Inapproximability

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms - Inapproximability

Center Selection and Friends

Metric Center Selection

Instance:

A set $\,V\,$ of $\,n\,$ sites, distances satisfying the triangle inequality, $\,k,\,$ the number of centers

Objective

Find a set $S \subseteq V$ such that the maximal (over all sites) distance from a site to a closest center is as small as possible

Dominating Set

Instance

A graph G = (V, E).

Objective:

Find a smallest dominating set in $\ G$, i.e. a set adjacent to all nodes in $\ G$

Algorithms - Inapproximability

Center Selection: Hardness of Approximation

Thooron

Proof

We show how we could use a $(2 - \epsilon)$ -approximation algorithm for k-Center to solve DOMINATING-SET in poly-time. Let G = (V, E), k be an instance of DOMINATING-SET

Construct instance G' of k-center with sites V and distances

 $d(u, v) = 1 \text{ if } (u, v) \in E$ $d(u, v) = 2 \text{ if } (u, v) \notin E$

Note that G' satisfies the triangle inequality.

Algorithms - Inapproximability

Center Selection: Hardness of Approximation

Proof (cntd)

Claim:

G has dominating set of size k iff there exists k centers C^* with $r(C^*) = 1$.

Thus, if G has a dominating set of size k, a $(2 - \epsilon)$ -approximation algorithm on G' must find a solution C* with $r(C^*)$ = 1 since it cannot use any edge of distance 2.

QED

Algorithms – Inapproximability

Theorem

TSP

Unless P = NP, TSP is not approximable

Proo

Suppose for contradiction that there is an $(1+\epsilon)$ -approximating algorithm for TSP; that is, for any collection of cities and distances between them, the algorithm finds a tour of length 1 such that

$$\frac{l - OPT}{OPT} \le \varepsilon$$

We use this algorithm to solve Hamiltonian Cycle in polynomial time

Algorithms - Inapproximability

29

TSF

For any graph G = (V,E), construct an instance of TSP as follows:

- Let the set of cities be V
- Let the distance between a pair of cities v_1, v_2 be

$$d(v_1, v_2) = \begin{cases} 1 & \text{if } (v_1, v_2) \in E \\ 2(1+\varepsilon) \mid V \mid & \text{otherwise} \end{cases}$$

- If G has a Hamilton Cycle, then it has a tour of length $\left|V\right|$
- Otherwise the minimal tour is at least $\ 2(1+\varepsilon)\ |V|$

Hence the $(1+\varepsilon)$ -approximating algorithm would find a tour of length l such that

$$\frac{l}{\mathsf{OPT}} - 1 \le \varepsilon \qquad \Rightarrow \qquad l \le (1 + \varepsilon) \cdot \mathsf{OPT}$$

Algorithms - Inapproximability

More Inapproximability

Maximum Independent Set

Instance:

A graph G = (V,E).

Objective:

Find a largest set $\,M\subseteq N\,$ such that no two vertices from $\,M\,$ are connected

Maximum Clique

Instance:

A graph G = (V, E).

Objective:

Find a largest clique in G

Algorithms - Inapproximability

Independent Set vs. Clique

Observation

For a graph G with n vertices, the following conditions are equivalent

- G has a vertex cover of size k
- G has an independent set of size n k
- \overline{G} has a clique of size n k

Theorem

Unless P = NP, Max Independent Set and Max Clique are not approximable

Algorithms - Inapproximability

Proof

We prove a weaker result:

If there is an $(1-\epsilon)$ -approximating algorithm for Max Independent Set then there is a FPAS for this problem

For a graph G = (V,E), the square of G is the graph G^2 such that

- its vertex set is $V \times V = \{(u, v) | u, v \in V\}$
- $\{(u,u'),(v,v')\}$ is an edge if and only if

 $\{u,v\}\!\in E \text{ or } u=v \text{ and } \{u',v'\}\!\in E$

Algorithms - Inapproximability

__

Independent Set: Hardness of Approximation

Lamma

A graph G has an independent set of size k if and only if $\,G^2$ has a independent set of size $\,k^2$

Proof

If I is an independent set of G then $\{(u,v) \mid u,v \in I\}$ is an independent set of G^2

Conversely, if I^2 is an independent set of $\,G^2\,$ with $\,k^2\,$ vertices, then

- $I = \{u \mid (u, v) \in I^2 \text{ for some } v\}$ is an independent set of G
- $I_u = \{v \mid (u, v) \in I^2\}$ is an independent set of G

Algorithms – Inapproximability

29-1

Proof (cntd)

Suppose that a (1- ε)-approximating algorithm exists, working in $O(n^l)$

Let $\,G\,$ be a graph with $\,n\,$ vertices, and let a maximal independent set of $\,G\,$ has size $\,k\,$

Applying the algorithm to G^2 we obtain an independent set of G^2 of size $(1-\varepsilon)k^2$ in a time $O(n^{2l})$

By Lemma, we can get an independent set of G of size $\sqrt{1-\varepsilon} \cdot k$

Therefore, we have an $\sqrt{1-\varepsilon}$ -approximating algorithm

Repeating this process $\,$ m times, we obtain a $^2\sqrt[2^m]{1-\varepsilon}$ -approximation algorithm working in $O(n^{2^ml})$ time

Algorithms - Inapproximability

29-12

Proof (cntd)

Given ϵ^{\prime} we need m such that

$$(1 - 2\sqrt[m]{1 - \varepsilon}) < \varepsilon'$$

$$2\sqrt[m]{1 - \varepsilon} > 1 - \varepsilon'$$

$$\frac{\log(1-\varepsilon)}{2^m} > \log(1-\varepsilon')$$

$$\frac{1}{2^m} < \frac{\log(1 - \varepsilon')}{\log(1 - \varepsilon)}$$
$$m > \log \frac{\log(1 - \varepsilon)}{\log(1 - \varepsilon')}$$

Then our $\,\epsilon'$ -approximating algorithm works in a time $\,O\!\!\!\!/\, n^{\frac{\log(1-\varepsilon)}{\log(1-\varepsilon')}}$

FPTAS

Design and Analysis of Algorithms
Andrei Bulatov

Algorithms - More Approximation II

28-14

Polynomial Time Approximation Scheme

- PTAS. An approximation algorithm for any constant relative error $1\pm\epsilon$ > 0.
 - Load balancing. [Hochbaum-Shmoys 1987]
 - Euclidean TSP. [Arora 1996]
- Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.
- FPTAS (Fully polynomial approximation scheme)
 if the algorithm is polynomial time in the size of the input and 1/ε

Knapsack: Dynamic Programming II

OPT(i, v) is min weight subset of items 1, ..., i of value exactly v. Case 1: OPT does not select item i.

OPT selects best of 1, ..., i - 1 that achieves exactly value v Case 2: OPT selects item i.

consumes weight W_i , new value needed is $v - v_i$ OPT selects best of 1, ..., i - 1 that achieves exactly value $v - v_i$ OPT selects best of 1, ..., i - 1 that achieves exactly value $v - v_i$ OPT $v_i = v_i$ Not polynomial in input size!

Algorithms - Inapproximability Knapsack: FPTAS Intuition for approximation algorithm. - Round all values up to lie in smaller range. - Run dynamic programming algorithm on rounded instance. - Return optimal items in rounded instance. 1 1,734,221 1 1 2 1 2 6,656,342 2 2 7 2 3 18,810,013 5 3 19 5 4 22,217,800 6 4 23 6 5 28,343,199 7 5 29 7 W = 11 original instance rounded instance

Knapsack: FPTAS

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

• \mathbf{v}_{\max} = largest value in original instance

• $\mathbf{\varepsilon}$ = precision parameter

• $\mathbf{\theta}$ = scaling factor = $\mathbf{\varepsilon}\,\mathbf{v}_{\max}/n$ Observation. Optimal solution to problems with \overline{v} or \hat{v} are equivalent.

Intuition. \overline{v} close to \mathbf{v} so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm is fast. Running time. O(n³/ $\mathbf{\varepsilon}$).

- Dynamic program II running time is $o(n^2\,\hat{v}_{\max})$, where $\hat{v}_{\max} = \begin{bmatrix} \frac{v_{\max}}{\theta} \end{bmatrix} = \begin{bmatrix} \frac{n}{\varepsilon} \end{bmatrix}$

Algorithms - More Approximation II

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\bar{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \theta$

If S is the solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in S} v_i \geq \sum_{i\in S^*} v_i$

Let $\,S^{\star}\,$ be any feasible solution satisfying weight constraint

Algorithms - More Approximation II

Knapsack: FPTAS

$$\begin{split} \sum_{i \in S^*} & \nu_i \leq \sum_{i \in S^*} \overline{\nu}_i \\ & \leq \sum_{i \in S} \overline{\nu}_i \end{split} \qquad \text{always round up}$$
 $\leq \sum_{i \in S} \overline{\nu}_i \qquad \text{solve rounded instance optimally}$

4