwas sent

If
A1þA2

2
< Y � A2þA3

2
decide that A2p tð Þwas sent

If
A2þA3

2
< Y � A3þA4

2
decide that A3p tð Þwas sent

. . .

If Y >
AM�1þAM

2
decide that AMp tð Þwas sent

ð8:127Þ

Recalling Section 2.3, we see that the correlation operation amounts to projecting the

received signal plus noise into a generalized one-dimensional vector space with the result that

the decision-making process can be illustrated as shown in Figure 8.21. The probability of

making a decision error is the probability that a given pulse ampliltude was sent, say Aj, and a

decision was made in favor of some other amplitude, averaged over all possible pulse

amplitudes. Or, it can be alternatively computed as 1 minus the probability that Aj was sent
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and a decision in favor of Aj was made, which is

P EjAj sent

 � ¼

1� Pr

"
Aj�1þAj


 �
2

< Y � Aj þAjþ 1

2

#
; j ¼ 2; 3; . . . ; M�1

1� Pr

�
Y � A1þA2

2

�
; j ¼ 1

1� Pr

�
Y >

AM�1þAM

2

�
; j ¼ M

8>>>>>>>>>><>>>>>>>>>>:
ð8:128Þ

To simplifymatters, we nowmake the assumption that forAj ¼ j�1ð ÞD for j ¼ 1; 2; . . . ; M.

Thus,

P EjAj sent

 � ¼ 1� Pr

�
N <

D
2

�
; j ¼ 1

¼ 1� Pr

�
D
2
< DþN � 3D

2

�
¼ 1� Pr

�
� D

2
< N � D

2

�
; j ¼ 2

¼ 1� Pr

�
3D
2

< 2DþN � 5D
2

�
¼ 1� Pr

�
� D

2
< N � D

2

�
; j ¼ 3

ð8:129Þ

. . .

¼ 1� Pr

�
2M� 3ð ÞD

2
� M�1ð ÞDþN

�
¼ 1� Pr

�
N > � D

2

�
; j ¼ M

(a)

(b)
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Figure 8.21

(a) Amplitudes and thresholds for PAM (b) Nonnegative-amplitude equally spaced case (c) Antipodal

equally spaced case.
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These reduce to

P EjAj sent

 � ¼ 1�

ðD=2
�¥

exp �h2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p dh

¼
ð¥
D=2

exp �h2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p dh ¼ Q

�
Dffiffiffiffiffiffiffiffi
2N0

p
�
; j ¼ 1; M

ð8:130Þ

and

P EjAj sent

 � ¼ 1�

ðD=2
�D=2

exp �h2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p dh

¼ 2

ð¥
D=2

exp �h2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p dh

¼ 2Q

�
Dffiffiffiffiffiffiffiffi
2N0

p
�
; j ¼ 2; . . . ; M�1 ð8:131Þ

ð8:131Þ
If all possible signals are equally likely, the average probability of error is

PE ¼ 1

M

XM
j¼1

P EjAj sent

 �

¼ 2 M�1ð Þ
M

Q

�
Dffiffiffiffiffiffiffiffi
2N0

p
� ð8:132Þ

Now the average signal energy is

Eave ¼ 1

M

XM
j¼1

Ej ¼ 1

M

XM
j¼1

A2
j ¼

1

M

XM
j¼1

j�1ð Þ2D2

¼ D2

M

XM�1
k¼1

k2 ¼ D2

M

M�1ð ÞM 2M�1ð Þ
6

¼ M�1ð Þ 2M�1ð ÞD2

6

ð8:133Þ

where the summation formula

XM�1
k¼1

k2 ¼ M�1ð ÞM 2M�1ð Þ
6

ð8:134Þ

has been used. Thus

D2 ¼ 6Eave

M�1ð Þ 2M�1ð Þ ; M-ary PAM ð8:135Þ
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so that

PE ¼ 2 M�1ð Þ
M

Q

ffiffiffiffiffiffiffiffi
D2

2N0

vuut0@ 1A
¼ 2 M�1ð Þ

M
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Eave

M�1ð Þ 2M�1ð ÞN0

s0@ 1A; M-ary PAM

ð8:136Þ

If the signal amplitudes are symmetrically placed about 0 so that Aj ¼ ð j � 1ÞD� ðM�1Þ
2

D
for j ¼ 1; 2; . . . ;M, the average signal energy is

Eave ¼ M2�1ð ÞD2

12
; M-ary antipodal PAM ð8:137Þ

so that

PE ¼ 2 M�1ð Þ
M

Q

ffiffiffiffiffiffiffiffi
D2

2N0

vuut0@ 1A
¼ 2 M�1ð Þ

M
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Eave

M2�1ð ÞN0

s0@ 1A; M-ary antipodal PAM

ð8:138Þ

Note that binary antipodal PAM is 3 dB better than PAM.Also note that withM ¼ 2; 8:138ð Þ for
M-ary antipodal PAM reduces to the error probability for binary antipodal signaling.

In order to compare these M-ary modulation schemes with the other binary modulation

schemes considered in this chapter, we need to do two things. The first is to expressEavein terms

of energy per bit. Since itwas assumed thatM ¼ 2m; wherem ¼ log2M is an integer number of

bits, this is accomplished by setting Eb ¼ Eave=m ¼ Eave=log2M orEave ¼ Eblog2M. The

second thing we need to do is convert the probabilities of error found above, which are

symbol-error probabilities, to bit-error probabilities. This will be taken up in Chapter 9 where

two caseswill be discussed. The first iswheremistaking the correct symbol in demodulation for

any of the other possible symbols is equally likely. The second case, which is the case of interest

here, is where adjacent symbol errors are more probable than nonadjacent symbol errors and

encoding is used to ensure only one bit changes in going from a given symbol to an adjacent

symbol (i.e., in PAM, going from a given amplitude to an adjacent amplitude). This can be

ensured by using Gray encoding of the bits associated with the symbol amplitudes, which is

demonstrated in Problem 8.32. If both of these conditions are satisfied, it then follows that

Pb ffi 1
ðlog2MÞPsymbol. Thus

Pb; PAM ffi 2 M�1ð Þ
M log2M

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log2Mð ÞEb

M�1ð Þ 2M�1ð ÞN0

s !
; M-ary PAM;Gray encoding ð8:139Þ

and

Pb; antip: PAM ¼ 2 M�1ð Þ
M log2M

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log2Mð ÞEb

M2�1ð ÞN0

s !
; M-ary antipodal PAM; Gray encoding

ð8:140Þ
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The bandwidth for PAMmay be deduced by considering the pulses to be ideal rectangular

of width T ¼ log2Mð ÞTbit. Their baseband spectra are therefore Sk fð Þ ¼ Ak sinc T fð Þ for a 0 to
first null bandwidth of

Bbb ¼ 1

T
¼ 1

log2Mð ÞTb Hz

If modulated on a carrier, the null-to-null bandwidth is twice the baseband value or

BPAM ¼ 2

log2Mð ÞTb ¼
2R

log2M
ð8:141Þ

whereas BPSK, DPSK, and binary ASK have bandwidths of BRF ¼ 2=Tb Hz. This illustrates

that for a fixed bit rate, PAM requires less bandwidth the larger M. In fact the bandwidth

efficiency for M-ary PAM is 0:5log2M bps/Hz.

n 8.5 COMPARISON OF DIGITAL MODULATION SYSTEMS

Bit-errorprobabilitiesarecomparedinFigure8.22for themodulationschemesconsideredinthis

chapter. Note that the curve for antipodal PAMwithM ¼ 2 is identical to BPSK. Also note that

the bit-error probability of antipodal PAMbecomesworse the largerM. However, more bits are

100
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Figure 8.22

Error probabilities for several binary digital signaling schemes.
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transmittedthelargerM. Inabandlimitedchannelwithsufficientsignalpower, itmaydesirableto

send more bits per symbol. Noncoherent FSK and antipodal PAM with M ¼ 4 have almost

identical performance at large SNR. Note also the small difference in performance between

BPSK and DPSK, with a slightly larger difference between coherent and noncoherent FSK.

Inaddition tocostandcomplexityofimplementation, therearemanyotherconsiderations in

choosingone typeofdigitaldata systemoveranother.Forsomechannels,where thechannelgain

orphasecharacteristics (orboth)areperturbedbyrandomlyvaryingpropagationconditions,use

of a noncoherent system may be dictated because of the near impossibility of establishing

a coherent reference at the receiver under such conditions. Such channels are referred to as

fading. The effects of fading channels on data transmission will be taken up in Section 8.8.

The following example illustrates some typical SNR ratio and data rate calculations for the

digital modulation schemes considered in this chapter.

EXAMPLE 8.7

Suppose Pb ¼ 10� 6 is desired for a certain digital data transmission system. (a) Compare the necessary

SNRs for BPSK, DPSK, antipodal PAM forM ¼ 2; 4; 8; and noncoherent FSK. (b) Compare maximum

bit rates for an RF bandwidth of 20 kHz.

S o l u t i o n

For part (a), we find by trial and error thatQ 4:753ð Þ � 10� 6. Biphase-shift keying and antipodal PAM for

M ¼ 2 have the same bit error probability, given by

Pb ¼ Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
¼ 10� 6

so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb=N0

p ¼ 4:753 or Eb=N0 ¼ 4:753ð Þ2=2 ¼ 11:3 ¼ 10:53 dB. For M ¼ 4, Equation (8.140)

becomes

2 4�1ð Þ
4 log24

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log24

42�1
Eb

N0

vuut
0B@

1CA¼ 10�6

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8

Eb

N0

s0@ 1A ¼ 1:333� 10�6

Another trial-and-error search gives Q 4:695ð Þ � 1:333� 10�6 so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8Eb=N0

p ¼ 4:695
or Eb=N0 ¼ 4:695ð Þ2= 0:8ð Þ ¼ 27:55 ¼ 14:4 dB. ForM ¼ 8; 8:140ð Þ becomes

2 8�1ð Þ
8 log28

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log28

82�1
Eb

N0

vuut
0B@

1CA¼ 10�6

7

12
Q

ffiffiffiffiffiffiffiffiffi
2

7

Eb

N0

vuut
0B@

1CA¼ 10�6

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:286

Eb

N0

s0@ 1A¼ 1:714� 10�6
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Yet another trial-and-error search gives Q 4:643ð Þ � 1:714� 10� 6 so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:286Eb=N0

p ¼ 4:643
or Eb=N0 ¼ 4:643ð Þ2=0:286 ¼ 75:38 ¼ 18:77 dB.

For DPSK, we have

1

2
exp

� �Eb

N0

�
¼ 10�6

exp

� �Eb

N0

�
¼ 2� 10�6

which gives

Eb

N0

¼ � ln 2� 10�6

 � ¼ 13:12 ¼ 11:18 dB

For coherent FSK, we have

Pb ¼ Q

ffiffiffiffiffiffi
Eb

N0

r� �
¼ 10�6

so that ffiffiffiffiffiffi
Eb

N0

r
¼ 4:753 or

Eb

N0

¼ 4:753ð Þ2 ¼ 22:59 ¼ 13:54 dB

For noncoherent FSK, we have

1

2
exp

�
� 0:5

Eb

N0

�
¼ 10�6

exp

�
� 0:5

Eb

N0

�
¼ 2� 10�6

which results in

Eb

N0

¼ �2 ln 2� 10� 6

 � ¼ 26:24 ¼ 14:18 dB

For (b), we use the previously developed bandwidth expressions given by (8.90), (8.91), (8.121), and

(8.141). Results are given in Table 8.5.

The results of Table 8.5 demonstrate that PAM is a modulation scheme that allows a trade-off

between power efficiency (in terms of the Eb=N0 required for a desired bit-error probability) and

Table 8.5 Comparison of Binary Modulation Schemes at PE = 10�6

Modulation

method

Required SNR

for Pb = 10�6 (dB)
R for

BRF = 20 kHz (kbps)

BPSK 10.5 10

DPSK 11.2 10

Antipodal 4-PAM 14.4 20

Antipodal 8-PAM 18.8 30

Coherent FSK, ASK 13.5 8

Noncoherent FSK 14.2 5
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bandwidth efficiency (in terms of maximum data rate for a fixed bandwidth channel). The power-

bandwidth efficiency trade-off of other M-ary digital modulation schemes will be examined further in

Chapter 9.

&

n 8.6 PERFORMANCE OF ZERO-ISI DIGITAL DATA SYSTEMS

Although a fixed channel bandwidth was assumed in Example 8.7, the results of Chapter 4,

Section 4.3, demonstrated that, in general, bandlimiting causes ISI and can result in severe

degradation in performance. The use of pulse shaping to avoid ISI was also introduced in

Chapter 4, where Nyquist�s pulse shaping criterion was proved in Section 4.4.2. The frequency
response characteristics of transmitter and receiver filters for implementing zero-ISI transmis-

sion were examined in Section 4.4.3, resulting in (4.54) and (4.55). In this section, we continue

that discussion and derive an expression for the bit error probability of a zero-ISI data

transmission system.

Consider the system of Figure 4.9, repeated in Fig. 8.23, where everything is the same

except we now specify the noise as Gaussian and having a power spectral density ofGn fð Þ. The
transmitted signal is

x tð Þ ¼
X¥
k¼�¥

akd t� kTð Þ * hT tð Þ

¼
X¥
k¼�¥

akhT t� kTð Þ
ð8:142Þ

where hT tð Þ is the impulse response of the transmitter filter that has the lowpass frequency-

response function HT fð Þ ¼ =½hT tð Þ�. This signal passes through a bandlimited channel filter,

after which Gaussian noise with power spectral density Gn fð Þ is added to give the received

signal

y tð Þ ¼ x tð Þ * hC tð Þþ n tð Þ ð8:143Þ
where hC tð Þ ¼ =�1½HC fð Þ� is the impulse response of the channel. Detection at the receiver is

accomplished by passing y tð Þ through a filter with impulse response hR tð Þ and sampling its

output at intervals ofT. If we require that the cascade of transmitter, channel, and receiver filters

satisfies Nyquist�s pulse shaping criterion, it then follows that the output sample at time t ¼ td ,

V
v(t)y(t)x(t) Receiver

filter
HR( f )

Channel
filter

HC ( f )

Transmitter
filter

HT ( f )
Source

Sampler:
tm = mT + td

Gaussian noise n(t)
PSD = Gn( f )

∑
∞

k = –∞
ak (t – kT )δ

∑

Figure 8.23

Baseband system for signaling through a bandlimited channel.
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where td is the delay imposed by the channel and the receiver filters, is

V ¼ Aa0p 0ð ÞþN

¼ Aa0þN
ð8:144Þ

where
AP t� tdð Þ ¼ hT tð Þ * hC tð Þ * hR tð Þ ð8:145Þ

or, by Fourier transforming both sides, we have

AP fð Þexp � j2pftdð Þ ¼ HT fð ÞHC fð ÞHR fð Þ ð8:146Þ
In (8.145), A is a scale factor, td is a time delay accounting for all delays in the system, and

N ¼ n tð Þ * hR tð Þjt¼td ð8:147Þ
is the Gaussian noise component at the output of the detection filter at time t ¼ td .

For simplicity, we assume binary signaling am ¼ þ1 or �1ð Þ so that the average

probability of error is

PE ¼ Pr½am ¼ 1�Pr½AamþN � 0 given am ¼ 1�
þ Pr½am ¼�1�Pr½AamþN 	 0 given am ¼ �1�
¼ Pr½AamþN < 0 given am ¼ 1�
¼ Pr½AamþN > 0 given am ¼ �1�

ð8:148Þ

where the latter two equations result by assuming am ¼ 1 and am ¼ �1 are equally likely

and the symmetry of the noise pdf is invoked. Taking the last equation of (8.148), it follows

that

PE ¼ Pr½N 	 A� ¼
ð¥
A

exp �u2=2s2ð Þffiffiffiffiffiffiffiffiffiffiffi
2ps2
p du ¼ Q

A

s

� �
ð8:149Þ

where

s2 ¼ var N½ � ¼
ð¥
�¥

Gn fð ÞjHR fð Þj2 df ð8:150Þ

Because theQ-function is a monotonically decreasing function of its argument, it follows

that the average probability of error can be minimized through proper choice of HT fð Þ and
HR fð Þ [HC fð Þ is assumed to be fixed], by maximizing A=s or by minimizing s2=A2. The

minimization can be carried out, subject to the constraint in (8.146), by applying Schwarz�s
inequality. The result is

jHR fð Þjopt ¼
KP1=2 fð Þ

G
1=4
n fð ÞjHC fð Þj1=2

ð8:151Þ

and

jHT fð Þjopt ¼
AP1=2 fð ÞG1=4

n fð Þ
K jHC fð Þj1=2

ð8:152Þ

where K is an arbitrary constant and any appropriate phase response can be used (recall that

Gn fð Þ is nonnegative since it is a power spectral density). P fð Þ is assumed to have the zero-

ISI property of (4.45) and to be nonnegative. Note that it is the cascade of transmitter,
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channel, and receiver filters that produces the overall zero-ISI pulse spectrum in accordance

with (8.146).

The minimum value for the error probability is

Pb; min ¼ Q
ffiffiffiffiffiffi
ET

p ð¥
�¥

G
1=2
n fð Þ P fð Þ
jHC fð Þj df

 !�124 35 ð8:153Þ

where

ET ¼ E a2m
� �ð¥

�¥
jhT tð Þj2 dt ¼

ð¥
�¥
jHT fð Þj2 df ð8:154Þ

is the transmit signal energy and the last integral follows by Rayleigh�s energy theorem. Also,

E a2m
� � ¼ 1 since am ¼ 1 or am ¼ �1 with equal probability.

That (8.153) is the minimum error probability can be shown as follows. Taking the

magnitude of (8.146), solving for jHT fð Þj, and substituting into (8.154), we may show that the

transmitted signal energy is

ET ¼ A2

ð¥
�¥

P2 fð Þ df
jHC fð Þj2jHR fð Þj2 ð8:155Þ

Solving (8.155) for 1=A2 and using (8.150) for var Nð Þ ¼ s2, it follows that

s2

A2
¼ 1

ET

ð¥
�¥

Gn fð ÞjHR fð Þj2 df
ð¥
�¥

P2 fð Þ df
jHC fð Þj2 jHR fð Þj2 ð8:156Þ

Schwarz�s inequality (8.39) may now be applied to show that the minimum for s2=A2 is�
s

A

�2

min

¼ 1

ET

ð¥
�¥

G
1=2
n fð ÞP fð Þ
jHC fð Þj df

 !2

ð8:157Þ

which is achieved for jHR fð Þjopt and jHT fð Þjopt given when (8.151) and (8.152) are used. The
square root of the reciprocal of (8.157) is then the maximum A=s that minimizes the error

probability (8.149). In this case, Schwarz�s inequality is applied in reverse with

jX fð Þj ¼ G
1=2
n fð Þ jHR fð Þj and jY fð Þj ¼ P fð Þ= jHC fð ÞjjHR fð Þj½ �. The condition for equality

[i.e., achieving the minimum in (8.39)] is X fð Þ ¼ KY fð Þ or

G1=2
n fð Þ jHR fð Þjopt ¼ K

P fð Þ
jHC fð ÞjjHR fð Þjopt

ð8:158Þ

which can be solved for jHR fð Þjopt, while jHT fð Þjopt is obtained by taking the magnitude of

(8.146) and substituting jHR fð Þjopt: (K is an arbitrary constant.)

A special case of interest occurs when

Gn fð Þ ¼ N0

2
; all f white noiseð Þ ð8:159Þ

and

HC fð Þ ¼ 1; j f j � 1

T
ð8:160Þ
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In this case

jHT fð Þjopt ¼ jHR fð Þjopt ¼ K 0P1=2 fð Þ ð8:161Þ
where K0 is an arbitrary constant. If P( f ) is a raised cosine spectrum, then the transmit and

receive filters are called square-root raised-cosine filters (in applications, the square-root

raised cosine pulse shape is formed digitally by sampling). The minimum probability of error

then simplifies to

PE; min ¼ Q
ffiffiffiffiffiffi
ET

p N0

2

ð1=T
�1=T

P fð Þ df
" #�18<:

9=; ¼ Q

ffiffiffiffiffiffiffiffi
2ET

N0

r� �
ð8:162Þ

where

p 0ð Þ ¼
ð1=T
�1=T

P fð Þ df ¼ 1 ð8:163Þ

follows because of the zero-ISI property expressed by (4.34). The result (8.162) is identical to that

obtained previously for binary antipodal signaling in an infinite bandwidth baseband channel.

Note that the case ofM-ary transmission can be solved with somewhat more complication

in computing the average signal energy.

EXAMPLE 8.8

Show that (8.162) results from (8.153) if the noise power spectral density is given by

Gn fð Þ ¼ N0

2
jHC fð Þj2 ð8:164Þ

That is, the noise is colored with spectral shape given by the channel filter.

S o l u t i o n

Direct substitution into the argument of (8.153) results in

ffiffiffiffiffiffi
ET

p �ð¥
�¥

G1=2
n fð ÞP fð Þ
jHC fð Þj df

��1
¼ ffiffiffiffiffiffi

ET

p �ð¥
�¥

ffiffiffiffiffiffiffiffiffiffi
N0=2

p jHC fð ÞjP fð Þ
jHC fð Þj df

��1

¼ ffiffiffiffiffiffi
ET

p ffiffiffiffiffiffi
N0

2

s ð¥
�¥

P fð Þ df
24 35�1 ð8:165Þ

¼
ffiffiffiffiffiffiffiffi
2ET

N0

r
ð8:166Þ

where (8.163) has been used.

&

EXAMPLE 8.9

Suppose thatGn fð Þ ¼ N0=2, and that the channel filter is fixed but unspecified. Find the degradation factor
in ET=N0 over that for a infinite-bandwidth white-noise channel for the error probability of (8.153) due to

pulse shaping and channel filtering.
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S o l u t i o n

The argument of (8.153) becomes

ffiffiffiffiffiffi
ET

p �ð¥
�¥

G1=2
n fð ÞP fð Þ
jHC fð Þj df

��1
¼ ffiffiffiffiffiffi

ET

p �ð¥
�¥

ffiffiffiffiffiffiffiffiffiffi
N0=2

p
P fð Þ

jHC fð Þj df

��1

¼
ffiffiffiffiffiffiffiffi
2ET

N0

vuut �ð¥
�¥

P fð Þ
jHC fð Þj df

��1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ð¥
�¥

P fð Þ
jHC fð Þj df

��2
ET

N0

vuut
¼

ffiffiffiffiffiffiffiffiffiffi
2

F

ET

N0

vuut

ð8:167Þ

where

F ¼
ð¥
�¥

P fð Þ
jHC fð Þj df

� �2

¼ 2

ð¥
0

P fð Þ
jHC fð Þj df

� �2

ð8:168Þ
&

COMPUTER EXAMPLE 8.3

AMATLAB program to evaluateF of (8.168) assuming a raised cosine pulse spectrum and a Butterworth

channel frequency response is given below. The degradation is plotted in decibels in Figure 8.24 versus
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Figure 8.24

Degradations for raised cosine signaling through a Butterworth channel with additive Gaussian noise.
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roll-off factor for a channel filter 3-dB cutoff frequency of 1/2 data rate. Note that the degradation, which is

the decibel increase in ET=N0 needed to maintain the same bit-error probability as in a infinite bandwidth

white Gaussian noise channel, ranges from less that 0.5 to 3 dB for the four-pole case as the raised cosine

spectral width ranges from f3 b ¼ 0ð Þ to 2f3 b ¼ 1ð Þ
% file: c8ce3.m
% Computation of degradation for raised cosine signaling
% through a channel modeled as Butterworth
%
clf
T ¼ 1
beta ¼ 1;
f3 ¼ 0.4/T;
for np ¼ 1:4;

beta ¼ 0.001:.01:1;
Lb ¼ length(beta);
for k ¼ 1:Lb

beta0 ¼ beta(k);
f1 ¼ (1-beta0)/(2*T);
f2 ¼ (1þbeta0)/(2*T);
fmax ¼ 1/T;
f ¼ 0:.001:fmax;
I1 ¼ find(f>¼0 & f<f1);
I2 ¼ find(f>¼f1 & f<f2);
I3 ¼ find(f>¼f2 & f<¼fmax);
Prc ¼ zeros(size(f));
Prc(I1) ¼ T;
Prc(I2) ¼ (T/2)*(1þcos((pi*T/beta0)*(f(I2)-(1-beta0)/(2*T))));
Prc(I3) ¼ 0;
integrand ¼ Prc.*sqrt(1þ(f./f3).b(2*np));
F(k) ¼ (2*trapz(f, integrand)).b2;

end
FdB ¼ 10*log10(F);
subplot(2,2,np),plot(beta,FdB),xlabel(‘beta’),ylabel(‘Degr.inE_T/N_0,
dB’), ...
legend([‘H_C(f): no. poles: ’, num2str(np)]), axis([0 1 0 7])
if np ¼¼ 1

title([‘f_3/R ¼ ’, num2str(f3*T)])
end

end

&

n 8.7 MULTIPATH INTERFERENCE

The channel models that we have assumed so far have been rather idealistic in that the only

signal perturbation considered was additive Gaussian noise. Although realistic for many

situations, additive Gaussian noise channel models do not accurately represent many trans-

mission phenomena. Other important sources of degradation in many digital data systems are

bandlimiting of the signal by the channel, as examined in the previous section; non-Gaussian

noise, such as impulse noise due to lightning discharges or switches; RFI due to other

transmitters; and multiple transmission paths, termed multipath, due to stratifications in the

transmission medium or objects that reflect or scatter the propagating signal.

In this section we characterize the effects of multipath transmission because it is a fairly

common transmission perturbation and its effects on digital data transmission can, in the

simplest form, be analyzed in a straightforward fashion.
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Initially, we consider a two-ray multipath model as illustrated in Figure 8.25. In addition

to the multiple transmission, the channel perturbs the signal with white Gaussian noise

with double-sided power spectral density 1
2
N0. Thus the received signal plus noise is given

by

y tð Þ ¼ sd tð Þþbsd t� tmð Þþ n tð Þ ð8:169Þ

where sd tð Þ is the received direct-path signal, b is the relative attenuation of the multipath

component, and tm is its delay. For simplicity, consider the effects of this channel on binary

BPSK. The direct-path signal can be represented as

s d tð Þ ¼ Ad tð Þ cos vctð Þ ð8:170Þ

where d(t), the data stream, is a continuous sequence of plus or minus 1-valued rectangular

pulses, each of which is T in duration. Because of themultipath component, wemust consider a

sequence of bits at the receiver input.Wewill analyze the effect of themultipath component and

noise on a correlation receiver as shown in Figure 8.26, which, we recall, detects the data in the

presence ofGaussian noise alonewithminimum probability of error.Writing the noise in terms

of quadrature components nc tð Þ and ns tð Þ, we find that the input to the integrator, ignoring

double frequency terms, is

x tð Þ ¼ Lp 2y tð Þ cos vctð Þ½ �
¼ Ad tð ÞþbAd t� tmð Þ cos vctmð Þþ nc tð Þ ð8:171Þ

where Lp½�� stands for the lowpass part of the bracketed quantity.

The second term in (8.171) represents interference due to the multipath. It is useful to

consider two special cases:

sd (t – m)τβ ReceiverTrans.

sd (t)

Figure 8.25

Channel model for multipath transmission.

t = T

v(t)x(t) V Threshold
= 0

Decision
T

0∫
2 cos ctω

y(t) = sd(t)
+
+ n(t)

sd (t – m)τβ ×

Figure 8.26

Correlation receiver for BPSK with signal plus multipath at its input.
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1. tm=T ffi 0; so that d t� tmð Þ ffi d tð Þ. For this case, it is usually assumed that v0tm is a

uniformly distributed random variable in (�p, p) and that there are many other multipath

components of random amplitudes and phases. In the limit as the number of components

becomes large, the sum process, composed of inphase and quadrature components, has

Gaussian amplitudes. Thus, the envelope of the received signal is Rayleigh or Ricean (see

Section 6.3.3), depending on whether there is a steady signal component present. The

Rayleigh case will be analyzed in the next section.

2. 0 < tm=T � 1 so that successive bits of d(t) and d t� tmð Þ overlap; in other words, there is
ISI. For this case, we will let d ¼ b cosvctm be a parameter in the analysis.

We now analyze the receiver performance for case 2, for which the effect of ISI is

nonnegligible. To simplify notation, let

d ¼ b cos ðvctmÞ ð8:172Þ
so that (8.171) becomes

x tð Þ ¼ Ad tð ÞþAdd t� tmð Þþ nc tð Þ ð8:173Þ
If tm=T � 1, only adjacent bits of Ad tð Þ and Add t� tmð Þ will overlap. Thus we can compute

the signal component of the integrator output in Figure 8.26 by considering the four com-

binations shown in Figure 8.27. Assuming 1s and 0s are equally probable, the four combina-

tions shown in Figure 8.27will occur with equal probabilities of 1
4
. Thus the average probability

of error is

PE ¼ 1

4
P E j þþð ÞþP E j �þð ÞþP E j þ�ð ÞþP E j ��ð Þ½ � ð8:174Þ

where P E j þþð Þ is the probability of error given two 1�s were sent, and so on. The noise

component of the integrator output, namely

N ¼
ðT
0

2n tð Þ cos vctð Þ dt ð8:175Þ

–T T0

Ad(t)

t
T0

t
T + mτ

A d(t – m)τδ

A(1 + )δ

(a)

Signal components Sum (0 < t < T )

–T

T0
t

T0
t

mτ

mτ

A(1 + )δ

A(1 – )δ

(b)

)d()c(

Signal components Sum (0 < t < T )

–T T
0 t

T
0 tT + mτ

–A(1 + )δ
–T

T

0
t

T
0

t

mτ

mτ

–A(1 + )δ

–A(1 – )δ

Figure 8.27

The various possible cases for ISI in multipath transmission.
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is Gaussian with zero mean and variance

s2
n ¼ E 4

ðT
0

ðT
0

n tð Þn sð Þ cos vctð Þ cos vcsð Þdt ds
� �

¼ 4

ðT
0

ðT
0

N0

2
d t�sð Þ cos vctð Þ cos vcsð Þds dt

¼ 2N0

ðT
0

cos2 vctð Þdt

¼ N0T vcT an integer multiple of 2pð Þ

ð8:176Þ

Because of the symmetry of the noise pdf and the symmetry of the signals shown in Figure 8.27,

it follows that

P Ej þþð Þ ¼ P Ej ��ð Þ and P Ej �þð Þ ¼ P Ej þ�ð Þ ð8:177Þ
so that only two probabilities need be computed instead of four. From Figure 8.27, it follows

that the signal component at the integrator output, given a 1, 1 was transmitted, is

Vþþ ¼ AT 1þ dð Þ ð8:178Þ
and if a �1, 1 was transmitted, it is

V�þ ¼ AT 1þ dð Þ� 2Adtm

¼ AT

�
1þ dð Þ� 2dtm

T

�
ð8:179Þ

The conditional error probability P E j þþð Þ is therefore

P E j þþð Þ ¼ Pr½AT 1þ dð ÞþN� < 0 ¼
ð �AT 1þ dð Þ

�¥

e� u2=2N0Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pN0T
p du

¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E

N0

1þ dð Þ
s24 35 ð8:180Þ

ð8:180Þ
where E ¼ 1

2
A2T is the energy of the direct signal component. Similarly,P Ej �þð Þ is given by

P Ej �þð Þ ¼ Pr

�
AT

�
1þ dð Þ� 2dtm

T

�
þN < 0

�

¼
ð �AT 1þ dð Þ� 2dtm=T

�¥

e� u2=2N0Tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pN0T
p du

¼ Q

ffiffiffiffiffiffi
2E

N0

s �
1þ dð Þ� 2dtm

T

�8<:
9=;

ð8:181Þ
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Substituting these results into (8.174) and using the symmetry properties for the other

conditional probabilities, we have for the average probability of error

PE ¼ 1

2
Q

ffiffiffiffiffiffiffi
2z0

p
1þ dð Þ

h i
þ 1

2
Q

ffiffiffiffiffiffiffi
2z0

p �
1þ dð Þ� 2dtm

T

�� �
ð8:182Þ

where z0/E=N0 ¼ A2T=2N0 as before.

A plot of PE versus z0 for various values of d and tm=T , as shown in Figure 8.28, gives an
indication of the effect of multipath on signal transmission. A question arises as towhich curve

in Figure 8.28 should be used as a basis of comparison. The one for d ¼ tm=T ¼ 0 corresponds

to the error probability for BPSK signaling in a nonfading channel. However, note that

zm ¼ E 1þ dð Þ2
N0

¼ z0 1þ dð Þ2 ð8:183Þ

is the SNR that results if the total effective received signal energy, including that of the indirect

component, is used. Indeed, from (8.182) it follows that this is the curve for tm=T ¼ 0 for a

given value of d. Thus, if we use this curve for PE as a basis of comparison for PE with tm=T
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Figure 8.28

PE versus z for various conditions of fading and ISI due to multipath.
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nonzero for each d, we will be able to obtain the increase in PE due to ISI alone. However, it

is more useful for system design purposes to have degradation in SNR instead. That is,

we want the increase in SNR (or signal energy) necessary to maintain a given PE in the

presence of multipath relative to a channel with tm ¼ 0. Figure 8.29 shows typical results for

PE ¼ 10�4.
Note that the degradation is actually negative for d < 0; that is, the performancewith ISI is

better than for no ISI, provided the indirect received signal fades out of phasewith respect to the

direct component. This seemingly contradictory result is explained by consulting Figure 8.27,

which shows that the direct and indirect received signal components being out of phase, as

implied by d < 0, results in additional signal energy being received for cases (b) and (d) with

tm=T > 0 over what would be received if tm=T ¼ 0. On the other hand, the received signal

energy for cases (a) and (c) is independent of tm=T :
Two interesting conclusions may be drawn from Figure 8.29. First, note that when d < 0,

the effect of ISI is negligible, since variation of tm=T has no significant effect on the

degradation. The degradation is due primarily to the decrease in signal amplitude owing to

the destructive interference because of the phase difference of the direct and indirect signal

components. Second, when d > 0, the degradation shows a strong dependence on tm=T ,
indicating that ISI is the primary source of the degradation.

The adverse effects of ISI due tomultipath can be combated by using an equalization filter

that precedes detection of the received data.10 To illustrate the basic idea of such afilter,we take

the Fourier transform of (8.169) with n tð Þ ¼ 0 to obtain the frequency-response function of the

channel, HC fð Þ:

HC fð Þ ¼ = y tð Þ½ �
= sd tð Þ½ � ð8:184Þ

Figure 8.29

Degradation versus d for correlation detection of

BPSK in specular multipath for PE ¼ 10�4:
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δ

10Equalization can be used to improve performance whenever intersymbol interference is a problem, for example, due

to filtering as pointed out in Chapter 4.
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If b and tm are known, the correlation receiver of Figure 8.26 can be preceded by a filter,

referred to as an equalizer, with the frequency-response function

Heq tð Þ ¼ 1

HC fð Þ ¼
1

1þbe� j2ptmf
ð8:185Þ

to fully compensate for the signal distortion introduced by the multipath. Since b and tm
will not be known exactly, or may even changewith time, provisionmust bemade for adjusting

the parameters of the equalization filter. Noise, although important, is neglected for simplicity.

n 8.8 FLAT FADING CHANNELS

Returning to 8:169ð Þ, we assume that there are several delayed multipath components

with random amplitudes and phases.11 Applying the central-limit theorem, it follows that

the inphase and quadrature components of the received signal are Gaussian, the sum total of

which we refer to as the diffuse component. In some cases, there may be one dominant

component due to a direct line of sight from transmitter to receiver, which we refer to as the

specular component. Applying the results of Section 6.5.3, it follows that the envelope of the

received signal obeys a Ricean probability density function, given by

fR rð Þ ¼ r

s2
exp � r2þA2ð Þ

2s2

� �
I0

rA

s2

� �
; r 	 0 ð8:186Þ

where A is the amplitude of the specular component, s2 is the variance of each quadrature

diffuse component, and I0 uð Þ is the modified Bessel function of the first kind and order zero.

Note that if A ¼ 0, the Ricean pdf reduces to a Rayleigh pdf. We consider this special case

because the general Ricean case is more difficult.

Implicit in this channel model as just discussed is that the envelope of the received signal

varies slowly compared with the bit interval. This is known as a slowly fading channel. If the

envelope (and phase) of the received signal envelope and/or phase varies nonnegligibly over

the bit interval, the channel is said to be fast fading. This is a more difficult case to analyze than

the slowly fading case andwill not be considered here.A commonmodel for the envelope of the

received signal in the slowly fading case is a Rayleigh random variable, which is also

the simplest case to analyze. Somewhat more general, but more difficult to analyze, is to

model the envelope of the received signal as a Ricean random variable.

We illustrate a BPSK signal received from a Rayleigh slowly fading channel as follows.

Let the demodulated signal be written in the simplified form

x tð Þ ¼ Rd tð Þþ nc tð Þ ð8:187Þ
where R is a Rayleigh random variable with pdf given by 8:186ð Þ with A ¼ 0. If R were a

constant, we know that the probability of error is given by 8:74ð Þ withm ¼ 0. In other words,

given R, we have for the probability of error

PE Rð Þ ¼ Qð
ffiffiffiffiffiffi
2Z
p
Þ ð8:188Þ

11For a prize-winning review of all aspects of fading channels, including statistical models, code design, and

equalization, see the following paper: E. Biglieri, J. Proakis, and S. Shamai, Fading channels: Information-theoretic

and communications aspects, IEEE Transactions on Information Theory, 44: 2619–2692, October 1998.
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where upper case Z is used because it is considered to be a random variable. In order to find the

probability of error averaged over the envelope R, we a average 8:188ð Þwith respect to the pdf
of R, which is assumed to be Rayleigh in this case. However, R is not explicitly present in

8:188ð Þ because it is buried in Z:

Z ¼ R2T

2N0

ð8:189Þ

Now ifR is Rayleigh distributed, it can be shown by transformation of randomvariables thatR2,

and therefore Z, is exponentially distributed. Thus, the average of 8:188ð Þ is12

PE ¼
ð¥
0

Q
ffiffiffiffiffi
2z
p� � 1

Z
e� z=Zdz ð8:190Þ

where Z is the average SNR. This integration can be carried out by parts with

u ¼ Q

 ffiffiffiffiffi

2z
p � ¼ ð¥ffiffiffiffi

2z
p

exp � t2=2ð Þffiffiffiffiffiffi
2p
p dt and dv ¼ exp �z=Z
 �

Z
dz ð8:191Þ

Differentiation of the first expression and integration of the second expression gives

du ¼ � exp �zð Þffiffiffiffiffiffi
2p
p dzffiffiffiffiffi

2z
p and v ¼ �exp

� �z
Z

�
ð8:192Þ

Putting this into the integration by parts formula,

ð
udv ¼ uv �

ð
vdu, gives

PE ¼ �Q
ffiffiffiffiffi
2z
p� �

exp

� �z
Z

�
j¥0 �

ð¥
0

exp �zð Þ exp �z=Z
 �ffiffiffiffiffiffiffiffi
4pz
p dz

¼ 1

2
� 1

2
ffiffiffiffi
p
p

ð¥
0

exp �z 1þ 1=Z

 � �ffiffiffi
z
p dz

ð8:193Þ

In the last integral, let w ¼ ffiffiffi
z
p

and dw ¼ dz=2
ffiffiffi
z
p

, which gives

PE ¼ 1

2
� 1ffiffiffiffi

p
p

ð¥
0

exp �w2 1þ 1

Z

��
dw

��
ð8:194Þ

We know that ð¥
0

exp �w2=2s2
w


 �ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

w

p dw ¼ 1

2
ð8:195Þ

12Note that there is somewhat of a disconnect here from reality—the Rayleigh model for the envelope corresponds to a

uniformly distributed random phase in (0, 2p) (a new phase and envelope random variable is assumed drawn each bit

interval). Yet, a BPSK demodulator requires a coherent phase reference. One way to establish this coherent phase

reference might be via a pilot signal sent along with the data-modulated signal. Experiment and simulation has shown

that it is very difficult to establish a coherent phase reference directly from the Rayleigh fading signal itself, for

example, by a Costas PLL.
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because it is the integral over half of a Gaussian density function. Identifying s2
w ¼

1=2 1þ 1=Z

 �

in 8:194ð Þ and using the integral 8:195ð Þ gives, finally, that

PE ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffi
Z

1þ Z

vuut0@ 1A; BPSK ð8:196Þ

which is a well-known result.13 A similar analysis for binary, coherent FSK results in the

expression

PE ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffi
Z

2þ Z

vuut0@ 1A; coherent FSK ð8:197Þ

Other modulation techniques that can be considered in a similar fashion, and are more

easily integrated than BPSK or coherent FSK are DPSK and noncoherent FSK. For these

modulation schemes, the average error probability expressions are

PE ¼
ð¥
0

1

2
e�z

1

Z
e�z=Z dz ¼ 1

2 1þ Z

 � ; DPSK ð8:198Þ

and

PE ¼
ð¥
0

1

2
e�z=2

1

Z
e�z=Z dz ¼ 1

2þ Z
; noncoherent FSK ð8:199Þ

respectively. The derivations are left to the problems. These results are plotted in Figure 8.30

and compared with the corresponding results for nonfading channels. Note that the penalty

imposed by the fading is severe.

What can be done to combat the adverse effects of fading? We note that the degradation

in performance due to fading results from the received signal envelope being much smaller

on some bits than it would be for a nonfading channel, as reflected by the random envelope R.

If the transmitted signal power is split between two or more subchannels that fade

independently of each other, the degradation will most likely not be severe in all subchannels

for a given binary digit. If the outputs of these subchannels are recombined in the proper

fashion, it seems reasonable that better performance can be obtained than if a single

transmission path is used. The use of such multiple transmission paths to combat fading

is referred to as diversity transmission. There are various ways to obtain the independent

transmission paths; chief ones are by transmitting over spatially different paths (space

diversity), at different times (time diversity, often implemented by coding), with different

carrier frequencies (frequency diversity), or with different polarizations of the propagating

wave (polarization diversity).

In addition, the recombining may be accomplished in various fashions. First, it can take

place either in the RF path of the receiver (predetection combining) or following the detector

before making hard decisions (postdetection combining). The combining can be accomplished

simplybyadding thevarious subchannel outputs (equal-gain combining),weighting thevarious

subchannel components proportionally to their respective SNR (maximal-ratio combining),

13See Proakis (2007), Chapter 14.
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or selecting the largest magnitude subchannel component and basing the decision only on it

(selection combining).

In some cases, in particular, if the combining technique is nonlinear, such as in the case of

selection combining, an optimum number of subpaths exist that give the maximum improve-

ment. The number of subpaths L employed is referred to as the order of diversity.

That an optimum value of L exists in some cases may be reasoned as follows. Increasing L

provides additional diversity and decreases the probability that most of the subchannel outputs

are badly faded. On the other hand, as L increases with total signal energy held fixed, the

average SNR per subchannel decreases, thereby resulting in a larger probability of error per

subchannel. Clearly, therefore, a compromise between these two situations must be made. The

problem of fading is again reexamined in Chapter 10 (Section 10.3), and the optimum selection

of L is considered in Problem 10.27.

Finally, the reader is referred to Simon and Alouini (2005) for a generalized approach to

performance analysis in fading channels.

Figure 8.30

Error probabilities for various modulation

schemes in flat fading Rayleigh channels.

(a) Coherent and noncoherent FSK. (b)

BPSK and DPSK.
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COMPUTER EXAMPLE 8.4

A MATLAB program for computing the bit error probability of BPSK, coherent BFSK, DPSK, and

noncoherent BFSK in nonfading and fading environments and providing a plot for comparison of

nonfading and fading performance is given below.

% file: c8ce4.m
% Bit error probabilities for binary BPSK, CFSK, DPSK, NFSK in
Rayleigh fading

% compared with same in nonfading
%
clf
mod_type ¼ input(‘Enter mod. type: 1 ¼ BPSK; 2 ¼ DPSK; 3 ¼ CFSK;

4 ¼ NFSK:’);
z_dB ¼ 0:.3:30;
z ¼ 10.b(z_dB/10);
if mod_type ¼¼ 1

P_E_nf ¼ qfn(sqrt(2*z));
P_E_f ¼ 0.5*(1-sqrt(z./(1þz)));

elseif mod_type ¼¼ 2
P_E_nf ¼ 0.5*exp(-z);
P_E_f ¼ 0.5./(1þz);

elseif mod_type ¼¼ 3
P_E_nf ¼ qfn(sqrt(z));
P_E_f ¼ 0.5*(1-sqrt(z./(2þz)));

elseif mod_type ¼¼ 4
P_E_nf ¼ 0.5*exp(-z/2);
P_E_f ¼ 1./(2þz);

end
semilogy(z_dB,P_E_nf,‘-’),axis([0 30 10b(-6) 1]),xlabel (‘E_b/
N_0, dB’),ylabel(‘P_E’),...

hold on
grid
semilogy(z_dB,P_E_f,‘–’)
if mod_type ¼¼ 1

title(‘BPSK’)
elseif mod_type ¼¼ 2

title(‘DPSK’)
elseif mod_type ¼¼ 3

title(‘Coherent BFSK’)
elseif mod_type ¼¼ 4

title(‘Noncoherent BFSK’)
end
legend (‘No fading’, ‘Rayleigh Fading’,1)
%
% This function computes the Gaussian Q-function.
%
function Q¼qfn(x)
Q ¼ 0.5*erfc(x/sqrt(2));

The plot is the same as the noncoherent FSK curve of Figure 8.30.

&

n 8.9 EQUALIZATION

As explained in Section 8.7, an equalization filter can be used to combat channel-induced

distortion caused by perturbations such as multipath propagation or bandlimiting due to filters.

According to 8:185ð Þ, a simple approach to the idea of equalization leads to the concept of an
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inverse filter. As in Chapter 4, we specialize our considerations of an equalization filter to a

particular form—a transversal or tapped-delay-line filter the block diagram of which is

repeated in Figure 8.31.

We can take two approaches to determining the tap weights a�N ; . . . ;a0; . . .aN in

Figure 8.31 for given channel conditions. One is zero-forcing, and the other isminimization of

mean-square error. We briefly review the first method, including a consideration of noise

effects, and then consider the second.

8.9.1 Equalization by Zero Forcing

In Chapter 4 it was shown how the pulse response of the channel output, pc tð Þ, could be forced
to have amaximumvalue of 1 at the desired sampling timewithN samples of 0 on either side of

the maximum by properly choosing the tap weights of a 2Nþ 1ð Þ-tap transversal filter. For a

desired equalizer output at the sampling times of

peq mTð Þ ¼
XN

n¼�N

anpc m� nð ÞT½ �

¼ 1; m ¼ 0

0; m� 0;
m ¼ 0;�1;�2; ...;� N

� ð8:200Þ

the solution was to find the middle column of the inverse channel response matrix ½Pc�:
½Peq� ¼ ½Pc�½A� ð8:201Þ

where the various matrices are defined as

Peq

 � ¼

0
0
..
.

0
1
0
0
..
.

0

26666666666664

37777777777775

N zeros

N zeros

ð8:202Þ

Figure 8.31

Transversal filter implementa-

tion for equalization of inter-

symbol interference.

)
)

Delay,Delay,

Gain, Gain, Gain, Gain,

Output,

Input,

a–N + 1 a0 aNa–n

x(t) = pc(t) + n(t)

y(t)

Delay,
Δ Δ Δ

+
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½A� ¼
a�N

a�N þ 1

..

.

aN

26664
37775 ð8:203Þ

and

½Pc� ¼
pc 0ð Þ pc � Tð Þ . . .
pc Tð Þ pc 0ð Þ . . .

..

.

pc 2NTð Þ . . .

pc � 2NTð Þ
pc � 2Nþ 1ð ÞT

..

.

pc 0ð Þ

26664
37775 ð8:204Þ

That is the equalizer coefficient matrix is given by

½A�opt ¼ ½Pc� �1½Peq� ¼ middle column of ½Pc��1 ð8:205Þ
The equalizer response for delays less than �NT or greater than NT are not necessarily zero.

Since the zero-forcing equalization procedure only takes into account the received pulse

sample values while ignoring the noise, it is not surprising that its noise performance may be

poor in some channels. In fact, the noise spectrum is enhanced considerably at certain

frequencies by a zero-forcing equalizer as a plot of its frequency response reveals:

Heq fð Þ ¼
XN

n¼�N

an exp � j2pnf Tð Þ ð8:206Þ

To assess the effects of noise, consider the input–output relation for the transversal filter with a

signal pulse plus Gaussian noise of power spectral density Gn fð Þ ¼ ðN0=2ÞP f=2Bð Þ at its
input, which can be written as

y mTð Þ ¼
XN
l¼�N

al pc½ m� lð ÞT � þ n½ m� lð ÞT�f g

¼
XN
l¼�N

alpc½ m� lð ÞT � þ
XN
l¼�N

aln½ m� lð ÞT�
¼ peq mTð ÞþNm; m ¼ . . . ; �2; �1; 0; 1; 2; . . .

ð8:207Þ

The random variables Nmf g are zero-mean, Gaussian, and have variance

s2
N ¼ E N2

k

� �
¼ E

XN
j¼�N

ajn ½ k� jð ÞT �
XN
l¼�N

aln½ k� lð ÞT �
( )

¼ E
XN

j¼�N

XN
l¼�N

ajaln ½ k� jð ÞT � n ½ k� lð ÞT �
( )

¼
XN

j¼�N

XN
l¼�N

ajalE n ½ k� jð ÞT � n ½ k� lð ÞT �f g

¼
XN
j¼�N

XN
l¼�N

ajalRn ½ j� lð ÞT� ð8:208Þ

ð8:208Þ

(8.208)
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where

Rn tð Þ ¼ =�1½Gn fð Þ� ¼ N0B sinc 2Btð Þ ð8:209Þ
If it is assumed that 2BT ¼ 1 (consistent with the sampling theorem), then

Rn j� lð ÞT½ � ¼ N0B sinc j� lð Þ ¼ N0

2T
sinc j� lð Þ ¼

N0

2T
; j ¼ l

0 j� l

8<:
9=; ð8:210Þ

and 8:208ð Þ becomes

s2
N ¼

N0

2T

XN
j¼�N

a2
j ð8:211Þ

For a sufficiently long equalizer, the signal component of the output, assuming binary

transmission, can be taken as �1 equally likely. The probability of error is then

PE ¼ 1

2
Pr½ �1þNm > 0� þ 1

2
Pr½1þNm < 0�

¼ Pr½Nm > 1� ¼ Pr½Nm < �1� by symmetry of the noise pdfð Þ

¼
ð¥
1

exp �h2= 2s2
N


 �
 �ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

N

p dh ¼ Q

�
1

sN

�

¼ Q
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N0

2T

X
j
a2
j

s
0BBBB@

1CCCCA ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 12 � T

N0

P
ja

2
j

vuut0@ 1A ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1P
ja

2
j

2Eb

N0

s0@ 1A
ð8:212Þ

From (8.212) it is seen that performance is degraded in proportion to
PN

j¼�N a2
j which is a

factor that directly enhances the output noise.

EXAMPLE 8.10

Consider the following pulse samples at a channel output:

pc nð Þf g ¼ �0:01 0:05 0:004 �0:1 0:2 �0:5 1:0 0:3 �0:4 0:04 �0:02 0:01 0:001f g
Obtain the five-tap zero-forcing equalizer coefficients and plot the magnitude of its frequency response.

By what factor is the SNR worsened due to noise enhancement?

S o l u t i o n

The matrix ½Pc�, from (8.204), is

½Pc� ¼

1 �0:5 0:2 �0:1 0:004
0:3 1 �0:5 0:2 �0:1
�0:4 0:3 1 �0:5 0:2
0:04 �0:4 0:3 1 �0:5
�0:02 0:04 �0:4 0:3 1

266664
377775 ð8:213Þ
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The equalizer coefficients are the middle column of ½Pc� �1, which is

½Pc��1 ¼

0:889 0:435 0:050 0:016 0:038
�0:081 0:843 0:433 0:035 0:016
0:308 0:067 0:862 0:433 0:050
�0:077 0:261 0:067 0:843 0:435
0:167 �0:077 0:308 �0:081 0:890

266664
377775 ð8:214Þ

Therefore, the coefficient vector is

½A�opt ¼ ½Pc��1½Peq� ¼

0:050
0:433
0:862
0:067
0:308

266664
377775 ð8:215Þ

Plots of the input and output sequences are given in Figure 8.32(a) and (b), respectively, and a plot of

the equalizer frequency response magnitude is shown in Figure 8.32(c). There is considerable enhance-

ment of the output noise spectrum at low frequencies as is evident from the frequency response.

Depending on the received pulse shape, the noise enhancement may be at higher frequencies in other

cases. The noise enhancement, or degradation, factor in this example isX4
j¼�4

a2
j ¼ 1:0324 ¼ 0:14 dB ð8:216Þ

which is not severe in this case.
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Figure 8.32

(a) Input and (b) output sample sequences for a five-tap zero-forcing equalizer. (c) Equalizer frequency

response.
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8.9.2 Equalization by Minimum Mean-Squared Error

Suppose that the desired output from the transversal filter equalizer of Figure 8.31 is d(t). A

minimum mean-squared error (MMSE) criterion then seeks the tap weights that minimize the

mean-squared error between the desired output from the equalizer and its actual output. Since

this output includes noise, we denote it by z(t) to distinguish it from the pulse response of the

equalizer. The MMSE criterion is therefore expressed as

e ¼ E ½z tð Þ� d tð Þ�2
h i

¼ minimum ð8:217Þ

where if y(t) is the equalizer input including noise, the equalizer output is

z tð Þ ¼
XN

n¼�N

any t� nDð Þ ð8:218Þ

Since � is a concave (bowl shaped) function of the tap weights, a set of sufficient conditions for
minimizing the tap weights is

q�
qam

¼ 0 ¼ 2E ½z tð Þ� d tð Þ� qz tð Þ
qam

� �
; m ¼ 0;�1; . . . ;�N ð8:219Þ

Substituting (8.218) in (8.219) and carrying out the differentiation, we obtain the

conditions

E
h
½z tð Þ� d tð Þ�y t�mDð Þ

i
¼ 0; m ¼ 0;�1;�2; . . . ;�N ð8:220Þ

or

Ryz mDð Þ ¼ Ryd mDð Þ ¼ 0; m ¼ 0;�1;�2; . . . ;�N ð8:221Þ
where

Ryz tð Þ ¼ E y tð Þz tþ tð Þf g ð8:222Þ
and

Ryd tð Þ ¼ E y tð Þd tþ tð Þf g ð8:223Þ
are the cross-correlations of the received signal with the equalizer output and with the data,

respectively.

Using the expression (8.218) for z(t) in (8.221), these conditions can be expressed as the

matrix equation14

½Ryy�½A�opt ¼ ½Ryd � ð8:224Þ
where

½Ryy� ¼

Ryy 0ð Þ Ryy Dð Þ . . . Ryy 2NDð Þ
Ryy �Dð Þ Ryy 0ð Þ . . . Ryy½2 N �1ð ÞD�

..

. ..
.

Ryy � 2NDð Þ . . . Ryy 0ð Þ

26664
37775 ð8:225Þ

14These are known as the Wiener–Hopf equations. See Haykin (1996).
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and

½Ryd � ¼

Ryd �NDð Þ
Ryd ½ � N�1ð ÞD�

..

.

Ryd NDð Þ

26664
37775 ð8:226Þ

and [A] is defined by (8.203). Note that these conditions for the optimum tap weights using the

MMSE criterion are similar to the conditions for the zero-forcing weights, except correlation-

function samples are used instead of pulse-response samples.

The solution to (8.224) is

½A�opt ¼ ½Ryy��1½Ryd � ð8:227Þ
which requires knowledge of the correlation matrices. The mean-squared error is

e ¼ E
XN

n¼�N

any t� nDð Þ� d tð Þ
" #224 35

¼ E d2 tð Þ� 2d tð Þ
XN

n¼�N

any t� nDð Þþ
XN

m¼�N

XN
n¼�N

amany t�mDð Þy t� nDð Þ
( )

¼ E d2 tð Þ� �� 2
XN

n¼�N

anE d tð Þy t� nDð Þf gþ
XN

m¼�N

XN
n¼�N

amanE y t�mDð Þy t� nDð Þf g

¼ s2
d � 2

XN
n¼�N

anRyd nDð Þþ
XN

m¼�N

XN
n¼�N

amanRyy½ m� nð ÞD�

¼ s2
d � 2½A�T½Ryd � þ ½A�T½Ryy�½A� ð8:228Þ

where the superscript T denotes the matrix transpose and s2
d ¼ E d2 tð Þ� �

. For the optimum

weights (8.227), this becomes

emin ¼ s2
d � 2 ½Ryy��1½Ryd �

n oT

½Ryd � þ ½Ryy��1½Ryd �
n oT

½Ryy� ½Ryy��1½Ryd �
n o

¼ s2
d � 2 ½Ryd �T½Ryy� �1

n o
½Ryd � þ ½Ryd �T½Ryy��1½Ryy� ½Ryy��1½Ryd �

n o
¼ s2

d � 2½Ryd �T½A�optþ ½Ryd �T½A�opt
¼ s2

d � ½Ryd �T½A�opt ð8:229Þ
ð8:229Þ

where the matrix relation ABð ÞT ¼ BTAT has been used along with the fact that the

autocorrelation matrix is symmetric.

The question remains as to the choice for the time delay D between adjacent taps. If the

channel distortion is due to multiple transmission paths (multipath) with the delay of a strong

component equal to a fraction of a bit period, then it may be advantageous to set D equal to that

expected fraction of a bit period (called a fractionally spaced equalizer).15 On the other hand, if

the shortest multipath delay is several bit periods then it would make sense to set D ¼ T .

15See J. R. Treichler, I. Fijalkow, and C. R. Johnson, Jr., Fractionally spaced equalizers. IEEE Signal Processing

Magazine, 65–81, May 1996.
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EXAMPLE 8.11

Consider a channel consisting of a direct path and a single indirect path plus additive Gaussian noise.

Thus the channel output is

y tð Þ ¼ Ad tð ÞþbAd t� tmð Þþ n tð Þ ð8:230Þ
where it is assumed that carrier demodulation has taken place so d tð Þ ¼ �1 in T-second bit periods is

the data with assumed autocorrelation function Rdd tð Þ ¼ L t=Tð Þ (i.e., a random coin-toss sequence).

The strength of the multipath component relative to the direct component is b and its relative delay is tm.
The noise n(t) is assumed to be bandlimited with power spectral density Sn fð Þ ¼ ðN0=2ÞP f=2Bð Þ
W/Hz so that its autocorrelation function is Rnn tð Þ ¼ N0Bsinc 2Btð Þ where it is assumed that 2BT ¼ 1.

Find the coefficients of a MMSE three-tap equalizer with tap spacing D ¼ T assuming that tm ¼ T .

S o l u t i o n

The autocorrelation function of y(t) is

Ryy tð Þ ¼ Efy tð Þy tþ tð Þg
¼ Ef½Ad tð ÞþbAd t� tmð Þþ n tð Þ�½Ad tþ tð ÞþbAd tþ t� tmð Þþ n tþ tð Þ�g
¼ 1þb2

 �

A2Rdd tð ÞþRnn tð ÞþbA2½Rdd t� Tð ÞþRdd tþ Tð Þ�
ð8:231Þ

In a similar fashion, we find

Ryd tð Þ ¼ E y tð Þd tþ tð Þf g
¼ ARdd tð ÞþbARdd tþ Tð Þ ð8:232Þ

Using (8.225) with N ¼ 3, D ¼ T , and 2BT ¼ 1 we find

½Ryy� ¼
1þb2

 �

A2þN0B bA2 0

bA2 1þb2

 �

A2þN0B bA2

0 bA2 1þb2

 �

A2þN0B

24 35 ð8:233Þ

and

½Ryd � ¼
Ryd � Tð Þ
Ryd 0ð Þ
Ryd Tð Þ

24 35¼ bA
A

0

24 35 ð8:234Þ

The condition (8.224) for the optimum weights becomes

1þb2

 �

A2þN0B bA2 0

bA2 1þb2

 �

A2þN0B bA2

0 bA2 1þb2

 �

A2þN0B

24 35 a�1
a0

a1

24 35 ¼ bA
A

0

24 35 ð8:235Þ

We may make these equations dimensionless by factoring out N0B (recall that 2BT ¼ 1 by assumption)

and defining new weights ci ¼ Aai, which gives

1þb2

 � 2Eb

N0

þ 1 2b
Eb

N0

0

2b
Eb

N0

1þb2

 � 2Eb

N0

þ 1 2b
Eb

N0

0 0 1þb2

 � 2Eb

N0

þ 1

2666666664

3777777775

c�1

c0

c1

2666666664

3777777775
¼

2b
Eb

N0

2
Eb

N0

0

2666666664

3777777775
ð8:236Þ
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where Eb=N0
�¼ A2T=N0. For numerical values, we assume that Eb=N0 ¼ 10 and b ¼ 0:5 which gives

26 10 0
10 26 10
0 10 26

" #
c�1
c0
c1

" #
¼

10
20
0

" #
ð8:237Þ

or, finding the inverse of the modified Ryy matrix using MATLAB, we get

c�1
c0
c1

" #
¼

0:0465 � 0:0210 0:0081
� 0:0210 0:0546 � 0:0210
0:0081 � 0:0210 0:0465

" #
10

20

0

24 35 ð8:238Þ

giving finally that
c�1
c0
c1

" #
¼

0:045
0:882
� 0:339

24 35 ð8:239Þ
&

8.9.3 Tap Weight Adjustment

Two questions remain with regard to setting the tapweights. The first is what should be used for

the desired response d(t)? In the case of digital signaling, one has two choices.

1. A known data sequence can be sent periodically and used for tap weight adjustment.

2. The detected data can be used if the modem performance is moderately good, since an error

probability of only 10� 2, for example, still implies that d(t) is correct for 99 out of 100 bits.

Algorithms using the detected data as d(t), the desired output, are called decision directed.

Often, the equalizer tap weights will be initially adjusted using a known sequence, and after

settling into nearly optimum operation, the adjustment algorithm will be switched over to a

decision directed mode.

The second question is what procedure should be followed if the sample values of the pulse

needed in the zero-forcing criterion or the samples of the correlation function required for the

MMSE criterion are not available. Useful strategies to follow in such cases fall under the

heading of adaptive equalization.

To see how one might implement such a procedure, we note that the mean-squared error

(8.228) is a quadratic function of the tap weights with minimum value given by (8.229) for the

optimumweights.Thus, themethodof steepest descentmaybeapplied. In this procedure, initial

values for the weights, ½A� 0ð Þ, are chosen, and subsequent values are calculated according to16

½A� kþ 1ð Þ ¼ ½A� kð Þ þ 1

2
m �re kð Þ
h i

; k ¼ 0; 1; 2; . . . ð8:240Þ
where the superscript k denotes the kth calculation time andre is the gradient, or ‘‘slope,’’ of
the error surface. The idea is that startingwith an initial guess of theweight vector, then the next

closest guess is in the direction of the negative gradient. Clearly, the parameterm=2 is important

in this stepwise approach to the minimum of e, for one of two adverse things can happen:

1. A very small choice for m means very slow convergence to the minimum of e.

2. Too large of a choice for m can mean overshoot of the minimum for e with the result being
damped oscillation about the minimum or even divergence from it.17

16See Haykin (1996), Section 8.2, for a full development.
17To guarantee convergence, the adjustment parameter m should obey the relation 0 < m < 2=lmax; where lmax

is the largest eigenvalue of the matrix ½Ryy� according to Haykin (1996).
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Note that use of the steepest descent algorithm does not remove two disadvantages of the

optimumweight computation: (1) It is dependent on knowing the correlationmatrices ½Ryd � and
½Ryy�; (2) It is computationally intensive in that matrix multiplications are still necessary

(although no matrix inversions), for the gradient of e can be shown to be

re ¼ r s2
d � 2 A½ �T Ryd

 �þ A½ �T Ryy

 �
A½ �� �

¼ � 2 Ryd

 �þ 2 Ryy

 �
A½ � ð8:241Þ

which must be recalculated for each new estimate of the weights. Substituting (8.241) into

(8.240) gives

½A� kþ 1ð Þ ¼ ½A� kð Þ þm ½Ryd � � ½Ryy�½A� kð Þ
h i

; k ¼ 0; 1; 2; . . . ð8:242Þ

An alternative approach, known as the least-mean-square (LMS) algorithm, that avoids

both of these disadvantages, replaces the matrices Ryd

 �
and Ryy

 �
with instantaneous

data based estimates. An initial guess for am is corrected from step k to step k þ 1 according

to the recursive relationship

a kþ 1ð Þ
m ¼ a kð Þ

m �my k�mð ÞD½ �e kDð Þ; m ¼ 0; �1; . . . ; �N ð8:243Þ
where the error e kDð Þ ¼ y kDð Þ� d kDð Þ.

There are many more topics that could be covered on equalization, including decision

feedback, maximum-likelihood sequence, and Kalman equalizers to name only a few.18

Summary
1. Binary baseband data transmission in AWGN with equally likely signals

having constant amplitudes of �A and of duration T results in an average

error probability of

PE ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s !

where N0 is the single-sided power spectral density of the noise. The

hypothesized receiver was the integrate-and-dump receiver, which turns

out to be the optimum receiver in terms of minimizing the probability of

error.

2. An important parameter in binary data transmission is z ¼ Eb=N0, the

energy per bit divided by the noise power spectral density (single sided).

For binary baseband signaling, it can be expressed in the following

equivalent forms:

z ¼ Eb

N0

¼ A2T

N0

¼ A2

N0 1=Tð Þ ¼
A2

N0Bp

18See Proakis (2007), Chapter 11.
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where Bp is the ‘‘pulse’’ bandwidth, or roughly the bandwidth required to

pass the baseband pulses. The latter expression then allows the interpreta-

tion that z is the signal power divided by the noise power in a pulse, or bit-

rate, bandwidth.

3. For binary data transmission with arbitrary (finite energy) signal shapes,

s1 tð Þ and s2 tð Þ, the error probability for equally probable signals was found
to be

PE ¼ Q
ffiffiffi
z
p
 �

where

z¼ 1

2N0

ð¥
�¥
jS1 fð Þ� S2 fð Þj2df

¼ 1

2N0

ð¥
�¥
js1 tð Þ� s2 tð Þj2dt

in which S1 fð Þ and S2 fð Þ are the Fourier transforms of s1 tð Þ and s2 tð Þ,
respectively. This expression resulted from minimizing the average proba-

bility of error, assuming a linear-filter threshold-comparison type of

receiver. The receiver involves the concept of a matched filter; such a filter

is matched to a specific signal pulse and maximizes peak signal divided by

rms noise ratio at its output. In amatched-filter receiver for binary signaling,

two matched filters are used in parallel, each matched to one of the two

signals, and their outputs are compared at the end of each signaling interval.

The matched filters also can be realized as correlators.

4. The expression for the error probability of amatched-filter receiver can also

be written as

PE ¼ Q ½z 1�R12ð Þ�1=2
n o

where z ¼ E=N0, with E being the average signal energy given by

E ¼ 1
2
E1þE2ð Þ. R12 is a parameter that is a measure of the similarity of

the two signals; it is given by

R12 ¼ 2

E1þE2

ð¥
�¥

s1 tð Þs2 tð Þ dt

If R12¼�1, the signaling is termed antipodal, while if R12 ¼ 0, the

signaling is termed orthogonal.

5. Examples of coherent (that is, the signal arrival time and carrier phase are

known at the receiver) signaling techniques at a carrier frequency vc rad/s

are the following:

PSK :

sk tð Þ ¼ A sin vct� �1ð Þk cos�1m
h i

; nt0 � t � nt0þ T ; k ¼ 1; 2; . . .

cos�1m is called themodulation indexð Þ; n ¼ integer
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ASK:

s1 tð Þ ¼ 0; nt0 � t � nt0þ T

s2 tð Þ ¼ A cos vctð Þ; nt0 � t � nt0þ T

FSK:

s1 tð Þ ¼ A cos vctð Þ; nt0 � t � nt0þ T

s2 tð Þ ¼ A cos vcþDvð Þt; nt0 � t � nt0þ T

If Dv ¼ 2pl/T for FSK, where l is an integer, it is an example of an

orthogonal signaling technique. If m ¼ 0 for PSK, it is an example of an

antipodal signaling scheme. Avalue ofEb=N0 of approximately 10.53 dB is

required to achieve an error probability of 10� 6 for PSK withm ¼ 0; 3 dB

more than this is required to achieve the same error probability for ASK

and FSK.

6. Examples of signaling schemes not requiring coherent carrier references at

the receiver are DPSK and noncoherent FSK. Using ideal minimum-error-

probability receivers, DPSK yields the error probability

PE ¼ 1

2
exp

�Eb

N0

� �
while noncoherent FSK gives the error probability

PE ¼ 1

2
exp

�Eb

2N0

� �
Noncoherent ASK is another possible signaling scheme with about the

same error probability performance as noncoherent FSK.

7. In general, if a sequence of signals is transmitted through a bandlimited

channel, adjacent signal pulses are smeared into each other by the transient

response of the channel. Such interference between signals is termed

intersymbol interference (ISI). By appropriately choosing transmitting

and receiving filters, it is possible to signal through bandlimited channels

while eliminating ISI. This signaling technique was examined by using

Nyquist�s pulse-shaping criterion and Schwarz�s inequality. A useful

family of pulse shapes for this type of signaling are those having raised

cosine spectra.

8. One form of channel distortion is multipath interference. The effect of a

simple two-ray multipath channel on binary data transmission was

examined. Half of the time the received signal pulses interfere destruc-

tively, and the rest of the time they interfere constructively. The

interference can be separated into ISI of the signaling pulses and

cancelation due to the carriers of the direct and multipath components

arriving out of phase.

9. Fading results from channel variations caused by propagation conditions.

One of these conditions is multipath if the differential delay is short

452 Chapter 8 . Principles of Data Transmission in Noise

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


compared with the bit period but encompassing of many wavelengths. A

commonly usedmodel for a fading channel is onewhere the envelope of the

received signal has a Rayleigh pdf. In this case, the signal power or energy

has an exponential pdf, and theprobability of error canbe foundbyusing the

previously obtained error probability expressions for nonfading channels

andaveragingover thesignalenergywithrespect to theassumedexponential

pdf of the energy. Figure 8.30 compares the error probability for fading and

nonfading cases for various modulation schemes. Fading results in severe

degradation of the performance of a given modulation scheme. A way to

combat fading is to use diversity.

10. Equalization can be used to remove a large part of the ISI introduced by

channel filtering. Two techniques were briefly examined: zero-forcing

and MMSE. Both can be realized by tapped delay-line filters. In the

former technique, zero ISI is forced at sampling instants separated by

multiples of a symbol period. If the tapped delay line is of length

2Nþ 1ð Þ, then N zeros can be forced on either side of the desired pulse.

In a MMSE equalizer, the tap weights are sought that give MMSE

between the desired output from the equalizer and the actual output. The

resulting weights for either case can be precalculated and preset, or

adaptive circuitry can be implemented to automatically adjust the

weights. The latter technique can make use of a training sequence

periodically sent through the channel, or it can make use of the received

data itself in order to carry out the minimizing adjustment.

Further Reading

A number of the books listed in Chapter 3 have chapters covering digital communications at roughly

the same level as this chapter. For an authorative reference on digital communications, see Proakis (2007).

Problems

Section 8.1

8.1. A baseband digital transmission system that sends

�A-valued rectangular pulses through a channel at a rate

of 10,000 bps is to achieve an error probability of 10� 6. If

the noise power spectral density isN0 ¼ 10� 7 W/Hz,what

is the required value of A? What is a rough estimate of the

bandwidth required?

8.2. Consider an antipodal baseband digital transmis-

sion system with a noise level of N0 ¼ 10� 5 W/Hz. The

signal bandwidth is defined to be that required to pass the

main lobe of the signal spectrum. Fill in the following table

with the required signal power and bandwidth to achieve

the error-probability and data rate combinations given.

8.3. Suppose N0 ¼ 10� 6 W=Hz and the baseband

data bandwidth is given by B ¼ R ¼ 1=T Hz. For the

following bandwidths, find the required signal powers,

A2, to give a bit error probability of 10� 5 along with the

allowed data rates: (a) 5 kHz, (b) 10 kHz, (c) 100 kHz,

(d) 1 MHz.

Required Signal Powers A2 and Bandwidth

R(bps) PE = 10�3 PE = 10�4 PE = 10�5 PE = 10�6

1000

10,000

100,000
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8.4. A receiver for baseband digital data has a threshold

set at e instead of zero. Rederive (8.8), (8.9), and (8.11)

taking this into account. If P þAð Þ ¼ P �Að Þ ¼ 1
2
, find

Eb=N0 in decibels as a function of e for 0 � e=s � 1 to

give PE ¼ 10� 6, where s2 is the variance of N.

8.5. WithN0 ¼ 10� 6 W=Hz andA ¼ 40 mV in a base-

band data transmission system, what is the maximum data

rate (use a bandwidth of 0 to first null of the pulse

spectrum) that will allow a PE of 10� 4 or less? 10�5?
10� 6?

8.6. In a practical implementation of a baseband data

transmission system, the sampler at the output of the

integrate-and-dump detector requires 1 ms to sample the

output. How much additional Eb=N0, in decibels, is re-

quired to achieve a given PE for a practical system over an

ideal system for the following data rates? (a) 10 kbps,

(b) 100 kbps, (c) 200 kbps.

8.7. The received signal in a digital baseband system is

either þA or �A, equally likely, for T-s contiguous

intervals. However, the timing is off at the receiver

so that the integration starts DT s late (positive) or early

(negative). Assume that the timing error is less than one

signaling interval. By assuming a zero threshold and

considering two successive intervals [i.e., þA; þAð Þ;
þA; �Að Þ; �A; þAð Þ; and �A; �Að Þ], obtain an

expression for the probability of error as a function of

DT . Show that it is

PE ¼ 1

2
Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
þ 1

2
Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r
1� 2jDTj

T

� �� �
Plot curves of PE versus Eb=N0 in decibels for

jDT j=T ¼ 0; 0:1; 0:2 and 0:3 (four curves). Estimate the

degradation in Eb=N0 in decibels at PE ¼ 10� 4 imposed

by timing misalignment.

8.8. Redo the derivation of Section 8.1 for the case

where the possible transmitted signals are either 0 or A for

T seconds. Let the threshold be set at AT=2. Express your
result in terms of signal energy averaged over both signal

possibilities, which are assumed equally probable; i.e.,

Eave ¼ 1
2
0ð Þþ 1

2
A2T ¼ A2T=2.

Section 8.2

8.9. As an approximation to the integrate-and-dump

detector in Figure 8.3(a), we replace the integrator with a

lowpass RC filter with frequency-response function

H fð Þ ¼ 1

1þ j f=f3ð Þ
where f3 is the 3-dB cutoff frequency.

a. Find s02 Tð Þ=E n20 tð Þ �
, where s02 Tð Þ is the value of

the output signal at t ¼ T due to þA being applied at t ¼ 0

and n0 tð Þ is the output noise. (Assume that the filter initial

conditions are zero.)

b. Find the relationship between T and f3 such that

the SNR found in part (a) is maximized. (Numerical

solution required.)

8.10. Assume that the probabilities of sending the signals

s1 tð Þ and s2 tð Þ are not equal, but are given by p and

q ¼ 1� p, respectively. Derive an expression for PE that

replaces (8.32) that takes this into account. Show that the

error probability isminimized by choosing the threshold to

be

kopt ¼ s2
0

s01 Tð Þ� s02 Tð Þ ln
p

q

� �
s01 Tð Þþ s02 Tð Þ

2

8.11. The general definition of a matched filter is a filter

that maximizes peak signal-to-rms noise at some pre-

chosen instant of time t0.

a. Assuming white noise at the input, use Schwarz�s
inequality to show that the frequency-response function of

the matched filter is

Hm fð Þ ¼ S* fð Þ exp � j2pft0ð Þ
where S fð Þ ¼ = s tð Þ½ � and s tð Þ is the signal to which the

filter is matched.

b. Show that the impulse response for the matched-

filter frequency-response function found in part (a) is

hm tð Þ ¼ s t0� tð Þ
c. If s tð Þ is not zero for t > t0, the matched-filter

impulse response is nonzero for t < t0; that is, the filter is

noncausal and cannot be physically realized because it

responds before the signal is applied. If we want a realiz-

able filter, we use

hmr tð Þ ¼ s t0� tð Þ; t 	 0

0; t < 0

(
Find the realizable matched-filter impulse response cor-

responding to the signal

s tð Þ ¼ AP t� T=2ð Þ=T½ �
and t0 equal to 0, T=2, T and 2T.

d. Find the peak output signal for all cases in part (c).

Plot these versus t0. What do you conclude about the

relation between t0 and the causality condition?

8.12. Referring to Problem8.11 for thegeneral definition

of a matched filter, find the following in relation to the two

signals shown in Figure 8.33.
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a. The causal matched-filter impulse responses.

Sketch them.

b. Relate the constantsA andB so that both cases give

the same peak-signal-to-rms noise ratio at the matched-

filter output.

c. Sketch the output of the matched filters as a

function of time with signal only at the input.

d. Comment on the ability of the two matched filters

for these signals to provide an accurate measurement of

time delay.What do you estimate the maximum error to be

in each case?

e. If peak transmitted power is a consideration,

which waveform (and matched filter) is preferable?

8.13.

a. Find the optimum (matched-) filter impulse re-

sponse h0 tð Þ, as given by (8.45) for s1 tð Þ and s2 tð Þ, shown
in Figure 8.34.

b. Find z2 as given by (8.56). Plot z2 versus t0.

c. What is the best choice for t0 such that the error

probability is minimized?

d. What is thevalue of the threshold k as a function of

t0 to use according to (8.33)?

e. Sketch a correlator receiver structure for these

signals.

8.14. Find the peak-signal-squared-to-mean-squared-

noise ratio for the output of a matched filter for each of

the following signals in terms of A and T. Take the

noise spectral density (single sided) as N0. Sketch each

signal.

a. s1 tð Þ¼ AP t� T=2ð Þ=T½ �.
b. s2 tð Þ¼ ðA=2Þ 1þ cos 2p t� T=2ð Þ=T½ �f g

P t� T=2ð Þ=T½ �.
c. s3 tð Þ¼ A cos p t� T=2ð Þ=T½ �P t� T=2ð Þ=T½ �.
d. s4 tð Þ¼ AL t� T=2ð Þ=T½ �.

The signals P tð Þ and L tð Þ are the unit-rectangular and

unit-triangular functions defined in Chapter 2.

8.15. Given these signals:

sA tð Þ ¼ AP
t�T=2ð Þ

T

� �
sB tð Þ ¼ B cos

p t�T=2ð Þ
T

� �
P

t�T=2

T

� �
sC tð Þ ¼ C

2
1þcos

2p t�T=2ð Þ
T

� �� �
P

t�T=2

T

� �
Assume that they are used in a binary digital data transmis-

sion system in the following combinations. ExpressB andC

in terms ofA so that their energies are the same. Sketch each

one and in each case, calculate R12 in (8.61) in terms of A

and T.Write down an expression forPE according to (8.60).

What is the optimum threshold in each case?

a. s1 tð Þ ¼ sA tð Þ; s2 tð Þ ¼ sB tð Þ.
b. s1 tð Þ ¼ sA tð Þ; s2 tð Þ ¼ sC tð Þ.
c. s1 tð Þ ¼ sB tð Þ; s2 tð Þ ¼ sC tð Þ.

Figure 8.34

A

tt

x(t)

y(t)

τ

B

0 0 T = 7τ

Figure 8.33
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d. s1 tð Þ ¼ sB tð Þ; s2 tð Þ ¼ � sB tð Þ.
e. s1 tð Þ ¼ sC tð Þ; s2 tð Þ ¼ � sC tð Þ.

8.16. Given the three signals

sA tð Þ ¼ AP
t�T=2

T

� �

sB tð Þ ¼ AP
2 t�T=4ð Þ

T

� �
� AP

2 t�3T=4ð Þ
T

� �

sC tð Þ ¼ AP
4 t�T=8ð Þ

T

� �
� AP

4 t�3T=8ð Þ
T

� �

þAP 4 t�5T=8ð Þ
T

� �
� AP

4 t�7T=8ð Þ
T

� �
a. Sketch each one and show that each has energy of

A2T .

b. Show that R12 ¼ 0 for each of the combinations

A; Bð Þ; B; Cð Þ; and A;Cð Þ. What is the optimum

threshold for each of these signalling combinations?

c. What is PE for each of the signaling combinations

A; Bð Þ; B; Cð Þ; and A;Cð Þ?
8.17. Consider PSK with m ¼ 1=2.

a. By how many degrees does the modulated carrier

shift in phase each time the binary data changes?

b. What percent of the total power is in the carrier,

and what percent is in the modulation component?

c. What value of z ¼ Eb=N0 is required to give

PE ¼ 10� 5?

8.18. Plot the results for PE given in Table 8.2, page 407,

versus z ¼ Eb=N0 in decibels with PE plotted on a semilog

axis. Estimate the additional Eb=N0 at PE ¼ 10� 5 in

decibels over the case for no phase error. Compare these

results with that for constant phase error, as given by

(8.81), of the same magnitude (f for constant phase error

equals sf for the Gaussian phase-error case).

8.19. Find z ¼ Eb=N0 required to give PE ¼ 10� 6 for

the following coherent digital modulation techniques: (a)

binary ASK; (b) BPSK; (c) binary FSK; (d) BPSK with

no carrier component but with a phase error of 5� in the

demodulator; (e) PSK with no phase error in demodula-

tion, but with m ¼ 1=
ffiffiffi
2
p

; (f) PSK with m ¼ 1=
ffiffiffi
2
p

and

with a phase error of 5� in the demodulator.

8.20.

a. Make a plot of degradation in decibels versus f,
the phase error in demodulation, for BPSK. Assume thatf
is constant.

b. Given that z ¼ 9:56 dB is required to give

PE ¼ 10� 5 for BPSK with no phase error in demodula-

tion, what values of z in decibels are required to give

PE ¼ 10� 5 for the following static phase errors in

demodulation?

i. f ¼ 3�

ii. f ¼ 5�

iii. f ¼ 10�

iv. f ¼ 15�

8.21. Plot the required SNR z ¼ Eb=N0, in decibels, to

give(a) PE ¼ 10� 4, (b) PE ¼ 10� 5, and (c) PE ¼ 10� 6

versus m for PSK with a carrier component for

0 � m � 1.

8.22.

a. Consider the transmission of digital data at a rate

of R ¼ 50 kbps and at an error probability of PE ¼ 10� 5.

Using the bandwidth of the main lobe as a bandwidth

measure, give an estimate of the required transmission

bandwidth and Eb=N0 in decibels required for the follow-

ing coherent modulation schemes:

i. binary ASK

ii. BPSK

iii. binary coherent FSK (take theminimum spac-

ing possible between the signal representing the

logic 1 and that representing the logic 0).

b. Consider the same question as in part (a) but with

R ¼ 500 kbps and PE ¼ 10� 4.

8.23. Derive an expression for PE for binary coherent

FSK if the frequency separation of the two transmitted

signals is chosen to give aminimum correlation coefficient

between the two signals. That is, evaluateffiffiffiffiffiffiffiffiffiffi
E1E2

p
r12 ¼

ðT
0

A2 cos vctð Þ cos vcþDvð Þtdt
as a function of Dv and find the minimum value for R12.

How much improvement in Eb=N0 in decibels over the

orthogonal-signal case is obtained?

(Hint: Assume the sum-frequency term integrates to 0.)

Section 8.3

8.24. Differentially encode the following binary se-

quences. Arbitrarily choose a 1 as the reference bit to begin

the encoding process. (Note: Spaces are used to add clarity.)

a. 101 110 011 100

b. 101 010 101 010

c. 111 111 111 111
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d. 000 000 000 000

e. 111 111 000 000

f. 110 111 101 001

g. 111 000 111 000

h. 101 110 011 100

8.25.

a. Consider the sequence to 011 101 010 111. Dif-

ferentially encode it, and assume that the differentially

encoded sequence is used to biphasemodulate a sinusoidal

carrier of arbitrary phase. Prove that the demodulator of

Figure 8.17 properly gives back the original sequence.

b. Now invert the sequence (i.e., 1s become 0s and

viceversa).What does the demodulator of Figure 8.17 give

now?

8.26.

a. In the analysis of the optimum detector for DPSK

of Section 8.3.1, show that the random variables n1; n2; n3;
and n4 have zero means and variances N0T=4.

b. Show thatw1;w2;w3; andw4 have zeromeans and

variances N0T=8.

8.27. Compare (8.110) and (8.113) to show that for large

z, nonoptimum detection and optimum detection of DPSK

differ by approximately 1.5 dB.

8.28.

a. Compute z in decibels required to givePE ¼ 10� 6

for noncoherent, binary FSK and for DPSK. For the latter,

carry out the computation for both the optimum and

suboptimum detectors.

b. Repeat part (a) for PE ¼ 10� 5.

c. Repeat part (a) for .PE ¼ 10� 4:

8.29. A channel of bandwidth 50 kHz is available. Using

null-to-null RF bandwidths, what data rates may be sup-

ported by (a) BPSK, (b) coherent FSK (tone spacing ¼
1/2T), (c) DPSK, and (d) noncoherent FSK (tone spacing

¼ 2/T).

8.30. Find the probability of error for noncoherent ASK,

with signal set

si tð Þ ¼ 0; 0� t� T ; i¼ 1

A cos 2pfctþuð Þ; 0� t� T ; i¼ 2

�
where u is a uniformly distributed random variable in

0;2p½ Þ. White Gaussian noise of two-sided power spectral

density N0=2 is added to this signal in the channel. The

receiver is a bandpass filter of bandwidth 2=THz centered

on fc, followed by an envelope detector that is input to a

sampler and threshold comparator. Assume that the signal,

when present, is passed by the filter without distortion, and

let the noise variance at the filter output be

s2
N ¼N0BT ¼ 2N0=T .

Show that the envelope detector output with signal

1 present (i.e., zero signal) is Rayleigh distributed, and that

the envelope detector outputwith signal 2 present is Ricean

distributed. Assuming that the threshold is set at A/2, find

an expression for the probability of error. You will not be

able to integrate this expression. However, by making use

of the approximation

I0 nð Þ � enffiffiffiffiffiffiffiffiffi
2pn
p ; n 1

you will be able to approximate the pdf of the sampler

output for large SNR as Gaussian and express the

probability of error in terms of a Q-function.

(Hint: Neglect the n�1=2 in the above approximation.)

Show that the probability of error for SNR large is

approximately

PE ¼ 1

2
P EjSþNð Þþ 1

2
P EjNð Þ � e�zffiffiffiffiffiffiffiffi

4pz
p þ 1

2
e�z=2;

z¼ A2

4s2
N

 1

Note that z¼ A2=4s2
N is the average signal-power (the

signal is 0 half the time) -to-noise variance ratio. Plot the

error probability versus the SNR and comparewith that for

DPSK and noncoherent FSK.

8.31. Integrate (8.119) by recasting the integrand into the

form of a Ricean pdf, and therefore use the fact that it

integrates to 1 [you will have to redefine some parameters

andmultiply anddivide by exp A2=2Nð Þ similarly to the steps

that led to (8.112)]. The result should be (8.120).

Section 8.4

8.32. Gray encoding of decimal numbers ensures that

only one bit changes when the decimal number changes by

one unit. Let b1b2b3 � � � bN represent an ordinary binary

representation of a decimal number, with b1 being themost

significant bit. Let the corresponding Gray code bits be

g1g2g3 . . . gN . Then the Gray code representation is ob-

tained by the algorithm

g1 ¼ b1

gn ¼ bn � bn�1

where � denotes modulo 2 addition (i.e., 0� 0 ¼ 0;
0� 1 ¼ 1; 1� 0 ¼ 1; and 1� 1 ¼ 0). Find the Gray code

representation for the decimal numbers 0 through 31.
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8.33. Show that (8.137) is the average energy in terms of

D for M-ary antipodal PAM.

8.34. Consider a baseband antipodal PAM system with

channel bandwidth of 10 kHz and a desired data rate of 20

kbps. (a) What is the required value forM? (b) What value

of Eb=N0 in decibels will give a bit-error probability of

10� 6? 10� 5? Find M as the nearest power of 2.

8.35. Reconsider Problem 8.34 but for a desired data rate

of 25 kbps.

Section 8.5

8.36. Recompute the entries in Table 8.5 for a bit-error

probability of 10� 5 and an RF bandwidth of 200 kHz.

Section 8.6

8.37. Assume a raised cosine pulse with b ¼ 0:2 [see

(4.37)], additive noise with power spectral density

Gn fð Þ ¼ s2
n=f3

1þ f=f3ð Þ2

and a channel filter with transfer-function-squared magni-

tude given by

jHC fð Þj2 ¼ 1

1þ f=fCð Þ2
Find and plot the optimum transmitter and receiver filter

amplitude responses for binary signaling for the following

cases:

a. f3 ¼ fC ¼ 1=2T .

b. fC ¼ 2f3 ¼ 1=T .

c. f3 ¼ 2fC ¼ 1=T .

8.38.

a. Sketch the trapezoidal spectrum P fð Þ ¼
b= b� að Þ½ � L f=bð Þ� a= b� að Þ½ � L f=að Þ; b > a > 0,

for a ¼ 1 and b ¼ 2.

b. By appropriate sketches, show that it satisfies

Nyquist�s pulse-shaping criterion.

8.39. Data are to be transmitted through a bandlimited

channel at a rate R ¼ 1=T ¼ 9600 bps. The channel filter

has frequency-response function

HC fð Þ ¼ 1

1þ j f=4800ð Þ
The noise is white with power spectral density

N0

2
¼ 10� 8 W=Hz

Assume that a received pulse with raised cosine spectrum

given by (4.37) with b ¼ 1 is desired.

a. Find the magnitudes of the transmitter and recei-

ver filter transfer functions that give zero ISI and optimum

detection.

b. Using a table or the asymptotic approximation for

the Q-function, find the value of A=s required to give

PE;min ¼ 10� 4.

c. Find ET to give this value of A=s for the

N0; Gn fð Þ; P fð Þ; and HC fð Þ given above. (Numerical

integration required.)

Section 8.7

8.40. Plot PE from (8.182) versus z0 for d ¼ 0:5 and

tm=T ¼ 0:2; 0:6; and 1:0. Develop a MATLAB program

to plot the curves.

8.41. Redraw Figure 8.29 for PE ¼ 10� 5. Write a

MATLAB program using the find function to obtain the

degradation for various values of d and tm=T .

Section 8.8

8.42. Fading margin can be defined as the incremental

Eb=N0, in decibels, required to provide a certain desired

error probability in a fading channel as could be achieved

with the same modulation technique in a nonfading chan-

nel. Assume that a bit-error probability of 10� 3 is speci-

fied. Find the fading margin required for the following

cases: (a) BPSK, (b) DPSK, (c) coherent FSK, and (d)

noncoherent FSK.

8.43. Show the details in making the substitution

s2
w ¼ 1=2 1þ 1=Z


 �
in (8.194) so that it gives (8.196)

after integration.

8.44. Carry out the integrations leading to (8.197) [use

(8.196) as a pattern], (8.198), and (8.199) given that the

SNR pdf is given by fZ zð Þ ¼ 1=Z

 �

expð�z=ZÞ; z 	 0.

Section 8.9

8.45. Given the following channel pulse-response

samples:

pc � 3Tð Þ ¼ 0:001 pc � 2Tð Þ ¼ � 0:01

pc � Tð Þ ¼ 0:1 pc 0ð Þ ¼ 1:0

pc Tð Þ ¼ 0:2 pc 2Tð Þ ¼ � 0:02

pc 3Tð Þ ¼ 0:005

a. Find the tap coefficients for a three-tap zero-

forcing equalizer.

b. Find the output sample values formT ¼ � 2T, T,

0, T, and 2T.
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c. Find the degradation in decibels due to noise

enhancement.

8.46.

a. Consider the design of an MMSE equalizer for a

multipath channel whose output is of the form

y tð Þ ¼ Ad tð Þþ bAd t� Tmð Þþ n tð Þ
where the second term is a multipath component and

the third term is noise independent of the data, d(t).

Assume d(t) is a random (coin-toss) binary sequence with

autocorrelation function Rdd tð Þ ¼ L t=Tð Þ. Let the noise

have a lowpass-RC-filtered spectrum with 3-dB cutoff

frequency f3 ¼ 1=T so that the noise power spectral den-

sity is

Snn fð Þ ¼ N0=2

1þ f=f3ð Þ2
where N0=2 is the two-sided power spectral density at the
lowpass filter input. Let the tap spacing be D ¼ Tm ¼ T .

Express the matrix ½Ryy� in terms of the SNR

Eb=N0 ¼ A2T=N0.

b. Obtain the optimum tap weights for a three-tap

MMSE equalizer and at a SNR of 10 dB and b ¼ 0:5.

c. Find an expression for the MMSE.

8.47. For the numerical auto- and cross-correlation ma-

trices of Example 8.11, find explicit expressions (write out

an equation for each weight) for the steepest-descent tap

weight adjustment algorithm (8.242). Let m ¼ 0:01. Justi-
fy this as an appropriate value using the criterion

0 < m < 2=max lið Þ, where the li are the eigenvalues of

½Ryy�.
8.48. Using the criterion 0 < m < 2=max lið Þ, where the
li are the eigenvalues of ½Ryy�, find a suitable range of

values for m for Example 8.11.

8.49. Consider (8.237)with all elements of both ½Ryy� and
½Ryd � divided by 10. (a) Do the weights remain the same?

(b) What is an acceptable range for m for an adaptive

MMSE weight adjustment algorithm (steepest descent)

using the criterion 0 < m < 2=max lið Þ, where the li are
the eigenvalues of ½Ryy�:
8.50. Rework Example 8.11 for Eb=N0 ¼ 20 and

b ¼ 0:1. That is, recompute the matrices ½Ryy� and ½Ryd �,
and find the equalizer coefficients. Comment on the dif-

ferences from Example 8.11.

Computer Exercises

8.1. Develop a computer simulation of an integrate-and-

dump detector for antipodal baseband signaling based on

(8.1). GenerateAT or�AT randomly by drawing a uniform

randomnumber in [0, 1] and comparing it with 1=2. Add to
this a Gaussian random variable of zeromean and variance

given by (8.5). Compare with a threshold of 0, and incre-

ment a counter if an error occurs. Repeat this many times,

and estimate the error probability as the ratio of the number

of errors to the total number of bits simulated. If you want

to estimate a bit-error probability of 10� 3, for example,

you will have to simulate at least 10� 1000 ¼ 10000 bits.

Repeat for several SNR so that you can rough out a bit-

error probablity curve versus Eb=N0. Compare with theory

given in Figure 8.5.

8.2. Write a computer program to evaluate the degrada-

tion imposed by bit timing error at a desired error proba-

bility as discussed in Problem 8.7.

8.3. Write a computer program to evaluate the degrada-

tion imposed by Gaussian phase jitter at a desired error

probability as discussed in connection with the data pre-

sented in Table 8.2. This will require numerical integration.

8.4. Write a computer program to evaluate various digi-

tal modulation techniques:

a. For a specified data rate and error probability, find

the required bandwidth and Eb=N0 in decibels. Corre-

sponding to the data rate and required Eb=N0, find the

required received signal power for N0 ¼ 1 W/Hz.

b. For a specified bandwidth and error probability

find the allowed data rate and required Eb=N0 in decibels.

Corresponding to the data rate and requiredEb=N0, find the

required received signal power for N0 ¼ 1 W/Hz.

8.5. Write a computer program to verify Figures 8.28

and 8.29.

8.6. Write a computer program to evaluate degradation

due to flat Rayleigh fading at a specified error probability.

Include PSK, FSK, DPSK, and noncoherent FSK.

8.7. Write a computer program to design equalizers for

specified channel conditions for (a) the zero-forcing crite-

rion and (b) the MMSE criterion.
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CHAPTER9

ADVANCED DATA
COMMUNICATIONS TOPICS

In this chapter we consider some topics on data transmission that are more advanced than the

fundamental ones considered in Chapter 8. The first topic considered is that of M-ary digital

modulation systems, whereM > 2.We will developmethods for comparing them on the basis of bit-

error probability (power efficiency). We next examine bandwidth requirements for data trans-

mission systems so that they may be compared on the basis of bandwidth efficiency. An important

consideration in any communications system is synchronization including carrier, symbol, and

word, which is considered next. Following this, modulation techniques that utilize bandwidths

much larger than required for datamodulation itself, called spread spectrum, are briefly considered.

After spread spectrum modulation, an old concept called multicarrier modulation is reviewed (a

special case of which is known as orthogonal frequency division multiplexing) and its application to

delay spread channels is discussed. Application areas include wireless networks, digital subscriber

lines, digital audio broadcasting, anddigital video broadcasting. The next topic dealt with is satellite

communications links. Finally, the basics of cellular wireless communications systems are briefly

covered. The latter two topics provide specific examples of the application of some of the digital

communications principles considered in Chapters 8 and 9.

n 9.1 M-ARY DATA COMMUNICATIONS SYSTEMS

With the binary digital communications systemswe have considered so far (with the exception

ofM-ary PAM in Chapter 8), one of only two possible signals can be transmitted during each

signaling interval. In an M-ary system, one of M possible signals may be transmitted during

each Ts-s signaling interval, whereM 	 2 (we now place a subscript s on the signaling interval

T to denote ‘‘symbol’’; we will place the subscript b on T to denote ‘‘bit’’ whenM ¼ 2). Thus

binary data transmission is a special case ofM-ary data transmission.We refer to each possible

transmitted signal of an M-ary message sequence as a symbol.

9.1.1 M-ary Schemes Based on Quadrature Multiplexing

In Section 3.6 we demonstrated that two different messages can be sent through the same

channel by means of quadrature multiplexing. In a quadrature-multiplexed system, the
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messages m1 tð Þ andm2 tð Þ are used to double-sideband modulate two carrier signals of

frequency fc Hz, which are in phase quadrature, to produce the modulated signal

xc tð Þ¼ A m1 tð Þ cos 2pfctð Þ þ m2 tð Þ sin 2pfctð Þ½ �
/ R tð Þ cos 2pfct þ ui tð Þ½ � ð9:1Þ

Demodulation at the receiver is accomplished by coherent demodulation with two reference

sinusoids in phase quadrature that are ideally phase and frequency coherent with the quadrature

carriers. This same principle can be applied to transmission of digital data and results in several

modulation schemes, three of which will be described here: (1) quadriphase-shift keying

(QPSK), (2) offset quadriphase-shift keying (OQPSK), and (3) minimum-shift keying (MSK).

In the analysis of these systems,wemake use of the fact that coherent demodulation ideally

results in the two messages m1 tð Þ andm2 tð Þ being separate at the outputs of the quadrature

mixers. Thus these quadrature-multiplexed schemes can be viewed as two separate digital

modulation schemes operating in parallel.

The block diagram of a parallel realization for a QPSK transmitter is shown in Figure 9.1,

along with typical signal waveforms. In the case of QPSK, we set m1 tð Þ ¼ d1 tð Þ
andm2 tð Þ ¼ �d2 tð Þ; where d1 and d2 are �1-valuedwaveforms that have possible transitions

each Ts s. Symbol transition instants are usually aligned for d1 tð Þ and d2 tð Þ.1 Note that we may

think of d1 tð Þ and d2 tð Þ, the symbol streams that modulate the quadrature carriers, as being

Ad2(t) sin ctω

Ad2(t) sin ctω

Ad1(t) cos ctω

Ad1(t) cos ct –ω

A sin ctω

A cos ctω

90°

∑

d1(t) = +1
–1

d2(t) = +1
–1

–

d(t) = +1
–1

Serial to
parallel

converter

d(t)

t

+1

–1
0 1 0 0 1

d2(t)

t

+1

–1
0

t

+A

–A
010

d1(t)

t

+1

–1
0 01

t

+A

–A
0

~

Figure 9.1

Modulator and typical waveforms for QPSK.

1The two data streams could be due to separate sources, not necessarily of the same data rate. At this point in the

discussion, we assume that they are at the same rate.
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obtained by grouping the bits of a binary signal d tð Þwith a bit period half the symbol period of

d1 tð Þ and d2 tð Þ two bits at a time, or d1 tð Þ and d2 tð Þ may originate from two entirely different

sources. Simple trigonometry on (9.1) results in

ui ¼ �tan�1 m2 tð Þ
m1 tð Þ
� �

¼ tan�1
d2 tð Þ
d1 tð Þ
� �

ð9:2Þ

and we see that ui takes on the four possible values �45� and �135�. Consequently, a QPSK
transmitter can be alternatively realized in a parallel fashion or in a serial fashion where

d1 tð Þ and d2 tð Þ impose phase shifts on the carrier that are integer multiples of 90�.
Because the transmitted signal for a QPSK system can be viewed as two binary PSK

signals summed as shown in Figure 9.1, it is reasonable that demodulation and detection

involve two binary receivers in parallel, one for each quadrature carrier. The block diagram of

such a system is shown in Figure 9.2. We note that a symbol in d tð Þ will be correct only if the
corresponding symbols in both d1 tð Þ and d2 tð Þ are correct. Thus the probability of correct

reception Pc for each symbol phase is given by

Pc ¼ 1�PE1
Þ 1�PE2

Þðð ð9:3Þ
where PE1

and PE2
are the probabilities of error for the quadrature channels. In writing (9.3), it

has been assumed that errors in the quadrature channels are independent. We will discuss this

assumption shortly.

Turning now to the calculation of PE1
and PE2

, we note that because of symmetry,

PE1
¼PE2

. Assuming that the input to the receiver is signal plus white Gaussian noise with

double-sided power spectral density N0=2, that is,

y tð Þ ¼ xc tð Þ þ n tð Þ
¼ Ad1 tð Þ cos 2pfctð Þ�Ad2 tð Þ sin 2pfctð Þ þ n tð Þ ð9:4Þ

wefind that the output of the upper correlator in Figure 9.2 at the end of a signaling interval Ts is

V1 ¼
ðTs
0

y tð Þ cos 2pfctð Þ dt ¼ � 1

2
ATs þ N1 ð9:5Þ

y (t) = xc(t) + n (t)

sin ctω

cos ctω

90°

Integrate
and

sample

Integrate
and

sample

Parallel to
serial

conversion

~
V1 = ± ATs + N1

1
2

V2 = ± ATs + N2
1
2

Ad (t)1
2

Figure 9.2

Demodulator for QPSK.
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where

N1 ¼
ðTs
0

n tð Þ cos 2pfctð Þ dt ð9:6Þ

Similarly, the output of the lower correlator at t ¼ Ts is

V2 ¼
ðTs
0

y tð Þ sin 2pfctð Þ dt ¼ � 1

2
ATs þ N2 ð9:7Þ

where

N2 ¼
ðTs
0

n tð Þ sin 2pfctð Þ dt ð9:8Þ

Errors at either correlator output will be independent if V1 and V2 are independent, which

requires thatN1 and N2 be independent.We can show thatN1 and N2 are uncorrelated (Problem

9.4), and since they are Gaussian (why?), they are independent.

Returning to the calculation of PE1
, we note that the problem is similar to the antipodal

baseband case. Themean ofN1 is zero, and its variance is (the by nowusual assumption ismade

that fcTs is an integer)

s2
1 ¼ E N2

1

� � ¼ E

ðTs
0

n tð Þ cos 2pfctð Þ dt
� �2
" #

¼
ðTs
0

ðTs
0

E n tð Þn að Þ½ � cos 2pfctð Þ cos 2pfcað Þ dt

¼
ðTs
0

ðTs
0

N0

2
d t�að Þ cos 2pfctð Þ cos 2pfcað Þ da dt

¼ N0

2

ðTs
0

cos2 2pfctð Þ dt

¼ N0Ts

4

ð9:9Þ

Thus, following a series of steps similar to the case of binary antipodal signaling, we find that

PE1
¼ Pr d1 ¼ þ1½ �Pr E1jd1 ¼ þ1½ � þ Pr d1 ¼�1½ �Pr E1jd1 ¼ �1½ �
¼ Pr E1jd1 ¼ þ1½ � ¼ Pr E1jd1 ¼ �1½ �

ð9:10Þ

where the latter equation follows by noting the symmetry of the pdf of V1. But

Pr Ejd1 ¼ þ1½ � ¼ Pr

�
1

2
ATs þ N1 < 0

�
¼ Pr

�
N1 < � 1

2
ATs

�

¼
ð �ATs=2

�¥

e� n2
1
=2s2

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

1

p dn1 ¼ Q

 ffiffiffiffiffiffiffiffiffiffiffi
A2Ts

N0

s ! (9.11)

ð9:11Þ
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Thus the probability of error for the upper channel in Figure 9.2 is

PE1
¼ Q

ffiffiffiffiffiffiffiffiffiffi
A2Ts

N0

s !
ð9:12Þ

with the same result for PE2
. Noting that 1

2
A2Ts is the average energy for one quadrature

channel, we see that (9.12) is identical to binary PSK. Thus, considered on a per channel basis,

QPSK performs identically to binary PSK.

However, if we consider the probability of error for a single phase of a QPSK system, we

obtain, from (9.3), the result

PE ¼ 1�Pc ¼ 1� 1�PE1
ð Þ2

D 2PE1
; PE1

� 1
ð9:13Þ

which is

PE ¼ 2Q

ffiffiffiffiffiffiffiffiffiffi
A2Ts

N0

s !
ð9:14Þ

Noting that the energy per symbol is A2Ts/Es for the quadriphase signal, we may write

(9.14) as

PE D 2Q

ffiffiffiffiffiffi
Es

N0

r� �
ð9:15Þ

A direct comparison of QPSK and BPSKon the basis of average symbol-energy-to-noise-

spectral-density ratio shows that QPSK is approximately 3 dB worse than binary PSK.

However, this is not a fair comparison since twice as many bits per signaling interval are being

transmitted with the QPSK system as compared to the BPSK system, assuming Ts is the same.

A comparison of QPSK and binary PSKon the basis of the systems transmitting equal numbers

of bits per second (two bits per QPSK phase), shows that their performances are the same, as

will be shown later. Binary PSK and QPSK are compared in Figure 9.3 on the basis of

probability of error versus SNR z ¼ Es=N0; where Es is the average energy per symbol. Note

that the curve for QPSK approaches 3
4
as the SNR approaches zero �¥ dBð Þ. This is reasonable

because the receiver will, on average, make only one correct decision for every four signaling

intervals (one of four possible phases) if the input is noise alone.

9.1.2 OQPSK Systems

Because the quadrature data streams d1 tð Þ and d2 tð Þ can switch signs simultaneously in a

QPSK system, it follows that the data-bearing phase ui of themodulated signal can occasionally

change by 180�. This can have an undesirable effect in terms of envelope deviation if the

modulated signal is filtered, which is invariably the case in a practical system. To avoid the

possibility of 180� phase switching, the switching instants of the quadrature-channel data

signals d1 tð Þ and d2 tð Þ of a quadriphase system can be offset by Ts=2 relative to each other,

where Ts is the signaling interval in either channel. The resultingmodulation scheme is referred

to as offset QPSK, which is abbreviated OQPSK; it is also sometimes called staggered QPSK.

With the offsetting or staggering of quadrature data streams by Ts=2, the maximum phase

change due to data modulation of the transmitted carrier is 90�. Theoretically, the error

probability performance of OQPSK and QPSK are identical. One limitation of an OQPSK

system is that the data streams d1 tð Þ and d2 tð Þmust have the same symbol durations, whereas

for QPSK they need not.
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9.1.3 MSK Systems

Type I and Type II MSK

In (9.1), suppose that message m1 tð Þ is of the form
m1 tð Þ ¼ d1 tð Þ cos 2pf1tð Þ ð9:16Þ

and message m2 tð Þ is given by

m2 tð Þ ¼�d2 tð Þ sin 2pf1tð Þ ð9:17Þ
where d1 tð Þ and d2 tð Þ are binary data signals taking on the value þ1 or �1 in symbol intervals

of length Ts¼ 2Tb s with switching times offset by Tb; and f1 is the frequency in hertz of the

weighting functions, cos 2pf1tð Þ and sin 2pf1tð Þ, to be specified later. As in the case of QPSK,
these data signals can be thought of as having been derived from a serial binary data stream

whose bits occur each Tb s, with even-indexed bits producing d1 tð Þ and odd-indexed bits

producing d2 tð Þ, or vice versa. These binary data streams are weighted by a cosine or sine

waveform as shown in Figure 9.4(a). If we substitute (9.16) and (9.17) into (9.1) and keep in

mind that d1 tð Þ and d2 tð Þ are either þ1 or �1, then, through the use of appropriate trigono-

metric identities, it follows that the modulated signal can be written as

xc tð Þ ¼ A cos 2pfct þ ui tð Þ½ � ð9:18Þ
where

ui tð Þ ¼ tan�1
d2 tð Þ
d1 tð Þ tan 2pf1tð Þ
� �

ð9:19Þ
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If d2 tð Þ ¼ d1 tð Þ (i.e., successive bits in the serial data stream are the same, either both 1 or

both �1), then
ui tð Þ ¼ 2pf1t ð9:20Þ

whereas, if d2 tð Þ ¼�d1 tð Þ (i.e., successive bits in the serial data stream are different), then

ui tð Þ ¼ �2pf1t ð9:21Þ
One form of MSK results if f1 ¼ 1=2Ts ¼ 1=4Tb Hz. In this case, each symbol of the data

signal d1 tð Þ is multiplied or weighted by one-half cycle of a cosine waveform, and each

symbol of the data signal d2 tð Þ is weighted by one-half cycle of a sine waveform, as shown in

Figure 9.5(a). This form of MSK, wherein the weighting functions for each symbol are

alternating half cycles of cosine or sinewaveforms, is referred to asMSK type I.Minimum-shift

keying type IImodulation results if the weighting is always a positive half-cosinusoid or half-

sinusoid, depending onwhether it is the upper or lower arm in Figure 9.4 being referred to. This

type of MSK modulation, which is illustrated in Figure 9.5(b), bears a closer relationship to

OQPSK than to MSK type I.

Using f1 ¼ 1=4Tb in (9.19) and substituting the result into (9.18) gives

xc tð Þ ¼ A cos 2p fc � 1

4Tb

� �
t þ uk

� �
ð9:22Þ

(2k + 1)Tb

(2k – 1)Tb

(    )dt∫
t = (2k + 1)Tb

d1(t)

cos ( t/2Tb)πcos (2 fct)π

Lowpass
filter

2(k + 1)Tb

2k Tb

(    )dt∫
t = 2(k + 1)Tb

d2(t)

xc(t)

sin ( t/2Tb)πsin (2 fct)π

Lowpass
filter

+1

–1

+1

–1

(b)

cos ( t/2Tb)π cos (2 fct)πSerial/
parallel

converter
d(t) = (1, 1, – 1, –1, –1, 1, 1, 1, . . .)

     (Bit duration = Tb sec)

d1(t) = (1, –1, –1, 1, . . .); symbol duration = 2Tb sec

d2(t) = (1, –1, 1, 1, . . .); symbol duration = 2T sb
(Staggered T sb  relative to d1(t))

xc(t)
sin ( t/2Tb)π sin (2 fct)π

(a)

∑

× ×

×

××

××

×

Figure 9.4

Block diagrams for parallel type I MSK modulator and demodulator. (a) Modulator. (b) Demodulator.
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(a) Inphase and quadrature waveforms for MSK type I modulation. (b) MSK type II modulation.
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whereuk ¼ 0 or uk ¼ kp mod 2pð Þ, according towhetherd2=d1 equals þ1 or �1, respectively.
From this form of anMSK-modulated signal, we can see that MSK can be viewed as frequency

modulation in which the transmitted tones2 are either one-quarter data rate 1=4Tbð Þ above or
one-quarter data rate below the carrier fc in instantaneous frequency (since the carrier is not

actually transmitted, fc is sometimes referred to as the apparent carrier). Note that the

frequency spacing between the tones is Df ¼ 1=2Tb, which is the minimum frequency spacing

required for the tones to be coherently orthogonal.

In neither MSK type I nor MSK type II modulation formats is there a one-to-one

correspondence between the data bits of the serial bit stream and the instantaneous frequency

of the transmitted signal. A modulation format in which this is the case, referred to as fast

frequency-shift keying (FFSK), can be obtained by differentially encoding the serial bit stream

before modulation by means of an MSK type I modulator.

Viewing (9.22) as a phase-modulated signal, we note that the argument of the cosine can be

separated into two phase terms, one due solely to the carrier frequency, or 2pfct, and the other
due to the modulation, or �p t=2Tbð Þ þ uk. The latter term is referred to as the excess phase

and is conveniently portrayed by a phase tree diagram as shown in Figure 9.6(a). If the phase is

shown modulo 2p, a phase trellis diagram results as shown in Figure 9.6(b). Note that the

excess phase changes by exactly p=2 rad each Tb s and that it is a continuous function of time.

This results in even better envelope deviation characteristics than OQPSKwhen filtered. In the

excess-phase trellis diagram of Fig. 9.6(a), straight lines with negative slope correspond to

alternating 1s and �1s (alternating logic 1s and 0s) in the serial-data sequence, and straight

lineswith positive slope correspond to all 1s or all �1s (all logic 1s or logic 0s) in the serial-data
sequence.

The detector for MSK signals can be realized in parallel form in analogous fashion to

QPSK or OQPSK, as shown in Figure 9.2, except that multiplication by cos pt=2Tbð Þ is
required in the upper arm andmultiplication by sin p=2Tbð Þis required in the lower arm in order

to realize the optimum correlation detector for the two data signals d1 tð Þ and d2 tð Þ. As in the

case of QPSK (or OQPSK), it can be shown that the noise components at the integrator outputs

of the upper and lower arms are uncorrelated. Except for a different scaling factor (which

affects the signal and noise components the same), the error probability analysis for MSK is

identical to that for QPSK, and consequently, the error probability performance of MSK is

identical to that of QPSK or OQPSK.

Serial MSK

In the discussion of MSK so far, we have viewed the modulation and detection processes as

being accomplished by parallel structures like those shown in Figures 9.1 and 9.2 for QPSK. It

turns out that MSK can be processed in a serial fashion as well. The serial modulator structure

consists of a BPSKmodulator with a conversion filter at its output with the frequency-response

function

G fð Þ ¼ sinc f � fcð �Tb� 0:25½ g þ sinc f þ fcð ÞTb þ 0:25½ �f Þe�j2pft0 ð9:23Þ

2One should not infer from this that the spectrum of the transmitted signal consists of impulses at frequencies

fc� 1=4Tb.
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where t0 is an arbitrary filter delay and fc is the apparent carrier frequency of the MSK signal.

Note that the peak of the frequency response of the conversion filter is offset in frequency one-

quarter data rate above the apparent carrier. The BPSK signal, on the other hand, is offset

one-quarter data rate below the desired apparent carrier of the MSK signal. Its power

spectrum can be written as

SBPSK fð Þ ¼ A2Tb

2
sinc2 f � fcð ÞTb þ 0:25½ � þ sinc2 f þ fcð ÞTb� 0:25½ �� � ð9:24Þ

The product of jG fð Þj2 and SBPSK fð Þ gives the power spectrum of the conversion filter output,

which, after some simplification, can be shown to be

SMSK fð Þ ¼ 32A2Tb

p4

 
cos2 2pTb f � fcð Þ½ �
1� 16T2

b f � fcð Þ2�2 þ cos2 2pTb f þ fcð Þ½ �
1� 16T2

b f þ fcð Þ2�2
!

ð9:25Þ
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(a) Tree diagram showing the phase transitions for the data sequence 111011110101 as the
heavy line.

(b) Trellis diagram showing the same sequence as in (a) modulo 2 .π

Figure 9.6

(a) Minimum-shift keying phase tree and (b) phase trellis diagrams.
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This is the double-sided power spectrum of an MSK-modulated signal, which demonstrates in

the frequency domain the validity of the serial approach to the generation of MSK. Thus the

parallel modulator structure can be replaced by a serial modulator structure, which means that

the difficult task of producing amplitude-matched phase-quadrature signals in the parallel

structure can be replaced by the perhaps easier task of generation ofBPSK signals and synthesis

of a conversion filter.

At the receiver, for serial demodulation, essentially the reverse of the signal-processing

procedure at the transmitter is carried out. The received signal is passed through a filter whose

frequency response is proportional to the square root of the MSK spectrum. Although the

details will not be given here,3 it can be shown that each symbol is sampled independently of

those preceding or following it at the proper sampling instants.

Gaussian MSK

Even thoughMSK has lower out-of-band power characteristics than QPSK andOQPSK, it still

is not good enough for some applications such as cellular radio. Better sidelobe suppression of

the modulated signal spectrum can be obtained for MSK by making the phase transitions

smoother than the straight-line characteristics shown in Figure 9.6. One means of doing this is

to pass the NRZ-represented data through a lowpass filter with Gaussian frequency response

given by4

H fð Þ ¼ exp � ln 2

2

f

B

� �2
" #

ð9:26Þ

where B is the 3-dB two-sided bandwidth of the filter. The filter output is then used as the input

to a frequency modulator with deviation constant fd chosen to produce a phase transition in

going from a data bit �1 to data bit 1 ofp=2 rad. An implementation problem is how to build a

filter with frequency response given by (9.26), which corresponds to a filter with Gaussian

impulse response (Table G.5)

h tð Þ ¼
ffiffiffiffiffiffiffiffi
2p

ln 2

r
B exp �2p

2B2

ln 2
t2

� �
ð9:27Þ

This is often done by digitally implementing a filter with Gaussian impulse response over a

finite range of t. The step response of this filter is the integral of the impulse response,

ys tð Þ ¼
ðt
�¥

h tð Þ dt ð9:28Þ

3See F. Amoroso and J. A. Kivett, Simplified MSK signaling technique. IEEE Transactions on Communications,

COM-25: 433–441, April 1977.
4K. Morota and K. Haride, GMSK modulation for digital mobile radio telephony. IEEE Transactions on Com-

munications, COM-29: 1044–1050, July, 1981.
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so its response to a rectangular pulse, II t=Tbð Þ, is

g tð Þ ¼
ðt þ Tb=2

�¥
h tð Þdt�

ðt�Tb=2

�¥
h tð Þ dt

¼ 1

2
erf

ffiffiffiffiffiffiffiffi
2

ln 2

r
pBTb

t

Tb
þ 1

2

� �" #
� erf

ffiffiffiffiffiffiffiffi
2

ln 2

r
pBTb

t

Tb
� 1

2

� �" #( )

¼ 1

2
erf

ffiffiffiffiffiffiffiffi
2

ln 2

r
pBTb

t

Tb
þ 1

2

� �" #
þ erf �

ffiffiffiffiffiffiffiffi
2

ln 2

r
pBTb

t

Tb
� 1

2

� �" #( ) ð9:29Þ

where Tb is the bit period and erf uð Þ ¼ 2=
ffiffiffiffi
p
p Ð u

0
exp �t2ð Þ dt is the error function. The

modulated waveform is produced by passing the entire NRZ-represented data stream through

the Gaussian filter and then by using the filter output to frequency modulate the carrier. The

excess phase of the resulting FM-modulated carrier is

f tð Þ ¼ 2pfd
X¥
n¼�¥

an

ðt
�¥

g l� nTbð Þ dl ð9:30Þ

where an is the sign of the nth bit and fd is the deviation constant chosen to give phase

transitions ofp=2 rad. This modulation scheme, calledGaussianMSK (GMSK), can be shown

to have a spectrumwith very low sidelobes as determined by the product BTb at the expense of

more intersymbol interference the smaller BTb. Gaussian MSK is used as the modulation

scheme in the second-generation European cellular radio standard. Some results taken from

Murota and Hirade giving 90% power containment bandwidth (i.e., the bandwidth within

which 90% of the modulated signal power is contained) and degradation in Eb=N0 from ideal

MSK versus BTb are given in Table 9.1.

9.1.4 M-ary Data Transmission in Terms of Signal Space

Aconvenient framework for discussingM-ary data transmission systems is that of signal space.

The approach used here in terms of justifying the receiver structure is heuristic. It is placed on a

firm theoretical basis in Chapter 10, where optimum signal detection principles are discussed.5

Table 9.1 Ninety Percent Power Containment Bandwidths and Degradations
in Eb/N0 for GMSK

BTb 90% containment BW (bit rates)* Degradation from MSK (dB)

0.2 0.52 1.3

0.25 0.57 0.7

0.5 0.69 0.3

¥ (MSK) 0.78 0



Double these for RF bandwidths.

5Kotel�nikov (1947) was first to introduce the use of signal space into communication system characterization,

followed later byWozencraft and Jacobs (1965). For an analysis of severalM-ary digital modulation schemes using

signal space, see E. Arthurs and H. Dym, On the optimum detection of digital signals in the presence of white

Gaussian noise—Ageometric interpretation and a study of three basic data transmission systems. IRETransactions

on Communications Systems, CS-10: 336–372, December 1962.
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We consider coherent communication systems with signal sets of the form

siðtÞ ¼
XK
j¼1

aij�jðtÞ; 0 � t � Ts; K � M; i ¼ 1; 2; . . . ;M ð9:31Þ

where the functions fj tð Þ are orthonormal over the symbol interval. That is,ðTs
0

fm tð Þfn tð Þ dt ¼ 1; m ¼ n

0; m Þ n

�
ð9:32Þ

Based on (9.31), we can visualize the possible transmitted signals as points in a space with

coordinate axes f1 tð Þ; f2 tð Þ;f3 tð Þ; . . . ;fK tð Þ, much as illustrated in Figure 2.5.

At the output of the channel it is assumed that signal plus AWGN is received; that is,

y tð Þ ¼ si tð Þ þ n tð Þ; t0 � t � t0 þ Ts; i ¼ 1; 2; . . . ;M ð9:33Þ
where t0 is an arbitrary starting time equal to an integer times Ts. As shown in Figure 9.7, the

receiver consists of a bank of K correlators, one for each orthonormal function. The output of

the jth correlator is

Zj ¼ aij þ Nj; j ¼ 1; 2; . . . ; K; i ¼ 1; 2; . . . ; M ð9:34Þ
where the noise component Nj is given by (t0 ¼ 0 for notational ease)

Nj ¼
ðTs
0

n tð Þfj tð Þ dt ð9:35Þ

Since n tð Þ is Gaussian and white, the random variables N1;N2; . . . ;NK can be shown to be

independent, zero-mean, Gaussian random variables with variances N0=2, which is the

K(t)φ

Ts
( )dt∫

t = Ts

Zk

y(t)

2(t)φ

Ts
( )dt∫

t = Ts

Z2

1(t)φ

Ts
( )dt∫

t = Ts

Z1

0

0

0

Note: y(t) = si(t) + n(t) where n(t) is white Gaussian noise.

Figure 9.7

Computation of signal space

coordinates.
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two-sided spectral density of the noise. That this is the case may be shown by considering the

development

E NjNK

 � ¼ E

ðTs
0

n tð Þfj tð Þ dt
ðTs
0

n lð Þfk lð Þ dl
� �

¼ E

ðTs
0

ðTs
0

n tð Þn lð Þfj tð Þfk lð Þ dldt
� �

¼
ðTs
0

ðTs
0

E n tð Þn lð Þ½ �fj tð Þfk lð Þ dldt

¼
ðTs
0

ðTs
0

N0

2
d t� lð Þfj tð Þfk lð Þ dldt

¼ N0

2

ðTs
0

fj tð Þfk tð Þ dt

¼ N0=2; j ¼ k

0; j Þ k

� �

ð9:36Þ

where the last line follows by virtue of the orthogonality of the fj tð Þs. Since n tð Þ is zero mean,

so are N1;N2; . . . ;NK . The development leading to (9.36) shows that they are uncorrelated.

Since they are Gaussian (each is a linear operation on a Gaussian random process), they are

independent.

It can be shown that this signal space representation preserves all the information required

to make a minimum error probability decision regarding which signal was transmitted.

The next operation in the receiver is a decision box that performs the following function:

Compare the received signal plus noise coordinates with the stored signal coordinates, aij .

Choose as the transmitted signal that one closest to the received signal plus noise point with

distance measured in the Euclidean sense; i.e., choose the transmitted signal as the one whose

aij minimize

d2
i ¼

XK
j¼1

Zj � aij
 �2 ð9:37Þ

This decision procedurewill be shown in Chapter 10 to result in theminimum error probability

possible with respect to the signal set.

EXAMPLE 9.1

Consider BPSK. Only one orthonormal function is required in this case, and it is

f tð Þ ¼
ffiffiffiffiffi
2

Tb

r
cos 2pfctð Þ; 0 � t � Tb ð9:38Þ

The possible transmitted signals can be represented as

s1 tð Þ ¼ ffiffiffiffiffi
Eb

p
f tð Þ and s2 tð Þ ¼ � ffiffiffiffiffi

Eb

p
f tð Þ ð9:39Þ

where Eb is the bit energy; so a11 ¼
ffiffiffiffiffi
Eb

p
and a21 ¼�

ffiffiffiffiffi
Eb

p
. For example, for a correlator output of

Z1 ¼�1 and with Eb ¼ 4, Equation (9.37) becomes
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d2
1 ¼ ð�1�

ffiffiffi
4
p
Þ2 ¼ 9

d2
2 ¼ ð�1 þ

ffiffiffi
4
p
Þ2 ¼ 1

so the decision would be made that s2 tð Þ was sent.
&

9.1.5 QPSK in Terms of Signal Space

From Figures 9.7 and 9.2 we see that the receiver for QPSK consists of a bank of two

correlators. Thus the received data can be represented in a two-dimensional signal space as

shown in Figure 9.8. The transmitted signals can be represented in terms of two orthonormal

functions f1 tð Þ and f2 tð Þ as

xc tð Þ ¼ si tð Þ ¼
ffiffiffiffiffi
Es

p
d1 tð Þf1 tð Þ� d2 tð Þf2 tð Þ½ � ¼ ffiffiffiffiffi

Es

p �f1 tð Þ � f2 tð Þ½ � ð9:40Þ
where

f1 tð Þ ¼
ffiffiffiffiffi
2

Ts

r
cos 2pfctð Þ; 0 � t � Ts ð9:41Þ

f2 tð Þ ¼
ffiffiffiffiffi
2

Ts

r
sin 2pfctð Þ; 0 � t � Ts ð9:42Þ

Es is the energy contained in xc tð Þ in one symbol interval. The resulting regions for associating

a received data point with a possible signal point are also illustrated in Figure 9.8. It can be seen

that the coordinate axes provide the boundaries of the regions that determine a given signal

point to be associated with a received data point. For example, if the received datum point is in

the first quadrant (region R1), the decision is made that d1 tð Þ ¼ 1 and d2 tð Þ ¼ 1 (this will be

denoted as signal point S1 in the signal space). A simple bound on symbol-error probability can

Es

R4:
Decide S4

R3:
Decide S3

R1:
Decide S1

R2:
Decide S2

2(t)φ

1(t)φ

S1S2

S4S3

Figure 9.8

Signal space for QPSK.
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be obtained by recalling that the circular symmetry makes the conditional probability of error

independent of the signal point chosen and noting that

PE ¼ Pr Z 2 R2 or R3 or R4jS1 sent½ �
< Pr Z 2 R2 or R3jS1 sent½ � þ Pr Z 2 R3 or R4jS1 sent½ � ð9:43Þ

The two probabilities on the right-hand side of (9.43) can be shown to be equal. Thus,

PE < 2Pr Z 2 R2 or R3½ � ¼ 2Pr½
ffiffiffiffiffiffiffiffiffiffi
Es=2

p
þ N? < 0�

¼ 2Pr N? < �
ffiffiffiffiffi
Es

2

r" #
ð9:44Þ

where N?, as shown in Figure 9.9, is the noise component perpendicular to the decision

boundary between R1 and R2. It can be shown that it has zero mean and variance N0=2. Thus,

PE < 2

ð � ffiffiffiffiffiffiffi
Es=2
p

�¥

e� u2=N0ffiffiffiffiffiffiffiffiffi
pN0

p du ¼ 2

ð¥ ffiffiffiffiffiffiffi
Es=2
p

e� u2=N0ffiffiffiffiffiffiffiffiffi
pN0

p du ð9:45Þ

Making the change of variables u ¼ v=
ffiffiffiffiffiffiffiffiffiffi
N0=2

p
, we can reduce this to the form

PE < 2Q

ffiffiffiffiffiffi
Es

N0

r� �
ð9:46Þ

This is identical to (9.15), which resulted in neglecting the square of PE1
in (9.13).

9.1.6 M-ary Phase-Shift Keying

The signal set for QPSK can be generalized to an arbitrary number of phases. The modulated

signal takes the form

si tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfct þ 2p i� 1ð Þ

M

� �
; 0 � t � Ts; i ¼ 1; 2; . . . ; M ð9:47Þ

2(t)φ

1(t)φ

Signal plus
noise vector

Total noise vector

Decision region R1

N⊥

S1 = (            )Es, Es

Figure 9.9

Representation of signal plus noise in signal

space, showing N?, the noise component that

can cause the received data vector to land in R2.
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Using trigonometric identities, this can be expanded as

si tð Þ ¼
ffiffiffiffiffi
Es

p
cos

2p i � 1ð Þ
M

� � ffiffiffiffiffi
2

Ts

r
cos 2pfctð Þ� sin

2p i � 1ð Þ
M

� � ffiffiffiffiffi
2

Ts

r
sin 2pfctð Þ

� �

¼ ffiffiffiffiffi
Es

p
cos

2p i � 1ð Þ
M

� �
f1 tð Þ� sin

2p i � 1ð Þ
M

� �
f2 tð Þ

� � ð9:48Þ

where f1 tð Þ and f2 tð Þ are the orthonormal functions defined by (9.41) and (9.42).

A plot of the signal points Si; i ¼ 1; 2; . . . ;M; along with the optimum decision regions is

shown in Figure 9.10(a) forM ¼ 8. The probability of error can be overbounded by noting from

Figure 9.10(b) that the total area represented by the two half planesD1 andD2 is greater than the

total shaded area in Figure 9.10(b), and thus the probability of symbol error is overbounded by

2(t)φ

1(t)φ

S2S4

S1

2(t)φ

1(t)φ

Si

S8

S7

D1

D2
S6

S5

S3

Es
R8

R7

R6

R5

R4 R2

R3

R1

(a) (b)

2p /M

A

B

C

X0 =

R

E

Z

O DSn
Es

q y

y =p / M

(c)

Figure 9.10

(a) Signal space forM-ary PSKwithM ¼ 8. (b) Signal space forM-ary PSK showing two half-planes that

can be used to overbound PE. (c) Coordinate setup for deriving Craig’s exact integral for PE.

ð9.48Þ
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the probability that the received data point Zj lies in either half plane. Because of the circular

symmetry of the noise distribution, both probabilities are equal. Consider a single half plane

along with a single signal point, which is at a minimum distance of

d ¼ ffiffiffiffiffi
Es

p
sin

�
p

M

�
ð9:49Þ

away from the boundary of the half plane. As in Figure 9.9, consider the noise component N?,
which is perpendicular to the boundary of the half plane. It is the only noise component that can

possibly put the received datum point on the wrong side of the decision boundary; it has zero

mean and a variance N0=2. From this discussion and referring to Figure 9.10(b), it follows that

the probability of error is overbounded by

PE < Pr Z 2 D1 orD2½ � ¼ 2Pr Z 2 D1½ �
¼ 2Pr d þ N? < 0½ � ¼ 2Pr N? < � d½ �

¼ 2

ð � d

�¥

e� u2=N0ffiffiffiffiffiffiffiffiffi
pN0

p du ¼ 2Q

ffiffiffiffiffiffiffi
2Es

N0

r
sin

p

M

� � ð9:50Þ

FromFigure 9.10(b) it can be seen that the bound becomes tighter asM gets larger (because the

overlap of D1 andD2 becomes smaller with increasing M).

An exact expression for the symbol-error probability is6

PE ¼ 1

p

ðp�p=M

0

exp � Es=N0ð Þ sin2 p=Mð Þ
sin2f

df

� �
ð9:51Þ

The derivation, with the aid of Figure 9.10(c), is given below and follows that given in Craig�s
paper. Figure 9.10(c) shows the nth decision region for signal point Sn (recall that due to the

circular symmetry, we can rotate this decision region to any convenient location). The

probability of symbol error is the probability that the noise causes the received data point

to land outside the wedge-shaped region bounded by the lines AO and CO, for example, the

point Z, and is seen to be twice the probability that Z lies above the boundary AOD. It can be

expressed as

PE ¼ 2

ðp�p=M

0

ð¥
R

fRQ r; uð Þ dr du ð9:52Þ

whereR is the distance from the signal point to the boundary and fRQ r; uð Þ is the joint pdf of the
noise components expressed in polar coordinates, which is

fRQ r; uð Þ ¼ r

pN0

exp � r2

N0

� �
; r 	 0; �p < f � p ð9:53Þ

6J. W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal

constellations. IEEE Milcom �91 Proceedings, 571–575, October 1991.

9.1 M-Ary Data Communications Systems 477

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


(recall that the variance of the noise components is N0=2). Substituting (9.53) into (9.52) and

carrying out the integration over r, we get

PE ¼ 1

p

ðp�p=M

0

exp � R2

N0

� �
du ð9:54Þ

Now by the law of sines from Figure 9.10(c), we have

R

sin c
¼ X0

sin p� u�cð Þ ¼
X0

sin u þ cð Þ
or

R ¼ X0 sin c

sin u þ cð Þ ¼
ffiffiffiffiffi
Es

p
sin p=Mð Þ

sin u þ p=Mð Þ ð9:55Þ

Substitution of this expression for R into (9.54) gives

PE ¼ 1

p

ðp�p=M

0

exp � Es sin
2 p=Mð Þ

N0 sin
2 u þ p=Mð Þ

� �
du ð9:56Þ

which, after the substitutionf ¼ p� u þ p=Mð Þ gives (9.51). Performance curves computed

from (9.51) will be presented later after conversion from symbol- to bit-error probabilities is

discussed.

9.1.7 Quadrature-Amplitude Modulation

Anothersignalingschemethatallowsmultiplesignals tobetransmittedusingquadraturecarriers

is quadrature-amplitude modulation (QAM), and the transmitted signal is represented as

si tð Þ ¼
ffiffiffiffiffi
2

Ts

r
Ai cos 2pfctð Þ þ Bi sin 2pfctð Þ½ �; 0 � t � Ts ð9:57Þ

where Ai and Bi take on the possible values �a; �3a; . . . ; � ffiffiffiffiffi
M
p � 1

 �

a with equal proba-

bility, whereM is an integer power of 4. The parameter a can be related to the average energy of

a symbol, Es, as (see Problem 9.16)

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Es

2 M� 1ð Þ

s
ð9:58Þ

Asignal space representation for 16-QAMis shown in Figure 9.11(a), and the receiver structure

is shown in Figure 9.11(b). The probability of symbol error for M-QAM can be shown to be

PE ¼ 1� 1

M

ð ffiffiffiffiffiMp � 2Þ2P CjIð Þ þ 4ð
ffiffiffiffiffi
M
p
� 2ÞP CjIIð Þ þ 4P CjIIIð Þ� ð9:59Þ

where the conditional probabilities P CjIð Þ; P CjIIð Þ; and P CjIIIð Þ are given by

P CjIð Þ ¼
ða
�a

exp � u2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p du

� �2
¼ 1� 2Q

ffiffiffiffiffiffiffi
2a2

N0

s !" #2
ð9:60Þ
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P CjIIð Þ ¼
ða
�a

exp �u2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p du

ð¥
�a

exp �u2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p du

¼ 1� 2Q

ffiffiffiffiffiffiffi
2a2

N0

s0@ 1A24 35 1�Q

ffiffiffiffiffiffiffi
2a2

N0

s0@ 1A24 35 ð9:61Þ

P CjIIIð Þ ¼
ð¥
�a

exp�u2=N0ð Þffiffiffiffiffiffiffiffiffi
pN0

p du

� �2

¼ 1�Q

ffiffiffiffiffiffiffi
2a2

N0

s !" #2
ð9:62Þ

2(t)φ

1(t)φ

(III)
0010

(II)
0110

(II)
1110

(III)
1010

(III) (II) (II) (III)

)II()II(

(II)

(I)

)II()I(
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a
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–3a

TS

TS

y(t)
cos ct)ω2

TS

sin ctω2
TS

TS

0
( )dt∫

TS

0
( )dt∫

Thresholds
and

decision
logic

Decision

Note: y(t) = si(t) + n(t), where n(t) is white Gaussian noise.

(a)

(b)

Decision boundaries

Roman numerals show
decision region type

I

Q

Figure 9.11

Signalspaceanddetectorstructurefor16-QAM. (a) Signal constellation and decision regions for 16-QAM.

(b) Detector structure for M-ary QAM. (Binary representations for signal points are Gray encoded.)
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The notation I, II, or III denotes that the particular probability refers to the probability of correct

reception for the three types of decision regions shown in Figure 9.11(a). In general, there areffiffiffiffiffi
M
p � 2

 �2

type I decision regions (4 in the case of 16-QAM), 4
ffiffiffiffiffi
M
p � 2

 �

type II decision

regions (8 in the case of 16-QAM), and 4 type III decision regions (the corners). Thus, assuming

that the possible symbols are equiprobable, the probability of a given type of decision region is

1=M times these numbers, which shows the rationale behind (9.59).

A computer program is useful for computations of the symbol-error probabability using

(9.59) through (9.62). For large Es=N0 the square of the Q-function may be neglected in

comparison with the Q-function itself, which results in the approximation

Ps D 4 1� 1ffiffiffiffiffi
M
p

� �
Q

ffiffiffiffiffiffiffi
2a2

N0

s !
;

Es

N0

>> 1 ð9:63Þ

Error probabilities for M-ary PSK and QAM will be compared later in the chapter.

9.1.8 Coherent FSK

The error probability for coherentM-ary FSK is derived in Chapter 10. The transmitted signals

have the form

si tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2p fc þ i � 1ð ÞDf½ � tf g; 0 � t � Ts; i ¼ 1; 2; . . . ; M ð9:64Þ

where Df is a frequency separation large enough to make the signals represented by (9.64)

orthogonal (the minimum separation is Df ¼ 1=2Ts). Since each of theM possible transmitted

signals is orthogonal to the rest, it follows that the signal space is M-dimensional, where the

orthogonal set of functions is

fi tð Þ ¼
ffiffiffiffiffi
2

Ts

r
cos 2p fc þ i � 1ð ÞDf½ � tf g; 0 � t � Ts; i ¼ 1; 2; . . . ; M ð9:65Þ

so that the ith signal can be expressed as

si tð Þ ¼
ffiffiffiffiffi
Es

p
fi tð Þ ð9:66Þ

An example signal space is shown in Figure 9.12 forM ¼ 3 (this unrealistic example is chosen

for ease of drawing). An upper bound for the probability of error that becomes tighter asM gets

larger is given by7

PE � M� 1ð ÞQ
ffiffiffiffiffiffi
Es

N0

r� �
ð9:67Þ

which follows because, for an error to occur, the received data vector must be closer to any one

of theM� 1 incorrect signal points rather than the correct one. The probability of any one of

these incorrect events is Q ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
Es=N0

p Þ.

7This is derived by using the union bound of probability, which states that, for any set ofK events thatmay be disjoint,

Pr ½A1 [ A2 [ � � � [ Ak� � Pr ½A1� þ Pr ½A2� þ � � � þ Pr ½Ak�.

480 Chapter 9 . Advanced Data Communications Topics

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


9.1.9 Noncoherent FSK

Noncoherent M-ary FSK employs the same signal set as coherent FSK; however, a receiver

structure is used that does not require the acquisition of a coherent carrier reference. A block

diagram of a suitable receiver structure is shown in Figure 9.13. The symbol-error probability

can be shown to be

PE ¼
XM� 1

k¼1

M� 1

k

� � �1ð Þk þ 1

k þ 1
exp � k

k þ 1

Es

N0

� �
ð9:68Þ

The derivation of the symbol-error probability may be sketched as follows. Referring to

Figure 9.13, consider a received signal of the form

y tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfit þ að Þ; 0 � t � Ts; i ¼ 1; 2; . . . ; M ð9:69Þ

where j fi�1� fij 	 1=Ts and a is an unknown phase angle. The orthognal basis functions for

the jth correlator pair are

f2j� 1 tð Þ ¼
ffiffiffiffiffi
2

Ts

r
cos 2pfjt

 �

; 0 � t � Ts

f2j tð Þ ¼
ffiffiffiffiffi
2

Ts

r
sin 2pfjt

 �

; 0 � t � Ts; j ¼ 1; 2; . . . ; M

ð9:70Þ

Given that that si tð Þ was sent, the coordinates of the received data vector, denoted as

Z ¼ Z1; Z2; Z3; . . . ; Z2M� 1; Z2Mð Þ, are

Z2j� 1 ¼ N2j� 1;ffiffiffiffiffi
Es

p
cos a þ N2i� 1;

j Þ i

i ¼ j

�
ð9:71Þ

2(t)φ

3(t)φ

1(t)φ
S1

R2

R3

R1

S2

S3

Figure 9.12

Signal space showing decision

regions for tertiary coherent

FSK.

9.1 M-Ary Data Communications Systems 481

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


and

Z2j ¼ N2j;
� ffiffiffiffiffi

Es

p
sin a þ N2i;

jÞ i

i ¼ j

�
ð9:72Þ

where j ¼ 1; 2; . . . ;M. The noise components are given by

N2j�1 ¼
ffiffiffiffiffi
2

Ts

r ðTs
0

nðtÞ cosð2pfjtÞ dt

N2j ¼
ffiffiffiffiffi
2

Ts

r ðTs
0

nðtÞ sinð2pfjtÞ dt
ð9:73Þ

t = Ts

t = Ts

2/Ts sin 1tω

2/Ts cos 1tω

Ts

0
( )dt∫

Ts
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Figure 9.13

Receiver structure for noncoherent FSK.
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and are uncorrelated Gaussian random variables with zero means and variances N0=2. Given
that si tð Þ was sent, a correct reception is made if

Z2
2j� 1 þ Z2

2j < Z2
2i� 1 þ Z2

2i; all jÞ i

or, equivalently, if ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
2j� 1 þ Z2

2j

q
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
2i� 1 þ Z2

2i

q
; all jÞ i ð9:74Þ

Evaluation of the symbol-error probability requires the joint pdf of the random variables

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
2j� 1 þ Z2

2j;
q

j ¼ 1; 2; . . . ; M. For j ¼ i and given a; Z2j� 1 is a Gaussian random

variable with mean
ffiffiffiffiffi
Es

p
cos a and variance N0=2, which follows from (9.71). Similarly,

for j ¼ i and given a; Z2j is a Gaussian random variable with mean � ffiffiffiffiffi
Es

p
sin a and variance

N0=2,which follows from (9.72). For jÞ i, both have zeromeans and variancesN0=2. Thus, the
joint pdf of Z2j and Z2j� 1 given a is (x and y are the dummy variables for the pdf)

fZ2j�1;Z2j x; yjað Þ ¼

1

pN0

exp � 1

N0

x� ffiffiffiffiffi
Es

p
cosa


 �2þ yþ ffiffiffiffiffi
Es

p
sina


 �2h i� �
; j¼ i

1

pN0

exp � 1

N0

x2þ y2

 �� �

jÞ i

8>>><>>>:
ð9:75Þ

To proceed, it is convenient to change to polar coordinates, defined by

x¼
ffiffiffiffiffiffi
N0

2

r
r sin f;

r	 0; 0�f<2p

y¼
ffiffiffiffiffiffi
N0

2

r
r cos f;

ð9:76Þ

With this change of variables, minus the exponent in the first equation of (9.75) becomes

1

N0

ffiffiffiffiffiffi
N0

2

r
r sin�� ffiffiffiffiffi

Es

p
cos a

 !2

þ
ffiffiffiffiffiffi
N0

2

r
r cos �þ ffiffiffiffiffi

Es

p
sin a

 !2
24 35
¼ 1

N0

�
N0r

2

2
sin2��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EsN0

p
r sin� cosaþEs cos

2aþ N0r
2

2
cos2�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EsN0

p
r cos� sinaþEs sin

2a

�
¼ r2

2
�

ffiffiffiffiffiffiffi
2Es

N0

r
rðsin� cosa�cos� sinaÞþEs

N0

¼ r2

2
þ Es

N0

�
ffiffiffiffiffiffiffi
2Es

N0

r
r sinð��aÞ

ð9:77Þ

When this is substituted into (9.75) we get (note that dx dy!ðN0=2Þrdrdfð Þ
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fRjFjja r;fjað Þ¼ r

2p
exp � r2

2
þ Es

N0

�
ffiffiffiffiffiffiffi
2Es

N0

r
r sin f�að Þ

� �� �
; j¼ i; r	 0; 0�f<2p

¼ r

2p
exp � r2

2
þ Es

N0

� �� �
exp

ffiffiffiffiffiffiffi
2Es

N0

r
rsin f�að Þ

� �
ð9:78Þ

The result for jÞ i can be obtained by settingEs¼0 in (9.78). The unconditional pdf is found by

averaging with respect to the pdf of a, which is uniform in any 2p range. Thus

fRjFj r;fð Þ ¼ r

2p
exp � 1

2
r2þ 2Es

N0

� �� �ð2p�f
f

exp

ffiffiffiffiffiffiffi
2Es

N0

r
rsin f�að Þ

� �
da

2p

¼ r

2p
exp � 1

2
r2þ 2Es

N0

� �� �
I0

ffiffiffiffiffiffiffi
2Es

N0

r
r

� �
; j¼ i; r	 0; 0�f<2p

ð9:79Þ

where I0 �ð Þ is themodifiedBessel function of the first kind and order zero. Themarginal pdf for

Rj is obtained by integrating over f, which gives

fRj rð Þ¼ rexp � 1

2
r2 þ 2Es

N0

� �� �
I0

ffiffiffiffiffiffiffi
2Es

N0

r
r

� �
; j¼ i; r	 0 ð9:80Þ

which is a Ricean pdf. We get the result for jÞ i by setting Es¼0, which gives

fRj rð Þ ¼ rexp � r2

2

� �
; jÞ i; r	 0 ð9:81Þ

which is recognized as a Rayleigh pdf.

In terms of the random variables Rj; j ¼ 1; 2; . . . ; M, the detection criterion is

Rj < Ri; all jÞ i ð9:82Þ
Since the Rjs are statistically independent random variables, the probability of this compound

event is

Pr Rj < Ri; all jÞ ijRi

 � ¼ YM
j¼1; jÞi

Pr Rj < RijRi

 � ð9:83Þ

But

Pr Rj < RijRi

 � ¼ ðRi

0

r exp
�r2
2

� �
dr ¼ 1� exp

�R2
i

2

� �
ð9:84Þ

The probability of correct reception, given si tð Þ was sent, is (9.84) averaged over Ri, where Ri

has the Ricean pdf given by (9.80). This may be written, using (9.84) and (9.80), as the

integral

Ps Cjsi sentð Þ ¼
ð¥
0

1� exp
�r2
2

� �� �M� 1

r exp � 1

2
r2 þ 2Es

N0

� �� �
I0

ffiffiffiffiffiffiffi
2Es

N0

r
r

� �
dr ð9:85Þ
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Now, by the binomial theorem

1� exp
� r2

2

� �� �M� 1

¼
XM� 1

k¼0

M� 1

k

� �
� 1ð Þkexp � kr2

2

� �
ð9:86Þ

Thus, interchanging the order of integration and summation, (9.85) may be written as

Ps Cjsi sentð Þ ¼
XM �1

k¼ 0

M�1

k

� �
� 1ð Þk

ð¥
0

rexp � 1

2
k þ 1ð Þr2 þ 2Es

N0

� �� �
I0

ffiffiffiffiffiffiffi
2Es

N0

r
r

� �
dr

¼ exp
�Es

N0

� �XM � 1

k¼ 0

M�1

k

� � �1ð Þk
k þ 1

exp
Es

k þ 1ð ÞN0

� �
ð9:87Þ

where the definite integralð¥
0

xexp �ax2

 �

I0 bxð Þdx¼ 1

2a
exp

b2

4a

� �
; a; b> 0 ð9:88Þ

has been used.

Since this result is independent of the signal sent, it holds for any signal and therefore is the

probability of correct reception independent of the particular si tð Þ assumed. Hence, the

probability of symbol error is given by

PE ¼ 1�Ps Cjsi sentð Þ

¼ 1� exp
�Es

N0

� �XM� 1

k¼0

M� 1

k

� � � 1ð Þk
k þ 1

exp
Es

k þ 1ð ÞN0

� � ð9:89Þ

which can be shown to be equivalent to (9.68).

9.1.10 Differentially Coherent Phase-Shift Keying

Binary DPSK was introduced in Chapter 8 as a phase-shift-keyed modulation scheme where

the previous bit interval is used as a reference for the current bit interval with the transmitted

information conveyed in the phase difference bymeans of differential encoding. Recall that the

loss in Eb=N0 relative to coherent binary PSK is approximately 0.8 dB at low bit-error

probabilities. The idea underlying binary DPSK is readily extended to the M-ary case, where

the information is transmitted via the phase difference from one symbol interval to the next.

The receiver then compares successive received signal phases to estimate the relative phase

shift. That is, if successive transmitted signals are represented as

s1 tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfctð Þ; 0 � t < Ts

si tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfct þ 2p i� 1ð Þ

M

� �
; Ts � t < 2Ts

ð9:90Þ

then assuming the channel-induced phase shift a is constant over two successive signaling

intervals, the received signal plus noise can be represented as
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y1 tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfct þ að Þ þ n tð Þ; 0 � t < Ts

yi tð Þ ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos 2pfct þ a þ 2p i� 1ð Þ

M

� �
þ n tð Þ; Ts � t < 2Ts

ð9:91Þ

and the receiver�s decision rule is then one of determining the amount of phase shift in 2p=M
steps from one signaling interval to the next.

Over the years, several approximations and bounds have been derived for the symbol-error

probability ofM-aryDPSK (M-DPSK).8 Just as forM-PSK, an exact expression for the symbol-

error probability for M-DPSK has been published that utilizes the Craig expression for the

Q-function given in Appendix G.9 The result is

PE ¼ 1

p

ðp�p=M

0

exp � Es=N0ð Þ sin2 p=Mð Þ
1 þ cos p=Mð Þ cosf

� �
df ð9:92Þ

Results for bit-error probabilities computed with the aid of (9.92) will be presented after the

conversion of symbol to bit-error probabilities is discussed.

9.1.11 Bit-Error Probability from Symbol-Error Probability

If one ofM possible symbols is transmitted, the number of bits required to specify this symbol is

log2 M. It is possible to number the signal points using a binary code such that only one bit

changes in going from a signal point to an adjacent signal point. Such a code is aGray code, as

introduced in Chapter 8, with the case for M ¼ 8 given in Table 9.2.

Sincemistaking an adjacent signal point for a given signal point is themost probable error,

we assume that nonadjacent errors may be neglected and that Gray encoding has been used so

that a symbol error corresponds to a single bit error (as would occur, for example, withM-ary

Table 9.2 Gray Code for M = 8

Digit Binary code Gray code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Note: The encoding algorithm is given in Problem 8.32.

8V. K. Prabhu, Error rate performance for differential PSK. IEEE Trans. on Commun., COM-30: 2547–2550,

December 1982. R. Pawula, Asymptotics and error rate bounds for M-ary DPSK. IEEE Trans. on Commun.,

COM-32: 93–94, January 1984.
9R. F. Pawula, A New Formula for MDPSK Symbol Error Probability. IEEE Commun. Letters, 2: 271–272, October

1998.
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PSK).Wemay thenwrite the bit error probability in terms of the symbol error probability for an

M-ary communications system for which these assumptions are valid as

PE; bit ¼ PE; symbol

log2 M
ð9:93Þ

Because we neglect probabilities of symbol errors for nonadjacent symbols, (9.93) gives a

lower bound for the bit error probability.

A second way of relating bit error probability to symbol error probability is as follows.

Consider anM-arymodulation scheme forwhichM ¼ 2n,n an integer. Then each symbol (M-ary

signal) canbe representedbyann-bit binarynumber, for example, the binary representationof the

signal�s index minus one. Such a representation is given in Table 9.3 for M ¼ 8.

Take any column, say the last, which is enclosed by a box. In this column, there areM=2
zeros and M=2 ones. If a symbol (M-ary signal) is received in error, then for any given bit

position of the binary representation (the rightmost bit in this example), there are M=2 of a

possibleM� 1 ways that the chosen bit can be in error (one of theM possibilities is correct).

Therefore, the probability of a given data bit being in error, given that a signal (symbol) was

received in error, is

P BjSð Þ ¼ M=2

M� 1
ð9:94Þ

Since a symbol is in error if a bit in the binary representation of it is in error, it follows that the

probability P(S jB) of a symbol error given a bit error is unity. Employing Bayes� rule, we find
the equivalent bit-error probability of an M-ary system can be approximated by

PE; bit ¼ P BjSð ÞPE; symbol

P SjBð Þ ¼ M

2 M� 1ð ÞPE; symbol ð9:95Þ

This result is especiallyuseful for orthogonal signaling schemes suchasFSK,where it is equally

probable that any of the M� 1 incorrect signal points may be mistaken for the correct one.

Finally, in order to compare two communications systems using different numbers of

symbols on an equivalent basis, the energies must be put on an equivalent basis. This is done by

expressing the energy per symbol Es in terms of the energy per bit Eb in each system by means

of the relationship

Es ¼ log2 Mð ÞEb ð9:96Þ
which follows since there are log2 M bits per symbol.

Table 9.3 Pertinent to the Computation of Bit-Error
Probability for Orthogonal Signaling

M-ary signal Binary representation

1 (0) 0 0 0

2 (1) 0 0 1

3 (2) 0 1 0

4 (3) 0 1 1

5 (4) 1 0 0

6 (5) 1 0 1

7 (6) 1 1 0

8 (7) 1 1 1
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9.1.12 Comparison of M-ary Communications Systems
on the Basis of Bit Error Probability

Figure 9.14 compares coherent and differentially coherentM-ary PSK systems on the basis of

bit-error probability versus Eb=N0 along with QAM. Figure 9.14 shows that the bit-error

probability for these systems gets worse as M gets larger. This can be attributed to the signal

points being crowded closer together in the two-dimensional signal spacewith increasingM. In

addition, M-ary DPSK performs a few decibels worse than coherent PSK, which can be

attributed to the noisy phase at the receiver for the former. Quadrature-amplitude modulation

performs considerably better than PSK because it makes more efficient use of the signal space

(since it varies in amplitude in addition to phase, the transmitted waveform has a nonconstant

envelope that is disadvantageous from the standpoint of efficient power amplification).

Not all M-ary digital modulation schemes exhibit the undesirable behavior of increasing

bit-error probability with increasingM. We have seen thatM-ary FSK is a signaling scheme in

which the number of dimensions in the signal space grows directly withM. This means that the

bit-error probabilities for coherent and noncoherent M-ary FSK decrease as M increases

because the increasing dimensionality means that the signal points are not crowded together as

withM-ary PSK, for example, for which the signal space is two-dimensional regardless of the

value of M (except for M¼2). This is illustrated in Figure 9.15, which compares bit-error

probabilities for coherent and noncoherent FSK for various values of M. Unfortunately, the

bandwidth required forM-ary FSK (coherent or noncoherent) growswithM, whereas this is not

the case forM-ary PSK. Thus, to be completely fair, onemust compareM-ary communications

systems on the basis of both their bit-error probability characteristics and their relative

MPSK MDPSK

M-ary QAM
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M = 256
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Figure 9.14

Bit-error probability versus Eb=N0 for M-ary (a) PSK, (b) differentially coherent PSK, and (c) QAM.
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M-ary CFSK M-ary NCFSK
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Figure 9.15

Bit-error probability versus Eb=N0 for (a) coherent and (b) noncoherent M-ary FSK.

bandwidths. Note that the performance degradation of noncoherent over coherent FSK is not as

severe as one might expect.

EXAMPLE 9.2

Compare the performances of noncoherent and coherent FSK on the basis of Eb=N0 required to provide a

bit-error probability of 10�6 for various values of M.

S o l u t i o n

Using (9.67), (9.68), (9.95), and (9.96), the results in Table 9.4 can be obtained with the aid of appropriate

MATLAB routines. Note that the loss in performance due to noncoherence is surprisingly small.

&

Table 9.4 Power Efficiencies for Noncoherent and Coherent FSK

Eb/N0 (dB) for PE,bit¼ 10�6

M Noncoherent Coherent

2 14.20 13.54

4 11.40 10.78

8 9.86 9.26

16 8.80 8.22

32 8.02 7.48
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COMPUTER EXAMPLE 9.1

TheMATLABprogramgiven belowplots bit-error probabilities forM-ary PSKanddifferentialM-ary PSK

based on (9.51) and (9.92) along with the conversion of symbol to bit-error probability given by (9.93).

% file: c9ce1.m
% BEP for MPSK and MDPSK using Craig’s integral
clf; clear all
M_max ¼ input(‘Enter max value for M (power of 2) ¼> ’);
rhobdB_max ¼ input(‘Enter maximum Eb/N0 in dB ¼>’);
rhobdB ¼ 5:0.5:rhobdB_max;
Lrho ¼ length(rhobdB);
for k ¼ 1:log2(M_max)

M ¼ 2^k;
rhob ¼ 10.^(rhobdB/10);
rhos ¼ k*rhob;
up_lim ¼ pi*(1-1/M);
phi ¼ 0:pi/1000:up_lim;
PsMPSK ¼ zeros(size(rhobdB));
PsMDPSK ¼ zeros(size(rhobdB));
for m ¼ 1:Lrho

arg_exp_PSK ¼ rhos(m)*sin(pi/M)
^2./(sin(phi)).^2;

Y_PSK ¼ exp(-arg_exp_PSK)/pi;
PsMPSK(m) ¼ trapz(phi, Y_PSK);
arg_exp_DPSK ¼ rhos(m)*sin(pi/M)

^2./(1+cos(pi/M)*cos(phi));
Y_DPSK ¼ exp(-arg_exp_DPSK)/pi;
PsMDPSK(m) ¼ trapz(phi, Y_DPSK);

end
PbMPSK ¼ PsMPSK/k;
PbMDPSK ¼ PsMDPSK/k;
if k ¼¼1

I ¼ 4;
elseif k ¼¼ 2

I ¼ 5;
elseif k ¼¼ 3

I ¼ 10;
elseif k ¼¼ 4

I ¼ 19;
elseif k ¼¼ 5

I ¼ 28;
end
subplot(1,2,1), semilogy(rhobdB, PbMPSK), ...

axis([min(rhobdB) max(rhobdB) 1e-6 1]), ...
title(‘MPSK’), ylabel(‘{\itP_b}’), xlabel(‘{\itE_b/N}_0’), ...
text(rhobdB(I)+.3, PbMPSK(I), [‘{\itM} ¼ ’, num2str(M)])

if k ¼¼ 1
hold on
grid on

end
subplot(1,2,2), semilogy(rhobdB, PbMDPSK), ...

axis([min(rhobdB) max(rhobdB) 1e-6 1]), ...
title(‘MDPSK’), ylabel(‘{\itP_b}’), xlabel(‘{\itE_b/N}_0’),
...

text(rhobdB(I+2)+.3, PbMPSK(I+2), [‘{\itM} ¼ ’, num2str(M)])
if k ¼¼ 1

hold on
grid on

end
end

Results computed using this program match those shown in Figure 9.14.

&
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9.1.13 Comparison of M-ary Communications Systems
on the Basis of Bandwidth Efficiency

If one considers the bandwidth required by anM-ary modulation scheme to be that required to

pass themain lobe of the signal spectrum (null to null), it follows that the bandwidth efficiencies

of the various M-ary schemes that we have just considered are as given in Table 9.5. These

follow by extension of the arguements used in Chapter 8 for the binary cases. For example,

analogous to (8.91) for coherent binary FSK, we have 1=Ts Hz on either end to the spectral null
with M� 1 spaces of 1=2Ts Hz inbetween for the remaining M� 2 tone burst spectra (M� 1

spaces 1=2Ts Hz wide), giving a total bandwidth of

B ¼ 1

Ts
þ M� 1

2Ts
þ 1

Ts
¼ M þ 3

2Ts

¼ M þ 3

2 log2 Mð ÞTb ¼
M þ 3ð ÞRb

2log2 M
Hz

ð9:97Þ

from which the result for Rb=B given in Table 9.5 follows.

The reasoning for noncoherent FSK is similar except that tone burst spectra are assumed to

be spaced by 2=Ts Hz
10 for a total bandwidth of

B ¼ 1

Ts
þ 2 M� 1ð Þ

Ts
þ 1

Ts
¼ 2M

Ts

¼ 2M

log2 Mð ÞTb ¼
2MRb

log2 M
Hz

ð9:98Þ

Phase-shift keying (including differentially coherent) and QAM have a single tone burst

spectrum (of varying phase for PSK and phase/amplitude for QAM) for a total null-to-null

bandwidth of

B ¼ 2

Ts
¼ 2

log2Mð ÞTb ¼
2Rb

log2M
Hz ð9:99Þ

Table 9.5 Bandwidth Efficiencies of Various M-ary Digital Modulation Schemes

M-ary scheme Bandwidth efficiency (bits/s/Hz)

PSK, QAM 1
2
log2M

Coherent FSK
2log2M

M þ 3
(tone spacing of 1=2Ts Hz)

Noncoherent FSK
log2M

2M
(tone spacing of 2=Ts Hz)

10This increased tone spacing as compared with coherent FSK is made under the assumption that frequency is not

estimated in a noncoherent system to the degree of accuracy as would be necessary in a coherent system, where

detection is implemented by correlation with the possible transmitted frequencies.
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EXAMPLE 9.3

Compare bandwidth efficiencies on a main-lobe spectrum basis for PSK, QAM, and FSK for variousM.

S o l u t i o n

Bandwidth efficiencies in bits per second per hertz for various values ofM are as given in Table 9.6. Note

that for QAM, M is assumed to be a power of 4. Also note that the bandwidth efficiency of M-ary PSK

increases with increasing M while that for FSK decreases.

&

n 9.2 POWER SPECTRA FOR QUADRATURE MODULATION TECHNIQUES

The measures of performance for the various modulation schemes considered so far have been

probability of error and bandwidth occupancy. For the latter, we used rough estimates of

bandwidth based on null-to-null points of the modulated signal spectrum. In this section, we

derive an expression for the power spectrum of quadrature modulated signals. This can be used

to obtain more precise measures of the bandwidth requirements of quadrature modulation

schemes such as QPSK, OQPSK, MSK, and QAM. One might ask why not do this for other

signal sets, such asM-ary FSK. The answer is that such derivations are complex and difficult to

apply (recall the difficulty of deriving spectra for analog FM). The literature on this problem is

extensive, an example of which is given here.11

Analytical expressions for the power spectra of digitally modulated signals allow a

definition of bandwidth that is based on the criterion of fractional power of the signal within a

specified bandwidth. That is, if S fð Þ is the double-sided power spectrum of a givenmodulation

format, the fraction of total power in a bandwidth B is given by

DPIB ¼ 2

PT

ð fc þ B=2

fc �B=2

S fð Þ df ð9:100Þ

where the factor of 2 is used since we are only integrating over positive frequencies,

PT ¼
ð¥
�¥

S fð Þ df ð9:101Þ

Table 9.6 Bandwidth Efficiencies for Example 9.3 bps/Hz

M QAM PSK Coherent FSK Noncoherent FSK

2 0.5 0.4 0.25

4 1 1 0.57 0.25

8 1.5 0.55 0.19

16 2 2 0.42 0.13

32 2.5 0.29 0.08

64 3 3 0.18 0.05

11H. E. Rowe andV.K. Prabhu, Power spectrum of a digital, frequency-modulation signal.The Bell System Technical

Journal, 54: 1095–1125, July–August 1975.
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is the total power, and fc is the ‘‘center’’ frequency of the spectrum (usually the carrier

frequency, apparent or otherwise). The percent out-of-band power DPOB is defined as

DPOB ¼ 1�DPIBð Þ � 100% ð9:102Þ

The definition ofmodulated signal bandwidth is conveniently given by setting DPOB equal

to some acceptable value, say 0.01 or 1%, and solving for the corresponding bandwidth. A

curve showing DPOB in decibels versus bandwidth is a convenient tool for carrying out this

procedure, since the 1% out-of-band power criterion for bandwidth corresponds to the

bandwidth at which the out-of-band power curve has a value of�20 dB. Later we will present
several examples to illustrate this procedure.

As pointed out in Chapter 4, the spectrumof a digitallymodulated signal is influenced both

by the particular baseband data format used to represent the digital data and by the type of

modulation scheme used to prepare the signal for transmission. We will assume nonreturn-to-

zero (NRZ) data formatting in the following.

In order to obtain the spectrum of a quadrature-modulated signal using any of these data

formats, the appropriate spectrum shown in Figure 9.16 is simply shifted up in frequency and

centered around the carrier (assuming a single-sided spectrum).

To proceed, we consider a quadrature-modulated waveform of the form given by (9.1),

where m1 tð Þ ¼ d1 tð Þ andm2 tð Þ ¼ �d2 tð Þ are random (coin toss) waveforms represented

as

d1 tð Þ ¼
X¥

k¼�¥
akp t� kTs � D1ð Þ ð9:103Þ
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Fractional out-of-band power

for BPSK, QPSK or OQPSK,

and MSK.
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and

d2 tð Þ ¼
X¥

k¼�¥
bkp t� kTs�D2ð Þ ð9:104Þ

where akf g and bkf g are independent, identically distributed (iid) sequences with

E akf g ¼ E bkf g ¼ 0; E akalf g ¼ A2dkl ; E bkblf g ¼ B2dkl ð9:105Þ

in which dkl ¼ 1 for k ¼ l and 0 otherwise, is called the Kronecker delta.

The pulse shape functions p tð Þ and q tð Þ in (9.103) and (9.104) may be the same, or one of

them may be zero. We now show that the double-sided spectrum of (9.1), with (9.103) and

(9.104) substituted, is

S fð Þ ¼ G f � fcð Þ þ G f þ fcð Þ ð9:106Þ

where

G fð Þ ¼ A2jP fð Þj2 þ B2jQ fð Þj2
Ts

ð9:107Þ

in which P fð Þ andQ fð Þ are the Fourier transforms of p tð Þ and q tð Þ, respectively. This result
can be derived by applying (6.25). First, we may write the modulated signal in terms of its

complex envelope as

xc tð Þ ¼ Re z tð Þexp j2pfctð Þ½ � ð9:108Þ
where

z tð Þ ¼ d1 tð Þ þ jd2 tð Þ ð9:109Þ
According to (6.25), the power spectrum of z tð Þ is

G fð Þ ¼ lim
T!¥

E j= z2T tð Þ½ �j2
n o

2T
¼ lim

T!¥

E jD1; 2T fð Þj2 þ jD2; 2T fð Þj2
n o

2T
ð9:110Þ

where z2T tð Þ is z tð Þ truncated to 0 outside of �T; T½ �, which we take to be the same as

truncating the sums of (9.103) and (9.104) from�N toN. By the superposition and time-delay

theorems of Fourier transforms, it follows that

D1; 2T fð Þ ¼ = d1; 2T tð Þ � ¼ XN
k¼�N

akP fð Þe� j2p kTs þ D1ð Þ

D2; 2T fð Þ ¼ = d2; 2T tð Þ � ¼ XN
k¼�N

bkP fð Þe� j2p kTs þ D2ð Þ

ð9:111Þ
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which gives

E jD1; 2T fð Þj2
n o

¼ E
XN
k¼�N

akP fð Þe� j2p kTs þ D1ð ÞXN
l¼�N

alP

 fð Þej2p lTs þ D1ð Þ

( )

¼ jP fð Þj2E
XN
k¼�N

XN
l¼�N

akale
� j2p k� lð ÞTs

( )

¼ jP fð Þj2
XN
k¼�N

XN
l¼�N

E akalð Þe� j2p k� lð ÞTs

¼ jP fð Þj2
XN
k¼�N

XN
l¼�N

A2dkle
� j2p k� lð ÞTs

¼ jP fð Þj2
XN
k¼�N

A2 ¼ 2N þ 1ð ÞjP fð Þj2A2

ð9:112Þ

Similarly, it follows that

E jD2; 2T fð Þj2
n o

¼ 2N þ 1ð ÞjP fð Þj2B2 ð9:113Þ
Let 2T ¼ 2N þ 1ð ÞTs þ Dt; where Dt < Ts accounts for end effects, and substitute (9.112)

and (9.113) into (9.110), which becomes (9.107) in the limit.

This result can be applied to BPSK, for example, by letting q tð Þ ¼ 0 and p tð Þ ¼P t=Tbð Þ.
The resulting baseband spectrum is

GBPSK fð Þ ¼ A2Tb sinc
2 Tbfð Þ ð9:114Þ

The spectrum for QPSK follows by letting A2 ¼ B2; Ts ¼ 2Tb, and

p tð Þ ¼ q tð Þ ¼ 1ffiffiffi
2
p P

t

2Tb

� �
ð9:115Þ

to get P fð Þ ¼ Q fð Þ ¼ ffiffiffi
2
p

Tb sinc 2Tbfð Þ. This results in the baseband spectrum

GQPSK fð Þ ¼ 2A2jP fð Þj2
2Tb

¼ 2A2Tb sinc
2 2Tb fð Þ ð9:116Þ

This result also holds for OQPSK because the pulse shape function q tð Þ differs from p tð Þ only
by a time shift that results in a factor of exp�j2pTb fð Þ (magnitude of unity) in the amplitude

spectrum jQ fð Þj.
ForM-ary QAMwe use A2 ¼ B2 (these are the mean-squared values of the amplitudes on

the I and Q channels), Ts ¼ log2 Mð ÞTb, and
p tð Þ ¼ q tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

log2M
p P

t

log2Mð ÞTb

� �
ð9:117Þ

to get P fð Þ ¼ Q fð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2 M

p
Tb sinc log2 Mð ÞTb f½ �. This gives the baseband spectrum

GMQAM fð Þ ¼ 2A2jP fð Þj2
log2Mð ÞTb ¼ 2A2Tb sinc

2 log2Mð ÞTb f½ � ð9:118Þ

The baseband spectrum for MSK is found by choosing the pulse shape functions

p tð Þ ¼ q t� Tbð Þ ¼ cos
pt

2Tb

� �
P

t

2Tb

� �
ð9:119Þ
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and by letting A2 ¼ B2. It can be shown (see Problem 9.25) that

= cos
pt

2Tb

� �
P

t

2Tb

� �� �
¼ 4Tb cos 2pTb fð Þ

p 1� 4Tb fð Þ2
h i ð9:120Þ

which results in the following baseband spectrum for MSK:

GMSK fð Þ ¼ 16A2Tb cos
2 2pTb fð Þ

p2 1� 4Tb fð Þ2
h i2 ð9:121Þ

Using these results for the baseband spectra of BPSK, QPSK (or OQPSK), andMSK in the

definition of percent out-of-band power (9.102) results in the set of plots for fractional out-of-

band power shown in Figure 9.16. These curves were obtained by numerical integration of the

power spectra of (9.114), (9.116), and (9.121). From Figure 9.16, it follows that the RF

bandwidths containing 90% of the power for these modulation formats are approximately

B90% ffi 1

Tb
Hz QPSK; OQPSK; MSKð Þ

B90% ffi 2

Tb
Hz BPSKð Þ

ð9:122Þ

These are obtained by noting the bandwidths corresponding to DPOB ¼�10 dB and doubling

these values, since the plots are for baseband bandwidths.

Because theMSKout-of-band power curve rolls off at amuch faster rate than do the curves

for BPSK or QPSK, a more stringent in-band power specification, such as 99%, results in a

much smaller containment bandwidth for MSK than for BPSK or QPSK. The bandwidths

containing 99% of the power are

B99% ffi 1:2

Tb
MSKð Þ

B99% ffi 8

Tb
QPSK or OQPSK; BPSK off the plotð Þ

ð9:123Þ

For binary FSK, the following formula can be used to compute the power spectrum if the

phase is continuous:12

Gf ¼ Gþ fð Þ þ G� fð Þ ð9:124Þ
where

G� fð Þ ¼
A2 sin2 p f � f1ð ÞTb½ � sin2 p f � f2ð ÞTb½ �

2p2Tb 1� 2 cos 2p f � að ÞTb½ � cos 2p bTbð Þ þ cos2 2pbTbð Þf g
1

f � f1
� 1

f � f2

� �2

ð9:125Þ

12W. R. Bennett and S. O. Rice, Spectral density and autocorrelation functions associatedwith binary frequency-shift

keying. Bell System Technical Journal, 42: 2355–2385, September 1963.
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In (9.125), the following definitions are used:

f1; f2 ¼ the signaling frequencies in hertz


that is, fc � Df

2
and fc þ Df

2

�
a ¼ 1

2
f1 þ f2ð Þ

b ¼ 1

2
f2� f1ð Þ

ð9:126Þ

Equation (9.124) is used to get the bandpass (modulated) signal spectrum. Several

examples of spectra are shown in Figure 9.17 for frequency-modulated spectra computed
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Power spectra for continuous-phase FSK computed from (9.125).
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from (9.124) using (9.125) for a normalized carrier frequency of fcTb ¼ 5 and normalized

signaling frequency separations f2� f1ð ÞTb in steps from 1 to 6. Note that as the separation

increases from 1 to 6, the spectrum goes from unimodal to bimodal with the bimodal

components centered around the nominal signaling frequencies (e.g., 5� 3 ¼ 2 and 5 þ
3 ¼ 8 for the last case, which looks very much like the superposition of two BPSK spectra

centered around the signaling frequencies).

The preceding approach to determining bandwidth occupancy of digitally modulated

signals provides one criterion for selecting modulation schemes based on bandwidth

considerations. It is not the only approach by any means. Another important criterion is

adjacent channel interference. In other words, what is the degradation imposed on a given

modulation scheme by channels adjacent to the channel of interest? In general, this is a difficult

problem. For one approach, the reader is referred to a series of papers on the concept of

crosstalk.13

COMPUTER EXAMPLE 9.2

The MATLAB program given below computes and plots the spectra shown in Figure 9.17.

% file: c9ce2.m
% Plot of FM power spectra
%
clf
DELfTb_min ¼ input(‘Enter min freq spacing X bit period between tones ¼>’);
DELfTb_0 ¼ input(‘Enter step size in frequency spacing X bit period ¼>’);
fTb ¼ 0.009:0.01:10; % Start fTb out at a value that avoids

zeros in denom
fcTb ¼ 5; % Apparent carrier frequency,

normalized
for n¼1:6

DELfTb ¼ DELfTb_min + (n-1)*DELfTb_0
f1Tb ¼ fcTb-DELfTb/2;
f2Tb ¼ fcTb+DELfTb/2;
alpha ¼ 0.5*(f1Tb + f2Tb);
beta ¼ 0.5*(f2Tb - f1Tb);
num_plus ¼ ((sin(pi*(fTb+f1Tb))).^2).*(sin(pi*(fTb+f2Tb))).^2;
num_minus ¼ ((sin(pi*(fTb-f1Tb))).

^2).*(sin(pi*(fTb-f2Tb))).
^2;

den_plus ¼ 2*pi
^2*(1-2*cos(2*pi*(fTb+alpha)).*cos(2*pi*beta+eps)+

...(cos(2*pi*beta)).
^2);

den_minus ¼ 2*pi^2*(1-2*cos(2*pi*(fTb-alpha)).*cos(2*pi*beta+
eps)+... (cos(2*pi*beta)).

^2);
term_plus ¼ (1./(fTb+f1Tb) - 1./(fTb+f2Tb)).^2;
term_minus ¼ (1./(fTb-f1Tb) - 1./(fTb-f2Tb)).^2;
G_plus ¼ num_plus./den_plus.*term_plus;
G_minus ¼ num_minus./den_minus.*term_minus;
G ¼ G_plus+G_minus;
area ¼ sum(G)*.01 % Check on area under spectrum
GN ¼ G/area;

13See I. Kalet, A look at crosstalk in quadrature-carriermodulation systems. IEEETransactions onCommunications,

COM-25: 884–892, September 1977.
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subplot(3,2,n),xlabel(‘fT_b’),plot(fTb, GN), ...
ylabel(‘Spectral level’), axis([0 10 0 max(GN)]),...
legend([‘DeltafT_b¼’ ,num2str(DELfTb)]),...
if n ¼¼ 5 n ¼¼6

xlabel(‘{itfT_b}’)
end

end

&

n 9.3 SYNCHRONIZATION

We have seen that at least two levels of synchronization are necessary in a coherent

communication system. For the known-signal-shape receiver considered in Section 8.2, the

beginning and ending times of the signals must be known. When specialized to the case of

coherent ASK, PSK, or coherent FSK, knowledge is required not only of the bit timing but of

carrier phase as well. In addition, if the bits are grouped into blocks or words, the starting and

ending times of the words are also required. In this section we will look at methods for

achieving synchronization at these three levels. In order of consideration, we will look at

methods for (1) carrier synchronization, (2) bit synchronization (already considered in

Section 4.7 at a simple level), and (3) word synchronization. There are also other levels of

synchronization in some communication systems that will not be considered here.

9.3.1 Carrier Synchronization

The main types of digital modulation methods considered were ASK, PSK, FSK, PAM, and

QAM. Amplitude-shift keying and FSK can be noncoherently modulated, and PSK can be

differentially modulated thus avoiding the requirement of a coherent carrier reference at the

receiver (of course, we have seen that detection of noncoherently modulated signals entails

some degradation inEb=N0 in data detection relative to the corresponding coherentmodulation

scheme). In the case of coherent ASK a discrete spectral component at the carrier frequency

will be present in the received signal that can be tracked by a PLL to implement coherent

demodulation (which is the first step in data detection). In the case of FSK discrete spectral

components related to the FSK tones may be present in the received signal depending on the

modulation parameters. For MPSK, assuming equally likely phases due to the modulation, a

carrier component is not present in the received signal. If the carrier component is absent, one

may sometimes be inserted along with the modulated signal (called a pilot carrier) to facilitate

generation of a carrier reference at the receiver. Of course the inclusion of a pilot carrier robs

power from the data-modulated part of the signal that will have to be accounted for in the power

budget for the communications link.

We now focus attention on PSK. For BPSK, which really amounts to DSB modulation as

considered in Chapter 3, two alternatives were illustrated in Chapter 3 for coherent demodu-

lation of DSB. In particular these were a squaring PLL arrangement and a Costas loop. When

used for digital data demodulation of BPSK, however, these loop mechanizations introduce a

problem that was not present for demodulation of analog message signals. We note that either

loop (squaring or Costas) will lock if d tð Þ cos vctð Þ or � d tð Þ cos vctð Þ is present at the loop
input (i.e., we can�t tell if the data-modulated carrier has been accidently inverted from our
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perspective or not). Some method is usually required to resolve this sign ambiguity at the

demodulator output. One method of doing so is to differentially encode the data stream before

modulation and differentially decode it at the detector outputwith a resultant small loss in SNR.

This is referred to as coherent detection of differentially encoded BPSK and is different from

differentially coherent detection of DPSK.

Circuits similar to the Costas and squaring loops may be constructed forM-ary PSK. For

example, the mechanism shown by the block diagram of Figure 9.18 will produce a coherent

carrier reference from M-ary PSK, as the following development shows.14 We take the

Mth power of a PSK signal and get

y tð Þ ¼ si tð Þ½ �M ¼
ffiffiffiffiffiffiffi
2Es

Ts

r
cos vct þ 2p i� 1ð Þ

M

� �� �M

¼ AM 1

2
exp jvct þ j

2p i� 1ð Þ
M

� �
þ 1

2
exp � jvct� j

2p i� 1ð Þ
M

� �� �M

¼ A

2

� �M XM
m¼0

M

m

� �
exp j M�mð Þvct þ j

2p M�mð Þ i� 1ð Þ
M

� �
ð9:127Þ

(

� exp � jmvct� j
2pm i� 1ð Þ

M

� ��
¼ A

2

� �M XM
m¼0

M

m

� �
exp j M� 2mð Þvct þ j

2p M� 2mð Þ i� 1ð Þ
M

� �( )

¼ A

2

� �M

exp jMvct þ j2p i� 1ð Þ½ � þ exp � jMvct� j2p i� 1ð Þ½ � þ � � �f g

¼ A

2

� �M

2 cos Mvct þ 2p i� 1ð Þ½ � þ � � �f g ¼ A

2

� �M

2 cos Mvctð Þ þ � � �f g

ð9:127Þ
where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Es=Ts
p

has been used for convenience and the binomial formula (see

Appendix G.3) has been used to carry out the expansion of the Mth power. Only the first

and last terms of the sum in the fourth line are of interest (the remaining terms are indicated by

Frequency
divide by

M

To demodulatorPLL or
BPF at Mfc

Bandpass
filter

M-th
power law

M-ary PSK signal

Figure 9.18

M-power law system for carrier synchronization of M-ary PSK.

14Just as there is a binary phase ambiguity inCostas or squaring loop demodulation ofBPSK, anM-phase ambiguity is

present in the establishingof a coherent carrier reference inM-PSKbyusing theM-power technique illustrated here.
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the three dots), for they make up the term 2 cos Mvct þ 2p i� 1ð Þ½ � ¼ 2 cos 2pMfctð Þ, which
can clearly be tracked by a PLL and a frequency divider used to produce a coherent reference at

the carrier frequency. A possible disadvantage of this scheme is that M times the desired

frequency must be tracked. Normally this would not be the carrier frequency itself but, rather,

an IF. Costas-like carrier tracking loops for M > 2 have been presented and analyzed in the

literature, but these will not be discussed here. We refer the reader to the literature on the

subject15, including the two-volume work by Meyr and Ascheid (1990).

The question naturally arises as to the effect of noise on these phase-tracking devices. The

phase error, that is, the difference between the input signal phase and the VCO phase, can be

shown to be approximately Gaussian with zero mean at high SNRs at the loop input. Table 9.7

summarizes the phase-error variance for these various cases.16When used with equations such

as (8.83), these results provide a measure for the average performance degradation due to an

imperfect phase reference. Note that in all cases,s2
f is inversely proportional to the SNR raised

to integer powers and to the effective number L of symbols remembered by the loop in making

the phase estimate. (See Problem 9.28.)

The terms used in Table 9.7 are defined as follows:

Ts ¼ symbol duration.

BL¼ single-sided loop bandwidth.

N0¼ single-sided noise spectral density.

L¼ effective number of symbols used in phase estimate.

Pc ¼ signal power (tracked component only).

Es ¼ symbol energy.

z ¼ Es=N0.

L ¼ 1= BLTsð Þ.

EXAMPLE 9.4

Compare tracking error standard deviations of two BPSK systems: (1) One using a PLL tracking on a

BPSK signalwith 10%of the total transmit power in a carrier component and (2) the second using aCostas

loop tracking a BPSK signal with no carrier component. The data rate is Rb ¼ 10 kbps, and the received

Eb=N0 is 10 dB. The loop bandwidths of both the PLL and Costas loops are 50 Hz. (3) For the same

parameter values what is the tracking error variance for a QPSK tracking loop?

Table 9.7 Tracking Loop Error Variances

Type of modulation Tracking loop error variance, s2
f

None (PLL) N0BL=Pc

BPSK (squaring or Costas loop) L� 1 1=z þ 0:5=z2ð Þ
QPSK (quadrupling or data estimation loop) L� 1 1=z þ 4:5=z2 þ 6=z3 þ 1:5=z4ð Þ

15B. T. Kopp and W. P. Osborne, Phase jitter in MPSK carrier tracking loops: Analytical, simulation and laboratory

results. IEEE Transactions on Communications, COM-45: 1385–1388, November 1997. S. Hinedi and W. C.

Lindsey, On the self-noise in QASK decision-feedback carrier tracking loops. IEEE Transactions on Commu-

nications, COM-37: 387–392, April 1989.
16Stiffler (1971), Equation (8.3.13).
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S o l u t i o n

For (1), from Table 9.7, first row, the PLL tracking error variance and standard deviation are

s2
f;PLL ¼

N0BL

Pc

¼ N0 TbBLð Þ
PcTb

¼ N0

0:1Eb

BL

Rb

¼ 1

0:1� 10

50

104
¼ 5� 10� 3 rad2

sf;PLL ¼ 0:0707 rad

For (2), from Table 9.7, second row, the Costas PLL tracking error variance and standard deviation

are

s2
f; Costas ¼ BLTb

 
1

z
þ 1

2z2

!

¼ 50

104

 
1

10
þ 1

200

!
¼ 5:25� 10� 4 rad2

sf; Costas ¼ 0:0229 rad

The first case has the disadvantage that the loop tracks on only 10%of the received power. Not only is

the PLL tracking on a lower power signal than the Costas loop, but either there is less power for signal

detection (if total transmit powers are the same in both cases), or the transmit power for case 1must be 10%

higher than for case 2.

For (3), fromTable 9.7, third row, theQPSKdata tracking loop�s tracking error variance and standard
deviation are Ts ¼ 2Tbð Þ

s2
f; QPSK data est ¼ 2BLTb

 
1

z
þ 4:5

z2
þ 6

z3
þ 1:5

z4

!

¼ 100

104

 
1

10
þ 4:5

100
þ 6

1;000
þ 1:5

10;000

!
¼ 1:5� 10� 3 rad2

sf; QPSK data est ¼ 0:0389 rad

&

9.3.2 Symbol Synchronization

Three general methods by which symbol synchronization17 can be obtained are

1. Derivation from a primary or secondary standard (for example, transmitter and receiver

slaved to a master timing source with delay due to propagation accounted for)

2. Utilization of a separate synchronization signal (use of a pilot clock, or a line code with a

spectral line at the symbol rate—for example, see the unipolar RZ spectrum of Figure 4.3)

3. Derivation from the modulation itself, referred to as self-synchronization, as explored in

Chapter 4 (see Figure 4.16 and accompanying discussion).

17See Stiffler (1971) or Lindsey and Simon (1973) for a more extensive discussion.
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Loop configurations for acquiring bit synchronization that are similar in form to the Costas

loop are also possible.18 One such configuration, called the early-late gate synchronization

loop, is shown in Figure 9.19(a) in its simplest form. A binary NRZ data waveform is assumed

as shown in Figure 9.19(b). Assuming that the integration gates� start and stop times are

coincident with the leading and trailing edges, respectively, of a data bit 1 (or data bit�1), it is
seen that the control voltage into the loop filter will be zero and the VCOwill be allowed to put

out timing pulses at the same frequency. On the other hand, if the VCO timing pulses are such

that the gates are too early, the control voltage into the VCO will be negative, which will

decrease the VCO frequency so that VCO timing pulses will delay the gate timing. Similarly, if

the VCO timing pulses are such that the gates are too late, the control voltage into the VCOwill

be positive,whichwill increase theVCO frequency so that VCO timing pulses will advance the

gate timing. The nonlinearity in the feedforward arms can be any even-order nonlinearity. It has

been shown19 that for an absolute value nonlinearity the variance of the timing jitter normalized

18See L. E. Franks, Carrier and bit synchronization in data communication—A tutorial review. IEEETransactions on

Communications,Com-28: 1107–1121, August 1980. Also see C. Georghiades and E. Serpedin, Synchronization,

Chapter 19 in Gibson (2002).

Abs. value
or squarer

Abs. value
or squarer

Data waveform:

Gates just right:
|E integral| – |L integral| = 0

|E integral| – |L integral| < 0

|E integral| – |L integral| > 0

Gates too early:

Gates too late:

VCO Loop filter

Delay

Advance

Integrate
early

Integrate late

(a)

t, s

d(t)

(b)

+
+

–

Figure 9.19

(a) Early-late gate type of bit

synchronizer. (b) Waveforms

pertinent to its operation.

19Simon,M.K.,Nonlinear analysis of an absolutevalue type of an early-late gate bit synchronizer. IEEETransactions

on Communication Technology, COM-18: 589–596, October 1970.
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by the bit duration is

s2
�; AV ffi

BLTb

8 Eb=N0ð Þ ð9:128Þ

where BL ¼ loop bandwidth in hertz, and Tb ¼ bit duration in seconds.

The timing jitter variance for a loop with square-law nonlinearities is

s2
�; SL ffi

5BLTb

32 Eb=N0ð Þ ð9:129Þ

which differs negligibly from that of the absolute value nonlinearity.

An early paper giving simulation results for the performance of optimum and suboptimum

synchronizers by Wintz and Luecke makes interesting reading on the subject.20

9.3.3 Word Synchronization

The same principles used for bit synchronization may be applied to word synchronization.

These are (1) derivation from a primary or secondary standard, (2) utilization of a separate

synchronization signal, and (3) self-synchronization. Only the secondmethodwill be discussed

here. The thirdmethod involves the utilization of self-synchronizing codes. The construction of

good codes is not a simple task and often requires computer search procedures.21

When a separate synchronization code is employed, this code may be transmitted over a

channel separate from the one being employed for data transmission or over the data channel by

inserting the synchronization code (called amarker code) preceeding datawords. Suchmarker

codes should have low-magnitude nonzero-delay autocorrelation values and low-magnitude

cross-correlation values with random data. Some possiblemarker codes, obtained by computer

search, are given in Table 9.8 along with values for their nonzero-delay peak correlation

magnitudes.22 Concatenation of the marker code and data sequence constitutes one frame.

20P. A. Wintz and E. J. Luecke, Performance of optimum and suboptimum synchronizers. IEEE Transactions on

Communication Technology, Com-17: 380–389, June 1969.
21See Stiffler (1971) or Lindsey and Simon (1973).
22R. A. Scholtz, Frame synchronization techniques. IEEE Transactions on Communications,COM-28: 1204–1213,

August 1980.

Table 9.8 Marker Codes with Peak Nonzero-Delay Correlation Values

Magnitude:

Code Binary representation peak correlation


C7 1 0 1 1 0 0 0 1

C8 1 0 1 1 1 0 0 0 3

C9 1 0 1 1 1 0 0 0 0 2

C10 1 1 0 1 1 1 0 0 0 0 3

C11 1 0 1 1 0 1 1 1 0 0 0 1

C12 1 1 0 1 0 1 1 0 0 0 0 0 2

C13 1 1 1 0 1 0 1 1 0 0 0 0 0 3

C14 1 1 1 0 0 1 0 1 1 0 0 0 0 0 3

C15 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 3


Zero-delay correlation ¼ length of code
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Finally, it is important that correlation with the locally stored marker code be relatively

immune to channel errors in the incoming marker code and in the received data frame.

Scholtz gives a bound for the one-pass (i.e, on one marker sequence correlation) acquisition

probability for frame synchronization. For a frame consisting of M marker bits and D data

bits, it is

Pone-pass 	 1� D þ M� 1ð ÞPFAD½ �PTAM ð9:130Þ
wherePFAD, the probability of false acquisition on data alone, andPTAM, the probability of true

acquisition of the marker code, are given, respectively, by

PFAD ¼ 1

2

� �MXh
k¼0

M

k

� �
ð9:131Þ

and

PTAM ¼
Xh
l¼0

M

l

� �
1�Peð ÞM� l

Pl
e ð9:132Þ

in which h is the allowed disagreement between the marker sequence and the closest sequence

in the received frame and Pe is the probability of a bit error due to channel noise.

To illustrate implemention of a search for the marker sequence in a received frame (with

some errors due to noise), consider the received frame sequence

1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1

Suppose h ¼ 1 and we want to find the closest match (to within one bit) of the 7-bit marker

sequence 1 0 1 1 0 0 0. This amounts to counting the total number of disagreements, called the

Hamming distance, between the marker sequence and a 7-bit block of the frame. This is

illustrated by Table 9.9.

Table 9.9 Illustration of Word Synchronization with a Marker Code

1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1

(delay, Hamming

distance)

1 0 1 1 0 0 0 (0, 2)

1 0 1 1 0 0 0 (1, 2)

1 0 1 1 0 0 0 (2, 5)

1 0 1 1 0 0 0 (3, 4)

1 0 1 1 0 0 0 (4, 4)

1 0 1 1 0 0 0 (5, 4)

1 0 1 1 0 0 0 (6, 4)

1 0 1 1 0 0 0 (7, 1)

1 0 1 1 0 0 0 (8, 5)

1 0 1 1 0 0 0 (9, 5)

1 0 1 1 0 0 0 (10, 3)

1 0 1 1 0 0 0 (11, 3)

1 0 1 1 0 0 0 (12, 6)

1 0 1 1 0 0 0 (13, 5)
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There is one match to within one bit; so the test has succeeded. In fact, one of four

possibilities can occur each timewe correlate a marker sequence with a frame: Let ham m; dið Þ
be the Hamming distance between themarker codem and the ith 7-bit (in this case) segment of

the frame sequence di. The possible outcomes are

1. We get ham m; dið Þ � h for one, and only one, shift, and it is the correct one (sync detected

correctly).

2. Weget ham m; dið Þ � h for one, and only one, shift, and it is the incorrect one (sync detected

in error).

3. We get ham m; dið Þ � h for two or more shifts (no sync detected).

4. We get no result for which ham m; dið Þ � h (no sync detected).

If we do this experiment repeatedly, with each bit being in error with probability Pe, then

Pone-pass is approximately the ratio of correct syncs to the total number of trials. Of course, in an

actual system, the test of whether the synchronization is successful is if the data can be decoded

properly.

The number of marker bits to provide one-pass probabilities of 0.93, 0.95, 0.97, and 0.99,

computed from (9.130), are plotted in Figure 9.20 versus the number of data bits for various bit-

error probabilities. The disagreement tolerance is h ¼ 1. Note that the number of marker bits

required is surprisingly relatively insensitive toPe. Also, as the data packet length increases, the

number of marker bits required to maintain Pone-pass at the chosen value increases, but not

significantly. Finally, more marker bits are required on average the larger Pone-pass.
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Number of marker bits

required for various one-pass

probabilities of word acquisi-

tion. (a) One-pass acquisition

probability of 0.93. (b) One-

pass acquisition probability of
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of 0.99.

506 Chapter 9 . Advanced Data Communications Topics

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


9.3.4 Pseudo-Noise Sequences

Pseudo-noise (PN) codes are binary-valued, noiselike sequences; they approximate a sequence

of coin tossings for which a 1 represents a head and a 0 represents a tail. However, their primary

advantages are that they are deterministic, being easily generated by feedback shift register

circuits, and they have an autocorrelation function for a periodically extended version of the

code that is highly peaked for zero delay and approximately zero for other delays. Thus they

find application wherever waveforms at remote locations must be synchronized. These

applications include not only word synchronization but also the determination of range

between two points, the measurement of the impulse response of a system by cross-correlation

of input with output, as discussed in Chapter 6 (Example 6.7), and in spread spectrum

communications systems to be discussed in Section 9.4.

Figure 9.21 illustrates the generation of a PN code of length 23� 1 ¼ 7, which is

accomplished with the use of a shift register three stages in length. After each shift of the

contents of the shift register to the right, the contents of the second and third stages are used

to produce an input to the first stage through an EXCLUSIVE-OR (XOR) operation (that is,

a binary add without carry). The logical operation performed by the XOR circuit is given in

Table 9.10. Thus, if the initial contents (called the initial state) of the shift register are 1 1 1,

as shown in the first row of Figure 9.21(b), the contents for seven more successive shifts are

given by the remaining rows of this table. Therefore, the shift register again returns to the

1 1 1 state after 23� 1 ¼ 7 more shifts, which is also the length of the output sequence

taken at the third stage before repeating. By using an n-stage shift register with proper

feedback connections, PN sequences of length 2n� 1 may be obtained. Note that 2n� 1 is

the maximum possible length of the PN sequence because the total number of states of the

shift register is 2n, but one of these is the all-zeros state from which the feedback shift

register will never recover if it were to end up in it. Hence, a proper feedback connection

Table 9.10 Truth Table for the XOR Operation

Input 1 Input 2 Output

1 1 0

1 0 1

0 1 1

0 0 0

Stage
2

Stage
1

Stage
3

Three-stage MLSR

Output

1
0
0
1
0
1
1
1

1
1
0
0
1
0
1
1

1
1
1
0
0
1
0
10

t
t

1 1 1 0 0

)b()a(

1 0

Δ

Figure 9.21

Generation of a 7-bit PN sequence. (a) Generation. (b) Shift register contents.
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will be one that cycles the shift register through all states except the all-zeros state; the total

number of allowed states is therefore 2n� 1. Proper feedback connections for several values

of n are given in Table 9.11.23

Considering next the autocorrelation function (normalized to a peak value of unity) of

the periodic waveform obtained by letting the shift register in Figure 9.21(a) run indefi-

nitely, we see that its values for integer multiples of the output pulse width D ¼ nDt are
given by

R Dð Þ ¼ NA�NU

sequence length
ð9:133Þ

where NA is the number of like digits of the sequence and a sequence shifted by n pulses and

NU is the number of unlike digits of the sequence and a sequence shifted by n pulses. This

equation is a direct result of the definition of the autocorrelation function for a periodic

waveform, given inChapter 2, and the binary-valued nature of the shift register output. Thus the

autocorrelation function for the sequence generated by the feedback shift register of Figure 9.21

(a) is as shown in Figure 9.22(a), as one may readily verify. Applying the definition of the

autocorrelation function, we could also easily show that the shape for noninteger values of

delay is as shown in Figure 9.22(a).

In general, for a sequence of length N, the minimum correlation is � 1=N. One period of
the autocorrelation function of a PN sequence of length N ¼ 2n�1 can be written as

RPN tð Þ ¼ 1 þ 1

N

� �
L

t
Dt

� �
� 1

N
; jtj � NDt

2
ð9:134Þ

where L xð Þ ¼ 1� jxj for jxj � 1 and 0 otherwise is the unit-triangular function defined in

Chapter 2.

Table 9.11 Feedback Connections for Generation of PN Codes

Sequence Sequence (initial Feedback

n length state: all ones) digit

2 3 110 x1 � x2
3 7 11100 10 x2 � x3
4 15 11110 00100 x3 � x4

11010

5 31 11111 00011 x2 � x5
01110 10100

00100 10110 0

6 63 11111 10000 x5 � x6
01000 01100

01010 01111

01000 11100

10010 11011

10110 01101 010

23See R. E. Ziemer and R. L. Peterson (2001), Chapter 8, for additional sequences and proper feedback connections.
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Its power spectrum is the Fourier transform of the autocorrelation function that can be

obtained by applying (2.150). Consider only the first term of (9.134). The Fourier transform of

it is

= 1 þ 1

N

� �
L

t
Dt

� �� �
¼ 1 þ 1

N

� �
Dt sinc2 Dtfð Þ

According to (2.150), this times fs ¼ 1= N Dtð Þ is theweight multiplier of the Fourier transform

of the periodic correlation function (9.134), which is composed of impulses spaced by

fs ¼ 1= NDtð Þ, minus the contribution due to the 1=N, so

SPN fð Þ ¼
X¥

n ¼ �¥

1

N
1 þ 1

N

� �
sinc2 Dt

n

NDt

� �h i
d f � n

NDt

� �
� 1

N
d fð Þ

¼
X¥

n ¼ �¥; nÞ0

N þ 1

N2
sinc2

n

N

� �
d f � n

NDt

� �
þ 1

N2
d fð Þ

ð9:135Þ

Thus, the impulses showing the spectral content of a PN sequence are spaced by 1= NDtð Þ Hz
and are weighted by ½ðN þ 1Þ=N2� sinc2 n=Nð Þ except for the one at f ¼ 0 which has weight

1=N2. Note that this checks with theDC level of the PN code, which is � 1=N corresponding to

a DC power of 1=N2. The power spectrum for the 7-chip sequence generated by the circuit of

Figure 9.21(a) is shown in Figure 9.22(b).

Because the correlation function of a PN sequence consists of a narrow triangle around

zero delay and is essentially zero otherwise, it resembles that of white noisewhen used to drive

any system whose bandwidth is small compared with the inverse pulse width. This is another

manifestation of the reason for the name pseudo-noise.
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The synchronization of PNwaveforms at remotely located points can be accomplished by

feedback loop structures similar to the early-late gate bit synchronizer of Figure 9.19 after

carrier demodulation. By using long PN sequences, one could measure the time it takes for

propagation of electromagnetic radiation between two points and therefore distance. It is not

difficult to see how such a system could be used for measuring the range between two points if

the transmitter and receiver were colocated and a transponder at a remote location simply

retransmitted whatever it received or if the transmitted signal were reflected from a distant

target as in a radar system.

Another possibility is that both transmitter and receiver have access to a very precise clock

and that an epoch of the transmitted PN sequence is precisely known relative to the clock time.

Then by noting the delay of the received code relative to the locally generated code, the receiver

could determine the one-way delay of the transmission. This is, in fact, the technique used for

the Global Positioning System (GPS), where delays of the transmissions from at least four

satellites with accurately known positions are measured to determine the latitude, longitude,

and altitude of a platform bearing a GPS receiver at any point in the vacinity of the earth. There

are currently 24 such satellites in the GPS constellation, each at an altitude of about 12000 mi

and making two orbits in less than a day, so it is highly probable that a receiver will be able to

connect with at least four satellites no matter what its location. Modern GPS receivers are able

to connect with up to 12 satellites and are accurate to within 15 m (one-way delay accuracy).

While the autocorrelation function of a PN sequence is very nearly ideal, sometimes the

aperiodicautocorrelation functionobtainedbysliding the sequencepast itself rather thanpast its

periodic extension is important. Sequences with good aperiodic correlation properties, in the

senseof lowautocorrelationpeaksatnonzerodelays, are theBarker codes,whichhaveaperiodic

autocorrelation functions that are bounded by (sequence length)�1 for nonzero delays.24

Unfortunately the longest known Barker code is of length 13. Table 9.12 lists all known Barker

sequences (see Problem 9.32). Other digital sequences with good correlation properties can be

constructedascombinationsofappropriatelychosenPNsequences (referred toasGoldcodes).25

n 9.4 SPREAD-SPECTRUM COMMUNICATION SYSTEMS

We next consider a special class of modulation referred to as spread-spectrum modulation. In

general, spread-spectrum modulation refers to any modulation technique in which the

bandwidth of the modulated signal is spread well beyond the bandwidth of the modulating

Table 9.12 The Barker Sequences

1 0

1 1 0

1 1 0 1

1 1 1 0 1

1 1 1 0 0 1 0

1 1 1 0 0 0 1 0 0 1 0

1 1 1 1 1 0 0 1 1 0 1 0 1

24See Skolnik (1970), Chapter 20.
25See Peterson et al. (1995).
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signal, independently of the modulating signal bandwidth. The following are reasons for

employing spread-spectrum modulation:26

1. Provide resistance to intentional or unintentional jamming by another transmitter.

2. Provide a means for masking the transmitted signal in the background noise and prevent

another party from eavesdropping.

3. Provide resistance to the degrading effects of multipath transmission.

4. Provide a means for more than one user to use the same transmission channel.

5. Provide range-measuring capability.

The two most common techniques for effecting spread-spectrum modulation are referred

to as direct sequence (DS) and frequency hopping (FH). Figures 9.23 and 9.24 are block

~
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signals Wanted
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and noise
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Data
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generator
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Local carrier oscillator

Front-end
filter

Data
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code
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d(t)ˆ

(b)

(a)

× ×

× ×

Figure 9.23

Block diagram of a DS spread-spectrum communication system. (a) Transmitter. (b) Receiver.

26A good survey paper on the early history of spread spectrum is Robert A. Scholtz, The origins of spread-spectrum

communications. IEEE Transaction on Communication, COM-30: 822–854, May 1982.
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diagrams of these generic systems. Variations and combinations of these two basic systems are

also possible.

9.4.1 Direct-Sequence Spread Spectrum

In a direct-sequence spread-spectrum (DSSS) communication system, the modulation format

may be almost any of the coherent digital techniques discussed previously, although BPSK,

QPSK, andMSK are the most common. Figure 9.23 illustrates the use of BPSK. The spectrum

spreading is effected by multiplying the data d(t) by the spreading code c(t). In this case, both

are assumed to be binary sequences taking on the values þ1 and �1. The duration of a data

symbol is Tb, and the duration of a spreading-code symbol, called a chip period, is Tc. There are

usually many chips per bit, so that Tc � Tb. In this case, it follows that the spectral bandwidth

of the modulated signal is essentially dependent only on the inverse chip period. The spreading

code is chosen to have the properties of a randombinary sequence; an often-used choice for c(t)

is a PN sequence, as described in the previous section. Often, however, a sequence generated

using nonlinear feedback generation techniques is used for security reasons. It is also

advantageous, from the standpoint of security, to use the same clock for both the data and

spreading code so that the data changes sign coincident with a sign change for the spreading

code. This is not necessary for proper operation of the system, however.

Typical spectra for the system illustrated in Figure 9.23 are shown directly below the

corresponding blocks. At the receiver, it is assumed that a replica of the spreading code is

available and is time synchronized with the incoming code used to multiply the BPSK-

modulated carrier. This synchronization procedure is composed of two steps, called acquisition

d(t)
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Figure 9.24

Block diagram of an FH spread-spectrum communication system. (a) Transmitter. (b) Receiver.
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and tracking. Avery brief discussion of methods for acquisition will be given later. For a fuller

discussion and analyses of both procedures, the student is referred to Peterson et al. (1995).

A rough approximation to the spectrum of a DSSS signal employing BPSK data

modulation can be obtained by representing the modulated, spread carrier as

xc tð Þ ¼ Ad tð Þ c tð Þ cos vct þ uð Þ ð9:136Þ
where it is assumed that u is a random phase uniformly distributed in 0; 2p½ � and d tð Þ and c tð Þ
are independent, randombinary sequences [if derived from a common clock, the independence

assumption for d tð Þ and c tð Þ is not strictly valid]. With these assumptions, the autocorrelation

function for xc tð Þ is

Rxc tð Þ ¼ A2

2
Rd tð ÞRc tð Þ cos vctð Þ ð9:137Þ

where Rd tð Þ and Rc tð Þ are the autocorrelation functions of the data and spreading code,

respectively. If they are modeled as random ‘‘coin-toss’’ sequences as considered in Example

6.6 with spectrum illustrated in Figure 6.6(a), their autocorrelation functions are given by

Rd tð Þ ¼ L
t
Tb

� �
ð9:138Þ

and27

Rc tð Þ ¼ L
t
Tc

� �
ð9:139Þ

respectively. Their corresponding power spectral densities are

Sd tð Þ ¼ Tb sinc
2 Tb fð Þ ð9:140Þ

and

Sc tð Þ ¼ Tc sinc
2 Tc fð Þ ð9:141Þ

respectively, where the single-sided width of the main lobe of (9.140) is T � 1
b and that for

(9.141) is T � 1
c .

The power spectral density of xc tð Þ can be obtained by taking the Fourier transform of

(9.137):

Sxc fð Þ ¼ A2

2
Sd fð Þ*Sc fð Þ*= cos vctð Þ½ � ð9:142Þ

where the asterisk denotes convolution. Since the spectral width of Sd fð Þ is much less than that

for Sc fð Þ, the convolution of these two spectra is approximately Sc fð Þ.28 Thus the spectrum of

27Note that since the spreading code is repeated, its autocorrelation function is periodic, and hence, its power spectrum

is composed of discrete impulses whose weights follow a sinc-squared envelope. The analysis used here is a

simplified one. See Peterson, et al. (1995) for a more complete treatment.
28Note that

Ð¥
�¥ Sd fð Þdf ¼ 1 and, relative to Sc fð Þ, Sd fð Þ appears to act more and more like a delta function as

1=Tb << 1=Tc.
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the DSSS modulated signal is very closely approximated by

Sxc fð Þ ¼ A2

4
Sc f � fcð Þ þ Sc f þ fcð Þ½ �

¼ A2Tc

4
sinc2 Tc f � fcð Þ½ � þ sinc2 Tc f þ fcð Þ½ �� � ð9:143Þ

The spectrum, as stated above, is approximately independent of the data spectrum and has a

null-to-null bandwidth around the carrier of 2=Tc Hz.
We next look at the error probability performance. First, assume a DSSS signal plus

AWGN is present at the receiver. Ignoring propagation delays, the output of the local code

multiplier at the receiver (see Figure 9.23) is

z1 tð Þ ¼ Ad tð Þc tð Þc t�Dð Þ cos vct þ uð Þ þ n tð Þc t�Dð Þ ð9:144Þ
where D is the misalignment of the locally generated code at the receiver with the code on the

received signal. Assuming perfect code synchronization D ¼ 0ð Þ, the output of the coherent
demodulator is

z2 tð Þ ¼ Ad tð Þ þ n0 tð Þ þ double frequency terms ð9:145Þ
where the local mixing signal is assumed to be 2 cos vct þ uð Þ for convenience, and

n0 tð Þ ¼ 2n tð Þc tð Þ cos vct þ uð Þ ð9:146Þ
is a new Gaussian random process with zero mean. Passing z2 tð Þ through an integrate-and-

dump circuit, we have for the signal component at the output

V0 ¼ �ATb ð9:147Þ
where the sign depends on the sign of the bit at the input. The noise component at the integrator

output is

Ng ¼
ðTb
0

2n tð Þc tð Þ cos vct þ uð Þ dt ð9:148Þ

Since n(t) has zero mean, Ng has zero mean. Its variance, which is the same as its second

moment, can be found by squaring the integral, writing it as an iterated integral, and taking the

expectation inside the double integral—a procedure that has been used several times before in

this chapter and the previous one. The result is

var Ng


 � ¼ E N2
g

� �
¼ N0Tb ð9:149Þ

where N0 is the single-sided power spectral density of the input noise. This, together with the

signal component of the integrator output, allows us to write down an expression similar to the

one obtained for the baseband receiver analysis carried out in Section 8.1 (the only difference is

that the signal power is A2=2 here, whereas it was A2 for the baseband signal considered there).

The result for the probability of error is

PE ¼ Q

ffiffiffiffiffiffiffiffiffiffi
A2Tb

N0

s !
¼ Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
ð9:150Þ

With Gaussian noise alone, DSSS ideally performs the same as BPSK without the spread-

spectrum modulation.
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9.4.2 Performance in Continuous-Wave(CW)
Interference Environments

Consider next a CW interference component of the form xI tð Þ ¼ AI cos vc þ Dvð Þt þ f½ �.
Now, the input to the integrate-and-dump detector, excluding double frequency terms, is

z02 tð Þ ¼ Ad tð Þ þ n0 tð Þ þ AI cos Dvt þ u�fð Þ ð9:151Þ
where AI is the amplitude of the interference component, f is its relative phase, and Dv is its

offset frequency from the carrier frequency in radians per second (rad/s). It is assumed that

Dv < 2p=Tc. The output of the integrate-and-dump detector is

V 00 ¼ �ATb þ Ng þ NI ð9:152Þ
The first two terms are the same as obtained before. The last term is the result of interference

and is given by

NI ¼
ðTb
0

AIc tð Þ cos Dvt þ u�fð Þ dt ð9:153Þ

Because of the multiplication by the wideband spreading code c(t) and the subsequent

integration, we approximate this term by an equivalent Gaussian random variable (the integral

is a sumof a large number of randomvariables, with each term due to a spreading code chip). Its

mean is zero, and for Dv� 2p=Tc, its variance can be shown to be

var NIð Þ ¼ TcTbA
2
I

2
ð9:154Þ

With this Gaussian approximation for NI, the probability of error can be shown to be

PE ¼ Q

ffiffiffiffiffiffiffiffiffiffi
A2T2

b

s2
T

s !
ð9:155Þ

where

s2
T ¼ N0Tb þ TcTbA

2
I

2
ð9:156Þ

is the total variance of the noise plus interference components at the integrator output

(permissible because noise and interference are statistically independent). The quantity under

the square root can be further manipulated as

A2T2
b

2s2
T

¼ A2=2

N0=Tb þ Tc=Tbð Þ A2
I =2ð Þ

¼ Ps

Pn þ PI=GP

ð9:157Þ

where

Ps ¼ A2=2 is the signal power at the input.

Pn ¼ N0=Tb is the Gaussian noise power in the bit-rate bandwidth.

PI ¼ A2
I =2 is the power of the interfering component at the input.

Gp¼ Tb=Tc is called the processing gain of the DSSS system.
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It is seen that the effect of the interference component is decreased by the processing gain

Gp. Equation (9.157) can be rearranged as

A2T2
b

2s2
T

¼ SNR

1 þ SNR JSRð Þ=GP

ð9:158Þ

where

SNR ¼ Ps=Pn ¼ A2Tb= 2N0ð Þ ¼ Eb=N0 is the signal-to-noise ratio.

JSR ¼ PI=Ps is the jamming-to-signal power ratio.

Figure 9.25 shows PE versus the SNR for several values of JSRwhere that the curves approach

a horizontal asymptote for SNR sufficiently large, with the asymptote decreasing with

decreasing JSR/Gp.

9.4.3 Performance in Multiple User Environments

Animportantapplicationofspread-spectrumsystemsismultiple-accesscommunicationswhich

means that several users may access a common communication resource to communicate with

other users. If severaluserswere at the same location communicatingwith a likenumberofusers

at anothercommonlocation, the terminologyusedwouldbemultiplexing (recall that frequency-

and time-divisionmultplexingwere discussed in Chapter 3). Since the users are not assumed to

be at the same location in the present context, the termmultiple access is used. There are various

ways to effect multiple-access communications including frequency, time, and code.

In frequency-division multiple access (FDMA), the channel resources are divided

in frequency, and each active user is assigned a subband of the frequency resource. In
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PE versus SNR for DSSS with

Gp ¼ 30 dB for various jamming-to-

signal ratios.
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time-division multiple access (TDMA) the communication resource is divided in time into

contiguous frames which are composed of a series slots, and each active user is assigned a slot

(see the discussion under Satellite Communications in Section 9.6).When all subbands or slots

are assigned in FDMA and TDMA, respectively, no more users can be admitted to the system.

In this sense, FDMA and TDMA are said to have hard capacity limits.

In the one remaining access system mentioned above, code-division multiple access

(CDMA), each user is assigned a unique spreading code, and all active users can transmit

simultaneously over the same band of frequencies. Another user who wants to receive

information from a given user then correlates the sum total of all these receptions with the

spreading code of the desired transmitting user and receives its transmissions assuming that the

transmitter–receiver pair is properly synchronized. If the set of codes assigned to the users is not

orthogonal or if they are orthogonal but multiple delayed components arrive at a given

receiving user due to multipath, partial correlation with other users appears as noise in the

detector of a particular receiving user of interest. These partial correlationswill eventually limit

the total number of users that can simultaneously access the system, but the maximum number

is not fixed as in the cases of FDMA and TDMA. It will depend on various system and channel

parameters, such as propagation conditions. In this sense, CDMA is said to have a soft capacity

limit. (There is the possibility that all available codes are used before the soft capacity limit is

reached.)

Several means for calculating the performance of a CDMA receivers have been published

in the literature over the past few decades.29 We take a fairly simplistic approach30 in that the

multiple-access interference is assumed sufficiently well represented by an equivalent

Gaussian random process. In addition, we make the usual assumption that power control is

used so that all users� transmissions arrive at the receiver of the user of interest with the same

power. Under these conditions, it can be shown that the received bit-error probability can be

approximated by

PE ¼ Qð
ffiffiffiffiffiffiffiffiffiffi
SNR
p

Þ ð9:159Þ
where

SNR ¼ K� 1

3N
þ N0

2Eb

� ��1
ð9:160Þ

in whichK is the number of active users andN is the number of chips per bit (i.e., the processing

gain).

Figure 9.26 shows PE versus Eb=N0 for N ¼ 255 and various numbers of users. It is seen

that an error floor is approached asEb=N0!¥ because of the interference fromother users. For

example, if 60 users are active and aPE of 10
�4 is desired, it cannot be achieved nomatter what

Eb=N0 is used. This is one of the drawbacks of CDMA, and much research has gone into

combating this problem, for example,multiuser detection,where the presence ofmultiple users

is treated as a multihypothesis detection problem. Due to the overlap of signaling intervals,

multiple symbols must be detected, and implementation of the true optimum receiver is

29See K. B. Letaief, Efficient evaluation of the error probabilities of spread-spectrum multiple-access commu-

nications. IEEE Transactions on Communications, 45, 239–246, February 1997.
30SeeM.B. Pursley, Performance evaluation of phase-coded spread-spectrummultiple-access communication—Part

I: System analysis. IEEE Transactions on Communications, COM-25: 795–799, August 1977.

9.4 Spread-Spectrum Communication Systems 517

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


computationally infeasible for moderate to large numbers of users. Various approximations to

the optimum detector have been proposed and have been investigated.31

The situation is even worse if the received signals from the users have differing powers. In

this case, the strongest user saturates the receiver, and the performances for theweaker users are

unacceptable. This is known as the near-far problem.

A word about accuracy of the curves shown in Figure 9.26 is in order. The Gaussian

approximation for multiple-access interference is almost always optimistic, with its accuracy

becoming better themore users and the larger the processing gain (the conditions of the central-

limit theorem are more nearly satisfied then).

COMPUTER EXAMPLE 9.3

TheMATLABprogramgiven below evaluates the bit-error probability forDSSS in aK-user environment.

The program was used to plot Figure 9.26.

% file c9ce3.m
% Bit error probability for DSSS in multi-users
%
N ¼ input(‘Enter processing gain (chips per bit) ’);
K ¼ input(‘Enter vector of number of users ’);
clf
z_dB ¼ 0:.1:30;
z ¼ 10.^(z_dB/10);
LK ¼ length(K);
for n ¼ 1:LK

31See Verdu (1998).
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KK ¼ K(n);
SNR_1 ¼ (KK-1)/(3*N)þ1./(2*z);
SNR ¼ 1./SNR_1;
Pdsss¼qfn(sqrt(SNR));

semilogy(z_dB,Pdsss),axis([min(z_dB) max(z_dB) 10^(-8) 1]),...
xlabel(‘{\itE_b\N}_0, dB’),ylabel(‘{\itP_E}’),...
text(z_dB(170), 1.1*Pdsss(170), [num2str(KK), ‘ users’])
if n ¼¼ 1

grid on
hold on

end
end
title([‘Bit error probability for DSSS; number of chips per bit ¼ ’,num2str
(N)])

% This function computes the Gaussian Q-function
%
function Q¼qfn(x)
Q ¼ 0.5*erfc(x/sqrt(2));

&

9.4.4 Frequency-Hop Spread Spectrum

In the case of frequency-hop spread spectrum (FHSS), the modulated signal is hopped in a

pseudorandom fashion among a set of frequencies so that a potential eavesdropper does not

know in what band to listen or jam. Current FHSS systemsmay be classified as fast hop or slow

hop, depending onwhether one or several data bits are included in a hop, respectively. The data

modulator for either is usually a noncoherent type such as FSK or DPSK, since frequency

synthesizers are typically noncoherent from hop to hop. Even if one goes to the expense of

building a coherent frequency synthesizer, the channel may not preserve the coherency

property of the synthesizer output. At the receiver, as shown in Figure 9.24, a replica of the

hopping code is produced and synchronizedwith the hopping pattern of the received signal and

used to de-hop the received signal. Demodulation and detection of the de-hopped signal that is

appropriate for the particular modulation used is then performed.

EXAMPLE 9.5

Abinary data source has a data rate of 10 kbps, and aDSSS communication system spreads the datawith a

127-chip short code system (i.e., a system where one code period is used per data bit). (1) What is the

approximate bandwidth of theDSSS/BPSK transmitted signal? (2) A FHSS–BFSK (noncoherent) system

is to be designedwith the same transmit bandwidth as theDSSS–BPSK system.Howmany frequency-hop

slots does it require?

S o l u t i o n

(1) The bandwidth efficiency of BPSK is 0.5, which gives a modulated signal bandwidth for the unspread

system of 20 kHz. The DSSS system has a transmit bandwidth of roughly 127 times this, or a total

bandwidth of 2.54 MHz. (2) The bandwidth efficiency of coherent BFSK is 0.4, which gives a modulated

signal bandwidth for the unspread system of 25 kHz. The number of frequency hops required to give the

same spread bandwidth as the DSSS system is therefore 2,540,000=25,000¼ 101.6. Since we can�t have a
partial hop slot, this is rounded up to 102 hop slots giving a total FHSS bandwidth of 2.55 MHz.

&
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9.4.5 Code Synchronization

Only a brief discussion of code synchronizationwill be given here. For detailed discussions and

analyses of such systems, the reader is referred to Peterson et al. (1995).32

Figure 9.27(a) shows a serial-search acquisition circuit for DSSS. A replica of the

spreading code is generated at the receiver and multiplied by the incoming spread-spectrum

signal (the carrier is assumed absent in Figure 9.27 for simplicity). Of course, the code epoch is

unknown, so an arbitrary local code delay relative to the incoming code is tried. If it is within

� 1
2
chip of the correct code epoch, the output of themultiplier will bemostly despread data and

its spectrum will pass through the bandpass filter whose bandwidth is of the order of the data

bandwidth. If the code delay is not correct, the output of themultiplier remains spread and little

power passes through the bandpass filter. The envelope of the bandpass filter output is

32For an excellent tutorial paper on acquisition and tracking, see S. S. Rappaport and D.M. Grieco, Spread-spectrum

signal acquisition: Methods and technology. IEEE Communications Magazine, 22 (6): 6–21 June 1984.
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Code acquisition circuits for (a) DSSS and (b) FHSS using serial search.
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compared with a threshold—a value below threshold denotes an unspread condition at the

multiplier output and, hence, a delay that does not match the delay of the spreading code at the

receiver input, while a value above threshold indicates that the codes are approximately

aligned. If the latter condition holds, the search control stops the code search and a tracking

mode is entered. If the below-threshold condition holds, the codes are assumed to be not

aligned, so the search control steps to the next code delay (usually a half chip) and the process is

repeated. It is apparent that such a process can take a relatively long time to achieve lock. The

mean time to acquisition is given by33

Tacq ¼ C� 1ð ÞTda 2�Pd

2Pd

� �
þ Ti

Td
ð9:161Þ

where

C ¼ code uncertainty region (the number of cells to be searched—usually the number of

half chips.

Pd ¼ probability of detection.

Pfa ¼ probability of false alarm.

Ti ¼ integration time (time to evaluate one cell).

Tda ¼ Ti þ TfaPfa.

Tfa ¼ time required to reject an incorrect cell (typically several times Ti).

Other techniques are available that speed up the acquisition, but at the expense of more

hardware or special code structures.

A synchronization scheme for FHSS is shown in Figure 9.27(b). The discussion of its

operation would be similar to that for acquisition in DSSS except that the correct frequency

pattern for despreading is sought.

EXAMPLE 9.6

Consider a DSSS system with code clock frequency of 3 MHz and a propagation delay uncertainty of

�1:2 ms. Assume that Tfa ¼ 100Ti and that Ti ¼ 0:42 ms. Compute the mean time to acquire for

(a) Pd ¼ 0:82 and Pfa ¼ 0:004 (threshold of 41); (b) Pd ¼ 0:77 and Pfa ¼ 0:002 (threshold of 43);

(c) Pd ¼ 0:72 and Pfa ¼ 0:0011 (threshold of 45);

S o l u t i o n

The propagation delay uncertainty corresponds to a value forC of (one factor of 2 because of the�1:2ms

and the other factor of 2 because of the 1/2-chip steps)

C ¼ 2� 2 1:2� 10�3 s

 �

3� 106 chips=s

 � ¼ 14;400 half chips

The result for the mean time to acquisition becomes

Tacq ¼ 14;399 Ti þ 100TiPfað Þ
�
2�Pd

2Pd

�
þ Ti

Pd

¼
�
14;399 1 þ 100Pfað Þ

�
2�Pd

2Pd

�
þ 1

Pd

�
Ti

33See Peterson, et al. (1995), Chapter 5.
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With Ti ¼ 0:42 ms and the values Pd of Pfa and given above we obtain the following for the mean time to

acquire:

(a) Tacq ¼ 6:09 s; (b) Tacq ¼ 5:80 s; (c) Tacq ¼ 5:97 s. There appears to be an optimum threshold

setting.

&

9.4.6 Conclusion

From the preceding discussions and the block diagrams of the DS and FH spread-spectrum

systems, it should be clear that nothing is gained by using a spread-spectrum system in terms of

performance in an additive white Gaussian noise channel. Indeed, using such a system may

result in slightlymore degradation than by using a conventional system, owing to the additional

operations required. The advantages of spread-spectrum systems accrue in environments that

are hostile to digital communications—environments such as those in which multipath

transmission or jamming of channels exist. In addition, since the signal power is spread over

a much wider bandwidth than it is in an ordinary system, it follows that the average power

density of the transmitted spread-spectrum signal is much lower than the power density when

the spectrum is not spread. This lower power density gives the sender of the signal a chance to

mask the transmitted signal by the background noise and thereby lower the probability that

anyone may intercept the signal.

One last point is perhaps worth making: It is knowledge of the structure of the signal that

allows the intended receiver to pull the received signal out of the noise. The use of correlation

techniques is indeed powerful.

n 9.5 MULTICARRIER MODULATION AND ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING

One approach to combatting ISI, say, due to filtering or multipath imposed by the channel, and

adapting the modulation scheme to the signal-to-noise characteristics of the channel is termed

multicarrier modulation (MCM). Multicarrier modulation is actually a very old idea that has

enjoyed a resurgence of attention in recent years because of the intense interest in maximizing

transmission rates through twisted pair telephone circuits as one solution to the ‘‘last mile

problem’’mentioned in Chapter 1.34 For a easy-to-read overview on its application to so-called

digital subscriber lines (DSL), several references are available.35 Another area that MCM has

been applied with mixed succses is to digital audio broadcasting, particularly in Europe.36 An

extensive tutorial article directed toward wireless communications has been authored byWang

and Giannakis.37

The basic idea is the following for a channel that introduces ISI, e.g., amultipath channel or

a severely bandlimited one such as local data distribution in a telephone channel, which is

34See, for example, R.W. Chang, and R. A. Gibby, A theoretical study of performance of an orthogonal multiplexing

data transmission scheme. IEEE Transactions on Communication Technology,COM-16: 529–540, August 1968.
35See, for example, J. A. C. Bingham, Multicarrier modulation for data transmission: an idea whose time has come.

IEEE Communications Magazine, 28: 5–14, May 1990.
36http://en.wikipedia.org/wiki/Digital_audio_broadcasting.
37Z. Wang and G. B. Giannakis, Wireless multicarrier communications. IEEE Signal Processing Magazine, 17:

29–48, May 2000.
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typically implemented bymeans of twisted pair wireline circuits. For simplicity of illustration,

consider a digital data transmission scheme that employs two subcarriers of frequencies f1
and f2 each of which is BPSK modulated by bits from a single serial bit stream as shown

in Figure 9.28(a). For example, the even-indexed bits from the serial bit stream, denoted d1 in

bipolar format, could modulate subcarrier 1 and the odd-indexed bits, denoted d2, could

modulate subcarrier 2, giving a transmitted signal in the nth transmission interval of

x tð Þ ¼ A d1 tð Þ cos 2pf1tð Þ þ d2 tð Þ cos 2pf2tð Þ½ �; 2 n� 1ð ÞTb � t � 2nTb ð9:162Þ
Note that since every other bit is assigned to a given carrier, the symbol duration for the

transmitted signal through the channel is twice the bit period of the original serial bit stream.

The frequency spacing between subcarriers is assumed to be f2� f1 	 1=2T , where T ¼ 2Tb
in this case.38 This is the minimum that the frequency separation can be in order for the

subcarriers to be orthogonal; i.e., their product when integrated over an interval of 2T gives

zero. The received signal is mixedwith cosð2pf1tÞ and cosð2pf2tÞ in separate parallel branches
at the receiver and each BPSK bit stream is detected separately. The separate parallel detected

bit streams are then reassembled into a single serial bit stream. Because the durations of the

symbols sent through the channel are twice the original bit durations of the serial bit stream at

the input, this system should be more resistant to any ISI introduced by the channel than if the

original serial bit stream were used to BPSK modulate a single carrier.
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Basic concepts of MCM. (a) A simple two-tone MCM system. (b) A specialization of MCM to OFDM

with FFT processing.

38With a frequency separation of 1=T , MCM is usually referred to as orthogonal frequency division multiplexing

(OFDM).
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To generalize (9.162), consider N subcarriers and N data streams each of which couldM-

ary modulated (e.g., using PSK or QAM). Therefore, the composite modulated signal can be

represented as

x tð Þ ¼
X¥
k¼�¥

XN� 1

n¼0
xn t� kTð Þ cos 2pfntð Þ� yn t� kTð Þ sin 2pfntð Þ½ �

¼ Re
X¥
k¼�¥

XN� 1

n¼0
dn t� kTð Þ exp j2pfntð Þ

" # ð9:163Þ

For example, if each subcarrier is QAM modulated with the same number of bits, then

dn tð Þ ¼ xk; n þ jyk; n

 �

P t� T=2ð Þ=T½ � where, in accordance with the discussion following

(9.57), xk; n, yk; n 2 �a; � 3a; . . . ;� ffiffiffiffiffi
M
p � 1

 �

a
 �

. Thus, each subcarrier carries log2M bits

of information for a total across all subcarriers ofN log2 M bits each T s. If derived from a serial

bit stream where each bit is Tb seconds in duration, this means that the relationship between T

and Tb is

T ¼ NTs ¼ N log2 Mð ÞTb s ð9:164Þ
where Ts ¼ log2 Mð ÞTb. Thus, it is clear that the symbol interval can be much longer than the

original serial bit stream bit period and can be made much longer than the time difference

between the first- and last-arriving multipath components of a multipath channel (this defines

the delay spread of the channel).

EXAMPLE 9.7

Consider amultipath channelwith a delay spread of 10ms throughwhich it is desired to transmit data at a bit

rateof1Mbps.Clearly thispresents a severe intersymbol interferencesituation if the transmission takesplace

serially. Design anMCM system that has a symbol period that is at least a factor of 10 greater than the delay

spread, thus resulting in multipath components spreading into succeeding symbols intervals by only 10%.

S o l u t i o n

Using (9.164) with T ¼ 10� 10 ms and Tb ¼ 1=Rb ¼ 1=106 ¼ 10� 6 s, we have

10� 10� 10� 6 ¼ N log2 Mð Þ � 10� 6

or

N log2 M ¼ 100

Several values of M with the corresponding values for N, the number of subcarriers, are given below:

Note that since we can�t have a fraction of a subcarrier, in the case of M ¼ 8, N has been rounded

up. Usually a coherent modulation scheme such as M-ary PSK or M-ary QAM would be used.

M N

2 100

4 50

8 34

16 25

32 20
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The synchronization required for the subcarriers would most likely be implemented by inserting pilot

signals spaced in frequency and periodically in time.

&

Note that the powers of the individual subcarriers can be adjusted to fit the noise level

characteristics of the channel. At frequencies where the SNR of the channel is low, we want a

correspondingly low subcarrier power to be used, and at frequencieswhere the noise level of the

channel is high, wewant a correspondingly high subcarrier power to be used; i.e., the preferred

transmission band is where the SNR is largest.39

An advantage of MCM is that it can be implemented by means of the DFT or its fast

version, the FFTas introduced in Chapter 2. Consider (9.163) with just the data block at k¼ 0

and a subcarrier frequency spacing of 1=T ¼ 1=NTs Hz. The baseband complex modulated

signal is then

~x tð Þ ¼
XN� 1

n¼0
dn tð Þ exp j2pnt

NTs

� �
ð9:165Þ

If this is sampled at epochs t ¼ kTs, then (9.165) becomes

~x kTsð Þ ¼
XN� 1

n¼0
dn exp

j2pnk

N

� �
; k ¼ 0; 1; . . . ; N � 1 ð9:166Þ

which is recognized as the inverseDFTgiven inChapter 2 (there is a factor 1/Nmissing, but this

can be accommodated in the direct DFT).40 In the form of (9.165) or (9.166), MCM is referred

to as orthogonal frequency division multiplexing (OFDM) and is illustrated in Figure 9.28(b).

The processing at the transmitter consists of the following steps:

1. Parse the incoming bit stream (assumed binary) into N blocks of log2 M bits each.

2. Form the complex modulating samples, dn ¼ xn þ jyn; n ¼ 0; 1; . . . ; N� 1.

3. Use these N blocks of symbols as the input to an inverse DFT or FFT algorithm.

4. Serially read out the inverseDFToutput, interpolate, and use as themodulating signal on the

carrier (not shown).

At the receiver, the inverse set of steps is performed. Note that the DFT at the receiver

ideally produces d0; d1; . . . ; dN� 1. Since noise and ISI are present with practical channels,

there will inevitably be errors. To combat the ISI, one of two things can be done:

1. A blank time interval can be inserted following each OFDM symbol, allowing a space to

protect against the ISI.

2. AnOFDM signal with a lengthened duration (greater than or equal to the channel memory)

inwhich an added prefix repeats the signal from the end of the current symbol interval can be

used (referred to as a cyclic prefix).

It can be shown that the latter procedure completely eliminates the ISI in OFDM.

39See G. David Forney, Jr., Modulation and coding for linear Gaussian channels. IEEE Transactions on Information

Theory, 44: 2384–2415, October 1998 for more explanation on this ‘‘water pouring’’ procedure, as it is known.
40This concept was reported in the paper S. B. Weinstein and Paul M. Ebert,‘‘Data Transmission for Frequency

Division Multiplexing Using the Discrete Fourier Transform.’’ IEEE Trans. on Commun. Technol., vol. 19, pp.

628–634, Oct. 1971.
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Asmight be expected, the true state of affairs for MCM or OFDM is not quite so simple or

desirable as outlined here. Some oversimplified features or disadvantages of MCM or OFDM

are the following:

1. To achieve full protection against ISI as hinted at above, coding is necessary.With coding, it

has been demonstrated that MCM affords about the same performance as a well-designed

serial data transmission system with equalization and coding.41

2. The addition of several parallel subcarriers results in a transmitted signal with a highly

varying envelope, even if the separate subcarriers employ constant-envelope modulation

such as BPSK. This has implications regarding final power amplifier implementation at the

transmitter. Such amplifiers operate most efficiently in a nonlinear mode (class B or C

operation). Either the final power amplifiermust operate linearly forMCM,with a penalty of

lower efficiency, or distortion of the transmitted signal and subsequent signal degradation

will take place.

3. The synchronization necessary for N subcarriers may be more complex than for a single-

carrier system.

4. Clearly, using MCM adds complexity in the data transmission process; whether this

complexity is outweighed by the faster processing speeds required of a serial transmission

scheme employing equalization is not clear (with the overall data rates the same, of course).

n 9.6 SATELLITE COMMUNICATIONS

In this section we look at the special application area of satellite communications to illustrate

the use of some of the error probability results derived in Chapters 8 and 9.

Satellite communications were first conceived in the 1950s. The first satellite equipped

with onboard radio transmitters was Sputnik 1, a Soviet satellite launched in the fall of 1957.

The first U.S. communications satellite was Echo I, a passive reflecting sphere, which was

launched in May of 1960. The first active U.S. satellite, Courier, where active refers to the

satellite�s ability to receive, amplify, and retransmit signals, was launched in 1960. It had only

two transmitters and had a launch mass of only 500 lb. (Score was launched in 1958, but

transmitted a prerecorded message.) In contrast, Intelsat VI, launched in 1986, had 77

transmitters and had a launch mass of 3600 lb. By comparison, Intelsat X has a launch mass

of over 12,000 lb, 45 C-band transponders, and 16 Ku-band transponders. The first geosta-

tionary satellite over the Pacific Ocean was Syncom 3, launched in 1964 and was used to relay

television coverage on the 1964 Summer Olympics in Tokyo to the United States. Over the

Atlantic Ocean the first geostationary satellite was Intelesat I, launched in 1965.

Figure 9.29(a) shows a typical satellite repeater link, and Figure 9.29(b) shows a

frequency-translating ‘‘bent-pipe’’ satellite communications system. Frequency translation

is necessary to separate the receive and transmit frequencies and thus prevent ‘‘ring-around.’’

Another type of satellite communication system, known as a demod–remod system [also

referred to as onboard processing (OBP)], is shown in Figure 9.29(c). In such a satellite

repeater, the data are actually demodulated and subsequently remodulated onto the downlink

carriers. In addition to the relay communications system on board the satellite, other

41See H. Sari, G. Karam, and I. Jeanclaude, ‘‘Transmission Techniques for Digital Terrestrial TV Broadcasting,’’

IEEE Communications Magazine, Vol. 33, pp. 100–109, Feb. 1995.
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communications systems include ranging (to provide a range measurement to the satellite),

command (to receive commands from an earth station to control the satellite), and telemetry (to

relay data about the satellite�s condition back to the earth).

Early satellite transmissions took place in the UHF, C, or X bands. Because of the

subsequent crowding of these bands, new satellite frequency allocations were added at K, V,

and Q bands (Table 1.2). Services are classified as fixed-point (communications between a

satellite and fixed ground station), broadcast (transmission to many receivers), and mobile

(e.g., communications to aircraft, ships, and land vehicles). Intersatellite refers to commu-

nications between satellites.

It is important that satellites be stabilized so that the antennas can be pointed to

predetermined points on the earth�s surface. Early satellites were spin-stabilized, which means

that the satellites were physically spun about an axis that kept them oriented in a particular

relationship to the earth as a result of the gyroscopic effect. Because of the difficulty in

despinning ever-more-complicated antenna systems, present-day satellites are almost all

three-axis stabilized. This means that a three-axis gyroscope system is on board to sense

Relay
satellite

IF Amplifier

Local osc.

noitatsdnuorGnoitatsdnuorG

Full duplex

~

f3f1

f2f4

(a)

(c)

(b)

HPALNA

× n× m

××
Receive
antenna

f1

Transmit
antenna

HPAModulator
Demodulator

and
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LNA
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antenna

f1

Transmit
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f2

f2 = f1 – mfLO + nfLOf1 – mfLO

mfLO nfLO
LNA = low-noise amplifier
HPA = high-power amplifier

×

Figure 9.29

Various satellite relay link communications configurations. (a) Satellite repeater link. (b) Frequency-

translation satellite communications relay. (c) Demod and/or remod, or on-board processing, satellite

communications relay.
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deviations from the desired orientation, and the resulting control signals derived from them are

used to turn thrusters on and off in order to maintain the desired orientation.

Satellites can be in low-Earth orbits (LEO), medium-Earth orbits (MEO), geostationary

orbits (GEO), or interplanetary orbits. A geostationary orbit is one such that the satellite is at an

altitude over the equator so that its angular rotation rate exactly matches that of the Earth�s,
and it therefore appears to be stationary with respect to the earth. Geostationary altitude is

35,784 km or 22,235 statute miles (1 mile is approximately 1.6 km).

Geostationary satellites find commerical applications in television broadcast [in recent

years, small-dish direct broadcast satellite (DBS) systems have replaced the large-dish systems

of the past] and long-distance telephone relay (although lightwave cables are preferable from a

quality of transmission standpoint since the roundtrip delay is significantly less).

With GEO satellites being so prevalent, it is perhaps worthwhile to give examples of LEO

andMEO satellite applications.Weather, or environmental, monitoring satellites are bothGEO

(the U.S. satellites of this type are GOES-East over the Amazon River and GEOS-West over

the eastern Pacific Ocean) and LEO with the latter being polar orbiting at typical altitudes of

850 km from which they are able to view any place on Earth with a given location being

viewed twice each day under similar lighting conditions. Another MEO system is the GPS of

24 satellites, as mentioned earlier, wherein the satellites orbit in half-synchronous orbits

(i.e., 12-h periods). At the turn of the century, several partnerships were working on LEO

satellite systems for usewith mobile satellite communications services—two examples are the

Globalstar and Iridium systems, both of which proved to be uneconomical in comparison with

terrestrial mobile telephone systems except for specialized applications.

9.6.1 Antenna Coverage

Coverage of the Earth by an antenna mounted on a satellite can be hemispherical, continental,

or zonal depending on the antenna design. Antenna designs are now possible that cover several

zones or spots simultaneously on the Earth�s surface. Such designs allow frequency reuse, in

that the same band of frequencies can be reused in separate beams, which effectivelymultiplies

the bandwidth of the satellite transponder available for communications by the reuse factor.

Figure 9.30 shows a typical antenna gain pattern in polar coordinates. The maximum gain can

Beamwidth

Sidelobe pattern

Mainbeam pattern

Gain G0

G( )φ
φ

Figure 9.30

Polar representation of a general antenna gain function.
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be roughly calculated from

G0 ¼ ra
4p

l2

� �
A ð9:167Þ

where

ra¼ antenna efficiency � 1ð Þ
l¼ wavelength, m

A¼ aperture area, m2

For a circular aperture of diameter d, A ¼ pd2=4 and (9.167) becomes

G0 ¼ ra
pd

l

� �2

ð9:168Þ

The half-power beamwidth of an antenna can be approximated as

f3dB ¼
l

d
ffiffiffiffiffi
ra
p rad ð9:169Þ

A convenient approximation for the antenna pattern of a parabolic reflector antenna for small

angles off boresight (such that the gain is within 6 dB of the maximum value) is

g fð Þ ¼ ra
pd

l

� �2

exp � 2:76
f

f3dB

� �2
" #

ð9:170Þ

EXAMPLE 9.8

Find the aperture diameter and maximum gain for a transmit frequency of 10 GHz and ra ¼ 0:8 if from
geosynchronous altitude, the following coverages are desired: (a) hemispherical, (b) continental United

States (CONUS), and (c) a 150-mi-diameter spot.

S o l u t i o n

The wavelength at 10 GHz is

l ¼ 3� 108 m=s

10� 109Hz
¼ 0:03 m

¼ 0:03 m

0:3048 m=ft
¼ 0:0984 ft

a. Geosynchronous altitude is 22,235 statutemiles, and the earth�s radius is 3963mi. The angle subtended

by the earth from geosynchronous altitude is

fhemis ¼
2 3963ð Þ
22; 235

¼ 0:356 rad

Equating this to f3dB in (9.169) and solving for d, we have

d ¼ 0:0984

0:356
ffiffiffiffiffiffiffi
0:8
p ¼ 0:31 ft

b. The angle subtended by CONUS from geosynchronous altitude is

fCONUS ¼
4000

22; 235
¼ 0:18 rad
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Thus, from (9.169),

d ¼ 0:0984

0:18ð Þ ffiffiffiffiffiffiffi0:8
p ¼ 0:61 ft

c. A 150-mi-diameter spot on the earth�s surface directly below the satellite subtends an angle of

f150 ¼
150

22; 235
¼ 0:0067 rad

from geosynchronous orbit. The diameter of an antenna with this beamwidth is

d ¼ 0:0984

0:0067
ffiffiffiffiffiffiffi
0:8
p ¼ 16:3 ft

Note that doubling the frequency to 20 GHz would halve these diameters.
&

9.6.2 Earth Stations and Transmission Methods

Figure 9.31 shows a block diagram of the transmitter and receiving end of an Earth station.

Signals from several sources enter the Earth station (e.g., telephone, television, etc.), where-

upon two transmission options are available. First, the information from a single source can be

placed on a single carrier. This is referred to as single-channel-per-carrier (SCPC). Second,

information from several sources can be multiplexed together and placed onto contiguous

intermediate frequency carriers, the sum translated to RF, power amplified, and transmitted. At

the receiving end, the reverse process takes place.

At this point, it is useful to draw a distinction between multiplexing and multiple access.

Multiple access (MA), like multiplexing, involves sharing of a common communications

HPA = High-power amplifier
LNA = Low-noise amplifier
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Figure 9.31

Satellite ground station receiver–transmitter configuration.
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resource among several users. However, whereas multiplexing involves a fixed assignment of

this resource at a local level, MA involves the remote sharing of a communication resource,

and this sharing may under certain circumstances change dynamically under the control of

a system controller. As mentioned before, there are three main techniques in use for jointly

utilizing the communication resources of a remote resource, such as a relay satellite.

These are

1. Frequency-division multiple access, wherein the communication resource is divided up in

frequency

2. Time-division multiple access, wherein the resource is divided up in time

3. Code-division multiple access, wherein a unique code is assigned to each intended user and

the separate transmissions are separated by correlation with the code of the desired

transmitting party

Figure 9.32 illustrates these three accessing schemes. In FDMA, signals from various

users are stacked up in frequency, just as for frequency-division multiplexing, as shown in

Figure 9.32 (a). Guard bands are maintained between adjacent signal spectra to minimize

crosstalk between channels. If frequency slots are assigned permanently to the users, the

system is referred to as fixed-assigned multiple access (FAMA). If some type of dynamic

allocation scheme is used to assign frequency slots, it is referred to as a demand-assigned

multiple access (DAMA) system.

Transmitted
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from station A

Satellite transponder bandwidth

Station B Station D
Station E

Station F
Station G
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Time
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eq

ue
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Figure 9.32

Illustration of MA techniques. (a) FDMA. (b) TDMA. (c) CDMA using frequency-hop modulation

(numbers denote hopping sequences for channels 1, 2, and 3).
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In TDMA, the messages from various users are interlaced in time, just as for TDM, as

shown in Figure 9.32 (b). As illustrated in Figure 9.33, the data from each user are conveyed in

time intervals called slots. A number of slots make up a frame. Each slot is made up of a

preamble plus information bits. The functions of the preamble are to provide identification and

allow synchronization of the slot at the intended receiver. Guard times are utilized between

each user�s transmission to minimize crosstalk between channels.

It is necessary tomaintain overall network synchronization in TDMA, unlike FDMA. If, in

a TDMAsystem, the time slots thatmake up each frame are preassigned to specific sources, it is

referred to as FAMA; if time slots are not preassigned, but assigned on a dynamic basis, the

technique is referred to asDAMA.Demand-assignedmultiple access schemes require a central

network controller and a separate low-information-rate channel between each user and the

controller to carry out the assignments. A DAMA TDMA system is more efficient in the

face of bursty traffic than a FAMA system.

In CDMA, each user is assigned a code that ideally does not correlate with the codes

assigned to other users, and the transmissions of a desired user are separated from those of

all other users at a given receiving site through correlation with a locally generated replica

of the desired user�s code. Two ways that the messages can be modulated with the code for a

given user is through DSSS or FHSS (see Section 9.4). Although CDMA schemes can be

operated with network synchronization, it is obviously more difficult to do this than to

operate the system asynchronously, and therefore asynchronous operation is the preferred

mode. When operated asynchronously, one must account for MA noise, which is a

manifestation of the partial correlation of a desired user�s code with all other users� codes
present on the system.

9.6.3 Link Analysis: Bent-Pipe Relay

In Appendix A, a single one-way link budget is considered for a satellite communications

system. Consider now the situation depicted in Figure 9.34. A transmitted signal from a ground

station is broadcast to a satellite with power Pus, where the subscript u stands for uplink. Noise

referred to the satellite input has power Pun. The sum of the signal and noise is amplified by the

satellite repeater to give a transmitted power from the satellite of

PT ¼ G Pus þ Punð Þ ð9:171Þ
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Details of a TDMA frame format.
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Figure 9.34

Signal and noise powers in the

uplink and downlink portions of a

bent-pipe satellite relay system.

whereG is the power gain of the satellite repeater. The received signal power from the satellite

at the receiving ground station is

Prs ¼ GGTOTPus ð9:172Þ
where GTOT represents total system losses and gains on the downlink. It can be expressed as

GTOT ¼ GtGr

LaLp
ð9:173Þ

where

Gt ¼ gain of the satellite transmitter antenna.

La ¼ atmospheric losses on the downlink.

Lp ¼ propagation losses on the downlink.

Gr ¼ gain of the ground station receive antenna.

The uplink noise power transmitted by the satellite repeater and appearing at the ground

station input is

Prun ¼ GGTOTPun ð9:174Þ
Additional noise generated by the ground station itself is added to this noise at the ground station.

The ratio of Prs to total noise is the downlink carrier-to-noise power ratio. It is given by

CNRð Þr ¼
Prs

Prun þ Pdn

ð9:175Þ

Substituting previously derived expressions for each of the powers appearing on the right side of

(9.175), we obtain

CNRð Þr ¼
GGTOTPus

GGTOTPun þ Pdn

¼ 1

Pun=Pus þ Pdn=GGTOTPus

¼ 1

CNRð Þ� 1
u þ CNRð Þ� 1

d

ð9:176Þ

9.6 Satellite Communications 533

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


where

CNRð Þu ¼ Pus=Pun ¼ carrier-to-noise power ratio on the uplink.

CNRð Þd ¼ GGTOTPus=Pdn ¼ carrier-to-noise power ratio on the downlink.

Note that the weakest of the two carrier-to-noise ratios (CNRs) affects the overall carrier-to-

noise power ratio the most. The overall carrier-to-noise power ratio cannot be better than the

worse of two CNRs that make it up. To obtain CNRð Þu and CNRð Þd , we use the link equations
developed in Appendix A.

To relate CNR to Es=N0 in order to calculate the error probability, we note that

CNR ¼ Pc

N0BRF

ð9:177Þ

where

Pc ¼ average carrier power.

N0 ¼ noise power spectral density.

BRF ¼ modulated signal (RF) bandwidth.

Multiplying numerator and denominator by the symbol duration Ts, we note that PcTs ¼ Es is

the symbol energy and obtain

CNR ¼ Es

N0BRFTs

or, solving for Es=N0,

Es

N0

¼ CNRð ÞBRFTs ð9:178Þ

Given amodulation scheme, we can use a suitable bandwidth criterion to determineBRFTs. For

example, using the null-to-null bandwidth for BPSK as BRF , we have BRF ¼ 2=Tb or

TbBRF ¼ 2, where Ts ¼ Tb, since we are considering binary signaling.

Because the CNR is related to Es=N0 by the constant BRFTs, we can write (9.176) as

Es

N0

� �
r

¼ 1

Es=N0ð Þ�1u þ Es=N0ð Þ�1d

ð9:179Þ

where

Es=N0ð Þu ¼ symbol-energy-to-noise-spectral-density ratio on the uplink

Es=N0ð Þd ¼ symbol-energy-to-noise-spectral-density ratio on the downlink

EXAMPLE 9.9

Compute the relationship between Es=N0ð Þu and Es=N0ð Þd required to yield an error probability of

PE ¼ 10� 6 on a bent-pipe satellite relay communications link if BPSK modulation is used.

S o l u t i o n

For BPSK, Eb=N0ð Þr ffi 10:53 dB gives PE ¼ 10� 6. Thus (9.179) becomes

1

Eb=N0ð Þ� 1
u þ Es=N0ð Þ� 1

d

¼ 101:053 ffi 11:298 ð9:180Þ

534 Chapter 9 . Advanced Data Communications Topics

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Solving for Eb=N0ð Þd from (9.180) in terms of Eb=N0ð Þu, we have the relationship
Eb

N0

� �
d

¼ 1

0:0885� Eb=N0ð Þ� 1
u

ð9:181Þ

Several pairs of values for Eb=N0ð Þd and Eb=N0ð Þu are given in Table 9.13.

A curve showing the graphical relationship between the uplink and downlink values ofEb=N0 will be

shown later in conjunction with another example. Note that the received Eb=N0 is never better than the

uplink or downlink values of Eb=N0. For Eb=N0ð Þu ¼ Eb=N0ð Þd ffi 13:54 dB, the value of Eb=N0ð Þr is
10.53 dB, which is that value required to give PE ¼ 10� 6. Note that as either Eb=N0ð Þu or Eb=N0ð Þd
approaches infinity, the other energy-to-noise-spectral-density ratio approaches 10.53 dB.

&

9.6.4 Link Analysis: OBP Digital Transponder

Consider a satellite relay link in which the modulation is digital binary and detection takes

place on board the satellite with subsequent remodulation of the detected bits on the downlink

carrier and subsequent demodulation and detection at the receiving ground station. This

situation can be illustrated in terms of bit errors as shown in Figure 9.35.

Transmitter Relay Receiver

0

1

0

1

0

1

qdqu

qdqu

pdpu

pdpu

Note: qu = 1 – pu
qd = 1 – pd

Figure 9.35

Transition probability diagram for uplink and downlink errors on a demod–remod satellite relay.

Table 9.13 Uplink and Downlink Values of Eb/N0

Required for PE = 10�6

(Eb /N0)u (dB) (Eb /N0)d (dB)

20.0 11.06

15.0 12.47

14.0 13.14

13.54 13.54

12.0 15.98

11.0 20.52
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The channel is considered symmetrical in that errors for 1s and 0s are equally likely. It is

also assumed that errors on the downlink are statistically independent of errors on the uplink

and that errors in both links are independent of each other. From Figure 9.35, it follows that the

overall probability of no error given that a 1 is transmitted is

P Cj1ð Þ ¼ quqd þ pupd ð9:182Þ

where

qu ¼ 1� pu is the probability of no error on the uplink.

qd ¼ 1� pd is the probability of no error on the downlink.

A similar expression holds for the probability P Cj0ð Þ of correct transmission through the

channel given that a 0 is transmitted, and it therefore follows that the probability of correct

reception averaged over both 1s and 0s is

P Cð Þ ¼ 1

2
P Cj1ð Þ þ 1

2
P Cj0ð Þ ¼ P Cj1ð Þ ¼ P Cj0ð Þ ð9:183Þ

The average probability of error is

PE ¼ 1�P Cð Þ
¼ 1� quqd þ pupdð Þ
¼ 1� 1� puð Þ 1� pdð Þ� pupd
¼ pu þ pd � 2pupd

ð9:184Þ

The following example illustrates how to obtain the uplink and downlink signal energy-to-

noise-spectral-density ratios required for an overall desired PE for a given modulation

technique.

EXAMPLE 9.10

Consider an OBP satellite communications link where BPSK is used on the uplink and the downlink. For

this modulation technique,

pu ¼ Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
ð9:185Þ

with a similar expression for pd. Say we want the error probability for the overall link to be 10
� 6. Thus,

from (9.184), we have

10� 6 ¼ pu þ pd � 2pupd ð9:186Þ

Solving for pd in terms of pu, we have

pd ¼ 10� 6� pu

1� 2pu
ð9:187Þ

A table of values of pd versus values of pu can be obtained, and the corresponding required values of

Eb=N0ð Þu can then be calculated from (9.185) with a similar procedure followed for Eb=N0ð Þd. This is
presented as Table 9.14.
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Figure 9.36 shows Eb=N0ð Þu versus Eb=N0ð Þd for both the bent-pipe and OBP satellite relays for an

overall bit error probability of 10� 6. Curves for other values of PE or other digital modulation schemes

can be obtained in a similar manner. This is left to the problems.

&

n 9.7 CELLULAR RADIO COMMUNICATION SYSTEMS

Cellular radio communications systems were developed in the United States by Bell Labora-

tories, Motorola, and other companies in the 1970s and in Europe and Japan at about the same

time. Test systems were installed in the United States in Washington, D.C. and Chicago in the

late 1970s, and the first commerical cellular systems became operational in Japan in 1979, in

Europe in 1981, and in the United States in 1983. The first system in the United States was

designated AMPS for Advanced Mobile Phone System and proved to be very successful. The

AMPS system used analog frequency modulation and a channel spacing of 33 kHz. Other

standards used in Japan and Europe employed similar technology. In the early 1990s, therewas

more demand for cellular telephones than available capacity allowed so development of so-

called second-generation (2G) systems began with the first 2G systems being fielded in the

mid-1990s. All 2G systems use digital transmission, but with differing modulation and

accessing schemes. The 2G European standard, called Global System for Mobile (GSM)

Table 9.14 Eb/N0 Values for the Uplink and Downlink Required in an OBP Satellite
Communications Link to Give PE = 10�6

pu (Eb=N0)u (dB) pd (Eb=N0)d (dB)

10�7 11.30 9� 10�7 10.57

5� 10�7 10.78 5� 10�7 10.78

6� 10�7 10.71 4� 10�7 10.86

7� 10�7 10.66 3� 10�7 10.95

30

30

20

10

0
20100

(Eb/N0)d

(E
b
/N

0)
u

BPSK modulation
PE = 10–6

Bent-pipe link

OBP link

Figure 9.36

Comparison of bent-pipe and

OBP relay characteristics for

BPSK modulation and

PE ¼ 10� 6.
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Communications, the Japanese system, and one U.S. standard [U.S. Digital Cellular (USDC)

system] all employ TDMA, but with differing bandwidths and number of users per frame (see

the discussion in Section 9.6 Satellite Communications for definitions of these terms). Another

U.S. 2G standard, IS-95 (now cdmaOne) uses CDMA.A goal of 2G system development in the

United States was backward compatibility because of the large AMPS infrastructure that had

been installed with the first generation. Europe, on the other hand, had several first-generation

standards, depending on the country, and their goal with 2G was to have a common standard

across all countries. As a result, GSM has been widely adopted, not only in Europe but in much

of the rest of the world. From the mid- to late 1990s work began on third-generation (3G)

standards, and these systems are currently being fielded. A goal in standardizing 3G systems is

to have a common world wide standard, if possible, but this proved to be too optimistic, so a

family of standards was adopted with one objective being to make migration from 2G systems

as convenient as possible. For example, the channel allocations for 3G are multiples of those

used for 2G.

Wewill not provide a complete treatment of cellular radio communications. Indeed, entire

books have been written on the subject. What is intended, however, is to give enough of an

overview of the principles of implementation of these systems so that the reader may then

consult other references to become familiar with the details.42

9.7.1 Basic Principles of Cellular Radio

Radio telephone systems had been in use before the introduction of cellular radio, but their

capacity was very limited because they were designed around the concept of a single base

station servicing a large area—often the size of a large metropolitan area. Cellular telephone

systems are based on the concept of dividing the geographic service area into a number of cells

and servicing the area with low-power base stations placed within each cell, usually the

geographic center. This allows the band of frequencies allocated for cellular radio use

(currently there are two bands in the 900 and 1800 MHz regions of the radio spectrum) to

be reused over again a certain cell separation away, which depends on the accessing scheme

used. For example, with AMPS, the reuse distance is three while for CDMA it is one. Another

characteristic that the successful implementation of cellular radio depends on is the attenuation

of transmitted power with frequency. Recall that for free space, power density decreases as the

inverse square of the distance from the transmitter. Because of the propagation characteristics

of terrestrial radio propagation, the decrease of power with distance is faster than an inverse

square law, typically between the inverse third and fourth power of the distance. Were this not

the case, it can be shown that the cellular concept would not work. Of course, because of the

tessallation of the geographic area of interest into cells, it is necessary for the mobile user to be

transfered from one base station to another as the mobile moves. This procedure is called

handoff or handover. Also note that it is necessary to have some way of initializing a call

to a given mobile and keeping track of it as it moves from cell to cell. This is the function of a

Mobile Switching Center (MSC). MSCs also interface with the Public Switched Telephone

Network (PSTN).

Consider Figure 9.37 which shows a typical cellular tessellation using hexagons. It is

emphasized that real cells are never hexagonal; indeed, some cells may have very irregular

42Textbooks dealing with cellular communcations are: Stuber (2001), Rappaport (2002), Mark and Zhuang (2003),

Goldsmith (2005), Tse and Viswanath (2005). Also recommended as an overview is Gibson (2002).
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shapes because of geographic features and illumination patterns by the transmit antenna.

However, hexagons are typically used in theoretical discussions of cellular radio because a

hexagon is one geometric shape that tessellates a plane and very closely approximates a circle

which is what we surmise the contours of equal transmit power consist of in a relatively flat

environment. Note that a seven-cell reuse pattern is indicated in Figure 9.37 via the integers

given in each cell. Obviously there are only certain integers that work for reuse patterns, e.g.,

1, 7, 12, . . . A convenient way to describe the frequency reuse pattern of an ideal hexagonal

tessellation is to use a nonorthogonal set of axes, U and V, intersecting at 60� as shown in

Figure 9.38. The normalized grid spacing of one unit represents distance between adjacent base

Figure 9.38

Hexagonal grid geometry showing coordinate

directions; a reuse pattern of seven is illustrated.

(1,3) (u,v)

(2,1)

1/   3

j = 1

i = 2

V

U

Figure 9.37

Hexagonal grid system representing cells in

a cellular radio system; a reuse pattern of

seven is illustrated.
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stations, or hexagon centers. Thus, each hexagon center is at a point (u, v), where u and v are
integers. Using this normalized scale, each hexagon vertex is

R ¼ 1ffiffiffi
3
p ð9:188Þ

from the hexagon center. It can be shown that the number of cells in an allowed frequency reuse

pattern is given by

N ¼ i2 þ ij þ j2 ð9:189Þ
where i and j take on integer values. Letting i¼ 1 and j¼ 2 (or vice versa), it is seen thatN¼ 7 as

we already know from the pattern identified in Figure 9.37. Putting in other integers, the

number of cells in various reuse patterns are as given in Table 9.15. Typical reuse patterns are

1 (CDMA), 7 (AMPS), and 12 (GSM).

Another useful relationship is the distance between like-cell centers, Dco, which can be

shown to be

Dco ¼
ffiffiffiffiffiffi
3N
p

R ¼
ffiffiffiffi
N
p

ð9:190Þ
which is an important consideration in computing cochannel interference, i.e., the inteference

from a second user that is using the same frequency assignment as a user of interest. Clearly, if a

reuse pattern has N cells in it, this interference could be a factor of N larger than that due to a

single interfering user (not all cells at distance
ffiffiffiffi
N
p

from a user of interest may have an active

call on that particular frequency). Note that there is a second ring of cells at 2
ffiffiffiffi
N
p

that can

intefere with a user of interest, but these are usually considered to be negligible compared with

those within the first ring of intefering cells (and a third ring, etc.).

Assume a decrease in power with distance R of the form

Pr Rð Þ ¼ K
R0

R

� �a

W ð9:191Þ

whereR0 is a reference distancewhere the power is known to beK W.Asmentioned previously,

the power law is typically in the range of 2.5 to 4 for terrestrial propagation, which can be

analytially shown to be a direct consequence of the Earth�s surface acting as a partially

Table 9.15 Number of Cells in Various Reuse Patterns

Reuse coorinates Number of cells

in reuse pattern

Normalized distance between

repeat cells
i j N

ffiffiffiffi
N
p

1 0 1 1

1 1 3 1.732

1 2 7 2.646

2 2 12 3.464

1 3 13 3.606

2 3 19 4.359

1 4 21 4.583

2 4 28 5.292

1 5 31 5.568
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conducting reflector (other factors such as scattering from buildings and other large objects

also come into play which accounts for the variation in a). In logarithmic terms, (9.191)

becomes

Pr; dBWðRÞ ¼ KdB þ 10a log10 R0 � 10a log10 R dBW ð9:192Þ
Now consider reception by a mobile from a base station of interest, A, at distance dA while

at the same time being interferedwith from a cochannel base station, B, at distanceDco fromA.

We assume for simplicity that the mobile is on a line connecting A and B. Thus, using (9.192),

the signal-to-interference ratio (SIR) in decibels is

SIRdB¼ KdB þ 10a log10 R0� 10a log10 dA

� KdB þ 10a log10 R0� 10a log10 Dco� dAð Þ½ �

¼ 10a log10

�
Dco� dA

dA

�
¼ 10a log10

�
Dco

dA
� 1

�
dB

ð9:193Þ

Clearly, as dA!Dco=2, the argument of the logarithm approaches 1 and the SIRdB

approaches 0. At dA ¼ Dco=2 the mobile should ideally switch from A and begin using B

as its base station.

We can also compute a worst-case SIR for a mobile of interest by using (9.193). If the

mobile is using base station A as its source, the interference from the other cochannel base

stations in the reuse pattern is noworse than that fromB (themobilewas assumed to be on a line

connecting A and B). Thus, the SIRdB is underbounded by

SIRdP;min ¼ 10a log10

�
Dco

dA
� 1

�
� 10 log10 7� 1ð Þ dB

¼ 10a log10

�
Dco

dA
� 1

�
� 7:7815 dB

ð9:194Þ

because the interference is increased by at worst a factor of 7 � 1 (one station in the reuse

pattern is the communicating base station to the mobile) due to the hexagonal tessellation.

EXAMPLE 9.11

Suppose that a cellular system uses amodulation scheme that requires a channel spacing of 25 kHz and an

SIRdB;min ¼ 20 dB for each channel. Assume a total bandwidth of 6 MHz for both base-to-mobile

(forward link) and mobile-to-base (reverse link) communications. Assume that the channel provides a

propagation power law of a ¼ 3:5. Find the following: (a) the total number of users that can be

accommodated within the reuse pattern, (b) The minimum reuse factor N, (c) the maximum number of

users per cell, and (d) the efficiency in terms of voice circuits per base station permegahertz of bandwidth.

S o l u t i o n

(a) The total bandwidth divided by the user channel bandwidth gives 6� 106=25� 103 ¼ 240 channels.

Half of these are reserved for the downlink and half for the uplink, giving 240=2 ¼ 120 total users in the
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reuse pattern. (b) The SIRdB;min condition (9.194) gives

20 ¼ 10 3:5ð Þlog10
Dco

dA
� 1

� �
� 7:7815 dB

which gives

Dco

dA
¼ 7:2201 ¼

ffiffiffiffiffiffi
3N
p

or

N ¼ 17:38

Checking Table 9.14, we take the next largest allowed value of N ¼ 19 (i ¼ 2 and j ¼ 3). (c) Divid-

ing the total number of users by the number of cells in the reuse pattern, we obtain b120=19c ¼ 6 users

per cell, where the notation b c means the largest interger not exceeding the bracketed quantity. The

efficiency is

hv ¼
6 circuits

6 MHz
¼ 1 voice circuit per base station per MHz

&

EXAMPLE 9.12

Repeat Example 9.11 if SIRdB;min ¼ 14 dB is allowed.

S o l u t i o n

Part (a) remains the same. (b) Part becomes

14 ¼ 10 3:5ð Þlog10
Dco

dA
� 1

� �
� 7:7815 dB

which gives

Dco

dA
¼ 5:1908 ¼

ffiffiffiffiffiffi
3N
p

or

N ¼ 8:98

which, from Table 9.15, translates to an allowed value of N ¼ 12 (i ¼ 2 and j ¼ 2). (c) The number of

users per cell is b120=12c ¼ 10. (d) The efficiency is

hv ¼
10 circuits

6 MHz
¼ 1:67 voice circuits per base station per megahertz

&

9.7.2 Channel Perturbations in Cellular Radio

In addition to the Gaussian noise present in every communication link and the cochannel

interference crudely analyzed above, another important source of degradation is fading. As the

mobile moves the signal strength varies drastically because of multiple transmission paths.

This fading can be characterized in terms of a Doppler spectrum, which is determined by the

motion of the mobile (and to some small degree, the motion of the surroundings such a wind

blowing trees or motion of reflecting vehicles). Another characteristic of the received fading
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signal is delay spread due to the differing propagation distances of the multipath components.

As signaling rates increase, this becomes amore serious source of degradation. Equalization, as

discussed in Chapter 7, can be used to compensate for it to some degree. Diversity can also be

used to combat signal fading signal. In GSM and USDC, this takes the form of coding. For

CDMA, diversity can be added in the form of simultaneous reception from two different base

stations near cell boundaries. Other combinations of simultaneous transmissions43 and

receptions in a rich multipath environment (so-called MIMO techniques for multiple-input,

multiple-output) are being proposed for future generation systems to significantly increase

capacity. Also used in CDMA is a method called RAKE, which essentally detects the separate

multipath components and puts them back together in a constructive fashion.

As progress is made in research, other means of combating detrimental channel effects are

being considered for future cellular systems. These include multiuser detection to combat the

cross-correlation noise due to other users in CDMA systems. As previously stated, what this

does is to treat other users as sources that are detected and subtracted from the signal before the

user of interest is detected.44 Currently, multiuser detection is not included in the 3G standard,

but is a distinct possibility for future cellular systems.

Another scheme that is being intensely researched currently as a means to extend the

capacity of future cellular systems is smart antennas. This area entails any scheme where

directivity of the antenna is used to increase the capacity of the system.45

A somewhat related area to that of smart antennas is space–time coding. These are codes

that provide redundancy in both space and time. Space–time codes thereby exploit the channel

redundancy in two dimensions and achieve more capacity than if the memory implicit in the

channel is not made use of at all or if only one dimension is used.46

9.7.3 Characteristics of 1G and 2G Cellular Systems

Space does not allow much more than a cursory glance at the technical characteristics of first-

and second-generation (1G and 2G) cellular radio systems - in particular, AMPS, GSM, and

CDMA (referred to as IS-95 in the past, where the IS stands for Interim Standard, but now

officially designated as cdmaOne). Second-generation cellular radio provides one of the most

successful practical applications of many aspects of communications theory, including speech

coding, modulation, channel coding, diversity techniques, and equalization. With the digital

format used for 2G cellular, both voice and some data (limited to about 20 kbps) may be

handled. Note that, while the accessing technique for GSM is said to be TDMA and that for

cdmaOne is CDMA, both use FDMA in additionwith 200-kHz spacing used for the former and

1.25-MHz spacing used for the latter.

43S.M. Alamouti, A simple transmit diversity technique for wireless communications. IEEE Journal on Sel. Areas in

Communication, 16: 1451–1458, October 1998. Also see the books by Paulraj, et al. (2003) and Tse andViswanath

(2005).
44See Verdu (1998).
45See Liberti and Rappaport (1999). For papers on smart antennas the IEEE Transactions on Communications, The

IEEE Journal on SelectedAreas in Communications, and The IEEETransactions onWireless Communications are

recommended.
46A. F.Naguib,V. Tarokh,N. Seshadri, andA.R.Calderbank,A space-time codingmodemfor high-data-ratewireless

communications. IEEE Journal on Sel. Areas in Communication, 16: 1459–1478, October 1998. V. Tarokh, H.

Jafarkhani, and A. R. Calderbank, Space-time block coding for wireless communications: performance results.

IEEE Journal on Sel. Areas in Communication, 17: 451–460, March 1999.
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For complete details, the standard for each may be consulted. Before doing so, however,

the reader is warned that these amount to thousands of pages in each case. Table 9.16

summarizes some of the most pertinent features of these three systems. For further details see

some of the books referred to previously.

9.7.4 Characteristics of W-CDMA and cdma2000

As previously stated, in the late 1990s, work was begun by various standards bodies on third-

generation (3G) cellular radio. The implementation of 3G cellular providesmore capacity than

2G for voice in addition to much higher data capacity. At present, within a family of standards,

there are two main competing standards for 3G, both using CDMA accessing. These are

wideband CDMA (W-CDMA) promoted by Europe and Japan (harmonized with GSM

characteristics), and cdma2000 which is based on IS-95 principles.

cdma2000

Themost basic version of this wireless interface standard is referred to as 1� RTT for ‘‘1 times

Radio Standard.’’ Channelization still utilizes 1.25 MHz frequency as with cdmaOne, but

increased capacity is achieved by increasing the number of user codes from 64 to 128 Walsh

codes and changing the data modulation to QPSKon the forward link (BPSK in cdmaOne) and

BPSK on the reverse link (64-ary orthogonal in cdmaOne). Spreading modulation is QPSK

(balanced on the downlink and dual channel on the uplink). Accommodation of data is

facilitated through media and link access control protocols and quality-of-service (QoS)

Table 9.16 Characteristics of First- and Second-Generation Cellular Radio Standards

AMPS GSM CDMA

Carrier separation 30 kHz 200 kHz 1.25 MHz

No. channels/carrier 1 8 61 (64 Walsh codes; 3 sync, etc.)

Accessing technique FDMA TDMA–FDMA CDMA-FDMA

Frame duration 4.6 ms with 0.58 ms slots

GMSK, BT¼ 0.3

20 ms

BPSK, DL

User modulation FM Binary, diff. encoded 64-ary orthog

UL

DL–UL pairing 2 channels 2 slots 2 codes

Cell reuse pattern 7 12 1

Cochannel interference

protection

� 15 dB � 12 dB NA

Error correction

coding

NA Rate�1
2
convolution

Constraint length 5

Rate�1
2
convolution,

Rate�1
3
convolution, UL

Both constr. length 9

Diversity methods NA FH, 216.7 hops/s

Equalization

Wideband signal

Interleaving

RAKE

Speech representation Analog Residual pulse excited,

linear prediction coder

Code-excited vocoder

Speech coder rate NA 13 kbps 9.6 kbps max
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Table 9.17 Characteristics of Third-Generation Cellular Radio Standards

W-CDMA cdma2000

Channel BW (MHz) 5, 10, 20 1.25, 5, 10, 15, 20

FW link RF channel

structure

DS DS or MC

Chip rate, Mchips/s 4.096=8.192=16.384 1.2288=3.6864=7.3728=11.0593-
14.7456, DS

n� 1:2288 n ¼ 1; 3; . . .ð Þ,
MC

Roll-off factor 0.22 Similar to TIA/EIA-95B

Frame length, ms 10, 20 (optional) 20 for data and control 5 for con-

trol on fundamental and dedi-

cated control channels

Spreading

modulation

Balanced QPSK (FW link)

Dual channel QPSK (RV link)

Complex spreading circuit

Balanced QPSK (FW link)

Dual channel QPSK (RV link)

Complex spreading circuit

Data modulation QPSK (forward link)

BPSK (reverse link)

QPSK (forward link)

BPSK (reverse link)

Coherent detection User dedicated time multiplexed

pilot (forward link and reverse

link), common pilot in forward

link

Pilot time multiplexed with PC

andEIB (reverse link)Common

continuous pilot channel and

auxilary pilot (forward link)

Channel multliplexing

in reverse link

Control and pilot channel time

multiplexed

Control, pilot fundamental, and

supplemental codemultiplexed

Multirate Variable spreading and multicode Variable spreading and multicode

Spreading factors 4-256 (4.096 Mcps) 4-256 (3.6864 Mcps)

Power control Open and fast closed loop

(1.6 kHz)

Open and fast closed loop

(800 Hz)

Spreading

(forward link)

Variable length orthogonal se-

quences for channel separation

Gold sequences for user and

cell separation

Variable length Walsh sequences

for channel separation.

m-sequence: 3� 215 (same se-

quence with time shift utilized

in different cells; different

sequences in I and Q channels)

Spreading

(reverse link)

Variable length orthogonal se-

quences for channel separation.

Gold sequence 241 for user sep-

aration (different time shifts in

I andQ channel, cycle 216 radio

frames)

Variable length orthogonal

sequences—channel

separation. m-sequence: 215

(Same for all users; different

sequences in I and Q channels).

m-sequence: user separation

(different time shifts for differ-

ent users).

Handover Soft handover. Interfrequency

handover

Soft handover. Interfrequency

handover
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control, whereas no special provisions for data are present in cdmaOne. Data rates from 1.8 to

1036.8 kbps can be accommodated through varying cyclic redundancy check (CRC) bits,

repetition, and deletions (at the highest data rate). Synchronization with the long code

(common to each cell) in cdma2000 is facilitated by timing derived from GPS to localize

where the long code epoch is within a given cell.

A higher data rate variation will use three 1 � RTT channels on three carriers which may,

but do not have to, use contiguous frequency slots. This is in a sense multicarrier modulation

except that each carrier is spread in addition to the data modulation (in MCM as described in

Section 9.5 the subcarriers were assumed to only have data modulation).

Wideband Code-Division Multiple Access

Wideband Code-Division Multiple Access (W-CDMA), as its name implies, is also based on

CDMA access. It is the transmission protocol used by the Japanese NTT DoComo to provide

high-speed wireless transmission (termed Freedom of Mobile Multimedia Access, or FOMO),

and the most common wideband wireless transmission technology offered under the European

UniversalMobile Telecommunications System (UMTS). Radio channels are 5MHzwide, and

they use QPSK spreading on both forward and reverse links in a slotted frame format (16 slots

per frame for FOMAand 15 slots per frame for UMTS). Unlike cdma2000, it supports intercell

asynchronous operation, with cell-to-cell handover being facilitated by a two-step synchroni-

zation process. Data rates from 7.5 to 5740 kbps can be accommodated by varying the

spreading factor and assigning multiple codes (for the highest data rate).

Various system parameters and characteristics are summarized in Table 9.1747 for both

cdma2000 and W-CDMA.

Summary
1. When dealing withM-ary digital communications systems, withM 	 2 it is

important to distinguish between a bit and a symbol or character. A symbol

conveys log2 M bits. We must also distinguish between bit-error probability

and symbol-error probability.

2. M-ary schemes based on quadrature multiplexing include QPSK, OQPSK,

andMSK.All have a bit-error rate performance that is essentially the same as

binaryBPSK if precoding is used to ensure that only one bit error results from

mistaking a given phase for an adjacent phase.

3. Minimum-shift keying can be produced by quadrature modulation or by

serialmodulation. In the latter case,MSK is produced by filteringBPSKwith

a properly designed conversion filter. At the receiver, serial MSK can be

recovered by first filtering it with a bandpass matched filter and performing

coherent demodulation with a carrier at fc þ 1=4Tb (i.e., at the carrier plus a
quarter data rate). SerialMSK performs identically to quadrature-modulated

MSK and has advantageous implementation features at high data rates.

4. Gaussian MSK is produced by passing the �1-valued data stream (NRZ

format) through a filter with Gaussian frequency response (and Gaussian

impulse response), scaled by 2pfd, where fd is the deviation constant in hertz

47From T. Ojanpera and S. Gray, An Overview of cdma2000, WCDMA, and EDGE, in Gibson (2002).
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per volt, to produce the excess phase of an FM-modulated carrier. A GMSK

spectrum has lower sidelobes than ordinary MSK at the expense of degra-

dation in bit error probability due to the intersymbol interference introduced

by the filtering of the data signal. Gaussian MSK was used in one of the

second generation standards in the United States for cellular radio.

5. It is convenient to view M-ary data modulation in terms of signal space.

Examples of data formats that can be considered in this way are M-ary

PSK, QAM, and M-ary FSK. For the former two modulation schemes, the

dimensionality of the signal space stays constant as more signals are

added; for the latter, it increases directly as the number of signals added.

A constant-dimensional signal space means signal points are packed

closer as the number of signal points is increased, thus degrading the

error probability; the bandwidth remains essentially constant. In the case

of FSK, with increasing dimensionality as more signals are added, the

signal points are not compacted, and the error probability decreases for a

constant SNR; the bandwidth increases with an increasing number of

signals, however.

6. Communication systems may be compared on the basis of power and

bandwidth efficiencies. A rough measure of bandwidth is null-to-null of

the main lobe of the transmitted signal spectrum. For M-ary PSK, QAM,

and DPSK power efficiency decreases with increasing M (i.e., as M

increases a larger value of Eb=No is required to provide a given value

of bit-error probability) and bandwidth efficiency increases (i.e, the larger

M, the smaller the required bandwidth for a given bit rate). For M-ary FSK

(both coherent and noncoherent) the opposite is true. This behavior may

be explained with the aid of signal space concepts—the signal space for

M-ary PSK, QAM, and DPSK remains constant at two dimensions versus

M (one-dimensional for M ¼ 2), whereas for M-ary FSK it increases

linearly with M. Thus, from a power efficiency standpoint the signal points

are crowded together more as M increases in the former cases, whereas

they are not in the latter case.

7. A convenient measure of bandwidth occupancy for digital modulation is in

terms of out-of-band power or power-containment bandwidth. An ideal brick-

wall containment bandwidth that passes 90% of the signal power is approxi-

mately 1=Tb Hz for QPSK, OQPSK, andMSK and about 2=Tb Hz for BPSK.

8. The different types of synchronization that may be necessary in a digital

modulation system are carrier (only for coherent systems), symbol or bit,

and possibly word. Carrier and symbol synchronization can be carried out

by an appropriate nonlinearity followed by a narrowband filter or PLL.

Alternatively, appropriate feedback structures may be used.

9. A PN sequence resembles a random ‘‘coin-toss’’ sequence but can be

generated easily with linear feedback shift-register circuits. A PN sequence

has a narrow correlation peak for zero delay and low sidelobes for nonzero

delay, a property that makes it ideal for synchronization of words or

measurement of range.
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10. Spread-spectrum communications systems are useful for providing resis-

tance to jamming, to provide a means for masking the transmitted signal

from unwanted interceptors, to provide resistance to multipath, to provide a

way formore than one user to use the same time–frequency allocation, and to

provide range-measuring capability.

11. The two major types of spread-spectrum systems are DSSS and FHSS. In the

former, a spreading code with rate much higher than the data rate multiplies

the data sequence, thus spreading the spectrum,while for FHSS, a synthesizer

driven by a pseudorandom code generator provides a carrier that hops around

in a pseudorandom fashion. A combination of these two schemes, referred to

as hybrid spread spectrum, is also another possibility.

12. Spread spectrum performs identically to whatever data-modulation scheme

is employed without the spectrum spreading as long as the background is

additive white Gaussian noise and synchronization is perfect.

13. The performance of a spread-spectrum system in interference is determined

in part by its processing gain, which can be defined as the ratio of bandwidth

of the spread system to that for an ordinary system employing the same type

of data modulation as the spread-spectrum system. For DSSS the processing

gain is the ratio of the data bit duration to the spreading code bit (or chip)

duration.

14. An additional level of synchronization, referred to as code synchronization,

is required in a spread-spectrum system. The serial search method is perhaps

the simplest in terms of hardware and to explain, but it is relatively slow in

achieving synchronization.

15. Multicarrier modulation is a modulation scheme where the data to be

transmitted is multiplexed on several subcarriers that are summed before

transmission. Each transmitted symbol is thereby longer by a factor

of the number of subcarriers used than would be the case if the data

were transmitted serially on a single carrier. ThismakesMCMmore resistant

tomultipath than a serial transmission system, assuming both to be operating

with the same data rate.

16. Aspecial case ofMCMwherein the subcarriers are spaced by 1=T, whereT is
the symbol duration is called OFDM. Orthogonal frequency division multi-

plexing is often implemented by means of the inverse DFTat the transmitter

and by a DFT at the receiver.

17. Satellite communications systems provide a specific example to which the

digital modulation schemes considered in this chapter can be applied. Two

general types of relay satellite configurations were considered in the last

section of this chapter: bent-pipe and OBP (or demod–remod). In the OBP

system, the data on the uplink are demodulated and detected and then used to

remodulate the downlink carrier. In the bent-pipe relay, the uplink transmis-

sions are translated in frequency, amplified, and retransmitted on the

downlink. Performance characteristics of both types of links were consid-

ered by example.
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18. Cellular radio provides an example of a communications technology that has

been accepted faster and more widely by the public then first anticipated.

First-generation systems were fielded in the early 1980s and used analog

modulation. Second-generation systems were fielded in the mid-1990s. The

introduction of 3G systems started around the year 2000. All 2G and 3G

systems utilize digital modulation, with many based on CDMA.

Further Reading

In addition to the references given in Chapter 8, for a fuller discussion and in-depth treatment of the digital

modulation techniques presented here, see Ziemer and Peterson (2001), and Peterson et al. (1995) for

further discussion on spread spectrum and cellular communications. Another comprehensive reference is

Proakis (2007).

Problems

Section 9.1

9.1. An M-ary communication system transmits at a

rate of 4000 symbols per second.What is the equivalent bit

rate in bits per second forM¼ 4?M¼ 8?M¼ 16?M¼ 32?

M ¼ 64? Generate a plot of bit rate versus log2M.

9.2. A serial bit stream, proceeding at a rate of 10 kbps

from a source, is given as

101110 000111 010011 spacing for clarityð Þ
Number the bits from left to right starting with 1 and going

through 18 for the right most bit. Associate the odd-

indexed bits with d1 tð Þ and the even-indexed bits with

d2 tð Þ in Figure 9.1.

a. What is the symbol rate for d1 or d2?

b. What are the successive values of ui given by (9.2)
assuming QPSK modulation? At what time intervals may

ui switch?

c. What are the successive values of ui given by (9.2)
assuming OQPSK modulation? At what time intervals

may ui switch values?

9.3. Quadriphase-shift keying is used to transmit data

through a channel that adds Gaussian noise with power

spectral density N0 ¼ 10� 11 V2=Hz. What are the values

of the quadrature-modulated carrier amplitudes required to

give PE; symbol ¼ 10� 5 for the following data rates?

a. 5 kbps

b. 10 kbps

c. 50 kbps

d. 100 kbps

e. 0.5 Mbps

f. 1 Mbps

9.4. ShowthatthenoisecomponentsN1 andN2 forQPSK,

given by (9.6) and (9.8), are uncorrelated; that is, show that

E N1N2½ � ¼ 0. (Explain why N1 and N2 are zero mean.)

9.5. A QPSK modulator produces a phase imbalanced

signal of the form

xc tð Þ ¼ Ad1 tð Þ cos 2pfct þ b

2

� �

�Ad2 tð Þ sin 2pfct� b

2

� �

a. Show that the integrator outputs of Figure 9.2,

instead of (9.5) and (9.7), are now given by

V 01 ¼ 1

2
ATs � cos

b

2
� sin

b

2

� �
V 02 ¼ 1

2
ATs � sin

b

2
� cos

b

2

� �
where the � signs depend on whether the data bits d1 tð Þ
and d2 tð Þ are þ1 or �1.

b. Show that the probability of error per quadrature

channel is
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P0E; quad chan ¼ 1

2
Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r
cos

b

2
þ sin

b

2

� �� �
þ 1

2
Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r
cos

b

2
� sin

b

2

� �� �
Hint: For no phase imbalance, the correlator outputs

were V1, V2 ¼ � 1
2
ATs ¼ �ATb giving Eb ¼ V2

1=Tb ¼
V2
2=Tb and

PE; quad chan ¼ Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
With phase imbalance, the best- and worst-case values for

E0b are

E0b ¼ Eb cos
b

2
þ sin

b

2

� �2

and

E0b ¼ Eb cos
b

2
� sin

b

2

� �2

These occur with equal probability.

c. Plot PE given by (9.12) and the above result for

P0E; quad chan on the same plot for b ¼ 0, 2.5, 5, 7.5, and

10 degrees. Estimate and plot the degradation in Eb=No,

expressed in decibels, due to phase imbalance at an error

probability of 10� 4 and 10� 6 from these curves.

9.6.

a. A BPSK system and a QPSK system are designed

to transmit at equal rates; that is, 2 bits are transmitted with

the BPSK system for each symbol (phase) in the QPSK

system. Compare their symbol-error probabilities versus

Es=N0 (note that Es for the BPSK system is 2Eb).

b. A BPSK system and a QPSK system are designed

to have equal transmission bandwidths. Compare their

symbol-error probabilities versus SNR (note that for this

to be the case, the symbol durations of both must be the

same; i.e., Ts; BPSK ¼ 2Tb ¼ Ts; QPSK).

c. On the basis of parts (a) and (b), what do you

conclude about the deciding factor(s) in choosing BPSK

versus QPSK?

9.7. Given the serial data sequence

101011 010010 100110 110011

associate every other bit with the upper and lower data

streams of the block diagrams of Figures 9.2 and 9.4. Draw

on the same time scale (one below the other) the quadrature

waveforms for the following data modulation schemes:

QPSK, OQPSK, MSK type I, and MSK type II.

9.8. Sketch excess phase tree and phase trellis diagrams

for each of the cases of Problem 9.7. Show as a heavy line

the actual path through the tree and trellis diagrams

represented by the data sequence given.

9.9. Derive (9.25) for the spectrumof anMSK signal by

multiplying jG fð Þj2, given by (9.23), times SBPSK fð Þ,
given by (9.24). That is, show that serial modulation of

MSK works from the standpoint of spectral arguments.

(Hint: Work only with the positive-frequency portions of

(9.23) and (9.24) to produce the first term of (9.25);

similarly work with the negative-frequency portions to

produce the second term of (9.25). In so doing you

are assuming negligible overlap between positive- and

negative-frequency portions.)

9.10. AnMSK system has a carrier frequency of 10MHz

and transmits data at a rate of 50 kbps.

a. For the data sequence 1010101010. . . , what is the
instantaneous frequency?

b. For the data sequence 0000000000. . . , what is the
instantaneous frequency?

9.11. Show that (9.26) and (9.27) are Fourier transform

pairs.

9.12.

a. Sketch the signal space with decision regions for

16-ary PSK [see (9.47)].

b. Use the bound (9.50) to write down and plot the

symbol error probability versus Eb=N0.

c. On the same axes, compute and plot the bit-error

probability.

9.13.

a. Using (9.93) and appropriate bounds forPE; symbol,

obtain Eb=N0 required for achieving PE; bit ¼ 10�4 for

M-ary PSK with M ¼ 8, 16, 32.

b. Repeat for QAM forM¼ 16 and 64 using (9.63).

9.14. Derive the three equations numbered (9.60)

through (9.62) for M-QAM.

9.15. By substituting (9.60) to (9.62) into (9.59), collect-

ing all like-argument terms in theQ-function, and neglect-

ing squared Q-function terms, show that the symbol-error

probability for 16-QAM reduces to (9.63).

9.16. Show that for M-ary QAM

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Es

2 M� 1ð Þ

s
where Es is the symbol energy averaged over the constel-

lation of M signals, which is (9.58). The summation

formulas

550 Chapter 9 . Advanced Data Communications Topics

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Xm
i¼1

i ¼ m m þ 1ð Þ
2

and
Xm
i¼1

i2 ¼ m m þ 1ð Þ 2m þ 1ð Þ
6

will prove useful.

9.17. Using (9.95), (9.96), and (9.67), obtain Eb=N0

required for achieving PE; bit ¼ 10� 3 for M-ary

coherent FSK for M ¼ 2, 4, 8, 16, 32, 64. Program

you calculator to do an iterative solution using

MATLAB.

9.18. Using (9.95), (9.96), and (9.68), repeat Problem

9.17 for noncoherent M-ary FSK for M ¼ 2, 4, 8,

16, 32.

9.19. Based on signal space arguements order the mod-

ulation schemes 16-PSK, 16-QAM, and coherent 16-

CFSK from best to worst on the basis of:

a. Bandwidth efficiency

b. Communication efficiency (probability of bit

error)

9.20. On the basis of null-to-null bandwidths, give the

required transmission bandwidth to achieve a bit rate of

10 kbps for the following:

a. 16-QAM, 16-PSK, or 16-DPSK

b. 32-PSK

c. 64-PSK

d. 8-FSK, coherent

e. 16-FSK, coherent

f. 32-FSK, coherent

g. 8-FSK, noncoherent

h. 16-FSK, noncoherent

i. 32-FSK, noncoherent

Section 9.2

9.21. On the basis of 90% power-containment band-

width, give the required transmission bandwidth to achieve

a bit rate of 10 kbps for

a. BPSK

b. QPSK or OQPSK

c. MSK

d. 16-QAM

9.22. Generalize the results for power-containment

bandwidth for quadrature-modulation schemes given in

Section 9.2 toM-ary PSK. (Is it any different than the result

for QAM?) With appropriate reinterpretation of the ab-

scissa of Figure 9.16 and using the 90% power contain-

ment bandwidth, obtain the required transmission band-

width to support a bit rate of 100 kbps for

a. 8-PSK

b. 16-PSK

c. 32-PSK

9.23. A binary PSK-modulated signal with carrier com-

ponent can be written as

sPSK tð Þ ¼ A sin vct þ cos�1 md tð Þ þ u
 �

where m � 1 is a constant which will be called the

modulation index and d tð Þ ¼ �1 in Tb-s bit intervals.

a. Show that it can be expanded as

sPSK tð Þ ¼ Am sin vct þ uð Þ
þ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

d tð Þ cos vct þ uð Þ
Hints: Use the trigonometric identity for sin a þ bð Þ and
the facts that cos cos�1mð Þ ¼ m and sin cos�1mð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

(justify these).

b. From part (a), note that the first term is an unmod-

ulated carrier component and the second term is the

modulated component. Find their average powers and

show that

Pcarrier

Pmodulation

¼ m2

1�m2

9.24. Assume that a data stream d tð Þ consists of a random
(coin toss) sequence of þ1 and �1 that is T s in duration.

The autocorrelation function for such a sequence is

Rd tð Þ ¼ 1� jtj
T
;
jtj
T
� 1

0; otherwise

(

a. Find and sketch the power spectral density for an

ASK-modulated signal given by

sASK tð Þ ¼ 1

2
A 1 þ d tð Þ½ � cos vct þ uð Þ

where u is a uniform random variable in (0, 2p].

b. Use the result of Problem 9.23(a) to compute and

sketch the power spectral density of a PSK-modulated

signal given by

sPSK tð Þ ¼ A sin vct þ cos�1 md tð Þ½ � þ u
� �

for the three cases m ¼ 0, 0.5, and 1.

9.25. Derive the Fourier transform pair given by (9.120).
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Section 9.3

9.26. Draw the block diagram of anM-power law circuit

for synchronizing a local carrier for 8-PSK. Assume that

fc ¼ 10MHz and Ts ¼ 0:1 ms. Carefully label all blocks,

and give critical frequencies and bandwidths.

9.27. Plot s2
f versus z for the various cases given in

Table 9.7. Assume 10% of the signal power is in the carrier

for the PLL and all signal power is in themodulation for the

Costas and data estimation loops. Assume values of L ¼
100, 10, 5.

9.28. Find the difference in decibels between (9.128) and

(9.129). That is, find the ratio s2
e; SL=s

2
e; AV expressed in

decibels.

9.29. Consider the marker code C8 of Table 9.8. Find the

Hamming distance between all possible shifts of it and the

received sequence 10110 10110 00011 10101 (spaces for

clarity). Is there a unique match to within h ¼ 1 and this

received sequence? If so, at what delay does it occur?

9.30. Fill in all the steps in going from (9.134) to (9.135).

9.31. An m-sequence is generated by a continuously

running feedback shift resister with a clock rate of 10 kHz.

Assume that the shift register has six stages and that

the feedback connection is the proper one to generate a

maximal length sequence. Answer the following questions:

a. How long is the sequence before it repeats?

b. What is the period of the generated sequence in

milliseconds?

c. Provide a sketch of the autocorrelation function of

the generated sequence. Provide critical dimensions.

d. What is the spacing between spectral lines in the

power spectrum of this sequence?

e. What is the height of the spectral line at zero

frequency? How is this related to the DC level of the

m-sequence?

f. At what frequency is the first null in the envelope

of the power spectrum?

9.32. Consider a 15-bit, maximal-length PN code. It is

generated by feeding back the last two stages of a four-

stage shift register. Assuming a 1 1 1 1 initial state, find all

the other possible states of the shift register (show details).

What is the sequence? Find and plot its periodic autocor-

relation function, providing critical dimensions.

9.33. The aperiodic autocorrelation function of a binary

code is of interest in some synchronization applications. In

computing it, the code is not assumed to periodically

repeat itself, but (9.133) is applied only to the overlapping

part. For example, with the 3-chip Barker code of

Table 9.12 the computation is as follows:

For negative delays, we need not perform the calculation

because autocorrelation functions are even.

a. Find the aperiodic autocorrelation functions of all

the Barker sequences given in Table 9.12. What are the

magnitudes of their maximum nonzero-delay autocorrela-

tion values?

b. Compute the aperiodic autocorrelation function of

the 15-chip PN sequence found in Problem 9.32. What is

the magnitude of its maximum nonzero-delay autocorre-

lation values? Note from Table 9.5 that this is not a Barker

sequence.

Section 9.4

9.34. Show that the variance of Ng as given by (9.148) is

N0Tb.

9.35. Show that the variance of NI as given by (9.153) is

approximated by the result given by (9.154). (Hint: You

will have to make use of the fact that T �1c L t=Tcð Þ is
approximately a delta function for small Tc).

9.36. ADSSS system employing BPSK data modulation

operates with a data rate of 10 kbps. A processing gain of

1000 (30 dB) is desired.

a. Find the required chip rate.

b. What is the RF transmission bandwidth required

(null to null.?

c. An SNR of 10 dB is employed. What is PE for the

following JSRs? 5 dB, 10 dB, 15 dB, and 30 dB.

9.37. Consider a DSSS system employing BPSK data

modulation. PE ¼ 10�5 is desired with Eb=N0!¥. For
the following JSRs tell what processing gain,Gp, will give

the desired PE. If none, so state.

a. JSR ¼ 30 dB.

b. JSR ¼ 25 dB.

c. JSR ¼ 20 dB.

9.38. Compute the number of users that can be supported

at a maximum bit-error probability of 10�3 in a multiuser

DSSS system with a code length of n ¼ 255. [Hint: Take

the limit as Eb=N0!¥ in (9.160), and set the resulting

expression for PE ¼ 10�4; then solve for N.]

NA�NU

NA�NU

N

Barker code 1 1 0

Delay ¼ 0 1 1 0 3 1

Delay ¼ 1 1 1 0 0 0

Delay ¼ 2 1 1 0 �1 � 1=3
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9.39. Repeat Example 9.6 with everything the same

except for a propagation delay uncertainty of �1:5 ms

and a false alarm penalty of Tfa ¼ 1000 Ti.

Section 9.5

9.40.

a. Consider a multipath channel with a delay spread

of 5 ms through which it is desired to transmit data at

500 kbps. Design anMCMsystem that has a symbol period

at least a factor of 10 greater than the delay spread if the

modulation to be used on each subcarrier is QPSK.

b. If an inverse FFT is to be used to implement this as

an OFDM system, what size inverse FFT is necessary

assuming that the FFT size is to be an integer power of 2?

Section 9.6

9.41.

a. Given a circular aperture transmit antenna with

efficiency of 0.7 operating at 10 GHz and having a

diameter of 1.5 m. Find its maximum gain.

b. Find its 3-dB beamwidth.

c. Plot its antenna gain pattern in decibels versus

angle off boresight in degrees.

9.42. Rederive the curves shown in Figure 9.36, assuming

BPSKmodulation, foranoverallPE of (a)10
�3 and(b)10�4.

9.43. Rederive the curves shown in Figure 9.36, assum-

ing PE ¼ 10� 5 if the modulation technique used on the

uplink and downlink is (a) binary coherent FSK, (b) binary

noncoherent FSK, and (c) binary DPSK.

9.44.

a. Find the diameter of an antenna aperture mounted

on a geosynchronous altitude satellite that will provide a

100-mi spot on the earth�s surface within its 3-dB beam-

width if the operating frequency on the downlink is 21GHz

and the antenna efficiency is 0.8

b. Find the maximum gain, G0, of the antenna.

c. Plot the antenna gain pattern in decibels,

10 log10 g fð Þ, versus angle off boresight assuming the

pattern of (9.170).

Section 9.7

9.45. Rework Examples 9.11 and 9.12 for an attenuation

exponent of a ¼ 4.

9.46. Rework Example 9.11 with everything the same

except assume SIRdB;min ¼ 10 dB.

Computer Exercises

9.1. Use MATLAB to plot curves of Pb versus Eb=N0,

M ¼ 2, 4, 8, 16, and 32 for

a. M-ary coherent FSK (Use the upper-bound expres-

sion as an approximation to the actual error probability.)

b. M-ary noncoherent FSK

Compare your results with Figure 9.15(a) and (b).

9.2. Use MATLAB to plot out-of-band power forM-ary

PSK, QPSK (or OQPSK), andMSK. Comparewith Figure

9.16. Use trapz to do the required numerical integration.

9.3. Approximate the power spectrum of coherentM-ary

FSK by adding voltage spectra of sinusoidal bursts of

duration Tb and of the appropriate frequency coherently,

and then plotting the magnitude squared. What is the

minimum spacing of the ‘‘tones’’ in order to maintain

them coherently orthogonal?

9.4. Use MATLAB to plot curves like those shown in

Figure 9.25. Use MATLAB to find the processing gain

required to give a desired probability of bit error for a given

JSR and SNR. Note that your program should check to see

if the desired bit-error probability is possible for the given

JSR and SNR.

9.5. Given a satellite altitude and desired illumination

spot diameter on the earth�s surface, use MATLAB to

determine the antenna aperture diameter and maximum

gain to give the desired spot diameter.

9.6. Develop aMATLABprogram to plot Figure 9.36 for

a given probability of bit error and

a. Binary PSK

b. Coherent binary FSK

c. Binary DPSK

d. Noncoherent binary FSK

9.7. Write a MATLAB simulation of GMSK that will

simulate themodulatedwaveform. From this, compute and

plot the power spectral density of the modulated wave-

form. Include the special case of ordinary MSK in your

simulation so that you can compare the spectra of GMSK

andMSK for several BTB products.Hint: Do a ‘‘help psd’’

to find out how to use the power spectral density estimator

in MATLAB to estimate and plot the power spectra of the

simulated GMSK and MSK waveforms.
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CHAPTER10

OPTIMUM RECEIVERS AND SIGNAL
SPACE CONCEPTS

For the most part, this book has been concerned with the analysis of communication systems. An

exception occurred in Chapter 8, where we sought the best receiver in terms of minimum

probability of error for binary digital signals of known shape. In this chapter we deal with the

optimization problem; that is, we wish to find the communication system for a given task that

performs the best, within a certain class, of all possible systems. In taking this approach,we are faced

with three basic problems:

1. What is the optimization criterion to be used?

2. What is the optimum structure for a given problem under this optimization criterion?

3. What is the performance of the optimum receiver?

We will consider the simplest type of problem of this nature possible, that of fixed transmitter and

channel structure with only the receiver to be optimized.

We have two purposes for including this subject in our study of information transmission

systems. First, in Chapter 1 we stated that the application of probabilistic systems analysis

techniques coupled with statistical optimization procedures has led to communication systems

distinctly different in character from those of the early days of communications. Thematerial in

this chapter will, we hope, give you an indication of the truth of this statement, particularly

when you see that some of the optimum structures considered here are building blocks of

systems analyzed in earlier chapters. Additionally, the signal space techniques to be further

developed later in this chapter provide a unification of the performance results for the analog

and digital communication systems that we have obtained so far.

n 10.1 BAYES OPTIMIZATION

10.1.1 Signal Detection Versus Estimation

Based on our considerations in Chapters 8 and 9, we see that it is perhaps advantageous to

separate the signal-reception problem into two domains. The first of these we shall refer to as

detection, for we are interested merely in detecting the presence of a particular signal, among

other candidate signals, in a noisy background. The second is referred to as estimation, in
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which we are interested in estimating some characteristic of a signal that is assumed to be

present in a noisy environment. The signal characteristic of interest may be a time-independent

parameter such as a constant (random or nonrandom) amplitude or phase or an estimate

(past, present, or future value) of the waveform itself (or a functional of the waveform). The

former problem is usually referred to as parameter estimation. The latter is referred to as

filtering. We see that demodulation of analog signals (AM, DSB, and so on), if approached in

this fashion, would be a signal-filtering problem.1

While it is often advantageous to categorize signal-reception problems as either detection

or estimation, both are usually present in practical cases of interest. For example, in the

detection of phase-shift-keyed signals, it is necessary to have an estimate of the signal phase

available to perform coherent demodulation. In some cases, we may be able to ignore one of

these aspects, as in the case of noncoherent digital signaling, in which signal phase was of no

consequence. In other cases, the detection and estimation operations may be inseparable.

However, we will look at signal detection and estimation as separate problems in this chapter.

10.1.2 Optimization Criteria

In Chapter 8, the optimization criterion that was employed to find the matched-filter receiver

for binary signals wasminimumaverage probability of error. In this chapter wewill generalize

this idea somewhat and seek signal detectors or estimators that minimize average cost. Such

devices will be referred to as Bayes receivers for reasons that will become apparent later.

10.1.3 Bayes Detectors

To illustrate the use of minimum average cost optimization criteria to find optimum receiver

structures, wewill first consider detection. For example, supposewe are faced with a situation in

whichthepresenceorabsenceofaconstantsignalofvaluek > 0 istobedetectedinthepresenceof

anadditiveGaussiannoisecomponentN (forexample, aswould result by takinga single sampleof

a signal plus noise waveform). Thus we may hypothesize two situations for the observed data Z:

Hypothesis 1 (H1): Z ¼ N (noise alone); P H1 trueð Þ ¼ p0.

Hypothesis 2 (H2): Z ¼ k þ N (signal plus noise); P H2 trueð Þ ¼ 1� p0.

Assuming the noise to have zero mean and variance s2
n, we may write down the pdfs of Z

given hypothesesH1 andH2, respectively. Under hypothesisH1, Z is Gaussian with mean zero

and variance s2
n. Thus

fZ zjH1ð Þ ¼ e� z2=2s2
nffiffiffiffiffiffiffiffiffiffiffi

2ps2
n

p ð10:1Þ

Under hypothesis H2, since the mean is k,

fZ zjH2ð Þ ¼ e� z� kð Þ2=2s2
nffiffiffiffiffiffiffiffiffiffiffi

2ps2
n

p ð10:2Þ

These conditional pdfs are illustrated in Figure 10.1. We note in this example that Z, the

observed data, can range over the real line �¥ < Z < ¥. Our objective is to partition this

1See Van Trees (1968), Vol. I, for a consideration of filtering theory applied to optimal demodulation.
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one-dimensional observation space into two regions R1 and R2 such that if Z falls into R1, we

decide hypothesisH1 is true, while ifZ is inR2, we decideH2 is true.Wewish to accomplish this

in suchamanner that the averagecost ofmakingadecision isminimized. Itmayhappen, in some

cases, thatR1 orR2 or bothwill consist ofmultiple segments of the real line. (See Problem10.2.)

Taking a general approach to the problem, we note that four a priori costs are required,

since there are four types of decisions that we can make. These costs are

c11¼ cost of deciding in favor of H1 when H1 is actually true.

c12¼ cost of deciding in favor of H1 when H2 is actually true.

c21¼ cost of deciding in favor of H2 when H1 is actually true.

c22¼ cost of deciding in favor of H2 when H2 is actually true.

Given thatH1 was actually true, the conditional average cost of making a decision,C DjH1ð Þ, is
C DjH1ð Þ ¼ c11P decideH1jH1 true½ � þ c21P decideH2jH1 true½ � ð10:3Þ

In terms of the conditional pdf of Z given H1, we may write

P decideH1jH1 true½ � ¼
ð
R1

fZ zjH1ð Þ dz ð10:4Þ

and

P decideH2jH1 true½ � ¼
ð
R2

fZ zjH1ð Þ dz ð10:5Þ

where the one-dimensional regions of integration are as yet unspecified.

We note that Z must lie in either R1 or R2, since we are forced to make a decision. Thus

P decideH1jH1 true½ � þ P decideH2jH1 true½ � ¼ 1 ð10:6Þ
or if expressed in terms of the conditional pdf fZ zjH1ð Þ, we obtainð

R2

fZ zjH1ð Þ dz ¼ 1�
ð
R1

fZ zjH1ð Þ dz ð10:7Þ

Thus, combining (10.3) through (10.6), the conditional average cost given H1, C DjH1ð Þ,
becomes

C DjH1ð Þ ¼ c11

ð
R1

fZ zjH1ð Þ dz þ c21 1�
ð
R1

fZ zjH1ð Þ dz
� �

ð10:8Þ

0

R2R1

fz(z|H1)

z
0

R2R1

fz(z|H2)

z
k

Figure 10.1

Conditional pdfs for a two-hypothesis detection problem.
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In a similarmanner, the average cost ofmaking a decision given thatH2 is true,C DjH2ð Þ, can be
written as

C DjH2ð Þ ¼ c12P decideH1jH2 true½ � þ c22P decideH2jH2 true½ �
¼ c12

ð
R1

fZ zjH2ð Þ dz þ c22

ð
R2

fZ zjH2ð Þ dz

¼ c12

ð
R1

fZ zjH2ð Þ dz þ c22 1�
ð
R1

fZ zjH2ð Þ dz
� � ð10:9Þ

To find the average cost without regard to which hypothesis is actually true, we

must average (10.8) and (10.9) with respect to the prior probabilities of hypotheses H1 and

H2, p0 ¼ P H1 true½ � and q0 ¼ 1� p0 ¼ P H2 true½ �. The average cost of making a decision is

then

C Dð Þ ¼ p0C DjH1ð Þ þ q0C DjH2ð Þ ð10:10Þ
Substituting (10.8) and (10.9) into (10.10) and collecting terms, we obtain

C Dð Þ ¼ p0 c11

ð
R1

fZ zjH1ð Þ dz þ c21 1�
ð
R1

fZ zjH1ð Þ dz
� �� �

þ q0 c12

ð
R1

fZ zjH2ð Þ dz þ c22 1�
ð
R1

fZ zjH2ð Þ dz
� �� � ð10:11Þ

for the average cost, or risk, in making a decision. Collection of all terms under a common

integral that involves integration over R1 results in

C Dð Þ¼ p0c21 þ q0c22½ � þ
ð
R1

q0 c12�c22ð Þ fZ zjH2ð Þ½ �� p0 c21�c11ð Þ fZ zjH1ð Þ½ �f gdz ð10:12Þ

The first term in brackets represents a fixed cost once p0;q0;c21; and c22 are specified. Thevalue
of the integral is determined by those points which are assigned to R1. Since wrong decisions

should be more costly than right decisions, it is reasonable to assume that c12 > c22 and

c21 > c11. Thus the two bracketed terms within the integral are positive because

q0; p0; fZ zjH2ð Þ, and fZ zjH1ð Þ are probabilities. Hence all values of z that give a larger value
for the second term in brackets within the integral than for the first term in brackets should be

assigned to R1 because they contribute a negative amount to the integral. Values of z that give a

larger value for the first bracketed term than for the second should be assigned to R2. In this

manner, C Dð Þ will be minimized. Mathematically, the preceding discussion can be summa-

rized by the pair of inequalities

q0 c12�c22ð ÞfZ ZjH2ð ÞQ
H2

H1

p0 c21�c11ð Þ fZ ZjH1ð Þ

or

fZ ZjH2ð Þ
fZ ZjH1ð ÞQ

H2

H1

p0 c21�c11ð Þ
q0 c12�c22ð Þ ð10:13Þ

which are interpreted as follows: If an observed value for Z results in the left-hand ratio of pdfs

being greater than the right-hand ratio of constants, chooseH2; if not, chooseH1. The left-hand
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side of (10.13), denoted by L Zð Þ,

L Zð Þ/ fZ ZjH2ð Þ
fZ ZjH1ð Þ ð10:14Þ

is called the likelihood ratio. The right-hand side of (10.13)

h/
p0 c21�c11ð Þ
q0 c12�c22ð Þ ð10:15Þ

is called the threshold of the test. Thus, the Bayes criterion of minimum average cost has

resulted in a test of the likelihood ratio, which is a random variable, against the threshold value

h. Note that the development has been general, in that no reference has been made to the

particular form of the conditional pdfs in obtaining (10.13). We now return to the specific

example that resulted in the conditional pdfs of (10.1) and (10.2).

EXAMPLE 10.1

Consider the pdfs of (10.1) and (10.2). Let the costs for a Bayes test be c11 ¼ c22 ¼ 0 and c21 ¼ c12.

a. Find L Zð Þ.
b. Write down the likelihood ratio test for p0 ¼ q0 ¼ 1

2
.

c. Compare the result of part (b) with the case p0 ¼ 1
4
and q0 ¼ 3

4
.

S o l u t i o n

a. The likelihood ratio is given by

L Zð Þ ¼
exp � Z� kð Þ2=2s2

n

h i
exp � Z2=2s2

n


 � ¼ exp
2kZ� k2

2sn

� �
ð10:16Þ

b. For this case h ¼ 1, which results in the test

exp
2kZ� k2

2s2
n

� �
Q
H2

H1

1 ð10:17Þ

Taking the natural logarithm of both sides [this is permissible because ln xð Þ is a monotonic function

of x] and simplifying, we obtain

ZQ
H2

H1

k

2
ð10:18Þ

which states that if the noisy received data are less than half the signal amplitude, the decision that

minimizes risk is that the signal was absent, which is reasonable.

c. For this situation, h ¼ 1
3
, and the likelihood ratio test is

exp
2kZ� k2

2s2
n

� �
Q
H2

H1

1

3
ð10:19Þ

or, simplifying,

ZQ
H2

H1

k

2
� s2

n

k
ln 3 ð10:20Þ

Since is was assumed that k > 0, the second term on the right-hand side is positive and the optimum

threshold is clearly reduced from the value resulting from signals having equal prior probabilities.
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Thus, if the prior probability of a signal being present in the noise is increased, the optimum threshold

is decreased so that the signal-present hypothesis (H2) will be chosen with higher probability.

&

10.1.4 Performance of Bayes Detectors

Since the likelihood ratio is a function of a random variable, it is itself a random variable. Thus,

whether we compare the likelihood ratio L Zð Þwith the threshold h or we simplify the test to a

comparison ofZwith amodified threshold as inExample 10.1,we are facedwith the prospect of

making wrong decisions. The average cost of making a decision, given by (10.12), can be

written in terms of the conditional probabilities of making wrong decisions, of which there are

two.2 These are given by

PF ¼
ð
R2

fZ zjH1ð Þ dz ð10:21Þ

and

PM ¼
ð
R1

fZ zjH2ð Þ dz

¼ 1�
ð
R2

fZ zjH2ð Þ dz ¼ 1�PD

ð10:22Þ

The subscripts F, M, and D stand for ‘‘false alarm,’’ ‘‘missed detection,’’ and ‘‘correct

detection,’’ respectively, a terminology that grew out of the application of detection theory

to radar. (It is implicitly assumed that hypothesis H2 corresponds to the signal-present

hypothesis and that hypothesis H1 corresponds to noise alone, or signal absent, when this

terminology is used.) When (10.21) and (10.22) are substituted into (10.12), the risk per

decision becomes

C Dð Þ ¼ p0c21 þ q0c22 þ q0 c12� c22ð ÞPM � p0 c21� c11ð Þ 1�PFð Þ ð10:23Þ
Thus, it is seen that if the probabilities PF and PM (or PD) are available, the Bayes risk can be

computed.

Alternative expressions forPF andPM can bewritten in terms of the conditional pdfs of the

likelihood ratio given H1 and H2 as follows: Given that H2 is true, an erroneous decision is

made if

L Zð Þ < h ð10:24Þ
for the decision, according to (10.13), is in favor of H1. The probability of inequality (10.24)

being satisfied, given H2 is true, is

PM ¼
ðh
0

fL ljH2ð Þ dl ð10:25Þ

where fL ljH2ð Þ is the conditional pdf of L Zð Þ given that H2 is true. The lower limit of

the integral in (10.25) is h ¼ 0 since L Zð Þ is nonnegative, being the ratio of pdfs.

2As will be apparent soon, the probability of error introduced in Chapter 8 can be expressed in terms of PM and PF .

Thus these conditional probabilities provide a complete performance characterization of the detector.
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Similarly,

PF ¼
ð¥
h

fL ljH1ð Þ dl ð10:26Þ

because, given H1, an error occurs if

L Zð Þ > h ð10:27Þ
[The decision is in favor ofH2 according to (10.13).] The conditional probabilities fL ljH2ð Þ and
fL ljH1ð Þ can be found, in principle at least, by transforming the pdfs fZ zjH2ð Þ and fZ zjH1ð Þ in
accordance with the transformation of random variables defined by (10.14). Thus two ways of

computing PM and PF are given by using either (10.21) and (10.22) or (10.25) and (10.26).

Often, however, PM and PF are computed by using a monotonic function of L Zð Þ that is
convenient for the particular situation being considered, as in Example 10.2.

A plot of PD ¼ 1�PM versus PF is called the operating characteristic of the likelihood

ratio test, or the receiver operating characteristic (ROC). It provides all the information

necessary to evaluate the risk through (10.23), provided the costs c11; c12; c21; and c22 are

known. To illustrate the calculation of an ROC, we return to the example involving detection of

a constant in Gaussian noise.

EXAMPLE 10.2

Consider the conditional pdf�s of (10.1) and (10.2). For an arbitrary thresholdh, the likelihood ratio test of
(10.13), after taking the natural logarithm of both sides, reduces to

2kZ� k2

2s2
n

Q
H2

H1

ln h or
Z

sn

Q
H2

H1

sn

k

� �
ln h þ k

2sn
ð10:28Þ

Defining the new random variable X/Z=sn and the parameter d/ k=sn, we can further simplify the

likelihood ratio test to

XQ
H2

H1

d �1 ln h þ 1

2
d ð10:29Þ

Expressions for PF and PM can be found once fX xjH1ð Þ and fX xjH2ð Þ are known. Because X is obtained

from Z by scaling by sn, we see from (10.1) and (10.2) that

fX xjH1ð Þ ¼ e�x
2=2ffiffiffiffiffiffi
2p
p and fX xjH2ð Þ ¼ e� x� dð Þ2=2ffiffiffiffiffiffi

2p
p ð10:30Þ

That is, under either hypothesis H1 or hypothesis H2, X is a unity variance Gaussian random variable.

These two conditional pdfs are shown in Figure 10.2. A false alarm occurs if, given H1,

X > d �1 ln h þ 1

2
d ð10:31Þ

The probability of this happening is

PF ¼
ð¥
d �1 ln h þ d=2

fX xjH1ð Þ dx

¼
ð¥
d �1 ln h þ d=2

e� x2=2ffiffiffiffiffiffi
2p
p dx ¼ Q d �1 ln h þ d

2

� � ð10:32Þ
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which is the area under fX xjH1ð Þ to the right of d �1 ln h þ 1
2
d in Figure 10.2. Detection occurs if, given

H2,

X > d �1 ln h þ 1

2
d ð10:33Þ

The probability of this happening is

PD ¼
ð¥
d �1 ln h þ d=2

fX xjH2ð Þ dx

¼
ð¥
d �1 ln h þ d=2

e� x� dð Þ2=2ffiffiffiffiffiffi
2p
p dx ¼ Q d �1 ln h� d

2

� � ð10:34Þ

Thus PD is the area under fX xjH2ð Þ to the right of d �1 ln h þ d=2 in Figure 10.2. Note that for

h ¼ 0; ln h ¼ �¥ and the detector always choosesH2 PF ¼ 1ð Þ. For h ¼ ¥; ln h ¼ ¥ and the detector

always chooses H1 PD ¼ PF ¼ 0ð Þ.
&

COMPUTER EXERCISE 10.1

TheROC is obtained by plottingPD versusPF for various values of d, as shown in Figure 10.3. The curves

are obtained by varying h from 0 to ¥. This is easily accomplished using the simple MATLAB code that

follows.

% file: c10ce1
clear all;
d ¼ [0 0.3 0.6 1 2 3]; % vector of d values
eta ¼ logspace(-2,2); % values of eta
lend ¼ length(d); % number of d values
hold on % hold for multiple plots
for j¼1:lend % begin loop

dj ¼ d(j); % select jth value of d
af ¼ log(eta)/dj þ dj/2; % argument of Q for Pf
ad ¼ log(eta)/dj - dj/2; % argument of Q for Pd
pf ¼ qfn(af); % compute Pf
pd ¼ qfn(ad); % compute Pd
plot(pf,pd) % plot curve

end

1
2

3.02.52.01.51.00.50–0.5–1.0
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0.4
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R2R1

fx (x |H1) fx (x |H2)

PF

PD

x

d 1
2 dd–1 In  +η

Figure 10.2

Conditional and decision regions for the problem of detecting a constant signal in zero-mean Gaussian

noise.
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hold off % plots completed
axis square % proper aspect ratio
xlabel(’Probability of False Alarm’)
ylabel(’Probability of Detection’)

In the preceding program, the Gaussian Q function is computed using the MATLAB function

function out¼qfn(x)
% Gaussian Q Function
%
out¼0.5*erfc(x/sqrt(2));

&

10.1.5 The Neyman–Pearson Detector

Thedesign of aBayes detector requires knowledge of the costs and apriori probabilities. If these

are unavailable, a simple optimization procedure is to fix PF at some tolerable level, say a, and
maximizePD (orminimizePM) subject to theconstraintPF � a.Theresultingdetector isknown
as theNeyman–Pearson detector. It can be shown that theNeyman–Pearson criterion leads to a

likelihood ratio test identical to that of (10.13), except that the threshold h is determined by the

allowedvalue of probability of false alarma. This value ofh can be obtained from theROCfor a

given value ofPF , for it can be shown that the slope of a curve of an ROC at a particular point is

equal to the value of the threshold h required to achieve the PD and PF of that point.3

10.1.6 Minimum-Probability-of-Error Detectors

From (10.12) it follows that if c11 ¼ c22 ¼ 0 (zero cost for making right decision) and

c12 ¼ c21 ¼ 1 (equal cost for making either type of wrong decision), then the risk reduces to

1
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Figure 10.3

Receiver operating characteristic

for

detecting a constant signal in ze-

ro-mean Gaussian noise.

3Van Trees (1968), Vol. 1.
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C Dð Þ ¼ p0 1�
ð
R1

fZ zjH1ð Þ dz
� �

þ q0

ð
R1

fZ zjH2ð Þ dz

¼ p0

ð
R2

fZ zjH1ð Þ dz þ q0

ð
R1

fZ zjH2ð Þ dz

¼ p0PF þ q0PM ð10:35Þ
ð10:35Þ

wherewe have used (10.7), (10.21), and (10.22). However, (10.35) is the probability of making

a wrong decision, averaged over both hypotheses, which is the same as the probability of error

used as the optimization criterion in Chapter 8. Thus Bayes receivers with this special cost

assignment are minimum-probability-of-error receivers.

10.1.7 The Maximum a Posteriori Detector

Letting c11 ¼ c22 ¼ 0 and c21 ¼ c12 in (10.13), we can rearrange the equation in the form

fZ ZjH2ð ÞP H2ð Þ
fZ Zð Þ Q

H2

H1

fZ ZjH1ð ÞP H1ð Þ
fZ Zð Þ ð10:36Þ

where the definitions of p0 and q0 have been substituted, both sides of (10.13) have been

multiplied by P H2ð Þ, and both sides have been divided by

fZ Zð Þ/ fZ ZjH1ð ÞP H1ð Þ þ fZ ZjH2ð ÞP H2ð Þ ð10:37Þ
Using Bayes rule, as given by (5.10), (10.36) becomes

P H2jZð ÞQ
H2

H1

P H1jZð Þ c11 ¼ c22 ¼ 0; c12 ¼ c21ð Þ ð10:38Þ

Equation (10.38) states that the most probable hypothesis, given a particular observation Z,

is to be chosen in order to minimize the risk, which, for the special cost assignment

assumed, is equal to the probability of error. The probabilities P H1jZð Þ and P H2jZð Þ are
called a posteriori probabilities, for they give the probability of a particular hypothesis

after the observation of Z, in contrast to P H1ð Þ and P H2ð Þ, which give us the probabilities

of the same events before observation of Z. Because the hypothesis corresponding to the

maximum a posteriori probability is chosen, such detectors are referred to as maximum a

posteriori (MAP) detectors. Minimum-probability-of-error detectors and MAP detectors

are therefore equivalent.

10.1.8 Minimax Detectors

The minimax decision rule corresponds to the Bayes decision rule, where the a priori

probabilities have been chosen to make the Bayes risk a maximum. For further discussion

of this decision rule, see Van Trees (1968).

10.1.9 The M-ary Hypothesis Case

The generalization of the Bayes decision criterion to M hypotheses, where M > 2, is

straightforward but unwieldy. For theM-ary case, M2 costs andM a priori probabilities must

be given. In effect,M likelihood ratio tests must be carried out inmaking a decision. If attention
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is restricted to the special cost assignment used to obtain the MAP detector for the binary case

(that is, right decisions cost zero and wrong decisions are all equally costly), then a MAP

decision rule results that is easy to visualize for the M-hypothesis case. Generalizing from

(10.38), we have the MAP decision rule for theM-hypothesis case: Compute theM posterior

probabilities P HijZð Þ; i ¼ 1; 2; . . . ;M; and choose as the correct hypothesis the one corre-

sponding to the largest posterior probability. This decision criterion will be used whenM-ary

signal detection is considered.

10.1.10 Decisions Based on Vector Observations

If, instead of a single observation Z, we have N observations Z/ Z1; Z2; . . . ; ZNð Þ, all of the
preceding results holdwith the exception that theN-fold joint pdfs of Z, givenH1 andH2, are to

be used. If Z1; Z2; . . . ; ZN are conditionally independent, these joint pdfs are easily written

since they are simply the N-fold products of the marginal pdfs of Z1; Z2; . . . ; ZN , givenH1 and

H2.Wewill make use of this generalizationwhen the detection of arbitrary finite energy signals

in white Gaussian noise is discussed. We will find the optimum Bayes detectors for such

problems by resolving the possible transmitted signals into a finite-dimensional signal space.

In the next section, therefore, we continue the discussion of vector space representation of

signals begun in Section 2.3.

n 10.2 VECTOR SPACE REPRESENTATION OF SIGNALS

We recalled, in Section 2.3, that any vector in three-dimensional space can be expressed as a

linear combination of any three linearly independent vectors. Recall that such a set of three

linearly independent vectors is said to span three-dimensional vector space and is referred to as

a basis-vector set for the space. A basis set of unit-magnitude, mutually perpendicular vectors

is called an orthonormal basis set.

Two geometrical concepts associated with vectors are magnitude of a vector and angle

between two vectors. Both are described by the scalar (or dot) product of any two vectorsA and

B having magnitudes A and B, defined as

A � B ¼ AB cos u ð10:39Þ
where u is the angle between A and B. Thus

A ¼
ffiffiffiffiffiffiffiffiffiffiffi
A � A
p

and cos u ¼ A � B
AB ð10:40Þ

Generalizing these concepts to signals in Section 2.3, we expressed a signal x tð Þwith finite
energy in an interval t0; t0 þ Tð Þ in terms of a complete set of orthonormal basis functions

f1 tð Þ; f2 tð Þ; . . . ; as the series

x tð Þ ¼
X¥
n¼1

Xnfn tð Þ ð10:41Þ

where

Xn ¼
ðt0 þ T

t0

x tð Þf*
n tð Þ dt ð10:42Þ
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which is a special case of (2.35) with cn ¼ 1 because thefn tð Þ are assumed orthonormal on the

interval t0; t0 þ Tð Þ. This provided the alternative representation for x tð Þ as the infinite-

dimensional vector X1; X2; . . .ð Þ.
To set up a geometric structure on such a vector space, which will be referred to as signal

space, we must first establish the linearity of the space by listing a consistent set of properties

involving the members of the space and the operations between them. Second, we must

establish the geometric structure of the space by generalizing the concept of scalar product, thus

providing generalizations for the concepts of magnitude and angle.

10.2.1 Structure of Signal Space

We begin with the first task. Specifically, a collection of signals composes a linear signal space

S if, for any pair of signals x tð Þ and y tð Þ in S , the operations of addition (commutative and

associative) of two signals and multiplication of a signal by a scalar are defined and obey the

following axioms:

Axiom 1. The signal a1x tð Þ þ a2y tð Þ is in the space for any two scalars a1 and a2

(establishes S as linear).

Axiom 2. a x tð Þ þ y tð Þ½ � ¼ ax tð Þ þ ay tð Þ for any scalar a.

Axiom 3. a1 a2x tð Þ½ � ¼ a1a2ð Þx tð Þ
Axiom 4. The product of x tð Þ and the scalar 1 reproduces x tð Þ.
Axiom 5. The space contains a unique zero element such that

x tð Þ þ 0 ¼ x tð Þ
Axiom 6. To each x tð Þ there corresponds a unique element �x tð Þ such that

x tð Þ þ � x tð Þ½ � ¼ 0

In writing relations such as the preceding, it is convenient to suppress the independent variable

t, and this will be done from now on.

10.2.2 Scalar Product

The second task, that of establishing the geometric structure, is accomplished by defining the

scalar product, denoted x; yð Þ, as a scalar-valued function of two signals x tð Þ and y tð Þ (in
general, complex functions), with the following properties:

Property 1. x; yð Þ ¼ y; xð Þ*.
Property 2. ax; yð Þ ¼ a x; yð Þ.
Property 3. x þ y; zð Þ ¼ x; zð Þ þ y; zð Þ.
Property 4. x; xð Þ > 0 unless x � 0, in which case x; xð Þ ¼ 0.

The particular definition used for the scalar product depends on the application and the type of

signals involved. Because we wish to include both energy and power signals in our fu-

ture considerations, at least two definitions of the scalar product are required. If x tð Þ and y tð Þ
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are both of the same signal type, a convenient choice is

x; yð Þ ¼ lim
T 0 !¥

ðT 0
� T 0

x yð Þy* tð Þ dt ð10:43Þ

for energy signals and

x; yð Þ ¼ lim
T 0 !¥

1

2T 0

ðT 0
�T 0

x yð Þy* tð Þ dt ð10:44Þ

for power signals. In (10.43) and (10.44) T 0 has been used to avoid confusion with the signal

observation interval T . In particular, for x tð Þ ¼ y tð Þ, we see that (10.43) is the total energy

contained in x tð Þ and (10.44) corresponds to the average power.We note that the coefficients in

the series of (10.41) can be written as

Xn ¼ x; fnð Þ ð10:45Þ
If the scalar product of two signals x tð Þ and y tð Þ is zero, they are said to be orthogonal, just as
two ordinary vectors are said to be orthogonal if their dot product is zero.

10.2.3 Norm

The next step in establishing the structure of a linear signal space is to define the length, or norm

kxk, of a signal. A particularly suitable choice, in view of the preceding discussion, is

kxk ¼ x; xð Þ1=2 ð10:46Þ
More generally, the norm of a signal is any nonnegative real number satisfying the following

properties:

Property 1. kxk ¼ 0 if and only if x � 0.

Property 2. kx þ yk � kxk þ kyk (known as the triangle inequality).

Property 3. kaxk ¼ jaj kxk, where a is a scalar.

Clearly, the choice kxk ¼ x; xð Þ1=2 satisfies these properties, and we will employ it from now

on.Ameasure of the distance between, or dissimilarity of, two signalsx and y is provided by the

norm of their difference kx� yk.

10.2.4 Schwarz�s Inequality

An important relationship between the scalar product of two signals and their norms is

Schwarz�s inequality, whichwas used in Chapter 8without proof. For two signals x tð Þ and y tð Þ,
it can be written as

j x; yð Þj � kxk kyk ð10:47Þ
with equality if and only if x or y is zero or if x tð Þ ¼ ay tð Þ where a is a scalar.

To prove (10.47), we consider the nonnegative quantity kx þ ayk2 where a is as yet an

unspecified constant. Expanding it by using the properties of the scalar product, we obtain

kx þ ayk2 ¼ x þ ay; x þ ayð Þ
¼ x; xð Þ þ a* x; yð Þ þ a x; yð Þ* þ jaj2 y; yð Þ
¼ kxk2 þ a* x; yð Þ þ a x; yð Þ* þ jaj2kyk2

ð10:48Þ
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Choosinga ¼ � x; yð Þ=kyk2, which is permissible sincea is arbitrary, we find that the last two

terms of (10.48) cancel, yielding

kx þ ayk2 ¼ kxk2� j x; yð Þj2
kyk2 ð10:49Þ

Since kx þ ayk2 is nonnegative, rearranging (10.49) gives Schwarz�s inequality. Furthermore,

noting that kx þ ayk ¼ 0 if and only if x þ ay ¼ 0, we establish a condition under which

equality holds in (10.47). Equality also holds, of course, if one or both signals are identically zero.

EXAMPLE 10.3

A familiar example of a space that satisfies the preceding properties is ordinary two-dimensional vector

space. Consider two vectors with real components,

A1 ¼ a1 ib þ b1 jb and A2 ¼ a2 ib þ b2 jb ð10:50Þ
where iband jbare the usual orthogonal unit vectors. The scalar product is taken as the vector dot product

A1;A2ð Þ ¼ a1a2 þ b1b2 ¼ A1 � A2 ð10:51Þ
and the norm is taken as

kA1k ¼ A1;A1ð Þ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21

q
ð10:52Þ

which is just the length of the vector. Addition is defined as vector addition,

A1 þ A2 ¼ a1 þ a2ð Þ ib þ b1 þ b2ð Þ jb ð10:53Þ

which is commutative and associative. The vectorC/a1A1 þ a2A2, wherea1 anda2 are real constants,

is also a vector in two-space (Axiom 1). The remaining axioms follow aswell, with the zero element being

0 ib þ 0 jb.
The properties of the scalar product are satisfied by the vector dot product. The properties of the norm

also follow, with property 2 taking the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2ð Þ2 þ b1 þ b2ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ b22

q
ð10:54Þ

which is simply a statement that the length of the hypotenuse of a triangle is shorter than the sum of the

lengths of the other two sides—hence the name triangle inequality. Schwarz�s inequality squared is

a1a2 þ b1b2ð Þ2 � a21 þ b21

 �

a22 þ b22

 � ð10:55Þ

which simply states that jA1 � A2j2 is less than or equal to the length squared of A1 times the length squared

of A2.

&

10.2.5 Scalar Product of Two Signals in Terms of Fourier Coefficients

Expressing two energy or power signalsx tð Þ and y tð Þ in the formgiven in (10.41), wemay show

that

x; yð Þ ¼
X¥
m¼1

XmY
*
m ð10:56Þ
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Letting y ¼ x results in Parseval�s theorem, which is

kxk2 ¼
X¥
n¼1
jXmj2 ð10:57Þ

To indicate the usefulness of the shorthand vector notation just introduced, wewill carry out the

proof of (10.56) and (10.57) using it. Let x tð Þ and y tð Þ be written in terms of their respective

orthonormal expansions:

x tð Þ ¼
X¥
m¼1

Xmfm tð Þ and y tð Þ ¼
X¥
n¼1

Ynfn tð Þ ð10:58Þ

where, in terms of the scalar product,

Xm ¼ x;fmð Þ and Yn ¼ y;fnð Þ ð10:59Þ
Thus

x; yð Þ ¼
X
m

Xmfm;
X
n

Ynfn

 !
¼
X
m

Xm fm;
X
n

Ynfn

 !
ð10:60Þ

by virtue of properties 2 and 3 of the scalar product. Applying property 1, we obtain

x; yð Þ ¼
X
m

Xm

X
n

Ynfn;fm

 !*
¼
X
m

Xm

X
n

Y*
n fn;fmð Þ*

" #
ð10:61Þ

the last step of which follows by virtue of another application of properties 2 and 3. But the fn

are orthonormal; that is, fn;fmð Þ ¼ dnm, where dnm is the Kronecker delta. Thus

x; yð Þ ¼
X
m

Xm

X
n

Y*
ndnm

" #
¼
X
m

XmY
*
m ð10:62Þ

which proves (10.56). We may set x tð Þ ¼ y tð Þ to prove (10.57).

EXAMPLE 10.4

Consider a signal x tð Þ and the approximation to it xa tð Þ of Example 2.5. Both x and xa are in the signal

space consisting of all finite-energy signals. All the addition andmultiplication properties for signal space

hold for x and xa. Because we are considering finite-energy signals, the scalar product defined by (10.43)

applies. The scalar product of x and xa is

x; xað Þ ¼
ð2
0

sin ptð Þ
�
2

p
f1 tð Þ� 2

p
f2 tð Þ

�
dt

¼ 2

p

� �2

� 2

p
� 2

p

� �
¼ 2

2

p

� �2
ð10:63Þ
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The norm of their difference squared is

kx� xak2 ¼ x� xa; x� xað Þ

¼
ð2
0

�
sin ptð Þ� 2

p
f1 tð Þ þ 2

p
f2 tð Þ

�2
dt

¼ 1� 8

p2

ð10:64Þ

which is just the minimum integral-squared error between x and xa.

The norm squared of x is

kxk2 ¼
ð2
0

sin2 ptð Þdt ¼ 1 ð10:65Þ

and the norm squared of xa is

kxak2 ¼
ð2
0

2

p
f1 tð Þ� 2

p
f2 tð Þ

� �2
dt ¼ 2

2

p

� �2

ð10:66Þ

which follows since f1 tð Þ and f2 tð Þ are orthonormal over the period of integration. Thus Schwarz�s
inequality for this case is

2
2

p

� �2

< 1�
ffiffiffi
2
p 2

p

� �
ð10:67Þ

which is equivalent to ffiffiffi
2
p

<
1

2
p ð10:68Þ

Since x is not a scalar multiple of xa, we must have strict inequality.

&

10.2.6 Choice of Basis Function Sets: The Gram–Schmidt Procedure

The question naturally arises as to how we obtain suitable basis sets. For energy or power

signals, with no further restrictions imposed, we require infinite sets of functions. Suffice it to

say that many suitable choices exist, depending on the particular problem and the interval of

interest. These include not only the sines and cosines, or complex exponential functions of

harmonically related frequencies, but also the Legendre functions, Hermite functions, and

Bessel functions, to name only a few. All these are complete sets of functions.

A technique referred to as theGram–Schmidt procedure is often useful for obtaining basis

sets, especially in the consideration of M-ary signal detection. This procedure will now be

described.

Consider the situation in which we are given a finite set of signals s1 tð Þ; s2 tð Þ; . . . ; sM tð Þ
defined on some interval t0; t0 þ Tð Þ, and our interest is in all signals that may be written as

linear combinations of these signals:

x tð Þ ¼
XM
n¼1

Xnsn tð Þ; t0 � t � t0 þ T ð10:69Þ

The set of all such signals forms an M-dimensional signal space if the sn tð Þ are linearly

independent [that is, no sn tð Þ can be written as a linear combination of the rest]. If the sn tð Þ are
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not linearly independent, the dimension of the space is less thanM. An orthonormal basis for

the space can be obtained by using the Gram–Schmidt procedure, which consists of the

following steps:

1. Set v1 tð Þ ¼ s1 tð Þ and f1 tð Þ ¼ v1 tð Þ=kv1k:
2. Set v2 tð Þ ¼ s2 tð Þ� s2;f1ð Þf1 andf2 tð Þ ¼ v2 tð Þ=kv2k; v2 tð Þ is the component of s2 tð Þ that

is linearly independent of s1 tð Þ.
3. Set v3 tð Þ ¼ s3 tð Þ� s3;f2ð Þf2 tð Þ� s3;f1ð Þf1 tð Þ and f3 tð Þ ¼ v3 tð Þ=kv3k; v3 tð Þ is the

component of s3 tð Þ linearly independent of s1 tð Þ and s2 tð Þ.
4. Continue until all the sn tð Þ have been used. If the sn tð Þ are not linearly independent, then one

or more steps will yield vn tð Þ for which kvnk ¼ 0. These signals are omitted whenever they

occur so that a set of K orthonormal functions is finally obtained where K � M.

The resulting set forms an orthonormal basis set for the space since, at each step of the

procedure, we ensure that
fn;fmð Þ ¼ dnm ð10:70Þ

where dnm is the Kronecker delta defined in Chapter 2, and we use all signals in forming the

orthonormal set.

EXAMPLE 10.5

Consider the set of three finite-energy signals

s1 tð Þ ¼ 1; 0 � t � 1

s2 tð Þ ¼ cos 2ptð Þ; 0 � t � 1

s3 tð Þ ¼ cos2 ptð Þ; 0 � t � 1

ð10:71Þ

We desire an orthonormal basis for the signal space spanned by these three signals.

S o l u t i o n

We let v1 tð Þ ¼ s1 tð Þ and compute

f1 tð Þ ¼ v1 tð Þ
kv1k ¼ 1; 0 � t � 1 ð10:72Þ

Next, we compute

s2;f1ð Þ ¼
ð1
0

1 cos 2ptð Þdt ¼ 0 ð10:73Þ

and we set

v2 tð Þ ¼ s2 tð Þ� s2;f1ð Þf1 ¼ cos 2ptð Þ; 0 � t � 1 ð10:74Þ
The second orthonormal function is found from

f2 tð Þ ¼ v2
kv2k ¼

ffiffiffi
2
p

cos 2ptð Þ; 0 � t � 1 ð10:75Þ

To check for another orthonormal function, we require the scalar products

s3;f2ð Þ ¼
ð1
0

ffiffiffi
2
p

cos 2ptð Þcos2 ptð Þdt ¼ 1

4

ffiffiffi
2
p

ð10:76Þ
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and

s3;f1ð Þ ¼
ð1
0

cos2 ptð Þdt ¼ 1

2
ð10:77Þ

Thus

v3 tð Þ ¼ s3 tð Þ� s3;f2ð Þf2� s3;f1ð Þf1

¼ cos2 ptð Þ� 1

4

ffiffiffi
2
p� � ffiffiffi

2
p

cos 2ptð Þ� 1

2
¼ 0

ð10:78Þ

so that the space is two-dimensional.

&

10.2.7 Signal Dimensionality as a Function of Signal Duration

The sampling theorem, proved in Chapter 2, provides a means of representing strictly

bandlimited signals, with bandwidth W, in terms of the infinite basis function set

sinc fst� nð Þ; n ¼ 0;�1;�2; . . . Because sinc fst� nð Þ is not time-limited, we suspect that

a strictly bandlimited signal cannot also be of finite duration (that is, time-limited). However,

practically speaking, a time-bandwidth dimensionality can be associatedwith a signal provided

the definition of bandlimited is relaxed. The following theorem, given without proof, provides

an upper bound for the dimensionality of time-limited and bandwidth-limited signals.4

Dimensionality Theorem

Let fk tð Þf g denote a set of orthogonal waveforms, all of which satisfy the following

requirements:

1. They are identically zero outside a time interval of duration T, for example, jtj � 1
2
T .

2. None has more than 1
12

of its energy outside the frequency interval �W < f < W .

Then the number of waveforms in the set fk tð Þf g is conservatively overbounded by 2:4TW
when TW is large.

EXAMPLE 10.6

Consider the orthogonal set of waveforms

fk tð Þ ¼ P
�
t� kt
t

�

¼
1;

1

2
2k�1ð Þt � t � 1

2
2k þ 1ð Þt; k ¼ 0;�1;�2;�K

0; otherwise

8><>:
4This theorem is taken fromWozencraft and Jacobs (1965), p. 294, where it is also given without proof. However, a

discussion of the equivalence of this theorem to the original ones due to Shannon and to Landau and Pollak is also

given.
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where 2K þ 1ð Þt ¼ T . The Fourier transform of fk tð Þ is
Fk fð Þ ¼ t sinc tfð Þe� j2pktf ð10:79Þ

The total energy in fk tð Þ is t, and the energy for j f j � W is

EW ¼
ðW
�W

t2 sinc2 tfð Þdf

¼ 2t
ðtW
0

sinc2v dv

ð10:80Þ

where the substitution v ¼ tf has been made in the integral and the integration is carried out only over

positive values of v, owing to the evenness of the integrand. The total pulse energy is E ¼ t so the ratio of
energy in a bandwidth W to total energy is

EW

E
¼ 2

ðtW
0

sinc2v dv ð10:81Þ

This integral cannot be integrated in closed form, so we integrate it numerically using the MATLAB

program below:5

% ex10_6
%
for tau_W ¼ 1:.1:1.5

v ¼ 0:0.01:tau_W;
y ¼ (sinc(v)).b2;
EW_E ¼ 2*trapz(v, y);
disp([tau_W, EW_E])

end

The results for EW=E versus tW are given below:

tW EW=E

1.0 0.9028

1.1 0.9034

1.2 0.9066

1.3 0.9130

1.4 0.9218

1.5 0.9311

We want to choose tW such that EW=E 	 11
12
¼ 0:9167. Thus, tW ¼ 1:4 will ensure that none

of the fk tð Þs has more than 1
12

of its energy outside the frequency interval �W < f < W .
Now N ¼ T=t orthogonal waveforms occupy the interval �1

2
T; 1

2
T


 �
, where b c signifies the integer

part of T=t: Letting t ¼ 1:4W �1, we obtain

N ¼ TW

1:4
¼ 0:714TW ð10:82Þ

which satisfies the bound given by the theorem.

&

																	

5The integral can be expressed in terms of the sine-integral function that is tabulated. See Abramowitz and Stegun

(1972).
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n 10.3 MAXIMUM A POSTERIORI RECEIVER FOR
DIGITAL DATA TRANSMISSION

We now apply the detection theory and signal space concepts just developed to digital data

transmission. We will consider examples of coherent and noncoherent systems.

10.3.1 Decision Criteria for Coherent Systems in Terms of Signal Space

In the analysis of QPSK systems in Chapter 9, the received signal plus noise was resolved into

two components by the correlators comprising the receiver. Thismade simple the calculation of

the probability of error. The QPSK receiver essentially computes the coordinates of the

received signal plus noise in a signal space. The basis functions for this signal space are

cos vctð Þ and sin vctð Þ, 0 � t � T , with the scalar product defined by

x1; x2ð Þ ¼
ðT
0

x1 tð Þx2 tð Þ dt ð10:83Þ

which is a special case of (10.43). These basis functions are orthogonal if vcT is an integer

multiple of 2p, but are not normalized.

Recalling the Gram–Schmidt procedure, we see how this viewpoint might be generalized

to M signals s1 tð Þ; s2 tð Þ; . . . ; sM tð Þ that have finite energy but are otherwise arbitrary. Thus,

consider anM-ary communication system, depicted in Figure 10.4, wherein one ofM possible

signals of known form si tð Þ associated with a message mi is transmitted each T seconds. The

receiver is to be constructed such that the probability of error in deciding which message was

transmitted is minimized; that is, it is a MAP receiver. For simplicity, we assume that the

messages are produced by the information source with equal a priori probability.

Ignoring the noise for the moment, we note that the ith signal can be expressed as

si tð Þ ¼
XK
j¼1

Aijfj tð Þ; i ¼ 1; 2; . . . ; M; K � M ð10:84Þ

∑

Information source: 
One of M possible 
messages every T
seconds

Modulator: Message 
mi associated with 
signal si(t), T seconds 
long

Receiver: Observes 
y(t) for T seconds.
Guesses at trans. 
signal each T seconds.

mi
i = 1, 2, . . ., M

si(t) y(t)

Transmitted signal:
si(t)
i = 1, 2, . . ., M

White Gaussian
noise: n(t)

1
2PSD = N0

Best Guess
(Min. PE): miˆ

Figure 10.4

M-ary communication system.
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where the fj tð Þ�s are orthonormal basis functions chosen according to the Gram–Schmidt

procedure. Thus

Aij ¼
ðT
0

si tð Þfj tð Þdt ¼ si;fj


 � ð10:85Þ

and we see that the receiver structure shown in Figure 10.5, which consists of a bank of

correlators, can be used to compute the generalized Fourier coefficients for si tð Þ. Thus we can
represent each possible signal as a point in a K-dimensional signal space with coordinates

Ai1; Ai2; . . . ; AiKð Þ, for i ¼ 1; 2; . . . ; M.

Knowing the coordinates of si tð Þ is as good as knowing si tð Þ, since it is uniquely specified
through (10.84). The difficulty is, of course, that we receive the signals in the presence of noise.

Thus, instead of the receiver providing us with the actual signal coordinates, it provides us with

noisy coordinates Ai1 þ N1; Ai2 þ N2; . . . ; AiK þ NKð Þ, where

Nj /
ðT
0

n tð Þfj tð Þ dt ¼ n;fj


 � ð10:86Þ

We refer to the vector Z having components

Zj /Aij þ Nj; j ¼ 1; 2; . . . ; K ð10:87Þ
as the data vector and to the space of all possible data vectors as the observation space.

Figure 10.6 illustrates a typical situation for K ¼ 3.

The decision-making problem we are therefore faced with is one of associating sets of

noisy signal points with each possible transmitted signal point in a manner that will minimize

the average error probability. That is, the observation space must be partitioned intoM regions

Ri, one associated with each transmitted signal, such that if a received data point falls into

region R‘, the decision ‘‘s‘ tð Þ transmitted’’ is made with minimum probability of error.

T
( )dt∫

t = T

Z1

1 (t)φ

T
( )dt∫

t = T

Z2

2 (t)φ

T
( )dt∫

t = T

ZK

K (t)φ

Signal
coordinates
for signal

only at
input

Decisiony(t)

×

×

×

Figure 10.5

Receiver structure for resolving signals into K-dimensional signal space.
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In Section 10.l, the minimum-probability-of-error detector was shown to correspond to a

MAP decision rule. Thus, letting hypothesis H‘ be ‘‘signal s‘ tð Þ transmitted,’’ we want to

implement a receiver that computes

P H‘jZ1; Z2; . . . ; ZKð Þ; ‘ ¼ 1; 2; . . . ;M; K � M ð10:88Þ
and chooses the largest.6 To compute the posterior probabilities of (10.88), we use Bayes rule

and assume that

P H1ð Þ ¼ P H2ð Þ ¼ � � � ¼ P HMð Þ ð10:89Þ
Application of Bayes rule results in

P H‘jz1; . . . ; zKð Þ ¼ fZ z1; . . . ; zK jH‘ð ÞP H‘ð Þ
fZ z1; . . . ; zKð Þ ð10:90Þ

However, since the factors P H‘ð Þ and fZ z1; . . . ; zKð Þ do not depend on ‘, the detector can

compute fZ z1; . . . ; zK jH‘ð Þ and choose the H‘ corresponding to the largest. The Zj given by

Noise vector, (N1, N2, N3)

N3

N2

N1

Signal vector, (Ai1, Ai2, Ai3)

Ai3

Ai3

Ai1

Ai2

Observed data vector, Z

1 (t)φ

3 (t)φ

2 (t)φ

Figure 10.6

A three-dimensional observation space.

6Capital letters are used to denote components of data vectors because they represent coordinates of an observation

that is random.
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(10.87) are the results of linear operations on a Gaussian process and are therefore Gaussian

random variables. All that is required to write their joint pdf, given H‘, are their means,

variances, and covariances. Their means, given hypothesis H‘, are

E ZjjH‘

� � ¼ E A‘j þ Nj

� � ¼ A‘j þ
ðT
0

E n tð Þf gfj tð Þ dt
¼ A‘j; j ¼ 1; 2; . . . ;K

ð10:91Þ

Their variances, given hypothesis H‘, are

var ZjjH‘

� � ¼ E A‘j þ Nj


 ��A‘j

 �2n o
¼ E N2

j

n o
¼ E

ðT
0

n tð Þfj tð Þdt
ðT
0

n t0ð Þfj t
0ð Þ dt0

� �
¼
ðT
0

ðT
0

E n tð Þn t0ð Þf gfj tð Þ fj t
0ð Þ dt dt0

¼
ðT
0

ðT
0

N0

2
d t� t0ð Þfj tð Þ fj t

0ð Þ dt dt0

¼
ðT
0

N0

2
f2

j tð Þ dt ¼ 1

2
N0; j ¼ 1; 2; . . . ;K ð10:92Þ

ð10:92Þ
where the orthonormality of the fj has been used. In a similar manner, it can be shown that the

covariance of Zj and Zk, for j 6¼ k, is zero. Thus Z1; Z2; . . . ; ZK are uncorrelated Gaussian

random variables and, hence, are statistically independent. Thus

fZ z1; . . . ; zK jH‘ð Þ ¼
YK
j¼1

exp � zj �A‘j


 �2
=N0

h i
ffiffiffiffiffiffiffiffiffi
pN0

p

¼ 1

pN0ð ÞK=2
exp �

XK
j¼1

zj �A‘j


 �2
=N0

" #

¼
exp �kz� s‘k2=N0

n o
pN0ð ÞK=2 ð10:93Þ

where

z ¼ z tð Þ ¼
XK
j¼1

zjfj tð Þ ð10:94Þ

and

s‘ ¼ s‘ tð Þ ¼
XK
j¼1

A‘jfj tð Þ ð10:95Þ

Except for a factor independent of ‘, (10.93), is the posterior probability P H‘jz1; . . . ; zKð Þ
as obtained by applying Bayes rule. Hence, choosing H‘ corresponding to the maximum

posterior probability is the same as choosing the signal with coordinates A‘1;A‘2; . . . ;A‘K so as

to maximize (10.93) or, equivalently, so as to minimize the exponent. But kz� s‘k is the
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distance between z tð Þ and s‘ tð Þ. Thus it has been shown that the decision criterion that

minimizes the average probability of error is to choose as the transmitted signal the one whose

signal point is closest to the received data point in observation space, distance being defined as

the square root of the sum of the squares of the differences of the data and signal vector

components. That is, choose H‘ such that7

Distanceð Þ2 ¼ d2 ¼
XK
j¼1

Zj �A‘j


 �2
¼ kz� s‘k2 ¼ minimum; ‘ ¼ 1; 2; . . . ;M

ð10:96Þ

which is exactly the operation to be performed by the receiver structure of Figure 10.5. We

illustrate this procedure with the following example.

EXAMPLE 10.7

In this example we consider M-ary coherent FSK in terms of signal space. The transmitted signal set is

si tð Þ ¼ A cos 2p fc þ i�1ð ÞDf½ �tf g; 0 � t � Ts ð10:97Þ
where

Df ¼ m

2Ts
; m an integer

For mathematical simplicity, we assume that fcTs is an integer. The orthonormal basis set can be obtained

by applying the Gram–Schmidt procedure. Choosing

v1 tð Þ ¼ s1 tð Þ ¼ A cos 2pfctð Þ; 0 � t � Ts ð10:98Þ
we have

kv1k2 ¼
ðTs
0

A2 cos2 2pfctð Þ dt ¼ A2Ts

2
ð10:99Þ

so that

f1 tð Þ ¼ v1
kv1k ¼

ffiffiffiffiffi
2

Ts

r
cos 2pfctð Þ; 0 � t � Ts ð10:100Þ

It can be shown in a straightforward fashion that s2;f1ð Þ ¼ 0 if Df ¼ m= 2Tsð Þ, so that the second

orthonormal function is

f2 tð Þ ¼
ffiffiffiffiffi
2

Ts

r
cos 2p fc þ Dfð Þt½ �; 0 � t � Ts ð10:101Þ

and similarly for M� 2 other orthonormal functions up to fM tð Þ. Thus the number of orthonormal

functions is the same as the number of possible signals; the ith signal can be written in terms of the ith

7Again,Zj is the jth coordinate of an observation z tð Þ that is random.Equation (10.96) is referred to as a decision rule.
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orthonormal function as

si tð Þ ¼
ffiffiffiffiffi
Es

p
fi tð Þ ð10:102Þ

We let the received signal plus noisewaveformbe represented as y tð Þ.When projected into the observation

space, y tð Þ has M coordinates, the ith one of which is given by

Zi ¼
ðTs
0

y tð Þfi tð Þ dt ð10:103Þ
where y tð Þ ¼ si tð Þ þ n tð Þ. If s‘ tð Þ is transmitted, the decision rule (10.96) becomes

d2 ¼
XM
j¼1

Zj �
ffiffiffiffiffi
Es

p
d‘j


 �2 ¼ minimum over ‘ ¼ 1; 2; . . . ;M ð10:104Þ

Taking the square root and writing the sum out, this can be expressed as

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2 þ � � � þ Z‘�
ffiffiffiffiffi
Es

p
 �2 þ � � � þ Z2
M

q
¼ minimum

ð10:105Þ

For two dimensions (binary FSK), the signal points lie on the two orthogonal axes at a distance
ffiffiffiffiffi
Es

p
out

from the origin. The decision space consists of the first quadrant, and the optimum (minimum error

probability) partition is a line at 45 degrees bisecting the right angle made by the two coordinate axes.

For M-ary FSK transmission, an alternative way of viewing the decision rule can be obtained by

squaring the ‘th term in (10.104) so that we have

d2 ¼
X¥
n¼1

Z2
j þ Es� 2

ffiffiffiffiffi
Es

p
Z‘ ¼ minimum ð10:106Þ

Since the sums over j andEs are independent of ‘, d
2 can beminimizedwith respect to ‘ by choosing as the

possible transmitted signal the one that will maximize the last term; that is, the decision rule becomes:

Choose the possible transmitted signal s‘ tð Þ such thatffiffiffiffiffi
Es

p
Z‘ ¼ maximum or

Z‘ ¼
ðT
0

y tð Þf‘ tð Þdt ¼ maximumwith respect to ‘ ð10:107Þ

In other words, we look at the output of the bank of correlators shown in Figure 10.5 at time t ¼ Ts and

choose the one with the largest output as corresponding to the most probable transmitted signal.
&

10.3.2 Sufficient Statistics

To show that (10.96) is indeed the decision rule corresponding to a MAP criterion, we must

clarify one point. In particular, the decision is based on the noisy signal

z tð Þ ¼
XK
j¼1

Zjfj tð Þ ð10:108Þ

Because of the noise component n tð Þ, this is not the same as y tð Þ, since an infinite set of basis
functions would be required to represent all possible y tð Þs. However, we may show that onlyK

coordinates, where K is the signal space dimension, are required to provide all the information

that is relevant to making a decision.
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Assuming a complete orthonormal set of basis functions, y tð Þ can be expressed as

y tð Þ ¼
X¥
j¼1

Yjfj tð Þ ð10:109Þ

where the first K of the fj are chosen using the Gram–Schmidt procedure for the given signal

set. Given that hypothesis H‘ is true, the Yj are given by

Yj ¼ Zj ¼ A‘j þ Nj; j ¼ 1; 2; . . . ;K
Nj; j ¼ K þ 1;K þ 2; . . .

�
ð10:110Þ

where Zj;A‘j; and Nj are as defined previously. Using a procedure identical to the one used in

obtaining (10.91) and (10.92), we can show that

E Yj
� � ¼ A‘j; j ¼ 1; 2; . . . ;K

0; j > K

�
ð10:111Þ

var Yj
� � ¼ 1

2
N0; all j ð10:112Þ

with cov YjYk
� � ¼ 0; j 6¼ k. Thus the joint pdf of Y1; Y2; . . . ; given H‘; is of the form

fY y1; y2; . . . ; yK ; . . . jH‘ð Þ ¼ C exp � 1

N0

XK
j¼1

yj �A‘j


 �2 þ X¥
j¼K þ 1

y2j

" #8<:
9=;

¼ C exp � 1

N0

X¥
j¼K þ 1

y2j

0@ 1A fZ y1; . . . ; yK ; jH‘ð Þ
ð10:113Þ

whereC is a constant. Since this pdf factors,YK þ 1; YK þ 2; . . .are independent ofY1; Y2; . . . ; YK
and the former provide no information for making a decision because they do not depend on

A‘j; j ¼ 1 ; 2; . . . ; K. Thus d2 given by (10.106) is known as a sufficient statistic.

10.3.3 Detection of M-ary Orthogonal Signals

As a more complex example of the use of signal space techniques, let us consider an M-ary

signaling scheme for which the signal waveforms have equal energies and are orthogonal over

the signaling interval. ThusðTs
0

si tð Þsj tð Þ dt ¼ Es; i ¼ j

0; i 6¼ j; i ¼ 1; 2; . . . ;M

�
ð10:114Þ

where Es is the energy of each signal in 0; Tsð Þ.
A practical example of such a signaling scheme is the signal set forM-ary coherent FSK

given by (10.97). The decision rule for this signaling schemewas considered in Example 10.7.

It was found that K ¼ M orthonormal functions are required, and the receiver shown in

Figure 10.5 involves M correlators. The output of the jth correlator at time Ts is given by

(10.87). The decision criterion is to choose the signal point i ¼ 1; 2; . . . ;M such that d2 given
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by (10.96) is minimized or, as shown in Example 10.7, such that

Z‘ ¼
ðTs
0

y tð Þf‘ tð Þ dt ¼ maximum with respect to ‘ ð10:115Þ

That is, the signal is chosen that has the maximum correlation with the received signal plus

noise. To compute the probability of symbol error, we note that

PE ¼
XM
i¼1

P Ejsi tð Þ sent½ �P si tð Þ sent½ �

¼ 1

M

XM
i¼1

P Ejsi tð Þ sent½ �
ð10:116Þ

where each signal is assumed a priori equally probable. We may write

P Ejsi tð Þ sent½ � ¼ 1�Pci ð10:117Þ
where Pci is the probability of a correct decision given that si tð Þ was sent. Since a correct

decision results only if

Zj ¼
ðTs
0

y tð Þsj tð Þ dt <
ðTs
0

y tð Þsi tð Þ dt ¼ Zi ð10:118Þ

for all j 6¼ i, we may write Pci as

Pci ¼ P all Zj < Zi; j 6¼ i

 � ð10:119Þ

If si tð Þ is transmitted, then

Zi ¼
ðTs
0

ffiffiffiffiffi
Es

p
fi tð Þ þ n tð Þ �

fi tð Þ dt

¼ ffiffiffiffiffi
Es

p þ Ni

ð10:120Þ

where

Ni ¼
ðTs
0

n tð Þfi tð Þ dt ð10:121Þ

Since Zj ¼ Nj ; j 6¼ i, given si tð Þ was sent, it follows that (10.119) becomes

Pci ¼ P all Nj <
ffiffiffiffiffi
Es

p þ Ni; j 6¼ i

 � ð10:122Þ

NowNi is a Gaussian random variable (a linear operation on a Gaussian process) with zero

mean and variance

var Ni½ � ¼ E

ðTs
0

n tð Þfj tð Þ dt
� �2( )

¼ N0

2
ð10:123Þ

Furthermore, Ni and Nj , for i 6¼ j, are independent, since

E NiNj

 � ¼ 0 ð10:124Þ
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Given a particular value of Ni, (10.122) becomes

Pci Nið Þ ¼
YM
j¼1
j 6¼1

P Nj <
ffiffiffiffiffi
Es

p þ Ni

 �

¼
ð ffiffiffiffiEs

p þ Ni

�¥

e� n2j =N0ffiffiffiffiffiffiffiffiffi
pN0

p dnj

0@ 1AM�1 ð10:125Þ

which follows because the pdf of Nj is n 0;
ffiffiffiffiffiffiffiffiffiffi
N0=2

p� �
. Averaged over all possible values of Ni,

(10.125) gives

Pci ¼
ð¥
�¥

e� n2i =N0ffiffiffiffiffiffiffiffiffi
pN0

p
ð ffiffiffiffiEs

p þ ni

�¥

e� n2j =N0ffiffiffiffiffiffiffiffiffi
pN0

p dnj

0@ 1AM�1

dni

¼ pð Þ�M=2

ð¥
�¥

e�y
2

ð ffiffiffiffiffiffiffiffiffi
Es=N0

p
þ y

�¥
e�x

2

dx

 !M�1
dy

ð10:126Þ

where the substitutions x ¼ nj=
ffiffiffiffiffiffi
N0

p
and y ¼ ni=

ffiffiffiffiffiffi
N0

p
have been made. Since Pci is

independent of i, it follows that the probability of error is

PE ¼ 1�Pci ð10:127Þ
With (10.126) substituted into (10.127), a nonintegrable M-fold integral for PE results,

and one must resort to numerical integration to evaluate it.8 Curves showing PE versus

Es= N0log2Mð Þ are given in Figure 10.7 for several values of M. We note a rather

surprising behavior: As M!¥, error-free transmission can be achieved as long as

Es= N0log2Mð Þ > ln 2 ¼ �1:59 dB. This error-free transmission is achieved at the expense

of infinite bandwidth, however, since M!¥ means that an infinite number of orthonormal

functions are required. We will discuss this behavior further in Chapter 11.

10.3.4 A Noncoherent Case

To illustrate the application of signal space techniques to noncoherent digital signaling, let us

consider the following binary hypothesis situation:

H1 : y tð Þ ¼ G
ffiffiffiffiffiffiffiffiffiffiffi
2E=T

p
cos v1t þ uð Þ þ n tð Þ

H2 : y tð Þ ¼ G
ffiffiffiffiffiffiffiffiffiffiffi
2E=T

p
cos v2t þ uð Þ þ n tð Þ; 0 � t � T

ð10:128Þ

whereE is the energy of the transmitted signal in one bit period and n tð Þ is whiteGaussian noise
with double-sided power spectral density 1

2
N0. It is assumed that jv1�v2j=2p T �1 so that

the signals are orthogonal. Except forG and u, which are assumed to be random variables, this

problemwould be a special case of theM-ary orthogonal signaling case just considered. (Recall

also the consideration of coherent and noncoherent FSK in Chapter 8.)

The random variables G and u represent random gain and phase perturbations introduced

by a fading channel. The channel is modeled as introducing a random gain and phase shift

during each bit interval. Because the gain and phase shift are assumed to remain constant

8See Lindsey and Simon (1973), pp. 199ff, for tables giving PE .
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throughout a bit interval, this channel model is called slowly fading. We assume that G is

Rayleigh and u is uniform in 0; 2p½ Þ and that G and u are independent.

Expanding (10.128), we obtain

H1 : y tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
G1 cos v1tð Þ þ G2 sin v1tð Þ½ � þ n tð Þ

H2 : y tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
G1 cos v2tð Þ þ G2 sin v2tð Þ½ � þ n tð Þ; 0 � t � T

ð10:129Þ

where G1 ¼ G cos u and G2 ¼ �G sin u are independent, zero-mean, Gaussian random

variables (recall Example 5.15). We denote their variances by s2. Choosing the orthonormal

basis set

f1 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos v1tð Þ

f2 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
sin v1tð Þ

f3 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
cos v2tð Þ

f4 tð Þ ¼
ffiffiffiffiffiffi
2E

T

r
sin v2tð Þ

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

0 � t � T ð10:130Þ
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the term y tð Þ can be resolved into a four-dimensional signal space, and decisions may be based

on the data vector

Z ¼ Z1; Z2; Z3; Z4ð Þ ð10:131Þ
where

Zi ¼ y;fið Þ ¼
ðT
0

y tð Þfi tð Þ dt ð10:132Þ

Given hypothesis H1, we obtain

Zi ¼
ffiffiffiffi
E
p

Gi þ Ni; i ¼ 1; 2
Ni; i ¼ 3; 4

�
ð10:133Þ

and given hypothesis H2, we obtain

Zi ¼ Ni; i ¼ 1; 2ffiffiffiffi
E
p

Gi� 2 þ Ni; i ¼ 3; 4

�
ð10:134Þ

where

Ni ¼ n;fið Þ ¼
ðT
0

n tð Þfi tð Þ dt; i ¼ 1; 2; 3; 4 ð10:135Þ

are independent Gaussian randomvariables with zeromean and variance 1
2
N0. SinceG1 andG2

are also independent Gaussian random variables with zero mean and variance s2, the joint

conditional pdfs of Z, given H1 and H2, are the products of the respective marginal pdfs. It

follows that

fZ z1; z2; z3; z4jH1ð Þ ¼ exp � z21 þ z22

 �

= 2Es2 þ N0ð Þ �
exp � z23 þ z24


 �
=N0

 �
p2 2Es2 þ N0ð ÞN0

ð10:136Þ

and

fZ z1; z2; z3; z4jH2ð Þ ¼ exp � z21 þ z22

 �

=N0

 �
exp � z23 þ z24


 �
= 2Es2 þ N0ð Þ �

p2 2Es2 þ N0ð ÞN0

ð10:137Þ

The decision rule that minimizes the probability of error is to choose the hypothesis H‘

corresponding to the largest posterior probability P H‘jz1; z2; z3; z4ð Þ. Note that these proba-

bilities differ from (10.136) and (10.137) only by a constant that is independent ofH1 orH2. For

a particular observation Z ¼ Z1; Z2; Z3; Z4ð Þ, the decision rule is

fZ Z1; Z2; Z3; Z4jH1ð ÞQ
H1

H2

fZ Z1; Z2; Z3; Z4jH2ð Þ ð10:138Þ

which, after substitution from (10.136) and (10.137) and simplification, reduces to

R2
2 / Z2

3 þ Z2
4 Q

H1

H2

Z2
1 þ Z2

2 /R2
1 ð10:139Þ

The optimum receiver corresponding to this decision rule is shown in Figure 10.8.

To find the probability of error, we note that both R1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2

p
and R2 /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
3 þ Z2

4

p
are Rayleigh random variables under either hypothesis. Given H1 is true, an error results if
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R2 > R1, where the positive square root of (10.139) has been taken. From Example 5.15, it

follows that

fR1
r1jH1ð Þ ¼ r1e

�r2
1
= 2Es2 þ N0ð Þ

Es2 þ 1
2
N0

; r1 	 0 ð10:140Þ

and

fR2
r2jH1ð Þ ¼ 2r2e

� r2
2
=N0

N0

; r2 	 0 ð10:141Þ

T
( )dt ( )2∫

t = T
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Figure 10.8

Optimum receiver structures for detection of binary orthogonal signals in Rayleigh fading. (a) Imple-

mentation by correlator and squarer. (b) Implementation by matched filter and envelope detector.
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The probability that R2 > R1, averaged over R1, is

P EjH1ð Þ ¼
ð¥
0

ð¥
r1

fR2
r2jH1ð Þ dr2

� �
fR1

r1jH1ð Þ dr1

¼ 1

2

1

1 þ 1=2 2s2E=N0ð Þ
ð10:142Þ

where 2s2E is the average received signal energy.Because of the symmetry involved, it follows

that P EjH1ð Þ ¼ P EjH2ð Þ and that

PE ¼ P EjH1ð Þ ¼ P EjH2ð Þ ð10:143Þ

The probability of error is plotted in Figure 10.9, along with the result from Chapter 8 for

constant-amplitude noncoherent FSK (Figure 9.15). Whereas the error probability for non-

fading, noncoherent FSK signaling decreases exponentially with the SNR, the fading channel

results in an error probability that decreases only inversely with SNR.

Oneway to combat this degradation due to fading is to employ diversity transmission; that

is, the transmitted signal power is divided among several independently fading transmission

paths with the hope that not all of them will fade simultaneously. Several ways of achieving

diversity were mentioned in Chapter 8. (See Problem 10.27).

n 10.4 ESTIMATION THEORY

We now consider the second type of optimization problem discussed in the introduction to this

chapter—the estimation of parameters from random data. After introducing some background

theory here, we will consider two applications of estimation theory to communication systems

in Section 10.5.

Figure 10.9

Comparison of PE versus SNR for

Rayleigh and fixed channels

with noncoherent FSK signaling.
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10.4 Estimation Theory 585

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


In introducing the basic ideas of estimation theory, we will exploit several parallels with

detection theory. As in the case of signal detection, we have available a noisy observation Z that

depends probabilistically on a parameter of interest A.9 For example, Z could be the sum of an

unknown DC voltage A and an independent noise component N :Z ¼ A þ N. Two different

estimation procedures will be considered. These are Bayes estimation and maximum-

likelihood (ML) estimation. For Bayes estimation, A is considered to be random with a

known a priori pdf fA að Þ, and a suitable cost function isminimized to find the optimum estimate

ofA. Maximum-likelihood estimation can be used for the estimation of nonrandom parameters

or a random parameter with an unknown a priori pdf.

10.4.1 Bayes Estimation

Bayes estimation involves theminimization of a cost function, as in the case ofBayes detection.

Given an observation Z, we seek the estimation rule (or estimator) ab Zð Þ that assigns a value Ab
to A such that the cost function C A; ab Zð Þ½ � is minimized. Note that C is a function of the

unknown parameter A and the observation Z. Clearly, as the absolute error jA� ab Zð Þj
increases, C A; ab Zð Þ½ � should increase, or at least not decrease; that is, large errors should be

more costly than small errors. Two useful cost functions are the squared-error cost function,

defined by

C A; ab Zð Þ½ � ¼ A� ab Zð Þ½ �2 ð10:144Þ
and the uniform cost function (square well), defined by

C A; ab Zð Þ½ � ¼ 1; jA� ab Zð Þj > D > 0

0; otherwise

�
ð10:145Þ

where D is a suitably chosen constant. For each of these cost functions, we wish to find the

decision rule ab Zð Þ that minimizes the average cost E C A; ab Zð Þ½ �f g ¼ C A; ab Zð Þ½ �. Because both
A and Z are random variables, the average cost, or risk, is given by

C A; ab Zð Þ½ � ¼
ð¥
�¥

ð¥
�¥

C A; ab Zð Þ½ � fAZ a; zð Þ da dz

¼
ð¥
�¥

ð¥
�¥

C A; ab Zð Þ½ � fZjA zjað ÞfA að Þ dz da
ð10:146Þ

where fAZ a; zð Þ is the joint pdf of A and Z and fZjA zjað Þ is the conditional pdf of Z given A. The

latter can be found if the probabilistic mechanism that produces Z from A is known. For

example, if Z ¼ A þ N, where N is a zero-mean Gaussian random variable with variance s2
n,

then

fZjA zjað Þ ¼
exp � z� að Þ2=2s2

n

h i
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

n

p ð10:147Þ

9For simplicity, we consider the single-observation case first and generalize to vector observations later.
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Returning to theminimization of the risk, wefind itmore advantageous to express (10.146)

in terms of the conditional pdf fAjZ ajzð Þ, which can be done by means of Bayes rule, to obtain

C A; ab Zð Þ½ � ¼
ð¥
�¥

fZ zð Þ
ð¥
�¥

C a; ab Zð Þ½ �fAjZ ajzð Þ da
� �

dz ð10:148Þ

where

fZ zð Þ ¼
ð¥
�¥

fZjA zjað ÞfA að Þ da ð10:149Þ

is the pdf of Z. Since fZ zð Þ and the inner integral in (10.148) are nonnegative, the risk can be

minimized by minimizing the inner integral for each z. The inner integral in (10.148) is called

the conditional risk.

This minimization is accomplished for the squared-error cost function, (10.144), by

differentiating the conditional risk with respect to ab for a particular observation Z and setting

the result equal to zero. The resulting differentiation yields

q
q ab
ð¥
�¥

a� ab Zð Þ½ �2fAjZ ajZð Þ da ¼�2
ð¥
�¥

afAjZ ajZð Þ da

þ 2 ab Zð Þ ð¥
�¥

fAjZ ajZð Þ da
ð10:150Þ

which, when set to zero, results in

abse Zð Þ ¼
ð¥
�¥

a fAjZ ajZð Þda ð10:151Þ

where the fact that
Ð¥
�¥ fAjZ ajZð Þ da ¼ 1 has been used. A second differentiation shows that this

is a minimum. Note that abse Zð Þ, the estimator for a squared-error cost function, is the mean of

the pdf ofA given the observation Z, or the conditional mean. The values that abse Zð Þ assume, Ab ,
are random since the estimator is a function of the random variable Z.

In a similar manner, we can show that the uniform cost function results in the condition

fAjZ AjZð ÞjA¼âMAP Zð Þ ¼ maximum ð10:152Þ
forD in (10.145) infinitesimally small. That is, the estimation rule, or estimator, that minimizes

the uniform cost function is themaximumof the conditional pdf ofA givenZ, or the a posteriori

pdf. Thus this estimator will be referred to as the MAP estimate. Necessary, but not sufficient,

conditions that the MAP estimate must satisfy are

q
qA

fAjZ AjZð ÞjA¼âMAP Zð Þ ¼ 0 ð10:153Þ

or

q
qA

ln fAjZ AjZð ÞjA¼âMAP Zð Þ ¼ 0 ð10:154Þ

where the latter condition is especially convenient for a posteriori pdfs of exponential type,

such as Gaussian.

Often the MAP estimate is employed because it is easier to obtain than other estimates,

even though the conditional-mean estimate, given by (10.151), is more general, as the

following theorem indicates.
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Theorem

If, as a function of a, the a posteriori pdf fAjZ ajZð Þ has a single peak, about which it is

symmetrical, and the cost function has the properties

C A; abð Þ ¼ C A� abð Þ ð10:155Þ

C xð Þ ¼ C �xð Þ 	 0 symmetricalð Þ ð10:156Þ

C x1ð Þ 	 C x2ð Þ for jx1j 	 jx2j convexð Þ ð10:157Þ
then the conditional-mean estimator is the Bayes estimate.10

10.4.2 Maximum-Likelihood Estimation

We now seek an estimation procedure that does not require a priori information about the

parameter of interest. Such a procedure is ML estimation. To explain this procedure, consider

the MAP estimation of a random parameter A about which little is known. This lack of

information about A is expressed probabilistically by assuming the prior pdf of A; fA að Þ, to be
broad compared with the posterior pdf, fAjZ ajZð Þ. If this were not the case, the observation Z

would be of little use in estimating A. Since the joint pdf of A and Z is given by

fAZ a; zð Þ ¼ fAjZ ajzð Þ fZ zð Þ ð10:158Þ
the joint pdf, regarded as a function of a, must be peaked for at least one value of a. By the

definition of conditional probability, we also may write (10.158) as

fZA z; að Þ ¼ fZjA zjað Þ fA að Þ
ffi fZjA zjað Þ times a constantð Þ ð10:159Þ

where the approximation follows by virtue of the assumption that little is known about A, thus

implying that fA að Þ is essentially constant. The ML estimate of A is defined as

fZjA ZjAð ÞjA¼âML Zð Þ ¼ maximum ð10:160Þ
From (10.160) and (10.160), theML estimate of a parameter corresponds to theMAP estimate

if little a priori information about the parameter is available. From (10.160), it follows that the

ML estimate of a parameter A is that value of A which is most likely to have resulted in the

observation Z; hence the namemaximum likelihood. Since the prior pdf of A is not required to

obtain anML estimate, it is a suitable estimation procedure for random parameters whose prior

pdf is unknown. If a deterministic parameter is to be estimated, fZjA zjAð Þ is regarded as the pdf
of Z with A as a parameter.

From (10.160) it follows that the ML estimate can be found from the necessary, but not

sufficient, conditions

qfZjA ZjAð Þ
qA

				
A¼âML Zð Þ

¼ 0 ð10:161Þ

10Van Trees (1968), pp. 60–61.
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and

l Að Þ ¼ q ln fZjA ZjAð Þ
qA

				
A¼âML Zð Þ

¼ 0 ð10:162Þ

When viewed as a function of A, fZjA ZjAð Þ is referred to as the likelihood function. Both

(10.161) and (10.162) will be referred to as likelihood equations.

From (10.154) and Bayes rule, it follows that the MAP estimate of a random parameter

satisfies

l Að Þ þ q
qA

ln fA Að Þ
� �				

A¼âML Zð Þ
¼ 0 ð10:163Þ

which is useful when finding both the ML and MAP estimates of a parameter.

10.4.3 Estimates Based on Multiple Observations

If a multiple number of observations are available, say Z/ Z1; Z2; . . . ; ZKð Þ, on which to base
the estimate of a parameter, we simply substitute the K-fold joint conditional pdf fZjA zjAð Þ in
(10.161) and (10.162) to find the ML estimate of A. If the observations are independent, when

conditioned on A, then

fZjA zjAð Þ ¼
YK
k¼1

fZk jA zkjAð Þ ð10:164Þ

where fZk jA zkjAð Þ is the pdf of the kth observation Zk given the parameter A. To find fAjZ Ajzð Þ
for MAP estimation, we use Bayes rule.

EXAMPLE 10.8

To illustrate the estimation concepts just discussed, let us consider the estimation of a constant-level

random signal A embedded in Gaussian noise n tð Þ with zero mean and variance s2
n:

z tð Þ ¼ A þ n tð Þ ð10:165Þ
We assume z tð Þ is sampled at time intervals sufficiently spaced so that the samples are independent. Let

these samples be represented as

Zk ¼ A þ Nk; k ¼ 1; 2; . . . ;K ð10:166Þ

Thus, givenA, the Zks are independent, each havingmeanA and variances2
n. Hence the conditional pdf of

Z/ Z1; Z2; . . . ; ZKð Þ given A is

fZjA zjAð Þ ¼
YK
k¼1

exp � zk �Að Þ2=2s2
n

h i
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

n

p

¼
exp �

XK
k¼1

zk �Að Þ2=22n
" #

2ps2
n


 �K=2
ð10:167Þ
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We will assume two possibilities for A:

1. It is Gaussian with mean mA and variance s2
A.

2. Its pdf is unknown.

In the first case, wewill find the conditional-mean and theMAPestimates forA. In the second case, wewill

compute the ML estimate.

Case 1

If the pdf of A is

fA að Þ ¼
exp � a�mAð Þ2=2s2

A

h i
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

A

p ð10:168Þ

its posterior pdf is, by Bayes� rule,

fAjZ ajzð Þ ¼ fZjA zjað ÞfA að Þ
fZ zð Þ ð10:169Þ

After some algebra, it can be shown that

fAjZ ajzð Þ ¼ 2ps2
p

� ��1=2
exp

� a�s2
p Kms=s

2
n


 � þ mA=s
2
A


 � �n o2

2s2
p

0B@
1CA ð10:170Þ

where

1

s2
p

¼ K

s2
n

þ 1

s2
A

ð10:171Þ

and the sample mean is

ms ¼ 1

K

XK
k¼1

Zk ð10:172Þ

Clearly, fAjZ ajzð Þ is a Gaussian pdf with variance s2
p and mean

E AjZf g ¼ s2
p

 
Kms

s2
n

þ mA

s2
A

!

¼ Ks2
A=s

2
n

1 þ Ks2
A=s

2
n

ms þ 1

1 þ Ks2
A=s

2
n

mA

ð10:173Þ

Since the maximum value of a Gaussian pdf is at the mean, this is both the conditional-mean estimate

(squared-error cost function, among other convex cost functions) and theMAP estimate (square-well cost

function). The conditional variance var AjZf g is s2
p. Because it is not a function of Z, it follows that the

average cost, or risk, which is

C A; ab Zð Þ½ � ¼
ð¥
�¥

var Ajzf gfz zð Þdz ð10:174Þ

is just s2
p. From the expression for E AjZf g, we note an interesting behavior for the estimate of A, or ab Zð Þ.

As Ks2
A=s

2
n!¥,

ab Zð Þ!ms ¼ 1

K

XK
k¼1

Zk ð10:175Þ
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which says that as the ratio of signal variance to noise variance becomes large, the optimum estimate forA

approaches the samplemean. On the other hand, asKs2
A=s

2
n! 0 (small signal variance and/or large noise

variance), ab Zð Þ!mA, the a priori mean of A. In the first case, the estimate is weighted in favor of the

observations; in the latter, it is weighted in favor of the known signal statistics. From the form of s2
p, we

note that, in either case, the quality of the estimate increases as the number of independent samples of z tð Þ
increases.

Case 2

The ML estimate is found by differentiating ln fZjA zjAð Þ with respect to A and setting the result equal to

zero. Performing the steps, the ML estimate is found to be

abML Zð Þ ¼ 1

K

XK
k¼1

Zk ð10:176Þ

We note that this corresponds to theMAP estimate ifKs2
A=s

2
n!¥ (that is, if the a priori pdf of A is broad

compared with the a posteriori pdf).

The variance of abML Zð Þ is found by recalling that the variance of a sum of independent random

variables is the sum of the variances. The result is

s2
ML ¼

s2
n

K
> s2

p ð10:177Þ

Thus the prior knowledge about A, available through fA að Þ, manifests itself as a smaller variance for the

Bayes estimates (conditional-mean and MAP) than for the ML estimate.

&

10.4.4 Other Properties of ML Estimates

Unbiased Estimates

An estimate ab Zð Þ is said to be unbiased if

E ab Zð ÞjAf g ¼ A ð10:178Þ
This is clearly a desirable property of any estimation rule. If E ab Zð ÞjAf g�A ¼ B 6¼ 0;B is

referred to as the bias of the estimate.

The Cramer–Rao Inequality

In many cases it may be difficult to compute the variance of an estimate for a nonrandom

parameter. A lower bound for the variance of an unbiased ML estimate is provided by the

following inequality:

var ab Zð Þf g 	 E
q ln fZjA Zjað Þ �

qa

� �2( ) !�1
ð10:179Þ

or, equivalently,

var ab Zð Þf g 	 �E
q2 ln fZjA Zjað Þ �

qa2

( ) !�1
ð10:180Þ
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where the expectation is only over Z. These inequalities hold under the assumption that

qfZjA=qa and q
2fZjA=qa2 exist and are absolutely integrable. A proof is furnished by Van Trees

(1968). Any estimate satisfying (10.179) or (10.180) with equality is said to be efficient.

A sufficient condition for equality in (10.179) or (10.80) is that

q ln fZjA Zjað Þ �
qa

¼ ab Zð Þ� a½ �g að Þ ð10:181Þ

where, g �ð Þ is a function only of a. If an efficient estimate of a parameter exists, it is the ML

estimate.

10.4.5 Asymptotic Qualities of ML Estimates

In the limit, as the number of independent observations becomes large, ML estimates can be

shown to beGaussian, unbiased, and efficient. In addition, the probability that theML estimate

forK observations differs by a fixed amount e from the true value approaches zero asK!¥; an
estimate with such behavior is referred to as consistent.

EXAMPLE 10.9

Returning to Example 10.8, we can show that abML Zð Þ is an efficient estimate.We have already shown that

s2
ML ¼ s2

n=K. Using (10.180), we differentiate in fZjA once to obtain

q ln fZjA
 �
qa

¼ 1

s2
n

XK
k¼1

Zk � að Þ ð10:182Þ

A second differentiation gives

q2 ln fZjA
 �
qa2

¼ � K

s2
n

ð10:183Þ

and (10.180) is seen to be satisfied with equality.

&

n 10.5 APPLICATIONS OF ESTIMATION THEORY TO COMMUNICATIONS

We now consider two applications of estimation theory to the transmission of analog data.

The sampling theorem introduced in Chapter 2 was applied in Chapter 3 in the discussion of

several systems for the transmission of continuous-waveform messages via their sample

values. One such technique is PAM, in which the sample values of the message are used to

amplitude modulate a pulse-type carrier. We will apply the results of Example 10.8 to find the

performance of the optimum demodulator for PAM. This is a linear estimator because the

observations are linearly dependent on the message sample values. For such a system, the only

way to decrease the effect of noise on the demodulator output is to increase the SNR of the

received signal, since output and input SNR are linearly related.
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Following the consideration of PAM, we will derive the optimum ML estimator for the

phase of a signal in additive Gaussian noise. This will result in a PLL structure. The variance of

the estimate in this case will be obtained for high input SNR by applying the Cramer–Rao

inequality. For low SNRs, the variance is difficult to obtain because this is a problem in

nonlinear estimation; that is, the observations are nonlinearly dependent on the parameter

being estimated.

The transmission of analog samples by PPM or some other modulation scheme could also

be considered. An approximate analysis of its performance for low input SNRswould show the

threshold effect of nonlinear modulation schemes and the implications of the trade-off that is

possible between bandwidth and output SNR. This effect was seen previously in Chapter 7

when the performance of PCM in noise was considered.

10.5.1 Pulse-Amplitude Modulation

In PAM, the messagem tð Þ of bandwidthW is sampled at T-s intervals, where T � 1=2W , and

the sample valuesmk ¼ m tkð Þ are used to amplitude modulate a pulse train composed of time

translates of the basic pulse shape p tð Þ, which is assumed zero for t � 0 and t 	 T0 < T . The

received signal plus noise is represented as

y tð Þ ¼
X¥
k¼�¥

mkp t� kTð Þ þ n tð Þ ð10:184Þ

where n tð Þ is white Gaussian noise with double-sided power spectral density 1
2
N0.

Considering the estimation of a single sample at the receiver, we observe

y tð Þ ¼ m0p tð Þ þ n tð Þ; 0 � t � T ð10:185Þ
For convenience, we assume that

Ð T0
0

p2 tð Þdt ¼ 1. It follows that a sufficient statistic is

Z0 ¼
ðT0
0

y tð Þp tð Þdt

¼ m0 þ N

ð10:186Þ

where the noise component is

N ¼
ðT0
0

n tð Þp tð Þdt ð10:187Þ

Having no prior information about m0, we apply ML estimation. Following procedures

used many times before, we can show that N is a zero-mean Gaussian random variable with

variance 1
2
N0. The ML estimation ofm0 is therefore identical to the single-observation case of

Example 10.8, and the best estimate is simplyZ0. As in the case of digital data transmission, this

estimator could be implemented by passing y tð Þ through a filter matched to p tð Þ, observing the
output amplitude prior to the next pulse, and then setting the filter initial conditions to zero.

Note that the estimator is linearly dependent on y tð Þ.
The variance of the estimate is equal to the variance of N, or 1

2
N0. Thus the SNR at the

output of the estimator is

SNRð Þ0 ¼
2m2

0

N0

¼ 2E

N0

ð10:188Þ
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where E ¼ Ð T0
0

m2
0p

2 tð Þ dt is the average energy of the received signal sample. Thus the only

way to increase SNRð Þ0 is by increasing the energy per sample or by decreasing N0.

10.5.2 Estimation of Signal Phase: The PLL Revisited

We now consider the problem of estimating the phase of a sinusoidal signal A cos vct þ uð Þ in
white Gaussian noise n tð Þ of double-sided power spectral density 1

2
N0. Thus the observed data

are

y tð Þ ¼ A cos vct þ uð Þ þ n tð Þ; 0 � t � T ð10:189Þ
where T is the observation interval. Expanding A cos vct þ uð Þ as

A cos vctð Þ cos u�A sin vctð Þ sin u
we see that a suitable set of orthonormal basis functions for representing the data is

f1 tð Þ ¼
ffiffiffiffi
2

T

r
cos vctð Þ; 0 � t � T ð10:190Þ

and

f2 tð Þ ¼
ffiffiffiffi
2

T

r
sin vctð Þ; 0 � t � T ð10:191Þ

Thus we base our decision on

z tð Þ ¼
ffiffiffiffi
T

2

r
A cos uf1 tð Þ�

ffiffiffiffi
T

2

r
A sin uf2 tð Þ þ N1f1 tð Þ þ N2f2 tð Þ ð10:192Þ

where

Ni ¼
ðT
0

n tð Þfi tð Þ dt; i ¼ 1; 2 ð10:193Þ

Because y tð Þ� z tð Þ involves only noise, which is independent of z tð Þ, it is not relevant to
making the estimate. Thus we may base the estimate on the vector

Z/ Z1; Z2ð Þ ¼
ffiffiffiffi
T

2

r
A cos u þ N1; �

ffiffiffiffi
T

2

r
A sin u þ N2

 !
ð10:194Þ

where

Zi ¼ y tð Þ;fi tð Þð Þ ¼
ðT
0

y tð Þfi tð Þ dt ð10:195Þ

The likelihood function fzju z1; z2juð Þ is obtained by noting that the variance of Z1 and Z2 is
simply 1

2
N0, as in the PAM example. Thus the likelihood function is

fzju z1; z2juð Þ ¼ 1

pN0

exp � 1

N0

z1�
ffiffiffiffi
T

2

r
A cos u

 !2

þ z2 þ
ffiffiffiffi
T

2

r
A sin u

 !2
24 358<:

9=; ð10:196Þ
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which reduces to

fzju z1; z2juð Þ ¼ C exp 2

ffiffiffiffi
T

2

r
A

N0

z1 cos u� z2 sin uð Þ
" #

ð10:197Þ

where the coefficient C contains all factors that are independent of u. The logarithm of the

likelihood function is

ln fzju z1; z2juð Þ ¼ ln C þ
ffiffiffiffiffiffi
2T
p A

N0

z1 cos u� z2 sin uð Þ ð10:198Þ

which,when differentiated and set to zero, yields a necessary condition for theMLestimate of u
in accordance with (10.162). The result is

�Z1 sin u� Z2 cos uju¼ûML
¼ 0 ð10:199Þ

where Z1 and Z2 signify that we are considering a particular (random) observation. But

Z1 ¼ y;f1ð Þ ¼
ffiffiffiffi
2

T

r ðT
0

y tð Þ cos vctð Þ dt ð10:200Þ

and

Z2 ¼ y;f2ð Þ ¼
ffiffiffiffi
2

T

r ðT
0

y tð Þ sin vctð Þ dt ð10:201Þ

Therefore, (10.199) can be put in the form

�sin ubML

ðT
0

y tð Þ cos vctð Þ dt� cos ubML

ðT
0

y tð Þ sin vctð Þ dt ¼ 0

or ðT
0

y tð Þ sin vct þ ubML


 �
dt ¼ 0 ð10:202Þ

This equation can be interpreted as the feedback structure shown in Figure 10.10. Except for the

integrator replacing a loop filter, this is identical to the PLL discussed in Chapter 3.

T
( )dt∫

VCO: Kv

y(t)

0

∫
sin ( ct + ML)ω θ̂

ML =θ̂
T
vnull( ) dλ λ1

Kv

vnull

Note: For  constant,
loop is locked when
vnull = 0.

θ
×

Figure 10.10

Maximum–Likelihood

estimator for phase.
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A lower bound for the variance of buML is obtained from the Cramer–Rao inequality.

Applying (10.180), we have for the first differentiation, from (10.198),

q ln fZju

 �
qu

¼
ffiffiffiffiffiffi
2T
p A

N0

�Z1 sin u� Z2 cos uð Þ ð10:203Þ

and for the second,

q2 ln fZju

 �
qu2

¼
ffiffiffiffiffiffi
2T
p A

N0

�Z1 cos u þ Z2 sin uð Þ ð10:204Þ

Substituting into (10.180), we have

var buML Zð Þ
n o

	 1ffiffiffiffiffiffi
2T
p N0

A
E Z1f g cos u�E Z2f g sin uð Þ�1 ð10:205Þ

The expectations of Z1 and Z2 are

E Zif g ¼
ðT
0

E y tð Þf gfi tð Þ dt

¼
ðT
0

ffiffiffiffi
T

2

r
A cos uð Þf1 tð Þ� sin uð Þf2 tð Þ½ �fi tð Þ dt

¼

ffiffiffiffi
T

2

r
A cos u; i ¼ 1

�
ffiffiffiffi
T

2

r
A sin u; i ¼ 2

8>>><>>>:
ð10:206Þ

where we used (10.192). Substitution of these results into (10.205) results in

var buML Zð Þ
n o

	 1ffiffiffiffiffiffi
2T
p N0

A

ffiffiffiffi
T

2

r
A cos2u þ sin2u

 �" #�1

¼ N0

A2T
ð10:207Þ

Noting that the average signal power is Ps ¼ 1
2
A2 and defining BL ¼ 2Tð Þ�1 as the equivalent

noise bandwidth11 of the estimator structure, we may write (10.207) as

var buML

n o
	 N0BL

Ps

ð10:208Þ

which is identical to the result given without proof in Table 9.7 (also see Problem 9.27). As a

result of the nonlinearity of the estimator, we can obtain only a lower bound for the variance.

However, the bound becomes better as the SNR increases. Furthermore, because ML

estimators are asymptotically Gaussian, we can approximate the conditional pdf of buML,

fbuMLju
ajuð Þ, as Gaussian with mean u (buML is unbiased) and variance given by (10.207).

11The equivalent noise bandwidth of an ideal integrator of integration duration T is 2Tð Þ� 1
Hz.
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Summary
1. Two general classes of optimization problems are signal detection and

parameter estimation. Although both detection and estimation are often

involved simultaneously in signal reception, from an analysis standpoint, it is

easiest to consider them as separate problems.

2. Bayes detectors are designed to minimize the average cost of making a

decision. They involve testing a likelihood ratio, which is the ratio of the a

posteriori (posterior) probabilities of the observations, against a threshold,

which depends on the a priori (prior) probabilities of the two possible

hypotheses and costs of the various decision–hypothesis combinations. The

performance of a Bayes detector is characterized by the average cost, or risk,

of making a decision. More useful in many cases, however, are the

probabilities of detection and false alarm PD and PF in terms of which the

risk can be expressed, provided the a priori probabilities and costs are

available. A plot of PD versus PF is referred to as the receiver operating

characteristic.

3. If the costs and prior probabilities are not available, a useful decision strategy

is the Neyman–Pearson detector, which maximizes PD while holding PF

below some tolerable level. This type of receiver also can be reduced to a

likelihood ratio test in which the threshold is determined by the allowed

false-alarm level.

4. It was shown that a minimum-probability-of-error detector (that is, the type

of detector considered in Chapter 8) is really a Bayes detector with zero costs

for making right decisions and equal costs for making either type of wrong

decision. Such a receiver is also referred to as an maximum a posteriori

(MAP) detector, since the decision rule amounts to choosing as the correct

hypothesis the one corresponding to the largest a posteriori probability for a

given observation.

5. The introduction of signal space concepts allowed the MAP criterion to be

expressed as a receiver structure that chooses as the transmitted signal the

signal whose location in signal space is closest to the observed data point.

Two examples considered were coherent detection of M-ary orthogonal

signals and noncoherent detection of binary FSK in a Rayleigh fading

channel.

6. ForM-ary orthogonal signal detection, arbitrarily small probability of error

can be achieved as M!¥ provided the ratio of energy per bit to noise

spectral density is greater than �1:6 dB. This perfect performance is

achieved at the expense of infinite transmission bandwidth, however.

7. For the Rayleigh fading channel, the probability of error decreases only

inversely with the SNR rather than exponentially, as for the nonfading case.

A way to improve performance is by using diversity.

8. Bayes estimation involves the minimization of a cost function, as for signal

detection. The squared-error cost function results in the a posteriori condi-

tionalmean of the parameter as the optimumestimate, and a square-well cost

function with infinitely narrow well results in the maximum of the a

posteriori pdf of the data, given the parameter, as the optimum estimate
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(MAP estimate). Because of its ease of implementation, theMAP estimate is

often employed even though the conditional-mean estimate is more general,

in that itminimizes any symmetrical, convex-upward cost function as long as

the posterior pdf is symmetrical about a single peak.

9. An ML estimate of a parameter A is that value for the parameter, Ab, that is
most likely to have resulted in the observed data A and is the value of A

corresponding to the absolute maximum of the conditional pdf of Z given A.

TheML andMAP estimates of a parameter are identical if the a priori pdf of

A is uniform. Since the a priori pdf of A is not needed to obtain an ML

estimate, this is a useful procedure for estimation of parameters whose prior

statistics are unknown or for estimation of nonrandom parameters.

10. The Cramer–Rao inequality gives a lower bound for the variance of an ML

estimate. In the limit, ML estimates have many useful asymptotic properties

as the number of independent observations becomes large. In particular, they

are asymptotically Gaussian, unbiased, and efficient (satisfy the Cramer–

Rao inequality with equality).

Further Reading

Two classic textbooks on detection and estimation theory at the graduate level are Van Trees (1968) and

Helstrom (1968). Both are excellent in their own way, Van Trees being somewhat wordier and containing

more examples than Helstrom, which is closely written but nevertheless very readable. More recent

treatments on detection and estimation theory are Poor (1994), Scharf (1990), and McDonough and

Whalen (1995).

At about the same level as the above books is the book byWozencraft and Jacobs (1965), which was

the first book in the United States to use the signal space concepts exploited by Kotel�nikov (1959) in his
doctoral dissertation in 1947 to treat digital signaling and optimal analog demodulation.

Two books by Kay (1993; 1998) cover estimation theory and detection theory in detail from a signal

processing point of view. Algorithms are derived and discussed in detail, and in a number of cases,

computer code is provided.

Problems

Section 10.1

10.1. Consider the hypotheses

H1 : Z ¼ N H2 : Z ¼ S þ N

where S and N are independent random variables with the

pdfs

fS xð Þ ¼ 2e�2xu xð Þ and fN xð Þ ¼ 10e�10xu xð Þ

a. Show that

fZ zjH1ð Þ ¼ 10e�10zu zð Þ

and

fZ zjH2ð Þ ¼ 2:5 e�2z � e�10z

 �

u zð Þ

b. Find the likelihood ratio L Zð Þ.
c. If P H1ð Þ¼ 1

3
;P H2ð Þ¼ 2

3
;c12¼ c21¼7; and c11¼

c22¼0, find the threshold for a Bayes test.

d. Show that the likelihood ratio test for part (c) can

be reduced to

ZQ
H2

H1

g
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Find the numerical value of g for the Bayes test of part (c).

e. Find the risk for the Bayes test of part (c).

f. Find the threshold for a Neyman–Pearson test

with PF less than or equal to 10� 3. Find PD for this

threshold.

g. Reducing the Neyman-Pearson test of part (f) to

the form

ZQ
H2

H1

g

find PF and PD for arbitrary g. Plot the ROC.

10.2. Consider a two-hypothesis decision problem

where

fZ zjH1ð Þ ¼
exp � 1

2
z2

� �
ffiffiffiffiffiffi
2p
p and

fZ zjH2ð Þ ¼ 1

2
exp � jzjð Þ

a. Find the likelihood ratio L Zð Þ.
b. Letting the threshold h be arbitrary, find the

decision regions R1 and R2 illustrated in Figure 10.1. Note

that both R1 and R2 cannot be connected regions for this

problem; that is, they will involve a multiplicity of line

segments.

10.3. Assume that data of the form Z ¼ S þ N are ob-

served where S and N are independent, Gaussian random

variables representing signal and noise, respectively,

with zero means and variances s2
s and s2

n. Design a like-

lihood ratio test for each of the following cases.

Describe the decision regions in each case and explain

your results.

a. c11 ¼ c22 ¼ 0; c21 ¼ c12; p0 ¼ q0 ¼ 1
2
.

b. c11 ¼ c22 ¼ 0; c21¼ c12; p0 ¼ 1
4
; q0 ¼ 3

4
.

c. c11 ¼ c22 ¼ 0; c21 ¼ 1
2
c12; p0 ¼ q0 ¼ 1

2
.

d. c11 ¼ c22 ¼ 0; c21¼ 2c12; p0 ¼ q0 ¼ 1
2
.

Hint: Note that under either hypothesis, Z is a zero-mean

Gaussian random variable. Consider what the variances are

under hypothesis H1 and H2, respectively.

10.4. Referring to Problem 10.3, find general expres-

sions for the probabilities of false alarm and detection for

each case. Assume that c12 ¼ 1 in all cases. Numerically

evaluate them for the cases where s2
n ¼ 9 and s2

s ¼ 16.

Evaluate the risk.

Section 10.2

10.5. Show that ordinary three-dimensional vector

space satisfies the properties listed in the subsection enti-

tled Structure of Signal Space in Section 10.2, where x tð Þ
and y tð Þ are replaced by vectors A and B.

10.6. For the following vectors in 3-space with x; y; z
components as given, evaluate their magnitudes and the

cosine of the angle between them (ib, jb, and kb are the

orthogonal unit vectors along the x, y, and z axes,

respectively):

a. A ¼ ib þ 3 jb þ 2 kb ; B ¼ 5 ib þ jb þ 3 kb ;
b. A ¼ 6 ib þ 2 jb þ 4 kb ; B ¼ 2 ib þ 2 jb þ 2 kb ;
c. A ¼ 4 ib þ 3 jb þ kb ; B ¼ 3 ib þ 4 jb þ 5 kb ;
d. A ¼ 3 ib þ 3 jb þ 2 kb ; B ¼ � ib� 2 jb þ 3 kb .

10.7. Show that the scalar-product definitions given by

(10.43) and (10.44) satisfy the properties listed in the

subsection entitled Scalar Product in Section 10.2.

10.8. Using the appropriate definition, (10.43) or

(10.44), calculate x1; x2ð Þ for each of the following pairs

of signals:

a. e� jtj; 2e� 3tu tð Þ
b. e� 4 þ j3ð Þtu tð Þ; 2e� 3 þ j5ð Þtu tð Þ
c. cos 2ptð Þ; cos 4ptð Þ
d. cos 2ptð Þ; 5u tð Þ

10.9. Let x1 tð Þ and x2 tð Þ be two real-valued signals.

Show that the square of the normof the signalx1 tð Þ þ x2 tð Þ
is the sumof the squareof the normofx1 tð Þ and the square of
the norm of x2 tð Þ if and only if x1 tð Þ and x2 tð Þ are

orthogonal; that is, kx1 þ x2k2 ¼ kx1k2 þ kx2k2 if and

only if x1; x2ð Þ ¼ 0. Note the analogy to vectors in three-

dimensional space: the Pythagorean theorem applies only to

vectors that are orthogonal or perpendicular (zero dot

product).

10.10. Evaluate kx1k, kx2k, kx3k, x2; x1ð Þ, and x3; x1ð Þ
for the signals in Figure 10.11. Use these numbers to

construct a vector diagram and graphically verify that

x3 ¼ x1 þ x2.

10.11. Verify Schwarz�s inequality for

x1 tð Þ ¼
XN
n¼1

anfn tð Þ and x2 tð Þ ¼
XN
n¼1

bnfn tð Þ

where the fn tð Þs are orthonormal and the ans and bns are

constants.
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10.12. Verify Schwarz�s inequality for the 3-space vec-

tors of Problem 10.6.

10.13.

a. Use the Gram–Schmidt procedure to find a set of

orthonormal basis functions corresponding to the signals

given in Figure 10.12.

b. Express s1, s2, and s3 in terms of the orthonormal

basis set found in part (a).

10.14. Use the Gram–Schmidt procedure to find a set of

orthonormal basis vectors corresponding the the vector

space spanned by the vectors x1 ¼ 3 ib þ 2 jb� kb ,
x2 ¼ � 2 ib þ 5 jb þ kb , x3 ¼ 6 ib� 2 jb þ 7 kb , and x4 ¼
3 ib þ 8 jb� 3 kb .
10.15. Consider the set of signals

si tð Þ¼
ffiffiffi
2
p

Acos 2pfctþ ip=4ð Þ; 0� fct�N

0; otherwise

�

where N is an integer and i¼0;1;2;3;4;5;6;7.

a. Find an orthonormal basis set for the space

spanned by this set of signals.

b. Draw a set of coordinate axes, and plot the loca-

tions of si tð Þ, i ¼ 0; 1; 2; . . . ; 7, after expressing each one

as a generalized Fourier series in terms of the basis set

found in part (a).

10.16.

a. Using the Gram–Schmidt procedure, find an or-

thonormal basis set corresponding to the signals

x1 tð Þ ¼ exp �tð Þu tð Þ
x2 tð Þ ¼ exp �2tð Þu tð Þ
x3 tð Þ ¼ exp �3tð Þu tð Þ

b. See if you can find a general formula for the basis

set for the signal set x1 tð Þ ¼ exp � tð Þu tð Þ; . . . ;
xn tð Þ ¼ exp � ntð Þu tð Þ, where n is an arbitrary integer.

10.17.

a. Find a set of orthonormal basis functions for the

signals given below that are defined on the interval

�1 � t � 1:
x1 tð Þ ¼ t

x2 tð Þ ¼ t2

x3 tð Þ ¼ t3

x4 tð Þ ¼ t4

b. Attempt to provide a general result for xn tð Þ ¼
tn; �1 � t � 1.

10.18. Use the Gram–Schmidt procedure to find an

orthonormal basis for the signal set given below. Express

each signal in terms of the orthonormal basis set found.

s1 tð Þ ¼ 1; 0 � t � 2

s2 tð Þ ¼ cos ptð Þ; 0 � t � 2

s3 tð Þ ¼ sin ptð Þ; 0 � t � 2

s4 tð Þ ¼ sin2 ptð Þ; 0 � t � 2

10.19. Rework Example 10.6 for half-cosine pulses

given by

fk tð Þ ¼ P
t� kt
t

� �
cos p

t� kt
t

� �� �
;

k ¼ 0;�1;�2 ; . . .;�K

s1 (t)

t

1

0 1 2 3

s2 (t)

t

1

0 1 2 3

s3 (t)

t

1

0 1 2 3

Figure 10.12

x2

t
–1

–1

1

1

0

21

x1

t
–1 0

1

x3

t
–1 10

Figure 10.11
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Section 10.3

10.20. For M-ary PSK/FSK, the transmitted signal is of

the form

si tð Þ ¼ A cos 2pt þ ip

2

� �
; i¼ 0;1;2;3; for 0� t� 1

si tð Þ ¼ A cos

�
4pt þ i�4ð Þp

2

�
; i¼ 4;5;6;7 for 0� t� 1

a. Find a set of basis functions for this signaling

scheme. What is the dimension of the signal space?

Express si tð Þ in terms of these basis functions and the

signal energy, E ¼ A2=2.

b. Sketch a block diagram of the optimum

(minimum PE) receiver.

c. Write down an expression for the probability of

error. Do not attempt to integrate it.

10.21. Consider (10.126) for M ¼ 2. Express PE as a

single Q-function. Show that the result is identical to

binary, coherent FSK.

10.22. Consider vertices-of-a-hypercube signaling, for

which the ith signal is of the form

si tð Þ ¼
ffiffiffiffiffi
Es

n

r Xn
k¼1

aikfk tð Þ; 0 � t � T; n

in which the coefficients aik are permuted through the

values þ1 and �1,Es is the signal energy, and thefks are

orthonormal. ThusM¼ 2n, where n ¼ log2 M is an integer.

For M ¼ 8, n ¼ 3, the signal points in signal space lie on

the vertices of a cube in three-space.

a. Sketch the optimum partitioning of the observa-

tion space for M ¼ 8.

b. Show that forM ¼ 8 the symbol error probability

is

PE ¼ 1�P Cð Þ
where

P Cð Þ ¼ 1�Q

ffiffiffiffiffiffiffiffi
2Es

3N0

r� �� �3
c. Show that for n arbitrary the probability of symbol

error is

PE ¼ 1�P Cð Þ
where

P Cð Þ ¼ 1�Q

ffiffiffiffiffiffiffiffi
2Es

nN0

r� �� �n

d. Plot PE versus Es=N0 for n ¼ 1; 2; 3; 4. Compare

with Figure 10.7.

Note that with the fk tð Þs chosen as cosinusoids of

frequency spacing 1=Ts Hz vertices-of-a-hypercube mod-

ulation is the same as OFDM as described in Chapter 9

with BPSK modulation on the subcarriers.

10.23.

a. Referring to the signal set defined by (10.97), show

that the minimum possible Df ¼ Dv=2p such that

si; sj

 � ¼ 0 is Df ¼ 1

2Ts

b. Using the result of part (a), show that for a given

time-bandwidth product WTs the maximum number of

signals for M-ary FSK signaling is given by M ¼ 2WTs,

whereW is the transmission bandwidth and Ts is the signal

duration. Use null-to-null bandwidth. ThusW ¼ M
2Ts
. (Note

that this is smaller than the result justified in Chapter 9

because a wider tone spacing was used there.)

c. For vertices-of-a-hypercube signaling, described

in Problem 10.22, show that the number of signals grows

with WTs as M¼ 22WTs . Thus W ¼ log2 Mð Þ=2Ts which
grows slower with M than does FSK.

10.24. Go through the steps in deriving (10.142).

10.25. This problem develops the simplex signaling

set.12 Consider M orthogonal signals, si tð Þ; i ¼ 0; 1;
2; . . . ; M�1, each with energy Es. Compute the average

of the signals

a tð Þ/ 1

M

XM�1
i¼0

si tð Þ

and define a new signal set

s0i tð Þ ¼ si tð Þ� a tð Þ; i ¼ 0; 1; 2; . . . ;M�1

a. Show that the energy of each signal in the new set

is

E0s ¼ Es 1� 1

M

� �
b. Show that the correlation coefficient between each

signal and another is

rij ¼ �
1

M�1 ; i; j ¼ 0; 1; . . . ;M�1; i 6¼ j

c. Given that the probability of symbol error for an

M-ary orthogonal signal set is

Ps; othog ¼ 1�
ð¥
�¥

Q � v þ
ffiffiffiffiffiffiffi
2Es

N0

r� �� �� �M�1
e�v

2=2ffiffiffiffiffiffi
2p
p dv

12See Simon et al. (1995), pp. 204–205
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write down an expression for the symbol-error probability

of the simplex signal set where, from G:9ð Þ, Q �xð Þ ¼
1�Q xð Þ.

d. Simplify the expression found in part (c) using the

union bound result for the probability of error for an

orthogonal signaling set given by (9.67). Plot the symbol-

error probability forM ¼ 2; 4; 8; 16, and comparewith that

for coherent M-ary FSK.

10.26. Generalize the fading problem of binary nonco-

herent FSK signaling to the M-ary case. Let the ith

hypothesis be of the form

Hi : y tð Þ ¼ Gi

ffiffiffiffiffiffiffi
2Ei

Ts

r
cos vit þ uið Þ þ n tð Þ;

i ¼ 1; 2; . . . ;M; 0 � t � Ts

where Gi is Rayleigh, ui is uniform in ½0; 2pÞ, Ei is the

energy of the unperturbed ith signal of duration Ts, and

jvi �vj j  T �1s , for i 6¼ j, so that the signals are orthog-

onal. Note that Gicos ui and �Gi sin ui are Gaussian with

mean zero; assume their variances to be s2.

a. Find the likelihood ratio test, and show that the

optimum correlation receiver is identical to the one shown

in Figure 10.8(a) with 2M correlators, 2M squarers, andM

summers, where the summer with the largest output is

chosen as the best guess (minimum PE) for the transmitted

signal if all Ei are equal. How is the receiver structure

modified if the Ei are not equal?

b. Write down an expression for the probability of

symbol error.

10.27. Investigate the use of diversity to improve the

performance of binary noncoherent FSK signaling over the

flat fading Rayleigh channel. Assume that the signal

energy Es is divided equally among N subpaths, all of

which fade independently. For equal SNRs in all paths, the

optimum receiver is shown in Figure 10.13.

a. Referring to Problem 5.37 of Chapter 5, show that

Y1 and Y2 are chi-squared random variables under either

hypothesis.

b. Show that the probability of error is of the form

PE ¼ aN
XN�1
j¼0

N þ j�1
j

� �
1�að Þj

where

a ¼
1
2
N0

s2E0 þ N0

¼ 1

2

1

1 þ 1
2
2s2E0=N0ð Þ ; E

0 ¼ Es

N

c. Plot PE versus SNR / 2s2Es=N0 for N ¼
1; 2; 3; . . . ; and show that an optimum value of N exists

that minimizes PE for a given SNR.

Section 10.4

10.28. Let an observed random variable Z depend on a

parameter l according to the conditional pdf

fZjL zjlð Þ ¼ le� lz; z 	 0; l > 0

0; z < 0

�
The a priori pdf of l is

fL lð Þ ¼
bm

G mð Þ e
�bllm�1; l 	 0

0; l < 0

8<:
where b and m are parameters and G mð Þ is the gamma

function. Assume that m is a positive integer.

∑

∑

System of
Figure 10.8 (a)

System of
Figure 10.8 (a)

System of
Figure 10.8 (a)

Subpath
No. N

Subpath
No. 1

Subpath
No. 2

R1, 1
2

Y1

Y2

R2, 1
2

R1, 2
2

R2, 2
2

R1, N
2

R2, N
2

Choose
largest

Figure 10.13
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a. Find E lf g and var lf g before any observations

are made; that is, find the mean and variance of l using

fL lð Þ.
b. Assume one observation is made. Find fLjZ ljz1ð Þ

and hence the minimum mean-square error (conditional-

mean) estimate of l and the variance of the estimate.

Compare with part (a). Comment on the similarity of

fL lð Þ and fLjZ ljz1ð Þ.
c. Making use of part (b), find the posterior pdf of l

given two observations fLjZ ljz1; z2ð Þ. Find the minimum

mean-square error estimate of l based on two observations
and its variance. Compare with parts (a) and (b), and

comment.

d. Generalize the preceding to the case in which K

observations are used to estimate l.

e. Does theMAP estimate equal theminimummean-

square error estimate?

10.29. For which of the cost functions and posterior

pdfs shown in Figure 10.14 will the conditional mean be

the Bayes estimate? Tell why or why not in each case.

10.30. Show that the variance of baML Zð Þ given by

(10.176) is the result given by (10.177).

10.31. Given K independent measurements Z1;ð
Z2; . . . ; ZKÞ of a noise voltage Z tð Þ at the RF filter output

of a receiver:

a. If Z tð Þ is Gaussian with mean zero and var s2
n

� �
,

what is the ML estimate of the noise variance?

b. Calculate the expected value and variance of this

estimate as functions of the true variance.

c. Is this an unbiased estimator?

d. Give a sufficient statistic for estimating the vari-

ance of Z.

10.32. Generalize the estimation of a sample of a PAM

signal, expressed by (10.205), to the casewhere the sample

value m0 is a zero-mean Gaussian random variable with

variance s2
m.

10.33. Consider the reception of a BPSK signal in noise

with unknown phase, u, to be estimated. The two hypothe-

ses may be expressed as

H1 : y tð Þ¼Acos vctþ uð Þþ n tð Þ; 0� t�Ts

H2 : y tð Þ¼ �Acos vctþ uð Þþ n tð Þ; 0� t�Ts

a

fA|Z

fA|Z

0
x

C(x)

0

x

C(x)

0
a

0

(a)

(b)

fA|Z

x

C(x)

0 0

(c)

fA|Z

x

C(x)

0
a

0

(d)

x = A – â Figure 10.14
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whereA is a constant and n tð Þ is white Gaussian noisewith
single-sided power spectral densityN0, and the hypotheses

are equally probable P H1ð Þ¼P H2ð Þ½ �.
a. Usingf1 andf2 as given by (10.190) and (10.191)

as basis functions, write expressions for

fZju;Hi
z1; z2ju;Hið Þ; i ¼ 1; 2

b. Noting that

fZju; z1; z2juð Þ ¼
X2
i¼1

P Hið ÞfZju;Hi
z1; z2ju;Hið Þ

show that theML estimator can be realized as the structure

shown in Figure 10.15 by employing (10.162). Under what

condition(s) is this structure approximated by a Costas

loop? (See Chapter 3, Figure 3.57.)

c. Apply the Cramer–Rao inequality to find an ex-

pression for var ubML

� �
. Compare with the result in

Table 8.1.

10.34. Assume a biphase modulated signal in white

Gaussian noise of the form

y tð Þ ¼
ffiffiffiffiffiffi
2P
p

sin vct� cos�1m þ u

 � þ n tð Þ;

0 � t � Ts

where the � signs are equally probable and u is to be

estimated by a maximum-likelihood procedure. In the

preceding equation,

Ts ¼ signaling interval

P ¼ average signal power

vc¼ carrier frequency(rad/s)

m ¼ modulation index

u ¼ RF phase (rad)

Let the double-sided power spectral density of n tð Þ
be 1

2
N0.

a. Show that the signal portion of y tð Þ can be written
as

S tð Þ¼
ffiffiffiffiffiffi
2P
p

m sin vctþuð Þ�
ffiffiffiffiffiffi
2P
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m2
p

cos vctþuð Þ
Write in terms of the orthonormal functions f1 and f2,

given by (10.190) and (10.191).

b. Show that the likelihood function can bewritten as

L uð Þ ¼ 2m
ffiffiffiffiffiffi
2P
p

N0

ðTs
0

y tð Þ sin vct þ uð Þ dt

þ ln cosh
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P 1�m2ð Þp

N0

248<:
�
ðTs
0

y tð Þ cos vct þ uð Þdt
��

c. Drawablockdiagramof theMLestimator foruand
compare with the block diagram shown in Figure 10.15.

10.35. Given that the impulse response of an ideal inte-

grator over Ts is h tð Þ ¼ 1=Tð Þ u tð Þ� u t� Tð Þ½ �, where u tð Þ
is the unit step function, show that its equivalent noise

bandwidth is BN;ideal int ¼ 1=2T Hz.

Hint: You may apply (6.108) using the expression for h tð Þ
directly or find the frequency response function H fð Þ and
then find the equivalent noise bandwidth using (6.106).

VCO

tanh ( )
Ts

( )dt∫0
K1

Ts
( )dt∫0

K2

cos ( ct + ML)ω θ̂

sin ( ct + ML)ω θ̂

y(t)

1
2

π

K3×

×

×

Figure 10.15
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Computer Exercises

10.1. In practical communications systems and radar

systems we desire that the system operate with a probabil-

ity of detection that is nearly one and a probability of false

alarm that is only slightly greater than zero. For this case

we have interest in a very small portion of the total receiver

operating characteristic. With this in mind, make the

necessary changes in the in the MATLAB program of

Computer Example 10.1 so that the region of interest for

practical operation is displayed. This region of interest is

defined as PD 	 0:95 and PF � 0:01. Determine the va-

lues of the parameter d that give operation in this region.

10.2. Write a computer program to make plots of s2
p

versus K, the number of observations, for fixed ratios of

s2
A=s

2
n, thus verifying the conclusions drawn at the end of

Example 10.8.

10.3. Write a computer simulation of the PLL estimation

problem. Do this by generating two independent Gaussian

random variables to form Z1 and Z2 given by (10.194).

Thus for a given u, form the left-hand side of (10.199). Call

the first value u0. Estimate the next value of u, call it u1,
from the algorithm.

u1 ¼ u0 þ e tan�1
Z2;0

Z1;0

� �
where Z1;0 and Z2;0 are the first values of Z1 and Z2
generated and e is a parameter to be varied (choose the

first value to be 0.01). Generate two new values of Z1 and

Z2 (call them Z1;1 and Z2;1) and form the next estimate

according to

u2 ¼ u1 þ e tan�1
Z2;1

Z1;1

� �
Continue in this fashion, generating several values of ui.

Plot the uis versus i, the sequence index, to determine if

they seem to converge toward zero phase. Increase the

value of e by a factor of 10 and repeat. Can you relate the

parameter e to a PLL parameter (see Chapter 3)? This is an

example of Monte Carlo simulation.
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CHAPTER11

INFORMATION THEORY AND CODING

Information theory provides a different perspective for evaluating the performance of a commu-

nication system in that the performance can be compared with the theoretically best system for a

given bandwidth and SNR. Significant insight into the performance characteristics of a communi-

cation system can often be gained through the study of information theory. More explicitly,

information theoryprovides aquantitativemeasure of the information contained inmessage signals

and allows us to determine the capability of a system to transfer this information from source to

destination. Coding, amajor application area of information theory, will be briefly presented in this

chapter. We make no attempt in this chapter to be complete or rigorous. Rather we present an

overview of basic ideas and illustrate these ideas through simple examples. We hope that students

who study this chapter will be motivated to study these topics in more detail.

Information theory provides us with the performance characteristics of an ideal, or optimum,

communication system. The performance of an ideal system provides a meaningful basis against

which to compare the performance of the realizable systems studied in previous chapters.

Performance characteristics of ideal systems illustrate the gain in performance that can be obtained

by implementing more complicated transmission and detection schemes.

Motivation for the study of information theory is provided by Shannon�s coding theorem, which
can be stated as follows: If a source has an information rate less than the channel capacity, there

exists a coding procedure such that the source output can be transmitted over the channel with

an arbitrarily small probability of error. This is a powerful result. Shannon tells us that

transmission and reception can be accomplished with negligible error, even in the presence of

noise. An understanding of this process called coding and an understanding of its impact on the

design and performance of communication systems require an understanding of several basic

concepts of information theory.

Wewill see that there are two basic applications of coding. Thefirst of these is referred to as

source coding. Through the use of source coding, redundancy can be removed from message

signals so that each transmitted symbol carries maximum information. In addition, through the

use of channel, or error-correcting, coding, systematic redundancy can be induced into the

transmitted signal so that errors caused by imperfect practical channels can be corrected.
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n 11.1 BASIC CONCEPTS

Consider a hypothetical classroom situation occurring early in a course at the end of a class

period. The professor makes one of the following statements to the class:

A. I shall see you next period.

B. My colleague will lecture next period.

C. Everyone gets an A in the course, and there will be no more class meetings.

What is the relative information conveyed to the students by each of these statements, assuming

that there had been no previous discussion on the subject? Obviously, there is little information

conveyed by statement (A), since the class would normally assume that their regular professor

would lecture; that is, the probability P Að Þ of the regular professor lecturing is nearly unity.

Intuitively, we know that statement (B) contains more information, and the probability of a

colleague lecturing P Bð Þ is relatively low. Statement (C) contains a vast amount of information

for the entire class, and most would agree that such a statement has a very low probability of

occurrence in a typical classroom situation. It appears that the lower the probability of a

statement, or event, the greater is the information conveyed by that statement. Stated another

way, thestudents�surpriseonhearingastatementappears tobeagoodmeasureof theinformation

contained in that statement. Information is defined consistent with this intuitive example.

11.1.1 Information

Letxj be an event that occurswith probability pðxjÞ. Ifwe are told that eventxj has occurred,we
say that we have received

IðxjÞ ¼ loga
1

pðxjÞ
� �

¼� loga pðxjÞ ð11:1Þ

units of information. This definition is consistent with the previous example since IðxjÞ
increases as pðxjÞ decreases. Note that IðxjÞ is nonnegative since 0 � pðxjÞ � 1. The base of

the logarithm in (11.1) is arbitrary and determines the units by which information is measured.

R. V. Hartley,1 who first suggested the logarithmic measure of information in 1928, used

logarithms to the base 10 since tables of base 10 logarithms were widely available, and the

resulting measure of information was the hartley. Today it is standard to use logarithms to the

base 2, and the unit of information is the binary unit, or bit. If logarithms to the base e are used,

the corresponding unit is the nat, or natural unit.

There are several reasons for us to adopt the base 2 logarithm tomeasure information. The

simplest random experiment that one can imagine is an experiment with two equally likely

outcomes. Flipping an unbiased coin is a common example. Knowledge of each outcome has

associatedwith it one bit of information since the logarithm base is 2 and the probability of each

outcome is 0.5. Since the digital computer is a binarymachine, each logical 0 and each logical 1

hasassociatedwith itonebitof information, assuming thateachof these logical statesareequally

likely.

1Hartley (1928)

11.1 Basic Concepts 607

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


EXAMPLE 11.1

Consider a random experiment with 16 equally likely outcomes. The information associated with each

outcome is

IðxjÞ ¼�log2
1

16
¼ log216 ¼ 4 bits ð11:2Þ

where j ranges from 1 to 16. The information is associatedwith each outcome is greater than one bit, since

the random experiment generatesmore than two equally likely outcomes, and therefore, the probability of

each outcome is less than one-half.

&

11.1.2 Entropy

In general, the average information associatedwith the outcomes of an experiment is of interest

rather than the information associated with a particular output. The average information

associated with a discrete random variable X is defined as the entropy H Xð Þ. Thus

H Xð Þ ¼ E IðxjÞ
� � ¼�Xn

j¼1
pðxjÞ log2 pðxjÞ ð11:3Þ

where n is the total number of possible outcomes. Entropy can be regarded as average

uncertainty and therefore achieves a maximum when all outcomes are equally likely.

EXAMPLE 11.2

For a binary source let p 1ð Þ ¼ a and p 0ð Þ ¼ 1 � a ¼ b. From (11.3), the entropy is

H að Þ ¼�alog2a � 1 � að Þlog2 1 � að Þ ð11:4Þ
This is sketched in Figure 11.1. We note that if a ¼ 1

2
, each symbol is equally likely, and our uncertainty,

and therefore the entropy, is a maximum. If a 6¼ 1
2
, one of the two symbols becomes more likely than the

other. Therefore uncertainty, and consequently the entropy, decreases. If a is equal to zero or one, our

uncertainty is zero, since we know exactly which symbol will occur.

&

FromExample 11.2we conclude, at least for the special case illustrated in Figure 11.1, that

the entropy function has amaximum,which occurs when all probabilities are equal. This fact is

of sufficient importance to warrant a more complete derivation. Assume that a chance

1.0

0.5

10.750.250 0.5
α

E
nt

ro
py

Figure 11.1

Entropy of a binary source.
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experiment has n possible outcomes and that pn is a dependent variable depending on the other

probabilities. Thus

pn ¼ 1� p1þ p2þ � � � þ pk þ � � � þ pn� 1ð Þ ð11:5Þ
where pj is concise notation for pðxjÞ. The entropy associated with the chance experiment is

H ¼�
Xn
i¼1

pi log2 pi ð11:6Þ

In order to find the maximum value of entropy, the entropy is differentiated with respect to pk,

holding all probabilities constant except pk and pn. This gives a relationship between pk and pn
that yields the maximum value ofH. Since all derivatives are zero except the ones involving pk
and pn,

dH

dpk
¼ d

dpk
� pk log2 pk � pn log2 pnð Þ ð11:7Þ

Using (11.5) and

d

dx
loga u ¼

1

u
loga e

du

dx
ð11:8Þ

gives

dH

dpk
¼� pk

1

pk
log2 e� log2 pk þ pn

1

pn
log2 eþ log2 pn ð11:9Þ

or

dH

dpk
¼ log2

pn

pk
ð11:10Þ

which is zero if pk ¼ pn. Since pk is arbitrary,

p1 ¼ p2 ¼ � � � ¼ pn ¼ 1

n
ð11:11Þ

To show that the preceding condition yields a maximum and not a minimum, note that when

p1 ¼ 1 and all other probabilities are zero, the entropy is zero. From (11.6), the case where all

probabilities are equal yields H ¼ log2n.

11.1.3 Discrete Channel Models

Throughout most of this chapter we will assume the communications channel to be memory-

less. For such channels, the channel output at a given time is a function of the channel input at

that time and is not a function of previous channel inputs. Discrete memoryless channels are

completely specified by the set of conditional probabilities that relate the probability of each

output state to the input probabilities. An example illustrates the technique. A diagram of a

channel with two inputs and three outputs is illustrated in Figure 11.2. Each possible input-to-

output path is indicated along with a conditional probability pij, which is concise notation for

pðyjjxiÞ. Thus pij is the conditional probability of output yj given input xj and is called a channel
transition probability. The complete set of transition probabilities defines the channel. In this
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chapter, the transition probabilities are assumed constant. However, in many commonly

encountered situations, the transition probabilities are time varying. An example is thewireless

mobile channel in which the transmitter–receiver distance is changing with time.

We can see fromFigure 11.2 that the channel is completely specified by the set of transition

probabilities. Accordingly, thememoryless channel illustrated in Figure 11.2 can be defined by

the matrix of transition probabilities P Y jXð Þ½ �, where

P YjXð Þ½ � ¼ p y1j x1ð Þ p y2jx1ð Þ p y3j x1ð Þ
p y1j x2ð Þ p y2jx2ð Þ p y3j x2ð Þ
� �

ð11:12Þ

Since each channel input results in some output, each row of P Y jXð Þ½ � must sum to unity. We

refer to the matrix of transition probabilities as the channel matrix.

The channel matrix is useful in deriving the output probabilities given the input

probabilities. For example, if the input probabilities P Xð Þ are represented by the row matrix

P Xð Þ½ � ¼ p x1ð Þ p x2ð Þ½ � ð11:13Þ
then

P Yð Þ½ � ¼ p y1ð Þ p y2ð Þ p y3ð Þ½ � ð11:14Þ
which is computed by

P Yð Þ½ � ¼ P Xð Þ½ � P YjXð Þ½ � ð11:15Þ
If P Xð Þ½ � is written as a diagonal matrix, (11.15) yields a matrix P X; Yð Þ½ �. Each element in the

matrix has the form p xið Þpðyj jxiÞ or pðxj ; yjÞ. This matrix is known as the joint probability

matrix, and the term pðxi; yjÞ is the joint probability of transmitting xi and receiving yj .

EXAMPLE 11.3

Consider the binary input–output channel shown in Figure 11.3. The matrix of transition probabilities is

P YjXð Þ½ � ¼ 0:7 0:3
0:4 0:6

� �
ð11:16Þ

If the input probabilities are P x1ð Þ ¼ 0:5 and P x2ð Þ ¼ 0:5, the output probabilities are

P Yð Þ½ � ¼ 0:5 0:5½ � 0:7 0:3
0:4 0:6

� �
¼ 0:55 0:45½ � ð11:17Þ

y2

y1

y3

p22

p13

p23

p11

x1

x2

p12

p21

Figure 11.2

Channel diagram.
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and the joint probability matrix for the channel is

P X; Yð Þ½ � ¼ 0:5 0

0 0:5

� �
0:7 0:3
0:4 0:6

� �
¼ 0:35 0:15

0:2 0:3

� �
ð11:18Þ

&

As we first observed in Chapter 9, a binary satellite communication system can often be

represented by the cascade combination of two binary channels. This is illustrated in

Figure 11.4(a), in which the first binary channel represents the uplink and the second binary

channel represents the downlink. These channels can be combined as shown in Figure 11.4(b).

By determining all possible paths from xi to zj , it is clear that the following probabilities

define the overall channel illustrated in Figure 11.4(b):

p11 ¼ a1b1þa2b3 ð11:19Þ

p12 ¼ a1b2þa2b4 ð11:20Þ

p21 ¼ a3b1þa4b3 ð11:21Þ

p22 ¼ a3b2þa4b4 ð11:22Þ

x1
  1

x2

x1
p11

p12

p21

p22
x2

z1

z2

z1

z2

y2

y1α

  2α

  3α

  2β

  3β
  4α

  1β

  4β

knilnwoDknilpU
(a)

(b)

Figure 11.4

Two-hop satellite system.

(a) Binary satellite channel.

(b) Composite satellite

channel.

x1

x2

y1

y2

0.7

0.4

0.3

0.6

Figure 11.3

Binary channel.
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Thus the overall channel matrix

P ZjXð Þ½ � ¼ p11 p12
p21 p22

� �
ð11:23Þ

can be represented by the matrix multiplication

P ZjXð Þ½ � ¼ a1 a2

a3 a4

� �
b1 b2

b3 b4

� �
ð11:24Þ

For a two-hop communications system, the right-hand side of the preceding expression is

simply the uplink channel matrix multiplied by the downlink channel matrix.

11.1.4 Joint and Conditional Entropy

Using the input probabilities p xið Þ, the output probabilities pðyjÞ, the transition probabilities

pðyjjxiÞ, and the joint probabilities pðxi; yjÞ, we can define several different entropy functions
for a channel with n inputs and m outputs. These are

H Xð Þ ¼�
Xn
i¼1

p xið Þ log2 p xið Þ ð11:25Þ

H Yð Þ ¼�
Xm
j¼1

pðyjÞ log2 pðyjÞ ð11:26Þ

H YjXð Þ ¼�
Xn
i¼1

Xm
j¼1

pðxi; yjÞ log2 pðyjjxiÞ ð11:27Þ

and

H X; Yð Þ ¼�
Xm
j¼1

pðxi; yjÞ log2 pðxi; yjÞ ð11:28Þ

An important and useful entropy, H XjYð Þ is defined as

H XjYð Þ ¼�
Xn
i¼1

Xm
j¼1

pðxi; yjÞ log2 pðxijyjÞ ð11:29Þ

These entropies are easily interpreted. H Xð Þ is the average uncertainty of the source, whereas
H Yð Þ is the average uncertainty of the received symbol. Similarly,H XjYð Þ is a measure of our

average uncertainty of the transmitted symbol after we have received a symbol. The function

H Y jXð Þ is the average uncertainty of the received symbol given that X was transmitted. The

joint entropy H X; Yð Þ is the average uncertainty of the communication system as a whole.

Two important and useful relationships, which can be obtained directly from the

previously defined entropies, are

H X;Yð Þ ¼ H XjYð ÞþH Yð Þ ð11:30Þ
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and
H X; Yð Þ ¼ H YjXð ÞþH Xð Þ ð11:31Þ

These are developed in Problem 11.13.

11.1.5 Channel Capacity

Consider for a moment an observer at the channel output. The observer�s average uncertainty
concerning the channel input will have value H Xð Þ before the reception of an output, and this
average uncertainty of the input will typically decrease when the output is received. In other

words, H XjYð Þ � H Xð Þ. The decrease in the average uncertainty of the transmitted signal

when the output is received is a measure of the average information transmitted through the

channel. This is defined as mutual information I X; Yð Þ. Thus
I X; Yð Þ ¼ H Xð Þ�H XjYð Þ ð11:32Þ

It follows from (11.30) and (11.31) that we can also write (11.32) as

I X; Yð Þ ¼ H Yð Þ�H YjXð Þ ð11:33Þ
It should be observed that mutual information is a function of the source probabilities as well as

of the channel transition probabilities.

It is easy to show mathematically that

H Xð Þ 	 H XjYð Þ ð11:34Þ
by showing that

H XjYð Þ�H Xð Þ ¼� I X; Yð Þ � 0 ð11:35Þ
Substitution of (11.29) for H XjYð Þ and (11.25) for H Xð Þ allows us to write � I X; Yð Þ as

� I X; Yð Þ ¼�
Xn
i¼1

Xm
j¼1

pðxi; yjÞ log2
p xið Þ
pðxijyjÞ
� �

ð11:36Þ

Since

log2x ¼
ln x

ln 2
ð11:37Þ

and

p xið Þ
pðxijyjÞ ¼

p xið ÞpðyjÞ
pðxi; yjÞ ð11:38Þ

we can write � I X; Yð Þ as

� I X; Yð Þ ¼ 1

ln 2

Xn
i¼1

Xm
j¼1

pðxi; yjÞ ln p xið ÞpðyjÞ
pðxi; yjÞ

� �
ð11:39Þ

In order to carry the derivation further, we need the often used inequality

ln x � x� 1 ð11:40Þ
which we can easily derive by considering the function

f xð Þ ¼ ln x� x� 1ð Þ ð11:41Þ
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The derivative of f xð Þ
df

dx
¼ 1

x
� 1 ð11:42Þ

is equal to zero at x ¼ 1. It follows that f 1ð Þ ¼ 0 is the maximum value of f xð Þ, since we can
make f xð Þ less than zero by choosing x sufficiently large >1ð Þ. Using the inequality (11.40) in
(11.39) results in

� I X; Yð Þ � 1

ln 2

Xn
i¼1

Xm
j¼1

p xi; yj

 � p xið ÞpðyjÞ

pðxi; yjÞ � 1

� �
ð11:43Þ

which yields

� I X; Yð Þ � 1

ln 2

Xn
i¼1

Xm
j¼1

p xið ÞpðyjÞ�
Xn
i¼1

Xm
j¼1

pðxi; yjÞ
" #

ð11:44Þ

Since both the double sums equal 1, we have the desired result

� I X; Yð Þ � 0 or I X; Yð Þ 	 0 ð11:45Þ
Thus we have shown that mutual information is always nonnegative and, consequently,

H Xð Þ 	 H XjYð Þ.
The channel capacity C is defined as the maximum value of mutual information, which is

the maximum average information per symbol that can be transmitted through the channel for

each channel use. Thus

C ¼ max I X; Yð Þ½ � ð11:46Þ
The maximization is with respect to the source probabilities, since the transition probabilities

are fixed by the channel. However, the channel capacity is a function of only the channel

transition probabilities, since the maximization process eliminates the dependence on the

source probabilities. The following examples illustrate the method.

EXAMPLE 11.4

The channel capacity of the discrete noiseless channel illustrated in Figure 11.5 is easily determined. We

start with

I X; Yð Þ ¼ H Xð Þ�H XjYð Þ
and write

H XjYð Þ ¼�
Xn
i¼1

Xm
j¼1

p xi; yj

 �

log2 p xij yj

 � ð11:47Þ

x2

x1

xn

y2

y1

yn
1

1

1 Figure 11.5

Noiseless channel.
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For the noiseless channel, all pðxi; yjÞ and pðxijyjÞ are zero unless i ¼ j. For i ¼ j; pðxijyjÞ is unity. Thus
H XjYð Þ is zero for the noiseless channel, and

I X; Yð Þ ¼ H Xð Þ ð11:48Þ
We have seen that the entropy of a source is maximum if all source symbols are equally likely. Thus

C ¼
Xn
i¼1

1

n
log2n ¼ log2n ð11:49Þ

&

EXAMPLE 11.5

An important and useful channel model is the binary symmetric channel (BSC) illustrated in Figure 11.6.

We determine the capacity by maximizing

I X; Yð Þ ¼ H Yð Þ�H YjXð Þ
where

H YjXð Þ ¼�
X2
i¼1

X2
j¼1

pðxi; yjÞlog2 pðxijyjÞ ð11:50Þ

Using the probabilities defined in Figure 11.6, we obtain

H YjXð Þ ¼ �ap log2 p� 1�að Þp log2 p
�aq log2 q� 1�að Þq log2 q ð11:51Þ

or

H YjXð Þ ¼� p log2 p� q log2 q ð11:52Þ
Thus

I X; Yð Þ ¼ H Yð Þþ p log2 pþ q log2 q ð11:53Þ
which is maximumwhenH Yð Þ is maximum. Since the system output is binary,H Yð Þ is a maximumwhen

each output has a probability of 1
2
. Note that for a BSC equally likely outputs are for equally likely inputs.

Since the maximum value of H Yð Þ for a binary channel is unity, the channel capacity is

C ¼ 1þ p log2 pþ q log2 q ¼ 1�H pð Þ ð11:54Þ
where H pð Þ is defined in (11.4).

The capacity of a BSC is sketched in Figure 11.7. As expected, if p ¼ 0 or 1, the channel output is

completely determined by the channel input, and the capacity is 1 bit per symbol. If p is equal to 0.5, an

input symbol yields either output symbol with equal probability, and the capacity is zero.

x1P(x1) =

P(x2) = 1 – x2

y1

y2

p

p

q

q

α

  α

Figure 11.6

Binary symmetric channel.
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&

It is worth noting that the capacity of the channel illustrated in Figure 11.6 is most easily

found by starting with (11.32), while the capacity of the channel illustrated in Figure 11.6 is

most easily found starting with (11.33). Choosing the appropriate expression for I X; Yð Þ can
often save considerable effort. It sometimes takes insight and careful study of a problem to

choose the expression for I X; Yð Þ that yields the capacity with minimum computational effort.

The error probability PE of a binary symmetric channel is easily computed. From

PE ¼
X2
i¼1

p ejxið Þp xið Þ ð11:55Þ

where p ejxið Þ is the error probability given input xi, we have

PE ¼ qp x1ð Þþ qp x2ð Þ ¼ q p x1ð Þþ p x2ð Þ½ � ð11:56Þ
Thus

PE ¼ q

which states that the unconditional error probability PE is equal to the conditional error

probability pðyjjxiÞ, i 6¼ j.

In Chapter 8 we showed that PE is a decreasing function of the energy of the received

symbols. Since the symbol energy is the received power multiplied by the symbol period, it

follows that if the transmitter power is fixed, the error probability can be reduced by

decreasing the source rate. This can be accomplished by removing the redundancy at the

source through a process called source coding.

EXAMPLE 11.6

In Chapter 8 we showed that for binary coherent FSK systems, the probability of symbol error is the same

for each transmitted symbol. Thus, a BSCmodel is a suitablemodel for FSK transmission. In this example

we determine the channel matrix assuming that the transmitter power is 1000 W, the attenuation in the

channel from transmitter to receiver input is 30 dB, the source rate r is 10,000 symbols per second, and that

the noise power spectral density N0 is 2� 10� 5 W=Hz.
Since the channel attenuation is 30 dB, the signal power PR at the input to the receiver is

PR ¼ 1000ð Þ 10� 3

 � ¼ 1W ð11:57Þ

This corresponds to a received energy per symbol of

Es ¼ PRT ¼ 1

10;000
¼ 10� 4 J ð11:58Þ
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0 0.25 0.5 0.75 1
p
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Figure 11.7

Capacity of a binary symmetric channel.
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In Chapter 8 we saw that the error probability for a coherent FSK receiver is

PE ¼ Q

ffiffiffiffiffiffi
Es

N0

r� �
ð11:59Þ

which, with the given values, yields PE ¼ 0:0127. Thus, the channel matrix is

P YjXð Þ½ � ¼ 0:9873 0:0127
0:0127 0:9873

� �
ð11:60Þ

It is interesting to compute the change in the channel matrix resulting from a moderate reduction in

source symbol rate with all other parameters held constant. If the source symbol rate is reduced 25% to

7500 symbols per second, the received energy per symbol becomes

Es ¼ 1

7500
¼ 1:333� 10� 4 J ð11:61Þ

With the other given parameters, the symbol-error probability becomes PE ¼ 0:0049, which yields the

channel matrix

P YjXð Þ½ � ¼ 0:9951 0:0049
0:0049 0:9951

� �
ð11:62Þ

Thus the 25% reduction in source symbol rate results in an improvement of the system symbol-error

probability by a factor of almost 3. In Section 11.2 we will investigate a technique that sometimes allows

the source symbol rate to be reduced without reducing the source information rate.

&

n 11.2 SOURCE CODING

We determined in the preceding section that the information from a source producing symbols

according to some probability scheme could be described by the entropy H Xð Þ. Since entropy
has units of bits per symbol, we also must know the symbol rate in order to specify the source

information rate in bits per second. In other words, the source information rate Rs is given by

Rs ¼ rH Xð Þ bps ð11:63Þ

where H Xð Þ is the source entropy in bits per symbol and r is the symbol rate in symbols per

second.

Let us assume that this source is the input to a channel with capacity C bits per symbol or

SC bits per second, where S is the available symbol rate for the channel. An important theorem

of information theory, Shannon�s noiseless coding theorem, as is stated as follows: Given a

channel and a source that generates information at a rate less than the channel capacity, it is

possible to code the source output in such a manner that it can be transmitted through the

channel. A proof of this theorem is beyond the scope of this introductory treatment of

information theory and can be found in any of the standard information theory textbooks.2

However, we demonstrate the theorem by a simple example.

2See for example, Gallagher (1968).
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11.2.1 An Example of Source Coding

Let us consider a discrete binary source that has two possible outputs A and B that have

probabilities 0.9 and 0.1, respectively. Assume also that the source rate r is 3.5 symbols per

second. The source output is input to a binary channel that can transmit a binary 0 or 1 at a rate of

2 symbols per second with negligible error, as shown in Figure 11.8. Thus, from Example 11.5

with p ¼ 1, the channel capacity is 1 bit per symbol,which, in this case, is an information rate of

2 bits per second.

It is clear that the source symbol rate is greater than the channel capacity, so the source

symbols cannot be placed directly into the channel. However, the source entropy is

H Xð Þ ¼� 0:1 log2 0:1� 0:9 log2 0:9 ¼ 0:469 bits=symbol ð11:64Þ
which corresponds to a source information rate of

rH Xð Þ ¼ 3:5 0:469ð Þ ¼ 1:642 bps ð11:65Þ
Thus, the information rate is less than the channel capacity, so transmission is possible.

Transmission is accomplished by the process called source coding, whereby code words

are assigned to n-symbol groups of source symbols. The shortest code word is assigned to the

most probable group of source symbols, and the longest code word is assigned to the least

probable group of source symbols. Thus source coding decreases the average symbol rate,

which allows the source to be matched to the channel. The n-symbol groups of source symbols

are known as the order n extension of the original source.

Table 11.1 illustrates the first-order extension of the original source. Clearly, the symbol

rate at the coder output is equal to the symbol rate of the source. Thus the symbol rate at the

channel input is still larger than the channel can accommodate.

The second-order extension of the original source is formed by taking the source symbols

n¼ 2 at a time, as illustrated in Table 11.2. The average word length L is

L ¼
X2n
i¼1

p xið Þli ¼ 1:29 ð11:66Þ

Binary
channel

Discrete
binary
source

Source
encoder

C = 1 bit/symbol
S = 2 symbols/sec

SC = 2 bits/sec

Source symbol rate = r
 = 3.5 symbols/sec

Figure 11.8

Transmission scheme.

Table 11.1 First-Order Extension

Source symbol Symbol probability P(�) Code word li P(�)li
A 0.9 0 1 0.9

B 0.1 1 1 0.1

L ¼ 1:0
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where p xið Þ is the probability of the ith symbol of the extended source and li is the length of the

code word corresponding to the ith symbol. Since the source is binary, there are 2n symbols in

the extended source output, each of length n. Thus, for the second-order extension

L

n
¼ 1

n

X
P �ð Þli ¼ 1:29

2
¼ 0:645 code symbols=source symbol ð11:67Þ

and the symbol rate at the coder output is

r
L

n
¼ 3:5 0:645ð Þ ¼ 2:258 code symbols=second ð11:68Þ

which is still greater than the 2 symbols per second that the channel can accept. It is clear that

the symbol rate has been reduced, and this provides motivation to try again.

Table 11.3 shows the third-order source extension. For this case, the source symbols are

grouped three at a time. The average word length L is 1.598, and

L

n
¼ 1

n

X
P �ð Þli ¼ 1:598

3
¼ 0:533 code symbols=source symbol ð11:69Þ

The symbol rate at the coder output is

r
L

n
¼ 3:5 0:533ð Þ ¼ 1:864 code symbols=second ð11:70Þ

This rate can be accepted by the channel, and therefore transmission is possible using the third-

order source extension.

It is worth noting in passing that if the source symbols appear at a constant rate, the code

symbols at the coder output do not appear at a constant rate. As is apparent in Table 11.3, the

source output AAA results in a single symbol at the coder output, whereas the source output

Table 11.3 Third-Order Source Extension

Source symbol Symbol probability P(�) Code word li P(�)li
AAA 0.729 0 1 0.729

AAB 0.081 100 3 0.243

ABA 0.081 101 3 0.243

BAA 0.081 110 3 0.243

ABB 0.009 11100 5 0.045

BAB 0.009 11101 5 0.045

BBA 0.009 11110 5 0.045

BBB 0.001 11111 5 0.005

Table 11.2 Second-Order Source Extension

Source symbol Symbol probability P(�) Code word li P(�)li
AA 0.81 0 1 0.81

AB 0.09 10 2 0.18

BA 0.09 110 3 0.27

BB 0.01 111 3 0.03
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BBB results in five symbols at the coder output. Thus symbol buffering must be provided at the

coder output if the symbol rate into the channel is to be constant.

Figure 11.9 shows the behavior of L=n as a function of n. We see that L=n always exceeds
the source entropy and converges to the source entropy for large n. This is a fundamental result

of information theory.

To illustrate the method used to select the code words in this example, we consider the

general problem of source coding.

11.2.2 Several Definitions

Before we discuss in detail the method of deriving code words, we pause to make a few

definitions that will clarify our work.

Each code word is constructed from an alphabet that is a collection of symbols used for

communication through a channel. For example, a binary codeword is constructed from a two-

symbol alphabet, wherein the two symbols are usually taken as 0 and 1. The word length of a

code word is the number of symbols in the code word.

There are several major subdivisions of codes. For example, a code can be either block or

nonblock. A block code is one in which each block of source symbols is coded into a fixed-

length sequence of code symbols. A uniquely decipherable code is a block code in which the

code words may be deciphered without using spaces. These codes can be further classified as

instantaneous or noninstantaneous, according to whether it is possible to decode each word in

sequence without reference to succeeding code symbols. Alternatively, noninstantaneous

codes require reference to succeeding code symbols, as illustrated in Table 11.4. It should be

remembered that a noninstantaneous code can be uniquely decipherable.

A usefulmeasure of goodness of a source code is the efficiency, which is defined as the ratio

of the minimum average word length of the code words Lmin to the average word length of the

1.0

0.8

0.6

0.4

0.2

0
43210

n

H(X)

L/n

0.469

Figure 11.9

Behavior of L=n.
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code word L. Thus

Efficiency ¼ Lmin

L
¼ LminPn

i¼1 p xið Þli ð11:71Þ

where p xið Þ is the probability of the ith source symbol and li is the length of the code word

corresponding to the ith source symbol. It can be shown that the minimum averageword length

is given by

Lmin ¼ H Xð Þ
log2 D

ð11:72Þ

where H Xð Þ is the entropy of the message ensemble being coded and D is the number of

symbols in the code alphabet. This yields.

Efficiency ¼ H Xð Þ
L log2 D

ð11:73Þ

or

Efficiency ¼ H Xð Þ
L

ð11:74Þ

for a binary alphabet. Note that if the efficiency of a code is 100%, the averageword length L is

equal to the entropy, H Xð Þ, as implied by Figure 11.9.

11.2.3 Entropy of an Extended Binary Source

In many problems of practical interest, the efficiency is improved by coding the order n source

extension. This is exactly the scheme used in the preceding example of source coding.

Computation of the efficiency of each of the three schemes used involves calculating the

efficiency of the extended source. The efficiency can, of course, be calculated directly, using the

symbol probabilities of the extended source, but there is an easier method.

The entropy of the order n extension of a discrete memoryless source, denoted H Xnð Þ, is
given by

H Xnð Þ ¼ nH Xð Þ ð11:75Þ
This is easily shown by representing a message sequence from the output of the order n source

extension as i1; i2; . . . ; inð Þ, where ik can take on one of two states with probability pik. The

entropy of the order n extension of the source is

H Xnð Þ ¼�
X2
i1¼1

X2
i2¼1

. . .
X2
in¼1

pi1 pi2 . . . pinð Þ log2 pi1 pi2 . . . pinð Þ ð11:76Þ

Table 11.4 Instantaneous and Noninstantaneous Codes

Source symbols Code 1 noninstantaneous Code 2 instantaneous

x1 0 0

x2 01 10

x3 011 110

x4 0111 1110
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or

H Xnð Þ ¼�
X2
i1¼1

X2
i2¼1

. . .
X2
in¼1

pi1 pi2 . . . pinð Þ log2 pi1 þ log2 pi2 þ � � � þ log2 pinð Þ ð11:77Þ

We can write the preceding expression as

H Xnð Þ ¼ �
X2
i1¼1

pi1 log2 pi1

X2
i2¼1

pi2

X2
i3¼1

pi3 . . .
X2
in¼1

pin

 !

�
X2
i1¼1

pi1

 !X2
i2¼1

pi2 log2 pi2

X2
i3¼1

pi3 � � �
X2
in¼1

pin

 !
� � �

�
X2
i1¼1

pi1

X2
i2¼1

pi2 � � �
X2

in� 1¼1
pin� 1

X2
in¼1

pin

 !X2
in¼1

pin log2 pin

ð11:78Þ

Each term in parentheses is equal to 1. Thus

H Xnð Þ ¼�
X2
k¼1

X2
ik¼1

pik log2 pik ¼
Xn
k¼1

H Xð Þ ð11:79Þ

which yields
H Xnð Þ ¼ nH Xð Þ

The efficiency of the extended source is therefore given by

Efficiency ¼ nH Xð Þ
L

ð11:80Þ

If efficiency tends to 100% as n approaches infinity, it follows that L=n tends to the entropy of
the extended source. This is exactly the observation made from Figure 11.9.

11.2.4 Shannon–Fano Source Coding

There are several methods of coding a source output so that an instantaneous code results. We

consider two such methods here. First, we consider the Shannon–Fano method, which is very

easy to apply and usually yields source codes having reasonably high efficiency. In the next

subsection we consider the Huffman source coding technique, which yields the source code

having the shortest average word length for a given source entropy.

Assume that we are given a set of source outputs that are to be represented in binary form.

These source outputs are first ranked in order of nonincreasing probability of occurrence, as

illustrated in Figure 11.10. The set is then partitioned into two sets (indicated by line A-A0) that
are as close to equiprobable as possible, and 0s are assigned to the upper set and ls to the lower

set, as seen in the first column of the codewords. This process is continued, each time

partitioning the sets with as nearly equal probabilities as possible, until further partitioning is

not possible. This scheme will give a 100% efficient code if the partitioning always results in

equiprobable sets; otherwise, the code will have an efficiency less than 100%. For this

particular example

Efficiency ¼ H Xð Þ
L
¼ 2:75

2:75
¼ 1 ð11:81Þ

since equiprobable partitioning is possible.
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11.2.5 Huffman Source Coding

Huffman coding results in an optimum code in the sense that the Huffman code has the

minimum averageword length for a source of given entropy. The Huffman technique therefore

yields the code having the highest efficiency.We shall illustrate the Huffman coding procedure

using the same source output of eight messages previously used to illustrate the Shannon–Fano

coding procedure.

Figure 11.11 illustrates the Huffman coding procedure. The source output consists of

messages X1, X2, X3, X4, X5, X6, X7, and X8. They are listed in order of nonincreasing

probability, as was done for Shannon–Fano coding. The first step of the Huffman procedure is

to combine the two source messages having the lowest probability, X7 and X8.

The upper message, X7, is assigned a binary 0 as the last symbol in the code word, and the

lower message, X8, is assigned a binary 1 as the last symbol in the codeword. The combination

ofX7 andX8 can be viewed as a composite message having a probability equal to the sum of the

probabilities of X7 and X8, which in this case is 0.1250, as shown. This composite message is

0.2500

0.2500

0.1250

0.1250

0.0625

0.0625

00052.0

0

10052.0
1

0.1250 0

0

0.1250 1
1

0.1250 0

0.0625 0

0.0625 1
1

0.0625

0.0625 1

X1 X1

X2 X2

X3 X3

X4 X4

X4

X5 X5

X6 X6

X7 0

X8

Message Probability

Source output

Message Probability

Result of
combining X7 and X8

X1
X2
X3
X4
X5
X6
X7
X8

10
11
010
011
0010
0011
0000
0001

Resulting
code words′

Figure 11.11

Example of Huffman source coding.

X1                         0.2500                  00                  2 (0.25)          = 0.50
X2                         0.2500                  01                  2 (0.25)          = 0.50

A A'
X3                         0.1250                  100                3 (0.125)        = 0.375
X4                         0.1250                  101                3 (0.125)        = 0.375
X5                         0.0625                  1100              4 (0.0625)      = 0.25
X6                         0.0625                  1101              4 (0.0625)      = 0.25
X7                         0.0625                  1110              4 (0.0625)      = 0.25
X8                         0.0625                  1111              4 (0.0625)      = 0.25

Average word length = 2.75

(Probability)(Length)Code wordProbabilitySource words Figure 11.10

Shannon–Fano source coding.
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denoted X04. After this initial step, the new set of messages, denoted X1, X2, X3, X
0
4, X5, X6, and

X04 are arranged in order of nonincreasing probability. Note that X
0
4 could be placed at any point

betweenX2 and X5, although it was given the name X04 because it was placed after X4. The same

procedure is then applied once again. The messages X5 and X6 are combined. The resulting

composite message is combined with X04. This procedure is continued as far as possible. The

resulting tree structure is then traced in reverse to determine the codewords. The resulting code

words are shown in Figure 10.11.

The code words resulting from the Huffman procedure are different from the code words

resulting from the Shannon–Fano procedure because at several points the placement of

composite messages resulting from previous combinations was arbitrary. The assignment of

binary 0s or binary ls to the upper or lower messages was also arbitrary. Note, however, that the

average word length is the same for both procedures. This must be the case for the example

chosen because the Shannon–Fano procedure yielded 100% efficiency and the Huffman

procedure can be no worse. There are cases in which the two procedures do not result in equal

average word lengths.

n 11.3 COMMUNICATION IN NOISY ENVIRONMENTS: BASIC IDEAS

We now turn our attention to methods for achieving reliable communication in the presence of

noise by combating the effects of that noise. We undertake our study with a promise from

Claude Shannon of considerable success.

Shannon’s Theorem (Fundamental theorem of Information Theory)

Given a discrete memoryless channel (each symbol is perturbed by noise independently of all

other symbols) with capacity C and a source with positive rate R, where R < C, there exists a

code such that the output of the source can be transmitted over the channel with an arbitrarily

small probability of error.

Thus Shannon�s theorem predicts essentially error-free transmission in the presence of

noise. Unfortunately, the theorem tells us only of the existence of codes and tells nothing of how

to construct these codes.

Beforewe start our study of constructing codes for noisy channels, wewill take aminute to

discuss the continuous channel. This detour will yield insight that will prove useful.

In Chapter 7 we discussed the AWGN channel and observed that, assuming that thermal

noise is the dominating noise source, the AWGNchannelmodel is applicable over awide range

of temperatures and channel bandwidths. Determination of the capacity of the AWGN channel

is a relatively simple task and the derivation is given in most information theory textbooks (see

References). The capacity, in bits per second, of the AWGN channel is given by

Cc ¼ B log2 1þ S

N

� �
ð11:82Þ

where B is the channel bandwidth in Hz and S=N is the signal-to-noise power ratio. This

particular formulation is known as the Shannon-Hartley law. The subscript is used to

distinguish (11.82) from (11.46). Capacity, as expressed by (11.46), has units of bits per

symbol, while (11.82) has units of bits per second.

The trade-off between bandwidth and SNR can be seen from the Shannon–Hartley law.

For infinite SNR,which is the noiseless case, the capacity is infinite for any nonzero bandwidth.
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We will show, however, that the capacity cannot be made arbitrarily large by increasing

bandwidth if noise is present.

In order to understand the behavior of the Shannon–Hartley law for the large-bandwidth

case, it is desirable to place (11.82) in a slightly different form. The energy per bitEb is equal to

the bit time Tb multiplied by the signal power S. At capacity, the bit rate Rb is equal to the

capacity. Thus Tb ¼ 1=Cc s=bit. This yields, at capacity,

Eb ¼ STb ¼ S

Cc

ð11:83Þ
The total noise power in bandwidth B is given by

N ¼ N0B ð11:84Þ
where N0 is the single-sided noise power spectral density in watts per hertz. The SNR can

therefore be expressed as

S

N
¼ Eb

N0

Cc

B
ð11:85Þ

This allows the Shannon–Hartley law to be written in the equivalent form

Cc

B
¼ log2 1þ Eb

N0

Cc

B

� �
ð11:86Þ

Solving for Eb=N0 yields

Eb

N0

¼ B

Cc

ð2Cc=B� 1Þ ð11:87Þ
This expression establishes performance of the ideal system. For the case in which B Cc

2Cc=B ¼ e Cc=Bð Þln 2 ffi 1þ Cc

B
ln 2 ð11:88Þ

where the approximation ex ffi 1þ x; jxj � 1, has been used. Substitution of (11.88) into

(11.87) gives

Eb

N0

ffi ln 2 ¼� 1:6 dB B Cc ð11:89Þ

Thus, for the ideal system, in whichRb ¼ Cc; Eb=N0 approaches the limiting value of �1:6 dB
as the bandwidth grows without bound.

A plot of Eb=N0, expressed in decibels, as a function of Rb=B is illustrated in Figure 11.12.

The ideal system is defined by Rb ¼ Cc and corresponds to (11.87). There are two regions of

interest. The first region, for which Rb < Cc, is the region in which arbitrarily small error

probabilities can be obtained. Clearly this is the region in which we wish to operate. The other

region, for which Rb > Cc, does not allow the error probability to be made arbitrarily small.

An important trade-off can be deduced from Figure 11.12. If the bandwidth factor Rb=B is

large so that the bit rate is much greater than the bandwidth, then a significantly larger value of

Eb=N0 is necessary to ensure operation in the Rb < Cc region than is the case if Rb=B is small.

Stated anotherway, assume that the source bit rate is fixed atRb bits per second and the available

bandwidth is large so that B Rb. For this case, operation in the Rb < Cc region requires only

that Eb=N0 is slightly greater than �1.6 dB. The required signal power is

S ffi Rb ln 2ð ÞN0 W ð11:90Þ
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This is the minimum signal power for operation in the Rb < Cc region. Therefore, operation in

this region is desired for power-limited operation.

Now assume that bandwidth is limited so that Rb  B. Figure 11.12 shows that a much

larger value ofEb=N0 is necessary for operation in theRb < Cc region. Thus the required signal

power is much greater than that given by (11.90). This is referred to as bandwidth-limited

operation.

The preceding paragraphs illustrate that, at least in the AWGN channel–where the

Shannon–Hartley law applies, a trade-off exists between power and bandwidth. This trade-

off is of fundamental importance in the design of communication systems.

Realizing that we can theoretically achieve perfect system performance, even in the

presence of noise, we start our search for system configurations that yield the performance

promised by Shannon�s theorem. Actually one such system was analyzed in Chapter 10.

Orthogonal signals were chosen for transmission through the channel, and a correlation

receiver structure was chosen for demodulation. The system performance is illustrated in

Figure 10.7. Shannon�s bound is clearly illustrated.

While are a number of techniques that can be used for combating the effects of noise, so

that performance more closer to Shannon�s limit is achieved, the most commonly used

technique is forward error correction. The two major classifications of codes for forward

error correction are block codes and convolutional codes. The following two sections treat

these techniques.

n 11.4 COMMUNICATION IN NOISY CHANNELS: BLOCK CODES

Consider a source that produces a serial stream of binary symbols at a rate of Rs symbols per

second. Assume that these symbols are grouped into blocks T seconds long, so that each block

contains RsT ¼ k source or information symbols. To each of these k-symbol blocks is added
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Rb ¼ Cc relationship for AWGN

channel.
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redundant check symbols to produce a codeword n symbols long. In a properly designed block

code the n� k check symbols provide sufficient information to the decoder to allow for the

correction (or detection) of one or more errors that may occur in the transmission of the n

symbol code word through the noisy channel. A coder that operates in this manner is said to

produce an n; kð Þ block code. An important parameter of block codes is the code rate, which is

defined as

Rs ¼ k

n
ð11:91Þ

since k bits of information are transmitted with each block of n symbols. A design goal is to

achieve the required error-correcting capability with the highest possible rate.

Codes can either correct or merely detect errors, depending on the amount of redundancy

contained in the check symbols. Codes that can correct errors are known as error-correcting

codes. Codes that can only detect errors are also useful. As an example, when an error is

detected but not corrected, a feedback channel can be used to request a retransmission of the

codeword found to be in error.Wewill discuss error-detection and feedback channels in a later

section. If errors are more serious than a lost code word, the code word found to be in error can

simply be discarded without requesting retransmission.

11.4.1 Hamming Distances and Error Correction

Anunderstandingofhowcodes candetect andcorrect errors canbegained fromageometric point

of view. A binary codeword is a sequence of 1s and 0s that is n symbols in length. TheHamming

weight wðsjÞ of code word sj is defined as the number of ls in that code word. The Hamming

distancedðsi; sjÞordij betweencodewordssi andsj isdefinedasthenumberofpositionsinwhichsi
and sj differ. It follows that Hamming distance can be written in terms of Hamming weight as

dij ¼ wðsi � sjÞ ð11:92Þ
where the symbol � denotes modulo-2 addition, which is binary addition without a carry.

EXAMPLE 11.7

Compute the Hamming distance between s1 ¼ 101101 and s2 ¼ 001100.

S o l u t i o n

Since

101101� 001100 ¼ 100001

we have

d12 ¼ w 100001ð Þ ¼ 2

which simply means that s1 and s2 differ in 2 positions.

&

A geometric representation of two code words is shown in Figure 11.13. The Cs represent

two code words that are distance 5 apart. The code word on the left is the reference code word.

The first ‘‘x’’ to the right of the reference represents a binary sequence distance 1 from the

reference code word, where distance is understood to denote the Hamming distance.
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The second ‘‘x’’ to the right of the reference codeword is distance 2 from the reference, and so

on. Assuming that the two code words shown are the closest in Hamming distance of all the

code words for a given code, the code is then a distance 5 code. Figure 11.13 illustrates

the concept of aminimum-distance decoding, inwhich a given received sequence is assigned to

the code word closest, in Hamming distance, to the received sequence. A minimum distance

decoder will therefore assign the received sequences to the left of the vertical line to the code

word on the left and the received sequences to the right of the vertical line to the code word on

the right, as shown.

We deduce that aminimum-distance decoder can always correct asmany as e errors, where

e is the largest integer not to exceed

1

2
dm� 1ð Þ

where dm is the minimum distance between codewords. It follows that if dm is odd, all received

words can be assigned to a code word. However, if dm is even, a received sequence can lie

halfway between two code words. For this case, errors are detected that cannot be corrected.

EXAMPLE 11.8

A code consists of eight code words [0001011, 1110000, 1000110, 1111011, 0110110, 1001101,

0111101, 0000000]. If 1101011 is received, what is the decoded code word?

S o l u t i o n

The decoded code word is the code word closest in Hamming distance to 1101011. The calculations are

w 0001011� 1101011ð Þ ¼ 2 w 0110110� 1101011ð Þ ¼ 5

w 1110000� 1101011ð Þ ¼ 4 w 1001101� 1101011ð Þ ¼ 3

w 1000110� 1101011ð Þ ¼ 4 w 0111101� 1101011ð Þ ¼ 4

w 1111011� 1101011ð Þ ¼ 1 w 0000000� 1101011ð Þ ¼ 5

The the decoded code word is therefore 1111011.

&

11.4.2 Single-Parity-Check Codes

A simple code capable of detecting, but not capable of correcting, single errors is formed by

adding one check symbol to each block of k information symbols. This yields a kþ 1; kð Þ code.

Figure 11.13

Geometric representation of two code

words.

× × × × CC

0 1 2 3 4 5

dm

dm

2
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Thus the rate is k= kþ 1ð Þ. The added symbol is called a parity-check symbol, and it is added so

that the Hamming weight of all code words is either odd or even. If the received word contains

an even number of errors, the decoder will not detect the errors. If the number of errors is odd,

the decoder will detect that an odd number of errors, most likely one, has been made.

11.4.3 Repetition Codes

The simplest code that allows for correction of errors consists of transmitting each symbol n

times, which results in n� 1 check symbols. This technique produces an n; 1ð Þ code having two
code words; one of all 0s and one of all 1s. A received word is decoded as a 0 if the majority of

the received symbols are 0s and as a 1 if the majority are ls. This is equivalent to minimum-

distance decoding, wherein 1
2
n� 1ð Þ errors can be corrected. Repetition codes have great error-

correcting capability if the symbol error probability is low but have the disadvantage of having

low rate. For example, if the information rate of the source isR bits per symbol, the rateRc out of

the coder is

Rc ¼ k

n
R ¼ 1

n
R bits=symbol ð11:93Þ

The process of repetition coding for a rate 1
3
repetition code is illustrated in detail in

Figure 11.14. The encoder maps the data symbols 0 and 1 into the corresponding code words

000 and 111. There are eight possible received sequences, as shown. The mapping from the

transmitted sequence to the received sequence is random, and the statistics of the mapping are

determined by the channel characteristics derived in Chapters 8 and 9. The decoder maps the

received sequence into one of the two code words by a minimumHamming distance decoding

rule. Each decoded code word corresponds to a data symbol, as shown.

000

001

010

011
000 0

1111

DecoderChannelEncoder

100

101

110

111

0000

Transmitted
codewords

Decoded
codewords

Received
data

Received
sequences

Transmitted
data

1 111

Figure 11.14

Example of rate 1
3
repetition code.
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EXAMPLE 11.9

Investigate the error-correcting capability of a repetition code having a code rate of 1
3
.

S o l u t i o n

Assume that the code is used with a BSC with a conditional error probability equal to 1� pð Þ, that is,

Pðyj jxiÞ ¼ 1� p; i 6¼ j ð11:94Þ

Each source 0 is encoded as 000, and each source 1 is encoded as 111. An error is made if two or three

symbols undergo a change in passing through the channel. Assuming that the source outputs are equally

likely, the error probability Pe becomes

Pe ¼ 3 1� pð Þ2pþ 1� pð Þ3 ð11:95Þ
For 1� p ¼ 0:1;Pe ¼ 0:028; implying an improvement factor of slightly less than 4. For 1� p ¼ 0:01,
the improvement factor is approximately 33. Thus the code performs best when 1� p is small.

We will see later that this simple example can be misleading since the error probability, p, with

coding is not equal to the error probability, p, without coding. The example implies that performance

increases as n, the Hamming distance between the code words, becomes larger. However, as n increases,

the code rate decreases. In most cases of practical interest, the information rate must be maintained

constant, which, for this example, requires that three code symbols be transmitted for each bit of

information. An increase in redundancy results in an increase in symbol rate for a given information rate.

Thus, coded symbols are transmitted with less energy than uncoded symbols. This changes the channel

matrix so that pwith coding is greater than pwithout coding.Wewill consider this effect in more detail in

Computer Examples 11.1 and 11.2.

&

11.4.4 Parity-Check Codes for Single Error Correction

Repetition codes and single-parity-check codes are examples of codes that have either high

error-correction capability or high information rate, but not both. Only codes that have a

reasonable combination of these characteristics are practical for use in digital communication

systems. We now examine a class of parity-check codes that satisfies these requirements.

A general code word having k information symbols and r parity check symbols can be

written in the form

a1 a2 � � � ak c1 c2 � � � cr

where ai is the ith information symbol and cj is the jth check symbol. The word length

n ¼ kþ r. The problem is selecting the r parity check symbols so that good error-correcting

properties are obtained along with a satisfactory code rate.

There is another desirable property of good codes. That is, decoders must be easily

implemented. This, in turn, requires that the code has a simple structure. Keep in mind that 2k

different codewords can be constructed from information sequences of length k. Since the code

words are of length n there are 2n possible received sequences. Of these 2n possible received

sequences, 2k represent valid code words and the remaining 2n� 2k represent received

sequences containing errors resulting from noise or other channel impairments. Shannon

showed that for n k, one can simply randomly assign one of the 2n sequences of length

n to each of the 2k information sequences and, most of the time, a ‘‘good’’ code will result. The

coder then consists of a table with these assignments. The difficulty with this strategy is that the

codewords lack structure and therefore table lookup is required for decoding.Table lookup is not
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desirable for most applications since it is slow and usually requires excessive memory. We now

examine a structured technique for assigning information sequences to n-symbol code words.

Codes forwhich the firstk symbols of the codeword are the information symbols are called

systematic codes. The r ¼ n� k parity check symbols are chosen to satisfy the r linear

equations

0 ¼ h11a1 � h12a2 � � � � � h1kak � c1
0 ¼ h21a1 � h22a2 � � � � � h2kak � c2

..

. ..
. ..

.

0 ¼ hr1a1 � hr2a2 � � � � � hrkak � cr

ð11:96Þ

Equation (11.96) can be written as

H½ � T½ � ¼ 0½ � ð11:97Þ
where H½ � is called the parity-check matrix

H½ � ¼
h11 h12 � � � h1k 1 0 � � � 0

h21 h22 � � � h2k 0 1 � � � 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

hr1 hr2 � � � hrk 0 0 � � � 1

26664
37775 ð11:98Þ

and T½ � is the code-word vector

T½ � ¼

a1
a2

..

.

ak
c1

..

.

cr

26666666664

37777777775
ð11:99Þ

Now let the received sequence of length n be denoted R½ �. If
H½ � R½ � 6¼ 0½ � ð11:100Þ

we know that R½ � is not a code word, i.e., R½ � 6¼ T½ �, and at least one error has been made in the

transmission of n symbols through the channel. If

H½ � R½ � ¼ 0½ � ð11:101Þ
weknow that R½ � is a valid codeword and, since the probability of symbol error on the channel is

assumed small, the received sequence is most likely the transmitted code word.

The first step in the coding is to write R½ � in the form

R½ � ¼ T½ � � E½ � ð11:102Þ
where E½ � represents the error pattern of length n induced by the channel. The decoding problem
essentially reduces to determining E½ �, since the code word can be reconstructed from R½ � and
E½ �. The structure induced by (11.96) defines the decoder.
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As the first step in computing E½ �, we multiply the received word R½ � by the parity-check
matrix H½ �. The product is denoted S½ �. This yields

S½ � ¼ H½ � R½ � ¼ H½ � T½ � � H½ � E½ � ð11:103Þ
Since H½ � T½ � ¼ 0½ � we have

S½ � ¼ H½ � E½ � ð11:104Þ

Thematrix S½ � is known as the syndrome. Note that we cannot solve (11.104) directly since H½ �
is not a square matrix and, therefore, the inverse of H½ � does not exist.

Assuming that a single error has taken place, the error vector will be of the form

E½ � ¼

0

0

..

.

1

..

.

0

266666664

377777775
Multiplying E½ � by H½ � on the left-hand side shows that the syndrome is the ith column of the

matrix H½ �, where the error is in the ith position. The following example illustrates this method.

Note that since the probability of symbol error on the channel is assumed small, the error vector

having the smallest Hamming weight is the most likely error vector. Error patterns containing

single errors are therefore the most likely.

EXAMPLE 11.10

A code has the parity-check matrix

H½ � ¼
1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

24 35 ð11:105Þ

Assuming that 111011 is received, determine if an error has been made, and if so, determine the decoded

code word.

S o l u t i o n

First, we compute the syndrome, remembering that all operations are modulo 2. This gives

S½ � ¼ H½ � R½ � ¼
1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

24 35
1

1

1

0

1

1

26666664

37777775 ¼
0

1

1

24 35 ð11:106Þ

Since the syndrome is the third column of the parity-checkmatrix, the third symbol of the receivedword is

assumed to be in error. Thus the decoded codeword is 110011. This can be proved by showing that 110011

has a zero syndrome.

&
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Wenowpause to examine the parity-check code inmore detail. It follows from (11.96) and

(11.98) that the parity checks can be written as

c1
c2

..

.

cr

26664
37775 ¼

h11 h12 � � � h1k
h21 h22 � � � h2k

..

. ..
. . .

. ..
.

hr1 hr2 � � � hrk

26664
37775

a1
a2

..

.

ak

26664
37775 ð11:107Þ

Thus the code-word vector T½ � can be written

T½ � ¼

a1
a2

..

.

ak
c1

..

.

cr

26666666664

37777777775
¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

h11 h12 � � � h1k

..

. ..
. . .

. ..
.

hr1 hr2 � � � hrk

26666666664

37777777775
a1
a2

..

.

ak

26664
37775 ð11:108Þ

or

T½ � ¼ G½ � A½ � ð11:109Þ
where A½ � is the vector of k information symbols,

A½ � ¼
a1
a2

..

.

ak

26664
37775 ð11:110Þ

and G½ �, which is called the generator matrix, is

G½ � ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 1

h11 h12 � � � h1k

..

. ..
. ..

. ..
.

hr1 hr2 � � � hrk

26666666664

37777777775
ð11:111Þ

The relationship between the generatormatrix G½ � and the parity-checkmatrix H½ � is apparent if
we compare (11.98) and (11.111). If the m by m identity matrix is identified by Im½ � and the

matrix Hp

 �
is defined by

Hp

 � ¼
h11 h12 � � � h1k
h21 h22 � � � h2k

..

. ..
. . .

. ..
.

hr1 hr2 � � � hrk

26664
37775 ð11:112Þ
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it follows that the generator matrix is given by

G½ � ¼
Ik
� � �
Hp

24 35 ð11:113Þ

and that the parity-check matrix is given by

H½ � ¼
h
Hp

..

.
Ir

i
ð11:114Þ

which establishes the relationship between the generator and parity-check matrices for

systematic codes.

Codes defined by (11.111) are referred to as linear codes, since the kþ r code word

symbols are formed as a linear combination of the k information symbols. It is alsoworthwhile

to note that if two different information sequences are summed to give a third sequence, then the

codeword for the third sequence is the sum of the two codewords corresponding to the original

two information sequences. This is easily shown. If two information sequences are summed,

the resulting vector of information symbols is

A3½ � ¼ A1½ � � A2½ � ð11:115Þ
The code-word corresponding to A3½ � is

T3½ � ¼ G½ � A3½ � ¼ G½ � A1½ � � A2½ �f g ¼ G½ � A1½ � � G½ � A2½ � ð11:116Þ

Since

T1½ � ¼ G½ � A1½ � ð11:117Þ
and

T2½ � ¼ G½ � A2½ � ð11:118Þ
it follows that

T3½ � ¼ T1½ � � T2½ � ð11:119Þ
Codes that satisfy this property are known as group codes.

11.4.5 Hamming Codes

A Hamming code is a particular parity-check code having distance 3. Since the code has

distance 3, all single errors can be corrected. The parity-check matrix for the code has

dimensions 2n� k � 1 by n� k and is very easy to construct. If the i-th column of the matrix H½ �
is the binary representation of the number i, this code has the interesting property in that, for a

single error, the syndrome is the binary representation of the position in error.

EXAMPLE 11.11

Determine the parity-check matrix for a 7; 4ð Þ code and the decoded code word if the received word is

1110001.
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S o l u t i o n

Since the ith column of the matrix H½ � is the binary representation of i, we have

H½ � ¼
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

24 35 ð11:120Þ

(Note that this is not a systematic code.) For the received word 1110001, the syndrome is

S½ � ¼ H½ � R½ � ¼
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

24 35
1
1
1
0
0
0
1

266666664

377777775 ¼
1
1
1

24 35 ð11:121Þ

Thus the error is in the seventh position, and the decoded code word is 1110000.

We note in passing that for the 7; 4ð Þ Hamming code, the parity checks are in the first, second, and

fourth positions in the codewords, since these are the only columns of the parity-check matrix containing

only one nonzero element. The columns of the parity-checkmatrix can be permuted without changing the

distance properties of the code. Therefore, the systematic code equivalent to (11.120) is obtained by

interchanging columns 1 and 7, columns 2 and 6, and columns 4 and 5.

&

11.4.6 Cyclic Codes

The preceding subsections dealt primarily with the mathematical properties of parity-check

codes, and the implementation of parity-check coders and decoders was not discussed. Indeed,

ifwewere to examine the implementation of these devices, wewould find that, in general, fairly

complex hardware configurations are required. However, there is a class of parity-check codes,

known as cyclic codes, that are easily implemented using feedback shift registers. A cyclic code

derives its name from the fact that a cyclic permutation of any codeword produces another code

word. For example, if x1x2 � � � xn� 1xn is a code word, so is xnx1x2 � � � xn� 1. In this section we

examine not the underlying theory of cyclic codes but the implementation of coders and

decoders. We will accomplish this by means of an example.

An n; kð Þ cyclic code can easily be generated with an n� k stage shift register with

appropriate feedback. The register illustrated in Figure 11.15 produces a 7; 4ð Þ cyclic code. The
switch is initially in positionA, and the shift register stages initially contain all zeros. The k ¼ 4

information symbols are then shifted into the coder. As each information symbol arrives, it is

routed to the output and added to the value of S2 � S3. The resulting sum is then placed into the

first stage of the shift register. Simultaneously, the contents of S1 and S2 are shifted to S2 and S3,

respectively. After all information symbols have arrived, the switch is moved to positionB, and

the shift register is shiftedn� k ¼ 3 times to clear it. On each shift, the sumof S2 and S3 appears

at the output. This sumadded to itself produces a 0which is fed into S1. After n� k shifts, a code

word has been generated that contains k ¼ 4 information symbols and n� k ¼ 3 parity-check

symbols. It also should be noted that the register contains all 0s so that the coder is ready to

receive the next k ¼ 4 information symbols.

All 2k ¼ 16 codewords that can be generated with the example coder are also illustrated in

Figure11.15.Thek ¼ 4 information symbols,whichare thefirst four symbols of eachcodeword,

wereshifted into thecoderbeginningwith theleft-handsymbol.AlsoshowninFigure11.15arethe

contents of the register and the output symbol after each shift for the code word 1101.
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The decoder for the 7; 4ð Þ cyclic code is illustrated in Figure 11.16. The upper register is
used for storage, and the lower register and feedback arrangement are identical to the feedback

shift register used in the coder. Initially, switch A is closed and switch B is open. The n received

symbols are shifted into the two registers. If there are no errors, the lower register will contain

all 0s when the upper register is full. The switch positions are then reversed, and the codeword

that is stored in the upper register is shifted out. This operation is illustrated in Figure 11.16 for

the received word 1101001.

If, after the received word is shifted into the decoder the lower register does not contain all

0s, an error has beenmade. The error is corrected automatically by the decoder, since, when the

incorrect symbol appears at the output of the shift register, a 1 appears at the output of the AND

gate. This 1 inverts the upper register output and is produced by the sequence 100 in the lower

register. The operation is illustrated in Figure 11.16.

Golay Code

The (23,12) Golay code has distance 7 and is therefore capable of correcting three errors in a

block of 23 symbols. The rate is close to, but slightly greater than, 1
2
. Adding an additional parity

symbol to the (23, 12)Golay code yields the (24, 12) extendedGolay codewhich has distance 8.

This allows correction of some, but not all, received sequences having four errors with a slight

reduction in rate. The slight reduction in rate, however, has advantages. Since the rate of the

extended Golay code is exactly 1
2
, the symbol rate through the channel is precisely twice the

information rate. This factor of two difference between symbol rate and information rate

frequently simplifies the design of timing circuits. The design of codes capable of correcting

multiple errors is beyond the scope of this text. Wewill, however, consider the performance of

the (23, 12) Golay code in anAWGNenvironment to the performance of aHamming code in an

example to follow.

Output

0000000
1000101
1100010
1110100
1111111
0001011
0011101
0111010
1011000
1101001
1001110
0110001
0100111
0010110
0101100
1010011

Code words

1
2
3
4

5
6
7

1
1
0
1

0
0
1

100
110
111
111

Switch set to position B
011
001
000

Shift OutputRegister content

Register contents for input
word 1101

BA

Input

+

+ S1 S2 S3

Figure 11.15

Coder for 7; 4ð Þ cyclic code.
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Bose–Chaudhuri–Hocquenghem (BCH) Codes and Reed Solomon Codes

The binary codes are very flexible in that they can provide a variety of code rates with a given

block length. This is illustrated in Table 11.5 which is a very brief list of a few BCH codes

having code rates of approximately 1
2
and 3

4
.3 These codes are cyclic codes and therefore both

coding and decoding can be accomplished using simple shift-register configurations as

described previously.

3Tables giving acceptablevalues ofn,k, and e forBCHcodes arewidely available.An extensive table forn�1023can

be found in Lin and Costello (2004).

+

+

+

Input

Upper register

Output

Switch B

Switch A

AND
gate

Complement

CC

S1 S2 S3

Received word 1101001 (no errors)

Shift Input Output

Lower
register
content

1
2
3
4
5
6
7

8
9
10
11
12
13
14

1
1
0
1
0
0
1

100
110
111
111
011
001
000

000
000
000
000
000
000
000

1
1
0
1
0
0
1

Switch A
closed

Switch B
open

Switch A
open

Switch B
closed

Received word 1101011 (one errors)

Shift Input Output

Lower
register
content

1
2
3
4
5
6
7

8
9
10
11
12
13
14

1
1
0
1
0
1
1

100
110
111
111
011
101
010

101
110
111
011
001
100
010

1
1
0
1
0
0
1

AND gate
output
inverts
upper
register
output

Figure 11.16

Decoder for 7; 4ð Þ cyclic code.
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TheReed-Solomon code is a non-binary code closely related to the BCH code. The code is

non-binary in that each information symbol carriesm bits of information rather than 1 bit as in

the case of the binary code. The Reed–Solomon code is especially well suited for controlling

burst errors and is part of the recording and playback standard for audio compact disk (CD)

devices.

11.4.7 Performance Comparison Techniques

In comparing the relative performance of coded and uncoded systems for block codes the basic

assumptionwill be that the information rate is the same for both systems.Assume that aword is

defined as a block of k information symbols. Coding these k information symbols yields a code

word containing n > k symbols butk bits of information. The time required for transmission of

aword, Tw, will be the same for both the coded and uncoded cases under the equal-information-

rate assumption. Since n > k the symbol rate will be higher for the coded system than for the

uncoded system by the reciprocal of the code rate. If constant transmitter power is assumed, it

follows that the energy per transmitted symbol is reduced by the factor k=n when coding is

used. The use of coding therefore results in a higher probability of symbol error. We must

determine if coding can overcome this increase in symbol error probability to the extent that a

significant decrease in error probability can be obtained.

Assume that qu and qc represent the probability of symbol error for the uncoded and coded

systems, respectively. Also assume that Peu and Pec are the word-error probabilities for the

uncoded and coded systems. Theword error probability for the uncoded system is computed by

observing that an uncoded word is in error if any of the k symbols in that word are in error. The

probability that a symbol will be received correctly is 1� quð Þ, and since all symbol errors are

assumed independent, the probability that all k symbols in a word are received correctly is

1� quð Þk. Thus the uncoded word-error probability is therefore given by

Peu ¼ 1� 1� quð Þk ð11:122Þ

For the system using forward error correction, one or more symbol errors can possibly be

corrected by the decoder, depending upon the code used. If the code is capable of correcting up

to e errors, the probability ofword errorPec is equal to the probability thatmore than e errors are

Table 11.5 Short List of BCH Codes

Rate 1/2 codes Rate 3/4 codes

n k e Rate n k e Rate

7 4 1 0.5714 15 11 1 0.7333

15 7 2 0.4667 31 21 2 0.6774

31 16 3 0.5161 63 45 3 0.7143

63 30 6 0.4762 127 99 4 0.7795

127 64 10 0.5039 255 191 8 0.7490

255 131 18 0.5137 511 385 14 0.7534

511 259 30 0.5068 1023 768 26 0.7507
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present in the received code word. Thus

Pec ¼
Xn

i¼eþ 1

n

i

� �
1� qcð Þn� i

qic ð11:123Þ

where, as always,

n

i

� �
¼ n!

i! n� ið Þ! ð11:124Þ

The preceding equation for Pec, (11.123), assumes that the code is a perfect code. A perfect

code is a code in which e or fewer errors in an n-symbol code word are always corrected and a

decoding failure always occurs if more than e errors are made in the transmission of an

n-symbol code word. The only known perfect binary codes are the Hamming codes, for which

e ¼ 1, and the (23,12) Golay code, for which e ¼ 3 as previously discussed. If the code is not a

perfect code, one or more received sequences for which more than e errors occur can be

corrected. In this case (11.123) is a worst-case performance bound. This bound is often tight,

especially for high SNR.

Comparing word-error probabilities is only useful for those cases in which the n-symbol

words, uncoded and coded, each carry an equal number of information bits. Comparing codes

having different numbers of information bits per code word, or comparing codes having

different error correcting capabilities, require that we compare codes on the basis of bit-

error probability. Exact calculation of the bit-error probability from the channel symbol-error

probability is often a difficult task and is dependent on the code generator matrix. However,

Torrieri4 derived both lower and upper bounds for the bit-error probability of block codes.

These bounds are quite tight over most ranges of the channel SNR. The Torreri result expresses

the bit-error probability as

Pb ¼ q

2 q� 1ð Þ
Xd

i¼eþ 1

d

n

n

i

� �
Pi
s 1�Psð Þn� i þ

Xn
i¼d þ 1

i
n

i

� �
Pi
s 1�Psð Þn� i

" #
ð11:125Þ

wherePs is the channel symbol-error probability, e is the number of correctable errors per code

word, d is the distance d ¼ 2eþ 1ð Þ, and q is the size of the code alphabet. For binary codes

q ¼ 2 and for nonbinary codes, such as the Reed Solomon codes, q ¼ 2m.

In the coding examples to follow in the following section, we make use of (11.125). A

MATLAB program is therefore developed to carry out the calculations required to map the

symbol-error probabilities to bit-error probabilities as follows:

% File: ser2ber.m
function [ber] ¼ ser2ber(q,n,d,t,ps)
lnps ¼ length(ps); % length of error vector
ber ¼ zeros(1,lnps); % initialize output vector
for k¼1:lnps % iterate error vector

ser ¼ ps(k); % channel symbol error rate
sum1 ¼ 0; sum2 ¼ 0; % initialize sums

4See D. J. Torreri, Principles of Secure Communication Systems (2nd ed.), Artech House, 1992, or D. J. Torreri, The

information-bit error rate for block codes. IEEE Transactions on Communications, COM-32 (4), Norwood, MA,

April 1984.

11.4 Communication in Noisy Channels: Block Codes 639

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


for i¼(t+1):d
term ¼ nchoosek(n,i)*(ser^i)*((1-ser))^(n-i);
sum1 ¼ sum1+term;

end
for i¼(dþ1):n

term ¼ i*nchoosek(n,i)*(ser^i)*((1-ser)^(n-i));
sum2 ¼ sum2þterm;

end
ber(k) ¼ (q/(2*(q-1)))*((d/n)*sum1þ(1/n)*sum2);

end
% End of function file.

11.4.8 Block Code Examples

The performance of a number of the coding techniques discussed in the preceding section are

now considered.

COMPUTER EXAMPLE 11.1

In this example we investigate the effectiveness of a (7,4) single error-correcting code by comparing the

word-error probabilities for the coded and uncoded systems. The symbol-error probabilities will also be

determined. Assume that the code is used with a BPSK transmission system. As shown in Chapter 8, the

symbol-error probability for BPSK in an AWGN environment is

q ¼ Q
ffiffiffiffiffi
2z
p� �

ð11:126Þ

where z is the SNREs=N0. The symbol energyEs is the transmitter power S times theword timeTw divided

byk, since the total energy in eachword is divided byk. Thus, the symbol-error probabilitywithout coding

is given by

qu ¼ Q

ffiffiffiffiffiffiffiffiffiffi
2STw

kN0

r� �
ð11:127Þ

Assuming equal word rates for both the coded and uncoded system gives

qc ¼ Q

ffiffiffiffiffiffiffiffiffiffi
2STw

nN0

r� �
ð11:128Þ

for the coded symbol-error probability, since the energy available for k information symbols must be

spread over n > k symbols when coding is used. It follows that the symbol-error probability is increased

by the use of coding as previously discussed. However, we shall show that the error-correcting capability

of the code can overcome the increased symbol-error probability and indeed yield a net gain in word-error

probability for certain ranges of the SNR. The uncoded word-error probability for the (7,4) code is given

by (11.122) with k ¼ 4. Thus

Peu ¼ 1� 1� quð Þ4 ð11:129Þ
Since e ¼ 1, the word-error probability for the coded case, from (11.123), is

Pec ¼
X7
i¼2

7

i

� �
1� qcð Þ7� i

qic ð11:130Þ
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TheMATLABprogram for performing the calculations outlined in the preceding two expressions follow.

% File: c11ce1.m
n ¼ 7; k ¼ 4; t ¼ 1; % code parameters
zdB ¼ 0:0.1:14; % set STw/No in dB
z ¼ 10.^(zdB/10); % STw/No
lenz ¼ length(z); % length of vector
qc ¼ Q(sqrt(2*z/n)); % coded symbol error prob.
qu ¼ Q(sqrt(2*z/k)); % uncoded symbol error prob.
peu ¼ 1-((1-qu).^k); % uncoded word error prob.
pec ¼ zeros(1,lenz); % initialize
for j¼1:lenz

pc ¼ qc(j); % jth symbol error prob.
s ¼ 0; % initialize
for i¼(t+1):n

termi ¼ (pc^i)*((1-pc)^(n-i));
s ¼ s+nchoosek(n,i)*termi;
pec(1,j) ¼ s; % coded word error probability

end
end
qq ¼ [qc’,qu’,peu’,pec’];
semilogy(zdB’,qq)
xlabel(‘STw/No in dB’) % label x axis
ylabel(‘Probability’) % label y

The word-error probabilities for the coded and uncoded systems are illustrated in Figure 11.17. The

curves are plotted as a function of STW=N0, which is word energy divided by the noise power spectral

density.

Note that coding has little effect on system performance unless the value of STW=N0 is in the

neighborhood of 11 dB or above. Also, the improvement afforded by a 7; 4ð Þ code is quite modest unless

With coding:
Symbol error probability, qc
Word error probability, Pec

Without coding:
Symbol error probability, qu
Word error probability, Peu

100

10–1
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86420
STw/No in dB

141210
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Figure 11.17

Comparison of uncoded and coded systems assuming a 7; 4ð Þ code.
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STW=N0 is large, in which case system performance may be satisfactory without coding. However, in

many systems, even small performance improvements arevery important.Also, illustrated in Figure 11.17

are the uncoded and coded symbol-error probabilities qu and qc, respectively. The effect of spreading the

available energy per word over a larger number of symbols is evident.

&

COMPUTER EXAMPLE 11.2

In this example we examine the performance of repetition codes in two different channels. Both cases

utilize FSK modulation and a noncoherent receiver structure. In the first case, an AWGN channel

is assumed. The second case assumes a Rayleigh fading channel. Distinctly different results will be

obtained.

Case 1. TheAWGNChannel: Aswas shown inChapter 8 the error probability for a noncoherent FSK

system in an AWGN channel is given by

qu ¼ 1

2
e�z=2 ð11:131Þ

where z is the ratio of signal power to noise power at the output of the receiver bandpass filter having

bandwidth BT . Thus z is given by

z ¼ A2

2N0BT

ð11:132Þ

whereN0BT is the noise power in the signal bandwidthBT . The performance of the system is illustrated by

the n ¼ 1 curve in Figure 11.18. When an n-symbol repetition code is used with this system, the symbol-

error probability is given by

qc ¼ 1

2
e� z=2n ð11:133Þ

This result occurs since coding a single information symbol (bit) as n repeated code symbols requires

spreading the available energy per bit over n symbols. The symbol duration with coding is reduced by a

factor n compared to the symbol duration without coding. Equivalently, the signal bandwidth is increased

by a factor of n with coding. Thus, with coding BT in qu is replaced by nBT to give qc. The word-error

probability is given by (11.123) with

e ¼ 1

2
n� 1ð Þ ð11:134Þ

Since each code word carries one bit of information, the word-error probability is equal to the bit-error

probability for the repetition code.

The performance of a noncoherent FSK system with an AWGN channel with rate 1
3
and 1

7
repetition

codes is illustrated in Figure 11.18. It should be noted that systemperformance is degraded through the use

of repetition coding. This result occurs because the increase in symbol-error probability with coding is

greater than can be overcome by the error-correcting capability of the code. This same result occurs with

coherent FSK and BPSK as well as with ASK, illustrating that the low rate of the repetition code prohibits

its effective use in systems in which the dependence of symbol-error probability on the SNR is essentially

exponential.

Case 2. The Rayleigh Fading Channel: An example of a system in which repetition coding can be

used effectively is an FSK system operating in a Rayleigh fading environment. Such a system was

analyzed in Chapter 9. We showed that the symbol-error probability can be written as

qu ¼ 1

2

1

1þEa=2N0

ð11:135Þ
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in which Ea is the average received energy per symbol (or bit). The use of a repetition code spreads the

energy Ea over the n symbols in a code word. Thus, with coding,

qc ¼ 1

2

1

1þEa=2nN0

ð11:136Þ

As inCase 1, the decoded bit-error probability is given by (11.123)with e given by (11.134). TheRayleigh

fading results are also shown in Figure 11.18 for rate 1, 1
3
, and 1

7
repetition codes, where, for this case, the

SNR z is Ea=N0. We see that the repetition code improves performance in a Rayleigh fading environment

ifEa=N0 is sufficiently large even though repetition coding does not result in a performance improvement

in an AWGN environment.

Repetition coding can be viewed as time-diversity transmission since the n repeated symbols are

transmitted in n different time slots or subpaths.We assume that energy per bit is held constant so that the

available signal energy is divided equally among n subpaths. In Problem 10.26, it was shown that the

optimal combining of the receiver outputs prior to making a decision on the transmitted information bit is

as shown in Figure 11.19(a). The model for the repetition code considered in this example is shown in

Figure 11.19(b). The essential difference is that a ‘‘hard decision’’ on each symbol of the n-symbol code

word is made at the output of each of the n receivers. The decoded information bit is then in favor of the

majority of the decisions made on each of the n symbols of the received code word.

When a hard decision is made at the receiver output, information is clearly lost, and the result is a

degradation of performance. This can be seen in Figure 11.20, which illustrates the performance of the

n ¼ 7 optimal system of Figure 11.19(a) and that of the rate 1
7
repetition code of Figure 11.19(b). Also

shown for reference is the performance of the uncoded system.
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Performance of repetition codes on AWGN and Rayleigh fading channels.
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Performance of noncoherent FSK

in a Rayleigh fading channel.
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COMPUTER EXAMPLE 11.3

In this example we compare the performance of a (15, 11) Hamming code and a (23, 12) Golay codewith

an uncoded system. A system using PSK modulation operating in an AWGN environment is assumed.

Since the code words carry different numbers of information bits, comparisons based on the word-error

probability cannot be used. We therefore use the Torrieri approximation given in (11.125). Since both

codes are binary q ¼ 2 for both cases. The MATLAB code follows and the results are illustrated in

Figure 11.21.

% File: c11ce3.m
zdB ¼ 0:0.1:10; % set Eb/No axis in dB
z ¼ 10.^(zdB/10); % convert to linear scale
ber1 ¼ q(sqrt(2*z)); % PSK result
ber2 ¼ q(sqrt(12*2*z/23)); % CSER for (23,12) Golay code
ber3 ¼ q(sqrt(11*z*2/15)); % CSER for (15,11) Hamming code
berg ¼ ser2ber(2,23,7,3,ber2); % BER for Golay code
berh ¼ ser2ber(2,15,3,1,ber3); % BER for Hamming code
semilogy(zdB,ber1,’k-’,zdB,berg,‘k–’,zdB,berh,‘k-.’)
xlabel(‘E_b/N_o in dB’) % label x axis
ylabel(‘Bit Error Probability’) % label y axis
legend(‘Uncoded’,‘Golay code’,‘Hamming code’)
% End of script file.

The advantage of the Golay code is clear, especially for high Eb=N0.
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Figure 11.21

Performance comparisons for Golay code and Hamming code with uncoded system.
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COMPUTER EXAMPLE 11.4

In this example we compare the performance of a (23, 12) Golay code and a (31, 16) BCH code with an

uncoded system. Phase-shift keying modulation and operation in an AWGN environment are assumed.

Note that both codes have rates of approximately 1=2 and both codes are capable of correcting up to

3 errors per code word. The MATLAB code follows and the performance results are illustrated in

Figure 11.22. Note that the BCH code provides improved performance.

% File: c11_ce4.m
zdB ¼ 0:0.1:10; % set Eb/No in dB
z ¼ 10.^(zdB/10); % convert to linear scale
ber1 ¼ q(sqrt(2*z)); % PSK result
ber2 ¼ q(sqrt(12*2*z/23)); % SER for (23,12) Golay code
ber3 ¼ q(sqrt(16*z*2/31)); % SER for (16,31) BCH code
berg ¼ ser2ber(2,23,7,3,ber2); % BER for (23,12) Golay code
berbch ¼ ser2ber(2,23,7,4,ber3); % BER for (16,31) BCH code
semilogy(zdB,ber1,’k-’,zdB,berg,’k–’,zdB,berbch,’k-.’)
xlabel(’E_b/N_o in dB’) % label x axis
ylabel(’Bit Error Probability’) % label y axis
legend(’Uncoded’,’Gola y code’,’(31,16) BCH code’)
% End of script file.
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Comparison of Golay code and (31, 16) BCH code with uncoded PSK system.
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n 11.5 COMMUNICATION IN NOISY CHANNELS:
CONVOLUTIONAL CODES

The convolutional code is an example of a nonblock code. Rather than the parity-check

symbols being calculated for a block of information symbols, the parity checks are

calculated over a span of information symbols. This span, which is referred to as the

constraint span, is shifted one information symbol each time an information symbol is input

to the encoder.

A general convolutional coder is illustrated in Figure 11.23. The coder is rather simple and

consists of three component parts. The heart of the coder is a shift register that holds k

information symbols, where k is the constraint span of the code. The shift register stages are

connected to vmodulo-2 adders as indicated. Not all stages are connected to all adders. In fact,

the connections are ‘‘somewhat random’’ and these connections have considerable impact on

the performance of the resulting code. Each time a new information symbol is shifted into the

coder, the adder outputs are sampled by the commutator. Thus v output symbols are generated

for each input symbol yielding a code of rate 1=v.5

A rate 1
3
convolutional coder is illustrated in Figure 11.24. For each input, the output of the

coder is the sequence v1v2v3. For the coder of Figure 11.24

Output

Input

1 2 v

+++

S3S1 S2 Sk
Figure 11.23

General convolutional coder.

5In this chapter we only consider convolutional coders having rate 1=v. It is, of course, often desirable to generate

convolutional codes having higher rates. If symbols are shifted into the coder k symbols at a time, rather than 1

symbol at a time, a rate k=v convolutional code results. These codes aremore complex and beyond the scope of this

introductory treatment. The motivated student should consult one of the standard textbooks on coding theory cited

in the references.

Output

Input

+++

S3S1

v1 v2 v3

S2
Figure 11.24

A rate 1
3
convolutional coder.
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v1 ¼ S1 � S2 � S3 ð11:137Þ

v2 ¼ S1 ð11:138Þ

v3 ¼ S1 � S2 ð11:139Þ

Wewill see later that a well-performing codewill have the property that, for S2 and S3 (the two

previous inputs) fixed, S1 ¼ 0 and S1 ¼ 1 will result in outputs v1v2v3 that are complements.

The sequence S2S3 will be referred to as the current state of the coder so that the current state,

together with the current input, determine the output. Thus we see that the input sequence

101001 � � �
results, assuming an initial state of 00, in the output sequence

111101011101100111 � � �
At some point the sequence is terminated in a way that allows for unique decoding. This is

accomplished by returning the coder to the initial 00 state and will be illustrated when we

consider the Viterbi algorithm.

11.5.1 Tree and Trellis Diagrams

A number of techniques have been developed for decoding convolutional codes. We discuss

two techniques here; the tree-searching technique, because of its fundamental nature, and the

Viterbi algorithm, because of its widespread use. The tree search is considered first. A portion

of the code tree for the coder of Figure 11.24 is illustrated in Figure 11.25. In Figure 11.25, the

single binary symbols are inputs to the coder, and the three binary symbols in parentheses are

the output symbols corresponding to each input symbol. For example, if 1010 is fed into the

coder, the output is 111101011101 or path A.

The decoding procedure also follows from Figure 11.25. To decode a received sequence,

we search the code tree for the path closest in Hamming distance to the input sequence. For

example, the input sequence 110101011111 is decoded as 1010, indicating an error in the third

and eleventh positions of the input sequence.

The exact implementation of tree-searching techniques is not practical for many applica-

tions since the code tree grows exponentially with the number of information symbols. For

example, N binary information symbols generate 2N branches of the code tree and storage of

the complete tree is impractical for largeN. Several decoding algorithms have been developed

that yield excellent performancewith reasonable hardware requirements. Prior to taking a brief

look at the most popular of these techniques, the Viterbi algorithm, we look at the trellis

diagram, which is essentially a code tree in compact form.

The key to construction of the trellis diagram is recognition that the code tree is repetitive

after k branches, where k is the constraint span of the coder. This is easily recognized from the

code tree shown in Figure 11.25. After the fourth input of an information symbol, 16 branches

have been generated in the code tree. The coder outputs for the first eight branches match

exactly the coder outputs for the second eight branches, except for the first symbol. After a little

thought, you should see that this is obvious. The coder output depends only on the latest k

inputs. In this case, the constraint span k is 3. Thus the output corresponding to the fourth
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information symbol depends only on the second, third, and fourth coder inputs. It makes no

differencewhether the first information symbolwas a binary 0 or a binary 1. (This should clarify

the meaning of a constraint span.)

When the current information symbol is input to the coder, S1 is shifted to S2 and S2 is

shifted to S3. The new state, S2S3 and the current input S1 then determine the shift register

contents S1S2S3, which in turn determine the output v1v2v3. This information is summarized in

Table 11.6. The outputs corresponding to given state transitions are shown in parentheses,

consistent with Figure 11.25.

It should be noted that statesA andC can only be reached from statesA andB. Also, statesB

andD can only be reached from statesC andD. The information in Table 11.6 is often shown in

a state diagram, as in Figure 11.26. In the state diagram, an input of binary 0 results in the

transition denoted by a dashed line, and an input of binary 1 results in the transition designated

by a solid line. The resulting coder output is denoted by the three symbols in parentheses. For

any given sequence of inputs, the resulting state transitions and coder outputs can be traced on

the state diagram. This is a very convenient method for determining the coder output resulting

from a given sequence of inputs.

The trellis diagram illustrated in Figure 11.27 results directly from the state diagram.

Initially, the coder is assumed to be in stateA (all contents are 0s). A binary 0 input results in the

coder remaining in state A, as indicated by the dashed line, and a binary 1 input results in a
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Code tree.
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transition to state C, as indicated by the solid line. Any of the four states can be reached by a

sequence of two inputs. The third input results in the possible transitions shown. The fourth

input results in exactly the same set of possible transitions. Therefore, after the second input,

the trellis becomes completely repetitive, and the possible transitions are those labeled steady-

state transitions. The coder can always be returned to state A by inputting two binary 0s as

shown in Figure 11.27.As before, the output sequence resulting from any transition is shown by

the sequence in parentheses.

11.5.2 The Viterbi Algorithm

In order to illustrate the Viterbi algorithm, we consider the received sequence that we

previously considered to illustrate decoding using a code tree—namely, the sequence

Table 11.6 States, Transitions, and Outputs for the Convolutional Encoder Shown in
Figure 10.23

(a) Definition of States

State S1 S2

A 0 0

B 0 1

C 1 0

D 1 1

(b) State Transitions

Previous Current

State S1 S2 Input S1 S2 S3 State Output

A 0 0 0 0 0 0 A (000)

1 1 0 0 C (111)

B 0 1 0 0 0 1 A (100)

1 1 0 1 C (011)

C 1 0 0 0 1 0 B (101)

1 1 1 0 D (010)

D 1 1 0 0 1 1 B (001)

1 1 1 1 D (110)

(c) Encoder Output for State Transition x! y

Transition Output

A!A (000)

A!C (111)

B!A (100)

B!C (011)

C!B (101)

C!D (010)

D!B (001)

D!D (110)
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110101011111. The first step is to compute the Hamming distances between the initial node

(state A) and each of the four states three levels deep into the trellis. We must look three levels

deep into the trellis because the constraint span of the example coder is 3. Since each of the four

nodes can be reached from only two preceding nodes, eight paths must be identified, and the

Hamming distance must be computed for each path. We therefore initially look three levels

State A

State B

State C

State D

First
information

symbol

Second
information

symbol

Third
information

symbol

Steady-state
transitions

(110) (110)

(010) (010)

(001) (001)

(010)

(101) (101) (101)

(111)

(000) (000) )000()000(

(111) (111)

(111)

(100) (100)

(011) (011)

Figure 11.27

Trellis diagram.

State D

State B State C

State A

(110)

(010)(001)

(101)

(011)

(111)(100)

(000)

Figure 11.26

State diagram for the example

convolutional coder.
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deep into the trellis, and since the example coder has rate 1
3
, the first nine received symbols are

initially considered. Thus the Hamming distances between the input sequence 110101011 and

the eight paths terminating three levels deep into the trellis are computed. These calculations

are summarized in Table 11.7. After the eight Hamming distances are computed, the path

having the minimum Hamming distance to each of the four nodes is retained. These four

retained paths are known as survivors. The other four paths are discarded from further

consideration. The four survivors are identified in Table 11.7.

The next step in the application of the Viterbi algorithm is to consider the next three

received symbols, which are 111 in the example being considered. The scheme is to

compute once again the Hamming distance to the four states, this time four levels deep in

the trellis. As before, each of the four states can be reached from only two previous states.

Thus, once again, eight Hamming distances must be computed. Each of the four previous

survivors, along with their respective Hamming distances, is extended to the two states

reached by each surviving path. The Hamming distance of each new segment is computed

by comparing the coder output, corresponding to each of the new segments, with 111. The

calculations are summarized in Table 11.8. The path having the smallest new distance is

Table 11.7 Calculations for Viterbi Algorithm: Step One (Received Sequence ==
110101011)

Path1 Corresponding symbols Hamming distance Survivor?

AAAA 000000000 6 No

ACBA 111101100 4 Yes

ACDB 111010001 5 Yes2

AACB 000111101 5 No2

AAAC 000000111 5 No

ACBC 111101011 1 Yes

ACDD 111010110 6 No

AACD 000111010 4 Yes

1The initial and terminal states are identifted by the first and fourth letters, respectively. The second and third letters

correspond to intermediate states.
2if two or more paths have the same Hamming distance, it makes no difference which is retained as the survivor.

Table 11.8 Calculations for Viterbi Algorithm: Step Two (Received Sequence =
110101011111)

Path1
Previous

survivor�s distance
New

segiment

Added

distance

New

distance Survivor?

ACBAA 4 AA 3 7 Yes

ACDBA 5 BA 2 7 No

ACBCB 1 CB 1 2 Yes

AACDB 4 DB 2 6 No

ACBAC 4 AC 0 4 Yes

ACDBC 5 BC 1 6 No

ACBCD 1 CD 2 3 Yes

AACDD 4 DD 1 5 No

1An underscore indicates the previous survivor.
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path ACBCB. This corresponds to information sequence 1010 and is in agreement with the

previous tree search.

For a general received sequence, the process identified in Table 11.8 is continued. After

each new set of calculations, involving the next three received symbols, only the four surviving

paths and the accumulated Hamming distances need be retained. At the end of the process, it is

necessary to reduce the number of surviving paths from four to one. This is accomplished by

inserting two dummy 0s at the end of the information sequence, corresponding to the

transmission of six code symbols. As shown in Figure 11.28, this forces the trellis to terminate

at state A.

The Viterbi algorithm has found widespread application in practice. It can be shown that

the Viterbi algorithm is a maximum-likelihood decoder, and in that sense, it is optimal.

Viterbi and Omura (1979) give an excellent analysis of the Viterbi algorithm. A paper by

Heller and Jacobs (1971) summarizes a number of performance characteristics of the Viterbi

algorithm.

11.5.3 Performance Comparisons for Convolutional Codes

As was done with block codes, a MATLAB program was developed that allows us to compare

the bit error probabilities for convolutional codes having various parameters. The MATLAB

program follows:

% File: c11_convcode.m
% BEP for convolutional coding in Gauss noise
% Rate 1/3 or 1/2
% Hard decisions
%
clf
nu_max¼input(‘Entermaxconstraintlength:3-9,rate1/2;3-8,rate
1/3 ¼> ’);

State A

State B

State C

State D

(000)

(111)

(100)

(011)

(101)

(010)

(001)

(110)

Steady-state
transitions

Transitions corresponding to
two binary zero inputs

(001)

(101)

(100) (100)

(000) (000) Figure 11.28

Termination of the trellis

diagram.
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nu_min ¼ input(‘Enter min constraint length (step size ¼ 2) ¼> ’);
rate ¼ input(‘Enter code rate: 1/2 or 1/3 ¼> ’);
Eb_N0_dB ¼ 0:0.1:12;
Eb_N0 ¼ 10.^(Eb_N0_dB/10);
semilogy(Eb_N0_dB, qfn(sqrt(2*Eb_N0)), ‘LineWidth’, 1.5), ...

axis([min(Eb_N0_dB) max(Eb_N0_dB) 1e-12 1]), ...
xlabel(‘{itE_b/N}_0, dB’), ylabel(‘{itP_b}’), ...

hold on
for nu ¼ nu_min:2:nu_max

if nu ¼¼ 3
if rate ¼¼ 1/2

dfree ¼ 5;
c ¼ [1 4 12 32 80 192 448 1024];

elseif rate ¼¼ 1/3
dfree ¼ 8;
c ¼ [3 0 15 0 58 0 201 0];

end
elseif nu ¼¼ 4

if rate ¼¼ 1/2
dfree ¼ 6;
c ¼ [2 7 18 49 130 333 836 2069];

elseif rate ¼¼ 1/3
dfree ¼ 10;
c ¼ [6 0 6 0 58 0 118 0];

end
elseif nu ¼¼ 5

if rate ¼¼ 1/2
dfree ¼ 7;
c ¼ [4 12 20 72 225 500 1324 3680];

elseif rate ¼¼ 1/3
dfree ¼ 12;
c ¼ [12 0 12 0 56 0 320 0];

end
elseif nu ¼¼ 6

if rate ¼¼ 1/2
dfree ¼ 8;
c ¼ [2 36 32 62 332 701 2342 5503];

elseif rate ¼¼ 1/3
dfree ¼ 13;
c ¼ [1 8 26 20 19 62 86 204];

end
elseif nu ¼¼ 7

if rate ¼¼ 1/2
dfree ¼ 10;
c ¼ [36 0 211 0 1404 0 11633 0];

elseif rate ¼¼ 1/3
dfree ¼ 14;
c ¼ [1 0 20 0 53 0 184 0];

end
elseif nu ¼¼ 8

if rate ¼¼ 1/2
dfree ¼ 10;
c ¼ [2 22 60 148 340 1008 2642 6748];

elseif rate ¼¼ 1/3
dfree ¼ 16;
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c ¼ [1 0 24 0 113 0 287 0];
end

elseif nu ¼¼ 9
if rate ¼¼ 1/2

dfree ¼ 12;
c ¼ [33 0 281 0 2179 0 15035 0];

elseif rate ¼¼ 1/3
disp(‘Error:therearenoweightsfornu¼9andrate¼1/3’)

end
end
Pd ¼ [];
p ¼ qfn(sqrt(2*rate*Eb_N0));
kk ¼ 1;
for k ¼ dfree:1:dfree+7;

sum ¼ 0;
if mod(k,2) ¼¼ 0

for e ¼ k/2+1:k
sum ¼ sum + nchoosek(k,e)*(p.^e).*((1-p).^(k-e));

end
sum ¼ sum + 0.5*nchoosek(k,k/2)*(p.^(k/2)).*((1-p).^
(k/2));

elseif mod(k,2) ¼¼ 1
for e ¼ (kþ1)/2:k

sum ¼ sum + nchoosek(k, e)*(p.^e).*((1-p).^(k-e));
end

end
Pd(kk, :) ¼ sum;
kk ¼ kk+1;

end
Pbc ¼ c*Pd;
semilogy(Eb_N0_dB, Pbc, ‘--’, ‘LineWidth’, 1.5), ...

text(Eb_N0_dB(78)+.1, Pbc(78), [‘nu ¼ ’, num2str(nu)])
end
legend([‘BPSK uncoded’], [‘Convol. coded; HD; rate ¼ ’, num2str
(rate, 3)])
hold off
% End of script file.

The MATLAB code is based on the linearity of convolutional codes, which allows us to

assume the all-zeros path through the trellis as being the correct path. A decoding error event

then corresponds to a path that deviates from the all-zeros path at some point in the trellis and

remerges with the all-zeros path a number of steps later. Since the all-zeros path is assumed to

be the correct path, the number of information bit errors corresponds to the number of

information ones associatedwith an error event path of a given length. The bit-error probability

can then be upper bounded by

Pb <
X¥
k¼dfree

ckPk ð11:140Þ

where dfree is the free distance of the code (the Hamming distance of the minimum-length

error event path from the all-zeros path, or simply the Hamming weight of the minimum-

length error event path), Pk is the probability of an error event path of length k occurring,

and ck is the weighting coefficient giving the number of information bit errors associated
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with all error event paths of length k in the trellis. The latter, called the weight structure of

the code, can be found from the generating function of the code, which is a function that

enumerates all nonzero paths through the trellis and gives the number of information ones

associated with all paths of a given length. The partial (partial because the upper limit of the

sum in (11.140) must be set to some finite number for computational purposes) weight

structures of ‘‘good’’ convolutional codes have been found and published in the literature

(the weights in the program above are given by the vectors labeled c).6 The error event

probabilities are given by7

Pk ¼
Xk

e¼ k=2ð Þþ 1

k

e

� �
pe 1� pð Þk� eþ 1

2

k

k=2

� �
pk=2 1� pð Þk=2; k even ð11:141Þ

and

Pk ¼
Xk

e¼ kþ 1ð Þ=2

k

e

� �
pe 1� pð Þk� e; k odd ð11:142Þ

where, for an AWGN channel,

p ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kREb

N0

s !
ð11:143Þ

in which R is the code rate.

Strictly speaking, when the upper limit of (11.140) is truncated to a finite integer, the upper

boundmay no longer be true. However, if carried out to a reasonable number of terms, the finite

sum result of (11.140) is a sufficiently good approximation to the bit-error probability for

moderate to low values of p as computer simulations have shown.8

COMPUTER EXAMPLE 11.5

As an example of the improvement one can expect from a convolutional code, estimates for the bit-error

probability for rate 1
2
and 1

3
convolutional codes are plotted in Figures 11.29 and 11.30, respectively, as

computed with the above MATLAB program. These results show that for codes of constraint length 7,

a rate 1
2
code gives about 3.5 dB improvement at a bit-error probability of 10� 6 whereas a rate 1

3
code gives

almost 4 dB of improvement. For soft decisions (where the output of the detector is quantized into several

levels before being input to the Viterbi decoder), the improvement would be significantly more (about 5.8

dB and 6.2 dB, respectively9).

6Odenwalder, J. P., Error Control, in Data Communications, Networks, and Systems, Thomas Bartree (ed.),

Indianapolis: Howard W. Sams, 1985.
7See Ziemer and Peterson (2001), pp. 504–505.
8Heller, J. A. and I. M. Jacobs, Viterbi decoding for satellite and space communications. IEEE Transactions on

Communications Technology, COM-19: 835–848, October 1971.
9See Ziemer and Peterson (2001), pp. 511 and 513.
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&

n 11.6 COMMUNICATION IN NOISY CHANNELS: OTHER TECHNIQUES

For completeness we now very briefly consider a few other techniques.

11.6.1 Burst-Error-Correcting Codes

Many practical communication channels, such as those encountered inmobile communication

systems, exhibit fading in which errors tend to group together in bursts. Thus, errors are no

longer independent. Much attention has been devoted to code development for improving the

performance of systems exhibiting burst-error characteristics. Most of these codes tend to be

more complex than the simple codes previously considered. A code for correction of a single

burst, however, is rather simple to understand and leads to a technique known as interleaving,

which is useful in a number of situations.

12108

v = 7
v = 5

v = 3

642010–12

10–10

10–8

10–6

10–4

10–2

100

Eb /N0, dB

P
b

convol, coded; hard dec.; rate = 0.333
BPSK uncoded

Figure 11.30

Estimated bit-error probabili-

ty performance for convolu-

tionally encoded BPSK oper-

ating in an AWGN channel;

R ¼ 1=3.

12108
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b
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Estimated bit-error probabili-

ty performance for convolu-

tionally encoded BPSK oper-

ating in an AWGN channel;

R ¼ 1=2.
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As an example, assume that the output of a source is coded using an n; kð Þ block code.

The ith code word will be of the form

li1 li2 li3 � � � lin

Assume thatm of these codewords are read into a table by rows so that the ith row represents the

ith code word. This yields the m by n array

l11 l12 � � � l1n
l21 l22 � � � l2n
l31 l32 � � � l3n
..
. ..

. . .
. ..

.

lm1 lm2 � � � lmn

If transmission is accomplished by reading out of this table by columns, the transmitted stream

of symbols will be

l11 l21 � � � lm1 l12 l22 � � � lm2 � � � l1n l2n � � � lmn

The received symbols must be deinterleaved prior to decoding as illustrated in Figure 11.31.

The deinterleaver performs the inverse operation as the interleaver and reorders the received

symbols into blocks of n symbols per block. Each block corresponds to a codeword, whichmay

exhibit errors due to channel effects. Specifically, if a burst of errors affects m consecutive

symbols, then each code word (length n) will have exactly one error. An error-correcting code

capable of correcting single errors, such as a Hamming code, will correct the burst of channel

errors induced by the channel if there are no other errors in the transmitted stream of mn

symbols. Likewise, a double error-correcting code can be used to correct a single burst

spanning 2msymbols. These codes are known as interleaved codes sincem codewords, each of

length m, are interleaved to form the sequence of length mn.

The net effect of the interleaver is to randomize the errors so that the correlation of error

events is reduced. The interleaver illustrated here is called a block interleaver. There are many

other types of interleavers possible, but their consideration is beyond the scope of this simple

introduction.Wewill see in a following section that the interleaving process plays a critical role

in turbo coding.

Interleaver
Modulator

and
transmitter

Receiver
and

decoder

Channel

Channel
coder

DeinterleaverDecoder
Output data

Data
source

Figure 11.31

Communication system with

interleaving.
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11.6.2 Turbo Coding

The study of coding theory has been a search for the coding scheme that yields a commu-

nications systemhaving the performance closely approaching the Shannon bound. For themost

part progress has been incremental. A large step in this quest for nearly ideal performance in the

presence of noisewas revealed in 1993with the publication of a paper byBerrou, Glavieux, and

Thitimajshima. It is remarkable that this paperwas not the result of a search for amore powerful

coding scheme, but was a result of a study of efficient clocking techniques for concatenated

circuits. Their discovery, however, has revolutionized coding theory.

Turbo coding, and especially decoding, are complex tasks and a study of even simple

implementations are well beyond the scope of this text. We will present, however, a few

important concepts as motivation for further study.

The basic architecture of a turbo coder is illustrated in Figure 11.32. Note that the turbo

coder consists of an interleaver, such aswe studied previously and a pair of recursive systematic

convolutional coders (RSCCs). An RSCC is shown in Figure 11.33. Note that the RSCC is

much like the convolutional coders previously studied with one important difference. That

difference lies in the feedback path from the delay elements back to the input. The conventional

convolutional coder does not have this feedback path and therefore it behaves as a finite impulse

response (FIR) digital filter. With the feedback path the filter becomes an infinite impulse

response (IIR), or recursive, filter and here lies one of the attributes of the turbo code. The

RSCC shown in Figure 11.33 a is a rate 1
2
convolutional coder forwhich the inputxi generates an

output sequence xipi. Since the first symbol in the output sequence is the information symbol,

the coder is systematic.

RSCC

RSCC

Interleaver

xi p1i

p2i

xi Figure 11.32

Turbo coder.

×

×

×

xi

pi

xi

D D

Figure 11.33

Recursive, systematic convolu-

tional coder.
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The two RSCCs shown in Figure 11.32 are usually identical and, with the parallel

architecture shown, generates a rate 1
3
code. The input symbol xi produces the output sequence

xip1ip2i. As we know, good code performance (low error probability) results if the Hamming

distancebetweencodewords is large.Becauseof therecursivenatureof thecoder,a singlebinary

1 in the input sequence will produce a periodic parity sequence p1, with period Tp. Strictly

speaking,asequenceofunityweightonthe inputwillproduceasequenceofinfiniteweight forp1.

However, if the input sequence consists of a pair of binary ones separated by Tp, the parity

sequencewillbethesumoftwoperiodicsequenceswithperiodTp.Sincebinaryarithmetichasan

addition tablewhichresults inazerowhentwoidenticalbinarynumbersareadded, thesumof the

two sequences is zero except for the first period of the offset. This, of course will reduce the

Hamming weight of the first parity sequence, which is an undesirable effect.

This is where the interleaver comes into play. The interleaver will change the separation

between the two binary ones and therefore cancellation will, with high probability, not occur. It

therefore follows that if one of the parity sequences has large Hamming weight, the other one

will not.

Figure 11.34 illustrates the performance of a turbo code for two different interleaver sizes.

The larger interleaver produces better performance results since it can do a better job of

‘‘randomizing’’ the interleaver output.

Most turbo decoding algorithms are based on the MAP estimation principle studied in the

previous chapter.Of perhapsmore importance is the fact that turbo decoding algorithms, unlike

other decoding tools, are iterative in nature so that a given sequence passes through the decoder

a number of times with the error probability decreasing with each pass. As a result, a trade-off

exists between performance and decoding time. This attribute allows one the freedom to

develop application specific decoding algorithms. This freedom is not available in other

techniques. For example one can target various decoders for a given QoS by adjusting the

number of iterations used in the decoding process. Decoders can also be customized to take
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Performance curves for turbo code.
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advantage of latency and/or performance trade-offs. As an example, data communications

requires low bit-error probabilities but latency is not often a problem. Voice communications,

however requires low latency but higher error probabilities can be tolerated.

11.6.3 Feedback Channels

In many practical systems, a feedback channel is available from receiver to transmitter. When

available, this channel can be utilized to achieve a specified performance with decreased

complexity of the coding scheme. Many such schemes are possible: decision feedback, error-

detection feedback, and information feedback. In a decision-feedback scheme, a null-zone

receiver is used, and the feedback channel is utilized to inform the transmitter either that no

decisionwaspossibleon theprevious symbol and to retransmitor that a decisionwasmadeand to

transmit the next symbol. The null-zone receiver is usuallymodeled as a binary-erasure channel.

Error-detection feedback involves the combination of coding and a feedback channel.

With this scheme, retransmission of code words is requested when errors are detected.

In general, feedback schemes tend to be rather difficult to analyze. Thus only the simplest

scheme, the decision-feedback channel with perfect feedback assumed, will be treated here.

Assume a binary transmission schemewith matched-filter detection. The signaling waveforms

are s1 tð Þ and s2 tð Þ. The conditional pdfs of the matched filter output at time T , conditioned on

s1 tð Þ and s2 tð Þ, were derived in Chapter 8 and are illustrated for our application in Figure 11.35.
We shall assume that both s1 tð Þ and s2 tð Þ have equal a priori probabilities. For the null-zone
receiver, two thresholds, a1 and a2, are established. If the sampled matched-filter output,

denoted V , lies between a1 and a2, no decision is made, and the feedback channel is used to

request a retransmission. This event is denoted an erasure and occurs with probability P2.

Assuming s1 tð Þ transmitted, an error is made ifV > a2. The probability of this event is denoted

P1. By symmetry, these probabilities are the same for s2 tð Þ transmitted.

Assuming independence, the probability of j� 1 erasures followed by an error is

P j� 1 transmissions; errorð Þ ¼ P
j� 1
2 P1 ð11:144Þ

The overall probability of error is the summation of this probability over all j. This is (note that

j ¼ 0 is not included since j ¼ 0 corresponds to a correct decision resulting from a single

transmission)

PE ¼
X¥
j¼1

P
j� 1
2 P1 ð11:145Þ

a1 a2
v

fv{v |s1 (t)} fv{v |s2 (t)}

P2 = P{a1 < v < a2|s1(t)}

P1 = P{v > a2|s1(t)}

Figure 11.35

Decision regions for a null-zone receiver.
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which is

PE ¼ P1

1�P2

ð11:146Þ

The expected number of transmissions N is also easily derived. The result is

N ¼ 1

1�P2ð Þ2 ð11:147Þ

which is typically only slightly greater than one.

It follows from these results that the error probability can be reduced considerably without

significantly increasing N. Thus performance is improved without a great sacrifice in

information rate.

COMPUTER EXAMPLE 11.6

Wenow consider a baseband communications systemwith an integrate-and-dump detector. The output of

the integrate-and-dump detector is given by

V ¼ þAT þN; ifþA is sent

�AT þN; if�A is sent

�
where N is a random variable representing the noise at the detector output at the sampling instant. The

detector uses two thresholds, a1 and a2, where a1 ¼� gAT and a2 ¼ gAT . A retransmission occurs if

a1 < V < a2. Here we let g ¼ 0:2. The goal of this exercise is to compute and plot both the probability of

error (Figure 11.36) and the expected number of transmissions (Figure 11.37) as a function of

z ¼ A2T=N0.

The probability density function of the sampled matched-filter output, conditioned on the transmis-

sion of �A, is

fV vj �Að Þ ¼ 1ffiffiffiffiffiffi
2p
p

sn

exp � vþATð Þ2
2s2

n

 !
ð11:148Þ

The probability of erasure is

P erasurej �Að Þ ¼ 1ffiffiffiffiffiffi
2p
p

sn

ða2
a1

exp � vþATð Þ2
2s2

n

 !
dv ð11:149Þ

With

y ¼ vþAT

sn

ð11:150Þ

(11.149) becomes

P erasurej �Að Þ ¼ 1ffiffiffiffiffiffi
2p
p

ð 1þ gð ÞAT=sn

1� gð ÞAT=sn

exp � y2

2

� �
dy ð11:151Þ

which may be expressed in terms of the Gaussian Q-function. The result is

P erasurej �Að Þ ¼ Q
1� gð ÞAT

sn

� �
�Q

1þ gð ÞAT
sn

� �
ð11:152Þ

By symmetry

P erasurej �Að Þ ¼ P erasurej þAð Þ ð11:153Þ

662 Chapter 11 . Information Theory and Coding

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

0 1 2 3 4 5
z – dB

6 7 8 9 10

Pr
ob

ab
ili

ty
 o

f 
er

ro
r

Gamma = 0 (reference)

Erasure receiver
gamma = 0.2

Figure 11.36

Probability of error.

543210
z (dB)

109876

E
xp

ec
te

d 
nu

m
be

r 
of

 tr
an

sm
is

si
on

s

1.12

1.1

1.08

1.06

1.04

1.02

1

Figure 11.37

Expected number of transmissions.

11.6 Communication in Noisy Channels: Other Techniques 663

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


In addition, þA and �A are assumed to be transmitted with equal probability. Thus

P erasureð Þ ¼ P2 ¼ Q
1� gð ÞAT

sn

� �
�Q

1þ gð ÞAT
sn

� �
ð11:154Þ

It was shown inChapter 8 that the variance ofN for an integrate and dump detector, withwhite noise input,

is

s2
n ¼

1

2
N0T ð11:155Þ

Thus

AT

sn

¼ AT

ffiffiffiffiffiffiffiffiffi
2

N0T

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
2A2T

N0

s
ð11:156Þ

which is

AT

sn

¼
ffiffiffiffiffi
2z
p

ð11:157Þ

With this substitution the probability of an erasure becomes

P2 ¼ Q 1� gð Þ
ffiffiffiffiffi
2z
ph i

�Q 1þ gð Þ
ffiffiffiffiffi
2z
ph i

ð11:158Þ

The probability of error, conditioned on the transmission of �A is

P errorj �Að Þ ¼ 1ffiffiffiffiffiffi
2p
p

sn

ð¥
a2¼gAT

exp � vþATð Þ2
2s2

n

 !
dv ð11:159Þ

Using the same steps as used to determine the probability of erasure gives

P errorð Þ ¼ P1 ¼ Q 1þ gð Þ
ffiffiffiffiffi
2z
ph i

The MATLAB code for calculating and plotting the error probability and the expected number of

transmissions follows. For comparison purposes, the probability of error for a single-threshold integrate-

and-dump detector is also determined (simply let g ¼ 0 in (11.159)) for comparison purposes.

% File: c11ce6.m
g ¼ 0.2; % gamma
zdB ¼ 0:0.1:10; % z in dB
z ¼ 10.^(zdB/10); % vector of z values
q1 ¼ Q((1-g)*sqrt(2*z));
q2 ¼ Q((1+g)*sqrt(2*z));
qt ¼ Q(sqrt(2*z)); % gamma¼0 case
p2 ¼ q1-q2; % P2
p1 ¼ q2; % P1
pe ¼ p1./(1-p2); % probability of error
semilogy(zdB,pe,zdB,qt)
xlabel(‘z - dB’)
ylabel(‘Probability of Error’)
pause
N ¼ 1./(1-p2).^2;
plot(zdB,N)
xlabel(‘z - dB’)
ylabel(‘Expected Number of Transmissions’)
% End of script file.
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In the preceding program the Gaussian Q-function is calculated using the MATLAB routine

function out¼Q(x)
out¼0.5*erfc(x/sqrt(2));

&

n 11.7 MODULATION AND BANDWIDTH EFFICIENCY

In Chapter 7, SNRs were computed at various points in a communication system. Of particular

interest were the SNR at the input to the demodulator and the SNR of the demodulated output.

These were referred to as the predetection SNR, (SNR)T, and the postdetection SNR, (SNR)D,

respectively. The ratio of these parameters, the detection gain, has been widely used as a figure

of merit for various systems. In this section we will compare the behavior of (SNR)D as a

function of (SNR)T for several systems. First, however, we investigate the behavior of an

optimum, but unrealizable system. This study will provide a basis for comparison and also

provide additional insight into the concept of the trade-off of bandwidth for SNR.

11.7.1 Bandwidth and SNR

The block diagram of a communication system is illustrated in Figure 11.38. We will focus on

the receiver portion of the system. The SNR at the output of the predetection filter, (SNR)T,

yields the maximum rate at which information may arrive at the receiver. From the

Shannon–Hartley law, this rate, CT is

CT ¼ BT log2 1þ SNRð ÞT
 � ð11:160Þ

where BT , the predetection bandwidth, is typically the bandwidth of the modulated signal.

Since (11.160) is based on the Shannon–Hartley law, it is valid only for AWGNcases. The SNR

of the demodulated output, (SNR)D, yields the maximum rate at which information may leave

the receiver. This rate, denoted CD is given by

CD ¼ W log2 1þ SNRð ÞD
 � ð11:161Þ

where W is the bandwidth of the message signal.

xr(t)

yD(t)

xc(t)

m(t)
Modulator

Demodulator

Signal
source

Predetection
signal-to-noise ratio

(SNR)T

Postdetection
signal-to-noise ratio

(SNR)D

Postdetection
filter

bandwidth = W

Predetection
filter

bandwidth = BT

White Gaussian
noise n(t) Σ

Figure 11.38

Block diagram of a communication system.
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Optimal modulation is defined CD ¼ CT . For this system, demodulation is accomplished,

in the presence of noise, without loss of information. Equating CD to CT yields

SNRð ÞD ¼ 1þ SNRð ÞT
 �BT=W � 1 ð11:162Þ

which shows that the optimum exchange of bandwidth for SNR is exponential. Recall that we

first encountered the trade-off between bandwidth and system performance, in terms of the

SNR at the output of the demodulator in Chapter 7 when the performance of FMmodulation in

the presence of noise was studied.

The ratio of transmission bandwidth BT to the message bandwidthW is referred to as the

bandwidth expansion factor g. To fully understand the role of this parameter, we write the

predetection SNR as

SNRð ÞT ¼
PT

N0BT

¼ W

BT

PT

N0W
¼ 1

g

PT

N0W
ð11:163Þ

Thus (11.162) can be expressed as

SNRð ÞD ¼ 1þ 1

g

PT

N0W

� �� �g
� 1 ð11:164Þ

The relationship between (SNR)D and PT=N0W is illustrated in Figure 11.39.

11.7.2 Comparison of Modulation Systems

The concept of an optimal modulation system provides a basis for comparing system

performance. For example, an ideal SSB system has a bandwidth expansion factor of one,

since the transmission bandwidth is ideally equal to the message bandwidth. Thus the
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Figure 11.39

Performance of an optimummodulation system.
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postdetection SNR of the optimal modulation system is, from (11.164) with g equal to 1,

SNRð ÞD ¼
PT

N0W
ð11:165Þ

This is exactly the same result as obtained in Chapter 7 for an SSB system using coherent

demodulationwith a perfect phase reference. Therefore, if the transmission bandwidthBT of an

SSB system is exactly equal to the message bandwidthW , SSB is optimal, assuming that there

are no other error sources. Of course, this can never be achieved in practice, since ideal filters

would be required in addition to perfect phase coherence of the demodulation carrier.

The story is quite different with DSB, AM, and QDSB. For these systems, g ¼ 2. In

Chapter 7 we saw that the postdetection SNR for DSB and QDSB, assuming perfect coherent

demodulation, is

SNRð ÞD ¼
PT

N0W
ð11:166Þ

whereas for the optimal system it is given by (11.164) with g ¼ 2:
These results are shown in Figure 11.40 along with the result for AM with square-law

demodulation. It can be seen that these systems are far from optimal, especially for large values

of PT=N0W .

Also shown in Figure 11.40 is the result for FM without preemphasis, with sinusoidal

modulation, assuming a modulation index of 10. With this modulation index, the bandwidth

expansion factor is

g ¼ 2 bþ 1ð ÞW
W

¼ 22 ð11:167Þ

The realizable performance of the FM system is taken from Figure 7.18. It can be seen that

realizable systems fall far short of optimal if g and PT=N0W are large.
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n 11.8 BANDWIDTH AND POWER EFFICIENT MODULATION (TCM)

A desirable characteristic of any modulation scheme is the simultaneous conservation of

bandwidth and power. Since the late 1970s, the approach to this challenge has been to

combine coding and modulation. There have been two approaches: (1) continuous phase

modulation (CPM)10 with memory extended over several modulation symbols by cyclical use

of a set of modulation indices; and (2) combining coding with anM-ary modulation scheme,

referred to as trellis-coded modulation (TCM).11 We briefly explore the latter approach in this

section. For an introductory discussion of the former approach, see Ziemer and Peterson

(1985), Chapter 4. Sklar (1988) is a well-written reference with more examples on TCM than

given in this short section.

In Chapter 9 it was illustrated through the use of signal space diagrams that the most

probable errors in anM-ary modulation scheme result from mistaking a signal point closest in

Euclidian distance to the transmitted signal point as corresponding to the actual transmitted

signal. Ungerboeck�s solution to this problem was to use coding in conjunction with M-ary

modulation to increase the minimum Euclidian distance between those signal points most

likely to be confused without increasing the average power or bandwidth over an uncoded

scheme transmitting the same number of bits per second. We illustrate the procedure with a

specific example.

We wish to compare a TCM system and a QPSK system operating at the same data rates.

Since the QPSK system transmits 2 bits per signal phase (signal space point), we can keep that

same data rate with the TCM system by employing an 8-PSK modulator, which carries 3 bits

per signal phase, in conjunction with a convolutional coder that produces three encoded

symbols for every two input data bits, i.e., a rate 2
3
coder. Figure 11.37(a) shows an coder for

accomplishing this, and Figure 11.41(b) shows the corresponding trellis diagram. The coder

operates by taking the first data bit as the input to a rate 1
2
convolutional coder that produces the

first and second encoded symbols, and the second data bit directly as the third encoded symbol.

These are then used to select the particular signal phase to be transmitted according to the

following rules:

1. All parallel transitions in the trellis are assigned the maximum possible Euclidian distance.

Since these transitions differ by one code symbol (the one corresponding to the uncoded bit

in this example), an error in decoding these transitions amounts to a single bit error, which is

minimized by this procedure.

2. All transitions emanating or converging into a trellis state are assigned the next to largest

possible Euclidian distance separation.

10Continuous phase Modulation has been explored by many investigators. For introductory treatments see

C.-E. Sundberg, Continuous phase modulation. IEEE Communications Magazine, 24: 25–38, April 1986, and

J. B. Anderson and C.-E. Sundberg, Advances in constant envelope coded modulation. IEEE Communications

Magazine, 29: 36–45, December 1991.
11Three introductory treatments of TCM can be found in G. Ungerboeck, Channel coding with multilevel/phase

signals. IEEE Transactions on Information Theory, IT-28: 55–66, January 1982; G. Ungerboeck, Trellis-coded

modulation with redundant signal sets, Part I: Introduction. IEEE Communications Magazine, 25: 5–11, February

1987; and G. Ungerboeck, Trellis-coded modulation with redundant signal sets, Part II: State of the art. IEEE

Communications Magazine, 25: 12–21, February 1987.
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The application of these rules to assigning the encoded symbols to a signal phase in an

8-PSK system can be done with a technique known as set partitioning, which is illustrated in

Figure 11.42. If the coded symbol c1 is a 0, the left branch is chosen in the first tier of the tree,

whereas if c1 is a 1, the right branch is chosen. A similar procedure is followed for tiers 2 and 3

+

+
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data
bit
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data
bit

d2

ti ti + 1
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Figure 11.41

(a) Convolutional coder and

(b) trellis diagram corresponding

to 4-state, 8-PSK TCM.
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of the tree, with the result being that a unique signal phase is chosen for each possible coded

output.

To decode the TCM signal, the received signal plus noise in each signaling interval is

correlated with each possible transition in the trellis, and a search is made through the trellis by

means of a Viterbi algorithm using the sum of these cross-correlations as metrics rather than

Hamming distance as discussed in conjunctionwith Figure 11.25 (this is called the use of a soft

decision metric). Also note that the decoding procedure is twice as complicated since two

branches correspond to a path from one trellis state to the next due to the uncoded bit becoming

the third symbol in the code. In choosing the two decoded bits for a surviving branch, the first

decoded bit of the pair corresponds to the input bit b1 that produced the state transition of the

branch being decoded. The second decoded bit of the pair is the same as the third symbol c3 of

that branch word, since c3 is the same as the uncoded bit b2.

Ungerboeck has characterized the event error probability performance of a signaling

method in terms of the free distance of the signal set. For high SNRs, the probability of an error

event (i.e., the probability that at any given time the VA makes a wrong decision among the

signals associated with parallel transitions, or starts to make a sequence of wrong decisions

along some path diverging from more than one transition from the correct path) is well

approximated by

P error eventð Þ ¼ NfreeQ
dfree

2s

� �
ð11:168Þ

0 010101

100

0 1

1

1

Code symbol c1:

c2:

c3:

(111)(011)(101)(001)(110)(010)(100)(000)

Figure 11.42

Set partitioning for assigning a rate 2
3
coder output to 8-PSK signal points while obeying the rules for

maximizing free distance.

From G. Ungerboeck, Channel coding with multilevel/phase signals. IEEE Transactions on

Information Theory, IT-28: pp. 55–66, January 1982.
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where Nfree denotes the number of nearest-neighbor signal sequences with distance dfree that

diverge at any state from a transmitted signal sequence, and reemerge with it after one or more

transitions. (The free distance is often calculated by assuming the signal energy has

been normalized to unity and that the noise standard deviation s accounts for this

normalization.)

For uncoded QPSK, we have dfree ¼ 21=2 and Nfree ¼ 2 (there are two adjacent signal

points at distance dfree ¼ 21=2), whereas for 4-state-coded 8- PSK we have dfree ¼ 2 and

Nfree ¼ 1. Ignoring the factor Nfree, we have an asymptotic gain due to TCM over uncoded

QPSK of 22=ð21=2Þ2 ¼ 2 ¼ 3 dB. Figure 11.43, also from Ungerboeck, compares the asymp-

totic lower bound for the error event probability with simulation results.

It should be clear that the TCM coding–modulation procedure can be generalized to

higher–level M-ary schemes. Ungerboeck shows that this observation can be generalized as

follows:

1. Of them bits to be transmitted per coder–modulator operation, k � m bits are expanded to

kþ 1 coded symbols by a binary rate k= kþ 1ð Þ convolutional coder.
2. The kþ 1 coded symbols select one of 2kþ 1 subsets of a redundant 2mþ 1-ary signal set.

3. The remaining m� k symbols determine one of 2m� k signals within the selected subset.

It should also be stated that one may use block codes or other modulation schemes, such asM-

ary ASK or QASK, to implement a TCM system.
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Performance for a 4-state, 8-PSK TCM

signaling scheme. From G. Ungerboeck,

Trellis-coded modulation with redundant

signal set, Part l: Introduction. IEEE

Communications Magazine, 25: 5–11,

February 1987.
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Another parameter that influences the performance of a TCM system is the constraint span

of the code, v, which is equivalent to saying that the coder has 2v states. Ungerboeck has

published asymptotic gains for TCM systems with various constraint lengths. These are given

in Table 11.9.

Finally, the paper byViterbi et al. (1989) gives a simplified scheme forM-ary PSK that uses

a single rate 1
2
, 64-state binary convolutional code for which very large scale integrated circuit

implementations are plentiful. A technique known as puncturing converts it to rate n� 1ð Þ=n:

Summary
1. The information associated with the occurrence of an event is defined as the

logarithm of the probability of the event. If a base 2 logarithm is used, the

measure of information is the bit.

2. The average information associated with a set of source outputs is known as

the entropy of the source. The entropy function has a maximum, and the

maximum occurs when all source states are equally likely. Entropy is

average uncertainty.

3. A channel with n inputs and m outputs is represented by the nm transition

probabilities of the form PðyjjxiÞ. The channel model can be a diagram

showing the transition probabilities or amatrix of the transition probabilities.

4. A number of entropies can be defined for a system. The entropies H Xð Þ and
H Yð Þ denote the average uncertainty of the channel input and output,

respectively. The quantity H XjYð Þ is the average uncertainty of the channel
input given the output, andH YjXð Þ is the average uncertainty of the channel

Table 11.9 Asymptotic Coding Gains for TCM Systems

Asymtotic coding gain (dB)

No. of States, 2r k G8PSK/QPSK m ¼ 2 G16PSK/8PSK m ¼ 3

4 1 3.01 —

8 2 3.60 —

16 2 4.13 —

32 2 4.59 —

64 2 5.01 —

128 2 5.17 —

256 2 5.75 —

4 1 — 3.54

8 1 — 4.01

16 1 — 4.44

32 1 — 5.13

64 1 — 5.33

128 1 — 5.33

256 2 — 5.51

Source: Adapted from G. Ungerboeck, ‘‘Trellis-Coded Modulation with Redundant Signal Sets, Part II: States of the

Art,’’ IEEE Communications Magazine. Vol. 25. Feb. 1987, pp. 12–21.
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output given the input. The quantityH X; Yð Þ is the average uncertainty of the
communication system as a whole.

5. Themutual information between the input and output of a channel is givenby

I X; Yð Þ ¼ H Xð Þ�H XjYð Þ

or

I X; Yð Þ ¼ H Yð Þ�H YjXð Þ

Themaximum value of mutual information, where the maximization is with

respect to the source probabilities, is known as the channel capacity.

6. Source coding is used to remove redundancy from a source output so that the

information per transmitted symbol can be maximized. If the source rate is

less than the channel capacity, it is possible to code the source output so that

the information can be transmitted through the channel. This is accom-

plished by forming source extensions and coding the symbols of the

extended source into code words having minimum average word length.

The minimum average word length L approaches H Xnð Þ ¼ nH Xð Þ, where
H Xnð Þ is the entropy of the nth-order extension of a source having entropy

H Xð Þ, as n increases.

7. Two techniques for source codingwere illustrated in this chapter. Thesewere

the Shannon–Fano technique and the Huffman technique. The Huffman

technique yields an optimum source code, which is the source code having

minimum average word length.

8. Error-free transmission on a noisy channel can be accomplished if the source

rate is less than the channel capacity. This is accomplished using channel

codes.

9. The capacity of an AWGN channel is

Cc ¼ B log2 1þ S

N

� �
where B is the channel bandwidth and S=N is the SNR. This is known as the

Shannon–Hartley law.

10. An n; kð Þ block code is generated by appending r ¼ n� k parity symbols to a

k-symbol source sequence. This yields an n-symbol code word.

11. Decoding is typically accomplished by computing the Hamming distance

from the received n-symbol sequence to each of the possible transmitted

code words. The code word closest in Hamming distance to the received

sequence is the most likely transmitted code word. The two code words

closest in Hamming distance determine the minimum distance of the code

dm. The code can correct 1
2
dm� 1ð Þ errors.

12. A single-parity-check code is formed by adding a single-parity symbol to the

information sequence. This kþ 1; kð Þ code can detect single errors but

provides no error-correcting capability.
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13. The rate of a block code is k=n. The best codes provide powerful error-

correction capabilities in combination with high rate.

14. Repetition codes are formed by transmitting each source symbol an odd

number of times and therefore have rate 1=n. Repetition codes do not provide
improved performance in an AWGN environment but do provide improved

performance in a Rayleigh fading environment. This simple example

illustrated the importance of selecting an appropriate coding scheme for

a given channel.

15. The parity-checkmatrix H½ � is defined such that H½ � T½ � ¼ 0½ �, where T½ � is the
transmitted codeword written as a columnvector. If the received sequence is

denoted by the column vector R½ �, the syndrome S½ � is determined from

S½ � ¼ H½ � R½ �. This can be shown to be equivalent to S½ � ¼ H½ � E½ �, where E½ � is
the error sequence. If a single error occurs in the transmission of a codeword,

the syndrome is the column of H½ � corresponding to the error position.

16. The generator matrix G½ � of a parity-check code is determined such that

T½ � ¼ G½ � A½ �, where T½ � is the n-symbol transmitted sequence and A½ � is the
k-symbol informationsequence.Both T½ �and A½ �arewrittenascolumnvectors.

17. For a group code, the modulo 2 sum of any two code words is another code

word.

18. A Hamming code is a single error-correcting code such that the columns of

the parity-check matrix correspond to the binary representation of the

column index.

19. Cyclic codes are a class of block codes in which a cyclic shift of code-word

symbols always yields another code word. These codes are very useful

because implementation of both the coder and decoder is easily accom-

plished using shift registers and basic logic components.

20. The channel symbol-error probability of a coded system is greater than the

symbol-error probability of an uncoded system since the available energy for

transmission ofk information symbolsmust be spread over the n > k symbol

code word rather than just the k information symbols. The error-correcting

capability of the code often allows a net performance gain to be realized.

The performance gain depends on the choice of code and the channel

characteristics.

21. Convolutional codes are easily generated using simple shift registers and

modulo 2 adders. Decoding is accomplished using a tree-search technique,

which is often implemented using the Viterbi algorithm. The constraint span

is the code parameter having the most significant impact on performance.

22. Interleaved codes are useful for burst-noise environments.

23. The feedback channel system makes use of a null-zone receiver, and a

retransmission is requested if the receiver decision falls within the null zone.

If a feedback channel is available, the error probability can be significantly

reduced with only a slight increase in the required number of transmissions.

24. Use of the Shannon–Hartley law yields the concept of optimum modula-

tion for a system operating in an AWGN environment. The result is the
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performance of an optimum system in terms of predetection and postdetec-

tion bandwidth. The trade-off between bandwidth and SNR is easily seen.

25. Trellis-coded modulation is a scheme for combiningM-ary modulation with

coding in a way that increases the Euclidian distance between those signal

points for which errors are most likely without increasing the average

power or bandwidth over an uncoded scheme having the same bit rate.

Decoding is accomplished using aViterbi decoder that accumulates decision

metrics (soft decisions) rather than Hamming distances (hard decisions).

Further Reading

An exposition of information theory and coding that was anywhere near complete would, of necessity, be

presented at a level far beyond that intended for this text. The purpose in the present chapter is to present

some of the basic ideas of information theory at a level consistent with the rest of this book. You should be

motivated by this to further study.

The original paper by Shannon (1948) is stimulating reading at about the same level as this chapter.

This paper is available as a paperback with an interesting postscript byW.Weaver (Shannon andWeaver,

1963).

A variety of textbooks on information theory are available. The book by Blahut (1987) is

recommended. A current standard that is used in many graduate programs was authored by Cover and

Thomas (2006).

There are also a number of textbooks available that cover coding theory at the graduate level. The

book by Lin and Costello (2004) is a standard textbook. The book by Clark and Cain (1981) contains a

wealth of practical information concerning coder and decoder design, in addition to the usual theoretical

background material.

As mentioned in the last section of this chapter, the subject of bandwidth and power-efficient

communications is very important to the implementation of modern systems. Continuous phase

modulation is treated in the text by Ziemer and Peterson (1985). An introductory treatment of TCM,

including a discussion of coding gain, is contained in the book by Sklar (2001). The book by Biglieri et al.

(1991) is a complete treatment of TCM theory, performance, and implementation. Abook onTurboCodes

is (Heegard and Wicker, 1999).

Problems

Section 11.1

11.1. A message occurs with a probability of 0.95.

Determine the information associated with the message

in bits, nats, and hartleys.

11.2. Assume that you have a standard deck of 52 cards

(jokers have been removed).

a. What is the information associated with the draw-

ing of a single card from the deck?

b. What is the information associated with the draw-

ing of a pair of cards, assuming that the first card drawn is

replaced in the deck prior to drawing the second card?

c. What is the information associated with the draw-

ing of a pair of cards assuming that the first card drawn

is not replaced in the deck prior to drawing the second

card?
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11.3. A source has five outputs denoted [m1;m2;m3;
m4;m5] with respective probabilities [0.35, 0.25, 0.20,

0.15, 0.05]. Determine the entropy of the source. What

is the maximum entropy of a source with five outputs?

11.4. A source consists of six outputs denoted [A;B;C;
D;E;F] with respective probabilities [0:25; 0:25; 0:2;
0:1; 0:1; 0:1]. Determine the entropy of the source.

11.5. A channel has the following transition matrix:

0:7 0:2 0:1
0:2 0:5 0:3
0:1 0:2 0:7

24 35
a. Sketch the channel diagram showing all transition

probabilities.

b. Determine the channel output probabilities as-

suming that the input probabilities are equal.

c. Determine the channel input probabilities that

result in equally likely channel outputs.

d. Determine the joint probability matrix using

part (c).

11.6. Describe the channel transition probabilitymatrix

and joint probability matrix for a noiseless channel.

11.7. Show that the cascade of N different binary

symmetric channels yields a binary symmetric channel.

11.8. A binary symmetric channel has an error

probability of 0.005. How many of these channels can

be cascaded before the overall error probability exceeds

0.1?

11.9. A channel is described by the transition probabil-

ity matrix

P YjXð Þ½ � ¼ 3=4 1=4 0

0 0 1

� �
Determine the channel capacity and the source probabili-

ties that yield capacity.

11.10. Achannel has two inputs, 0; 1ð Þ, and three outputs,
0; e; 1ð Þ, where e indicates an erasure; that is, there is no

output for the corresponding input. The channel matrix is

1� p p 0

0 p 1� p

� �
Compute the channel capacity.

11.11. A binary symmetric channel with error proba-

bility p1 is followed by an erasure channel with erasure

probability p2. Describe the channel matrix that results

from this cascade combination of channels. Comment on

the results.

11.12. Determine the capacity of the channel described

by the channel matrix shown below. Sketch your result as a

function of p and give an intuitive argument that supports

your sketch. (Note: q ¼ 1� p:). Generalize to N parallel

binary symmetric channels.

p q 0 0

q p 0 0

0 0 p q

0 0 q p

2664
3775

11.13. From the entropy definitions given in (11.25)

through (11.29), derive (11.30) and (11.31).

11.14. The input to a quantizer is a random signal having

an amplitude probability density function

fX xð Þ ¼ ae� ax; x 	 0

0; x < 0

�
The signal is to be quantized using four quantizing levelsxi
as shown in Figure 11.44. Determine the values

xi; i ¼ 1; 2; 3, in terms of a so that the entropy at the

quantizer output is maximized.

x10 x2 x3

Figure 11.44

11.15. Repeat the preceding problem assuming that the

input to the quantizer has the Rayleigh probability density

function

fX xð Þ ¼
x

a2
e� x2=2a2 ; x 	 0

0; x < 0

(

11.16. A signal has a Gaussian amplitude-density func-

tionwith zeromean and variances2. The signal is sampled

at 500 samples per second. The samples are quantized

according to the following table. Determine the entropy at

the quantizer output and the information rate in samples

per second.
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11.17. Determine the quantizing levels, in terms of s, so

that the entropy at the output of a quantizer is maximized.

Assume that there are six quantizing levels and that the

quantizer is a zero-mean Gaussian process as in the

previous problem.

11.18. Two binary symmetrical channels are in cascade,

as shown in Figure 11.45. Determine the capacity of each

channel. The overall system with inputs x1 and x2 and

outputs z1 and z2 can be represented as shown with

p11; p12; p21, and p22 properly chosen. Determine these

four probabilities and the capacity of the overall system.

Comment on the results.

0.9

0.9

0.75

0.75

Channel 1

Equivalent channel

Channel 2

0.1

0.1

0.25

0.25

x1

x2

y1

y2

z1

z2

z1

z2

x1

x2

p11

p12

p21

p22

Figure 11.45

11.19. A two-hop satellite communications channel uses

BPSK signaling. The uplinkSNR is 8 dB, and the downlink

SNR is 5 dB, where the SNR is the signal power divided by

the noise power in the bit-rate bandwidth. Determine the

overall error probability.

Section 11.2

11.20. A source has two outputs A;B½ � with respective

probabilities

3
4
; 1
4

�
. Determine the entropy of the fourth-

order extension of this source using two different methods.

11.21. Calculate the entropy of the fourth-order exten-

sion of the source defined in Table 11.1. Determine L=n for
n ¼ 4, and add this result to those shown in Figure 10.9.

Determine the efficiency of the resulting codes for

n ¼ 1; 2; 3, and 4.

11.22. A source has five equally likely output messages.

Determine a Shannon–Fano code for the source, and

determine the efficiency of the resulting code. Repeat for

the Huffman code, and compare the results.

11.23. A source has five outputs denoted [m1;m2;
m3;m4;m5] with respective probabilities [0.41, 0.19,

0.16, 0.15, 0.9]. Determine the code words to represent

the source outputs using both the Shannon–Fano and the

Huffman techniques.

11.24. A binary source has output probabilities [0.85,

0.15]. The channel can transmit 350 binary symbols per

second at the capacity of 1 bit/symbol. Determine the

maximum source symbol rate if transmission is to be

accomplished.

11.25. A source output consists of nine equally likely

messages. Encode the source output using both binary

Shannon–Fano and Huffman codes. Compute the efficien-

cy of both of the resulting codes and compare the results.

11.26. Repeat the preceding problem assuming that the

source has 12 equally likely outputs.

11.27. An analog source has an output described by the

probability density function

fX xð Þ ¼ 2x; 0 � x � 1

0; otherwise

�
The output of the source is quantized into 10 messages

using the nine quantizing levels

xi ¼ 0:1k; k ¼ 0; 1; . . . ; 10

The resulting messages are encoded using a binary Huff-

man code. Assuming that 250 samples of the source are

transmitted each second, determine the resulting binary

symbol rate in symbols per second. Also determine the

information rate in bits per second.

11.28. A source output consists of four messages

[m1;m2;m3;m4] with respective probabilities [0.35, 0.3,

0.2, 0.15]. Determine the binary code words for the

second-order source extension using the Shannon–Fano

and Huffman coding techniques. Determine the efficiency

of the resulting codes and comment on the results.

11.29. A source output consists of four messages

[m1;m2;m3;m4] with respective probabilities [0.35, 0.3,

Quantizer input Quantizer output

�¥ < xi < � 2s m0

� 2s < xi < �s m1

�s < xi < 0 m2

0 < xi < s m3

s < xi < 2s m4

2s < xi < ¥ m5
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0.2, 0.15]. The second-order extension of the source is to

be encoded using a code with a three-symbol alphabet

using the Shannon–Fano and coding technique Determine

the efficiency of the resulting code.

11.30. It can be shown that a necessary and sufficient

condition for the existence of an instantaneous binary code

with word lengths li, 1 � i � N, is thatXN
i¼1

2� li � 1

This is known as the Kraft inequality. Show that the Kraft

inequality is satisfied by the code words given in

Table 11.3. (Note: The inequality given above must also

be satisfied for uniquely decipherable codes.)

Section 11.3

11.31. Acontinuousbandpass channel canbemodeledas

illustrated in Figure 11.46. Assuming a signal power of 50

Wand a noise power spectral density of 10� 5 W=Hz, plot
the capacity of the channel as a function of the channel

bandwidth, and compute the capacity in the limit asB!¥.

∑ Filter
bandwidth = B

Signal

White
Gaussian

noise

Figure 11.46

11.32. Consider again the bandpass channel illustrated

in Figure 11.46. The noise power spectral density is 10� 5

and the bandwidth is 10 kHz. Plot the capacity of the

channel as a function of signal power PT , and compute the

capacity in the limit as PT!¥. Contrast the result of the
problem with the result of preceding problem.

Section 11.4

11.33. A (8,7) parity-check code is used on a channel

having symbol-error probability p. Determine the proba-

bility of one ormore undetected errors in an 8-symbol code

word.

11.34. Derive an equation, similar to (11.95), that gives

the error probability for a rate 1
7
repetition code. Plot

together, on the same set of axes, the error probability of

both a rate of 1
3
and rate 1

7
repetition code as a function of

q ¼ 1� p.

11.35. Develop an analysis that shows that increasing n

for a rate 1=n always degrades system performance in an

AWGN. In order to obtain specific results, assume PSK

modulation.

11.36. Show that a (15, 11)Hamming code is a distance 3

code.

Hint: It is not necessary to find all code words.

11.37. Write the parity-check matrix and the generator

matrix for a (15, 11) single error-correcting code. Assume

that the code is systematic. Calculate the code word

corresponding to the all-ones information sequence. Cal-

culate the syndrome corresponding to an error in the third

position assuming the code word corresponding to the all-

ones input sequence.

11.38. A parity-check code has the parity-check matrix

H½ � ¼
0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

24 35
Determine the generator matrix and find all possible code

words.

11.39. For the code described in the preceding problem,

find the code words [T1] and [T2] corresponding to the

information sequences

A1½ � ¼
0

1

1

1

2664
3775 A2½ � ¼

1

0

1

0

2664
3775

Using these two code words, illustrate the group property.

11.40. Determine the generator matrix for a rate 1
3
and a

rate 1
5
repetition code. Describe the generator matrix for a

rate 1=n repetition code.

11.41. Determine the relationship between n and k for a

Hamming code. Use this result to show that the code rate

approaches l for large n.

11.42. Determine the generator matrix for the coder

illustrated in Figure 11.15. Use the generator matrix to

generate the complete set of codewords and use the results

to check the code words shown in Figure 11.15. Show that

these code words constitute a cyclic code.

11.43. Use the result of the preceding problem to deter-

mine the parity-check matrix for the coder shown in

Figure 11.15. Use the parity-check matrix to decode the

received sequences 1101001 and 1101011. Compare your

result with that shown in Figure 10.16.

11.44. Consider the coded system examined in Comput-

er Example 11.1. Show that the probability of three symbol

errors in a code word is negligible compared to the
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probability of two symbol errors in a code word for SNRs

above a certain level.

11.45. The Hamming code was defined as a code for

which the ith column of the parity-check matrix is the

binary representation of the number i. With a little thought

it becomes clear that the columns of the parity-check

matrix can be permuted without changing the distance

properties, and therefore the error-correcting capabilities,

of the code. Using this fact, determine a generator matrix

and the corresponding parity-check matrix of the system-

atic code equivalent to a (7, 4) Hamming code. Howmany

different generator matrices can be found?

Section 11.5

11.46. Consider the convolutional coder shown in Fig-

ure 11.24. The shift register contents are S1S2S3, where S1
represents the most recent input. Compute the output

sequence v1v2v3 for S1 ¼ 0 and for S1 ¼ 1. Show that the

two output sequences generated are complements.

11.47. Repeat the preceding problem for the convolu-

tional coder illustrated in Figure 11.47. For the coder

shown in Figure 11.47 the shift register contents are

S1S2S3S4, where S1 represents the most recent input.

S2S1 S3 S4

+ +

Input

Output

v1 v2

Figure 11.47

11.48. What is the constraint span of the convolutional

coder shown in Figure 11.47? How many states are re-

quired to define the state diagram and the trellis diagram?

Draw the state diagram, giving the output for each state

transition.

11.49. Determine the state diagram for the convolutional

coder shown in Figure 11.48. Draw the trellis diagram

through the first set of steady-state transitions. On a second

trellis diagram, show the termination of the trellis to the all-

zero state.

S2S1 S3

+ +

Input

Output

v1 v2

Figure 11.48

Section 11.6

11.50. A source produces binary symbols at a rate of

5000 symbols per second. The channel is subjected to error

bursts lasting 0.2 s Devise an encoding scheme using an

interleaved n; kð Þ Hamming code, which allows full cor-

rection of the error burst. Assume that the information rate

out of the coder is equal to the information rate into the

coder. What is the minimum time between bursts if your

system is to operate properly?

11.51. Repeat the preceding problem assuming a (23,12)

Golay code.

11.52. Develop the appropriate analysis to verify the

correctness of (11.147).

Section 11.7

11.53. Compare FM with preemphasis to an optimal

modulation system for b ¼ 1; 5, and 10. Consider only

operation above threshold, and assume 20 dB as the value

of PT=N0W at threshold.

Computer Exercises

11.1. Develop a computer program that allows you to

plot the entropy of a source with variable output probabil-

ities.Wewish to observe that themaximum source entropy

does indeed occur when the source outputs are equally

likely. Start with a simple two-output source m1;m2½ �with
respective probabilities a; 1� a½ �, and plot the entropy as a
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function of the parameter a. Then consider more complex

cases such as a three-output source m1;m2;m3½ � with
respective probabilities a; b; 1� a� b½ �. Be creative with

the manner in which the results are displayed.

11.2. Develop a MATLAB program that generates the

Huffman source code for an input randombinary bit stream

of arbitrary length.

11.3. Computer Example 11.2 did not contain the MA-

TLAB program used to generate Figure 11.18. Develop a

MATLAB program for generating Figure 11.18, and use

your program to verify the correctness of Figure 11.18.

11.4. Table 11.5 gives a short list of rate 1
2
and rate 3

4
BCH

codes. Using the Torrieri bound and an appropriate MA-

TLAB program, plot together on a single set of axes the bit

error probability for the rate 1
2
BCH codes having block

length n ¼ 7, 15, 31, and 63. Assume PSK modulation

with matched-filter detection. Repeat for rate 3
4
BCH codes

having block length n ¼ 15, 31, 63, and 127. What con-

clusions can you draw from this exercise?

11.5. In implementing the Torrieri technique for com-

paring codes on the basis of information bit-error proba-

bility, theMATLAB functionnchoosekwas used. Using

this function for large values of n and k can give rise to

numerical precision difficulties that result from the facto-

rial function. In order to illustrate this problem, execute the

MATLAB function nchoosek with n ¼ 1000 and

k ¼ 500. Develop an alternative technique for calculating

nchoosek that mitigates some of these problems. Using

your technique develop a performance comparison for

(511,385) and (1023,768) BCH codes. Assume FSK mod-

ulation with coherent demodulation.

11.6. Develop a MATLAB program for generating the

tree diagram illustrated in Figure 11.25.

11.7. Repeat Computer Example 11.6 for g ¼ 0:1 and

g ¼ 0:3. What do you conclude from these results com-

bined with the results of Computer Example 11.6, which

were generated for g ¼ 0:2?
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APPENDIX A

PHYSICAL NOISE SOURCES

As discussed in Chapter 1, noise originates in a communication system from two broad classes of

sources: those external to the system, such as atmospheric, solar, cosmic, orman-made sources, and

those internal to the system. The degree to which external noise sources influence system perfor-

mance depends heavily upon system location and configuration. Consequently, the reliable analysis

of their effect on system performance is difficult and depends largely on empirical formulas and on-

sitemeasurements. Their importance in the analysis and design of communication systems depends

on their intensity relative to the internal noise sources. In this appendix, we are concerned with

techniques of characterization and analysis of internal noise sources.

Noise internal to the subsystems that compose a communication system arises as a result of the

randommotion of charge carriers within the devices composing those subsystems. We now discuss

several mechanisms that give rise to internal noise and suitable models for these mechanisms.

n A.1 PHYSICAL NOISE SOURCES

A.1.1 Thermal Noise

Thermal noise is the noise arising from the randommotion of charge carriers in a conducting or

semiconductingmedium. Such randomagitation at the atomic level is a universal characteristic

of matter at temperatures above absolute zero. Nyquist was one of the first to have studied

thermal noise. Nyquist�s theorem states that the mean-square noise voltage appearing across

the terminals of a resistor of R W at temperature T K in a frequency band B Hz is given by

v2rms ¼ hv2nðtÞi ¼ 4kTRBV2 ðA:1Þ
where k ¼ Boltzmann’s constant ¼ 1:38� 10� 23 J/K.

Thus a noisy resistor can be represented by an equivalent circuit consisting of a noiseless

resistor in series with a noise generator of rms voltage vrms as shown in Figure A.1(a). Short

circuiting the terminals of Figure A.1(a) results in a short-circuit noise current of mean-square

value

i2rms ¼ hi2nðtÞi ¼
hv2nðtÞi
R2

¼ 4kTB

R
¼ 4kTGB A2 ðA:2Þ

where G ¼ 1=R is the conductance of the resistor. The Thevenin equivalent of Figure A.1(a)

can therefore be transformed to the Norton equivalent shown in Figure A.1(b).
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EXAMPLE A.1

Consider the resistor network shown in Figure A.2. Assuming room temperature of T ¼ 290 K, find the

rms noise voltage appearing at the output terminals in a 100 kHz bandwidth.

S o l u t i o n

We use voltage division to find the noise voltage due to each resistor across the output terminals. Then,

since powers due to independent sources add, we find the rms output voltage v0 by summing the square of

the voltages due to each resistor (proportional to power), which gives the total mean-square voltage, and

take the square root to give the rms voltage. The calculation yields

v20 ¼ v201 þ v202 þ v203

where

v01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTR1B

p R3

R1 þ R2 þ R3

� �
ðA:3Þ

v02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTR2B

p R3

R1 þ R2 þ R3

� �
ðA:4Þ

and

v03 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTR3B

p R1 þ R2

R1 þ R2 þ R3

� �
ðA:5Þ

~

)b()a(

R (noiseless)

vrms = (4kTRB) 1/2 irms = (4kTRB) 1/2 G =
(noiseless)

1
R

Figure A.1

Equivalent circuits for a noisy resistor. (a) Thevenin. (b) Norton.

R2 = 100 Ω

R3 =
1000 Ω

R1
(all noiseless)

R2

R3
R1 =

1000 Ω
v0

(a)

(b)

v2
2 = 4kTR2

Bv1
2 = 4kTR1 3

2 = 4kTR3B

v0

~~

~

v

B

Figure A.2

Circuits for noise calculation. (a) Resistor network. (b) Noise equivalent circuit.
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In the above expressions,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTRiB
p

represents the rms voltage across resistor Ri. Thus

v20 ¼ 4kTB
ðR1 þ R2ÞR2

3

ðR1 þ R2 þ R3Þ2
þ ðR1 þ R2Þ2R3

ðR1 þ R2 þ R3Þ2
 !

¼ ð4� 1:38� 10�23 � 290� 105Þ � ð1100Þð1000Þ2
ð2100Þ2 þ ð1100Þ

2ð1000Þ
ð2100Þ2

 !
ffi 8:39� 10�13 V2

ðA:6Þ

Therefore,

v0 ¼ 9:16� 10� 7 VðrmsÞ ðA:7Þ
&

A.1.2 Nyquist�s Formula

Although Example A.1 is instructive from the standpoint of illustrating noise computations

involving several noisy resistors, it also illustrates that such computations can be exceedingly

long if many resistors are involved. Nyquist�s formula, which can be proven from thermody-

namic arguments, simplifies such computations considerably. It states that the mean-square

noise voltage produced at the output terminals of any one-port network containing only

resistors, capacitors, and inductors is given by

hv2nðtÞi ¼ 2kT

ð¥
�¥

Rð f Þ df ðA:8Þ

whereRð f Þ is real part of the complex impedance seen looking back into the terminals (in terms

of frequency in hertz, f ¼ v=2p). If the network contains only resistors, the mean-square

noise voltage in a bandwidth B is

hv2ni ¼ 4kTReqBV2 ðA:9Þ
where Req is the Thevenin equivalent resistance of the network.

EXAMPLE A.2

If we look back into the terminals of the network shown in Figure A.2, the equivalent resistance is

Req ¼ R3kðR1 þ R2Þ ¼ R3ðR1 þ R2Þ
R1 þ R2 þ R3

ðA:10Þ

Thus

v20 ¼
4kTBR3ðR1 þ R2Þ
R1 þ R2 þ R3

ðA:11Þ

which can be shown to be equivalent to the result obtained previously.

&
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A.1.3 Shot Noise

Shot noise arises from the discrete nature of current flow in electronic devices. For example, the

electron flow in a saturated thermionic diode is due to the sum total of electrons emitted from

the cathodewhich arrive randomly at the anode, thus providing an average current flow Id (from

anode to cathode when taken as positive) plus a randomly fluctuating component of mean-

square value

i2rms ¼ hi2nðtÞi ¼ 2eIdB A2 ðA:12Þ

where e ¼ charge of the electron ¼ 1:6� 10�19 C. Equation (A.12) is known as Schottky�s
theorem.

Since powers from independent sources add, it follows that the squares of noise voltages or

noise currents from independent sources, such as two resistors or two currents originating from

independent sources, add. Thus, when applying Schottky�s theorem to a p-n junction, the

current flowing in a p-n junction diode is

I ¼ Is exp
eV

kT

� �
� 1

� �
ðA:13Þ

whereV is thevoltage across the diode and Is is the reverse saturation current, can be considered

as being caused by two independent currents �Is and Is expðeV=kTÞ. Both currents fluctuate

independently, producing a mean-square shot noise current given by

i2rms; tot ¼ 2eIsexp
eV

kT

� �
þ 2eIs

� �
B

¼ 2eðI þ 2IsÞ B
ðA:14Þ

For normal operation, I  Is and the differential conductance is g0 ¼ dI=dV ¼ eI=kT , so that
(A.14) may be approximated as

i2rms; tot ffi 2eIB ¼ 2kT
eI

kT

� �
B ¼ 2kTg0B ðA:15Þ

which can be viewed as half-thermal noise of the differential conductance g0 since there is a

factor of 2 rather than a factor of 4 as in (A.2).

A.1.4 Other Noise Sources

In addition to thermal and shot noise, there are three other noise mechanisms that contribute to

internally generated noise in electronic devices. We summarize them briefly here. A fuller

treatment of their inclusion in the noise analysis of electronic devices is given by Van der Ziel

(1970).

Generation–Recombination Noise

Generation–recombination noise is the result of free carriers being generated and recombining

in semiconductor material. One can consider these generation and recombination events to be

random. Therefore, this noise process can be treated as a shot noise process.
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Temperature-Fluctuation Noise

Temperature-fluctuation noise is the result of the fluctuating heat exchange between a small

body, such as a transistor, and its environment due to the fluctuations in the radiation and heat-

conduction processes. If a liquid or gas is flowing past the small body, fluctuation in heat

convection also occurs.

Flicker Noise

Flicker noise is due to various causes. It is characterized by a spectral density that increaseswith

decreasing frequency. The dependence of the spectral density on frequency is often found to be

proportional to the inverse first power of the frequency. Therefore, flicker noise is sometimes

referred to as one-over-f noise. More generally, flicker noise phenomena are characterized by

power spectra that are of the form constant=f a, where a is close to unity. The physical

mechanism that gives rise to flicker noise is not well understood.

A.1.5 Available Power

Since calculations involving noise involve transfer of power, the concept of maximum power

available from a source of fixed internal resistance is useful. Figure A.3 illustrates the familiar

theorem regarding maximum power transfer, which states that a source of internal resistance R

delivers maximum power to a resistive load RL if R ¼ RL and that under these conditions, the

power P produced by the source is evenly split between source and load resistances. If R ¼ RL,

the load is said to bematched to the source, and the power delivered to the load is referred to as

the available power Pa. Thus Pa ¼ 1
2
P, which is delivered to the load only if R ¼ RL.

Consulting Figure A.3(a), in which vrms is the rms voltage of the source, we see that the

voltage across RL ¼ R is 1
2
vrms. This gives

Pa ¼ 1

R

1

2
vrms

� �2

¼ v2rms

4R
ðA:16Þ

Similarly, when dealing with a Norton equivalent circuit as shown in Figure A.3(b), we can

write the available power as

Pa ¼ 1

2
irms

� �2

R ¼ i2rms

4G
ðA:17Þ

where irms ¼ vrms=R is the rms noise current.

~

)b()a(

R

vrms GL = 1/RLRL G = 1/Rirms

Figure A.3

Circuits pertinent to maximum power transfer theorem. (a) Thevenin equavalent for a source with load

resistance RL. (b) Norton equivalent for a source with load conductance GL.
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Returning to (A.1) or (A.2) and using (A.16) or (A.17), we see that a noisy resistor

produces the available power

Pa;R ¼ 4kTRB

4R
¼ kTB W ðA:18Þ

Similarly, from (A.15), a diode with load resistance matched to its differential conductance

produces the available power

Pa; D ¼ 1

2
kTB W; I  Is ðA:19Þ

EXAMPLE A.3

Calculate the available power per hertz of bandwidth for a resistance at room temperature, taken to be

T0 ¼ 290 K. Express in decibels referenced to 1 W (dBW) and decibels referenced to 1 mW (dBm).

S o l u t i o n

Power=hertz ¼ Pa;R=B ¼ ð1:38� 10�23Þð290Þ ¼ 4:002� 10�21 W=Hz.

Power=hertz in dBW ¼ 10 log10ð4:002� 10�21=1Þ ffi �204 dBW=Hz.

Power=hertz in dBm ¼ 10 log10ð4:002� 10�21=10�3Þ ffi �174 dBm=Hz.

&

A.1.6 Frequency Dependence

In Example A.3, available power per hertz for a noisy resistor at T0 ¼ 290Kwas computed and

found, to good approximation, to be �174 dBm/Hz, independent of the frequency of interest.

Actually, Nyquist�s theorem, as stated by (A.1), is a simplification of amore general result. The

proper quantum mechanical expression for available power per hertz, or available power

spectral density Saðf Þ, is

Saðf Þ/ Pa

B
¼ hf

expðhf=kTÞ � 1
W=Hz ðA:20Þ

where h ¼ Planck�s constant ¼ 6:6254� 10�34 Js.
This expression is plotted in Figure A.4, where it is seen that for all but very low

temperatures and very high frequencies, the approximation is good that Sað f Þ is constant (that
is, Pa is proportional to bandwidth B).

A.1.7 Quantum Noise

Taken by itself, (A.20) might lead to the false assumption that for very high frequencies where

hf  kT , such as those used in optical communication, the noise would be negligible.

However, it can be shown that a quantumnoise term equal to hf must be added to (A.20) in order

to account for the discrete nature of the electron energy. This is shown in Figure A.4 as the

straight line, which permits the transition frequency between the thermal noise and quantum
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noise regions to be estimated. This transition frequency is seen to be above 20 GHz even for

T ¼ 2:9 K.

n A.2 CHARACTERIZATION OF NOISE IN SYSTEMS

Having considered several possible sources of internal noise in communication systems, we

nowwish to discuss convenientmethods for characterization of the noisiness of the subsystems

that make up a system, as well as overall noisiness of the system. Figure A.5 illustrates a

cascade of N stages or subsystems that make up a system. For example, if this block diagram

represents a superheterodyne receiver, subsystem 1would be the RF amplifier, subsystem 2 the

mixer, subsystem 3 the IF amplifier, and subsystem 4 the detector. At the output of each stage,

wewish to be able to relate the signal-to-noise power ratio to that at the input. This will allow us

to pinpoint those subsystems that contribute significantly to the output noise of the overall

system, thereby enabling us to implement designs that minimize the noise.

A.2.1 Noise Figure of a System

One usefulmeasure of systemnoisiness is the so-called noise figure F, defined as the ratio of the

SNR at the system input to the SNR at the system output. In particular, for the lth subsystem in

Figure A.5, the noise figure Fl is defined by the relation

S

N

� �
l

¼ 1

Fl

S

N

� �
l� 1

ðA:21Þ
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Figure A.4

Noise power spectral density versus frequency for thermal resistors.

A.2 Characterization of Noise in Systems 687

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


For an ideal, noiseless subsystem,Fl ¼ 1; that is, the subsystem introduces no additional noise.

For physical devices, Fl > 1.

Noise figures for devices and systems are often stated in terms of decibels. Specifically

FdB ¼ 10 log10 Fratio ðA:22Þ

Typical noise figures are 2 to 4.5 dB for a traveling wave tube amplifier (power gain of

20 to 30 dB) and 5 to 8 dB formixers (a passivemixer has a loss of at least 3 dB due to the use of

only one of the sidebands at its output). Further information is contained in Mumford and

Schiebe (1968) or device manufacturer�s data sheets.

The definition of noise figure given by (A.21) requires the calculation of both signal and

noise powers at each point of the system. An alternative definition, equivalent to (A.21),

involves the calculation of noise powers only. Although signal and noise powers at any point in

the system depend on the loading of a subsystem on the preceding one, SNRs are independent

of load, since both signal and noise appear across the same load. Hence any convenient load

impedance may be used in making signal and noise calculations. In particular, wewill use load

impedances matched to the output impedance, thereby working with available signal and noise

powers.

Consider the lth subsystem in the cascade of the system shown in Figure A.5. If we

represent its input by a Thevenin equivalent circuit with rms signal voltage es;l� 1 and

equivalent resistant Rl� 1, the available signal power is

Psa;l � 1 ¼
e2s;l � 1

4Rl � 1

ðA:23Þ

If we assume that only thermal noise is present, the available noise power for a source

temperature of Ts is

Pna;l� 1 ¼ kTsB ðA:24Þ

(a)

(b)

R0

S
N 0

S
N 1

S
N 2

S
N N – 1

S
N N

Subsystem
1

Subsystem
2

Subsystem
N

Subsystem
l

Equivalent
resistance, Rl

es,1

es, l – 1

Rl – 1, Ts

+

–

Figure A.5

Cascade of subsystems making up a system. (a) N-subsystem cascade with definition of SNRs at each

point. (b) The lth subsystem in the cascade.
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given an input SNR of

S

N

� �
l� 1

¼ e2s;l� 1

4kTsRl� 1B
ðA:25Þ

The available output signal power, from Figure A.5(b), is

Psa;l ¼
e2s;l

4Rl

ðA:26Þ

We can relate Psa;l to Psa;l� 1 by the available power gain Ga of subsystem l, defined to be

Psa;l ¼ GaPsa;l� 1 ðA:27Þ
which is obtained if all resistances are matched. The output SNR is

S

N

� �
l

¼ Psa;l

Pna;l
¼ 1

Fl

Psa;l� 1

Pna;l� 1

ðA:28Þ

or

Fl ¼ Psa;l� 1

Psa;l

Pna;l

Pna;l� 1

¼ Psa;l� 1

GaPsa;l� 1

Pna;l

Pna;l� 1

¼ Pna;l

GaPna;l� 1 ðA:29Þ
where any mismatches may be ignored, since they affect signal and noise the same.1 Thus the

noise figure is the ratio of the output noise power to the noise power that would have resulted

had the system been noiseless. Noting that Pna;l ¼ GaPna;l� 1 þ Pint;l , where Pint;l is the

available internally generated noise power of subsystem l, and that Pna;l� 1 ¼ kTsB, we may

write (A.29) as

Fl ¼ 1 þ Pint;l

GakTsB
ðA:30Þ

or, setting Ts ¼ T0 ¼ 290 K to standardize the noise figure,2 we obtain

Fl ¼ 1 þ Pint;l

GakT0B
ðA:31Þ

Thus, for Ga  1; Fl ffi 1, which shows that the effect of internally generated noise becomes

inconsequential for a systemwith a large gain. Conversely, a systemwith lowgain enhances the

importance of internal noise.

A.2.2 Measurement of Noise Figure

Using (A.29), with the available noise power at the output Pna;out referred to the device input

and representing this noise by a current generator i2n in parallel with the source resistanceRs or a

1This assumes that the gains for noise power and signal power are the same. If gain varies with frequency, then a spot

noise figure can be defined, where signal power and noise power are measured in a small bandwidth Df .
2If thiswere not done, themanufacturer of a receiver could claim superior noise performance of its product over that of a

competitor simply by choosing Ts larger than the competitor. See Mumford and Scheibe (1968), pp. 53–56, for a

summary of the various definitions of noise figure used in the past.
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voltage generator e2n in series with it, we can determine the noise figure by changing the input

noise a known amount and measuring the change in noise power at the device output. In

particular, if we assume a current source represented by a saturated thermionic diode, so that

i2n ¼ 2eIdB A2 ðA:32Þ
and sufficient current is passed through the diode so the noise power at the output is double the

amount that appeared without the diode, then the noise figure is

F ¼ eIdRs

2kT0
ðA:33Þ

where e is the charge of the electron in coulombs, Id is the diode current in amperes, Rs is the

input resistance, k is Boltzmann�s constant, and T0 is the standard temperature in kelvin.

A variation of the preceding method is the Y-factor method, which is illustrated in

FigureA.6.Assume that two calibrated noise sources are available, one at effective temperature

Thot and the other at Tcold. With the first at the input of the unknown system with unknown

temperature Te, the available output noise power from (A.18) is

Ph ¼ kðThot þ TeÞ BG ðA:34Þ
where B is the noise bandwidth of the device under test andG is its available power gain. With

the cold noise source present, the available output noise power is

Pc ¼ kðTcold þ TeÞ BG ðA:35Þ
The two unknowns in these two equations are Tc and BG. Dividing the first by the second, we

obtain

Ph

Pc

¼ Y ¼ Thot þ Te

Tcold þ Te
ðA:36Þ

When solved for Te, this equation becomes [see (A.43) for the definition of Te]

Te ¼ Thot� YTcold

Y � 1
ðA:37Þ

which involves the two known source temperatures and themeasured Y factor. The Y factor can

be measured with the aid of the precision attenuator shown in Figure A.6 as follows:

Calibrated
noise gen.

#1
Thot

Calibrated
noise gen.

#2
Tcold

Device under
test

Te , G, B

Precision
attenuator

Power
meter

Figure A.6

Y-factor method for measuring

effective noise temperature.
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1. Connect the hot noise source to the system under test and adjust the attenuator for a

convenient meter reading.

2. Switch to the cold noise source and adjust the attenuator for the same meter reading as

before.

3. Noting the change in attenuator setting DA in decibels, calculate Y ¼ 10DA=10.

4. Calculate the effective noise temperature using (A.37).

A.2.3 Noise Temperature

Equation (A.18) states that the available noise power of a resistor at temperature T is kTBW,

independent of thevalue ofR.Wemay use this result to define the equivalent noise temperature

Tn of any noise source:

Tn ¼ Pn;max

kB
ðA:38Þ

where Pn;max is the maximum noise power the source can deliver in bandwidth B.

EXAMPLE A.4

Two resistors R1 and R2 at temperatures T1 and T2, respectively, are connected in series to form a white-

noise source. Find the equivalent noise temperature of the combination.

S o l u t i o n

The mean-square voltage generated by the combination is

hv2ni ¼ 4kBR1T1 þ 4kBR2T2 ðA:39Þ
Since the equivalent resistance is R1 þ R2, the available noise power is

Pna ¼ hv2ni
4ðR1 þ R2Þ ¼

4kðT1R1 þ T2R2ÞB
4ðR1 þ R2Þ ðA:40Þ

The equivalent noise temperature is therefore

Tn ¼ Pna

kB

R1T1 þ R2T2

R1 þ R2

ðA:41Þ

Note that Tn is not a physical temperature unless both resistors are at the same temperature.

&

A.2.4 Effective Noise Temperature

Returning to (A.30), we note that the second term, Pint;l=GakT0B, which is dimensionless, is

due solely to the internal noise of the system. Noting that Pint;l=GakB has the dimensions of

temperature, we may write the noise figure as

Fl ¼ 1 þ Te

T0
ðA:42Þ

where

Te ¼ Pint;l

GakB
ðA:43Þ
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Thus,

Te ¼ ðFl � 1ÞT0 ðA:44Þ
Te is the effective noise temperature of the system and depends only on the parameters of

the system. It is a measure of noisiness of the system referred to the input, since it is the

temperature required of a thermal resistance, placed at the input of a noiseless system, in order

to produce the same available noise power at the output as is produced by the internal noise

sources of the system. Recalling that Pna;l ¼ GaPna;l� 1 þ Pint;l and that Pna;l� 1 ¼ kTsB, we

may write the available noise power at the subsystem output as

Pna;l ¼ GakTsB þ GakTeB

¼ GakðTs þ TeÞB ðA:45Þ

where the actual temperature of the source Ts is used. Thus the available noise power at the

output of a system can be found by adding the effective noise temperature of the system to

the temperature of the source andmultiplying byGakB, where the termGa appears because the

noise power is referred to the system input.

A.2.5 Cascade of Subsystems

Considering the first two stages in Figure A.5, we see that noise appears at the output due to the

following sources:

1. Amplified source noise, Ga1Ga2kTsB.

2. Internal noise from the first stage amplified by the second stage, Ga2Pa; int1 ¼
Ga2ðGa1kTe1BÞ.

3. Internal noise from the second stage, Pa; int2 ¼ Ga2kTe2B.

Thus the total available noise power at the output of the cascade is

Pna;2 ¼ Ga1Ga2k Ts þ Te1 þ
Te2
Ga1

� �
B ðA:46Þ

Noting that the available gain for the cascade isGa1Ga2 and comparing with (A.45), we see that

the effective temperature of the cascade is

Te ¼ Te1 þ
Te2
Ga1

ðA:47Þ

From (A.42), the overall noise figure is

F ¼ 1 þ Te

T0
¼ 1 þ Te1

T0
þ 1

Ga1

Te2
T0

¼ F1 þ F2� 1

Ga1

ðA:48Þ

whereF1 is the noise figure of stage 1 andF2 is the noise figure of stage 2. The generalization of

this result to an arbitrary number of stages is known as Friis�s formula and is given by

F ¼ F1 þ F2� 1

Ga1

þ F3� 1

Ga1Ga2

þ � � � ðA:49Þ
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whereas the generalization of (A.47) is

Te ¼ Te1 þ
Te2
Ga1

þ Te3
Ga1Ga2

þ � � � ðA:50Þ

EXAMPLE A.5

Aparabolic dish antenna is pointed up into the night sky. Noise due to atmospheric radiation is equivalent

to a source temperature of 70 K. A low-noise preamplifier with noise figure of 2 dB and an available

power gain of 20 dB over a bandwidth of 20 MHz is mounted at the antenna feed (focus of the parabolic

reflector).

a. Find the effective noise temperature of the preamplifier.

b. Find the available noise power at the preamplifier output.

S o l u t i o n

a. From (A.45), we have

Teff; in ¼ Ts þ Te; preamp ðA:51Þ
but (A.44) gives

Te; preamp ¼ T0ðFpreamp� 1Þ
¼ 290ð102=10� 1Þ
¼ 169:6 K

ðA:52Þ

b. From (A.45), the available output noise power is

Pna; out ¼ GakðTs þ TeÞB
¼ 1020=10ð1:38� 10�23Þð169:6 þ 70Þð20� 106Þ
¼ 6:61� 10�12 W

ðA:53Þ

&

EXAMPLE A.6

A preamplifier with power gain to be found and a noise figure of 2.5 dB is cascaded with a mixer with a

gain of 5 dB and a noise figure of 8 dB. Find the preamplifier gain such that the overall noise figure of the

cascade is at most 4 dB.

S o l u t i o n

Friis�s formula specializes to

F ¼ F1 þ F2� 1

G1

ðA:54Þ

Solving for G1, we get

G1 ¼ F2� 1

F�F1

¼ 108=10� 1

104=10� 102:5=10
¼ 7:24 ratioð Þ ¼ 8:6 dB ðA:55Þ

Note that the gain of the mixer is immaterial.

&
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A.2.6 Attenuator Noise Temperature and Noise Figure

Consider a purely resistive attenuator that imposes a loss of a factor of L in available power

between input and output; thus the available power at its output Pa;out is related to the available

power at its input Pa;in by

Pa; out ¼ 1

L
Pa; in ¼ GaPa; in ðA:56Þ

However, since the attenuator is resistive and assumed to be at the same temperature Ts as the

equivalent resistance at its input, the available output power is

Pna; out ¼ kTsB ðA:57Þ
Characterizing the attenuator by an effective temperature Te and employing (A.45), we may

also write Pna;out as

Pna; out ¼ GakðTs þ TeÞB
¼ 1

L
kðTs þ TeÞB ðA:58Þ

Equating (A.57) and (A.58) and solving for Te, we obtain

Te ¼ ðL� 1ÞTs ðA:59Þ
for the effective noise temperature of a noise resistance of temperature Ts followed by an

attenuator. From (A.42), the noise figure of the cascade of source resistance and attenuator is

F ¼ 1 þ ðL� 1ÞTs
T0

ðA:60Þ

or

F ¼ 1 þ ðL� 1ÞT0
T0

¼ L ðA:61Þ
for an attenuator at room temperature, T0.

EXAMPLE A.7

Consider a receiver system consisting of an antenna with lead-in cable having a loss factor of L ¼ 1:5 dB
(gain of �1:5 dB), which at room temperature is also its noise figureF1, and RF preamplifier with a noise

figure of F2 ¼ 7 dB and a gain of 20 dB, followed by a mixer with a noise figure of F3 ¼ 10 dB and a

conversion gain of 8 dB, and finally an integrated-circuit IF amplifierwith a noise figure ofF4 ¼ 6 dB and

a gain of 60 dB.

a. Find the overall noise figure and noise temperature of the system

b. Find the noise figure and noise temperature of the system with preamplifier and cable interchanged

(i.e., the preamplifier is mounted right at the antenna terminal).

S o l u t i o n

a. Converting decibel values to ratios and employing (A.46), we obtain

F ¼ 1:41 þ 5:01� 1

1=1:41
þ 10� 1

100=1:41
þ 3:98� 1

100ð6:3Þ=1:41
¼ 1:41 þ 5:65 þ 0:13 þ 6:7� 10�3 ¼ 7:19 ¼ 8:57 dB

ðA:62Þ
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Note that the cable and RF amplifier essentially determine the noise figure of the system and that the noise

figure of the system is enhanced because of the loss of the cable. If we solve (A.44) for Te, we have an

effective noise temperature of

Te ¼ T0ðF� 1Þ ¼ 290ð7:19� 1Þ ¼ 1796 K ðA:63Þ

b. Interchanging the cable and RF preamplifier, we obtain the noise figure

F ¼ 5:01 þ 1:41� 1

100
þ 10� 1

100=1:41
þ 3:98� 1

100ð6:3Þ=1:41
¼ 5:01 þ ð4:1� 10�3Þ þ 0:127 þ ð6:67� 10�3Þ
¼ 5:15 ¼ 7:12 dB

ðA:64Þ

The noise temperature is

Te ¼ 290ð4:15Þ ¼ 1203 K ðA:65Þ
Now the noise figure and noise temperature are essentially determined by the noise level of the RF

preamplifier.

&

We have omitted one possibly important source of noise which is the antenna. If the

antenna is directive and pointed at source of significant thermal noise, such as the daytime sky

(typical noise temperature of 300� F), its equivalent temperature may also be of importance in

the calculation. This is particularly true when a low-noise preamplifier is employed.

n A.3 FREE-SPACE PROPAGATION EXAMPLE

As a final example of noise calculation, we consider a free-space electromagnetic-wave

propagation channel. For the sake of illustration, suppose the communication link of interest is

between a synchronous-orbit relay satellite and a low-orbit satellite or aircraft, as shown in

Figure A.7.

Relay
satellite

Low-orbit
user

Ground
station

Earth's Surface

Figure A.7

A satellite-relay communication link.
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This might represent part of a relay link between a ground station and a small scientific

satellite or an aircraft. Since the ground station is high power, we assume the ground-station-to-

relay-satellite link is noiseless and focus our attention on the link between the two satellites.

Assume a relay satellite transmitted signal power of PT W. If radiated isotropically, the

power density at a distance d from the satellite is given by

pt ¼ PT

4pd2
W=m2 ðA:66Þ

If the satellite antenna has directivity, with the radiated power being directed toward the low-

orbit vehicle, the antenna can be described by an antenna power gain GT over the isotropic

radiation level. For aperture type antennas with aperture area AT large compared with the

square of the transmitted wavelength l2, it can be shown that the maximum gain is given by

GT ¼ 4pAT=l
2. The power PR intercepted by the receiving antenna is given by the product of

the receiving aperture area AR and the power density at the aperture. This gives

PR ¼ PTGT

4pd2
AR ðA:67Þ

However, we may relate the receiving aperture antenna to its maximum gain by the expression

GR ¼ 4pAR=l
2, giving

PR ¼ PTGTGRl
2

ð4pdÞ2 ðA:68Þ

Equation (A.68) includes only the loss in power from isotropic spreading of the transmitted

wave. If other losses such as atmospheric absorption are important, they may be included as a

loss factor L0 in (A.68) to yield

PR ¼ l
4pd

� �2
PTGTGR

L0
ðA:69Þ

The factor ð4pd=lÞ2 is sometimes referred to as the free-space loss.3

In the calculation of receiver power, it is convenient to work in terms of decibels. Taking

10 log10 PR, we obtain

10 log10 PR ¼ 20 log10
l

4pd

� �
þ 10 log10 PT

þ 10 log10 GT þ 10 log10 GR�10 log10 L0

ðA:70Þ

Now 10 log10 PR can be interpreted as the received power in decibels referenced to 1 W; it is

commonly referred to as power in decibel watt. Similarly, 10 log10 PT is commonly referred to

as the transmitted signal power in decibel watt. The terms 10 log10GT and 10 log10GR are the

transmitter and receiver antenna gains (above isotropic) in decibels, while the term 10 log10 L0
is the loss factor in decibels. When 10 log10 PT and 10 log10GT are taken together, this sum is

referred to as the effective radiated power in decibel watts (ERP, or sometimes EIRP, for

effective radiated power referenced to isotropic). The negative of the first term is the free-space

loss in decibels. For d ¼ 106 mi ð1:6� 109 mÞ and a frequency of 500 MHz ðl¼ 0:6mÞ,

20 log10
l

4pd

� �
¼ 20 log10

0:6

4p� 1:6� 109

� �
¼ �210 dB ðA:71Þ

3We take the convention here that a loss is a factor in the denominator of PR; a loss in decibels is a positive quantity

(a negative gain).
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If l or d change by a factor of 10, this value changes by 20 dB.We nowmake use of (A.70) and

the results obtained for noise figure and temperature to compute the SNR for a typical satellite

link.

EXAMPLE A.8

We are given the following parameters for a relay-satellite-to-user link:

Relay satellite effective radiated power ðGT ¼ 30 dB;PT ¼ 100WÞ: 50 dBW
Transmit frequency: 2 GHz ðl ¼ 0:15 mÞ
Receiver noise temperature of user (includes noise figure of receiver and background temperature of

antenna): 700 K

User satellite antenna gain: 0 dB

Total system losses: 3 dB

Relay–user separation: 41,000 km

Find the signal-to-noise power ratio in a 50 kHz bandwidth at the user satellite receiver IF amplifier output.

S o l u t i o n

The received signal power is computed using (A.69) as follows (þ and � signs in parentheses indicate

whether the quantity is added or subtracted):

Free-space loss: � 20 log10ð0:15=4p � 41� 106Þ : 190:7 dB ð�Þ
Effective radiated power: 50 dBW ðþÞ
Receiver antenna gain: 0 dB ðþÞ
System losses: 3 dB ð�Þ
Received Signal Power: �143.7 dBW

The noise power level, calculated from (A.43), is

Pint ¼ GakTeB ðA:72Þ
wherePint is the receiver output noise power due to internal sources. Sincewe are calculating the SNR, the

available gain of the receiver does not enter the calculation because both signal and noise aremultiplied by

the same gain. Hence, we may set Ga to unity, and the noise level is

Pint; dBW ¼ 10 log10 kT0
Te

T0

� �
B

� �
¼ 10 log10ðkT0Þ þ 10 log10

Te

T0

� �
þ 10 log10 B ðA:73Þ

¼ �204 þ 10 log10
700

290

� �
þ 10 log10 50; 000

¼ �153:2 dBW
Hence, the SNR at the receiver output is

SNR0 ¼ �143:7 þ 153:2 ¼ 9:5 dB ðA:74Þ
&
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EXAMPLE A.9

To interpret the result obtained in the previous example in terms of the performance of a digital

communication system, we must convert the SNR obtained to energy-per-bit-to-noise-spectral density

ratio Eb=N0 (see Chapter 8). By definition of SNR0, we have

SNR0 ¼ PR

kTeB
ðA:75Þ

Multiplying numerator and denominator by the duration of a data bit Tb, we obtain

SNR0 ¼ PRTb

kTeBTb
¼ Eb

N0BTb
ðA:76Þ

where PRTb ¼ Eb and kTe ¼ N0 are the signal energy per bit and the noise power spectral density,

respectively. Thus, to obtain Eb=N0 from SNR0, we calculate

Eb

N0

					
dB

¼ SNR0ÞdB þ 10 log10ðBTbÞ

 ðA:77Þ

For example, from Chapter 8 we recall that the null-to-null bandwidth of a phase-shift keyed carrier is

2=Tb Hz. Therefore, BTb for BPSK is 2 (3 dB) and

Eb

N0

					
dB

¼ 9:5 þ 3 ¼ 12:5 dB ðA:78Þ

The probability of error for a binary BPSK digital communication system was derived in Chapter 8 as

PE ¼ Q

ffiffiffiffiffiffiffiffi
2Eb

N0

r� �
ffi Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 101:25
p� �

ffi 1:23� 10�9 for
Eb

N0

¼ 12:5 dB

ðA:79Þ

which is a fairly small probability of error (anything less than 10�6 would probably be considered

adequate). It appears that the systemmay have been overdesigned. However, nomargin has been included

as a safety factor. Components degrade or the systemmay be operated in an environment for which it was

not intended. With only 3 dB allowed for margin, the performance in terms of error probability becomes

1:21� 10�5.
&

Further Reading

Treatments of internal noise sources and calculations oriented toward communication systems compa-

rable to the scope and level of the presentation here may be found in most of the books on

communications referenced in Chapters 2 and 3. A concise, but thorough, treatment at an elementary

level is available in Mumford and Scheibe (1968). An in-depth treatment of noise in solid-state devices

is available in Van der Ziel (1970). Another useful reference on noise is Ott (1988). For discussion of

satellite-link power budgets, see Ziemer and Peterson (2001).
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Problems

Section A.1

A.1. A true rms voltmeter (assumed noiseless) with an

effective noise bandwidth of 30MHz is used to measure

the noise voltage produced by the following devices.

Calculate the meter reading in each case.

a. A10kW resistor at roomtemperature,T0 ¼ 290K.

b. A 10 k W resistor at 29 K.

c. A 10 k W resistor at 2.9 K.

d. What happens to all of the above results if the

bandwidth is decreased by a factor of 4, a factor of 10, or a

factor of 100?

A.2. Given a junction diode with reverse saturation

current Is ¼ 15 mA.

a. At room temperature (290 K), find V such that

I > 20Is, thus allowing (A.14) to be approximated by

(A.15). Find the rms noise current.

b. Repeat part (a) for T ¼ 90 K.

A.3. Consider the circuit shown in Figure A.8.

R1 R3 RL

R2

Figure A.8

a. Obtain an expression for the mean-square noise

voltage appearing across RL.

b. If R1 ¼ 2000W; R2 ¼ RL ¼ 300W, and R3 ¼
500W find the mean-square noise voltage per hertz.

A.4. Referring tothecircuitofFigureA.8,considerRL to

be a load resistance, andfindit in termsofR1; R2; and R3 so

that the maximum available noise power available from

R1; R2; and R3 is delivered to it.

A.5. Assuming a bandwidth of 2 MHz, find the rms

noise voltage across the output terminals of the circuit

shown in Figure A.9 if it is at a temperature of 400 K.

Figure A.9

Section A.2

A.6. Obtain an expression for F and Te for the two-port

resistive matching network shown in Figure A.10, assum-

ing a source at T0 ¼ 290 K.

R2

R1

Figure A.10

A.7. A source with equivalent noise temperature

Ts ¼ 1000 K is followed by a cascade of three amplifiers

having the specifications shown in Table A.1. Assume a

bandwidth of 50 kHz.

a. Find the noise figure of the cascade.

b. Suppose amplifiers 1 and 2 are interchanged. Find

the noise figure of the cascade.

c. Find the noise temperature of the systems of parts

(a) and (b).

d. Assuming the configuration of part (a), find the

required input signal power to give anoutputSNRof40dB.

Perform the same calculation for the system of part (b).

A.8. An attenuator with loss L 1 is followed by an

amplifier with noise figure F and gain Ga ¼ L.

a. Find the noise figure of the cascade at temperature

T0.

b. Consider the cascade of two identical

attenuator–amplifier stages as in part (a). Determine the

noise figure of the cascade at temperature T0.

c. Generalize these results to N identical attenuators

and amplifiers at temperature T0. Howmany decibels does

the noise figure increase as a result of doubling the number

of attenuators and amplifiers?

Table A.1

Amplifier no. F Te Gain

1 300 K 10 dB

2 6 dB 30 dB

3 11 dB 30 dB

5kΩ

kΩ V

5kΩ

20kΩ 50 rms10kΩ

+

–
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A.9. Given a cascade of a preamplifier, mixer, and

amplifier with the specifications shown in Table A.2,

a. Find the maximum gain of the preamplifier such

that the overall noise figure of the cascade is 5 dB or

greater.

b. The preamplifier is fed by an antenna with noise

temperature of 300 K (this is the temperature of Earth

viewed from space). Find the temperature of the overall

system using a preamplifier gain of 15 dB and also for the

preamplifier gain found in part (a).

c. Find the noise power at the amplifier output for the

two cases of part (b).

d. Repeat part (b) except now assume that a trans-

mission line with loss of 2 dB connects the antenna to the

preamplifier.

A.10. An antenna with a temperature of 300 K is fed into

a receiver with a total gain of 80 dB, Te ¼ 1500 K, and a

bandwidth of 3 MHz.

a. Find the available noise power at the output of the

receiver.

b. Find the necessary signal power Pr in dBm at the

antenna terminals such that the output SNR is 50 dB.

A.11. Referring to (A.37) and the accompanying discus-

sion, suppose that two calibrated noise sources have

effective temperatures of 600 K and 300 K.

a. Obtain the noise temperature of an amplifier with

these two noise sources used as inputs if the difference in

attenuator settings to get the same power meter reading at

the amplifier�s output is 1 dB, 1.5 dB, or 2 dB.

b. Obtain the corresponding noise figures.

Section A.3

A.12. Given a relay–user link as described in SectionA.3

with the following parameters:

Average transmit power of relay satellite: 35 dBW

Transmit frequency: 7.7 GHz

Effective antenna aperture of relay satellite: 1m2

Noise temperature of user receiver (including anten-

na): 1000 K

Antenna gain of user: 6 dB

Total system losses: 5 dB

System bandwidth: 1 MHz

Relay–user separation: 41,000 km

a. Find the received signal power level at the user in

dBW.

b. Find the receiver noise level in dBW.

c. Compute the SNR at the receiver in decibels.

d. Find the average probability of error for the

following digital signaling methods: (1) BPSK, (2) binary

DPSK, (3) binary noncoherent FSK, (4) QPSK.4

Table A.2

Noise

figure, dB Gain, dB Bandwidth

Preamplifier 2 7 *

Mixer 8 1.5 *

Amplifier 5 30 10 MHz

*The bandwidth of this stage is much greater than the ampli-

fier bandwidth.

4This part of the problem requires results from Chapters 8 and 9.
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APPENDIXB

JOINTLY GAUSSIAN RANDOM VARIABLES

In this appendix, we examine the joint pdf and the characteristic function for a set of Gaussian

random variables X1; X2; . . . ; XN . In Chapter 5 the joint pdf for N = 2 was given as

fX1X2
(x1; x2) ¼

exp(� [1=2(1� r2)]f[(x1 �m1)=sx1 )]
2 � 2r[(x1 �m1)=sx1 ][(x2 �m2)=sx2 ]þ [(x2 �m2)=sx2 ]

2g)
2psx1sx2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
(B:1)

where mi ¼ EfXig; s2
xi
¼ Ef[Xi�mi]

2g; i ¼ 1; 2, and r ¼ Ef(X1�m1)(X2�m2)/sx1sx2g. This

important result is now generalized.

n B.1 THE PROBABILITY DENSITY FUNCTION

The joint pdf of N jointly Gaussian random variables is

fXðxÞ ¼ ð2pÞ�N=2jdetCj�1=2exp � 1

2
ðx�mÞTC�1ðx�mÞ

� �
ðB:2Þ

where x and m are column matrices whose transposes are

xT ¼ ½x1 x2 � � � xN � ðB:3Þ
and

mT ¼ ½m1 m2 � � � mN � ðB:4Þ
respectively, and C is the positive definite matrix of correlation coefficients with elements

Cij ¼ E½ðXi �miÞðXj �mjÞ� ðB:5Þ
Note that in (B.2) xT and mT are 1 by N row matrices and that C is an N by N square matrix.

n B.2 THE CHARACTERISTIC FUNCTION

The joint characteristic function of the Gaussian random variables X1; X2; . . . ; XN is

MXðvÞ ¼ exp jmTv� 1

2
vTCv

� �
ðB:6Þ

701

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


where vT ¼ ½v1 v2 � � � vN �. From the power-series expansion of (B.6), it follows that for any

four zero-mean Gaussian random variables,

E½X1X2X3X4� ¼ E½X1X2�E½X3X4� þE½X1X3�E½X2X4� þE½X1X4�E½X2X3� ðB:7Þ
This is a rule that is useful enough to be worth memorizing.

n B.3 LINEAR TRANSFORMATIONS

If a set of jointly Gaussian random variables is transformed to a new set of random variables by

a linear transformation, the resulting random variables are jointly Gaussian. To show this,

consider the linear transformation

y ¼ Ax ðB:8Þ
where y and x are columnmatrices of dimensionN andA is a nonsingularN byN square matrix

with elements ½aij�. From (B.8), the Jacobian is

J

�
x1; x2; . . . ; xN
y1; y2; . . . ; yN

�
¼ detðA�1Þ ðB:9Þ

whereA�1 is the inversematrix ofA. However, det ðA�1Þ ¼ 1/det (A). Using this in (B.1), along

with

x ¼ A�1y ðB:10Þ
gives

fYðyÞ ¼ ð2pÞ�N=2j detCj�1=2j detAj�1 � exp � 1

2
ðA�1y�mÞTC�1ðA�1y�mÞ

� �
ðB:11Þ

Now det A ¼ detAT and AA�1 ¼ I, the identity matrix. Therefore (B.11) can be written as

fYðyÞ ¼ ð2pÞ�N=2j detACAT j�1=2 � exp � 1

2
½A�1ðy�AmÞ�TC�1 A�1 y�Amð Þ �� �

ðB:12Þ
But the equalities ðABÞT ¼ BTAT and ðA�1ÞT ¼ ðATÞ�1 allow the term inside the braces in

(B.12) to be written as

� 1

2
½ðy�AmÞTðATÞ�1C�1A�1ðy�AmÞ�

Finally, the equality ðABÞ�1 ¼ B�1A�1 allows the above term to be rearranged to

� 1

2

ðy�AmÞTðACATÞ�1ðy�AmÞ�
Thus (B.12) becomes

fYðyÞ ¼ ð2pÞ�N=2j det ACAT j exp � 1

2
ðy�AmÞTðACATÞ�1ðy�AmÞ

� �
ðB:13Þ

We recognize this as a joint Gaussian density function for a random vectorYwith mean vector

E½Y� ¼ Am and covariance matrix ACAT.
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APPENDIXC

PROOF OF THE NARROWBAND
NOISE MODEL

We now show that the narrowband noise model, introduced in Chapter 6, holds. To simplify

notation, let bn(t) = nc(t) cos(v0t þ u)� ns(t) sin(v0t þ u) ðC:1Þ
where bn(t) is the noise representation defined by (C.1) and is not to be confused with the Hilbert

transform. Thus, we must show that

Ef[n(t)� bn(t)]g ¼ 0 ðC:2Þ
Expanding and taking the expectation term by term, we obtain

Ef(n� bn)2g ¼ n2 � 2nbnþ bn2 ðC:3Þ
where the argument, t, has been dropped to simplify notation.

Let us consider the last term in (C.3) first. By the definition of bnðtÞ,
bn2 ¼ E

�½ncðtÞ cosðv0t þ uÞ� nsðtÞ sinðv0t þ uÞ�2�
¼ n2c cos

2ðv0t þ uÞ þ n2s sin
2ðv0t þ uÞ

� 2ncns cosðv0t þ uÞ sinðv0t þ uÞ

¼ 1

2
n2c þ

1

2
n2s ¼ n2

ðC:4Þ

where we have employed the fact that

n2c ¼ n2s ¼ n2 ðC:5Þ
along with the averages

cos2ðv0t þ uÞ ¼ 1

2
þ 1

2
cos2ðv0t þ uÞ ¼ 1

2
ðC:6Þ
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sin2ðv0t þ uÞ ¼ 1

2
� 1

2
cos 2ðv0t þ uÞ ¼ 1

2
ðC:7Þ

and

cosðv0t þ uÞ sinðv0t þ uÞ ¼ 1

2
sin 2ðv0t þ uÞ ¼ 0 ðC:8Þ

Next, we consider nbn. By definition of bnðtÞ, it can be written as

nbn ¼ EfnðtÞ½ncðtÞ cosðv0t þ uÞ� nsðtÞ sinðv0t þ uÞ�g ðC:9Þ
From Figure 6.12,

ncðtÞ ¼ hðt0Þ * ½2nðt0Þ cosðv0t
0 þ uÞ� ðC:10Þ

and

nsðtÞ ¼�hðt0Þ * ½2nðt0Þ sinðv0t
0 þ uÞ� ðC:11Þ

where hðt0Þ is the impulse response of the lowpass filter in Figure 6.12. The argument t0 has been
used in (C.10) and (C.11) to remind us that the variable of integration in the convolution is

different from the variable t in (C.9). Substituting (C.10) and (C.11) into (C.9), we obtain

nn̂ ¼ EfnðtÞhðt0Þ*½2nðt0Þcosðv0t
0 þuÞ�cosðv0tþuÞ

þhðt0Þ*½2nðt0Þ sinðv0t
0 þuÞ� sinðv0tþuÞ�g

¼ Ef2nðtÞhðt0Þ*nðt0Þ½cosðv0t
0 þuÞcosðv0tþuÞ

þ sinðv0t
0 þuÞsinðv0tþuÞ�g

¼ Ef2nðtÞhðt0Þ*½nðt0Þcosv0ðt�t0Þ�g
¼ 2hðt0Þ*½EfnðtÞnðt0Þgcosv0ðt�t0Þ�
¼ 2hðt0Þ*½Rnðt�t0Þcosv0ðt�t0Þ�

/ 2

ð¥
�¥

hðt�t0ÞRnðt�t0Þcosv0ðt�t0Þdt0

ðC:12Þ

Letting u¼ t�t0, gives

nn̂¼2

ð¥
�¥

hðuÞcosðv0uÞRnðuÞdu ðC:13Þ

Now, a general case of Parseval�s theorem isð¥
�¥

xðtÞyðtÞdt¼
ð¥
�¥

Xð f ÞY *ð f Þdf ðC:14Þ

where xðtÞ$Xð f Þ and yðtÞ$Yð f Þ. In (C.13) we note that

h uð Þcosðv0uÞ$1

2
Hð f�f0Þþ 1

2
Hð f þ f0Þ ðC:15Þ

and

RnðuÞ$Snð f Þ ðC:16Þ
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Thus, using (C.14), we may write (C.13) as

nbn¼ð¥
�¥
½Hð f� f0ÞþHð f þ f0Þ�Snð f Þdf ðC:17Þ

which follows because Snð f Þ is real. However, Snð f Þ is nonzero only where

Hð f� f0ÞþHð f þ f0Þ¼1 because it was assumed narrowband. Thus (C.13) reduces to

nbn¼ð¥
�¥

Snð f Þdf ¼ n2ðtÞ ðC:18Þ

Substituting (C.18) and (C.4) into (C.3), we obtain

Efðn�bnÞ2g¼ n2�2n2 þn2� 0 ðC:19Þ
which shows that the mean-square error between nðtÞ and bnðtÞ is zero.
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APPENDIXD

ZERO-CROSSING AND ORIGIN
ENCIRCLEMENT STATISTICS

In this appendix we consider a couple of problems frequently encountered in the study of

FM demodulation of signals in additive Gaussian noise. Specifically, expressions are derived for

the probability of a zero crossing of a bandlimited Gaussian process and for the average rate of

origin encirclement of a constant-amplitude sinusoid plus narrowband Gaussian noise.

n D.1 THE ZERO-CROSSING PROBLEM

Consider a sample function of a lowpass, zero-mean Gaussian process nðtÞ, as illustrated in

Figure D.1. Denote the effective noise bandwidth by W, the power spectral density by Snð f Þ,
and the autocorrelation function by RnðtÞ.

Consider the probability of a zero crossing in a small time interval D s in duration. For D
sufficiently small, so that more than one zero crossing is unlikely, the probability PD� of a

minus-to-plus zero crossing in a time interval D<< 1=2W is the probability that n0 < 0 and

n0 þ _n0D> 0. That is,

PD� ¼ Pr½n0 < 0 and n0 þ _n0D > 0�
¼ Pr½n0 < 0 and n0 > � _n0D; all _n0 	 0�
¼ Pr½� _n0D < n0 < 0; all _n0 	 0�

ðD:1Þ

This can be written in terms of the joint pdf of n0 and _n0, fn0 _n0ðy; zÞ, as

PD� ¼
ð¥
0

� ð0
�zD

fn0 _n0ðy; zÞdy
�
dz ðD:2Þ

where y and z are running variables for n0 and _n0, respectively. Now _n0 is a Gaussian random
variable, since it involves a linear operation on nðtÞ, which is Gaussian by assumption. It can be

shown that

Efn0 _n0g ¼ dRnðtÞ
dt

				
t¼0

ðD:3Þ

706

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Thus, if the derivative of RnðtÞ exists at t ¼ 0, it is zero because RnðtÞmust be even. It follows

that

Efn0 _n0g ¼ 0 ðD:4Þ
Therefore, n0 and _n0, which are samples of n0ðtÞ and dn0ðtÞ=dt, respectively, are statistically
independent, since uncorrelated Gaussian processes are independent. Thus, letting

varfn0g ¼ n20 and varf _n0g ¼ _n20 , the joint pdf of n0 and _n0 is

fn0 _n0ðy; zÞ ¼
expð�y2=2n20Þffiffiffiffiffiffiffiffiffiffiffi

2pn20

q expð�z2=2 _n20Þffiffiffiffiffiffiffiffiffiffiffi
2p _n20

q ðD:5Þ

which, when substituted into (D.2), yields

PD� ¼
ð¥
0

expð�z2=2 _n20Þffiffiffiffiffiffiffiffiffiffiffi
2p _n20

q ð0
�zD

expð�y2=2n20Þffiffiffiffiffiffiffiffiffiffiffi
2pn20

q dy

264
375dz ðD:6Þ

ForD small, the inner integral of (D.6) can be approximated as zD=
ffiffiffiffiffiffiffiffiffiffiffi
2pn20

q
;which allows (D.6)

to be simplified to

PD� ffi Dffiffiffiffiffiffiffiffiffiffiffi
2pn20

q ð¥
0

z
expð�z2=2 _n20Þffiffiffiffiffiffiffiffiffiffiffi

2p _n20

q dz ðD:7Þ

Letting z ¼ z2=2 _n20 yields

PD� ffi D

2p

ffiffiffiffiffiffiffiffiffiffi
n20 _n

2
0

q ð¥
0

_n20 e
�z dz

¼ D
2p

ffiffiffiffiffi
_n20

n20

vuut ðD:8Þ

for the probability of a minus-to-plus zero crossing in D s. By symmetry, the probability of a

plus-to-minus zero crossing is the same. Thus, the probability of a zero crossing inD s, plus or

minus, is

≅ 1/2W

≅ n0 + n0

t
Δ

Δ

Δ

Δ

Intercept = n(0) = n0

= n0Slope =
dn
dt t = 0

n(t) Figure D.1

Sample function of a lowpass Gaussian

process of bandwidth W.
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PD ffi D
p

ffiffiffiffiffi
_n20

n20

vuut ðD:9Þ

For example, suppose that nðtÞ is an ideal lowpass process with the power spectral density

Snð f Þ ¼
1

2
N0; j f j � W

0; otherwise

8<: ðD:10Þ

Thus

RnðtÞ ¼ N0W sinc 2Wt

which possesses a derivative at t ¼ 0. Therefore, n0 and _n0 are independent. It follows that

n20 ¼ varfn0g ¼
ð¥
�¥

Snð f Þdf ¼ Rnð0Þ ¼ N0W ðD:11Þ

and, since the transfer function of a differentiator is Hdð f Þ ¼ j2pf , that

_n20 ¼ var _n0f g ¼
ð¥
�¥
jHdð f Þj2Snð f Þ df ¼

ðW
�W
ð2pf Þ2 1

2
N0 df

¼ 1

3
ð2pWÞ2 N0Wð Þ

ðD:12Þ

Substitution of these results into (D.9) gives

2PD�¼ 2PD þ ¼ PD ¼ D
p

2pWffiffiffi
3
p ¼ 2WDffiffiffi

3
p ðD:13Þ

for the probability of a zero crossing in a small time intervalD s in duration for a randomprocess

with an ideal rectangular lowpass spectrum.

n D.2 AVERAGE RATE OF ZERO CROSSINGS

Consider next the sum of a sinusoid plus narrowband Gaussian noise:

zðtÞ ¼ A cosðv0tÞ þ nðtÞ
¼ A cosðv0tÞ þ ncðtÞ cosðv0tÞ�nsðtÞ sinðv0tÞ ðD:14Þ

where ncðtÞ and nsðtÞ are lowpass processes with statistical properties as described in

Section 6.5. We may write zðtÞ in terms of envelope RðtÞ and phase uðtÞ as
zðtÞ ¼ RðtÞ cos½v0t þ uðtÞ� ðD:15Þ

where

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½A þ ncðtÞ�2 þ n2s ðtÞ

q
ðD:16Þ

and

uðtÞ ¼ tan�1
nsðtÞ

A þ ncðtÞ
� �

ðD:17Þ
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A phasor representation for this process is shown in Figure D.2(a). In Figure D.2(b), a

possible trajectory for the tip of RðtÞ that does not encircle the origin is shown along with uðtÞ
and duðtÞ=dt. In Figure D.2(c), a trajectory that encircles the origin is shown along with uðtÞ
and duðtÞ=dt. For the case in which the origin is encircled the area under du=dtmust be 2p rad.

Recalling the definition of an ideal FM discriminator in Chapter 3, we see that the sketches for

du=dt shown in Figure D.2 represent the output of a discriminator in response to input of an

unmodulated signal plus noise or interference. For a high SNR, the phasor will randomly

fluctuate near the horizontal axis. Occasionally, however, it will encircle the origin as shown in

Figure D.2(c). Intuitively, these encirclements become more probable as the SNR decreases.

Because of its nonzero area, the impulsive type of output illustrated in Figure D.2(c), caused by

an encirclement of the origin, has a much more serious effect on the noise level of the

discriminator output than does the noise excursion illustrated in Figure D.2(b), which has zero

area.

We now derive an expression for the average number of noise spikes per second of the

type illustrated in Figure D.2(c). Only positive spikes caused by counterclockwise origin

R(t)

R(t)

R(t)

nc(t)

–ns(t)
  (t)

A

θ

  (t)θ

  (t)θ

  (t)θ

  (t)θ

π

(a)

(b)

(c)

t=0

t=0

t

π

π–

t

π

π

  (t)θ

t
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t

2

d  /dt

Integral = 0

Integral = 2

d

Figure D.2

Phasor diagrams showing possible trajectories for a sinusoid plus Gaussian noise. (a) Phasor repre-

sentation for a sinusoid plus narrowband noise. (b) Trajectory that does not encircle origin. (c) Trajectory

that does encircle origin.
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encirclements will be considered, since the average rate for negative spikes, which result from

clockwise origin encirclements, is the same by symmetry.

Assume that ifRðtÞ crosses the horizontal axis when it is in the second quadrant, the origin
encirclement will be completed. With this assumption, and considering a small interval D s in

duration, the probability of a counterclockwise encirclement PccD in the interval ð0;DÞ is
PccD ¼ Pr½A þ ncðtÞ < 0 and nsðtÞmakes þ to� zero crossing in ð0;DÞ�
¼ Pr½ncðtÞ <�A�PD�

ðD:18Þ

where PD� is the probability of a minus-to-plus zero crossing in ð0;DÞ as given by (D.13) with
nðtÞ replaced by nsðtÞ, and the statistical independence of ncðtÞ and nsðtÞ has been used. Recall
from Chapter 6 that n2cðtÞ ¼ n2s ðtÞ ¼ n2ðtÞ. If nðtÞ is an ideal bandpass process with single-

sided bandwidth B and power spectral density N0, then n2ðtÞ ¼ N0B, and

Pr ncðtÞ <�A½ � ¼
ð�A
�¥

e�n
2
c=2N0Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pN0B
p dnc ¼

ð¥
A=
ffiffiffiffiffiffi
N0B
p

e�u
2=2ffiffiffiffiffiffi
2p
p du ðD:19Þ

¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=N0B

p
Þ ðD:20Þ

whereQð�Þ is the GaussianQ-function. From (D.13) withW ¼ B=2, which is the bandwidth of
nsðtÞ, we have

PD� ¼ BD
2
ffiffiffi
3
p ðD:21Þ

Substituting (D.20) and (D.21) into (D.18), we obtain

PccD ¼ BD
2
ffiffiffi
3
p Q

ffiffiffiffiffiffiffiffiffi
A2

N0B

s !
ðD:22Þ

The probability of a clockwise encirclement PcD is the same by symmetry. Thus the expected

number of encirclements per second, clockwise and counterclockwise, is

n ¼ 1

D
ðPcD þ PccDÞ

¼ B

2
ffiffiffi
3
p Q

ffiffiffiffiffiffiffiffiffi
A2

N0B

s0@ 1A ðD:23Þ

We note that the average number of encirclements per second increases in direct proportion to

the bandwidth and decreases essentially exponentially with increasing SNR A2=2N0B. We can

see this in Figure D.3, which illustrates n=B as a function of SNR. Figure D.3 also shows the

asymptote as A2=2N0B! 0 of n=B ¼ 1=2
ffiffiffi
3
p ¼ 0:2887.

The results derived above say nothing about the statistics of the number of impulses,N, in a

time interval, T . However, it can be shown that the power spectral density of a periodic impulse

noise process is given by

SIð f Þ ¼ na2 ðD:24Þ
where n is the average number of impulses per second (n ¼ fs for a periodic impulse train) and

a2 is the mean-squared value of the impulse weights ak. A similar result can be shown for
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impulses which have exponentially distributed intervals between them (i.e., Poisson impulse

noise). Approximating the impulse portion of du=dt as a Poisson impulse noise process with

sample functions of the form

xðtÞ/ duðtÞ
dt

				
impulse

¼
X¥
k¼�¥

�2pd t�tkð Þ ðD:25Þ

where tk is a Poisson point process with average rate n given by (D.23), we may approximate

the power spectral density of this impulse noise process as white with a spectral level given by

Sxðf Þ ¼ nð2pÞ2

¼ 4p2Bffiffiffi
3
p Q

ffiffiffiffiffiffiffiffiffi
A2

N0B

s0@ 1A; �¥ < f < ¥ ðD:26Þ

If the sinusoidal signal component in (D.14) is FM modulated, the average number of

impulsespersecondis increasedover thatobtainedfornomodulation. Intuitively, thereasonmay

be explained as follows. Consider a carrier that is FM modulated by a unit step. Thus

zðtÞ ¼ A cosf2p ½ fc þ fduðtÞ�tg þ nðtÞ ðD:27Þ
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Rate of origin encirclements as a

function of SNR.
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where fd � 1
2
B is the frequency-deviation constant in hertz per volt. Because of this frequency

step, the carrier phasor shown in Figure D.2(a) rotates counterclockwise at fd Hz for t > 0.

Since the noise is bandlimited toBHzwith center frequency fc Hz, its average frequency is less

than the instantaneous frequency of the modulated carrier when t > 0. Hence there will be a

greater probability for a 2p clockwise rotation of RðtÞ relative to the carrier phasor if it is

frequency offset by fd Hz (that is,modulated) than if it is not. In otherwords, the average rate for

negative spikes will increase for t > 0 and that for positive spikes will decrease. Conversely,

for a negative frequency step, the average rate for positive spikes will increase and that for

negative spikes will decrease. It can be shown that the result is a net increaseDn in the spike rate
over the case for no modulation, with the average increase approximated by (see Problems D.1

and D.2)

dn ¼ jdf jexp �A2

2N0B

� �
ðD:28Þ

where jdf j is the average of the magnitude of the frequency deviation. For the case

just considered, jdf j ¼ fd . The total average spike rate is then n þ dn. The power spectral

density of the spike noise for modulated signals is obtained by substituting n þ dn for n in

(D.26).

Problems

D.1. Consider a signal-plus-noise process of the form

zðtÞ ¼ A cos½2pð f0 þ fdÞt� þ nðtÞ ðD:29Þ
where nðtÞ is given by

nðtÞ ¼ ncðtÞ cosð2pf0tÞ�nsðtÞ sinð2pf0tÞ ðD:30Þ
Assume that nðtÞ is an ideal bandlimited white-noise

process with double-sided power spectral density equal

to 1
2
N0, for� 1

2
B � f � f0 � 1

2
B, and zero otherwise.Write

zðtÞ as
zðtÞ ¼ A cos½2pð f0 þ fdÞt� þ n0cðtÞ cos½2pð f0 þ fdÞt�

�n0s sin½2pð f0 þ fdÞt�
a. Express n0cðtÞ and n0sðtÞ in terms of ncðtÞ and nsðtÞ.

Find the power spectral densities of n0cðtÞ and n0sðtÞ, Sn0c ð f Þ
and Sn0sð f Þ.

b. Find the cross-spectral density of n0cðtÞ and n0sðtÞ,
Sn0cn0sð f Þ, and the cross-correlation function, Rn0cn0sðtÞ. Are
n0cðtÞ and n0sðtÞ correlated? Are n0cðtÞ and n0sðtÞ, sampled at

the same instant, independent?

D.2.

a. Using the results of Problem D.1, derive Equation

(D.28) with jdf j ¼ fd .

b. Compare equations (D.28) and (D.23) for a

squarewave-modulated FM signal with deviation fd by

letting jdf j ¼ fd and B ¼ 2fd for fd ¼ 5 and 10 for signal-

to-noise ratios ofA2=N0B ¼ 1, 10, 100, 1000. Plot n and dn
versus A2=N0B.
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APPENDIXE

CHI-SQUARE STATISTICS

Useful probability distributions result from sums of squares of independent Gaussian random

variables of the form

Z ¼
Xn
i¼1

X2
i ðE:1Þ

If each of the component random variables, Xi, is zero-mean and has variance s2, the probability

density function of Z is

fZ(z) ¼ 1

sn2n/2Gðn=2Þ z
(n� 2)/2exp

� z

2s2

� �
; z 	 0 ðE:2Þ

The randomvariable Z is known as a central chi-square, or simply chi-square, randomvariable

with n degrees of freedom. In (E.2), GðxÞ is the Gamma function defined as

GðxÞ ¼
ð¥
0

tx� 1expð�tÞ dt; x > 0 ðE:3Þ

The Gamma function has the properties

GðnÞ ¼ ðn� 1ÞGðn� 1Þ ðE:4Þ
and

Gð1Þ ¼ 1 ðE:5Þ
The two preceding equations give, for integer argument n,

GðnÞ ¼ ðn� 1Þ! integer n ðE:6Þ
Also

G
1

2

� �
¼ ffiffiffiffi

p
p ðE:7Þ
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With the change of variables z ¼ y2; the central chi-square distribution with two degrees of

freedom as obtained from (E.2) becomes the Rayleigh pdf, given by

fYðyÞ ¼ y

s2
exp

�y2
2s2

� �
; y 	 0 ðE:8Þ

If the component random variables in (E.1) are not zero mean but have means defined by

EðXiÞ ¼ mi, the resulting pdf of Z is

fzðzÞ ¼ 1

2s2

z

s2

� �ðn� 2Þ=4
exp � zþ s2

2s2

� �
In/2� 1

s
ffiffiffi
z
p
s2

� �
; z 	 0 ðE:9Þ

where

s2 ¼
Xn
i¼1

m2
i ðE:10Þ

and

ImðxÞ ¼
X¥
k¼0

ðx=2Þmþ 2k

k!Gðmþ kþ 1Þ ; x 	 0 ðE:11Þ

is themth-ordermodifiedBessel function of the first kind. The randomvariable defined by (E.9)

is called a noncentral chi-square random variable. If we let n ¼ 2 and make the change of

variables z ¼ y2, (E.9) becomes

fYðyÞ ¼ y

s2
exp � y2þ s2

2s2

� �
I0

sy

s2

� �
; y 	 0 ðE:12Þ

which is known as the Ricean pdf.
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APPENDIXF

QUANTIZATION OF RANDOM PROCESSES

Quantization is important in any application where analog signals are sampled and converted to

digital format for processing and transmission.1

Quantization of a random waveform can be accomplished by sampling at an appropriate

rate, dictated by the sampling theorem, and processing each sample by a zero-memory nonlinear

device defined as follows: Consider a set of Nþ 1 decision levels x0; x1; . . . ; xN and a set of n output

points y1; y2; . . . ; yN . If the input sample X lies in the ith quantizing interval defined by

Ri = fxi�1 < X � xig (F.1)

the quantizer produces the output yi, where yi is itself chosen to be some value in the interval Ri.

The end values are chosen to be equal to the smallest and largest values, respectively, that the

input samplesmay assume. Usually these values are þ¥ and�¥, whereas the output values all have
finite values. IfN = 2n, a unique n-bit binary word can be associated with each output value, and the

quantizer is said to be an n-bit quantizer.2

The input–output characteristic y ¼ QðxÞ of a quantizer has a staircase form. Figure F.1 shows

two possible characteristics. Figure F.1(a) shows a midtread form with an output-quantization

level located at y ¼ 0. Figure F.1(b) shows a midriser form where x¼ 0þ results in y > 0 and

x¼ 0� results in y < 0.

The quantization process can bemodeled as the addition to each input sample of a random-

noise component e ¼ QðXÞ�X, which is dependent on the value of the input X. Figure F.1(c)
shows a plot of the quantizing error e versus the input amplitude X. The quantizing error is

conveniently described as granular noisewhen x1 < X < xN�1 and as overload noisewhen X
is outside of this interval.

The performance of a quantizer can be characterized by the mean-squared distortion,

defined by

D ¼
ð¥
�¥
½QðxÞ�x�2fXðxÞ dx ðF:2Þ

1See Gibson (2002), Chapter 3 for general theory, Chapter 26 for application to PCM, andChapter 81 for speech coding

in cellular radio.
2For a well-written summary of quantization, see Allen Gersho, Quantization. IEEE Communications Society

Magazine, 15: 20–29, September 1977.
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where fXðxÞ is the pdf of the input sampleX. If the number of quantizing levels is very large, the

distortion can be written as

D ¼
XN
i¼1

ðxi
xi�1
ðyi�xÞ2fXðxÞ dx ðF:3Þ

which follows by breaking the region of integration into the separate intervals Ri noting that

QðxÞ ¼ yi when x is in Ri. For largeN, each interval Ri can be made small, and it is reasonable

to approximate fXðxÞ as fXðxiÞ, a constant, within the interval Ri. In this case, the distortion

becomes

D ¼ 1

12

XN
i¼1

fXðxiÞD3
i ðF:4Þ

where it is assumed that yi ¼ ðxi þ xi�1Þ=2 and Di ¼ xi � xi�1 is the length of Ri. Equation

(F.4) implies that the overload points x0 and xN have been chosen so that the overload noise is

negligible compared with the granular noise. If the quantizing intervals are equal in length, that

is, if Di ¼ D, for all i, (F.4) becomes

D ¼ D2

12

XN
i¼1

fXðxiÞD ¼ D2

12
ðF:5Þ

A convenient measure of performance in many cases is the signal-to-noise ratio (SNR),

where the noise power is themean-squared distortionD and the signal power is thevariance,s2,

of the input samples. A symmetrical uniform-interval quantizer is completely specified by

giving the number of levels and either the step size or the overload level V ¼ xN ¼ �x0. The
latter can be given in terms of the loading factor y ¼ V=s, which is commonly chosen to be

y ¼ 4 (four-sigma loading). If y ¼ 4, the step size becomesD ¼ 8s=ðN � 2Þ, which is found by
employing a total amplitude range for the quantizing interval of 8s, with N � 2 levels in that

range. With N¼ 2n  2, it follows from the definition of the SNR that

s2

D
¼ 12s2

ð8s=2nÞ2 ¼
3

16
22n ðF:6Þ

x5
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Figure F.1

Characteristics of quantizers (a) Characteristic of midtread quantizer (b) Characteristic of midriser

quantizer (c) Typical plot of quantizing error versus input.
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which gives

SNR ¼ 10 log10
s2

D

� �
¼ 6:02n� 7:3 dB ðF:7Þ

Thus, the SNR increases by 6 dB per bit for a uniform quantizer. Varying the loading factor

changes the constant term, 7:3, but not the multiplier of n.

For an input having a known pdf, one can optimally select the decision levels

x0; x1; . . . ; xN and the output points such that the mean-squared error is minimized. In fact,

Max3 carried this out for a general kth absolute-value mean-error criterion and tabulated the

optimum quantizer levels for a Gaussian input pdf for various values ofN. The conditions for a

minimum mean-squared error are

x0 ¼ �¥; xN ¼ ¥; xN=2 ¼ 0 ðF:8Þ
ðxi
xi�1
ðx�yiÞ fxðxÞ dx ¼ 0; i ¼ 1; 2; . . . ;N ðF:9Þ

and

xi ¼ yi þ yiþ 1

2
; i ¼ 1; 2; . . . ;N �1 ðF:10Þ

which is obtained by differentiating D with respect to the xis and yis. Equation (F.9) can be

expressed as

yi ¼
ðxi
xi�1

xfXðxÞ dx ðF:11Þ

which means that the output levels are the centroids under fXðxÞ between adjacent boundaries.
These equations lead to closed-form solutions only in certain special cases.

Max suggested an iterative procedure to solve numerically for the values of xi and yi for

Gaussian-distributed signals. Other input amplitude distributions of interest are Laplacian-

distributed and gamma-distributed signals, which are often used to approximate the amplitude

pdf of speech. Paez and Glisson4 determined the optimum quantizer characteristics for

Laplacian-distributed and gamma-distributed signals. For example, for Laplacian-distributed

signals

fXðxÞ ¼
�
a

2

�
expð�ajxjÞ ðF:12Þ

where the rms value is s ¼ ffiffiffi
2
p

=a. The optimum quantizer characteristics for various values of

N are given in Table F.1.

3J. Max, Quantizing for minimum distortion, IRE Transactions Information Theory, IT-6: 7–12, March 1960.
4M. D. Paex and T. H. Glisson, Minimummean-squared-error quantization in speech PCM and DPCM systems. IEEE

Transactions on Communications, COM-20, 225–230, April 1972.
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Table F.1 Optimum Quantizer Characteristics for Laplacian Inputs (s =1)

N¼ 2 N¼ 4 N¼ 8 N¼ 16

i xi yi xi yi xi yi xi yi

0 �¥ �0:707 �¥ �1:810 �¥ �2:994 �¥ �4:316
1 ¥ 0:707 �1:102 �0:395 �2:286 �1:576 �3:605 �2:895
2 1.102 0:395 �1:181 �0:785 �2:499 �2:103
3 ¥ 1:810 �0:504 �0:222 �1:821 �1:504
4 0.504 0.222 �1:317 �1:095
5 1:181 0.785 �0:910 �0:726
6 2:286 1.576 �0:566 �0:407
7 ¥ 2.994 �0:266 �0:126
8 0.266 0.126

9 0.566 0.407

10 0.910 0.726

11 1.317 1.095

12 1.821 1.504

13 2.499 2.103

14 3.605 2.895

15 ¥ 4.316

MSE 0.5 0.1765 0.0548 0.0145

SNR (dB) 3.01 7.53 12.16 18.12
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APPENDIXG

MATHEMATICAL AND NUMERICAL TABLES

This appendix contains several tables pertinent to the material contained in this book. The

tables are

1. The Gaussian Q-Function

2. Trigonometric Identities

3. Series Expansions

4. Integrals

5. Fourier Transform Pairs

6. Fourier Transform Theorems

n G.1 THE GAUSSIAN Q-FUNCTION

In this appendix we examine the Gaussian Q-function in more detail and discuss several

approximations to theQ-function.1 The Gaussian probability density function of unit variance

and zero mean is

ZðxÞ ¼ 1ffiffiffiffiffiffi
2p
p e�x

2=2 ðG:1Þ

and the corresponding cumulative distribution function is

PðxÞ ¼
ðx
�¥

ZðtÞ dt ðG:2Þ

The Gaussian Q-function is defined as2

QðxÞ ¼ 1�PðxÞ ¼
ð¥
x

ZðtÞ dt ðG:3Þ

An asymptotic expansion for QðxÞ, valid for large x, is

QðxÞ ¼ ZðxÞ
x

1� 1

x2
þ 1ð3Þ

x4
� � � � þ ð�1Þ

n
1ð3Þ � � � ð2n� 1Þ

x2n

� �
þ Rn ðG:4Þ

1The information given in this appendix is extracted fromAbramowitz andStegun, (1972) (originally published in 1964

as part of the National Bureau of Standards Applied Mathematics Series 55).
2For x < 0;QðxÞ ¼ 1�QðjxjÞ.
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where the remainder is given by

Rn ¼ ð�1Þnþ 1
1ð3Þ � � � 2n þ 1ð Þ

ð¥
x

ZðtÞ
t2nþ 2

dt ðG:5Þ

which is less in absolute value than the first neglected term. For x 	 3, less than 10% error

results if only the first term in (G.4) is used to approximate the Gaussian Q-function.

A finite-limit integral for theQ-function, which is convenient for numerical integration, is3

QðxÞ ¼
1

p

ðp=2
0

exp

�
� x2

2 sin2f

�
df; x 	 0

1� 1

p

ðp=2
0

exp

�
� x2

2 sin2f

�
df; x < 0

8>>><>>>: ðG:6Þ

The error function can be related to the Gaussian Q-function by

erfðxÞ/ 2ffiffiffiffi
p
p

ðx
0

e�t
2

dt ¼ 1� 2Qð
ffiffiffi
2
p

xÞ ðG:7Þ

The complementary error function is defined as erfc x ¼ 1� erf x so that

QðxÞ ¼ 1

2
erfc

xffiffiffi
2
p
� �

ðG:8Þ

which is convenient for computing values using MATLAB since erfc is a subprogram in

MATLAB but the Q-function is not (unless you have a Communications Toolbox).

Table G.1 A Short Table of Q-Function Values

x Q(x) x Q(x) x Q(x)

0 0.5 1.5 0.066807 3.0 0.0013499

0.1 0.46017 1.6 0.054799 3.1 0.00096760

0.2 0.42074 1.7 0.044565 3.2 0.00068714

0.3 0.38209 1.8 0.035930 3.3 0.00048342

0.4 0.34458 1.9 0.028717 3.4 0.00033693

0.5 0.30854 2.0 0.022750 3.5 0.00023263

0.6 0.27425 2.1 0.017864 3.6 0.00015911

0.7 0.24196 2.2 0.013903 3.7 0.00010780

0.8 0.21186 2.3 0.010724 3.8 7:2348� 10�5

0.9 0.18406 2.4 0.0081975 3.9 4:8096� 10�5

1.0 0.15866 2.5 0.0062097 4.0 3:1671� 10�5

1.1 0.13567 2.6 0.0046612 4.1 2:0658� 10�5

1.2 0.11507 2.7 0.0034670 4.2 1:3346� 10�5

1.3 0.096800 2.8 0.0025551 4.3 8:5399� 10�6

1.4 0.080757 2.9 0.0018658 4.4 5:4125� 10�6

3J. W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal

constellations. IEEE MILCOM�91 Conference Record., Boston, MA, 25.5.1– 25.5.5, November 1991.

M. K. Simon and D. Divsalar, Some new twists to problems involving the Gaussian probability integral. IEEE

Transactions on Communication, 46: 200–210, February 1998.
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A short table of values for QðxÞ is given in Table G.1. Note that values of QðxÞ for x < 0

can be found from the table by using the relationship

Qð�xÞ ¼ 1�QðxÞ ðG:9Þ
For example, from Table G.1, Qð�0:1Þ ¼ 1�Qð0:1Þ ¼ 1� 0:46017 ¼ 0:53983.

n G.2 TRIGONOMETRIC IDENTITIES

cos u ¼ e ju þ e�ju

2

sin u ¼ e ju� e�ju

2j

cos2 u þ sin2 u ¼ 1

cos2 u� sin2 u ¼ cosð2uÞ
2 sin u cos u ¼ sinð2uÞ

cos u cos v ¼ 1

2
cosðu� vÞ þ 1

2
cosðu þ vÞ

sin u cos v ¼ 1

2
sinðu� vÞ þ 1

2
sinðu þ vÞ

sin u sin v ¼ 1

2
cosðu� vÞ� 1

2
cosðu þ vÞ

cosðu� vÞ ¼ cos u cos v � sin u sin v

sinðu� vÞ ¼ sin u cos v � cos u sin v

cos2 u ¼ 1

2
þ 1

2
cosð2uÞ

cos2n u ¼ 1

22n

Xn� 1

k¼0
2

2n

k

 !
cos½2ðn� kÞu� þ

2n

n

 !( )
; n a positive integer

cos2n� 1 u ¼ 1

22n� 2

Xn� 1

k¼0

2n� 1

k

 !
cosð2n� 2k� 1Þu

( )

sin2 u ¼ 1

2
� 1

2
cosð2uÞ

sin2n u ¼ 1

22n

Xn� 1

k¼0
ð�1Þn� k

2
2n

k

 !
cos½2ðn� kÞu� þ

2n

n

 !( )

sin2n� 1 u ¼ 1

22n� 2

Xn� 1

k¼0
ð�1Þnþ k�1 2n� 1

k

 !
sinð2n� 2k� 1Þu

" #
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n G.3 SERIES EXPANSIONS

ðu þ vÞn ¼
Xn
k¼0

�
n

k

�
un� kvk;

�
n

k

�
¼ n!

ðn� kÞ!k!
Letting u ¼ 1 and v ¼ x; where jxj�1 results in the approximations:

ð1 þ xÞn ffi 1 þ nx; ð1� xÞn ffi 1� nx; ð1 þ xÞ1=2 ffi 1 þ 1

2
x

loga u¼ loge u loga e; loge u ¼ ln u ¼ loge a loga u

eu ¼
X¥
k¼0

uk

k!
ffi 1 þ u; juj�1

lnð1 þ uÞ ffi u; juj�1

sin u ¼
X¥
k¼0
ð�1Þk u2k þ 1

ð2k þ 1Þ! ffi u� u3

3!
; juj�1

cos u ¼
X¥
k¼0
ð�1Þk u2k

ð2kÞ! ffi 1� u2

2!
; juj�1

tan u¼ u þ 1

3
u3 þ 2

15
u5 þ � � �

JnðuÞ ffi

(
un

2nn!
1� u2

22ðn þ 1Þ þ
u4

2 � 24ðn þ 1Þðn þ 2Þ � � � �
� �

; juj�1ffiffiffiffiffiffi
2

pu

r
cos

�
u� np

2
� p

2

�
; juj1

I0ðuÞ ffi

(
1 þ u2

22
þ u4

24
þ � � � ffi eu

2=4; 0 � u�1

euffiffiffiffiffiffiffiffiffi
2pu
p ; u1

n G.4 INTEGRALS

G.4.1 IndefiniteÐ
sinðaxÞ dx ¼ �1

a
cosðaxÞÐ

cosðaxÞ dx ¼ 1

a
sinðaxÞÐ

sin2ðaxÞ dx ¼ x

2
� 1

4a
sinð2axÞÐ

cos2ðaxÞ dx ¼ x

2
þ 1

4a
sinð2axÞÐ

x sinðaxÞ dx ¼ a�2½sinðaxÞ� ax cosðaxÞ�Ð
x cosðaxÞ dx ¼ a�2½cosðaxÞ þ ax sinðaxÞ�
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Ð
xm sin x dx¼ �xm cos x þ m

Ð
xm� 1 cos x dxÐ

xm cos x dx¼xm sinx�m

Ð
xm� 1 sinx dxÐ

exp ðaxÞ dx¼ a�1expðaxÞÐ
xmexpðaxÞ dx¼ a�1xmexpðaxÞ� a�1m

Ð
xm� 1expðaxÞ dxÐ

expðaxÞ sinðbxÞ dx¼ ða2 þ b2Þ�1expðaxÞ½a sinðbxÞ� b cosðbxÞ�Ð
expðaxÞ cosðbxÞ dx¼ ða2 þ b2Þ�1expðaxÞ½a cosðbxÞ þ b sinðbxÞ�

G.4.2 Definiteð¥
0

xm� 1

1 þ xn
dx ¼ p=n

sinðmp=nÞ ; n > m > 0Ð p
0
sin2ðnxÞ dx ¼

Ð p
0
cos2ðnxÞ dx ¼ p

2
; n an integerÐ p

0
sinðmxÞ sinðnxÞ dx ¼

Ð p
0
cosðmxÞ cosðnxÞ dx ¼ 0; m 6¼ n; m and n integerÐ p

0
sinðmxÞ cosðnxÞ dx ¼

( 2m

m2� n2
; m þ n odd

0; m þ n evenÐ ¥
0
xa� 1cos bx dx ¼ GðaÞ

ba
cos

pa

2

� �
; 0 < jaj < 1; b > 0Ð ¥

0
xa� 1sin bx dx ¼ GðaÞ

ba
sin

pa

2

� �
; 0 < jaj < 1; b > 0Ð ¥

0
xn expð�axÞ dx ¼ n!

an þ 1
; n an integer and a > 0Ð ¥

0
exp ð�a2x2Þ dx ¼

ffiffiffiffi
p
p
2jajÐ ¥

0
x2nexp ð�a2x2Þ dx ¼ 1 � ð3Þ � ð5Þ � � � ð2n� 1Þ ffiffiffiffipp

2n þ 1a2n þ 1
; a > 0Ð ¥

0
exp ð�axÞ cosðbxÞ dx ¼ a

a2 þ b2
; a > 0Ð ¥

0
exp ð�axÞ sinðbxÞ dx ¼ b

a2 þ b2
; a > 0Ð ¥

0
exp ð�a2x2Þ cosðbxÞ dx ¼

ffiffiffiffi
p
p
2a

exp � b2

4a2

� �Ð ¥
0
x exp ð�ax2ÞIkðbxÞ dx ¼ 1

2a
exp � b2

4a

� �
; a > 0
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ð¥
0

cos ðaxÞ
b2 þ x2

dx ¼ p

2b
exp ð�abÞ; a > 0; b > 0ð¥

0

x sin ðaxÞ
b2 þ x2

dx ¼ p

2
exp ð�abÞ; a > 0; b > 0ð¥

0

sinc ðxÞ dx ¼
ð¥
0

sinc2ðxÞ dx ¼ 1

2

n G.5 FOURIER TRANSFORM PAIRS

Signal Fourier transform

Pðt=tÞ ¼ 1; jtj � t
2

0; otherwise

(
t sincðf tÞ ¼ t

sinðpf tÞ
pf t

2W sincð2WtÞ P
f

2W

� �

Lðt=tÞ ¼ 1� jtj
t
; jtj � t

0; otherwise

8<: t sinc2ðf tÞ

W sinc2ðWtÞ L
f

W

� �

expð�atÞuðtÞ; a > 0
1

ða þ j2pf Þ

t expð�atÞuðtÞ; a > 0
1

ða þ j2pf Þ2

expð�ajtjÞ; a > 0
2a

a2 þ ð2pf Þ2

exp �p
t

t

� �2� �
t exp½ �pðt f Þ2�

dðtÞ 1

1 dð f Þ

cosð2pf0tÞ 1

2
dðf � f0Þ þ 1

2
dðf þ f0Þ

sinð2pf0tÞ 1

2j
dðf � f0Þ� 1

2j
dð f þ f0Þ

uðtÞ 1

j2pf
þ 1

2
dð f Þ

1

ðptÞ � j sgn f ; sgn f ¼
�
1; f > 0

� 1; f < 0P¥
m¼�¥ dðt�mTsÞ fs

P¥
n¼�¥ dðf � n fsÞ; fs ¼ 1

Ts
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n G.6 FOURIER TRANSFORM THEOREMS

Name

Time domain operation

(signals assumed real)

Frequency domain

operation

Superposition a1x1ðtÞ þ a2x2ðtÞ a1X1ð f Þ þ a2X2ð f Þ
Time delay xðt� t0Þ Xð f Þ exp ð�j2pt0 f Þ
Scale change xðatÞ jaj�1X f

a

� �
Time reversal xð�tÞ Xð�f Þ ¼ X
ð f Þ
Duality XðtÞ xð�f Þ
Frequency translation xðtÞ exp ð j2pf0tÞ Xð f � f0Þ
Modulation xðtÞ cosð2pf0tÞ 1

2
Xð f � f0Þ þ 1

2
Xð f þ f0Þ

Convolution* x1ðtÞ
x2ðtÞ X1ð f ÞX2ð f Þ
Multiplication x1ðtÞx2ðtÞ X1ð f Þ
X2ð f Þ
Differentiation

dnxðtÞ
dtn

ð j2pf ÞnXð f Þ

Integration
Ð t
�¥ xðlÞdl Xð f Þ

j2pf
þ 1

2
Xð0Þdð f Þ


x1ðtÞ
x2ðtÞ/
Ð¥
�¥ x1ðlÞx2ðt� lÞdl:
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Adaptive delta modulation, 189
Adaptive equalization, 449
Adaptive filter, 14
Adjacent channel interference, 497
Administrative Radio Conference, 7
Advanced Mobile Phone System, 537
Advanced Technology Satellite, 11
Aliasing, 80
Alphabet, 620
Amplitude density spectrum, 38
Amplitude distortion, 64
Amplitude jitter, 233
Amplitude modulation (AM)

coherent detection, 115
defined, 115
detection gain, 348
effect of interference on, 159–162
effect of noise on, 357–353
efficiency, 117
envelope detection of, 115–117
index, 115
optimal performance of, 667
square law detection of, 204

Amplitude response function, 60
Amplitude-shift keying (ASK), 238, 385,

392, 404
Amplitude spectrum, 38
Analog baseband system, 342
Analog pulse modulation, 182–186
Analog signal, 4
Analog-to-digital conversion (see also

Pulse-code modulation), 384
Analytic signal, 85
Angle modulation (see also Frequency

modulation)
bandwidth of signal, 147–152
demodulation of, 154–159
deviation ratio, 148
effect of noise on, 357–363
frequency deviation, 136
frequency deviation constant, 137
index, 141
interference in, 162–167
narrowband modulation, 138, 149
narrowband-to-wideband conversion,

139, 152–154
phase deviation, 136
phase deviation constant, 137
power in signal, 147–152
spectrum with sinusoidal signal,

141–147
wideband modulation, 149

Antenna coverage, 528–530
Antenna gain, 533
Antipodal signals, 399

Aperiodic signal, 18
A posteriori probability, 14, 563
Apparent carrier, 468
Arithmetical average, 268
Asynchronous system, 385
Atmospheric attenuation, 10
Atmospheric noise, 5
Attenuator noise, 694
Autocorrelation function

deterministic signals, 52
properties, 53, 313
random signals, 305
random pulse train, 314

Available power, 685
Average cost, 557
Average information, 608
Average power, 23
AWGN model, 342

Balanced discriminator, 158
Bandlimited channels, 426–431
Bandlimited white noise, 313
Bandpass limiter, 156
Bandpass signals, 87–89
Bandpass systems, 89–91
Bandwidth

bit-rate, 389
efficiency, 491
efficient modulation, 688–672
expansion factor, 666
limited operation, 626
noise-equivalent, 322–325
relation to risetime, 75–78

Barker sequence, 510
Baseband data transmission, 210, 386–391
Basis set

complete, 27
defined, 25
normalized, 26
orthonormal, 26

Basis vector, 25, 564
Bayes detection, 554–564
Bayes estimation, 554, 585–589
Bayes’ rule, 248, 253
Bent-pipe system, 526, 532–535
Bessel filter, 72
Bessel functions, table of, 142
Bessel polynomial, 72
BIBO stability, 58
Binary random waveform, 314–316
Binary system, 385
Binary unit, 385
Binit, 387
Binomial coefficient, 280
Binomial distribution, 280, 282
Binomial theorem, 281

Biphase-shift keying (BPSK), 405–407
Bit, 211, 387, 607
Bit-rate bandwidth, 389
Bit synchronization, 387
Boltzmann’s constant, 341
Burst-error-correcting code, 657
Butterworth filter, 71–73, 324

Capacity limits, 517
Carrier frequency, 111
Carrier nulls, 144
Carrier reinsertion, 125
Carrier synchronization, 167, 499–502
Carson’s rule, 149
Causal system, 59
Cellular mobile radio, 537–546
Central-limit theorem, 284
Channel

Bandlimited, 422–432
binary erasure, 676
binary symmetric, 615
capacity, 613–617
characteristics, 5–14
continuous, 624
defined, 5
electromagnetic wave, 7–11
fading, 6, 424, 542, 582
feedback, 661–665
guided electromagnetic wave, 11
matrix, 610
measurement, 689–691
memoryless, 609
models, 609–612
multipath, 431–437
noiseless, 614
optical, 12
representation of, 609–612
satellite, 611, 526–537, 695–698
slowly fading, 582
transition probability, 609
transmission, 6–12
types of, 6–12

Channel capacity
binary symmetric channel, 615
continuous channel, 624
defined, 613
noiseless channel, 614

Characteristic function, 275
Chebyshev filter, 72
Chebyshev inequality, 289
Chebyshev polynomial, 72
Chip period, 515
Cochannel interference, 540
Code division multiple access (CDMA),

517
Code synchronization, 520
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Coding
definitions

alphabet, 620
block codes, 626–646
constraint span, 647
efficiency, 620
error vector, 631
generator matrix, 633
Hamming distance, 627
Hamming weight, 627
instantaneous codes, 620
nonblock codes, 620
noninstantaneous codes, 620
parity-check matrix, 631
space-time, 543
syndrome, 632
perfect code, 639
systematic code, 631
word length, 620

for error control
BCH codes, 637–638
block codes, 626–646
burst-error correcting codes, 657
code rate, 627
convolutional codes, 647–657
cyclic codes, 635
Golay codes, 636
group codes, 634
Hamming codes, 634–635
interleaved codes, 657
linear codes, 634
repetition codes, 629
single parity-check codes, 628,
630–635

structure of parity-check codes,
628–634

trellis-coded modulation, 668–671
turbo code, 659
Viterbi decoding (Viterbi algorithm),
650–657

source encoding
described, 384, 617
Huffman, 623
Shannon-Fano, 622

Coherent demodulation, 114, 385, 500
Communication system, 3
Communication theory, 13
Commutator, 195
Companding, 375
Compound event, 246
Complementary error function, 289
Complex envelope, 87
Compressor, 376
Conditional expectation, 272
Conditional entropy, 612
Conditional mean, 587
Conditional probability, 247
Conditional probability density, 260
Conditional risk, 587
Consistent estimate, 592
Constraint span, 647
Continuous-phase modulation (CPM),

668–672
CONUS, 529
Convolution, 40
Convolutional code, 647–657
Convolution theorem, 44
Correlation, 309, 398
Correlation coefficient, 278
Correlation detection, 401
Correlation receiver, 400

Cost of making a decision, 557
Costas phase-lock loop

for carrier synchronization, 438
demodulation of DSB, 114

Courier satellite, 526
Covariance, 278, 304
Cramer-Rao inequality
Cross-correlation function, 316–317
Cross-power, 262
Cross-power spectral density, 316–317
Crosstalk, 195
Cumulative distribution function, 254–256
Cycle-slipping phenomenon, 177
Cyclic codes, 635
Cyclic prefix, 525
Cyclostationary process, 314

Data transmission
Baseband, 210–237, 386–391
with modulation, 391–426

Data vector, 574
Decimation in time, 92
Decision feedback, 449
Decision rule, 577
De-emphasis (see Pre-emphasis)
Delay distortion, 64
Delay spread, 524, 542
Delta function, 21
Delta modulation, 187–190
Demod/remod system, 535–537
Demodulation phase errors, 353–357
Detection, statistical

Bayes detection, 555–559
maximum a posteriori detection, 563
minimum probability of error detection,

562–563
Neyman-Pearson detection, 562

Detection gain
in AM, 358
defined, 345
in DSB, 345
optimal, 666
in SSB, 347

Differential encoding, 409
Differential phase-shift keying (DPSK),

409–417
Differentiation theorem, 43
Diffuse multipath, 6
Digtal audio broadcasting, 522
Digital modulation

amplitude-shift keying (ASK), 238, 385,
392, 403

biphase-shift keying (BPSK), 405–407
differential phase-shift keying (DPSK),

409–417, 485–486
frequency-shift keying (FSK), 238, ,385,

392, 407, 468, 480–485
M-ary PAM, 418
minimum-shift keying (MSK), 465–471
noncoherent FSK, 417
offset quadriphase-shift keying

(OQPSK), 464
phase-shift keying (PSK), 238, 385, 392,

404
quadriphase-shift keying (QPSK), 385,

474–478
staggered QPSK, 464

Digital signal, 4
Digital subscriber lines, 522
Digital telephone system, 197
Digital–to-analog conversion, 384

Dimensionality theorem, 571
Direct sequence (DS) spread-spectrum,

512–519
Dirichlet conditions, 28
Discrete Fourier transform, 91–95
Discriminator, 154
Disjoint sets, 246
Distortion

amplitude, 64
harmonic, 67, 108
intermodulation, 67
nonlinear, 64, 67
phase (delay), 64

Distortionless transmission, 64
Diversity transmission, 439, 585
Dot product, 564
Double-sideband modulation (DSB)

coherent demodulation of, 112
defined, 112
detection gain, 345
effect of interference on, 159–160
effect of noise on, 343–345
optimal performance of, 667

Duality theorem, 43

Earth stations, 530–532
Echo I, 526
Effective carrier, 161
Effective noise temperature, 691
Effective radiated power, 696
Efficient estimate, 592
Electromagnetic spectrum, 8
Electromagnetic-wave propagation

channels, 7–11
Energy, 23
Energy spectral density, 39
Ensemble, 303
Entropy, 608, 621
Envelope, 76, 85
Envelope detection

of AM signals, 115
of FSK signals, 419–423

Envelope-phase representation of noise,
325

Equal gain combining, 439
Equalization

Adaptive, 14
decision-directed, 449
filter, 184, 436
minimum mean-square error, 446–450
transversal implementation, 229
zero-forcing, 442–445

Equivalent noise temperature, 691
Ergodic process, 304, 306
Error correcting codes (see Coding)
Error-detection feedback, 661–665
Error function, 289
Error probability (see specific system)
Estimation

applications
estimation of signal phase, 594–596
pulse amplitude modulation, 593–594

based on multiple oberservations,
589–591

Bayes, 586–588
conditional mean, 587
conditional risk, 587
cost function, 586
Cramer–Rao inequality, 591
Efficient, 592
likelihood equations, 589
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likelihood function, 589
maximum a posteriori (MAP), 587
maximum likelihood, 588–589, 592
multiple observations, 589–591
rule, 586
theory, 585–592
unbiased, 591

Euler’s theorem, 18
Event, 246
Excess phase, 468
Expander, 376
Expectation, 269
Extended source, 618, 621
Eye diagrams, 232–234

Fading, 437–443, 582
Fading margin, 458
False alarm, 559
Fast Fourier transform, 91–95
Fast frequency-shift keying (FFSK), 468
Fast hop, 519
Federal Communications Commission

(FCC), 9
Feedback channels, 661–665
Feedback demodulators

Costas phase-lock loop, 180
phase-lock loop, 167–180

Filter
adaptive, 14
Bessel, 71–73
Butterworth, 71–73, 324
Chebyshev, 71–73
de-emphasis, 167, 362
equalization, 226–231
ideal, 68–70
intermediate-frequency, 134
matched, 14, 394–402
postdetection, 343
predetection, 343, 362
pre-emphasis, 167
radio frequency, 134
reconstruction, 80
transversal, 229
Weiner, 14
whitening, 402

Filtered Gaussian process, 320
Fixed system, 57
Fourier coefficients, 26, 567–568
Fourier series

complex exponential, 28
generalized, 25–27
symmetry properties, 29, 30
trigonometric, 30

Fourier transforms
amplitude and phase spectra, 37
defined, 37
discrete, 91–95
fast, 92
inverse, 31
periodic signals, 50
symmetry properties, 38
table of, 724
theorems, 41–50, 725

Frame, 504
Free distance, 655–671
Free-space loss, 696
Free-space propagation, 695–698
Frequency bands, 8, 9
Frequency deviation, 137, 148
Frequency diversity, 439
Frequency divider, 182
Frequency division multiplexing, 192

Frequency hopped (FH) spread-spectrum,
519

Frequency modulation
bandwidth of signal, 147–150
Carson’s rule, 149
de-emphasis, 166
demodulation of
noiseless, 154–159, 167–180
in the presence of noise, 360–362

deviation constant, 137
deviation ratio, 148
discriminator, 154
effect of interference on, 162–167
effect of noise on, 360–362
index, 145
indirect, 153
narrowband modulation, 138–140
narrowband-to-wideband conversion,

139
optimal performance of, 667
power in signal, 147–152
pre-emphasis in, 166
spectrum with sinusoidal modulation,

141–147
stereophonic broadcasting, 193
threshold effects, 162, 363–371, 373

Frequency multiplier, 181
Frequency reuse, 538
Frequency-shift keying (FSK)

Coherent, 407, 480
M-ary, 480
Noncoherent, 481– 485

Frequency translation, 133–136
Frequency translation theorem, 43
Friis’ formula, 692
Fundamental period, 18
Fundamental theorem of information

theory, 624

Gamma function, 290
Gaussian process, 304
Gaussian Q-function, 288
Generalized Fourier series, 25–28
Generator matrix, 633
Geometric distribution, 284
Geostationary satellite, 528
Global positioning system, 510
Globalstar system, 528
Global system for mobile, 537
Golay code, 636
Gram–Schmidt procedure, 569
Gray code, 419
Ground-wave propagation, 8
Group codes, 634
Group delay, 65
Guard band. 531
Guard time, 532
Guided electromagnetic-wave channels, 11

Halfwave symmetry, 30
Hamming codes, 634–635
Hamming distance, 505, 627
Hamming weight, 628
Handoff, 538
Harmonic term, 31
Hartley, 607
Hermite functions, 569
High-side tuning, 135
Hilbert transforms

analytic signals, 85
defined, 82
properties, 83

History of communications, 2–3
Huffman code, 623
Hybrid spread spectrum, 548

Ideal filters, 68–70
Ideal sampling waveform, 78
Ignition noise, 6
Image frequency, 134
Impulse function, 23
Impulse noise, 6
Impulse response

ideal filters, 69
of linear system, 57

Indirect frequency modulation, 153
Information, 607
Information feedback, 661
Information rate, 617
Information theory, 15, 606–624
Instantaneous sampling, 78
Intangible economy, 1
Integrals (table of), 722–724
Integral-squared error, 26
Integrate-and-dump detector, 386–387,

401
Integration theorem, 44
Intelsat, 526
Interference

adjacent channel, 497
in angle modulation, 162–167
in linear modulation, 159–162
intersymbol, 211, 220–222, 402, 413
multipath, 431–437

Interleaved codes, 657
Intermodulation distortion, 67
International Telecommunications Union

(ITU), 7
Intersatellite communications
Intersymbol interference, 211, 220–222,

402, 413
Ionosphere, 8
Iridium system, 528
Isotropic radiation, 695

Jacobian, 266
Joint entropy, 612
Joint event, 246
Joint probability

cumulative distribution function, 259
density function, 259, 303
matrix, 610

Kraft inequality, 678
Kronecker delta, 26, 494, 568

Laplace approximation, 282
Laser, 11
Last mile problem, 12, 522
Legendre functions, 569
Likelihood function, 589
Likelihood ratio, 558
Limiter, 156
Line codes, 211–220
Linear modulation

amplitude modulation, 115–120
double-sideband modulation, 112–136
interference in, 159–162
single-sideband modulation, 121–129
vertigial-sideband modulation, 129–133

Linear systems
amplitude response, 60
causal, 58–59
definition of, 56
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Linear systems (continued)
distortionless transmission, 64
impulse response, 57
input-output spectra, 62 – 63
phase shift function (phase response), 60
with random input and output, 317–320
response to periodic inputs, 62
superposition integral, 57
time invariant, 56–57
transfer function, 58

Linearly independent vectors, 25
Line codes, 210–220
Line-of-sight propagation, 8
Line spectra, 33–36
Link analysis, 532–537
Local multipoint distribution system

(LMDS), 4
Local oscillator, 134
Lower sideband, 114, 121
Low-side tuning, 135

Manchester data format, 212
Marginal probability, 253
Marker code, 504
M-ary systems, 460–486
Matched filter
correlator implementation, 400
derivation of, 394–396
performance of, 14, 386
whitened, 402

Maximum a posterior (MAP) detection,
573–585

Maximum a posterior (MAP) estimation,
587

Maximum a posterior (MAP) receivers,
573–578

Maximum likelihood estimation, 588
Maximum power transfer, 685
Maximum ratio combining, 439
Max quantizer, 715–718
Mean-square error
in analog systems, 353 – 357
evaluation of, 380

Measure (probability), 246
Message source, 4
Minimax detector, 563
Minimum mean-square error equalization,

380
Minimum probability of error detection,

562–563
Minimum shift-keying (MSK), 465–471
Mixing, 133–136
Model, 17
Modulation
amplitude (AM), 115–120
amplitude-shift keying (ASK), 238, 385,

392, 403
angle (FM and PM), 111, 136–159
bandwidth and power efficient, 668–672
biphase-shift keying (BPSK), 405–407
carrier, 238
continuous-phase, 668
defined, 111
delta (DM), 112
differential phase-shift keying (DPSK),

409–417, 485–486
double-sideband (DSB), 112–136
efficiency, 117
frequency-shift keying (FSK), 238, 385,

392, 407, 468, 480–485
linear, 111, 112–115
M-ary systems, 460–492

multicarrier, 522–526
noncoherent FSK, 417
offset quadriphase-shift keying

(OQPSK), 464
on-off keying, 403
optimum, 667
phase-shift keying (PSK), 238, 385, 392,

404
pulse amplitude (PAM), 182–184,

593–594
pulse-code (PCM), 112, 190–191
pulse-position (PPM), 186
pulse-width (PWM), 184–185
quadrature-amplitude-shift keying

(QASK), 478–480
quadrature double-sideband (QDSB),

354
quadriphase-shift keying (QPSK), 385,

474–478
single-sideband (SSB), 121–129
spread-spectrum, 510–522
staggered QPSK, 464
theory (defined), 13
trellis coded, 668–672
vestigial-sideband (VSB), 129–133

Modulation factor, 115
Modulation index

amplitude modulation, 115
angle modulation, 141
phase-shift keying, 404
pulse-width modulation, 185

Modulation theorem, 43
Moment generating function, 275
Monte Carlo simulation, 605
Multichannel multipoint distribution

system (MMDS), 11
Multipath

data systems analysis in the presence of,
431–437

diffuse, 6
interference, 431
specular, 6
two-ray model, 432

Multiple access, 516
Multiple-input multiple-output (MIMO),

16
Multiple observations, 589
Multiplexing

frequency-division, 192
orthogonal frequency division, 522
quadrature, 132, 193–195, 460–464
time-division, 195–197

Multiplication theorem, 44
Mutual information, 613

Narrowband angle modulation, 138–139
Narrowband noise model

envelope-phase representation,
325–326

power spectral densities, 327–329
quadrature-component representation,

325–329
Narrowband-to-wideband conversion, 139,

152–154
Nat, 607
Negative frequency, 20
Negative modulation factor, 115
Neyman–Pearson detection, 562
Noise

Atmospheric, 5
attenuator, 694
bandlimited white, 313

colored, 402
cosmic, 6
defined, 1
effective temperature, 691
envelope-phase representation, 325
equivalent bandwidth, 322
equivalent temperature, 691
external, 5
extraterrestrial, 6
figure, 687–690
flicker, 6, 685
generation-recombination, 684
half-thermal, 684
impulse, 5–6
internal, 5
measurement, 689–691
multiple access, 532
narrowband model, 325–331, 703–705
nonwhite, 402
one-over–f, 685
quadrature-component representation,

325
quantizing, 373
quantum, 685
shot, 12, 584
sources of, 5–6
spikes, 364
temperature, 691
defined, 691
and figure for an attenuator, 694
and figure for cascade systems, 692

temperature-fluctuation, 685
thermal, 6, 341, 624, 681
white, 313

Noiseless coding theorem, 617
Noncoherent digital system, 581–585
Non-return-to-zero (NRZ) data format,

211
Nonuniform quantizing, 715–718
Norm, 566
Normalized energy, 23
Normalized functions, 26
Normalized power, 23
Norton Circuit, 682
Null event, 246
Null set, 246
Null-zone receiver, 661
Nyquist frequency, 78
Nyquist pulse-shaping criterion, 222–228,

426
Nyquist’s formula, 683
Nyquist’s theorem, 681

Observation space, 574
Offset quadriphase-shift keying (OQPSK),

464
On board processing (OBP), 526, 535
On-off keying, 403
Operating characteristic, 560
Optical channels, 12
Optimal modulation, 666
Optimal threshold, 401
Order of diversity, 440
Origin encirclement, 364, 706–712
Orthogonal set, 564
Orthogonal processes, 317
Orthogonal signals to achieve Shannon’s

bound, 581
binary, 399
detection of M-ary orthogonal signals,

579–581
M-ary, 579
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Orthonormal basis set, 564
Outcomes

equally likely, 244
mutually exclusive, 244

Paley–Weiner criterion, 59
Parameter estimation, 555
Parity check codes, 628
Parseval’s theorem, 27, 31, 398
Partially coherent system, 403
Period, 18
Periodic signal, 18
Phase delay, 65
Phase detector, 167
Phase deviation, 136
Phase distortion, 65–67
Phase-lock loop (PLL)

acquisition, 176–178
Costas, 180
damping factor, 174
for demodulation of FM and PM, 170
for frequency multiplication and

division, 181
linear model, 170–173
lock range, 177
natural frequency, 174
noiseless analysis, 167–180
phase estimation, 170, 594–596
phase plane, 176
steady-state errors, 171–175
threshold extension, 363–371

Phase modulation (see Angle modulation)
Phase-plane, 176
Phase response function, 60
Phase-shift keying (PSK), 238, 385, 392,

404
Phase spectrum, 38
Phase trellis, 469
Phasor signal, 18
Pilot carrier, 499
Planck’s constant, 686
Poisson approximation, 282
Poisson distribution, 282
Poisson sum formula, 51
Polarization diversity, 439
Postdetection filter, 343
Power, 23
Power control, 517
Power-efficient modulation, 668–672
Power gain, 689
Power limited operation, 626
Power margin, 418
Power signal, 23
Power spectral density

deterministic signals, 51–56
line coded data, 213–220
quadrature modulation, 492–499
random signals, 309–310

Preamble, 532
Predetection filter, 343, 362
Pre-emphasis and de-emphasis

to combat interference, 166–167
to combat noise, 362, 376

Probability
axioms of, 245–247
classical (equally likely) definition, 244
conditional, 247
relative frequency definition, 245

Probability density functions
Binomial, 279–282, 290
Cauchy, 297
chi-square, 290

conditional, 260
defined, 256
Gaussian, 278, 284–288, 290, 701
Geometric, 284, 290
Hyperbolic, 290
Joint, 259
jointly Gaussian, 266
Laplacian, 290
lognormal, 290
marginal, 260
mass function, 256
Nakagami–m, 290
one-sided exponential, 290
Poisson, 282, 290
Rayleigh, 267, 290
Ricean, 329–331
sum of independent random variables,

276
uniform, 290

Probability (cumulative) distribution
functions

defined, 254–256
joint, 259
marginal, 260
properties, 255

Processing gain, 515
Pseudo-noise (PN) sequences, 55,

507–510
Pulsars, 6
Pulse-amplitude modulation (PAM),

182–184
Pulse-code modulation (PCM), 190–191
Pulse correlation function, 315
Pulse-position modulation (PPM), 186
Pulse resolution, 75
Pulse-width modulation (PWM), 184–185
Puncturing, 672

Q-function, 288
Quadrature-amplitude-shift keying

(QASK), 478–480
Quadrature-component representation of

noise
Quadrature double-sideband modulation

(QDSB)
definition of, 193–195
effects of noise on, 353–357
optimal performance of, 667

Quadrature multiplexing, 193
Quadriphase-shift keying (QPSK), 385,

474–478
Quanitzing, 372
Quantum noise, 685
Quasars, 6

Radio stars, 6
Rainfall effects, 10
Raised cosine spectra, 223
Random process

autocorrelation, 305
covariance, 305
cyclostationary, 314
ensemble, 302
ensemble average, 305
ergodic, 304, 306
Gaussian, 304
joint pdfs, 302–304
mean, 304
orthogonal, 317
relative frequency description, 301
sample function, 302
sample space, 303

stationary, 304
time average, 306
variance, 304
wide-sense stationary, 304

Random signal, 18
Random telegraph waveform, 308
Random variable

averages of (see Statistical averages),
273

continuous, 254
definition of, 254
discrete, 254
transformation of, 263–267

Random waveform, 301
Ranging, 527
Rayleigh’s energy theorem, 39, 323, 396,

428
Rayleigh fading, 642–644
Receiver, 4–5
Receiver operating characteristic, 560
Receiver structure, 574
Reconstruction filter, 80
Relative frequency, 245
Reliability, 251
Repetition code, 629
Return-to-zero (RZ) data format, 211–213
Rice–Nakagami (Ricean) pdf, 329–331
Ring around, 526
Risetime, 75–76
Rotating phasor, 18

Sallen-Key circuit, 99
Sample function, 302
Sample space, 246
Sampling

bandpass signals, 81–82
lowpass signals, 78–81

Satellite communications, 526–537, 613
Scalar product, 564, 565, 567
Scale-change theorem, 42
Schottky’s theorem, 684
Schwarz inequality, 395, 427, 566–567
Score satellite, 526
Selection combining, 440
Selectivity, 134
Self-synchronization, 213
Sensitivity, 134
Series expansions, 722
Set partitioning, 670
Shannon–Fano codes, 622
Shannon–Hartley law, 624
Shannon’s first theorem (noiseless coding),

617
Shannon limit, 15
Shannon’s theorem, 15, 606, 624
Shift register, 635
Shot noise, 684
Sifting property, 21
Signal

analog, 4
antipodal, 399
aperiodic, 18
classifications, 23
defined, 4, 17
detection, 554
deterministic, 17
digital, 4
dimensionality, 571
energy, 23
message, 4
models, 17–23
periodic, 18
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Signal (continued)
phasor, 18
power, 23
random, 18
space, 25, 464, 474–475, 565
sinusoidal, 24

Signal-to-noise ratio (SNR)
in AM, 347–353
in angle modulation, 357–371
in baseband systems, 342–343
in coherent systems, 353–357
in DSB, 343–345
in FM, 360–371
in PCM, 371–375
in PM, 359–360
in quantizing, 372
in SSB, 345–347

Signum function, 82
Sinc function, 31
Sine-integral function, 78, 572
Single-sideband modulation (SSB)
carrier reinsertion, 125–127
coherent demodulation of, 124–125
defined, 121
detection gain, 348
effect of noise on, 345–347
optimal performance of, 667
phase-shift modulation, 123

Singularity functions
impulse function, 31
rectangular pulse function, 23
unit step, 21

Sinusoidal signal, 24
Skip-wave propagation, 8
Slope overload, 187
Slow hop, 519
Smart antennas, 543
Soft decision metric, 670
Source coding, 606, 617–624
Source extension, 618–620
Space diversity, 439
Spectrum
amplitude, 19, 33, 37
double-sided, 19
line, 19, 33–36
line codes, 210–220
magnitude, 33
phase, 19, 37–38
single-sided, 19
symmetry of, 20, 38

Specular multipath, 6
Spherics, 5
Spike noise, 364
Spin-stabilized satellite, 527
Split-phase data format, 212
Spreading code, 512
Spread-spectrum communications,

510–522
Sputnik, 526
Squared-error cost function, 586
Square-law detectors, 361–363
Squaring loop, 499
Square-well cost function, 586
Stability, 58
Staggered QPSK, 464
Standard deviation, 272
Standard temperature, 689
State diagram, 647
Static, 5
Stationary process, 304
Statistical averages

autocorrelation function, 305
average of a sum, 274
characteristic function, 275
of continuous random variables, 268
correlation coefficient, 278
covariance, 278
of discrete random variables, 268
of functions of a random variable, 269
joint moments, 271
marginal moments, 271
mean, 269
moment generating function, 275
nth moment, 269
standard deviation, 272
variance, 272
variance of a sum, 274

Statistical independence, 248, 260, 274
Statistical irregularity, 301
Step function, 22
Stereophonic broadcasting, 193
Stochastic process, 303
Strict-sense stationary, 304
Subcarrier, 192
Sufficient statistic, 578
Superheterodyne receiver, 134
Superposition integral, 58
Superposition theorem, 42
Suppressed carrier, 115
Survivor, 652
Symbol, 211, 460
Symmetry properties

Fourier coefficients, 20
Fourier transform, 38
of transfer function, 59–60

Synchronous demodulation, 114
Synchronous system, 385
Synchronization

bit, 234
carrier, 167, 499–502
code, 520
early late gate, 510
errors, 403
frame, 197
symbol, 234, 502–504
word, 234, 504–506

Syscom satellite, 526
Syndrome, 632
System

Baseband, 210, 342
BIBO stable, 58
causal, 58–59
defined, 1, 17
distortionless, 64
fixed, 57
gain, 380
identification, 320
impulse response, 57
linear, 56–78
model, 17
time delay, 64
time-invariant, 56
transfer function, 58

Tapped delay-line, 229
Telephone, 197
Television, 133
Thermal noise, 6, 341
Thevenin circuit, 682
Three-axis stabilized, 527
Threshold effect

in AM systems, 351

in FM systems, 363–371
in linear envelope detection, 350–351
in PCM systems, 374
in square-law detection, 351–353

Threshold extension, 371
Threshold of test, 558
Time average autocorrelation, 52, 305
Time-delay theorem, 42
Time diversity, 439
Time-division multiplexing, 195–197
Time-invariant system, 57
Timing error (jitter), 233
Torreri approximation, 639
Total harmonic distortion, 108
Trans–Atlantic cable, 11
Transducer, 4, 5
Transfer function, 58
Tranform theorems, 41–50
Transition probability, 610
Transmitter, 41–50
Trans–Pacific cable, 12
Transversal filter, 229
Trapezoidal integration, 179
Tree diagram, 250, 648
Trellis-coded modulation (TCM),

668–672
Trellis diagram, 648
Triangle inequality, 567
Trigonometric identities, 721
Turbo code, 15, 659
Turbo information processing, 16

Unbiased estimate, 591
Uncertainty, 612
Uniform sampling theorem

for bandpass signals, 81–82
for lowpass signals, 78–81

Upper sideband, 114, 121

Variance, 272
Vector observation, 564
Vector space, 25, 564
Venn diagram, 246, 247
Vertices of a hypercube signaling, 601
Vestigial-sideband modulation (VSB),

129–133
Video carrier, 132
Viterbi algorithm, 650–657
Vocoder, 384
Voltage controlled oscillator (VCO),

167

Wavelength division multiplexing, 12
Weiner filter, 14
Whitening filter, 402
White noise, 313
Wide sense stationary, 304
Weiner–Hopf equations, 446
Wiener–Khinchine theorem

definition of, 53, 309
proof of, 311–312

Wiener optimum filter, 14
Word synchronization, 234, 504–506
World Radio Conference, 7

Y-factor method, 690

Zero-crossing statistics, 706–714
Zero-forcing equalization, 228–231
Zero–ISI condition, 222
Zero-order hold reconstruction, 184
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