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Abstract

A bugbear of uncalibrated stereo reconstruction is that
cameras which deviate from the pinhole model have to be
pre-calibrated in order to correct for nonlinear lens distor-
tion. If they are not, and point correspondence is attempted
using the uncorrected images, the matching constraints pro-
vided by the fundamental matrix must be set so loose that
point matching is significantly hampered.

This paper shows how linear estimation of the funda-
mental matrix from two-view point correspondences may
be augmented to include one term of radial lens distortion.
This is achieved by (1) changing from the standard radial-
lens model to another which (as we show) has equivalent
power, but which takes a simpler form in homogeneous co-
ordinates, and (2) expressing fundamental matrix estima-
tion as a Quadratic Eigenvalue Problem (QEP), for which
efficient algorithms are well known.

I derive the new estimator, and compare its performance
against bundle-adjusted calibration-grid data. The new es-
timator is fast enough to be included in a RANSAC-based
matching loop, and we show cases of matching being ren-
dered possible by its use. I show how the same lens can be
calibrated in a natural scene where the lack of straight lines
precludes most previous techniques. The modification when
the multi-view relation is a planar homography or trifocal
tensor is described.

1. Introduction
This paper deals with the problem of nonlinear lens dis-
tortion in the context of camera self-calibration and struc-
ture from motion. In particular, the recovery of 3D cam-
era motion from 2D point tracks, where there is moderate
to severe radial lens distortion. The paper uses an unusual
model for distortion which—like the most common exist-
ing model—is a reasonable approximation to the distortion
observed in typical cameras. The advantage of the alterna-
tive approximation is an extension of uncalibrated projec-
tive reconstruction to the case of unknown lens distortion,
thus closing an important gap in the applicability of uncal-
ibrated vision. While the fundamental matrix allows a di-

rect solution to the simultaneous recovery of relative orien-
tation and camera calibration from a stereo pair, this paper’s
model allows a direct solution for the aforementioned pa-
rametersanda single lens distortion term. Figure 2 shows
compellingly how adding a single distortion term can im-
prove the results of scene reconstruction over long video
sequences.

Figure 1: An image with lens distortion corrected using the
technique described in this paper. Distortion can be com-
puted given two or more images of the scene, and no other
information.

The largest body of work on the estimation of lens dis-
tortion deals with precalibration, where the camera is cali-
bratedoffline. In this case, the 3D positions of scene points
are known, and the direct linear transform [13,§16.2.3.2.1]
allows recovery of the camera projection matrix and a sin-
gle lens distortion parameter via a generalized eigensystem.
We are interested in the situation where the original lens
is not available, for example with archive footage, or when
using variable lens geometries.

Previous work on theonline estimation of lens distor-
tion divides neatly into two strategic approaches. The first,
known as theplumb linemethod [2, 3, 10, 14, 16] uses
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Figure 2: A 3D reconstruction of an 800-frame video of an
office scene computed by a commercial camera tracker [1],
without distortion correction (left) and with (right). The
lines of the scene walls have been marked in to aid visu-
alization. The uncorrected images yield a reconstruction in
which focal length and rotation are incorrectly estimated,
and which is therefore far from the correct geometry, while
the result from corrected images is very close to orthog-
onality. A single lens distortion term was used, with the
distortion center at the center of the image.

straight lines in the scene to provide constraints on the dis-
tortion parameters. However, straight lines are not always
available in the scene (see figure 1 for example), and when
present are not trivial to detect. Therefore, such methods
often require care and supervision to ensure that real-world
curves are not confused with distorted lines.

This paper is in the second class of methods, which
demand nothing more of the images than the rigidity as-
sumptions which allow the computation of the fundamen-
tal matrix. Such methods are exemplified by the work of
Zhang [20] and Stein [15], where the rigidity constraint is
extended to include the parameters of the distortion model.
Until now, however, these and related techniques [4, 11, 12]
have relied on iterative methods to find the distortion pa-
rameters. As is usual with such iterative methods, their con-
vergence is not guaranteed, initial estimates must be found,
and—although fast within the class of nonlinear routines—
they remain too slow to place in the inner loop of any
hypothesize-and-test architecture. The algorithm herein is
a one-shot method relying on the solution of a generalized
eigenproblem, whose convergence is well studied, and for
which fast algorithms exist. In addition, the analysis of the
new algorithm indicates that at least some formulations of
the problem may have many local minima, making a good
initialization even more necessary.

1.1. The goals of this paper
The primary goal of this paper is to allow the matching of
image pairs via interest-point correspondences, especially
when lens distortion would otherwise hinder the process.
The most successful current techniques for matching inter-
est points are based on the geometric constraints offered by
multiple-view geometry [8]. These are effective because
fast linear algorithms exist for the computation of the re-
lationships, allowing their computation to form the kernel
of RANSAC-based matching algorithms. However, when
images have strong lens distortion, these constraints cannot
be applied, because the two-view relationships (fundamen-
tal matrix, planar homography) are not valid in the image
periphery.

Thus we seek to find a model for the between-view re-
lations which incorporates lens distortion. In particular, we
seek a model which admits a direct solution, i.e. compu-
tation via well understood, fast, and globally convergent,
numerical algorithms such as the SVD or eigenvalue ex-
traction.

Our goal in this paper isnot the accurate estimation
of the lens distortion coefficients themselves. If accurate
camera information is required, there is no recourse but to
bundle adjustment [18], initialized with (1) reasonable es-
timates of camera geometry and (2) good correspondences.
It is in the provision of these two requisites that this paper
contributes.

2. Notation
We shall denote 2D points (in non-homogeneous coordi-
nates) byx = (x, y) and letx denote a general vector, in-
cluding 2D points in homogeneous coordinates. Matrices
are represented in fixed-width fontF. The data used by the
new algorithm comprises point correspondences between
lens-distorted images. As we shall deal almost entirely with
two-view geometry, we shall use primes to indicate a corre-
sponding point in the second view. Thus, as input we have
a set oftwo-view point correspondences, denotedx ↔ x′.

The image points which we observe will be distorted
functions of some perfect, pure, perspective, pinhole points,
which we shall always denote usingp, so the image pointx
is the distorted version of perfect pointp. This paper dis-
cusses only radial distortion, so that the relationship be-
tweenx andp is dependent on their distances from the im-
age center. Throughout the paper, all these points are ex-
pressed in a 2D coordinate system with origin at thedistor-
tion center. The implications of this are discussed in§8.1.

Given, then, that the distortion center may be assumed
known, the distortion model may be written

x = L(p)

Indeed, when dealing withradial distortion, the mapping
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Figure 3: Comparison of lens distortion models with ground truth. The camera was fitted with a 4.2mm lens.Left: The Y
axis shows the image radius‖x‖, the X axis is the pinhole radius‖p‖. Black dots mark the ground truth distortion curve,
measured by imaging a fronto-parallel calibration grid. The red curve shows the best fit of the traditional model (equation 1),
and the blue curve is the best fit to the division model (equation 2). The black line is‖x‖ = ‖p‖, for visualization.Right:
Approximation errors‖x‖ − L(‖p‖) for the two models.

is simply between the magnitudes‖x‖ and‖p‖, so we can
simplify the relation to

x = L(‖p‖)p

By choosing a parametric approximation to the true func-
tion L for a given camera, we may convert between image
and pinhole coordinates. Calling the conversion from pin-
hole to image theforward transform, we will write thein-
versetransform in the form

p = Li(‖x‖)x

3. The division model for distortion
In order to render the mathematics tractable later in the pa-
per, we will need a distortion approximation that differs
from the normal model. Let us now derive the new model
and show that it performs as well as the traditional approxi-
mation.

True lens distortion curves are typically very complex,
and systems which deal carefully with nonlinear distor-
tion [2, 19] use high-order models or lookup tables to cal-
ibrate their cameras. For computer vision, however, and
particularly formatching, accuracies of the order of a pixel
are all that are required. Thus, it is common to expand the
distortion functionL as a Taylor series, and to keep only the
first nonlinear even term:

x = (1 + λ‖p‖2)p (1)

However, other models have been proposed, and one in par-
ticular which I shall call thedivision modelwill prove useful
later. Note that this alternative model is not an approxima-
tion to the more usual model, but a different approximation

to the true curve. Figure 3 shows how they compare. The
division modelis written

p =
1

1 + λ‖x‖2
x (2)

Now, it is crucial to remember that equation 2 isnot an
approximation to equation 1. Both are approximations to
the camera’s true distortion function. However, it is inter-
esting to see how the new approximation compares to the
old, and how both compare to calibrated ground truth. To
validate the models against calibrated ground truth, the true
distortion curve for a laboratory camera was obtained us-
ing a dense calibration grid placed directly in front of the
lens. This curve is shown in Figure 3, along with the best
fits of both approximations. The accuracy of both approx-
imations is essentially the same: RMSold = 0.77 pixels,
RMSnew = 0.65 pixels. Thus, although this is just one ex-
periment, we can be reasonably confident that the newer
model is as good an approximation as the traditional one.

4. Algorithm 1:
Linear estimation of F and λ

Let us now derive this paper’s main contribution. It is
known that in order to compute the fundamental matrix
from perfect point correspondencesp ↔ p′, we may use
the 8-point algorithm [6]. In this section, we show how the
8-point algorithm can be modified to includeλ, the distor-
tion parameter, and thus computeF from distorted, measur-
able, pointsx ↔ x′.
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4.1. Review: The 8-point algorithm
A point correspondence in pinhole coordinatesp ↔ p′

which corresponds to a real 3D point which has been im-
aged by a pair of cameras will satisfy the epipolar con-
straint. This is embodied in thefundamental matrix, F, for
the pair

p′>Fp = 0 (3)

It is the task of this paper to recoverF from point correspon-
dences. Writingp = (p, q, 1), and concatenating the rows
of F into a 9-vectorf , we may rewrite the above constraint
as

[p′p, p′q, p′, q′p, q′q, q′, p, q, 1] · f = 0

Collecting 8 such rows into a design matrix,D, we obtain
an estimate forf by solvingDf = 0. This estimate will be
greatly improved [8] by truncating the resulting matrix to
rank 2.

4.2. Incorporating the distortion parameter
In order to computeF from the known image coordinatesx,
we must express (3) in terms ofx. Writing the new distor-
tion equation (2) projectively, we obtain: p

q
1

 =

 x
y

1 + λ(x2 + y2)


=

 x
y
1

 + λ

 0
0

‖x‖2


∴ p = x + λz

where bothx andz are known (can be computed from im-
age coordinates alone). Then the epipolar constraint is

(x′ + λz′)>F(x + λz) = 0
x′>Fx + λ(z′>Fx + x′>Fz) + λ2z′>Fz = 0

which is quadratic inλ and linear inF. Indeed, expanding
everything out, we obtain (withr = ‖x‖, andr′ = ‖x′‖)

[ x′x x′y x′ y′x y′y y′ x y 1 ] · f +

+ λ [ 0 0 x′r2 0 0 y′r2 xr′2 yr′2 r2+r′2 ] · f +

+ λ2 [ 0 0 0 0 0 0 0 0 r′2r2 ] · f = 0

Gathering the three row vectors into three design matri-
ces, we obtain the following quadratic eigenvalue problem
(QEP) [17]:

(D1 + λD2 + λ2D3)f = 0 (4)

Such problems are analogous to standard 2nd order ODEs
(replaceλ with partial derivative operators), and efficient
numerical algorithms are readily available, for example
MATLAB provides the functionpolyeig . Appendix A
shows how there are at most 10 solutions and in practice
no more than 6 which are real.

5. Algorithm 2:
Planar homography estimation

The preceding analysis applies also to the estimation of
a plane projective transformation between the images. In
this case, each point correspondence adds two rows (see [8,
p71]) to the design matrices, viz.

D1 =
[

0 0 0 −x′ −y′ −1 yx′ yy′ y
x′ y′ 1 0 0 0 −xx′ −xy′ −x

]
D2 =

[
0 0 0 −rx′ −ry′ −r′−r 0 0 yr′

rx′ ry′ r′+r 0 0 0 0 0 −xr′

]
D3 =

[
0 0 0 0 0 −rr′ 0 0 0
0 0 rr′ 0 0 0 0 0 0

]
The analogous computation for the trifocal tensor leads to a
cubic eigenvalue problem, which is again readily solved.

6. Implementation
The preceding section has presented a theoretical solution to
the computation of the fundamental matrix and lens distor-
tion. Immediately, the question of stability arises. Are the
equations stable enough to be used in real-world problems?
I shall show that the answer is yes, providing that a robust
harness such as RANSAC is used for computation, and that
care is taken with the use of the model to determine whether
candidate points are inliers or outliers. In this sense, the ker-
nel is very similar in performance to the successful 7-point
algorithm for fundamental matrix computation [8].

6.1. Synthetic tests
In order to gain a feeling for the performance of the basic
algorithm under typical image noise conditions, an investi-
gation with synthetic data was conducted. A realistic scene
was generated using 3D points and camera positions from
standard point-based reconstruction on a low-distortion se-
quence (20 frames of Figure 1). These points and cameras
were used to generate perfect 2D points, to which Gaus-
sian noise was added. Because the 3D structure came from
a real-world reconstruction, we may be confident that the
arrangement is generic, while maintaining the control over
system parameters that a synthetic test requires. The testing
procedure was as follows.

1. Given 3D points{Xi}N
i=1 and 3 × 4 camera matri-

cesPandP′, generate two-view point correspondences
{p ↔ p′

i}N
i=1. Distort the perfect correspondences to

generate noiseless image pointsx̃i. For this experi-
ment,N = 243.

2. Repeat 100 times

(a) Draw noise from a Gaussian distribution of stan-
dard deviationσ, and add tõxi giving noisy cor-
respondencesxi ↔ xi

′.

4



0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

Noise σ  (pixels)

C
om

pu
te

d 
λ

λ
true

 = −0.45 (Distortion 41.0 pixels)

0 0.5 1 1.5 2

−1

−0.5

0

Noise σ  (pixels)

C
om

pu
te

d 
λ

λ
true

 = −0.05 (Distortion 6.4 pixels)

Figure 4: Tests on synthetic data. Synthetic image size is
640 × 480, and plausible 3D data are obtained by using
stereo reconstruction from a real scene. The graphs show
the computed distortion coefficientλ as a function of noise
level on the 2D points. The horizontal line is the nominal
value. A systematic bias to high corrections is evident, and
is more pronounced on images with less distortion. Com-
pare this to linear ellipse fitting.

(b) Scale image points by subtracting the image cen-
ter and dividing by image diameter(W + H).

(c) Form theN × 9 design matricesD1, D2, D3.

(d) Use MATLAB to compute [V,Λ−1] =
polyeig(D>

1 D3, D
>
1 D2, D

>
1 D1). Now V

is the matrix of eigenvectors, andΛ−1 the vector
of corresponding (inverse) eigenvalues.

(e) Discard imaginary, null, and infinite eigenvalues
from Λ−1, leaving 4–6 solutions. In this test, val-
ues where|λ| > 10 were also discarded.

(f) Store all remaining values ofλ.

3. From the list of 100–600 computedλ values, compute
the median and 10th and 90th percentile points. These
are the values and errorbars in Figure 4.

The noise levels used hadσ between 0 and 2 pixels. This
represents a typical range in video and film imagery, with
most cameras in our laboratory yieldingσ of about 0.2 pix-
els after subpixel interest-point extraction.

Examining Figure 4 allows a number of conclusions
about the algorithm to be drawn. Firstly, there is a system-
atic bias in the estimate ofλ as noise level increases. The
bias is towards more extreme distortions than the veridical
value, and increases when distortion is small. For distortion
of 40 pixels at the image corner, the estimate is within 20%
of the veridical value at typical noise levels; for mild dis-
tortion (6 pixels), the estimate is many times the veridical
value. Thus, this technique cannot give reliable estimates
of lens distortion parameters when the amount of distortion
is small.

This is similar to the pattern observed in linear solu-
tions to the least-squares fitting of ellipses [9]. There, as
the curvature of an elliptical arc decreases, and the arc ap-
proaches a line, the estimate of curvature is strongly biased.

Of course, the curve still fits the data well, but the value of
the curvature will be incorrect.

So, if the algorithm applies only when distortion is mod-
erate to high, is it useful? Zhang’s conclusion [20] is that
one should use the pinhole camera for low-distortion im-
ages, and switch to a model including lens distortion if the
pinhole model does not fit well. This is a reasonable strat-
egy, and places the “pinhole+distortion” model on a con-
tinuum with the pinhole and affine camera approximations.
However, the strategy does bring up the question of how to
select an appropriate model. It might be preferable, if pos-
sible, to use the same model for all matching. This is only
possible if the more general model does not overfit the data,
accepting many bad matches rather than a smaller number
of correct ones.

7. A robust algorithm for real data

In this section, we apply the model to the matching of real
image pairs, and compare it to the pinhole model in cases
of moderate and low distortion. In order to do so, however,
we must incorporate the algorithm into a robust estimation
strategy [8]. The input to such an algorithm is illustrated in
Figure 5a. A pair of images is captured, interest points are
computed, and each point in the first image is matched to
each point within a window (of100× 100 pixels say) in the
second image. These matches are limited to those pairs for
which cross-correlation of image neighbourhoods is above
a threshold. The set of matches produced by such a process
is shown in Figure 5b.

Our input, then, is a set of noisy image correspondences
x ↔ x′, some of which are incorrect. In the example
shown, we have 513 correspondences, about 200 of which
are correct. We shall use a RANSAC strategy to eliminate
the incorrect correspondences and estimate the fundamental
matrix and lens-distortion parameter. The most important
component of such an algorithm is the test which is used to
mark each correspondence as inlier or outlier. If the algo-
rithm is to be effective, this test must measure a statistically
meaningful quantity in image space in order that thresholds
may be meaningfully set.

Without distortion, and assuming Gaussian1 noise on the
(x, y) positions of interest points, the optimal measure is
given by

ε(p,p′, F) = min
{p̂,p̂′|p̂′>Fp̂=0}

‖p̂′ − p′‖2 + ‖p̂− p‖2 (5)

A direct solution for this error in the pinhole case has been
given by Hartley and Sturm [7]. In our case, this should be

1 Although feature-point noise is not Gaussian, it does tend to be sym-
metric, so the above scoring function is monotonically related to the max-
imum likelihood.
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Figure 6: Example on real images. Matches selected as inliers forF (Left) andF&λ (Right, distortion corrected via the
calculatedλ). F gives 130 matches plus 4 outliers, while the new model gives 140 matches, 1 outlier, and places the new
matches (thicker tracks on the right) towards the periphery of the image.

Figure 5: Top (a): Input stereo pair. The lens is the same
as that used in Figure 3.Bottom (b): Matches input to the
RANSAC algorithm. A circle marks a point in one image,
lines join it to its potential matches in the next. The images
are superimposed in different colour channels.

modified to also undistort the corrected points, thus:

ε(x,x′, F, λ) = min
{p̂,p̂′|p̂′>Fp̂=0}

‖L(p̂′)−x′‖2+‖L(p̂)−x‖2

However, we have chosenL to be easy to invert, but hard to

compute, so this calculation looks impractical. The approx-
imations which have been used in the pinhole case, such as
distances from points to epipolar lines become the distance
from points to curves [20] in our case.2 On the other hand,
we may not simply undistort the scene points and useε, as
this would be made small simply by settingλ to large posi-
tive values.

This paper uses a good approximation, which is to undis-
tort the noisy image coordinates (p = Li(x)), perform
the Hartley-Sturm correction (i.e. find the minimizinĝp′

andp̂ from (5)), and then distort the corrected coordinates
(x̂ = L(p̂)). The distance between the corrected and origi-
nal coordinates givesε = ‖x̃− x̂‖2 + ‖x̃′ − x̂′‖2.

8. Experiments
The behaviour which is of greatest interest in the context
of this paper is performance when compared to the current
7-point algorithm for matching. In the presence of lens dis-
tortion, current best practice is to run the 7-point algorithm
with an artificially high acceptance threshold.

Figure 6 shows the subset of correspondences selected
by the old and new kernels after 1000 RANSAC samples,
on the image pair in Figure 5. The new algorithm finds
more correspondences, and covers more of the scene, while
the linear algorithm is limited by its inability to model dis-
tortion. Figure 7 shows that while increasing the old algo-
rithm’s acceptance threshold allows it to find more inliers,
it also includes more false positives.

A combined test of robustness and tolerance ofsmall
amounts of distortion is provided by sequence “flowers” in

2Although, under the new distortion model, the epipolar curves are con-
ics (indeed circles), for which closest point computation is easier than the
cubic curves produced by the old model.
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figure 8 where correspondences are correctly obtained on a
natural scene with small distortion. On 40 image pairs, the
average number of tracks was increased fractionally (1%),
with an average computedλ of −0.10 and standard devi-
ation σλ = 0.09. The remainder of Figure 8 shows three
more 20-frame sequences on which performance is similar:
“office” κ = −0.06± .11, “gatehouse”κ = −0.03± 0.11,
and “production”κ = −0.12 ± 0.21. The moderate-
distortion sequences saw improvements in the number of
20-frame tracks of4–5%, while the other low-distortion
sequence (“office”) saw an improvement from 190 to 193
tracks or 1.6%.

These results have the important consequence that we
do not need to revert to a pinhole model for low-distortion
scenes, allowing the proposed algorithm to be used by de-
fault rather than as a special case, and therefore allowing the
construction of more general systems.

8.1. Known distortion center: implications

An assumption throughout this paper has been that the dis-
tortion center is known. In the absence of any other infor-
mation, one would place it at the center of the image. Note
that this does not place any constraint on where theprinci-
pal point of the pinhole camera must be, and the two will
in general be different [19]. Fixing the distortion center is a
reasonable approximation for two reasons:

1. Although the principal point is an important camera
calibration parameter, the precise positioning of the distor-
tion center does not strongly affect the correction [19]. In-
deed, including the distortion center in the calculations for
Figure 3 improves the RMS by less than 0.03 pixels. Also,
Figure 2 shows that simply including one term of image-
centered correction is enough to greatly improve the perfor-
mance of one real vision application.

2. Because we are estimating theuncalibratedgeome-
try between a camera pair, our choice of coordinate system
in the image plane has no effect on the resulting geometry
(i.e. the fundamental matrix). Therefore fixing the distor-
tion center has no negative implications on possible solu-
tions for thegeometricimage center.

9. Summary and Conclusions

This paper has extended the uncalibrated estimation of ge-
ometry from multiple images to include a correction for lens
distortion. The main contribution is a linear algorithm for
the simultaneous estimation of a single lens distortion coef-
ficient and the fundamental matrix. All previous algorithms
have been iterative.

The paper has demonstrated that the algorithm has be-
haviour similar to other linear algorithms [8]—with system-
atic bias and moderate to poor tolerance to high noise—and,

Figure 7: Using a artificially high threshold (4 pixels), the
traditional fix forF estimation with distortion. More inliers
are obtained but at the expense of including false matches.

Sample 64, Best inliers 296, λ
best

 = −0.18
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Figure 8: Natural & indoor scenes, small to moderate distor-
tion. (Top left:) The correct tracks indicate that the model
is robust under conditions of high outlier percentage—
the flowers were blowing in the wind—and low distortion.
Tests were run on 41 frames (40 pairs) from this sequence.
(Others:) Assorted sequences from which 60 further image
pairs were taken for testing.

like other algorithms, works well as a computational kernel
for robust estimators of two-view geometry.

The most significant speed implication of the new algo-
rithm is in the number of RANSAC samples needed to en-
sure a certain degree of accuracyp. Each algorithm requires
log(1−p)/ log(1−εn), whereε is the proportion of data be-
lieved to be inlying, andn = 7 for the old algorithm,n = 9
for the new. The increase in the number of samples is then
log(1 − ε7)/ log(1 − ε9) ≈ ε−2, or a factor of 4 for a 50%
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inlier percentage.
The important general conclusion is that it is now possi-

ble to match images which exhibit lens distortion with the
same ease as those which accurately fit the pinhole model.
Furthermore, one may use the distortion-aware model to
match even low distortion images without overfitting.

A. Analysis of the QEP

This appendix shows how the number of solutions of (4) is
reduced from 18, for the general case, to 10, and in prac-
tice six or fewer. For 9 points (the minimum for a solu-
tion), these matrices are square (9 × 9) and standard tech-
niques may be applied. If more than 9 points are to be used
to obtain a least-squares solution, premultiplication byD>

1

does not change the solution, but allows square solvers to
be used.

To begin, define a new variableu := λf , giving

D1f + λD2f + λD3u = 0 (6)

Solving this system foru andf will obviously not solve the
original problem, but solvingsimultaneouslywith u = λf
will yield all the values off which solve the original system.
Thispair of equations

−D1f + 0u = λD2f + λD3u

09×9f + I9×9u = λI9×9f + λ09×9u

}

may be written in block matrix form as follows:[
−D1 0

0 I

] [
f
u

]
= λ

[
D2 D3

I 0

] [
f
u

]
(7)

Av = λBv (8)

This 18 × 18 generalized eigensystem may be solved ei-

ther by premultiplying by
(
−D−1

1 0
0 I

)
to convert it to a reg-

ular unsymmetric eigensystem, or by using the QZ algo-
rithm [5].

BecauseD3 has eight all-zero columns, the matrixB
has rank at most 10. Its nullvectors will correspond to
infinite eigenvalues, as they will satisfyµAv = Bv for
µ = 0. All solutionsv which correspond to non-infinite
eigenvalues may be writtenMz for M = ker(ker B)>

and z ∈ R10. Thus we may solve the10 × 10 system
M>AM>z = λM>BMz. In practice, 4 of these 10 eigen-
values have been found to be imaginary, although a proof is
future work. Degeneracies of the problem include (1) the
set of degeneracies ofF, which makeD1 singular, and (2)
those which causeD2 to drop rank. Again, characterization
of these is further work.
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