Cheatography

Sorting Cheat Sheet by evanescesn09 via cheatography.com/88543/cs/20303/

Sorting

Sorting is rearranging the given data in a specific format- ascending or descending. The purpose of sorting elements is to greatly improve the efficiency of searching while doing computations on the data. In Java, we can sort primitive data (using sorting algorithms), or user-defined data (using Comparable or Comparator interfaces)

We have 2 main kinds of sorting:

 Internal Sorting - done in main memory
 External Sorting - algorithms that use external memory like tape, or a disk for sorting.

External sorting is used when data is too large to fit into main memory.

Bubble Sort Technique Brute Force How? Each element is compared with every other element, and when they are not in correct order, they are swapped Time n^2 Complexity O(1) - because it is done in

place

Merge Sort	
Technique	Divide and Conquer
Best Used	when merging 2 or more already sorted input lists
How?	Dividing the input data into half recursively till each input is of size=1. Then merging the sorted data into one

С

Complexity

By evanescesn09

cheatography.com/evanescesn09/

Merge Sort (cont)		
Time	O(nlogn) - logn to sort half the	
Complexity	data in each recursion, n to	
	merge all the input data to	
	give the final sorted output	
Space	O(n) extra space required	
Complexity	when merging back the	
	sorted data	
Merge Sort does not preserve ordering or		
elements of the same value		

Insertion Sort		
Technique		
Best used	for small data	
Advantages	Preserves insertion order of elements of same values	
How?	Removes an element from the input list and insert into the correct position of the already sorted list.	
Time Complexity	O(n^2)	
Space Complexity	O(1) - because it is done in place	
Quick Sort		
Technique	Divide and Conquer	
How?	Select a pivot element. Split the array into 2 parts - elements less than pivot and elements > pivot. Recursively repeat this process till all the elements are sorted.	
Time Complexity	O(n logn)	
Space Complexity	O(1) - it is done in place	

Published 17th August, 2019. Last updated 17th August, 2019. Page 1 of 1.

Selection Sort Technique Best Used only for small set of data, it doesn't scale well for larger data sets How? Find min value in the list, swap it with element at current index. Repeat the process till the list is sorted. Time O(n^2) Complexity Space O(1) - because it is done in Complexity place

Heap Sort	
Technique	Divide and Conquer
Best Used	Priority Queues
How?	Insert all elements into a heap (minHeap or MaxHeap). Then remove elements from the heap till the heap is empty.
Неар	The main property of a heap is that it always contains the min/max element at the root. As elements are inserted and deleted, the heap makes use of the "heapify" property to ensure that the min/max element is always at the root. So, always the min/max element is returned when the heap is dequeued
Time Complexity	O(nlogn)
Space	O(n)

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com