
11/28/2016

1

Inapproximability

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Inapproximability 29-2

Center Selection and Friends

Metric Center Selection

Instance:

A set V of n sites, distances satisfying the triangle inequality, k,

the number of centers

Objective:

Find a set S ⊆ V such that the maximal (over all sites) distance

from a site to a closest center is as small as possible

Dominating Set

Instance:

A graph G = (V,E).

Objective:

Find a smallest dominating set in G, i.e. a set adjacent to all

nodes in G

Algorithms – Inapproximability 29-3

Center Selection: Hardness of Approximation

Proof

We show how we could use a (2 - ε)-approximation algorithm for

k-Center to solve DOMINATING-SET in poly-time.

Let G = (V, E), k be an instance of DOMINATING-SET

Construct instance G' of k-center with sites V and distances

d(u, v) = 1 if (u, v) ∈ E

d(u, v) = 2 if (u, v) ∉ E

Note that G' satisfies the triangle inequality.

Theorem

Unless P = NP, there is no ρ-approximation algorithm for Metric k-

Center problem for any ρ < 2. (k is considered a part of the input.)

Algorithms – Inapproximability 29-4

Center Selection: Hardness of Approximation

Proof (cntd)

Claim:

G has dominating set of size k iff there exists k centers C* with

r(C*) = 1.

Thus, if G has a dominating set of size k, a (2 - ε)-approximation

algorithm on G' must find a solution C* with r(C*) = 1 since it

cannot use any edge of distance 2.

QED

Algorithms – Inapproximability 29-5

TSP

Proof

Suppose for contradiction that there is an (1+ε)-approximating

algorithm for TSP; that is, for any collection of cities and distances

between them, the algorithm finds a tour of length l such that

We use this algorithm to solve Hamiltonian Cycle in polynomial time

Theorem

Unless P = NP, TSP is not approximable

ε≤
−

OPT

OPTl

Algorithms – Inapproximability 29-6

TSP

For any graph G = (V,E), construct an instance of TSP as follows:

- Let the set of cities be V

- Let the distance between a pair of cities be

- If G has a Hamilton Cycle, then it has a tour of length |V|

- Otherwise the minimal tour is at least

Hence the (1+ε)-approximating algorithm would find a tour of length l

such that





+

∈
=

otherwise

if

||)1(2

),(1
),(

21
21

V

Evv
vvd

ε

ε≤−1
OPT

l
OPT)1(⋅+≤⇒ εl

||)1(2 Vε+

21,vv

11/28/2016

2

Algorithms – Inapproximability 29-7

More Inapproximability

Maximum Independent Set

Instance:

A graph G = (V,E).

Objective:

Find a largest set M ⊆ N such that no two vertices from M are

connected

Maximum Clique

Instance:

A graph G = (V,E).

Objective:

Find a largest clique in G

Algorithms – Inapproximability 29-8

Independent Set vs. Clique

Observation

For a graph G with n vertices, the following conditions are

equivalent

- G has a vertex cover of size k

- G has an independent set of size n – k

- has a clique of size n – kG

Theorem

Unless P = NP, Max Independent Set and Max Clique are not

approximable

Algorithms – Inapproximability 29-9

Proof

We prove a weaker result:

If there is an (1-ε)-approximating algorithm for Max Independent

Set then there is a FPAS for this problem

For a graph G = (V,E), the square of G is the graph such that

- its vertex set is

- is an edge if and only if

},|),{(VvuvuVV ∈=×

2
G

)}',(),',{(vvuu

EvuvuEvu ∈=∈ }','{ },{ andor

1

2

3

(1,1)

(2,1)

(3,1)

(3,2)
(3,3)

(2,3)

(1,3)
(1,2)

Algorithms – Inapproximability 29-10

Independent Set: Hardness of Approximation

Lemma

A graph G has an independent set of size k if and only if

has a independent set of size

Proof

If I is an independent set of G then

is an independent set of

Conversely, if is an independent set of with vertices,

then

- is an independent set of G

- is an independent set of G

2
G

2
k

},|),{(Ivuvu ∈
2

G

2
I

2
G

2
k

}),(|{ 2
vIvuuI some for∈=

}),(|{ 2
IvuvIu ∈=

Algorithms – Inapproximability 29-11

Proof (cntd)

Suppose that a (1-ε)-approximating algorithm exists, working in

time

Let G be a graph with n vertices, and let a maximal independent set

of G has size k

Applying the algorithm to we obtain an independent set of of

size in a time

By Lemma, we can get an independent set of G of size

Therefore, we have an -approximating algorithm

Repeating this process m times, we obtain a -approximation

algorithm working in time

)(
l

nO

2
G

2
G

2)1(kε−)(2l
nO

k⋅− ε1

ε−1
m2 1 ε−

)(2 l
m

nO

Algorithms – Inapproximability 29-12

Proof (cntd)

Given ε’ we need m such that

Then our ε′-approximating algorithm works in a time

')11(2 εε <−−
m

'112 εε −>−
m

)'1log(
2

)1log(
ε

ε
−>

−
m

)'1log(

)1log(
log

ε

ε

−

−
>m

)1log(

)'1log(

2

1

ε

ε

−

−
<

m














−

−

)'1log(

)1log(

ε

ε
l

nO

11/28/2016

3

FPTAS

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – More Approximation II 28-14

Polynomial Time Approximation Scheme

• PTAS. An approximation algorithm for any constant relative error

1 ± ε > 0.

– Load balancing. [Hochbaum-Shmoys 1987]

– Euclidean TSP. [Arora 1996]

• Consequence. PTAS produces arbitrarily high quality solution, but

trades off accuracy for time.

• FPTAS (Fully polynomial approximation scheme)

if the algorithm is polynomial time in the size of the input and 1/ε

Algorithms – More Approximation II 28-15

Knapsack

The Knapsack Problem

Instance:

A set of n objects, each of which has a positive integer value

and a positive integer weight . A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and

they have maximal total value

Example: { 3, 4 } has value 40.

iv

iw

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

Algorithms – Inapproximability 29-16

{ }








−−+−
>−

=∞
=

=

otherwise

if
if
if

),1(),,1(min

 v),1(

0> v0,i

0 v0

),(
i

ii vviOPTwviOPT

vviOPT
viOPT

Knapsack: Dynamic Programming II

OPT(i, v) is min weight subset of items 1, …, i of value exactly v.

Case 1: OPT does not select item i.

OPT selects best of 1, …, i – 1 that achieves exactly value v

Case 2: OPT selects item i.

consumes weight , new value needed is

OPT selects best of 1, …, i – 1 that achieves exactly value

Running time.

V* = optimal value = maximum v such that OPT(n, v) ≤ W.

Not polynomial in input size!

iw ivv −

)()(max
2*
vnOnVO =

V* ≤ n vmax

ivv −

Algorithms – Inapproximability 29-17

Knapsack: FPTAS

Intuition for approximation algorithm.

– Round all values up to lie in smaller range.

– Run dynamic programming algorithm on rounded instance.

– Return optimal items in rounded instance.

Item Value Weight

1 1,734,221 1

2 6,656,342 2

3 18,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 23 6

5 29 7

original instance rounded instance

W = 11

Algorithms – Inapproximability 29-18

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

• vmax = largest value in original instance

• ε = precision parameter

• θ = scaling factor = ε vmax / n

Observation. Optimal solution to problems with or are equivalent.

Intuition. close to v so optimal solution using is nearly optimal;

small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ε).

– Dynamic program II running time is , where







=





=

θ
θ

θ
i

i
i

i

v
v

v
v ˆ,

 ̂ v v

 v v

 ̂ v

 O(n
2 ˆ v max)







=





=

εθ

nv
v ˆ max

max

11/28/2016

4

Algorithms – More Approximation II 28-19

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

Proof:

Let S* be any feasible solution satisfying weight constraint

θ
θ

 





= i

i

v
v

Theorem

If S is the solution found by our algorithm and S* is any other

feasible solution then

(1+ε) vi ≥ vi

i ∈ S*

∑
i ∈ S

∑

Algorithms – More Approximation II 28-20

Knapsack: FPTAS

always round up

solve rounded instance optimally

never round up by more than θ

|S| ≤ n

n θ = ε vmax, vmax ≤ Σi∈S vi

DP alg can take vmax

∑∑
∈∈

≤
**

Si

i

Si

i vv

∑
∈

≤
Si

iv

∑
∈

+≤
Si

iv)(θ

∑
∈

+≤
Si

i nv θ

∑
∈

+≤
Si

iv)1(ε

