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Inapproximability

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Inapproximability 29-2

Center Selection and Friends

Metric Center Selection

Instance:  

A set  V  of  n  sites, distances satisfying the triangle inequality,  k, 

the number of centers

Objective:

Find a  set  S ⊆ V  such that the maximal (over all sites) distance 

from a site to a closest center  is as small as possible

Dominating Set

Instance:  

A graph  G = (V,E).

Objective:

Find a smallest dominating set in  G, i.e. a set adjacent to all 

nodes in G
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Center Selection:  Hardness of Approximation

Proof

We show how we could use a (2 - ε)-approximation algorithm for      

k-Center to solve DOMINATING-SET in poly-time.              

Let G = (V, E), k be an instance of DOMINATING-SET 

Construct instance G' of k-center with sites V and distances

d(u, v) = 1 if (u, v) ∈ E

d(u, v) = 2 if (u, v) ∉ E

Note that G' satisfies the triangle inequality.

Theorem

Unless P = NP, there is no  ρ-approximation algorithm for  Metric   k-

Center problem for any  ρ < 2. (k  is considered a part of the input.)
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Center Selection:  Hardness of Approximation

Proof (cntd)

Claim:  

G has dominating set of size  k  iff there exists  k  centers  C*  with 

r(C*) = 1.

Thus, if  G  has a dominating set of size  k, a  (2 - ε)-approximation 

algorithm on  G'  must find a solution  C*  with  r(C*) = 1  since it 

cannot use any edge of distance  2.

QED
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TSP

Proof 

Suppose for contradiction that there is an  (1+ε)-approximating 

algorithm for  TSP;  that is, for any collection of cities and distances 

between them,  the algorithm finds a tour of length  l  such that

We use this algorithm to solve  Hamiltonian Cycle in polynomial time

Theorem

Unless P = NP,   TSP is not approximable
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TSP

For any graph  G = (V,E),  construct an instance of  TSP  as follows:

- Let the set of cities be  V

- Let the distance between a pair of cities              be

- If  G  has a Hamilton Cycle,  then it has a tour of length  |V|

- Otherwise  the minimal tour is at least 

Hence the  (1+ε)-approximating algorithm would find a tour of length  l

such that
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More Inapproximability

Maximum Independent Set

Instance:  

A graph  G = (V,E). 

Objective:

Find a largest set  M ⊆ N  such that no two vertices from  M  are 

connected

Maximum Clique

Instance:  

A graph  G = (V,E).

Objective:

Find a largest clique in  G
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Independent Set vs. Clique

Observation                       

For a graph  G  with  n  vertices, the following conditions are 

equivalent

- G  has a vertex cover of size  k

- G  has an independent set of size  n – k

- has a clique of size  n – kG

Theorem

Unless P = NP, Max Independent Set  and Max Clique  are not 

approximable
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Proof

We prove a weaker result:

If there is an  (1-ε)-approximating algorithm for  Max Independent 

Set  then there is a FPAS for this problem

For a graph  G = (V,E),  the  square of  G  is the graph         such that

- its vertex set is

- is an edge if and only if
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Independent Set:  Hardness of Approximation

Lemma                       

A graph  G  has an independent set of size  k  if and only if       

has a independent set of size

Proof

If  I  is an independent set  of  G  then  

is an independent set of

Conversely,  if        is an independent set of          with          vertices,  

then

- is an independent set of  G

- is an independent set of  G 
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Proof (cntd)

Suppose that a (1-ε)-approximating algorithm exists, working in                

time

Let  G  be a graph with  n  vertices, and let a maximal independent set 

of  G  has size  k

Applying the algorithm to         we obtain an independent set of         of 

size                   in a time

By Lemma, we can get an independent set of  G  of size

Therefore,  we have an              -approximating algorithm

Repeating this process  m  times, we obtain a                -approximation 

algorithm working in                 time
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Proof (cntd)

Given  ε’ we need  m  such that

Then our  ε′-approximating algorithm works in a time
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FPTAS 

Design and Analysis of Algorithms

Andrei Bulatov
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Polynomial Time Approximation Scheme

• PTAS.  An approximation algorithm for any constant relative error    

1 ± ε > 0. 

– Load balancing.  [Hochbaum-Shmoys 1987]

– Euclidean TSP.  [Arora 1996]

• Consequence.  PTAS produces arbitrarily high quality solution, but 

trades off accuracy for time. 

• FPTAS  (Fully polynomial approximation scheme)

if the algorithm is polynomial time in the size of the input and  1/ε
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Knapsack

The Knapsack Problem

Instance:

A set of  n objects, each of which has a positive integer value                              

and a positive integer  weight        .   A weight limit  W.

Objective:

Select objects so that their total weight does not exceed  W, and 

they have maximal total value

Example:  { 3, 4 } has value 40.
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Knapsack:  Dynamic Programming II

OPT(i, v)  is min weight subset of items  1, …, i  of value exactly  v.

Case 1:    OPT does not select item i.

OPT selects best of  1, …, i – 1  that achieves exactly value  v

Case 2:  OPT selects item i.

consumes weight       ,  new value needed is 

OPT selects best of  1, …, i – 1  that achieves exactly value  

Running time.  

V*  =  optimal value  =  maximum  v  such that  OPT(n, v) ≤ W.

Not polynomial in input size!
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Knapsack:  FPTAS

Intuition for approximation algorithm.

– Round all values up to lie in smaller range.

– Run dynamic programming algorithm on rounded instance.

– Return optimal items in rounded instance.

Item Value Weight

1 1,734,221 1

2 6,656,342 2

3 18,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 23 6

5 29 7

original instance rounded instance

W = 11
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  

• vmax = largest value in original instance

• ε = precision parameter

• θ =  scaling factor = ε vmax / n

Observation.  Optimal solution to problems with       or       are equivalent.

Intuition.       close to v so optimal solution using      is nearly optimal;

small and integral so dynamic programming algorithm is fast.

Running time.  O(n3 / ε). 

– Dynamic program II running time is                 ,  where







=





=

θ
θ

θ
i

i
i

i

v
v

v
v ˆ, 

  ̂ v   v 

  v   v 

  ̂ v 

  O(n
2 ˆ v max )







=





=

εθ

nv
v    ˆ max

max



11/28/2016

4

Algorithms – More Approximation II 28-19

Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:

Proof:

Let  S*  be any feasible solution satisfying weight constraint
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Theorem   

If  S  is the solution found by our algorithm and  S*  is any other 

feasible solution then
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Knapsack:  FPTAS

always round up

solve rounded instance optimally

never round up by more than θ

|S| ≤ n

n θ = ε vmax,  vmax ≤ Σi∈S vi
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