

ALUMINUM CONTENT IN EUROPEAN PASSENGER CARS

Prepared for

- Public Summary -10.10.2019

TABLE OF CONTENT

Assessment Scope	3
European Car Production	5
European Electric Vehicle Production	7
Aluminum Content in Cars	9
Aluminum Content by Vehicle Segment	11
Aluminum Content by Vehicle Brand	13
Aluminum Content by Vehicle Model	14
Aluminum Content by Component Group	15
Aluminum Content by Forming Process	19
Aluminum Content Evolution 2016-2028	20
Comparison of Aluminum Content by Powertrain Type	21

ASSESSMENT SCOPE

This assessment of the Aluminum Content in European Passenger Cars encompasses all aluminum applications in a car, includes electric vehicles, and is based on the analysis of a car sample covering nearly 95% of total EU28 production

Scope	Deliverables
 Application scope: Passenger cars Geographic scope: EU 28 (production location in EU 28 - CKD not included) Vehicle sample: accounts for 94.3% of total EU 28 production Vehicle models have been jointly selected with EA 11 pure BEV models included in the sample: BMW 3 Series EV Mercedes Benz EQC Mercedes Benz EQE Sedan Ford C EV Peugeot 208 EV Renault Zoe ZE Jaguar I-Pace Audi e-tron GT Audi e-tron 	 CURRENT ALUMINUM CONTENT IN CARS¹ (2019) Aluminium content by vehicle Component net weight (for components in focus) Forming process / Product form (sheet vs. extruded vs. cast vs. forged) Estimated additional aluminum content by vehicle (subcategories "Other") [For engine blocks, cylinder heads and steering knuckles only] Share of primary vs. secondary aluminum Average aluminium content per vehicle (after extrapolation to whole EU28 production) Average component net weight (for components in focus) by vehicle segment Average net weight of consolidated components in focus segmented by product form Average additional aluminium content per component Average additional aluminium content per component
 Porsche Taycan Volkswagen ID.3 (previously called Neo) Product scope: aluminum components 11 components groups 38 components in focus (see following page) 	 group ALUMINUM CONTENT FORECASTS (2025, 2028²) Total By component group By forming process By component ^[1] Total market exploration for conventional/hybrid-versions only; only selected EV sample analyzed ^[2] 2028 forecasts are modelled based on 2025 aluminum content data and projected 2028 vehicle production using same CAGR as from 2019 to 2025

ASSESSMENT SCOPE

Aluminum applications are classified into 12 component groups. Within a component group, the focus has been set on select main AL components; remaining applications have been considered in the each sub-category "Other"

Component Group	Component	Approach
Engine	Blocks	Research
	Heads	Research
	Head Covers	Research
	Pistons	Research
	Powertrain Mounts	Research
	Oil Pans	Research
	Other Engine	Modelling
Steering		Research
	Suspension Arms	Research
Chassis & Suspension	Steering Knuckles (Front)	Research
	Wheel Carriers (Rear)	Research
	Front & Rear Subframes	Research
	Other Chassis & Suspension	Modelling
Wheels		Research
Brakes		Research
	External Trim	Research
Trim & Interior	Roof Rails	Research
	Interior Trims	Modelling
	Sun roofs	Modelling
	Pans & Tracks	Modelling
Heat Transfer	Heat Exchangers	Modelling
	Heat Shields	Modelling
	Other Heat Transfer	Modelling

Component Group	Component	Approach
Transmission	Transmission Case	Research
	Differential Case	Research
	Transfer Case	Research
	Driveshaft	Research
	Other Transmission	Modelling
	Complete Body Structures	Research
	Shock Towers	Research
Body Structure	Rails	Research
	Radiator Supports	Research
	Structural Parts	Research
	IP Structures	Research
	Floor Group	Research
	Body Side Panels	Research
	Other Body Structure	Modelling
	Hoods	Research
	Fenders	Research
	Liftgates, Decklids & Tailgates	Research
Closures	Front & Rear Doors	Research
	Roofs	Research
	Other Closures	Modelling
Crash Management	Bumpers & Crash Boxes	Research
Electrification	Battery Boxes	Research
	Electric Motor Housing	Research

EUROPEAN CAR PRODUCTION

Car production forecasts expect steady growth, with a CAGR of 1.54% from 2019 to 2025.

The Volkswagen brand leads the European market, accounting alone for approx. 2 million cars produced in the EU28

EUROPEAN CAR PRODUCTION

C-Compact vehicles (e.g. VW Golf, Ford Focus, etc.) make up the majority of the car production (43%). Segment split is expected to remain similar till 2025, though with stronger growth from B-segment and a decrease of A-segment

EUROPEAN ELECTRIC VEHICLE PRODUCTION

Electric vehicle production (BEV and PHEV combined) is expected to rapidly ramp-up, with a CAGR of over 30% between 2019 and 2025

EUROPEAN ELECTRIC VEHICLE PRODUCTION

BEVs are forecasted to grow faster than PHEVs. C-segment will continue to be predominant. Smaller PHEVs will be introduced (B-segment) and C-segment to gain shares

A - Basic B - Sub-Compact C - Compact D - Midsize E - Large

ALUMINUM CONTENT IN CARS (2019)

Average Aluminum Content per Vehicle currently amounts to nearly 179kg and Total Aluminum Content for the whole car market (including electric vehicles) is estimated at 2,989 KT – most of which being aluminum castings

Aluminum Content in Cars (2019)

	Net weight		
	Average Al Content Per Vehicle Total Al Conten		
	179.2 kg	2,989 KT	
Cast	116.0 kg	1,936 KT	
Sheet	34.0 kg	567 KT	
Extrusions*	19.0 kg	317 KT	
Forged	10.2 kg	169 KT	

* Extrusions exclude forging stock

ALUMINUM CONTENT IN CARS (2025)

Average AL Content per Vehicle is expected to increase by approx. 20kg to 198.8kg by 2025, bringing the Total AL Content in European cars to 3,635 KT. AL casting is expected to remain the predominant forming process

Aluminum Content in Cars (2025)

	Net weight		
	Average Al Content Per Vehicle	Total Al Content	
	198.8 kg	3,635 KT	
Cast	118.1 kg	2,161 KT	
Sheet	43.2 kg	789 KT	
Extrusions*	26.7 kg	489 KT	
Forged	10.7 kg	196 KT	

* Extrusions exclude forging stock

ALUMINUM CONTENT BY VEHICLE SEGMENT

While E-segment vehicles have the highest Average AL Content per Vehicle (442kg), C-segment vehicles capture the largest share (36%) of Total AL demand due to the overall volume of C-segment vehicle production

Vehicle Programs with the Highest Average AL Content (Net Weight 2019) per Segment

A - Basic	B - Sub-Compact	C - Compact	D - Midsize	E - Large
Opel Adam	Audi Q2	BMW i3	Jaguar I-Pace	Audi e-tron
2019 Production: ~27K units Total AL Content 2019: 2.6 KT Avg. AL Content 2019: 110kg	2019 Production: ~82K units Total AL Content 2019: 12.5 KT Avg. AL Content 2019: 164kg	2019 Production: ~40K units Total AL Content 2019: 14.5 KT Avg. AL Content 2019: 367kg	2019 Production: ~21K units Total AL Content 2019: 15.0 KT Avg. AL Content 2019: 704kg	2019 Production: ~29K units Total AL Content 2019: 22.8 KT Avg. AL Content 2019: 804kg

ALUMINUM CONTENT BY VEHICLE SEGMENT

The Average AL Content per Vehicle is forecasted to increase by 19.6kg between 2019 to 2025 - only 2.9kg in Asegment vehicles, but up to 38kg in D-segment vehicles. Growth will come from sheet and extrusions

ALUMINUM CONTENT BY VEHICLE BRAND

However, on a per vehicle level, Jaguar Land Rover models have the highest aluminum content. All premium brands are above market average, reversely all volume brands are below average

Average AL Content per Vehicle by Brand

2019, Net Weight in KG

ALUMINUM CONTENT BY VEHICLE MODEL

8 out of the 20 most aluminum-intensive vehicle models belong to the JLR group. The model with the highest AL content however is the Audi e-tron with 804kg AL content (nearly 4.5 times the market average)

Engine and Wheels together represent almost half of Total Aluminum Content in cars (~45%)

*Electrification components includes Battery Box, Battery Cooling and Electric Motor Housing

Engine components and Wheels are by far the largest aluminum contributors. Average AL Content per Vehicle related to Battery Box and Electric Motor Housing will grow fast with the expected accelerated production of EVs

2019 Average Aluminum Content per Vehicle by Component Group

Incl. all powertrain types, Net Weight in kg TOTAL 179.2 Engine 42 Wheels 38 Transmission 19 Chassis 19 Heat Transfer + Battery Cooling 19 **Body Closures** 12 **Body Structure** 14 **Crash Management** Steering Brakes Trims & Interior 1 **Battery Box Electric Motor Housing** Other small parts

Electrification components will be the main growth area by 2025, together with Body Closures. Alone Battery Boxes account for nearly 2/3 of the Average AL Content increase to come

Avg. Aluminum Content Evolution 2016-2025 by Component Group Net Weight in kg

* 2016 numbers do not include Electrification components (i.e. Battery Boxes, Battery Cooling and Electric Motor Housings), and are based on a limited sample of 60 vehicles that has been extrapolated to the whole market. 2016 numbers do also not include the second set of OE wheels that is purchased at the same time as the vehicle

Ē

By 2025, Battery Box and Body Closures appear to be the component groups that will most benefit from the Average Aluminum Content growth. On the contrary, aluminum demand for traditional powertrain components will decrease

Expected AL Gains & Losses within Average AL Content per Vehicle

For the time period 2019 to 2025 (Net Weight in kg)

ALUMINUM CONTENT BY FORMING PROCESS

Cast aluminum represents the large majority of the Total Aluminum Content (in 2016, 2019 as well as in 2025). Extrusions and Sheet will win shares by 2025, mainly driven by demand for Electrification components and Closures

ALUMINUM CONTENT EVOLUTION (2016-2028)

The evolution of Total AL Content is expected to continue on a positive trajectory, with further dynamic growth. The 2028 demand is currently forecasted at approximately 4,160 KT (net weight)

COMPARISON OF ALUMINUM CONTENT BY POWERTRAIN TYPE

BEVs have significantly higher AL Content than their ICE variant, primarily due to the aluminum used for the Battery Box. Overall, the higher the car segment, the larger the difference in AL Content between BEV and ICE variants

COMPARISON OF ALUMINUM CONTENT BY POWERTRAIN TYPE

Large batteries for BEV & PHEV, as well as doubled powertrain components for PHEV, are strong drivers for high Average Aluminum Content. Electric vehicle growth will foster a further increase of the Average Aluminum Content per Vehicle

Average Aluminum Content per Vehicle

THANK YOU

This concludes our presentation. Today's presentation was prepared by DuckerFrontier. To the fullest extent permissible by applicable law, all information contained herein is for informational purposes only and is provided "AS IS". The information is provided (i) with no guaranty of accuracy, completeness, timeliness or that any defects will be corrected and (ii) without any representations, warranties or other contractual terms of any kind including, without limitation, warranties of title, merchantability or fitness for a particular purpose. Even if DuckerFrontier was advised, knew or should have known that claims or damages could arise from the use, misuse or delay of use of the information, DuckerFrontier assumes no legal liability for any direct, indirect, consequential, special, punitive or similar claims or damages. The information contained herein does not represent financial, legal, regulatory or other advice and recommendations from DuckerFrontier. Any use of the information is undertaken at your sole risk.

© 2019 DuckerFrontier. All Rights Reserved.

DUCKERFRONTIER

BANGALORE

BERLIN

DETROIT

LONDON

NEW YORK

PARIS

SHANGHAI

SINGAPORE

WASHINGTON, DC