Inapproximability

Design and Analysis of Algorithms
Andrei Bulatov

1

1/28/2016

‘Algorithms — Inapproximability

Center Selection and Friends

Metric Center Selection
Instance:

Aset V of n sites, distances satisfying the triangle inequality, k,
the number of centers

Objective:
Finda set S <V such that the maximal (over all sites) distance
from a site to a closest center is as small as possible
Dominating Set
Instance:
Agraph G =(V,E).
Objective:

Find a smallest dominating setin G, i.e. a set adjacent to all
nodesin G

Algorithms — Inapproximability 293

Center Selection: Hardness of Approximation

Theorem

Unless P = NP, there is no p-approximation algorithm for Metric k-
Center problem for any p <2. (k is considered a part of the input.)

Proof

We show how we could use a (2 - €)-approximation algorithm for
k-Center to solve DOMINATING-SET in poly-time.

Let G = (V, E), k be an instance of DOMINATING-SET
Construct instance G' of k-center with sites V and distances
d(u,v)=1if (u,v) e E
d(u,v)=2if(u,v)e E
Note that G' satisfies the triangle inequality.

Algorithms — Inapproximability

Center Selection: Hardness of Approximation

Proof (cntd)
Claim:

G has dominating set of size k iff there exists k centers C* with
r(C*=1.

Thus, if G has a dominating set of size k, a (2 - €)-approximation
algorithm on G' must find a solution C* with r(C*) =1 since it
cannot use any edge of distance 2.

QED

Algorithms — Inapproximability 25

TSP

Theorem
Unless P =NP, TSP is not approximable

Proof
Suppose for contradiction that there is an (1+€)-approximating
algorithm for TSP; that is, for any collection of cities and distances
between them, the algorithm finds a tour of length | such that
1-OPT
OPT

<&

We use this algorithm to solve Hamiltonian Cycle in polynomial time

Algorithms — Inapproximability

TSP

Forany graph G = (V,E), construct an instance of TSP as follows:
- Let the set of cities be V
- Let the distance between a pair of cities vi,v> be
d(vl,vz):{l " (VI’YZ)EE
2(1+&)I1V | otherwise
- If G has a Hamilton Cycle, then it has a tour of length |V|
- Otherwise the minimal tour is at least 2(1+&)1V |

Hence the (1+€)-approximating algorithm would find a tour of length 1
such that

L—ISE =

1<(1 -OPT
OPT (I+¢)

296

11/28/2016

"Algorithms — Inapproximability

More Inapproximability

Maximum Independent Set
Instance:
Agraph G=(V,E).
Objective:
Find a largest set M = N such that no two vertices from M are
connected

Maximum Clique
Instance:
Agraph G =(V,E).
Objective:
Find a largest clique in G

‘Algorithms — Inapproximability

Independent Set vs. Clique

Observation
Foragraph G with n vertices, the following conditions are
equivalent
- G has a vertex cover of size k
- G has anindependent set of size n -k
- G hasaclique of size n -k

Theorem
Unless P = NP, Max Independent Set and Max Clique are not
approximable

Algorithms — Inapproximability

Proof

We prove a weaker result:

If there is an (1-g)-approximating algorithm for Max Independent
Set then there is a FPAS for this problem

Foragraph G=(V,E), the square of G isthe graph G such that
- itsvertexsetis VXV ={(u,v)lu,veV}
- {(u,u"),(v,v")} isan edge if and only if
{u,v}e E or u=v and {u',v'}e E

(1,2)
1 (L1 (1.3)

2 2,1 23)

3 (ER)] (33
(32

Algorithms — Inapproximability

Independent Set: Hardness of Approximation

Lemma

Agraph G has an independent set of size k if and onlyif G
has a independent set of size k>

Proof
If | is anindependent set of G then {(u,v)lu,ve I}
is an independent set of G?

Conversely, if 7% is an independent setof G2 with k> vertices,
then

- I={ul(u,v)e I* forsome v} isan independent set of G
- I,=vluve 12} is an independent set of G

29-10

Algorithms — Inapproximability

Proof (cntd)

Suppose that a (1-€)-approximating algorithm exists, working in O(n')
time

Let G be agraphwith n vertices, and let a maximal independent set
of G has size k

Applying the algorithm to G we obtain an independent set of G2 of
size (1—£)k? inatime 0(n?)

By Lemma, we can get an independent set of G of size Vi-€-k

Therefore, we have an ~/1— & -approximating algorithm

Repeating this process m times, we obtain a 2%/1— ¢ -approximation
algorithm working in om*'!) time

29-11

Algorithms — Inapproximability

Proof (cntd)

Given & we need m such that

1-1-¢e)<e'
XN=e>1-¢

log(1-¢) .
T >log(l—-¢€")

RS < log(1-¢")
2" log(1-€)
log(l—-¢)

1
% log(l—¢")

log(1-¢)
Then our &’-approximating algorithm works in a time o[n log(l-¢ ')]

29-12

FPTAS

Design and Analysis of Algorithms
Andrei Bulatov

11/28/2016

Algorithms — More Approximation 11 2814

Polynomial Time Approximation Scheme

+ PTAS. An approximation algorithm for any constant relative error
1+e>0.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

+ Consequence. PTAS produces arbitrarily high quality solution, but
trades off accuracy for time.

+ FPTAS (Fully polynomial approximation scheme)
if the algorithm is polynomial time in the size of the inputand 1/e

Algorithms — More Approximation 1T %15

Knapsack

The Knapsack Problem
Instance:
Asetof n objects, each of which has a positive integer value v;
and a positive integer weight w;. A weight limit W.
Objective:
Select objects so that their total weight does not exceed W, and
they have maximal total value

Example: {3, 4} has value 40.

Algorithms — Inapproximability 29:16

Knapsack: Dynamic Programming Il

OPT(i, v) is min weight subset of items 1, ..., i of value exactly v.
Case 1: OPT does not select item i.
OPT selects best of 1, ...,i—1 that achieves exactly value v

Case 2: OPT selects item i.
consumes weight W;, new value neededis v — Vi

OPT selects best of 1, ...,i—1 that achieves exactly value y — Vi
0 if v=0

e if i=0,v>0
OPTGV =1 opr(i-1) if v > v

min{OPT (i —1,v),w;+OPT (i — Ly —v;) } otherwise
VX < Vi
Running tim O(nzvmax)
* = optimal value = maximum v such that OPT(n,v) <W.
Not polynomial in input size!

Algorithms — Inapproximability 17

Knapsack: FPTAS

Intuition for approximation algorithm.
— Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
— Return optimal items in rounded instance.

1 1734221 1 1 2 1
2 6,656 342 - 2 / 2
B i8 810013 5 =) 3 9 5
4 22 217 800 5 4 23 6
5 28,343 199 7’ 5 29 7
well W- 11
original instance rounded instance

Algorithms — Inapproximability 18

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:
* V. = largest value in original instance
e & = precision parameter 7= [&—‘ 6,%;= [ﬁ—‘
«® = scalingfactor=¢ev,, /n ¢ ¢

max

Observation. Optimal solution to problems with v or ¥ are equivalent.

Intuition. ¥ close to v so optimal solution using v is nearly optimal;
¥ small and integral so dynamic programming algorithm is fast.
Running time. O(n3/).
- Dynamic program Il running time is o(»?s,,,,), where

N v n
b {21

Algorithms — More Approximation II

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v;= [‘%—‘ 0

Theorem
If S is the solution found by our algorithm and S* is any other
feasible solutionthen (1+)> v, > Y v,

ie§ ie 5%

Proof:
Let S* be any feasible solution satisfying weight constraint

11/28/2016

Knapsack: FPTAS

Dvi< 2w

ies”

ies”
<

ieS

<Y +6)

ieS
<> vi+né
€S

<A+

€S

Algorithms — More Approximation 11 2820

always round up

solve rounded instance optimally
never round up by more than 6
S| <n

DP alg can take Vi,

|
ne=¢e Vinao Vimax < Z"ieS Vi

