
Flexible Reverse Engineering of Web Pages with VAQUISTA

Jean Vanderdonckt, Laurent Bouillon, and Nathalie Souchon

Université catholique de Louvain, Institut d’Administration et de Gestion
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

E-mail: vanderdonckt@qant.ucl.ac.be, lbouillon@ibelgique.com, souchon@qant.ucl.ac.be

Abstract
VAQUISTA allows developers to reverse engineer a

presentation model of a web page according to multiple
reverse engineering options. The alternatives offered by
these options not only widen the spectrum of possible
presentation models but also encourage developers in ex-
ploring multiple reverse engineering strategies. The op-
tions provide filtering capabilities in a static analysis of
HTML code that are targeted either at multiple widgets
simultaneously or at single widgets at a time, for their
attributes and other manipulations. This flexibility is par-
ticularly important when the presentation model is itself
used to migrate the presentation of the web page to other
types of user interfaces, possibly written in different lan-
guages, in different computing platforms.

Keywords: Forward engineering, heuristics, knowledge
bases, interface migration, model-based approach, pres-
entation model, reverse engineering, static analysis, web
page, WML, XML, XHTML.

1. Introduction
Making a web site accessible from the widest range of
computing platforms, including the variation of browsers
on each platform, for the widest range of users is of
course desirable. The technological push of newly mar-
keted access devices—such as Personal Digital Assistants
(PDAs) and Wireless Access Protocol (WAP)-enabled
cellular phones—has exacerbated this need to access the
same web site, from different access devices. With the
demand for Internet access increasing for e-mail, shop-
ping, electronic commerce, current events, and quick in-
formation, the need for Internet-capable access devices
has extended beyond the professional desktop to the
home office, the other rooms of the house, and beyond.
This demand is still increasing, as we will surely become
more dependent on the web for information.

To address these demands, ad hoc development is no
longer believed acceptable in terms of the cost and time
required for software engineering, development and
maintenance. Model-based approaches [13,15,22,25] can
produce a user interface (UI) for a web site in a forward
or reverse engineering manner by exploiting knowledge
[16] captured in various models, such as task [8], domain
[5], presentation [15] and dialog [10] models. However,

most existing web sites have been developed without any
model-based approaches. The growing interest in web site
development has increased the demand for engineering
methods that are more structured than traditional ad hoc
development or “ rush to code” approaches. If the author
wants to make the web site accessible from multiple web
appliances without loosing the development effort de-
ployed for the web site, there is a need to reverse engi-
neering existing web pages to generate models which can
later be exploited in forward engineering.

The problem of migrating the UI of a web page to another
environment is really compounded as many programming
(e.g., C++, Java) or markup (e.g., HTML, WML) lan-
guages exist for many different types of UI (e.g., charac-
ter-oriented, graphical, vocal) for computing platforms
having all their own specific set of constraints (fig. 1).

WML

Nokia Communicator

Ericsson 2000

Palm C

HTML

Microsoft WebTV

TV Set
Top Box

Palm IIIe

Alcatel WebPhone

Workstation
HTML browser

Fixed
phone

Handset

VoiceXML

C++, Java

Pocket
computers

Laptop
computers

Desktop
computers

Hewlett Packard
Jornada

Casio Cassiopea

Low resolution
Mid resolution

High resolution

Wintel machine
Macintosh

TerminalTeletype

Graphical UIsCharacter UIs

Development language

Fig. 1. Different languages for developing different UIs.

The goal of this paper is to address this problem by ex-
amining how a presentation model of a web page can be
reverse engineered to migrate it to another environment.
The remainder of this paper is structured as follows: sec-
tion 2 provides a state of the art of techniques used to ac-
cess an HTML page from other devices than a browser;
section 3 poses the working hypotheses and specifies the
goals and aims assigned to this work; section 4 defines
concepts and techniques used in the VAQUISTA software;
section 5 discusses implementation issues and section 6
concludes the paper by reporting on progress made with
VAQUISTA and some identified shortcomings.

Single context of use
Multiple contexts of use

Single UI model
Single UI model

Multiple UI models

Simple UI
With variation
Without variation

By generation
By convertion
By adaptationWith factorisation

Without factorisation

Fig. 2. Some existing techniques for accessing HTML pages from multiple contexts of use

2. Related Work
Many research and development have already been con-
ducted to address the problem of making a web site ac-
cessible in multiple contexts of use. By context of use, we
hereby refer to as a set of environment parameters de-
scribing a given context in which a particular user (or a
stereotype of user population) is carrying out a particular
interactive task. The notion of context of use, sometimes
used for environment, namely includes user parameters
and software/hardware capabilities. Such parameters as
user preferences, native language, computing platform,
operating system, screen resolution, screen size, UI lan-
guage are typical of a context of use.

When a web site only needs to be accessed in a single
context of use (fig. 2), say for instance from within a
typical Web browser on a Windows-compatible machine,
a single conceptual UI model, leading to a single UI, is
satisfying since there is no need to support other cases.
When supporting multiple contexts of use is requested in
the software requirements, two basic approaches can be
followed:

1. Single UI model-based approach: although multiple
contexts are to be supported, the developer still re-
mains with one comprehensive UI model which may
or may not include variation in its modeling. For in-
stance, a HTML code may incorporate a Java script
detecting the computing platform, the browser name,
and the screen resolution to tailor the presentation de-
pending on these parameters (e.g., for compatibility
with different browsers). Without variation included,
three sub-cases are found:

• By generation: when the starting model initiates
many UIs for different contexts of use. For in-
stance, UIML [1] captures presentation and dialog
specification in a XML-based vocabulary which
can be in turn used to generate Java code for Win-
dows platforms, VoiceXML for telephones, WML
for WAP-compliant cellular phones, and PalmOS
for PalmPilots with appropriate renderers.

• By conversion: when the starting model initiates a
UI to be converted at design-time or run-time to
make it compatible with another context of use.
For example, Vizzavi (www.vizzavi.com) is a web
portal that automatically transforms any HTML
page into decks and cards for WAP devices.
Similarly, [7] describes a web proxy server that

converting HTML into WML by using transfor-
mation heuristics of HTML tags and elements into
WML objects. These heuristics are hard-coded,
but the conversion is transparent for the end-user.

• By adaptation: when the starting model initiates a
single UI that is adapted to a specified context of
use. For example, [9] restructure HTML, XHTML
and XML pages/documents into PalmPilot screens
by classification of original elements and adapta-
tion according to a device and a user model. Di-
gestor [2] provides device-independent access to
web pages by relying on structural page transfor-
mation and sentence elision. This approach pro-
duces results that are more suited to a target con-
text than the previous approach, but deletes text.
Accordion summarization [3] enables users to
browse web pages on small devices using a syn-
tactic page summarization and a browsing mecha-
nism based on structural text units (STUs) to pro-
gressively expand or collapse information.

Fig. 3. Multiple versions for three various contexts of use.

2. Multiple UI model-based approach: the developer
captures into different models the peculiarities of the
different contexts of use to consider. The different
models may or may not share parts that are common
to different contexts of use. For example, Atomica
(www.atomica.com) developed 3 separate models to
support its service on Windows Personal Computer,
Pocket Computer, and HTML browser (fig. 3). In
contrast, a context-sensitive task model [25] identifies
sub-tasks that are common to all different contexts of
use and isolates the rest for other contexts which are
selected according to a decision tree. This gives rise to
multiple UIs that are tailored at design-time.

3. Hypotheses, Aims and Goals
Transformation techniques outlined in section 2 can be
classified according to three orthogonal dimensions:

1. Consistency vs variability: some techniques are aimed
at reproducing the same UI for the different contexts
of use, whatever their constraints are. This process is
questionable: for instance, HTML pages directly ren-
dered on dramatically varying devices are perhaps
cross-platform (or cross-context) consistent, but in-
duce huge scrolling manipulations by the end user. In
contrast, variability attempts to meet the contexts’
constraints, while preserving some consistency, some-
times with no consistency at all.

2. Design-time vs run-time: transformation from one
context to another can be expressed and operated at
design-time (before executing the interactive applica-
tion as in [6]) or at run-time (when executing the in-
teractive application). The first may be interpreted a
smarter approach if local constraints are addressed at a
higher-level than simply the syntactic code level of
the run-time. However, some on-line converters be-
come more and more sophisticated as [3], while
maintaining transparency for the end user who even
do not notice the transformation process.

3. Partial vs total: transformation can be targeted to
support only some sub-tasks in the new context (e.g.,
due to local constraints and limited interaction capa-
bilities, it is impossible to maintain the same level of
usability [23]) or all sub-tasks. In particular, plastic
UIs attempts to cover multiple contexts of use, while
maintaining a predefined threshold of usability at de-
sign-time [23].

Our work is situated in circumstances where an organiza-
tion already developed a web site, but did not consider
multiple contexts of use when designing the web site.
Such a case occurs more frequently than one think not
only in the past when the availability of web appliances
was not that wide, but also today because of lack of time,
resources, budgets, and skills. Yet, this organization does
not want to start again from scratch the next version for

another context of use and does not want to loose the de-
velopment momentum gained in the first design.

Therefore, our goal in this paper is not to reverse engineer
a whole web site to migrate it to another context of use or
to make it accessible for a non-compatible computing
platform. Indeed, interactive applications and web sites
only share limited common characteristics. Rather, our
goal is to migrate highly-interactive parts (e.g., input
forms) of a web page to other context by combining a re-
verse engineering approach first and a forward engineer-
ing approach after (fig. 4).

HTML
page VAQUISTA

Mapping rules
Reverse engi-

neering options

Presentation
model SEGUIA Windows UI

UI generator WML UI

User interface reverse engineering User interface forward engineering

User interface migration

Fig. 4. The complete process envisioned with VAQUISTA.

VAQUISTA (reVerse engineering of Applications by Ques-
tions, Information Selection, and Transformation Alter-
natives) is a software covering the user interface reverse
engineering by recovering a presentation model from a
single HTML page at a time based on mapping rules
(between HTML elements and presentation elements).
This process should support transformation with:

• Variability to explicitly address local constraints,
while maximizing consistency.

• At design-time because the process should obtain a
model that is high-level enough to warrant any future
potential redesigning for migration, even the unfore-
seen. For this purpose, the presentation model should
be stored in an easily manipulable format where ap-
plying redesigning options remains as flexible as pos-
sible.

• As total as possible to factoring out parts of the UI
which may be shared across several contexts of use.

The major requirement of VAQUISTA is that it should
support the reverse engineering in such an intelligent
way that is flexible and developer-controllable enough to
maximize the predictibility of the reverse engineered
model and to encourage the exploration of multiple re-
verse engineering options.

After reviewing the state of the art, we observed that al-
lowing only one single transformation technique, even
the more elaborate, does not address this requirement.
Multiple techniques should be available to the developer
to render both the reverse and the forward engineering
more flexible. This is not possible with built-in capabili-
ties offered by generation, conversion, or adaptation.

The presentation model is then used in a model editor

where the developer can drag and drop elements of the
previous presentation and tailor it to another context. It is
for example possible to redistribute presentation elements
at the individual or aggregate level by drag and drop.
Some software already support the second part of fig. 4.
For instance, SEGUIA automatically generates a Windows
UI from a presentation model by allowing the developer
to explore several layouts [25]. Other generators can be
imagined to map any redesigned presentation model into
a designated context of use. It is optimistically assumed
that developers are powered, trained, and creative
enough to apply high-level redesign options that are ap-
propriate in the forward engineering part. In this second
part, many redesign options may occur to tailor the pres-
entation to a specific context, such as widget resizing
(manual or automated), reallocation of widgets through-
out windows [6], change of widget [14], graceful usabil-
ity degradation [23], and layout rearrangement [25].

4. Reverse Engineering Process in VAQUISTA
The reverse engineering process in VAQUISTA consists in
applying a static analysis of HTML elements belonging
the to source code of a considered web page (sub-section
4.1) and in mapping them onto elements of a presentation
model (sub-section 4.2) using flexible reverse engineering
options (sub-section 4.3).

4.1 The Source: a Web Page Written in HTML
Any web page written in HTMl 4.0 is submitted to a static
analysis. This technique consists in scanning the HTML
code (which is accessible through the Internet) to under-
stand it without executing it [4,17]. This scanning activity
results in identifying types of HTML tags, elements, and
possible attached values (example of fig. 5).

4.2 The Target: a Presentation Model
A presentation model [19,20,22] is a representation of the
visual, haptic, and auditory elements provided by a UI to
its users. For example, a presentation element may be a
window that contains additional elements such as widgets
that appear in that window. This model also includes
static presentation attributes, such as font styles and ori-
entation of button groups. Presentation of web pages is
progressively abstracted using four concepts, the hierar-
chy of which is depicted in fig. 6:
1. Concrete Interaction Object (CIO): this is a real object

belonging to the UI world that any user can see (e.g.,
text, image, animation) or manipulate such as a push
button, a list box, a check box. A CIO is said to be
simple if it cannot be decomposed into smaller CIOs.
A CIO is said to be composite if it can be decomposed
into smaller units. Two categories are distinguished:
presentation CIO, which is any static CIO allowing no
user interaction, and control CIO, which support some
interaction or UI control by the user.

➊

➋

➌

➍

➎

3.1

3.2
3.3
3.4

3.5

Fig. 5. Example of a web page to reverse engineer.
(Rectangles are drawn to facilitate reference in the text –

Source: http://www.acm.org/sigchi/chi2001/registration.html).

2. Abstract Interaction Object (AIO): this consists of an
abstraction of all CIOs from both presentation and be-
havioral viewpoints that is independent of any given
computing platform. AIOs have been used success-
fully for both forward [24] and reverse engineering
[10,14,15]. Each AIO is here identified by a unique
generic name (e.g., check box), general and particular
abstract attributes (e.g., height, width, color, states),
abstract events (e.g., value selection, mouse click),
and abstract primitive (e.g., Pr-EditBoxContent). By
definition, an AIO does not have any graphical ap-
pearance, but each AIO is connected to 0, 1 or many
CIOs having different names and presentations in
various computing platforms. 32 AIOs were described
in a “ is-a” hierarchy of classes into a knowledge base
[25].

Presentation Unit

Logical Window

Composite AIO

Simple AIO

Presentation AIO Control AIO

1-n 1-n

0-n

0-n

0-n

0-n

0-n0-n

= is-a
= can be composed of

1-n 1-n

1-n 1-n

0-n = zero to many
1-n = one to many

Presentation UnitPresentation Unit

Logical WindowLogical Window

Composite AIOComposite AIO

Simple AIOSimple AIO

Presentation AIO Control AIOPresentation AIOPresentation AIO Control AIOControl AIO

1-n 1-n

0-n

0-n

0-n

0-n

0-n0-n

= is-a
= can be composed of

1-n 1-n1-n 1-n

1-n 1-n1-n 1-n

0-n = zero to many
1-n = one to many

Fig. 6. Hierarchy of presentation concepts.

3. Logical Window (LW): this root window can be con-
sidered either as a logical container for AIOs or as a
physical window, a dialog box or a panel. Every win-
dow is itself a composite AIO as it is composed of
other simple or composite AIOs. All LWs are sup-
posed to be physically constrained by the user’s
screen. The three abstractions that have been consid-
ered so far are quite related to existing presentation
objects. However, none of the presentation abstrac-
tions described thus far are closely related to task as-
pects. The following abstraction is introduced for this
purpose.

4. Presentation Unit (PU): a PU is assumed to be the
complete presentation environment required for car-
rying out a particular interactive task. Each PU can be
decomposed into one or many LWs, which may or
may not be all displayed on the screen simultaneously.
Each PU is composed of at least one window called
the basic window, from which it is possible to navi-
gate to the other windows. For instance, a tabbed dia-
log box is here mapped onto a PU, which is itself de-
composed into LWs corresponding to the dialog box
appearances depending on the active tab; conversely, a
web form can be mapped onto a composite AIO in a
particular LW of a given PU.

The concepts of AIO, whether simple of composite, LW,
and PU all belong to the presentation model as presenta-
tion element. Therefore, any presentation model is or-
ganized as a hierarchy of presentation elements, any of –
them potentially being itself decomposed into other pres-
entation elements iteratively.

Graphical UIs traditionally incorporate widgets such as
controls, windows, dialog boxes, and panels. On the one
hand, some of these widgets are also found in web pages,
basically the web pages holding some interaction with the
end user and, on the other hand, web pages also add new
types of presentation elements that are not necessarily

found in traditional UIs (e.g., as in [14]). Therefore, AIOs
which were pretty classic for these traditional UIs may
need to be revisited for web pages in two ways:

1. New AIO definition: a presentation element not pres-
ent in the knowledge base of traditional AIOs needs to
be added along with specific attributes, events, and
primitives. Such elements include for example links,
lists, cells, and forms.

2. Existing AIO enhancing: a presentation element which
already existed in the knowledge base of traditional
AIOs needs to be adapted to model characteristics of
interest which were not modeled before. It could be
expanding the definition of an attribute with new val-
ues, adding new attributes, events, or primitives, and
updating the global element definition. Such elements
include for example image, table, and separator (with
horizontal and vertical lines).

4.3 The Means: Reverse Engineering Options
The transformation of statically analyzed HTML tags,
elements, and associated values into instances of presen-
tation elements is established through mapping tables. For
example, table 1 shows how elements and the associated
values of a text field or password field in HTML are
mapped onto an instance of an edit box AIO with corre-
sponding values of its abstract attributes. In particular,
Value gives the string by default hold in the edit box.

Edit box attributes Input type =
text OR password

NAME name= +TextBox

AT_EDB_MAX_LENGTH maxlength=

AT_EDB_FIELD_LENGTH size=

AT_EDB_STRING value=

Table 1. Example of a simple mapping table.

Extended edit box Text area
NAME name=+EDM
AT_EDM_NB_LIN rows=
AT_EDM_NB_COL cols
AT_EDM_EDITABLE=no disabled
AT_EDM_STRING value=

Table 2. Example of another mapping table.

Table 2 shows another example of a mapping table where
a text area is mapped onto an extended edit box AIO (edit
box with multiple lines of editing). The HTML name is
mapped onto the NAME abstract attribute along with its
value. The number of rows and lines are mapped onto the
AT_EDM_NB_COL and LIN abstract attributes respec-
tively. When the text area is not editable, the flag
AT_EDM_EDITABLE is set to no.

As shown in the related work section, many systems are
using more or less similar pattern matching techniques. In

VAQUISTA, the difference relies in its flexible usage of
these mapping tables through reverse engineering options,
which are classified in the following categories:

• Single-object options are dedicated to one and only
one presentation element at a time. For example, it can
govern the reverse engineering of any occurrences of
a given AIO type. These options are subdived into
two sub-categories:

1. Attributes options: during the reverse engineer-
ing process, some elements and values of HTML
tags are considered principal in their corre-
sponding presentation model (such as the name,
the AIO type, the length) while others are be-
lieved secondary. All principal elements are
automatically reverse engineered, while secon-
dary elements are left to the appreciation of the
developer as they are optional. The developer
can specify that any elements should be taken
into account by checking a check box in the op-
tion box corresponding to the AIO type.

2. Alternative heuristic options: as many tech-
niques, rules, and heuristics can be used to drive
the reverse engineering, the specification of
which technique, rule or heuristic based on
matching tables is left to the appreciation of the
developer. The developer can specify any default
alternative heuristic through the alternative op-
tion box. Here are some examples:

- Text folding: in fig. 5, the sub-title of the
page is divided in two lines. A static analy-
sis which is not semantic based is not able to
infer whether these two lines are semanti-
cally related. Therefore, a folding option
may be specified to tell VAQUISTA to con-
sider any series of subsequent lines as one
presentation element (here, a label). Con-
versely, the unfolding option specifies that
any such series should be reverse engi-
neered into several instances of a label AIO
with a relationship between to keep their se-
quence.

- Table mapping: fig. 5 hold a table specify-
ing conference tutorial choices. Again, no
static analysis can deduce from this structure
whether it is more appropriate to consider
the table line by line or column by column.
The table mapping option allows the devel-
oper to drive any reverse engineering of a
table by generating a presentation element
for each line or each column, possible with a
header. Each line or column is then recur-
sively decomposed into a series of presenta-

tion elements representing the table cells.
Again, each cell can be reverse engineered
into many different AIO types, depending
on its contents. If each cell is occupied by a
widget, then the corresponding AIO may be
selected. If not, the cell AIO might be pre-
ferred.

- Cell span: fig. 5 also contains some cells
which are spanning over several columns
(which can be detected for instance with
COLSPAN=2 in this case). Again, an option
may be specified to have a cell covering two
columns in this line or to keep the line as a
sequence of 3 presentation elements if the
layout is not considered important.

• Multiple-objects options are defined with a scope of
several presentations elements simultaneously, possi-
bly widespread in the HTML page or possible of dif-
ferent AIO types. A representative example is the
FORM tag in HTML which can hold several other
types of presentation elements. HTML forms can be
reverse engineered to different instances of different
AIO types. When transforming HTML to WML for
instance, a multiple-object option may specify which
AIO type to use to perform the reverse engineering: a
simple table, an indexed sub-tree or a list [7]. HTML
forms contain a group of user-input elements all of
them being reverse engineered easily. However, the
graphical layout and most of the grouping of the user-
input elements should not be lost in the process. To
preserve this, fifteen layout relationships (described in
[25]) are available to capture left, right, center, total
justification, top/bottom alignments, horizon-
tal/vertical distribution, horizontal/vertical equilib-
rium, etc. User-input elements on a form are con-
verted into a single card, for instance, where they ap-
pear in the same order as in the original HTML code
[7]. Similarly, each HTML frame of a frameset is
converted to one or more global presentation elements
(here, presentation units or to one or more WML
decks). Framesets are converted into decks that pro-
vide indices to WML decks that correspond with indi-
vidual frames

The presentation model is then stored in XIML [21], a
XML-based vocabulary for specifying models involved in
any model-based approach for designing UI. XIML is the
XML-compliant version of MIMIC, a meta-language for
UI modeling [18]. XIML holds two types of relationships
in the presentation model: a hierarchical relationship be-
tween nested presentation elements to reflect the hierar-
chical decomposition of the whole presentation into pres-
entation elements, and spatial presentation relationships
between the elements themselves (e.g., alignment).

Fig. 7 illustrates a typical interactive session with
VAQUISTA. Three views are displayed: a tree view in
which the developer can see the hierarchical decomposi-
tion of presentation elements, a source code –view where
the HTML code is displayed, and a XIML view where the
specifications of the presentation model are displayed.
Clicking on any presentation element in the tree view
automatically highlights the corresponding sections in
both the HTML code and the XIML reversed presentation
model.

Fig. 7. Three views.

5. Implementation issues
To support the reverse engineering process outlined in
section 4, several implementation alternatives were care-
fully considered: the Tidy tool, The Document Object
Model (DOM), The World-Wide-Web Factory (W4F –),
and the HTML to XHTML conversion. All of these solu-
tions were not considered flexible enough to meet the re-
quirements defined in the beginning. Thus, a custom ap-
plication was preferred.

Due to the above reasons, the most important being the
lack of flexibility in selecting matching tables (or rules)
of these tools, it was decided to implement VAQUISTA in a
separate development environment: Microsoft Visual Ba-
sic. However, this implementation greatly benefits from
the MSXML.DLL dynamic link library (http://msdn. mi-
crosoft.com/xml/artciles/msxmlcabfile.asp). This library
provides us with a large set of built-in functions to mani-
pulate any XML-compliant document. Therefore, func-
tions such as detection of a tag, of an element, retrieving
of an associated value, etc. significantly reduced the de-
velopment effort.

6. Conclusion
This work only covers the presentation model, not the
navigation neither within a web page nor within a same
web site. This navigation, which is specific to web, could

however be also reverse engineered to come up with a
dialogue model [8,18,20] in which links can be exploited.
This is a future work. The current state of the work al-
lowed us to identify some benefits and shortcomings:

• The reverse engineering process presented here can be
used as a loop for redesigning a web page: an existing
web page can be abstracted in its presentation model,
which can be edited and used for HTML generation.
This loop may improve the usability of a web page
namely by considering other models, such as dialogue,
user, and platform models.

• Static analysis is easy to manipulate, cheap to use, and
quick to conduct, provided that the reverse engineer-
ing options are well-founded, well structured, and or-
ganized enough to structure the process properly.

• The technique presented here does not support non-
HTML code such as JavaScript, Perl, CGI scripts, and
embedded objects developed in a foreign environment
(e.g., Flash).

• The reverse analysis is limited to a static analysis. A
dynamic analysis may improve the redesign of a web
page for another context of use. By enlarging the un-
derstanding of how end user interact with an interac-
tive web page, it is likely that a redesign may be im-
proved based on this experience.

• The static analysis is also limited in internationaliza-
tion cases: web pages developed in foreign countries,
in other languages and cultures, may be not inter-
preted correctly. Beyond the technical problem of ac-
cessing international character sets (e.g., Japanese,
Korean, and Greek), potentially different options may
be needed.

A final question may be raised: since the presentation
model is itself stored in a XML-compliant markup lan-
guage, is there a potential risk to come up at the end of
the reverse engineering process with another representa-
tion of the HTML page which is only a retranscription of
the HTML into another language? At first glance, the an-
swer is yes as HTML and XML are both markup lan-
guages that can be mapped using XSL transformations.
But the final answer is no since the resulting presentation
model may hold more than the original HTML file (espe-
cially, when adding inferred syntactic relationships be-
tween presentation elements) or less than the HTML file
(especially for any non-HTML element such as Java-
Script, embedded objects, Flash or MacroMind Director
multimedia sequences). Moreover, the presentation model
is itself used in forward engineering by other tools that
are able to recognize the relationships and to interpret
them so that the model is manipulated at a higher level
than merely the code level.

7. References
[1] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, J.

Shuster, “UIML: An Appliance-Independent XML User
Interface Language” , Proc. of 8th World-Wide Web Conf.
WWW’8 (Toronto, May 1999), Elsevier Science Pub., Am-
sterdam, 1999. Accessible at http://www8.org/w8-papers/
5b-hypertext-medi/uiml/uiml.html

[2] T.W. Bickmore, B.N. Schilit, “Digestor: Device-Independ-
ent Access to te World-Wide-Web” , Proc. of 6th World-
Wide-Web Conf. WWW’6 (Santa Clara, 7-11 April 1997),
Elsevier, Amsterdam, 1997. Accessible at http://www.sco
pe.gmd.de/info/www6/technical/paper177/paper177.html

[3] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, “Accor-
dion Summarization for End-Game Browsing on PDAs and
Cellular Phones” , Proc. of ACM Conf. on Human Aspects
in Computing Systems CHI’2001 (Seattle, 30 March-5
April 2001), ACM Press, New York, 2001, pp. 213-220.

[4] E.J. Chikofsky and J.H. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy” , IEEE Software, Vol. 1,
No. 7, January 1990, pp. 13-17.

[5] J.-M. De Baud and S. Rugaber, “A Software Re-engineer-
ing Method Using Domain Models” , Proc. of Int. Conf. on
Software Maintenance (October 1995), pp. 204-213.

[6] J. Eisenstein, J. Vanderdonckt, A. Puerta, “Adapting to
Mobile Contexts with User-Interface Modeling” , Proc. of
3rd IEEE Workshop on Mobile Computing Systems and Ap-
plications WMCSA’2000 (Monterey, December 7-8, 2000),
IEEE Press, Los Alamitos, 2000, pp. 83-92.

[7] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, T.
Laakko, “Two Approaches to Bringing Internet Services to
WAP Devices” , Proc. of 9th World-Wide-Web Conf.
WWW’9 (Amsterdam, 15-19 May 2000), pp. 231-246. Ac-
cessible at http://www9.org/w9cdrom/228/228.html

[8] L. Kong, E. Stroulia, B. Matichuk, “Legacy Interface Mi-
gration: A Task-Centered Approach” , Proc. of 8th Int. Conf.
on Human-Computer Interaction HCI International’99
(Munich, 22-27 August 1999), H.-J. Bullinger and J. Zie-
gler (eds.), Lawrence Erlbaum Associates, Mahwah/Lon-
don, 1999, pp. 1167-1171. Accessible at http://www.cs.
ualberta.ca/~stroulia/Papers/hci99.ps

[9] J. Lopez and P. Szekely, “Automatic Web Page Adapta-
tion” , Proc. of CHI’2001 Workshop on Transforming the
UI for Anyone. Anywhere (Seattle, 1-2 April 2001).

[10] E. Merlo, J.F. Girard, K. Kontogiannis, P. Panangaden, and
R. De Mori, “Reverse Engineering of User Interfaces” ,
Proc. of 1st Working Conference on Reverse Engineering
WCRE’93 (Baltimore, 21-23 May 1993), R.C. Waters, E.J.
Chikofsky (eds.), IEEE Computer Society Press, Los
Alamitos, 1993, pp. 171-179.

[11] E. Merlo, P.-Y. Gagné, and A. Thiboutôt, “ Inference of
graphical AUIDL specifications for the reverse engineering
of user interfaces” , Proc. of Int. Conf. on Software Mainte-
nance (19-23 September 1994), IEEE Computer Society
Press, Los Alamitos, 1994, pp. 80-88.

[12] E. Merlo, P.-Y. Gagné, J.-F. Girard, K. Kontogiannis, L.
Hendren, P. Panagaden, and R. De Mori, “Reengineering
User Interfaces” , IEEE Software, Vol. 12, No. 1, January
1995, pp. 64-73.

[13] M.M. Moore and S. Rugaber, “ Issues in User Interface Mi-
gration” , Proc. of 3rd Int. Software Engineering Research
Forum (Orlando, 10 November 1993).

[14] M.M. Moore, “Rule-Based Detection for Reverse Engi-
neering User Interfaces” , Proc. of 3rd Working Conf. on
Reverse Engineering WCRE’96 (Monterey, 8-10 Novem-
ber 1996), L. Wills, I. Baxter, E. Chikofsky (eds.), IEEE
Computer Society Press, Los Alamitos, 1996, pp. 42-48.
Accessible at http://www.cc.gatech.edu/fac/Melody.Moore
/papers/WCRE96.ps

[15] M.M. Moore, “Representation Issues for Reengineering
Interactive Systems” , ACM Computing Surveys, Vol. 28,
No. 4, December 1996. Article # 199. Accessible at http://
www.acm.org/pubs/articles/journals/surveys/1996-28-4es/
a199-moore/a199-moore.html

[16] M.M. Moore and S. Rugaber, “Using Knowledge Repre-
sentation to Understand Interactive Systems,” Proc. of the
Fifth International Workshop on Program Comprehension
IWPC’97 (Dearborn, 28-30 May 1997), IEEE Computer
Society Press, Los Alamitos, 1997. Accessible at http://
www.cc.gatech.edu/fac/Melody.Moore/papers/WPC97.ps

[17] M.M. Moore and S. Rugaber, “Domain Analysis for Trans-
formational Reuse” , Proc. of 4th Working Conf. on Reverse
Engineering WCRE’97 (6-8 October 1997), IEEE Com-
puter Society Press, Los Alamitos, 1997.

[18] A.R. Puerta, “The MECANO Project: Comprehensive and
Integrated Support for Model-Based Interface Develop-
ment” , Proc. of 2nd Int. Workshop on Computer-Aided De-
sign of User Interfaces CADUI’96 (Namur, 5-7 June 1996),
J. Vanderdonckt (ed.), Presses Universitaires de Namur,
Namur, 1996, pp. 19-35.

[19] F. Paternò, Model-based Design and Evaluation of Inter-
active Applications, Springer Verlag, Berlin, 1999.

[20] A.R. Puerta and J. Eisenstein, “Towards a General Com-
putational Framework for Model-Based Interface Devel-
opment Systems” , Proc. of ACM Conf. on Int. User Inter-
faces IUI’99, ACM Press, New York, 1999, pp. 171-178.

[21] A.R. Puerta, J. Eisenstein, “A Representational Basis for
User Interface Transformations” , Proc. of ACM CHI’2001
Workshop on Transforming the UI for Anyone. Anywhere
(Seattle, 1-2 April 2001).

[22] P. Szekely, “Retrospective and Challenges for Model-
Based Interface Development” , Proc. of 2rd Int. Workshop
on Computer-Aided Design of User Interfaces CADUI’96
(Namur, 5-7 June 1996), J. Vanderdonckt (ed.), Presses
Universitaires de Namur, Namur, 1996, pp. xxi-xliv.

[23] D. Thevenin and J. Coutaz, “Plasticity of User Interfaces:
Framework and Research Agenda” , Proc. of IFIP Conf. on
Human-Computer Interaction Interact’99 (Edimburgh,
September 1999), IOS Press, 1999, pp. 110-117.

[24] J. Vanderdonckt and F. Bodart, “Encapsulating Knowledge
for Intelligent Interaction Objects Selection” , Proc. of In-
terCHI’93, ACM Press, New York, 1993, pp. 424-429. Ac-
cessible at http://www.qant.ucl.ac.be/membres/jv/publi/ In-
terCHI93-Encaps.pdf

[25] J. Vanderdonckt and P. Berquin, “Towards a Very Large
Model-based Approach for User Interface Development” ,
Proc. of 1st Int. Workshop on User Interfaces to Data In-
tensive Systems UIDIS’99, IEEE Computer Society Press,
Los Alamitos, 1999, pp. 76-85.

