
redhat.com 

facebook.com/redhatinc 
@redhatnews 

linkedin.com/company/red-hat 

EXECUTIVE SUMMARY

“Cloud native” is a term used to describe applications designed specifically to run on a cloud-

based infrastructure. Typically, cloud-native applications are developed as loosely coupled 

microservices running in containers managed by platforms. These applications anticipate 

failure, and they run and scale reliably even when their underlying infrastructure is experienc-

ing outages. To offer such capabilities, cloud-native platforms impose a set of contracts and 

constraints on the applications running on them. These contracts ensure that the applications 

conform to certain constraints and allow the platforms to automate the management of the con-

tainerized applications.

Many organizations understand the necessity and importance of becoming cloud native, but do 

not know where to start. Ensuring that cloud-native platforms and the containerized applica-

tions that run on them work seamlessly together provides the ability to anticipate failure and the 

reliability to run and scale even when the underlying infrastructure experiences outages. This 

whitepaper describes a number of principles that containerized applications must comply with 

in order to become good cloud-native citizens. Adhering to these principles will help ensure that 

your applications are suitable for automation in cloud-native platforms such as Kubernetes.

PRINCIPLES OF 
SOFTWARE DESIGN:

•	Keep it simple, stupid (KISS)

•	Don’t repeat yourself (DRY)

•	You aren’t gonna need it 

(YAGNI)

•	Separation of concerns (SoC)

RED HAT APPROACH 
TO CLOUD-NATIVE 
CONTAINERS:

•	Single concern principle (SCP)

•	High observability  

principle (HOP)

•	Life-cycle conformance 

principle (LCP)

•	Image immutability  

principle (IIP)

•	Process disposability 

principle (PDP)

•	Self-containment  

principle (S-CP)

•	Runtime confinement  

principle (RCP)

PRINCIPLES OF CONTAINER-BASED 
APPLICATION DESIGN

By Bilgin Ibryam

WHITEPAPER

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat


2redhat.com WHITEPAPER  Principles of container-based application design

PRINCIPLES OF SOFTWARE DESIGN

Principles exist in many areas of life, and they generally represent a fundamental truth or belief 

from which others are derived. In software, principles are rather abstract guidelines, which are sup-

posed to be followed while designing software. They can be applied to any programming language, 

implemented using different patterns, and achieved following different practices.

Typically, patterns and practices are the tools used to achieve the desired outcome of the principles. 

There are fundamental principles for writing quality software from which all the other principles are 

derived. Examples of such principles include:

•	KISS  —  Keep it simple, stupid.

•	DRY — Don’t repeat yourself.

•	YAGNI — You aren’t gonna need it.

•	SoC — Separation of concerns.

Even if these principles do not specify concrete rules, they represent a language and common 

wisdom that many developers understand and refer to regularly.

There are also SOLID (Single responsibility, Open/closed, Liskov substitution, Interface segregation, 

Dependency inversion) principles that were introduced by Robert C. Martin, which represent guide-

lines for writing better object-oriented software. It is a framework consisting of complementary prin-

ciples that are generic and open for interpretation but still give enough direction for creating better 

object-oriented designs. The expectation from SOLID principles is that, when applied, we are more 

likely to create a system that has higher-quality attributes and is more maintainable in the long term.

The SOLID principles use object-oriented primitives and concepts such as classes, interfaces, and 

inheritance for reasoning about object-oriented designs. In a similar way, there also principles for 

designing cloud-native applications in which the main primitive is the container image rather than 

a class. Following these principles, we are more likely to create containerized applications that are 

better suited for cloud-native platforms such as Kubernetes.

RED HAT APPROACH TO CLOUD-NATIVE CONTAINERS

Nowadays, it is possible to put almost any application in a container and run it. But to create a con-

tainerized application that can be automated and orchestrated effectively by a cloud-native platform 

such as Kubernetes requires additional effort.

The ideas below are inspired by many other works such as “The Twelve-Factor App,” in which the 

scope ranges from source code management to application scalability models. However, the scope 

of the following principles is constrained to designing containerized microservices-based applica-

tions for cloud-native platforms such as Kubernetes.  

The principles for creating containerized applications listed below use the container image as the 

basic primitive and the container orchestration platform as the target container runtime environ-

ment. Following these principles will ensure that the resulting containers behave like a good cloud-

native citizen in most container orchestration engines, allowing them to be scheduled, scaled, and 

monitored in an automated fashion. These principles are presented in no particular order.

COMMON CONTAINER-
RELATED BEST 
PRACTICES:

•	Aim for small images.

•	Support arbitrary user IDs.

•	Mark important ports.

•	Use volumes for  

persistent data.

•	Set image metadata.

•	Synchronize host and image.

http://redhat.com


3redhat.com WHITEPAPER  Principles of container-based application design

SINGLE CONCERN PRINCIPLE (SCP)

In many ways, this principle is similar to the single responsibility principle (SRP) from SOLID, which 

advises that a class should have only one responsibility. The motivation behind the SRP is that each 

responsibility is an axis of change and a class should have one — and only one — reason to change.  

The word “concern” in the SCP principle highlights concern as a higher level of abstraction than 

responsibility, and it better describes the scope as a container as opposed to a class. While the main 

motivation for SRP is to have a single reason for a change, the main motivation for SCP is container 

image reuse and replaceability. If you create a container that addresses a single concern, and it  

does it in a feature-complete way, the chances are higher of container image reuse in different appli-

cation contexts.

Thus, the SCP principle dictates that every container should address a single concern and do it well. 

Achieving it is easier than achieving SRP in the object-oriented world, as containers usually manage 

a single process, and most of the time that single process addresses a single concern.

Figure 1. Multiple single-concern containers in one deployment unit

If your containerized microservice needs to address multiple concerns, it can use patterns such 

as sidecar and init-containers to combine multiple containers into a single deployment unit (pod), 

where each container still handles a single concern. Similarly, you can swap containers that address 

the same concern. For example, replace the web server container, or a queue implementation con-

tainer, with a newer and more scalable one.

HIGH OBSERVABILITY PRINCIPLE (HOP)

Containers provide a unified way for packaging and running applications by treating them like a 

black box. But any container aiming to become a cloud-native citizen must provide application pro-

gramming interfaces (APIs) for the runtime environment to observe the container health and act 

accordingly. This is a fundamental prerequisite for automating container updates and life cycles in a 

unified way, which in turn improves the system’s resilience and user experience.

Deployment unit (pod)

CONTAINER 1
Single concern

CONTAINER 2
Single concern

http://redhat.com


4redhat.com WHITEPAPER  Principles of container-based application design

In practical terms, at a very minimum, your containerized application must provide APIs for the 

different kinds of health checks—liveness and readiness. Even better-behaving applications must 

provide other means to observe the state of the containerized application. The application should 

log important events into the standard error (STDERR) and standard output (STDOUT) for log aggre-

gation by tools such as Fluentd and Logstash and integrate with tracing and metrics-gathering librar-

ies such as OpenTracing, Prometheus, and others.

Treat your application as a black box, but implement all necessary APIs to help the platform observe 

and manage your application in the best way possible.

LIFE-CYCLE CONFORMANCE PRINCIPLE (LCP)

The HOP dictates that your container provide APIs for the platform to read from. The LCP dictates 

that your application have a way to read the events coming from the platform. Moreover, apart from 

getting events, the container should conform and react to those events. This is where the name of 

the principle comes from. It is almost like having “write API” in your application to interact with  

the platform.

Figure 2. A container with multiple observability APIs (containers have multiple APIs to enable observability)

Figure 3. A container providing APIs and conforming to platform events

CONTAINERprocess health

readiness

liveness

metrics

tracing

logs

CONTAINER

SIGKILL

SIGTERM

PostStart

PreStop

http://redhat.com


5redhat.com WHITEPAPER  Principles of container-based application design

There are all kind of events coming from the managing platform that are intended to help you 

manage the life cycle of your container. It is up to your application to decide which events to handle 

and whether to react to those events or not. 

But some events are more important than others. For example, any application that requires a  

clean shutdown process needs to catch signal: terminate (SIGTERM) messages and shut down as 

quickly as possible. This is to avoid the forceful shutdown through a signal: kill (SIGKILL) that follows 

a SIGTERM. 

There are also other events, such as PostStart and PreStop, that might be significant to your appli-

cation life-cycle management. For example, some applications need to warm up before service 

requests and some need to release resources before shutting down cleanly.

IMAGE IMMUTABILITY PRINCIPLE (IIP)

Containerized applications are meant to be immutable, and once built are not expected to change 

between different environments. This implies the use of an external means of storing the runtime 

data and relying on externalized configurations that vary across environments, rather than creating 

or modifying containers per environment. Any change in the containerized application should  

result in building a new container image and reusing it across all environments. The same principle  

is also popular under the name of immutable server/infrastructure and used for server/host man-

agement, too.

Figure 4. Immutable container images are used across all environments

Following the IIP principle should prevent the creation of similar container images for different envi-

ronments, but stick to one container image configured for each environment. This principle allows 

practices such as automatic roll-back and roll-forward during application updates, which is an impor-

tant aspect of cloud-native automation.

PROCESS DISPOSABILITY PRINCIPLE (PDP)

One of the primary motivations for moving to containerized applications is that containers need to 

be as ephemeral as possible and ready to be replaced by another container instance at any point in 

time. There are many reasons to replace a container, such as failing a health check, scaling down  

the application, migrating the containers to a different host, platform resource starvation, or 

another issue.

Dev Test Prod

CONTAINER

app.jar

JavaTM

http://redhat.com


6redhat.com WHITEPAPER  Principles of container-based application design

This means that containerized applications must keep their state externalized or distributed and 

redundant. It also means the application should be quick in starting up and shutting down, and even 

be ready for a sudden, complete hardware failure. 

Another helpful practice in implementing this principle is to create small containers. Containers in 

cloud-native environments may be automatically scheduled and started on different hosts. Having 

smaller containers leads to quicker start-up times because before being restarted, containers need 

to be physically copied to the host system.

SELF-CONTAINMENT PRINCIPLE (S-CP)

This principle dictates that a container should contain everything it needs at build time. The con-

tainer should rely only on the presence of the Linux® kernel and have any additional libraries added 

into it at the time the container is built. In addition to the libraries, it should also contain things such 

as the language runtime, the application platform if required, and other dependencies needed to run 

the containerized application.

Figure 5. A containerized application with quick start up and shut down for easy replaceability

Figure 6. Containers should have baked in all dependencies at build time except environment-specific ones.

CONTAINERstart/stop

CONTAINER

app.jar

Java

Configs

Storage

B
u

ild
 tim

e

R
u

n
 tim

e

http://redhat.com


7redhat.com WHITEPAPER  Principles of container-based application design

The only exceptions are things such as configurations, which vary between different environments 

and must be provided at runtime; for example, through Kubernetes ConfigMap.

Some applications are composed of multiple containerized components. For example, a container-

ized web application may also require a database container. This principle does not suggest merging 

both containers. Instead, it suggests that the database container contain everything needed to run 

the database, and the web application container contain everything needed to run the web applica-

tion, such as the web server. At runtime, the web application container will depend on and access the 

database container as needed.

RUNTIME CONFINEMENT PRINCIPLE (RCP)

S-CP looks at the containers from a build-time perspective and the resulting binary with its content. 

But a container is not just a single-dimensional black box of one size on the disk. Containers have 

multiple dimensions at runtime, such as memory usage dimension, CPU usage dimension, and other 

resource consumption dimensions.

Figure 7. A container that declares its runtime resource requirements and respects them at runtime

This RCP principle suggests that every container declare its resource requirements and pass that 

information to the platform. It should share the resource profile of a container in terms of CPU, 

memory, networking, disk influence on how the platform performs scheduling, auto-scaling, capacity 

management, and the general service-level agreements (SLAs) of the container.

In addition to passing the resource requirements of the container, it is also important that the appli-

cation stay confined to the indicated resource requirements. If the application stays confined, the 

platform is less likely to consider it for termination and migration when resource starvation occurs.

CONTAINER

Python

glibc

Memory (R)

C
o

n
ta

in
er

 s
iz

e 
(B

)

CPU (R)

http://redhat.com


Copyright © 2017 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks or registered 
trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus 
Torvalds in the U.S. and other countries.

facebook.com/redhatinc 
@redhatnews 

linkedin.com/company/red-hat 

NORTH AMERICA 
1 888 REDHAT1

EUROPE, MIDDLE EAST, 
AND AFRICA 

00800 7334 2835 
europe@redhat.com

ASIA PACIFIC 
+65 6490 4200 

apac@redhat.com

LATIN AMERICA 
+54 11 4329 7300 

info-latam@redhat.com

ABOUT RED HAT

Red Hat is the world’s leading 
provider of open source 

software solutions, using a 
community-powered approach 

to provide reliable and high-
performing cloud, Linux, 

middleware, storage, and 
virtualization technologies.  
Red Hat also offers award-
winning support, training, 

and consulting services. As 
a connective hub in a global 

network of enterprises, 
partners, and open source 

communities, Red Hat helps 
create relevant, innovative 
technologies that liberate 
resources for growth and 

prepare customers for the 
future of IT.

redhat.com 
#f8808_1017

CONCLUSION

Cloud native is more than an end state — it is a way of working. This whitepaper described a 

number of principles that represent foundational guidelines that containerized applications 

must comply with in order to be good cloud-native citizens. 

In addition to those principles, creating good containerized applications requires familiarity with 

other container-related best practices and techniques. While the principles described above  

are more fundamental and apply to most use cases, the best practices listed below require judg-

ment on when to apply or not apply. Here are some of the more common container-related  

best practices:

•	Aim for small images. Create smaller images by cleaning up temporary files and avoiding the 

installation of unnecessary packages. This reduces container size, build time, and networking 

time when copying container images.

•	Support arbitrary user IDs. Avoid using the sudo command or requiring a specific userid to 

run your container.

•	Mark important ports. While it is possible to specify port numbers at runtime, specifying 

them using the EXPOSE command makes it easier for both humans and software to use  

your image.

•	Use volumes for persistent data. The data that needs to be preserved after a container is 

destroyed must be written to a volume.

•	Set image metadata. Image metadata in the form of tags, labels, and annotations makes your 

container images more usable, resulting in a better experience for developers using  

your images. 

•	Synchronize host and image. Some containerized applications require the container to be 

synchronized with the host on certain attributes such as time and machine ID. 

Here are links to resources with patterns and best practices to help you implement the above-

listed principles more effectively:

•	https://www.slideshare.net/luebken/container-patterns

•	https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices

•	http://docs.projectatomic.io/container-best-practices

•	https://docs.openshift.com/enterprise/3.0/creating_images/guidelines.html

•	https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf

•	https://leanpub.com/k8spatterns/

•	https://12factor.net/

WHITEPAPER  Principles of container-based application design

http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://redhat.com
https://www.slideshare.net/luebken/container-patterns
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices
http://docs.projectatomic.io/container-best-practices
https://docs.openshift.com/enterprise/3.0/creating_images/guidelines.html 
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf 
https://leanpub.com/k8spatterns/ 
https://12factor.net/ 

