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Preface

What is in this book and what is not

The purpose of this book is to present those techniques of algebraic topol-
ogy which are needed in the presentation of the results on the exponents of
homotopy groups which were proven by Cohen, Moore, and the author. It
was decided that all of the details of those techniques would be completely
and honestly presented.

Homotopy groups with coefficients are fundamental to the whole enterprise
and have and will be useful in other things. The 2-primary theory was not
excluded but the fact that certain things are just not true for the 2-primary
case reinforces the eventual restriction, more and more, to the odd primary
case and finally to the case of primes greater than 3. The argument could
have been made that the exact sequences of these groups related to pairs
and to fibrations are all a consequence of the fundamental work of Barratt
and of Puppe on cofibration sequences and can be found as a special case in
the books of G. Whitehead or of E. H. Spanier. But the general theory does
not handle the low dimensional cases which correspond to the fundamental
group and the only way to provide an honest uniform treatment was to
present the whole theory in detail. So that is what is done.

Localization has undergone a revolution in the hands of Dror Farjoun and
of Bousfield. This new theory is incredibly general. It includes both the clas-
sical theory of inverting primes and of completion. It also includes exotic
forms of localization related to a theorem of Haynes Miller. Some simplifi-
cations can be made if one restricts localizations to simply connected spaces
or to H-spaces. It seemed to the author that not much is lost in terms of
potential applications by so doing. The same is true if no appeal is made
to the arcane theory of very large sets and if we restrict Dror Farjoun’s
fundamental existence proof so that the largest thing we have to refer to is
the least uncountable ordinal.

It seemed that localization should be presented in this new incarnation and
that application should be made to the construction of the Hilton–Roitberg
examples of H-spaces, to the loop space structures on completed spheres,
and to Serre’s questions about nonvanishing of infinitely many homotopy
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xiv Preface

groups of a finite complex. The last application is not traditionally thought
to have anything to do with localization.

The author has been told that the theory of fibrations in cubical diagrams
is out of date and should be superseded by the more general theory of
limits and colimits of diagrams. Spiritually the author agrees with this.
But practically he does not. The cubical theory is quite useful and specific
and easier to present.

The theory of Hopf invariants due to James, Hilton, and Toda was cen-
tral to the proofs of the first exponent results for spheres. Since the new
methods give new exponent results, why do we include these? There are
several reasons. First, the 2-primary results of James have been substan-
tially improved by Selick but they have not been superseded, and the best
possible 2-primary bounds have not been found. In order to have any 2-
primary bounds on the exponents for the homotopy groups of spheres, we
still need James; and James and Hilton both give us the EHP sequences
which are still fundamental in the computations of unstable homotopy the-
ory. This latter reason is also applicable to Toda’s work on odd primary
components. He produces a useful factorization of the double suspension
in the odd primary case which leads to the odd primary EHP sequences.

Samelson products in homotopy theory with coefficients are the main tool
in the proofs of the exponent results of Cohen, Moore, and the author.
These products give the homotopy theory of loop spaces the structure of
graded Lie algebras with the exception of some unfortunate failure of the
Jacobi identity at the prime 3. This theory is included here together with an
important improvement on a theory of Samelson products over the loops
on an H-space. This improvement makes possible a simplification of the
main exponent proofs.

The homotopy and homology Bockstein spectral sequences are presented in
detail with particular attention paid to products in the spectral sequence
and to the convergence of the spectral sequence in the nonfinitely generated
case. It occurred to the author that no book on Bockstein spectral sequences
should be written without presenting Browder’s results on the unbounded-
ness of the order of the torsion in the homology of finite H-spaces. Even
though these results are well presented in the paper of Browder and in the
book of McCleary, the inclusion of these results is amply justified by their
beauty and by the remarkable fact that this growth in the order of the
torsion in homology is precisely opposite to the bounds on the order of the
torsion that we find in homotopy.
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The consideration of Samelson products in homotopy and their Hurewicz
representation as commutators in homology makes it vital to present a gen-
eral theory of graded Lie algebras and their universal enveloping algebras.
Even though it is not necessary for our applications, for the first time we
make no restrictions on the ground ring. It need not contain 1

2 . We prove
the graded versions of the Poincaré–Birkhoff–Witt theorem and the related
tensor product decompositions of universal enveloping algebras related to
exact sequences. There is a similarity between free groups and free Lie alge-
bras. Subalgebras of free Lie algebras are free but they may not be finitely
generated even if the ambient Lie algebra is. Nonetheless, the generators
of the kernels of homomorphisms can often be determined.

The actual Eilenberg–Moore spectral sequence plays almost no role in this
book. But the chain model approximations that underlie this theory play an
essential role and are fully presented here. We restrict our treatment to the
case when the base is simply connected. This includes most applications and
avoids delicate problems related to the convergence of the approximations.
Particular attention is paid to products and coproducts in these models.
A new innovation is the connection to the geometry of loop multiplication
via an idea which is dual to an idea presented in a Cartan seminar by John
Moore.

In the chapter on exponents of the homotopy of spheres and Moore spaces,
most of the above finds application.

Finally, the major omission in this book on unstable homotopy theory is
that there is no systematic treatment of simplicial sets even though they
are used once in a while in this book. They are used to study Eilenberg–
Zilber maps, the Alexander–Whitney maps, the Serre filtration, and Kan’s
construction of group models for loop spaces. Too bad, you can’t include
everything.

Prerequisites

The reader should be familiar with homology and homotopy groups. Homol-
ogy groups can be found in the classic book by S. Eilenberg and N. Steenrod
[44] or in many more recent books such as those of M. Greenberg and J.
Harper [49], A. Dold [33], E. Spanier [123], and A. Hatcher [51]. Homotopy
groups can be found in these books and also in the highly recommended
books by G. Whitehead [134] and P. Selick [114].

Some introduction to homology and homotopy is essential before beginning
to read this book. All of the subsequent suggestions are not essential but
some knowledge of them would be useful and historically enlightening.
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The books by G. Whitehead and P. Selick provide comprehensive intro-
ductions to homotopy theory and thus to the material in this book. White-
head’s book has an excellent treatment of Samelson products. Many of the
properties of Samelson products were originally proved by him. But all the
properties of Samelson products that we need are proved here.

Spectral sequences are much used in this book and we assume familiarity
with them when we need them. The exposition of spectral sequences by
Serre [116] remains a classic but there are alternative treatments in many
places such as the books of S. MacLane [77], E. Spanier, G. Whitehead,
and P. Selick. We regard the Serre spectral sequence as a basic tool and
use it to prove many things. The survey by J. McCleary [82] provides an
excellent overview of many spectral sequences, including the Eilenberg–
Moore spectral sequence to which we devote much of this book.

Obstruction theory to extending maps and homotopies is a frequent tool.
It is presented in the book of Whitehead. An important generalization to
sections of fibre bundles is in the book of N. Steenrod [125].

Postnikov systems are used in the treatment of the Hurewicz theorem for
homotopy groups with coefficients. Postnikov systems appear in the works
of Serre [117, 118]. The standard references are the books of G. Whitehead
and E. Spanier. The treatment in R. Mosher and M. Tangora [98] is brief
and very clear.

The main books on homological algebra are two, that of H. Cartan and S.
Eilenberg [23] and that of S. MacLane [77]. Cartan–Eilenberg’s treatment
of spectral sequences is used in this book in order to introduce products in
the mod p homotopy Bockstein spectral sequence. MacLane’s book is more
concrete and provides an introduction to the the details of the Eilenberg–
Zilber map and to the differential bar construction.

Ways to use this book

A book this long should be read in shorter segments. Many of the chapters
are self-contained and can be read independently. Here are some ideas as
to how the book can be broken up. Each of the paragraphs below is meant
to indicate that that material can be read independently with minimal
reference to the other chapters of the book.

The first chapter on homotopy groups with coefficients introduces these
groups which are the homotopy group analog of homology groups with
coefficients. The essence of it is captured in the Sections 1.1 through 1.7
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which start with the definition and end with the mod k Hurewicz theo-
rem. It is basic material. When combined with Sections 6.7 through 6.9
on Samelson products and with some of the material on Bockstein spec-
tral sequences in Sections 7.1 to 7.6 it leads via Sections 9.6 and 9.7 on
the cycles in differential graded Lie algebras to a proof of the existence of
higher order torsion in the integral homotopy groups of an odd primary
Moore space.

The second chapter on localization is completely self-contained. Sections
2.1 through 2.7 cover the most important parts of the classical localiza-
tions and completions of topological spaces. After that, the reader can
choose from applications of Miller’s theorem to the nonvanishing of the
homotopy groups of a finite complex in Section 2.10, applications to the
Hilton–Roitberg examples, or to loop structures on completions of spheres.
This chapter is one of the most accessible in the book.

The short third chapter on Peterson–Stein formulas is a self-contained
introduction to these formulas and also to the theory of fibred cubes which
should be better known in homotopy theory. It is a quick treatment of
fundamental facts about fibrations.

The fourth chapter on Hilton–Hopf invariants and the EHP sequence intro-
duces many of the classical methods of unstable homotopy theory, for exam-
ple, the James construction, the Hilton–Milnor theorem, and the James
fibrations which underlie the EHP sequence. It contains a proof of James
2-primary exponent theorem for the spheres and some elementary compu-
tations of low dimensional homotopy groups. It is an introduction to some
geometric ideas which are often used in the study of homotopy groups of
spheres, especially of the 2-primary components.

The fifth chapter on James–Hopf and Toda–Hopf can serve as an odd pri-
mary continuation of the fourth chapter. It contains Toda’s odd primary
fibrations which give the odd primary EHP sequence and it contains the
proof of Toda’s odd primary exponent theorem for spheres. To study the
odd primary components of the homotopy of spheres, Toda realized that
it could be advantageous to decompose the double suspension into a com-
position which is different from the obvious one of composition of single
suspensions.

The sixth chapter on Samelson products contains a complete treatment of
Samelson products in odd primary homotopy groups. As mentioned above,
it can be combined with the Bockstein spectral sequence and material on
cycles in differential graded Lie algebras to prove the existence of higher
order torsion in the homotopy groups of odd primary Moore spaces. Of
course, the reader will need some knowledge of Chapter 1 here.
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The seventh chapter on Bockstein spectral sequences contains a presenta-
tion of Browder’s results on torsion in H-spaces which is completely inde-
pendent of the rest of the book. It is included because of the beauty of
the results and because it was the first deep use of the Bockstein spectral
sequence.

Chapters 8 and 9 present the theory and applications of graded Lie algebras
and their universal enveloping algebras. Particular attention is paid to free
Lie algebras and their subalgebras. Although this section contains many
results of purely algebraic interest, it also has geometric applications via
the Lie algebras of Samelson products and via the study of loop spaces
whose homology is a universal enveloping algebra. One of the applications
of differential graded Lie algebras is the previously mentioned higher order
torsion in the homotopy groups of odd primary Moore spaces.

Chapter 10 on differential homological algebra is the longest in the book
and only does half of the theory, albeit it is the harder half. This half
deals with the cobar construction of Adams and the so-called second quad-
rant Eilenberg–Moore spectral sequence. The presentation here emphasizes
the chain models that underlie the spectral sequences and which are often
more important and useful than the spectral sequences. Special emphasis
is placed on the not so obvious relation of the loop multiplication to the
homological algebra. It is the detailed foundation chapter for the next sec-
tion on odd primary exponent theorems and the loop space decompositions
which lead to them.

Chapter 11 on odd primary exponent theorems is the chapter which guides
the book in its selection of topics. It defines the central current. It uses
almost the whole book as background material. Nonetheless, it can be
read independently if the reader is willing to use isolated parts of the
book as background material. The necessary background material includes
homotopy groups with coefficients, their Bockstein spectral sequences, and
Samelson products in them. These are used to construct the product decom-
position theorems which are the basis for the applications to exponent the-
orems. Localization is necessary because, without it, these decomposition
theorems would not be valid. Free graded Lie algebras, their subalgebras
and universal enveloping algebras are the algebraic models for the loop
spaces we study and for their decomposition into topological products. It
is difficult to do but it can be read without reading all of the rest of the
book.

Finally, Chapter 12 is included because it is the other half of differential
homological algebra, that which is used to study classifying spaces, and
it is arguably the more important and useful half of the theory. It is also
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often the easier half and it contains the beautiful applications of Stiefel–
Whitney classes to non-immersion and non-parallelizability results for real
projective spaces. It would have been a shame not to include it.
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Thomas Kahl, Lucille Vandembroucq, and Gustavo Granja to ask clarifying
questions and to make intelligent comments about localization.

Lausanne, Switzerland is another beautiful and historic city. Kathryn Hess
arranged for lectures there and her understanding and appreciation of the
issues of differential homological algebra is unusual and very helpful.

Brayton Gray gave inspiration by his penetrating questions and insights
into unstable homotopy theory.

I owe great thanks to the ones who stood by me during the event of a
dissection of the aorta. Doris and John Harper, Michelle and Doug Ravenel,
Fran Crawford and Joan Robinson, and Jacques Lewin were all present and
accounted for.

Last but not least, I thank Joan Robinson, Jan Pearce, and Hoss Firooznia
for their help in mastering the art of LaTeX.

xx



Introduction to unstable homotopy theory

Computation of the homotopy groups πn(X) of a topological space X has
played a central role in homotopy theory. And knowledge of these homo-
topy groups has inherent use and interest. Furthermore, the development
of techniques to compute these groups has proven useful in many other
contexts.

The study of homotopy groups falls into three parts.

First, there is the computation of specific homotopy groups πn(X) of
spaces. This may be traced back to Poincaré [106] in the case n = 1:

Poincaré: π1(X)/[π1(X), π1(X)] is isomorphic to H1(X).

Hurewicz [62] showed that, in the simply connected case, the Hurewicz
homomorphism provides an isomorphism of the first nonzero πn(X) with
the homology group Hn(X) with n ≥ 1:

Hurewicz: If X is an n− 1 connected space with n ≥ 2, then πn(X) is
isomorphic to Hn(X).

Hopf [58] discovered the remarkable fact that homotopy groups could be
nonzero in dimensions higher than those of nonvanishing homology groups.
He did this by using linking numbers but the modern way is to use the long
exact sequence of the Hopf fibration sequence S1 → S3 → S2.

Hopf: π3(S2) is isomorphic to the additive group of integers Z.

Computation enters the modern era with the work of Serre [116, 118] on the
low dimensional homotopy groups of spheres . To this end, he introduced
a localization technique which he called “classes of abelian groups.” A first
application was:

Serre: If n ≥ 1 and p is an odd prime, then the group π2n+2p−2(S2n+1)
contains a summand isomorphic to Z/pZ.

Second, there are results which relate the homotopy groups of some spaces
to those of others.

Examples are product decomposition theorems such as the result of Serre
which expresses the odd primary components of the homotopy groups of
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2 Introduction to unstable homotopy theory

an even-dimensional sphere in terms of those of odd-dimensional spheres,
that is:

Serre: Localized away from 2, there is a homotopy equivalence

ΩS2n ' S2n−1 × ΩS4n−1.

Localization is necessary for some results but not for all. A product
decomposition which requires no localization is the Hilton–Milnor theo-
rem [54, 89, 134] which expresses the homotopy groups of a bouquet of
two suspension spaces πk(ΣX ∨ ΣY ) in terms of the homotopy groups of
the constituents of the bouquet ΣX, ΣY , and of the homotopy groups of
various smash products:

Hilton–Milnor: There is a homotopy equivalence

Ω(ΣX ∨ ΣY ) ' ΩΣX × ΩΣ(

∞∨
j=0

X∧j ∧ Y ).

Third, Serre used his localization technique to study global properties of
the homotopy groups of various spaces. What is meant by this is best made
clear by giving various examples:

Serre: For a simply connected complex with finitely many cells in each
dimension, the homotopy groups are finitely generated.

Serre: Odd dimensional spheres have only one nonfinite homotopy group,
π2n+1(S2n+1) = Z.

Serre: Simply connected finite complexes with nonzero reduced homology
have infinitely many nonzero homotopy groups.

Serre [117] proved the last result by using the cohomology of Eilenberg–
MacLane spaces. There is now a modern proof which uses Dror-Farjoun
localization and Miller’s Sullivan conjecture [83, 84].

The study of the global properties of homotopy groups was continued by
James [66, 67] who introduced what are called the James–Hopf invariant
maps. Using fibration sequences associated to these, James proved the fol-
lowing upper bound on the exponent of the 2-primary components of the
homotopy groups of spheres:

James: 4n annihilates the 2-primary component of the homotopy groups
of the sphere S2n+1.

James’ result is a consequence of a more geometric result which was first
formulated as a theorem about loop spaces by John Moore. For a homotopy
associative H-space X and a positive integer k, let k : X → X denote the
k-th power map defined by k(x) = xk.
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James: Localized at 2, there is a factorization of the 4-th power map

4 : Ω3S2n+1 → ΩS2n−1 → Ω3S2n+1.

Toda [130, 131] defined new “secondary” Hopf invariants and used these to
extend James’ result to odd primes p, that is:

Toda: For an odd prime p, p2n annihilates the p-primary component of the
homotopy groups of the sphere S2n+1.

Or in Moore’s reformulation:

Toda: Localized at an odd prime p, there is a factorization of the p2-d
power map

p2 : Ω3S2n+1 → ΩS2n−1 → Ω3S2n+1.

No progress was made in the exponents of the primary components of
homotopy groups until Selick’s thesis [112].

Selick: For p an odd prime, p annihilates the p-primary component of the
homotopy groups of S3.

Selick’s result is a consequence of the following geometric result. Let S3〈3〉
denote the 3-connected cover of the 3-sphere S3 and let S2p+1{p} denote
the homotopy theoretic fibre of the degree p map p : S2p+1 → S2p+1.

Selick: Localized at an odd prime p, Ω2(S3〈3〉) is a retract of Ω2S2p+1{p}.

Selick’s work was followed almost immediately by the work of Cohen–
Moore–Neisendorfer [27, 26]. They proved that, if p is a prime greater than
3, then pn annihilates the p-primary component of the homotopy groups of
S2n+1. A little later, Neisendorfer [100] overcame technical difficulties and
extended this result to all odd primes.

Cohen–Moore–Neisendorfer: Localized at an odd prime there is a fac-
torization of the p-th power map

p : Ω2S2n+1 → S2n−1 → Ω2S2n+1.

Let C(n) be the homotopy theoretic fibre of the double suspension map
Σ2 : S2n−1 → Ω2S2n+1.

Exponent corollary: If p is an odd prime, then p annihilates the p pri-
mary components of the homotopy groups π∗(C(n)) and pn annihilates the
p primary components of the homotopy groups π∗(S

2n+1).

For odd primes, Brayton Gray [46] showed that the results of Selick and
Cohen–Moore–Neisendorfer are the best possible. At the prime 2, the result
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of James is not the best possible but the definitive bound has not yet been
found.

The main point of this book is to present the proof of the result of Cohen–
Moore–Neisendorfer. We present the necessary techniques from homotopy
theory, graded Lie algebras, and homological algebra. To this end, we need
to develop homotopy groups with coefficients and the differential homo-
logical algebra associated to fibrations. These are applied to produce loop
space decompositions which yield the above theorems.

It is useful to consider two cases of homotopy groups with coefficients, the
case where the coefficients are a finitely generated abelian group and the
case where the coefficients are a subgroup of the additive group of the
rational numbers.

For a space X and finitely generated abelian group G, πn(X;G) is defined
as the set of pointed homotopy classes of maps [Pn(G), X]∗ from a space
Pn(G) to X where Pn(G) is a space with exactly one nonzero reduced
cohomology group isomorphic to G in dimension n. This definition first
occurs in the thesis of Peterson [104, 99]. These homotopy groups with
coefficients are related to the classical homotopy groups by a universal
coefficient sequence.

Peterson: There is a short exact sequence

0→ πn(X)⊗G→ πn(X;G)→ Tor1
Z(πn−1(X), G)→ 0.

There is a Hurewicz homomorphism to homology with coefficients

φ : πn(X;G)→ Hn(X;G),

the image of which lies in the primitive elements, and a Hurewicz theorem
is true.

From this point of view, the usual or classical homotopy groups are those
with coefficients Z.

In the finitely generated case, nothing is lost by considering only the case
of cyclic coefficients. If 2-torsion is avoided, Samelson products were intro-
duced into these groups for a homotopy associative H-space X in the thesis
of Neisendorfer [99]:

[ , ] : πn(X;Z/kZ)⊗ πm(X;Z/kZ)→ πm+n(X;Z/kZ).

To construct these Samelson products, it is necessary to produce decom-
positions of smash products into bouquets:

Pn(Z/prZ) ∧ Pm(Z/prZ) ' Pn+m(Z/prZ) ∨ Pn+m−1(Z/prZ)
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when p is an odd prime. If p = 2, these decompositions do not always
exist and therefore there is no theory of Samelson products in homotopy
groups with coefficients Z/2Z. If p = 3, the decompositions exist but the
decompositions are not “associative” and this leads to the failure of the
Jacobi identity for Samelson products in homotopy with Z/3Z coefficients.

The Hurewicz homomorphism carries these Samelson products into graded
commutators in the Pontrjagin ring,

φ[α, β] = [φα, φβ] = (φα)(φβ)− (−1)nm(φβ)(φα)

where n = deg(α) and m = deg(β).

Neisendorfer also introduced a homotopy Bockstein spectral sequence to
study the order of torsion elements in the classical homotopy groups.

With few exceptions, the first applications of homotopy groups with coef-
ficients will be to the simple situation where the the Hurewicz homomor-
phism is an isomorphism through a range. In a few cases, we will need to
consider situations where the Hurewicz map is merely an epimorphism but
with a kernel consisting only of Whitehead products in a range. This is
all we will need to develop the theory of Samelson products in homotopy
groups with coefficients, where we avoid the prime 2 and sometimes the
prime 3.

For a space X and a subgroup G of the rationals, πn(X;G) is defined as
the tensor product πn(X)⊗G. where , if n = 1, we require πn(X) to be
abelian. Once again, these homotopy groups with coefficients are related to
the classical homotopy groups by a universal coefficient sequence, there is
a Hurewicz homomorphism to homology with coefficients, and a Hurewicz
theorem is true. Futhermore, there are Samelson products for a homotopy
associative H-space X and the Hurewicz map carries these Samelson prod-
ucts into graded commutators in the Pontrjagin ring.

In the special case of rational coefficients Q, the Hurewicz homomorphism
satisfies a strong result of Milnor–Moore [90]:

Milnor–Moore: If X is a connected homotopy associative H-space, then
the Hurewicz map ϕ : π∗(X;Q)→ H∗(X;Q) is an isomorphism onto the
primitives of the Pontrjagin ring and there is an isomorphism

H∗(X;Q) ∼= U(π∗(X;Q))

where UL denotes the universal enveloping algebra of a Lie algebra L.
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In practice this means that the rational homotopy groups can often be com-
pletely determined and this is one of things that makes rational homotopy
groups useful.

In contrast, homotopy groups with cyclic coefficients have not been much
used since they are usually as difficult to completely determine as the usual
homotopy groups are. Nonetheless, some applications exist. The Hurewicz
map still transforms the Samelson product into graded commutators of
primitive elements in the Pontrjagin ring. This representation is far from
faithful but is still nontrivial. The homotopy Bockstein spectral sequence
combines with the above to give information on the order of torsion homo-
topy elements related to Samelson products.

Many theorems in homotopy theory depend on the computation of homol-
ogy. For example, in order to prove that two spaces X and Y are homotopy
equivalent, one constructs a map f : X → Y and checks that the induced
map in homology is an isomorphism. If X and Y are simply connected and
the isomorphism is in homology with integral coefficients, then the map f
is a homotopy equivalence. In general, when the isomorphism is in homol-
ogy with coefficients, then the map f is some sort of local equivalence. For
example, with rational coefficients, we get rational equivalences, with coef-
ficients integers Z(p) localized at a prime p, we get equivalences localized at
p, and with Z/pZ coeffients, we get equivalences of completions at p. The
theorem of Serre, ΩS2n ' S2n−1 × ΩS4n−1 localized away from 2, and the
Hilton–Milnor theorem,

Ω(ΣX ∨ ΣY ) ' ΩΣX × ΩΣ

 ∞∨
j=0

X∧j ∧ Y

,
are proved in this way. A central theme of this book will be such decom-
positions of loop spaces.

For us, the most basic homological computation is the homology of the
loops on the suspension of a connected space:

Bott–Samelson [13]: If X is connected and the reduced homology of
H∗(X;R) is free over a coefficient ring R, then there is an isomorphism of
algebras

T (H∗(X;R))→ H∗(ΩΣX;R)

where T (V ) denotes the tensor algebra generated by a module V .

Let L(V ) be the free graded Lie algebra generated by V . The observation
that T (V ) is isomorphic to the universal enveloping algebra UL(V ) has
topological consequences based on the following simple fact:
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Tensor decomposition: If 0→ L1 → L2 → L3 → 0 is a short exact
sequence of graded Lie algebras which are free as R modules, then there
is an isomorphism

UL2
∼= UL1 ⊗ UL3.

Suppose we want to construct a homotopy equivalence of H-spaces X ×
Y → Z and suppose that we compute

H∗(X;R) = UL1, H∗(Y ;R) = UL3, and H∗(Z;R) = UL2.

Suppose also that we can construct maps g : X → Z and h : Y → Z such
that the product f = µ ◦ (g × h) : X × Y → Z× Z→ Z induces a homol-
ogy isomorphism (where µ : Z× Z→ Z is the multiplication of Z). Then
we have an equivalence localized in the sense that is appropriate to the
coefficients.

Here is an example. Let L(xα) denote the free graded Lie algebra generated
by the set {xα}). Let 〈xα〉 denote the abelianization, that is, the free module
generated by the set with all Lie brackets zero. If we localize away from 2
and x is an odd degree element, then we have a short exact sequence

0→ 〈[x, x]〉 → L(x)→ 〈x〉 → 0

and isomorphisms

H∗(ΩS
4n−1) ∼= U(〈[x, x]〉), H∗(S2n−1) ∼= U(〈x〉),

H∗(ΩS
2n) ∼= U(L(x))).

This leads to the result of Serre: ΩS2n ' S2n−1 × ΩS4n−1 localized away
from 2. Thus, Serre’s result is essentially a consequence of just the Bott–
Samelson theorem and the tensor decomposition of universal enveloping
algebras.

Consider the following additional facts concerning Lie algebras [27]:

Free subalgebras: If L is a free graded Lie algebra and K is a subalgebra
which is a split summand as an R-module, then K is a free graded Lie
algebra.

Kernel theorem: If K is the kernel of the natural map L(V ⊕W )→ L(V )
of free graded Lie algebras, then K is isomorphic to the free graded Lie
algebra

L

 ∞⊕
j=0

V ⊗j ⊗W


where V ⊗j = V ⊗ V ⊗ · · · ⊗ V , with j factors.
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A direct consequence is the Hilton–Milnor theorem,

Ω(ΣX ∨ ΣY ) ' ΩΣX × ΩΣ

 ∞∨
j=0

X∧j ∧ Y

.
In order to study torsion at a prime p, it is useful to consider the Bockstein
differentials in homology with mod p coefficients. This leads to considera-
tion of differential graded Lie algebras.

For example, let Pn(pr) = Sn−1 ∪pr en be the space obtained by attach-
ing an n-cell to an n− 1-sphere by a map of degree pr. Then
H∗(P

n(pr);Z/pZ) = 〈u, v〉 with deg(v) = n and deg(u) = n− 1. The r-th
Bockstein differential is given by βr(v) = u, βr(u) = 0. Thus, the Bott–
Samelson theorem gives isomorphisms of differential Hopf algebras

H∗(ΩΣPn(pr);Z/pZ) ∼= T (u, v) ∼= UL(u, v)

where L = L(u, v) is a differential Lie algebra which is a free Lie algebra.
Any algebraic constructions with topological implications must be compat-
ible with these Bockstein differentials. For example, the abelianization of
L is 〈u, v〉.

This is compatible with differentials, leads to the short exact sequence of
differential Lie algebras

0→ [L,L]→ L→ 〈u, v〉 → 0,

and the tensor decomposition of universal enveloping algebras

H∗(ΩΣPn(pr);Z/pZ) ∼= UL ∼= U(〈u, v〉)⊗ U([L,L]).

But this tensor decomposition can only be realized by a product decompo-
sition of ΩΣPn(pr) when p and n are odd. If we set n− 1 = 2m, then we
can prove [27]:

Cohen–Moore–Neisendorfer: If p is an odd prime and m ≥ 1, then
there is a homotopy equivalence

ΩP 2m+2(pr) ' S2m+1{pr} × Ω

 ∞∨
j=0

P 2m+2mj+1(pr)


where S2m+1{pr} is the homotopy theoretic fibre of the degree pr map pr :
S2m+1 → S2m+1.

The restriction to odd primes in the above is the result of the nonexistence
of a suitable theory of Samelson products in homotopy groups with 2-
primary coefficients.
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One reason for the above parity restriction is as follows: Suppose the coef-
ficient ring is Z/pZ with p an odd prime. Only when n is odd (so that µ
has even dimension and ν has odd dimension) can we write that

[L,L] = L(adj(u)([v, v], adj(u)([u, v]))j≥0 =

the free Lie algebra on infinitely many generators with r-th Bockstein dif-
ferential given by βr(adj(u)([v, v])) = 2adj(u)([u, v] for j ≥ 0. In this case,
the module of generators of [L,L] is acylic with respect to the Bockstein
differential and it is possible that the universal enveloping algebra U([L,L])
represents the homology of the loop space on a bouquet of Moore spaces.
In fact, the isomorphisms of differential algebras

H∗(S
2m+1{pr};Z/pZ) ∼= U(〈u, v〉),

H∗(Ω

 ∞∨
j=0

P 2m+2mj+1(pr)

 ;Z/pZ) ∼= U([L,L]),

H∗(ΩP
2m+2(pr);Z/pZ) ∼= UL

then lead to the above product decomposition for ΩP 2m+2(pr).

There is no analogous product decomposition for ΩP 2m+1(pr). The situ-
ation is much more complicated because of the fact that [L,L] does not
have an acyclic module of generators when L = L(u, v) with deg(u) odd
and deg(v) even. To go further we need to study the homology H(L, βr).

Let x be an even degree element in a differential graded Lie algebra over
the ring Z/pZ with p an odd prime, let d denote the differential, and for
k ≥ 1 define new elements

τk(x) = adp
k−1

(x)(dx)

σk(x) =
1

2

pk−1∑
j=1

p−1(j, pk − j)[adj−1(x)(dx), adp
k−j−1(x)(dx)]

where (a, b) = (a+b)!
(a!)(b!) is the binomial coefficient. These elements are cycles,

d(τk(x)) = 0, d(σk(x)) = 0, and they determine the homology of the above
L via the following proposition.

Homology of free Lie algebras with acyclic generators: Let L(V ) be
a free graded Lie algebra over the ring Z/pZ with p an odd prime and with
a differential d such that d(V ) ⊆ V and H(V, d) = 0. Write

L(V ) = H(L(V ), d)⊕K
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where K is acyclic. If K has a basis xα, dxα, yβ , dyβ with deg(xα) even
and deg(yβ) odd, then H(L(V ), d) has a basis represented by the cycles
τk(xα), σk(xα) with k ≥ 1.

This proposition has two main applications. The first application is to a
decomposition theorem which leads to the determination of the odd pri-
mary exponents of the homotopy groups of spheres.

Decomposition theorem: Let p be an odd prime and let F 2n+1{pr} be
the homotopy theoretic fibre of the natural map P 2n+1(pr)→ S2n+1 which
pinches the bottom 2n-cell to a point. Localized at p, there is a homotopy
equivalence

ΩF 2n+1{pr} ' S2n−1 ×
∞∏
k=1

S2pkn−1{pr+1} × ΩΣ
∨
α

Pnα(pr)

where ∨
α

Pnα(pr)

is an infinite bouquet of mod pr Moore spaces.

The second application is to the existence of higher order torsion in the
homotopy groups of odd primary Moore spaces:

Higher order torsion: If p is an odd prime and n ≥ 1, then for all k ≥ 1
the homotopy groups π2pkn−1(P 2n+1) contain a summand isomorphic to
Z/pr+1Z.

The following decomposition theorem is valid:

Cohen–Moore–Neisendorfer: If p is an odd prime and m ≥ 1, then
there is a homotopy equivalence

ΩP 2m+1(pr) ' T 2m+1{pr} × ΩΣ
∨
α

Pnα(pr)

where there is a fibration sequence

C(n)×
∞∏
k=1

S2pkn−1{pr+1} → T 2m+1{pr} → S2n+1{pr}.

A corollary of these decomposition theorems is [28]:

Cohen–Moore–Neisendorfer: If p is an odd prime and n ≥ 3, then
p2r+1 annihilates the homotopy groups π∗(P

n(pr)).

In fact the best possible result is [102]:
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Neisendorfer: If p is an odd prime and n ≥ 3, then pr+1 annihilates the
homotopy groups π∗(P

n(pr)).



1 Homotopy groups with coefficients

In this chapter, we define homotopy groups with coefficients π∗(X;G) for
a pointed space X and an abelian group G. With some small restrictions,
these homotopy groups are covariant functors of X and G and, most impor-
tant, satisfy a universal coefficient exact sequence

0→ πn(X)⊗G→ πn(X;G)→ TorZ(πn−1(X), G)→ 0.

First, π∗(X;G) is defined when G is a finitely generated abelian group and
then the definition is extended to arbitrary abelian G by using the fact that
G is a direct limit of its finitely generated subgroups.

The guiding principle is that the groups π∗(X;G) are related to the groups
π∗(X) in much the same way that the groups H∗(X;G) are related to the
groups H∗(X;Z).

The definitions originated in the thesis of Frank Peterson [104] written
under the direction of Norman Steenrod. Further development occurred in
the thesis of the author [99] written under the direction of John Moore.
Moore also influenced Peterson.

These homotopy groups with coefficients satisfy the usual long exact
sequences associated to pairs and to fibration sequences. They also sat-
isfy long exact Bockstein sequences associated to short exact sequences of
coefficient groups.

In the case when G = Z/kZ is a cyclic group, we define a mod k Hurewicz
homomorphism ϕ : π∗(X;G)→ H∗(X;G) and prove a mod k Hurewicz iso-
morphism theorem. The proof of the mod k Hurewicz theorem is a conse-
quence of the fact that it is true when X is an Eilenberg–MacLane space
and of the fact that any space X has a Postnikov system.

We use the usual argument to show that the mod k Hurewicz isomorphism
theorem for spaces implies a similar mod k isomorphism theorem for pairs
of spaces.

12
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1.1 Basic definitions

In order to relate integral homology and integral cohomology, it is conve-
nient to introduce the following two distinct notions of duality.

Definition 1.1.1.

(A) If F is a finitely generated torsion free abelian group, let F ∗ =
Hom(F,Z).

(B) If T is a finite abelian group, let T ∗ = Hom(T,Q/Z).

Thus, Z∗ ∼= Z generated by the identity map 1Z : Z→ Z and (Z/kZ)∗ ∼=
Z/kZ generated by the map which sends 1 to 1/k. It follows that there are
unnatural isomorphisms F ∗ ∼= F and T ∗ ∼= T.

The following lemma is easily verified in the cyclic case and hence in all
cases.

Lemma 1.1.2. For finitely generated free F and finite T , the natural maps
F → (F ∗)∗ and T → (T ∗)∗ are isomorphisms.

Corollary 1.1.3. For finitely generated generated free F1 and F2 and finite
T1 and T2, the natural maps

Hom(F1, F2)→ Hom(F ∗2 , F
∗
1 )

and

Hom(T1, T2)→ Hom(T ∗2 , T
∗
1 )

sending a homomorphism f to its dual f ∗ are isomorphisms.

Since Q is a divisible, therefore injective, abelian group, the long exact
sequence associated to the short exact sequence 0→ Z→ Q→ Q/Z→ 0
gives:

Lemma 1.1.4. For finite abelian T , there is a natural isomorphism T ∗ ∼=
Ext(T,Z).

Let G be a finitely generated abelian group and let Pn(G) be a finite
complex with exactly one nonzero reduced integral cohomology group,

H
k
(Pn(G);Z) =

{
G for k = n

0 for k 6= n.

The universal coefficient theorem

0→ Ext(Hn(X;Z), G)→ Hn(X;G)→ Hom(Hn(X;Z),Z)→ 0

combines with the above lemmas to yield:
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Proposition 1.1.5. If G = T ⊕ F where T is finite abelian and F is
finitely generated free abelian, then the reduced integral homology of Pn(G)
is

Hk(Pn(G);Z) ∼=


T ∗ if k = n− 1,

F ∗ if k = n, and

0 if k 6= n, n− 1.

We will leave the question of the uniqueness of the homotopy type of Pn(G)
to the exercises.

Let Mn(G) denote the Moore space with exactly one nonzero reduced inte-
gral homology group in dimension n. It follows that there is a homology
equivalence

Mn(F ∗) ∨Mn−1(T ∗)
'−→ Pn(T ⊕ F ).

Definition 1.1.6. If X is a pointed topological space, then the n-th homo-
topy group of X with G coefficients is

πn(X;G) = [Pn(G);X]∗

= the pointed homotopy classes of maps from Pn(G) to X.

The two most useful examples of Pn(G) are:

If G = Z = the additive group of integers, then Pn(Z) = Sn and
πn(X;Z) = πn(X) = the usual homotopy groups for all n ≥ 1.

If G = Z/kZ = the integers mod k, then Pn(Z/kZ) = Pn(k) = Sn−1 ∪k
en = the space obtained by attaching an n-cell to an (n− 1)-sphere by a
map of degree k. Thus, πn(X;Z/kZ) is defined for all n ≥ 2.

Since Pn(G⊕H) ' Pn(G) ∨ Pn(H), it follows that πn(X;G⊕H) =
πn(X;G)⊕ πn(X;H). Hence, the cyclic case is sufficient to define πn(X;G)
for any finitely generated abelian group G and all n ≥ 2 or, if G is finitely
generated free abelian, n ≥ 1.

But we can also construct Pn(G) by free resolutions. Let G be any finitely
generated abelian group which is free if n = 1. Since the case n = 1 is trivial
(P 1(G) is just a wedge of circles), we shall assume n ≥ 2. Let

0→
⊕
β

Z F−→
⊕
α

Z→ G→ 0

be a finitely generated free resolution and let

f :
∨
α

Sn−1 →
∨
β

Sn−1
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be a map such that the induced map f ∗ = F :
⊕

β Z→
⊕

α Z in dimension
n− 1 integral cohomology. If Cf = the mapping cone of f , the long exact
cohomology sequence associated to the cofibration sequence∨

α

Sn−1 f−→
∨
β

Sn−1 → Cf

shows that Cf is a Pn(G).

If Y is any homotopy associative co-H-space andX is any pointed space, the
comultiplication ν : Y → Y ∨ Y defines a group structure on [Y,X]∗. The
standard example of a homotopy associative co-H-space is a suspension,
ΣW = S1 ∧W , and the double suspension Σ2W is homotopy commutative.
Since ΣPn(G) = Pn+1(G):

Proposition 1.1.7. The set πn(X;G) is a group if n ≥ 3 and an abelian
group if n ≥ 4.

On the other hand, if Y is any pointed space and X is any homotopy asso-
ciative H-space, the multiplication µ : X ×X → X defines a group struc-
ture on [Y,X]∗. The standard lemma is:

Proposition 1.1.8. If Y is any co-H-space and X is any H-space, then
the two structures on [Y,X]∗ are the same and they are both commutative
and associative.

Thus:

Proposition 1.1.9. If X is an associative H-space, the set πn(X;G) is a
group if n ≥ 2 and an abelian group if n ≥ 3.

Exercises

(1) Let G be a finitely generated abelian group and write G ∼= T ⊕ F where
T is a torsion group and F is torsion free. Let X be any finite complex
with exactly one nonzero reduced integral cohomology group which
is isomorphic to G in dimension n. Thus, if n = 1, G = F must be
torsion free, T = 0. Assume X has an abelian fundamental group. Show
that there exists an integral homology equivalence A ∨B → X where
A is a Moore space with exactly one nonzero reduced homology group
isomorphic to T in dimension n− 1 andB is a Moore space with exactly
one nonzero reduced homology group isomorphic to F in dimension n,
that is, B is a bouquet of spheres. Thus, if X is simply connected, it
is unique up to homotopy type.

(2) (a) By considering the universal cover and the action of the funda-
mental group, show that π2(S1 ∨ S2) is isomorphic to the group
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ring Z[π] where π = 〈T 〉 = {I, T±1, T±2, . . . } = the infinite cyclic
group generated by T .

(b) Constructing a fake circle: Let α = (I − 2T ) ε π2(S1 ∨ S2) and
let

X = (S1 ∨ S2) ∪α e3

be the result obtained by attaching a 3-cell to the bouquet by the
map α. Show that X has the same integral homology as the circle
S1 but that π2(X) = Z[ 1

2 ].

(3) (a) Let P 2(Z/kZ) be the standard example given above. Show that the
universal cover of P 2(Z/kZ) has the homotopy type of a bouquet
of k − 1 copies of S2 and hence that

π2(P 2(Z/kZ)) =

k−1⊕
i=1

Z =

a direct sum of k − 1 copies of Z.

(b) Show that

π2(P 2(Z/kZ)) ∨ S2) = π2(P 2(Z/kZ))⊕ Z[π]

where π = 〈T 〉 = {I, T, T 2, . . . , T k−1} = is the cyclic group gener-
ated by a generator T of order k.

(c) Constructing a fake Moore space: Let α = (I −
2T ) ε π2(P 2(Z/kZ)) ∨ S2) and let

X = (P 2(Z/kZ) ∨ S2) ∪α e3

be the result obtained by attaching a 3-cell to the bouquet by the
map α. Show that X has the same integral homology as the Moore
space P 2(Z/kZ) but that

π2(X) = π2(P 2(Z/kZ))⊕ Z/(2k − 1)Z.

1.2 Long exact sequences of pairs and fibrations

Let CY denote the cone on a space Y . Suppose (X,A) is a pointed pair
and G is an abelian group such that Pn−1(G) exists. Define

πn(X,A;G) = [(CPn−1(G), Pn−1(G)), (X,A)]∗.

This is clearly a functor on pairs.
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In general, πn(X,A;G) is a set for n ≥ 3 and, if n ≥ 4, the comultiplication

(CPn−1(G), Pn−1(G))→ (CPn−1(G) ∨ CPn−1(G), Pn−1(G) ∨ Pn−1(G))

makes πn(X,A;G) a group.

Of course, πn(X, ∗;G) = πn(X;G).

The restriction map ∂ : πn(X,A)→ πn−1(A) fits into the long exact
sequence of a pair:

. . . π4(A;G)→ π4(X;G)→ π4(X,A;G)
∂−→ π3(A;G)→

π3(X;G)→ π3(X,A;G)
∂−→ π2(A;G)→ π2(X;G).

Let F → E → B be a fibration sequence. The homotopy lifting property
yields:

Lemma 1.2.1. The projection induces an isomorphism

πn(E,F ;G)
∼=−→ πn(B;G).

The long exact sequence of the pair (E,F ) becomes the long exact homo-
topy sequence of a fibration:

. . . π4(F ;G)→ π4(E;G)→ π4(B;G)
∂−→ π3(F ;G)→

π3(E;G)→ π3(B;G)
∂−→ π2(F ;G)→ π2(E;G)→ π2(B;G).

The extension of the long exact sequence to π2(B;G) is an elementary
consequence of the homotopy lifting property.

If F is a topological group and F
i−→ E

π−→ B is a principal bundle with
action F × E → E, then for all n ≥ 2 there is an action πn(F ;G)×
πn(E;G)→ πn(E;G), ([h], [f ]) 7→ [h] ∗ [f ]. We have π∗([f ]) = π∗([g]) for
[f ] and [g] in πn(E;G) if and only if there exists [h] in πn(F ;G) such
that [h] ∗ [f ] = [g].

Exercises

(1) Show that the long exact homotopy sequence of a fibration terminates
in an epimorphism at π2(B;G) if F is simply connected.

(2) Suppose that F → E → B is a fibration sequence of H-spaces and H-
maps with π1(E)→ π1(B) and π2(E)⊗G→ π2(B)⊗G both epimor-
phisms. Show that the long exact homotopy sequence with coefficients
can be extended to terminate in the exact sequence

· · · → π2(B;G)→ π1(F )⊗G→ π1(E)⊗G→ π1(B)⊗G→ 0.
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1.3 Universal coefficient exact sequences

Suppose n ≥ 2. Since Pn(Z/kZ) is the mapping cone of the degree k map
k : Sn−1 → Sn−1, the resulting cofibration sequence

· · · → Sn−1 k−→ Sn−1
β
−→ Pn(Z/kZ)

ρ
−→ Sn

k−→ Sn . . .

yields for every pointed space X a long exact sequence

· · · → πn(X)
k−→ πn(X)

ρ−→ πn(X;Z/kZ)
β−→ πn−1(X)

k−→ πn−1(X) . . . .

Of course, the map k : Sn → Sn induces multiplication by k on the abelian
homotopy group πn(X) (or the k-th power on the fundamental group
π1(X)). The map ρ is called a mod k reduction map and the map β is
called a Bockstein.

The above exact sequence is always an exact sequence of sets and an exact
sequence of groups and homomorphisms except possibly at

π2(X)
ρ−→ π2(X;Z/kZ)

β−→ π1(X)

when π2(X;Z/kZ) is not a group. Of course, if X is a homotopy associa-
tive H-space it is always an exact sequence of groups and homomorphisms.
In the general case, we have a substitute which is adequate for many pur-
poses: The natural pinch map P 2(Z/kZ)→ P 2(Z/kZ) ∨ S2 yields an action
π2(X)× π2(X;Z/kZ)→ π2(X;Z/kZ), (h, f) 7→ h ∗ f . If f, gεπ2(X;Z/kZ),
then β(f) = β(g) if and only if there exists hεπ2(X) such that h ∗ f = g.

If n ≥ 2, there are short exact sequences

0→ πn(X)

kπn(X)
→ πn(X;Z/kZ)→ kernel{k : πn−1(X)→ πn−1(X)} → 0.

Since

πn(X)

kπn(X)
∼= πn(X)⊗ Z/kZ,

kernel{k : πn−1(X)→ πn−1(X)} ∼= TorZ(πn−1(X),Z/kZ),

we can write the universal coefficient sequence in the form in which it
generalizes.

Universal coefficient exact sequence 1.3.1. For a pointed space X and
n ≥ 2 there is a natural exact sequence

0→ πn(X)⊗ Z/kZ→ πn(X;Z/kZ)→ TorZ(πn−1(X),Z/kZ)→ 0.
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If X is connected and the fundamental group is abelian, this suggests a
cons- istent way to extend the definition of homotopy groups with coeffi-
cients to dimension 1. Set

π1(X;Z/kZ) = π1(X)⊗ Z/kZ.

Suppose X is a nilpotent space with abelian fundamental group. It is a
fundamental result of localization theory that the following are equivalent:

(a) πn(X;Z) is a Z[ 1
k ] module for all 1 ≤ n ≤ ∞.

(b) Hn(X;Z) is a Z[ 1
k ] module for all 1 ≤ n ≤ ∞.

The universal coefficient theorem for homotopy and homology imply that
these are also equivalent to:

(c) πn(X;Z/kZ) = 0 for all 1 ≤ n ≤ ∞.

(d) Hn(X;Z/kZ) = 0 for all 1 ≤ n ≤ ∞.

Exercises

(1) Let G be a finitely generated abelian group and n ≥ 2. Use the defini-
tion of Pn(G) by free resolutions to show that there is a short exact
universal coefficient sequence

0→ πn(X)⊗G→ πn(X;G)→ TorZ(πn−1(X), G)→ 0.

(If n = 2, assume π1(X) is abelian.)

(2) Let p be a prime.

(a) Suppose there is a positive integer r such that

psπm(X;Z/psZ) = 0 for all s ≤ r.

If αεTorZ(πm−1(X),Z/prz) has order ps with s ≤ r, then there is
an element γεπm(X;Z/prZ) which has order ps and such that γ
maps to α in the universal coefficient sequence

0→ πm(X)⊗ Z/prZ→ πm(X;Z/prZ)

→ TorZ(πm−1(X),Z/prZ)→ 0.

(b) If πm−1(X) is finitely generated,together with the hypotheses in
(a), show that the above universal coefficient sequence for Z/prZ
coefficients is split.
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1.4 Functor properties

The definition by free resolutions leads immediately to the following propo-
sition:

Proposition 1.4.1. If f : G→ H is a homomorphism of finitely generated
abelian groups and n ≥ 2, then there exists a map F : Pn(H)→ Pn(G)
such that the induced cohomology map F ∗ = f. We shall sometimes write
F = f ∗.

Unfortunately, the homotopy class of the map F is not uniquely determined
in all cases. But we do have:

Proposition 1.4.2. The natural map θ : [Pn(H), Pn(G)]∗ → Hom(G,H)
given by θ(F ) = F ∗ is a bijection in the following cases:

(a) if H and G are finitely generated free abelian and n ≥ 2.

(b) if H if finite abelian and G is finitely generated free abelian and
n ≥ 2.

(c) if H if finitely generated free abelian, and G is finite abelian, G has
odd order, and n ≥ 4.

(d) if H and G are finite abelian, G has odd order, and n ≥ 4.

Proof: The preceding proposition says that θ is always a surjection.

Suppose that H = ⊕Hα and G = ⊕Gβ . Then

[Pn(H), Pn(G)]∗ ∼= ⊕[Pn(Hα), Pn(Gβ)]∗

in all of the above cases since:

(1) Pn(H) = ∨Pn(Hα) implies

[Pn(H), Pn(G)]∗ ∼= ⊕[Pn(Hα), Pn(G)]∗

and

(2) Pn(G) = ∨Pn(Gβ), dimension Pn(Hα) = n, and the fact that the
pair (

∏
Pn(Gβ),∨Pn(Gβ)) is 2n− 1 connected in cases (a) and (b),

2n− 3 connected in cases (c) and (d), implies

[Pn(Hα), Pn(G)]∗ ∼= ⊕[Pn(Hα), Pn(Gβ)]∗

Therefore it suffices to consider the cyclic cases:

(a) [Sn, Sn]∗ = Hom(Z,Z) = Z, n ≥ 2, which is a classical result
true even for n = 1.
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(b) [Pn(Z/kZ), Sn]∗ = Hom(Z,Z/kZ) = Z/kZ, n ≥ 2 which is an
immediate consequence of the universal coefficient theorem.

(c) [Sn, Pn(Z/kZ)]∗ = Hom(Z/kZ,Z) = 0, k odd and n ≥ 4: to see
this, it is sufficient to observe that there is a fibration sequence

F → Pn(Z/kZ)→ K(Z/kZ, n− 1)

with F `-connected, ` = min(2n− 4, n+ 2p− 5), where p is
the smallest prime dividing k. Since dimension Sn = n ≤ `,
[Sn, Pn(Z/kZ)]∗ = [Sn,K(Z/kZ, n− 1)]∗ = 0.

(d) [Pn(Z/`Z), Pn(Z/kZ)]∗ = Hom(Z/kZ,Z/`Z), k odd and n ≥
4: Let F,G : Pn(Z/`Z)→ Pn(Z/kZ) be two maps. The first
obstruction to homotopy of F and G is in

Hn−1(Pn(Z/`Z);πn−1P
n(Z/kZ)) = Hom((Z/`Z)∗, (Z/kZ)∗)

= Hom(Z/kZ,Z/`Z).

The obstruction is just θ(F )− θ(G) = F ∗ −G∗. All higher
obstructions vanish by part (c). �

Corollary 1.4.3. If H is a finite group of odd exponent k and n ≥ 4, then
[Pn(H), X]∗ = πn(X;H) has exponent k for all spaces X.

Proof: Apply part (d) of the above to the identity map of Pn(H). Then
use naturality. �

Corollary 1.4.4. If 0→ H → G→ G/H → 0 is a short exact sequence
of finitely generated abelian groups and n ≥ 2, then there is a cofibration
sequence Pn(G/H)→ Pn(G)→ Pn(H).

Proof: Let f : Pn(G/H)→ Pn(G) be a map which induces the projection
G→ H in integral cohomology. The mapping cone Cf is then a Pn(H).�

The maps in the above corollary are not always unique up to homotopy.
But the space Pn(H) is unique up to homotopy type in case n ≥ 3. In the
next section we will restrict to a short exact sequence of cyclic groups

0→ Z/`Z η−→ Z/k`Z ρ−→ Z/kZ→ 0

and produce a more specific construction of this cofibration sequence.

1.5 The Bockstein long exact sequence

Given any continuous map f : A→ B, it is homotopy equivalent to a
cofibration f : A→ Zf where Zf = the mapping cylinder B ∪f (A× I)
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obtained by identifying (a, 1) ≡ f(a). The map f is the inclusion, f(a) =
(f(a), 0). This leads to:

Lemma 1.5.1. Any homotopy commutative diagram

A → X
↓ ↓
Y → Z

is homotopy equivalent to a strictly commutative diagram

A → X1

↓ ↓
Y1 → Z1

where all the maps are cofibrations and it embeds in a commutative diagram

A → X1 → X1/A
↓ ↓ ↓
Y1 → Z1 → Z1/Y1

↓ ↓ ↓
Y1/A → Z1/X1 → Z1/X1 ∪A Y1

where all the rows and columns are cofibration sequences. In addition, note
that

A → X1

↓ ↓
Y1 → X1 ∪A Y1

is a pushout diagram and there is a cofibration sequence

X1 ∪A Y1 → Z1 → Z1/X1 ∪A Y1.

Proof: First replace A→ X and A→ Y by cofibrations A→ X1 and A→
Y1. Then use the homotopy extension property of the cofibration A→ X1

to make the diagram strictly commutative. The inclusions X1 → X1 ∪A Y1

and Y1 → X1 ∪A Y1 are cofibrations. Replace the map X1 ∪A Y1 → Z by a
cofibration X1 ∪A Y1 → Z1.

The rest follows by collapsing subspaces. �

For example, the homotopy commutative diagram

Sn−1 1−→ Sn−1

↓ k ↓ k`
Sn−1 `−→ Sn−1
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yields the homotopy commutative diagram below in which all rows and
columns are cofibration sequences

Sn−1 1−→ Sn−1 → ∗ → Sn →
↓ k ↓ k` ↓ ↓ k
Sn−1 `−→ Sn−1 → Pn(Z/`Z) → Sn →
↓ ↓ ↓ 1 ↓

Pn(Z/kZ)
ρ
−→ Pn(Z/k`Z)

η
−→ Pn(Z/`Z)

β
−→ Pn+1(Z/kZ) → .

The bottom row extends to a long sequence of cofibrations called the geo-
metric Bockstein sequence

P 2(Z/kZ)
ρ
−→ P 2(Z/k`Z)

η
−→ P 2(Z/`Z)

β
−→

P 3(Z/kZ)
ρ
−→ P 3(Z/k`Z)

η
−→ P 3(Z/`Z)→ · · · .

Mapping this sequence to a space X yields the long exact homotopy Bock-
stein sequence

π2(X;Z/kZ)
ρ←− π2(X;Z/k`Z)

η←− π2(X;Z/`Z)

β←− π3(X;Z/kZ)
ρ←− π3(X;Z/k`Z)

η←− π3(X;Z/`Z)←− · · · .

Remark. The homotopy commutative diagram of cofibration sequences is
a good way to see the effect of ρ, η, and β on integral chains. For example,
Pn(Z/kZ) has a basis of integral chains: 1 in dimension 0, sn−1 in dimension
n− 1, en in dimension n. If we look at

Sn−1 1−→ Sn−1

↓ k ↓ k`
Sn−1 `−→ Sn−1

↓ ↓
Pn(Z/kZ)

ρ
−→ Pn(Z/k`Z)

we see immediately that ρ∗(sn−1) = `sn−1, ρ∗(en) = en. Similarly, it is not
hard to verify the commutative diagram

Sn−1 k−→ Sn−1

↓ k` ↓ `
Sn−1 1−→ Sn−1

↓ ↓
Pn(Z/k`Z)

η
−→ Pn(Z/`Z)

and thus η∗(sn−1) = sn−1, η∗(en) = ken.
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It is clear that β∗(en) = sn, β∗(sn−1) = 0.

Warning. If k = `, consider the null composition η ◦ ρ. In the defining cofi-
bration sequence, it looks like the map k : Pn(Z/kZ)→ Pn(Z/kZ) which
is k times the identity, but, unless k is odd, it might not be. For example,
the map 2 : Pn(Z/2Z)→ Pn(Z/2Z) is not null homotopic.

Exercises

(1) If X is a simply connected space, show that the long exact homotopy
Bockstein sequence terminates in a sequence of groups and homomor-
phisms ending in an epimorphism

0←− π2(X;Z/kZ)
ρ←− π2(X;Z/k`Z)

η←−

π2(X;Z/`Z)
β←− π3(X;Z/kZ)←− · · · .

(2) If X is a homotopy associative H-space, show that the long exact homo-
topy Bockstein sequence may be extended to a long exact sequence of
groups and homomorphisms

0←− π1(X)⊗ Z/kZ ρ←− π1(X)⊗ Z/k`Z η←− π1(X)⊗ Z/`Z
β←− π2(X;Z/kZ)

ρ←− π2(X;Z/k`Z)
η←−

π2(X;Z/`Z)
β←− π3(X;Z/kZ)←− · · · .

1.6 Nonfinitely generated coefficient groups

If n ≥ 2 we can attempt to extend the definition of πn(X;G) to the case
where G is an abelian group which is not finitely generated. Any such G can
be written as a direct limit G = lim→Hα of finitely generated subgroups

Hα. Any inclusion map Hα
ι−→ Hβ can be “realized” by a map Pn(Hβ)

ι−→
Pn(Hα) which induces ι in integral cohomology. These maps may not be
unique up to homotopy. In Section 1.4 we gave some conditions which
guarantee uniqueness of these maps up to homotopy. On the other hand, it
may be the case that G is a sequential limit of finitely generated subgroups
and we may just make a choice of the realization of one stage into the next.
We then realize the compositions to be consistent with these choices and the
question of uniqueness vanishes. In any case, we get maps πn(X;Hα)→
πn(X;Hβ) and as long as we have sufficient uniqueness we can take the
direct limit and we define πn(X;G) = lim→ πn(X;Hα). Since direct limits
commute with tensor and torsion products and since direct limits preserve
exact sequences, we still have the universal coefficient exact sequence

0→ πn(X)⊗G→ πn(X;G)→ TorZ(πn−1(X), G)→ 0.
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For example, the rationals Q are the sequential direct limit of the subgroups
1
k!Z. That is, Q is the direct limit of the two isomorphic sequences

Z ⊂ 1
2!Z ⊂ 1

3!Z ⊂ . . . ⊂ 1
k!Z ⊂ . . .

↓ 1! ↓ 2! ↓ 3! ↓ k!

Z 2−→ Z 3−→ Z 4−→ . . .
k−→ Z k+1−−→ · · ·

Thus,

πn(X : Q) = lim
→
πn(X;Z) = lim

→
πn(X)⊗

(
1

k!
Z
)

= πn(X)⊗Q.

Similarly, if p is a prime, then Z[1/p] is the sequential direct limit of (1/p`)Z
and

πn(X;Z[1/p]) = πn(X)⊗ Z[1/p].

We can also consider Q/Z to be the sequential direct limit of the two
isomorphic sequences

1
2!Z
Z ⊂

1
3!Z
Z ⊂

1
4!Z
Z ⊂ . . . ⊂

1
k!Z
Z ⊂ . . .

↓ ↓ ↓ ↓
Z/2!Z ⊂ Z/3!Z ⊂ Z/4!Z ⊂ . . . ⊂ Z/k!Z ⊂ . . .

Thus,

πn(X;Q/Z) = lim
→

πn(X;Z/k!Z).

Finally, if p is a prime, recall that Z(p∞) = Z[1/p]/Z is the sequential direct
limit of Z/pZ ⊂ Z/p2Z ⊂ Z/p3Z ⊂ . . . and thus

πn(X;Z(p∞)) = lim
→

πn(X;Z/p`Z).

Exercises

(1) Let p∞G = {x ∈ G : ∀ r ≥ 0,∃ y ∈ G such that pry = x} and let p∞G =
{x ∈ G : ∃r ≥ 0 such that prx = 0} = the p-torsion subgroup of G.
Show that

G⊗ Z(p∞) = G/p∞G, TorZ(G,Z(p∞)) =p∞ G.

and

(Z/prZ)⊗ Z(p∞) = Z/prZ, TorZ(Z/prZ,Z(p∞)) = Z/prZ,

(Z/qZ)⊗ Z(p∞) = 0, TorZ(Z/qZ,Z(p∞)) = 0

if q and p are relatively prime.
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(2) Show that

G⊗ Z[1/p] =

{
0 if G = Z/prZ
Z/qZ if G = Z/qZ with q and p relatively prime.

(3) Let X be a simply connected CW complex with

πn(X;Z[1/p]) = 0, πn(X;Z(p∞)) = 0

for all n ≥ 2. Show that X is contractible.

(4) Suppose X is a simply connected space. Show that

πn(X;Q/Z) = 0 for all n ≥ 2

if and only if πn(X) is a rational vector space for all n ≥ 2.

(5) Suppose X is a simply connected space. Show that

πn(X;Q) = 0 for all n ≥ 2

if and only if πn(X) is a torsion group for all n ≥ 2.

1.7 The mod k Hurewicz homomorphism

The reduced homology of Pn(Z/kZ) is:

H`(P
n(Z/kZ);Z/kZ) =


(Z/kZ)en if ` = n,

(Z/kZ)sn−1 if ` = n− 1,

0 if ` 6= n, n− 1,

where en and sn−1 denote generators of respective dimensions n and n− 1.

Definition 1.7.1. For n ≥ 2 the mod k Hurewicz homomorphism is the
map

ϕ : πn(X;Z/kZ)→ Hn(X;Z/kZ)

defined by ϕ(α) = f∗(en) where α = [f ] : Pn(Z/kZ)→ X. Clearly, ϕ is a
natural transformation.

Lemma 1.7.2. If n ≥ 3, the Hurewicz map ϕ is a homomorphism.

Proof: Given maps f : Pn(Z/kZ)→ X and g : Pn(Z/kZ)→ X, the sum
[f ] + [g] is represented by the composition

Pn(Z/kZ)
ν−→ Pn(Z/kZ) ∨ Pn(Z/kZ)

f∨g−−→ X
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where ν is the comultiplication and f ∨ g is f on the first summand and is
g on the second summand. Therefore,

ϕ([f ] + [g]) = (f ∨ g)∗ ◦ ν∗(en) = (f ∨ g)∗(en, en)

= f∗(en) + g∗(en) = ϕ([f ]) + ϕ([g]). �

Lemma 1.7.3. Suppose X is a homotopy associative H-space. Then the
Hurewicz map ϕ : π2(X;Z/kZ)→ H2(X;Z/kZ) is a homomorphism if k is
odd or if X is simply connected.

Proof: Consider the diagonal map ∆ : P 2(Z/kZ)→ P 2(Z/kZ)×
P 2(Z/kZ). Write ∆∗(e2) = e2 ⊗ 1 + λs1 ⊗ s1 + 1⊗ e2. If µ : X ×X → X
is the multiplication of X and [f ], [g]επ2(X : Z/kZ), then

ϕ([f ] + [g]) = µ∗ ◦ (f∗ ⊗ g∗) ◦∆∗(e2) = f∗(e2) + g∗(e2) + λ(f∗(s1) · g∗(s1))

= ϕ([f ]) + ϕ([g]) + λ(f∗(s1) · g∗(s1)).

If X is simply connected the last term is 0. Otherwise, consider the
twist map T : P 2(Z/kZ)× P 2(Z/kZ)→ P 2(Z/kZ)× P 2(Z/kZ), T (x, y) =
(y, x). Since T ◦∆ = ∆, it follows that λ = −λ, or 2λ = 0. If k is odd, then
λ = 0. �

Remark. Since P 2(Z/2Z) is just the two-dimensional projective space,
the well known computation of the mod 2 cup product shows that
λ = 1 and ϕ([f ] + [g]) = ϕ([f ]) + ϕ([g]) + f∗(s1) · g∗(s1) in the case: ϕ :
π2(X;Z/2Z)→ H2(X;Z/2Z) with X a homotopy associative H-space.

The Hurewicz map is compatible with the universal coefficient sequences,
the Bockstein sequences, and the action of π2(X) on π2(X;X/kZ). In other
words, the following are commutative for n ≥ 2:

πn(X)
ρ−→ πn(X;Z/kZ)

β−→ πn−1(X)
k−→ πn−1(X)

↓ ϕ ↓ ϕ ↓ ϕ ↓ ϕ

Hn(X)
ρ−→ Hn(X;Z/kZ)

β−→ Hn−1(X)
k−→ Hn−1(X)

πn+1(X;Z/kZ)
β−→ πn(X;Z/`Z)

η−→ πn(X;Z/k`Z)
ρ−→ πn(X;Z/kZ)

↓ ϕ ↓ ϕ ↓ ϕ ↓ ϕ

Hn+1(X;Z/kZ)
β−→ Hn(X;Z/`Z)

η−→ Hn(X;Z/k`Z)
ρ−→ Hn(X;Z/kZ)

π2(X)× π2(X;Z/kZ)
(a,b) 7→a∗b−−−−−−→ π2(X;Z/kZ)

↓ ϕ× ϕ ↓ ϕ

H2(X)×H2(X;Z/kZ)
(c,d)7→ρ(c)+d−−−−−−−−→ H2(X;Z/kZ).

The mod k Hurewicz homomorphism ϕ for pairs is defined similarly. The
homology H∗(CP

n−1(Z/kZ), Pn−1(Z/kZ);Z/kZ) is a free Z/kZ module
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with generators en and sn−1 of respective dimensions n and n− 1. Given
[f ] in πn(X,A;Z/kZ), define ϕ([f ]) = f∗(en). The maps ϕ are again natural
transformations and

πn(X;Z/kZ) → πn(X, ∗;Z/kZ) πn(X,A;Z/kZ)
∂−→ πn−1(A;Z/kZ)

↓ ϕ ↓ ϕ ↓ ϕ ↓ ϕ

Hn(X;Z/kZ) → Hn(X, ∗;Z/kZ) Hn(X,A;Z/kZ)
∂−→ Hn−1(A;Z/kZ)

commute.

Thus, if F → E → B is a fibration sequence, the following commutes:

πn(B, ∗;Z/kZ)
∼=←− πn(E,F ;Z/kZ)

∂−→ πn−1(F ;Z/kZ)
↓ ϕ ↓ ϕ ↓ ϕ

Hn(B, ∗;Z/kZ) ← Hn(E,F ;Z/kZ)
∂−→ Hn−1(F ;Z/kZ).

Exercises

(1) Check that the diagrams in this section commute.

(2) If X is a homotopy associative H-space, check that the Hurewicz map
is compatible with the extensions of the long exact Bockstein sequences
to dimension 1.

(3) If n ≥ 2 show that ϕ : πn(X;Z/kZ)→ Hn(X;Z/kZ) is an isomor-
phism if ϕ⊗ 1 : πn(X)⊗ Z/kZ→ Hn(X)⊗ Z/kZ and TorZ(ϕ, 1) :
TorZ(πn−1(X),Z/kZ)→ TorZ(Hn(X),Z/kZ) are isomorphisms. (The
only point of this exercise is to check it when n = 2 and π2(X;Z/kZ)
may not be a group.)

1.8 The mod k Hurewicz isomorphism theorem

Recall that a connected pointed space X is called nilpotent if the funda-
mental group π1(X) acts nilpotently on all the homotopy groups πn(X)
for n ≥ 1. In particular, the fundamental group must be nilpotent. In the
next theorem, π1(X) will be abelian and π1(X;Z/kZ) is understood to be
π1(X)⊗ Z/kZ.

Mod k Hurewicz theorem 1.8.1. Let X be a nilpotent space with abelian
fundamental group and let n ≥ 1. Suppose πi(X;Z/kZ) = 0 for all 1 ≤
i ≤ n− 1. Then the mod k Hurewicz homomorphism ϕ : πi(X;Z/kZ)→
Hi(X;Z/kZ) is:

(a) an isomorphism for all 1 ≤ i ≤ n.

(b) an epimorphism for i = n+ 1 if n ≥ 2.

(c) an isomorphism for i = n+ 1 and an epimorphism for i = n+ 2 if
n ≥ 3 and k is odd.
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Proof: The strategy of this proof is as follows:

(1) First, for all n ≥ 1, show that it is true for Eilenberg–MacLane
spaces.

(2) Second, for all n ≥ 1, show that it is true for a general space by
considering its Postnikov system.

Part (1) The mod k Hurewicz theorem for Eilenberg–MacLane spaces: For
an integer k and an abelian group A, we shall write Ak = A⊗ Z/kZ and

kA = TorZ(A,Z/kZ). First of all, note that the universal coefficient theo-
rem implies:

Lemma 1.8.2.

πi(K(A,n);Z/kZ) ∼=


Ak if i = n,

kA if i = n+ 1,

0 otherwise.

If p is a prime, the following computation due to Cartan [22] expresses the
homology of a K(A, 1) in terms of exterior algebras E(V, r) generated in
odd degree r and divided power algebras Γ(W, s) generated in even degree
s. In the cyclic case it is an immediate consequence of the collapse of the
the homology Serre spectral sequence of the fibration S1 → K(Z/nZ, 1)→
CP∞. The Künneth theorem extends it to all finitely generated abelian
groups. The general result then follows from direct limits, but something
is missing, namely, a construction of divided powers in the homology of
K(A, 1). This can be found in the 1956 Cartan Seminar [22] or in the book
of Brown [21].

Cartan 1.8.3. For all abelian groups A, there is an isomorphism

H∗(K(A, 1);Z/pZ) ∼= E(Ap, 1)⊗ Γ(pA, 2).

We first observe that the Hurewicz theorem is true for K(A, 1) with mod
p coefficients.

In dimension n = 1, the mod p Hurewicz map ϕ is an isomorphism for
K(A, 1). Hence, the mod p Hurewicz theorem is true for K(A, 1) and n = 1.

On the other hand, if π1(K(A, 1);Z/pZ) = Ap = 0, then the mod p
Hurewicz map ϕ is an isomorphism in dimensions 1 and 2 and an epi-
morphism in dimension 3. Hence, the mod p Hurewicz theorem is true for
K(A, 1) and n = 2.

If π1(K(A, 1);Z/pZ) = π2(K(A, 1);Z/pZ) = 0, then πk(K(A, 1);Z/pZ) =
Hk(K(A, 1);Z/pZ) = 0 for all k ≥ 1. We conclude that ϕ is an isomorphism
in all dimensions. The mod p Hurewicz theorem is true for K(A, 1) and all
n ≥ 1.
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Lemma 1.8.4. If p is a prime, then

H`(K(A, 2);Z/pZ) =


Ap if ` = 2,

pA if ` = 3,

Γ2(Ap) if ` = 4

0 if Ap = 0 and ` = 5.

Lemma 1.8.5. If p is a prime and m ≥ 3, then

H`(K(A,m);Z/pZ) =


Ap if ` = m,

pA if ` = m+ 1,

0 if ` = m+ 2 and p is odd.

0 if Ap = 0 and ` = m+ 3.

The above lemmas are a small piece of the complete computation due to
Cartan. They are an elementary consequence of Cartan’s calculation of the
homology of a K(A, 1). One uses the path space fibration K(A,m− 1)→
PK(A,n)→ K(A,m) and the fact that the Serre spectral sequence is a
spectral sequence of algebras.

Anyway, the above lemmas assert that the mod p Hurewicz theorem is true
for K(A, 1) and all n ≥ 1.

Now, let k be any integer. Since H1(K(A, 1);Z/kZ) ∼= π1(K(A, 1);Z/kZ) ∼=
Ak, the mod p version implies that the mod k Hurewicz theorem is true for
K(A, 1) and n = 1.

Suppose that π1(K(A, 1);Z/kZ) = 0. The long exact Bockstein sequence
shows that π1(K(A, 1);Z/dZ) = 0 for any integer d dividing k. Since k
can be factored into primes and the modular Hurewicz theorem is true for
primes, K(A, 1), and n = 2, we can use induction on the number of factors
of k, the strong form of the five lemma, and long exact Bockstein sequences
to show that, for any integer k, the mod k Hurewicz theorem is true for
K(A, 1) and n = 2:

Similarly, if n ≥ 3 and if π`(K(A, 1);Z/kZ) = 0 for all 1 ≤ ` ≤ n− 1,
then π`(K(A, 1);Z/dZ) = 0 for all d dividing k and ` = 1, 2. Thus,
π`(K(A, 1);Z/pZ) = H`(K(A, 1);Z/pZ) = 0 for all primes p dividing k
and all ` ≥ 1. As before, induction on the number of factors of k, the
strong form of the five lemma, and long exact Bockstein sequences show
that π`(K(A, 1);Z/kZ) = H`(K(A, 1);Z/kZ) = 0 for all ` ≥ 1. The mod k
Hurewicz theorem is true for K(A, 1) and all n ≥ 1.

Induction on the number of factors of k combines with the strong form of
the five lemma and long exact Bockstein sequences to show that the mod
k Hurewicz theorem is true for K(A, 1) and all n ≥ 1.
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Finally, the path fibration K(A,m− 1)→ PK(A,m)→ K(A,m) and the
Serre spectral sequence show that the mod k Hurewicz theorem is true for
K(A,m) for all m ≥ 1 and all n ≥ 1.

Part (2) The mod k Hurewicz theorem via Postnikov systems: Let A be an
abelian group on which a group π acts. In other words, A is a module over
the group ring Z[π]. Let ε : Z[π]→ Z be the augmentation epimorphism
defined by ε(g) = 1 for all g in π. If I = kernel(ε) = the augmentation
ideal, then π acts trivially on A if and only if I ·A = 0. The action is called
nilpotent if In ·A = 0 for some power In of the augmentation ideal.

We shall say that A is mod k trivial if Ak = 0 and kA = 0.

Lemma 1.8.6. Let 0→ A→ B → C → 0 be a short exact sequence of
abelian groups. Then:

(a) Bk = 0 implies Ck = 0.

(b) if two of the three groups are mod k trivial, then so is the third.

Lemma 1.8.7.

(a) Ak = 0 implies (In ·A)k = 0 for all n ≥ 1.

(b) kA = 0 implies k(In ·A) = 0 for all n ≥ 1.

The first of the two lemmas follows from the long exact sequence of the Tor
functor. For the second, it is sufficient to consider the case n = 1. Assume
Ak = 0. Note that k(I ·A) = (I · kA) = I ·A = 0. Thus (I ·A)k = 0, and,
if kA = 0, then k(I ·A) ⊆k A = 0.

In particular, if Ak = 0 then (In ·A/In+1 ·A)k = 0 for all n ≥ 1, and, if A
is mod k trivial, then (In ·A/In+1 ·A) is mod k trivial for all n ≥ 1.

Recall that a space X is called nilpotent if X is path connected, the funda-
mental group π1(X) is nilpotent, and the action of π1(X) is nilpotent on
πm(X) for all m ≥ 2. In this case, each homotopy group πm = πm(X) has
a decreasing filtration

πm = F1(πm) ⊇ F2(πm) ⊇ F3(πm) ⊇ F4(πm) ⊇ · · ·

with each F`(πm)/F`+1(πm) having a trivial π1(X) action and with
each decreasing sequence terminating in a finite number of steps,
Fαm+1(πm(X)) = 0. This leads to a sequence of principal bundles, a refine-
ment of the Postnikov system,

K(F`(πm)/F`+1(πm),m)→ Em,` → Em,`−1

with n ≥ 1 and 1 ≤ ` ≤ αn. It begins with

E1,0 = ∗ and Em,0 = Em−1,αm−1
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for m ≥ 2.

We have

πs(Em,`) =


πs(X) if 1 ≤ s ≤ m− 1

πm(X)/F`+1(πm(X)) if s = m

0 if s > m.

Furthermore,

X = lim
m→∞

Em,`

and this inverse limit is “finite in each degree.”

Now, suppose that X satisfies the hypotheses of the mod k Hurewicz the-
orem for some n ≥ 1, that is, X is nilpotent with abelian fundamental
group and πi(X;Z/kZ) = 0 for all 0 ≤ i ≤ n− 1. Then we know that all the
Eilenberg–MacLane spaces K(F`(πm)/F`+1(πm),m) which appear above
also satisfy the hypotheses of the mod k Hurewicz theorem for this n ≥ 1.

In order to perform the inductive step to prove the mod k Hurewicz theo-
rem, we need to recall the Serre long exact homology sequence of a fibration.
Suppose that F → E → B is an orientable fibration sequence of connected
spaces with

Hi(F ) = Hi(B) = 0 for 1 ≤ i ≤ n− 1

for some coefficient ring R.

The E2 term of the homology Serre spectral sequence is

E2
s,t = Hs(B;Ht(F )) :

The first nonzero differentials are:

dn−1 : Hn(B;Hn(F ))→ H2n−1(F )

and the transgressions

τ = dn+j+1 : Hn+j+1(B)→ Hn+j(F )

with 0 ≤ j ≤ n− 2.
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It follows that we have the Serre long exact homology sequence

H2n−1(F )→ H2n−1(E)→ H2n−1(B)
τ−→

H2n−2(F )→ H2n−2(E)→ H2n−2(B)
τ−→

. . .

Hn+2(F )→ Hn+2(E)→ Hn+2(B)
τ−→

Hn+1(F )→ Hn+1(E)→ Hn+1(B)
τ−→

Hn(F )→ Hn(E)→ Hn(B)→ 0.

Suppose now that the coefficients are Z/kZ. Since the transgression is
defined by

τ : Hn+j+1(B, ∗)← Hn+j+1(E,F )
∂−→ Hn+j(F ),

it follows that the transgression is compatible with the connecting homo-
morphism of the long exact homotopy sequence of the fibration:

πn+j+1(B;Z/kZ)
∂−→ πn+j(F ;Z/kZ)

↓ ϕ ↓ ϕ
Hn+j+1(B;Z/kZ)

τ−→ Hn+j(F ;Z/kZ)

commutes.
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Now the strong form of the five lemma applies to show that if the mod k
Hurewicz theorem is true for the fibre and base of the fibration sequence

K(F`(πm)/F`+1(πm),m)→ Em,` → Em,`−1

then it is true for the total space. This completes the inductive step in the
proof.

Hence the mod k Hurewicz theorem is true for all the Postnikov stages
Em,`. Since X = limm→∞Em,` is an inverse limit which is finite in each
degree, it follows that the mod k Hurewicz theorem is true for all X.

Exercise

(1) Suppose k and ` are positive integers. Suppose either that X is
simply connected or that X is a connected H-space. Show that
ϕ : πj(X;Z/kZ)→ Hj(X;Z/kZ) is an isomorphism for all 1 ≤ j < `
and an epimorphism for j = ` if and only if the same is true for
ϕ : πj(X;Z/krZ)→ Hj(X;Z/krZ) where r is a fixed positive integer.
(Hint: Use induction on r, the universal coefficient sequences and the
general five lemma.)

1.9 The mod k Hurewicz isomorphism theorem for pairs

If (X,A) is a pair of spaces with π2(X,A) abelian, then the mod k homo-
topy group π2(X,A;Z/kZ) is defined to be π2(X,A)⊗ Z/kZ. The classi-
cal Hurewicz map induces a mod k Hurewicz map ϕ : π2(X,A;Z/kZ)→
H2(X,A;Z/kZ). For example, if A is simply connected, then π2(X,A) is
abelian and this definition is valid. With these conventions, we assert:

Mod k Hurewicz theorem for pairs 1.9.1. Let (X,A) be a pair of
simply connected spaces and let n ≥ 2. If πi(X,A;Z/kZ) = 0 for 2 ≥ i < n,
then ϕ : πi(X,A;Z/kZ)→ Hi(X,A;Z/kZ) is a bijection for 2 ≥ i ≥ n and,
if n > 2 it is an epimorphism for i = n+ 1.

This has the following corollary.

Corollary 1.9.2. Let f : X → Y be a map between simply connected
spaces. Then f∗ : πi(X;Z/kZ)→ π∗(Y ;Z/kZ) is a bijection for all i ≥ 2
if and only if f∗ : Hi(X;Z/kZ)→ H∗(Y ;Z/kZ) is a bijection for all i ≥ 2.

Proof: Use the mapping cylinder to convert the map f into an inclusion
X → Y. Then the mod k Hurewicz theorem for the pair (Y,X) asserts that
the vanishing of all the relative homotopy groups πi(Y,X;Z/kZ) is equiv-
alent to the vanishing of all the relative homology groups Hi(Y,X;Z/kZ).
�
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Remark. The example of the inclusion of a circle into a fake circle shows
that simple connectivity is necessary in the above results.

Proof of the mod k Hurewicz theorem for pairs: The mod k Hurewicz iso-
morphism theorem for a pair of simply connected spaces (X,A) is deduced
from the mod k Hurewicz isomorphism theorem for a space by a method
introduced by Serre.

Let PX → X be the path space fibration and let E be the subspace of
PX consisting of all paths which terminate in A. Then (PX,E)→ (X,A)
is a relative fibration with fibre ΩX. In particular, the fibration sequence
ΩX → E → A shows that E is a nilpotent space with abelian fundamental
group.

We have isomorphisms πi(PX,E;Z/kZ)→ πi(X,A;Z/kZ),
πi(PX,E;Z/kZ)→ πi−1(E;Z/kZ), and Hi(PX,E;Z/kZ)→
Hi−1(E;Z/kZ) for all i ≥ 2.

Thus, πi−1(E;Z/kZ) = 0 for all 2 ≤ i < n and the mod k Hurewicz theorem
applies to E. In particular, Hi−1(E;Z/kZ) ∼= Hi(PX,E;Z/kZ) = 0 for all
2 ≤ i < n.

The Serre spectral sequence of the relative fibration sequence ΩX →
(PX,E)→ (X,A) shows that Hi(PX,E;Z/kZ)→ Hi(X,A;Z/kZ) is an
isomorphism for all i ≤ n and an epimorphism for i = n+ 1. Hence, the
following commutative diagram completes the proof:

πi−1(E;Z/kZ) ← πi(PX,E;Z/kZ) → πi(X,A;Z/kZ)
↓ ↓ ↓

Hi−1(E;Z/kZ) ← Hi(PX,E;Z/kZ) → Hi(X,A;Z/kZ).
�

1.10 The third homotopy group with odd coefficients is abelian

As an application of the Hurewicz theorem, we prove:

Proposition 1.10.1. If k is odd, then π3(X;Z/kZ) is an abelian group.

Proof: We consider the isomorphic group π2(ΩX;Z/kZ).

Define the commutator [ , ] : ΩX × ΩX → ΩX by [ω, γ] = ωγω−1γ−1.
Note that [ , ] is null homotopic on the bouquet ΩX ∨ ΩX and hence
factors into

ΩX × ΩX → ΩX ∧ ΩX
[ , ]−−−−−→ ΩX.
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Let f : P 2(Z/kZ)→ ΩX and g : P 2(Z/kZ)→ ΩX be two maps. Define the
commutator [f, g] by the composition

P 2(Z/kZ)
∆−→ P 2(Z/kZ)× P 2(Z/kZ)

f×g−−→ ΩX × ΩX
[ , ]−−−−−→ ΩX,

where ∆ is the diagonal. If ∆ is the reduced diagonal, this is the same as
the composition

P 2(Z/kZ)
∆−→ P 2(Z/kZ) ∧ P 2(Z/kZ)

f∧g−−→ ΩX ∧ ΩX
[ . ]−−−−−→ ΩX.

If e1 and e2 are generators of the reduced homology H∗(P
2(Z/kZ);Z/kZ)

of respective dimensions 1 and 2, then a result from Steenrod and Epstein’s
book asserts that

∆∗(e2) =
k(k + 1)

2
e1 ⊗ e1

and this equals 0 when k is odd. If k is odd, then the mod k Hurewicz
image φ(∆) = 0.

The Hurewicz theorem implies that ∆ is null homotopic.

Hence [f, g] is null homotopic and π2(ΩX;Z/kZ) is abelian if k is odd. �



2 A general theory of localization

In this chapter we consider the general theory of localization which is due
independently to Dror Farjoun [36] and to A.K. Bousfield [15, 16]. The
theory is founded on the homotopy theoretic consequences of inverting a
specific map µ of spaces. Those spaces for which the mapping space dual
of µ is an equivalence are called local. In turn, the local spaces define a set
of maps called local equivalences. The localization of a space X is defined
to be a universal local space which is locally equivalent to X.

Localizations always exist. It is a nice fact that the localizations of sim-
ply connected spaces are also simply connected. This makes it possible to
restrict the theory to simply connected spaces which is what we do in this
chapter.

For simply connected spaces, the Dror Farjoun–Bousfield theory specializes
to the classical example of localization of spaces at a subset of primes S.
The complementary set of primes is inverted. We begin by inverting the
maps M → ∗ for all Moore spaces M with one nonzero first homology
group isomorphic to Z/qZ where q is a prime not in S. In this case, the
equivalences are maps which induce an isomorphism of homology localized
at S.

Localization of spaces first occurs in the works of Daniel Quillen [110], of
Dennis Sullivan [128, 129] , and of A.K. Bousfield and D.M. Kan [17]. An
early construction of this localization is due to D.W. Anderson [6] and is
a special case of the construction of the Dror Farjoun localization. First
applications occur in the theory of H-spaces and are due to Sullivan, to
Peter Hilton and Joseph Roitberg [53], and to Alexander Zabrodsky [142].

There are two themes in localization theory. One is to study a space in more
depth by inverting some or all primes. For example, Serre’s result [118]
that ΩS2n+2 ' S2n+1 × ΩS4n+3 is valid once 2 is inverted but not before
unless n = 0, 1, 3. [2] The extreme example of this theme is rationalization,
inverting all primes. After this is done, the simply connected homotopy

37
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category becomes equivalent to the category of rational simply connected
differential coalgebras [110].

Another theme is to construct a space by piecing together complementary
localizations. In essence, Hilton and Roitberg [55] constructed new H-spaces
in this way. We will discuss these examples but, in this book, we will mostly
restrict ourselves to the first theme.

For any prime p, another specialization of the Dror Farjoun-Bousfield the-
ory is to p-completion where the equivalences are maps which induce iso-
morphisms of mod p homology. The process of p-completion begins by
inverting the map M → ∗ where M is a Moore space with nonvanishing
first homology group isomorphic to Z[1/p].

The unstable Adams spectral sequence invented by Bousfield and Kan con-
verges to the homotopy groups of p-complete spaces [17]. Completions have
been vital to the theory of finite H-spaces with classifying spaces, the so-
called p-compact groups studied by Dwyer and Wilkerson [38]. Before the
development of the general theory of p-compact groups, Sullivan showed
that certain completions of spheres have classifying spaces [128].

It is not always true that the localization of an n-connected space is also
n-connected. This fact is true for the classical theory of localization of
spaces at a set of primes and also true for the theory of p-completion of
spaces. But it is certainly not true for the localization theory [103] based
on inverting the map K(Z/pZ, 1)→ ∗. In this localization, all Eilenberg–
MacLane spaces K(G,n) with G a p-primary torsion abelian group are
made locally equivalent to a point. Up to p-completion, simply connected
spaces with π2 torsion are locally equivalent to all their n-connected covers.

In addition, Miller’s theorem [84] asserts that simply connected finite com-
plexes are local in this theory with K(Z/pZ, 1)→ ∗ inverted. A lemma due
to Zabrodsky shows that all K(π, n)→ ∗ are inverted with π a p-primary
torsion abelian group. All these Eilenberg–MacLane spaces are equivalent
to a point in this localization. In fact, if X is a simply connected finite com-
plex with π2(X) torsion and X〈n〉 is an n-connected cover of X, then the
p-completion of this kind of localization of X〈n〉 is just the p-completion of
X. Up to p-completion, no information about such an X is lost by taking
any connected cover.

One consequence of this fact is a simple proof of Serre’s theorem [117] that a
noncontractible simply connected finite complex always has infinitely many
nonzero homotopy groups.

Serre conjectured that: if p is a prime and if X is a simply connected finite
complex with nontrivial mod p reduced homology, that is, ifH∗(X;Z/pZ) 6=



2.1 Dror Farjoun–Bousfield localization 39

0, then the p-torsion subgroups of the homotopy groups πn(X) are nonzero
for infinitely many n. The proof of this conjecture by McGibbon and the
author [83] is yet another application of Miller’s theorem.

Modern forms of localization accommodate many of the classical results in
homotopy theory but not all. The finite generation of the homotopy groups
of a simply connected finite type complex, a result proved by Serre [118]
with his C-theory, does not seem to yield to modern theories of localization.
We include a brief presentation of C-theory in this chapter.

2.1 Dror Farjoun–Bousfield localization

Emmanuel Dror Farjoun has defined a notion of localization with respect to
any continuous map µ : M → N. Independently, A.K. Bousfield has treated
the special case of a constant map µ : M → ∗. We specialize to this case
and refer to it as localization with respect to M → ∗ or sometimes as M -
nullification. The idea is that localization inverts the map M → ∗, in other
words, M is nullified.

We will work in the category of connected pointed spaces and pointed maps.
But it still makes sense to consider map(A,B) = the space of all maps from
A to B. And map∗(A,B) = the subspace of all pointed maps from A to B.

Definition 2.1.1. If M is a fixed connected pointed space, then a con-
nected pointed space X is called M -null or local with respect to M → ∗ if
either of the following equivalent conditions hold:

(1) the map which evaluates a function at the basepoint, map(M,X)→
X, is a weak equivalence.

(2) the space of pointed maps map∗(M,X) is weakly contractible.

The equivalence of the above two conditions is a consequence of the fibra-
tion sequence map∗(M,X)→ map(M,X)→ X.

Thus, X is M -null if and only if, for all n ≥ 0, πn(map∗(M,X)) =
[ΣnM,X]∗ = ∗, in other words, all pointed maps ΣnM → X must be homo-
topic to the constant. In this sense, M looks like a point with respect to
X.

It is convenient that the basic definitions of localization come in two equiv-
alent versions, pointed and unpointed.

Definition 2.1.2. A pointed map f : A→ B is called a local equivalence
with respect to M → ∗ if, for all spaces X which are local with respect to
M → ∗, either of the following equivalent conditions hold:
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(1) the map of mapping spaces f ∗ : map(B,X)→ map(A,X) is a weak
equivalence.

(2) the map of pointed mapping spaces f ∗ : map∗(B,X)→ map∗(A,X)
is a weak equivalence.

The second condition means that for all integers n ≥ 0 and maps g : ΣnA→
X, there is a map h, unique up to homotopy, which makes the diagram
below homotopy commutative.

ΣnA
Σnf−−→ ΣnB
g ↘ ↓ h

X

In particular, M → ∗ is a local equivalence.

Definition 2.1.3. If A is a pointed space, a localization of A with respect
to M → ∗ is a pointed map ι : A→ A such that:

(1) ι is an local equivalence with respect to M → ∗ and

(2) A is local with respect to M → ∗.

If the localization A exists, then it is unique up to homotopy and a functor
on the homotopy category. This follows from the homotopy uniqueness of
f∗ in the homotopy commutative diagram:

A
f−→ B

↓ ι ↓ ι
A

f∗−→ B.

We will see that localization with respect to µ : M → ∗ exists and can be
constructed in a strictly functorial manner. We shall denote localization of
A by A

ι−→ Lµ(A) or by A
ι−→ LM (A). We shall denote localization of a map

f : A→ B by LM (f) = f∗ : LM (A)→ LM (B). Note that localization A
ι−→

LM (A) is the unique object up to homotopy which satisfies the following:

Universal mapping property 2.1.4.

(a) LM (A) is local with respect to M → ∗.

(b) for all X which are local with respect to M → ∗ and all maps g :
A→ X, there is up to homotopy a unique map h : LM (A)→ X
which makes the following homotopy commutative:

A
ι−→ LM (A)

↓ g ↙ h
X
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Observe that LM is an idempotent functor in the sense that

LM (LM (A)) ' LM (A).

The next proposition says that localization commutes with finite
products.

Proposition 2.1.5.

(a) If X and Y are local with respect to M → ∗, then X × Y is local
with respect to M → ∗.

(b) If A→ B is a local equivalence with respect to M → ∗ and C is any
space, then A× C → B × C is a local equivalence with respect to
M → ∗.

(c) If A and B are any spaces, then the natural map LM (A×B)→
LM (A)× LM (B) is a homotopy equivalence.

Proof:

(a) If X and Y are local, then there are equivalences

map(M,X × Y ) ∼= map(M,X)×map(M,Y ) ' X × Y.

Hence, X × Y is local.

(b) Let A→ B be a local equivalence, C be any space, and X be any
local space. The space map(C,X) is local since there are equivalences

map(M,map(C,X)) ∼= map(M × C,X) ∼= map(C,map(M,X))

' map(C,X).

It follows that the map A× C → B × C is a local equivalence since
there are equivalences

map(A× C,X) ∼= map(A,map(C,X)) ' map(B,map(C,X))

∼= map(B × C,X).

(c) Finally, we note that we can factor

A×B → LM (A)×B → LM (A)× LM (B)

into local equivalences and that LM (A)× LM (B) is local. The
universal mapping property shows that LM (A×B) ' LM (A)×
LM (B). �
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We give a strictly functorial construction of localization with respect to
M → ∗:
Proposition 2.1.6. For all pointed spaces A, there exists a localization
A

ι−→ LM (A) with respect to M → ∗. If A is simply connected, then so is
the localization LM (A).

Proof: In order to avoid even the mention of some very large sets, we shall
make the simplifying assumption that M is a countable connected CW
complex. In fact, all cases known to the author to be of interest satisfy this
hypothesis.

Therefore, M can be expressed as a countable increasing union

M =
⋃
n

Mn

of finite complexes Mn, n ≥ 0, with Mn ⊂Mn+1.

For any pointed spaceB, we defineB to be the mapping cone of the bouquet∨
g :
∨

Σng (M)→ B

of all the pointed maps g : Σng (M)→ B to B from any suspension of M
with ng ≥ 0. Since M is connected, it follows that B is simply connected if
B is simply connected.

For later reference, we note that, if X is local with respect to M → ∗,
the long exact sequence associated to a cofibration sequence shows that
there are bijections of homotopy classes of pointed maps [Σk(B), X]∗ →
[Σk(B), X]∗ for all k ≥ 0.

Let Ω be the well ordered set of all ordinals which are less than the first
uncountable ordinal; in other words, Ω is the first uncountable ordinal. For
ordinals αεΩ, we define Lα(A) by transfinite recursion as follows:

(1) L0(A) = A for the first ordinal 0εΩ.

(2) Lα+1(A) = Lα(A) for ordinals which are successors.

(3) Lα(A) =
⋃
β<α Lβ(A) for limit ordinals.

Finally, we define LM (A) = LΩ(A) =
⋃
β<Ω Lβ(A). We claim that LM (A)

is a localization of A. Clearly, LM (A) is simply connected if A is simply
connected.

First, we show that LM (A) is local. Suppose we have a pointed map
g : Σk(M)→ LM (A). Since each Σk(Mn) is a finite complex, its image is
contained in some Lαn(A) for an ordinal αnεΩ. Thus the image of Σk(M)
is contained in the countable limit Lγ(A) with γ = supαnεΩ. Thus, g is
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null homotopic in the mapping cone Lγ+1(A). Since Lγ+1(A) ⊂ LM (A), g
is null homotopic in LM (A). Hence, LM (A) is local.

Second, we show that A→ LM (A) is a local equivalence. For all local X and
k ≥ 0, we need bijections [Σk(LM (A)), X]∗ → [Σk(A), X]∗. But transfinite
induction shows that there are bijections [Σk(Lα(A)), X]∗ → [Σk(A), X]∗,
even for the case α = Ω.

This completes the proof of the existence of localization. �

The above proposition suggests that it is possible to restrict localization
to the category of simply connected spaces. (On the other hand, there is
no reason to believe that a general theory of localization can be restricted
to, for example, nilpotent spaces.) To fully justify this restriction to simply
connected spaces, we need the following lemma.

Lemma 2.1.7.

(1) Let X̃ → X be any covering space of X. If X is local then X̃ is local.

(2) A map A→ B of simply connected spaces is a local equivalence if
map∗(B,W )→ map∗(A,W ) is a weak equivalence for all simply con-
nected local W.

Proof:

(1) Unique path lifting for covering spaces asserts that map∗(M, X̃)
embeds in map∗(M,X) as the subspace consisting of the compo-
nents of maps which lift to the covering. Hence, if map∗(M,X) is
weakly contractible, so is map∗(M, X̃).

(2) Let A be simply connected, W be local, and W̃ be the universal
cover of W . All maps of A to W lift to W̃ and hence map∗(A,W ) =
map∗(A, W̃ ). Since W̃ is local, the proof of the lemma follows. �

Hence, for a fixed connected spaceM , the notions of local, local equivalence,
and localization remain the same if we remain in the category of simply
connected pointed spaces.

Finally, we record an important lemma due to Zabrodsky [144]. (See Miller’s
paper. [84])

The Zabrodsky Lemma 2.1.8. If p : E → B is a fibre bundle with con-
nected fibre F and the evaluation map map(F,X)→ X is a weak equiva-
lence, then p∗ : map(B,X)→ map(E,X) is a weak equivalence.

Proof: Given two towers of fibrations and a map from one to the other
which is a weak homotopy equivalence at each level, the resulting map of
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inverse limits is a weak homotopy equivalence [17, 24, 37]. In other words,
homotopy inverse limits are weakly homotopy invariant.

Hence, it follows from Zorn’s lemma that there exists a maximal subcom-
plex C ⊆ B for which the lemma is valid for the fibre bundle p : p−1(C)→
C. If C 6= B, we can enlarge C by attaching a cell to get C ∪ en ⊆ B.
If we replace C by a thickening with the same homotopy type, we can
assume that the boundary Sn−1 of en embeds in C. Thus, C ∪ en is a
union of C and en with intersection Sn−1. And p−1(C ∪ en) is a union
of p−1(C) and p−1(en) ∼= en × F with intersection p−1(Sn−1) ∼= Sn−1 × F .
The adjoint equivalence map(A× F,X) ∼= map(A,map(F,X)) shows that
the lemma is true for the bundles over C, over en, and over Sn−1. Since the
functor map( , X) converts pushout diagram of cofibrations into pullback
diagrams of fibrations, it follows that the lemma is true for the fibre bundle
over C ∪ en and that C is not maximal. Hence, C must be all of B. �

Remarks 2.1.9. In the proof of the Zabrodsky Lemma, we need that a
map is a weak equivalence of pullbacks of fibrations if it is a weak equiv-
alence of the total spaces and the base. Since these pullbacks are a type
of homotopy inverse limit, this follows from the general form of the weak
homotopy invariance of homotopy inverse limits. Alternatively, this is a
consequence of the five-lemma and of the exactness of the Mayer–Vietoris
homotopy sequences associated to these pullbacks.

Suppose that

E
u−→ X

↓ v ↓ f
Y

g−→ B

is a homotopy pullback, that is, it is a pullback square with f and g being
fibrations. The homotopy Mayer–Vietoris sequence [39] is, in dimensions
i ≥ 1, the long exact sequence

· · · → πi+1B
∂−→ πiE

(u∗,v∗)−−−−→ πiX ⊕ πiY
f∗−g∗−−−→ πiB

∂−→ πi−1E → · · · ·

In these dimensions, it is a long exact sequence of groups.

I am grateful to Emmanuel Dror-Farjoun for explaining the Mayer–Vietoris
sequence to me in dimensions 0 and 1 and the sense in which it is exact.
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In these low dimensions, the homotopy Mayer–Vietoris sequence is

π1X π0X
↘ f∗ u∗ ↗ ↘ f∗

π1B
∂−→ π0E π0B

↗ g∗ v∗ ↘ ↗ g∗
π1Y π0Y

and it is exact in the following way:

(1) At π0X and at π0Y , the exactness is: Given α ∈ π0X and β ∈ π0Y ,

f∗α = g∗β if and only if ∃γ ∈ π0E such that u∗γ = α, v∗γ = β.

(2) At π0E, the exactness is: Given α ∈ π0E, let u∗α = x and v∗α =
y, then

∃γ ∈ π1B such that ∂γ = α.

(Here, the basepoint of the loops in B is the common image of the
basepoints x in X and y in Y.)

(3) At π1B, the exactness is: Given α, β ∈ π1B,

∂α = ∂β if and only if ∃γ ∈ π1X, δ ∈ π1Y such that

γ ∗ α ∗ δ = (f∗γ)α(g∗δ) = β.

The following corollary of the Zabrodsky Lemma is an important
source of local equivalences.

Corollary 2.1.10. If E → B is a fibre bundle with connected fibre F , then
E → B is a local equivalence with respect to F → ∗.

Exercises
(1) (a) Show that the loop space Ω(X) is local if X is.

(b) Show that, if X is an H-space, then so is any localization LM (X).

(2) (a) Show that, for every pointed connected space X and n ≥ 1, there
exists a map ι : X → Y with the property that ι∗ : πk(X)→
πk(Y ) is an isomorphism if k ≤ n− 1 and πk(Y ) = 0 if k ≥ n.

(b) If M = Sn, show that a space A is local with respect to M → ∗
if and only if πk(A) = 0 for all k ≥ n.

(c) Show that, for X and Y as in part (a), LM (X) = Y.

(d) Give an example of a fibration sequence F → E → B such that
LM (F )→ LM (E)→ LM (B) is not even a fibration sequence up
to homotopy.
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(3) Suppose F → E → B is a fibration sequence and M is a pointed
space.

(a) Show that map(M,F )→ map(M,E)→ map(M,B) is a fibration
sequence.

(b) Show that map∗(M,F )→ map∗(M,E)→ map∗(M,B) is a fibra-
tion sequence.

(c) Show that, if E and B are both local with respect to M → ∗, then
so is F .

(d) Show that, if F and B are both local with respect to M → ∗, then
so is E.

(e) Give an example to show that F and E can be local without B
being local.

(4) Let A→ B → C be a cofibration sequence and X a pointed space.

(a) Show that map(C,X)→ map(B,X)→ map(A,X) is a fibration
sequence.

(b) Show that map∗(C,X)→ map∗(B,X)→ map∗(A,X) is a fibra-
tion sequence.

(c) Suppose Y is the homotopy direct limit of a sequence Xn of spaces
each of which is locally equivalent to a point with respect to M →
∗. Show that Y is locally equivalent to a point.

(5) Suppose a space X is local with respect to M → ∗ and with respect
to N → ∗. Show that X is local with respect to M ×N → ∗.

(6) Let X be a space. Suppose that Γ is an ordinal and that for each
ordinal α ≤ Γ, a space Xα is defined satisfying:

(a) X0 = X

(b) Xα ⊆ Xα+1 is a cofibration whenever α+ 1 ≤ Γ.

(c) Xβ =
⋃
α<β Xα whenever β is a limit ordinal ≤ Γ.

(A) Show that the maps Xα → Xβ are cofibrations for all α <
β ≤ Γ, that is, show that the homotopy extension property
is satisfied.

(B) If Y is a space, show that the maps of pointed mapping spaces

map∗(Xβ , Y )→ map∗(Xα, Y )

are fibrations for all α < β ≤ Γ, that is, show that the homo-
topy lifting property is satisfied.
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(C) If all the maps

map∗(Xα+1, Y )→ map∗(Xα, Y )

are weak equivalences, show that they are surjections and
that the maps

map∗(Xβ , Y )→ map∗(Xα, Y )

are surjections for all α < β ≤ Γ.

(D) Let E → B be a fibration and a weak equivalence and let
A→W be a relative CW complex, that is, W is constructed
from A by attaching cells. Given a commutative diagram of
maps

A → E
↓ ↓
W → B

it is one of Quillen’s axioms [108, 60] for a model category
that there exists a map W → E which makes the diagram
commute. Use this and (C) to show the following:

If Y is a space such that the map of pointed homotopy classes
[Xα+1, Y ]∗ → [Xα, Y ]∗ is a bijection whenever α+ 1 ≤ Γ,
then show that [XΓ, Y ]∗ → [X,Y ]∗ is a bijection.

(7) If C is an infinite cardinal, then C · C = C [73]. Let Γ be the first ordinal
with cardinal greater than C, and let B be any set of ordinals such
that the cardinality of B is less than C and such that all ordinals in
B are less than Γ. Show that the supremum

supB =
⋃
β∈B

β

is less than Γ.

(8) Use problem 7 to remove the hypotheses that M be a countable CW
complex in the proof of the existence of localization 2.1.6.

(9) Check the exactness in the Mayer–Vietoris sequence 2.1.9 at π0X and
at π0Y.

(10) Define the function ∂ : ΩB → E as follows: Let γ be a loop in B and
write γ = γ1 ∗ γ−1

2 by cutting the loop in the middle. Lift γ1 to a path
γ̃1 in Y which starts at the basepoint and ends at y ∈ Y . Similarly, lift
γ2 to a path γ̃2 in X which starts at the basepoint and ends at x ∈ X.
Set ∂γ = (x, y) ∈ E and check the exactness in the Mayer–Vietoris
sequence 2.1.9 at π0E.

(11) Check the exactness in the Mayer–Vietoris sequence 2.1.9 at π1B.
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(12) Given a pullback diagram as in 2.1.9, write

F
r−→ E

v−→ Y
↓= ↓ u ↓ g
F

s−→ X
f−→ B

with F the fibre of both f and v. Consider the two long exact homo-
topy sequences of these fibration sequences and define the Mayer–
Vietoris connecting homomorphism ∂ : πi+1B → πiE as the compo-
sition

∂ = r · ∂ : πi+1B
∂−→ πiF

r−→ πiE.

Use the two long exact homotopy sequences to show that the Mayer–
Vietoris sequence

· · · → πi+1B
∂−→ πiE

(u∗,v∗)−−−−→ πiX ⊕ πiY
f∗−g∗−−−→ πiB

is exact for i ≥ 1. (The homology version of this derivation of the
Mayer–Vietoris sequence from long exact sequences is due to Michael
Barratt.)

(13) Fill in the details of the proof of the Zabrodsky Lemma 2.1.8.

2.2 Localization of abelian groups

We describe the classical localization of abelian groups wherein a subset of
the set of primes is inverted. Three special cases are particularly important,
rationalization A(0) where all primes are inverted, localization A(p) at a

prime p where all primes except p are inverted, and localization A[ 1
p ] away

from p where p is the only prime which is inverted.

Let ℘ be the set of positive primes in the integers Z and let

℘ = S
⋃
T

be a decomposition into disjoint subsets.

Definition 2.2.1. An abelian group A is called S-local if every element of
A is uniquely divisible by all elements of T , in other words, multiplication
by q,

q : A→ A

is an isomorphism for all q ε T .
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Let T be the multiplicative monoid generated by T . The fundamental exam-
ple of an S-local abelian group is the subring of the rationals

Z[T−1] = Z(S) =

{
a

q
| aεZ, qεT

}
.

An abelian group is S-local if and only if it is a Z(S) module.

Definition 2.2.2. A map of abelian groups f : A→ B is an S-local equiv-
alence if f ∗ : hom(B,C)→ hom(A,C) is a bijection for all S-local abelian
groups C.

Definition 2.2.3. A map of abelian groups ι : A→ A is called an S-
localization of A if:

(1) A is S-local and

(2) f : A→ A is an S-local equivalence.

For any abelian group A, an S-localization exists and is given by

A→ A = A[T−1] = A(S) =

{
a

q
| aεZ, qεT

}
.

In this definition, aq = a1

q1
if and only if there is an element q2εT such that

q2(aq1 − a1q) = 0.

Exercises

(1) Show that the definition of localization by a universal mapping prop-
erty characterizes it uniquely up to isomorphism.

(2) Show that A→ B is an S-local equivalence if and only if A(S) → B(S)

is an isomorphism.

(3) For all abelian groups A, there is an isomorphism

A⊗ Z(S) → A(S).

(4) A(S) = 0 if and only if, for all elements aεA, there is a qεT such that
qa = 0.

(5) (a) Z(S)/qZ(S)
∼= Z/qZ if qεS = the multiplicative monoid generated

by S.

(b) Z(S)/qZ(S) = 0 if qεT .

(6) If 0→ A→ B → C → 0 is a short exact sequence, then the sequence
of localizations 0→ A(S) → B(S) → C(S) → 0 is also exact.

(7) Show that H∗(X)(S)
∼= H∗(X;Z(S)).
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(8) (a) Show that Z(S) ⊗Z Z(S)
∼= Z(S).

(b) For all abelian groups M and N , show that TorZi (M,N)(S)
∼=

Tor
Z(S)

i (M(S), N(S)) for i = 0 and i = 1.

(c) If F → E → B is an orientable fibration sequence and Erp,q is the
Serre spectral sequence for integral homology, show that (Erp,q)(S)

is the Serre spectral sequence for Z(S) homology.

(9) Show that S-localization commutes with direct limits, that is,
(lim→Hα)(S)

∼= lim→(Hα(S)).

(10) (a) Show that A→ A(S) is surjective if A is a torsion abelian group.

(b) Show that the kernel and cokernel of A→ A(S) are T -primary
torsion groups where T is the set of inverted primes.

2.3 Classical localization of spaces: inverting primes

We develop the classical theory of localization for simply connected spaces.
This includes the special cases of rationalization X → X(0) = X ⊗Q, local-
ization at a prime X → X(p) = X ⊗ Z(p) and localization away from a
prime X → X[1/p] = X ⊗ Z[1/p].

Let ℘ = S
⋃
T be a decomposition of the set of positive integral primes

into disjoint subsets.

Definition 2.3.1. A simply connected pointed space X is S-local if the
homotopy groups πk(X) are S-local for all k ≥ 1.

For simply connected spaces X the universal coefficient exact sequence

0→ π∗(X)⊗ Z/qZ→ π∗(X;Z/qZ)→ Tor(π∗−1(X),Z/qZ)→ 0

shows that X is S-local if and only if the homotopy groups πk(X;Z/qZ) = 0
for all k ≥ 2 and for all qεT . Thus

Proposition 2.3.2. A simply connected pointed space X is S-local if and
only if X is local with respect to M → ∗ with

M =
∨
qεT

P 2(Z/qZ),

P 2(Z/qZ) = S1 ∪q e2.

Definition 2.3.3. A map f : A→ B of simply connected spaces is an S-
equivalence if the map of S-local homology f∗ : H∗(A;Z(S))→ H∗(B;Z(S))
is an isomorphism.

Proposition 2.3.4. A pointed map f : A→ B of simply connected spaces
is an S-equivalence if and only if f is a local equivalence with respect to
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M → ∗, that is, if and only if f ∗ : map∗(B,X)→ map∗(A,X) is a weak
equivalence for all S-local X. (Note: We know that it is sufficient to check
it only for simply connected S-local X.)

Proof: By using the mapping cylinder, we may suppose that f : A→ B is
an inclusion.

Suppose f∗ : H∗(A;Z(S))→ H∗(B;Z(S)) is an isomorphism. Thus,
H∗(B,A;Z(S)) = 0. The universal coefficient exact sequence for cohomol-
ogy

0→ Ext(H∗−1(B,A;Z(S)), D)→ H∗(B,A;D)

→ Hom(H∗(B,A;Z(S)), D)→ 0

shows that H∗(B,A;D) = 0 for all Z(S) modules D. Hence, if X is sim-
ply connected S-local, this gives the vanishing of the obstruction groups
H∗+1(ΣnB,ΣnA;π∗(X)) and H∗(ΣnB,ΣnA;π∗(X)) to the existence and
homotopy uniqueness of extending a map ΣnA→ X to a map ΣnB → X.
Thus, f : A→ B is a local equivalence with respect to M → ∗.

Now suppose that f : A→ B is a local equivalence with respect to M → ∗.
We note that any Z(S) module D may be realized as the nonzero homotopy
group of X = K(D,n) and that this X is S-local. Since any nonzero coho-
mology class can be realized as an obstruction, the cohomology groups
H∗(B,A;D) must vanish for all such D. Hence, the homology groups
H∗(B,A;Z(S)) = 0 and f is an S-equivalence. This completes the proof
of the proposition. �

The general theory of Dror Farjoun presented in this chapter shows that
S-localization exists and is unique up to homotopy equivalence, that is, for
all simply connected X, there is a map ι : X → X(S) such that:

(1) X(S) is S-local.

(2) ι : X → X(S) is an S-equivalence.

(3) for all maps f : X → Y with Y an S-local space, there is up to
homotopy a unique extension of f to a map f : X(S) → Y.

Alternate notations for S-localization are:

X(S) = X ⊗ Z(S) = X ⊗ Z[T−1] = LM (X)

with T a complementary set of primes to S and M =
∨
qεT P

2(Z/qZ).

It is useful to know that S-local spaces may also be defined in terms of
homology groups.
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Lemma 2.3.5. A simply connected space X is S-local if and only if the
reduced homology groups H∗(X) are S-local.

Proof: This follows from the universal coefficient theorems for homotopy
and homology and the mod q Hurewicz theorems: By definition, X is S-
local if and only if all π∗(X) are S-local. This is equivalent to the vanishing
π∗(X;Z/qZ) = 0 for all qεT which in turn is equivalent to the vanishing
H∗(X;Z/qZ) = 0 for all qεT . This is equivalent to H∗(X) being S-local. �

Since S-localization of abelian groups is characterized by being a local
equivalence with a local target, we have:

Corollary 2.3.6. A map of simply connected spaces X → Y is S-
localization if and only if the map of reduced homology H∗(X)→ H∗(Y )
is S-localization.

We shall prove a homotopy version.

Proposition 2.3.7. A map of simply connected spaces X → Y is S-
localization if and only if the map of homotopy groups π∗(X)→ π∗(Y ) is
S-localization.

We start with the statement of the following K(G, 1) localization lemma.

Lemma 2.3.8. G→ H is an S-localization of abelian groups if and only
if K(G, 1)→ K(H, 1) is an S-localization of homology.

Proof: First of all, S-localization of homology implies S-localization of fun-
damental groups, hence, that G→ H is an S-localization.

Now let H = G(S) be S-localization. We consider the case of cyclic groups.

(1) G = Z and H = Z(S): Write H = lim→Hα as a direct limit of finitely
generated torsion free subgroups. Then

H∗(K(H, 1)) = lim→H∗(K(Hα, 1)) = lim→E[Hα]

= E[lim→Hα] = E[H] = E[G(S)] = E[G](S) = H∗(K(G, 1))(S)

where E denotes the exterior algebra without unit.

(2) G = Z/qZ, qεT , H = 0: Since the integral homology of K(Z/qZ, 1)
is Z/qZ in odd dimensions, H∗(K(G, 1))(S) = 0 = H∗(K(H, 1)).

(3) G = Z/qZ, qεS, H = Z/qZ: For the same reason, H∗(K(G, 1))(S) =

H∗(K(H, 1)).

We recall the following theorem which we do not prove [145].
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Zeeman comparison theorem 2.3.9. Suppose we have a map of ori-
entable fibration sequences

F
f−→ F1

↓ ↓
E

g−→ E1

↓ ↓
B

h−→ B1.

If any two of f, g, h are homology isomorphisms, then so is the third.

We also note that the characterization of S-local by vanishing mod q homo-
topy groups gives:

Lemma 2.3.10. Let F → E → B be a fibration sequence of simply con-
nected spaces. If two of F,E,B are S-local, then so is the third.

Now it follows that the K(G, 1) localization lemma is true for all finitely
generated abelian groups. Just use the fact that any finitely generated
abelian group is a direct sum of cyclic groups and the fact that we have a
fibration sequence K(G, 1)→ K(G⊕H, 1)→ K(H, 1).

Finally, expressing G as a direct limit of finitely generated groups and
using the fact that direct limits commute with localization shows that the
K(G, 1) localization lemma is true for all abelian groups. �

We continue with the statement of the K(G,n) localization lemma.

Lemma 2.3.11. For all n ≥ 1, G→ H is an S-localization of abelian
groups if and only if K(G,n)→ K(H,n) is an S-localization of homology.

Proof: As before, the Hurewicz theorem implies that S-localization of
homology implies that G→ H is S-localization.

The other implication follows by applying the Zeeman comparison theorem
and induction to the map of pathspace fibrations

K(G,n) → K(H,n)
↓ ↓

PK(G,n+ 1) → PK(H,n+ 1)
↓ ↓

K(G,n+ 1) → K(H,n+ 1)

.

Since all the K(H,n+ 1) are S-local, we need only show that K(G,n+
1)→ K(H,n+ 1) is an S-equivalence of homology. �

In fact, the same argument shows that:
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Local comparison lemma 2.3.12. Suppose we have a map of orientable
fibration sequences

F
f−→ F1

↓ ↓
E

g−→ E1

↓ ↓
B

h−→ B1.

If any two of f, g, h are S-localizations, then so is the third.

Let X → Y be a map of simply connected spaces which is S-localization.
Since this induces localization of homology, it follows that it induces local-
ization on the bottom nonvanishing homotopy groups of πn(X)→ πn(Y ).
The local comparison lemma shows that the map X〈n〉 → Y 〈n〉 of n-
connected covers is S-localization. This provides the inductive step to show
that πk(X)→ πk(Y ) is S-localization for all k ≥ 2.

Now suppose that πk(X)→ πk(Y ) is S-localization for all k ≥ 2. We need
to show that X → Y is S-localization. But since Y is S-local, all we need
to show is that H∗(X)→ H∗(Y ) is an S-local equivalence.

We have already done this if X has only one nonvanishing homotopy group.
Induction on Postnikov systems and the local comparison lemma proves it
when X has only finitely many homotopy groups.

In general, X → Y is the inverse limit of the maps of the stages of the
Postnikov system Xn → Yn. In each fixed degree, the map of homology
H∗(X)→ H∗(Y ) is isomorphic to H∗(Xn)→ H∗(Yn) for n large enough.
Therefore, H∗(X)→ H∗(Y ) is an S-local equivalence.

This completes the proof that S-localization of simply connected spaces is
equivalent to S-localization of homotopy groups and also to S-localization
of reduced homology groups. �

The following is an immediate corollary.

Corollary 2.3.13. If X → Y is a map of simply connected spaces, the
following are equivalent:

(1) H∗(X)→ H∗(Y ) is an S-local equivalence.

(2) π∗(X)→ π∗(Y ) is an S-local equivalence.

(3) X(S) → Y(S) is a homotopy equivalence.

The classical Hurewicz theorem applied to X(S) gives:
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Local Hurewicz theorem 2.3.14. If X is simply connected and
πk(X)(S) = 0 for all 1 ≤ k ≤ n− 1, then Hk(X)(S) = 0 for all k ≤ n− 1
and the localized Hurewicz map πn(X)(S) → Hn(X)(S) is an isomorphism.

Remarks. Although we have developed an S-localization theory restricted
to simply connected spaces, it is possible to extend this theory to con-
nected loop spaces with no effort. Let X = ΩY where Y is simply con-
nected. Then Y(S) is defined and we set X(S) = Ω(Y(S)). Then X → X(S)

induces localization of homotopy groups and, by 2.3.12, localization of
homology groups. In other words, X → X(S) possesses the characterizing
properties of localization, that is, it is a local homology equivalence and
the homotopy groups of the range are local. In particular, X(S) is local
in the sense that: Any map A→ B which is a local homology equivalence
between possibly nonsimply connected spaces induces a weak equivalence
map∗(A,X(S))← map∗(B,X(S)).

An additional property is valid for this extension of localization. Con-
sider the standard fibration sequence Y 〈2〉 → Y → K(π, 2) which defines
the two-connected cover Y 〈2〉. The loops on it is the orientable fibration
sequence X〈1〉 → X → K(π, 1) which defines the universal cover X〈1〉.
Thus, if f : X → X ′ is a map of connected loop spaces which is possi-
bly not a loop map, it is still the case that the following statements are
equivalent:

(a) f induces an isomorphism of localized homology groups.

(b) f induces an isomorphism of localized fundamental groups and on
universal covers an isomorphism of localized homology groups.

(c) f induces an isomorphism of localized fundamental groups and on
universal covers an isomorphism of localized homotopy groups.

(d) f induces an isomorphism of localized homotopy groups.

In other words, for maps between connected loop spaces, a local homology
isomorphism is equivalent to a local homotopy isomorphism.

Exercises

(1) If F → E → B is a fibration sequence of simply connected spaces, then
F(S) → E(S) → B(S) is a fibration sequence up to homotopy, in other
words, the homotopy theoretic fibre of E(S) → B(S) is F(S).

(2) If X → Y → Z is a cofibration sequence of simply connected spaces,
then X(S) → Y(S) → Z(S) is a cofibration sequence up to homotopy.

(3) (a) Show that S-localization preserves homotopy pullback diagrams of
simply connected spaces.
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(b) Show that S-localization preserves homotopy pushout diagrams of
simply connected spaces.

2.4 Limits and derived functors

In order to discuss the concept of completion we need to recall some facts
concerning inverse limits. Let R be a fixed commutative ring.

A sequential inverse system of R modules {An, pn} is a collection of R
modules An and homomorphisms pn : An+1 → An for n ≥ 1. Morphisms of
inverse systems An → Bn are defined in the obvious way by a commutative
diagram of homomorphisms

A1 ← A2 ← A3 ← A4 ← . . .
↓ ↓ ↓ ↓
B1 ← B2 ← B3 ← B4 ← . . .

.

Consider the cochain complex

0→
∏
n

An
Φ−→
∏
n

An → 0

where Φ(an) = (an − pn(an+1)). The cohomology of this complex defines
the inverse limit functor and its derived functor.

Definition 2.4.1. The inverse limit functor is

lim
←
An = ker(Φ)

and the first derived functor of inverse limit is

lim
←

1An = coker(Φ).

Thus (an)ε lim←An if and only if an = pn(an+1) for all n ≥ 1.

Given a short exact sequence of inverse systems

0→ An → Bn → Cn → 0

we get a short exact sequence of cochain complexes and hence a long exact
sequence of cohomology groups

0→ lim
←
An → lim

←
Bn → lim

←
Cn

δ−→ lim
←

1An → lim
←

1Bn → lim
←

1Cn → 0.

We shall say that an inverse system An is eventually zero if for all n there
is some k so that the composition pn ◦ pn+1 ◦ · · · ◦ pn+k−1 ◦ pn+k = pk:

An ← An+1 ← An+2 ← · · · ← An+k+1

is zero.
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Lemma 2.4.2. If an inverse system of R modules An is eventually zero
then

lim
←
An = lim

←
1An = 0.

Proof: The inverse limit vanishes since (an)ε lim←An implies that

an = pn(an+1) = pn ◦ pn+1(an+2)

= · · · = pn ◦ pn+1 ◦ · · · ◦ pn+k−1 ◦ pn+k(an+k+1) = 0

for all n.

To show that the derived functor is zero we need to show that the map
Φ :
∏
nAn →

∏
nAn is surjective. Let (bn)ε

∏
nAn be any element. Since

the system is eventually zero, the following infinite sums terminate and
make sense:

a1 = b1 + pb2 + p2b3 + p3b4 + · · ·

a2 = b2 + pb3 + p2b4 + p3b5 + · · ·

a3 = b3 + pb4 + p2b5 + p3b6 + · · ·

· · ·

Then Φ(an) = (bn) and Φ is surjective. �

For an inverse system An and k ≥ 0, let An,k = im(An+k → · · · → An) be
the k-th image inverse system and set

An,∞ =
⋂
k≥0

An,k

= the infinite image inverse system.

Definition 2.4.3. The inverse system An satisfies the Mittag–Leffler con-
dition if the image inverse system converges in the sense that, for each n,
there is a k such that An,k = An,∞.

Since finite groups satisfy the descending chain condition, every inverse
system of finite abelian groups satisfies the Mittag–Leffler condition.

An inverse system An is called epimorphic if every map An+1 → An is an
epimorphism. Clearly, an epimorphic inverse system satisfies the Mittag–
Leffler condition. A simple exercise shows that to be true.

Lemma 2.4.4. If An is an epimorphic inverse system, then

lim
←

1An = 0.
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Proposition 2.4.5. If An is an inverse system which satisfies the Mittag–
Leffler condition then

lim
←

1An = 0.

Proof: Consider the short exact sequence of inverse systems

0→ An,∞ → An →
An
An,∞

→ 0.

The left-hand system is epimorphic and the Mittag–Leffler condition
implies that the right-hand system is eventually zero. Since the derived
functor vanishes for the systems on the ends, it vanishes for the middle
system. �

Exercise

(1) Define a sequential direct system of R modules to be a collection of R
modules An and homomorphisms ιn : An → An+1 for all n ≥ 1. Con-
sider the complex

0→
⊕
n

An
Ψ−→
⊕
n

An → 0

with Ψan = an − ιn(an). Define the direct limit to be

lim
→
An = coker(Ψ).

(a) Show that Ψ is a monomorphism.

(b) Show that if 0→ An → Bn → Cn → 0 is a short exact sequence of
direct systems, then

0→ lim
→
An → lim

→
Bn → lim

→
Cn → 0

is a short exact sequence of R modules. In other words, the direct
limit functor is exact.

2.5 Hom and Ext

Let A and B be R modules and consider the functor of two variables
hom(A,B). First we recall that an R module P is projective if and only
if the covariant functor hom(P, ) is exact. An R module Q is injective
if and only if the contravariant functor hom( , Q) is exact. This leads to
the fact that the derived functors of hom( , ) may be defined in two
different ways:

(1) If P∗ → A→ 0 is a projective resolution of A, then Extq(A,B) is
the q−the cohomology group of the cochain complex hom(P∗, B). If



2.5 Hom and Ext 59

A1 → A2 → A3 → 0 is exact, then

hom(A1, B)← hom(A2, B)← hom(A3, B)← 0

is exact. This shows that Ext0(A,B) = hom(A,B).

Of course, if the ground ring R is any principal ideal domain, for
example R = Z, then projective resolutions can be chosen to have
length ≤ 1 and thus Extq(A,B) = 0 if q ≥ 2. In this case, we write
Ext1(A,B) = Ext(A,B).

(2) Alternatively, if 0→ B → Q∗ is an injective resolution of B, then
Extq(A,B) is the q−the cohomology group of the cochain complex
hom(A,Q∗). The equivalence of this definition with the preceding
definition is shown in exercise 1 below. If 0→ B1 → B2 → B3 is
exact, then

0→ hom(A,B1)→ hom(A,B2)→ hom(A,B3)

is exact. This also shows that Ext0(A,B) = hom(A,B).

Proposition 2.5.1. If An is a direct system of R modules, then

hom(lim
→
An, B) = lim

←
hom(An, B)

and for all q ≥ 1 there are short exact sequences

0→ lim
←

1Extq−1(An, B)→ Extq(lim
→
An, B)→ lim

←
Extq(An, B)→ 0

Proof: Apply the long exact exact sequence in Exercise 3 below to the short
exact sequence

0→ ⊕An
Ψ−→ ⊕An → lim

→
An → 0

and use Exercise 1. �

We conclude this section with a result of Cartan–Eilenberg. Suppose
A,B,C are R modules, P∗ → A→ 0 is a projective resolution, and 0→
C → Q∗ is an injective resolution. Consider the double complex

hom(P∗ ⊗B,Q∗) = hom(P∗,hom(B,Q∗).

There are two spectral sequences converging to the cohomology of the asso-
ciated total complex.

(1) If we filter the associated total complex by the injective resolution
degree, we get a first quadrant spectral sequence with

Ep,q1 = hom(Torp(A,B), Qq)

Ep,q2 = Extq(Torp(A,B), C)

and differentials dr : Ep,qr → Ep+1−r,q+r
r .
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(2) If we filter the associated total complex by the projective resolution
degree, we get a first quadrant spectral sequence with

E
p,q
1 = hom(Pp,Extq(B,C))

E
p,q
2 = Extp(A,Extq(B,C))

and differentials dr : E
p,q
r → E

p+r,q+1−r
r .

If the ground ring R is a principal ideal domain, then derived functors
vanish beyond degree 1 and thus Ep,q2 = Ep,q∞ , E

p,q
2 = E

p,q
∞ . Hence,

Corollary 2.5.2. For modules over a principal ideal domain R,

Extq(Torp(A,B), C) = 0 for all p, q ≥ 0

if and only if

Extp(A,Extq(B,C)) = 0 for all p, q ≥ 0.

Exercises

(1) Show that

Extq(⊕αAα, B) =
∏
α

Extq(Aα, B)

and

Extq(A,
∏
α

Aα) =
∏
α

Extq(A,Bα).

(2) Let P∗ → A→ 0 be a projective resolution and let 0→ B → Q∗ be an
injective resolution. Consider the double complex hom(P∗, Q∗).

(a) Show that there is a spectral sequence with

Ep,q1 =

{
hom(A,Qq) if p = 0,

0 if p 6= 0.

(b) Show that there is a spectral sequence with

E
p,q
1 =

{
hom(Pp, B) if q = 0,

0 if q 6= 0.

(c) Show that Extq(A,B) can be defined by using either projective
resolutions of A or by using injective resolutions of B.
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(3) (a) If 0→ A1 → A2 → A3 → 0 is a short exact sequence, show that
there is a short exact sequence of projective resolutions

0 → P∗ → P∗ ⊕Q∗ → Q∗ → 0
↓ ↓ ↓

0 → A1 → A2 → A3 → 0
↓ ↓ ↓
0 0 0

(Hint: The easiest way to do this is to construct P∗, P∗ ⊕Q∗, Q∗ in
that order.)

(b) Show that, if 0→ A1 → A2 → A3 → 0 is a short exact sequence,
then there is a long exact sequence

0→ hom(A3, B)→ hom(A2, B)→ hom(A1, B)→

Ext1(A3, B)→ Ext1(A2, B)→ Ext1(A1, B)→

Ext2(A3, B)→ Ext2(A2, B)→ Ext2(A1, B)→ · · · ·

(4) (a) If 0→ B1 → B2 → B3 → 0 is a short exact sequence, show that
there is a short exact sequence of injective resolutions

0 0 0
↓ ↓ ↓

0 → B1 → B2 → B3 → 0
↓ ↓ ↓

0 → P∗ → P∗ ⊕Q∗ → Q∗ → 0.

(b) Show that, if 0→ B1 → B2 → B3 → 0 is a short exact sequence,
then there is a long exact sequence

0→ hom(A,B1)→ hom(A,B2)→ hom(A,B3)→

Ext1(A,B1)→ Ext1(A,B2)Ext1(A,B3)→

Ext2(A,B1)→ Ext2(A,B2)→ Ext2(A,→ · · · ·

2.6 p-completion of abelian groups

Dennis Sullivan introduced completions into homotopy theory. The notion
of p-completion occurs in the seminal work of Bousfield and Kan. The
exposition here is influenced by the thesis of Stephen Shiffman.

Let p be a prime. Recall that

Z
[

1

p

]
= lim
→

Z
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with respect to the direct system

Z p−→ Z p−→ Z p−→ Z p−→ · · ·

and

Z(p∞) = Z
[

1

p

]/
Z = lim

→
Z /prZ.

Definition 2.6.1. An abelian group A is p-complete if

hom

(
Z
[

1

p

]
, A

)
= Ext

(
Z
[

1

p

]
, A

)
= 0.

Since Z
[

1
p

]
= lim→ Z, it follows that

hom

(
Z
[

1

p

]
, A

)
∼= lim
←
A

Ext

(
Z
[

1

p

]
, A

)
∼= lim
←

1A

with respect to the inverse system

A
p←− A p←− A p←− A p←− · · · ·

Thus, A is p-complete if and only if this limit and this derived functor
vanish.

If B is any Z[ 1
p ] module, then the long exact sequence associated to a free

Z[ 1
p ] resolution

0→ F1 → F0 → B → 0

gives

Lemma 2.6.2. An abelian group A is p-complete if and only if

hom(B,A) = Ext(B,A) = 0

for all Z[ 1
p ] modules B.

If we recall that Z/pZ is a p-complete module we see that the following
result is related.

Lemma 2.6.3. An abelian group A is a Z[ 1
p ] module if hom(A,Z/pZ) =

Ext(A,Z/pZ) = 0.

Proof: If hom(A,Z/pZ) = 0, then A→ A/pA must be zero, hence A/pA =

0 and A is p-divisible. Thus, there is a short exact sequence 0→p A→ A
p−→
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A→ 0 and a long exact sequence

0→ hom(A,Z/pZ)→ hom(A,Z/pZ)→ hom(pA,Z/pZ)→

Ext(A,Z/pZ)→ Ext(A,Z/pZ)→ Ext(pA,Z/pZ)→ 0.

Thus hom(pA,Z/pZ) = 0 and this implies pA = 0, in other words, A is
uniquely p-divisible, a Z[ 1

p ] module. �

If

Z(p∞) = Z
[

1

p

]/
Z = lim

→
Z/prZ,

then

Proposition 2.6.4. For any abelian group A,

hom(Z(p∞), A) and Ext(Z(p∞), A)

are p-complete.

Proof: Since Z[ 1
p ]⊗ Z(p∞) = Tor(Z[ 1

p ],Z(p∞)) = 0, it follows from the
result of Cartan–Eilenberg in the previous section that

hom

(
Z
[

1

p

]
,hom(Z(p∞), A)

)
= Ext

(
Z
[

1

p

]
,hom(Z(p∞), A)

)
= 0

and

hom

(
Z
[

1

p

]
,Ext(Z(p∞), A)

)
= Ext

(
Z
[

1

p

]
,Ext(Z(p∞), A)

)
= 0.

�

Consider the short exact sequence 0→ Z→ Z[ 1
p ]→ Z(p∞)→ 0 and the

resulting long exact sequence

0→ hom(Z(p∞), A)→ hom

(
Z
[

1

p

]
, A

)
→ hom(Z, A)(= A)

δ−→ Ext(Z(p∞), A)→ Ext

(
Z
[

1

p

]
, A

)
→ Ext(Z, A)(= 0)→ 0.

We define:

Definition 2.6.5. The p-completion of A is the map

δ : A→ Ext(Z(p∞), A).

We shall also write δ : A→ Âp for p-completion.

Proposition 2.6.6. Up to isomorphism the map δ : A→ Âp is the unique
map with the properties:
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(1) Âp = Ext(Z(p∞), A) is p-complete.

(2) For all homomorphisms f : A→ B with B p-complete, there is a

unique homomorphism f̂ : Âp → B such that f̂ ◦ δ = f.

Proof: Clearly, the two properties characterize the p-completion Âp =
Ext(Z(p∞), A) up to isomorphism. So it suffices to verify the property (2).

But consider the exact sequence

hom

(
Z
[

1

p

]
, A

)
→ A→ Ext(Z(p∞), A)→ Ext

(
Z
[

1

p

]
, A

)
→ 0.

This factors into two exact sequences as follows:

hom
(
Z
[

1
p

]
, A
)
→ A→ C → 0

0→ C → Ext(Z(p∞), A)→ Ext
(
Z
[

1
p

]
, A
)
→ 0.

Since Ext(Z[ 1
p ], A) is a Z[ 1

p ]-module and B is p-complete,

hom

(
Ext

(
Z
[

1

p

]
, A

)
, B

)
= Ext

((
Ext

(
Z
[

1

p

]
, A

)
, B

)
= 0

and therefore hom(Ext(Z(p∞), A), B)→ hom(C,A) is an isomorphism.

Since hom(Z[ 1
p ], A) is a Z[ 1

p ]-module and B is p-complete,

hom

(
hom

(
Z
[

1

p

]
, A

)
, B

)
= 0

and therefore hom(C,B)→ hom(A,B) is an isomorphism. Thus, property
(2) is verified. �

The defining long exact sequence for the p-completion shows that p-
completion map is often a monomorphism.

Lemma 2.6.7. If hom(Z[ 1
p ], A) = 0, that is, if A has no nontrivial ele-

ments which are infinitely divisible by p, then there is a short exact sequence
0→ A

δ−→ Ext(Z(p∞), A)→ Ext(Z[ 1
p ], A)→ 0.

Since

Z(p∞) = lim
→

Z/prZ,

we have a short exact sequence

0→ lim
←

1hom(Z/prZ, A)→ Ext(Z(p∞), A)→ lim
←

Ext(Z/prZ, A)→ 0,

that is:
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Lemma 2.6.8. For any abelian group A, there is a short exact sequence

0→ lim
←

1
prA→ Âp → lim

←
A/prA→ 0

where prA = {aεA| pr(a) = 0} is part of the inverse system

pA
p←−p2 A

p←−p3 A
p←−p4 A

p←− · · · .

and A/prA is part of the epimorphic inverse system

A/pA← A/p2A← A/p3A← A/p4A← · · · .

Corollary 2.6.9. Âp = Ext(Z(p∞), A) = 0 if and only if A is a p-divisible
abelian group.

Now it is easy to compute p-completion for cyclic groups and thus for all
finitely generated abelian groups. We get

Ẑp = lim
←

Z/prZ, Ĝp = G, Ĥp = 0

if G is a finite abelian p group and H is a finite abelian group of torsion
relatively prime to p.

In order to get further information about p-completion, we recall without
proof a theorem in Kaplansky’s book on infinite abelian groups [72].

Proposition 2.6.10. If A is any abelian group, there is a direct sum
decomposition A = D ⊕R where D is a divisible abelian group and R has
no divisible subgroups.

Suppose A is any p-complete group. Then Ap = D ⊕R where D is p-
complete and divisible and R is p-complete and has no divisible subgroups.
Since D is p-complete and divisible, D = 0. Thus A = R. Since R has no
divisible subgroups, ⋂

r≥0

prR = 0

and

R→ lim
←
R/prR

is an isomorphism. Now it follows from 2.6.8 that

lim
←

1
prR =

⋂
r≥0

prR = 0.

Hence
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Proposition 2.6.11. If A is any p-complete group, then A has no divisible
subgroups,

A→ lim
←
A/pnA

is an isomorphism and

lim
←

1
prA =

⋂
r≥0

prA = 0.

Exercises

(1) If G is a p-complete abelian group, then show that G is localized at p,
that is, for all integers q prime to p, the map q : G→ G is an isomor-
phism.

(2) If G is an abelian group and p is a prime, then the p-completion of
localization at (p) is p-completion, that is,

(G(p))̂p = Ĝp.

2.7 p-completion of simply connected spaces

Let p be a prime.

Definition 2.7.1. A simply connected space X is p-complete if its homo-
topy groups πk(X) are p-complete for all k.

Let M = M(Z[ 1
p ], 1) = a Moore space with exactly one nonzero reduced

integral homology group isomorphic to Z[ 1
p ] in dimension 1, that is,

M(Z[ 1
p ], 1) is the homotopy direct limit of the degree p maps on a circle,

S1 p−→ S1 p−→ S1 p−→ S1 p−→ · · · ·

Thus, there is a cofibration sequence∨
n≥1

S1 Ψ−→
∨
n≥1

S1 →M

(
Z
[

1

p

]
, 1

)
→
∨
n≥1

S2 Σ(Ψ)−−−→
∨
n≥1

S2.

From this we get immediately that for all k ≥ 0 there are short exact
sequences

0→ lim
←

1πk+2(X)→
[
ΣkM

(
Z
[

1

p

]
, 1

)
, X

]
∗
→ lim

←
πk+1(X)→ 0.

Hence
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Lemma 2.7.2. A simply connected space X is p-complete if and only if
X is local with respect to the map M(Z[ 1

p ], 1)→ ∗.

Recall that a map f : X → Y is called a mod p equivalence if it induces an
isomorphism in mod p homology.

Proposition 2.7.3. A map f : X → Y between simply connected spaces
is a mod p equivalence if and only if f is a local equivalence with respect to
M(Z[ 1

p ], 1)→ ∗.

Proof: We may suppose that f is an inclusion. Assume f is a mod p
equivalence. This is the case if and only if H∗(Y,X;Z/pZ) = 0 which
is so if and only if H∗(Y,X) is a Z[ 1

p ] module. But this is equivalent

to 0 = hom(H∗(Y,X), D) = Ext(H∗(Y,X), D) for all p-complete abelian
groups D. Thus, if W is any simply connected p-complete space, the
obstruction groups H∗(ΣkY,ΣkX;π∗(W )) all vanish and

f ∗ : map∗(Y,W )→ map∗(X,W )

is a weak equivalence. Hence, f is a local equivalence with respect to
M(Z[ 1

p ], 1)→ ∗.

To show the equivalence the other way, it suffices to note that
map∗(Y,W )→ map∗(X,W ) can be a weak equivalence only if all obstruc-
tion groups H∗(Y,X;π∗(W )) vanish. But for any p-complete abelian group
D, the space W = K(D,n) is also p-complete. It follows that H∗(Y,X) is
a Z[ 1

p ] module and f is a mod p equivalence. �

We already know that, for simply connected spaces, mod p homology iso-
morphisms are equivalent to mod p homotopy isomorphisms.

Once again, for any simply connected X, the general theory of Dror Farjoun
presented in this chapter implies the existence of a simply connected p-
completion

ι : X → X̂p = LM(Z[ 1
p ],1)(X)

characterized uniquely up to homotopy by:

(1) X̂p is p-complete, and

(2) ι : X → X̂p is a mod p equivalence.

Just as with localization, we have that p-completion preserves fibrations.

Proposition 2.7.4. If F → E → B is a fibration sequence of simply con-
nected spaces, then F̂p → Êp → B̂p is a fibration sequence up to homotopy.

Proof: Let G be the homotopy theoretic fibre of Êp → B̂p. Then G is p-
complete. Apply the Zeeman comparison theorem to the map of fibration
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sequences

F → E → B
↓ ↓ ↓
G → Êp → B̂p.

Thus F → G is a mod p equivalence and G ' F̂p. �

We now consider p-completion of Eilenberg–MacLane spaces.

Proposition 2.7.5. If G is a finitely generated abelian group, then
K(G,n)→ K(Ĝp, n) is p-completion for all n ≥ 2.

Proof: Since the target is complete, it is sufficient to check that the map
is a mod p equivalence. Since the spaces are simply connected, a mod p
homology isomorphism is equivalent to a mod p homotopy isomorphism,
but the only nonzero mod p homotopy groups are in dimensions n and
n+ 1. Since G is finitely generated,

πn(K(G,n);Z/pZ) ∼= G/pG ∼= Ĝp/pĜp ∼= πn(K(G,n);Z/pZ),

πn+1(K(G,n);Z/pZ) ∼=p G ∼=p Ĝp ∼= πn+1(K(Ĝp, n);Z/pZ).

�

The above proposition is false if G is not finitely generated, for example,
it is false when G = Z(p∞). The short exact sequence 0→ Z→ Z[ 1

p ]→
Z(p∞)→ 0 yields the fibration sequence

K

(
Z
[

1

p

]
, 1

)
→ K(Z(p∞), 1)→ K(Z, 2).

Since Z[ 1
p ] has trivial mod p homology, the map K(Z(p∞), 1)→ K(Z, 2) is

a mod p equivalence and thus the composition

K(Z(p∞), 1)→ K(Z, 2)→ K(Ẑp, 2)

is the p-completion. We want to understand the p-completion of Eilenberg–
MacLane spaces.

Proposition 2.7.6.

(a) If F is an abelian group with no nontrivial elements which are
infinitely divisible by p, then

K(F, n)→ K(F̂p, n)

is the p-completion for all n ≥ 2.
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(b) In general, the p-completion of K(G,n) for n ≥ 2 is a space Y with
two possibly nonzero homotopy groups πn(Y ) = Ĝp and πn+1(Y ) =
hom(Z(p∞), G).

Proof: The short exact sequence 0→ F → F̂p → Ext(Z[ 1
p ], F )→ 0 yields a

fibration sequence

K(F, n)→ K(F̂p, n)→ K

(
Ext

(
Z
[

1

p

]
, F

)
, n

)
.

The mod p homotopy and hence the mod p homology of the base is trivial.
We know that K(F, n)→ K(F̂p, n) is a mod p equivalence with target
having p-complete homotopy groups. Hence, this is the p-completion.

For any abelian group G let 0→ F1 → F0 → G→ 0 be a free resolution.
Let Y be the homotopy theoretic fibre of K(F̂1p, n+ 1)→ K(F̂0p, n+ 1)
and consider the map of fibration sequences

K(G,n) → Y
↓ ↓

K(F1, n+ 1) → K(F̂1p, n+ 1)
↓ ↓

K(F0, n+ 1) → K(F̂0p, n+ 1).

Since K(F̂1p, n+ 1) and K(F̂0p, n+ 1) are p-complete spaces, so is Y and
the Zeeman comparison theorem shows that Y is the p-completion of
K(G, 1).

We have a long exact sequence associated to hom and Ext:

0→ hom(Z(p∞), G)→ Ext(Z(p∞), F1)→ Ext(Z(p∞), F0)

→ Ext(Z(p∞), G)→ 0.

Hence the homotopy groups of Y are as indicated. �

Having determined the homotopy groups of the p-completion of an
Eilenberg–MacLane space, it is now easy to determine the homotopy groups
of the p-completion of any simply connected space.

Proposition 2.7.7. If X is a simply connected space, then we have short
exact sequences

0→ Ext(Z(p∞), πn(X))→ πn(X̂p)→ hom(Z(p∞), πn−1(X))→ 0.

Proof: We are given the result for Eilenberg–MacLane spaces.

For spaces X with finitely many nonzero homotopy groups, the highest
dimensional one being πn(X), the result follows by induction using the
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fibration

K(πn(X), n)→ X → Y,

where Y is a space with one less nonvanishing homotopy group than X.

For an arbitrary simply connected space, write X as an inverse limit of its
Postnikov stages, X = lim←X`, and note that X̂p = lim← X̂`p. (The fact
that p-completion commutes with this inverse limit process is a consequence
of the fact that, in this case, the limit is finite in each degree and thus
homology commutes with the inverse limit.) The result follows for general
simply connected X. �

In the case where the homotopy groups are finitely generated, the preceding
proposition takes the following simple form.

Corollary 2.7.8. If X is a simply connected space with finitely generated
homotopy groups in every degree, then there are isomorphisms

πn(X̂p) ∼= π̂n(X)p ∼= lim
←r

πn(X)/prπn(X).

Remarks. If LM (X) is the localization of X with respect to M → ∗, it
may not be the case that LM (X) = lim← LM (X`) whereX` is the Postnikov
system of X. It is the case for the localizations which are p-completion and
localization at a set of primes but it is not the case for the localization
functor LM in Section 2.10.

Here M = BZ/pZ and the localization has the following properties:
LM (X) = ∗ whenever X has only finitely many nonzero homotopy groups,
all of which are p-primary abelian. Also, any simply connected finite com-
plex is local in this localization. Hence, if X = Pm(Z/pZ) = the mod p
Moore space with m ≥ 3 and X` is its Postnikov system, X = LM (X) 6=
lim← LM (X`) = lim←(∗) = ∗.

Remarks. Just as with localization at a set of primes, it is also possible to
extend p-completion to connected loop spaces X = ΩY via the definition
X̂p = Ω(Ŷp).

Exercises

(1) Suppose X is a simply connected space with finitely generated homo-
topy groups. Show that the homotopy groups of the p-completion X̂p

are the p-completion of the homotopy groups of X, that is, for all k ≥ 2,

πk(X̂p) ∼= π̂k(X)p.

(2) Show that p-completion does not commute with taking n-connected
covers, that is, give a counterexample to X̂〈n〉p ' (X̂p)〈n〉.
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(3) Let X be a simply connected space and let S be a set of primes.

(a) Show that X and the localization X(S) have the same p-completion
if p ∈ S.

(b) Show that the p-completion of the localization X(S) is contractible
if p /∈ S.

(4) Show that, if a space X is n-connected with n ≥ 1, then so is the p-
completion X̂p.

(5) (a) Show that a p-local equivalence is always a mod p equivalence.

(b) Show that a p-complete space is always a p-local space.

(6) Let X → Y be a map of simply connected spaces.

(a) If the map of localizations at p, X(p) → Y(p), is a homotopy equiva-

lence, show that the map of p-completions, X̂p → Ŷp, is a homotopy
equivalence.

(b) Give an example to show that the converse to (a) is false.

(7) Show that the p-completion of a pullback diagram of fibrations of sim-
ply connected spaces is a pullback diagram of fibrations.

(8) If q and p are distinct primes, show that π∗(X̂p;Z/qZ) = 0 for all simply
connected X.

2.8 Completion implies the mod k Hurewicz isomorphism

In this section we shall show that the existence of p-completion implies the
truth of the mod k Hurewicz isomorphism theorem, at least for simply con-
nected spaces. Since we have already proven this theorem for all nilpotent
spaces in the previous chapter, the point of this exercise is to show that
it can be done independently using the existence of p-completion. Accord-
ingly, we do not want to assume any consequences of the mod k Hurewicz
isomorphism theorem in this section. We shall show:

Proposition 2.8.1. Let n ≥ 2. If X is any simply connected space and
πi(X;Z/kZ) = 0 for all 2 ≤ i < n, then

(a) Hi(X;Z/kZ) = 0 for all 2 ≤ i < n and

(b) the Hurewicz map ϕ : πn(X : Z/kZ)→ Hn(X;Z/kZ) is an isomor-
phism.
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First of all we note that, if k = pα1
1 pα2

2 . . . pα`` is a factorization into powers
of distinct primes, then

Z/kZ ∼= Z/Zpα1
1 Z⊕ Z/pα2

2 Z⊕ · · · ⊕ Z/pα`` Z

πi(X;Z/kZ) ∼= πi(X;Z/Zpα1
1 Z)⊕ πi(X;Z/pα2

2 Z)⊕ · · · ⊕ πi(X;Z/pα`` Z)

Hi(X;Z/kZ)∼=Hi(X;Z/Zpα1
1 Z)⊕Hi(X;Z/pα2

2 Z)⊕. . .⊕Hi(X;Z/pα`` Z)

and thus it is sufficient to prove the Hurewicz theorem when k = pα is a
power of a prime.

Now we show:

Lemma 2.8.2. For all simply connected X, the p-completion map ι : X →
X̂p induces an isomorphism of all mod pα homotopy groups.

Remark. By definition, the p-completion map induces an isomorphism
of all mod p homology groups and thus an isomorphism of all mod pα

homology groups. The Hurewicz isomorphism theorem for pairs implies
that it induces an isomorphism of all mod pα homotopy groups. But, in
this section, we cannot use this fact.

Proof: The proof of the lemma is done in successive steps:

(1) X = K(F, n) with F free abelian, n ≥ 2.

(2) X = K(G,n) with G abelian, n ≥ 2.

(3) X has finitely many nonzero homotopy groups.

(4) X is an arbitrary simply connected space.

In case (1), X̂p = K(F̂p, n) and the only nonzero mod pα homotopy groups

are in dimension n, isomorphic to F ⊗ Z/pαZ and F̂p ⊗ Z/pαZ, respec-
tively. The tensor-Tor exact sequence associated to the short exact sequence

0→ F → F̂p → Ext

(
Z
[

1

p

]
, F

)
→ 0

shows that these two are isomorphic.

In case (2), we take a free resolution 0→ F1 → F0 → G→ 0 and apply the
five-lemma to the map of fibration sequences

KG,n) → K(F1, n+ 1) → K(F0, n+ 1)
↓ ι ↓ ι ↓ ι

K̂G, n)p → K(F̂1p, n+ 1) → K(F0p, n+ 1).

In case (3), we apply the five-lemma and induction to the p-completion
maps related to the fibration sequence Y → X → K(G,n), where Y has
one less nonzero homotopy group than X.
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Finally, in case (4), we note that X is the inverse limit of its Postnikov

stages Xn and X̂p is the inverse limit of (̂Xn)p, both limits being finite in
each degree. The lemma follows. �

We now finish the proof of the mod k Hurewicz isomorphism theorem. Sup-
pose πi(X;Z/pαZ) = 0 for all 2 ≤ i < n. By induction we can assume that
Hi(X;Z/pαZ) = 0 for all 2 ≤ i < n. We need to show that the Hurewicz
map ϕ : πn(X;Z/pαZ)→ Hn(X;Z/pαZ) is an isomorphism.

But πi(X)⊗ Z/pαZ = 0 for i < n and Tor(πi(X),Z/pαZ) = 0 for i < n− 1.
Thus πi(X) is p-divisible if i < n and has no nontrivial p torsion if i < n− 1.

With π = πi(X), p divisibility and the short exact sequence

0→ lim
←

1(p`π)→ Ext(Z(p∞), π)→ lim
←

(π/p`π)→ 0

shows that Ext(Z(p∞), π) = π̂p = π̂i(X)p = 0 for all i < n. (The inverse
system

pπ
p←−p2 π

p←−p3 π
p←− · · ·

is epimorphic and thus has a vanishing first derived functor.)

Now no nontrivial p torsion and the short exact sequence

0→ Ext(Z(p∞), πi(X))→ πi(X̂p)→ hom(Z(p∞), πi−1(X))→ 0

shows that πi(X̂p) = 0 for all i < n. We record this fact.

Lemma 2.8.3. If X is a simply connected space with πi(X;Z/pαZ) = 0
for all 2 ≤ i < n then πi(X̂p) = 0 for all 2 ≤ i < n.

The classical Hurewicz theorem asserts that Hi(X̂p) = 0 for all i < n and

ϕ : πn(X̂p) ∼= Hn(X̂p). Thus,

πn(X;Z/pαZ) ∼= πn(X̂p;Z/pαZ) ∼= πn(X̂p)⊗ Z/pαZ

and these are isomorphic to

Hn(X̂p)⊗ Z/pαZ ∼= Hn(X̂p;Z/pαZ) ∼= Hn(X;Z/pαZ).

This completes the inductive step. �

2.9 Fracture lemmas

Dennis Sullivan [128, 129] called the next result the topological Hasse–
Minkowski principle.
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Proposition 2.9.1. For any simply connected space X, there is up to
homotopy a pullback diagram of fibrations

X →
∏
p X̂p

↓ ↓
X ⊗Q → (

∏
p X̂p)⊗Q,

the product being taken over all primes p.

Since p-completions and localizations are functors, the diagram is automat-
ically strictly commutative. That the diagram is a homotopy pullback is
recognized by the fact that the homotopy theoretic fibres of X →

∏
p X̂p

and X ⊗Q→ (
∏
p X̂p)⊗Q are identical. Equivalently, the homotopy the-

oretic fibres of X → X ⊗Q and (
∏
p X̂p)→ (

∏
p X̂p)⊗Q are identical.

Proof: We adopt the standard strategy. We will prove this in several steps:

(1) where X = K(F, n) with F free abelian.

(2) where X = K(G,n) with G abelian.

(3) where X has only finitely many nonvanishing homotopy groups.

(4) where X is any simply connected space.

Step (1): X = K(F, n) with F free abelian.

Consider the short exact sequence

0→ Z→ Q→ Q/Z→ 0.

The long exact sequence associated to hom and Ext collapses to a short
exact sequence

0→ F → Ext(Q/Z, F )→ Ext(Q,F )→ 0.

We observe two things, Ext(Q,F ) is a rational vector space and Q is torsion
free. Hence, Ext(Q,F )⊗Q ∼= Ext(Q,F ) and we get a short exact sequence

0→ F ⊗Q→ Ext(Q/Z, F )⊗Q→ Ext(Q,F )⊗Q→ 0.
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In fact, we have a commutative diagram in which the rows and columns
are short exact sequences:

0 0 0
↓ ↓ ↓

0 → F → Ext(Q/Z, F ) → Ext(Q,F ) → 0
↓ ↓ ↓

0 → F ⊗Q → Ext(Q/Z, F )⊗Q → Ext(Q,F )⊗Q → 0
↓ ↓ ↓

0 → F ⊗Q/Z → Ext(Q/Z, F )⊗Q/Z → 0 → 0
↓ ↓ ↓
0 0 0

The first two columns are short exact since F and Ext(Q/Z, F ) are torsion
free. The last column is short exact since Ext(Q,F ) is a rational vector
space. We already know that the first two rows are short exact and so it
follows that the bottom (quotient) row is short exact.

It follows that there is a commutative diagram in which rows and columns
are fibration sequences:

∗ → K(F ⊗Q/Z, n+ 1) → K(Ext(Q/Z, F )⊗Q/Z, n+ 1)

↓ ↓ ↓
K(Ext(Q,F ), n+ 1) → K(F, n) → K(Ext(Q/Z, F ), n)

↓ ↓ ↓
K(Ext(Q,F )⊗Q,n+ 1) → K(F ⊗Q,n) → K(Ext(Q/Z, F )⊗Q,n)

in other words the lower right-hand square is a pullback diagram of fibra-
tions.

Now we need only observe that

Q/Z = ⊕pZ(p∞),

Ext(Q/Z, F ) =
∏
p

Ext(Z(p∞), F ),

K(Ext(Q/Z, F ), n) =
∏
p

K(Ext(Z(p∞), F ), n) =
∏
p

K̂(F, n)p

and

K(G⊗Q,n) = K(G,n)⊗Q

to show that we have demonstrated the required pullback square in this
case.

Step (2): X = K(G,n) with G abelian.

We need the following lemma which will be proved in Chapter 3.
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Lemma 2.9.2. Let A and B be pullback squares of fibrations and let
φ : A→ B be a map of squares. If C is the square formed by taking the
homotopy theoretic fibres of φ, then C is also a pullback square of fibra-
tions.

If 0→ F1 → F0 → G→ 0 is a free resolution of G, then the two pullback
squares for K(F1, n+ 1) and K(F0, n+ 1) have a map for which the fibres
form the pullback square for K(G,n).

Step (3): X has only finitely many nonzero homotopy groups with the top
nonzero one being πn(X).

We apply induction and the above lemma to the fibration K(πn(X), n)→
X → Y where Y has one less nonzero homotopy group than X.

Step (4): For any simply connected X, the required diagram is the inverse
limit of the pullback diagrams of the Postnikov stages and thus is itself a
pullback diagram. �

There is a pullback diagram for S-localizations [128, 129, 35]:

Proposition 2.9.3. Let S1 and S2 be two sets of primes. For any simply
connected space X, there is up to homotopy a pullback diagram of fibrations

X(S1∪S2) → X(S1)

↓ ↓
X(S2) → X(S1∩S2).

Proof: Let T1 and T2 be complementary sets of primes to S1 and S2, respec-
tively. The theory of partial fraction decompositions asserts that

Z(S1∩S2) = Z[(T1 ∪ T2)−1] = Z[T−1
1 ] + Z[T−1

2 ] = Z(S1) + Z(S2),

Z(S1∪S2) = Z[(T1 ∩ T2)−1] = Z[T−1
1 ] ∩ Z[T−1

2 ] = Z(S1) ∩ Z(S2).

The Noether isomorphisms give a diagram with short exact rows and
columns:

0 0 0
↓ ↓ ↓

0 → Z(S1∪S2) → Z(S1) → Z(S1)/Z(S1∪S2) → 0
↓ ↓ ↓

0 → Z(S2) → Z(S1∩S2) → Z(S1∩S2)/Z(S2) → 0
↓ ↓ ↓

0 → Z(S2)/Z(S1 ∪ S2) → Z(S1∩S2)/Z(S1) → 0 → 0
↓ ↓ ↓
0 0 0
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For any abelian group G, since any localization of Z is torsion free, the rows
and columns remain short exact if we tensor this diagram with G. But this
just replaces Z by G in the diagram and leads in the same way as before
to the validity of the pullback diagram for X = K(G,n). Without any
essential change from before the proof continues to establish the validity of
the pullback diagram for finite Postnikov systems and then for all simply
connected spaces. �

Corollary 2.9.4. If S1 and S2 are complementary sets of primes and X is
simply connected, there is up to homotopy a pullback diagram of fibrations

X → X(S1)

↓ ↓
X(S2) → X ⊗Q.

Exercises

(1) Let S be a set of primes. For any simply connected space X, show that
there is up to homotopy a pullback diagram of fibrations

X(S) →
∏
p∈S X̂p

↓ ↓
X ⊗Q → (

∏
p∈S X̂p)⊗Q.

(2) Suppose that M ⊗Q ' ∗ and X is simply connected. Show that X is
local with respect to M → ∗ if and only if, for all primes p, X̂p is local
with respect to M → ∗.

(3) If S1 and S2 are complementary sets of primes and if X is simply
connected with X ⊗Q ' ∗, then show that

X ' X(S1) ×X(S2).

(4) Let f : X → Y be a map of spaces.

(a) If X and Y are simply connected, show that the Hasse–Minkowski
principle implies that f is a homotopy equivalence if the induced
maps in rational homology and in mod p homology are isomor-
phisms for all primes p.

(b) For arbitrary spaces X and Y , show that f induces an isomor-
phism in integral homology if it induces isomorphisms in rational
homology and in mod p homology for all primes p.

(5) (a) For any abelian group A, show that A = 0 is and only if the local-
izations A(p) = 0 for all primes p.
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(b) For any homomorphism f : A→ B of abelian groups, show that f
is an isomorphism if and only if the localizations f(p) : A(p) → B(p)

are isomorphisms for all primes p.

(6) Let f : X → Y be a map of spaces.

(a) Show that f induces an isomorphism in integral homology if and
only if f induces isomorphisms in homology localized at all primes.

(b) Suppose X and Y are both simply connected or both H-spaces.
Show that f is a (weak) homotopy equivalence if and only if f
induces isomorphisms in homology localized at all primes.

2.10 Killing Eilenberg–MacLane spaces: Miller’s theorem

We now consider localization LBZ/pZ with respect to the map f : BZ/pZ→
∗. We begin with some consequences of the Zabrodsky Lemma.

Lemma 2.10.1. If G is any abelian p-primary torsion group and n ≥ 1,
then K(G,n)→ ∗ is a local equivalence with respect to f .

Proof: If G is a finite p group, then G has a nontrivial center and hence a
central subgroup isomorphic H to Z/pZ. The Zabrodsky Lemma applied
to the bundle sequence

BH → BG→ B(G/H)

leads to an inductive proof that BG→ ∗ is a local equivalence for all finite
p groups G.

Since any abelian p-primary torsion group G is a union of its finite sub-
groups H, we have a pushout diagram

⋃
H1⊆H2

H1
S−→

⋃
H1⊆H2

H2

↓ T ↓⋃
H1⊆H2

H1 → G

where S : H1 → H2 is inclusion and T : H1 → H1 is the identity, the unions
being taken over all pairs of finite subgroups H1 ⊆ H2 ⊆ G.

After applying the classifying space functor B to all the groups, we get a
corresponding pushout diagram of classifying spaces where the maps are
cofibrations. Now for any local space X we apply the functor map( , X)
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and get a pullback diagram where the maps are fibrations

map(
⋃
H1⊆H2

BH1, X)
S∗←− map(

⋃
H1⊆H2

BH2, X)
↑ T ∗ ↑

map(
⋃
H1⊆H2

BH1, X) ← map(BG,X).

This shows that

map(BG,X) = lim
←
X = X,

and BG→ ∗ is a local equivalence.

Finally, applying the Zabrodsky Lemma to the principal bundle sequence

K(G,n)→ PK(G,n+ 1)→ K(G,n+ 1)

completes the inductive step to show that K(G,n)→ ∗ is a local equiva-
lence for all abelian p-primary torsion groups G and all n ≥ 1. �

Recall that Moore–Postnikov factorizations are factorizations of maps
between simply connected spaces X → Y into an inverse limit of a sequence
of principal bundles

Xn → Xn−1 → Xn−2 → · · · → X2 → X1 → X0 = Y

with

X = lim
←
Xn

via maps X → Xn.

If F is the homotopy theoretic fibre of X → Y , then each Xn → Xn−1 is
a principal bundle with fibre group K(πn(F ), n). If Fn is the homotopy
theoretic fibre of Xn → Y and Gn is the homotopy theoretic fibre of X →
Xn, then

πq(Fn) =

{
πq(F ) if q ≤ n
0 if q > n

and

πq(Gn) =

{
πq(F ) if q > n

0 if q ≤ n.
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In the diagram below, rows and columns are fibration sequences up to
homotopy

Gn → Gn → ∗
↓ ↓ ↓
F → X → Y
↓ ↓ ↓
Fn → Xn → Y.

Applying the Zabrodsky Lemma to a Moore–Postnikov factorization yields

Proposition 2.10.2. Suppose X → Y is a map of simply connected spaces
where the homotopy theoretic fibre F has all π∗(F ) abelian p-primary tor-
sion and only finitely many π∗(F ) nonzero. Then X → Y is a local equiv-
alence with respect to the map BZ/pZ→ ∗.

Lemma 2.10.3. Suppose X → Y is a mod p equivalence of simply con-
nected spaces. Then map∗(BZ/pZ, X)→ map∗(BZ/pZ, Y ) is a weak equiv-
alence.

Proof: Let F be the homotopy theoretic fibre of X → Y . Since X → Y is
a mod p equivalence, F has trivial mod p homotopy and therefore π∗(F ) is
a Z[ 1

p ] module.

Let X → X1 → Y be the first stage of a Moore–Postnikov factorization
with X1 → Y being a principal bundle with fibre a K(π1(F ), 1) and X →
X1 being a map of simply connected spaces with a simply connected fibre
G1.

Note that πqmap∗(BZ/pZ,K(π1(F ), 1)) = H1(Σq(BZ/pZ);π1(F )) = 0.
This follows from H∗(BZ/pZ) = 0 or = Z/pZ and

hom(Z/pZ, π1(F )) = Ext(Z/pZ, π1(F )) = 0

since π1(F )) is a Z[ 1
p ] module. Thus map∗(BZ/pZ,K(π1(F ), 1)) is weakly

contractible and map∗(BZ/pZ, X1)→ map∗(BZ/pZ, Y ) is a weak equiva-
lence.

On the other hand, G1 is local away from p and BZ/pZ→ ∗ is a local
equivalence away from p. Hence, map∗(BZ/pZ, G1) is weakly contractible
and map∗(BZ/pZ, X)→ map∗(BZ/pZ, X1) is a weak equivalence. �

Hence, if a simply connected space is local with respect to BZ/pZ→ ∗, then
the same is true for any simply connected space which is mod p equivalent
to it.

We come to the main result of this section.
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Proposition 2.10.4. Let X be a simply connected space which is local
with respect to the map f : BZ/pZ→ ∗ and assume that π2(X) is a torsion
group. Up to homotopy, there is a pullback diagram

LBZ/pZ(X〈n〉) → (X〈n〉)[ 1
p ]

↓ ↓
X → X[ 1

p ].

Proof: In general, let Yτ denote the fibre of the localization away from
p, that is, Yτ → Y → Y [ 1

p ] is a fibration sequence. The homotopy groups

π∗(Yτ ) are always p-primary torsion.

Consider the following diagram in which the row and columns and the
southeast arrows are fibration sequences and E is the pullback of X and
X〈n〉[ 1

p ] over X[ 1
p ].

Fτ → F → F [ 1
p ]

↓ ↘ ↓ ↓
X < n >τ → X < n > → X < n > [ 1

p ]

| | ↘ ↗ |
| | E |
↓ ↓ ↙ ↓
Xτ → X → X[ 1

p ].

The hypothesis on π2(X) ∼= π1(F ) guarantees that Fτ is connected. Thus
X〈n〉 → E is a map of simply connected spaces with fibre Fτ having
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finitely many nonzero homotopy groups all of which are p-primary tor-
sion. It follows that X〈n〉 → E is a local equivalence with respect to the
map f : BZ/pZ→ ∗.

Since F [ 1
p ]→ E → X is a fibration, E → X is a mod p equivalence and

the fact that X is local with respect to BZ/pZ→ ∗ shows that E is also.
Hence, E ' LBZ/pZ(X〈n〉). �

The form of the proposition above was suggested by Jesper Møller. The
original form of the proposition [103] was the corollary we are about to
state. Let L̂BZ/pZ(X) denote the p-completion of LBZ/pZ(X). Then:

Corollary 2.10.5. Let X be a simply connected space which is local with
respect to the map f : BZ/pZ→ ∗ and assume that π2(X) is a torsion
group. Then we have L̂BZ/pZ(X〈n〉) ' X̂p.

These results derive their interest from the following deep result of Haynes
Miller [84] which we will not prove here.

Miller’s theorem 2.10.6. If X is a finite complex (or any loop space
thereof), then map∗(BZ/pZ, X) is weakly contractible, that is, X is local
with respect to BZ/pZ→ ∗.

Joseph Roitberg has suggested that a simply connected space with π2 tor-
sion be called 1 1

2 -connected. Thus, up to p-completion, a 1 1
2 -connected

finite complex can be recovered from any n-connected cover. The 1 1
2 -

connected hypothesis is necessary since S2〈2〉 = S3. For example, a corol-
lary is [117]:

Serre’s theorem 2.10.7. If X is a simply connected finite complex with
nontrivial reduced mod p homology, then πn(X)⊗ Z/pZ 6= 0 for infinitely
many n.

Proof: First of all, recall that the homotopy groups of a simply connected
finite complex X are finitely generated. If π2(X) has a nontrivial free sum-
mand, we can form a pullback bundle sequence

S1 × S1 × · · · × S1 → Y → X

via a map

X → CP∞ × CP∞ × · · · × CP∞

which is a isomorphism on the torsion free summand of π2. We can replace
X by Y and assume that X is a simply connected finite complex with
π2(X) torsion.
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Finally we can replace X by its p-completion. If πq(X)⊗ Z/pZ = 0 for all
sufficient large q, then X〈n〉 ' ∗ for a large n and thus

∗ ' L̂BZ/pZ(X〈n〉) ' X̂p ' X,

a contradiction. �

In fact there is a simpler argument which uses Miller’s theorem to prove
Serre’s theorem but does not use the existence of localization. This argu-
ment will now be given. It is due to Charles McGibbon and the author and
also to Alexander Zabrodsky independently. It also serves as an introduc-
tion to the method used by McGibbon and the author [83] to demonstrate
the validity of Serre’s conjecture [117, 83] that a nontrivial simply con-
nected complex has infinitely many homotopy groups with nonvanishing
torsion.

We will drop the language of localization since it is really irrelevant for this
argument. It is instructive to translate facts known in the language of local-
ization into simpler terms. Suppose X is a simply connected finite complex.
Then Miller’s theorem says that map∗(BZ/pZ, X) is weakly contractible.
Hence, map∗(BZ/pZ, X̂p) is also weakly contractible. We have shown above

that this implies that map∗(K(G,n), X̂p) is weakly contractible for any
abelian p-group G and all n ≥ 1. The short exact sequence

0→ Z→ Z
[

1

p

]
→ Z(p∞)→ 0

shows that we have mod p equivalences

K(Z(p∞), n)→ K(Z, n+ 1)

for all n ≥ 1. Thus map∗(K(Z, n+ 1), X̂p) is weakly contractible for all

n ≥ 1. Therefore, map∗(K(G,n), X̂p) is weakly contractible for all n ≥ 2
and all finitely generated abelian groups G.

Suppose now that X is a simply connected finite complex for which there is
some n such that πn(X)⊗ Z/pZ 6= 0 but πk(X)⊗ Z/pZ = 0 for all k > n.
Since π∗(X) is finitely generated in every degree, we have the isomorphism

πn(X̂p) ∼= π̂n(X)p ∼= lim
←r

πn(X)/prπn(X).

Let Y = (Ωn−2X̂p)o be the component of the basepoint in the n− 2-
fold loop space of the p-completion. Then the universal cover of Y is
Ỹ = K(π̂n(X)p, 2). The natural map K(πn(X)p, 2)→ Ỹ → Y → Ωn−2X̂p

is nontrivial and thus so is the adjoint Σn−2K(πn(X)p, 2)→ X̂p. This
means that πn−2(map∗(K(πn(X), 2), X)) 6= 0, so this is a contradiction.
�
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Serre’s conjecture 2.10.8. If X is a simply connected finite complex
with nontrivial reduced mod p homology, then the p-torsion subgroup of
πn(X) is nonzero for infinitely many n.

Proof: We begin by recalling a well known fact concerning the rationaliza-
tion X ⊗Q of a simply connected H-space X. �

Lemma 2.10.9. If X is a simply connected H-space, then the rational-
ization X ⊗Q has the homotopy type of a product of Eilenberg–MacLane
spaces, that is, there is a homotopy equivalence

X ⊗Q '
∏
n≥2

K(πn, n).

This result is due to Cartan and Serre who in fact proved it in the following
more convenient form: if X is a simply connected H-space, then all the
rational k-invariants are zero, for all i, ki ⊗Q = 0. (See [90].)

Recall the theory of Postnikov systems and k-invariants. If X is a simply
connected space, then X can be written up to homotopy as an inverse limit
of fibrations, that is,

X = lim
←
Xn

where:

(1) for all n ≥ 2, there are maps X
qn−→ Xn and fibrations Xn+1

pn+1−−−→
Xn such that qn = pn+1 · qn+1. These maps induce the equivalence
X = lim←Xn.

(2) X2 = K(π2, 2) and, for all n ≥ 2, there are fibration sequences up to
homotopy

K(πn+1, n+ 1)→ Xn+1
pn+1−−−→ Xn

kn+1−−−→ K(πn+1, n+ 2).

(3)

πiXn =

{
0, i > n

πiX, i ≤ n.

Hence, ki εH
i+1(Xi−1, πi) and we have that 0 = ki implies that Xi '

Xi−1 ×K(πi, i).

In fact, the lifting problem of the existence of f :

X → X2

∃f ↖ ↑ f2

Y
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is equivalent to a succession of lifting problems, namely, the existence of
the fi:

Xi → Xi−1

∃fi ↖ ↑ fi−1

Y

and this in turn is equivalent to ki · fi−1 = 0 εHi+1(Y, πi).

It is convenient to state the next lemma in the form in which X and Y are
localized at a prime p.

Lemma 2.10.11. If X and Y are localized at p, then the lift f exists if
H∗(Y ;Z(p)) is free over Z(p), π∗(X) is torsion free, and X is an H-space.

The lemma follows from the fact that the obstructions are ki ·
fi−1 εH

i+1(Y, πi). We see that they are zero by noting that:

(a) H∗(Y,Z(p)) free implies that Hi+1(Y, πi) = hom(Hi+1Y, πi). Of
course, Hi+1(Y, πi ⊗Q) = hom(Hi+1Y, πi ⊗Q).

(b) πi torsion free implies that πi → πi ⊗Q and hom(Hi+1Y, πi)→
hom(Hi+1Y, πi ⊗Q) are monomorphisms.

Via the monomorphisms in (a) and (b), Lemma 2.10.9 implies that ki · fi−1

maps to 0 = (ki ⊗Q) · fi−1. Hence, the obstructions are 0 and the lift exists.

We can now conclude the proof of Serre’s conjecture.

Let X be the localization at p of a simply connected finite complex with
H∗(X;Z/pZ) 6= 0 and suppose that the p-torsion of π∗X vanishes for ∗
sufficiently large. We shall derive a contradiction.

We already know that there are larger and larger homotopy groups for
which π∗X does not vanish. Hence, there exists an n ≥ 3 such that πnX
has a split Z(p) summand and πiX has no p-torsion for i ≥ n.

Let W = the universal cover of the basepoint component of the iterated
loop space Ωn−2X. Then W is simply connected, π2W contains a split Z(p)

summand, and [BZ/pZ,W ]∗ = the subset of [BZ/pZ,Ωn−2X]∗ of homo-
topy classes which induce Z/pZ→ 0 on π1. Recall that [BZ/pZ,Ωn−2X]∗ =
[Σn−2BZ/pZ, X]∗ = 0. Thus [BZ/pZ,W ]∗ = 0.
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But the splitting Z(p) → π2W → Z(p) and the nontrivial two-dimensional
cohomology class BZ/pZ→ K(Z(p), 2) show that this is a contradiction via

W −→ W2 = K(π2, 2) → K(Z(p), 2)
∃ ↖ ↑ ↗=

K(Z(p), 2)
↑

BZ/pZ

Exercises

(1) Prove that, no matter how large k is, the pk-th power map

pk : Ω2n−2(S2n+1〈2n+ 1〉(p))→ Ω2n−2(S2n+1〈2n+ 1〉(p))

on this many loopings of the localized connected cover of an odd dimen-
sional sphere is not null homotopic.

(2) Let g be the map M = ∨pBZ/pZ→ ∗ with the bouquet M being taken
over all primes p. Let X be a simply connected space which is local
with respect to the map g : M → ∗ and assume that π2(X) is a torsion
group. Up to homotopy, there is a pullback diagram

LM (X〈n〉) → (X〈n〉)⊗Q
↓ ↓
X → X ⊗Q.

(3) Suppose X → Y is a mod p equivalence of simply connected spaces.
Show that X is local with respect to BZ/pZ→ ∗ if and only if Y is.

(4) Let G be a locally finite abelian p-group, that is, G is an abelian group
which is a union of its finite p-subgroups. Assume X is a simply con-
nected space which is local with respect to BZ/pZ→ ∗.

(a) Show that X is local with respect to BG→ ∗.

(b) Show that X is local with respect to K(G,n)→ ∗ for all n ≥ 1.

(c) Show that, if X is also p-complete, then X is local with respect to

K(Z, n)→ ∗ and K(Ẑp, 2)→ ∗ for all n ≥ 2.

(5) This problem is an alternate approach to a localization theorem and
was suggested by Jesper Grodal.

Consider localization L of simply connected spaces X with respect to
the map BZ/pZ ∨M(Z[ 1

p ], 1)→ ∗.

(a) Show that X is local if and only if X is p-complete and
map∗(BZ/pZ, X) is weakly contractible, that is, X is Miller local.
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(b) Show that any mod p homology isomorphism f : A→ B is a local
equivalence.

(c) Show that, if X is Miller local, then map∗(BG,X) is weakly con-
tractible for all locally finite p-groups G.

(d) Show that, if X is local and G is torsion free abelian, then
map∗(K(G, 2), X) is weakly contractible. (Hint: Use the fact that

0→ G→ Z
[

1

p

]
⊗G→ Z(p∞)⊗G→ 0

is exact and that B(Z[ 1
p ]⊗G) has trivial mod p homology.)

(e) Show that, if X is p-complete and H is an abelian torsion group
with all torsion of order relatively prime to p, then map∗(BH,X)
is weakly contractible.

(f) Suppose that map∗(G,X) is weakly contractible. Show that
map∗(BG,X) is weakly contractible.

(g) Suppose that there is an exact sequence 1→ H → T → G→ 1
and that map∗(BG,X) and map∗(BH,X) are both weakly con-
tractible. Show that both map∗(BT,X) and map∗(B(G×H), X)
are weakly contractible.

(h) Show that, if X is local and G is abelian, then map∗(K(G, 2), X)
is weakly contractible.

(i) Show that, if X is local and G is abelian, then map∗(K(G,n), X)
is weakly contractible for all n ≥ 2.

(j) Show that, if X is local and G is torsion abelian, then
map∗(K(G,n), X) is weakly contractible for all n ≥ 1.

(k) Prove the localization theorem: Let L be localization with respect
to inverting the map BZpZ ∨M(Z[ 1

p ], 1)→ ∗. If Y is a simply con-

nected space, Hk(Y,Z/pZ) = 0 for all sufficiently large k, and π2Y
is torsion, then LY 〈n〉 = Ŷp for all n. Hint: Show that the compo-

sition Y 〈n〉 → Y → Ŷp is localization.

(6) The original proof of Corollary 2.10.5 is based on localization in the cat-
egory of simply connected p-complete spaces. In this category, we shall
say that X is p-complete local with respect to the map BZ/pZ→ ∗ if
X is simply connected, p-complete, and the evaluation at the basepoint
map(BZ/pZ, X)→ X is a weak equivalence. A map A→ B of simply
connected p-complete spaces is called a p-complete local equivalence
if map(B,X)→ map(A,X) is a weak equivalence for all p-complete
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local X. A p-complete localization of X is a p-complete local equiva-
lence ι : X → LX such that LX is p-complete local.

(a) Show that LX exists, satisfies the appropriate universal mapping
property, and is unique up to homotopy.

(b) If X is the p-completion of a finite type simply connected complex
Y with π2(Y ) torsion, show that the n-connected covering X〈n〉 →
X is a p-complete local equivalence for all n.

(c) If the above Y is also a finite complex, show that the p-complete
localization L(X〈n〉) is homotopy equivalent to X for all n.

2.11 Zabrodsky mixing: the Hilton–Roitberg examples

We begin by defining three families of Lie groups, the orthogonal groups
O(n), the unitary groups U(n), and the symplectic groups Sp(n).

Let F be any one of three fields, the real numbers R, the complex numbers
C, or the quaternions H and let d be the dimension of F as a real vector
space, that is, d = 1, 2 or 4. Regard Fn as an inner product space via

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn =

n∑
i=1

xiyi.

Now let O(Fn) = the group of all F -linear transformations T on Fn which
preserve the inner product, that is, 〈T (x), T (y)〉 = 〈x, y〉 for all x, yεFn.

Then O(Rn) = O(n), O(Cn) = U(n), and O(Hn) = Sp(n). Notice that
there is an embedding Sp(n) ⊆ U(2n).

If e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) is the standard basis of Fn over F ,
then the map pn : O(Fn)→ Snd−1 with pn(T ) = T (en) defines a fibration
sequence

O(Fn−1)→ O(Fn)
pn−→ Snd−1.

Note that O(F 1) = Sd−1.

Observe that, if d = 1 or d = 2, then the determinant defines a homomor-
phism to the group of units det : O(Fn)→ F ∗ and we let SO(Fn) = the
kernel of this map. For n ≥ 2 we have a fibration sequence

SO(Fn−1)→ SO(Fn)→ Snd−1.

Note the following:

O(n) = SO(n)× {±1}
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for all n ≥ 0, and

O(1) = {±1}, SO(2) = S1.

It is easy to see that any element T of SO(3) has 1 as an eigenvector
and that the 1-eigenspace has dimension 1 or 3. Let v be an element of
S2 ⊆ R3 and let 0 ≤ θ ≤ π represent an angle of positive rotation in the
plane perpendicular to v. This defines an element TεSO(3) and, if we regard
(v, θ) as an element of the ball D3(π) ⊆ R3 of radius π, then the assignment
(v, θ) 7→ T defines a homeomorphism RP 3 → SO(3).

Note that

SU(n)→ U(n)→ S1

has a section and

U(1) = S1, SU(2) = S3.

Note that

Sp(1) = S3.

We denote by O,SO,U, SU, Sp the stable groups obtained as the limit when
n goes to ∞. Note the embedding Sp ⊆ U.

Recall without proof [87]

Bott periodicity 2.11.1. There are homotopy equivalences

U → Ω2(U)

U/Sp → Ω2(O)

Sp→ Ω2(U/Sp)

O → Ω4(Sp)

Sp→ Ω4(O)

Thus the homotopy groups satisfy the relations

πk(U) ∼= πk+2(U)

πk(U/Sp) ∼= πk+2(O)

πk(Sp) ∼= πk+2(U/Sp)

πk(O) ∼= πk+4(Sp)

πk(Sp) ∼= πk+4(O),

the last two generating a periodicity mod 8.
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We have the following tables

k modulo 2 πk(U)

0 0
1 Z

k modulo 8 πk(O) πk(Sp)

0 Z/2Z 0
1 Z/2Z 0
2 0 0
3 Z Z
4 0 Z/2Z
5 0 Z/2Z
6 0 0
7 Z Z

The first table follows from the above fibrations and the fact that U(1) =
S1.

Except for π3(O) = Z and thus π7(Sp) = Z, the second table follows from
the above fibrations, the fact that Sp(1) = S3, and the fact that the uni-
versal cover of RP 3 is S3. To complete the second table, observe that
π3(O) ∼= π1(U/Sp) ∼= Z.

Consider the Lie group Sp(2) and the S3 bundle

S3 → Sp(2)→ S7.

It is classified by a map ω : S7 → BS3, that is, Sp(2) is the pullback of the
universal S3 bundle ES3 via the pullback diagram

Sp(2) → ES3

↓ ↓
S7 ω−→ BS3.

In a subsequent section we shall prove that

π7(BS3) = π6(S3) = Z/12Z.

For now we note that the fact that π6(Sp(2)) = π6(Sp) = 0 implies that
the classifying map ω is a generator of π7(BS3).

If α : S7 → BS3 is any map, we shall denote by Eα the S3 bundle over S7

which is the pullback via α. These examples were first studied by Hilton
and Roitberg [55, 53]. We shall apply the technique called Zabrodsky [142]
mixing to prove their result:

Hilton–Roitberg 2.11.2. If α = kω with k = 0,±1,±3,±4,±5, then Eα
is an H-space.
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Remark. Zabrodsky has shown that these are the only maps α for which
Eα is an H-space.

The technique called Zabrodsky mixing is essentially the following result.

Proposition 2.11.3. Suppose S1 and S2 are complementary sets of primes
and consider the homotopy pullback diagram

X
α1−→ XS1

↓ α2 ↓ β1

XS2

β2−→ X ⊗Q.

Then X is an H-space if and only if all of XS1
, XS2

, X ⊗Q are H-spaces
and both of β1, β2 are H-maps.

Proof: The forward implication is true since localizations are functors
which preserve products.

As for the reverse implication, we may assume that, in the diagram, the
maps β1, β2 are fibrations. If

µ1 : XS1
×XS1

→ XS1
, µ2 : XS2

×XS2

→ XS2
, µ : (X ⊗Q)× (X ⊗Q)→ (X ⊗Q)

are the multiplications, then we can alter the multiplications µ1, µ2 so that
β1, β2 become strict H-maps. Let X be the strict pullback via the maps
β1, β2. Then the three multiplications µ1, µ2, µ define a multiplication X ×
X → X. �

Recall the following fundamental result [90].

Hopf-Borel 2.11.4. If Y is an H-space with finite type homology, then
H∗(Y ;Q) is an exterior algebra on odd degree generators tensored with a
polynomial algebra on even degree generators.

For Y as above, it follows that Y ⊗Q has the homotopy type of a product
of Eilenberg–MacLane spaces.

This leads to the following improvement in Proposition 2.11.3.

If X ⊗Q has finite type, then, in the reverse implication of Proposition
2.11.2, the condition that β1, β2 be H-maps is automatic when X ⊗Q is
an H-space for which either of the the following two equivalent conditions
hold:

(a) Any homotopy self equivalence of X ⊗Q is an H-map.

(b) Any automorphism of the rational cohomology algebra H∗(X;Q) is
a map of Hopf algebras.
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Clearly this is satisfied for the spaces Eα ⊗Q ' (S3 ⊗Q)× (S7 ⊗Q).

The diagram

S3 =−→ S3 =−→ S3

↓ ↓ ↓
Ekα → Eα → ES3

↓ ↓ ↓
S7 k−→ S7 α−→ BS3

shows that: if the degree k map is a local self equivalence of S7, then
Ekα → Eα is a local equivalence.

Hence, if Eα is a local H-space, then so is Ekα. In particular, if Eα is an
H-space, then so is E−α.

The Hilton–Roitberg examples arise from mixing the H-space structures of
Sp(2) and S3 × S7 at localizations of complementary sets of primes.

For example, since Eω = Sp(2) is certainly an H-space and the degree 5 map
is a local equivalence away from 5, we have that E5ω is an H-space localized
away from 5. Localized at 5, ω and 5ω are trivial. Hence, (E5ω)(5) = S3

(5) ×
S7

(5) is an H-space. Therefore, E5ω is an H-space.

Localized away from 2, 4 is a unit and hence E4ω is an H-space. Localized
at 2, 4ω = 0 and E4ω is equivalent to the product S3 × S7 and hence is an
H-space. Therefore, E4ω is an H-space.

Similarly, E3ω is an H-space since 3 is a unit localized away from 3 and
3ω = 0 localized at 3.

This completes the proof of the existence of the Hilton–Roitberg examples.

Exercises

(1) Show that the unit tangent sphere bundle sequence

S3 = SO(4)/SO(3)→ SO(5)/SO(3)→ S4

has no section by considering the degree of the antipodal map on S4.

(2) Show that the connecting homomorphism for the fibration in Exercise
1,

∂ : π4(S4)→ π3(S3),

is nonzero. Conclude that π3(SO(5)/SO(3)) and π4(SO(5)/SO(3)) are
finite.
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(3) Even though there is a fibration sequence S3 → SU(3)→ S5, the
Zabrodsky mixing technique yields no new H-spaces when applied to
SU(3). Explain.

2.12 Loop structures on p-completions of spheres

One of the first applications of p-completions was in showing that certain
p-completions of spheres were loop spaces. This was a precursor to the work
of Dwyer–Wilkerson [38] which has resulted in the successful extension of
much of the theory of Lie groups to the homotopy theoretic setting of p-
compact groups. But in the beginning, we had the following result due to
Sullivan [128, 129]:

The Sullivan examples 2.12.1. Let p be an odd prime and let d be
a positive divisor of p− 1. Then there exists a space Bd such that the
p-completion Ŝ2d−1

p has the homotopy type of the loop space Ω(Bd). Fur-
thermore, these are the only spheres for which this is true.

Proof: If p is an odd prime, then the group of units of the p-adic integers Ẑp
is isomorphic to the cyclic group Z/(p− 1)Z. If π is the subgroup of order
d, then π acts as a group of homeomorphisms on the Eilenberg–MacLane
space K(Ẑp, 2). In general, this is a larger group of automorphisms than
the group of units {±1} which acts on K(Z, 2).

We use a standard construction to replace K(Ẑp, 2) by a space of the same
homotopy type on which π acts freely and properly discontinuously. The
group π acts freely and properly discontinuously on the contractible uni-
versal bundle Eπ and hence freely and properly discontinuously on the
product Y = Eπ ×K(Ẑp, 2) via g(e, x) = (eg−1, gx) for gεπ, (e, x) ε Y .

Form the orbit space Y/π under the action of π on Y. Since Y is simply

connected, the map Y → Y/π = Eπ ×π K(Ẑp, 2) is a covering space with

fundamental group π1(Y/π) = π. The orbit space Y/π = Eπ ×π K(Ẑp, 2)
is called the Borel construction.

We claim that the mod p cohomology of the orbit space can be identified
with the fixed points in the mod p cohomology of K(Ẑp, 2) under the action
of π.

The projection Y → Eπ induces a fibration sequence

K(Ẑp, 2)→ Eπ ×π K(Ẑp, 2)→ Bπ.

We need to describe the mod p cohomology Serre spectral sequence of this
fibration.
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The mod p cohomology Hs(K(Ẑp, 2);Z/pZ) = P s[u] where P [u] = P ∗[u]
denotes a polynomial algebra generated by an element u of degree 2. The
action of π on P [u] is given as follows. If λ is a generator of π, then

λ : K(Ẑp, 2)→ K(Ẑp, 2) induces the algebra isomorphism λ∗ : P [u]→ P [u]
determined by λ∗(u) = λu where λ is the image of λ in Z/pZ. Thus,

λ∗(uk) = λ
k
uk.

The mod p cohomology Serre spectral sequence has

Er,s2 = Hr(Bπ;Hs(K(Ẑp, 2))).

The local coefficients identify this with

Er,s2 = ExtrZ/pZ[π](Z/pZ, H
s(K(Ẑp, 2))) = H∗(π;P [u]).

It converges to the mod p cohomology

Hr+s(Eπ ×π K(Ẑp, 2);Z/pZ) = Hr+s(Y/π).

If ∆ = 1− λ and N = 1 + λ+ λ2 + · · ·+ λd−1 in the group algebra
Z/pZ[π]], then it is easily verified that there is a free Z/pZ[π] resolution

0← Z/pZ ε←− Z/pZ[π]
∆←− Z/pZ[π]

N←− Z/pZ[π]
∆←− Z/pZ[π]

N←− · · · ·

It follows that E∗,∗2 is the cohomology of the complex obtained by applying
the functor HomZ/pZ[π]( , P [u]), that is,

0→ P [u]
∆∗−→ P [u]

N ∗−→ P [u]
∆∗−→ P [u]

N ∗−→ · · · ·

Since d is relatively prime to p, every module over the group ring is injective,
in particular, P [u] is injective and the above functor is exact. In other
words,

Er,∗2 =

{
kernel ∆∗ : P ∗[u]→ P ∗[u] if r = 0

0 if r > 0.

Hence the spectral sequence collapses at E2 and

H∗(Eπ ×π K(Ẑp, 2);Z/pZ) = H∗(Y/π;Z/pZ) = kernel(∆∗)

= P [u]π = P [ud] =

a polynomial algebra generated by an element ud of degree 2d.

The space Bd that we seek is the p-completion of the result of killing the
fundamental group in the orbit space Y/π. More precisely, let M(π, 1) be a
Moore space with one nonzero integral homology group isomorphic to π in
dimension 1. The space Bd = X̂p is the p-completion of the mapping cone X
of a map M(π, 1)→ Y/π which is an isomorphism on fundamental groups.
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We see that X is simply connected and has the same mod p cohomology
ring as Y/π. The mod p cohomology and mod p homology of Bd both vanish
up to and including dimension 2d− 1. Since Bd is p-complete, it is in fact
connected up to dimension 2d− 1. Excluding the trivial case when d = 1,
we see that the loop space Ω(Bd) is simply connected.

The Serre spectral sequence of the path space fibration shows that

H∗(Ω(Bd);Z/pZ) = E[v] =

an exterior algebra where v is a generator of degree 2d− 1. Hence, the mod
p homology H∗(Ω(Bd);Z/pZ) = E[v∗] is an exterior algebra on the dual
generator v∗. Since the Hurewicz map gives an isomorphism π2d−1(Ω(Bd);
Z/pZ)→ H2d−1(Ω(Bd);Z/pZ) and since Z/pZ ∼= π2d−1(Ω(Bd); Z/pZ) ∼=
π2d−1(Ω(Bd))⊗ Z/pZ we can pick a map S2d−1 → Ω(Bd) which induces
an equivalence in mod p homology. Since Ω(Bd) is p-complete, the map
Ŝ2d−1
p → Ω(Bd) is a homotopy equivalence.

Let Bd be any classifying space for the p-completion Ŝ2d−1
p , that is, Ω(Bd) '

Ŝ2d−1
p . The mod p cohomology Serre spectral sequence shows that the mod
p cohomology H∗(Bd) must be a polynomial algebra on a generator x of
degree 2d. Thus, this space has torsion free cohomology, in particular, the
degree one Bockstein differential β is zero. Now we recall without proof
a strong form of the nonexistence of mod p Hopf invariant one. It is a
consequence of the Adem relations and of the result of Liulevicius [76]
and Shimada–Yamanoshita [121] which decomposes Steenrod operations
via secondary cohomology operations:

Liulevicius–Shimada–Yamanoshita vanishing theorem
2.12.2. Suppose p is an odd prime. If X is a space such that the
degree one Bockstein β and the first Steenrod operation P 1 of degree 2p− 2
both vanish in the mod p cohomology of X, then all Steenrod operations
vanish.

In particular, since P d(x) = xp 6= 0, it must be the case that P 1(x) 6= 0
which is only possible if the degree 2d of x divides 2p− 2. �

Exercises

(1) Even if Z/pZ is replaced by an arbitrary commutative ring, show that
the above free resolution of Z/pZ over the group ring Z/pZ[π] is exact.

(2) Let G be any finite group of order n and let k be a field of characteristic
relatively prime to n. If f : M → N be any map of k[G] modules which
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is linear over k, then the map f : M → N defined by

f(x) =
1

n

∑
g∈G

gfg−1(x)

is linear over the group ring k[G].
Furthermore, let h : N →M be a map which is linear over k[G]. Show
that, if f is a left (or right) inverse for h, then f is also a left (or right)
inverse for h.

(3) Under the hypotheses of Exercise 2, show that every k[G] module is
both projective and injective.

2.13 Serre’s C-theory and finite generation

In this section we recall Serre’s theory of classes of abelian groups. We do
this in order to prove the basic theorem that, for simply connected spaces,
homology groups being finitely generated in each dimension is equivalent
to homotopy groups being finitely generated in each dimension. The basic
definition is motivated by its compatibility with the Serre spectral sequence
for the homology of an (orientable) fibration.

Definition 2.13.1. A class of abelian groups C is called a Serre class if:
C contains 0, C is closed under isomorphism, subgroups, quotients, and
extensions. Thus

(a) if A is in C, then any group B isomorphic to A is in C.

(b) if A is in C and B ⊆ A is a subgroup, then B is in C.

(c) if A is in C and A→ B is an epimorphism, then B is in C.

(d) if 0→ A→ B → C → 0 is a short exact sequence of abelian groups
and A and C are in C, then B is in C.

If A is an abelian group in a Serre class C, then any subquotient B/C of
A is in C. Furthermore, if A is an abelian group with a finite filtration

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = A

then A is in C if and only if all filtration quotients Fk/Fk−1 are in C.

Definition 2.13.2. A Serre class C is called a Serre ring if A and B in C
implies that A⊗B and Tor(A,B) are in C. It is called a Serre ideal if this
is true if only one of A and B are required to be in C.

Definition 2.13.3. A Serre class C is called acyclic if A in C implies that
all the reduced integral homology groups H∗(K(A, 1)) are in C.
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For example, the following are acyclic Serre classes. The class of all finitely
generated abelian groups is an acyclic Serre ring. The class of all torsion
abelian groups is an acyclic Serre ideal. The class of all p-primary torsion
abelian groups is also an acyclic Serre ideal. The main result on Serre classes
is the following proposition.

Proposition 2.13.4. Let C be a Serre ring. Suppose F → E → B is an
orientable fibration sequence. Consider the reduced integral homology groups

H∗(F ), H∗(E), H∗(B).

If two out of three of them are in C then so is the third.

Proof: First of all recall the universal coefficient exact sequence

0→ H∗(B)⊗H∗(F )→ H∗(B;H∗(F ))→ Tor(H∗(B), H∗(F ))→ 0

and the fact that in the Serre spectral sequence E2
p,q = Hp(B;Hq(F )).

Suppose H∗(B) and H∗(F ) are in C. Then E2
p,q is in C for all (p, q) 6= (0, 0).

Hence, Erp,q is in C for all (p, q) 6= (0, 0) and for all 2 ≤ r ≤ ∞. Since E∞p,q
are the filtration quotients of Hp+q(E), it follows that H∗(E) is in C.

Now suppose that H∗(E) and H∗(B) are in C. We may assume that H∗(F )
is in C for ∗ ≤ q − 1. We know that E∞0,q is in C. The edge Er0,q is hit by
differentials coming from groups in C. Hence, all Er0,q must be in C. In

particular, E2
0,q = Hq(F ) is in C. By induction, H∗(F ) is in C.

Suppose that H∗(E) and H∗(F ) are in C. Now E∞p,0 is in C and the edge
Erp,0 is the source of differentials going to groups in C. A similar induction
shows that E2

p,0 = Hp(B) is in C for all p > 0. �

The proposition gives two immediate corollaries.

Corollary 2.13.5. Let C be a Serre ring. If X is a simply connected space,
then H∗(X) is in C if and only if H∗(ΩX) is in C.

Corollary 2.13.6. Let C be an acyclic Serre ring. Then an abelian group
π is in C if and only H∗(K(π, n)) is in C for all (or any) n ≥ 1.

Finally, we have the result below which applies to at least three Serre
classes, namely, finitely generated abelian groups, torsion abelian groups,
and p-primary torsion abelian groups:

Proposition 2.13.7. Let C be an acyclic Serre ring and suppose X is a
simply connected space. Then the homotopy groups π∗(X) are in C if and
only if the reduced integral homology groups H∗(X) are in C.



98 A general theory of localization

Proof: To see that homotopy in C implies reduced homology in C consider
the Postnikov system Xn with

X = lim
←
Xn

and use induction on the fibration sequences

Xn → Xn−1 → K(πn(X), n+ 1).

To see that reduced integral homology in C implies homotopy in C consider
the connected covers X〈n〉 with

X = X〈1〉

and use induction on the fibration sequences

X〈n+ 1〉 → X〈n〉 → K(πn(X), n).

�

Exercises

(1) Suppose C is a Serre ideal and F → E → B is an orientable fibration
sequence. Suppose H∗(F ) is in C. Show that H∗(E)→ H∗(B) is a Serre
isomorphism, that is, the kernel and cokernel of this map are both in
C.

(2) (a) Let A be a finitely generated module over a principal ideal domain.
Suppose that 0 = Hom(A,Z) = Ext(A,Z). Show that A = 0.

(b) Suppose f : X → Y is a map between spaces both with homology
finitely generated in each degree over a principal ideal domain.
Show that f induces a homology equivalence if and only if f induces
a cohomology equivalence.



3 Fibre extensions of squares and the
Peterson–Stein formula

In this chapter we discuss fibre extensions of squares, a notion which is
dual to the cofibration squares which appear in Lemma 1.5.1 and which
are used in the construction of the Bockstein long exact sequences for
homotopy groups with coefficients. A fibre extension is formed by start-
ing with a commutative square of maps, replacing the maps by fibrations,
and extending the square to a larger square where all the rows and columns
are fibration sequences.

Fibre extensions of squares are used in the study of homotopy pullbacks,
for example, to prove the fracture lemmas for localization. The main result
here is that the homotopy theoretic fibre of a map of homotopy pullbacks
is itself a homotopy pullback. For this purpose we need to study the higher
dimensional fibre extensions of cubes.

The treatment we give of fibre extensions of squares has the advantage
that it is efficient and self contained. It has the disadvantage that it does
not embed it as part of a larger theory of homotopy inverse limits, as
it could be if we were willing to develop that theory here. In this more
general context, the result concerning fibre extensions of squares would be
a trivial consequence of the commutativity of homotopy inverse limits over
a product category.

Fibre extensions of squares have appeared in the work of Cohen–Moore–
Neisendorfer and also in the work of Goodwillie on analytic functors. In
the first case, the defining cofibration sequence of a Moore space

S2n pr−→ S2n → P 2n+1 → S2n+1 pr−→ S2n+1

leads to the square of maps

P 2n+1(pr) → S2n+1

↓ ↓ pr
∗ → S2n+1

99
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whose fibre extension is the main object of study in the proof of the odd
primary exponent theorem for the homotopy groups of the odd dimensional
spheres.

In the context of this chapter it is natural to discuss homotopy theoretic
fibres and the Peterson–Stein formula [105, 50], the latter being referred
to by H. Cartan as the compatibility with the connecting homomorphism.
In the next chapter, we shall use the Peterson–Stein formula to prove that
π6(S3) = Z/12Z.

Finally, we recall some results of J. H. C. Whitehead [135] and J. W.
Milnor[89] which assert that the category of spaces with the homotopy
type of CW complexes is closed under homotopy pushouts and homotopy
pullbacks. In particular, loop spaces of CW complexes have the homotopy
type of CW complexes.

3.1 Homotopy theoretic fibres

Recall that a cofibration is an inclusion A ⊆ X which satisfies the homotopy
extension property: for all spaces Y we can complete by a continuous map
F all diagrams

X × I F−→ Y
↑ i ↗

X × 0 ∪A× I .

Given the cofibrations, fibrations are defined to be continuous maps p :
E → B with the homotopy lifting property: for all cofibrations A ⊆ X we
can complete by a continuous map G all diagrams

A× I ∪X × 0 −→ E
↓ ↗ G ↓ p

X × I −→ B.

Given a continuous map f : X → Y , there are several natural ways to
replace f by a fibration. For example, let Ef = {(x, ω)εX × Y I |f(x) =
ω(1)}. Then p : Ef → Y with p(x, ω) = ω(1) defines a fibration. Further-
more, if ωc is the constant path, ωc(t) = c for all tεI, then ι : X → Ef
defined by ι(x) = (x, ωfx) is a homotopy equivalence and we have a com-
mutative diagram

X
ι−→ Ef
↘ f ↓ p

Y
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Replacing f : X → Y by p : Ef → Y is what we shall mean by replacing a
map by a fibration. Note that we have factored f into a composite p ◦ ι :
X → Ef → Y with p a fibration and ι both a cofibration and homotopy
equivalence. The existence of such a factorization is one of Quillen’s axioms
for a model category.

Definition 3.1.1. The homotopy theoretic fibre of f is the fibre Ff of the
map p, that is, Ff = {(x, ω)εX × Y I |f(x) = ω(1), ω(0) = y0} where y0 is
the basepoint of Y .

Exercises

(1) Suppose a continuous map f : X → Y is factored into p ◦ ι : X → E →
Y where p is a fibration and ι is both a cofibration and homotopy equiv-
alence. If F is the fibre of p show that there is a homotopy equivalence
Ff → F. In other words, the homotopy theoretic fibre of a map is well
defined up to homotopy equivalence.

(2) Let G be a not necessarily associative H-space and let k : G→ G, with
k(x) = xk, be any k−th power map.

(a) If G{k} = Fk is the homotopy theoretic fibre of k, show that there
are homotopy equivalences

Ω(G{k}) ' (ΩG){k} ' map∗(P
2(k), G).

(b) Show that π∗+1(G{k}) ∼= π∗+2(G;Z/kZ).

3.2 Fibre extensions of squares

Suppose we start with a homotopy commutative square

X
g2−→ Y

↓ g1 ↓ f2

Z f1−→ D.

If we replace f1 and f2 by fibrations p1 and p2, we can alter g1 by a
homotopy to make the diagram strictly commutative:

X
g2−→ B

↓ g1 ↓ p2

C
p1−→ D.
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Having done this, let

E
h2−→ B

↓ h1 ↓ p2

C
p1−→ D.

be the pullback diagram of B and C over D, with E = {(b, c) εB ×
C|p2(b) = p1(c)}. Then we have a map g : X → E which we can replace
by a fibration p : A→ E. We get a strictly commutative diagram

A
g2−→ B

↓ g1 ↓ p2

C
p1−→ D

with g1 = h1 ◦ p : A→ E → C,and g2 = h2 ◦ p : A→ E → B. Now all
seven maps p, h1, h2, g1, g2, p1, p2 are fibrations.

Definition 3.2.1. A strictly commutative square in which all of the above
seven maps are fibrations (including the map from the upper right corner
to the pullback) is called a totally fibred square.

We have just shown the following proposition.

Proposition 3.2.2. Every homotopy commutative square is homotopy
equivalent to a totally fibred square. Even better, if the square is strictly
commutative to start with, then there is a map of this square to a totally
fibred square which is a homotopy equivalence on each vertex.

Suppose we have a totally fibred square

A → B
↓ ↓
C → D

with pullback E of B and C over D. The fibre extension of this square is
the larger commutative diagram

H → F2 → F1

↓ ↓ ↓
G2 → A → B
↓ ↓ ↓
G1 → C → D

where

F1 → B → D,
F2 → A → C,
G1 → C → D,
G2 → A → B
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are all fibration sequences and

H → A→ E

is also a fibration sequence. The main result about totally fibred squares is

Proposition 3.2.3. H → F2 → F1 and H → G2 → G1 are both fibration
sequences.

Proof: We need to check that F2 → F1 is a fibration with fibre H. The case
G2 → G1 is identical.

First we check the homotopy lifting property for a cofibration X ⊆ Y . Sup-
pose we are given a homotopy ht : Y → F1 and compatible lifts to a homo-
topy kt : X → F2 and a lift of one end of ht to a map h0 : Y → F2. Since
ht defines a homotopy in B, together with the constant basepoint homo-
topy in C, we get a homotopy Ht : Y → E, where E is the pullback. Note
that h0 and kt define maps H0 and Kt which are partial lifts of Ht up to
A. Since A→ E is a fibration, we can extend these partial lifts to a lift of
Ht : Y → E up to Ht : Y → A. Clearly, Ht defines a homotopy ht : Y → F2

which lifts ht and extends h0 and kt.

Thus F2 → F1 sastisfies the homotopy lifting property and is a fibration.

Finally, the mapping properties of the pullback show that the fibre of F2 →
F1 is H. �

If the totally fibred square is itself a pullback, then the maps F2 → F1 and
G2 → G1 are homeomorphisms or, equivalently, H is a point. This leads to
the following definition.

Definition 3.2.4. The totally fibred square is a homotopy pullback if any
of the following four equivalent conditions are satisfied:

(1) F2 → F1 is a homotopy equivalence.

(2) H is contractible.

(3) G2 → G1 is a homotopy equivalence.

(4) The map A→ E from the upper right corner to the pullback is a
homotopy equivalence.

More generally, a strictly commutative square is called a homotopy pullback
if there is a map Θ from it to a totally fibred homotopy pullback such that
Θ is a homotopy equivalence on each vertex. It is easy to see that:

Lemma 3.2.5. The pullback of a fibration gives a homotopy pullback
square.
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The main theorem about homotopy pullbacks will be proved in the last
section of this chapter and is as follows:

Proposition 3.2.6. If Θ is a map between strictly commutative homotopy
pullback squares, then the homotopy theoretic fibres of Θ on the vertices
form a homotopy pullback square. In other words, the homotopy theoretic
fibre of a map between homotopy pullbacks is itself a homotopy pullback.

Exercises

(1) Prove Lemma 3.2.5.

(2) Given maps f : X → Y and g : Y → Z, show that there is a fibration
sequence of homotopy theoretic fibres

Ff → Fgf → Fg.

3.3 The Peterson–Stein formula

In this section we prove a geometric version of a formula due to Peterson
and Stein [105]. This geometric version has been advocated by Harper [50],
who stressed the adjoint relationship based on special cases known to Toda
and independently to Cartan. The proof becomes very easy if we prepare
by exhibiting alternate identifications of homotopy theoretic fibres. The
demonstrations of these alternatives use Proposition 3.2.6 above.

First, a homotopy theoretic fibre may also be identified as a pullback of a
path fibration. Given a map f : X → Y , let Ff → Ef → Y be the fibration
sequence which defines the homotopy theoretic fibre Ff . If p : PY → Y
with p(ω) = ω(1) is the path space fibration, then we define Wf as the
pullback

Wf → PY
↓ ↓
X → Y.

Hence we have a map Θ of pullback squares

Ff → ∗ Wf → PY

↓ ↓ Θ←− ↓ ↓
Ef → Y X → Y

and the homotopy theoretic fibre of Θ is a homotopy pullback square with
three contractible corners. Hence, the fourth corner, the homotopy theoretic
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fibre of Wf → Ff , is contractible. It follows that Wf → Ff is a homotopy
equivalence.

Now suppose that F
ι−→ E

p−→ B is a fibration sequence. We are going to
show that there is a homotopy equivalence Wι → ΩB. In other words, the
homotopy theoretic fibre of ι : F → E is homotopy equivalent to the loop
space ΩB. The map p defines a map Ψ of pullback squares

ΩB → PB Wι → PE

↓ ↓ Ψ←− ↓ ↓
∗ → B F

ι−→ E.

The homotopy theoretic fibre of Ψ is the homotopy pullback square

G → PF
↓ ↓
F

=−→ F

with G being the homotopy theoretic fibre of Ψ : Wι → ΩB. Since G is
contractible, Ψ : Wι → ΩB is a homotopy equivalence.

Now suppose that A ⊆ X is a cofibration and F
ι−→ E

p−→ B is a fibration
sequence. The Peterson–Stein formula relates the cofibration sequence of
A ⊆ X to the fibration sequence of E → B.

Peterson–Stein formula 3.3.1. Given compatible maps H : A→Wι and
G : X → F , let h = Ψ ◦H : A→Wι → ΩB. Then we have a commutative
diagram

A → X → X ∪ CA → X ∪ CA ∪ CX
↓ H ↓ G ↓ K ↓ L
Wι → F

ι−→ E
p−→ B

↓ Ψ
ΩB

Furthermore, L = ∗ on CX and L factors as X ∪ CA ∪ CX '−→ ΣA
h−→ B

where h is the adjoint of h.

Proof: The maps H and G constitute a set of compatible maps H1 : A→
F , H2 : A→ PE, G : X → F . The adjoint of H2 defines an extension of
ι ◦G to K : X ∪ CA→ E. Clearly p ◦K is trivial on X and it extends to
L : X ∪ CA ∪ CX by making it trivial on CX. Finally, since h is defined
by projecting H2 from Wi to ΩB and since h is defined by projecting the
adjoint of H2 to B, it is clear that h is the adjoint of h. �

Exercise
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(1) Let F
ι−→ E

p−→ B be a fibration and let Wf be the above pullback con-
struction of the homotopy theoretic fibre of f : X → Y . Show that we
have a commutative diagram

W∂ → Wι
∂−→ F

ι−→ E
p−→ B

↓ ↓
ΩE

Ωp−→ ΩB

in which the vertical maps are homotopy equivalences.

3.4 Totally fibred cubes

In this section we generalize the concept of totally fibred squares to higher
dimensions. Our reason for doing this is to use the higher dimensions,
especially three, to prove things about squares.

Let C(n, k) be the category with objects {(a1, a2, . . . , an)|0 ≤ ai ≤ k, aiεZ}
and exactly one morphism denoted (a1, a2, . . . , ak) ≥ (b1, b2, . . . , bk) when-
ever ai ≥ bi for all 1 ≤ i ≤ n.

Definition 3.4.1. An n-dimensional cube of sidelength k is a covariant
functor F from C(n, k) to the category of pointed topological spaces. The
spaces F (a1, a2, . . . , an) are called the vertices of the cube. Cubes of side-
length 1 are simply called cubes.

For simplicity of notation, we will often shuffle the coordinates in a
cube so that they are in descending order. For example, we write
F (1, . . . , 1, 0, . . . , 0) to represent F (1, 0, 1, 0, . . . , 1, 0). Properly understood
there is no loss of generality.

Given a string (1, . . . , 1), we shall use (∗, . . . , ∗) to represent all points with
at least one 0 = ∗ < 1. Then we have maps F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→
F (∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0) and thus a map to the inverse limit

F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→ lim
←
F (∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0).

Definition 3.4.2. An n-dimensional cube of sidelength 1 is a totally fibred
cube if all maps

F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→ lim
←
F (∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0)

are fibrations. Of course, this is understood to be true for all shufflings of
0’s and 1’s.

This generalizes the concept of totally fibred square and we have the fol-
lowing useful lemma:
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Lemma 3.4.3. If all maps F (1, . . . , 1, 0, . . . 0)→ lim← F (∗, . . . , ∗, 0, . . . , 0)
are fibrations for all shufflings of 0’s and 1’s, then the cube is totally fibred.

Proof: Consider the map F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→ lim← F (∗, . . . , ∗, 1,
. . . , 1, 0, . . . 0). Let b the length of the second string of 1’s. We can
assume that we have a fibration whenever b is decreased. We need to
show that F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→ lim← F (∗, . . . , ∗, 1, . . . , 1, 0, . . . 0)
is a fibration. As usual we start with a homotopy in the
base and a partial lift to the total space. Clearly this gives a
homotopy in lim← F (∗, . . . , ∗, 0, . . . , 1, 0, . . . 0) and a partial lift to
F (1, . . . , 1, 0, . . . , 1, 0, . . . 0). Since b has decreased by 1, we can lift
the homotopy to F (1, . . . , 1, 0, . . . , 1, 0, . . . , 0). Now we get a homotopy
in lim← F (∗, . . . , ∗, ∗, . . . , 1, 0, . . . , 0). Since b is again decreased by 1
here, we can lift this homotopy to F (1, . . . , 1, 1, . . . , 1, 0, . . . , 0). Thus,
F (1, . . . , 1, 1, . . . , 1, 0, . . . 0)→ lim← F (∗, . . . , ∗, 1, . . . , 1, 0, . . . 0) is a fibra-
tion. �

Proposition 3.4.4. If F is any cube there is a totally fibred cube G and a
natural transformation Θ : F → G such that Θ is a homotopy equivalence
on all vertices.

Proof: We replace a map f : X → Y by a fibration via

X
'−→ Ef
f ↘ ↓ p

Y.

Note that X maps to its replacement Ef and that Y is unchanged.

First, replace all maps F (1, 0, . . . , 0)→ F (0, 0, . . . , 0) by fibrations. Hav-
ing replaced all maps F (1, . . . , 1, 0, . . . , 0)→ lim← F (∗, . . . , ∗, 0, . . . 0) by
fibrations for all shufflings of 0’s and 1’s, then replace all maps
F (1, . . . , 1, 1, . . . , 0)→ lim← F (∗, . . . , ∗, ∗, . . . 0) by fibrations for all shuf-
flings.

Lemma 3.4.3 then shows that the final cube G is totally fibred. �

Remark. If F and G are n-dimensional cubes and Θ : F → G is a natural
transformation, then this clearly defines a new cube H of dimension n+ 1.
If G is a totally fibred cube, then a slight variation of the above proof
shows that the identity natural transformation of G extends to a natural
transformation Θ : H → K where K is totally fibred and Θ is a homotopy
equivalence on the vertices.

Definition 3.4.5. If F is an n-dimensional cube of sidelength 1, the fibre
extension of F is the extension of F to an n-dimensional cube of sidelength
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2, also denoted F , and defined by

F (2, . . . , 2, a1, . . . , ak) = fibre(F (1, . . . , 1, a1, . . . , ak)

→ lim
←
F (∗, . . . , ∗, a1, . . . , ak))

where 0 ≤ ai ≤ 1. Of course this definition represents all shufflings of
(2, . . . , 2, a1, . . . , ak).

A section of a cube is defined by choosing a subset of coordinates to be
constants, that is, up to shuffling, restrict to F (a1, . . . , ar, c1, . . . , cs) where
(c1, . . . , cs) are constants.

Proposition 3.4.6. A section of a fibre extension is a fibre extension of a
section.

Proof: Suppose we have a section of a fibre extension

F (a1, . . . , ar, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

with the ai variable. We must show that each

F (1, . . . , 1, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

→ lim
←
F (∗, . . . , ∗, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0),

where ∗, . . . ∗ indicates that at least one coordinate ∗ is < 1, is a fibration
with fibre

F (2, . . . , 2, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0).

Suppose we have a homotopy H in

lim
←
F (∗, . . . , ∗, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

with a partial lift K to

F (1, . . . , 1, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0).

So H is a homotopy in

lim
←
F (∗, . . . , ∗, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)

which projects to the basepoint in

lim
←

lim
←
F (∗, . . . , ∗, 0, . . . , 0, ∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0),

where each group contains a coordinate ∗ < 1, and K is a partial lift to

F (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)

which projects to the basepoint in

lim
←
F (1, . . . , 1, 0, . . . , 0, ∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0).
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First we lift H to the basepoint homotopy in

lim
←
F (1, . . . , 1, 0, . . . , 0, ∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0)

and get a homotopy in

lim
←
F (∗, . . . , ∗, 0, . . . , 0, ∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0)

where only one coordinate ∗ is required to be < 1. Since

F (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)

→ lim
←
F (∗, . . . , ∗, 0, . . . , 0, ∗, . . . , ∗, 1, . . . , 1, 0, . . . , 0)

is a fibration, we can lift this homotopy to an extension of K in

F (1, . . . , 1, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

⊆ F (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0).

Thus,

F (1, . . . , 1, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

→ lim
←
F (∗, . . . , ∗, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0)

is a fibration. It is clear that its fibre is

F (2, . . . , 2, 0, . . . , 0, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0). �

In a fibre extension of a square all rows and columns are fibration sequences.
This fact is generalized by the following immediate consequence of Propo-
sition 3.4.6:

Corollary 3.4.7. In a fibre extension, all one-dimensional sections are
fibration sequences.

Definition 3.4.8. Let F be a totally fibred n-dimensional cube of side
length 1. It is a homotopy pullback if its fibre extension has F (2, . . . , 2)
contractible.

More generally, an arbitrary cube F is called a homotopy pullback if there
is a natural transformation Θ : F → G where G is a totally fibred homotopy
pullback. The following is an immediate consequence of Corollary 3.4.7:

Proposition 3.4.9. Suppose Θ : F → G is a natural transformation of
homotopy pullbacks. If H is the cube formed from the homotopy theoretic
fibres of Θ on the vertices, then H is a homotopy pullback.

Exercises
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(1) Consider the commutative array ∆ of maps

A → B ← ∗
↓ ↓ ↓
C → D ← ∗
↑ ↑ ↑
∗ → ∗ ← ∗.

Let V represent taking the homotopy pullback of the vertical maps and
let H represent taking the homotopy pullback of the horizontal maps.
Show that V (H(∆)) = H(V (∆)).

(2) Extend Exercise 1 to three dimensions.

3.5 Spaces of the homotopy type of a CW complex

The following theorem of J. H. C. Whitehead [135] is one of the reasons why
CW complexes are useful in homotopy theory.

Theorem 3.5.1. Let f : X → Y be a map between connected CW com-
plexes. If f induces an isomorphism on all homotopy groups, then f is a
homotopy equivalence.

Hence, it is important to know simple theorems which imply that the cat-
egory of CW complexes is closed under various operations. For example,
if X and Y are CW complexes, then so is the bouquet X ∨ Y and, if one
takes the product in the category of compactly generated spaces, then so
is the product X × Y.

Other facts concerning closure follow from the following theorem which is
also due to J. H. C. Whitehead:

Theorem 3.5.2. If f : X → Y is a map between CW complexes, then f
is homotopic to a skeletal map g : X → Y , that is, g(X(n)) ⊆ Y (n) for all
n.

For example, suppose we have two maps f : A→ X and h : A→ Y . Con-
sider the mapping torus Tf,h =

X ∪ (A× I) ∪ Y

with identifications (a, 0) = f(a) and (a, 1) = h(a). Then the homotopy

pushout of X
f←− A g−→ Y is Tf,h We have:

Proposition 3.5.3. If f, g : A→ X and h, k : A→ Y are homotopic maps
then there is a homotopy equivalence Tf,h ' Tg,k. [136, 87]
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Thus, Theorem 3.5.2 and Proposition 3.5.3 imply that homotopy pushouts
of maps of CW complexes have the homotopy type of CW complexes.
In particular, this applies to the mapping cone of a map between CW
complexes.

Recall that an an n-ad is an ordered n-tuple of spaces X =
(X;A1, . . . , An−1) where all the Ai are closed subspaces of X. If X is a
CW complex and all the Ai are subcomplexes, then it is called a CW n-ad.
Maps of n-ads f : X → Y are required to preserve subspaces and the set
of all such f forms a topological space map(X,Y ). There is the following
theorem of J. W. Milnor [89]:

Theorem 3.5.4. If C is a compact n-ad and X is a CW n-ad, then the
mapping space map(C,X) has the homotopy type of a CW complex.

For example, we get the following:

(a) If X is a CW complex with basepoint x0, then the space of loops
Ω(X,x0) = map((I; 0, 1), (X,x0, x0)) has the homotopy type of a
CW complex.

(b) If (X;A,B) is a CW 3-ad, then the homotopy pullback of A→
X ← B is the mapping space map((I; 0, 1), (X;A,B)) and has the
homotopy type of a CW complex. In particular, if B is a point, it
follows that the homotopy theoretic fibre of the inclusion A ⊆ X has
the homotopy type of a CW complex.

Exercises

(1) Prove Proposition 3.5.3.

(2) Check that map((I; 0, 1), (X;A,B)) is the homotopy pullback of the
inclusions.



4 Hilton–Hopf invariants and the EHP sequence

In this chapter we introduce the Bott–Samelson theorem and explore the
consequences of this result on the homology of loop suspensions. Among
the consequences are the James construction [66] and the Hilton–Milnor
theorem. The James construction and the Hilton–Milnor theorem both lead
to Hopf invariants and to the EHP sequence.

The Hilton–Hopf invariants are particularly well suited to study the dis-
tributive properties of compositions and this is why we use them in our
proof of the 2-primary exponent theorem of James [67].

We prove the following theorem of James: 4n annihilates the 2-primary
component of all the homotopy groups of S2n+1. The exponent result which
we prove was first formulated in a geometric form involving loop spaces by
John Moore in a graduate course at Princeton. A necessary lemma on
the vanishing of twice the second Hilton–Hopf invariant was supplied by
Michael Barratt.

The result we prove is not the best possible 2-primary exponent. A con-
siderable improvement was made by Paul Selick but there is no reason to
believe that his result is the best possible. The Barratt–Mahowald conjec-
ture for the best possible 2-primary exponent is: The 2-primary component
of all the homotopy groups of S2n+1 is annihilated by 2n+ε where

ε =

{
0 if n = 0 or n = 3 mod 4

1 if n = 1 or n = 2 mod 4.

It remains unproved.

We do a few EHP sequence computations related to the three-dimensional
sphere in order to show that it does possess at least one homotopy class
of order 4. In order to do this, we look at the 3-connected cover of the
three-dimensional sphere and compute its homology and a little bit of its
homotopy including the first nontrivial 2-primary element η3 and the first
nontrivial odd primary element α1.

112
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We prove a lemma which shows one way in which η produces elements of
order 4. This is related to the fact that homotopy groups with coefficients
mod 2 have exponent 4.

4.1 The Bott–Samelson theorem

The fact that the suspension of a space is the union of two contractible
cones implies that fibrations over a suspension have a simple structure.
Since the fibration is trivial over each of the cones, it can be described as
the union of two trivial bundles with an identification on the intersection.

In this section we use this to determine the homology of the loop space ΩΣX
when X is connected and the homology H∗(X) is free over the coefficient
ring.

Define the suspension map Σ = ΣX : X → ΩΣX by Σ(x)(t) = 〈x, t〉 for all
xεX and 0 ≤ t ≤ 1. This is just the adjoint of the identity map 1ΣX : ΣX →
ΣX. The other adjoint is the evaluation map e = eX : ΣΩX → X with
e(〈t, ω〉) = ω(t). The space ΩΣX has an important universal multiplicative
propery:

Definition 4.1.1. If f : X → ΩY is a continuous map, then there is
a unique loop map f : ΩΣX → ΩY such that f ◦ ΣX = f. The map is
f = Ω(eY ) ◦ ΩΣf : ΩΣX → ΩΣΩY → ΩY and is called the multipicative
extension of f .

Note that, if X
f−→ Y

g−→ ΩZ are maps, then g ◦ f = g ◦ ΩΣ(f) : ΩΣ(X)→
ΩΣ(Y )→ ΩZ.

The Bott–Samelson theorem below says that Definition 4.1.1 is consistent
with an analogous universal property of the Pontrjagin ring H∗(ΩΣX), at
least with field coefficients.

If µ : ΩΣX × ΩΣX → ΩΣX is the multiplication of loops, µ(ω, γ) = ω ∗ γ,

(ω ∗ γ)(t) =

{
ω(2t) if 0 ≤ t ≤ 1

2

γ(2t− 1) if 1
2 ≤ t ≤ 1,

define the clutching function ν : ΩΣX ×X → ΩΣX ×X by ν(ω, x) = (ω ∗
Σ(x), x).
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Write ΣX = C−X ∪ C+X with

C−X =

{
〈x, t〉|xεX, 0 ≤ t ≤ 1

2

}
,

C+X =

{
〈x, t〉|xεX, 1

2
≤ t ≤ 1

}
,

and

C−X ∩ C+X = X × 1

2
= X.

Form the quotient space E = (ΩΣX × C−X) ∪ (ΩΣX × C+X) with iden-
tification of the boundary of the first product to the boundary of the sec-
ond product given by the clutching function ν : ΩΣX ×X → ΩΣX ×X.
In other words, E is defined by a pushout diagram

ΩΣX ×X ν−→ ΩΣX × C+X
↓ 1× ι ↓

ΩΣX × C−X → E.

We note that there is a map τ : E → ΣX well defined by τ(ω, α) = α. We
claim that this is model for the path space fibration π : PΣX → X with
π(ω) = ω(1). More precisely, all we need is

Proposition 4.1.2. There is a homotopy equivalence PΣX → E, that is,
E is contractible.

Proof: Write PΣX = E− ∪ E+ where E− = π−1(C−X), E+ = π−1(C+X),
and thus E− ∩ E+ = π−1(C−X ∩ C+X).

There is a pushout diagram

E− ∩ E+ → E+

↓ ↓
E− → PΣX.

If α = 〈x, t〉εC−X, let γ−(α) be the path in C−X which goes linearly from
the basepoint 〈x, 0〉 to 〈x, t〉. Similarly, if α = 〈x, t〉εC+X, let γ+(α) be the
path in C+X which goes linearly from the basepoint 〈x, 1〉 to 〈x, t〉. Note
that, if αε(C−X ∩ C+X) = X, then γ−(x) ∗ γ−1

+ (x) ' Σ(x).
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We have equivalences

ΩΣX × C−X
ψ−−→ E−, ψ−(ω, α) = ω ∗ (γ−(α))

E−
φ−→ ΩΣX × C−X, φ−(ω) = (ω ∗ (γ−(ω(1))−1), ω(1))

ΩΣX × C+X
ψ+−−→ E+, ψ+(ω, α) = ω ∗ (γ+(α))

E+
φ+−−→ ΩΣX × C+X, φ+(ω) = (ω ∗ (γ+(ω(1))−1), ω(1))

with fibre homotopies

φ− ◦ ψ− ' 1, ψ− ◦ φ− ' 1, φ+ ◦ ψ+ ' 1, ψ+ ◦ φ+ ' 1.

We have a homotopy commutative diagram

E− ← E− ∩ E+ → E+

↓ φ− ↓ φ− ↓ φ+

ΩΣX × C−X
1×ι←−− ΩΣX ×X ν−→ ΩΣX × C+X.

Since the maps in the top row are cofibrations we can alter φ+ by a homo-
topy and make the diagram strictly commutative. Hence we get a map of
pushouts PΣX → E. The Seifert–van Kampen theorem and the Mayer–
Vietoris sequence show that this map is an isomorphism on fundamental
groups and homology. It follows that E is contractible. �

Let R be a commutative ring and let V be an R-module. The tensor algebra

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · =

the free associative R-algebra generated by the module V . The tensor alge-
bra is characterized by the universal mapping property:

Given an associative algebra A and a linear map f : V → A, there is a
unique extension of f to an algebra homomorphism f : T (V )→ A.

Bott–Samelson theorem 4.1.3[13]. Let the coefficient ring R be a prin-
cipal ideal domain and let X be a connected topological space such that
H∗(X) is a free R-module, then the map Σ∗ : H∗(X)→ H∗(ΩΣX) induces
an algebra isomorphism T (H∗(X))→ H∗(ΩΣX).

Proof: A simple induction proves the following.

Lemma 4.1.4. Let A be a connected associative algebra and let V be a con-
nected module which is free. Suppose there is a linear map ι : V → A. Then
the extension ι : T (V )→ A is an isomorphism if and only if the composition

A⊗ V 1⊗ι−−→ A⊗A µ−→ A is an isomorphism (where µ is the multiplication).
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Since E ' PΣX is contractible, the Mayer–Vietoris sequence of the
pushout diagram

ΩΣX ×X ν−→ ΩΣX × C+X
↓ ι× 1 ↓

ΩΣX × C−X → E

is short exact as follows:

0 → H∗(ΩΣX)⊗H∗(X)

∆−→ H∗(ΩΣX)⊗H∗(C−X)⊕H∗(ΩΣX)⊗H∗(C+X)→ R→ 0

and if ε : H∗(X)→ R is the augmentation, then

∆(β ⊗ α) = (β ⊗ ε(α), βα⊗ 1).

It is immediate that the map

H∗(ΩΣX)⊗H∗(X)→ H∗(ΩΣX)

is an isomorphism and Lemma 4.1.4 finishes the proof. �

Corollary 4.1.5. Let X be a connected space with H∗(X) a free R-
module. There is a Hopf algebra isomorphism T (H∗(X))→ H∗(ΩΣX) with
the comultiplication of the tensor algebra determined on generators by the
comultiplication of H∗(X).

The following two cases will be useful.

Let µn be a generator of Hn(Sn). With any principal ideal domain R as
coefficient ring, there is an isomorphism of primitively generated Hopf alge-
bras T (µn)→ H∗(ΩS

n+1).

On the other hand, let p be a prime, 1 ≤ s ≤ r, and let R = Z/psZ be
the coefficient ring. For n ≥ 2, note that H∗(P

n(pr)) is a free R-module
with generators νn and µn−1 of degrees n and n− 1. Thus there is an
isomorphism of algebras

T (νn, µn−1)→ H∗(ΩP
n+1(pr)).

If p is odd or n > 2 , both generators are primitive. If n = 2, p = 2, r = s =
1, then the comultiplication is given by

∆∗(ν2) = ν2 ⊗ 1 + 1⊗ ν2 + µ1 ⊗ µ1.

Exercises

(1) Prove Lemma 4.1.4.

(2) Prove that the maps ΣX : X → ΩΣX and eX : ΣΩX → X satisfy:



4.2 The James construction 117

(a) ΣX and eX are natural transformations.

(b) Ω(eX) ◦ ΣΩX = 1ΩX and eΣx ◦ Σ(ΣX) = 1ΣX .

(c) Verify the universal property of the multiplicative extension in def-
inition 4.1.1.

4.2 The James construction

Let X be a space with a nondegenerate basepoint x0. The James con-
struction [66] provides a homotopy equivalent model for the loops on a
suspension. It is the free associative topological monoid generated by the
points of X with the single relation that the basepoint x0 is the unit. More
precisely, the James construction J(X) is the direct limit of subspaces

J1(X) ⊆ J2(X) ⊆ J3(X) ⊆ · · · ⊆ Jn(X) ⊆ Jn+1 ⊆ · · · ,

where Jn(X) consists of the words of length ≤ n and the topology is defined
by the quotient map πn : X × · · · ×X → Jn(X).

Thus J1(X) = X, and, if Wn(X) ⊆ X × · · · ×X is the subset of the n-
fold product with at least one coordinate equal to the basepoint, there are
pushout diagrams

Wn(X)
πn−→ Jn−1(X)

↓⊆ ↓⊆
X × · · · ×X π−→ Jn(X)

and, if X has a nondegenerate basepoint, there are cofibration sequences

Jn−1(X)→ Jn(X)→ X ∧ · · · ∧X.

Universal property 4.2.1. Let M is a strictly associative topologi-
cal monoid with the unit as the basepoint and let f : X →M be a
continuous basepoint preserving map. Then f has a unique extension
to a continuous homomorphism f : J(X)→M. Thus, f(x1x2 . . . xn) =
f(x1)f(x2) . . . f(xn).

For example, for any pointed space Y , the inclusion is a homotopy equiv-
alence ΩY → ΩµY from the space of loops in Y parametrized by the unit
interval to the Moore space of loops of variable length in Y . The Moore
loops ΩµY form a strictly associative monoid and hence the suspension map
Σ : X → ΩµΣX has a unique multiplicative extension Σ : J(X)→ ΩµΣX.

Proposition 4.2.2. If X is a space with a nondegenerate basepoint, then
the map f : J(X)→ ΩµΣX is a weak equivalence.
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Remark. If X is a CW complex, then J(X) is a CW complex and ΩµΣX
has the homotopy type of a CW complex. Hence the above map is a homo-
topy equivalence.

Proof: Since both sides are H-spaces, f is a weak homotopy equivalence if
it is an integral homology equivalence. Hence it is sufficient to check that f
is both a rational homology equivalence and a mod p homology equivalence
for all primes p.

By the Bott–Samelson theorem, it is sufficient to check that X → J(X)
induces an algebra isomorphism T (H∗(X))→ H∗(J(X)).

This is proved inductively. We claim that there is an isomorphism from
tensors of length n,

Tn(H∗(X))→ H∗(Jn(X))

to the homology of the n−th filtration. For this, we need the following
lemma.

Lemma 4.2.3. For connected X and Y , there is a weak homotopy equiv-
alence

Σ(X × Y )→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Proof: The three maps

Σ(X × Y )→ ΣX, Σ(X × Y )→ ΣY, Σ(X × Y )→ Σ(X ∧ Y )

can be added using the co-H structure to get a homology equivalence

Σ(X × Y )→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Since the spaces involved are simply connected, this is a weak equivalence.
�

It follows that the composition X × · · · ×X → Jn(X)→ X ∧ · · · ∧X
is surjective in homology. Thus the cofibration sequences Jn−1(X)→
Jn(X)→ X ∧ · · · ∧X show that there is a homology isomorphism
Tn(H∗(X))→ H∗(Jn(X)).

�

An immediate corollary of the above is [45].

The Freudenthal suspension theorem 4.2.4. If X is an n− 1 con-
nected space with n− 1 ≥ 1, then the pair (J(X), X) is 2n− 1 connected.
Thus, Σ∗ : πk(X)→ πk+1(ΣX) is an epimorphism if k ≤ 2n− 1 and an
isomorphism if k ≤ 2n− 2.
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4.3 The Hilton–Milnor theorem

An H-space G is called grouplike if it is homotopy associative and has
a homotopy inverse. For pointed maps f : X → G and g : Y → G into a
grouplike space, we can define a Samelson product [f, g] : X ∧ Y → G as
follows:

Consider the commutator map

X × Y f×g−−→ G×G [ , ]−−−−−→ G, (x, y)→ f(x)g(y)f(x)−1g(y)−1.

It is homotopically trivial on G ∨G and hence we have a factorization up
to homotopy

X × Y → X ∧ Y [f,g]−−→ G.

The cofibration sequence X ∨ Y → X × Y → X ∧ Y → ΣX ∨ ΣY → · · ·
leads to the short exact sequence

0← [X,G]∗ × [Y,G]∗ ← [X × Y,G]∗ ← [X ∧ Y,G]∗ ← 0

and it follows that the Samelson product [f, g] is unique up to homotopy.

In Chapter 6, we will make a more detailed study of Samelson products.
In particular, if f : Sn → G and g : Sm → G, then the Samelson prod-
uct [f, g] : Sn+m → G gives the homotopy groups π∗(G) the structure of
a graded Lie algebra. That is for x, y, z επ∗(G) of respective degrees a, b, c
we have bilinearity, antisymmetry, and the Jacobi identity:

[x+ y, z] = [x, z] + [y, z], [x, y] = −(−1)ab[y, x],

[x, [y, z]] = [[x, y], z] + (−1)ab[y, [x, z]].

The next lemma relates the Samelson product to the commutator in the
Pontjagin ring H∗(G). It is an easy exercise.

Lemma 4.3.1. If αεH∗(X) and βεH∗(Y ) are primitive homology classes,
then

[f, g]∗(α⊗ β) = [f∗(α), g∗(β)] = f∗(α)g∗(β)− (−1)|α||β|g∗(β)f∗(α).

Now we state the Hilton–Milnor theorem in its compact form. If X and Y
are spaces, let ιX : X → X ∨ Y and ιY : Y → X ∨ Y be the two inclusions.

There should be no confusion if we identify ιX = Σ ◦ ιX : X → X ∨ Y Σ−→
ΩΣ(X ∨ Y ) and ιY = Σ ◦ ιY : Y → X ∨ Y Σ−→ ΩΣ(X ∨ Y ).

Write ad(α)(β) = [α, β]. We can form iterated Samelson products

ad(ιX)i(ιY ) : X∧i ∧ Y → ΩΣ(X ∨ Y )
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and add them up to get a map of the infinite bouquet∨
i≥0

ad(ιX)i(ιY ) :
∨
i≥0

X∧i ∧ Y → ΩΣ(X ∨ Y ).

Now form the multiplicative extensions

ιX = ΩΣ(ιX) : ΩΣX → ΩΣ(X ∨ Y )

and ∨
i≥0

ad(ιX)i(ιY ) : ΩΣ

(∨
i≥0

X∧i ∧ Y

)
→ ΩΣ(X ∨ Y ).

Finally use the multiplication of ΩΣ(X ∨ Y ) to multiply these maps and
get:

The Hilton–Milnor theorem 4.3.2 [54, 89]. If X and Y are connected,
then there is a weak equivalence

ΩΣX × ΩΣ

(∨
i≥0

X∧i ∧ Y

)
→ ΩΣ(X ∨ Y ).

Of course, if X and Y are both CW complexes then the above map is
actually a homotopy equivalence.

We will prove the Hilton–Milnor theorem in a subsequent chapter when we
have developed more algebra. For now we will just say that the Hilton–
Milnor theorem is the topological reflection of the algebraic isomophism of
right modules

T (V ⊕W ) ∼= T (V )⊗ T

(⊕
i≥0

V ⊗i ⊗W

)
,

where T (V ⊕W ) is the homology with field coefficients of ΩΣ(X ∨ Y ).
This decomposition is also valid if the homology of ΩΣ(X ∨ Y ) is torsion
free. In this decomposition V ⊗i ⊗W is embedded in T (V ⊕W ) via the

commutator isomorphism V ⊗i ⊗W
∼=−→ ad(V )i(W ).

The Hilton–Milnor theorem can be iterated by expanding the second factor
and continuing this process countably many times. In order to describe the
final result, we need the notion of a Hall basis.

Given a finite-ordered list of elements L = L1 with first element x1, we
define a Hall basis as follows:

(a) Let B1 = {x1} and let L2 = {ad(x1)i(x)|i ≥ 0, xεL1, x 6= x1}.
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(b) Order L2 so that elements of smaller length come before elements
of greater length and let x2 be the first element of L2.

(c) Let B2 = B1 ∪ {x2} and let L3 = {ad(x2)i(x)|i ≥ 0, xεL2, x 6= x2}.

(d) Repeat b) and c) countably often and let

B =

∞⋃
n=1

Bn.

B is called a Hall basis generated by L. It is an ordered basis for the
(ungraded) free Lie algebra generated by the set L.

Using the notation of Theorem 4.3.2, let B be a Hall basis generated by
the set {ιX , ιY }. For example, B =

{ιX , ιY , [ιX , ιY ], [ιX , [ιX , ιY ]], [ιY , [ιX , ιY ]],

[ιX , [ιX , [ιX , ιY ]]], [ιY , [ιX , [ιX , ιY ]]], [ιY , [ιY , [ιX , ιY ]]], . . . } .

If ω = ω(ιX , ιY ) is an element of B, we shall write ω(X,Y ) for the domain
of this Samelson product. For example, if ω(ιX , ιY ) = [ιX , [ιX , ιY ]], then
ω(X,Y ) = X ∧ (X ∧ Y ). Now the Hilton–Milnor theorem may be restated
as:

The expanded Hilton–Milnor theorem 4.3.3. There is a weak equiv-
alence

Θ :
∏
ωεB

ΩΣ(ω(X,Y ))→ ΩΣ(X ∨ Y )

which is the multiplicative extension of ω(ιX , ιY ) on the ω factor and which
is defined by multiplying these maps in the order determined by B.

Remark. The topology on the infinite product above is not the product
topology. It is the direct limit topology coming from the topology on the
finite products. This is called the weak product. In order to make the map
Θ well defined we need to reparametrize a product of maps f1 ∗ f2 ∗ f3 ∗ . . .
so that the first factor runs on the interval [0, 1

2 ], the second on the interval
[ 1
2 ,

3
4 ], the third on the interval [ 3

4 ,
7
8 ], etc.

Thus ΩΣ(X ∨ Y ) is weakly equivalent to the weak infinite product

ΩΣ(X) × ΩΣ(Y )× ΩΣ(X ∧ Y )× ΩΣ(X ∧X ∧ Y )

× ΩΣ(Y ∧X ∧ Y )× · · · ·
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If H∗ΩΣ(X ∨ Y ) = T (V ⊕W ) is torsion free, this corresponds to the
homology decomposition

T (V ⊕W ) ∼= T (V )⊗ T (W )⊗ T (V ⊗W )⊗ T (V ⊗ V ⊗W )

⊗ T (W ⊗ V ⊗W )⊗ · · · ·

In this decomposition, V ⊗W embeds in T (V ⊗W ) via the commutator
isomorphism

V ⊗W
∼=−→ [V,W ]

and similarly for

V ⊗ V ⊗W
∼=−→ [V, [V,W ]],

W ⊗ V ⊗W
∼=−→ [W, [V,W ]], · · · ·

Let A be a connected CW co-H-space. Thus we can add the two inclusions
into summands, ι1 : A→ A ∨A and ι2 : A→ A ∨A, and we can use the
co-H structure to add them to get ι1 + ι2 : A→ A ∨A. Of course, this is
just a compression of the diagonal δ : A→ A×A.

For each element ω of a Hall basis B generated by {ι1, ι2}, the Hilton–Hopf
invariants hω are defined to be the composition

hω = pω ◦Θ−1 ◦ ΩΣ(ι1 + ι2) : ΩΣA→ ΩΣ(A ∨A)→ ΩΣ(ω(A,A))

where

pω :
∏
γεB

ΩΣ(γ(A,A))→ ΩΣ(ω(A,A))

is the projection and

Θ−1 : ΩΣ(A ∨A)→
∏
γεB

ΩΣ(γ(A,A))

is the homotopy inverse to the homotopy equivalence in Theorem 4.3.3. For
example, with respect to the Hall basis {ι1, ι2, [ι1, ι2], [ι1, [ι1, ι2]], . . . }, we
have countably many Hilton–Hopf invariants, among them

h[ι1,ι2] : ΩΣA→ ΩΣ(A ∧A),

h[ι1,[ι1,ι2]] : ΩΣA→ ΩΣ(A ∧A ∧A).

Note that the Hilton–Hopf invariants depend on the Hall basis and its
ordering. The following is an immediate consequence of the Hilton–Milnor
decomposition:
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Proposition 4.3.4. Let α : X → ΩΣA be any map. Then we have the
formula

ΩΣ(ι1 + ι2) ◦ α ' ΣωεBω(ι1, ι2) ◦ hω ◦ α

= ι1 ◦ α+ ι2 ◦ α+ [ι1, ι2] ◦ h[ι1,ι2] ◦ α

+ [ι1, [ι1, ι2]] ◦ h[ι1,[ι1,ι2]] ◦ α

+ [ι2, [ι1, ι2]] ◦ h[ι2,[ι1,ι2]] ◦ α+ · · ·

in which we denote the noncommutative multiplication in ΩΣ(A ∨A) by +.

Remark. We note that the multiplication would become commutative
if we added another loop, that is, if we consider the formula in Ω2ΣA.
Equivalently, we could require the domain X to be a suspension.

Naturality allows us to extend this Proposition 4.3.4 as follows: Let β :
A→ B and γ : A→ B be any maps. Use the co-H space structure to add
them to get β + γ : A→ A ∨A→ B. Then we have

Corollary 4.3.5. In [X,ΩΣB]∗, we have

ΩΣ(β + γ) ◦ α ' β ◦ α+ γ ◦ α+ [β, γ] ◦ h[ι1,ι2] ◦ α

+ [β, [β, γ]] ◦ h[ι1,[ι1,ι2]] ◦ α

+ [γ, [β, γ]] ◦ h[ι2,[ι1,ι2]] ◦ α+ · · · ·

The Hilton–Hopf invariants are natural in the sense that

Lemma 4.3.6. If β : A→ B is a map, then

hω ◦ ΩΣ(β) ◦ α = ΩΣ(∧β) ◦ hω ◦ α

where ∧β : ω(A,A) = A ∧ · · · ∧A→ B ∧ · · · ∧B → ω(B,B) is the natural
map.

Exercises

(1) Show that in a graded Lie algebra as defined in this section, the fol-
lowing identities hold:

(a) if x is an even degree element, then

2[x, x] = 0, [x, [x, x]] = 0.

(b) if x is an odd degree element, then

3[x, [x, x]] = 0.

(2) If β : Sn → Sn and γ : Sn → Sn are self maps of spheres and h = h2 =
h[ι1,ι2] : ΩΣSn → ΩΣS2n is the so-called second Hilton–Hopf invariant,
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then show that

ΩΣ(β + γ) ' ΩΣ(β) + ΩΣ(γ) + [β, γ] ◦ h

where, if n is odd, we localize at 2.

(3) Let G be a grouplike space and suppose f : X → G and g → G are
pointed maps.

(a) if G is homotopy commutative show that the Samelson product
[f, g] is null homotopic.

(b) if G = ΩZ and Ω(ΣZ) : ΩZ→ Ω2ΣZ is the loop of the suspension
map, show that Ω(ΣZ) ◦ [f, g] is null homotopic. (If the Whitehead
product Σ(X ∧ Y )→ Z is the adjoint of the Samelson product, this
says that the suspension of the Whitehead product is 0.)

4.4 The James fibrations and the EHP sequence

Let A be a co-H space. By definition the second Hilton–Hopf invariant is

h = h2 = h[ι1,ι2] : ΩΣA→ ΩΣ(A ∧A).

In this section we specialize to the case A = Sn and consider the sequences

Sn
Σ−→ ΩSn+1 h−→ ΩS2n+1.

We shall consider two cases. When n is an odd integer, we shall show that
the above is a fibration sequence and that it splits into a product when we
localize away from 2. When n is an even integer, we shall show that the
above is a fibration sequence if we localize at 2.

Let H∗(ΩS
n+1) = T [un] = the tensor algebra generated by an element un

of degree n. Write

(ι1 + ι2)∗(un) = z + w εH∗(Ω(Sn+1 ∨ Sn+1)) = T [z, w].

We compute

(z + w)2 = z2 + w2 + zw + wz

=

{
z2 + w2 + [z, w] if n is odd

z2 + w2 + 2zw − [z, w] if n is even.

Thus for both parities of n we have

h(u2
n) = (p[ι1,ι2])∗((z + w)2) = ±u2nεH∗(ΩS

2n+1) = T [u2n].

In a subsequent section we shall prove that
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Proposition 4.4.1. Suppose n is odd. If h : ΩSn+1 → ΩS2n+1 is any
map such that h∗(u

2
n) = ±u2n, then, with any coefficient ring, h∗ makes

H∗(ΩSn+1) into a free module over H∗(ΩS2n+1) with basis 1,un.

We will also delay the proof of:

Proposition 4.4.2. Suppose that F
ι−→ E

p−→ B is a fibration sequence such
that p∗ makes the cohomology ring H∗(E) into a free H∗(B) module with
a basis {bα}. Then {bα} restricts to a basis for H∗(F ). Thus

H∗(E) ∼= H∗(B)⊗H∗(F )

as an H∗(B) module.

The above propositions have the following corollary:

Corollary 4.4.3. If n is odd, there is up to homotopy a fibration sequence

Sn
Σ−→ ΩSn+1 h−→ ΩS2n+1.

Proof: It is clear that the composition Sn
Σ−→ ΩSn+1 h−→ ΩS2n+1 is null

homotopic. Thus, if F is the homotopy theoretic fibre of h, we have a map
Sn → F . Since F has the cohomology and homology of Sn, it is easy to see
that this map is a homology equivalence, hence a homotopy equivalence. �

Still supposing that n is odd, consider the Samelson product [ι, ι] : S2n →
ΩSn+1 where ι = Σ : Sn → ΩSn+1 is a generator. Its Hurewicz image is
[un, un] = 2u2

n. Thus the multiplicative extension [ι, ι] : ΩΣ(S2n)→ ΩSn+1

induces in homology an isomorphism of T [u2n] onto the subalgebra of T [un]
generated by 2u2

n.

If we localize away from 2, for example, with coefficients Z[ 1
2 ] or Z(p) for

p an odd prime, then 2 is a unit and we have an isomorphism of T [u2n]
onto the subalgebra generated by u2

n. Thus, composition with h : ΩSn+1 →
ΩS2n+1 is a homology bijection ΩΣ(S2n)→ ΩSn+1 → ΩS2n+1. Hence we
get Serre’s result which says that, at odd primes, the homotopy groups
of even dimensional spheres can be expressed in terms of those of odd
dimensional spheres:

Proposition 4.4.4. If n = 2m+ 1 is odd and we localize away from 2,
then the fibration sequence

S2m+1 Σ−→ ΩS2m+2 h−→ ΩS4m+3

has a section, that is, there is a homotopy equivalence of spaces localized
away from 2:

ΩS2m+2 ' S2m+1 × ΩS4m+3.
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Since a retract of an H-space is an H-space, we have the following corollary:

Corollary 4.4.5. Localized away from 2, any odd dimensional sphere
S2n+1 is an H-space.

Now we switch to the other parity. We will need to localize at 2.

Proposition 4.4.6. Suppose n is even and use coefficients localized at 2. If
h : ΩSn+1 → ΩS2n+1 is any map such that h∗(u

2
n) = ±u2n, then h∗ makes

H∗(ΩSn+1) into a free module over H∗(ΩS2n+1) with basis 1,un.

As before this gives

Corollary 4.4.7. If n is even, there is up to homotopy a fibration sequence

Sn
Σ−→ ΩSn+1 h−→ ΩS2n+1

localized at 2.

Thus, if we localize at 2 we have fibration sequences in both parities. The
resulting long exact homotopy sequences of a fibration are called the EHP
sequences:

· · · ∂=P−−−→ πk+1S
n Σ∗=E−−−→ πk+1ΩSn+1 h∗=H−−−→ πk+1ΩS2n+1 ∂=P−−−→

πkS
n Σ∗=E−−−→ πkΩSn+1 h=H−−−→ πkΩS2n+1 ∂=P−−−→ · · · ·

We have the following test for desuspension.

Corollary 4.4.8. Suppose that spaces are localized at 2 or that n is
odd. Let α : X → ΩSn+1 be any map. Then α desuspends up to homo-
topy (that is factors through X → Sn) if and only if the composition
h ◦ α : X → ΩSn+1 → ΩS2n+1 is null homotopic.

If Σ : Sn → ΩSn+1 is the suspension, we can apply the above to decide
whether the Samelson product [Σ,Σ] : S2n → ΩSn+1 desuspends. Recall
that h is the composition

ΩΣ(Sn)
ΩΣν−−−→ ΩΣ(Sn ∨ Sn)

p=Θ−1◦p[ι1,ι2]−−−−−−−−−→ ΩΣS2n

where we write ΩΣ(ν)∗(Σ) = Σ1 + Σ2. Hence,

h ◦ [Σ,Σ] = p([Σ1 + Σ2,Σ1 + Σ2])

= p([Σ1,Σ1] + [Σ2,Σ2] + [Σ1,Σ2] + [Σ2,Σ1])

=

{
p([Σ1,Σ1] + [Σ2,Σ2] + 2[Σ1,Σ2]) = 2Σ : S2n → ΩΣS2n if n is odd

p([Σ1,Σ1] + [Σ2,Σ2]) = 0 : S2n → ΩΣS2n if n is even.

Hence
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Corollary 4.4.9. The Samelson product [Σ,Σ] : S2n → ΩΣSn does not
desuspend if n is odd. It does desuspend if n is even and we localize at 2.

Exercises

(1) Show that it is not necessary to localize at 2 in Corollary 4.4.8.

4.5 James’s 2-primary exponent theorem

In this section we prove the 2-primary exponent theorem of James [67]: 4n

annihilates the 2-primary components of πk(S2n+1) for all k > 2n+ 1.

First of all, we need to make a clear distinction between the addition of
maps using co-H spaces structures and the multiplication of maps using H-
space structures. Suppose f : X → Y is a map. If X is a co-H space and k
is an integer, then we can add the identity map of X to itself k times (using
the inverse if k is negative) to get a map [k] : X → X with the property
that f ◦ [k] = kf = k times f . The map [k] is called k times the identity.
For example, [k] : Sn → Sn is just the degree k map.

On the other hand, if Y is an H-space, we can multiply the identity of Y
with itself k times to get a map k : Y → Y such that k ◦ f = kf = k times
f . The map k is called the k−th power map. In the rare case when Sn is
an H-space, k : Sn → Sn is the degree k map. If n is odd and we localize
away from 2, then Sn is an H-space and the k-th power map will be the
degree k map.

The theorem of James depends heavily on the following result. The proof
of this is due to Michael Barratt who did not publish it.

Proposition 4.5.1. If n is even then

2 ◦ Ω(h) : ΩΣSn → ΩΣS2n

is null homotopic, that is, 2 times the loops on the 2-nd Hilton–Hopf invari-
ant is null.

Proof: Begin by considering the Hilton–Hopf invariant expansion of zero:

0 = ΩΣ([1] + [−1]) = ΩΣ([1]) + ΩΣ([−1]) + [[1], [−1]] ◦ h.

Apply the Hilton–Hopf invariant to each piece:

h ◦ ΩΣ([−1]) = ΩΣ([−1] ∧ [−1]) ◦ h

= ΩΣ([1]) ◦ h

= h.
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Recall that [[1], [−1]] desuspends, that is, [[1], [−1]] = Σ ◦ β : S2n → Sn →
ΩΣSn where β : S2n → Sn.

h ◦ [[1], [−1]] = h ◦ ΩΣ(β)

= ΩΣ(β ∧ β) ◦ h

= ΩΣ(β ∧ [12n]) ◦ ([1n] ∧ β)) ◦ h

= ΩΣ(±Σ2nβ) ◦ (Σnβ)) ◦ h

= 0

since Σ2(β) is adjoint to the null composition

S2n [[1],[−1]]−−−−−→ ΩΣSn
Ω(ΣΣSn )−−−−−−→ Ω2Σ2Sn

↑= ↑ ΣSn ↗ Σ2
Sn

S2n β−→ Sn

If we now loop the above expansion of zero and apply the H-map Ω(h) we
get

2 ◦ Ω(h) = 0.

�

The James exponent theorem now follows from the following geometric
desuspension theorem formulated by John Moore.

Proposition 4.5.2. Localized at 2, there is a factorization of the 4-th
power map 4:

Ω3S2n+1 γ−→ ΩS2n−1 Σ2

−→ Ω3S2n+1.

Proof: We can summarize the ideas in this proof as follows: The power
map 2 on Ω3S2n+1 has Hilton–Hopf invariant Ω2(h) ◦ 2 = 0. Therefore, 2
desuspends to β on Ω2S2n. Since the second Hilton–Hopf invariant Ωh is
quadratic, we have Ωh(ΩΣ[−1]) ◦ β = Ωh ◦ β. Therefore β − ΩΣ[−1]) ◦ β
desuspends to γ on ΩS2n−1. The double suspension Σ2(γ) = 4. In more
detail the argument is as follows here.

We consider the following diagram which incorporates loopings of James
fibrations

ΩS2n−1 Ω(Σ)−−−→ Ω2ΣS2n−1 Ω2(Σ)−−−−→ Ω3ΣS2n

↓ Ω(h) ↓ Ω2(h)
Ω2ΣS4n−2 Ω3ΣS4n
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We note that Proposition 4.5.1 and Ω2(h) ◦ 2 = 2 ◦ Ω2(h) imply that we
can factor the squaring map 2 as

Ω3ΣS2n β−→ Ω2ΣS2n−1 Ω2(Σ)−−−−→ Ω3ΣS2n.

We know that h ◦ ΩΣ([−1]) = ΩΣ([−1] ∧ [−1]) ◦ h = h. Hence Ω(h) ◦ β =
Ω(h) ◦ Ω2Σ([−1]) ◦ β and there exists a map γ : Ω3ΣS2n → ΩS2n−1 such
that Ω(Σ) ◦ γ = β − Ω2Σ([−1]) ◦ β.

Notice the following commutative diagram which relates the degree −1 map
[−1] and the multiplicative inverse −1.

S2n−1 Σ−→ ΩΣS2n

↓ [−1] ↓ −1

S2n−1 Σ−→ ΩΣS2n.

Hence we get

Ω2(Σ) ◦ Ω(Σ) ◦ γ = Ω2(Σ) ◦ (β − Ω2Σ([−1]) ◦ β)

= 2− Ω2(Σ ◦ [−1]) ◦ β

= 2− Ω2((−1) ◦ Σ) ◦ β

= 2− Ω2((−1)) ◦ Ω2(Σ)β

= 2− (−1) ◦ 2

= 4.

�

The above proposition has an immediate corollary.

Corollary 4.5.3. Localized at 2, we have

(a) The 4n-th power map factors as

Ω2n+1S2n+1 → ΩS1 Σ2n

−−→ Ω2n+1S2n+1.

(b) If S2n+1〈2n+ 1〉 is the 2n+ 1 connected cover of S2n+1, then the
4n-th power is null homotopic on the 2n+ 1 fold loop space

Ω2n+1(S2n+1〈2n+ 1〉).

(c) If k > 2n+ 1, then 4nπk(S2n+1) = 0.

Exercises

(1) On the space ΩS2n+1 the following formulas are valid without local-
ization:

(a) Ω[2] = 2 + [[1], [1]] ◦ h
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(b) Ω[3] = 3 + [[1], [1]] ◦ h

(2) On the space Ω2S2n+1 the following formulas are valid localized at 2:

(a) Ω2[4] = 4

(b) For all integers Ω2([k + 4] = Ω2[k] + 4

(c) If r is congruent to 0 or 1 mod 4, then Ω2[r] = r. If r is congruent
to 2 or 3 mod 4, then Ω2[r] = r + Ω([[1], [1]]) ◦ Ω(h).

4.6 The 3-connected cover of S3 and its loop space

The first step in understanding the homotopy groups of S3 is to compute
the homology of its 3-connected cover S3〈3〉. It is a simple consequence of
the cohomology Serre spectral sequence of the fibration sequence

K(Z, 2)→ S3〈3〉 → S3.

Proposition 4.6.1. The reduced integral homology Hk(S3〈3〉;Z) ={
Z/nZ if k = 2n

0 if k = 2n+ 1.

Proof: In the integral cohomology Serre spectral sequence we have

E∗,∗2 = H∗(S3)⊗H∗(K(Z, 2)) = E[v]⊗ P [u]

with the bidegree of v = (3, 0) and the bidegree of u = (0, 2). The only
nonzero differential is d3 and we have d3(u) = v. Hence, the derivation
property shows that d3(un) = nun−1v. We get that the reduced integral

cohomology Hk(S3〈3〉;Z) ={
Z/nZ if k = 2n+ 1

0 if k = 2n.

Since the homology is finitely generated in each degree, the universal coef-
ficient theorem implies the stated result for the homology. �

Localization at a prime and the relative Hurewicz theorem yields

Corollary 4.6.2. Localized at a prime p, there are maps P 2p+1(p)→
S3〈3〉 which induce isomorphisms of homotopy groups in dimensions ≤
4p− 2 and an epimorphism in dimension 4p− 1.

In particular, localized at a prime p, the first nonzero homotopy group of
S3〈3〉 is π2p(S

3〈3〉) = π2p(S
3) = Z/pZ.
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A generator of π4(S3) = Z/2Z is given by an element which we will see to
be Σ(η), the suspension of the Hopf map η : S3 → S2.

If p is an odd prime, a generator of the localized group π2p(S
3〈3〉) =

π2p(S
3) = Z/pZ is called α1.

The same information is conveyed by the mod p cohomology computation:

Proposition 4.6.3. With coefficients Z/pZ, p a prime, the cohomology
H∗(S3〈3〉;Z/pZ) = P [u2p]⊗ E[v2p+1] = a polynomial algebra generated by
u2p of degree 2p tensor an exterior algebra generated by v2p+1 of degree
2p+ 1.

Proof: In the mod p cohomology Serre spectral sequence of the fibration
sequence we get

E∗,∗2 = H∗(S3)⊗H∗(K(Z, 2) = E[v]⊗ P [u]

with the only nonzero differential d3(un) = nun−1v as before. Thus

E∗,∗4 = E[up−1v]⊗ P [up].

Clearly, E∗,∗4 = E∗,∗∞ and the result follows. �

On the other hand, we can look at the fibration of loop spaces

S1 → Ω(S3〈3〉)→ ΩS3.

In this case the homology Serre spectral sequence is a spectral sequence of
algebras with

E2
∗,∗ = H∗(S

1)⊗H∗(ΩS3) = E[u1]⊗ P [v2]

and d2(v2) = u1. Hence:

Proposition 4.6.4.

(a) The reduced integral homology

Hk(Ω(S3〈3〉);Z) =

{
Z/nZ if k = 2n− 1

0 if k = 2n.

(b) If p is a prime, the mod p homology

H∗(Ω(S3〈3〉);Z/pZ) = P [v2p]⊗ E[u2p−1]

with v2p a polynomial generator of degree 2p and u2p−1 an exterior
generator of degree 2p− 1.

(c) Localized at a prime p, there are maps P 2p(p)→ Ω(S3〈3〉) which
induce isomorphisms of homotopy groups in dimensions ≤ 4p− 3
and an epimorphism in dimension 4p− 2.
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Exercises

(1) For the complex projective plane there is a cell structure CP 2 = S2 ∪η
e4 where η : S3 → S2. We have mod 2 cohomology ring H∗(CP 2) =
{1, u, u2} with mod 2 Steenrod operation Sq2(u) = u2. Show that no
suspension Σk(η) : Sk+3 → Sk+2 is homotopically trivial. In particular,
Σ(η) is a generator of π4(S3).

(2) (a) Show that the iterated suspension Σk : π4(S3)→ πk+4(Sk+3) is an
isomorphism.

(b) The element Σk(η) is said to be detected in mod 2 cohomology by
Sq2, that is, in the adjunction complex

Sk+3 ∪β ek+5,

the homotopy class β is homotopic to Σk(η) if and only if Sq2 is
nontrivial in the mod 2 cohomology.

4.7 The first odd primary homotopy class

Let p be an odd prime. In this section we show that the element α1επ2p(S
3)

is detected by the Steenrod operation P 1 in the mod p cohomology of the
adjunction space S3 ∪α1

e2p+1.

We begin with an algebraic lemma. Let V be a vector space over Z/pZ and
let T : V → V be a linear operator. Suppose we are given relatively prime
mod p polynomials p1, p2, . . . , pk such that (p1p2 . . . pk)(T ) = 0 on V . Let
qi = p1p2 . . . p̂i . . . pk = the product with the i−th factor omitted. Then we
have

Lemma 4.7.1.

V =

k⊕
i=1

ker pi(T )

and there is an isomorphism

ker pi(T ) ⊆ V → lim
n→∞

(qi(T )n : V → V ).

For example let X be a co-H space and let τ : X → X be a self map.
Suppose we have integral polynomials p1, p2, . . . , pk which are relatively
prime mod p. Let f1 = p1(τ), f2 = p2(τ), . . . , fk = pk(τ) : X → X be such
that (f1)∗ ◦ (f2)∗ ◦ . . . (fk)∗ = 0 in reduced mod p homology. As before,
let qi = p1p2 . . . p̂i . . . pk = the product with the i-th factor omitted. For
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1 ≤ i ≤ k, let

Xi = lim
n→∞

(qi(τ)n : X → X)

be the mapping telescope. Then we can use the co-H stucture on X to add
maps and we get:

Proposition 4.7.2. The is a mod p homology isomorphism

X →
k⊕
i=1

Xi .

The example we want here is X = ΣK(Z, 2) = ΣCP∞. Let λ be an integer
which is a generator mod p of the group of units (Z/pZ)∗ and let Λ : CP∞ →
CP∞ be a map which induces multiplication by λ in dimension 2 integral
cohomology and homology. Let τ = Σ(Λ) : X → X be the suspension of
this map. Now let fi = τ − Λi and note that

(f1)∗ ◦ (f2)∗ ◦ · · · (fp−1)∗ = τp−1
∗ − 1 = 0 mod p.

Hence we get

Proposition 4.7.3. There is a equivalence of spaces completed at p:

Σ(CP∞)→
p−1∨
i=1

Xi

where, if H∗(CP∞;Z/pZ) = P [u] with u of degree 2, then H∗(Xi;Z/pZ) is
generated by the suspensions of

{ui, ui+p−1, ui+2p−2, ui+3p−3, · · · }.

A closer look at the effect of the map

q1(τ) = (τ − Λ2) ◦ (τ − Λ3) ◦ · · · ◦ (τ − Λp−1)

in homology shows that this map is a p local equivalence in dimensions
congruent to 3 mod 2p− 2 and is zero in dimensions k with 3 < k < 2p+ 1.
(It induces multiplication by a unit times a power of p in other higher
dimensions. This creates copies of the rationals in the homology in these
dimensions of the mapping telescope.)

Thus, localized at p, we have that the 2p+ 2 skeleton

X
[2p+2]
1 = S3 ∪ e2p+1

and, since the Steenrod operation P 1(u) = up, we have that P 1 : H3(X1;Z/
pZ)→ H2p+1(X1;Z/pZ) is an isomorphism.
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If we localize at p, the group π2p(S
3) = Z/pZ is cyclic and thus the non-

trivial attaching map in S3 ∪ e2p+1 ⊆ X1 must be a generator which we
shall call α1.

Of course the fact that α1 is detected by the Steenrod operation P 1 shows
that no suspension of α1 is trivial.

Exercises

(1) Prove Lemma 4.7.1.

(2) Show that, in BS3 = HP∞ localized at 3, the eight-dimensional cell is
attached to the four-dimensional cell by ±α1.

4.8 Elements of order 4

For an integer k and a co-H-space X recall that [k] : X → X denotes k
times the identity.

The following proposition is fundamental for this section.

Proposition 4.8.1. For all n ≥ 2, the map [2] : Pn+1(2)→ Pn+1(2) is
not null homotopic.

Proof: The cofibration sequence S1 [2]−→ S1 → P 2(2) yields the cofibration

sequence S1 ∧ Pn(2)
[2]∧1−−−→ S1 ∧ Pn(2)→ P 2(2) ∧ Pn(2).

Suppose [2] : ΣPn → ΣPn(2) is null homotopic. Then the cofibration
sequence is split, that is, P 2(2) ∧ Pn(2) ' Pn+1(2) ∨ Pn+2(2).

But this is inconsistent with the Cartan formula for mod 2 Steenrod oper-
ations. Let u generate H1(P 2(2) and let u generate Hn−1(Pn(2)). Then

Sq2(u⊗ u) = Sq1(u)⊗ Sq1(u) 6= 0 εH4(P 2(2) ∧ Pn(2)).

Thus the cofibration sequence cannot be split. �

Proposition 4.8.2. If n ≥ 2,then the map [2] factors as

Pn+1(2)
q−→ Sn+1 β−→ Sn

ι−→ Pn+1(2)

where q is the map which pinches the bottom cell to a point and ι is the
inclusion of the bottom cell. If n > 2, then β = Σk−2(η) = ηn = the iterated
suspension of the Hopf map.
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Proof: There is a commutative diagram

Sn
ι−→ Pn+1(2)

q−→ Sn+1

↓ [2] ↓ [2] ↓ [2]

Sn
ι−→ Pn+1(2)

q−→ Sn+1

where the horizontal rows are cofibration sequences. Since ι ◦ [2] ' ∗, there
is a map γ which factors [2] as

Pn+1(2)
q−→ Sn+1 γ−→ Pn+1(2).

Since the composition Sn+1 γ−→ Pn+1(2)
q−→ Sn+1 is degree 0 and therefore

null homotopic, there is a factorization of γ as

Sn+1 δ−→ F → Pn+1(2),

where F is the homotopy theoretic fibre of the pinch map q.

A computation with the integral homology Serre spectral sequence of the
fibration sequence F → Pn+1(2)→ Sn+1 shows that Hk(F ) ={

Z if k = mn

0 otherwise.

For more details see the exercises at the end of this section.

The 2n− 1 skeleton of F is just Sn and hence δ factors as

Sn+1 β−→ Sn → F.

Finally, [2] factors as

Pn+1(2)
q−→ Sn+1 β−→ Sn

ι−→ Pn+1(2).

Since we know that [2] is not null homotopic, we must have that β is not
null homotopic. If n > 2 then πn+1(Sn) ∼= Z/2Z and β ' ηn. �

An immediate consequence is

Corollary 4.8.3. If n > 2, the map [4] : Pn+1(2)→ Pn+1(2) is null homo-
topic and hence the mod 2 homotopy groups satisfy 4πn+1(X;Z/2Z) = 0 for
all spaces X.

Let G be an H-space and let G{2} be the homotopy theoretic fibre of the
squaring map 2 : G→ G. Thus there is a fibration sequence

ΩG
2=Ω2−−−→ ΩG

∂−→ G{2} ι−→ G
2−→ G.

We write ηn = Σn−2η : Sn+1 → Sn for the iterated suspension of the Hopf
map.
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Proposition 4.8.4. Suppose that n > 3 and there exists β επnG such that
2β = 0 and β ◦ ηn is not divisible by 2. Then there exists an element of
order 4 in πnG{2}.

Proof: We shall construct a commutative diagram in which the top row is
a cofibration sequence and the bottom row is the above fibration sequence

Pn(2) → Pn+1(2) → Pn+1(4) → Pn+1(2)
↓ γ ↓ δ ↓ ε ↓ γ
ΩG

2=Ω2−−−→ ΩG
∂−→ G{2} ι−→ G

2−→ G.

By the Peterson–Stein formula, we can choose γ and γ to be adjoint maps.

Since 2β = 0, there is an extension of β to γ : Pn+1(2)→ G.

There are commutative diagrams

Pn(2)
q−→ Sn

↓= ↓ ηn−1

Pn(2) Sn−1

↓= ↓ ι
Pn(2)

[2]−→ Pn(2)
↓ γ ↓ γ
ΩG

2−→ ΩG.

Since 2ηn−1 = 0 we can extend the right-hand vertical composition to a
map δ : Pn+1(2)→ ΩG.

Recall the diagram below in which all rows and columns are cofibration
sequences

∗ → Pn(2)
=−→ Pn(2)

↓ ↓ q ↓
Sn

[2]−→ Sn
ι−→ Pn+1(2)

↓= ↓ [2] ↓
Sn

[4]−→ Sn
ι−→ Pn+1(2).

Hence we have constructed the left-hand square in the first diagram of this
proof. But, by the Peterson–Stein formula, the remainder of the diagram
follows.

If we apply πn to this diagram we get horizontal exact sequences

Z/2Z → Z/4Z → Z/2Z
↓ δ∗ ↓ ε∗ ↓ γ∗

πnΩG
2−→ πnΩG

∂∗−→ πnG{2}
ι∗−→ πnG.
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Since δ∗(1) = the adjoint of β ◦ ηn is not divisible by 2, it follows that
2ε∗(1) 6= 0 and ε∗(1) has order 4. �

We now formulate a convenient stable version of the preceding proposition.

Recall the definition of the stable homotopy group

πSn (X) = lim
k→∞

πn(ΩkΣkX) = πn(Ω∞Σ∞X)

where Ω∞Σ∞X is the direct limit

X → ΩΣXΩ2Σ2X → Ω3Σ3X → · · · ·

Note that Ω∞Σ∞X is an H-space so that Proposition 4.8.4 can be applied
to it. If X is a co-H-space and X[k] is the cofibre of [k] : X → X, then the
Peterson–Stein formula gives a commutative diagram

X
[k]−→ X → X[k] → ΣX

[k]−→ ΣX
↓ ↓ ↓ ↓ ↓

Ω∞Σ∞X
k−→ Ω∞Σ∞X → (Ω∞Σ∞+1X){k} → Ω∞Σ∞+1X

k−→ Ω∞Σ∞+1X.

If X is k − 1 connected, then X → Ω∞Σ∞X induces a homotopy isomor-
phism in dimensions < 2k − 1. Hence we have

Corollary 4.8.5. Let X be a k − 1 connected co-H-space. Suppose that
3 < n < 2k − 1 and there exists β επn−1X such that 2β = 0 and β ◦ ηn is
not divisible by 2. Then there exists an element of order 4 in πn(X[2]).

Exercises

(1) Let k be an integer and let Fm{k} be the homotopy theoretic fibre of

the pinch map Pm(k)
q−→ Sm.

(a) Show that the Peterson–Stein formula gives a commutative dia-
gram

Pm−1 q−→ Sm−1 [k]−→ Sm−1 → Pm(k)
q−→ Sm

↓ Σ ↓ Σ ↓ ι ↓ = ↓ =

ΩPm(k)
Ω(q)−−−→ ΩSm → Fm{k} → Pm(k)

q−→ Sm

in which the top row is a cofibration sequence and the bottom row
is a fibration sequence.

(b) Use the above to show that πm−1(Fm{k}) is infinite cyclic with
generator represented by ι : Sm−1 → Fm{k}.
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(2) Use the integral homology Serre spectral sequence of the fibration

sequence Fm{k} → Pm(k)
q−→ Sm to show that Hk(Fm{k}) ={

Z if k = r(m− 1), r > 0

0 otherwise.

4.9 Computations with the EHP sequence

In this section we use the EHP sequence to compute the following little
table of homotopy groups of the spheres S3 and S2 localized at 2. Of
particular interest is the fact that π6(S3) = Z/4Z localized at 2, showing
that in this one case the result of James on the 2-primary exponent is the
best possible. Until we say otherwise, everything in this section is localized
at 2.

πk(S3) generator πk(S2) generator

k = 3 Z(2) ι3 Z(2) η2

k = 4 Z/2Z η3 Z/2Z η2 ◦ η3

k = 5 Z/2Z η3 ◦ η4 Z/2Z η2 ◦ η3 ◦ η4

k = 6 Z/4Z ν Z/4Z η2 ◦ ν

In this table, ηk = Σk−2η : Sk+1 → Sk denotes the (k − 2)-nd suspension
of the Hopf map η = η2 : S3 → S2.

Note that the Hopf fibration S1 → S3 η−→ S2 makes the half of this table
referring to S2 automatic since η∗ : πkS

3 → πkS
2 is an isomorphism for

k ≥ 3.

What follows is the verification of this table.

Localized at 2, we have the fibration sequence

S2 Σ−→ ΩS3 h−→ ΩS5

and its long exact sequence

π5S
2 Σ−→ π6S

3 h−→ π6S
5 P−→

π4S
2 Σ−→ π5S

3 h−→ π5S
5 P−→

π3S
2 Σ−→ π4S

3 h−→ π4S
5 = 0.

We start by knowing that π3S
2 is Z(2) generated by the Hopf map η. From

looking at the 3-connected cover S3〈3〉, we know that π4S
3 is Z/2Z and the

above exact sequence shows that it is generated by the suspension Ση = η3.

Of course, it follows that π4S
2 = Z/2Z generated by η2 ◦ η3.
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The map P : π5S
5 = Z(2) → π3S

2 = Z(2) is multiplication by 2, a
monomorphism. Hence Σ : π4S

2 → π5S
3 is an epimorphism and Σ(η2 ◦

η3) = η3 ◦ η4 generates the image. The next lemma shows that η3 ◦ η4 6= 0
and hence π5S

3 = Z/2Z generated by η3 ◦ η4.

Lemma 4.9.1. For all k ≥ 2, the composition

ηk ◦ ηk+1 : Sk+2 → Sk+1 → Sk

is nontrivial.

Proof: Suppose it is trivial. Then we have a homotopy commutative dia-
gram

Sk+2 → ∗
↓ ηk+1 ↓
Sk+1 ηk−→ Sk.

We expand this diagram to a homotopy commutative diagram in which the
rows and columns are cofibration sequences

Sk+2 → ∗ → Sk+3

↓ ηk+1 ↓ ↓
Sk+1 ηk−→ Sk → Sk ∪ηk ek+2

↓ ↓= ↓
Sk+1 ∪ηk+1

ek+3 → Sk → Sk ∪ ek+2 ∪ ek+4.

In the mod 2 cohomology of both of the above 2-cell complexes, we have a
nontrivial Sq2. It follows that in the mod 2 cohomology of the above 3-cell
complex, we have a nontrivial Sq2Sq2. But the Adem relation Sq2Sq2 =
Sq3Sq1 is a contradiction. Hence, the composition ηk ◦ ηk+1 6= 0. �

Once again we automatically have that π5S
2 = Z/2Z generated by η2 ◦ η3 ◦

η4.

We need to recall the Freudenthal suspension theorem: the suspension Σ :
S3 → ΩS4 induces isomorphisms of homotopy groups in dimensions ≤ 4
and an epimorphism in dimension 5. An even larger range is true for the
suspensions between higher dimensional spheres. But we know that π5S

3 =
Z/2Z generated by η3 ◦ η4 and Lemma 4.9.1 asserts that all suspensions of
this are nontrivial. Hence we certainly know that πk+1S

k = Z/2Z generated
by ηk and πk+2S

k = Z/2Z generated by ηk ◦ ηk+1 for all k ≥ 3.

Recall that Corollary 4.6.2 says that we have a map P 5(2)→ S3〈3〉 which
induces an isomorphism of homotopy groups in dimensions ≤ 6 and an
epimorphism in dimension 7. Since P 5(2) is the cofibre of [2] : S4 → S4,
Corollary 4.7.5 applies. In particular, the homotopy fibration sequence of

the pinch map, F → P 5(2)
q−→ S5, has F being homologically equivalent to
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S4 in dimensions less than 8 and leads to a short exact sequence

0→ (π6S
4 = Z/2Z)→ π6P

5(2)→ (π6S
5 = Z/2Z)→ 0.

This exact sequence depends on the facts: 2η4 = 0 and η4 ◦ η5 is not divis-
ible by 2. The corollary implies that there exists an element of order 4 in
π6(P 5(2)) = Z/4Z.

The corresponding element of order 4 in π6S
3 = Z/4Z is called ν and we

also have that π6S
2 = Z/4Z generated by η2 ◦ ν. The completes the confir-

mation of the table localized at 2.

We remark that, if we do not localize, we have that

π6S
3 = Z/4Z⊕ Z/3Z = Z/12Z

with generators ν and α1.

Exercises

(1) If p is an odd prime, show that the composition

α1 ◦ (Σ2p−3α1) : S4p−3 → S2p → S3

is not null homotopic. (Hint: Use the Adem relation

P 1 ◦ P 1 = 2P 2

and the fact that P 2 must vanish on a three-dimensional class.)



5 James–Hopf invariants and Toda–Hopf
invariants

We begin this chapter by introducing the important concept of a divided
power algebra. Divided power algebras arise in the description of the coho-
mology algebras of several important spaces, among them loops on spheres.
These algebras have interesting properties when localized at primes. In par-
ticular, these properties give rise to Hopf invariants of two types. The first
type is due to James [66] and Hilton [54]. The second type is due to Toda
[130].

The James construction allows two definitions of Hopf invariants. The so-
called combinatorial definition is probably the simplest and most attractive.
Another one, the so-called decomposition definition, is based on James’
natural splitting of the suspension of the James construction.

As we have seen in the previous chapter, the Hilton–Milnor theorem leads
to the Hilton–Hopf invariants. Certain Lie identities are required to control
the homological properties of the Hilton–Hopf invariants.

These three constructions of Hopf invariants are for the most part inter-
changeable for all practical purposes (although the Hilton–Hopf invariants
are more tractable concerning the issues which arise in the 2-primary expo-
nent theorem for the homotopy groups of spheres). The most important
properties which they share are the homological properties necessary to
construct the James fibrations and the p-adic naturality which is used in
the proof of exponent theorems.

Localized at odd primes, the James fibrations involve filtrations of the
James constructions. The homology of the loops on these filtrations was
first studied by Toda. This leads to the Toda–Hopf invariants and to the
Toda fibrations. The Toda fibrations also possess a p-adic naturality which
comes into the proof of Toda’s odd primary exponent theorem. If p is an
odd prime, then p2n annihilates the p-primary component of the homotopy
groups πk(S2n+1) for all k > 2n+ 1. We prove this in the geometric form

141



142 James–Hopf invariants and Toda–Hopf invariants

introduced by John Moore. In this form it is a theorem about power maps
on loop spaces.

As we shall see later in this book, this result is not the best possible expo-
nent. First, Paul Selick showed that, for p an odd prime, the p-primary
component of all the homotopy groups of S3 are annihilated by p. Almost
immediately after Selick’s result, Cohen, Moore, and Neisendorfer used
completely different methods to prove that pn annihilates the odd primary
components of S2n+1, at least when p > 3. This proof will be presented later
in this book. The technical difficulties that were overcome by Neisendorfer
to extend this result to the prime 3 will not be in this book.

Finally, we note that Brayton Gray showed that, for p an odd prime, there
are elements of order pn in the homotopy groups of S2n+1. Serre’s odd
primary splitting,

ΩS2n+2 ' S2n+1 × ΩS4n+3,

shows that the case of even dimensional spheres reduces to the case of odd
dimensional spheres. Thus, the best possible odd primary exponent for the
spheres is known.

5.1 Divided power algebras

The cohomology of the loops on an odd dimensional sphere is given by a
divided power algebra. The algebraic structure of these algebras is funda-
mental to the existence of fibrations related to Hopf invariants.

Definition 5.1.1. A divided power algebra Γ[x] generated by an element
x of even degree 2n is the algebra with basis

{1 = γ0(x), x = γ1(x), γ2(x), . . . , γk(x), . . . }

with the degree of γk(x) equal to 2nk and multplication given by
γi(x)γj(x) = (i, j)γi+j(x). The divided power algebra has the structure of
a Hopf algebra with the diagonal given by

∆(γk(x)) = Σki=0γi(x)⊗ γk−i(x).

Remark. The symbol (i, j) is the symmetric representation of the bino-
mial coefficient

(i, j) =

(
i+ j
i

)
=

(i+ j)!

(i!)(j!)
.

It is immediate that γ1(x)γk(x) = (k + 1)γk+1(x) and thus

xk = γ1(x)k = k!γk(x).
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If k! is a unit in the ground ring, then γk(x) = xk

k! . Hence, if the ground ring
is the rationals, Γ[x] is isomorphic to the polynomial algebra P [x], even as
a Hopf algebra. But over a field of characteristic p, it is very different, for
example, γ1(x)p = 0.

Lemma 5.1.2.

(a) If P [y] = T [y] is the primitively generated polynomial algebra gener-
ated by an element y of even degree 2n, then the dual Hopf algebra
is

P [y]∗ = Γ[x]

where x has degree 2n and

{γ0(x), γ1(x), γ2(x) . . . , γk(x), . . . }

is the dual basis to

{1, y, y2, . . . , yk, . . . },

that is, 〈γi(x), yj〉 = δij .

(b) if T [x] is the primitively generated tensor algebra generated by an
element y of odd degree 2n+ 1, then the dual Hopf algebra is

T [y]∗ = E[x]⊗ Γ[w]

as an algebra where x is a primitive element of degree 2n+ 1, w has
degree 4n+ 2, and the comultiplication satisfies

∆(w) = w ⊗ 1 + x⊗ x+ 1⊗ w.

Proof:

(a) Let µ : P [y]⊗ P [y]→ P [y] be the multiplication and let ν : P [y]→
P [y]⊗ P [y] be the comultiplication of the polynomial algebra. Then
µ∗ and ν∗ are the comultiplication and multiplication, respectively,
of the dual Hopf algebra. We let

{γ0(x), γ1(x), γ2(x) . . . , γk(x), . . . }

represent the dual basis to the basis of powers of y and we shall
determine the formulas for the multiplication and comultipllcation.

We have

〈µ∗(γk(x), yi ⊗ yj〉 = 〈γk(x), µ(yi ⊗ yj)〉

= 〈γk(x), yi+j〉 = δk,i+j

which implies that

µ∗(γk(x)) = Σi+j=kγi(x)⊗ γj(x).
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We have

〈 ν ∗ (γi(x)⊗ γj(x)), yk〉 = 〈γi(x)⊗ γj(x), ν(yk)〉

= 〈γi(x)⊗ γj(x), (ν(y))k)〉 = 〈γi(x)⊗ γj(x), (y ⊗ 1 + 1⊗ y)k〉

= 〈γi(x)⊗ γj(x),Σa+b=k(a, b)ya ⊗ yb〉 = (i, j)δiaδjb

which implies that

ν ∗ (γi(x)⊗ γj(x)) = (i, j)γi+j(x).

It follows that the dual Hopf algebra of the primitively generated
polynomial algebra P [y] is exactly the divided power algebra Γ[x].

(b) As for the second part, we note that

T [y] = E[y]⊗ P [y2]

as a coalgebra. This is the case since the composition

E[y]⊗ P [y2]→ T [y]⊗ T [y]
mult−−−→ T [y]

is a map of coalgebras and an isomorphism.
Hence, the dual is

(T [y])∗ = (E[y])∗ ⊗ (P [y2])∗ = E[x]⊗ Γ[w]

as an algebra. Here, 〈x, y〉 = 1 = 〈w, y2〉.
The element x is clearly primitive and µ(y ⊗ y) = y2 implies that

∆(w) = µ∗(w) = w ⊗ 1 + x⊗ x+ 1⊗ w.

�

Since the homology Hopf algebra of the loops on a sphere is given by a
tensor algebra generated by a single element, we get:

Corollary 5.1.3.

(a) The cohomology Hopf algebra H∗(ΩS2n+1) is isomorphic to Γ[x] with
degree x equal to 2n.

(b) The cohomology Hopf algebra H∗(ΩS2n+2) is isomorphic to E[x]⊗
Γ[w] where x is a primitive element of degree 2n+ 1 and w is an
element of degree 4n+ 2 with comultiplication ∆(w) = w ⊗ 1 + x⊗
x+ 1⊗ w.

Recall the second Hopf invariant h : ΩS2n+2 → ΩS4n+3. The above corol-
lary implies that the induced cohomology map h∗ makes H∗(ΩS2n+2) into
a free module over H∗(ΩS4n+3) with {1, x} as a basis. Thus it implies
the existence of the fibration sequence up to homotopy as in Proposition
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4.4.1, Proposition 4.4.2, and Corollary 4.4.3:

S2n+1 → ΩS2n+2 h−→ ΩS4n+3.

In order to show the existence of the fibration sequence localized at 2,

S2n → ΩS2n+1 h−→ ΩS4n+1,

we need a bit more algebra. First, induction on n shows

Lemma 5.1.4. Over a subring of the rationals, we have

(γk(x))n =
(kn)!

(k!)n
γkn(x).

A special case of the above is xn = n!γn(x).

There is a well known lemma on binomial coefficients mod a prime:

Let p be a prime and let

b = Σmi=0bip
i, a = Σmi=0aip

i

be p−adic expansions with 0 ≤ ai, bi ≤ p− 1. Then

Lemma 5.1.5. Mod p, (
b
a

)
=

m∏
i=0

(
bi
ai

)

Proof: The convention is that (
b
a

)
= 0

if a > b.

In the polynomial ring Z/pZ[x]

(1 + x)b = Σba=0

(
b
a

)
xa.

But

(1 + x)b =
∏
i

(1 + xp
i

)bi

=
∏
i

(
Σbij=0

(
bi
j

)
xjp

i

)
and the result follows from the uniqueness of the p-adic expansion of a. �
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Elementary number theory includes the result that the highest power pα

of a prime p that divides a factorial b! is given by

α = νp(b!) =

[
b

p

]
+

[
b

p2

]
+ · · ·+

[
b

pk

]
+ · · · .

This implies that the following improvement of a special case of Lemma
5.1.5:

Lemma 5.1.6. (
pkb
pka

)
= u

(
b
a

)
where u is a unit in Z(p), the integers localized at p.

We apply the above lemmas to the following subalgebras of the divided
power algebra.

Definition 5.1.7. If Γ[x] is the divided power algebra generated by an
even degree element x and r is a positive integer, let Γr[x] denote the
subalgebra concentrated in degrees which are multiples of r and spanned
by the set {1, γr(x), γ2r(x), . . . , γkr(x), . . . }.

The lemmas imply that

Proposition 5.1.7. For all r ≥ 0 and with ground ring Z(p)

(a) The divided power algebra

Γ[γpr (x)] = Γpr [x].

(b) Γ[x] is a free Γpr [x] module with a basis

{1, γ1(x), γ2(x), . . . , γpr−1(x)}.

Proof: A basis for Γ[γpr (x)] is

γn(γpr (x)) =
1

n!
{γpr (x)}n =

(npr)!

(pr!)n(n!)
γnpr (x)

and

νp(
(npr)!

(pr!)n(n!)
) = 0

shows that the coefficient is a unit in Z(p). This proves part (a).

Part (b) follows from the fact that, if 0 ≤ i < pr, then

γkpr (x)γi(x) =

(
kpr + i

i

)
γkpr+i(x) = uγkpr+i(x)

where u is a unit in Z(p). �
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Setting p = 2 and r = 1 gives Corollary 4.4.6, that there is a fibration
sequence localized at 2,

S2n → ΩS2n+1 h−→ ΩS4n+1.

We leave the next lemma as an exercise

Lemma 5.1.8. With ground ring Z(p):

(a) {γpk(x)}p = puγpk+1(x) where u is a unit.

(b) i < p implies that {γpk(x)}i = vγipk(x) where v is a unit.

(c) If n = i0 + i1p+ i2p
2 + · · ·+ ikp

k is the p-adic expansion with 0 ≤
ij < p for all 0 ≤ j ≤ k, then

γn(x) = uγi0(x)γi1p(x) . . . γikpk(x)

= vγ1(x)i0γp(x)i1 . . . γpk(x)ik .

where u and v are units.

If we reduce mod p, the above lemma says the following:

Proposition 5.1.9. With Z/pZ as ground ring, there is an isomorphism
of algebras with a tensor product of truncated polynomial algebras

Γ[x] =

∞⊗
k=0

P [γpk(x)]/{γpk(x)p = 0}

= P [x]/{xp = 0} ⊗ P [γp(x)]/{γp(x)p

= 0} ⊗ · · · ⊗ P [γpk(x)]/{γpk(x)p = 0} ⊗ · · · .

Exercises

(1) Prove Lemma 5.1.8.

5.2 James–Hopf invariants

The James construction leads to two definitions of Hopf invariants. They
are both natural constructions and both share with the Hilton–Hopf invari-
ants the fact that they lead to EHP fibration sequences. The Hilton–Hopf
invariants have the one advantage that they are more suited to the distribu-
tivity questions that arise in the proof of the 2-primary exponent theorem
for the homotopy groups of spheres. On the other hand, the Hopf invari-
ants that arise from the James construction have an attractive simplicity.
In order to be complete, we shall in this and in the subsequent section
present three different definitions of Hopf invariants.
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In this and subsequent sections of this chapter we shall assume that all
spaces have the homotopy type of CW complexes.

Let k be a positive integer. First we give James’ combinatorial definition
of the k−th Hopf invariant hk : J(X)→ J(X∧k) where X∧k = X ∧X ∧
· · · ∧X is the k−fold smash product. We shall denote a point in X∧k by
x1 ∧ x2 ∧ · · · ∧ xk.

Recall that J(X) = {x1x2 . . . xn|xi εX} is the free monoid generated by
X with the single relation that the basepoint ∗ of X is the unit. It has an
increasing filtration given by Jn(X) = the subspace of words of length ≤ n.

We define

hk(x1x2 . . . xn) = ∗ if n < k

= x1 ∧ x2 ∧ · · · ∧ xk if n = k

=
∏

xi1 ∧ xi2 ∧ · · · ∧ xik if n > k

where the product is taken over all length k subsequences of x1x2 . . . xn
and the product of the subsequences is taken in the lexicographic ordering.

For example,

h2(x1x2x3) = (x1x2) (x1x3) (x2x3)

h2(x1x2x3x4) = (x1x2) (x1x3) (x1x4) (x2x3) (x2x4) (x3x4)

It is easy to check that the so-called k-th combinatorial James–Hopf invari-
ant hk : J(X)→ J(X∧k) is a well defined continuous map. It is an extension
of the canonical map

hk : Jk(X)→ X∧k.

Furthermore, it is a natural transformation of functors: if f : X → Y is a
continuous pointed map, then

J(X)
hk−→ J(X∧k)

↓ J(f) ↓ J(f∧n)

J(Y )
hk−→ J(Y ∧k)

commutes.

Since

J(X)
hk−→ J(X∧k)

↑ ι ↑ ι
Jk(X)

hk−→ X∧k
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commutes, we get

Proposition 5.2.1. If H∗(X) is torsion free, the k-th combinatorial
James–Hopf invariant satisfies

hk∗(α1 ⊗ α2 ⊗ · · · ⊗ αk) = α1 ⊗ α2 ⊗ · · · ⊗ αk

where α1 ⊗ α2 ⊗ · · · ⊗ αk εH∗(J(X)) and α1 ⊗ α2 ⊗ · · · ⊗ αk εH∗(Xk)).

We always have that the composition

Jk−1(X)
ι−→ J(X)

hk−→ J(X∧k)

is the trivial map to the basepoint. It is natural to ask when it is a fibration
sequence up to homotopy.

Consider the case k = 2 and X = Sn. Although we used the second Hilton–
Hopf invariant in the previous chapter, the very same arguments show that
the second combinatorial James–Hopf invariant satisfies:

Sn = J1(Sn)
ι−→ J(Sn)

h2−→ J(S4n)

is a fibration sequence up to homotopy if n is odd and a fibration sequence
up to homotopy localized at 2 if n is even.

Consider the case k = pr where p = a prime and X = S2n. If we localize at
p, then Proposition 5.1.7 shows that the pr-th combinatorial James–Hopf
invariant makes H∗(J(S2n) into a free H∗(J(S2npr )) module, that is, there
is an isomorphism of H∗(J(S2npr )) modules:

H∗(J(S2n) ∼= H∗(J(S2npr ))⊗H∗(Jpr−1(S2n))

Proposition 4.4.2 shows that Jpr−1(S2n) has the homotopy type of the
homotopy theoretic fibre of hpr . Hence we get the James fibration sequences
at the prime p:

Proposition 5.2.2. Localized at a prime p the combinatorial James–Hopf
invariant gives fibration sequences up to homotopy

Jpr−1(S2n)
ι−→ J(S2n)

hpr−−→ J(S2npr ).

Another construction of Hopf invariants starts with the splitting of the
suspension of a product:

Recall that, for connected X and Y , there is a homotopy equivalence

Σ(X × Y )→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).
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Hence the map Σ(X × Y )→ Σ(X ∧ Y ) has a section (right inverse) Σ(X ∧
Y )→ Σ(X × Y ). If we iterate this in the following way

Σ(X1 ×X2 × · · ·Xk−1 ×Xk)→ Σ(X1 ×X2 × · · ·Xk−1) ∧Xk

→ Σ(X1 ×X2 × · · ·Xk−2) ∧Xk−1 ∧Xk

→ · · · → ΣX1 ∧X2 ∧ · · ·Xk−1 ∧Xk

then we get a map

Σ(X1 ×X2 × · · ·Xk−1 ×Xk)→ Σ(X1 ∧X2 ∧ · · ·Xk−1 ∧Xk)

with a section.

Now consider the natural surjections

X ×X × · · · ×X → Jk(X)→ X ∧X ∧ · · · ∧X.

Since there is a section the cofibration sequence

ΣJk−1(X)→ ΣJ(X)→ Σ(X ∧X ∧ · · · ∧X)

is split, and we get

Lemma 5.2.3. For connected X, there is a homotopy equivalence

ΣJk−1(X) ∨ Σ(X∧k)→ ΣJk(X).

Iteration of this decomposition yields

The James splitting 5.2.4. For connected X and all positive integers n,
there is a homotopy equivalence

n∨
k=1

Σ(X∧k)→ ΣJn(X).

This result is also valid for n =∞.

But the above lemma also implies that any map ΣJk(X)→ Y extends to
a map ΣJ(X)→ Y . In particular, the map ΣJk(X)→ ΣX∧k extends to
a map H : ΣJ(X)→ ΣX∧k. Note that H restricts to the trivial map on
ΣJk−1(X).

We define the k-th decomposition James–Hopf invariant hk to be the com-
posite

J(X)
Σ−→ ΩΣJ(X)

ΩH−−→ ΩΣ(X∧k).

We have a lemma which is similar to Proposition 5.2.1:
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Lemma 5.2.5. If H∗(X) is torsion free, then the decomposition James–
Hopf invariant satisfies

hk∗(α1 ⊗ α2 ⊗ · · · ⊗ αk) = α1 ⊗ α2 ⊗ · · · ⊗ αk

where α1 ⊗ α2 ⊗ · · · ⊗ αk εH∗(J(X)) and α1 ⊗ α2 ⊗ · · · ⊗ αk εH∗(Xk)).

Proof: It follows from the commutative diagram

J(X)
Σ−→ ΩΣJ(X)

ΩH−−→ ΩΣX∧k

↑ ↑ ↑
Jk(X)

Σ−→ ΩΣJk(X) → ΩΣX∧k

↑= ↑ Σ ↑ Σ
Jk(X) ← Jk(X) → X∧k.

�

Just as with the pr-th combinatorial James–Hopf invariant, this lemma
implies

Proposition 5.2.6. Localized at a prime p, there is a fibration sequence
up to homotopy

Jp−1(S2n)→ J(S2n)
hpr−−→ ΩΣS2npr

where hpr is the pr-th decomposition James–Hopf invariant.

Exercises

(1) Show that, up to homotopy equivalence localized at a prime p, the loops
on the pr-th combinatorial James–Hopf invariant Ωhpr is the same as
the loops on the pr-th decomposition James–Hopf invariant Ωhpr .

(2) (a) Show that the section Σ(X ∧ Y )→ Σ(X × Y ) is a natural trans-
formation in the homotopy category.

(b) Show that the section Σ(X1 ∧X2 ∧ · · · ∧Xk)→ Σ(X1 ×X2 ×
· · · ×Xk) is a natural transformation in the homotopy category.

(c) Show that the James splitting is natural in the homotopy category.

(d) Show that the k-th decomposition James–Hopf invariant hk :
J(X)→ ΩΣX∧k is a natural transformation in the homotopy cat-
egory.

(3) (a) Show that, localized at a prime p, the p-th James–Hopf invariant
hp : ΩS3 → ΩS2p+1 restricts to a map

h : Ω(S3〈3〉)→ ΩS2p+1
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with the homotopy theoretic fibre of h equal to S2p−1. (It does not
matter whether hp is the combinatorial James–Hopf invariant, the
decomposition James–Hopf invariant, or the Hilton–Hopf invariant
of the next section.)

(b) If p = 2 show that the inclusion S2p−1 → Ω(S3〈3〉) is the adjoint
of η.

(c) If p is an odd prime, show that the inclusion S2p−1 → Ω(S3〈3〉) is
the adjoint of α1.

5.3 p-th Hilton–Hopf invariants

In this section we show that the Hilton–Hopf invariants can also be used
to obtain James fibration sequences localized at a prime p.

If A is a co-H-space, the p-th Hilton–Hopf invariant is a map

hp : ΩΣA→ ΩΣ(∧pA).

More precisely, let {ι1, ι2} generate the Hall basis

{ι1, ι2, [ι1, [ι1, ι2]], . . . , ad(ι1)p−1(ι2), . . . }.

It does not much matter in which order the elements occur. The important
thing is that the element ad(ι1)p−1(ι2) occurs.

Definition 5.3.1. The p-th Hilton–Hopf invariant is hp = had(ι1)p−1(ι2).

Thus, hp is the composition

ΩΣA
ΩΣ(ι1+ι2)−−−−−−→ ΩΣ(A ∨A)

Θ−1

−−→ ΩΣA× ΩΣA× · · · × ΩΣ(∧pA)× · · ·
pad(ι1)p(ι2)−−−−−−−→ ΩΣ(∧pA),

where the last map is the projection on a factor of the product.

We need to investigate the homological properties of this map, at least in
the case of A = S2n with mod p coefficients. To this end we present some
identities which hold mod p. Our presentation follows the presentation by
Jacobson in his book on Lie algebras.

Let F be a field of characteristic p and consider the polynomial algebra
F [x, y] generated by two commuting variables x, y. We begin with the famil-
iar identity

(x− y)p = xp − yp.
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We can factor

xp − yp = (x− y)(Σp−1
i=0x

iyp−1−i)

and thus

(x− y)p−1 = Σp−1
i=0x

iyp−1−i.

Now consider the tensor algebra T = T [z, w] generated by two noncom-
muting variables z, w over the field F. We have two commuting operators
zR, zL on T given by right multiplication by z, that is, zR(a) = az, and by
left multiplication by z, that is, zL(a) = za for all a εT. We note that

(zL − zR)(a) = za− az = [z, a] = ad(z)(a).

Thus,

(zL − zR)p = (zL)p − (zR)p = (zp)L − (zp)R

and

(zL − zR)p−1 = Σp−1
i=0z

i
Lz

p−1−i
R .

In other words,

ad(z)p(w) = ad(zp)(w)

and

ad(z)p−1(w) = Σp−1
i=0z

iwzp−1−i.

The following identity is the key to the homological properties of p- th
Hilton–Hopf invariants:

Lemma 5.3.2.

(z + w)p = zp + wp + Σp−1
i=0Pi(z, w)

where iPi(z, w) = the coefficient of ti−1 in ad(z + tw)p−1(w).

Proof: Introduce the commuting variable t and write the more general for-
mula

(z + tw)p = zp + tpwp + Σp−1
i=0 t

iPi(z, w)

where Pi(z, w) is a polynomial with weights p− i and i in the noncommut-
ing variables z and w. Differentiate this formula using the product rule

d

dt
(fg) =

df

dt
g + f

dg

dt

and thus

d

dt
(fp) = Σp−1

i=0f
i df

dt
fp−1−i.
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We get

ad(z + tw)p−1(w) = Σp−1
i=0(z + tw)iw(z + tw)p−1−i = Σp−1

i=0 t
i−1iPi(z, w).

�

In particular, when p = 2:

P1(z, w) = [z, w]

and when p = 3:

P1(z, w) = [z, [z, w]], 2P2(z, w) = [w, [z, w]]

On the other hand, for all p it is clear that:

P1(z, w) = ad(w)p−1(z)

Corollary 5.3.3. The map induced by the p-th Hilton–Hopf invariant in
mod p homology,

hp∗ : H∗(ΩΣS2n) = T [u2n]→ H∗(ΩΣS2np) = T [u2np]

satisfies hp∗(x
p
2n) = x2np.

Proof: If ι1∗u2n = z, ι2∗u2n = w, we compute

hp∗(x
p
2n) = (pad(ι1)p−1(ι2))∗(Θ

−1)∗(z + w)p

and note that (Θ−1)∗ writes (z + w)p in terms of the Hall basis (and prod-
ucts thereof if necessary) while (pad(ι1)p−1(ι2))∗ has the effect of picking off
the coefficient of the ad(z)p−1(w) term and making it the coefficient of u2np.
Hence, the result folows from Lemma 5.3.2. �

Now it is immediate that

Corollary 5.3.4. Localized at a prime p, the p-th Hilton–Hopf invariant
hp : ΩΣS2n → ΩΣS2np makes the cohomology of the domain into a free
module with basis {1, γ1(x), γ2(x), . . . , γp−1(x)} over the cohomology of the
range. Thus there is a fibration sequence up to homotopy localized at p,

F → ΩΣS2n hp−→ ΩΣS2np

where F ' Jp−1(S2n) is the localization of the p− 1 skeleton of ΩΣS2n.

Exercises

(1) Show that, up to homotopy equivalence at a prime p, the loops on all of
the three p-th Hopf invariants (the combinatorial, the decomposition,
and the Hilton) are the same.
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5.4 Loops on filtrations of the James construction

Let p be an odd prime. The James fibrations at the prime p encourage
further study of the spaces Jp−1(S2n). We shall show that, up to homotopy,
there exist Toda fibration sequences localized at p of the form

S2n−1 → ΩJp−1(S2n)
H−→ ΩS2np−1.

If we combine the Toda fibration sequences with the loop of the James
fibration sequences we get a factorization of the double suspension

S2n−1 → ΩJp−1(S2n) → Ω2S2n+1

↓ H ↓ Ωhp
ΩS2np−1 Ω2S2np+1

which we can use to obtain results on the p-primary components of the
homotopy groups of spheres. In particular, we shall eventually use these to
prove Toda’s p-primary exponent theorem.

We begin by computing the homology localized at p of the loop space.

Proposition 5.4.1. Localized at a prime p, there is an isomorphism of
Hopf algebras

H∗(ΩJp−1(S2n)) ∼= E[x2n−1]⊗ Γ[y2np−2]

where E[x2n−1] is the exterior algebra on a primitive generator x2n−1 of
degree 2n− 1 and Γ[y2np−2] is the divided power algebra on a primitive
generator y2np−2 of degree 2np− 2.

Proof: Consider the cohomology Serre spectral sequence of the path space
fibration sequence

ΩJp−1(S2n)→ PJp−1(S2n)→ Jp−1(S2n).

Of course, it must abut to the cohomology of the acyclic path space and
this has consequences for the cohomology ring H∗(ΩJp−1(S2n)).

The cohomology ring H∗(Jp−1(S2n)) is a truncated divided power algebra
spanned by

{1, γ1(x2n), γ2(x2n), . . . , γp−1(x2n)}.

The idea of the proof is to show that there is a unique acyclic algebra

E2 = E[x2n−1]⊗ Γ[y2np−2]⊗H∗(Jp−1(S2n))

with differentials

d2n(x2n−1) = x2n = γ1(x2n), d2np−2n(y2np−2) = x2n−1γp−1(x2n).

Here are the details.
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There exists

x2n−1 εH
2n−1(ΩJp−1(S2n)),

which transgresses to γ1(x2n) = x2n, that is,

d2n(x2n−1) = x2n.

This is the first nontrivial element in the reduced cohomology of the fibre.

Thus,

d2n(x2n−1γi(x2n)) = (i+ 1)γi+1(x2n).

In particular,

d2n(x2n−1γp−1(x2n)) = 0

and there exists y2np−2 εH
2np−2(ΩJp−1(S2n)) such that

d2np−2n(y2np−2) = x2n−1γp−1(x2n).

This is the second nontrivial element in the reduced cohomology of the
fibre.

It follows that

d2n(y2np−2x2n−1) = y2np−2x2n

and hence y2np−2x2n−1 6= 0. This is the third nontrivial element in the
reduced cohomology of the fibre.

Furthermore,

d2np−2(y2
2np−2) = 2y2np−2x2n−1γp−1(x2n).

There must exist a nonzero element

1

2
y2

2np−2 = γ2(y2np−2)

such that

d2np−2n(γ2(y2np−2) = y2np−2x2n−1 = γ1(y2np−2)x2n−1.

As before,

d2n(γ2(y2np−2)x2n−1) = γ2(y2np−2)x2n

and it follows that γ2(y2np−2)x2n−1 6= 0. It is the fourth nontrivial element
in the reduced cohomology of the fibre.

Once again,

d2np−2(γ1(y2np−2)γ2(y2np−2)) = 3γ2(y2np−2)x2n−1γp−1(x2n).
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There must exist a nonzero element

1

3
γ1(y2np−2)γ2(y2np−2) = γ3(y2np−2)

such that

d2np−2n(γ3(y2np−2)) = γ2(y2np−2)x2n−1.

Continuing in this way, we see that the divided powers γi(y2np−2) exist in
H(2np−2)i(ΩJp−1(S2n)) and satisfy

d2np−2n(γi(y2np−2) = γi−1(y2np−2)x2n−1.

The elements

{1, γ1(y2np−2), . . . , γi(y2np−2), . . . ;

x2n−1, γ1(y2np−2)x2n−1, . . . , γi(y2np−2)x2n−1, . . . }

are nonzero and form a basis for H∗(ΩJp−1(S2n)).

Finally, we see that the elements x2n−1 and y2np−2 are primitive for obvious
dimension reasons. �

Since the previous result is valid over an integral domain Z(p) of character-
istic zero, it follows that the comultiplication is completely determined in
the Hopf algebra H∗(ΩJp−1(S2n)) and we get

Proposition 5.4.2. Localized at a prime p, there is an isomorphism of
Hopf algebras

H∗(ΩJp−1(S2n)) ∼= E[u2n−1]⊗ P [v2np−2]

where E[u2n−1] is the exterior algebra on a primitive generator u2n−1 of
degree 2n− 1 and P [v2np−2] is the polynomial algebra on a primitive gen-
erator v2np−2 of degree 2np− 2.

5.5 Toda–Hopf invariants

In this section we construct the Toda–Hopf invariants H : ΩJp−1(S2n)→
ΩS2np−1. First of all we recall a basic result.

Proposition 5.5.1. The homotopy theoretic fibre of the inclusion

A ∨B → A×B

is the join of the loop spaces (ΩA) ∗ (ΩB).

Proof: The homotopy theoretic fibre F is the space of paths in A×B which
begin in A ∨B and end at the basepoint (∗, ∗). This is the union of the
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paths which begin in A× ∗ and end at (∗, ∗) with the paths which begin
in ∗ ×B and end at (∗, ∗). In other words, F is the union

(PA× ΩB) ∪ (ΩA× PB)

with intersection

ΩA× ΩB.

Thus F is the homotopy pushout

ΩA× ΩB → ΩA
↓ ↓

ΩB → F.

Hence up to homotopy F is the join (ΩA) ∗ (ΩB). �

We also record:

Lemma 5.5.2. There is a homotopy equivalence A ∗B '−→ Σ(A ∧B).

Proof: Represent A ∗B as the strict pushout

A×B → CA×B
↓ ↓

A× CB → A ∗B.

If we collapse the contractible subspace CA ∨ CB to a point, we get the
strict pushout

A ∧B → CA ∧B
↓ ↓

A ∧ CB → (A ∗B)/(CA ∨ CB).

But this has the homotopy type of the pushout

A ∧B → C(A ∧B)
↓ ↓

C(A ∧B) → Σ(A ∧B).

Thus A ∗B ' (A ∗B)/(CA ∨ CB) ' Σ(A ∧B). �

If we multiply the maps ΩA→ Ω(A ∨B) and ΩB → Ω(A ∨B), we get a
section to the map

Ω(A ∨B)→ Ω(A×B) = (ΩA)× (ΩB).

Therefore, up to homotopy we have an equivalence.

Lemma 5.5.3.

Ω(A ∨B)
'−→ (ΩA)× (ΩB)× ΩΣ(ΩA ∧ ΩB).
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We can now define the pre-Toda–Hopf invariant as follows:

Since Jp−1(S2n) = Jp−2(S2n) ∪ e2n(p−1), we can pinch the top cell in half
and get a map

T : Jp−1(S2n)→ Jp−1(S2n) ∨ S2n(p−1).

The pre-Toda–Hopf invariant is the composition

H = π ◦ ΩT : Ω(Jp−1(S2n)) → Ω(Jp−1(S2n) ∨ S2n(p−1))

π−→ ΩΣ(ΩJp−1(S2n) ∧ ΩS2n(p−1)),

where π is the projection in the product decomposition Lemma 5.5.3.

Since we have the evaluation natural transformations ΣΩA→ A, we get a
composition of evaluation maps

R : Σ(ΩJp−1(S2n) ∧ ΩS2n(p−1))→ (ΩJp−1(S2n) ∧ S2n(p−1))

→ Jp−1(S2n) ∧ S2n(p−1)−1.

The James splitting

ΣJp−1(S2n)
'−→

p−1∨
i=1

ΣS2ni

allows us to project to the bottom sphere

Jp−1(S2n) ∧ S2n(p−1)−1 q−→ S2np−1.

Finally, we can state

Definition 5.5.4. The Toda–Hopf invariant is the composition H = Ωq ◦
ΩR ◦H :

ΩJp−1(S2n)
ΩT−−→ Ω(Jp−1(S2n) ∨ S2n(p−1))

π−→ ΩΣ(ΩJp−1(S2n) ∧ ΩS2n(p−1))

ΩR−−→ Ω(Jp−1(S2n) ∧ S2n(p−1)−1)

Ωq−→ ΩS2np−1.

We claim that

Lemma 5.5.5. Localized at p, the Toda–Hopf invariant makes the coho-
mology ring

H∗(ΩJp−1(S2n)) = E[x2n−1]⊗ Γ[y2np−2]
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into a free module with basis {1, x2n−1} over the the cohomology ring

H∗(ΩS2np−1) = Γ[y2np−2].

Proof: It is sufficient to show that H∗(y2np−2) = y2np−2.

We begin by determining

π∗ ◦ (ΩR)∗ ◦ (Ωq)∗(y2np−2) = y.

But this is the generator of the cohomology in dimension 2np− 2 of the
factor ΩΣ(ΩJp−1(S2n) ∧ ΩS2n(p−1)) in the product decomposition

Ω(Jp−1(S2n) ∨ S2n(p−1)) ' ΩJp−1(S2n)× ΩS2n(p−1)

×ΩΣ(ΩJp−1(S2n) ∧ ΩS2n(p−1)).

The cohomology ring of Jp−1(S2n ∨ S2n(p−1) has a basis

{1, x = x2n = γ1(x2n), . . . , γp−1(x2n), e = e2n(p−1)}

with xγp−1(x) = 0 = xe. In the cohomology Serre spectral sequence of the
path space fibration of the bouquet Jp−1(S2n) ∨ S2n(p−1) we have a trans-
gression

d2n(x2n−1) = x2n

and the class y is determined by

d2np−2n(y) = x2n−1e.

Recall that, in the cohomology Serre spectral sequence of the path space
fibration of Jp−1(S2n) we have a transgression

d2n(x2n−1) = x2n

and the class y2np−2 is determined by

d2np−2n(y2np−2) = x2n−1γp−1(x2n).

The map T : Jp−1(S2n)→ Jp−1(S2n) ∨ S2n(p−1) induces a map of cohomol-
ogy Serre spectral sequences of the path space fibrations and we have that

T ∗(x2n) = x2n, T
∗(γi(x2n)) = γi(x2n), T ∗(e) = γp−1(x2n)

(ΩT )∗(x2n−1) = x2n−1
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and thus

d2np−2nH
∗(y2np−2) = d2np−2n(ΩT )∗(y)

= T ∗d2np−2n(y)

= (ΩT )∗x2n−1 T ∗e

= x2n−1γp−1(x2n).

Hence, H∗(y2np−2) = y2np−2. �

As before the above proposition gives a corollary. These are the Toda fibra-
tions:

Proposition 5.5.6. Localized at a odd prime p, the Toda–Hopf invariant
H gives fibration sequences up to homotopy

S2n−1 → ΩJp−1(S2n)
H−→ ΩS2np−1.

We note that it is immediate that the Toda–Hopf invariant satisfies the
following naturality condition:

Lemma 5.5.7. If k : S2n → S2n is the degree k map, then the following
diagram commutes

S2n ι−→ ΩJp−1(S2n)
H−→ ΩS2np−1

↓ k ↓ Jp−1(k) ↓ Ωkp

S2n ι−→ ΩJp−1(S2n)
H−→ ΩS2np−1.

5.6 Toda’s odd primary exponent theorem

In this section we prove Toda’s odd primary exponent theorem: If p is an
odd prime, then p2n annihilates the p-primary component of πk(S2n+1) for
all k.

We start with some preliminary observations. Localized at an odd prime,
S2n+1 is an H-space. The simplest way to see this is that, localized away
from 2, we have a homotopy equivalence

ΩS2n+2 ' S2n+1 × ΩS4n+3.

The result follows by noting that any retract of an H-space is also an H-
space.

In addition, localized at an odd prime, we can identify the degree k map
as a k-th power map k : S2n+1 → S2n+1. Since the two multiplications on
ΩS2n+1 are homotopic, it follows that the following are homotopic: Ω(k) '
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k : ΩS2n+1 → ΩS2n+1. Furthermore, any iterated loop on a degree k is
also a k-th power map. This is different from the case of localization at the
prime 2 when it is important to distinguish between k-th powers and maps
induced by the degree k map.

John Moore’s geometric formulation of Toda’s result is the following.

Proposition 5.6.1. Localized at a odd prime p, there exists a factorization
of the p2-nd power map

p2 : Ω3S2n+1 π−→ ΩS2n−1 Ω(Σ)−−−→ Ω3S2n+1.

We point out the following immediate corollaries.

Corollary 5.6.2. Localized at a odd prime p, there exists a factorization
of the p2n power map

p2n : Ω2n+1S2n+1 τ−→ ΩS1 Ω(Σ2n)−−−−→ Ω2n+1S2n+1.

Corollary 5.6.3. If S2n+1〈2n+ 1〉 is the 2n+ 1 connected cover and
we localize at an odd prime p, the p2n power map is null homotopic on
Ω2n+1(S2n+1〈2n+ 1〉) and thus all the homotopy groups are annihilated by
p2n.

Proof of 5.6.1: We can use any of three Hopf invariants but the p-th com-
binatorial James–Hopf invariant hp is most transparently natural in the
sense that the following commutes:

Ω3S2n+1 Ω2hp−−−→ Ω3S2np+1

↓ p ↓ pp

Ω3S2n+1 Ω2hp−−−→ Ω3S2np+1.

Let α : X → Ω3S2n+1 be any map. Then

(Ω2hp) ◦ p ◦ α = pp ◦ (Ω2hp) ◦ α.

Since Ω2hp is certainly an H-map, it commutes with power maps and
inverses and therefore,

Ω2hp ◦ (pp − p) ◦ α = 0.

It follows from the James fibration sequence that there exists

(pp − p) ◦ α = Ω2(σ) ◦ β

where

σ : Jp−1(S2n)→ ΩS2n+1
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and

β : X → Ω2Jp−1(S2n).

We also have the naturality of the loops of the Toda fibrations:

Ω2Jp−1(S2n)
ΩH−−→ Ω2S2np−1

↓ Ω2Jp−1(p) ↓ pp

Ω2Jp−1(S2n)
ΩH−−→ Ω2S2np−1

Thus

pp ◦ ΩH = ΩH ◦ Ω2Jp−1(p)

and

ΩH ◦ pp = ΩH ◦ Ω2Jp−1(p).

It follows that there exists a factorization

(pp − Ω2Jp−1(p)) ◦ β = Ω(τ) ◦ γ

where

τ : S2n−1 → ΩJp−1(S2n)

and

γ : X → ΩS2n−1.

Hence Ω2(σ) ◦ Ω2Jp−1(p) = p ◦ Ω2(σ) implies that

Ω2(σ) ◦ Ω(τ) ◦ γ = Ω2(σ) ◦ (pp − Ω2Jp−1(p)) ◦ β

= (pp − p) ◦ Ω2(σ) ◦ β

= (pp − p) ◦ (pp − p) ◦ α

= p2 ◦ (pp−1 − 1)2 ◦ α.

Finally, since (pp−1 − 1) : ΩS2n+1 → ΩS2n+1 is a homotopy equivalence,
there exists α : Ω3S2n+1 → Ω3S2n+1 such that

(pp−1 − 1)2 ◦ α = 1

and we conclude that

Ω2(σ) ◦ Ω(τ) ◦ γ = p2

which was to be demonstrated. �



6 Samelson products

The first step in studing self maps of cyclic Moore spaces, Pm(k) =
Pm(Z/kZ), is to look at what is induced in mod k homology. If the map
induces 0 in mod k homology then it will factor through the homotopy theo-
retic fibre Fm{k} of the pinch map q : Pm(k)→ Sm. We begin this chapter
by studying the homology of the fibre of the pinch map and then use it to
determine the homotopy classes of self maps of cyclic Moore spaces.

We use the results on self maps to determine the precise exponents of the
homotopy groups with cyclic coefficients. Furthermore, if the self map of
a Moore space k : Pm(k)→ Pm(k), that is, k times the identity, is null
homotopic, it implies that the smash products Pm(k) ∧ Pn(k) have the
homotopy type of a bouquet, Pm+n(k) ∨ Pm+n−1(k).

These decompositions of smash products into bouquets are uniquely deter-
mined up to compositions with Whitehead products by the decomposition
of the mod k homology of the smash into a direct sum. In order to see
this, we use the fact that, if p is an odd prime, then the odd-dimensional
Moore space P 2n+1(pr) is equivalent modulo Whitehead products through
a range of dimensions with the fibre S2n+1{pr} of the degree pr map
pr : S2n+1 → S2n+1. Surprisingly, we also have the stronger result that the
spaces ΩP 2n+2(pr) and S2n+1{pr} are equivalent through all dimensions
up to compositions with multiplicative extensions of Samelson products.

In the case of maps out of spheres, George Whitehead was the first to real-
ize that the Lie identities for Samelson products were consequences of Lie
identities for commutators in groups. [133, 134] With slight modifications,
his treatment yields Lie identities for more general (external) Samelson
products. When these external Samelson products are combined with cer-
tain decompositions of smash products, the result is a theory of internal
Samelson products which makes homotopy with coefficients into a graded
Lie algebra, at least if the coefficients are Z/prZ with p a prime greater
than 3. [99]

The adjoint relation between Samelson products and Whitehead products
was first established by Hans Samelson. [111] The homology suspension was

164
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studied by George Whitehead [134] and John Moore [95]. One application
of this is to the proof that Whitehead products vanish in homology with
any coefficients.

We give a brief treatment of group models for loop spaces. Hans Samelson
first pointed out the connection between the H-space structure of the loop
space and the multiplication in the group of an acyclic principle bundle.
John Milnor [86] was the first to produce a group model for the loop space
but, in order to achieve full functoriality, it is necessary to use the simplicial
loop group introduced by Dan Kan. [69, 81]

These group models for loop spaces enable us to eliminate some of the
homotopies in the definition of Samelson products. In fact, with these mod-
els, the external Samelson products are exactly the same as the commuta-
tors in the group of maps. This simplification makes possible a treatment
of relative Samelson products for fibration sequences.

Suppose we have a fibration sequence of loop spaces. Then the Samelson
product of homotopy classes with one in the total space and one in the
fibre can be regarded as a relative Samelson product in the fibre. This is
almost automatic. The group models for loop spaces allow one to replace
the fibre by the kernel of the map from the total space to the base space.
Then this relative Samelson product is the geometric version of the fact
that a normal subgroup is closed under commutators with all elements of
the larger group. It is only a little harder to show that it can be done in such
a way that the crucial identities of bilinearity, anti-symmetry, the Jacobi
identity, and the derivation formula for Bocksteins remain valid for these
relative Samelson products. (Of course, in homotopy theory with mod 3
coefficients, the Jacobi identity is not always valid.)

We also give a treatment of relative Samelson products via universal mod-
els. These universal models reduce the theory of relative Samelson products
to the usual theory of Samelson products in loop spaces. Universal models
also make possible a theory of relative Samelson products when the base of
a loop space fibration sequence is the loops on an H-space. In this case, the
relative Samelson product lands in the homotopy of the fibre even if both
of the classes are in the total space. Again, this is an almost automatic
consequence of the fact that the base, being the loops on an H-space, is
homotopy commutative. This is a loose analog of the algebraic fact that
commutators always land in a normal subgroup if the quotient group is
abelian. But, since this is only a loose analog, it is not automatic that it
can be done in such a way that the crucial identities remain valid.

Relative Samelson products have a relation to the usual Samelson prod-
ucts that is similar to the relation of relative cup products to the usual cup
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products in cohomology. Recall that relative cup products are bilinear pair-
ings Hn(X,A)⊗Hm(X,B)→ Hn+m(X,A ∪B) of the cohomology groups
of pairs. These are related via naturality to the usual cup product pairings
of spaces. That is, on the cochain level, these relative products are com-
pressions of the usual cup products into subspaces of the cochains. These
relative pairings satisfy the usual properties of associativity and (graded)
commutativity. For cup products, we have the advantage of definitions via
cochains. Associativity is true on the cochain level and commutativity can
be proved with the help of acyclic models to get natural cochain homo-
topies.

For relative Samelson products, especially in the case of those over the loops
on an H-space, we have nothing like cochains or an acyclic model theorem.
Instead, we have the Hilton–Milnor theorem which allows us to use univer-
sal models and the usual theory of nonrelative Samelson products to both
define relative Samelson products and to prove that they satisfy the usual
identities of bilinearity, anti-symmetry, the Jacobi identity, and the deriva-
tion formula for Bocksteins. In the case of relative Samelson products over
the loops on an H-space, there is a twisting of the anti-symmetry identity
which disappears when the base is the loops on a homotopy commutative
H-space. Localized at odd primes, this is not a problem since multiplications
on H-spaces can be replaced by homotopy commutative multiplications.

I want to take this opportunity to thank Brayton Gray for resurrecting my
faith in universal models for relative Samelson products.

6.1 The fibre of the pinch map and self maps of Moore spaces

Let k be an integer and let Pm(k) = Pm(Z/kZ) = Sm−1 ∪k em,m ≥ 3, be
a cyclic Moore space. Recall the pinch map q : Pm(k)→ Sm and its homo-
topy theoretic fibre Fm{k}. The exercises in Section 4.8 assert the following.

Proposition 6.1.1. The integral homology groups H∗(F
m{k}) are torsion

free and

H∗(F
m{k}) =

{
Z if ∗ = s(m− 1), s > 0

0 otherwise.

In order to investigate this further, we note that the fibration sequence

Fm{k} → Pm(k)→ Sm
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has a translate which is a principle bundle sequence

ΩSm
ι−→ Fm{k} → Pm(k)

with a right action

µ : ΩSm × Fm{k} → Fm{k}.

The next result determines the coalgebra structure on the homology of the
fibre of the pinch map.

Proposition 6.1.2.

(a) The map ι∗ : H∗(ΩS
m)→ H∗(F

m{k}) is a monomorphism.

(b) In each nonzero positive degree s(m− 1), the image of ι∗ has index
k. In other words, if we let um−1 be a generator of Hm−1(ΩSm) and
if we abuse notation by also writing um−1 = ι∗(um−1) for its image
in Hm−1(Fm{k}), then H∗(F

m{k}) has a basis

1,
um−1

k
,
u2
m−1

k
,
u3
m−1

k
, . . . ,

ukm−1

k
, . . . .

(c) Thus, if an = unm−1/k, n ≥ 1, is the basis for the reduced homology
H∗(F

m{k}), we have the formula for the diagonal

∆(an) = an ⊗ 1 + 1⊗ an +
∑

i+j=n,i>0,j>0

k(i, j)ai ⊗ aj .

Proof: Consider the integral homology Serre spectral sequence of the prin-
cipal bundle sequence ΩSm

ι−→ Fm{k} → Pm(k).

We note that

E2
s,∗
∼= Hs(P

m(k);H∗(ΩS
m))

∼=


Z⊗H∗(ΩSm) ∼= T (um−1) if s = 0

Z/kZ⊗H∗(ΩSm) ∼= em−1T (um−1) if s = m− 1

0 otherwise.

where em−1εHm−1(Pm(k)) is a generator.

Furthermore, the entire spectral sequence is a right module over the homol-
ogy algebra H∗(ΩS

m) ∼= T (um−1).

Since this spectral sequence is confined to two vertical lines, it is easy to
see that it collapses.

Since we already know that H∗(F
m{k} is either 0 or infinite cyclic, we

conclude that the image of ι∗ has index k in every nonzero positive degree.
The proposition follows. �
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Let Km(k) be the kernel of the mod k Hurewicz map φ :
πm(Pm(k);Z/kZ)→ Hm(Pm(k);Z/kZ).

Lemma 6.1.3. If m ≥ 3 and f : Pm(k)→ Pm(k) is a map which repre-
sents a class in Km(k), then f induces the 0 map on all nontrivial mod k
homology groups and there is a factorization

f : Pm(k)→ Sm
f
−→ Sm−1 → Pm(k)

where Pm(k)→ Sm is the pinch map onto the top cell and Sm−1 → Pm(k)
is the inclusion map of the bottom cell.

Proof: We may assume f to be skeletal and hence that it induces a map of
cofibration sequences:

Sm−1 → Pm(k) → Sm
k−→ Sm

↓ g ↓ f ↓ h ↓ Σg

Sm−1 → Pm(pr) → Sm
k−→ Sm

Since f is in Km(k), h induces 0 on mod k homology. Hence h is a map of
degree divisible by k. Since the degrees of Σg and of g are the same as the
degree of h, it follows that f induces 0 in all mod pr homology groups in
nonzero degrees.

Consider the map of the bottom cell Sm−1 → Fm{k} into the homo-
topy theoretic fibre of the pinch map Pm(k)→ Sm. Since Sm−1 → Fm{k}
induces an isomorphism of integral homology groups in dimensions less
than 2m− 2, it induces an isomorphism of homotopy in dimensions less
than 2m− 3 and an epimorphism in homotopy in dimensions less than
2m− 2.

If f is in Km then f factors through Fm{k} and since m < 2m− 2, f
factors through a map f : Pm(k)→ Sm−1. Since the restriction of f to
Sm−1 has degree 0, we have a factorization

Pm(k)→ Sm
f
−→ Sm−1 → P (k).

�

Since the homotopy classes of maps Sm → Sm−1 are well understood,
Lemma 6.1.3 gives a strong hold on the groups Km(k).

Let p be a prime. We now determine the set of homotopy classes
[Pm(pr), Pm(pr)]∗ = πm(Pm(pr);Z/prZ) for p primary Moore spaces. If
we consider self maps [k] : Pm(pr)→ Pm(pr) which are degree k on the
bottom and top cells, we see that the mod pr Hurewicz map provides an
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epimorphism

φ : πm(Pm(pr);Z/prZ)→ Hm(Pm(pr);Z/prZ)

onto the group Hm(Pm(pr);Z/prZ) ∼= Z/prZ. Consider the exact sequence

0→ Km(pr)→ πm(Pm(pr);Z/prZ)
φ−→ Z/prZ→ 0

which is a short exact sequence of groups if m ≥ 3. The main results are:

Proposition 6.1.4.

(a) K3(pr) is isomorphic to Z/prZ.

(b) If m ≥ 4 and p is an odd prime, then Km(pr) = 0.

(c) If m ≥ 4 and p = 2, then Km(2r) = Z/2Z.

Proposition 6.1.5.

(a) If m ≥ 3 and p is an odd prime, then the sequence is split.

(b) If m ≥ 3 and r ≥ 2, then the sequence is split.

(c) If m ≥ 3 and pr = 2, then the sequence is not split.

Proofs: We begin with the case m = 3.

We have that π3(S2) = Zη = the infinite cyclic group generated by the
Hopf map η. Recall that the Hopf invariant H(f) of a map F : S3 → S2 is
defined as follows:

Let the nontrivial integral cohomology of the mapping cone CF = S2 ∪F e4

be generated by classes u2 and u4 in dimensions 2 and 4, respectively.
In particular, Cη = CP 2 = the complex projective plane. We define the
integral Hopf invariant H(F ) by

u2 ∪ u2 = H(F )u4,

with orientation chosen so that H(η) = 1.

The diagram with horizontal cofibration sequences

S3 η−→ S2 → CP 2 → S4

↑ k ↑ = ↑ ↑ k
S3 kη=η◦k−−−−−→ S2 → Ckη → S4

shows that H(kη) = H(η ◦ k) = k. In other words, maps S3 → S2 are
detected by this Hopf invariant in the integral cohomology of the map-
ping cone.
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Now let f : P 3(pr)→ P 3(pr) be in K3(pr) and define the mod pr Hopf
invariant H(f) by

u2 ∪ u2 = H(f)u4,

where u2 and u4 are generators of the mod pr cohomology of the mapping
cone Cf = P 3(pr) ∪f C(P 3(pr)) in dimensions 2 and 4, respectively.

It is not hard to see that, if we have a factorization

f : P 3(pr)→ S3 F−→ S2 → P 3(pr),

then H(f) = H(F ) mod pr. So K3(pr) has at least pr elements.

On the other hand, K3(pr) is the epimorphic image of

[P 3(pr), S2]∗ = π3(S2;Z/prZ) ∼= Z/prZ

and hence K3(pr) ∼= Z/prZ. In other words, maps P 3(pr)→ P 3(pr) which
vanish in mod pr homology are detected by the mod pr Hopf invariant in
the mod pr cohomology of the mapping cone.

For example, consider the map pr : P 3(pr)→ P 3(pr). We wish to deter-
mine whether this map is null homotopic. It certainly induces 0 in mod pr

homology. We consider the cofibration sequence

S1 pr−→ S1 → P 2(pr)

and its smash with P 2(pr)

S1 ∧ P 2(pr)
pr∧1−−−→ S1 ∧ P 2(pr)→ P 2(pr) ∧ P 2(pr).

The mod pr cohomology of P 2(pr) is the free Z/prZ module generated by
classes 1, e1, e2 of dimensions 0, 1, 2, respectively. Furthermore, we know
from Steenrod and Epstein that

e1 ∪ e1 =
pr(pr + 1)

2
e2.

Thus the Künneth theorem shows that the mod pr cohomology of P 2(pr) ∧
P 2(pr) is the free Z/prZ module

〈1, e1, e2〉 ⊗ 〈1, e1, e2〉.

Setting u2 = e1 ⊗ e1, u4 = e2 ⊗ e2, we compute that

u2 ∪ u2 = −
{
pr(pr + 1)

2

}2

u4

and thus the mod pr Hopf invariant of pr : P 3(pr)→ P 3(pr) is nontrivial
only in the single case pr = 2. Therefore we have the exponent result
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Proposition 6.1.6. The maps pr : P 3(pr)→ P 3(pr) are null homotopic
if pr > 2. If pr = 2, the map is essential.

It follows that the short exact sequence

0→ K3(pr)→ π3(P 3(pr);ZprZ)
φ−→ Z/prZ→ 0

is split if pr > 2 and not split if pr = 2.

This completes the proof of Propositions 6.1.4 and 6.1.5 in the case m = 3
and p is an odd prime.

If m ≥ 4 only some minor modifications are needed in the above argument.

First of all, πm(Sm−1) ∼= Z/2Z,m ≥ 4, generated by the Hopf map η :
Sm → Sm−1. Furthermore, η is detected by the cohomology operation Sq2

in the mod 2 cohomology of the mapping cone Σm−3(CP 2).

If p is an odd prime, then localization shows that any factorization

Pm(pr)→ Sm → Sm−1 → Pm(pr)

vanishes. Hence, Km(pr) = 0 if p is odd and m ≥ 4.

If p = 2 and f : Pm(2r)→ Pm(2r) is trivial in mod 2r homology with m ≥
4, then f is essential if and only if Sq2 is nontrivial in the mod 2 cohomology
of the mapping cone Cf , that is, Sq2 : Hm−1 ∼= Hm+1.

The mod 2 cohomology of Pm(2r) has a Z/2Z basis 1, em−1, em with
Sq1(em−1) = em if r = 1 and Sq1(em−1) = 0 if r ≥ 2. Thus, in the mod
2 cohomology of P 2(2r) ∧ Pm−1(2r), the mapping cone of [2r] : Pm(2r)→
Pm(2r), the Cartan formula shows that

Sq2(e1 ⊗ em−2) = Sq1(e1)⊗ Sq1(em−2) =

{
e2 ⊗ em−1 if r = 1

0 if r ≥ 2.

Hence

Proposition 6.1.7. If m ≥ 3 the maps pr : Pm(pr)→ Pm(pr) are null
homotopic if pr > 2. (Hence, all the homotopy groups πm(X;Z/prZ) are
annihilated by pr if pr > 2 and m ≥ 3.) If pr = 2, the map is essential.

This completes the proof of Propositions 6.1.4 and 6.1.5 in all cases. �

Exercises

(1) Consider the mod k homology Serre spectral sequence of the principal

bundle sequence ΩSm
ι−→ Fm{k} → Pm(k). It is a module over the mod

k homology algebra H(ΩS
m).
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(a) Show that

E2
∗,∗
∼= H∗(P

m(k))⊗H∗(ΩSm)

∼= Z/kZ〈1, em−1, em〉 ⊗ T (um−1)

with zero differentials until dm(1) = 0, dm(em−1) = 0, dm(em) =
um−1.

(Z/kZ〈1, em−1, em〉 is the vector space generated by 1, em−1, em.)

(b) Show that Em+1
∗,∗

∼= Z/kZ〈em−1〉 ⊗ T (um−1) on the vertical line ∗ =
m− 1 and 0 otherwise except for the origin (∗, ∗) = (0, 0).

(c) Use b) above and the integral homology Serre spectral sequence
in the proof of 6.1.2 to give a new proof of 6.1.1, that is, that
H∗(F

m{k} is either infinite cyclic or 0.

(2) Consider the diagram

Sn
F−→ Sn−1

↑ ↑ =
Pn(pr) → Sn−1

↓ = ↓
Pn(pr)

f−→ Pn(pr).

(a) If n = 3 show that H(F ) = H(f) mod pr.

(b) If n ≥ 4 and p = 2, show that Sq2 is nontrivial in the mod 2 coho-
mology of the mapping cone of F if and only if it is nontrivial in
the mod 2 cohomology of the mapping cone of f .

6.2 Existence of the smash decomposition

Let

X
f−→ Y

ι−→ Cf
j−→ ΣX

Σf−−→ ΣY

be a cofibration sequence with X connected and Y simply connected. The
following lemma is an exercise. (The connectivity hypotheses are used to
check that a homology equivalence in (c) is a homotopy equivalence.)

Lemma 6.2.1. The following are equivalent:

(a) f is null homotopic.

(b) There is a retraction r : Cf → Y , that is, r ◦ ι ' 1Y .
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(c) There is a homotopy equivalence Cf → ΣX ∨ Cf
1∨r−−→ ΣX ∨ Y

where the first map is the standard coaction. (r is the retraction
in b.)

(d) There is a section s : ΣX → Cf , that is, j ◦ s ' 1ΣX .

(e) There is a homotopy equivalence s ∨ ι : ΣX ∨ Y → Cf . (s is the sec-
tion in d.)

Since Pm(pr) ∧ Pn(pr) is the mapping cone of

Sm−1 ∧ Pn(pr)
pr∧1−−−→ Sm−1 ∧ Pn(pr),

the above lemma and 6.1.7 imply:

Proposition 6.2.2. If m ≥ 2, n ≥ 2 and pr ≥ 3, there is a homotopy
equivalence

ι ∨ s : Pn+m−1(pr) ∨ Pn+m(pr)→ Pm(pr) ∧ Pn(pr).

Definition 6.2.3. We shall denote the section s by

∆m,n : Pm+n(pr)→ Pm(pr) ∧ Pn(pr).

We now describe the effect of ∆m,n in mod pr homology.

Let the reduced mod pr homology H∗(P
m(pr);Z/pr) be generated by em−1

in dimension m− 1 and em in dimension m. Associated to the exact coef-
ficient sequence

0→ Z/prZ→ Z/p2r → Z/prZ→ 0

we have the Bockstein connection βem = em−1.

Since ∆m,n is a section, we must have

∆m,n∗(em+n) = φ(∆m,n) = em ⊗ en

where φ is the mod pr Hurewicz homomorphism.

Since the Bockstein is a natural derivation, we have

∆m,n∗(em+n−1) = β(em ⊗ en)

= β(em)⊗ en + (−1)mem ⊗ β(en)

= em−1 ⊗ en + (−1)mem ⊗ en−1.
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6.3 Samelson and Whitehead products

Recall the definition of the general Samelson product for mappings into a
group-like space.

Let G be a group-like space, that is, G is a homotopy associative H-space
with multiplication µ : G×G→ G and homotopy inverse ι : G→ G. We
write

µ(x, y) = xy and ι(x) = x−1.

Then we write the commutator map [ , ] : G×G→ G as

[x, y] = µ(µ(µ(x, y), ι(x)), ι(y)) = ((xy)x−1)y−1

or, if we ignore the homotopy associativity, as

[x, y] = xyx−1y−1.

Since it is null homotopic on the bouquet, the commutator map factors as
follows:

G×G→ G ∧G [ , ]−−−−−→ G.

If f : X → G and g : Y → G are maps, then the commutator

C(f, g) = [ , ] ◦ (f × g) = fgf−1g−1 : X × Y → G×G→ G

factors up to homotopy through the map

[f, g] = [ . ] ◦ (f ∧ g) : X ∧ Y → G ∧G→ G.

Definition 6.3.1. The map [f, g] : X ∧ Y → G is called the Samelson
product of f : X → G and g : Y → G.

It is well defined up to homotopy since the sequence of cofibrations

X ∨ Y → X × Y → X ∧ Y → ΣX ∨ ΣY → Σ(X × Y )

is such that the last map has a retraction.

Observe that:

Proposition 6.3.2. The Samelson product vanishes if the range G is
homotopy commutative, for example, if G is the loops on an H-space.

Of course, Samelson products are natural with respect to maps f1 : X1 →
X, g1 : Y1 → Y , and morphisms of group-like spaces ψ : G→ H, that is,

[ψ ◦ f ◦ f1, ψ ◦ g ◦ g1] ' ψ ◦ [f, g] ◦ (f1 ∧ g1).
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Given maps f : ΣX → Z, g : ΣY → Z with respective adjoints

f : X
Σ−→ ΩΣX

Ωf−−→ ΩZ, g : X
Σ−→ ΩΣX

Ωg−→ ΩZ

we define the Whitehead product [f, g]w to be the adjoint of the Samelson
product [f, g], namely,

Definition 6.3.3. The Whitehead product [f, g]w is the composition

Σ(X ∧ Y )
Σ[f,g]−−−→ ΣΩZ e−→ Z

where e is the evaluation map (= the adjoint of the identity).

As with Samelson products, Whitehead products are natural with respect
to maps. Given

f1 : X1 → X, g1 : Y2 → Y, h : Z→ Z1

we get

[h ◦ f ◦ Σf1, h ◦ g ◦ Σg1]w ' h ◦ [f, g]w ◦ Σ(f1 ∧ g1).

Proposition 6.3.2 can be reinterpreted as:

Proposition 6.3.4. The Whitehead product vanishes when the range is
an H-space.

We claim:

Proposition 6.3.5. For f : X → ΩZ, g : Y → ΩZ, the Whitehead prod-
uct

[f, g]w : Σ(X ∧ Y )→ Z

induces the 0 map in homology with any coefficients.

Proof: For any space Z, the homology suspension σ∗ is defined as the
composition

H∗(ΩZ)
∂∼=←−− H∗+1(PZ,ΩZ)→ H∗+1(Z, ∗).

The following commutative diagram appears in George Whitehead’s book
[134]. (The cohomology version appears in John Harper’s book [50].)

H∗(ΩZ)
σ∗−→ H∗+1(Z, ∗)

↓ σ ∼= ↓ =

H∗+1(ΣΩZ)
e∗−→ H∗+1(Z).

In this diagram, σ : H∗(ΩZ)→ H∗+1(ΣΩZ) is the standard suspension iso-
morphism.
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Since σ∗ is essentially e∗, the image of σ∗ is contained in the primitive
elements and, in the 1961 Cartan Seminar [95], Moore shows the following
lemma.

Lemma 6.3.6. The homology suspension σ∗ vanishes on decomposable ele-
ments of the algebra H∗(ΩZ) and the image of σ∗ is contained in the module
of primitive elements of H∗+1(Z).

The following lemma is an exercise.

Lemma 6.3.7.

If αεH∗(X), βεH∗(Y ), then [f, g]∗(α⊗ β) is a decomposable element in
H∗(ΩZ). If α and β are primitive elements, then

[f, g]∗(α⊗ β) = f∗(α)g∗(β)− (−1)deg(α)deg(β)g∗(β)f∗(α) = [f∗(α), g∗(β)].

Now Proposition 6.3.5 follows from Whitehead’s diagram and Moore’s
lemma. �

Recall that the multiplicative extension of a map h : A→ ΩW is defined
to be the composition

ΩΣA
ΩΣh−−−→ ΩΣΩW → ΩW.

Definition 6.3.8.

(a) Given a space W and a cyclic coefficient group G, define the White-
head subgroup Wh∗(W ;G) ⊆ π∗(W ;G) to be the subgroup gener-

ated by all compositions P ∗(G)
f−→
∨

Σ(X ∧ Y )→W where f is any
map and

∨
Σ(X ∧ Y )→W is any bouquet of Whitehead products.

(b) Similarly we define the Samelson subgroup Sam∗(ΩW ;G) ⊆
π∗(ΩW ;G) to be the subgroup generated by all compositions
P ∗(G)→ ΩΣ(

∨
X ∧ Y )→ ΩW of an abitrary map with the mul-

tiplicative extension of a bouquet of Samelson products.

We leave as an exercise that Sam∗(ΩW ;G) ∼= Wh∗+1(W ;G) under the usual
isomorphism.

Proposition 6.3.5 asserts that Wh∗(W ;G) is contained in the kernel of the
Hurewicz map.

If A∗ is a graded abelian group, we shall say that a homomorphism ψ :
π∗(W ;G)→ A∗ is an isomorphism modulo Whitehead products if:

(1) φ is an actual epimorphism,

(2) ker(ψ) ⊆Wh∗(W ;G).
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Similarly, a homomorphism ξ : π∗(ΩW ;G)→ A∗ is an isomorphism modulo
Samelson products if:

(1) ξ is an actual epimorphism,

(2) ker(ξ) ⊆ Sam∗(ΩW ).

In other words, ξ is an isomorphism modulo Samelson products if and only if
the corresponding map π∗+1(W ;G) ∼= π∗(ΩW ;G)→ A∗ is an isomorphism
modulo Whitehead products.

The Hilton–Milnor theorem implies that

π∗(ΣX ∨ ΣY )→ π∗(ΣX × ΣY )

is an isomorphism modulo Whitehead products.

Exercises
(1) (a) If ι : G→ G is the homotopy inverse map of an group-like space

G, that is, ι(x) = x−1, and α is a primitive element in H∗(G), show
that ι∗(α) = −α.

(b) Prove 6.3.7 by using the definition of the commutator C(f, g) as
the composition

X × Y f×g−−→ G×G ∆×∆−−−→ G×G×G×G
1×T×1−−−−→ G×G×G×G

1×1×ι×ι−−−−−→ G×G×G×G mult−−−→ G .

(∆ is the diagonal and T is the twist map.)

(2) Show that Sam∗(ΩW ;G) ∼= Wh∗+1(W ;G) under the usual isomor-
phism.

(3) If X is a pointed space, recall that the infinite symmetric product
SP∞(X) is the free abelian monoid generated by the points of X sub-
ject to the single relation that the basepoint is the unit. The result of
Dold–Thom says that the natural inclusion ι : X → SP∞(X) induces
the integral Hurewicz map π∗(X)→ π∗(SP

∞(X)) = H∗(X). Use this
result to show that Whitehead products always induce the zero map
in integral homology.

(4) The classical definition of the Whitehead product:

(a) Let ιn+1 : Sn+1 → Sn+1 ∨ Sm+1 and ιm+1 : Sm+1 → Sn+1 ∨ Sm+1

be the standard inclusion maps. Use the Hilton–Milnor theo-
rem and the definition of the Whitehead product as the adjoint
of the Samelson product to show that the Whitehead product
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[ιn+1, ιm+1]w : Sn+m+1 → Sn+1 ∨ Sm+1 is a generator of the ker-
nel of

πm+n+1(Sn+1 ∨ Sm+1)→ πn+m+1(Sn+1 × Sm+1).

(b) Conclude that

Sn+1 × Sm+1 = (Sn+1 ∨ Sm+1) ∪[ιn+1,ιm+1]w e
m+n+2.

(c) Let f : Sn+1 → X and g : Sm+1 → X be maps. Use the naturality
of the Whitehead product to show that [f, g]w : Sn+m+1 → X is
the obstruction to an extension problem in the sense:

[f, g]w = 0

if and only if f ∨ g : Sn+1 ∨ Sm+1 → X extends to a map

Sn+1 × Sm+1 → X.

(d) Use the characterization in c) to show that [f, g] = 0 if X is an
H-space.

6.4 Uniqueness of the smash decomposition

The following spaces play an important role in this book.

Definition 6.4.1. Let k : Sm → Sm be a map of degree k on a sphere and
let Sm{k} be the homotopy theoretic fibre of k so that we have a fibration
sequence

. . .ΩSm
Ωk−−→ ΩSm

∂−→ Sm{k} → Sm
k−→ Sm.

We specialize to the case where m = 2n+ 1 is odd and where k = pr = a
power of an odd prime. Then

πq(S
2n+1{pr};Z/prZ) =

{
Z/prZ if q = 2n or q = 2n+ 1

0 if 2n+ 1 < q < 2n+ 2p− 3.

Let P 2n+1(pr)→ S2n+1{pr} be the map which induces an isomorphism of
mod pr homotopy groups in dimensions 2n and 2n+ 1. The domain is the
cofibre of a degree pr map on an sphere and the range is the homotopy
theoretic fibre. In the stable category, these are the same thing. The next
result is an unstable version of this equality. The spaces S2n+1{pr} are
excellent approximations to the Moore spaces modulo Whitehead products,
namely:

Proposition 6.4.2. Let p be an odd prime and let n ≥ 1.
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(a) The map P 2n+1(pr)→ S2n+1{pr} induces an isomorphism on mod
ps homotopy groups modulo Whitehead products in dimensions ≤
2n+ 2p− 4.

(b) If p is an odd prime, then there is a map

ΩP 2n+2(pr)→ S2n+1{pr}

which induces an isomorphism on mod ps homotopy groups modulo
Samelson products. This is valid in all dimensions.

Part (a) of the above is shown in Section 11.8 and part (b) is shown in
Section 9.2. The proofs of these facts require only the existence of Samelson
products, not their uniqueness.

Actually, the fibre of the map P 2n+1(pr)→ S2n+1{pr} is 2pn− 3 connected
modulo Whitehead products. Hence, the connection is actually stronger
than Proposition 6.4.2 indicates. But our definition means that we must
be careful not to lose the epimorphic criterion for an isomorphism modulo
Whitehead products.

The following results are immediate corollaries of the above.

Proposition 6.4.3. Let p be an odd prime.

(a) For all n ≥ 1, the Hurewicz map

φ : π∗(P
2n+2(pr);Z/psZ)→ H∗(P

2n+2(pr);Z/psZ)

is an isomorphism modulo Whitehead products in dimensions ≤
2n+ 2p− 3.

(b) For all n ≥ 1, the Hurewicz map

φ : π∗(P
2n+1(pr);Z/psZ))→ H∗(P

2n+1(pr);Z/psZ)

is an isomorphism modulo Whitehead products in dimensions ≤
2n+ 2p− 4.

These results say that, except for Whitehead products, the first nontrivial
homotopy group of the Moore space is a consequence of the first nontrivial
higher homotopy group

π2n+2p−3(S2n+1{pr}) ∼= π2n+2p−2(S2n+1;Z/prZ) ∼= Z/pZ.

The bouquet decompositions

Pm(pr) ∧ Pn(pr) ' Pm+n(pr) ∨ Pm+n−1(pr),

Pm(pr) ∧ Pn(pr) ∧ P q(pr)

' Pm+n+q(pr) ∨ Pm+n+q−1(pr) ∨ Pm+n+q−1(pr) ∨ Pm+n+q−2(pr),
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and Proposition 6.4.3 imply that the mod pr Hurewicz map is a faithful
representation in the following sense.

Corollary 6.4.4. Let p be an odd prime.

(a) If m ≥ 3, then

φ : π∗(P
m(pr);Z/psZ)→ H∗(P

m(pr);Z/psZ)

is an isomorphism modulo Whitehead products in positive dimen-
sions ≤ m.

(b) If m ≥ 2 and n ≥ 2, then

φ : π∗(P
m(pr) ∧ Pn(pr);Z/psZ)→ Hs(P

m(pr) ∧ Pn(pr);Z/psZ)

is an isomorphism modulo Whitehead products in positive dimen-
sions ≤ m+ n.

(c) If p is a prime greater than 3, and m ≥ 2, n ≥ 2, q ≥ 2, then

φ : π∗(P
m(pr) ∧ Pn(pr) ∧ P q(pr);Z/psZ)

→ H∗(P
m(pr) ∧ Pn(pr) ∧ P q(pr);Z/psZ)

is an isomorphism modulo Whitehead products in positive dimen-
sions ≤ m+ n+ q.

Thus we have

Corollary 6.4.5. Let p be an odd prime.

(a) The map ∆m,n : Pm+n → Pm(pr) ∧ Pn(pr) is characterized
uniquely up to the addition of compositions with Whitehead
products by its Hurewicz image, ∆m,n∗(em+n) = em ⊗ en.

(b) The maps ∆m,n are cocommutative up to the addition of compo-
sitions with Whitehead products, that is, if T is the twist map, the
following diagram is commutative up to the addition of compositions
with Whitehead products:

Pm+n(pr)
∆m,n−−−→ Pm(pr) ∧ Pn(pr)

↓ (−1)mn ↓ T
Pm+n(pr)

∆n,m−−−→ Pn(pr) ∧ Pm(pr).

(c) If p is a prime greater than 3, the maps ∆m,n are coassociative up
to the addition of compositions with Whitehead products; that is, the
following diagram is commutative up to the addition of compositions
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with Whitehead products:

Pm+n+q(pr)
∆m,n+q−−−−−→ Pm(pr) ∧ Pn+q(pr)

↓ ∆m+n,q ↓ 1 ∧∆n,q

Pm+n(pr) ∧ P q(pr) ∆m,n∧1−−−−−→ Pm(pr) ∧ Pn(pr) ∧ P q(pr).

Hence, we have the following results which are fundamental for our subse-
quent development of Samelson products in mod pr homotopy groups.

Proposition 6.4.6.

(a) If p is an odd prime and if f : Pm(pr) ∧ Pn(pr)→ G is any map
into an H-space, then

f ◦∆m,n ◦ (−1)mn ' f ◦ T ◦∆n,m.

(b) If p is a prime greater than 3 and if f : Pm(pr) ∧ Pn(pr) ∧ P q(pr)→
G is any map into an H-space, then

f ◦ (∆m,n ∧ 1) ◦∆m+n,q ' f ◦ (1 ∧∆n,q) ◦∆m,n+q.

Recall the maps ρ : Pm(pr)→ Pm(pr+s) and η : Pm(pr+s)→ Pm(ps)
which form the Bockstein cofibration sequence

Pm(pr)
ρ
−→ Pm(pr+s)

η
−→ Pm(ps).

On the chain level, these are characterized on generators by ρ(em) = em
and η(em) = prem

It is an easy exercise to check that the following diagrams commute modulo
Whitehead products

Pm+n(pr)
∆m,n−−−→ Pm(pr) ∧ Pn(pr)

↓ ρ ↓ ρ ∧ ρ
Pm+n(pr+s)

∆m,n−−−→ Pm(pr+s) ∧ Pn(pr+s)
↓ prη ↓ η ∧ η

Pm+n(ps)
∆m,n−−−→ Pm(ps) ∧ Pn(ps)

Exercises

(1) Show that the Hurewicz maps in parts (a),(b),(c) of Corollary 6.4.4 are
actual isomorphisms if

(a) m ≥ 4.

(b) m+ n ≥ 5.

(c) m+ n+ q ≥ 8.
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(2) Give a new proof of Exercise 1 by showing that

(a) If m ≥ 4 and p is an odd prime, then there is a map

Pm(pr)→ K(Z/prZ,m− 1)

which is an isomorphism on homotopy groups in dimensions ≤ m
and an epimorphism in dimension m+ 1.

(b) If m+ n ≥ 5 and p is an odd prime, then there is a map

Pm(pr) ∧ Pn(pr)→ K(Z/prZ,m+ n− 2)×K(Z/prZ,m+ n− 1),

which is an isomorphism on homotopy groups in dimensions ≤
m+ n and an epimorphism in dimension m+ n+ 1.

(c) If m+ n+ q ≥ 8 and p is a prime greater than 3, then there is a
map

Pm(pr) ∧ Pn(pr) ∧ P q(pr)

→ K(Z/prZ,m+ n− 3)×K(Z/prZ,m+ n− 2)

×K(Z/prZ,m+ n− 2)×K(Z/prZ,m+ n− 1),

which is an isomorphism on homotopy groups in dimensions ≤
m+ n+ q and an epimorphism in dimension m+ n+ q + 1.

(3) Let p be a prime and k a positive integer. The symmetric group Σk
acts on the k-fold smash product

P = P 2(pr) ∧ P 2(pr) ∧ · · · ∧ P 2(pr)

via

σ(x1 ∧ x2 ∧ · · · ∧ xk) = y1 ∧ y2 ∧ · · · ∧ yk,

where

yj = xσ−1j

for σεΣk. Thus the reduced mod pr homology M = H∗(P ) is a left
module over the group ring R = Z/prZ[Σk]. Suppose p > k and con-
sider the trace element

e =
1

k!

∑
σεΣk

σ.

(a) Show that e is a central element, that is, ex = xe for all xεR.

(b) Show that, for any R−moduleN , eN = the submodule of invariant
elements {xεN : σx = x for all σεΣk}.

(c) Show that e is an idempotent, that is, e2 = e.
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(d) Show that eM = the image in mod pr homology of the iterated
map

∆ : P 2k(pr)→ P.

To be specific, ∆ is the composition

P 2k(pr)
∆2,2k−2−−−−−→ P 2(pr) ∧P 2k−2(pr)

1∧∆2,2k−4−−−−−−→ P 2(pr) ∧ P 2(pr) ∧ P 2k−4(pr)→ . . .

. . . → P 2(pr) ∧ P 2(pr) ∧ · · · ∧ P 2(pr) ∧ P 4(pr)

1∧···∧1∧∆2,2−−−−−−−−→ P 2(pr) ∧ P 2(pr) ∧ · · · ∧ P 2(pr) = P.

Now show that eM = 0 in dimensions less than 2k − 1 and eM =
∆∗(H∗(P

2(pr);Z/prZ)) in dimensions 2k − 1 and 2k.

(4) Localize at the prime 3.

(a) If n ≥ 1 show that

α : S2n+3 α1−→ ΩS2n+1 → S2n+1{3r}

generates π2n+3(S2n+1{3r}) ∼= Z/3Z.

(b) If m ≥ 3, show that a composition

Pm+2(3s)→ Sm+2 → Sm−1 ⊆ Pm(3r)

generates πm+2(Pm(3r);Z/3sZ) modulo Whitehead products and
actually generates it if m > 3.

(c) If m,n, q ≥ 2 show that the kernel of the mod ps Hurewicz map

ϕ : π∗(P
m(3r) ∧ Pn(3r) ∧ P q(3r);Z/psZ)

→ H∗(P
m(3r) ∧ Pn(3r) ∧ P q(3r);Z/psZ)

is generated in dimension m+ n+ q by Whitehead products and
a map

Pm+n+q(3s)→ Sm+n+q−3 → Pm(3r) ∧ Pn(3r) ∧ P q(3r)

of order 3.

6.5 Lie identities in groups

George Whitehead [133] had the fundamental insight that the Lie identities
for Samelson products are a consequence of certain analogous Lie identities
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for groups. In this section we present these Lie identities for groups. The
treatment here is heavily influenced by that found in Serre’s book [119].

Let x, y be elements of a group G and define

(1) The congugate homomorphisms are xy = y−1xy. Recall that (xy)z =
xzyz and (xy)y

−1
= x.

(2) The commutators are [x, y] = xyx−1y−1. Thus, [x, y]z = [xz, yz].

The Lie identities in groups are the following formulas.

Proposition 6.5.1. For elements x, y, z in a group G,

(1) exponentiation modulo a commutator:

xy = x[x−1, y−1].

(2) inverse of a commutator:

[x, y]−1 = [y, x], [x−1, y] = [y, x]x.

(3) commutativity modulo commutators:

xy = [x, y]yx.

(4) bilinearity modulo commutators:

[x, yz] = [x, y] [x, z](y
−1), [xy, z] = [y, z](x

−1) [x, z].

(5) Jacobi identity modulo commutators

[x(y−1), [z, y]] [y(z−1), [x, z]] [z(x−1), [y, x]] = 1.

It may be difficult to discover some of the above formulas but there can be
no doubt that they are straightforward to prove. Merely write them in the
form c = 1 and reduce the word c to the identity via successive applications
of

(1) wdw−1 = 1 if and only if d = 1.

(2) ww−1 = 1.

This amounts to reducing a word in a free group to the identity.

Let A and B be two subgroups of a group G. Denote by A ·B the subgroup
generated by all products ab where aεA and bεB. In other words, A ·B is
the subgroup generated by the union A ∪B.

Similarly, the commutator [A,B] is the group generated by all commutators
[a, b].
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Definition 6.5.2. The descending central series of a group G is the
descending sequence of subgroups

G = G1 ⊇ G2 ⊇ G3 ⊇ · · · ⊇ Gi ⊇ Gi+1 ⊇ . . .

defined by

(1) G1 = G

(2) Gi+1 = [G,Gi] = the subgroup generated by all commutators [x, y]
with xεG, yεGi.

Remarks 6.5.3.

(1) It follows by induction and the Lie identities, in particular (1) and
(4), that Gi is generated by commutators [x1, [x2, . . . [xi−1, xi] . . . ]]
of length i in elements x1, x2, . . . , xi of G. Thus Gi+1 ⊆ Gi and every
Gi is a normal subgroup of G.

(2) It follows by induction on j, the Jacobi identity (5), and bilinearity
(4) that [Gi, Gj ] ⊆ Gi+j . In more detail, the case j = 1 is true by
definition. For j > 1, assume that [Gi, Gj−1] ⊆ Gi+j−1 and note that

[Gi, Gj ] = [Gi, [G,Gj−1]] ⊆ [[Gj−1, Gi], G] · [[Gi, G], Gj−1]

⊆ [Gi+j−1, G] · [Gi+1, Gj−1] ⊆ Gi+j ·Gi+j ⊆ Gi+j .

We remark that G is called nilpotent of length ≤ n if Gn = {∗} = the trivial
group. This is the same as requiring that all commutators of length n are
trivial. In particular, nilpotent of length ≤ 2 is the same as abelian.

If we define Li = Gi/Gi+1, then the multiplication in G, (x, y) 7→ xy
induces an abelian operation in each Li, written additively as (x, y) 7→
x+ y ≡ xy. Thus, each Li is an abelian group with x+ y ≡ xy and
−x ≡ x−1. The commutator in G, (x, y) 7→ [x, y] induces a bilinear pair-
ings Li × Lj → Li+j , written as (x, y) 7→ [x, y] which satisfy the classic
(ungraded) Lie identities:

(1) [x, x] = 0

(2) [y, x] = −[x, y]

(3) [x, [z, y]] + [y, [x, z]] + [z, [y, x]] = 0.

We usually write the Jacobi identity in the equivalent derivation form:

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

We wish to emphasize that the associated graded object L∗ is not what is
called a graded Lie algebra, the definition of which requires some signs. It
is a classical Lie algebra which happens to have a grading.
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Exercises

(1) Verify the Lie identities in Proposition 6.5.1.

(2) (a) If A,B are subgroups of a group G, prove that

[A,B] = [B,A].

(b) If A,B,C are normal subgroups of a group G, prove that

[A, [B,C]] ⊆ [[A,B], C] · [B, [A,C]].

6.6 External Samelson products

Let G be a grouplike space and let f : X → G and g : Y → G be maps.
In this section, we introduce hypotheses which enable us to prove the Lie
identities for Samelson products [f, g] : X ∧ Y → G. We are primarily inter-
ested in the case where X and Y are Moore spaces. In this case X ∧ Y will
usually not be a Moore space and so we call these Samelson products by
the name external Samelson products in order to distinguish them from
the internal Samelson products which are introduced in the next section.

The fundamental concept is:

Definition 6.6.1. A space X is conilpotent of length ≤ n if the composi-
tion

∆ : X
∆−→
∏

X
q−→
∧
X

is null homotopic where ∆ is the diagonal into the n-fold product and q is
the standard projection.

It is obvious that, if X is conilpotent of length ≤ n and Y is any space,
then the smash product X ∧ Y is also conilpotent of length ≤ n.

Being conilpotent of length ≤ n is a generalization of being of category
≤ n.

Definition 6.6.2. A space X is of category ≤ n if the iterated diagonal
∆ : X →

∏
X into the n-fold product factors up to homotopy through the

fat wedge {(x1, . . . , xn) : at least one xi = ∗ = the basepoint}.

Since any n-fold commutator map

G
∆−→
∏

G
C−→ G

factors as

G
∆−→
∧
G

C−→ G

it follows that
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Proposition 6.6.2. If X is conilpotent of length ≤ n, then the pointed
mapping group [X,G]∗ is nilpotent of length ≤ n.

In particular, X is called coabelian if ∆ : X → X ∧X is null homotopic. In
this case, the group [X,G]∗ is abelian. In Section 1.10 we showed that, if k
is odd, then P 2(k) is a coabelian space and thus π2(G;Z/kZ) is an abelian
group for all grouplike G. Note that P 2(k) is not a space of category ≤ 2,
that is, the diagonal is not homotopic to a composition P 2(k)→ P 2(k) ∨
P 2(k)→ P 2(k)× P 2(k). This would imply a factorization of fundamental
groups through the free product

Z/kZ→ (Z/kZ) ∗ (Z/kZ)→ (Z/kZ)× (Z/kZ).

This is impossible since the free product has no elements of finite order
except for the two copies of Z/kZ.

Let P1, P2, . . . , Pn be pointed spaces and consider the following increasing
filtration

∗ = F0 ⊆ F1 ⊆ · · · ⊆ Fn = P1 × P2 × · · · × Pn

of the product by increasingly fatter wedges:

Fk = {(x1, x2, . . . , xn) : xi 6= ∗ for atmost k values of i}

=
⋃

A⊆{1,2,...,n},|A|=k

∏
αεA

Pα.

For example,

F1 = P1 ∨ P2 ∨ · · · ∨ Pn

and

F2 = P1 × P2 ∪ · · · ∪ Pn−1 × Pn.

Thus

ΣFk =
∨

A⊆{1,2,...,n},|A|≤k

Σ
∧
αεA

Pα =

a bouquet of smash products of ≤ k of the spaces P1, . . . , Pn.

The cofibration sequences

Fk−1 → Fk → Qk =
∨

A⊆{1,2,...,n},|A|=k

∧
αεA

Pα

have cofibres equal to bouquets of smashes of exactly k of the spaces
P1, . . . , Pn. The suspensions of these cofibration sequences are cofibration
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sequences which are split by sections

ΣQk → ΣFk.

Hence, there is an equivalence

ΣQk ∨ ΣFk−1 → ΣFk.

The long cofibration sequences

Fk−1 → Fk → Qk → ΣFk−1 → ΣFk → ΣQk

show that

(1) [ΣFk−1, G]∗ ← [ΣFk, G]∗ is an epimorphism,

(2) [Qk, G]∗ ← [ΣFk−1, G]∗ is the trivial map, and

(3) [Fk, G]∗ ← [Qk, G]∗ is a monomorphism.

As a special case, we have

Proposition 6.6.3. The natural maps q : P1 × · · · × Pn → P1 ∧ · · · ∧ Pn
induce monomorphisms

q∗ : [P1 ∧ · · · ∧ Pn, G]∗ → [P1 × · · · × Pn, G]∗.

Thus

[P1 ∧ · · · ∧ Pn, G]∗ = [(P1 × · · · × Pn, Fn−1), (G, ∗)] ⊆ [P1 × · · · × Pn, G]∗

may be regarded as a subgroup.

If fi : Pi → G is any pointed map and pi : P1 × · · · × Pn → Pi is the i−th
projection map, then the composition

fi = fi ◦ pi : P = P1 × · · · × Pn
pi−→ Pi

represents what is called a special element of the group [P1 × · · · × Pn, G]∗
Thus special elements are exactly those classes which are represented by a
group valued function of one variable.

Definition 6.6.4. If fi : Pi → G are pointed maps for 1 ≤ i ≤ n and C :
G× · · · ×G→ G is any commutator map of length n, then the composition

P1 × · · · × Pn
f1×···×fn−−−−−−→ G× · · · ×G C−→ G

factors up to homotopy through a homotopically unique map

P1 ∧ · · · ∧ Pn
f1∧···∧fn−−−−−→ G ∧ · · · ∧G C−→ G

and represents the external Samelson product C(f1, . . . , fn) in the subgroup
[P1 ∧ . . . Pn, G]∗.
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The homotopical uniqueness of the factorization has the consequence that
the external Samelson products are well defined.

In other words, a commutator map C induces a well defined map

C : [P,G]∗ × · · · × [P,G]∗ → [P1 ∧ · · · ∧ Pn, G]∗

and, on special elements fi : Pi → G, 1 ≤ i ≤ n, we have

C(f1, . . . , fn) = C(f1, . . . , fn) = C · (f1 ∧ · · · ∧ fn).

In order to make this clear, consider the case n = 2 with maps f1 : P1 → G,
f2 : P2 → G. The external Samelson product [f1, f2] is the map represented
by

[f1, f2] = f1 f2 f1
−1

f2
−1

or by the composition

[ , ] ◦ (f1 ∧ f2)

in the subgroup

[P1 ∧ P2, G]∗ ⊆ [P1 × P2, G]∗.

It is uniquely characterized by the homotopy commutative diagram

P1 × P2
f1f2(f1)−1(f2)−1

−−−−−−−−−−→ G
↓ ↑ [f1, f2]

P1 ∧ P2 = P1 ∧ P2

The map [f1, f2] : P1 ∧ P2 → G is represented, up to the canonical homo-
topies for units, inverses, and associativity, on elements by

x ∧ y 7→ [f1(x), f2(y)].

Or consider the case n = 3 with maps f1 : P1 → G, f2 : P2 → G, f3 : P3 →
G. The external Samelson product [f1, [f1, f2]] is represented by

[f1, [f2, f3]]

or by the composition

[ , [ , ]] ◦ (f1 ∧ f2 ∧ f3)

in the subgroup

[P1 ∧ P2 ∧ P3, G]∗ ⊆ [P1 × P2 × P3, G]∗.
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It is uniquely characterized by the homotopy commutative diagram

P1 × P2 × P3
[f1,[f2,f3]]−−−−−−→ G

↓ ↑ [f1, [f2, f3]]
P1 ∧ P2 ∧ P3 = P1 ∧ P2 ∧ P3

The map [f1, [f2, f3] : P1 ∧ P2 ∧ P3 → G is represented up to canonical
homotopies on elements by

x ∧ y ∧ z 7→ [f1(x), [f2(y), f3(z)]].

A possible ambiguity is resolved by the following consequence of the homo-
topical uniqueness of the factorization:

Lemma 6.6.5. If C = [ , ] ◦ (Ci × Cj) is an iterated commutator of
length i+ j, then

C(f1, . . . , fi, fi+1, . . . , fi+j) = [Ci(f1, . . . , fi), Cj(fi+1, . . . , fi+j)].

For example, [f, [g, h]] may be regarded as a triple Samelson product

P1 ∧ P2 ∧ P3
f∧g∧h−−−−→ G ∧G ∧G [ ,[ , ]]−−−−−−−−→ G

or, equivalently, as the composition

P1 ∧ (P2 ∧ P3)
f∧[g,h]−−−−→ G ∧G [ , ]−−−−−→ G.

Proposition 6.6.6. Let fα(i) : Pα(i) → G, 1 ≤ i ≤ A be a collection of
functions where the indices α(i) are in nondecreasing order (that is, α(i) ≤
α(i+ 1)) and satisfy

(1) 1 ≤ α(i) ≤ n for all i

(2) the α(i) include all of {1, . . . , n} with possible repetitions.

(3) the cardinality of the set of i is A ≥ n.

Let C : G× · · · ×G→ G be any commutator map of length A.

Then C(fα(1), . . . , fα(A)) is represented by a map

P1 ∧ · · · ∧ Pn → G.

Furthermore, if the spaces P1, . . . , Pn are all coabelian and A > n, this map
is null homotopic.

Proof: C(fα(1), . . . , fα(A)) is represented by a map

Pα(1) ∧ · · · ∧ Pα(A)

fα(1)∧···∧fα(A)−−−−−−−−−→ G ∧ · · · ∧G C−→ G.
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The standard map

δ : P1 ∧ · · · ∧ Pn → Pα(1) ∧ · · · ∧ Pα(A)

is the identity map if A = n and includes some diagonal maps if A > n.
Thus, δ is null homotopic if A > n.

Then C(fα(1), . . . , fα(A)) is represented by the composition

P1 ∧ · · · ∧ Pn
δ−→ Pα(1) ∧ · · · ∧ Pα(A)

fα(1)∧···∧fα(A)−−−−−−−−−→ G ∧ · · · ∧G C−→ G.

�

Proposition 6.6.6 says that, any commutator of one variable functions van-
ishes if it is defined on a smash product of lesser length (than the length
of the commutator) involving coabelian spaces.

The Lie identities for groups now translate into Lie identities for external
Samelson products. Roughly speaking, Proposition 6.6.6 allows the erasure
of any extra commutators in the group version 6.5.1 of the Lie identities.

Proposition 6.6.7. Let G be a grouplike space and let P1, P2, P3 be coa-
belian spaces. If f, f1 : P1 → G, g, g1 : P2 → G, h : P3 → G are maps then
the external Samelson products [f, g] : P1 ∧ P2 → G and [f, [g, h]] : P1 ∧
P2 ∧ P3 → G satisfy the following Lie identities:

(1) Anti-commutativity:

[f, g] = −[g, f ] ◦ τ

where

τ = T(1,2) : P1 ∧ P2 → P2 ∧ P1

is the standard transposition.

(2) Bilinearity:

[f + f1, g] = [f, g] + [f1, g], [f, g + g1] = [f, g] + [f, g1].

(3) Jacobi identity:

[f, [g, h]] + [h, [f, g]] ◦ σ + [g, [h, f ]] ◦ σ2 = 0

where

σ = T(1,2,3) : P1 ∧ P2 ∧ P3 → P3 ∧ P1 ∧ P2

and

σ2 = T(1,3,2) : P1 ∧ P2 ∧ P3 → P2 ∧ P3 ∧ P1

are the standard cyclic permutations.
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Proof:

(1) In [P1 × P2, G]∗, the composition −[g, f ] ◦ τ is represented by
[g, f ]−1 = [f, g] and this also represents the Samelson product [f, g].

(2) The Lie identities in Proposition 6.5.1 assert that [f + f1, g] is rep-
resented in [P1 × P2, G]∗, by

[ff1, g] = [f1, g]f
−1

[f, g] = ([f1, g][[g, f1], f ])[f, g].

Because of the length of the commutators (6.6.6), in the abelian
group [P1 ∧ P2, G]∗ this is representative of [f1, g] + [f, g] = [f, g] +
[f1, g].

Similarly, [f, g + g1] = [f, g] + [f, g1].

(3) In the group [P1 × P2 × P3, G]∗ we have

[f
g−1

, [h, g]] = [f [f
−1
, g], [h, g]] = ([[f

−1
, g], [h, g]]f

−1

)[f, [h, g]].

Because of the length of commutators, this represents [f, [h, g]] in
[P1 ∧ P2 ∧ P3, G]∗.

Similarly, [gh
−1

, [f, h]] and [h
f
−1

, [g, f ]] represent [g, [f, h]] ◦ σ and
[h, [g, f ]] ◦ σ2, respectively.

Since

[f
g−1

, [h, g]] · [gh
−1

, [f, h]] · [hf
−1

, [g, f ]] = 1

in the group [P1 × P2 × P3, G]∗, it follows that

[f, [h, g]] + [g, [f, h]] ◦ σ + [h, [g, f ]] ◦ σ2 = 0

in the abelian subgroup [P1 ∧ P2 ∧ P3, G]∗. �

Remark. It is tempting to think that external Samelson products satisfy
[f, f ] = 0 since this is true for commutators in groups. This is wrong since
[f, f ] is represented by the map P1 ∧ P1 → G which, up to homotopy, is

x ∧ y 7→ [f(x), f(y)] 6= 1.

Exercise

(1) A commutator map of length 1 is just a map C1 : G→ G. Inductively,
if Ci :

∏
G→ G and Cj :

∏
G→ G are commutator maps of lengths

i and j, respectively, then the map Ci+j : (
∏
G)× (

∏
G)

Ci×Cj−−−−→ G×
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G
[ . ]−−−−−→ G is called a commutator map of length i+ j. Show that any

commutator map C :
∏
G→ G factors up to homotopy as

∏
G→ ∧G C−→ G.

6.7 Internal Samelson products

Let G be a grouplike space and let p be a prime. In the previous section,
we showed that two maps f : Pm(pr)→ G and g : Pn(pr)→ G define an
external Samelson product, here denoted by

[f, g]e : Pm(pr) ∧ Pn(pr)→ G.

We now define the internal Samelson product [f, g] : Pm+n(pr)→ G by
using the maps ∆m,n : Pm+n(pr)→ Pn(pr) ∧ Pn(pr). If pr is greater than
2, these maps exist. If p is an odd prime, these maps are characterized
modulo Whitehead products by their induced maps in mod pr homology:

∆m,n∗(em+n) = em ⊗ en.

Definition 6.7.1. Let pr > 2. For m,n ≥ 2, the internal Samelson product

[ , ] : πm(G;Z/prZ)× πn(G;Z/prZ)→ πm+n(G;Z/prZ)

is represented by the composition

[f, g] = [f, g]e ◦∆m,n : Pn+m(pr)→ Pm(pr) ∧ Pn(pr)→ G.

Since Samelson products map into an H-space, the above internal Samel-
son product is well defined if p is an odd prime. If τ : Pm(pr) ∧ Pn(pr)→
Pn(pr) ∧ Pm(pr) is the standard transposition, then

Pm+n(pr)
∆m,n−−−→ Pm(pr) ∧ Pn(pr)

↓ (−1)mn ↓ τ
Pm+n(pr)

∆n,m−−−→ Pn(pr) ∧ Pm(pr)

commutes modulo Whitehead products when p is an odd prime.
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Let σ : Pm(pr) ∧ Pn(pr) ∧ P q(pr)→ P q(pr) ∧ Pm(pr) ∧ Pn(pr) be the
standard permutation. If p is a prime greater than 3, the following dia-
grams commute modulo Whitehead products

Pm+n+q(pr)
∆m,n+q−−−−−→ Pm(pr) ∧ Pn+q(pr)

1∧∆n,q−−−−−→ Pm(pr) ∧ Pn(pr) ∧ P q(pr)
↓ (−1)q(m+n) ↓ σ
Pm+n+q(pr)

∆q,m+n−−−−−→ P q(pr) ∧ Pm+n(pr)
1∧∆m,n−−−−−→ P q(pr) ∧ Pm(pr) ∧ Pn(pr)

Pm+n+q(pr)
∆m,n+q−−−−−→ Pm(pr) ∧ Pn+q(pr)

1∧∆n,q−−−−−→ Pm(pr) ∧ Pn(pr) ∧ P q(pr)
↓ (−1)m(n+q) ↓ σ2

Pm+n+q(pr)
∆n,m+q−−−−−→ Pn(pr) ∧ Pm+q(pr)

1∧∆q,m−−−−−→ Pn(pr) ∧ P q(pr) ∧ Pm(pr).

Therefore, Proposition 6.6.7 for external Samelson products translates into
the following result for internal Samelson products

Proposition 6.7.2. Let p be an odd prime. For m,n, q ≥ 2, let
f, f1επm(G;Z/prZ), g, g1επn(G;Z/prZ), and hεπq(G;Z/prZ).

(a) Bilinearity:

[f + f1, g] = [f, g] + [f1, g], [f, g + g1] = [f, g] + [f, g1].

(b) Anti-commutativity:

[f, g] = −(−1)mn[g, f ].

(c) If p is greater than 3, the Jacobi identity:

[f, [g, h]] + (−1)q(m+n)[h, [f, g]] + (−1)m(n+q)[g, [h, f ]] = 0.

Remark. We usually prefer the Jacobi identity to be written in the equiv-
alent derivation form which we believe is easier to remember:

[f, [g, h]] = [[f, g], h] + (−1)mn[g, [f, h]].

Remark. If p = 3, then it follows from Exercise 4 in Section 6.4 that the
permutation diagrams which preceed 6.6.7 commute modulo Whitehead
products and an element of order 3. Hence the Jacobi element

[f, [g, h]] + (−1)q(m+n)[h, [f, g]] + (−1)m(n+q)[g, [h, f ]]

is an element of order 3. In other words, the Jacobi identity holds modulo
elements of order 3.

From Lemma 6.3.7, we get

Proposition 6.7.3. If p > 2, then the mod pr Hurewicz map ϕ :
π∗(G;Z/prZ)→ H∗(G;Z/prZ) is compatible with internal Samelson prod-
ucts in the sense that

ϕ[f, g] = [ϕ(f), ϕ(g)] = ϕ(f)ϕ(g)− (−1)deg(f)deg(g)ϕ(g)ϕ(f).
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Remark. If pr > 2, the above is true in dimensions ≥ 3.

Other Samelson products arise from the equivalences

Sm+n =−→ Sm ∧ Sn

Pm+n(pr)
=−→ Sm ∧ Pn(pr)

Pm+n(pr)
=−→ Pm(pr) ∧ Sn.

If we add the definition

π1(G;Z/prZ) = π1(G)⊗ Z/prZ

we get the full result

Propositon 6.7.4. Let p be an odd prime and suppose m,n, q ≥ 1. There
are bilinear pairings

[ , ] : πm(G)⊗ πn(G)→ πm+n(G)

[ , ] : πm(G)⊗ πn(G;Z/prZ)→ πm+n(G;Z/prZ)

[ , ] : πm(G;Z/prZ)⊗ πn(G)→ πm+n(G;Z/prZ)

[ , ] : πm(G;Z/prZ)⊗ πn(G;Z/prZ)→ πm+n(G;Z/prZ)

which satisfy

(1) bilinearity,

(2) anti-commutativity,

(3) and, if p is a prime greater than 3, the Jacobi identity.

Remark. If at least one of the classes involved is in the homotopy group
with integral coefficients, then the Jacobi identity is valid even if we do not
require the prime to be greater than 3, but merely that it is odd.

Furthermore, these Samelson products are all compatible with the Hurewicz
maps, for example,

Lemma 6.7.5. The following diagram commutes:

πm(G)⊗ πn(G;Z/prZ)
[ , ]−−−−−→ πm+n(G;Z/prZ))

↓ ϕ⊗ ϕ ↓ ϕ
Hm(G)⊗Hn(G;Z/prZ)

[ , ]−−−−−→ Hm+n(G;Z/prZ)).
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Recall that the pinch map ρ : Pm(pr)→ Sn induces the mod pr reduction
map

ρ = ρ∗ : πm(G)→ πm(G;Z/prZ).

And the inclusion map of the bottom cell β : Sm−1 → Pm(pr) induces the
Bockstein map

β : πm(G;Z/prZ)→ πm−1(G).

The reduction maps are homomorphisms and the Bockstein maps are
derivations in the following sense.

Proposition 6.7.6. If p is an odd prime, then

(a) if f, gεπ∗(G),

ρ[f, g] = [ρf, ρg].

(b) if fεπ∗(G;Z/prZ), gεπ∗(G),

[f, g] = [f, ρg].

(c) if fεπ∗(G;Z/prZ), gεπ∗(G;Z/prZ),

ρβ[f, g] = [βf, g] + (−1)deg(f)[f, βg].

(d) if fεπ∗(G), gεπ∗(G;Z/prZ),

β[f, g] = (−1)deg(f)[f, βg].

Part (a) uses the commutativity of

Pm+n(pr)
∆m,n−−−→ Pm(pr) ∧ Pn(pr)

↓ ρ ↓ ρ
Sm+n =−→ Sm ∧ Sn.

Part (c) uses the commutativity modulo Whitehead products of

Pm+n(pr)
∆m,n−−−→ Pm(pr) ∧ Pn(pr)

↑ β ↑
Sm+n−1 |
↑ ρ |

Pm+n−1(pr)
1+(−1)m−−−−−−→ (Sm−1 ∧ Pn(pr)) ∨ (Pm(pr) ∧ Sn−1).

Parts (a) and (d) are even easier.

Definition 6.7.7. Let R be a commutative ring in which 2 is a unit. A
graded Lie algebra L = L∗ over R is a graded R-module together with
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bilinear pairings

[ , ] : Lm ⊗ Ln → Lm+n

such that

(1)

[x, y] = −(−1)deg(x)deg(y)[y, x].

(2) if the degree of x is even,

[x, x] = 0.

(3) if the degree of x is odd,

[x, [x, x]] = 0.

(4)

[x, [y, z]] = [[x, y], z] + (−1)deg(x)deg(y)[y, [x, z]].

If 2 is a unit in the ring, it is clear that (1) implies (2) since:

[x, x] = −[x, x]

when x has even degree.

If 3 is a unit in the ring, then (1) and (4) imply (3) since:

[x, [x, x]] = [[x, x], x]− [x, [x, x]] = −2[x[x, x]]

when x has odd degree.

So it is clear that, if G is a connected grouplike space, then π∗(G) is a
graded Lie algebra over the integers localized away from 2 and 3, and, if p
is a prime greater than 3, then π∗(G;Z/prZ) is a graded Lie algebra.

Definition 6.7.8. A differential graded Lie algebra is a graded Lie algebra
L together with a linear map d : Lm → Lm−1 which is a differential, d2 = 0,
and a derivation,

d[x, y] = [dx, y] + (−1)deg(x)[x, dy].

If p is a prime greater than 3 and G is a connected grouplike space, then
the composition d = ρ ◦ β : πm(G;Z/prZ)→ πm−1(G)→ πm−1(G;Z/prZ)
makes π∗(G;Z/prZ) into a graded Lie algebra.

Exercises

(1) Verify Proposition 6.7.4, Lemma 6.7.5, and Proposition 6.7.6 in detail.
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6.8 Group models for loop spaces

In this section we discuss group models for loop spaces. We begin by defin-
ing a general notion of principle bundle:

Definition 6.8.1. Let F → E
p−→ B be a fibration sequence and let F ∨

E → B and F × E → B be the maps which both send a point (f, e) to
p(e). We say that the fibration has a left action if the natural map over the
base B of the bouquet

F ∨ E → E

extends to a map over B of the product

F × E → E.

Any principal bundle E → B with group G has a left action G× E → E
in this sense.

If we consider the multiplication in the usual path space PX, then the
usual left action ΩX × PX → PX is fibre homotopic to the inclusion on
the bouquet ΩX ∨ PX → PX. Hence, we can alter the usual left action by
a fibre homotopy to get a left action ΩX × PX → X in the above sense.

Proposition 6.8.2. Let p : E → B and q : E′ → B′ be fibrations. Let f :
B → B′ be any map and suppose that E is contractible. Then

(a) there exists a fibre map

E
Φ−→ E′

↓ π ↓ q
B

f−→ B′

(b) and any two choices of Φ are fibre homotopic.

Proof:

(a) Pick basepoints b0εB, b
′
0εB

′ , e′0εE
′ such that f(b0) = b′0, q(e

′
0) =

b′0. Let F : E × I → B′ be a homotopy from the constant map at

b′0 to the composition E
p−→ B

f−→ B′. Let G : E × 0→ E′ be the con-
stant map to e′0. The maps F and G being compatible, the homotopy
lifting property gives a map H : E × I → E′ which extends G and
lifts F . Then the restriction H1 : E = E × 1→ E′ is the required
fibre map Φ.

(b) Given another choice of a fibre map Ψ : E → E′ which covers f ◦
p, we observe that Ψ is homotopic to a map E → (p′)−1(b′0) via
a homotopy which covers F . Since E is contractible, in fact, Ψ is
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homotopic to the constant map to e′0 via a homotopy which covers
the composition K of F with a constant homotopy.

We note the the same is true for Φ, that is, it is homotopic to the constant
map to e0 via a homotopy which covers K.

Thus, we have compatible maps

E × I × I → E × I K−→ B′

by projecting to the first two factors and following with K and

(E × I × {0, 1}) ∪ (E × 0× I)→ E′

by using the homotopies for Φ and Ψ on the first piece and by using the
constant map to e′0 on the second piece.

Hence we get a map L : E × I × I → E′ which lifts the first and extends
the second. The restriction of L to E × 1× I is the required fibre homotopy
between Φ and Ψ. �

Now let F → E → B and F ′ → E′ → B′ be fibration sequences as in 6.8.2
and suppose that there are left actions in the sense of Definition 6.8.1.
Then:

Proposition 6.8.3. Suppose E is contractible and B′ is simply connected.
Suppose also that the pair (E,F ) is a CW pair. If Φ : E → E′ is a fibre
map covering f : B → B′, the diagram of left actions is fibre homotopy
commutative

F × E ν−→ E
↓ Φ× Φ ↓ Φ

F ′ × E′ ν ′−→ E′.

Proof: The diagram is exactly commutative when restricted to the bouquet
F ∨ E. Since B′ is simply connected and F ∧ E is contractible, there are
no local coefficients and the obstructions to fibre homotopy commutativity
lie in the vanishing groups groups

H∗(F × E,F ∨ E;π∗(F
′)) = H∗(F ∧ E;π∗(F

′)) = 0.

�

Corollary 6.8.4. Under the hypotheses of Proposition 6.8.3, the restric-
tion Φ : F → F ′ is an H-map.

We see that, at certain points when obstruction theory must be used, it is
helpful to be dealing with CW-complexes. Fortunately, Milnor’s geometric
realization of simplicial sets provides a simple device for doing this.
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Recall the singular complex S(X) of a topological space X. It is a functor
from the category of topological spaces to the category of simplical sets. It
preserves products, S(X × Y ) = S(X)× S(Y ).

Recall also the geometric realization |K| of a simplical set. It is a functor
from the category of simplicial sets to the category of compactly generated
topological spaces. In fact, each geometric realization K is a CW-complex,
and it preserves products in the compactly generated category, |K × L| =
|K| × |L|. In order to have this convenient property, it is important in this
section to work in the category of compactly generated spaces and to take
the product topology in that category.

Furthermore, these are adjoint functors, that is,

map(|K|, X) ∼= map(K,S(X))

for simplicial sets K and topological spaces X. The resulting adjoints of
the identity maps S(X)→ S(X) and |K| → |K| are the natural transfor-
mations

α : |S(X)| → X, β : K → S|K|

and satisfy:

(1) α is a weak equivalence for all spaces X.

(2) β is a homotopy equivalence for all Kan complexes K.

Of the next two facts the first is elementary and the second is due to
Quillen:

(1) If F → E → B is a Serre fibration sequence of topological spaces,
then the singular complexes, S(F )→ S(E)→ S(B), yield a Kan
fibration sequence.

(2) If A→ B → C is a Kan fibration sequence, then the geometric real-
izations, |A| → |B| → |C|, yield a Serre fibration sequence.

Definition 6.8.5. A group model for a loop space ΩX is a topological
group G together with a map of the geometric realization of the singular
complex

Φ : |S(ΩX)| → G

such that Φ is both a weak homotopy equivalence and an H-map.

Notice that we have weak homotopy equivalences and H-maps:

α : |S(ΩX)| → ΩX.
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If X has the homotopy type of a CW-complex, then a result of Milnor says
that ΩX also has the homotopy type of a CW-complex. In this case, it
follows that a group model is the same as a map Ψ : ΩX → G, which is a
weak homotopy equivalence and an H-map.

If X is a space, then we know the path space fibration π : PX → X,
ω 7→ ω(1), is a Serre fibration and can be regarded, up to homotopy, as
a principal bundle with a left action

µ : ΩX × PX → PX, (γ, ω) 7→ γ ∗ ω.

The same is true for the Serre fibration |S(π)| : |S(PX)| → |S(X)| and we
have commutative diagrams of action maps

|S(ΩX)| × |S(PX)| µ−→ |S(PX)|
↓ α× α ↓ α

ΩX × PX µ−→ PX.

The following is an immediate corollary of Proposition 6.8.3 and Corollary
6.8.4.

Proposition 6.8.6. Let B be a simply connected space and let p : E → B
be a principal bundle with structural group G and left action

ν : G× E → E.

Suppose f : X → B is any map and E is contractible. Then

(a) There exists a fibre map

|S(PX)| Φ−→ E
↓ π ↓ p
|S(X)| f◦α−−→ B.

(b) Any two choices of Φ are fibre homotopic.

(c) Up to homotopy, Φ is a map of principle bundles in the sense that
the following diagram is homotopy commutative

|S(ΩX)| × |S(PX)| Φ×Φ−−−→ G× E
↓ µ ↓ ν

|S(PX)| Φ−→ E.

(d) The map Φ : |S(ΩX)| → G is an H-map.

The group models for loop spaces are natural in the following sense.

Corollary 6.8.7. If X is a simply connected space and E → X is a prin-
cipal G bundle with E contractible, then there are weak equivalences which
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are H-maps:

G← |S(ΩX)| → ΩX

and, up to homotopy, these equivalences are natural.

The first construction of a group model for a loop space was given by Milnor
[85]. Let X be a simplicial complex with basepoint ∗. Define the space of
piecewise linear paths En(X) of length n to be all sequences of points

(x0, x1, x2, . . . , xn)

with x0 = ∗ and such that any two successive points xi, xi+1 belong to a
common simplex. Let E(X) be the disjoint union of all the En(X) modulo
the identifications:

(x0, x1, . . . , xi−1, xi, xi+1, . . . , xn) ∼ (x0, x1, . . . , xi−1, xi+1, . . . , xn)

if xi−1 = xi or if xi−1 = xi+1. Define the map p : E(X)→ X by
p(x0, x1, . . . , xn) = xn. If G(X) = p−1(∗), then it is easy to see that G(X)
is a topological group and Milnor shows that:

Proposition 6.8.8. If X is a simplicial complex, the map p : E(X)→ X
is a principal G(X) bundle with left action G(X)× E(X)→ E(X) given
by juxtaposition of sequences and E(X) is contractible. Furthermore, both
E(X) and G(X) are CW complexes.

Thus, if X is a simply connected simplicial complex then Milnor’s G(X)
is a group model for the loop space. It remains the most plausible model
but it has the disadvantage that it is functorial only on the category of
simplicial complexes and simplicial maps. Hence, it is useful to develop
Kan’s simplicial group model which is completely functorial in our context
of connected spaces.

As a general principle, we note that the singular complex functor S(X)
and the geometric realization functor |K| preserve the usual notions of
homotopy theory. There are no restrictions if we start with any spaces in
the topological category but, if we start in the simplicial category, we should
restrict to Kan complexes, that is, those simplicial sets which satisfy the
extension condition. Then, for example, a space X is n-connected if and
only if its singular complex S(X) is. And, a Kan complex K is n-connected
if and only if its geometric realization |K| is. We also have that a map
of spaces X → Y is a weak homotopy equivalence if and only if the map
of singular complexes S(X)→ S(Y ) is. And so on: weak equivalences of
Kan complexes give weak equivalences of geometric realizations. We have
already seen that Serre fibrations correspond to Kan fibrations. What this
means is that every result that we need concerning simplicial sets can be
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translated to a result about spaces where, presumably, the definitions are
more familiar.

First of all, let K be a simplicial set with basepoint. Recall that the n-
th Eilenberg subcomplex EnK is the subcomplex of K consisting of all
simplices σ with all faces of dimension less than n equal to the basepoint.

Fact (1): If K is a Kan complex, then so are all its Eilenberg subcomplexes.

Fact (2): If K is an 0-connected Kan complex, then the inclusion E1K → K
is a weak homotopy equivalence.

We say that K is reduced if E1K = K, that is, if K has only one vertex.

Fact (3): If A→ B → C is a Kan fibration sequence with the fibre A 0-
connected, then E1A→ E1B → E1C is a Kan fibration sequence.

We recall without proof Dan Kan’s result:[69, 81]

Proposition 6.8.9. If K is a reduced Kan complex, there exists a func-
torial simplicial group G(K) and a functorial simplicial principal G(K)
bundle p : T (K)→ K with the following properties:

(a) G(K) is a Kan complex and T (K) is a contractible Kan complex.

(b) If f : K → L is an surjection of reduced simplicial sets, then G(f) :
G(K)→ G(L) is also a surjection.

To be specific, let K be a reduced simplicial set with face and degeneracy
operators di : Kn → Kn−1 and si : Kn → Kn+1 for 0 ≤ i ≤ n. Then G(K)
is the simplicial group defined by:

(1) G(K)n is the free group with one generator x for each xεKn+1 and
one relation s0x = e for each xεKn.

(2) The face and degeneracy operators of G(K) are given by

d0x = (d1x) (d0x)
−1
,

dix = di+1x for i > 0,

six = si+1x for i ≥ 0.

If X is a connected space, we get a functorial topological group GX =
|G(E1S(X))| and a contractible principalGX bundle TX = |T (E1S(X))| →
|E1S(X)|. Thus, if X is simply connected GX is a group model for
Ω(|E1S(X)|). Since |E1S(X)| → |S(X)| → X are weak equivalences, GX
is a group model for ΩX and it is clearly functorial.
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The functorial group model GX leads to a useful group model for the loops
on fibrations.

Let F
ι−→ E

p−→ B be a Serre fibration of simply connected spaces. Let K
be the kernel of the induced map G(p) : G(E1S(E))→ G(E1S(B) of sim-
plicial groups. Since G(p) is a surjection of simplicial groups, it is a Kan
fibration with fibre K and the geometric realization |K| → GE → GB is a
Serre fibration of topological groups. In fact, it is a short exact sequence of
topological groups with |K| the kernel and therefore a normal subgroup.

Proposition 6.8.10. If F
ι−→ E

p−→ B is a Serre fibration of simply con-
nected spaces, then

|K| → GE → GB

is a group model for the fibration sequence of loop spaces

ΩF
Ωι−→ ΩE

Ωp−→ ΩB.

Proof: Write X = |E1S(X)| and note that there is a weak equivalence X →
X when X is connected.

Consider the commutative diagram

GF → GE → GB
↓ ↓ ↓
TF → TE → TB
↓ ↓ ↓
F → E → B.

Clearly, the top row is a sequence of group models for ΩF → ΩE → ΩB
and GF maps to |K| by a homomorphism. If we embed the bottom right-
hand square in a totally fibred square, we get from Proposition 3.2.3 that
the fibre |K| and the fibre GF are homotopy equivalent, more precisely, the
map GF → |K| is a homomorphism and a homotopy equivalence.

Loosely speaking, GF is the fibre of the left-hand vertical column and |K| is
the fibre of the top row. By Proposition 3.2.3 they are homotopy equivalent.
�

Exercises

(1) LetG be a simplicial group and let B be a simplicial set. Suppose we are
given a twisting function τ : Bn → Gn−1 which satisfies the identities:

(A) d0τ(b) = τ(d1b) [τ(d0b)]
−1.

(B) diτ(b) = τ(di+1b) for i > 0.
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(C) siτ(b) = τ(si+1b) for i ≥ 0.

(D) τ(s0b) = en = the unit in Gn if bεBn.

Define the twisted cartesian product E(τ) = G×τ B by:

(a) E(τ)n = Gn ×Bn.

with face and degeneracy operators

(b)

di(g, b) = (dig, dib), i > 0

d0(g, b) = ((d0g)τ(b), d0b)

si(g, b) = (sig, sib), i ≥ 0.

Show that E(τ) is a simplicial G bundle.

(2) Let K be a simplicial set and let G(K) be Kan’s loop group as in
Proposition 6.8.9.

(a) Show that G(K) is a simplicial group.

(b) Show that the twisting function τ : Kn → G(K)n−1, τ(x) = x,
satisfies the identities A,B,C,D in Exercise 1. (Remark: The twisted
cartesian product E(τ) = G(K)×τ K is the principle bundle T (K)
in Proposition 6.8.5.)

(3) Prove Facts 1, 2, 3 in this section, at least for simplicial sets which are
singular complexes.

6.9 Relative Samelson products

In this section, we use the group models of the previous section to define
relative Samelson products.

Let G be a topological group and let H be a normal subgroup. Let P1 and
P2 be pointed topological spaces.

If f : P1 → G and g : P2 → H are continuous pointed maps, the commuta-
tor map

[f, g] : P1 × P2
f×g−−→ G×H [ , ]−−−−−→ H

maps the bouquet P1 ∨ P2 to the unit. Therefore, it factors through a map
of the smash

[f, g]e : P1 ∧ P2 → H.
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This map is called a relative external Samelson product and is defined
without the use of any homotopies. Of course, [g, f ]e : P2 ∧ P1 → H is also
defined and we have a strictly commutative diagram

P1 ∧ P2
[f,g]e−−−→ H

↓ τ ↓ ( )−1

P2 ∧ P1
[g,f ]e−−−→ H.

In fact, the Lie identities for groups, Proposition 6.5.1, says that, if

τ = T(1,2) : P1 ∧ P2 → P2 ∧ P1

σ = T(1,2,3) : P1 ∧ P2 ∧ P3 → P3 ∧ P1 ∧ P2

σ2 = T(1,3,2) : P1 ∧ P2 ∧ P3 → P2 ∧ P3 ∧ P1

are the standard cyclic permutations, then we have the following identities

(a)

[f, g]e = [g, f ]e
−1 ◦ τ : P1 ∧ P2 → H

(b)

[ff1, g]e = [f1, g](f
−1)

e [f, g]e : P1 ∧ P2 → H

[f, gg1]e = [f, g]e [f, g1](g
−1)

e : P1 ∧ P2 → H

(c)

([f (g−1

, [h, g]e)([g
(h−1

, [f, h]e ◦ σ)([h(f−1

, [g, f ]e]e ◦ σ2)

= 1 : P1 ∧ P2 ∧ P3 → H.

So far, no homotopies have been used. Now assume that the spaces Pi
are coabelian. The analog of Proposition 6.6.6 remains true; that is, given
any commutator of one variable functions defined on a lesser length smash
product of coabelian spaces, that commutator is null homotopic. It follows
that we get the analog of Proposition 6.6.7 for relative external Samelson
products.

Proposition 6.9.1. Let P1, P2, P3 be coabelian spaces. If

f, f1 : P1 → H, g, g1 : P2 → G, h : P3 → G

are maps then the external Samelson products [f, g]e : P1 ∧ P2 → H and
[f, [g, h]e]e : P1 ∧ P2 ∧ P3 → H satisfy the following Lie identities:

(1) Anti-commutativity:

[f, g]e = −[g, f ]e ◦ τ
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where

τ = T(1,2) : P1 ∧ P2 → P2 ∧ P1

is the standard transposition.

(2) Bilinearity:

[f + f1, g]e = [f, g]e + [f1, g]e, [f, g + g1]e = [f, g]e + [f, g1]e.

(3) Jacobi identity:

[f, [g, h]e]e + [h, [f, g]e]e ◦ σ + [g, [h, f ]e]e ◦ σ2 = 0.

Introduce relative internal Samelson products as expected. Let p be an odd
prime and let ∆m,n : Pm+n(pr)→ Pn(pr) ∧ Pn(pr) be any map such that
∆m,n∗(em+n) = em ⊗ en. Relative internal Samelson products are defined
as

[f, g] = [f, g]e ◦∆m,n : Pm+n(pr)→ H.

This leads to the following definition.

Definition 6.9.2. Let L′ → L be a morphism of graded Lie algebras. We
call L′ an extended ideal of L if there are two bilinear pairings (called Lie
brackets):

[ , ] : L′ × L→ L′

[ , ] : L× L′ → L′,

such that

(1) the diagram of Lie brackets commutes

L′ × L′ [ , ]−−−−−→ L′

↓ ↓
L′ × L [ , ]−−−−−→ L′

↓ ↓
L× L [ , ]−−−−−→ L.

(2) for all x, y, and z in the union of L′ and L,

[x, y] = −(−1)deg(x)·deg(y)[y, x]

[x, [y, z]] = [[x, y], z] + (−1)deg(x)·deg(y)[y, [x, z]].
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Definition 6.9.3. An extended differential ideal L′ → L is a morphism of
differential graded Lie algebras which is an extended ideal and such that
the differential d is a derivation in the sense that, for all x and y in the
union of L′ and L,

d[x, y] = [dx, y] + (−1)deg(x)[x, dy].

Now the same proofs as before show:

Proposition 6.9.4. Let H and G be topological groups and let H be a
normal subgroup of G.

(a) If we localize away from 2 and 3, the map of integral homotopy
groups π∗(H)→ π∗(G) is an extended ideal.

(b) If p is a prime greater than 3, the map of homotopy groups with
coefficients π∗(H;Z/prZ)→ π∗(G;Z/prZ) is an extended differential
ideal with the Bockstein differential d = ρ ◦ β..

Finally, we consider the case of a fibration of simply connected spaces F →
E → B. In the previous section, we introduced the short exact sequence of
topological groups

|K| → GE → GB

which is a group model for the fibration sequence of loop spaces

ΩF → ΩE → ΩB.

Since H = |K| is a normal subgroup of G = GE , we get relative Samelson
products

[ , ] : π∗(ΩF )⊗ π∗(ΩE)→ π∗(ΩF )

with various coefficients.

Corollary 6.9.5.

(a) If we localize away from 2 and 3, the map π∗(ΩF )→ π∗(ΩE) is an
extended ideal.

(b) If p is a prime greater than 3, the map π∗(ΩF ;Z/prZ)→
π∗(ΩE;Z/prZ) is an extended differential ideal.

Exercises

(1) Let p be an odd prime. Let H be a normal subgroup of a topological
group G.

(a) Construct two bilinear pairings

[ , ] : π∗(H)× π∗(G;Z/prZ)→ π∗(H;Z/prZ)
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[ , ] : π∗(H;Z/prZ)× π∗(G))→ π∗(H;Z/prZ).

(b) Show that these pairings satisfy anti-commutativity and the Jacobi
identity, even if p = 3.

(c) Show that these pairings, together with the reduction maps η :
π∗( )→ π∗( ,Z/prZ) and the Bocksteins β : π∗( ;Z/prZ)→
π∗−1( ) satisfy the analogs of those in Proposition 6.7.6.

(2) Let H be a normal subgroup of a topological group G.

(a) Show that the commutator [ , ] : H ×G→ H induces a bilinear
bracket pairing

[ , ] : H∗(H)×H∗(G)→ H∗(H),

which is anti-commutative and satisfies the Jacobi identity. (The
coefficients can be Z, Z/prZ, or some combination of the two.)

(b) Show that these pairings, together with the reduction maps and
the Bocksteins, satisfy the analogs of those in exercise 1c.

(c) Show that the Hurewicz maps are compatible with these pairings,
that is, show that the diagram below commutes:

πm(H)⊗ πn(G;Z/prZ)
[ , ]−−−−−→ πm+n(H;Z/prZ))

↓ ϕ⊗ ϕ ↓ ϕ
Hm(H)⊗Hn(G;Z/prZ)

[ , ]−−−−−→ Hm+n(H;Z/prZ)).

6.10 Universal models for relative Samelson products

Let p be an odd prime. In this section, we assume that we have a theory
of (internal) Samelson products for mod pr homotopy groups, a theory
which is defined and functorial on the category of loop spaces ΩE
and loop maps. That is, we assume that we have bilinear maps

[ , ] : π∗(ΩE;Z/prZ)⊗ π∗(ΩE;Z/prZ)→ π∗(ΩE;Z/prZ).

This theory satisfies anti-commutativity, the derivation formula for the
Bockstein, and, if p is a prime greater than 3, the Jacobi identity.

We then show that this implies that there is a theory of relative Samelson
products which is defined and functorial on loops of fibration sequences

ΩF → ΩE → ΩB
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and loop maps between them. That is, we have bilinear maps

[ , ] : π∗(ΩF ;Z/prZ)⊗ π∗(ΩE;Z/prZ)→ π∗(ΩF ;Z/prZ) and

[ , ] : π ∗ (ΩE;Z/prZ)⊗ π ∗ (ΩF ;Z/prZ)→ π ∗ (ΩF ;Z/prZ).

The identities such as bilinearity, anti-commutativity, and the Jacobi iden-
tity (if p > 3) are also valid.

We shall use the technique of universal models to do this. This technique
is based on certain fibration sequences which are split as a consequence of
the Hilton–Milnor theorem.

Definition 6.10.1. Let p be an odd prime and let m,n > 2. The basic
two variable universal model for mod pr homotopy groups in dimensions
m and n is the space

ΣPm,n = ΣPm(pr) ∨ ΣPn(pr).

Remark. If Pm = Pm(pr) and Pn = Pn(pr), there are the standard inclu-
sions

1m : ΣPm → ΣPm,n and 1n : ΣPn → ΣPm,n.

Any mod pr homotopy classes

x : ΣPm → E and y : ΣPn → E

define a unique homotopy class

x ∨ y : ΣPm,n → E

which restricts to x = (x ∨ y) · 1m and y = (x ∨ y) · 1n, respectively. Let

x : Pm → ΩE and y : Pn → ΩE

be the respective adjoints.

Thus, we get the loop map

ΩΣPm,n → ΩE

which is the multiplicative extension µ(x ∨ y) of the adjoint x ∨ y : Pm,n →
ΩE.

Remark. If ιm : Pm → ΩPm,n and ιn : Pn → ΩE are the adjoints of the
standard inclusions, then naturality asserts that the internal Samelson
product [x, y] : Pm+n → ΩE is given by the formula

[x, y] = µ(x ∨ y) · [ιm, ιn].
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Thus all internal Samelson products are determined by Samelson products
in the universal models.

Definition 6.10.2. The two variable universal model for relative Samelson
products in mod pr homotopy groups is the standard projection map π :
ΣPm,n → ΣPm.

Remarks. If τ : E → B is a fibration with fibre F and x : Pm → ΩE and
y : Pn → ΩF are homotopy classes, then we have a commutative diagram

ΣPn
y−→ F

↓ ↓
ΣPm,n

x∨y−−→ E
↓ ↓ τ

ΣPm
τ ·x−−→ B.

If Fm,n → Em,n
π−→ ΣPm is the fibration sequence which is the result of

the standard replacement of the map Pm,n → Pm by a fibration, Exercise
1 below gives an extension to a commutative diagram

ΣPn → Fm,n
˜x∨y−−→ F

↓ ↓ ↓
ΣPm,n

'−→ Em,n
˜x∨y−−→ E

↓ ↓ π ↓ τ
ΣPm

=−→ ΣPm
τ ·x−−→ B.

Exercise 1 also asserts that the right-hand map of fibration sequences can
be chosen to be unique up to fibre homotopy.

It follows from the Hilton–Milnor theorem that the fibration sequence

ΩFm,n → ΩEm,n → ΩΣPm

is split, that is, it has a section. Since the Samelson product [ιm, ιn] maps
to a null map in the base ΣPm, it has a homotopy unique representative
[ιm, ιn]r in the fibre ΩFm,n. Thus, the following definition is well defined.

Definition 6.10.3. If x ε π∗(ΩE) and y ε π∗(ΩF ), the relative Samelson
product [x, y]r ε π∗(ΩF ) is defined by the formula

[x, y]r = Ω( ˜x ∨ y)∗[ιm, ιn]r.

Similarly, using the universal model Pn,m → Pm, the relative Samelson
product [y, x]r is defined by the formula

[y, x]r = Ω( ˜y ∨ x)∗[ιn, ιm]r.
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Remarks. The relative Samelson product is characterized by two proper-
ties. One, it is natural with respect to loop maps of fibration sequences and,
two, it maps to the internal Samelson product in the total space. Hence,
it is identical with the relative Samelson product as previously defined via
group models. In special case of the universal model, the relative Samelson
product is uniquely characterized by the fact that its image in the total
space is the usual internal Samelson product. In addition, naturality and
the commutative diagram of vertical fibration sequences

F → F → E
↓ ↓ ↓=
F → E → E
↓ ↓ ↓
∗ → B → ∗

show that internal and relative Samelson products are compatible. In other
words, the following diagram commutes

π ∗ (ΩF ;Z/prZ)⊗ π ∗ (ΩF ;Z/prZ) → π ∗ (ΩF ;Z/prZ)
↓ ↓=

π ∗ (ΩF ;Z/prZ)⊗ π ∗ (ΩE;Z/prZ) → π ∗ (ΩF ;Z/prZ)
↓ ↓

π ∗ (ΩE;Z/prZ)⊗ π ∗ (ΩF ;Z/prZ) → π ∗ (ΩE;Z/prZ).

Note that the twist map T : Pn,m → Pm,n leaves the internal Samelson
product invariant,

T∗[ιn, ιm] = [ιn, ιm].

Since [ιn, ιm] = −(−1)mn[ιm, ιn] for the internal Samelson product, it fol-
lows that

[y, x]r = Ω( ˜y ∨ x)∗[ιn, ιm]r = Ω( ˜x ∨ y)∗T [ιn, ιm]r = Ω( ˜x ∨ y)∗[ιn, ιm]r

= −(−1)nmΩ( ˜x ∨ y)∗[ιm, ιn]r = −(−1)nm[x, y]r.

That is,

Lemma 6.10.4. [y, x]r = −(−1)mn[x, y]r for the relative Samelson prod-
uct.

The next lemma determines the Bockstein of a relative Samelson product.
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Lemma 6.10.5. If β : π∗(X;Z/prZ)→ π∗−1(X;Z/prZ) is the Bockstein,
then the following derivation formula is valid for relative Samelson prod-
ucts,

β[x, y]r = [βx, y]r + (−1)m[x, βy]r.

Proof: First of all,

β[ιm, ιn]r = [βιm, ιn]r + (−1)m[ιm, βιn]r

since the formula is valid for internal Samelson products and the homotopy
of the fibre injects into that of the total space. The naturality of relative
Samelson products converts this formula into the desired formula. �

In order to prove identities for relative Samelson products which involve
three variables, it is necessary to introduce:

Definition 6.10.6. If Pm,n,q = Pm ∨ Pn ∨ P q, then the basic three vari-
able model for the mod pr homotopy groups is the space ΣPm,n,q and the
three variable model for relative Samelson products in mod pr homotopy
groups is the standard projection map

ΣPm,n,q → ΣPm,n.

Remarks. Similar to the two variable case, we have the following map-
ping properties. If τ : E → B is a fibration with fibre F and x : Pm → ΩE,
y : Pn → ΩE, and z : P q → ΩF are homotopy classes, then we have a com-
mutative diagram

ΣP q
y−→ F

↓ ↓
ΣPm,n,q

x∨y∨z−−−−→ E
↓ ↓ τ

ΣPm,n
τ ·(x∨y)−−−−→ B.

If Fm,n,q → Em,n,q
π−→ ΣPm is the fibration sequence which is the result

of the standard replacement of the map Pm,n,q → Pm,n by a fibration, we
have an extension to a commutative diagram

ΣP q → Fm,n,q
˜x∨y∨z−−−−→ F

↓ ↓ ↓
ΣPm,n,q

'−→ Em,n,q
˜x∨y∨z−−−−→ E

↓ ↓ π ↓ τ
ΣPm,n

=−→ ΣPm,n
τ ·(x∨y)−−−−→ B.
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As before, it follows from the Hilton–Milnor theorem that the fibration
sequence

ΩFm,n,q → ΩEm,n,q → ΩΣPm,n

is split, that is, it has a section. Since the iterated Samelson product
[ιm, ιn, ιq] = [ιm, [ιn, ιq]] maps to a null map in the base ΣPm,n, it has
a homotopy unique representative [ιm, ιn, ιq]r in the fibre ΩFm,n,q. Thus,
the following definition is well defined.

Definition 6.10.7. If x ε π∗(ΩE), y ε π∗(ΩE), and z ε π∗(ΩF ) the relative
Samelson product

[x, y, z]r ε π∗(ΩF )

is defined by the formula

[x, y, z]r = Ω( ˜x ∨ y ∨ z)∗[ιm, ιn, ιq]r.

Similarly, using the model Pm,n,q → Pm,n,

[[x, y, z]]r ε π∗(ΩF )

is defined by the formula

[[x, y, z]]r = Ω( ˜x ∨ y ∨ z)∗[[ιm, ιn, ιq]]r

where [[ιm, ιn, ιq]]r is the homotopy class in the fibre which maps to the
Samelson product [[ιm, ιn], ιq].

Finally, using the model Pn,m,q → Pm,n,

[[[y, x, z]]]r ε π∗(ΩF )

is defined by the formula

[[[y, x, z]]]r = Ω( ˜y ∨ x ∨ z)∗[[[ιn, ιm, ιq]]]r

where [[[ιn, ιm, ιq]]]r is the homotopy class in the fibre which maps to the
Samelson product [ιn, [ιm, ιq]].

We need to relate three variable products to two variable products.

Lemma 6.10.8.

[x, y, z]r = [x, [y, z]r]r

[[x, y, z]]r = [[x, y], z]r

[[[y, x, z]]]r = [y, [x, z]r]r
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Proof: For example, the first of the above formulas is an immediate conse-
quence of the commutative diagram

ΩFm,n+q → ΩFm,n,q → ΩF
↓ ↓

ΩΣPm,n+q → ΩΣPm,n,q → ΩE
↓ ↓ ↓

ΩΣPm → ΩΣPm,n → ΩB.

The remaining two formulas have similar proofs. �

Let p > 3. Since the internal Samelson products are invariant under the
map induced by the natural map S : Pm,n,q → Pn,m,q, the Jacobi identity
for internal Samelson products

[ιm, [ιn, ιq]] = [[ιm, ιn], ιq] + (−1)mn[ιn, [ιm, ιq]]

yields the Jacobi identity for relative Samelson products:

Lemma 6.10.9. If p is a prime greater than 3 and if x επm(ΩE;Z/prZ),
y επn(ΩE;Z/prZ), and z επq(ΩF ;Z/prZ), then

[x, [y, z]r]r = [[x, y], z]r + (−1)mn[y, [x, z]r]r.

Proof: The equation

[ιm, [ιn, ιq]] = [[ιm, ιn], ιq] + (−1)mn[ιn, [ιm, ιq]]

can be rewritten as

[ιm, ιn, ιq]r = [[ιm, ιn, ιq]]r + (−1)mn(ΩΣS)∗[[[ιn, ιm, ιq]]]r.

Since Ω(x ∨ y ∨ z) · ΩΣS = Ω(y ∨ x ∨ z), the required Jacobi identity is the
image under the map Ω(x ∨ y ∨ z) . �

In order to prove the bilinearity of relative Samelson products, we consider
two universal examples

ΣPm,n,q → ΣPm,n

ΣPm,n,q → ΣPm.

In the first case, we consider the relative Samelson product [ιm + ιn, ιq]r
where m = n. Clearly,

[ιm + ιn, ιq] = [ιm, ιq] + [ιn, ιq]

and hence the same formula for relative Samelson products. Now naturality
gives Lemma 6.10.10a below.
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In the second case, we consider the relative Samelson product [ιm, ιn + ιq]r
where n = q. Clearly,

[ιm, ιn + ιq] = [ιm, ιn] + [ιm, ιq]

and hence the same formula for relative Samelson products. Now naturality
gives 6.10.10b below.

Lemma 6.10.10.

(a) If x, y ε πm(ΩE;Z/prZ) and z, ε πq(ΩF ;Z/prZ), then

[x+ y, z]r = [x, z]r + [y, z]r.

(b) If x, ε πm(ΩE;Z/prZ) and y, z, ε πq(ΩF ;Z/prZ), then

[x, y + z]r = [x, y]r + [x, z]r.

Corollary 6.10.11. x, ε πm(ΩE;Z/prZ) and z, ε πq(ΩF ;Z/prZ)If α is a
scalar, then

[αx, z]r = [x, αz]r = α[x, z]r.
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Of course, Corollary 6.10.11 is a corollary of Lemma 6.10.10 but it can also
be proved directly.

Exercises

(1) Let f : X → Y be any continuous map and let

X
ιf−→ Ef

πf−→ Y

be the standard factorization of f into the composite of a homotopy
equivalent inclusion ιf and a fibration πf , that is,

Ef = {(x, ω)|xεX, ω : I → Y, ω(0) = f(x)}

πf (x, ω) = ω(1), ιf (x) = (x, ωx),

where ωx is the constant path at x.

(a) If τ : E → B is a fibration, show that any commutative diagram

X
h−→ E

↓ f ↓ τ
Y

g−→ B

can be embedded in a commutative diagram

X
ιf−→ Ef

h−→ E
↓ f ↓ πf ↓ τ
Y

=−→ Y
g−→ B,

where h = h · ιf .

(b) Show that this larger diagram can be chosen to be unique up to
fibre homotopy of the right-hand map of fibrations.

(c) Prove the following parametrized version of (a): Any commutative
diagram

X
ht−→ E

↓ f ↓ τ
Y

gt−→ B

where gt and ht are homotopies can be embedded in a commutative
diagram

X
ιf−→ Ef

ht−→ E
↓ f ↓ πf ↓ τ
Y

=−→ Y
gt−→ B.

where ht = ht · ιf .
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(2) Give a direct proof of Lemma 6.10.11.

(3) Show that there is a relative Samelson product defined on mod p homo-
topy Bockstein spectral sequences (see Chapter 7)

Er(ΩF )⊗ Er(ΩE)→ Er(ΩF ).

6.11 Samelson products over the loops on an H-space

Let p be an odd prime. We shall show that there is a theory of so-called
H-based relative Samelson products. This theory is defined and functorial
on loops of fibration sequences

ΩF → ΩE → ΩB

where B is a homotopy commutative H-space and where the maps of fibra-
tion sequences are loop maps with the maps on the base being loops of
H-maps. In this case, we have bilinear maps

[ , ] : π∗(ΩE;Z/prZ)⊗ π∗(ΩE;Z/prZ)→ π∗(ΩF ;Z/prZ).

The important thing is that the usual identities are also valid.

We use the method of universal models with more care. Loosely speaking,
the universal two variable models for the mod pr homotopy in dimensions
m and n of the fibrations E → B with B an H-space are the maps ΣPm,n →
ΣPm × ΣPn. But this model does not have a base which is an H-space so
it is desirable to change the category for which this is a universal model.

Consider the category of two variable models in which the objects are
ordered triples consisting of:

(1) a map τ : E → B.

(2) maps x : ΣPm → E and y : ΣPn → E.

(3) a commutative diagram

ΣPm,n
x∨y−−→ E

↓ ↓ τ
ΣPm × ΣPn

Φ−→ B,

where the left-hand vertical map is the standard inclusion of the bouquet
into the product. Thus, Φ is an extension of a map from the bouquet to
the product. (Of course, we are aware that (3) includes all the data for a
model.)
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Morphisms in this category of models are maps from E → B to another
map E′ → B′ which preserve the structures in (1), (2), (3).

A universal model is just an initial object in this category.

Definition 6.11.1. The universal model is the object:

(1) The standard inclusion of the bouquet into the product

ΣPm,n → ΣPm × ΣPn.

(2) The standard inclusions 1n : ΣPm → ΣPm × ΣPn and 1n : ΣPn →
ΣPm × ΣPn.

(3) The commutative diagram

ΣPm,n
1m∨1n−−−−→ ΣPm,n

↓ ↓
ΣPm × ΣPn

1−→ ΣPm × ΣPn

It is customary to abuse the terminology and simply refer to the map

ΣPm,n → ΣPm × ΣPn

as the universal two variable model. With this simplified terminology, the
universal mapping property is given by the unique map

ΣPm,n
x∨y−−→ E

↓ ↓ τ
ΣPm × ΣPn

Φ−→ B.

In other words, the universal mapping property is the model itself.

Now suppose that F
ι−→ E

τ−→ B is a fibration sequence and let Fm,n
ι−→

Em,n
π−→ ΣPm × ΣPn be the fibration sequence which results from the stan-

dard replacement of ΣPm,n → ΣPm × ΣPn by a fibration. Exercise 1 in the
previous section gives an extension of the map in the previous paragraph
to a commutative diagram

Fm,n
Φ−→ F

↓ ι ↓ ι
ΣPm,n

'−→ Em,n
Φ−→ E

↓ ↓ π ↓ τ
ΣPm × ΣPn

=−→ ΣPm × ΣPn
Φ−→ B.

The choice of the lift Φ : Em,n → E is uniquely determined up to fibre

homotopy and thus the choice of the map Φ : Fm,n → F is uniquely deter-
mined up to homotopy.
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If we loop the above diagram, the Hilton–Milnor theorem implies that the
middle vertical fibration sequence

ΩFm,n
Ωι−→ ΩEm,n

Ωπ−−→ Ω(ΣPm × ΣPn)

is split. If ιm : Pm → ΩPm,n and ιn : Pn → ΩPm,n are the standard inclu-
sions, the internal Samelson product [ιm, ιn] maps via Ωπ to zero in
the base Ω(ΣPm × ΣPn) and hence there is a unique mod pr homotopy
class [ιm, ιn]1 : Pm+n → ΩFm,n which maps to [ιm, ιn] via Ωι. That is,
(Ωι)∗[ιm, ιn]1 = [ιm, ιn].

Definition 6.11.2. If x : Pn → ΩE and y : Pn → ΩE are the respective
adjoints of x and y, then the Φ-based Samelson product is the class

[x, y]Φ : Pm+n → ΩF

uniquely defined by

[x, y]Φ = (ΩΦ)∗[ιm, ιn]1.

Remarks. The Φ-based Samelson products are functorial or natural on
the category. That is, given a commutative diagram

Fm,n
Φ−→ F

h−→ F1

↓ ι ↓ ι ↓ ι
ΣPm,n

'−→ Em,n
Φ−→ E

g−→ E1

↓ ↓ π ↓ τ ↓ τ1
ΣPm × ΣPn

=−→ ΣPm × ΣPn
Φ−→ B

f−→ B1,

we have the naturality formula

(Ωh)∗[x, y]Ψ = [g∗x, g∗y]f ·Ψ.

In particular, [ιm, ιn]1 is the 1-based Samelson product. Thus, this Samel-
son product is universal among Φ-based Samelson products and it is
uniquely characterized by the fact that its image in the total space of the
universal model is the usual internal Samelson product.

Twisted anti-commutativity

Consider the twist map T and its extension to the replacement fibrations,
that is, consider the diagram

ΣPn,m
T−→ ΣPm,n

x∨y−−→ E
↓ ↓ ↓ τ

ΣPn × ΣPm
T−→ ΣPm × ΣPn

Φ−→ B
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and its extension to

Fn,m
T−→ Fm,n

Φ−→ F
↓ ↓ ↓

En,m
T−→ Em,n

Φ−→ E
↓ ↓ ↓ τ

ΣPn × ΣPm
T−→ ΣPm × ΣPn

Φ−→ B.

Since

(ΩT )∗[ιn, ιm] = [ιn, ιm] = −(−1)nm[ιm, ιn]

that is,

(ΩT )∗[ιn, ιm] = [ιn, ιm] = −(−1)nm[ιm, ιn].

The injection of the homotopy of the fibre into the homotopy of the total
space gives

(ΩT )∗[ιn, ιm]1 = −(−1)nm[ιm, ιn]1

in the universal models. Hence, the natural definition implies the twisted
anti-commutativity:

Lemma 6.11.3.

[y, x]Φ·T = −(−1)nm[x, y]Φ.

Relative Samelson products

The relative Samelson product [x, y]r is a special case of the Φ-based prod-
uct. Suppose x : ΣPm → E and y : ΣPm → F . Consider the diagram

ΣPm,n
=−→ ΣPm,n

x∨y−−→ E
↓ ↓ ↓ τ

ΣPm × ΣPn
π1−→ ΣPm

x−→ B,

where π1 is the projection on the first factor. It follows that

Lemma 6.11.4. If x : ΣPm → E and y : ΣPm → F , then

[x, y]r = [x, y]x·π1
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Compatibility of Samelson products in the loops on a fibration
sequence

The above lemma is part of the general compatibility of Φ-based, relative,
and internal Samelson products. That is, we have a commutative diagram

π∗(ΩE;Z/prZ)⊗ π∗(ΩF ;Z/prZ)
[ , ]r−−−−−→ π∗(ΩF ;Z/prZ)

↓ ↓=
π∗(ΩE;Z/prZ)⊗ π∗(ΩE;Z/prZ)

[ , ]Φ−−−−−→ π∗(ΩF ;Z/prZ)
↓= ↓

π∗(ΩE;Z/prZ)⊗ π∗(ΩE;Z/prZ)
[ , ]−−−−−→ π∗(ΩE;Z/prZ).

The compatibility of the Φ-based product with the internal product is a
consequence of the next lemma. Consider the diagram

Fm,n
Φ−→ F

↓ ι ↓ ι
Em,n

Φ−→ E
↓ ↓ τ

ΣPm × ΣPn
Φ−→ B.

Hence,

(Ωι)∗[x, y]Φ = (Ωι) ∗ (ΩΦ)∗[ιm, ιn]1

= (ΩΦ)∗(Ωι)∗[ιm, ιn]1 = (ΩΦ)∗[ιm, ιn] = [x, y],

that is,

Lemma 6.11.4. If x : ΣPm → E and y : ΣPn → E, then

(Ωι)∗[x, y]Φ = [x, y].

Bocksteins and Φ-based Samelson products

Recall that the Bockstein βx of x : ΣPm → E is defined by the composition

ΣPm−1 β−→ ΣPm
x−→ E.
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Consider the two diagrams

Fm−1,n (β×1)−−−→ Fm,n
Φ−→ F

↓ ↓ ι ↓ ι

Em−1,n (β×1)−−−→ Em,n
Φ−→ E

↓ ↓ ↓ τ

ΣPm−1 × ΣPn
β×1−−→ ΣPm × ΣPn

Φ−→ B

Fm,n−1 (1×β)−−−→ Fm,n
Φ−→ F

↓ ↓ ι ↓ ι

Em,n−1 (1×β)−−−→ Em,n
Φ−→ E

↓ ↓ ↓ τ

ΣPm × ΣPn−1 1×β−−→ ΣPm × ΣPn
Φ−→ B.

In ΩEm,n, we have

β[ιm, ιn] = [βιm, ιn] + (−1)m[ιm, βιn].

Since the homotopy of the fibre injects into that of the total space, in
ΩFm,n, we have

β[ιm, ιn]1 = [βιm, ιn]β×1 + (−1)m[ιm, βιn]1×β .

Naturality gives the derivation formula for the Bockstein

Lemma 6.11.5. If x : ΣPm → E and y : ΣPn → E, then

β[x, y]Φ = [βx, y]Φ·(β×1) + (−1)m[x, βy]Φ·(1×β).

Three-variable models

Let x : ΣPm → E, y : ΣPn → E, and z : ΣP q → E. A three-variable model
is a commutative diagram

ΣPm,n,q
x∨y∨z−−−−→ E

↓ ↓ τ
ΣPm × ΣPn × ΣP q

Ψ−→ B.

As in the two-variable case, we extend the maps to maps of homotopy
equivalent fibration sequences
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Fm,n,q
Ψ−→ F

↓ ι ↓ ι
ΣPm,n,q

'−→ Em,n,q
Ψ−→ E

↓ ↓ ↓ τ
ΣPm × ΣPn × ΣP q

=−→ ΣPm × ΣPn × ΣP q
Ψ−→ B.

We have the universal three-variable model given by the identity map of

ΣPm,n,q → ΣPm × ΣPn × ΣP q.

Bilinearity

For the consideration of bilinearity, assume that m = n in the three-variable
model and consider the three diagrams

ΣPm,q
∇∨1−−→ ΣPm,n,q

x∨y∨z−−−−→ E
↓ ↓ ↓ τ

ΣPm × ΣP q
∆×1−−−→ ΣPm × ΣPn × ΣP q

Ψ−→ B

where ∆ : ΣPm → ΣPm × ΣPn is the diagonal, ∇ : ΣPm → ΣPm,n is the
coproduct which defines addition, and

ΣPm,q
1m∨1−−−→ ΣPm,n,q

x∨y∨z−−−−→ E
↓ ↓ ↓ τ

ΣPm × ΣP q
1m×1−−−→ ΣPm × ΣPn × ΣP q

Ψ−→ B

where 1m : ΣPm → ΣPm,n → ΣPm × ΣPn is the inclusion of one sum-
mand, and

ΣPn,q
1n∨1−−−→ ΣPm,n,q

x∨y∨z−−−−→ E
↓ ↓ ↓ τ

ΣPn × ΣP q
1n×1−−−→ ΣPm × ΣPn × ΣP q

Ψ−→ B

where 1n : ΣPn → ΣPm,n → ΣPm × ΣPn is the inclusion of one summand.

In ΩΣPm,n,q and hence also in ΩEm,n,q,

[ιm + ιn, ιq] = [ιm, ιq] + [ιn, ιq].

Since the homotopy of the fibre injects into that of the total space, it follows
that

[ιm + ιn, ιq](∆×1) = [ιm, ιq](1m×1) + [ιn, ιq](1n×1)
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and, by naturality,

Lemma 6.11.6.

[x+ y, z]Ψ·(∆×1) = [x, z]Ψ·(1m×1) + [y, z]Ψ·(1n×1)

The Jacobi identity

In the three-variable model as above, consider the iterated Samelson prod-
uct

[ιm, ιn, ιq] = [ιm, [ιn, ιq]]

in ΩΣPm,n,q or, equivalently, in ΩEm,n,q. Since the fibration sequence

ΩFm,n,q
ι−→ ΩEm,n,q

π−→ ΣPm × ΣPn × ΣP q

is split, there is a unique mod pr homotopy class [ιm, ιn, ιq]1 in ΩFm,n,q

such that ι∗[ιm, ιn, ιq]1 = [ιm, ιn, ιq].

Definition 6.11.6. The Ψ-based Samelson product is defined by

[x, y, z]Ψ = Ω(Ψ)∗[ιm, ιn, ιq]1.

There are three obvious restrictions of

Ψ : ΣPm × ΣPn × ΣP q → B

to maps

Φ = Φm : ΣPn × ΣP q → B

Φ = Φn : ΣPm × ΣP q → B

Φ = Φq : ΣPm × ΣPn → B.

The following lemma which relates three-variable products to two variable
products is a trivial application of the injectivity in the universal model.

Lemma 6.11.7.

[ιm, ιn, ιq]1 = [ιm, [ιn, ιq]1]r

and naturality gives

[x, y, z]Ψ = [x, [y, z]Φm ]r.

If R : ΣP q × ΣPm × ΣPn → ΣPm × ΣPn × ΣP q and S : ΣPn × ΣPm ×
ΣP q → ΣPm × ΣPn × ΣP q are the permutations, then the Jacobi iden-
tity becomes

[x, y, z]Ψ = (−1)q(m+n)+1[z, x, y]Ψ·R + (−1)mn[y, x, z]Ψ·S
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which is a rewrite of

[x, [y, z]Φm ]r = (−1)q(m+n)+1[z, [x, y]Φq ]r + (−1)mn[y, [x, z]Φn ]r.

In the total space of the universal example ΩEm,n,q, this is equivalent to

[ιm, [ιn, ιq]] = (−1)q(m+n)+1(ΩR)∗[ιq, [ιm, ιn]] + (−1)mn(ΩS)∗[ιn, [ιm, ιq]].

Since R : ΣP q,m,n → ΣPm,n,q and S : ΣPn,m,q → ΣPm,n,q induce the for-
mal identity on these Samelson products, this identity is the same as the
usual Jacobi identity

[ιm, [ιn, ιq]] = (−1)q(m+n)+1[ιq, [ιm, ιn]] + (−1)mn[ιn, [ιm, ιq]].

Hence naturality gives

Lemma 6.11.8. The Jacobi identity is valid if p is a prime greater than
3, that is,

[x, y, z]Ψ = (−1)q(m+n)+1[z, x, y]Ψ·R + (−1)mn[y, x, z]Ψ·S

or the more familiar

[x, [y, z]Φm ]r = (−1)q(m+n)+1[z, [x, y]Φq ]r + (−1)mn[y, [x, z]Φn ]r.

Finally, suppose that F
ι−→ E

π−→ B is a fibration sequence with B an H-
space with multiplication µ : B ×B → B. We can assume that the multi-
plication has a strict unit. In this case we have a canonical choice for the
map Φ : ΣPm × ΣPn → B, namely, we set Φ to be the composition

ΣPm × ΣPn
x×y−−→ B ×B µ−→ B.

Definition 6.11.9. The H-based Samelson product [x, y]µ is defined to be
the Φ-based Samelson product [x, y]Φ.

In addition, if we choose Ψ to be the composition

ΣPm × ΣPn × ΣP q
x×y×z−−−−→ B ×B ×B 1×µ−−→ B ×B µ−→ B,

then the three restrictions to two factors are all equal to the above map,
that is,

Φm = Φn = Φq = Φ.

Thus, we get

(1) Twisted anti-commutativity:

[y, x]µ·T = −(−1)mn[x, y]µ
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(2) Derivation formula for the Bockstein:

β[x, y]µ = [βx, y]µ + (−1)m[x, βy]µ

(3) Bilinearity:

[x+ y, z]µ = [x, z]µ + [y, z]µ

(4) The Jacobi identity if p > 3:

[x, [y, z]µ]r = (−1)q(m+n)+1[z, [x, y]µ]r + (−1)mn[y, [x, z]µ]r.

In the case when the relative Samelson product and the H-based Samelson
product are both defined, that is, when x : Pm → F and y : Pn → E, then
the two agree,

[ι∗x, y]µ = [x, y]r.

This is the case since the relative product is defined by a model covering

ΣPn
π·y−−→ B

and the H-based product is defined by a model covering

ΣPm × ΣPn
π·x×π·y−−−−−→ B ×B µ−→ B.

Since π · x : Pm → E → B is trivial, the H-based product is defined by a
model covering

ΣPm × ΣPn → ΣPn
π·y−−→ B.

Thus the H-based model maps to the relative model and the result follows.

Hence we can write the Jacobi identity as

[x, ι∗[y, z]µ]µ = (−1)q(m+n)+1[z, ι∗[x, y]µ]µ + (−1)mn[y, ι∗[x, z]µ]µ

where ι : ΩF → ΩE is the inclusion.

If, in addition, the multiplication is homotopy commutative, that is, if
µ · T ' µ, we get true anti-commutativity

[y, x]µ = −(−1)mn[x, y]µ.

Remarks. The verification of true anti-commutativity in the case of
homotopy commutativity uses the fact that the commuting homotopy can
be chosen to be stationary on the wedge. This fact, known to Frank Adams
and to Michael Barratt, will be proved in Chapter 11. We use the fact
that the commuting homotopy on ΣPm × ΣPn is stationary on the wedge
ΣPm ∨ ΣPn in order to lift this homotopy on the base to a fibre homotopy
on Em,n, giving a homotopy on the fibre Fm,n and hence also on its loop
space ΩFm,n which is where the H-based Samelson product lives.
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Remarks. Suppose B is a connected H-space which is localized at an odd
prime p and such that the rational Pontrjagin ring H∗(B;Q) is graded
commutative. If B has only finitely many nonzero homotopy groups, then
Zabrodsky [143] has shown that the multiplication in B can be altered so
that it is homotopy commutative. Since the prime p is odd and we can
localize at p, the restriction to a homotopy commutative base is really no
restriction at all in this case.

Remarks. Consider the standard maps Sn−1 → Pn(pr), Pn(pr)→ Sn,
Pn(pr)→ Pn(pr+s), Pn(pr+s)→ Pn(ps), and similarly with m replacing
n. The obvious variations of the above apply when Pn(pr) and Pm(pr)
are replaced by various combinations of the domains and ranges of these
maps. Hence, identities which involve Bocksteins and reductions of maps
are valid for H-based Samelson products if they are valid for the usual
Samelson products.

Remarks. When the base B is a homotopy commutative H-space, it is
clear that the morphism of mod pr homotopy groups π(ΩF ;Z/prZ)→
π(ΩE;Z/prZ) satisfies the following two definitions where p is a prime
greater than 3 and the differential d in Definition 6.10.2 is the Bockstein
differential d = ρ ◦ β = β :

Definition 6.11.10. Let L′ → L be a morphism of graded Lie algebras.
We call L′ a strong extended ideal of L if there is a bilinear pairing (called
a Lie bracket):

[ , ] : L× L→ L′

such that

(1) the diagram of Lie brackets commutes

L′ × L′ [ , ]−−−−−→ L′

↓ ↓
L× L [ , ]−−−−−→ L′

↓ ↓
L× L [ , ]−−−−−→ L.

(2) for all x, y, and z in the union of L′ and L,

[x, y] = −(−1)deg(x)·deg(y)[y, x]

[x, [y, z]] = [[x, y], z] + (−1)deg(x)·deg(y)[y, [x, z]].

Definition 6.11.11. A strong extended differential ideal L′ → L is a mor-
phism of differential graded Lie algebras which is a strong extended ideal
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and such that the differential d is a derivation in the sense that, for all x
and y in the union of L′ and L,

d[x, y] = [dx, y] + (−1)deg(x)[x, dy].

Exercises

(1) Let

F1 → E1 → B1

↓ h ↓ g ↓ f
F2 → E2 → B2

be a map of fibration sequences with f : B1 → B2 being an H-map of
H-spaces, then the map on the loop spaces of the fibres sends H-based
Samelson products to H-based Samelson products, that is,

(Ωh)∗[x, y]µ = [(Ωh)∗x, (Ωh)∗y]µ.

(2) Given that, in a homotopy commutative H-space B, a commuting
homotopy

ht : B ×B → B, h0 = µ, h1 = µ · T

can be made to be stationary on the wedge, show that the H-based
Samelson product is anti-commutative:

[y, x]µ = −(−1)mn[x, y]µ.



7 Bockstein spectral sequences

This chapter begins with an exposition of exact couples [78, 79] which
follows the presentation in MacLane’s Homology [77]. The important fea-
ture of MacLane’s exposition is that it stresses the explicit identification
of the r-th term of the spectral sequence. We specialize to the case of
the homotopy Bockstein exact couple and blend this treatment of spec-
tral sequences by exact couples with a treatment which is a simplifica-
tion of that of Cartan–Eilenberg via spectral systems or H(p,q) systems
[23]. Cartan–Eilenberg gives an alternative description of the r-th term of
the Bockstein spectral sequence. In particular, this alternate description
is well suited for the introduction of Samelson products into the spectral
sequence.

We determine the convergence of the mod p homotopy Bockstein spectral
sequence, at least in the case where the classical homotopy groups have
p-torsion of bounded order. From general principles it is clear that the E∞

term should be a function of the homotopy groups of the p-completion, but
an example shows that there are significant difficulties in the case when the
p-torsion is of unbounded order.

But the principal application of the Bockstein spectral sequence is not to
compute the E∞ term. There are usually better ways to do that. Appli-
cation of the Bockstein spectral sequence comes from its differentials. The
differentials determine the torsion in the integral homotopy groups. In addi-
tion, there is a strong connection between differentials and the problem of
extending maps which originate on a Moore space.

Homology and cohomology versions of Bockstein spectral sequences first
appear in the work of William Browder on H-spaces [19]. We give a brief
treatment of these spectral sequences here and then apply them, as Browder
did, to prove some classical theorems on finite H-spaces. These remain
some of the most attractive and powerful applications of Bockstein spectral
sequences.

230
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Also important to us is the Samelson product structure in the homotopy
Bockstein spectral sequence and the Hurewicz representation of this in the
Pontrjagin structure of of the homology Bockstein spectral sequence.

In a subsequent chapter (Section 9.6) we apply these Samelson products
in the homotopy Bockstein spectral sequence to establish the existence of
higher order torsion in the homotopy groups of odd primary Moore spaces.
It is also vital in the product decompositions of Chapter 11 which lead to
the odd primary exponent theorem for spheres.

7.1 Exact couples

We base our definitions of Bockstein spectral sequences on William
Massey’s notion of exact couple: [78, 79]

Definition 7.1.1. An exact couple C consists of two graded modules A,E
and an exact triangle of homomorphisms

A
ι−→ A

∂ ↖ ↙j

E

where ι : A→ A has degree 0 and ∂ : E → A has degree ±1.

Remark. If the degree of ∂ is −1, the exact couple is called a homology
exact couple. If the degree of ∂ is +1, the exact couple is called a cohomol-
ogy exact couple.

We note that, if we define d = j ◦ ∂ : E → E, then d is a differential, d ◦ d =
0, and we can define a homology group

H(E, d) = Z(E, d)/B(E, d) = ker(d)/im(d).

Exact couples yield new exact couples by a process of derivation defined in
the following manner.

Definition 7.1.2. Let C be an exact couple as
above. The derived couple C ′ has the graded mod-
ules A′ = ιA = im(ι), E′ = H(E, d) and the triangle of
maps

A′
ι′−→ A′

∂ ′ ↖ ↙j′

E′
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where

ι′(ιa) = ι2(a),

j′(ιa) = ja+ im(d), aεA,

∂′(e+ im(d)) = ∂e, eεE.

We leave as exercises two key facts:

(1) the maps ι′, j′, ∂′ are well defined, that is, they are independent of
choices of representatives and they land in the appropriate groups.

(2) the derived couple is exact.

The sequence of successive derived exact couples C, C ′, C ′′, C ′′′, . . . defines
a spectral sequence via

E1 = E, E2 = E′, E3 = E′′, . . .

with differentials dr : Er → Er

d1 = d = j ◦ ∂, d2 = d′ = j′ ◦ ∂′, d3 = d′′ = j′′ ◦ ∂′′, d4 = d′′′ = j′′′ ◦ ∂′′′, . . .

and we have that

Er+1 = H(Er, dr).

It is sometimes convenient to define the successive derived couples in one
step as follows:

Let C be an exact couple. Define couples Cr as follows:

Ar = im(ιr−1 : A→ A) = ιr−1A,

Er = Zr/Br = ∂−1(im(ιr−1)/j(ker(ιr−1))

and maps

ιr = ι : Ar → Ar, ιr(ι
r−1a) = ιra,

jr = j ◦ ι−(r−1) : Ar → E, jr(ι
r−1a) = ja+ j(im(ιr−1)),

∂r = ∂ : Er → Ar, ∂r(e+ j(im(ιr−1)) = ∂e.

It is another exercise to check that the maps ιr, jr, ∂r are well defined.

Thus, C1 = C and we need:

Lemma 7.1.3. The couples Cr are all exact and Cr+1 is the derived couple
of Cr.

Proof: We assume that Cr is exact. Then it is sufficient to show that Cr+1

is the derived couple of Cr.
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Suppose e = e+Br is a coset in Er, that is,

Br = j(ker(ιr−1)),

and

eεZr = ∂−1(im(ιr−1)).

The r-th differential is described as follows:

dr(e) = ja+ j(ker(ιr−1)) = ja, where ∂e = ιr−1a, aεA.

First we determine the group of boundaries im(dr) ⊆ Er:

ιra = ι∂e = 0 and ja εj(ker(ιr)) = Br+1. Thus,

im(dr) = Br+1 +Br.

Next we determine the group of cycles ker(dr):

Observe that dre = 0 if and only if ja εBr. That is,

ja = jb, ιr−1b = 0

∴ a− b = ιc,

∂e = ιr−1a = ιr−1(b+ ιc) = ιrc.

Thus,

ker(dr) = Zr+1 +Br.

And,

∴ H(Er, dr) = Er+1.

�

Note that dr is defined by the relation

E1 ⊇ Zr → Er

↓ ∂ |
A1 |dr
↑ ιr−1 ↓
A1 j−→ Zr → Er.
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It is customary to display an exact couple as follows:

↓ ι ↓ ι
j−→ E

∂−→ A
j−→ E

∂−→ A
ι−→

↓ ι ↓ ι
j−→ E

∂−→ A
j−→ E

∂−→ A
ι−→

↓ ι ↓ ι
j−→ E

∂−→ A
j−→ E

∂−→ A
ι−→

↓ ι ↓ ι

In this picture, the r-th differential dr = j ◦ ι1−r ◦ ∂ is the relation which
starts at E, moves one step to the right to A, followed by r − 1 steps up to
A, and ends with one step to the right to E. Observe that Zr is the domain
of definition of dr, Br is the range of dr−1, and Zr+1 is the kernel of dr.

Exercises

(1) Show that the derived couple of an exact couple is well defined and
exact.

(2) Show that the maps the ιr, jr, ∂r in the definition of the couple Cr are
well defined.

7.2 Mod p homotopy Bockstein spectral sequences

Let p be a prime and let X be a space which is either simply connected
or a connected H-space. In the first case, we note that π2(X;Z/prZ) =
π2(X)⊗ Z/prZ. In the second case, we define π1(X;Z/prZ) = π1(X)⊗
Z/prZ. In either case, the homotopy groups with coefficients πm(X;Z/prZ)
are defined and are groups (possibly zero) for all m ≥ 1. We showed in
Chapter 1 that the Bockstein exact sequences are valid.

This leads to the following definition:

Definition 7.2.1. The mod p homotopy Bockstein exact couple is

π∗(X)
p−→ π∗(X)

β ↖ ↙ρ

E

where p : π∗(X)→ π∗(X) is multiplication by p, ρ : π∗(X)→ π∗(X;Z/pZ)
is the reduction map, and β : π∗(X;Z/pZ)→ π∗−1(X) is the Bockstein

associated to the exact sequence of coefficient groups 0→ Z p−→ Z ρ−→
Z/pZ→ 0.
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We denote the successive derived homotopy Bockstein couples by

Arπ(X)∗ = Ar∗ = im(π∗(X)
pr−1

−−→ π∗(X))

Erπ(X)∗ = Zrπ(X)∗/B
r
π(X)∗.

Note that E1
π(X)∗ = π∗(X;Z/pZ) and the first differential β1 is just

the usual Bockstein associated to the exact coefficient sequence Z/pZ→
Z/p2Z→ Z/pZ.

We use the long exact Bockstein sequences to determine Zrπ(X)∗, B
r
π(X)∗,

and Erπ(X)∗.

Let p be an odd prime. Recall the maps from Sections 1.3 and 1.5 which
give the Bockstein long exact sequences associated to coefficient groups:

ρ : π∗(X)→ π∗(X;Z/prZ),

ρ : π∗(X;Z/pr+sZ)→ π∗(X;Z/prZ), r, s ≥ 0

η : π∗(X;Z/psZ)→ π∗(X;Z/pr+sZ), r, s ≥ 0

β : π∗(X;Z/prZ)→ π∗−1(X),

β = ρ ◦ β : π∗(X;Z/prZ)→ π∗−1(X)→ π∗−1(X;Z/ps)

We have, in dimensions ≥ 4:

η ◦ ρ = pr−1 : π∗(X;Z/prZ)→ π∗(X;Z/pZ)→ π∗(X;Z/prZ).

Zrπ(X)∗ = β−1(im(π∗−1(X)
pr−1

−−→ π∗−1(X)))

= β−1(ker(π∗−1(X)
ρ−→ π∗−1(X;Z/pr−1Z)))

= ker(π∗(X;Z/pZ)
β−→ π∗−1(X;Z/pr−1Z))

= im(ρ : π∗(X;Z/prZ) −→ π∗(X;Z/pZ))

Brπ(X)∗ = ρ(ker(π∗(X)
pr−1

−−→ π∗(X)))

= ρ(im(π∗+1(X;Z/pr−1Z)
β−→ π∗(X)))

= im(β : π∗+1(X;Z/pr−1Z) −→ π∗(X;Z/pZ))

We need the following easy lemma of Cartan–Eilenberg [23]:

Lemma 7.2.2. Suppose that there is a commutative diagram with the bot-
tom row exact:

W
↗ ↓ γ ↘ ε

X
α−→ Y

β−→ Z
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Then β induces an isomorphism im(γ)/im(α)
∼=−→ im(ε).

Applying Lemma 7.2.2 to

π∗(X;Z/prZ)
↗ ↓ ρ ↘ pr−1

π∗+1(X;Z/pr−1Z)
β−→ π∗(X;Z/pZ)

η−→ π∗(X;Z/prZ)

yields the first part of

Proposition 7.2.3. In dimensions ≥ 4:
Erπ(X)∗ = im pr−1 : π∗(X;Z/prZ)→ π∗(X;Z/prZ)

and the r-th differential βr : Erπ(X)∗ → Erπ(X)∗−1 is induced by the Bock-
steins β : π∗(X;Z/prZ)→ π∗−1(X)→ π∗−1(X;Z/prZ) on the domain and
range of pr−1.

The identification of the differential comes from the commutative diagram

π∗(X;Z/prZ)
ρ−→ π∗(X;Z/pZ)

η−→ π∗(X;Z/prZ)
↓ β ↓ β ↓ β

π∗−1(X)
pr−1

−−→ π∗−1(X)
=−→ π∗−1(X)

↓ ρ ↓ ρ ↓ ρ
π∗−1(X;Z/prZ)

pr−1

−−→ π∗−1(X;Z/prZ)
=−→ π∗−1(X;Z/prZ)

Remark. It follows that pErπ(X)∗ = 0 if p is an odd prime.

We now prove a sort of universal coefficient exact sequence for Erπ(X)∗.

Proposition 7.2.4. There is a short exact sequence

0→ pr−1(π∗(X)⊗ Z/prZ)
ρ−→ Erπ(X)∗

β−→ pr−1TorZ(π∗−1(X),Z/prZ)→ 0

and the r-th differential βr is the composition

Erπ(X)∗
β−→ pr−1TorZ(π∗−1(X),Z/prZ)

−→ pr−1(π∗−1(X)⊗ Z/prZ)
ρ−→ Erπ(X)∗−1

where the middle map is induced by the inclusion TorZ(π∗−1(X),Z/prZ) ⊆
π∗−1(X).

Proof: Consider the diagram of known universal coefficient sequences

0 → π∗(X)⊗ Z/prZ → π∗(X;Z/prZ)→ TorZ(π∗−1(X),Z/prZ) → 0
↓ 1⊗ ρ ↓ ρ ↓ pr−1

0 → π∗(X)⊗ Z/pZ → π∗(X;Z/pZ) → TorZ(π∗−1(X),Z/pZ) → 0
↓ 1⊗ η ↓ η ↓ include

0 → π∗(X)⊗ Z/prZ → π∗(X;Z/prZ)→ TorZ(π∗−1(X),Z/prZ) → 0
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The universal coefficient sequence that we desire says that the images of
the 3 columns form a short exact sequence:

0→ im1 → im2 → im3 → 0.

The only nontrivial part is the exactness in the middle. This is an easy
consequence of the facts that the upper left hand corner map 1⊗ ρ is
an epimorphism and that the lower right hand corner map include is a
monomorphism.

The description of βr is just the fact that it is induced on the image by the
usual Bockstein. �

Remark. The above universal coefficient sequence is split if p is an odd
prime since it is a short exact sequence of vector spaces. To be more specific,
assume that π∗(X) is finitely generated in each degree and has a decom-
position into cyclic summands with a set of generators {xi, yj , zk}i,j,k
with order(xi) =∞, order(yj) = prj , and order(zk) = qk with qk relatively
prime to p. Then E1

π(X)∗ = π∗(X;Z/pZ) contains the following elements
which generate it (and are a basis if p is odd):

(1) xi, yj ε π∗(X;Z/pZ) such that xi ⊗ 1 = xi, yj ⊗ 1 = yj via the
reduction map.

(2) and σ(yj) ε π∗+1(X;Z/pZ) such that

β(σ(yj)) = prj−1yjεTorZ(π∗(X),Z/pZ) ⊆ π∗(X).

We have the following description of the differentials:

(1) βs(xi) = βs(yj) = 0 for all 1 ≤ s <∞.

(2) βs(σ(yj)) = 0 for all 1 ≤ s < rj and βrj (σ(yj)) = yj .

(3) if p is odd, Erπ(X)∗ has a vector space basis xi, yj , σ(yj), with rj ≥ r.

(4) E∞π (X)∗ = Erπ(X)∗ for r sufficiently large and has a basis xi.

This translation of Proposition 7.2.4 is the sense in which differentials in
the mod p homotopy Bockstein spectral sequence determine the p-primary
torsion in the homotopy groups π∗(X).

In Section 7.4, we shall give a more natural and general description of
E∞π (X)∗.

Exercise

(1) Suppose that X is either a simply connected space or a connected loop
space.
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(a) Show that there are isomorphisms of the mod p homotopy Bock-
stein spectral sequence of X, of its localization and of its comple-
tion, that is,

Erπ(X)∗
∼=−→ Erπ(X(p))∗

∼=−→ Erπ(X̂p)∗

(b) Show directly from the defining exact couple that, if π∗(X) consists
entirely of p-torsion of order bounded by pr, then

Er+1
π (X)∗ = 0.

(c) Show directly from the defining exact couple that, if the p-torsion
in π∗(X) is entirely of order bounded by pr, then

Er+1
π (X)∗ = Er+2

π (X)∗ = Er+3
π (X)∗ = · · · ·

7.3 Reduction maps and extensions

Let p be an odd prime. In this section, we make explicit the general connec-
tion between Bockstein differentials and the usual Bocksteins. These ideas
are important in the applications of the Bockstein spectral sequence.

There are two natural reduction maps into the r-th term of the mod p
homotopy Bockstein spectral sequence, namely:

Definition 7.3.1. From the identification Erπ(X)∗ = pr−1π∗(X;Z/prZ),
we have the natural map

% = pr−1 : π∗(X;Z/prZ)→ Erπ(X).

We also have the natural map

% = pr−1 ◦ ρ : π∗(X)→ π∗(X;Z/prZ)→ Erπ(X)∗.

The following diagram commutes

π∗(X)
%−→ Erπ(X)∗

↓ ρ ↓=
π∗(X;Z/prZ)

%−→ Erπ(X)∗
↓ β ↓ βr

π∗−1(X;Z/prZ)
%−→ Erπ(X)∗−1

That is,

βr ◦ % = % ◦ β.

Meaning of a nonzero Bockstein differential
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When a nonzero differential occurs in the Bockstein spectral sequence, it
can be interpreted as follows:

Suppose

x εErπ(X)∗, y εErπ(X)∗−1,

and

βrx = y.

Then Proposition 7.2.4 gives:

there exists y επ∗−1(X) such that %(y) = y, pry = 0.

This implies that

there exists z : P ∗(pr)→ X such that βz = y : S∗−1 → X.

And

%z εErπ(X)∗, βr%z = %βz = y.

Meaning of a zero Bockstein

Suppose there is a zero Bockstein associated to the short exact coefficient
sequence Z/pZ→ Z/pr+1Z→ Z/prZ. This implies a zero r-th Bockstein
differential βr and an extension of a map out of a mod pr Moore space as
follows:

Suppose x : P ∗(pr)→ X is such that βx : P ∗−1(p)→ X is 0. Then the
standard cofibration sequence implies that there exists an extension y :
P ∗(pr+1)→ X which reduces to x, that is, a factorization

x : P ∗(pr)
ρ
−→ P ∗(pr+1)

y−→ X, x = ρy.

And

βr%x = 0, βr+1%y = %βy.

7.4 Convergence

Let p be an odd prime. We determine convergence of the mod p homotopy
Bockstein spectral sequence when the integral homotopy has p-torsion of
bounded order in each degree.

Lemma 7.4.1. If π∗(X) has p-torsion of bounded order in each degree,
then for r sufficiently large,

Zrπ(X)∗ ∼= π∗(X)⊗ Z/pZ

Erπ(X)∗ ∼= im π∗(X)⊗ Z/pZ 1⊗η−−→ π∗(X)⊗ Z/prZ.
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Proof: Consider the commutative diagram

0 0
↓ ↓

π∗(X)⊗ Z/prZ ρ−→ π∗(X)⊗ Z/pZ
↓ ↓

π∗(X;Z/prZ)
ρ−→ π∗(X;Z/pZ)

↓ ↓
TorZ(π∗−1(X),Z/prZ)

pr−1

−−→ TorZ(π∗−1(X),Z/pZ)
↓ ↓
0 0

For r sufficiently large, the bottom map is 0. Hence the middle map factors
through π∗(X)⊗ Z/pZ. Since the top map is an epimorphism, Zrπ(X)∗,
which is the image of the middle map, is just π∗(X)⊗ Z/pZ.

Hence,

Erπ(X)∗ = image Zrπ(X)∗ → π∗(X;Z/pZ)
η−→ π∗(X;Z/prZ)

is as stated. �

It follows that, if π∗(X) has p-torsion of bounded order in each degree, then
for r sufficiently large, there are maps

Erπ(X)∗ → Er+1
π (X)∗ → Er+2

π (X)∗ → · · · ·

We define

E∞π (X)∗ = lim
s→∞

Er+sπ (X)∗

to be the direct limit.

Corollary 7.4.2. If π∗(X) has p-torsion of bounded order, then

E∞π (X)∗ = lim
→
Erπ(X)∗

= im (π∗(X)⊗ Z/pZ)→ π∗(X)⊗ Z(p∞)

∼= (π∗(X)/torsion)⊗ Z/pZ.

Proof: The corollary follows immediately from Definition 7.3.1 and the gen-
eral result:

image (A→ A⊗ Z(p∞)) ∼= (A/torsion)⊗ Z/pZ.

We see this as follows. The map factors as

A→ A⊗ Z/prA pr−1

−−→ A⊗ Z/prZ→ A⊗ Z(p∞).

Thus, the torsion subgroup T of A maps to 0.
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If B = A/T we can factor

A → A⊗ Z(p∞)
↓ ↗ ↓
B → B ⊗ Z(p∞)

.

Clearly, pA and pB map to 0 in A⊗ Z(p∞).

We claim that the kernel of B → B ⊗ Z(p∞) is exactly pB. But, if bεB and
b 7→ 0 in B ⊗ Z(p∞), then b 7→ 0 in some B ⊗ Z/psZ. Hence, there exists
b1εB with pr−1b = prb1. Since B is torsion free, b = pb1, that is, this kernel
is exactly pB. �

Exercise

(1) This exercise illustrates a problem with convergence of the mod p
homotopy Bockstein spectral sequence:

(a) Show that, for finite r,

Erπ

(∏
α

Xα

)
=
∏
α

Erπ(Xα).

(b) Show that

Erπ(K(Z/psZ, k))∗ = 0

for r ≥ s.

(c) If

A =
∏
n≥1

Z/pnZ

show that A is p-complete and

(A/torsion)⊗ Z/pZ 6= 0.

(d) Since it is reasonable to expect that E∞π (X)∗, if it exists, should
commute with products, there seems to be no reasonable value for
E∞π (K(A, k))∗ even though K(A,n) is p-complete.

7.5 Samelson products in the Bockstein spectral sequence

Let p be an odd prime. Given spaces A, B, C, a pairing of mod p homotopy
Bockstein spectral sequences

Erπ(A)∗ ⊗ Erπ(B)∗ → Erπ(C)∗
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is a collection of bilinear pairings

〈 , 〉 : π∗(A;Z/prZ)⊗ π∗(B;Z/prZ)→ π∗(C;Z/prZ), x⊗ y 7→ 〈x, y〉

which are compatible with reduction maps,

ρ : π∗( ;Z/pr+sZ)→ π∗( ;Z/prZ), ρ〈a, b〉 = 〈ρa, ρb〉,

and which satisfy the Bockstein derivation property

β[a, b] = [βa, b] + (−1)deg(a)[a, βb]

where β : π∗( ;Z/prZ)→ π∗−1( ;Z/prZ) is the Bockstein associated to the
exact coefficient sequence Z/prZ→ Z/p2rZ→ Z/prZ.

Given such, it defines pairings of Er terms,

Erπ(A)∗ ⊗ Erπ(B)∗
〈 , 〉r−−−→ Erπ(C)∗,

via:

if

a = pr−1a1 εE
rπ(A)∗ = pr−1π∗(A;Z/prZ),

b = pr−1b1 εE
rπ(B)∗ = pr−1π∗(B;Z/prZ),

then

〈a, b〉r = pr−1〈a1, b1〉.

Warning: The r in the notation of the above pairing 〈 , 〉r is not to be
confused with the r used in Sections 6.10 and 6.11 for relative Samelson
products. Just as we have dropped the use of that r, we shall eventually
drop this r and write just 〈a, b〉 = 〈a, b〉r. But, until the end of this section,
doing this would cause great confusion.

Bilinearity of the original pairings implies that this is a well defined bilinear
pairing of Er terms. One easily checks the derivation property for the r-th
Bockstein differentials

βr〈a, b〉r = 〈βra, b〉r + (−1)deg(a)〈a, βrb〉r.

Thus, the bilinear pairing of Er terms induces in the usual way a pairing
of the Er+1 terms and this is the same as defined above.

Of course, principal examples of such pairings are the internal Samelson
products, both absolute and relative:

[ , ] : π∗(G;Z/prZ)⊗ π∗(G;Z/prZ)→ π∗(G;Z/prZ)
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where G is a grouplike space and

[ , ] : π∗(ΩE;Z/prZ)⊗ π∗(ΩF ;Z/prZ)→ π∗(ΩF ;Z/prZ)

where F → E → B is a fibration sequence of simply connected spaces.

And, if F → E → B is a fibration sequence of simply connected spaces with
B an H-space, we also have the stronger relative pairings

[ , ] : π∗(ΩE;Z/prZ)⊗ π∗(ΩE;Z/prZ)→ π∗(ΩF ;Z/prZ).

We obviously have

Proposition 7.5.1. If p is a prime greater than 3, then the Samelson
product pairings [ , ]r make Erπ(G) into a spectral sequence of differential
graded Lie algebras for all r ≥ 1. And Er(ΩF )→ Er(ΩE) is a spectral
sequence of extended Lie ideals (and of strong extended Lie ideals if B is
an H-space).

If p = 3, the pairings exist for all r ≥ 1 and they are bilinear and anti-
commutative. Furthermore, we have the surprising but easy result that
the mod 3 homotopy Bockstein spectral sequence corrects bad phenomena
as we progress to higher terms. More precisely, if we shall say that bilin-
ear pairings with anti-commutativity and the Jacobi identity constitute a
graded quasi Lie algebra, then we have

Proposition 7.5.2. If G is a grouplike space, the mod 3 homotopy Bock-
stein spectral sequence Erπ(G)∗ is a spectral sequence of differential graded
quasi Lie algebras for all r ≥ 2. If r ≥ 3, it is a spectral sequence of dif-
ferential graded Lie algebras for r ≥ 3. And, if F → E → B is a fibration
sequence of simply connected spaces, the analogous statements for relative
products and products over the loops on an H-space are true.

Proof: Let f = 3r−1f1, g = 3r−1g1, h = 3r−1h1 be elements of Erπ(G)∗.
Note that

[g, h]r = 3r−1[g1, h1]

implies that

[f, [g, h]r]]r = [3r−1f1, 3
r−1[g1, h1]]r = 3r−1[f1, [g1, h1]].

Thus, if r ≥ 2, the Jacobi element in Er = the deviation from the truth of
the Jacobi identity =

[f, [g, h]r]r + (−1)q(m+n)[h, [f, g]r]r + (−1)m(n+q)[g, [h, f ]r]r

= 3r−1([f1, [g1, h1]] + (−1)q(m+n)[h1, [f1, g1]] + (−1)m(n+q)[g1, [h1, f1]])

equals 0 since all Jacobi elements have order 3. (See the Remark in Section
6.7.) Thus, the Jacobi identity is valid in Er for r ≥ 2.
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Lemma 7.5.3. If x has odd degree, anti-commutativity and the Jacobi
identity imply 3[x, [x, x]] = 0.

Recall that the proof of this is:

[x, [x, x]] = [[x, x]x]− [x, [x, x]] = −2[x, [x, x]].

Now suppose f = 3r−1f1 has odd degree in Er.

[f, [f, f ]r]r = 3r−1[f1, [f1, f1]].

But, since the deviation from the Jacobi identity has order 3,

3[f1, [f1, f1]]

has order 3. Thus, if r ≥ 3,

[f, [f, f ]r]r = 0.

�

7.6 Mod p homology Bockstein spectral sequences

The mod p homology Bockstein spectral sequence may be defined in the
same way that the homotopy Bockstein spectral sequence is defined, via an
exact couple coming from the exact coefficient sequence

Z p−→ Z ρ−→ Z/pZ.

The homology Bockstein exact couple is

H∗(X)
p−→ H∗(X)

∂ ↖ ↙ ρ
H∗(X;Z/pZ) .

Derivation of this exact couple leads to the mod p homology Bockstein
spectral sequence

ErH(X)∗ = ZrH(X)∗/B
r
H(X)∗

=
∂−1(im(pr−1 : H∗(X)→ H∗(X))

ρ(ker(pr−1 : H∗(X)→ H∗(X))

= im (pr−1 : H∗(X;Z/prZ)→ H∗(X;Z/prZ)).

Note that E1
H(X)∗ = H∗(X;Z/pZ) and that the first differential β1 is just

the usual Bockstein, which is exactly analogous to the homotopy Bockstein
spectral sequence.



7.6 Mod p homology Bockstein spectral sequences 245

The differential βr : ErH(X)∗ → ErH(X)∗−1 is defined either by the relation

βr = j ◦ p1−r ◦ ∂

or by the Bockstein associated to the exact sequence Z/prZ η−→ Z/p2rZ ρ−→
Z/prZ, that is,

βr(pr−1x) = pr−1β(x).

The first description of the differential leads to a description in terms of
chain representatives of homology classes,

βr(c) = ρ

(
∂(c)

pr

)
Just as before, we have the universal coefficient exact sequence

0→ pr−1H∗(X)⊗ Z/prZ ρ−→ ErH(X)∗
β−→ pr−1TorZ(H∗−1(X),Z/prZ)→ 0.

Thus, in the case where the integral homology is finitely generated in each
degree, we have the analogous description of the homology Bockstein dif-
ferentials in terms of the decomposition of the integral homology into a
direct sum of cyclic groups.

In the case where H∗(X) has p-torsion of bounded order in each degree, we
have convergence and

E∞H (X)∗ ∼= (H∗(X)/torsion)⊗ Z/pZ.

We have the usual reduction maps

% : H∗(X;Z/prZ)→ ErH(X)∗, %(x) = pr−1x, βr ◦ % = % ◦ β

where β is the Bockstein associated to the short exact sequence Z/prZ→
Z/p2rZ→ Z/prZ.

And we have

% = % ◦ ρ : H∗(X)→ H∗(X;Z/prZ)→ ErH(X)∗, %(x) = pr−1ρ(x),

βr ◦ % = 0.

The various Hurewicz maps

ϕ : π∗(X)→ H∗(X)

ϕ : π∗(X;Z/prZ)→ H∗(X; prZ)

commute with the Bocksteins β associated to exact coefficient sequences,
reduction maps ρ associated to coefficient maps Z/pr+sZ→ Z/prZ, and
expansion maps η associated to coefficient maps Z/psZ→ Z/pr+sZ.
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Hence we have an induced Hurewicz homomorphism of mod p Bockstein
spectral sequences

ϕ : Erπ(X)∗ → ErH(X)∗

compatible of course with the structure maps

βr ◦ ϕ = ϕ ◦ βr, % ◦ ϕ = ϕ ◦ %.

The mod p homology Bockstein spectral sequence has a differential coal-
gebra structure. This is based on the Eilenberg–Zilber maps

∇ : S∗(X;Z/prZ)⊗ S∗(Y ;Z/prZ)→ S∗(X × Y ;Z/prZ)

which induce cross product pairings

H∗(X;Z/prZ)⊗H∗(Y ;Z/prZ) → H∗(S∗(X;Z/prZ)⊗ S∗(Y ;Z/prZ))

∇∗−→ H∗(X × Y ;Z/prZ)

defined by

[x]⊗ [y] 7→ [x⊗ y] 7→ ∇∗([x⊗ y]) = x× y.

One checks that this is compatible with reduction maps and that the Bock-
stein differentials have the derivation property. Hence, there is cross product
pairing of spectral sequences

ErH(X)∗ ⊗ ErH(Y )∗ → ErH(X × Y )∗, x⊗ y 7→ x× y

such that

βr(x× y) = βr(x)× y + (−1)deg(x)x× βr(y).

Clearly, the pairing is an isomorphism for r = 1 and thus for all r ≥ 1.

Definition 7.6.1. The differential coalgebra structure on ErH(X)∗ is
induced by the diagonal ∆ : X → X ×X:

ErH(X)∗
∆∗−→ ErH(X ×X)

∼=←− ErH(X)⊗ ErH(X)∗.

Now suppose G is an H-space with multiplication µ : G×G→ G.

Definition 7.6.2. The Pontrjagin algebra structure on ErH(G)∗ is induced
by the multiplication:

ErH(X)∗ ⊗ ErH(X)∗
∼=−→ ErH(X ×X)∗

µ∗−→ ErH(X)∗,

x⊗ y 7→ xy = µ∗(x× y) = µ∗(x⊗ y)

Thus, ErH(G) is a spectral sequence of differential Hopf algebras.

The Hurewicz map is compatible with Lie structures:
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Proposition 7.6.3. If p is a prime greater than 3, the Hurewicz map is a
morphism of differential graded Lie algebras

ϕ : Erπ(X)∗ → ErH(X)∗,

ϕ[x, y] = [ϕx, ϕy] = (ϕx)(ϕy)− (−1)deg(x)deg(y)(ϕy)(ϕx)

Remark. If p = 3, we need r ≥ 2 to get a quasi-Lie algebra structure on
the mod p homotopy Bockstein spectral sequence and r ≥ 3 to get a Lie
algebra structure. But the Hurewicz map is still a homomorphism of bracket
structures in all dimensions.

Exercises

(1) Use the universal example Pm(pr) to show that the image of the mod
p Hurewicz map of Bockstein spectral sequences

ϕ : Erπ(X)∗ → ErH(X)∗

is contained in the module of primitives PErH(X)∗ for all r ≥ 1 if p is
an odd prime or if ∗ ≥ 3.

(2) Let ΩF → ΩE → ΩB be a fibration sequence of connected loop
spaces.

(a) Show that the commutator

[ , ] : ΩE × ΩF → ΩF

induces a bracket pairing

H∗(ΩE;Z/prZ)⊗H∗(ΩF : Z/prZ)→ H∗(ΩF ;Z/prZ)

(b) Show that there is a bracket pairing of spectral sequences

ErH(ΩE)∗ ⊗ ErH(ΩF )∗ → ErH(ΩF )∗.

(c) If p is an odd prime, show that the Hurewicz map induces a map
of extended ideals (of Lie algebras if p > 3 or r ≥ 3)

Erπ(ΩF )∗ → ErH(ΩF )∗
↓ ϕ ↓ ϕ

Erπ(ΩE)∗ → ErH(ΩE)∗

(3) Suppose X is a space with integral homology H∗(X) finitely generated
in each degree.

(a) If H∗(X) is torsion free, show that H∗(ΩΣX) is torsion free.

(b) If the reduced homology H∗(X) consists entirely of p-torsion of
order bounded by pr, show that the same is true of the reduced
homology H∗(ΩΣX).
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7.7 Mod p cohomology Bockstein spectral sequences

The short exact sequence Z p−→ Z ρ−→ Z/pZ leads to the mod p cohomology
Bockstein exact couple

H∗(X;Z)
p−→ H∗(X;Z)

β ↖ ↙ ρ
H∗(X;Z/pZ)

where the cohomology Bockstein β has degree +1.

Deriving this couple leads to the mod p cohomology Bockstein spectral
sequence

EHr (X)∗, βr

with

EH1 (X)∗ = H∗(X;Z/pZ).

The first Bockstein differential β1 is the usual Bockstein associated to the
coefficient sequence Z/pZ→ Z/p2Z→ Z/pZ. The differentials

βr : EHr (X)∗ → EHr (X)∗+1

are of degree +1 and give

H(EHr (X)∗, βr) ∼= EHr+1(X)∗.

On cochains, the differential is represented by βr(c) = ρ( δcpr ).

For a map f : A→ B of abelian groups, we set

coim(f) = A/ker(f).

Of course, this is isomorphic to the image of f but it can be more convenient
in some contexts.

For example, in order to fit nicely with duality, we use

EHr (X) = coim (H∗(X;Z/prZ)
pr−1

−−→ H∗(X;Z/prZ))

and the differential βr is induced by the cohomology Bockstein β associated
to the short exact coefficient sequence Z/prZ→ Z/p2rZ→ Z/prZ. That is,

βra = βa, where a εH∗(X;Z/prZ)

and a and βa denote the classes in the coimages.

Note that there is a unique embedding Z/prZ ⊆ Q/Z into the elements of
order pr where Q/Z is a divisible abelian group and therefore injective.
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Thus

H∗(X;Z/prZ) = H∗Hom(S∗(X),Z/prZ))

= H∗Hom(S∗(X;Z/prZ),Z/prZ)

= H∗Hom(S∗(X;Z/prZ), Q/Z)

= Hom(H∗(X;Z/prZ), Q/Z)

= Hom(H∗(X;Z/prZ),Z/prZ)

the penultimate equation holding since Q/Z is injective.

Let D be an injective module and set

A∗ = Hom(A,D).

We leave the proof of the following to the exercises.

Lemma 7.7.1. If f : A→ B is a homomorphism and f ∗ : B∗ → A∗ is the
dual, then

(im f)∗ ∼= coim f ∗

via

b∗(fa) = b∗(fa) = (f ∗b∗)(a), b∗ εB∗, a εA.

If we let f be the map pr−1 : H∗(X;Z/prZ)→ H∗(X;Z/prZ), we get that
the mod p homology and cohomology Bockstein spectral sequences are dual
in the following way:

Corollary 7.7.2.

EHr (X)∗ ∼= Hom(ErH(X)∗, Q/Z)

∼= Hom(ErH(X)∗,Z/pZ)

and

βr ∼= Hom(βr, Q/Z) ∼= Hom(βr,Z/pZ).

Recall the Alexander–Whitney maps

H∗(X;Z/prZ)⊗H∗(Y ;Z/prZ)→ H∗(X × Y ;Z/prZ).

These give a pairing of Bockstein spectral sequences

EHr (X)∗ ⊗ EHr (Y )∗ → EHr (X × Y )∗

compatible with the differentials. If the mod p homologies are finitely gen-
erated in each degree, these maps are isomorphisms.
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Hence we have the cup product pairings

EHr (X)∗ ⊗ EHr (X)∗ → EHr (X ×X)∗
∆∗−→ EHr (X)∗

making EHr (X)∗ a spectral sequence of graded commutative algebras. This
algebra structure in EHr (X)∗ is dual to the coalgebra structure in ErH(X)∗
via

(x ∪ y)(z) = (x⊗ y)(∆∗z), x, y εEHr (X)∗, z εErH(X)∗.

We often write xy = x ∪ y = ∆∗(x⊗ y).

Let G be an H-space with multiplication µ : G×G→ G. If G has finitely
generated mod p homology, we get a spectral sequence of Hopf algebras via
the diagonals

µ∗ : EHr (G)∗
µ∗−→ EHr (G×G)

∼=←− EHr (G)∗ ⊗ EHr (G)∗.

These Hopf algebras are dual to the Hopf algebras ErH(X)∗.

Exercises

(1) Show that Z/prZ is an injective module in the category of Z/prZ mod-
ules.

(2) Prove 7.7.1 for injective modules D.

(3) (a) Show that we have a universal coefficient exact sequence

0 → pr−1H∗(X)⊗ Z/prZ ρ−→ EHr (X)∗

β−→ pr−1TorZ(H∗+1(X),Z/prZ)→ 0.

(b) In the case where the integral cohomology is finitely generated
in each degree, describe the cohomology Bockstein differentials in
terms of the decomposition of the integral cohomology into a direct
sum of cyclic groups.

(c) In the case where H∗(X) has p−torsion of bounded order in each
degree, show that we have convergence and that

EH∞(X)∗ ∼= (H∗(X)/torsion)⊗ Z/pZ.

7.8 Torsion in H-spaces

This section presents some applications of the homology and cohomology
Bockstein spectral sequences and of the theory of Hopf algebras to the study
of finite H-spaces, that is, to H-spaces which are finite cell complexes. These
applications are due to William Browder [19].



7.8 Torsion in H-spaces 251

Let p be a prime. Begin by recalling without proof the following result from
Milnor and Moore [90].

Let A be a connected Hopf algebra over a perfect field of characteristic p
(for example, over the field Z/pZ).

Let ξ : A→ A be the Frobenius map (restricted to even degrees if p is odd),
ξ(a) = ap for a εA, and let ξA be the subHopf algebra of p-th powers (of
even degree elements if p is odd).

As usual, P (A) denotes the module of primitive elements, D(A) = A ·
A denotes the module of decomposable elements, and Q(A) = A/D(A)
denotes the module of indecomposable elements.

Proposition 7.8.1. If A is a connected Hopf algebra over a perfect field
and A has a (graded) commutative and associative multiplication, then the
sequence

0→ P (ξA)→ P (A)→ Q(A)

is exact, that is,

P (A) ∩D(A) = P (ξA).

Corollary 7.8.2. Let A be a differential Hopf algebra with a differential
d of degree ±1. If A is isomorphic as an algebra to an exterior algebra
generated by odd degree elements, then d = 0.

Proof: Let n be the first degree in which d is nonzero. Then n must be odd.
But it is easy to see that

d(An) ⊆ P (A)

and, of course,

d(An) ⊆ An−1 ⊆ D(A)

since this is in an even degree. Hence,

d(An) ⊆ P (ξA) = 0.

Thus, d = 0 on all of A. �

Since EH1 (G)∗ = EH∞(G)∗ in the mod p cohomology spectral sequence,
Corollary 7.8.2 and Exercise 1 below give

Corollary 7.8.3. Let p be a prime and G a finite H-space. Then the inte-
gral cohomology H∗(G) has no p-torsion if and only if the mod p cohomol-
ogy algebra H∗(G;Z/pZ) is an exterior algebra generated by elements of
odd degree.
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Our next result uses the fact that, for an H-space with integral homology
of finite type, the homology and cohomology Bockstein spectral sequences
are dual Hopf algebras.

We adopt the following notation: Let

x εErH(G)∗

and

x εEHr (G)∗.

Write

x(x) = 〈x, x〉 εZ/pZ

to indicate the duality

EHr (G)∗ = Hom(ErH(G)∗;Z/pZ).

If x εErH(G)∗ is a βr cycle and x εEHr (G)∗ is a βr cocycle, we shall indicate
by [x] εEr+1

H (G)∗ and [x] εEHr+1(G)∗ the respective homology and cohomol-
ogy classes.

The following is an easy and well known exercise:

Lemma 7.8.4. The pairing is well defined on homology and cohomology
classes

[x]([x]) = x(x).

Just in case of nonassociativity, define xn = xn−1 · x. The main result of
this section is:

Browder’s implication theorem 7.8.5. Let G be an H-space with inte-
gral homology of finite type. If there exists y εErH(G)2n+1 such that

βry = x 6= 0 and x εPErH(G)2n =

the module of primitive elements, then one of the following must hold:

(1)

xp 6= 0

and, of course,

xp εPErH(G)2np and βr(xp−1y) = xp

or
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(2)

xp = 0 and there exists z 6= 0,

z εPEr+1
H (G)2np such that βr+1([xp−1y]) = z.

Remark. In case 2 above we observe that βr(xp−1y) = xp = 0 so that
[xp−1y] exists in Er+1

H (G)2np+1.

The remarkable thing about this theorem is that it clearly can be iterated
to imply the so-called infinite implication:

For all k ≥ 0 the integral homology H2npk(G) contains nonzero p-torsion
of order ≥ pr.

Since this can never happen in a finite H-space, we get

Corollary 7.8.6. If G is a finite H-space, then the image of the reduction
map

ρ : H∗(G)→ H∗(G;Z/pZ)

contains no nonzero primitive elements of even degree.

Proof: Suppose α is an even degree nonzero primitive element in the image
of ρ. Then α represents a permanent cycle x in the Bockstein spectral
sequence. If there exists y such that βry = x, we have a contradiction by
means of infinite implication. If this never happens, then x survives to give
a nonzero even dimensional primitive element in the homology algebra
E∞H (G)∗.

Since P (A)∗ = Q(A∗) for any finite type Hopf algebra, this contradicts
Exercise 1 below which says that EH∞(G)∗ is an exterior algebra generated
by odd degree elements. �

Since spherical classes are primitive, we get

Corollary 7.8.7. Let G be a finite H-space and let

ρ ◦ ϕ : π∗(G)→ H∗(G)→ H∗(G;Z/pZ)

be the mod p reduction of the integral Hurewicz homomorphism. Then the
image of this map is zero in even degrees.

The following is a generalization of a theorem of E. Cartan.

Corollary 7.8.8. If G is a finite H-space, then the first nonvanishing
homotopy group π∗(G), if any, occurs in an odd degree.

Proof: The first time π∗(G) is nonzero must be the first time that H∗(G)⊗
Z/pZ = H∗(G;Z/pZ) is nonzero for some prime p. This implies that there
is a nonzero primitive element in that degree. �
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Cartan’s result was that π2(G) = 0 when G is a Lie group.

The remainder of this section is devoted to the proof of Browder’s impli-
cation theorem 7.8.5.

We can assume that we are in case (2) of Theorem 7.8.5:

y = βrx, βr(xp−1y) = xp = 0.

We begin with an algebraic lemma with several parts:

Let x and y be as above and let x εEHr (G)2n, y = βrx.

Lemma 7.8.9.

(a)

∆(xk) =
∑
i+j=k

(i, j)xi ⊗ xj .

(b)

(xk)(xk) = k!{x(x)}k.

(c) If the characteristic is p and

x(x) 6= 0,

then

(xp−1y)(xp−1y) 6= 0.

(d) If the characteristic is p, then [xp−1y] is primitive in Er+1
H (G)2np+1.

Proof:

(a) This part is proved in the usual way by induction on k.

(b) Use induction and

(xk)(xk) = (∆∗(xk−1 ⊗ x))(xk)

= (xk−1 ⊗ x)(∆(xk))

= (xk−1 ⊗ x)(Σi+j=k(i, j)xi ⊗ xj)

= (k − 1, 1)((k − 1)!{x(x)}k) = k!{x(x)}k.

(c) Note that

y(y) = (βrx)(y) = x(x) 6= 0.

Let

∆(y) = y ⊗ 1 + 1⊗ y +
∑

yα ⊗ yβ .
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Then

(xp−1y)(xp−1y)

= ∆∗(xp−1 ⊗ y)(xp−1y)

= (xp−1 ⊗ y)(∆(xp−1y))

= (xp−1 ⊗ y)(∆(xp−1) ·∆(y))

= (xp−1 ⊗ y)(xp−1 ⊗ y + Σdeg(yβ)=1(p− 2, 1)xp−2yα ⊗ xyβ)

= {(xp−1)(xp−1)}{y(y)}

+ Σdeg(yβ)=1(p− 2, 1){xp−1(xp−2yα)}{y(xyβ)}

and so it suffices to show

y(xyβ) = (βrx)(xyβ) = x(βr(xyβ) = x(x · βryβ) = x(0) = 0

by Exercise 3(b).

(d) Let

a =
∑

i+j=p−2

(−1)jxiy ⊗ xjy.

Then

βra = Σi+j=p−1(−1)j{xi ⊗ xjy + xiy ⊗ xj} − {xp−1y ⊗ 1 + 1⊗ xp−1y}

= ∆(xp−1) ·∆(y)− {xp−1y ⊗ 1 + 1⊗ xp−1y}

using the fact that (
p− 1

j

)
= (−1)j mod p.

Observe that βr{∆(y)− y ⊗ 1− 1⊗ y} = 0 since βry = x is primitive.
Thus, if

b = ∆(xp−2y){∆(y)− y ⊗ 1− 1⊗ y},

we get

βrb = βr{∆(xp−1)y}{∆(y)− y ⊗ 1− 1⊗ y}

= ∆(xp−1) · {∆(y)− y ⊗ 1− 1⊗ y}

Therefore,

∆(xp−1y) = ∆(xp−1) · {∆(y)}

= ∆(xp−1) · {∆(y)− y ⊗ 1− 1⊗ y}+ ∆(xp−1)(y ⊗ 1 + y ⊗ 1)

= βrb+ βra+ {xp−1y ⊗ 1 + 1⊗ xp−1y}.
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�

We need the following lemma on the action of the mod 2 Steenrod algebra
in the cohomology of an H-space:

Lemma 7.8.10. Let x and y be mod 2 homology classes of dimensions
2n and 2n+ 1, respectively, and let z be a cohomology class of dimension
2n+ 1. If x is primitive, then

(Sq2nz)(xy) = 0.

Proof: Consider a⊗ b where a and b are cohomology classes with deg(a) +
deg(b) = 2n+ 1. The Cartan formula and the fact that Steenrod operations
vanish on classes of smaller degree imply that

Sq2n(a⊗ b) = a2 ⊗ (Sq2n−deg(a)b) + (Sq2n−deg(b)a)⊗ b2.

Now

Sq2n(a⊗ b)(x⊗ y)

= {a2(x)}{(Sq2n−deg(a)b)(y)}+ {(Sq2n−deg(b)a)(x)}{b2(y)}

= 0 + 0 = 0

since:

a2(x) = ∆∗(a⊗ a)(x) = (a⊗ a)(∆∗(x)) = 0

for primitive x, and

b
2
(y) = 0

for odd degree y.

Hence

(Sq2nz)(xy) = (Sq2nz)µ∗(x⊗ y) = (Sq2n(µ∗z)(x⊗ y) = 0.

�

Browder’s implication theorem is based on H. Cartan’s computations [22]
of the mod p cohomology of Eilenberg–MacLane spaces. These results can
be found on page 142 of Harper’s book [50] where they are referred to as
Browder’s theorem: Let

ι2n εH
2n(K(Z/prZ, 2n);Z/pZ) = EHr (K(Z/prZ, 2n))2n

be a generator and let η = βrι.

If p is an odd prime:

βr(ι
p) = 0, βr(ι

p−1η) = 0
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and the classes in Er+1 satisfy

βr+1([ιp]) = [ιp−1η] 6= 0.

If p = 2 and r > 1, the situation is similar:

βr(ι
2) = 0, βr(ιη) = η2 = Sq2n+1(η) = Sq1Sq2n(η) = β1Sq

2n(η) = 0

in Er and the classes in Er+1 satisfy

βr+1([ι2]) = [ιη] 6= 0.

If p = 2 and r = 1, a variation occurs:

β1(ι2) = 0, β1(ιη) = η2 = Sq2n+1(η) = Sq1Sq2n(η) = β1Sq
2n(η)

in Er and now the classes in Er+1 satisfy

β2([ι2]) = [ιη + Sq2nη] 6= 0.

Since Eilenberg–MacLane spaces constitute the universal examples for mod
p cohomology, we get the same formulas as above when we replace ι and η
by x εEHr (G)2n and y = βrx εE

H
r (G)2n+1, respectively.

Return to the homology Bockstein spectral sequence Er+1 and let z =
βr+1([xp−1y]). Then z is primitive since [xp−1y] is.

If p is odd or p = 2, r > 1, then

[xp](z) = [xp](βr+1[xp−1y]) = (βr+1[xp])([xp−1y]) = [xp−1y]([xp−1y]) 6= 0

by Lemma 7.8.9(c).

If p = 2, r = 1, then

[x2](z) = [x2](β2[xy]) = (β2[xp])([xy]) = [xy + Sq2ny]([xp−1y]) 6= 0

by Lemma 7.8.9(c) and Lemma 7.8.10.

Thus

βr+1[xp−1y] = z 6= 0 εPEr+1
H (G)2pn.

This completes the proof of the Browder implication theorem. �

We point out two extreme examples of the Browder implication theorem
phenomena:

(1) Let G = ΩP 2n+2(pr), n ≥ 1. Then

βrv = u 6= 0 εH2n(ΩP 2n+2(pr);Z/pZ)

and, since p-th powers never vanish, we get infinitely much homology
torsion of order exactly pr:

βr(up
r−1v) = up

r

for all r ≥ 0.
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Of course, we already knew this since ΩP 2n+2(pr) is the loops on a
suspension and the whole homology Bockstein spectral sequence is
very simple.

(2) Let G = K(Z/prZ, 2n), n ≥ 1. Then there exists βry = x 6=
0 εH2n(K(Z/prZ);Z/pZ).

If p is an odd prime, the mod p cohomology is a polynomial tensor exterior
algebra primitively generated by Steenrod operations on ι. Hence, the mod
p homology consists of the tensor product of divided power algebras and
exterior algebras. All p-th powers in mod p homology are 0.

If p = 2, the mod 2 cohomology is entirely polynomial and the mod 2
homology is entirely divided power. Again, all squares are 0.

In both cases, we have infinitely many elements

βr+sws = zs 6= 0 εH2nps(K(Z/prZ);Z/pZ)

for s ≥ 0. Hence, there is torsion of order pr+s in the integral homology
H2nps(K(Z/prZ, 2n)).

This concludes this section except for the following items.

In order to do the exercises below, recall without proof the following two
classic theorems on Hopf algebras.

Theorem of Hopf-Borel. Let A be a commutative and associative con-
nected Hopf algebra over a field of characteristic 0. Then A is isomorphic
as an algebra to the tensor product of an exterior algebra on elements of
odd degree and a polynomial algebra on elements of even degree.

Hopf proved that A is an exterior algebra if it is finite dimensional and the
result was extended as above by Borel who also extended it as below to
Hopf algebras over fields of finite characteristic.

Theorem of Borel. Let A be a commutative and associative connected
Hopf algebra over a perfect field of finite characteristic p and assume that
A has a commutative and associative multiplication.

If p is odd, then A is isomorphic as an algebra to the tensor product of an
exterior algebra on elements of odd degree, a polynomial algebra on elements
of even degree, and polynomial algebras on even degree elements truncated
at powers of p.
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If p is 2, then A is isomorphic as an algebra to the tensor product of a
polynomial algebra and polynomial algebras on elements truncated at powers
of 2.

Exercises

(1) Let G be a connected H-space and assume that the integral cohomol-
ogy H∗(G) is finitely generated in each degree and that the rational
cohomology H∗(G;Q) is finite dimensional.

(a) Show that, in the mod p cohomology Bockstein spectral sequence,
the E∞ term EH∞(G)∗ is an exterior algebra on odd degree gener-
ators.
(Hint: Use the fact that there are algebra maps

H ∗ (G;Q) ⊇ H∗(G)/torsion→ EH∞(G)∗

to observe that H∗(G;Q) and EH∞(G)∗ are Hopf algebras with iden-
tical Poincare polynomials. Then show by considering the roots of
the polynomials that this is possible only if EH∞(G)∗ has no even
dimensional generators.)

(b) Show that H∗(G;Q) and EH∞(G)∗ are exterior algebras generated
by elements in the same odd degrees.

(2) Use

(x+ 1)p = xp + 1

= (x+ 1)(xp−1 − xp−2 + xp−3 − · · ·+ (−1)ixi + · · ·+ 1)

to show the following formula for binomial coefficients mod p:(
p− 1

i

)
= (−1)i modulo p.

(3) Let A be a differential Hopf algebra with differential d of degree ±1.

(a) Show that d(1) = 0.

(b) If A is connected and dx is in dimension 0, show that dx = 0.



8 Lie algebras and universal enveloping algebras

In this chapter we present the theory of graded Lie algebras. Although this
theory is usually restricted to the case where 2 is a unit in the ground ring,
this restriction is unnecessary and is removed here. The price one pays is
the introduction of the additional structure of a squaring operation on odd
degree classes. When 2 is a unit in the ground ring, this squaring map
is a consequence of the Lie bracket structure. With this modification, the
definition of graded Lie algebra satisfies a suitable version of the Poincare–
Birkhoff–Witt theorem. The author suspects that this fact was known many
years ago, at least to John Moore and to Frank Adams.

The Poincare–Birkhoff–Witt theorem has the immediate consequence that
graded Lie algebras embed in their universal enveloping algebras. It also
implies that the universal enveloping algebra of an ambiant graded Lie
algebra is a free module over the universal enveloping algebra of a sub
graded Lie algebra.

The universal enveloping algebra has a Hopf algebra structure in which
the graded Lie algebra is primitive. In fact, in prime characteristic p, the
module of primitives is generated by the Lie elements and pk-th powers of
even degree Lie elements.

The free graded Lie algebras are characterized by the property that their
universal enveloping algebras are tensor algebras. The fact that tensor
algebras have global dimension one, when combined with the Poincare–
Birkhoff–Witt theorem, yields the important result that subalgebras of free
graded Lie algebras are themselves free graded Lie algebras.

It is important to determine the generators of subalgebras of free graded
Lie algebras. In important cases, the module of generators is a free module
over a tensor algebra via a Lie bracket action. When this is combined with
an argument involving Euler-Poincare series, a complete determination of
the module of generators results. This leads to algebraic analogues of the
Hilton–Milnor theorem and of Serre’s decomposition of the loops on an
even dimensional sphere localized away from 2.

260
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Some topological applications of this chapter will be given in the next
chapter.

8.1 Universal enveloping algebras of graded Lie algebras

The definition of a graded Lie algebra has a complication when 2 is not a
unit in the ground ring. It is necessary to add another operation to the usual
bilinear Lie bracket operation. Namely, one must add a quadratic operation
x 7→ x2 which is defined on odd degree classes. If 2 is a unit in the ground
ring, then this squaring operation may be omitted since x2 = 1

2 [x, x] for
odd degree x. More precisely,

Definition 8.1.1. A graded Lie algebra L is a graded R module together
with two operations:

(1) bilinear pairings called Lie brackets

[ , ] : Lm ⊗ Ln → Lm+n, x⊗ y 7→ [x, y]

(2) and a quadratic operation called squaring defined on odd degree
classes

( )2 : Lk → L2k, x 7→ x2

with k odd. The quadratic requirement is expressed in the identities

(ax)2 = a2x2, (x+ y)2 = x2 + y2 + [x, y] for all scalars a

and all x and y of equal odd degree.

These operations must satisfy the identities

(1) anti-symmetry:

[x, y] = −(−1)deg(x)deg(y)[y, x] for all x, y,

(2) Jacobi identity:

[x, [y, z]] = [[x, y], z] + (−1)deg(x)deg(y)[y, [x, z]] for all x, y, z,

(3)

[x, x] = 0 for all x of even degree,

(4)

2x2 = [x, x], [x, x2] = 0 for all x of odd degree.

(5)

[y, x2] = [[y, x], x]
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for all y and for all x of odd degree.

Remark. If 2 is a unit in the ground ring, then the squaring operation
may be defined in terms of the Lie bracket, that is, x2 = 1

2 [x, x] for x of odd
degree. In the axioms for a graded Lie algebra, we may omit all reference
to the squaring operation and add the requirement that [x, [x, x]] = 0 for
all x of odd degree.

Remark. The first example of a graded Lie algebra is a graded associative
algebra A with the Lie bracket

[a, b] = ab− (−1)deg(a)deg(b)ba

and the squaring operation c2 for c of odd degree. The above identities are
all valid.

Remark. A homomorphism of graded Lie algebras f : L→ L′ is a linear
map which preserves the two operations, that is,

f [x, y] = [fx, fy]

for all x, y and

f(x2) = (fx)2

for all odd degree x.

There is some related terminology:

(1) If all of the above identities are satisfied except for

[x, x2] = 0 for all x of odd degree

we shall say that we have a quasi graded Lie algebra. Localized
away from 2, the Samelson product makes the integral homotopy of
a group like space into a quasi graded Lie algebra.

(2) In the one case when R is a field of characteristic 2 and L satisfies
anticommutativity, the Jacobi identity, and

[x, x] = 0 for all x,

then we shall say that we have a Lie algebra with a grading (but
not a graded Lie algebra.) Of course, the signs are unimportant here
and graded associative algebras over fields of characteristic 2 provide
examples of Lie algebras with gradings.

Definition 8.1.2. If L is a graded Lie algebra, the universal enveloping
algebra U(L) is the graded associative algebra (with unit) uniquely char-
acterized up to isomorphism by the following universal property:
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(1) there is a homomorphism of graded Lie algebras

ι : L→ U(L)

(2) and, for any graded associative algebra A and any homomorphism

f : L→ A

of graded Lie algebras, there is a unique homomorphism of graded
algebras

f : U(L)→ A such that f ◦ ι = f.

That is, f is the unique extension of f to an algebra homomorphism.

The uniqueness of U(L) is proven by the standard categorical argument.
The existence of U(L) is proved by the following construction:

Let

T (L) = R⊕ L⊕ (L⊗ L)⊕ (L⊗ L⊗ L)⊕ · · ·

be the tensor algebra. The tensor algebra is the free associative algebra
generated by L, that is, any linear map f : L→ A has a unique extension
to an algebra homomorphism g : T (L)→ A.

Then g vanishes on I = the 2-sided ideal of T (L) generated by all

x⊗ y − (−1)deg(x)deg(y)y ⊗ x− [x, y] for all x, y εL

and by all

x⊗ x− x2 for all x of odd degree.

If

L
ι−→ U(L) = T (L)/I

is the natural map, then ι has the required universal property.

Some examples of universal enveloping algebras are the following:

Example 8.1.3. Universal enveloping algebra of a direct sum

The universal enveloping algebra of a direct sum is the tensor product.
That is, let L and M be graded Lie algebras and consider

L⊕M ι−→ U(L)⊗ U(M), ι(x, y) = ιLx⊗ 1 + 1⊗ ιMy.

Given a Lie homomorphism φ : L⊕M → A into an associative algebra, the
fact that

[φL, φM ] = 0
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implies that there is a unique extension of φ to an algebra homomorphism
φ : U(L)⊗ U(M)→ A given in terms of the extensions to UL and UM by

φ(a⊗ b) = (φa) · (φb), a εU(L), b εU(M).

Example 8.1.4. Universal enveloping algebra of an abelian Lie algebra

Let V be a graded module which is free in every dimension. Let S(V )
be the free graded commutative algebra generated by V , that is, ι : V →
S(V ) has the universal extension property for maps V → A into a graded
commutative algebra in which squares of odd degree classes are zero. Then

S(V ) = E(Vodd)⊗ P (Veven) =

the tensor product of the exterior algebra generated by elements of odd
degree and of the polynomial algebra generated by elements of even degree.
If L is an abelian Lie algebra, that is, if [L,L] = 0 and L2

odd = 0, then

U(L) = S(L).

Example 8.1.5. Universal enveloping algebra of a free Lie algebra

Let V be a graded module which is free in every dimension. The free graded
Lie algebra L(V ) generated by V is characterized by the map ι : V → L(V )
having the universal extension property for maps V → L into an graded
Lie algebra. Then

U(L(V )) = T (V ) =

the tensor algebra (or free associative algebra) generated by V .

The case where V = 〈x〉 and L(x) = L(V ) is free on one basis element x is
illustrative of the difference between graded and ungraded Lie algebras.

(1) If x has even degree, then L(x) = 〈x〉 of rank 1 is abelian and

UL(x) = T (x) = S(x) = P (x)

is a tensor algebra or polynomial algebra.

(2) If x has odd degree, then L(x) = 〈x, x2〉 of rank 2 is not abelian and

UL(x) = T (x)

is a tensor algebra and not an exterior algebra.

Example 8.1.6. Hopf algebra structure on the universal enveloping alge-
bra
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Given a universal enveloping algebra ι : L→ U(L), a Hopf algebra structure
can be defined on U(L) by making ι(L) primitive, that is, the diagonal or
coalgebra structure is defined as the unique extension to an algebra map
of the diagonal

∆ : L→ L⊕ L ι−→ U(L)⊗ U(L), ∆x = (x, x) ≡ x⊗ 1 + 1⊗ x.

The counit or augmentation is the map ε : UL→ R to the ground ring
which sends 1 to 1, is 0 on ι(L), and is a homomorphism of algebras.

As usual, if ε : A→ R is an augmentation (= algebra map to the ground
ring), the kernel of ε is called the augmentation ideal and denoted by

ker(ε) = I(A) = A.

The decomposables of A are defined as

D(A) = A ·A = image (A⊗A ⊆ A⊗A mult−−−→ A).

The indecomposables are

Q(A) = A/D(A) = A/A ·A.

Definition 8.1.7. If L is a graded Lie algebra, the abelianization of L is
the abelian Lie algebra

Ab(L) = L/{[L,L] + L2
odd}.

Lemma 8.1.8. If L is a graded Lie algebra, then the abelianization of L
is the same as the indecomposables of U(L), that is,

Ab(L) ∼= Q(U(L))).

Proof: Consider the natural epimorphism π : L→ Ab(L) and the commu-
tative diagram

L
ι−→ U(L)

π−→ U(Ab(L)) = S(Ab(L))
↓ π ↓ ↓
Ab(L) → QU(L) → QUAb(L) = Ab(L).

The bottom composition is the identity. Since L→ QU(L) is an epimor-
phism, the bottom right arrow is an epimorphism. Therefore, both bottom
arrows are isomorphisms. �

Remark. Sometimes, [L,L] + L2
odd is called the decomposables of L and

Ab(L) is called the indecomposables of L.

Exercises
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(1) Show that the image of the graded Lie algebra ι(L) generates the uni-
versal enveloping algebra U(L) as an algebra.

(2) Give the justifications for

(a) Example 8.1.3:

U(L⊕M) ∼= UL⊗ UM.

(b) Example 8.1.4: L abelian implies that U(L) = S(L) = the free
graded commutative algebra.

(c) Example 8.1.5: V a free graded module implies that

U(L(V )) = T (V ).

8.2 The graded Poincare–Birkhoff–Witt theorem

The graded version of the Poincare–Birkhoff–Witt theorem shows that Lie
algebras embed into their universal enveloping algebras and also provide a
complete determination of the coalgebra structure of the universal envelop-
ing algebra. This key theorem is essential to the application of universal
enveloping algebras. When 2 is a unit in the ground ring it was first proved
by Bruce Jordan [68]. His proof was modeled on Cartan–Eilenberg’s proof
of the ungraded version [23]. We give an alternate proof which is modeled
on Nathan Jacobson’s proof of the ungraded version [65].

Let V be a graded R module and let v1, v2, v3, . . . , vn be elements of V.
A monomial of length k is a tensor product

v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vn.

The increasing length filtration FnT (V ) on the tensor algebra T (V ) is the
span of all monomial tensors of length ≤ n.

Let L be a graded Lie algebra over a commutative ring R. Let ι : L→
U(L) be the map into the universal enveloping algebra. The Lie filtration
FnU(L) is the increasing filtration on U(L) which is the epimorphic image
of the length filtration on the tensor algebra T (L). Thus, the n-th filtration
FnU(L) is the submodule generated by all products of Lie elements (=
elements of ι(L)) of length ≤ n. In other words,

Definition 8.2.1. The Lie filtration on the universal enveloping algebra
is the increasing filtration defined as follows:

(1)

F0U(L) = R,
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(2)

FnU(L) = Fn−1U(L) + image( L⊗ Fn−1U(L)

ι⊗incl−−−→ U(L)⊗ U(L)
mult−−−→ U(L))

The multiplication is compatible with the Lie filtration:

FmU(L) · FnU(L) ⊆ Fm+nU(L).

The coproduct is compatible with the Lie filtration:

∆(FnU(L)) ⊆
⊕
i+j=n

FiU(L)⊗ FjU(L).

It follows that the associated graded object,

E0
∗ (U(L)) = F∗U(L)/F∗−1U(L),

is a Hopf algebra. As an algebra, E0
∗ (U(L)) is generated by filtration 1,

that is, by ι(L). Since

xy − (−1)deg(x)deg(y)yx = [x, y] for x, y εL

and

xx = x2

for odd degree x, it follows that E0
∗ (U(L)) has a graded commutative mul-

tiplication with odd degree elements having square zero.

The graded Poincare–Birkhoff–Witt theorem describes the coalgebra U(L)
completely. Define a Hopf algebra structure in the free commutative algebra
S(L) by requiring L to be primitive and give S(L) the length filtration.

Graded Poincare–Birkhoff–Witt theorem 8.2.2: If L is a graded Lie
algebra which is a free module in each degree, then there is an isomorphism
of coalgebras

Ψ : S(L)→ U(L)

which is length preserving, that is, Ψ(FnS(L)) ⊆ FnU(L) for all n.

Proof: Let xα be a basis for L and choose a well ordering ≤ of the indices
of this basis set.

A monomial of length n in the free commutative algebra S(L) is a product
of basis elements

xα1
· xα2

· xα3
· · · · xαn.

Monomials of length ≤ n span the length filtration FnS(L).
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Define the index of the monomial as the number of pairs αi, αj with i < j
but αi > αj , that is, the index is the number of variables that are out of
order in the monomial. If the index is 0, the monomial is said to be in
proper order.

A monomial is said to be reduced if αi = αi+1 implies that the degree of xαi
is even. It is clear that a basis of S(L) is given by the reduced monomials
in proper order and we define a linear map

Ψ : S(L)→ U(L)

by

Ψ(xα1
· xα2

· xα3
· · · · xαn) = xα1

· xα2
· xα3

· · · · xαn
for reduced monomials in proper order. We claim that

Lemma 8.2.3. Ψ is a map of coalgebras.

Proof: After collapsing any repetitions of the same element into a single
power, a reduced monomial in S(L) lies in some subcoalgebra

S(xβ1
)⊗ S(xβ2

)⊗ · ⊗ S(xβk)

where the xβi are basis elements in strict proper order. Restricted to this
coalgebra, the map Ψ is the composition of coalgebra maps

S(xβ1
)⊗ S(xβ2

)⊗ · · · ⊗ S(xβk)→ U(L)⊗ U(L)⊗ · · · ⊗ U(L)
mult−−−→ U(L).

Thus, Ψ is a coalgebra map. �

We need to check that Ψ is an isomorphism.

We first show that Ψ : FnS(L)→ FnU(L) is an epimorphism for all n. We
prove this by induction using

x · y − (−1)deg(x)deg(y)y · x = [x, y]

and, if x has odd degree,

x · x = x2.

If M is any monomial in FnU(L), then M is congruent modulo Fn−1U(L)
to a monomial N in proper order. If N is reduced, it is clearly in the image
of Ψ and, if N is not reduced, then it is congruent to 0 modulo Fn−1U(L)
and this is of course in the image of Ψ.

The fact that Ψ is a monomorphism is harder.

Let P be the free module which has a basis consisting of the reduced
monomials in proper order. Note that P has a natural increasing length
filtration FnP . We shall show
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Lemma 8.2.4. There is a linear map J : T (L)→ P which is length filtra-
tion preserving and such that

(1)

J(xα1
⊗ xα2

⊗ · · · ⊗ xαn) = xα1
⊗ xα2

⊗ · · · ⊗ xαn
for reduced monomials in proper order,

(2) the switching identity

J(xα1
⊗ · · · ⊗ xαi ⊗ xαi+1

⊗ · · · ⊗ xαn)

− (−1)deg(xαi )deg(αi+1)J(xα1
⊗ · · · ⊗ xαi+1

⊗ xαi ⊗ · · · ⊗ xαn)

= J(xα1
⊗ · · · ⊗ [xαi , xαi+1

]⊗ · · · ⊗ xαn)

is valid for all monomials and,

(3) the contracting identity

J(xα1
⊗ · · · ⊗ xαi ⊗ xαi+1

⊗ · · · ⊗ xαn)

= J(xα1
⊗ · · · ⊗ x2

αi
⊗ · · · ⊗ xαn)

is valid whenever xαi = xαi+1
has odd degree.

Remark. The bilinearity of the Lie bracket implies that, if the switching
identities hold for elements in a basis, then the switching identities hold
for all elements of the graded Lie algebra. Similarly, the quadratic property
of squaring odd elements implies that, in the presence of the switching
identities, if the contracting identities hold for odd degree elements in a
basis, then the contracting identities hold for all odd degree elements.

Thus J : T (L)→ P defines a quotient map J : U(L)→ P compatible with
the Lie filtration on U(L) and the composition

S(L)
Ψ−→ U(L)

J−→ P

is an isomorphism. Hence, Ψ is an isomorphism, which was to be demon-
strated.

It remains to prove Lemma 8.2.4.

There are three main points:

(A) Define J recursively in terms of the length and index ordering of
monomials, that is, define J in terms of the previous definition on
monomials of lesser length or of the same length but lesser index.

(B) Show that the definition of J is unambiguous, that is, it does not
depend on how one reduces the length or index. Show this for all
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possible ways of reducing the length or index and you will have
automatically accomplished step C below.

(C) Define J so that the identities 1) , 2), and 3) are satisfied.

Suppose that J has been defined for all monomial tensors of length < n and
all monomial tensors of length = n and index < i in such a way that 1) and
2) are satisfied for all tensors in this space. Let M = xα1

⊗ xα2
⊗ · · · ⊗ xαn

be a monomial of length n and index i.

Case 1: index i = 0 : When the index is 0, the monomial M is in proper
order.

If it is reduced, define

J(M) = xα1
⊗ xα2

⊗ · · · ⊗ xαn .

If it is not reduced, then xαi = xαi+1
for some element of odd degree. Define

J(M) = J(xα1
⊗ · · · ⊗ x2

αi
⊗ · · · ⊗ xαn).

We shall call this a contraction. Writing u = xαi , this definition of J also
ensures the required switching identity that

J(· · · ⊗ u⊗ u⊗ · · · ) + J(· · · ⊗ u⊗ u⊗ · · · ) = J(· · · ⊗ [u, u]⊗ · · · ).

Suppose there is another way to reduce the length, that is, we have one of
the following two situations

(1)

J(· · · ⊗ u⊗ u⊗ · · · ⊗ v ⊗ v ⊗ · · · )

or

(2)

J(· · · ⊗ u⊗ u⊗ u⊗ · · · )

with u and v of odd degree.

In the first case (1), the definition is

J(· · · ⊗ u2 ⊗ · · · ⊗ v2 ⊗ · · · ),

no matter which of the two possible contractions one does first. Thus, the
definition of J is unambiguous in this case and satisfies 3), 2), and 1).
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In the second case (2), the one contraction leads to

J(M) = J(· · · ⊗ u2 ⊗ u⊗ · · · )

= J(· · · ⊗ u⊗ u2 ⊗ · · · ) + J(· · · ⊗ [u2, u]⊗ · · · )

= J(· · · ⊗ u⊗ u2 ⊗ · · · )

since [u2, u] = 0. The other contraction leads directly to

J(M) = J(· · · ⊗ u⊗ u2 ⊗ · · · ).

Thus, the definition is unambiguous in this case and the identities are
satisfied.

Case 2: index i > 0 : When the index is positive, there must a pair xαi =
u, xαi+1

= v with αi > αi+1. In this case, we can define

J(· · · ⊗ u⊗ v ⊗ · · · ) = (−1)deg(u)deg(v)J(· · · ⊗ v ⊗ u⊗ · · · )

+ J(· · · ⊗ [u, v]⊗ · · · ).

We note that J is now defined since the index or length has decreased. We
shall call this a switch. Note that switches guarantee that the identities (1)
and (2) are satisfied. This is true even for the reverse switch where u is less
than v. It is also possible that J could be defined by a contraction as in
Case 1.

We need to check that the definition is unambiguous when there are differ-
ent ways of lowering length or index.

There are the following cases:

(1)

J(· · · ⊗ u⊗ v ⊗ · · · ⊗ w ⊗ z ⊗ · · · )

with u > v and w > z.

(2)

J(· · · ⊗ u⊗ v ⊗ w ⊗ · · · )

with u > v > w.

(3)

J(· · · ⊗ u⊗ v ⊗ · · · ⊗ w ⊗ w ⊗ · · · )

with u > v and w of odd degree.

(4)

J(· · · ⊗ u⊗ u⊗ · · · ⊗ w ⊗ z ⊗ · · · )
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with u of odd degree and w > z.

(5)

J(· · · ⊗ u⊗ u⊗ v · · · )

with u of odd degree and u > v.

(6)

J(· · · ⊗ u⊗ v ⊗ v ⊗ · · · )

with u > v and v of odd degree.

(7)

J(· · · ⊗ u⊗ u⊗ · · · ⊗ v ⊗ v ⊗ · · · )

with u and v of odd degree.

(8)

J(· · · ⊗ u⊗ u⊗ u⊗ · · · )

with u of odd degree.

Cases (7) and (8) have already been considered in the index 0 situation of
Case 1.

We shall use the obvious shorthand of writing u for deg(u) when no con-
fusion is possible.

In case (1), performing the two switches, no matter which is first, leads to

(−1)uv+wzJ(· · · ⊗ u⊗ v ⊗ · · · ⊗ w ⊗ z ⊗ · · · )

+ (−1)vuJ(· · · ⊗ v ⊗ u⊗ · · · ⊗ [w, z]⊗ · · · )

+ (−1)wzJ(· · · ⊗ [u, v]⊗ · · · ⊗ z ⊗ w ⊗ · · · )

+ J(· · · ⊗ [u, v]⊗ · · · ⊗ [w, z]⊗ · · · ).

Thus, the definition is unambiguous in this case.
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In case (2), performing the two switches leads to either of the following:

A = (−1)uv+uw+wzJ(· · · ⊗ w ⊗ v ⊗ u⊗ · · · )

+ (−1)uv+uwJ(· · · ⊗ [v, w]⊗ u⊗ · · · )

+ (−1)uvJ(· · · ⊗ v ⊗ [u,w]⊗ · · · )

+ J(· · · ⊗ [u, v]⊗ w ⊗ · · · ).

B = (−1)uv+uw+wzJ(· · · ⊗ w ⊗ v ⊗ u⊗ · · · )

+ (−1)vw+uwJ(· · · ⊗ w ⊗ [u, v]⊗ · · · )

+ (−1)vwJ(· · · ⊗ [u,w]⊗ v ⊗ · · · )

+ J(· · · ⊗ u⊗ [v, w]⊗ · · · ).

Thus, A−B = J(· · · ⊗ ((−1)uv+uw[[v, w], u] + (−1)uv[v, [u,w]] +
[[u, v], w])⊗ · · · ) = J(0) = 0 by the Jacobi identity. Thus, the defini-
tion is unambiguous in this case and the identities hold.

The cases (3) and (4) are straightforward and left to the exercises.

In case (5), performing the contraction leads to

J(· · · ⊗ u2 ⊗ v ⊗ · · · ).

On the other hand, performing two switches and a contraction leads to

J(· · · ⊗ v ⊗ u2 ⊗ · · · ) + J(· · · ⊗ {(−1)uv[u, v]⊗ u+ u⊗ [u, v]} ⊗ · · · ).

Now another switch and the identities

J(· · · ⊗ {(−1)uv[u, v]⊗ u+ u⊗ [u, v]} ⊗ · · · )

= J(· · · ⊗ [u, [u, v]]⊗ · · · )[v, u2] + [u, [u, v]] = 0

prove that this second procedure yields the same answer as the first.

Case (6) is left to the exercises.

Since we have checked that all possible ways of defining J by recursion are
equal, it follows that the definition is invariant under all switches, whether
they raise or lower the index. Hence the identities (2) and (3) are satisfied
for the extension of the definition to higher index and length.

This completes the proof of Lemma 8.2.4 and of the graded Poincare–
Birkhoff–Witt theorem. �

Remark. Let L be a classical Lie algebra over any ring. Suppose L has a
grading and is a free module. The classical Poincare–Birkhoff–Witt theorem
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asserts that there is a coalgebra isomorphism

Ψ : P (L)→ U(L)

where P (L) is the primitively generated polynomial algebra generated by
L. The proof is similar to the graded version but simpler.

There is a version of the graded Poincare–Birkhoff–Witt theorem which is
only a little bit weaker and which does not depend on choosing an ordering
of a basis for L, namely:

Graded Poincare–Birkhoff–Witt theorem, second version 8.2.4. If
L is a free module, then the natural map

L→ F1U(L)/F0U(L)→ E0
∗U(L)

extends to a Hopf algebra isomorphism

Φ : S(L)→ E0
∗U(L).

Proof: The coalgebra isomorphism Ψ : S(L)→ U(L) is filtration preserving
and induces the Hopf algebra isomorphism on the associated graded objects

Φ = E0Ψ : E0
∗S(L) = S(L)→ E0

∗U(L). �

Exercises

(1) Verify cases (3), (4), and (6) in the proof of Lemma 8.2.3.

(2) Show that, if L is a connected graded Lie algebra, that is, if L0 = 0,
then the fact that Φ is an isomorphism (8.2.4) implies that Ψ is an iso-
morphism (8.2.2). In other words, the second version of the Poincare–
Birkhoff–Witt theorem implies the first.

8.3 Consequences of the graded Poincare–Birkhoff–Witt
theorem

A first consequence of the graded Poincare–Birkhoff–Witt theorem is that
graded Lie algebras embed into their universal enveloping algebras, more
precisely, the basis of reduced monomials in proper order (8.2.2) shows that

Proposition 8.3.1. Suppose L is a graded Lie algebra which is a free R
module in every dimension. Then the universal enveloping algebra U(L) is
a free R module in every dimension and ι : L→ U(L) is an injection onto
a summand.

Remark. The meaning of Proposition 8.3.1 is that the identities for a
graded Lie algebra are exactly right. In particular, the triple identity,

[x, x2] = 0 for x of odd degree,
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is clearly essential for a graded Lie algebra to embed in its universal envelop-
ing algebra. Adding it to the usual identities is a sufficient criterion for
embedding when the graded Lie algebra is free as a module.

The coalgebra isomorphism S(L)
∼=−→ U(L) in the graded Poincare–

Birkhoff–Witt theorem determines the module of primitive elements in the
Hopf algebra U(L):

Proposition 8.3.2. Let L be a graded Lie algebra which is a free R module
with a basis {xα}.

(a) If the ground ring R is an integral domain of characteristic 0, then
xα is a basis of PU(L), that is, PU(L) = L.

(b) If the ground ring R is a field of finite characteristic p, then PU(L)
has a basis

{xα : for all α} ∪ {xpα, xp
2

α , . . . , x
pk

α , · · · : xα of even degree}.

The following freeness result is fundamental.

Proposition 8.3.3. Suppose L′ is a subalgebra of the graded Lie algebra
L such that L′ has a basis {xα} which extends to a basis {xα} ∪ {yβ} of L.
Order the basis sets so that the xα precede the yβ . Then U(L) is a free left
U(L′) with a basis consisting of all reduced monomials in {yβ} which are
in proper order. This includes the empty monomial 1.

Proof: It follows from the graded Poincare-Birkhoff-Witt theorem that a
basis for U(L) is given by all M ·N where M is a reduced monomial in
proper order involving the variables {xα} and N is a reduced monomial in
proper order involving the variables {yβ} . Thus,

U(L) =
⊕
N

U(L′) ·N. �

Lemma 8.3.4. Suppose L′ ⊆ L is an ideal in a graded Lie algebra, that
is,

[L,L′] ⊆ L′.

If U(L′) is the augmentation ideal, then

U(L) · U(L′) ⊆ U(L′) · U(L).

Proof: Consider

xy = (−1)yx+ [x, y].

Using this, it follows by induction on the length of monomials that, if x εL,

x · U(L′) ⊆ U(L′) · x+ U(L′).



276 Lie algebras and universal enveloping algebras

Hence,

U(L) · U(L′) = U(L′) · U(L). �

In other words, if L′ ⊆ L is an ideal, then U(L′) generates a two-sided ideal

I = U(L) · U(L′) = U(L′) · U(L)

and hence the quotient (see Definition 8.4.2)

U(L) ⊗U(L′) R = U(L)/I = U(L)/U(L) · U(L′)

has a natural multiplication. It is easy to check that I is a Hopf ideal in
the sense that

∆(I) ⊆ I ⊗ U(L) + U(L)⊗ I.

Hence, the quotient

U(L) ⊗U(L′) R

has a natural Hopf algebra structure.

Proposition 8.3.5. Suppose

0→ L′
i−→ L

j−→ L′′ → 0

is a short exact sequence of graded Lie algebras which are free modules
(hence, the sequence is split as modules over the ground ring). Then there
is a bijection

U(L′)⊗ U(L′′)→ U(L)

which is simultaneously an isomorphism of left U(L′) modules and of coal-
gebras.

Proof: The reduced monomials in proper order formed from a basis of L′′

provide a section

π : U(L′′)→ U(L), U(j) ◦ π = 1U(L′′)

which is a map of coalgebras. It follows from 8.3.3 that the composition

U(L′)⊗ U(L′′)
U(i)⊗π−−−−→ U(L)⊗ U(L)

mult−−−→ U(L)

is an isomorphism of left U(L′) modules. It is clearly a morphism of coal-
gebras.

�

For example, let x be an odd degree element and consider the exact
sequence of graded Lie algebras

0→ 〈x2〉 → L(x)→ 〈x〉 → 0
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where 〈x2〉 and 〈x〉 are abelian Lie algebras on one generator. Then there
is a bijection

UL(x) = T (x) ∼= P (x2)⊗ E(x)

which is simultaneously an isomorphism of left P (x2) modules and of coal-
gebras.

8.4 Nakayama’s lemma

Graded modules over a connected algebra share many of the properties
of modules over a local ring. In particular, a strong form of Nakayama’s
lemma is true.

Recall the definitions. An augmented algebra A over a commutative ring
R is called connected if the augmentation ε : A→ R is an isomorphism in
degree 0. The kernel of the augmentation is called the augmentation ideal

I(A) = A = kernel (ε : A→ R).

Graded modules are assumed to be concentrated in nonnegative degrees.

Nakayama’s lemma 8.4.1. If A is a connected algebra over a commu-
tative ring R and M is a graded left module over A, then the following
equivalent statements are valid:

(a)

M = I(A) ·M

implies that M = 0.

(b)

M/I(A) ·M = 0

implies that M = 0.

(c)

R⊗AM = 0

implies that M = 0.

Proof: (a) is true since A connected implies that there can be no first
nonzero degree of M. Certainly, (a) and (b) are the same.

The exact sequence

0→ I(A)→ A
ε−→ R→ 0



278 Lie algebras and universal enveloping algebras

yields the exact sequence

I(A)⊗AM → A⊗AM → R⊗AM → 0

and thus

M/I(A) ·M ∼= R⊗AM.

�

This leads to the following definition.

Definition 8.4.2. The module of generators of M is

M/I(A) ·M ∼= R⊗AM.

Nakayama’s lemma gives the following lemma on epimorphisms.

Lemma 8.4.3. Suppose f : M → N is a morphism of graded modules over
a connected algebra A. Then f is an epimorphism if and only if the map
on the module of generators

1⊗A f : R⊗AM → R⊗A N

is an epimorphism.

Proof: Since tensor product is right exact, we need only show that, if 1⊗A f
is an epimorphism, then f is also.

But, let C be the cokernel of f , so that

M
f−→ N → C → 0

is exact. Hence

R⊗AM → R⊗A N → R⊗A C → 0

is exact. If 1⊗A f is an epimorphism, then R⊗A C = 0 and Nakayama’s
lemma implies that C = 0 and f is an epimorphism. �

Definition 8.4.4. If A is a connected algebra with augmentation ideal
I(A), the module of indecomposables is

Q(A) = I(A)/I(A) · I(A).

The following lemmas are left as exercises.

Lemma 8.4.5. If A is a connected algebra, then I(A) = 0 if and only if
Q(A) = 0.

Lemma 8.4.6. Let f : A→ B be a morphism of connected algebras. Then
f is an epimorphism if and only if the induced map on indecomposables
Q(f) : Q(A)→ Q(B) is an epimorphism.
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Definition 8.4.7. For an augmented algebra A, the filtration by powers
of the augmentation ideal is the decreasing filtration

F 0A = A, F 1A = I(A), Fn+1A = I(A) · FnA, n ≥ 0.

Since F jA · F kA ⊆ F j+kA, the associated graded object

En0 (A) = Fn(A)/Fn+1(A)

of the filtration by powers of the augmentation ideal inherits an algebra
structure, that is, it has a multiplication

En0 (A)⊗ Em0 (A)
mult−−−→ En+m

0 (A).

Observe that

E0
0(A) = A/I(A), , E1

0(A) = Q(A).

Furthermore, the first grading E1
0(A) = Q(A) generates the algebra E∗0(A).

The following lemmas are also left as exercises.

Lemma 8.4.8. If A is a connected algebra, then the filtration by powers
of the augmentation ideal is finite in each degree.

Lemma 8.4.9. Suppose that g : A→ B is a morphism of connected alge-
bras. Then

(a) g is an epimorphism if and only if E∗0(g) : E∗0(A)→ E∗0(B) is an
epimorphism.

(b) g is an isomorphism if and only if E∗0(g) : E∗0(A)→ E∗0(B) is an
isomorphism.

(c) If E∗0(g) : E∗0(A)→ E∗0(B) is an monomorphism, then g is a
monomorphism.

Exercises

(1) Prove Lemmas 8.4.5 and 8.4.6.

(2) Let f : L→ K be a morphism of connected graded Lie algebras, that
is, L0 = K0 = 0. Then f is an epimorphism if and only if the induced
map on abelianizations Ab(f) : Ab(L)→ Ab(K) is an epimorphism.

(3) Prove Lemmas 8.4.8 and 8.4.9.

(4) Give an example to show that the converse to Lemma 8.4.9(c) is not
true.
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(5) Suppose f : A→ B is a map of connected tensor algebras. Show that,
if the induced map on the module of indecomposables Q(f) : Q(A)→
Q(B) is an isomorphism, then f is an isomorphism.

8.5 Free graded Lie algebras

If V is a graded R-module, recall that the free graded Lie algebra generated
by V is characterized by the universal mapping property: Every linear map
V → L into a graded Lie algebra has a unique extension to a map L(V )→ L
of graded Lie algebras. We also have that UL(V ) = T (V ). In order to know
that L(V ) embeds in its universal enveloping algebra, we need to know
that L(V ) is a free R-module. The proof below is based on an argument
in Serre’s book on Lie algebras [119]. Namely, suppose you are given an
algebraic construction defined over a commutative ring. Suppose that, in
the finitely generated case, there is a formula for the dimension of that
construction which is independent of the characteristic of the ground field.
Then, even over an arbitrary ring in the possibly nonfinitely generated case,
the given construction must be a free module over its ground ring. Details
follow.

Proposition 8.5.1. If V is a graded module which is a free over R, then
the free graded Lie algebra L(V ) is a free R-module in each degree.

Lemma 8.5.2. If R is a field and V is finite dimensional in each degree,
then

L(V ) =
⊕

L(V )n

where L(V )n is generated by Lie monomials of length n, each L(V )n is finite
dimensional in each degree, and the dimension of L(V )n in each degree is
independent of the characteristic.

Proof: If M is a bigraded object, define its Euler-Poincare series by

Ξ(M) = Σmi,js
itj

where mi,j = dimension of Mi,j .

Let

ξ = χ(V ) =

∞∑
i=0

dit
i

be the usual Euler–Poincare series of V , that is, di = the dimension of Vi.
If we introduce an extra grading by giving each element of V length 1, we
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get a two-variable Euler–Poincare series

Ξ(V ) = sξ.

Since R is a field, the graded Lie algebra L(V ) is free in each degree and
embeds as a summand in its universal enveloping algebra UL(V ) = T (V ).
Bigrade T (V ) by giving each element v εVi the bigrading (1, i), that is,
T (V ) is bigraded by length and degree.

The two-variable Euler–Poincare series of

T (V ) = R⊕ V ⊕ (V ⊗ V )⊗ · · ·

is

Ξ(T (V )) = 1 + sξ + s2ξ2 + s3ξ3 + · · · = 1

1− sξ
.

On the other hand, note that

L(V ) =
⊕

L(V )n

inherits the length-degree bigrading and each bigrading L(V )n is finite
dimensional. (This is why we have to use bigradings.)

Write the two-variable Euler–Poincare series

Ξ(L(V )) =

∞⊕
i=0

αi,js
itj .

Hence, the 2-variable Euler-Poincare series of T (V ) = U(L) ∼= S(Leven)⊗
S(Lodd) is

Ξ(U(L)) =

∞∏
k=0

1

(1− sit2k)αi,2k
·
∞∏
k=0

(1 + sit2k+1)αi,2k+1 .

Applying the logarithm function yields

− log(1− sξ) = −Σi,kαi,2k · log(1− sit2k) + Σi,kαi,2k+1 · log(1 + sit2k+1).

If we choose a fixed pair i, j and reduce mod si+1tj+1, then the expansion

log(1− x) =

∞∑
i=1

1

i
xi

yields

− log(1− sξ) ≡ −
∑

a≤i,b≤j

(−1)b+1αa,b · log(1 + (−1)b+1satb).
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On the right-hand side, the coefficient of sitj is

(−1)j+1αi,j + terms involving αa,b, a < i, b < j.

So this can be solved to yield a recursive expression

αi,j = F (αa,b; a < i, b < j)

which depends on d0, d1, d2, . . . but is clearly independent of the charac-
teristic.

�

Now suppose that R = Z and suppose that V is a free Z module which
is finitely generated in each degree. Let L(V ) be the free graded Lie alge-
bra generated by V. It is clearly finitely generated in each length-degree
bidegree. If p is a prime, then

L(V )⊗ Z/pZ ∼= L(V ⊗ Z/pZ)

since it has the required universal mapping property. Since the dimension
mod p of each bidegree is independent of the prime p, it follows from the
basis theorem for finitely generated abelian groups that each bidegree is a
free Z module. Thus L(V ) is a free Z module in each degree when V is a
finite dimensional free Z-module. In this case, L(V ) embeds in the tensor
algebra UL(V ) = T (V ).

Suppose V is a free Z module which is not finitely generated in each degree.
Then

V = lim
→
Vα

where each Vα is finitely generated free in each degree. Therefore,

L(V ) = lim
→
L(Vα)

embeds in the tensor algebra lim→ T (Vα) = T (V ). Since T (V ) is a free Z
module in each degree and Z is a principal ideal domain, it follows that,
if V is free over Z in each degree, then L(V ) is a free Z module in each
degree.

Now let R be any commutative ring and suppose that V is a graded Z
module which is free in each degree. Then V ⊗R is the general module
which is free in each degree over R. Since

L(V )⊗R ∼= L(V ⊗R),

it follows that L(V ⊗R) is a free R-module in each degree. �

For connected Lie algebras with a free abelianization, free Lie algebras can
be characterized by their universal enveloping algebras. To be precise:
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Proposition 8.5.3. Suppose L is a graded connected Lie algebra such that
the universal enveloping algebra U(L) is isomorphic to a tensor algebra
T (V ) with V a free module. Then L is isomorphic to the free graded Lie
algebra L(V ).

Proof: Since Lemma 8.1.8 implies that Ab(L) ∼= QT (V ) ∼= V and V is a
free module, there is a linear map V → L such that the composition V →
L→ Ab(L) is an isomorphism. Consider the extensions

L(V )
ι−→ UL(V )

↓ f ↓ Uf
L

ι−→ UL.

For connected Lie algebras the fact that Ab(f) is an epimorphism implies
that f : L(V )→ L is an epimorphism. On the other hand, the fact that
L(V ) is a free module implies that ι : L(V )→ UL(V ) is a monomor-
phism. Therefore, f : L(V )→ L is an isomorphism if Uf : UL(V )→ UL
is a monomorphism.

Since Uf is a map between tensor algebras and is an isomorphism on
indecomposables, it is an isomorphism by Exercise 5 of Section 8.4. �

With mild restrictions, Proposition 8.5.3 says that a connected graded Lie
algebra is free if and only if its universal enveloping algebra is a tensor
algebra. It becomes important to be able to recognize tensor algebras. First
of all, if T (V ) is a tensor algebra over a commutative ring R, then

0→ T (V )⊗ V mult−−−→ T (V )
ε−→ R→ 0

is a free T (V ) resolution of R. Hence, for any T (V ) module M , we have
that

Tor
T (V )
2 (M,R) = 0.

Conversely, we have

Proposition 8.5.4. Suppose A is a connected associative algebra with a
free module of indecomposables Q(A) = W and suppose that

TorA2 (R,R) = 0.

Then A is isomorphic to the tensor algebra T (W ).

Proof: Since W = Q(A) is free, the map I(A)→ Q(A) has a section W →
I(A). Consider the composition which is a map of A−modules

f : A⊗W → A⊗ I(A)
mult−−−→ I(A).

We claim that f is an isomorphism.
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Note that f is a epimorphism since the map on generators

1⊗ f : R⊗A (A⊗W )
∼=−→ R⊗A I(A)

is an epimorphism.

Let N be the kernel of f and consider the short exact sequence

0→ N → A⊗W → I(A)→ 0.

In the standard way, this turns into a long exact sequence

· · · → TorA1 (R, I(A))→ R⊗A N → R⊗A A⊗W → R⊗A I(A)→ 0.

Since

R⊗A A⊗W = W
∼=−→ R⊗A I(A) = Q(A)

is an isomorphism, it follows that

TorA1 (R, I(A))→ R⊗A N

is an epimorphism.

But the short exact sequence

0→ I(A)→ A→ R→ 0

implies that

0 = TorA2 (R,R) ∼= TorA1 (R, I(A))

and hence

R⊗A N = 0.

Nakayama’s lemma implies thatN = 0 and f : A⊗W → I(A) is an isomor-
phism. A standard inductive argument implies that A ∼= T (W ) as algebras.
�

Exercises

(1) Show that, if A is a connected associative algebra with an isomorphism
given by the composition

A⊗W → A⊗ I(A)
mult−−−→ I(A),

then there is an isomorphism of algebras T (W )→ A.

8.6 The change of rings isomorphism

The change of rings theorem relates the homological algebra of a subalgebra
to that of an ambiant algebra.
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Suppose that

A′
ι−→ A

j−→ A′′

are maps of graded augmented algebras over a commutative ring R. Observe
that

R⊗A′ A ∼= A/I(A′) ·A

and that A′′ is a right A module.

Assume that:

(a) ι makes A into a free left A′ module.

(b) j induces an isomorphism of right A modules

R⊗A′ A ∼= A′′

Change of rings theorem 8.6.1. There is an isomorphism

TorA
′

∗ (R,R)
∼=−→ TorA∗ (A′′, R).

Proof: Let

P∗
ε−→ R→ 0

be a free A resolution of R. Write

P∗ = A⊗R P∗.

Since P∗ is also a free A′ resolution of R,

TorAn (R,R) = Hn(R⊗A′ P∗)

= Hn(R⊗A′ A⊗R P∗) = Hn(A′′ ⊗R P∗)

= Hn(A′′ ⊗A A⊗R P∗) = Torn(A′′, R). �

Under the hypotheses of the change of rings theorem, A′′ is a 2-sided A
module. Hence, the isomorphic objects

TorA
′

∗ (R,R) ∼= TorA∗ (A′′, R)

have the structure of a left A module. We now determine that structure in
the case of the first derived functor TorA

′

1 (R,R).

First, note that the short exact sequence

0→ I(A)→ A→ R→ 0

yields the exact sequence

0 = TorA1 (R,A)→ TorA1 (R,R)→ R⊗ I(A)→ R⊗A A→ R⊗A R→ 0.
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Since R⊗A A ∼= R ∼= R⊗A R, it follows that:

Lemma 8.6.2.

TorA1 (R,R) ∼= R⊗A I(A) = Q(A).

Lemma 8.6.2 can also be proved by using the canonical bar resolution

B∗(A)
ε−→ R→ 0

with

(a)

Bn(A) = A⊗ I(A)⊗n =

the n+ 1 fold tensor product as indicated.

(b) dn : Bn(A)→ Bn−1(A) given by

dn(a⊗ a1 ⊗ · · · ⊗ an) = aa1 ⊗ a2 ⊗ · · · ⊗ an

+

n−1∑
i=1

(−1)ia⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

Or we may use the classical notation

dn(a[a1| · · · |an] = aa1[a2| · · · |an] +

n−1∑
i=1

(−1)ia[a1| · · · |aiai+1| · · · |an].

This is the origin of the term bar resolution.

(c) ε : B0(A) = A→ R is the augmentation.

Let

B∗(A) = R⊗A B∗(A) = I(A)⊗∗

be the so-called bar construction. One sees that

TorAn (R,R) = Hn(B∗(A))

The first few terms of the bar resolution look like

· · · d3−→ A⊗ I(A)⊗ I(A)
d2−→ A⊗ I(A)

d1−→ AεR→ 0

with

d1(a[a1]) = aa1[],

d2(a[a1|a2]) = aa1[a2]− a[a1a2].
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Our first observation is that the nonzero elements of the bar construc-
tion Bn(A) = R⊗A Bn(A) are represented by tensors a1 ⊗ · · · ⊗ an =
[a1| · · · |an] with the differential

dn([a1| · · · |an]) =

n−1∑
i=1

(−1)i[a1| · · · |aiai+1| · · · |an].

Now it is easy to see that

TorA0 (R,R) = R

TorA1 (R,R) = Q(A).

The change of rings isomorphism can be described as follows:

The map A′ → A gives a natural map of bar resolutions B∗(A
′)→ B∗(A)

and the change of rings isomorphism is induced by the following map

R⊗A′ B∗(A′)→ A′′ ⊗A B∗(A), [a′] 7→ 1[a′]

(We observe that the algebra map A′ → A makes R→ A′′ and R→ R into
maps of modules.)

So any element in Q(A′) ∼= TorA
′

1 (R,R)
∼=−→ TorA1 (A′′, R) is represented by

an element a′ εA′ via the map [a′] 7→ 1[a′].

The left action of an element a εA on TorA1 (A′′, R) is represented by a ·
[a′] = j(a)[a′].

But

d2(1[a|a′]− (−1)deg(a)deg(a′)1[a′|a])

= 1 · a[a′]− 1[a · a′]− (−1)deg(a)deg(a′){1 · a′[a]− 1[a′ · a]}

= j(a)[a′]− 1[[a, a′]]

since j(a′) = 0. Thus, j(a)[a′] is homologous to 1[[a, a′]].

Specialize to the special case of universal enveloping algebras as in Propo-
sition 8.3.5. In that case, start with a short exact sequence of graded Lie
algebras

0→ L′ → L→ L′′ → 0

and the sequence of universal enveloping algebras

U(L′)→ U(L)→ U(L′′)

is a sequence

A′ → A→ A′′
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which satisfies the hypotheses of the change of rings theorem. In this Lie
algebra case, it is clear that [a, a′] εL′ for a′ εL′, a εL. Hence we have
shown

Lemma 8.6.3. Under the change of rings isomorphism, the left action of
L ⊆ U(L) on the image of L′ in QU(L′) is given by the Lie bracket

a · [a′] = [[a, a′]].

8.7 Subalgebras of free graded Lie algebras

Let R be a commutative ring with the property that projective modules
over R are free over R. For example, R could be a principal ideal domain
or, by a theorem of Kaplansky, a local ring [71].

Proposition 8.7.1. Let V be a free connected R module, that is, V0 = 0.
Let L = L(V ) be the free graded Lie algebra generated by V and suppose
that L′ ⊆ L is a subalgebra which, as an R module, is a summand of L.
Then L′ is a free graded Lie algebra, that is, there is a free R module W
such that L′ = L(W ).

Proof: Proposition 8.3.3 asserts that UL(V ) = T (V ) is a free module over
U(L′). Hence, the free T (V ) resolution

0→ T (V )⊗ V d1=mult−−−−−→ T (V )→ R→ 0

is also a free U(L′) resolution.

Therefore the second derived functor

TorUL
′

2 (R,R) = 0.

In fact, applying R⊗UL′ ( ) to the resolution yields the complex

0→ R⊗UL′ T (V )⊗ V φ=1⊗d1−−−−−→ R⊗UL′ T (V )→ 0

with

coker(φ) = TorUL
′

0 (R,R) = R,

ker(φ) = TorUL
′

1 (R,R) = QUL′ = Ab(L′) = W.

Clearly, the fact that R is projective over R implies the complex is split
and hence that W is projective over R. We are assuming that projective R
modules are free R modules so Proposition 8.5.4 and the vanishing of Tor2

implies that UL′ ∼= T (W ) is a tensor algebra.

Now by Proposition 8.5.3, the fact that the universal enveloping algebra is
a tensor algebra implies that L′ = L(W ) is a free Lie algebra. �
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Recall the circumstances in which the change of rings theorem is valid:

We are given a sequence of morphisms augmented algebras

A′
ι−→ A

j−→ A′′

with A a free module over A′, and

A′′ ∼= R ⊗A′ A = A/I(A′) ·A.

Then we have the following important freeness proposition:

Proposition 8.7.2. Suppose that A is a connected tensor algebra T (V )
with V free over R and suppose that A′′ is a free module over some tensor
subalgebra T (W ) ⊆ A′′ with W free over R. Then Q(A′) is a free T (W )
module via the Lie bracket action in the change of rings theorem.

Proof: Recall that the change of rings isomorphism Proposition 8.6.1
asserts that

Q(A′) ∼= TorA
′

1 (R,R) ∼= TorA1 (A′′, R)

and that the actions of A′′ and T (W ) are a consequence of the first variable
of Tor.

Hence Q(A′) as an A′′ module and as a T (W ) module is isomorphic to the
kernel of φ:

0→ A′′ ⊗T (V ) T (V )⊗ V φ=1⊗mult−−−−−−→ A′′ ⊗T (V ) T (V )→ 0.

But this the same as

0→ A′′ ⊗ V φ−→ A′′ → 0

Notice that image(φ) = I(A′′).

Write A′′ as a free T (W ) module

A′′ = {T (W ) · 1}
⊕
α

{T (W ) · xα}

with 1 as the first basis element. Then

image(φ) = I(A′′) = {I(T (W ))}
⊕
α

{T (W ) · xα}.

Since

I(T (W )) = W ⊕ (W ⊗W )⊕ (W ⊗W ⊗W )⊕ · · · = T (W )⊗W

is a free T (W ) module, it follows that I(A′′) is a free T (W ) module.
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Therefore, Q(A′) ∼= kernel(φ) is a projective T (W ) module. Since T (W ) is
a connected algebra, this implies that Q(A′) is a free T (W ) module. See
Exercise 1 below. �

The preceding proposition combines with the next proposition on Euler–
Poincare series to provide a powerful method for determining the generating
module of a subalgebra of a free Lie algebra.

Proposition 8.7.3. Suppose that

0→ L′ → L→ L′′ → 0

is a short exact sequence of graded Lie algebras which is split as a sequence
of R modules and suppose that L = L(V ) is a free graded Lie algebra with
V a connected free R module. Then L′ = L(W ) is a free graded Lie algebra
with W a free R module and with the Euler-Poincare series satisfying the
formula

χ(W ) = 1 + χ(UL′′){χ(V )− 1}.

Proof: We already know from Theorem 8.6.1 that L′ = L(W ) so that it
only remains to determine the Euler–Poincare series χ(W ).

Recall that the Euler–Poincare series of the tensor algebra

T (V ) = R⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · ·

is

χ(T (V )) = 1 + χ(V ) + χ(V )2 + χ(V )3 + · · · = 1

1− χ(V )
.

The tensor product decomposition

T (V ) = UL(V ) ∼= UL(W )⊗ UL′′ = T (W )⊗ UL′′

implies that

χ(T (V )) =
1

1− χ(V )
= χ(UL(W )) · χ(UL′′) =

χ(UL′′)

1− χ(W )

and the formula follows by easy manipulation. �

We now illustrate two named applications of Lemmas 8.6.2 and 8.6.3. The
names indicate their future use in geometric applications.

Hilton–Milnor Example 8.7.4. Let K be the kernel of the natural epi-
morphism of free graded Lie algebras L(V ⊕W )→ L(V ). Since K is an
R-split subalgebra of a free graded Lie algebra, it is itself a free graded Lie
algebra K = L(X). We need to determine the R free module X.
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First of all,

χ(X) = 1 +
1

1− χ(V )
{χ(V ) + χ(W )− 1} =

χ(W )

1− χ(V )

= χ(W ) · {1 + χ(V ) + χ(V )2 + χ(V )3 + · · · }.

We recognize this Euler–Poincare series as that of the tensor product W ⊗
T (V ).

Note that W is indecomposable in L(V ⊕W ) and W ⊆ K. So W is cer-
tainly indecomposable in K, that is, W injects into QUK, and in fact
the image of W is even indecomposable in QUK with respect to the Lie
bracket action of T (V ). Since QUK is a free T (V ) module with respect to
this action, we know that QUK has an R split submodule isomorphic to

T (V )⊗W = W ⊕ (V ⊗W )⊕ (V ⊗ V ⊗W )⊕ · · ·

and, since action is via the Lie bracket, this provides a lifting to an embed-
ding

W ⊕ [V,W ]⊕ [V, [V,W ]]⊕ · · · ⊆ K

where [V,W ] is the isomorphic image of V ⊗W via

v ⊗ w 7→ [v, w] = vw − (−1)deg(v)deg(w)wv,

[V, [V,W ]] is the isomorphic image of V ⊗ V ⊗W via

v1 ⊗ v2 ⊗ w 7→ [v1, [v2, w]],

and so on.

Therefore, since there is a R–split embedding

W ⊕ (V ⊗W )⊕ (V ⊗ V ⊗W )⊕ · · · ⊆ X

and since the two Euler–Poincare series are equal, it follows that

X = W ⊕ [V,W ]⊕ [V, [V,W ]]⊕ · · · =
⊕
i≥0

adi(V )(W )

via the Lie bracket.

In other words, the kernel of the epimorphism L(V ⊕W )→ L(V ) is the
free Lie algebra

K = L

(⊕
i≥0

adi(V )(W )

)
.

The following special case is often used: IfK is the kernel of the natural map
of free graded Lie algebras L(x, xα)α → L(x), then K is the free graded Lie
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algebra

L(adi(x)(xα))i≥0,α.

There are several increasing length filtrations which can be introduced into
L(x, xα) and into K. We can filter by the length in any variable, that is,
the length in x or the length in any one of the xα. Then the generators of
K all have length ≤ 1 in one of the xα and therefore they are not decom-
posable elements in K. In fact, in a free graded Lie algebra, the relations
of anti-symmetry and the Jacobi identity are homogeneous in these length
filtrations and these filtrations are therefore in fact length gradations.

Note that, if x has even degree, then L(x) = 〈x〉, but, if x has odd degree,
then L(x) = 〈x, x2〉. This naturally suggests the consideration of another
case.

Serre Example 8.7.5. Suppose x has odd degree and let K be the kernel
of the natural map L(x, xα)→ 〈x〉. Then K is the free graded Lie algebra

L(xα, x
2, [x, xα])α.

Let V be the span of the xα and let the degree of x be 2n+ 1. Note that
K = L(X) and compute the Euler–Poincare series using 8.6.3:

χ(X) = χ(V ) + t4n+2 + t2n+1χ(V ).

The computation is completed by noting that the elements xα, x
2, [x, xα]

form a set of independent generators of K. The Euler–Poincare series tells
us that this is a complete set.

Exercises

(1) Suppose that M is a graded module over a connected algebra A and
that the ground ring R has the property that projective modules over
R are free over R. Show that, if M is a projective A module, then M is
a free A module. (Hint: Use the graded version of Nakayama’s lemma.)

(2) Consider a sequential inverse limit

L = lim
←
Ln

of connected free graded Lie algebras over a field.

(a) Show that the inverse limit L is locally free, that is, if K ⊆ L is any
finitely generated subalgebra, then K is a free graded Lie algebra.

(b) Show that any connected locally free graded Lie algebra over a field
is a free graded Lie algebra. (Hint: Use Proposition 8.5.4.)



9 Applications of graded Lie algebras

Graded Lie algebras and universal enveloping algebras have topological
applications, for example, to product decomposition theorems for loop
spaces and, via Samelson products in the Bockstein spectral sequence, to
the existence of higher order torsion in homotopy groups.

An early result of Serre [118] asserts that, localized away from 2, the loop
space of an even dimensional sphere has a product decomposition

ΩS2n+2 ' ΩS4n+3 × S2n+1,

thus reducing the homotopy groups of an even dimensional sphere to a
product of the homotopy groups of two odd dimensional spheres. This can
be proven by a general method which we outline as follows.

The homology of certain loop spaces can be identified with a universal
enveloping algebra of a graded Lie algebra. Short exact sequences of graded
Lie algebras, especially those related to abelianization, lead to tensor prod-
uct decompositions of universal enveloping algebras. These tensor product
decompositions can sometimes be realized by the Kunneth isomorphism
applied to a geometric decomposition of a loop space into a product.

Serre’s decomposition of the loop space on an even dimensional sphere is
based on the abelianization of a free graded Lie algebra on a single generator
of odd degree. The abelianization of a free differential graded Lie algebra
on two generators connected by a Bockstein leads to a decomposition of the
loop space of an even dimensional odd primary Moore space into a product

ΩP 2n+2(pr) ' Ω

∞∨
k=0

P 4n+2kn+3(pr)× S2n+1{pr}

where the second factor is the homotopy theoretic fibre of the degree pr

map.

In this sense, at odd primes, the homotopy theory both of even dimen-
sional spheres and of even dimensional Moore spaces is reduced to the odd
dimensional cases.

293



294 Applications of graded Lie algebras

The universal enveloping algebra methods also yield an algebraic proof
of the Hilton-Milnor theorem. It reduces to a decomposition of a tensor
algebra into a tensor product of tensor algebras corresponding to certain
Lie brackets.

Higher order torsion exists in the homotopy groups of primary Moore
spaces. We prove this, at least when the prime is greater than 3, by study-
ing Samelson products in the homotopy Bockstein spectral sequence of the
loop space and their representation via the Hurewicz map.

Although it is not necessary for the proof of the existence of higher order
torsion, knowledge of the mod p Hurewicz image is enlightening. There-
fore (and also for historical reasons) we present present a summary of the
equivalent forms of the nonexistence of elements of mod p Hopf invariant
one. Nonexistence can be phrased in the following equivalent forms: (1)
p-th powers are not in the mod p Hurewicz image, (2) certain truncated
polynomial rings cannot be realized as the mod p cohomology ring of a
space, (3) two-cell complexes with nontrivial mod p Steenrod operations
do not exist, and (4) a certain homology class in the double loop space of
a sphere is not the image of a homotopy class of order p.

Since higher order torsion in homotopy groups are detected by the Bock-
stein homology of the homotopy differential graded Lie algebra of Samelson
products, it is of interest to compute the homology of differential graded
Lie algebras. We conclude this chapter with a complete computation of the
homology of free graded Lie algebras generated by acyclic modules.

9.1 Serre’s product decomposition

The simplest example of the use of universal enveloping algebras of graded
Lie algebras is to prove a product decomposition theorem for the loop space
of an even dimensional sphere. It requires localization away from 2 and is
originally due to Serre. He did not explicitly mention graded Lie algebras
in his argument but we feel that the graded Lie algebras add clarity and
generality to the method.

Serre’s decomposition theorem 9.1.1. If 2 is inverted there is a homo-
topy equivalence

ΩS4n+3 × S2n+1 → ΩS2n+2.

Start with the fact that, with any coefficients,

H∗(ΩS
2n+2) = T (x) = UL(x)



9.1 Serre’s product decomposition 295

= a tensor algebra = the universal enveloping algebra of a free graded Lie
algebra, where x is a generator of odd degree 2n+ 1.

The map from the free graded Lie algebra to its abelianization yields the
short exact sequence of graded Lie algebras

0→ 〈x2〉 i−→ L(x)
π−→ 〈x〉 → 0.

Choosing a section s to the map Uπ : UL(x)→ U〈x〉 and multiplying maps
yields the isomorphism of coalgebras and of left U〈x2〉 modules in the
standard manner

U〈x2〉 ⊗ U〈x〉 i⊗s−−→ UL(x)⊗ UL(x)
mult−−−→ UL(x).

This isomorphism involving the tensor product is the algebraic form of the
product decomposition.

In order to produce a geometric realization of this algebraic decomposition,
we must use coefficients in some ring in which 2 is a unit, for example, the
ring Z[ 1

2 ] of integers with 2 inverted.

We note that

H∗(S
2n+1) = E(x) = U〈x〉, H∗(ΩS

4n+3) = T (x2) = U〈x2〉.

Thus the algebraic form of the product decomposition is consistent with the
geometric product decomposition in 9.1.1. We must produce maps which
realize this decomposition.

Since x2 = 1
2 [x, x], it follows that the odd degree square x2 is in the image

of the Hurewicz map

ϕ : π∗(ΩS
2n+2)⊗ Z

[
1

2

]
→ H∗

(
ΩS2n+2;Z

[
1

2

])
.

Explicitly, if ι : S2n+1 → ΩS2n+2 represents a generator of the homotopy
group, then the Hurewicz image of the Samelson product is

ϕ([ι, ι]) = [x, x] = 2x2.

Now the map ι : S2n+1 → ΩS2n+2 induces in homology the section

s : U〈x〉 → UL(x).

This is the first step in our geometric realization.

The Samelson product [ι, ι] : S4n+2 → ΩS2n+2 has the multiplication
extension to the map

[ι, ι] : ΩΣ(S4n+2)→ ΩS2n+2
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and, up to the unit 1
2 , this induces in homology the inclusion U〈x2〉 →

UL(x). This is the second step in our geometric realization.

We conclude by multiplying the two maps in steps one and two. In other
words, the map which arises from the loop multiplication,

ΩΣS4n+2 × S2n+1 → ΩS2n+2 × ΩS2n+2 mult−−−→ ΩS2n+2,

induces an isomorphism of homology with coefficients Z[ 1
2 ].

Hence, it is an equivalence of spaces with 2 inverted and we are done. �

9.2 Loops of odd primary even dimensional Moore spaces

The next result is a theorem which is for odd primary Moore spaces both
an algebraic and a topological analog of Serre’s localized product decom-
position of the loops on an even dimensional sphere.

Let p be a prime and recall that the odd primary Moore space Pm(pr)
is the cofibre of the degree pr map pr : Sm−1 → Sm−1. Recall also that
Sm{pr} is the homotopy theoretic fibre of the map pr : Sm → Sm.

Proposition 9.2.1. If p is an odd prime and n ≥ 1, then there is a homo-
topy equivalence

Ω

∞∨
k=0

P 4n+2kn+3(pr)× S2n+1{pr} → ΩP 2n+2(pr).

Proof: The first step in proving this is to identify the homology of the
loop space ΩP 2n+2(pr) as the universal enveloping algebra of a graded Lie
algebra. It is convenient to use Z/prZ coefficients since the relevant mod
pr homologies are all free over Z/prZ (although Z/pZ coefficients may also
be used).

With Z/prZ coefficients, the reduced homology

H∗(P
2n+1(pr)) = 〈u, v〉

is a free Z/prZ module on two generators, u of degree 2n and v of degree
2n+ 1.

Furthermore, if β is the Bockstein associated to the exact coefficient
sequence Z/prZ→ Z/p2rZ→ Z/prZ, then βv = u and βu = 0. The Bott–
Samelson theorem asserts that the homology of the loop space is a tensor
algebra

H∗(ΩΣP 2n+1(pr)) = H∗(ΩP
2n+2(pr)) = T (u, v) = UL(u, v)
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with βv = u.

Now introduce a short exact sequence of graded Lie algebras. Consider the
abelianization short exact sequence

0→ K → L(u, v)→ 〈u, v〉 → 0.

Lemma 9.2.2. The kernel K is a free graded Lie algebra with a countable
set of generators

K = L(adk(u)(v2), adk(u)([u, v]))k≥0.

Furthermore, β adk(u)(v2) = adk(v)([u, v]), that is, the module of genera-
tors is acyclic with respect to the Bockstein.

Proof of the lemma: K is a subalgebra of a free graded Lie algebra and it is
a free module since it is a split submodule. Hence, K is itself a free graded
Lie algebra.

Notice that K can be obtained by taking successive kernels, that is, we
have two exact sequences

0→ K1 → L(u, v)→ 〈v〉 → 0

0→ K → K1 → 〈u〉 → 0.

We see from Section 8.7 that

K1 = L(u, v2, [u, v])

and another application of this section shows that

K = L(adk(u)(v2), adk(v)([u, v]))k≥0.

Furthermore, βu = 0, βv = u and the derivation property of β implies that
βv2 = [u, v] and βadk(u)(v2) = adk(u)[u, v]. �

The algebraic form of the product decomposition is the standard tensor
product isomorphism related to a subalgebra, that is,

UK ⊗ U〈u, v〉
∼=−→ UL(u, v).

We must find spaces whose homologies realize the two factors and con-
struct maps which we can multiply to give the geometric realization of this
algebraic decomposition.

Geometric realization of UK
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Consider the tensor algebra factor

UK = UL(adk(u)(v2), adk(u)([u, v]))k≥0

= T (adk(u)(v2), adk(u)([u, v]))k≥0 = T.

The mod pr homology classes u and v are the respective Hurewicz images
of the mod pr homotopy classes

µ ε π2n(P 2n+1(pr);Z/prZ, ν ε π2n+1(P 2n+1(pr);Z/prZ)

and we have

βν = µ

in the mod pr homotopy groups.

Use the suspension map Σ : P 2n+1(pr)→ ΩP 2n+2(pr) to identify µ = Σ∗µ
and ν = Σ∗ν with their images in the mod pr homotopy groups of the loop
space. Then

ϕµ = u, ϕν = v,

implies that the Samelson products have Lie brackets as Hurewicz images,
that is,

ϕ[ν, ν] = [v, v] = 2v2, ϕ[µ, ν] = [u, v]

and

ϕ adk(µ)([ν, ν]) = adk(u)([v, v]), ϕ adk(µ)([µ, ν]) = adk(u)([u, v]).

Let e generate the top nonzero dimension 2n+ 1 of the mod pr homology
of P 4n+2+2kn(pr) and note that βe generates dimension 2n.

The Samelson products

adk(µ)([ν, nu]) : P 4n+2+2kn(pr)→ ΩP 2n+2(pr)

induce the following images in reduced homology

adk(µ)([ν, ν])∗(e) = adk(u)([v, v]),

adk(µ)([ν, ν])∗(βe) = βadk(u)([v, v]) = 2adk(u)([u, v]).

In other words, if we add the Samelson products adk(µ)([ν, ν]) together,
we get a map of a countable bouquet

ι =

∞∨
k=0

adk(µ)([ν, ν]) : P =

∞∨
k=0

P 4n+2+2kn(pr)→ ΩP 2n+2(pr)

and the image in reduced homology of this map is, since 2
is a unit in Z/prZ, precisely the module of generators of K =
L(adk(u)(v2), adk(u)([u, v])k≥0 ⊆ T.
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Let

ι : ΩΣ(P )→ ΩP 2n+2(pr)

be the multiplicative extension of ι. Then

ι∗ : H∗(ΩΣP )→ H∗(ΩP
2n+2(pr))

is an injection onto the subalgebra T = UK ⊆ UL(u, v).

This is the geometric realization of the first factor UK.

Geometric realization of the factor U〈u, v〉

The free commutative factor

U〈u, v〉 = P (u)⊗ E(v)

is realized by the fibre S2n+1{pr} of the degree pr map, pr : S2n+1 → S2n+1.

Consider the map of fibration sequences

ΩS2n+1 → S2n+1{pr} → S2n+1 pr−→ S2n+1

↓ ↓ s ↓ t ↓ inclusion

ΩP 2n+2(pr)
=−→ ΩP 2n+2(pr) → PP 2n+2(pr) → P 2n+2(pr)

where the bottom row is the path fibration and the map t is a lift of the
null homotopic composition

S2n+1 pr−→ S2n+1 inclusion−−−−−→ P 2n+2(pr).

The mod pr homology Serre spectral sequence of the principal fibration

ΩS2n+1 → S2n+1{pr} → S2n+1,

together with the principal action of the fibre ΩS2n+1 on the total space
S2n+1{pr}, shows that

H∗(S
2n+1{pr}) = P (u)⊗ E(v)

with βv = u and the powers of u arise from the principle action of ΩS2n+1.

From this it is clear that the map s : S2n+1{pr} → ΩP 2n+2(pr) induces in
homology a section to the map UL(u, v)→ U〈u, v〉.

This is the geometric realization of the second factor.

Geometric realization via multiplying maps

We multiply the maps to realize the algebraic decomposition and produce
a mod pr homology equivalence

ΩΣP × S2n+1{pr} ι×s−−→ ΩP 2n+2(pr)× ΩP 2n+2(pr)
mult−−−→ ΩP 2n+2(pr).
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Since the spaces all have integral homology which is p-torsion, they are
localized at p. Since the homology is of finite type, the mod pr equivalence
is actually a homotopy equivalence. �

9.3 The Hilton–Milnor theorem

Graded Lie algebras give an algebraic proof of the Hilton–Milnor theorem.

Hilton–Milnor theorem 9.3.1. Let X and Y be connected spaces. There
is a homotopy equivalence

Ψ : ΩΣ

(∨
k≥0

X∧k ∧ Y

)
× ΩΣX → ΩΣ(X ∨ Y ).

Definition of the equivalence Ψ

The map Ψ is defined using Samelson products as follows:

Let

ιX : X → ΩΣ(X ∨ Y )

ιY : Y → ΩΣ(X ∨ Y )

be the two inclusions and form the Samelson products

Sk = ad(ιX)(ιY ) : X∧k ∧ Y → ΩΣ(X ∨ Y ).

Form the bouquet of maps

S =
∨
Sk : Z =

∨
k≥0

X∧k ∧ Y → ΩΣ(X ∨ Y )

and then form the multiplicative extension

S : ΩΣZ→ ΩΣ(X ∨ Y ).

This is the geometric realization of the first factor.

Let

ιX : ΩΣX → ΩΣ(X ∨ Y )

be the standard inclusion. This is the geometric realization of the second
factor.

Now multiply maps. That is, let Ψ be the composition

ΩΣZ× ΩΣX
S×ιX−−−→ ΩΣ(X ∨ Y )× ΩΣ(X ∨ Y )

mult−−−→ ΩΣ(X ∨ Y ).
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As a first step, we claim that Ψ induces a homology isomorphism with
coefficients in any field.

Filtering by powers of the augmentation ideal

For the moment, assume that the coefficients are some field. If X and Y
were to have a trivial comultiplication in homology, for example, if they
were both suspensions, then the proof that Ψ is an equivalence would be a
simple consequence of the tensor product decomposition of 8.7.4:

T (V ⊕W ) ∼= T

( ∞∑
i=0

V ⊗i ⊗W

)
⊗ T (V )

UL(V ⊕W ) ∼= UL

( ∞∑
i=0

V ⊗i ⊗W

)
⊗ UL(V ).

The point is that Samelson products X∧i ∧ Y → ΩΣ(X ∨ Y ) induce Lie
brackets in homology only if the homologies of X and Y are primitive, that
is, the comultipication is trivial.

In the general case, we need to introduce the filtration by powers of the
augmentation ideal.

In order to show that Ψ is a homotopy equivalence we need to improve
the Hopf algebra by replacing it with a primitively generated Hopf algebra.
To do this, introduce the decreasing filtration defined by the powers of the
augmentation ideal.

If A is any connected Hopf algebra, let I = IA = A be the augmentation
ideal and consider the filtration defined by the powers of I, that is,

F kA = Ik.

Since the filtration is multiplicative, that is,

F iA · F jA ⊆ F i+jA,

and comultiplicative, that is,

∆(F kA) ⊆
∑
i+j=k

F iA⊗ F jA,

there is an induced Hopf algebra structure on the associated graded object

E∗0 = F ∗A/F ∗+1A.

We remark that the inverse (conjugation) map ι : A→ A induces the
inverse map ι = E∗0(ι) : E∗0A→ E∗0A.
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Note that the associated graded Hopf algebra is always primitively gener-
ated by grading 1: E1

0A = Q(A).

What commutators do in homology

The commutator in a grouplike space corresponds to the Hopf algebra Lie
bracket below:

Definition 9.3.2. The Hopf algebra Lie bracket is the composition

[ , ]H : A⊗A ∆⊗∆−−−→ A⊗A⊗A⊗A 1⊗T⊗1−−−−→ A⊗A⊗A⊗A
1⊗1⊗ι⊗ι−−−−−→ A⊗A⊗A⊗A mult−−−→ A.

The Hopf algebra Lie bracket on A induces the Hopf algebra Lie bracket
on the associated graded

E∗0A.

Recall

Lemma 9.3.3. If x and y are primitive classes, then the Hopf algebra Lie
bracket is the commutator Lie bracket, that is,

[x, y]H = [x, y] = xy − (−1)deg(x)deg(y)yx.

Since commutators of primitive classes are primitive, it follows that any
iterated Hopf algebra Lie bracket of primitive classes is equal to the corre-
sponding iterated commutator.

A filtration compatible with the powers of the augmentation ideal

We define a decreasing flltration on the homology of

ΩΣZ× ΩΣX

so that Ψ∗ is filtration preserving.

Let V be the reduced homology of X, W be the reduced homology of Y ,
and M =

∑
k≥0 V ⊗kW = the reduced homology of Z =

∨
k≥0X

∧k ∧ Y.

On the homology T (V ) of ΩΣX, choose the filtration by powers of the
augmentation ideal.

Define the filtration on M by

F 0M = F 1M = M, F kM =
∑
k≥i

V ⊗k ⊗W.
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Extend this filtration multiplicatively to T (M) via:

F 0T (M) = T (M), F 1T (M) = IT (M) = T (M),

F k(M ⊗ · · · ⊗M) =
∑

i1+···+im=k

F i1M ⊗ · · ·F imM.

Finally, extend the filtration to the tensor product T (M)⊗ T (V ) by

F k(T (M)⊗ T (V )) =
∑
i+j=k

F iT (M)⊗ F jT (V ).

Then the associated graded of this filtration is

E0(T (M)⊗ T (V )) ∼= E0T (M)⊗ E0T (V ) ∼= T (M)⊗ T (V ).

The isomorphism Φ in the primitively generated case

Observe that Ψ is filtration preserving and, since E∗0T (V ⊕W ) is prim-
itively generated, the map EOΨ = Φ is the isomorphism from Example
8.7.4:

Φ : T (A)⊗ T (V )
ι1⊗ι2−−−→ T (V ⊕W )⊗ T (V ⊕W )

mult−−−→ T (V ⊗W )

which is defined as follows:

V ⊗k ⊗W → T (V ⊕W )

is the iterated commutator

x1 ⊗ xk ⊗ y 7→ ad(x1) . . . ad(xk)(y).

M =
∑
k≥0

V ⊗k ⊗W → T (V ⊕W )

is the sum of these maps and

T (M)→ T (V ⊕W )

is the multiplicative extension.

T (V )→ T (V ⊕W )

is the inclusion.

From Example 8.7.4, Φ is an isomorphism.

Conclusion of the proof of the Hilton–Milnor theorem

Since the filtration is finite in each degree, E0Ψ = Φ is an isomorphism
implies that Ψ induces an isomorphism in homology with any field coeffi-
cients, for example, with coefficients in the field with a prime number of
elements.
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If we restrict X and Y to be finite type CW complexes, we get that Ψ
is a homology isomorphism with coefficients the integers localized at any
prime.

Since any CW complex is a direct limit of finite type cell complexes and
since homology commutes with direct limits, we get that Ψ induces an
isomorphism for all cell complexes with coefficients localized at any prime.
In other words, Ψ is a equivalence localized at any prime.

Hence, Ψ is a homotopy equivalence for all connected CW complexes X
and Y . �

Exercises

(1) Let ι : A→ A be the inverse map in a connected Hopf algebra over a
ring R, that is, it is the unique map such that the composition

A
∆−→ A⊗A ι⊗1−−→ A⊗A mult−−−→ A

is the composition

A
ε−→ R

η−→ A.

(a) Show that ι preserves the filtration by powers of the augmentation
ideal.

(b) Show that, if x is primitive, then ι(x) = −x.

9.4 Elements of mod p Hopf invariant one

This section is a summary of the equivalent odd primary forms of the Hopf
invariant one problem and will be used in the forthcoming section on the
existence of higher order torsion in the homotopy groups of odd primary
Moore spaces.

Throughout this section, let p be an odd prime. The vanishing Theorem
2.12.2 is a very strong form of the nonexistence of elements of mod p Hopf
invariant one:

Liulevicius–Shimada–Yamanoshita vanishing theorem. Suppose p
is an odd prime. If X is a space such that the degree one Bockstein β and
the first Steenrod operation P 1 of degree 2p− 2 both vanish in the mod p
cohomology of X, then all Steenrod operations vanish.
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The above vanishing theorem seems to stronger than the mutually equiv-
alent forms below. The following theorem lists some of the classical equiv-
alent forms of what is called the existence or nonexistence of elements of
mod p Hopf invariant one.

Proposition 9.4.1. If p is an odd prime, the following are all equivalent:

(a) If ι εH2n(ΩS2n+1;Z/pZ) is a generator, then the p-th power ιp is in
the image of the mod p Hurewicz map

ϕ : π2np(ΩS
2n+1;Z/pZ)→ H2np(ΩS

2n+1;Z/pZ).

(b) There exists a map f : P 2np(p)→ ΩS2n+1 such that the mapping
cone Cf has a mod p cohomology ring which contains a truncated
polynomial algebra generated by a class α εH2n(Cf ;Z/pZ) truncated
at height exactly p+ 1, that is,

αp 6= 0, αp+1 = 0.

(c) For any or all s ≥ 1, there exists a 2-cell complex

Xs = S2n+s ∪γ e2n+s+2n(p−1)

for which the mod p Steenrod operation Pn is nonzero in mod p
cohomology.

(d) The Hurewicz map ϕ maps an element of order p in
π2pn−2(Ω2S2n+1) to a generator of the Z(p) homology group
H2pn−2(Ω2S2n+1;Z(p)) ∼= Z/pZ.

(e) Liulevicius–Shimada–Yamanoshita:

n = 1.

We prove the proposition by proving

a) =⇒ b) =⇒ c) =⇒ e) =⇒ a)

and

a) =⇒ d) =⇒ a).

The equivalence of condition (e) is essentially the Liulevicius–Shimada–
Yamanoshita Theorem 2.12.2 which we do not prove.

Proof that (a) =⇒ (b):

Assume (a) and let f : P 2np(p)→ ΩS2n+1 be a map such that

ϕ[f ] = ιp.

Recall the identification with the James construction

ΩS2n+1 ' J(S2n)
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and the increasing filtration Jk(S2n) which captures the first k powers of
ι. In particular the map f factors through the subspace Jp(S

2n). In the
cofibration sequence

P 2np(p)
f−→ Jp(S

2n)
j−→ Cf ,

collapse the cofibration sequence

∗ → Jp−1(S2n)
=−→ Jp−1(S2n)

to a point. The result is the standard cofibration sequence

P 2np(p)→ S2np p−→ S2np.

The integral cohomology

H(ΩS2n+1) = Γ[α] =

the divided power algebra on a generator α of degree 2n. If

ξ εH2np(Cf )

is a generator, we see that

j∗ξ = pγp(α) = p

(
αp

p!

)
=

αp

(p− 1)!
.

Reducing mod p, we see that H∗(Cf ;Z/pZ) contains a truncated polyno-
mial algebra generated by α of height p+ 1.

Proof that (b) =⇒ (c):

Let Cf = Jp(S
2n) ∪f C(P 2np(p)) be the complex which validates (b) and

let s ≥ 1. Clearly the Steenrod operation Pn is nontrivial in the mod p
cohomology of ΣsCf . Using the bouquet decomposition

ΣJp−1(S2n) '
p−1∨
k=1

S2nk+1

we can form the two-cell complex

Xs = ΣsCf/

p−1∨
k=2

S2nk+s

for which the mod p Steenrod operation Pn is nonzero.

Proof that (c) =⇒ (e):

The Liulevicius–Shimada–Yamanoshita theorem [50, 76, 121] implies that
P 1 must be nonzero in the mod p cohomology of the two-cell complex

Xs = S2n+s ∪γ e2n+s+2n(p−1).
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Hence, n = 1.

Proof that (e) =⇒ (a):

Suppose n = 1.

Consider the integral homology Serre spectral sequence of the fibration
sequence

S1 → ΩS3〈3〉 → ΩS3

where S3〈3〉 is the three-connected cover. It is a spectral sequence of Hopf
algebras with

E2
∗,∗ = H∗(ΩS

3)⊗H∗(S1) = P [ι]⊗ E[x]

where ι is a polynomial generator of degree 2, x is an exterior generator of
degree 1, and d2ι = x. Thus,

d2(ιp) = pιp−1x

shows that

H2p−1(ΩS〈3〉) = Z/pZ.

Now the mod p homology spectral sequence shows that

H∗(ΩS
3〈3〉) = P [ιp]⊗ E[ιp−1]

and we have the mod p Bockstein differential

β1[ιp] = [ιp−1x].

Clearly, [ιp] is in the mod p Hurewicz image in ΩS3〈3〉 and hence also in
ΩS3.

Proof that (a) =⇒ (d) =⇒ (a):

First we perform a computation of the homology of Ω2S2n+1 through a
small range of dimensions. (In a subsequent chapter, we will compute it
all.)

Consider the path space fibration

Ω2S2n+1 → PΩS2n+1 → ΩS2n+1.

In the Serre spectral sequence for Z(p) homology we see immediately that

H2n−1(Ω2S2n+1;Z(p)) ∼= Z(p)

generated by x with

d2nι = x.
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The formula

d2n(ιp) = pιp−1x

tells us that

H2pn−2(Ω2S2n+1;Z(p)) ∼= Z/pZ

generated by σ with

d2n(p−1)(ιp−1x) = σ.

Since the element ισ must die in the spectral sequence, we get the compu-
tation that the reduced homology H∗(Ω

2S2n+1;Z(p)) is

(1)

Z for ∗ = 2n+ 1 generated by x with d2nι = x.

Z/pZ for ∗ = 2np− 2 generated by σ with d2n(p−1)(ιp−1x) = σ.

0 for ∗ < 2np+ 2n− 3.

In the Serre spectral sequence for Z/pZ, only minor changes occur
and we get that the reduced homology H∗(Ω

2S2n+1;Z/pZ) is

(2)

Z/pZ for ∗ = 2n+ 1 generated by x with d2nι = x.

Z/pZ for ∗ = 2np− 2 generated by σ with d2n(p−1)(ιp−1x) = σ.

Z/pZ for ∗ = 2np− 1 generated by τ with d2np(ιp) = τ and β1τ = σ.

0 for ∗ < 2np+ 2n− 3.

Note that, if trans = the transgression, then

trans(ιp) = τ.

We now prove the equivalence of (a) and (d):

ιp ε image ϕ : π2pn(ΩS2n+1;Z/pZ)→ H2pn(ΩS2n+1;Z/pZ)

if and only if:

τ = trans(ιp) ε image ϕ : π2pn−1(Ω2S2n+1;Z/pZ)

→ H2pn−1(Ω2S2n+1;Z/pZ)

(write ϕ(τ̃) = τ .)

if and only if:

the integral Bockstein βτ̃ = σ̃ is an element of order p which maps onto
the Bockstein βτ = σ which is a generator of H2np−2(Ω2S2n+1;Z(p)). �
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Let C(n) be the homotopy theoretic fibre of the double suspension Σ2 :
S2n−1 → Ω2S2n+1 localized at p. The Serre spectral sequence tells us that
C(n) is 2np− 4 connected and that

(1) H∗(C(n);Z(p)) = Z/pZ for ∗ = 2np− 3 and 0 otherwise for ∗ <
2pn+ 2n− 4.

(2) H∗(C(n);Z/pZ) = Z/pZ for ∗ = 2np− 3, 2pn− 4 and 0 otherwise
for ∗ < 2pn+ 2n− 4.

These results correspond under transgression to the above computations
for the homology of Ω2S2n+1.

Now recall that

H∗(ΩP
2n+1(pr) : Z/pZ) = T (u, v) =

a tensor algebra generated by u of degree 2n− 1 and v of degree 2n. We
have the loops on the pinch map

Ωq : ΩP 2n+1(pr)→ ΩS2n+1

and in mod p homology this induces

(Ωq)∗ : T (u, v)→ T (ι), u 7→ 0, v 7→ ι.

There are the following additional equivalent forms of the nonexistence of
elements of mod p Hopf invariant one:

Proposition 9.4.2. If s ≥ 1 the following are equivalent:

(a) The ps power vp
s

is in the image of the mod p Hurewicz homomor-
phism.

(b) The ps power ιp
s

is in the image of the mod p Hurewicz homomor-
phism.

(c) n = 1 and s = 1.

Proof: It is clear that (a) implies (b). Assume (b) and consider the p-th
Hopf invariant maps

ΩS2n+1 hp−→ ΩS2pn+1 hp−→ ΩS2p2n+1 hp−→ · · · ·

By Proposition 5.2.2, hp(ι
ps

2n) = ν · ιp
s−1

2np where ν is a unit. It follows from
9.4.1 that n = 1 and s = 1.

That (c) implies (a) will be not proved here [29]. It is sometimes called
desuspending the Adams map. �
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9.5 Cycles in differential graded Lie algebras

In this section we are going to exhibit some nontrivial homology classes
which arise in differential graded Lie algebras. We begin with the definition
of a differential graded Lie algebra.

Definition 9.5.1. A differential graded Lie algebra is a graded Lie algebra
L together with a degree −1 linear map d : L→ L such that

(1) d is a differential, that is, d ◦ d = 0.

(2) d is a derivation, that is,

d[x, y] = [dx, y] + (−1)deg(x)[x, dy] for all x, y εL,

and

dx2 = [dx, x] for all x of odd degree.

Remark. Notice that, if A is a differential graded associative algebra, then
the graded Lie algebra A (given by the bracket operation and the squaring
of odd dimensional classes) is a differential graded Lie algebra.

Remark. Of course, if 2 is a unit in the ground ring, then 2x2 = [x, x]
for odd degree x and d[x, x] = [dx, x]− [x, dx] = 2[dx, x] imply that the
formula dx2 = [dx, x] is a consequence of the derivation property for Lie
brackets.

Recall that, in a graded algebra,

ad(x)(y) = [x, y] = xy − (−1)deg(x)deg(y)yx

and we write

ad(x)k(x)(y) = adk(x)(y)

for the iterated Lie bracket.

Lemma 9.5.2. Let x be an even degree element in a graded associative
differential algebra with differential d. Then

(a)

dxn =

n−1∑
j=0

(j, n− j)adn−j−1(x)(dx)xj

(b) and thus, if the characteristic of the ground field is a prime p,

dxp
k

= adp
k−1(x)(dx).
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We set τk(x) = adp
k−1(x)(dx) and note that

d(τk(x)) = 0.

Proof: Part (a) follows by induction using the derivation formula

dxn = d(xn−1 · x) = (dxn−1)x+ xn−1(dx)

= (dxn−1)x+ ad(xn−1)(x) + (dx)xn−1.

Part (b) follows immediately from part (a). �

Hence, in characteristic p, we have found a nonzero Lie element τk(x) which
is a cycle. We are going to find another one.

Lemma 9.5.3. Let x be an even degree element in a differential Lie alge-
bra. If the differential is d and k ≥ 1, then

d(adk−1(x)(dx))

=

s∑
j=1

(j, k − j)[adj−1(x)(dx), adk−1−j(x)(dx)] if k = 2s+ 1 is odd

and

=


s−1∑
j=1

(j, k − j)[adj−1(x)(dx), adk−1−j(x)(dx)]


+ (s, s){ads−1(x)(dx)}2 if k = 2s is even.

Proof: It is simplest to proceed as follows:

If 2 is a unit in the ground ring, then the desired formula can be rewritten
as

d(adk−1(x)(dx)) =
1

2

k−1∑
j=1

(j, k − j)[adj−1(x)(dx), adk−1−j(x)(dx)].

This form can be proven by induction using the well known formula for the
sum of binomial coefficients, (i− 1, j) + (i, j − 1) = (i, j), and the deriva-
tion formula

d(adk(x)(dx)) = d[x, adk−1(x)(dx)] = [dx, adk−1(x)(dx)]

+ [x, d(adk−1(x)(dx))].

It is easy to do. Assume that it has been done.

The truth of the general case of the formula then follows by the following
considerations:
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(1) With the ground ring the integers Z, consider the differential free
graded Lie algebra L(x, dx) generated by two elements x and dx.
This embeds in the free graded Lie algebra L(x, dx)⊗Q over the
rationals Q where 2 is a unit. Thus, the formula is true in this integral
case.

(2) Hence, it is true in the free graded Lie algebra L(x, dx)⊗R over any
commutative ring R.

(3) It follows that it is true in any graded Lie algebra over any commu-
tative ring. �

We see in an explicit way that d(adp
k−1(x)(dx)) = d(τk(x)) has all of its

coefficients divisible by p and we define

σk(x) =
1

p
d(τk(x))

=


∑ pk−1

2
j=1

(j,pk−j)
p [adj−1(x)(dx), adp

k−j−1(x)(dx)] if p is an odd prime

{
∑2k−1

j=1
(j,2k−j)

2 [adj−1(x)(dx), ad2k−j−1(x)(dx)]}

+ (2k−1,2k−1)
2 {ad2k−1−1(x)(dx)}2 if p = 2.

If 2 is a unit in the ground ring, then the definition assumes the more
symmetric form

σk(x) =
1

2

pk−1∑
j=1

(j, pk − j)
p

[adj−1(x)(dx), adp
k−1−j(x)(dx)].

Over any commutative ring which has the property that all projective mod-
ules are free, let L(x, dx) be the differential free graded Lie algebra gener-
ated by x and dx. The kernel L0 of the natural map

L(x, dx)→ L(x), x 7→ x, dx 7→ 0

is the free Lie algebra generated by all adk−1(x)(dx). Among other things,
it is a free module over its ground ring. And two-fold brackets of its distinct
odd degree generators together with the squares of odd degree generators
are linearly independent in it.

In particular, since d(pσk(x)) = d(dτk(x)) = 0, it follows that

d(σk(x)) = 0, σk(x) 6= 0

in L0. Thus, we have

Lemma 9.5.4. If x is an even degree element, then
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(1)

dσk(x) = 0.

(2)

[σk(x)] 6= 0

in HL(x, dx).

(3) If the ground field has characteristic p, then

dτk(x) = 0.

(4) If the characteristic is p, then

[τk(x)] 6= 0

in HL(x, dx).

Proof: Parts (1) and (3) are already done. Part (4) follows from looking at
the bigrading that comes from counting the number of occurences of x and
dx.

More precisely, τk(x) has bidegree (pk − 1, 1) and L(x, dx) is 0 in bidegree
(pk, 0). Hence, τk(x) cannot be a boundary.

Part (2) follows from the fact that σk(x) has bidegree (pk − 2, 2) and
L(x, dx) is generated by τk(x) in bidegree (pk − 1, 1). Since dτk(x) is divis-
ible by p, it follows that σk(x) is not a boundary.

Remark. Lemma 9.5.4 remains true in a differential graded quasi-Lie
algebra. The proof does not require the use of the triple Jacobi identity
[x, [x, x]] = 0 for odd degree elements.

Exercises

(1) If L = L(xα)α is a free graded Lie algebra over a ring for which projec-
tive modules are free modules, show that the elements [xα, xβ ], α 6= β
and x2

γ with xγ of odd degree are linearly independent.

9.6 Higher order torsion in odd primary Moore spaces

Throughout this section, let p be an odd prime. We are going to prove that
higher order torsion exists in the homotopy groups of a mod pr Moore space.
We need a Lie algebra structure on mod p Samelson products. Therefore,
in order to prove some of these results, we assume either that p is greater
than 3 or that r ≥ 2. The results are true even if p = 3 and r = 1 but the
proof is harder and will not be given in this book.
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Let

µ : P 2n−1(p)→ ΩP 2n+1(pr)

and

ν : P 2n(p)→ ΩP 2n+1(pr)

represent generators of the mod p homotopy groups with the Bockstein
differentials βrν = µ, βrµ = 0.

Consider the βr cycles from Lemma 9.5.4:

τk(ν) = adp
k−1(ν)(µ) ε Erπ(ΩP 2n+1(pr))2npk−1

σk(ν) =
1

2
Σp

k−1
j=1

(j, pk − j)
p

[adj−1(ν)(µ), adp
k−j−1(ν)(µ)] ε Erπ(ΩP 2n+1(pr))2npk−2

If p is a prime greater than 3, then the mod p homotopy Bockstein spectral
sequence is a spectral sequence of differential graded Lie algebras and these
are always cycles. If p = 3, then the mod p homotopy Bockstein spectral
sequence is a spectral sequence of quasi graded Lie algebras if r ≥ 2 and,
since the triple vanishing identity is not required for the proof, these are
cycles if r ≥ 2.

H∗(ΩP
2n+1(pr);Z/pZ) = T (u, v) = E1

H(ΩP 2n+1) = · · · = ErH(ΩP 2n+1)

the tensor algebra generated by u of degree 2n− 1 and v of degree 2n with
βrv = u. On the other hand, all mod p homology information disappears
at

Er+1
H (ΩP 2n+1(pr)) = H∗(T (u, v), βr) = Z/pZ.

Note that the free graded Lie algebra L(u, v) is embedded as a Lie subal-
gebra of the tensor algebra T (u, v). In fact,

L(u, v) ⊆ P (u, v) ⊂ T (u, v)

where P (u, v) is the submodule of primitive elements. Furthermore,

P (u, v) = L(u, v) ∪ ξL(u, v) ∪ ξ2L(u, v) ∪ · · ·

where ξ is the Frobenius map which raises even degree elements to the
p-th power and which is 0 on odd degree elements. In other words, the
only difference between the module of all primitives and the module of
all Lie elements is that the former has pk-th powers of even dimensional
Lie elements. The image of the mod p Hurewicz map contains all the Lie
elements as images of Samelson products and, on the other hand, the mod
p Hurewicz image is contained in the module of primitive elements.
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Consider the Hurewicz map of mod p Bockstein spectral sequences

ϕr : Erπ(ΩP 2n+1(pr))→ ErH(ΩP 2n+1(pr)).

Differentials are zero and nothing happens in the homology Bockstein spec-
tral sequence until we reach the r−th stage. Clearly,

L(u, v) ⊆ im ϕr ⊆ P (u, v)

and the results on the nonexistence of elements of mod p Hopf invariant
one place severe restrictions on the extent to which the Hurewicz image
can be larger than the graded Lie algebra L(u, v). In particular, the only

time that vp
k

is in the Hurewicz image is when n = 1, k = 1.

We detect higher order torsion in homotopy groups by means of the
Hurewicz representation of the mod p homotopy Bockstein spectral
sequence in the mod p homology Bockstein spectral sequence. We note
that the Hurewicz image

im ϕr ⊆ PErH(ΩP 2n+1(pr))

is a differential submodule of the module of primitives.

Definition 9.6.1. The factored Hurewicz map is

ϕr+1 : Er+1
π (ΩP 2n+1(pr))→ HPErH(ΩP 2n+1(pr))

which factors the Hurewicz map of Bockstein spectral sequences as

Er+1
π (ΩP 2n+1(pr))→ H(imϕr)→ HPErH(ΩP 2n+1(pr))

→ Er+1
H (ΩP 2n+1(pr)).

Thus, the range of the factored Hurewicz map is the βr homology of the
module of primitives. If we replace this range by the βr homology of the
Hurewicz image itself, we shall call it the strongly factored Hurewicz map.

Proposition 9.6.2. With the restrictions on p and r as indicated in the
first paragraph of this section,

(a) The elements [σk(ν)] ε Er+1
π (ΩP 2n+1(pr)) are nontrivial for all k ≥

1.

(b) The elements [τk(ν)] ε Er+1
π (ΩP 2n+1(pr)) are nontrivial for all k ≥

2 or all k ≥ 1, n > 1.

This is a consequence of the fact that these classes have nontrivial image
under the strongly factored Hurewicz map. The elements τk(ν) have

Hurewicz image βrvp
k

= τk(v) but the nonexistence of elements of mod

p Hopf invariant one implies that the powers vp
k

are not in the Hurewicz
image except in one case, r = 1, n = 1.
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Hence, we have proved that there exist elements of order ≥ pr+1 in
π∗(ΩP

2n+1(pr)) = π∗+1(P 2n+1(pr). The exact order and dimension require
that we know more, namely, that ϕr+1 ◦ βr+1[τk(ν)] = [σk(v)] 6= 0. If we
knew this nontriviality of the r + 1-st Bockstein differential, then the prop-
erties of the Bockstein spectral sequence would imply:

Proposition 9.6.3.

π2pkn−1(P 2n+1(pr))

contains a Z/pr+1Z summand.

The nontriviality of the homology class, that is, the fact that [σk(v)] 6= 0
in the homology of the primitives

HPErH(ΩP 2n+1(pr))→ Er+1
H (ΩP 2n+1(pr))

follows from the identity

HPErH(ΩP 2n+1(pr)) = HPUL(u, v) = HP (u, v)

and from Proposition 9.7.5 that [σk(v)] 6= 0εHP (u, v).

The equation

ϕr+1 ◦ βr+1[τk(ν)] = [σk(u)]

will be proved in the computation of the mod p homology Bockstein spectral
sequence for the so-called fibre of the pinch map P 2n+1(pr)→ S2n+1 in
Proposition 11.5.2.

Exercises

(1) If p is a prime greater than 3, find a countable number of nonzero
elements in the r + 1-st term of the mod p homotopy Bock-
stein spectral sequence of the loop space of the even dimensional
Moore space ΩP 2n+2(pr). (Hint: Consider [ν, ν] where ν generates
π2n+1(ΩP 2n+2(pr);Z/pZ).)

(2) Use Section 9.2 and this section to give another solution to exercise 1.

9.7 The homology of acyclic free differential graded Lie algebras

In this section the ground ring will be a field K of finite characteristic p.
We shall show that, in a sense to be made precise, the operations τk(x) and
σk(x) generate all of the homology of a so-called acyclic differential graded
Lie algebra.

Algebras generated by acyclic modules
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Recall that an acyclic graded module V is a differential module with
H(V, d) = 0. Given such V , we define three objects which are referred to
as acyclic even if, in fact, they are not, they are merely generated by an
acyclic module.

The acyclic tensor algebra is T (V ) with the usual differential. We note that
it is in fact acyclic in the sense that HT (V ) = T (H(V )) = T (O) = K.

The acyclic free graded Lie algebra is L(V ) ⊆ T (V ). We have already seen
that τk(x) and σk(x) represent cycles which are nonhomologous to zero in
the so-called acyclic free graded Lie algebra L(x, dx) with the degree of x
even. It is the purpose of this section to compute the homology HL(V ).

Consider also the related differential object, P (V ) = the module of primi-
tives in T (V ). P (V ) may be called the acyclic free primitive module or the
acyclic free restricted graded Lie algebra. We shall compute the homology
HL(V ) first and then HP (V ) will be a corollary.

In the previous section, we saw that the factored Hurewicz map detects
higher order torsion in the Bockstein spectral sequence. The homology of
the graded Lie algebra HL(V ) corresponds to homotopy in the Bockstein
spectral sequence. The map HL(V )→ HP (V ) is the algebraic version of
the factored Hurewicz map.

Useful operations on even dimensional classes

Define three operations τ(x), σ(x), η(x) on an even dimensional class x as
follows:

(1)

τ(x) = adp−1(x)(dx) = τ1(x) = d(xp).

The purpose of τ(x) is to be killed by xp.

Note that d(xp
k
) = τk(x) = adp

k−1(x)(dx) = τ(xp
k
).

(2)

σ(x) = σ1(x) =
1

p
d(τ(x)).

We shall see that, up to a nonzero factor, σ(xp
k
) and σk(x) are

homologous cycles, that is,

[σ(xp
k

)] = λk[σk(x)], λk 6= 0 εK.

(3)

η(x) = xp−1(dx).
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We shall see that there exists a noncommutative polynomial κ(x) of
degree < p in the Lie elements from L(x, dx) such that

d(η(x) + κ(x)) = σ(x).

In other words, the purpose of η(x) is to kill σ(x).

The homology of acyclic free graded Lie algebras is given by:

Proposition 9.7.1. Write L(V ) = HL(V )⊕K where K is an acyclic
module. If K has an acyclic basis, that is, a basis

{xα, yα, zβ , wβ}

with

dxα = yα, deg(xα) even,

dzβ = wβ , deg(zβ) odd,

then HL(V ) has a basis

{τk(xα), σk(xα)}α,k≥1.

Remarks. Before we begin the proof of Proposition 9.7.1, we review some
useful facts concerning connected Hopf algebras and universal enveloping
algebras.

Recall the following result of Milnor and Moore: [90]

Proposition 9.7.2. Let B be a connected Hopf algebra over a field of
characteristic p. Then primitives are indecomposable in B, that is,

P (B)→ Q(B)

is a monomorphism if and only if B is associative, graded commutative,
and all p-th powers are zero.

(In the case of characteristic zero, the above is true with no condition on
powers.)

Corollary 9.7.3. Let B be a connected differential Hopf algebra over a
field. Then

(a) B has indecomposable primitives implies that the homology Hopf
algebra HB has indecomposable primitives.

(b) B is primitively generated (that is,P (B)→ Q(B) is an epimor-
phism) implies that the homology Hopf algebra HB is primitively
generated.
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(c) B is biprimitive implies that the homology Hopf algebra HB is
biprimitive.

Proof of the corollary: Part (a) is a clear consequence of 9.7.2.

Part (b) needs the following result which is left to the exercises.

Lemma 9.7.4. Any connected Hopf algebra B over a field is a direct limit
of finite type Hopf algebras.

Since homology commutes with direct limits, we may assume that B is
primitively generated of finite type in order to prove Part b),

But, in this case, the dual Hopf algebra B∗ has indecomposable primitives
and, by Part (a), so does the homology H(B∗). Hence, the homology HB =
(HB∗)∗ is primitively generated.

Part (c) is a consequence of Parts (a) and (b). �

Let L be a connected graded Lie algebra, that is, L0 = 0, and let A = UL
be the universal enveloping algebra.

Recall that the Lie filtration on A is the increasing filtration with

F0A = K, F1A = K + L

FnA = Fn−1A+ im (PA⊗ Fn−1A
mult−−−→ A).

This filtration is multiplicative, that is,

FiA · FjA ⊆ Fi+jA,

and comultiplicative

∆(FkA) ⊆
∑
i+j=k

FiA⊗ FjA.

Thus, the associated graded object E0
∗A = F∗A/F∗+1A has an induced Hopf

algebra structure.

E0
∗A is primitively generated by E0

1A = L.

Moreover, E0
∗A = S(L) = E(Lodd)⊗ P (Leven) is associative, graded com-

mutative (which includes that the squares of odd dimensional classes are
zero).

Hence, if L is a connected differential graded Lie algebra, then the Lie fil-
tration on the differential Hopf algebra A = UL defines a spectral sequence
of Hopf algebras abutting to the homology HUL. All the spectral sequence
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terms Er∗A are primitively generated differential Hopf algebras,

P (Er∗A)→ Q(Er∗A)

is an epimorphism, and, of course, the differentials satisfy

dr(P (Er∗A)) ⊆ P (Er∗A).

Armed with the above remarks, we proceed to:

Proof of Proposition 9.7.1: The computation of HL(V ) is a consequence
of the following facts:

(1) Er∗ = Er∗T (V ) is a spectral sequence of primitively generated differ-
ential graded Hopf algebras.

(2)

E∞∗ = K, E0
1 = L(V ), and E1

1 = HL(V ).

The idea is that, by the time we reach E∞∗ , the generators of E1
1 = HL(V )

must be eliminated by differentials in the spectral sequence. Understand-
ing the way in which this elimation can occur will compute the homology
HL(V ).

Then

E0
∗ = S(L(V )) = S(HL(V )⊕K) = S(HL(V ))⊗ S(K),

bidegree(L(V ))) = (1, ∗),

and the differential dr maps bidegree (t, ∗) to bidegree (t− r, ∗).

Here is a detailed description of the effect of the differentials dxα = yα and
dzβ = wβ :

(1)

d0xα = yα

eliminates the generators xα and yα and, in the process, it creates as
nontrivial homology classes the primitive generators of E1

∗ , x
p
α and

xp−1
α yα = η(xα), both of bidegree (p, ∗).

(2) In the universal example, A = T (x, dx), d0 does not eliminate σ(x)
since it is a nontrivial homology class in HL(V ). But it must be
eliminated by an element with p− 1 occurences of x and 1 occurrence
of dx. There are only two possibilities, τ(x) which cannot do it since
dτ(x) = 0, and η(x) = xp−1(dx) which therefore must do it, at least
up to unit which can safely be ignored. Since η(x) has bidegree (p, ∗),



9.7 The homology of acyclic free differential graded Lie algebras 321

this implies that, up to a unit,

dp−1η(x) = σ(x).

If we interpret what this means in a spectral sequence, we can assert
the more precise statement: There is a noncommutative polynomial

κ(x) ε T (x, dx)

which has Lie filtration < p such that

d(η(x) + κ(x)) = σ(x).

(3) Therefore, for all xα,

d(η(xα) + κ(xα)) = σ(xα), and dp−1η(xα) = σ(xα).

Since dp−1(η(xα)σ(xα)j) = σ(xα)j+1, this differential eliminates the
two generators η(xα) and σ(x) and it creates no new generators.

(4) Since d(xpα) = τ(xα), we have dp−1(xpα) = τ(xα). This differential
eliminates the generators xpα and τ(xα) and creates the two primitive
generators xp

2

α and η(xpα).

(5) Since

d(xp
k

α ) = τ(xp
k−1

α )

and

d(η(xp
k−1

α ) + κ(xp
k−1

α )) = σ(xp
k−1

α ),

with κ(xp
k−1

α ) of Lie filtration < p, we have the differentials

dp
k−1(xp

k

α ) = τ(xp
k−1

α )

dp
k−1(η(xp

k−1

α )) = σ(xp
k−1

α ).

The continuation of this pattern explains the existence of the basis
elements τ(xp

k−1

α ) = τk(xα) and σ(xp
k−1

α ) in the homology HL(V ).

(6)

d0zβ = wβ

eliminates the two generators zβ and wβ and, since d0(zβw
j
β) =

wj+1
β , it creates no new generators.

Since all generators must be eliminated, it follows that

{τk(xα) = τ(xp
k−1

α ), σ(xp
k−1

α )}α,k≥1
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is a complete list of the basis of HL(V ).

The proof is completed by noting that, in the universal example,
L(x, dx), the nonzero homology classes [σ(xp

k−1
)] and [σk(x)] both

have weight pk − 2 in x and weight 2 in dx. Therefore, they must be
equal up to a unit.

Hence,

{τk(xα), σk(xα)}α,k≥1

is a basis for HL(V ). �

Consider the short exact sequence

0→ L(V )→ P (V )→ P (V )/L(V )→ 0.

Since P (V )/L(V ) has a basis of p−th powers, its basis is

{xpjα , w
pj

β , σk(xα)p
j}α,j≥1.

Furthermore, H(P (V )/L(V )) = P (V )/L(V ) and the long exact homology
sequence shows that

Proposition 9.7.5.

(a) The homology HP (V ) has a basis

{wp
k

β , σk(xα)p
j}β , α, k ≥ 1, j ≥ 0}.

(b) The image of HL(V )→ HP (V ) has a basis {σk(xα)}α,k≥1.

Exercises

(1) Let x and y be elements in an associative algebra A and suppose that
x has even degree.

(a) Show that

ad(xn)(y) =

n−1∑
j=0

adn−j(x)(y)xj .

(Hint: Use induction and the formula

ad(xn)(y)x+ ad(x)ad(xn−1)(y) + ad(x)(y)xn−1.)

(b) If A is an associative algebra over a field of characteristic p, show
that

ad(xp)(y) = adp(x)(y).
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(c) If A is an associative differential algebra over a field of character-
istic p, show that

L(xp, d(xp)) ⊆ L(x, dx).

(2) Show that, for even degree elements x, the fact that κ(x) has Lie filtra-

tion < p in UL(x, dx) implies that the element κ(xp
k
) has Lie filtration

< p in UL(x, dx) for all k.

(3) Prove Lemma 9.7.4.



10 Differential homological algebra

Differential homological algebra is used in algebraic topology to study the
homology of fibrations. The Serre spectral sequence [116] determines the
homology of the total space given the homologies of the base and fibre. In
general, given the homologies of two out of the three, base, fibre, and total
space, various techniques have been developed to determine the homology
of the third.

Two cases of historical interest are the following: (1) Given the homology of
a space, determine the homology of the loop space. (2) Given the homology
of a topological group, determine the homology of the classifying space. In
a real sense, these problems are dual to one another and have specific
solutions.

The problem of determining the homology of the loop space is solved with
the help of the cobar construction introduced by Frank Adams [1]. This
differential algebra, when applied to the chains on a space, is homologically
equivalent to the chains on the loop space together with the multiplication
induced by loop multiplication.

The problem of determining the homology of the classifying space is solved
with the help of the bar construction introduced by Eilenberg and MacLane
[41] and followed up in a geometric form by John Milnor [86]. This differ-
ential coalgebra, when applied to the chains on a topological group, is
homologically equivalent to the chains on the classifying space together
with the coalgebra structure given by the diagonal.

In order to study the cobar and bar constructions, we begin with some pre-
liminary algebraic results on algebras and coalgebras. We describe deriva-
tions on algebras and coderivations on coalgebras. We pay special attention
to the universal associative algebras and the universal associative coalge-
bras, the so-called tensor algebras and tensor coalgebras. This is used to
describe the differentials in the cobar and bar constructions.

The chains on a principal bundle are modeled by twisted tensor products
of differential algebras and differential coalgebras [20]. The chains on the

324
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path space are modeled by a universal twisted tensor product involving the
cobar construction. Dually, the chains on the universal bundle are modeled
by a universal twisted tensor product involving the bar construction.

The limitations of specific models for fibrations are overcome by the intro-
duction of relative homological algebra. To this end, we study modules over
algebras and determine the projective objects. We study tensor products
and their derived functors which will be used in the study of homoge-
neous spaces. We encounter certain problems with the homological algebra
when applied to differential modules. These problems were solved by the
introduction by Eilenberg and Moore of projective classes [43]. In a pro-
jective class, the definitions of projective objects, epimorphisms, and exact
sequences are changed in a consistent manner which make them more suit-
able to application to topology.

Of more interest to us here in this chapter is the study of comodules over
coalgebras. We introduce the notion of cotensor product of comodules and
proceed to study the derived functors with the help of relative injective
classes wherein the injective objects, the monomorphisms, and the exact
sequences are modifed in a consistent manner.

In the language of Bill Singer, the main object of this chapter is the second
quadrant Eilenberg–Moore spectral sequence. A special case of this spectral
sequence computes the homology of a loop space and is used by us in the
next chapter to study the homology of the fibre of the pinch map and
thence to prove the fundamental splitting theorems into a product. These
lead to the exponent theorems for spheres and Moore spaces at odd primes.

Much of the material in this chapter is inspired by the seminal Cartan
seminar of John Moore [94] on the homology of classifying spaces. The first
application of relative homological algebra to the study of classifying spaces
occured there. And it introduced the use of the differential Tor of several
variables to study coproducts in the homology of classifying spaces. But,
since the chains on a topological group are a differential Hopf algebra, the
diagonal, being a map of differential algebras, can induce the coproduct
and thus make the use of the differential Tor of several variables optional.

We introduce here the use of the differential Cotor of several variables in
order to define and to study products in the homology of the loop space.
In this case, there is no pairing of the chains on a topological space which
can induce the algebra structure in differential Cotor. The use of differ-
ential Cotor of several variables is essential to define an algebra structure
in differential Cotor which corresponds to the multiplication in the loop
space.
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In the case of the second quadrant Eilenberg–Moore models, the dominant
algebraic structure is the structure of an associative algebra in differential
Cotor. Coalgebra structures may occur but they are not always present.
When present for a natural reason, they are consistent with the dominant
structure. For example, if we start with a differential coalgebra which hap-
pens to be a differential Hopf algebra, then we get a coalgebra structure
in differential Cotor and this combines with the algebra structure to give
a Hopf algebra structure in differential Cotor.

The paper of Eilenberg–Moore [42] introduced the spectral sequence of the
same name but also the more fundamental Cotor approximation to the
chains on a homotopy pullback. Our treatment has also been influenced by
Larry Smith’s thesis [122] on the Eilenberg–Moore spectral sequence and by
the paper of Husemoller, Moore, and Stasheff [64]. The latter is especially
insightful in its treatment of twisted tensor products. And twisted tensor
products have a nice summary in a paper of Hess and Levi [52].

In the last chapter of this book, we complete our presentation of dif-
ferential homological algebra by presenting the so-called first quadrant
Eilenberg–Moore spectral sequence which computes the homology of clas-
sifying spaces.

10.1 Augmented algebras and supplemented coalgebras

Throughout this chapter, we shall use the following sign convention for
tensor products of maps f : A→ C and g : B → D of possibly nonzero
degree. A sign is introduced whenever elements of nonzero degree pass by
one another, that is, the map f ⊗ g : A⊗B → C ⊗D is given on tensor
elements by (f ⊗ g)(x⊗ y) = (−1)deg(x)deg(g)f(x)⊗ g(y).

We begin by recalling some well known notions concerning augmented
algebras and indecomposables. Although these notions are extremely well
known, it is worthwhile reviewing them in order to make the dual notions
transparent. Then we shall continue by considering the dual notions of
supplemented coalgebras and primitives.

An algebra A is a positively graded module over a commutative ground
ring R which has an associative multiplication µ : A⊗A→ A and a unit
η : R→ A.
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In detail, a multiplication is a degree 0 linear map µ : A⊗A→ A, written
µ(a⊗ b) = a · b, which is associative so that the diagram

A⊗A⊗A µ⊗1−−→ A⊗A
↓ 1⊗ µ ↓ µ
A⊗A µ−→ A

commutes and η is a two-sided unit so that the diagram

R⊗A η⊗1−−→ A⊗A 1⊗η←−− A⊗R
∼=↘ ↓ µ ↙∼=

A

commutes. The slant maps above are the canonical isomorphisms, that is,
1 · a = a · 1 = a for all a εA.

The algebra is called (graded) commutative if a · b = (−1)deg(a)deg(b)b · a
for all a, b εA, that is,

A⊗A T−→ A⊗A
µ↘ ↙ µ

A

commutes where T : A⊗A→ A is the twist map, T (a⊗ b) =
(−1)deg(a)deg(b) b⊗ a.

Recall that the ground ring R is an algebra concentrated in degree 0 with
multiplication µ : R⊗R ∼= R, µ(1⊗ 1) = 1 and unit η : R ∼= R, η(1) = 1.

An augmented algebra is an algebra A over R together with a map of
algebras ε : A→ R. We denote the augmentation ideal by I(A) = A =
kernel(ε). It can also be called the reduced algebra. Note that we have
a direct sum decomposition A = A⊕ η(R). We identify R ' η(R); it is the
summand generated by 1.

Remarks. A differential algebra is just an algebra A with the extra struc-
ture of a degree −1 differential d : A→ A for which the structure maps of
multiplication and unit are maps of differential objects. The ground ring R
is a differential algebra with the zero differential. And an augmented differ-
ential algebra is just a differential algebra with the augmentation ε : A→ R
being a map of differential objects. In particular, A is closed under the dif-
ferential.

Definition 10.1.1. If A is an augmented algebra, the module of inde-
composables QA is the cokernel of the reduced multiplication, that is,
QA = A/A ·A = coker µ : A⊗A→ A.
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The product ideal A ·A ⊆ A is called the module of decomposables and, if
A is connected, that is, if ε : A0

∼= R, then QA is related to choosing a set of
algebra generators as follows. We shall say that we have chosen a generating
module for A if we have chosen a linear map ι : QA→ A which is a section
of the natural projection π : A→ QA, that is, π · ι = 1QA. (Choosing a set
of generators is equivalent to choosing ι and a set of module generators of
QA.)

Lemma 10.1.2. If A is a connected augmented algebra with a choice of
generating module ι, then the iterated multiplication maps

µn : QA⊗ . . . (n− times) · · · ⊗QA
ι⊗···⊗ι−−−−→ A⊗ . . . (n− times) · · · ⊗ A

mult−−−→ A

combine to give a surjective map⊕
n≥0

µn :
⊕

QA⊗ · · · ⊗QA→ A,

that is, every element of A can be written as a sum of elements of the form
ι(a1) · . . . ι(an) with ai εQA.

Proof: Use induction on the degree and the split exact sequence

A⊗A→ A→ QA→ 0

to get A = ι(QA)⊕ (A ·A). �

Corollary 10.1.3. Let f, g : A→ B be two maps (homomorphisms) of
augmented algebras and let ι : QA→ A be a generating module. If f · ι =
g · ι, then f = g.

Definition 10.1.4. Let f : A→ B be a map of augmented algebras and
let g : A→ B be a linear map of possibly nonzero positive or negative
degree. Then g is called a derivation with respect to f if ε · g = 0 and the
following diagram commutes

A⊗A g⊗f+f⊗g−−−−−−→ B ⊗B
↓ µ ↓ µ
A

g−→ B.

The next lemma shows that derivations are like homomorphisms in that
they are determined by their values on generators.

Lemma 10.1.5. Let g, h : A→ B be two derivations with respect to a
homomorphism f of augmented algebras and let ι : QA→ A be a choice
of a generating module. If g · ι = h · ι, then g = h.
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Proof: Merely note that

g(a1 · · · · · ai · · · · · an)

= Σnı=1(−1)deg(g)(deg(a1)+···+deg(ai−1))fa1 · · · · · gai · · · · fan

and similarly for h. �

Corollary 10.1.6. Let f : A→ B be a map of augmented algebras and
suppose that A and B are in fact differential algebras. If ι : QA→ A is a
choice of a generating module and d · f · ι = f · d · ι, then f · d = d · f , that
is, f is a map of augmented differential algebras.

Proof: Note that d · f and f · d are both derivations with respect to f and
are therefore determined by their effect on generators. �

We now turn to supplemented coalgebras.

A coalgebra C is a positively graded module over a commutative ground
ring R which has an associative diagonal ∆ : C → C ⊗ C and a counit
ε : C → R. We denote the so called reduced coalgebra by C = kernel(ε).

In detail, a diagonal is a degree 0 linear map ∆ : C → C ⊗ C which is
associative in the sense that the diagram

C
∆−→ C ⊗ C

↓ ∆ ↓ ∆⊗ 1

C ⊗ C 1⊗∆−−−→ C ⊗ C ⊗ C

commutes.

A counit is a degree 0 linear map ε : C → R such that

C
∼=↙ ↓ ∆ ↘∼=

R⊗ C ε⊗1←−− C ⊗ C 1⊗ε−−→ C ⊗R

commutes where the slant maps are the canonical isomorphisms.

The coalgebra is called (graded) commutative if

C
∆↙ ↘ ∆

C ⊗ C T−→ C ⊗ C

commutes.

Recall that the ground ring R is a coalgebra concentrated in degree 0 with
diagonal ∆ : R ∼= R⊗R,∆(1) = 1⊗ 1 and counit ε : R ∼= R, ε(1) = 1.



330 Differential homological algebra

A supplemented coalgebra is a coalgebra C over R together with a map of
coalgebras η : R→ C.

We have a direct sum decomposition C = C ⊕ η(R). We identify R ' η(R)
and we note that the counit properties show that diagonal can be described
via:

∆(1) = 1⊗ 1,

and, if cεC, then

∆(c) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′

where c ′, c ′′εC.

The reduced diagonal ∆ : C → C ⊗ C is given by ∆(c) = Σc′ ⊗ c′′.

Remarks. A differential coalgebra C is just a coalgebra with the extra
structure of a degree -1 differential d : C → C for which the structure maps
of diagonal and counit are maps of differential objects. The ground ring R
is a differential coalgebra with the zero differential. And a supplemented
differential coalgebra is just a differential coalgebra with the supplement
η : R→ C being a map of differential objects.

The following is the coalgebra notion which is dual to the notion of inde-
composables for an augmented algebra.

Definition 10.1.7. If C is a supplemented coalgebra, the module of primi-
tives PC is the kernel of the reduced diagonal, that is, PC = ker ∆ : C →
C ⊗ C. Thus, c ε PC if and only if ∆(c) = c⊗ 1 + 1⊗ c.

The primitives form the first stage of an increasing filtration of the reduced
coalgebra C.

Let C be a supplemented coalgebra. For n ≥ 1, the coalgebra C has a
unique iterated diagonal given by

∆(n) : C → C ⊗ . . . (n− times) · · · ⊗ C

where

∆(1) = 1C , ∆(2) = ∆

∆(n) = (1⊗ · · · ⊗ 1⊗∆) ·∆(n−1) = · · · = ∆⊗ 1⊗ · · · ⊗ 1) ·∆(n−1).

This is well defined by Exercise 8.

Similarly, for n ≥ 2, the reduced coalgebra C has a unique iterated diagonal
given by

∆
(n)

: C → C ⊗ . . . (n− times) · · · ⊗ C
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where

∆
(1)

= 1C , ∆
(2)

= ∆

∆
(n)

= (1⊗ · · · ⊗ 1⊗∆) ·∆(n−1)
= · · · = (∆⊗ 1⊗ · · · ⊗ 1) ·∆(n−1)

.

Definition 10.1.8. If C is a supplemented coalgebra, the reduced coalge-

bra filtration is the increasing filtration of C given by FnC = ker ∆
(n)

:
C → C ⊗ · · · ⊗ C.

Thus, F2C = PC and if C is connected, that is, if C0 = R, then Fn+1C = C
in degree n.

Lemma 10.1.9. Let C be a supplemented coalgebra and assume that C
is flat as a module over R. Then, for n ≥ 2, FnC = the inverse image of

PC ⊗ · · · ⊗ PC ⊆ C ⊗ · · · ⊗ C with respect to the map ∆
(n−1)

.

Proof: It is clear that the inverse image via the map ∆
n−1

of any

C ⊗ · · · ⊗ C ⊗ PC ⊗ C ⊗ · · · ⊗ C

is contained in FnC. Thus, the inverse image of PC ⊗ · · · ⊗ PC is contained

in FnC. We need to show that ∆
n−1

factors through PC ⊗ · · · ⊗ PC.

Assume inductively that we can factor

∆
(n−1)

: FnC → PC ⊗ · · · ⊗ PC ⊗ C ⊗ · · · ⊗ C

with k ≤ n− 2 factors of PC. Thus, FnC is contained in the inverse image
of

PC ⊗ · · · ⊗ PC ⊗ C ⊗ · · · ⊗ C

with respect to the map ∆
(n−1)

and FnC is precisely the kernel of the
composition

C
∆

(n−1)

−−−−→ PC ⊗ · · · ⊗ PC ⊗ C ⊗ · · · ⊗ C
1⊗...1⊗∆⊗1···⊗1−−−−−−−−−−→ PC ⊗ · · · ⊗ PC ⊗ C ⊗ C ⊗ · · · ⊗ C.

Since 0→ PC → C
∆−→ C ⊗ C is exact and C is flat, it follows that FnC

factors through PC ⊗ · · · ⊗ PC ⊗ C ⊗ · · · ⊗ C with k + 1 ≤ n− 1 factors
of PC.

The case k = n− 1 shows that FnC is precisely the inverse image of PC ⊗
· · · ⊗ PC with respect to the map ∆

(n−1)
. �
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The dual notion to the choice of a generating module of an algebra is the
choice of a retraction onto the module of primitives of a coalgebra. We
have:

Corollary 10.1.10. Let C be a supplemented coalgebra. Assume that C
is flat as a module over R, that C is connected, and let r : C → PC be a
retraction onto the module of primitives. Then two elements x, y εC are
equal if and only if

(r ⊗ · · · ⊗ r) ·∆(n)
(x) = (r ⊗ · · · ⊗ r) ·∆(n)

(y)

for all n ≥ 1.

Proof: Consider the element z = x− y. If z 6= 0, then, since C is
connected, there exists n ≥ 2 such that z ε FnC − Fn−1C. Since

∆
(n−1)

(z) ε PC ⊗ · · · ⊗ PC, 0 = (r ⊗ · · · ⊗ r) ·∆(n−1)
(z) = ∆

(n−1)
(z).

Thus, z ε Fn−1C, which is a contradiction. �

The next lemma is the coalgebra analogue to the statement that a map of
algebras is determined by its values on a set of generators.

Lemma 10.1.11. Let f, g : C → D be two maps of supplemented coalge-
bras where D is flat over R and connected. Let r : D → PD be a retraction
onto the module of primitives and assume that r · f = r · g. Then f = g.

Proof: By corollary 10.1.10, it suffices to note that

(r ⊗ · · · ⊗ r) ·∆(n) · f = (r · f ⊗ · · · ⊗ r · f) ·∆(n)

= (r · g ⊗ · · · ⊗ r · g) ·∆(n)
= (r ⊗ · · · ⊗ r) ·∆(n) · g

for all n ≥ 1. �

Definition 10.1.12. Let f : C → D be a map of supplemented coalge-
bras. Let g : C → D be a linear map of possibly nonzero degree. Then g
is a coderivation with respect to f if g(1) = 0 and the following diagram
commutes:

C
g−→ D

↓ ∆ ↓ ∆

C ⊗ C f⊗g+g⊗f−−−−−−→ D ⊗D

The next lemma shows that coderivations are determined by the projection
onto the module of primitives.
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Lemma 10.1.13. Let g, h : C → D be two coderivations of supplemented
coalgebras with respect to a coalgebra map f : C → D. Suppose that D is
flat over R and connected. If r : D → PD is a retraction onto the module
of primitives and r · g = r · h, then g = h.

Proof: The proof is similar to that of Lemma 10.1.5.

(r ⊗ · · · ⊗ r) ·∆(n) · g = (r ⊗ · · · ⊗ r) · (Σ f ⊗ · · · ⊗ g ⊗ · · · ⊗ f) ·∆(n)

= (r⊗. . .⊗r) · (Σ f⊗· · · ⊗ h⊗ · · · ⊗ f) ·∆(n)
= (r ⊗ · · · ⊗ r) ·∆(n) · h

for all n ≥ 1. Both of the above sums contain n summands, one for each
possible placement of g or h, respectively. �

The next corollary is the coalgebra analogue of Corollary 10.1.6 and its
proof is just the dual of that one.

Corollary 10.1.14. Let f : C → D be a map of supplemented coalgebras
with D connected and flat over the ground ring. Let r : D → PD be a retrac-
tion onto the primitives and suppose that C and D are in fact supplemented
differential coalgebras. Then, r · f · d = r · d · f implies that f · d = d · f ,
that is, f is a map of differential supplemented coalgebras.

Exercises

(1) Show that the sign convention for tensor product of maps satisfies the
composition law

(f ⊗ g) · (h⊗ k) = (−1)deg(g)deg(h)(f · h)⊗ (g · k).

(2) Let d : A→ A be a derivation with respect to the identity map 1 : A→
A. Show that d(1) = 0.

(3) Let A be an augmented algebra and let D(A) be the graded set of all
derivations of A with respect to the identity map 1 : A→ A. Show that
D(A) is a graded Lie algebra. That is, show:

(a) In each fixed degree D(A) is closed under linear combinations.

(b) If d, e εD(A), then the graded bracket [d.e] = de−
(−1)deg(d)deg(e)ed is in D(A).

(c) If d εD(A) and deg(d) is odd, then d2 = dd is in D(A).

(4) Verify that in a supplemented coalgebra C the diagonal can be
described by

∆(1) = 1⊗ 1,
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and, if c εC, then

∆(C) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′

where c′, c′′ εC.

(5) Show that the diagonal ∆ : C → C ⊗ C is associative, that is, (∆⊗
1)∆ = (1⊗∆)∆ if and only if the reduced diagonal ∆ : C → C ⊗ C is
associative, that is, (∆⊗ 1)∆ = (1⊗∆)∆.

(6) Let f : C → D be a map of supplemented coalgebras and let g : C → D
be a coderivation with respect to f .

(a) Show that f(1) = 1 and f preserves reduced coalgebras and the
module of primitives, f(C) ⊆ D, f(PC) ⊆ PD.

(b) Show that g preserves the module of primitives, g(PC) ⊆ PD.

(c) Show that the composition ε · g : C → D → R is 0 and g preserves
reduced coalgebras, g(C) ⊆ D.

(7) Let C be a supplemented coalgebra and let cD(C) be the graded set of
coderivations of C with respect to the identity map 1C : C → C. Show
that cD(C) is a graded Lie algebra, that is, show that cD(C) and the
graded bracket satisfy the same laws as in exercise 3a,b,c.

(8) In an (associative) algebra A, give an inductive proof that any n-
fold multiplication µn : A⊗ · · · (n− times) · · · ⊗A→ A of n elements
is equal to the composition

µ · (µ⊗ 1) · · · · (µ⊗ 1⊗ . . . (n− 2− times) · · · ⊗ 1)

(µ⊗ 1⊗ . . . (n− 1− times) · · · ⊗ 1).

Similarly, in an (associative) coalgebra C, give an inductive proof that
any n-fold diagonal ∆(n) : C → C ⊗ . . . (n− times) · · · ⊗ C is equal to
the composition

(∆⊗ 1⊗ . . . (n− 1− times) · · · ⊗ 1)

×(∆⊗ 1⊗ . . . (n− 2− times) · · · ⊗ 1) · (∆⊗ 1) ·∆.

10.2 Universal algebras and coalgebras

Let V be a positively graded module over a commutative ring R. The
universal associative algebra generated by V is just the tensor algebra T (V ),
that is:
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Definition 10.2.1. The tensor algebra T (V ) is the augmented algebra

T (V ) = R ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ . . .

with augmentation ε : T (V )→ R characterized by ε(V ) = 0 and multipli-
cation given by justaposition of tensors

µ[(a1 ⊗ · · · ⊗ an)⊗ (b1 ⊗ · · · ⊗ bm)] = a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm.

Up to isomorphism, T (V ) is uniquely characterized by the following uni-
versal property.

Lemma 10.2.2. There is a linear map ι : V → T (V ) such that for all
linear maps f : V → A into an associative algebra A, there is a unique
map of algebras f : T (V )→ A such that f · ι = f.

Clearly, f is given by

f(a1 ⊗ · · · ⊗ an) = (fa1) · · · · · (fan).

In fact, T (V ) is also universal for derivations:

Lemma 10.2.3. Let f : T (V )→ A be a map of augmented algebras and
let g : V → A be a linear map of possibly nonzero degree. Then there exists
a unique derivation g : T (V )→ A with respect to f such that g · ι = g.

Clearly, g is given by

g(a1 ⊗ · · · ⊗ an)

= Σni=1(−1)deg(g)[deg(a1)+···+deg(ai−1)](fa1) · · · · · (gai) · · · · · (fan).

We now present the notions which are dual to the above and which apply
to coalgebras. Suppose V is a connected positively graded module, that is,
V0 = 0. Then the universal associative coalgebra cogenerated by V is the
tensor coalgebra T ′(V ) which is described as follows.

Definition 10.2.4.

(a) As a graded R module, the tensor coalgebra T ′(V ) is the same as
the tensor algebra, that is,

T ′(V ) = R ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ . . . .

We remark here that the fact that V is connected implies that this
infinite direct sum is also the infinite product.

(b) The diagonal is given by

∆(a1 ⊗ · · · ⊗ an) = Σni=0(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an).
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We remark here that this diagonal does not agree with the mul-
tiplicative diagonal which makes the tensor algebra into a Hopf
algebra.

(c) The counit ε : T ′(V )→ R is given by

ε(1) = 1, ε(a1 ⊗ · · · ⊗ an) = 0.

(d) The supplement η : R→ T ′(V ) is given by η(1) = 1.

Up to isomorphism, T ′(V )) is uniquely characterized by the universal prop-
erty:

Proposition 10.2.5. The standard linear map π : T ′(V )→ V such that
π · η = 0 has the following property. For all supplemented (associative) coal-
gebras C and all linear maps f : C → V with f · η = 0, there is a unique
map of supplemented coalgebras f : C → T ′(V ) such that π · f = f. That
is, f lifts f .

Proof: Since the module of primitives PT ′(V ) = V , results of Section 10.1
show that f is unique if it exists. So it suffices to define a suitable f and
check that it is a map of supplemented coalgebras.

We introduce the notation f (n) = f ⊗ . . . (n− times) · · · ⊗ f.

Define f(1) = 1 and, on the reduced coalgebra C,

f = f + f (2)∆
(2)

+ f (3)∆
(3)

+ · · · .

To show that f is a map of supplemented coalgebras, we need to show that

∆
(2) · [Σn≥1f

(n)∆
(n)

]

= [Σp≥1f
(p)∆

(p) ⊗ Σq≥1f
(q)∆

(q)
] ·∆(2)

= [Σp,q≥1f
(p)∆

(p) ⊗ f (q)∆
(q)

] ·∆(2)
.

This follows from the fact that ∆
(n)

= (∆
(p) ⊗∆

(q)
) ·∆(2)

whenever p+
q = n. �

Tensor coalgebras are also universal for coderivations:

Proposition 10.2.6. Let f, g : C → V be linear maps such that f(1) =
g(1) = 0 and suppose that f has degree 0. Let f : C → T ′(V ) be the map of
supplemented coalgebras which lifts f. Then there exists a unique coderiva-
tion g : C → T ′(V ) with respect to f such that π · g = g. That is, g lifts
g.

Proof: As in the proof of Proposition 10.2.5, the lift g is unique if it exists.
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We set

g[n] = Σni=1f ⊗ · · · ⊗ g ⊗ · · · ⊗ f

with g in the i-th place. Now define g(1) = 0 and, on C,

g = g + g[2]∆
(2)

+ g[3]∆
(3)

+ . . . .

We need to check that g is a coderivation with respect to f , that is, we
need

∆
(2) · g = (g ⊗ f + f ⊗ g) ·∆(2)

.

This follows from

∆
(2)
g[n]∆

(n)

= Σp+q=n(g[p] ⊗ f (q)
+ f

(p) ⊗ g[q]) · (∆(p) ⊗∆
(q)

) ·∆(2)
.

Exercises

(1) Let w1 ⊗ · · · ⊗ wn ε T ′(W ). Show that ∆
(k)

(w1 ⊗ · · · ⊗ wn) =
0 if k > n and, if k ≤ n, it

= Σ(w1 ⊗ · · · ⊗ wi1)⊗ (wi1+1 ⊗ · · · ⊗ wi2)⊗ · · · ⊗ (wik−1+1 ⊗ · · · ⊗ wn)

the sum being over all partitions of length n tensors into k parts.

(2) Suppose that f : T ′(W )→ V is a degree 0 linear map which is nonzero
only on length m tensors in T ′(W ). If f : T ′(W )→ T ′(V ) is the unique
lift of f to a map of supplemented coalgebras, show that f(w1 ⊗ · · · ⊗
wn) = 0 if m does not divide n and, if n = mq, then it

= f(w1 ⊗ · · · ⊗ wm)⊗ f(wm+1 ⊗ · · · ⊗ w2m)

⊗ · · · ⊗ f(w(m−1)q+1 ⊗ · · · ⊗ wn).

(3) Suppose that g : T ′(W )→W is a degree 0 linear map which is nonzero
only on length m tensors in T ′(W ). If g : T ′(W )→ T ′(W ) is the unique
lift of g to a coderivation with respect to the identity map of T ′(W ),
show that g(w1 ⊗ · · · ⊗ wn) = 0 if n < m and, if n = mq, then it

= Σ(−1)deg(g)[deg(w1)+···+deg(wi)]w1

⊗ · · · ⊗ wi ⊗ g(wi+1 ⊗ · · · ⊗ wi+m)⊗ wi+m+1 ⊗ · · · ⊗ wn,

the sum being over all subsets of m successive tensors.
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10.3 Bar constructions and cobar constructions

The cobar construction is a functor from the category of connected differ-
ential coalgebras to the category of differential algebras which corresponds
to the loop space functor on the category of pointed topological spaces.
Dually, the bar construction is a functor from the category of differential
algebras to the category of differential coalgebras which corresponds to the
classifying space functor on the category of topological groups. Since the
description of algebras is more intuitive, we begin with the cobar construc-
tion.

Let C be a connected differential coalgebra over a commutative ring R with
counit ε : C → R and let C = kernel(ε) be the reduced coalgebra. Let s−1C
denote the desuspension, that is,in general,

(s−1V )n = Vn+1.

The cobar or loop construction on C is the following differential algebra
Ω(C):

Definition 10.3.1.

(a) As an algebra, Ω(C) = T (s−1C) = the tensor algebra on the desus-
pension of the reduced coalgebra.

(b) Ω(C) has a so-called internal differential dI which annihilates the
unit, is a derivation of degree −1, and is given on generators by

dI(s
−1c) = −s−1(dc)

where d is the differential of C.

(c) Ω(C) has a so-called external differential dE which annihilates the
unit, is a derivation of degree −1, and is given on generators by

dE(s−1c) = Σ(−1)deg(c′i)s−1c′i ⊗ s−1c′′i

where the diagonal is

∆(c) = c⊗ 1 + Σc′i ⊗ c′′i + 1⊗ c.

(d) Ω(C) has a so-called total differential given by d = dT = dI + dE .
The augmented algebra Ω(C) with total differential is called the
cobar or loop construction on the coalgebra C.

Remarks. It is clear that (dI)
2 = 0. An exercise shows that the associa-

tivity of the diagonal gives that (dE)2 = 0. Hence, both the internal and
external differentials give Ω(C) the structure of a differential algebra. Since
the internal and external differentials are derivations, the total differential
is also a derivation. An exercise shows that dIdE + dEdI = [dI , dE ] = 0 and
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hence the total differential dT also gives Ω(C) the structure of a differential
algebra.

Alternate notation

It is customary to denote the element s−1c1 ⊗ · · · ⊗ s−1cn by [c1| . . . |cn] or
[c1] . . . [cn]. We also introduce the notation c = (−1)deg(c)−1c. Observe that
with this notation, we have the formulas:

dI [c1| . . . |ci| . . . |cn] = Σ(−1)deg(c1)+···+deg(ci−1)−i[c1| . . . |dci| . . . |cn]

= −Σ[c1| . . . |ci−1|dci| . . . |cn]

and

dE [c1| . . . |ci| . . . , cn]

= −Σ(−1)deg(c1)+···+deg(ci−1)+deg(c′i)−i[c1| . . . |c′i|c′′i | . . . |cn]

= −Σ[c1| . . . |c′i|c
′′
i | . . . |cn]

where the reduced diagonal is:

∆(ci) = Σc′i ⊗ c′′i .

We now turn to the functor which converts algebras into coalgebras, the
so-called bar or classifying construction.

Let A be an augmented differential algebra over a commutative ring R
with augmentation ε : A→ R and let A be the augmentation ideal. Let sA
denote the suspension, that is,in general,

(sV )n = Vn−1.

The bar or classifying construction on A is the following differential coal-
gebra B(A) where the internal, external, and total differentials are all
coderivations with respect to the identity:

Definition 10.3.2.

(a) As an algebra, B(A) = T ′(sA) = the tensor coalgebra on the sus-
pension of the augmentation ideal.

(b) B(A) has a so-called internal differential dI which annihilates the
unit, is a coderivation of degree −1, and whose projection on the
length 1 tensors is nonzero only on length 1 tensors and that pro-
jection is given by

dI(sa) = −s(da)

where d is the differential of A.
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(c) B(A) has a so-called external differential dE which annihilates the
unit, is a coderivation of degree −1, and and whose projection on
the length 1 tensors is nonzero only on length 2 tensors and that
projection is given by

dE((sa)(sb)) = (−1)deg(a)s(ab).

(d) B(A) has a so-called total differential given by d = dT = dI + dE .
The coalgebra B(A) with total differential is called the bar or clas-
sifying construction on the algebra A.

Remarks. It is clear that (dI)
2 = 0. Since this is a coderivation, it is suffi-

cient to check it on length 1 tensors. An exercise shows that the associativity
of the multiplication gives that (dE)2 = 0 on length 3 tensors. Since this is a
coderivation, this is sufficient to check it in general. Hence, both the internal
and external differentials give B(A) the structure of a differential coalge-
bra. Since the internal and external differentials are coderivations, the total
differential is also a coderivation. An exercise shows that the coderivation
dIdE + dEdI = [dI , dE ] = 0 and hence the total differential dT also gives
B(A) the structure of a supplemented differential coalgebra.

Alternate notation

It is customary to denote the element sa1 ⊗ · · · ⊗ san by [a1| . . . |an].
Observe that with this notation and with a = (−1)deg(a)+1a, we have the
formulas:

dI [a1| . . . |ai| . . . |an] = Σ(−1)deg(a1)+···+deg(ai−1)+i[a1| . . . |dai| . . . |an]

= −Σ([a1| . . . |ai−1|dai| . . . |an]

and

dE [a1| . . . |ai|ai+1| . . . |an]

= Σ(−1)deg(a1)+···+deg(ai)+i−1[a1, . . . , ai, ai+1, . . . , an]

= −Σ[a1, . . . , ai, ai+1, . . . , an].

Exercises

(1) Show that the internal, external, and total differentials all make Ω(C)
into an augmented differential algebra.

(2) Show that the internal, external, and total differentials all make B(A)
into a supplemented differential coalgebra.
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10.4 Twisted tensor products

In this section we introduce twisted tensor products which are the algebraic
analogue of principal bundles.

Recall the sign convention for maps

f : X → Y, g : Z→W

of possibly nonzero degree. On elements, we have

(f ⊗ g)(x⊗ y) = (−1)deg(g)deg(x)(fx⊗ gy)

and, for maps, we have

(f ⊗ g)(h⊗ k) = (−1)deg(g)deg(h)(fh⊗ gk).

In general, a sign is always introduced when two entities of nonzero degree
are commuted past one another.

For example, if X and Y are chain complexes, then the tensor differential
d⊗ on X ⊗ Y is given by this sign convention and the formula

d⊗ = d⊗ 1 + 1⊗ d.

The tensor differential on X1 ⊗ · · · ⊗Xi ⊗ · · · ⊗Xn is given by the formula

d⊗ = Σi=1,...,n1⊗ · · · ⊗ di ⊗ · · · ⊗ 1.

Let A = an augmented differential algebra and let C = a supplemented
differential coalgebra over a commutative ring R. Thus, the augmentation
is a map of differential algebras ε : A→ R and the supplement is a map of
differential coalgebras η : R→ C. Let µ : A⊗A→ A be the multiplication
and let ∆ : C → C ⊗ C be the diagonal or comultiplication.

Definition 10.4.1. A twisting morphism τ : C → A is a map of degree
−1 such that

ετ = 0

and

dτ + τd = µ(τ ⊗ τ)∆.

Twisting morphisms allow us to define twisted tensor products A⊗τ C or
C ⊗τ A. As a graded module, these are just A⊗ C and C ⊗A, respectively,
but the differential is altered by adding to the tensor differential another
term ±Γτ .
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Definition 10.4.2. If τ : C → A is a twisting morphism, then the twisted
tensor product A⊗τ C is A⊗ C with the differential dτ = d⊗ + Γτ where

Γτ = (µ⊗ 1)(1⊗ τ ⊗ 1)(1⊗∆).

Similarly, the twisted tensor product C ⊗τ A is C ⊗A with the differential
dτ = d⊗ − Γτ where

Γτ = (1⊗ µ)(1⊗ τ ⊗ 1)(∆⊗ 1).

The fact that these definitions of dτ give differentials are consequences of
Lemma 10.4.4 below.

Three definitions which are useful in the statement of 10.4.4 are:

Definition 10.4.3.

(a) If f : X → Y is a map of degree n betweem graded objects, then
Df : X → Y is the map of degree n− 1 given by

D(f) = df − (−1)nfd.

(b) If f, g : C → A are maps of degrees n and m, respectively, then f ∪
g : C → A is the map of degree n+m given by

C
∆−→ C ⊗ C f⊗g−−→ A⊗A µ−→ A.

(c) If f : C → A is a map, then Γf : A⊗ C → A⊗ C is the composition

A⊗ C 1⊗∆−−−→ A⊗ C ⊗ C 1⊗f⊗1−−−−→ A⊗A⊗ C µ⊗1−−→ A⊗ C.

The map Γf : C ⊗A→ C ⊗A is defined in a symmetric fashion.

Thus, the fact that τ : C → A is a twisting morphism asserts by definition
that

D(τ) = τ ∪ τ.

Lemma 10.4.4.

(a) If f, g : C → A are maps of the same degree and a, b are scalars,
then Γaf+bg = aΓf + bΓg.

(b) If f : C → A, then D(Γf ) = ΓD(f) in both cases A⊗ C and C ⊗A.

(c) In the case of A⊗ C, Γ2
f = (−1)deg(f)Γf∪f . In the case of C ⊗A,

Γ2
f = Γf∪f .

(d) If τ : C → A is a twisting morphism, d2
τ = 0. That is, in the first

case, (d⊗ + Γτ )2 = 0, in the second case, (d⊗ − Γτ )2 = 0.
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Twisted tensor products admit a Serre filtration and a Serre spectral
sequence which are analogous to the concepts which go by the same name
for fibrations. Let τ : C → A be a twisting morphism and let A⊗τ C be
the resulting twisted tensor product. We shall call A the fibre, C the base,
and A⊗τ C the total space of the twisted tensor product.

Definition 10.4.5. The Serre filtration is the increasing filtration of A⊗τ
C by differential submodules defined by Fn(A⊗τ C) = A⊗ C≤n.

The resulting spectral sequence is the Serre spectral sequence and, if C is
flat over the ground ring, it has the following properties:

(a)

E0
p,q = Aq ⊗ Cp, d0 = dA ⊗ 1.

(b)

E1
p,q = Hq(A)⊗ Cp, d1 = 1⊗ dC .

(c)

E2
p,q = Hp(Hq(A)⊗ C∗, d1)

and, if either Hq(A) is flat over R or if R is a principal ideal domain
and C and H∗(C) are both projective over R, then

E2
p,q = Hq(A)⊗Hp(C).

(d) The spectral sequence is a homology spectral sequence confined to
the first quadrant and abuts to H∗(A⊗τ C).

Since the Serre filtration is a filtration by A-submodules, it follows that,
from the E1 term onwards, the spectral sequence is a spectral sequence of
modules over H∗(A). In particular, if α εHn(A) and β εErp,q for r ≥ 1, then
the differentials commute up to sign with the action of H∗(A), that is,

dr(αβ) = (−1)nαdr(β).

The Zeeman comparison theorem applies to this Serre spectral sequence
and yields the following:

Let (A,C, τ) and (A′, C ′, τ ′) be two triples consisting of augmented alge-
bras, supplemented coalgebras, and twisting morphisms. A morphism F :
(A,C, τ)→ (A′, C ′, τ ′) consists of a map of augmented algebras f : A→ A′

(a map of the fibres) and a map of supplemented coalgebras g : C → C ′

(a map of the bases) such that τ ′ · g = f · τ. It induces a map f ⊗ g :
A⊗τ C → A′ ⊗τ ′ C of twisted tensor products (a map of the total spaces).
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Proposition 10.4.6. If C and C ′ are flat modules over the ground ring
and f ⊗ g : A⊗τ C → A′ ⊗τ ′ C is a map of twisted tensor products, then,
if two out of three of f, g, f ⊗ g are homology equivalences, so is the third.

Exercises

(1) Prove lemma 10.4.4.

(2) (a) Show that the twisted tensor product A⊗τ C is a left differential A
module, that is, dτ ((a · b)⊗ c = (da · b)⊗ c+ (−1)deg(a)a · dτ (b⊗
c), a, b εA, c εC.

(b) Show that the twisted tensor product A⊗τ C is a right differential
C comodule, that is, show that

A⊗τ C
1⊗∆−−−→ (A⊗τ C)⊗ C

↓ dτ ↓ dτ ⊗ 1 + (1A⊗τC)⊗ d
A⊗τ C

1⊗∆−−−→ (A⊗τ C)⊗ C

commutes.

(c) Verify the analogues of (a) and (b) for the twisted tensor product
C ⊗τ A.

10.5 Universal twisting morphisms

There are two universal twisting morphisms, one for coalgebras and one
for algebras. Let A be an augmented differential algebra and let C be a
supplemented differential coalgebra.

The two universal twisting morphisms are:

(1) The universal twisting morphism out of a supplemented coalgebra:

τC : C → Ω(C), τC(1) = 0, τC(c) = s−1c = [c]

for c εC.

(2) The universal twisting morphism into an augmented algebra:

τA : B(A)→ A, τA(1) = 0, τA[a] = a, τA[a1| . . . |an] = 0 if n ≥ 1.

It is easy to check that these are twisting morphisms, that is, they both
satisfy

dτ + τd = τ ∪ τ, ετ = 0.

Let τ : C → A be any twisting morphism and note that we can regard this
as a map τ : C → A. Since this is a linear map, it has a unique extension
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to a map out of the the tensor algebra

τC : Ω(C)→ A

and a unique lift to a map into the cotensor algebra

τA : C → B(A).

That is, we have a commutative diagram

C
τC−→ Ω(C)

τA ↙ ↓ τ ↙ τC
B(A)

τA−→ A

The universal properties are:

(1) τ : C → A is a twisting morphism if and only if the extension τC :
Ω(C)→ A is a map of augmented differential algebras.

(2) τ : C → A is a twisting morphism if and only if the lift τA : C →
B(A) is a map of supplemented differential coalgebras.

Thus, the one-to-one correspondences

τA � τ � τC

give natural bijections between the three sets:

Supplemented Diff Coalgebra maps(C,B(A)), Twisting morphisms(C,A),
and Augmented Diff Algebra maps(Ω(C), A).

In particular, the natural bijections

map(C,B(A))
α−→ map(Ω(C), A)

show that the loop functor Ω and the classifying functor B are a pair of
adjoint functors.

The explicit adjoint correspondence between maps is given by:

Lemma 10.5.1. Given a map of supplemented differential coalgebras f :
C → B(A), the map of augmented differential algebras α(f) : Ω(C)→ A is
given by α(f)([c1] . . . [cn]) = (fc1) . . . (fcn). Given a map of augmented dif-
ferential algebras g : Ω(C)→ A, the map of supplemented differential coal-
gebras α−1(g) = β(g) : C → B(A) is given by

β(g)(c) = [gc] + Σi[gc
i
2,1|gci2,2] + Σi[gc

i
3,1|gci3,2|gci3,3]|,+ · · ·

where the reduced iterated diagonal is ∆
(n)

(c) = Σic
i
n,1 ⊗ · · · ⊗ cin,n for

c εC.
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As usual, the adjoint of the identity map 1B(A) : B(A)→ B(A) is the
adjunction map of differential algebras α : ΩB(A)→ A and the adjoint of
the identity map 1Ω(C) : Ω(C)→ Ω(C) is the adjunction map of differential
coalgebras β : C → BΩ(C). These are given explicitly by:

Lemma 10.5.2.

(a) On generators of ΩB(A), α([a1| . . . |an]) = 0 if n > 1 and = a1 if
n = 1.

(b) The projection of β onto primitives of BΩ(C) is given by proj ·
β(c) = [[c]] and thus

β(c) = [[c]] + Σi[[c
i
2,1]|[ci2,2]] + Σi[[c

i
3,1]|[ci3,2]|[ci3,3]] + · · ·

with the reduced iterated diagonal notation as in Lemma 10.5.1

Remarks. From the universal properties of the twisting morphisms we
get the universal properties of the twisted tensor products Ω(C)⊗τC C and
A⊗τA B(A). The first is an initial object for twisted tensor products with
fixed base C and the second is a terminal object for twisted tensor prod-
ucts with fixed fibre A. These are evident from the following commutative
diagram:

Ω(C)
τC−→ A

=−→ A
↓ ↓ ↓

Ω(C)⊗τC C → A⊗τ C → A⊗τA B(A)
↓ ↓ ↓
C

=−→ C
τA−→ B(A).

In the next section we shall prove:

Proposition 10.5.3. The twisted tensor products A⊗τA B(A) and
Ω(C)⊗τC C are acyclic, that is, their homologies are the ground field con-
centrated in degree 0.

This has the following corollaries.

Corollary 10.5.4. If the twisted tensor product A⊗τ C is acyclic, then
there is a map of augmented differential algebras Ω(C)→ A and a map of
supplemented differential coalgebras C → B(A) both of which are homology
isomorphisms.

Proof: The twisting morphism τ : C → A extends to a map of augmented
differential algebras Ω(C)→ A and yields a map of acyclic twisted tensor
products Ω(C)⊗τC C → A⊗τ C. Since this is a homology isomorphism on
the base and total space, this is a homology isomorphism on the fibre.
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Similarly, the twisting morphism τ : C → A lifts to a map of supplemented
differential algebras C → B(A) and yields a map of acyclic twisted tensor
products A⊗τ C → A⊗τA B(A). Since this is a homology isomorphism on
the fibre and total space, this is a homology isomorphism on the base. �

A special case of the above is:

Corollary 10.5.4. The adjunction maps α : ΩB(A)→ A and β : C →
BΩ(C) are homology equivalences.

Proof: Since the twisting morphism τA : B(A)→ A is the composition

B(A)
τBA−−→ ΩB(A)

α−→ A, there is a map of twisted tensor products

ΩB(A)⊗τBA B(A)→ A⊗τ B(A).

Since this is a homology isomorphism on the total space and base, it is a
homology isomorphism on the fibre.

Similarly, the twisting morphism τC is the composition C
β−→ BΩ(C)

τΩC−−→
Ω(C), we have a map Ω(C)⊗τC C → Ω(C)⊗τΩC BΩ(C) and that C →
BΩ(C) is a homology isomorphism follows much as before. �

Exercises

(1) Show that τC : C → Ω(C) and τA : B(A)→ A are twisting morphisms.

(2) Show that τ : C → A is a twisting morphism if and only if the extension
τC : Ω(C)→ A is a map of augmented differential algebras.

(3) Show that τ : C → A is a twisting morphism if and only if the lift
τA : C → B(A) is a map of supplemented differential coalgebras.

(4) Prove Lemma 10.5.1.

(5) Prove Lemma 10.5.2.

10.6 Acyclic twisted tensor products

In this section, we prove that the twisted tensor products A⊗τA B(A) and
Ω(C)⊗τC C are acyclic. We begin with:

Proposition 10.6.1. A⊗τA B(A) is acyclic.

Proof: Note that the twisted tensor product differential is a sum dτ = dE +
dI of so called external and internal differentials where

dI(a[a1| . . . |an]) = da[a1| . . . |an]− Σa[a1| . . . |ai−1|dai|ai+1| . . . |an]

dE(a[a1| . . . |an]) = aa1[a2| . . . |an] + Σa[a1| . . . |ai−1|aiai+1| . . . |an].
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Let Bn(A) = sA⊗ . . . (n− times) · · · ⊗ sA = the span of all [a1| . . . |an].
For n ≥ 0, define a contracting homotopy h : A⊗τ Bn(A)→ A⊗τ Bn+1(A)
by

h(a[a1| . . . |an]) =

{
0 if a = 1

[a|a1| . . . |an] if a εA

We can easily check.

Lemma 10.6.2.

hdE + dEh = 1− η · ε, hdI = −dIh, hdτ + dτh = 1− η · ε,

where R
η−→ A⊗τ B(A)

ε−→ R are the obvious maps in degree 0 with η(1) =
1[ ], ε(1[ ]) = 1. Thus, A⊗τ B(A) is acyclic.

We now prove:

Proposition 10.6.3. Ω(C)⊗τC C is acyclic.

Proof: The proof is similar to a dual of Proposition 10.6.1 but some care
must be taken with the signs.

As before, note that the twisted tensor product differential is a sum dτ =
dE + dI of so called external and internal differentials where

dI([c1| . . . |cn]c) = [c1| . . . |cn]dc− Σ[c1| . . . |ci−1|dci|ci+1| . . . |cn]c

dE([c1| . . . |cn]c) = [c1| . . . |cn|c− ηε(c)]1 + Σj [c1| . . . |cn|c′j ]c′′j

−Σi,j [c1| . . . |ci−1|c′i,j |c
′′
i,j |ci+1| . . . |cn]c

where ∆(c) = Σc′j ⊗ c′′j , ∆(ci) = Σc′i,j ⊗ c′′i,j .

Let Ωn(C) = s−1C ⊗ . . . (n− times) · · · ⊗ s−1C = the span of all
[c1| . . . |cn]. For n ≥ 0, define a contracting homotopy h : Ωn(C)⊗τ C →
Ωn−1(C)⊗τ C by setting h = 0 if n = 0 and for n > 1, set

h([c1| . . . |cn]c) =

{
[c1| . . . |cn−1|cn if c = 1

0 if c εC

We can easily check:

Lemma 10.6.4.

hdE + dhE = 1− η · ε, dIh = −hdI , hdτ + dτh = 1− η · ε

where R
η−→ Ω(C)⊗τ C

ε−→ R are the obvious maps in degree 0 with η(1) =
[ ]1, ε([ ]1) = 1. Thus, Ω(C)⊗τ C is acyclic.
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Exercises

(1) Check Lemma 10.6.2.

(2) Check Lemma 10.6.4.

(3) (a) In the twisted tensor product A⊗τ B(A), check that the internal
and external differentials dI and dE satisfiy the formulas

d2
E = 0, d2

I = 0, dE · dI = −dI · dE .

(b) Let ZI is the subset of A⊗τ B(A) consisting of all cycles with
respect to the internal differential. Show that dE(ZI) ⊆ ZI so that
ZI is a chain complex with the differential dE .

(4) Do the analogue of exercise 3 in the twisted tensor product Ω(C)⊗τ C.

(5) In both the twisted tensor products A⊗τ B(A) and Ω(C)⊗τ C, let ZI
denote the cycles with respect to the internal differential. Show that
the external differential makes ZI into an acyclic chain complex.

10.7 Modules over augmented algebras

Let A be an algebra with unit η : R→ A. A (left) module over A is a
graded module M together with a degree 0 linear map µ : A⊗M →M
called an action which is associative and has a unit with respect to
the multiplication, that is, if we write µ(a⊗m) = a ·m, then we have
a · (b ·m) = (a · b) ·m, 1 ·m = m for all a, b εA, m εM. In other words, the
following diagrams are commutative:

A⊗A⊗M µ⊗1−−→ A⊗M
↓ 1⊗ µ ↓ µ
A⊗M µ−→ M

R⊗M η⊗1−−→ A⊗M
∼=↘ ↓ µ

M

Remarks. As expected, a differential module over a differential algebra
is a module with a differential in which the structure map is a differential
map, that is, d(a ·m) = da ·m+ (−1)deg(a)a · dm for all a εA, m εM.

Definition 10.7.1. If M is a module over an augmented algebra A
with augmentation ideal I(A) = A , then the module of indecomposables
QA(M) = M/A ·M.
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A useful property of the functor QA(M) is that it is additive and right
exact, that is:

Lemma 10.7.2.

(a) QA(M ⊕N) ∼= QA(M)⊕QA(N)

(b) M → N → P → 0 exact implies that QA(M)→ QA(N)→
QA(P )→ 0 is exact.

The graded version of Nakayama’s lemma is the following.

Lemma 10.7.3. If A is a connected augmented algebra and M is a module
over A which is bounded below, then QA(M) = 0 implies that M = 0.

Proof: It follows easily by induction on the degree and the fact that

A⊗M →M → QA(M)→ 0

is exact. �

Corollary 10.7.4. If A is a connected augmented algebra and f : M → N
is a map of modules over A with N bounded below, then f is an epimor-
phism if and only if the induced map of indecomposables QA(f) : QA(M)→
QA(N) is an epimorphism.

Definition 10.7.5. A choice of generators is a section ι : QA(M)→M of
the canonical projection π : M → QA(M), that is, π · ι = 1QA(M).

Lemma 10.7.6. Let f, g : M → N be two maps of modules over a con-
nected augmented algebra A and let ι : QA(M)→M be a choice of gener-
ators with M bounded below. If f · ι = g · ι, then f = g.

Proof: One uses induction on the degree and the split exact sequence A⊗
M →M → QA(M)→ 0. �

For the remainder of this section, we will assume that the algebra A and the
A modules M have no differential structure. In the presence of differential
structures, the notions of projective and of free modules must be modified.
One such modification is illustrated in the exercises to this section. But the
modification we are really interested in is deferred to a later section.

A free module M over A is one which has a graded basis {xα} so that

M =
⊕
α

A · xα.

This is clearly equivalent to the existence of a free graded R module V such
that M = A⊗ V.



10.7 Modules over augmented algebras 351

It is evident that there are enough free modules in the sense that, for every
module N , there is an epimorphism P →M with P free.

Furthermore, free modules P are projective in the sense that, given any
epimorphism f : M → N and any map g : P → N , there exists a map h :
P →M such that f · h = g. It follows easily that a module P is projective
if and only if there exists a module Q such that P ⊕Q is a free module.

Proposition 10.7.7. Suppose A is a connected augmented algebra and M
is a projective A module which is bounded below. Then M ∼= A⊗QA(M)
where QA(M) is projective over R. In particular, if R is a principal ideal
domain, then M is a free module.

Proof: Let M be a summand of the free module F = A⊗ V. Then QA(M)
is a summand of QA(F ) ∼= V. Since V is a free R module, QA(M) is a
projective R module. Hence the standard projection π : M → QA(M) has
a section ι : QA(M)→M and we can consider the composition f : A⊗
QA(M)

1⊗ι−−→ A⊗M µ−→M. Since QA(f) : QA(A⊗QA(M))→ QA(M) is
an isomorphism, it is also an epimorphism. Therefore f : A⊗QA(M)→M
is an epimorphism. Since M is projective, A⊗QA(M) = K ⊕M where K
is the kernel of f. Since,QA(A⊗QA(M)) = QA(M) = QA(K)⊕QA(M),
it follows that QA(K) and hence K itself are 0. Hence, A⊗QA(M) = M.
�

Given an A module M , the usual definitions and facts concerning projective
resolutions hold true and the proofs are standard:

10.7.8. There exist projective resolutions

. . .
dn+1−−−→ Pn

dn−→ Pn−1
dn−1−−−→ . . .

d1−→ P0
ε−→M → 0,

that is, complexes P∗
ε−→M → 0 which are resolutions in the sense that they

are exact sequences (of R modules) and such that all the P∗ are projective
A modules.

10.7.9. Suppose we are given a map f : M → N of A modules. For any pro-
jective complex P∗

ε−→M → 0 and any exact complex Q∗
ε−→ N → 0, there

is a map of complexes f∗ : P∗ → Q∗ covering f , that is, a commutative
diagram

dn+1−−−→ Pn
dn−→ Pn−1

dn−1−−−→ . . .
d1−→ P0

ε−→ M
↓ fn ↓ fn−1 ↓ f0 ↓ f

dn+1−−−→ Qn
dn−→ Qn−1

dn−1−−−→ . . .
d1−→ Q0

ε−→ N.

10.7.10. Given a map f : M → N of A modules and two choices for maps
f∗, g∗ : P∗ → Q∗ covering the same f with P∗ a projective complex and Q∗
an exact complex, the maps f∗ and g∗ are chain homotopic, that is, there
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exists a map H∗ : P∗ → Q∗ of degree +1 such that d∗H∗ +H∗d∗ = f∗ − g∗.
More precisely, for n ≥ 0, there are A−linear Hn : Pn → Qn+1 such that

d1 ·H0 = f0 − g0, Hn−1 · dn + dn+1 ·Hn = fn − gn, n ≥ 1.

Exercises

(1) Prove Lemma 10.7.2.

(2) Prove Lemma 10.7.3, Corollary 10.7.4, and Lemma 10.7.6.

(3) Consider the category of positively (nonnegatively) graded differential
modules over a commutative ring R, that is, the category of chain
complexes over R.

(a) Show that the following objects are projective in this category:

(i) Any module M which is concentrated in degree 0 and has M0

projective over R.

(ii) Any acyclic module M which is concentrated in two nonneg-
ative degrees n and n− 1 with Mn projective over R.

(iii) Any arbitrary direct sum of objects of the forms (i) and (ii).

(b) Show that any module M is a surjective image of a projective as
in (3).

(4) Suppose A is an augmented differential algebra and consider the cate-
gory of differential modules over A.

(a) If V is a projective chain complex overR, then A⊗ V is a projective
differential module.

(b) If M is a projective differential module over A, then M is a retract
of some A⊗ V where V is a projective chain complex over R.

(c) If M is a projective differential module over A, show that HM is
a retract of HA⊗W where W is a projective R module concen-
trated in degree 0. (This is a strong indication that this notion of
projective differential A module is too restrictive!)

(5) Prove 10.7.8, 10.7.9, and 10.7.10.

10.8 Tensor products and derived functors

Let A be a (graded) algebra over a commutative ring R and let M and N
be right and left modules, respectively, over A. The definition of the tensor
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product of graded modules over a graded algebra M ⊗A N has a definition
which, by duality, will provide a template for the definition of the cotensor
product of graded comodules over a graded coalgebra.

This definition of the tensor product M ⊗A N is based on the usual tensor
product of modules over R and its extension to graded modules over R. We
shall assume that this is known and that it satisfies the standard properties
of associativity, distributivity over direct sums, and that the ground ring
is a two sided unit.

To be specific, the tensor product M ⊗A N is the following quotient of the
tensor product over R, M ⊗N = M ⊗R N where

(M ⊗N)n =
⊕
i+j=n

Mi ⊗Nj :

Definition 10.8.1. M ⊗A N is the coequalizer of the two action maps:

µ⊗ 1, 1⊗ µ : M ⊗A⊗N →M ⊗N.

In other words, the sequence

M ⊗A⊗N δ−→M ⊗N →M ⊗A N → 0

is exact where δ = µ⊗ 1− 1⊗ µ .

If mεM and n εN , we denote the image of m⊗ n in M ⊗A N by m⊗A n
and observe that these elements generate M ⊗A N.

A fundamental property of the tensor product is that it is right exact.

Proposition 10.8.2. If M1 →M2 →M3 → 0 is an exact sequence of right
A modules and N is a left A module, then

M1 ⊗A N →M2 ⊗A N →M3 ⊗A N → 0

is exact. The corresponding statement is true when the roles of left and
right modules are reversed.

Proof: Consider the commutative diagram

M1 ⊗A⊗N → M2 ⊗A⊗N → M3 ⊗A⊗N → 0
↓ δ ↓ δ ↓ δ

M1 ⊗N → M2 ⊗N → M3 ⊗N → 0
↓ ↓ ↓

M1 ⊗A N → M2 ⊗A N → M3 ⊗A N → 0
↓ ↓ ↓
0 0 0
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where the exactness of the vertical columns defines the tensor product. The
right exactness of the usual tensor product of modules over R says that the
top two rows are exact. Now the exactness of the bottom row is a simple
exercise. �

The tensor product satisfies the following three formal algebraic properties
in Proposition 10.8.3 below: it is associative, distributive over direct sums,
and the algebra is a two-sided unit.

Let A and B be algebras. Let M,M1,M2 be right A modules, let K,K1,K2

be left A modules, let N be a left B module, and let P be an A−B
bimodule, that is, the left and right actions on P commute as follows:

A⊗ P ⊗B 1⊗µ−−→ A⊗ P
↓ µ⊗ 1 ↓ µ
P ⊗B µ−→ B

Then:

Proposition 10.8.3.

(a) There is a natural isomorphism

M ⊗A (P ⊗B N) ∼= (M ⊗A P )⊗B N.

(b) There are natural isomorphisms

(M1 ⊕M2)⊗A K ∼= (M1 ⊗A K)⊕ (M2 ⊗A K),

M ⊗A (K1 ⊕K2) ∼= (M ⊗A K1)⊕ (M ⊗A K2).

(c) The module actions induce natural isomorphisms

A⊗A N ∼= N, M ⊗A A ∼= M.

Proof:

(a) Let X be the cokernel of the natural map

ψ=δ1⊕δ2 : (M ⊗A⊗ P ⊗N)⊕ (M ⊗ P ⊗B ⊗N)→M ⊗ P ⊗N.

Since tensor over R is right exact, the cokernel of δ1 is

(M ⊗A P )⊗N.

Thus X is the cokernel of the composition

M ⊗ P ⊗B ⊗N → (M ⊗A P )⊗B ⊗N → (M ⊗A P )⊗N

and this is clearly (M ⊗A P )⊗B N .
Since the argument is symmetric, X is also isomorphic to M⊗A
(P ⊗B N).
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(b) This is an immediate consequence of the fact that tensor over R
naturally distributes over direct sums.

(c) A natural isomorphism M ⊗A A→M is given by m⊗A a 7→ ma
with inverse given by m 7→ m⊗A 1. �

Suppose A is an augmented algebra with augmentation ideal A. The ground
ring is a two-sided module over A and we have the following alternate
description of the indecomposables of a module:

Proposition 10.8.4. Let M and N be right and left modules over A,
respectively. Then there are isomorphisms

M ⊗A R ∼= M/M ·A = QA(M), R⊗A N ∼= N/A ·N = QA(N).

Proof: Since tensor is right exact, we have an exact sequence

M ⊗A A→M ⊗A A→M ⊗A R→ 0.

The fact that M ⊗A A ∼= M completes the proof that M ⊗A R ∼= M/M ·
A = QA(M). �

We now introduce the derived functors TorAn (M,N) of tensor product and
prove the important result that these are balanced.

Let P∗
ε−→M → 0 be a projective resolution by right A modules and let

Q∗
ε−→ N → 0 be a projective resolution by left A modules. If we grade P∗

and Q∗ by the so-called resolution degree, then P∗ ⊗Q∗ can be graded by
the addition of these degrees,

(P ⊗A Q)n =
⊕
i+j=n

Pi ⊗A Qj

and we define

Definition 10.8.5. TorAn (M,N) = Hn(P∗ ⊗A Q∗, d⊗) where d⊗ = dP ⊗
1 + 1⊗ dQ.

Up to natural isomorphism, TorAn (M,N) is a well-defined functor. We shall
give two proofs, the first depending on the uniqueness of lifts up to chain
homotopy and the the second depending on the so-called balanced property.

Proof 1: Let f : M →M1 and g : N → N1 be maps of A modules and
choose lifts to maps of resolutions f : P∗ → P1∗ and g : Q∗ → Q1∗ which
cover f and g, respectively. Then we have a chain map

f ⊗A g : P∗ ⊗Q∗ → P1∗ ⊗A Q1∗
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which induces the homology maps

Hn(f ⊗A g) = TorAn (f, g) : TorAn (M,N)→ TorAn (M1, N1).

TorAn (f, g) is independent of the choice of lifts since:

If f, f ′ : P∗ → P1∗ and g, g′ : Q∗ → Q1∗ are choices of lifts, there are chain
homotopies H and K with H : f ' f ′, K : g ' g′, that is,

dH +Hd = f − f ′, dK +Kd = g − g′.

Then

H ⊗A g : f ⊗A g ' f ′ ⊗A g

and

f ′ ⊗A K : f ′ ⊗A g ' f ′ ⊗A g′

imply that the induced homology maps satisfy

Hn(f ⊗A g) = Hn(f ⊗A g) = Hn(f ⊗A g)

and hence TorAn (f, g) is independent of the choice of lifts.

Now it is immediate that TorAn (M,N) is a functor for all n ≥ 0, uniquely
defined up to natural isomorphism.

Proof 2: TorAn (M,N) is a balanced functor in the sense that one of the two
resolutions may be omitted, more precisely,

Lemma 10.8.6. The following maps induce isomorphisms of homology

P∗ ⊗A N
1⊗Aε←−−− P∗ ⊗A Q∗

ε⊗A1−−−→M ⊗A Q∗

Since the Pi are projective, they are retracts of free A modules Vi ⊗R A
with Vi projective over R and hence Pi is flat over A, that is, Pi ⊗A ( ) is
an exact functor for all i ≥ 0.

Filter the complex P∗ by the increasing filtration Fn(P∗) = P≤n. This
induces the filtrations Fn(P∗ ⊗A N) = Fn(P∗)⊗A N and Fn(P∗ ⊗A Q∗) =
Fn(P∗)⊗A Q∗. In the resulting spectral sequences we have:

E0(P∗ ⊗A N) = P∗ ⊗A N, d0 = 0,

E1(P∗ ⊗A N) = P∗ ⊗A N, d1 = dP ⊗A 1,

E0(P∗ ⊗A Q∗) = P∗ ⊗A Q∗, d0 = 1⊗A dQ,

E1(P∗ ⊗A Q∗) = P∗ ⊗A N, d1 = dP ⊗A 1

since P∗ is flat over A.
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Thus P∗ ⊗A N
1⊗Aε←−−− P∗ ⊗A Q∗ induces an isomorphism on E1 and is an

isomorphism of homology.

That P∗ ⊗A Q∗
ε⊗A1−−−→M ⊗A Q∗ is an isomorphism of homology is similar.

Having proved the balanced lemma that any one of the two resolutions can
be omitted, it is easy to see that maps TorAn (f, g) are independent of the
choice of lifts and the fact that the TorAn (M,N) are functors well defined
up to natural isomorphism follows as before. �

Finally, we observe that:

Lemma 10.8.7. There is a natural isomorphism

TorA0 (M,N) ∼= M ⊗A N.

Proof:

TorA(M,N) ∼= H0(P∗ ⊗A N) ∼= M ⊗A N

since

P1 ⊗A N
d1⊗A1−−−−→ P0 ⊗A N

ε⊗A1−−−→M ⊗A N → 0

is exact. �

Remarks. If M and N are differential algebras over a differential algebra
A, then the tensor product differential on M ⊗R N defines a differential on
the quotient M ⊗A N and also on the derived functors TorAn (M,N). The
isomorphisms in this section are all isomorphisms of differential objects.

10.9 Comodules over supplemented coalgebras

Let C be a coalgebra with counit ε : C → R. A (left) comodule over C is
a graded module M together with a degree 0 linear map ∆ : M → C ⊗
M called a coaction. The coaction is associative and has a counit with
respect to the diagonal of the coalgebra, that is, the following diagrams are
commutative:

M
∆−→ C ⊗M

↓ ∆ ↓ ∆⊗ 1

C ⊗M 1⊗∆−−−→ C ⊗ C ⊗M
M

∼=↙ ↓ ∆

R⊗M η⊗1←−− C ⊗M
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Remarks. As expected, a differential comodule over a differential coal-
gebra is a comodule with a differential in which the structure map is a
differential map, that is, ∆ · dM = (dC ⊗ 1 + 1⊗ dM ) ·∆ : M → C ⊗M.

The primitives of a comodule is the dual of the indecomposables of a mod-
ule:

Definition 10.9.1. If M is a comodule over a supplemented coalgebra C
with reduced coalgebra C = kernel (ε) : C → R, then the module of primi-
tives PC(M) = the kernel of the reduced coaction ∆ : M → C ⊗M. That
is, mεM is in PC(M) if and only if the coaction is given by ∆(m) = 1⊗m.

The functor PC(M) is additive and left exact under mild restrictions, that
is:

Lemma 10.9.2.

(a) PC(M ⊕N) ∼= PC(M)⊕ PC(N)

(b) 0→M → N → P exact implies that 0→ PC(M)→ PC(N)→
PC(P ) is exact, provided either that C is flat as an R module or
that 0→M → N is a split monomorphism of R modules.

Proof: Part (a) is clear. Since C = R⊕ C, it follows that C is flat if C is
flat. Hence part (b) follows from the diagram below with exact bottom two
rows and exact columns:

0 0 0
↓ ↓ ↓

0 → PC(M) → PC(N) → PC(P )
↓ ↓ ↓

0 → M → N → P
↓ ∆ ↓ ∆ ↓ ∆

0 → C ⊗M → C ⊗N → C ⊗ P

�

The graded version of the dual of Nakayama’s lemma is the following.

Lemma 10.9.3. If C is a connected supplemented coalgebra and M is
a comodule over C which is bounded below, then PC(M) = 0 implies that
M = 0.

Proof: If there is a nonzero element m in M , then there is such an element
of least degree and ∆(m) = 1⊗m. �

Corollary 10.9.4. Let C be a connected supplemented coalgebra which is
flat over the ground ring R and let f : M → N be a map of comodules over
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C with M bounded below. Then f is a monomorphism if and only if the
induced map of primitives PC(f) : PC(M)→ PC(N) is a monomorphism.

Definition 10.9.5. A choice of cogenerators is a projection π : M →
PC(M), that is, if ι : PC(M)→M is the inclusion, then π · ι = 1PC(M).

Lemma 10.9.6. Let f, g : M → N be two maps of comodules over a con-
nected supplemented coalgebra C and let π : N → PC(N) be a choice of
cogenerators with N bounded below. If π · f = π · g, then f = g.

Proof: One uses induction on the degree and the split exact sequence 0→
PC(N)→ N → C ⊗N. �

For the remainder of this section, we will assume that the coalgebra C and
the C comodules M have no differential structure. Just as with algebras
and modules, the presence of differential structures requires modification
of the notions of injective and extended comodules. One such modification
is illustrated in the exercises to this section. But the modification we are
really interested in is deferred to the relative homological algebra of section
10.10.

Definition 10.9.7. An extended comodule M over C is one of the form
M = C ⊗ V with coaction ∆ = ∆⊗ 1 : C ⊗ V → C ⊗ C ⊗ V.

The basic facts about extended comodules are:

Lemma 10.9.8.

(a) PC(C ⊗ V ) = V.

(b) If N is a comodule, there is a one to one correspondence between
comodule maps g : N → C ⊗ V and module maps g : N → V given
by:

g = (ε⊗ 1) · g : N → C ⊗ V → R⊗ V = V.

g = (1⊗ g) ·∆ : N → C ⊗N → C ⊗ V.

There are enough extended comodules in the sense that any comodule M
can be embedded in an extended comodule. This can be done via the R-split
embedding ∆ : M → C ⊗M.

It follows from Lemma 10.9.8 that extended comodules Q = C ⊗ V are
injective if and only if V is an injective R module. That is, given any
monomorphism f : M → N and any map g : M → C ⊗ V with V injective,
there exists a map h : N → Q such that h · f = g.

If C is flat over R, it follows easily that a comodule M can be embedded in
an injective extended comodule C ⊗ V where V is an injective envelope of
the underlying R module of M . Thus, a comodule M is injective if and only
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there is a comodule N such that M ⊕N is an injective extended comodule.

Proposition 10.9.9. Suppose that C is a connected supplemented coalge-
bra which is flat over R and that M is an injective C comodule which is
bounded below. Then M ∼= C ⊗ PC(M) where PC(M) is injective over R,
that is, M is an extended comodule.

Proof: Let M be a summand of the injective extended comodule P = C ⊗
V. Then PC(M) is a summand of PC(P ) ∼= V. Since V is an injective R
module, PC(M) is a injective R module. Hence the injection ι : PC(M)→
M has a projection π : M → PC(M) and we can consider the composition
f = (1⊗ π) ·∆ : M → C ⊗M → C ⊗ PC(M).

Since PC(f) : PC(M)→ PC(C ⊗ PC(M)) is an isomorphism, it is also
an monomorphism. Therefore f : M → C ⊗ PC(M) is an monomorphism.
Since M is injective, C ⊗ PC(M) = K ⊕M where K is the cokernel of
f. Since, PC(C ⊗ PC(M)) = PC(M) = PC(K)⊕ PC(M), it follows PC(K)
and hence K itself are 0. Hence, C ⊗ P (M) = M. �

Suppose C is flat over R. For all C comodules M , the usual definitions
and facts concerning injective resolutions are valid and the proofs are mild
variations of the standard proofs.

10.9.10. There exist injective resolutions of comodules

0→M
η−→ Q0

d0−→ Q1
d1−→ . . .

dn−1−−−→ Qn
dn−→ . . . ,

that is, complexes of comodules 0→M
η−→ Q∗ which are resolutions in the

sense that they are exact sequences and such that all the Q∗ are injective
comodules.

Given a comodule M , here is a procedure for making an injective resolution:
Let Q(M) be an injective envelope of M as an R module. Set Q0 = C ⊗
Q(M) and embed M as a comodule into an injective comodule via

η : M
∆−→ C ⊗M → C ⊗Q(M).

Let M0 = the cokernel of η and embedd M0 → C ⊗Q(M0) = Q1 by the
same procedure as was used to embedd M . Successive interation gives an
exact sequence 0→M → Q0 → Q1 → . . . which is the injective resolution
of M as a comodule.

10.9.11. Suppose we are given a map f : M → N of comodules. For any

exact complex of comodules 0→M
η−→ P∗ and any complex of injective

comodules 0→ N
η−→ Q∗, there is a map of complexes f∗ : P∗ → Q∗ lifting
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f , that is, there is a commutative diagram

M
η−→ P0

d0−→ P1
d1−→ . . .

dn−1−−−→ Pn
dn−→

↓ f ↓ f0 ↓ f1 ↓ fn
N

η−→ Q0
d0−→ Q1

d1−→ . . .
dn−1−−−→ Qn

dn−→

10.9.12. Given a map f : M → N and two choices for maps f∗, g∗ : P∗ →
Q∗ lifting the same f with P∗ an acylic complex and with Q∗ an injective
complex, the maps f∗ and g∗ are chain homotopic, that is, there exists a
map H∗ : P∗ → Q∗ of degree −1 such that d∗H∗ +H∗d∗ = f∗ − g∗. More
precisely, for n ≥ 0, there are A−linear Hn+1 : Pn+1 → Qn such that

H1 · d0 = f0 − g0, Hn+1 · dn + dn−1 ·Hn = fn − gn, n ≥ 1.

Exercises

(1) Verify Lemmas 10.9.4 and 10.9.5.

(2) Verify Lemma 10.9.8.

(3) Consider the category of positively (nonnegatively) graded differential
modules over a commutative ring R, that is, the category of chain
complexes over R.

(a) Show that the following objects are injective in this category:

(i) Any acyclic module M which is concentrated in two nonnega-
tive degrees n and n− 1 with Mn injective over R.

(ii) Any arbitrary product of objects of the form (1).

(b) Show that any R differential R module can be embedded in an
injective differential R module.

(c) Show that any injective differential module M is accylic, that is,
HM = 0.

(4) Suppose C is a supplemented differential coalgebra and consider the
category of differential comodules over C.

(a) If V is an injective chain complex over R, then the extended comod-
ule C ⊗ V is an injective differential C comodule.

(b) If M is an injective differential comodule over C, then M is a
retract of some C ⊗ V where V is an injective chain complex over
R.
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(c) If M is an injective differential comodule, show that HM = 0.
(Hence, this notion of injective differential comodule is very restric-
tive. In the next section, we produce a more useful notion of injec-
tive projective comodule.)

(5) Prove 10.9.11 and 10.9.12.

10.10 Injective classes

Let A be an additive category which has cokernels. Usually, A is an abelian
category. But the example of comodules over a coalgebra is important to
us and this is not an abelian category unless the coalgebra is flat over the
ground ring.

We follow Eilenberg and Moore [43] in defining what is called relative
homological algebra in A. This involves defining what are called relative
monomorphisms and what are called relative injective objects. The essen-
tial point is that maps into a relative injective object can be extended
over relative monomorphisms. In this manner, the relative monomorphisms
determine the relative injective objects and vice versa.

Let I be a class of objects in A and let M be a class of morphisms in A.

Let I∗ = the set of morphisms f : A→ B in A such that f ∗ : map(A,Q)←
map(B,Q) is an epimorphism for all Q in I.

LetM∗ = the set of objects Q in A such that f ∗ : map(A,Q)← map(B,Q)
is an epimorphism for all f : A→ B in M.

We note the following properties.

Lemma 10.10.1.

(a) I ⊆ I ′ implies that I ′∗ ⊆ I∗.

(b) I ⊆ I∗∗.

(c) I∗ = I∗∗∗.

(d) M⊆M′ implies that M′∗ ⊆M∗.

(e) M⊆M∗∗.

(f) M∗ =M∗∗∗.

Lemma 10.10.2.
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(a) The class of objects M∗ is closed under retracts, that is, if there
exists an identity map 1 : P → Q→ P and Q is in M∗, then so is
P .

(b) The class of morphisms I∗ is closed under left factorization, that is,

if a composition A
f−→ B → C is in I∗, then so is f .

Definition 10.10.3. The pair (I,M) is called an injective class if the
following three properties are satisfied:

(a) M∗ = I.

(b) I∗ =M.

(c) For all objects A in A, there exists an object Q in I and a morphism
f : A→ Q in M.

The objects in I are called relative injectives and the morphisms inM are
called relative monomorphisms. Condition (c) above says that there are
enough relative injective objects.

Remarks 10.10.4. Often an injective class is given in the following way.
Specify the class of relative monomorphisms M. Check that this is closed
under left factorization. Define the relative injectives to be I =M∗. Check
that there are enough relative injectives, that is, for all objects A in A,
there is an object Q in I and a morphism F : A→ Q inM. Then the pair
(I,M) is an injective class. One needs to check that M = I∗.

The split injective class 10.10.5

In any abelian category, an injective class can be given by choosing the
relative monomorphisms to be all split monomorphisms, in which case the
relative injective objects are all objects in the category.

Reflection via adjoint functors 10.10.6

New injective classes arise from known injective classes by a process called
reflection via adjoint functors.

We describe this process now. Suppose we are given two abelian categories
A and B (more generally, it is sufficient that these categories be additive
categories with cokernels), an injective class (M, I) in B, and a pair of
adjoint functors S : A → B and T : B → A with equivalences of morphism
sets

A(A, TB) ∼= B(SA,B)
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and adjunction maps STB → B and A→ TSA. We know from Exercise
3 that the left adjoint S preserves the usual kernels and the right adjoint
preserves the usual cokernels.

Define a new injective class (M′, I ′) in A as follows:

(a) The relative monomorphisms are
M′ = S−1(M)={A1

f−→ A2 |Sf εM}.

(b) The relative injective objects are I ′ = T (I) = the set of all retracts
of objects T (Q) with Q in I.

We need to verify that the pair (M′, I ′) is an injective class.

(c) M′ = S−1(M) is closed under left factorization, that is, A1 → A2 →
A3 in S−1(M) implies that A1 → A2 is also in S−1(M). This follows
from the fact that M is closed under left factorization.

(d) We note that, for all objects A in A, there is a map SA→ Q which
is a relative monomorphism in M with Q a relative injective in I.
We claim that the adjoint A→ TQ is a relative monomorphism in
M′ (and clearly TQ is in I ′). But SA→ STQ→ Q is inM implies
that SA→ STQ is inM sinceM is closed under left factorization.

(e) Finally, we claim that T (I ′) =M′∗.

SinceM′∗ is closed under retracts, to show that T (I ′) ⊆M′∗, it suffices to
show that T (I ′) ⊆M′∗. But, if A1 → A2 is in M′ and Q is in I, then the
map

A(A1, TQ)← A(A2, TQ)

is equivalent to the epimorphism

B(SA1, Q)← B(SA2, Q).

Thus, TQ is in M′∗.

To show thatM′∗ ⊆ T (I), let M be inM′∗ and consider the map M → TQ
in M′ guaranteed by (d). Since M is in M′∗, this map is split and M is a
retract of TQ.

Thus Remarks 10.10.4 shows that the pair (M′ = S−1(M), I ′ = T (I)) is
an injective class in A.

The proper injective class for nondifferential comodules 10.10.7

Let B =MR be the category of all graded R modules and endow it with the
injective class where the relative monomorphisms are all split monomor-
phisms and all objects are relative injective objects. Let C be a graded
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coalgebra over R and let A =MC be the category of all graded C comod-
ules.

We have a pair of adjoint functors S :MC →MR and T :MR →MC

given by

S(M) = M regarded just as anR-module, M εMC

T (N) = C ⊗N, N εMR,

with the coalgebra structure given by ∆⊗ 1 : C ⊗N → C ⊗ C ⊗N.

The specific one-to-one correspondence of maps is as follows:

(a) Given a comodule M , an R module N , and an R module map f :
M → N, we have the comodule map

f : M
∆−→ C ⊗M 1⊗f−−→ C ⊗N.

(b) Given a comodule map f : M → C ⊗N , we have the R module map

f : M
f−→ C ⊗N → R⊗N = N.

Thus, the process of reflection via adjoint functors gives an injective
class in MC , the so-called proper injective class, with:

(A) A map f : M → N of comodules is a relative monomorphism if
it is a split monomorphism of R modules. This is also called a
proper monomorphism. Note that proper monomorphisms are
also monomorphisms in the usual sense.

(B) A relative injective comodule is any retract of an extended
comodule C ⊗N where N is any R module. This is also called
a proper injective. Note that proper injective comodules are
injective in the usual sense only if N is an injective R module.

(C) For any comodule M , the coaction map M
∆−→ C ⊗M is a rel-

ative monomorphism into a relative injective.

Our next and most important example is the differential version of the
above, the injective class in which the relative monomorphisms and the
relative injective differential comodules are also called proper. This will
lead to no confusion with the above since forgetting the differential trans-
forms these new relative monomorphisms into R split monomorphisms and
transforms these new relative injective comodules into retracts of extended
comodules.

The proper injective class for differential comodules 10.10.8
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Let B = DMR be the category of all differential graded R modules and
endow it with the injective class where the relative monomorphisms are
all split monomorphisms and all objects are relative injective objects. Let
C be a differential graded coalgebra over R and let A = DMC be the
category of all graded C comodules. We have a pair of adjoint functors
S : DMC → DMR and T : DMR → DMC given by

S(M) = M regarded just as a differential gradedR-module, M εDMC

T (N) = C ⊗N, N εDMR

with the tensor product differential and with the coalgebra structure given
by ∆⊗ 1 : C ⊗N → C ⊗ C ⊗N.

The specific one-to-one correspondence of maps is as before:

(a) Given a differential comodule M , a differential R module N , and a
map of differential R modules f : M → N, we have the differential
comodule map

f : M
∆−→ C ⊗M 1⊗f−−→ C ⊗N.

(b) Given a differential comodule map f : M → C ⊗N , we have the
map of differential R modules

f : M
f−→ C ⊗N → R⊗N = N.

Thus, the process of reflection via adjoint functors gives an injective
class in DMC , the so-called proper injective class, with:

(A) A map f : M → N of differential comodules is a relative
monomorphism or a proper monomorphism if it is a split
monomorphism of differential R modules.

(B) A relative injective comodule or a proper injective comodule is
any retract of C ⊗N where N is any differential R module.

(C) For any differential comodule M , the coaction map M
∆−→ C ⊗

M is a proper monomorphism into a proper injective.

Whenever we have an injective class we have a good theory of injective
resolutions as follows and the proofs are identical to the standard proofs.
More precisely, we define:

Definition 10.10.9. A sequence 0→M → N → P → 0 is called a rela-
tive short exact sequence if P is the cokernel of M → N and M → N is a
relative monomorphism.
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A complex 0→M → Q∗ is a relative acyclic complex or a relative exact
sequence if it can be factored into relative short exact sequences. We can do
homological algebra using injective classes since we have relative injective
resolutions which are functorial up to chain homotopy:

10.10.10. There exist relative injective resolutions

0→M
η−→ Q0

d0−→ Q−1
d−1−−→ . . .

d−n+1−−−−→ Q−n
d−n−−→ . . . ,

that is, complexes 0→M
η−→ Q∗ which are relative resolutions in the sense

that they are relative exact sequences and such that all the Q∗ are relative
injective objects.

10.10.11. The fact that ∆ : M → C ⊗M is always a proper monomor-
phism allows us to construct functorial proper injective resolutions of dif-
ferential comodules:

0 → M
∆−→ C ⊗M → coker(∆) → 0

0 → coker(∆)
∆=d−1−−−−→ C ⊗ coker(∆) → coker(d−1) → 0

0 → coker(d−1)
∆=d−2−−−−→ C ⊗ coker(d−1) → coker(d−2) → 0

. . .

Q0 = C ⊗M
Q−1 = C ⊗ coker(∆)
Q−2 = C ⊗ coker(d−1).

. . .

In general, Q−n−1 = C ⊗ coker(d−n). This functorial resolution is called the
categorical cobar resolution and we denote it by 0→M → Q∗(M).

10.10.12. Suppose we are given a map f : M → N of objects. For any

relative exact complex 0→M
η−→ P∗ and any relative injective complex

0→ N
η−→ Q∗, there is a map of complexes f∗ : P∗ → Q∗ extending f , that

is, there is a commutative diagram

M
η−→ P0

d0−→ P−1
d−1−−→ . . .

d−n+1−−−−→ P−n
d−n−−→

↓ f ↓ f0 ↓ f−1 ↓ f−n
N

η−→ Q0
d0−→ Q1

d−1−−→ . . .
d−n+1−−−−→ Q−n

d−n−−→

10.10.13. Given a map f : M → N and two choices for maps f∗, g∗ : P∗ →
Q∗ extending the same f with P∗ a relative acyclic complex and with Q∗
a relative injective complex, the maps f∗ and g∗ are chain homotopic, that
is, there exists a map H∗ : P∗ → Q∗ of degree +1 such that d∗H∗ +H∗d∗ =
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f∗ − g∗. More precisely, for n ≥ 0, there are A−linear H−n−1 : P−n−1 →
Q−n such that

H−1 · d0 = f0 − g0, H−n−1 · d−n + d−n+1 ·H−n = f−n − g−n, n ≥ 1.

Exercises

(1) Prove Lemma 10.10.1.

(2) Prove Lemma 10.10.2.

(3) Suppose we are given two abelian categories A and B, and a pair of
adjoint functors S : A → B and T : B → A with equivalences of mor-
phism sets

A(A, TB) ∼= B(SA,B).

Show that:

(a) The right adjoint T preserves kernels, that is, 0→ B1 → B2 → B3

exact in B implies that 0→ TB1 → TB2 → TB3 is exact in A, that
is, T is left exact in the usual sense.

(b) The left adjoint S preserves cokernels, that is, A1 → A2 → A3 → 0
exact in A implies that SA1 → SA2 → SA3 → 0 is exact in B, that
is, S is right exact in the usual sense.

(c) Suppose that the injective class (M′, I ′) in A arises by reflection
via the adjoint functors from the injective class (M, I) in B. Then
a sequence 0→ A1 → A2 → A3 → 0 is a relative exact sequence in
A if and only if 0→ SA1 → SA2 → SA3 → 0 is a relative exact
sequence in B.

(4) Show that the procedure in Remarks 10.10.4 always gives an injective
class.

(5) Verify that the functors in Example 10.10.7 are an adjoint pair and
that the relative injective embedding in property (C) is valid.

(6) Verify 10.10.9. 10.10.10, and 10.10.12

(7) Let A be an abelian category with the injective class of split monomor-
phisms. Show that a sequence

0→M
η−→ Q0

d0−→ Q−1
d−1−−→ . . . . . .

is a split exact sequence if and only if there exists a contracting homo-
topy h0 : Q0 →M, h−i : Q−i → Q−i+1, i > 0 such that

h0 · η = 1M , d−i+1 · h−i + h−i−1 · d−i = 1Q−i , i ≥ 0.
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(8) Nice proper injective resolutions of differential comodules: Let
M be a (right) differential comodule over a differential coalgebra C over
a commutative ring R. Show that:

(a) If M and C are flat modules over R, then there exists a proper
injective resolution 0→M → Q∗ which is extended and R projec-
tive in the sense that all the Q−i = Q−i ⊗ C with Q−i and hence
all the Q−i are projective R modules.

(b) Do part (a) with R projective replacing R flat.

(c) If C is k-connected, that is, Ci = 0 for all i ≤ k, then Q∗ can be
chosen to be tapered in the sense that each Q−i is a (k + 1)i− 1
connected R module. And this can be done while doing parts (a)
or (b).

(9) If C is a coalgebra which is flat over the ground ring show that the
category of comodules over C is an abelian category. If the coalgebra is
not flat over the ground ring, then show that the category is an additive
category which has cokernels.

10.11 Cotensor products and derived functors

Let C be a (graded) coalgebra over a commutative ring R and let M and
N be right and left comodules, respectively, over C. The definition of the
cotensor product of graded comodules over a graded coalgebra M ⊗C N is
the dual of the definition of the tensor product of graded modules over a
graded algebra.

The cotensor product M2CN is the following submodule of the tensor
product over R, M ⊗N = M ⊗R N where

(M ⊗N)n =
⊕
i+j=n

Mi ⊗Nj :

Definition 10.11.1. M2CN is the equalizer of the two coaction maps:

∆⊗ 1, 1⊗∆ : M ⊗N →M ⊗ C ⊗N.

In other words, the sequence

0→M2CN →M ⊗N δ−→M ⊗ C ⊗N

is exact where δ = ∆⊗ 1− 1⊗∆.



370 Differential homological algebra

A fundamental property of the cotensor product is that it is left exact with
respect to the injective class where relative monomorphisms are the proper
monomorphisms, that is, the R split monomorphisms:

Proposition 10.11.2. Suppose that 0→M1 →M2 →M3 is a proper
exact sequence of right C comodules and that N is a left C module. Then

0→M12CN →M22CN →M32CN

is exact. The corresponding statement is true when the roles of left and
right comodules are reversed.

Proof: Consider the commutative diagram

0 0 0
↓ ↓ ↓

0 → M12CN → M22CN → M32CN
↓ ↓ ↓

0 → M1 ⊗N → M2 ⊗N → M3 ⊗N
↓ ↓ ↓

0 → M1 ⊗ C ⊗N → M2 ⊗ C ⊗N → M3 ⊗ C ⊗N

where the exactness of the vertical columns defines the cotensor product.
The proper exactness guarantees the left exactness of the usual tensor prod-
uct of modules over R and hence the bottom two rows are exact. Now the
exactness of the top row is a simple exercise. �

The cotensor product satisfies the following three formal algebraic proper-
ties in Proposition 10.11.3 below: it is associative, distributive over direct
sums, and the coalgebra is a two-sided unit.

Let C and D be coalgebras. Let M,M1,M2 be right C comodules, let
K,K1,K2 be left C modules, let N be a left D comodule, and let P be a
C −D bicomodule, that is the coactions on P commute as follows:

P
∆−→ P ⊗D

↓ ∆ ↓ ∆⊗ 1

C ⊗ P 1⊗∆−−−→ C ⊗ P ⊗D

Then:

Proposition 10.11.3.

(a) If M , N , and C are flat over R, there is a natural isomorphism

M2C(P2DN) ∼= (M2CP )2DN.
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(b) There are natural isomorphisms

(M1 ⊕M2)2CK ∼= (M12CK)⊕ (M22CK),

M2C(K1 ⊕K2) ∼= (M2CK1)⊕ (M2CK2).

(c) The comodule actions induce natural isomorphisms

C2CN ∼= N, M2CC ∼= M,

that is, there are isomorphisms

∆ : N → C2CN, ∆ : M →M2CC.

Proof:

(a) Let X be the kernel of the natural map

ψ = δ1 ⊕ δ2 : M ⊗ P ⊗N→(M ⊗ C ⊗ P ⊗N)⊕ (M ⊗ P ⊗D ⊗N)

where δ1 = δ ⊗ 1N and δ2 = 1M ⊗ δ. Since N is flat over R, the ker-
nel of δ1 is (M2CP )⊗N. Since (M2CP )⊗D ⊗N → (M ⊗ P )⊗
D ⊗N is a monomorphism, the intersection of the kernels of δ1 and
δ2 is (M2CP )2DN.

But, since the argument is symmetric, X is also M2C(P2DN).

(b) This is an immediate consequence of the fact that tensor over R
naturally distributes over direct sums.

(c) The associativity of the coaction shows that the image of ∆ : M →
M ⊗ C is contained in M2CC. And clearly ∆ is a monomorphism.

Let α = Σm⊗ c ε M2CC ⊆M ⊗ C. We need to show that α ε image (∆).
Since (1⊗∆)α = (∆⊗ 1)α, we have Σm⊗∆(c) = Σ∆(m)⊗ c and
hence (1⊗ 1⊗ ε)(1⊗∆)α = (1⊗ 1⊗ ε)(∆⊗ 1)α implies that Σm⊗ c⊗
1 = Σ∆(m)⊗ ε(c). Therefore α = Σm⊗ c = Σ∆(m · ε(c)).

Thus, ∆ : M →M2CC is an isomorphism. �

Suppose C is an supplemented coalgebra with reduced coalgebra C. The
ground ring is a two-sided comodule over C and we have the following
alternate description of the primitives of a comodule:

Proposition 10.11.4. Let M and N be right and left comodules over C,
respectively. Then there are isomorphisms

M2CR ∼= PC(M) = kernel(M →M ⊗ C),

R2CN ∼= PC(N) = kernel(N → C ⊗N).
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Proof: Since cotensor is left exact (applied to sequences which are R split),
we have an exact sequence

0→M2CR→M2CC →M2CC.

Since ∆ : M →M2CC is an isomorphism, M2CR is isomorphic to the
kernel PC(M) of ∆ : M →M2CC ⊆M ⊗ C. �

We now introduce the derived functors CotorC−n(M,N) of cotensor product
and prove the important result that these are balanced.

Let 0→M
η−→ P∗ be a proper injective resolution by right C comodules

and let 0→ N
η−→ Q∗ be a proper injective resolution by left C comodules.

If we grade P∗ and Q∗ by the so-called resolution degree, then P∗ ⊗Q∗ can
be graded by the addition of these degrees,

(P ⊗A Q)−n =
⊕

i+j=−n
Pi ⊗A Qj

and we define

Definition 10.11.5. CotorC−n(M,N) = H−n(P∗ ⊗A Q∗, d⊗) where d⊗ =
dP ⊗ 1 + 1⊗ dQ.

Up to natural isomorphism, CotorC−n(M,N) is a well-defined functor. We
shall give two proofs, the first depending on the uniqueness of extensions up
to chain homotopy and the the second depending on the so-called balanced
property.

Proof 1: Let f : M →M1 and g : N → N1 be maps of A modules and
choose extensions to maps of resolutions f : P∗ → P1∗ and g : Q∗ → Q1∗
which cover f and g, respectively. Then we have a chain map f2Cg :
P∗2CQ∗ → P1∗2CQ1∗ which induce the homology maps H−n(f2Cg) =
CotorC−n(f, g) : CotorC−n(M,N)→ CotorC−n(M1, N1).

CotorC−n(f, g) is independent of the choice of extensions since:

If f, f ′ : P∗ → P1∗ and g, g′ : Q∗ → Q1∗ are choices of extensions, there are
chain homotopies H and K with H : f ' f ′, K : g ' g′, that is,

dH +Hd = f − f ′, dK +Kd = g − g′.

Then

H2Cg : f2Cg ' f ′2Cg

and

f ′2CK : f ′2Cg ' f ′2Cg′
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imply that the induced homology maps satisfy

H−n(f ⊗A g) = H−n(f2Cg) = H−n(f2Cg)

and hence CotorC−n(f, g) is independent of the choice of extensions.

Now it is immediate that CotorC−n(M,N) is a functor for all n ≥ 0, uniquely
defined up to natural isomorphism.

Proof 2: CotorC−n(M,N) is a balanced functor in the sense that one of the
two resolutions may be omitted, more precisely,

Lemma 10.11.6. The following maps induce isomorphisms of homology

P∗2CN
12Cη−−−→ P∗2CQ∗

η2C1←−−−M2CQ∗

Since the Pi are relative injectives, they are retracts of extended C comod-
ules Vi ⊗R C and hence Pi is coflat over A, that is, Pi2C( ) = Vi ⊗R ( )
preserves R split exact sequences for all i ≤ 0.

Filter the complex P∗ by the increasing filtration F−n(P∗) = P≤−n. Note
that increasing filtration means that F−n−1 ⊆ F−n.

This induces the increasing filtrations F−n(P∗2CN) = F−n(P∗)2CN and
F−n(P∗2CQ∗) = F−n(P∗)2CQ∗. In the resulting spectral sequences we
have:

E0(P∗2CN) = P∗2CN, d
0 = 0,

E1(P∗2CN) = P∗2CN, d
1 = dP2C1,

E0(P∗2CQ∗) = P∗2CQ∗, d
0 = 12CdQ,

E1(P∗2CQ∗) = P∗2CN, d
1 = dP2C1

since P∗ is coflat over C and 0→ N
η−→ Q∗ is split exact over R.

Thus P∗2CN
12Cη−−−→ P∗2CQ∗ induces an isomorphism on E1 and is an iso-

morphism of homology.

That P∗ ⊗A Q∗
η2C1←−−−M2CQ∗ is an isomorphism of homology is similar.

Having proved the balanced lemma that any one of the two resolutions can
be omitted, it is easy to see that maps CotorC−n(f, g) are independent of
the choice of extensions and the fact that the CotorC−n(M,N) are functors
well defined up to natural isomorphism follows as before. �

Observe that:

Lemma 10.11.7. There is a natural isomorphism

CotorC0 (M,N) ∼= M2CN.
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Proof:

CotorC0 (M,N) ∼= H0(P∗2CN) ∼= M2CN

since

0→M2CN
η2C1−−−→ P02CN

d02C1−−−−→ P−12CN

is exact.

Lemma 10.11.8. If M = K ⊗ C is an extended right comodule, then
CotorC−n(M,N) = 0 for all n > 0 and all left comodules N . And a simi-
lar result holds with the roles of left and right comodules reversed.

Proof: Since M is a proper injective, this is clear.

A partial converse to this lemma is given in Exercise 3 below.

Remarks. If M and N are differential comodules over a differential
coalgebra C, then the tensor product differential on M ⊗R N defines a
differential on the subobject M2CN and also on the derived functors
CotorC−n(M,N). The isomorphisms in this section are all isomorphisms of
differential objects.

Remarks on duality. Algebras and coalgebras are dual in the well known
way. This duality extends to a duality between modules and comodules and
also to tensor products and cotensor products and to their derived functors
Tor and Cotor.

In detail, let C be a coalgebra, M a right comodule over C and N a left
comodule over C. Assume that in each fixed degree all are projective and
finitely generated R modules. Then the dual C∗ = hom(C,R) is an algebra
via the multiplication

µ : C∗ ⊗ C∗ = (C ⊗ C)∗
∆∗−→ C∗

and the unit

η : R = R∗
ε∗−→ C∗.

Similarly, the dual M ∗ us a right module over C∗ via

M ∗ ⊗ C∗ = (M ⊗ C)∗ →M ∗.

In the same way, the dual N ∗ is a left module.

Furthermore, the dual of cotensor is the tensor:

M ∗ ⊗C∗ N ∗ = (M2CN)∗

The dual of Cotor is Tor:

TorC
∗

n (M ∗, N ∗) = (CotorC−n(M,N))∗.
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Of course, the duality goes the other way too, where we start with algebras
and modules which are finitely generated and projective in each degree and
and we end with coalgebras and comodules.

For conceptual reasons, we try to avoid overusing this duality but at times
it is very convenient to use it for computational convenience.

Exercises

(1) Suppose that M, M1 and N, N1 are right and left comodules, respec-
tively, over a coalgebra C. Maps H : M →M1 and K : N → N1 of pos-
sibly nonzero degree are maps of comodules if ∆ ·H = (H ⊗ 1) ·∆ and
∆ ·K = (1⊗K) ·∆ with the usual sign convention.

Show:

(a) If f : M →M1 and g : N → N1 are maps of comodules (of possibly
nonzero degree), then f ⊗ g restricts to a map of R modules f2Cg :
M2CN →M12CN1.

(b) If M and N are differential comodules over a differential coalge-
bra C, then d⊗ = dM ⊗ 1 + 1⊗ dN restricts to a differential d2 on
M2CN.

(c) If f : M →M1 and g : N → N1 are maps of differential comodules,
then f2Cg : M2CN →M12CN1 is a map of differential modules.

(d) If f, f1 : M →M1 and g, g1 : N → N1 are chain homotopic maps
of differential comodules with chain homotopies H : M →M1 and
K : N → N1 which are maps of comodules, that is, if

H : f ' f1, Hd+ dH = f − f1, K : g ' g1, Kd+ dK = g − g1,

then

H2Cg + f12CK : f2Cg ' f12Cg1.

(2) Suppose that 0→M → N → P → 0 is a proper exact sequence of right
C comodules and that 0→ P → Q∗ is a proper injective resolution.

(a) Show that there are proper injective comodulesQ−n such that there
is a proper injective resolution 0→ N → Q∗ ⊕Q∗ with the stan-
dard projection Q∗ ⊕Q∗ → Q∗ being a map of resolutions which
extends N → P.

(b) If 0→M → N → P → 0 is a proper exact sequence, show that

0→ Q∗ → Q∗ ⊕Q∗ → Q∗ → 0

is a proper short exact sequence of proper injective resolutions.



376 Differential homological algebra

(c) If L is a left C comodule, show that there is a long exact sequence

0 → M2CL → N2CL → P2CL →
CotorC−1(M,L) → CotorC−1(N,L) → CotorC−1(P,L)→
CotorC−2(M,L)→ CotorC−2(N,L) → CotorC−2(P,L)→ . . . .

(3) Suppose C is a coalgebra over a Dedekind ring (that is, a ring in which
submodules of projectives are projective.) Suppose M is a right comod-
ule over C and that M and C are projective over R.

(a) Show that the module of primitives PM is a retract of M.

(b) If M is bounded below and CotorC−1(M,R) = 0, then show that
there is an isomorphism

M → PM ⊗ C.

10.12 Injective resolutions, total complexes, and differential
Cotor

Let Q∗
η←−M ← 0 be an augmented chain complex of differential comod-

ules over a differential coalgebra C, that is, we have a chain complex of
comodules and comodule maps

. . .
d−i−1←−−− Q−i−1

d−i←−− Q−i
d−i+1←−−− Q−i+1

d−i+2←−−− . . . d0←− Q0
η←−M ← 0.

This is a double complex with an internal differential dI in each Q−i and
an external differential dE given by the resolution differential d−i : Q−i →
Q−i−1. We have

dI · dI = 0, dE · dE = 0, dE · dI = dI · dE ,

and dI is part of a differential comodule structure for which dE : Q∗ → Q∗−1

is a map of differential comodules.

We assume that C is k-connected with k ≥ 0 so that the resolution can
be assumed to be tapered in the sense that each Q−p is at least (k +
1)p− 1 connected. We apply the standard process of assembling this double
complex into a single chain complex called the augmented total complex

T (Q∗)
η←−M → 0.

As an R module,

T (Q∗) =
⊕
p≥0

s−pQp
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where (s−1Y )n = s−1Yn+1 = {s−1y | y ε Yn+1} is the desuspension. Since
we are assuming that the resolution is suitably tapered, the total complex
is concentrated in positive degrees.

Differentials in the total complex

The differential of T (Q∗) is the sum dT = dI + dE where:

dI : s−pQ−p → s−pQ−p and dE : s−pQ−p → s−p−1Q−p−1

are defined by the commutation formulas

dI · s−p = (−1)ps−p · dI , dE · s−p = s−p−1 · dE .

One easily checks that:

Lemma 10.12.1. In the complex T (Q∗),

dI · dI = 0, dE · dE = 0, dE · dI = −dI · dE
and

dT · dT = 0.

We note that T (Q∗) is supplemented by the chain map η : M → Q0 ⊆
T (Q∗).

Differential comodule structures in the total complex

We make T (Q∗) into a differential comodule via:

If right comodules,

∆ : s−pQ−p → s−pQ−p ⊗ C, is given by ∆ · s−p = (s−p ⊗ 1) ·∆.

If left comodules,

∆ : s−pQ−p → C ⊗ s−pQ−p, is given by ∆ · s−p = (1⊗ s−p) ·∆.

One easily checks:

Lemma 10.12.2. In the case of right comodules, the above maps satisfy:

(a)

(dE ⊗ 1) ·∆ · s−p = ∆ · dEs−p,

(dI ⊗ 1 + 1⊗ d) ·∆ · s−p = ∆ · dI · s−p

(dT ⊗ 1 + 1⊗ d) ·∆ · s−p = ∆ · dT · s−p

(b)

(∆⊗ 1) ·∆ · s−p = (1⊗∆) ·∆ · s−p.



378 Differential homological algebra

(c)

(1⊗ ε) ·∆ ∼= s−p.

and similar formulas hold in the case of left comodules.

Thus, T (Q∗), dT is a differential comodule over the differential coalgebra C
and the supplement η : M → T (Q∗) is clearly a map of differential comod-
ules.

Chain maps and chain homotopies in the total complex

Suppose we have a map of supplemented chain complexes of differential
comodules

M
f−→ N

↓ η ↓ η
Q∗

f−→ P∗

.

Then we get a map of supplemented total complexes

M
f−→ N

↓ η ↓ η
T (Q∗)

f−→ T (P∗)

defined by the commutation formulas f · s−p = s−p · f. One checks:

Lemma 10.12.3.

f · dI · s−p = dI · f · s−p,

f · dE · s−p = dE · f · s−p,

f · dT · s−p = dT · f · s−p,

and, in the case of right comodules,

(f ⊗ 1) ·∆ · s−p = ∆ · f · s−p

with a similar formula in the case of left comodules.

Thus, maps of supplemented chain complexes of differential comodules
induce differential comodule maps of supplemented total complexes.

Suppose we have maps f, g : Q∗ → P∗ of chain complexes of differential
comodules and a chain homotopy H : Q∗ → P∗+1 such that each H−p :
Q−p → Q−p+1 is a map of differential comodules and H · dE + dE ·H =
f − g.

We define a degree +1 chain homotopy of total complexes H : T (Q∗)→
T (P∗), H : s−pQ−p → s−p+1P−p+1 by H · s−p = s−p+1 ·H. One checks:



10.12 Injective resolutions, total complexes, and differential Cotor 379

Lemma 10.12.4.

H · dI · s−p = −dI ·H · s−p,

(H · dE + dE ·H) · s−p = f − g,

(H · dT + dT ·H) · s−p = f − g,

and, in the case of right comodules,

(H ⊗ 1) ·∆ · s−p = ∆ ·H · s−p

with a similar formula in the case of left comodules.

Thus, the chain maps on the total complex are chain homotopic via a degree
+1 chain homotopy of comodules.

Contracting homotopies in the total complex

If 0→M
η−→ Q∗ is proper exact, then it has an R linear contracting homo-

topy

h0 : Q0 →M, h−p : Q−p → Q−p+1, p ≥ 0, h : Q∗ → Q∗+1, ∗ < 0

such that

dM · h0 = h0 · dI , dI · h−p = h−p · dI , p > 0

and

h0 · η = 1M , dE · h−p + h−p−1 · dE = 1

If we set

h0 = h0, h−p · s−p = s−p+1 · h−p

we get a contracting homotopy for the augmented total complex, h · dT +

dT · h = 1− η · ε where ε is the composition ε : T (Q∗)→ Q0
h0−→M. One

checks:

Lemma 10.12.5.

h · dI · s−p = −dI · h · s−p,

(h · dE + dE · h) · s−p = 1− η · ε,

(h · dT + dT · h) · s−p = 1− η · ε.

This implies that η : M → T (Q∗) is a homology equivalence, in fact, it has
a (strong) deformation retraction ε : T (Q∗)→M such that η · ε ' 1.

The total complex of a relative injective complex



380 Differential homological algebra

Suppose finally that 0→M
η−→ Q∗ is a proper injective resolution of dif-

ferential comodules. We will assume that have right comodules and leave
modifications in the case of left comodules to the reader.

We can assume that each Q−p = Q−p ⊗ C is an extended differential
comodule with differential d⊗ = d⊗ 1 + 1⊗ d as a differential module. In
other words, dI = d⊗ 1 + 1⊗ d.

The differential comodule structure on the total complex is given by:

s−pQ−p = s−pQ−p ⊗ C,

dI · (s−p ⊗ 1) = (d⊗ 1 + 1⊗ d) · (s−p ⊗ 1),

∆ · (s−p ⊗ 1) = (1⊗∆) · (s−p ⊗ 1)

In particular, each s−pQ−p = s−p(Q−p)⊗ C is an extended comodule and
a differential comodule with respect to the internal differential dI .

The case of the external differential is a little more complicated:

Recall that dE : Q∗ → Q∗−1 is a map of differential comodules and let τ be
the composition:

Q∗ ⊗ C
dE−→ Q∗−1 ⊗ C

1⊗ε−−→ Q∗−1 ⊗R = Q∗−1.

We get

Lemma 10.12.6. The external differential dE is the composition

Q∗ ⊗ C
1⊗∆−−−→ Q∗ ⊗ C ⊗ C

τ⊗1−−→ Q∗−1 ⊗ C.

That is, if

∆(c) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′

then

dE(x⊗ c) = τ(x⊗ 1)⊗ c+ τ(x⊗ c)⊗ 1 + Στ(x⊗ c′)⊗ c′′.

In particular,

dE(x⊗ 1) = τ(x⊗ 1)⊗ 1

and

dI(x⊗ 1) = dI(x)⊗ 1.

If we define dE : Q∗ → Q∗−1 by

dE(x) = τ(x⊗ 1)

and dI : Q∗ → Q∗ by

dI(x⊗ 1) = dI(x)⊗ 1,
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then

Lemma 10.12.7. (Q∗, dI , dE) is a subcomplex of the double complex
(Q∗, dI , dE) via the embedding

Q∗ = Q∗ ⊗R ⊆ Q∗ ⊗ C.

Lemma 10.12.8. If C is simply connected (connected and C1 = 0), then
in the total complex T (Q∗) = Q∗ ⊗ C, the total differential dT = dI + dE
and:

(a) the internal differential dI is the tensor product differential

d⊗ = dI ⊗ 1 + 1⊗ dC .

(b) the external differential dE is given by

dE(x⊗ c) = dE ⊗ c+ τ(x⊗ c)⊗ 1 + Στ(x⊗ c′)⊗ c′′

where the diagonal is

∆(c) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′.

Finally we come to the definition of differential Cotor. Let 0→M → Q∗
and 0→ N → P∗ be proper injective resolutions of right and left C comod-
ules M and N , respectively. Then:

Definition of differential Cotor 10.12.8. If C is connected, then

CotorCn (M,N) = Hn(T (Q∗)2CT (P∗))

As usual we need to know that this is a well defined functor, unique up to
canonical isomorphism and, for this, the following suffices:

If f : M →M1 and g : N → N1 have lifts to f : Q∗ → P∗ and g : Q1,∗ →
P1,∗, we set

CotorC∗ (f, g) = H∗(f2Cg).

This is well defined since

H2Cg + f12CK : f2Cg ' f12Cg1

when we are given comodule homotopies of maps of resolutions H : f '
f1, K : g ' g1.

Remarks. If M , N , and C have zero differentials, then the rela-
tionship between the nondifferential CotorC−p(M,N) and the differential

CotorC∗ (M,N) is simply given by the internal differential dI = 0 and thus

CotorC∗ (M,N) =
⊕
p≥0

s−pCotorC−p(M,N).
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Remarks. If M , N , and C are projective R modules, then we know that
the resolutions Q∗ and P∗ can be chosen to be extended and R projective
in the sense of Exercise 8 in Section 10.10. In fact, it could be reason-
ably argued that we should restrict the definition of differential Cotor to
the category of R projective differential comodules over an R projective
differential coalgebra. There would then be no loss in assuming that the
definition of a proper injective resolution included the requirement that it
be extended and R projective. In fact, it would be useful to assume that
R is a principal ideal domain or, at least, a Dedekind domain in which
submodules of projective modules are projective modules.

10.13 Cartan’s constructions

We relate total complexes to Cartan’s constructions. Cartan constructions
are a generalization of twisted tensor products and of total complexes which
can substitute for the total complex of a resolution in the definition of
differential Cotor.

Let C be a simply connected differential coalgebra which is flat as an R
module. Consider twisted tensor products A⊗τ C with A a differential
algebra and total complexes T (Q∗) with Q∗ a proper injective resolution.
These are both examples of (right) constructions in the sense of Cartan:

A differential module E is a construction in the sense of Cartan if:

(a) E is a differential comodule over the differential coalgebra C. E is
called the total space and C is called the base of the construction.

(b) There is a chain complex F such that E = F ⊗ C as R modules.

(c) F is a differential subcomplex of E. F is called the fibre of the
construction.

(d) E is a differential comodule over C via ∆ = 1⊗∆ : F ⊗ C → F ⊗
C ⊗ C.

(e) There is a degree −1 linear map τ : F ⊗ C → F with τ(f ⊗ 1) = 0
related to the differential on E as follows: d(f ⊗ 1) = df ⊗ 1 and, if
∆(c) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′,, then

d(f ⊗ c)=df⊗c+ (−1)deg(f)f⊗dc+ τ(f ⊗ c)⊗ 1 + Στ(f ⊗ c′)⊗ c′′.

(f) The following identity holds

dτ(f ⊗ c)+τ(df⊗c)+(−1)deg(f)τ(f ⊗ dc) + Στ [τ(f ⊗ c′)⊗ c′′] = 0.
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Hence, with respect to the Serre filtration

Fn(E) = F ⊗ C≤n,

we have

E0(E) = F ⊗ C, d0 = dF ⊗ 1,

E1(E) = H(F )⊗ C, d1 = 1⊗ dC .

Thus, Cartan’s constructions have properties reminiscent of Serre’s com-
putation of the E1 term of his spectral sequence for an orientable fibration.

We leave the following Proposition to the exercises:

Proposition 10.13.1. Suppose C is a simply connected differential coal-
gebra which is free over the coefficient ring R. Suppose that F is a chain
complex over R. Let E = F ⊗ C as a C comodule and suppose that E is a
differential comodule over C and F ≡ F ⊗R ⊆ E is a subcomplex. Then E
is a construction, that is, there exists a degree −1 linear map

τ : F ⊗ C → F

satisfying the identities in (e) and (f) above. In fact, the identities in (e)
are equivalent to the statements that F is a subcomplex and that E is a dif-
ferential comodule and the identities in (f) are equivalent to the statement
that d2 = 0 in E.

The following lemma is important for considering constructions for bico-
modules.

Lemma 10.13.2. Let C and D be simply connected differential coalgebras
and suppose that E is a (right) construction over C ⊗D with fibre F . Then
E is also a construction over D with fibre F ⊗ C.

Proof: That E is a construction over C ⊗D gives us a degree −1 linear
map τ : F ⊗ C ⊗D → F with the property that τ(f ⊗ 1⊗ 1) = 0. The dif-
ferential on E is then defined by the formulas above.

To show that E is a construction over D, we need to define a differential
on G = F ⊗ C and to give a degree −1 linear map σ : G⊗D → G with the
property that σ(g ⊗ 1) = 0 and which will also define the differential on E
by the formulas above.

First of all, we define d(f ⊗ 1) = df ⊗ 1. We set ∆(c) = c⊗ 1 + 1⊗ c+
Σc′ ⊗ c′′ and define

d(f ⊗ c) = df ⊗ c+ (−1)deg(f)f ⊗ dc

+ τ(f ⊗ c⊗ 1)⊗ 1 + τ(f ⊗ c′ ⊗ 1)⊗ c′′.
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This defines the differential on G which is the restriction of the differential
on E via the embedding G ≡ G⊗R ⊆ E.

Now define a linear map σ : G⊗D → G by

σ(f ⊗ 1⊗ d) = τ(f ⊗ 1⊗ d)⊗ 1

and for c ε C

σ(f ⊗ c⊗ d) = τ(f ⊗ c⊗ d)⊗ 1 + τ(f ⊗ 1⊗ d)⊗ c+ τ(f ⊗ c′ ⊗ d)⊗ c′′.

One now checks that this σ and the differential on G together define the
differential on E. �

We recall that the opposite coalgebra of a differential coalgebra C is the
differential coalgebra Copp which is C as a graded differential R module
and which has the same counit and the twisted diagonal

C
∆−→ C ⊗ C T−→ C ⊗ C.

A left differential comodule M over C is then the same thing as a right
differential comodule M over Copp. The correspondence is given by twisting
the coaction

M
∆−→M ⊗ Copp T−→ C ⊗M.

In the same way, a differential bicomodule M over C on the right and over
D on the left is just a right differential comodule over C ⊗Dopp. Thus,
we immediately have the existence of proper injective bicomodules and of
proper exact sequences of bicomodules, including the existence of proper
injective resolutions of bicomodules. We can form the associated total
complexes of these resolutions of bicomodules and get biconstructions.
These are just right constructions over C ⊗Dopp.

In particular, Lemma 10.13.2 says that a biconstruction is simultaneously
a right and left construction. In addition, a biconstruction is an example
of the following.

Definition 10.13.3. If E is a D − C bicomodule which is a right C con-
struction with fibre F , then E is called a right C construction bicomodule
if F is a left differential comodule over D such that E ∼= F ⊗ C as a left
differential comodule over D.

Remarks. The most important observation related to 10.13.2 is that, if
M is a D − C bicomodule and we form the functorial resolution as a right
C comodule

0→M
∆−→M ⊗ C d0−→ coker(∆)⊗ C d−1−−→ coker(d0)⊗ C d−2−−→ . . . ,
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then it is a complex ofD − C bicomodules and, since each of the cokernels is
a left D comodule, the total complex is a right C construction bicomodule.

Lemma 10.13.4. Suppose that E1 is a right construction with fibre F over
a differential coalgebra C and that E2 is a C −D differential bicomodule
which is a right D construction bicomodule with fibre G. Then E12CE2 is
a right construction with fibre F ⊗G over D.

Proof: Write E1 = F ⊗ C and E2 = G⊗D where G is a left differential C

comodule. Then F ⊗G⊗D 1⊗∆⊗1−−−−→ F ⊗ C ⊗G⊗D is a monomorphism of
differential objects onto E12CE2.

Let τ : F ⊗ C → F define the differential on the construction E1. Define a
differential on F ⊗G by

τ ′ : F ⊗G 1⊗∆−−−→ F ⊗ C ⊗G τ⊗1−−→ F ⊗G

that is, the differential is

d(f ⊗ g) = df ⊗ g + (−1)deg(f)f ⊗ dg + Στ(f ⊗ c′)⊗ g′′

where

∆(g) = Σc′ ⊗ g′′.

Since ∆(dg) = d∆(g),

(1⊗∆⊗ 1) · d(f ⊗ g ⊗ 1)

= (1⊗∆⊗ 1) · (df ⊗ g ⊗ 1 + (−1)deg(f)(f ⊗ dg ⊗ 1 + Στ(f ⊗ c′)⊗ g′′)

= df ⊗∆(g)⊗ 1 + (−1)deg(f)(f ⊗ d∆(g)⊗ 1,

hence the differential on F ⊗G ⊆ E12CE2 is the same as the differential
on F ⊗G.

If σ : G⊗D → G is gives E2 the structure of a construction via the differ-
ential dE2

on E2 defined by the usual formula, then define the construction
structure on F ⊗G⊗D by the composition

σ′ : F ⊗G⊗D 1⊗σ−−→ F ⊗G

and let the differential d on F ⊗G⊗D be given by the usual formula.

Of course, σ′(f ⊗ g ⊗ 1) = 0 and one checks that

F ⊗G⊗D d−→ F ⊗G⊗D
↓ 1⊗∆⊗ 1 ↓ 1⊗∆⊗ 1

F ⊗ C ⊗G⊗D
dE1
⊗1⊗1+1⊗1⊗dE2−−−−−−−−−−−−→ F ⊗ C ⊗G⊗D
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commutes. Thus, σ gives the correct differential on E12CE2 and E12CE2

is a construction over D. �

Remarks. If you have a Cartan construction, then you can use it to define
differential Cotor, but Cartan constructions are hard to get without using
proper injective resolutions. Of course, proper injective resolutions are con-
venient for functoriality and, in particular, they are a nice device for prov-
ing general homological invariance when you change the coalgebras and
comodules by homology isomorphisms.

Exercises

(1) Prove Proposition 10.13.1.

(2) Show that Proposition 10.13.1 implies that following result on twisted
tensor products:

Proposition. Suppose C is a simply connected differential coalgebra which
is free over the coefficient ring R. Suppose that A is a differential algebra
over R. Let E = A⊗ C as a C comodule and as an A module. Suppose that
E is a differential object which is simultaneously a differential comodule
over C and a differential module over A. Suppose also that 1⊗ 1 is not a
boundary. Then E is a twisted tensor product A⊗τ C, that is, there exists
a degree −1 linear map

τ : C → A

which is a twisting morphism in the sense that it satisfies the two properties

d(a⊗ c) = da⊗ c+ (−1)deg(a){a⊗ dc+ a(τc)⊗ 1 + Σa(τc′)⊗ c′′}

where

∆(c) = c⊗ 1 + 1⊗ c+ Σc′ ⊗ c′′

and

dτ + τd = (µ⊗ 1)(1⊗ τ ⊗ 1)(1⊗∆).

Hint: Define τ : C → A by τ(c) = τ(1⊗ c) and show that τ(a⊗ c) =
(−1)deg(a)aτ(c). Use the fact that d2 = 0.

(3) Let A→ B → C be a sequence of maps of differential Hopf algebras
with C simply connected and free over the coefficient ring. Suppose
that

B = A⊗ C
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as a left A module and right C comodule. Then there is a twisting
morphism τ : C → A such that B is a twisted tensor product,

B = A⊗τ C.

(4) A differential comodule M over C is said to be augmented if there exists
a differential map M → C which is a map of differential comodules.

(a) If E → B is any map of simplicial sets, show that the normalized
chain complex C(E) is an augmented differential comodule over
C(B).

(b) If M is an augmented differential comodule over a differential coal-
gebra C, show that there is a proper injective resolution 0→M →
Q∗ such that the total complex T (Q∗) is an augmented differen-
tial comodule over C and that the map M → T (Q∗) is a map of
augmented differential comodules.

10.14 Homological invariance of differential Cotor

The cotensor product is closely related to geometric pullbacks. We begin
this section with some remarks on geometric pullbacks. Consider a pullback
diagram of topological spaces

X → B
↓ ↓
A → C

We shall adopt the notation X = A×C B for this pullback of A and B over
C. Consider the functor TA(B) = A×C B.

The functor TA is said to be homotopically invariant if: Whenever B1 → B2

is a map of spaces over C which is a homotopy equivalence then A×C B1 →
A×C B2 is a homotopy equivalence.

If A→ C is not a fibration, then the functor TA need not be homotopi-
cally invariant. Consider the example of ∗ → PC over C and TC(∗) = ∗ →
TC(PC) = Ω(C).

But

Lemma 10.14.1. If A→ C is a fibration and B1 → B2 is a map of spaces
over C which is a homotopy equivalence, then A×C B1 → A×C B2 is a
homotopy equivalence.

The quickest proof uses the long exact sequences of the fibrations

A×C B1 → B1, A×C B2 → B2
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and is left to the reader.

A homological variation of the above is also left as an exercise.

Lemma 10.14.2. If A→ C is an orientable fibration and B1 → B2 is a
map of spaces over C which is a homology equivalence, then A×C B1 →
A×C B2 is a homology equivalence.

Now consider the following variation involving right differential comodules
M and left differential comodules N over a differential comodule C. When
is the functor TM (N) = M2CN homologically invariant? It is certainly not
always the case. Consider the case M = R and R→ C ⊗τ Ω(C) where the
latter is the acyclic tensor product. Then TR(R) = R→ TR(C ⊗C Ω(C)) =
Ω(C) is usually not a homology equivalence.

But Cartan’s constructions are analogous to fibrations in the following
sense:

Proposition 10.14.3. Assume that R is a principal ideal domain. Let E
be a right construction in the sense of Cartan over a differential coalgebra C
with fibre F. Then TE is a homologically invariant functor in the following
sense: if N1 → N2 is a map of left differential comodules over C which is a
homology equivalence and if N1 and N2 are R projective, then E2CN1 →
E2CN2 is a homology equivalence.

Proof: Assume that N is any R projective left differential comodule over
C.

Filter E by the Serre filtration and N and C by the skeletal filtration, that
is, filter by degree, Fn(N) = N≤n, Fn(C) = C≤n.

We have

E0(N) = N, E0(dN ) = 0,

E1(N) = N, E1(dN ) = dN

and

E2(N) = H(N).

And also E = F ⊗ C as R modules,

E0(E) = F ⊗ C, E0(dE) = dF ⊗ 1,

E1(E) = HF ⊗ C, E1(dE) = 1⊗ dC

and

E2(E) = H(HF ⊗ C).
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Filter E2CN by the product filtration:

Fn(E ⊗N) =
⊕
i+j=n

Fi(E)⊗ Fj(N)

and let

Fn(E2CN) = E2CN ∩ Fn(E ⊗N).

As R modules, the short exact sequence

0→ E2CN → E ⊗N δ−→ E ⊗ C ⊗N

is

0→ F ⊗N 1⊗∆−−−→ F ⊗ C ⊗N → F ⊗ C ⊗ C ⊗N

and dE⊗N = dE ⊗ 1 + 1⊗ dN . Hence,

E0(dE⊗N ) = E0(dE)⊗ 1 + 1⊗ E0(dN ) = dF ⊗ 1⊗ 1.

Therefore,

E0(dE2CN ) = dF ⊗ 1

and

E1(E2CN) = HF ⊗N.

That is,

E1(E2CN)→ E1(E ⊗N)
E1(δ)−−−→ E1(E ⊗ C ⊗N)

is the short exact sequence

0→ HF ⊗N 1⊗∆−−−→ HF ⊗ C ⊗N δ−→ HF ⊗ C ⊗ C ⊗N.

Since

E1(dE⊗N ) = 1⊗ dC ⊗ 1 + 1⊗ 1⊗ dN

and, since ∆ : N → C ⊗N is a map of differential comodules, it follows
that

E1(dE2CN ) = 1⊗ dN .

Thus, E2(E2CN) = H(HF ⊗N) and, since R is a principal ideal domain,
the universal coefficient theorem gives a functorial short exact sequence

0→ H(F )⊗H(N)→ E2(E2CN)→ TorZ(H(F ), s−1H(N))→ 0.

The homological invariance of E2CN follows from this identification of E2.
�



390 Differential homological algebra

Remarks. If we accept the identification of differentials, then a quick
summary of the above proof is: With the Serre filtration on E and the
skeletal fitration on N ,

E0(E2CN) = F ⊗N, d0 = dF ⊗ 1,

E1(E2CN) = HF ⊗N, d1 = 1⊗ d.

And

0→ H(F )⊗H(N)→ E2(E2CN)→ TorZ(H(F ), s−1H(N))→ 0

is short exact.

When applied to a construction, the cotensor product is homologically
equivalent to differential Cotor. More precisely,

Corollary 10.14.4. If R is a principal ideal domain, C is an R projective
simply connected coalgebra, E is an R projective right construction over C,
and N is an R projective left differential comodule over C, then there is an
isomorphism

H(E2CN)→ CotorC(E,N).

Proof: Let 0→ E → Q∗ and 0→ N → P∗ be proper injective resolutions
which we can assume are R projective and tapered so that the respective
total complexes are constructions concentrated in positive degrees. In par-
ticular, both E → T (Q∗) and N → T (P∗) are homology isomorphisms and
T (P∗) is a construction. Hence Proposition 10.14.3 asserts that there are
isomorphisms

H(E2CN)→ H(E2CT (P∗))→ H(T (Q∗)2CT (P∗)) = CotorC(E,N).

�

Remark. For example, in Corollary 10.14.4, the construction E could be
a twisted tensor product A⊗τ C. We would then get

HA = H(A⊗τ C2CR) = CotorC(A⊗τ C,R).

The fact that resolutions are constructions shows that differential Cotor is
balanced, that is:

Corollary 10.14.5. If M , N , and C are R projective with C simply con-
nected and 0→M → Q∗ and 0→ N → P∗ are R projective tapered proper
injective resolutions, then there are homology equivalences

T (Q∗)2CN → T (Q∗)2CT (P∗)←M2CT (P∗).
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Let C be an R-projective simply connected coalgebra. The cobar construc-
tion ΩC ⊗τ C is the total complex of an R projective proper injective res-
olution of R and hence:

Corollary 10.14.6.

CotorC(R,N) = H(ΩC ⊗τ C2CN) = H(ΩC ⊗N)

or, when N = R,

CotorC(R,R) = H(ΩC).

Remark. If C is a coalgebra with zero differential, there is no internal
differential in ΩC and hence

CotorC−1(R,R) = ker C → C ⊗ C

= PC = the module of primitives of the coalgebra.

Exercise

(1) Show that the fact that differential CotorC(M,N) is balanced implies
that it is well defined functor when M , N , and C are all R projective
and C is simply connected.

10.15 Alexander–Whitney and Eilenberg–Zilber maps

Let ∆ be the category whose objects are the finite sets [n] = {0, 1, . . . , n}
and whose morphisms are (weakly) monotone maps α : [n]→ [m]. Let S
be the category of sets and functions.

Recall that a simplicial set is a contravariant functor X : ∆→ S.

It is customary to write Xn = X([n]) for the functor on objects and α∗ =
X(α) : Xm → Xn for the functor on morphisms. The elements of Xn are
called n-simplices.

Among the monotone maps there are two special sets of maps, the coface
maps and the codegeneracy maps:

(1) for all 0 ≤ i ≤ n, the coface maps are the injections εi : [n− 1]→ [n]
defined by

εi(k) =

{
k if 0 ≤ k < i

.
k + 1 if i ≤ k ≤ n− 1
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(2) for all 0 ≤ j ≤ n, the codegeneracy maps are the surjections ηj :
[n+ 1]→ [n] are defined by

ηj(k) =

{
k if 0 ≤ j ≤ k

.
k − 1 if j < k ≤ n+ 1

Given a simplicial set X, we write

(εi)∗ = di : Xn → Xn−1, 0 ≤ i ≤ n

and

(ηj)∗ = sj : Xn → Xn+1, 0 ≤ j ≤ n

and call these maps face and degeneracy operators, respectively.

Note that every monotone map α : [n]→ [m] has a unique factorization
into a composition of monotone maps α = β · γ : [n]→ [k]→ [m] where γ
is a surjection and β is an injection.

We note that every monotone surjection can be written uniquely as a com-
position

γ = ηι1 · ηι2 · · · · · ηιr

where ι1 < ι2 < · · · < ιr. We also note that every monotone injection can
be written uniquely as a composition

β = εδs · · · · · · εδ2 · εδ1

where δs > δs−1 > · · · > δ1.

Hence, every monotone map α has a unique expression

α = β · γ = εδs · . . . εδ2 · εδ1 · ηι1 · ηι2 · · · · · ηιr .

It follows that the maps in a simplicial set α∗ : Xm → Xn have canonical
expressions as

α∗ = sιr · · · · · sι2 · sι1 · dδ1 · dδ2 · . . . ds

where ι1 < ι2 < · · · < ιr and δs > δs−1 > · · · > δ1.

One can check the standard simplicial identities:
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Lemma 10.15.1. The face and degeneracy operators satisfy the identities

didj = dj−1di, i < j

sisj = sj+1si, i ≤ j

disj =


sj−1di, i < j

1, i = j, i = j + 1

sjdi−1, i > j + 1.

The chains on a simplicial set X is the free graded R module C(X) with
graded basis X and differential d : Cn(X)→ Cn−1(X) defined on genera-
tors by

d(σ) = Σni=0(−1)idi(σ), σ εXn.

Definition 10.15.2. An n-simplex σ εXn is called degenerate if it is of
the form sjτ for some τ εXn−1.

The identities in Lemma 10.15.1 show that the degenerate simplices span
a subcomplex D(X) which is closed under the differential. In MacLane’s
Homology, it is shown that D(X) is acyclic, HD(X) = 0.

Definition 10.15.3. If X is a simplicial set, the complex of normalized
chains is the quotient complex CN (X) = C(X)/D(X).

Of course, C(X)→ CN (X) is a homology isomorphism and CN (X) is the
free module generated by nondegenerate simplices. This makes the normal-
ized chains more convenient in the sense that, if X is a k-reduced simplicial
set, that is, if Xi = ∗ for i ≤ k, then the normalized chain complex CN (X)

is k connected, C
N
i (X) = 0 for i ≤ k.

Universal models for simplicial sets are ∆n, n ≥ 0 :

(∆n)k = map([k], [n]) = monotone maps

We denote a monotone map α : [k]→ [n] by the ordered n+ 1 tuple α =
(α(0), . . . , α(n)). We note that the face operators are

di(α(0), . . . , α(n)) = (α(0), . . . , ˆα(i), . . . , α(n))

and the degeneracy operators are

sj(0, . . . , n) = (α(0), . . . , α(j), α(j), . . . , α(n)).

Hence α is nondegenerate if and only if the entries are all distinct.

If x εXn is any n-simplex, there is a unique simplicial map x : ∆n → X
such that x(0, . . . , n) = x.
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We now turn to the Alexander–Whitney maps ∆ : C(X × Y )→ C(X)⊗
C(Y ) and the Eilenberg–Zilber maps ∇ : C(X)⊗ C(Y → C(X × Y ). Once
again, the main reference is MacLane’s Homology.

If σ εXn is an n-simplex, the front i-face is iσ = di+1 . . . dn−1dnσ =
σ(0, . . . , i) and the back j-face is σj = (d0)n−jσ = σ(j, . . . , n). Thus, on
universal examples,

i(0, . . . , n) = (0, . . . , i), (0, . . . , n)j = (j, . . . , n)

The Alexander–Whitney maps are based on this choice of front and back
faces.

Definition 10.15.4. If (σ, τ) εXn × Yn is an n-simplex, the Alexander–
Whitney map is

∆(σ, τ) = Σni=0iσ ⊗ τn−i.

The universal examples for the Alexander–Whitney maps are ∆ : C(∆n ×
∆n)→ C(∆n)⊗ C(∆n) with

∆((0, . . . , n), (0, . . . , n)) = Σni=0(0, . . . , i)⊗ (i, . . . , n).

We state without proof the key properties of the Alexander–Whitney maps:

Proposition 10.15.5. The Alexander–Whitney maps ∆ : C(X × Y )→
C(X)⊗ C(Y ) satisfy:

(1) they are natural chain equivalences

(2) they are associative, that is,

C(X × Y × Z)
∆−→ C(X)⊗ C(Y × Z)

↓ ∆ ↓ 1⊗∆

C(X × Y )⊗ C(Z)
∆⊗1−−−→ C(X)⊗ C(Y )⊗ C(Z)

(3) they induce a map of normalized chains

∆ : CN (X × Y )→ CN (X)⊗ CN (Y )

that is, if (σ, τ) is a degenerate n-simplex and i+ j = n, then so is
at least one of the front face iσ or the back face τj.

The Alexander–Whitney maps define the differential coalgebra structures
on the chains C(X) and the normalized chains CN (X) via the Alexander–
Whitney diagonal formed by composition with the induced map of the
diagonal X → X ×X, that is,

∆ = ∆ · C(∆) : C(X)→ C(X ×X)→ C(X)⊗ C(X)

∆ = ∆ · CN (∆) : CN (X)→ CN (X ×X)→ CN (X)⊗ CN (X)
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The Eilenberg–Zilber maps ∇ : C(X)⊗ C(Y )→ C(X × Y ) are based on
the classical triangulation of a product of two simplices.

Consider the product [n]× [m].

A monotone path p from (0, 0) to (n,m) is a piecewise linear path from
lattice point to lattice point and such that the horizontal moves are to the
right and vertical moves are upward. Thus, p is a function from [n+m] to
the lattice points of [n]× [m] which is monotone in each coordinate π1 · p
and π2 · p, p(0) = (0, 0), p(n+m) = (n,m) and such that each step has
length 1.

We have the standard monotone path p0 which goes via:

(0, 0), . . . , (n, 0), (n, 1), . . . , (n,m)

and we associate to any monotone path p the integer k which is the area
enclosed by p and p0. Define the sign of p by sgn(p) = (−1)k.

Now the Eilenberg–Zilber map is the following:

∇(x⊗ y)

= Σpsgn(p)(x(π1p(0), . . . , π1p(n+m)), y(π2p(0), . . . , π2p(n+m))),

the summation being taken over all monotone maps p.

The universal example for the Eilenberg–Zilber maps are

∇ : C(∆n)⊗ C(∆m)→ C(∆n ×∆m)

and

∇((0, . . . , n)⊗ (0, . . . ,m)) = Σpsgn(p)s∗(0, . . . , n)× t∗(0, . . . ,m)

where s∗ is an interated degeneracy inserting repetitions whenever the first
coordinate of the path is constant, that is, whenever π1p(i) = π1p(i+ 1),
and t∗ is an interated degeneracy inserting repetitions whenever the second
coordinate of the path is constant, that is, whenever π2p(i) = π2p(i+ 1).

We state without proof the key properties of the Eilenberg–Zilber maps.

Proposition 10.15.6. The Eilenberg–Zilber maps ∇ : C(X)⊗ C(Y )→
C(X × Y ) satisfy:

(1) they are natural chain equivalences

(2) they are associative, that is,

C(X)⊗ C(Y )⊗ C(Z)
∇⊗1−−→ C(X × Y )⊗ C(Z)

↓ 1⊗∇ ↓ ∇
C(X)⊗ C(Y × Z)

∇−→ C(X × Y × Z)
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(3) they are maps of differential coalgebras

(4) they induce a map of normalized chains

∇ : CN (X)⊗ CN (Y )→ CN (X × Y )

that is, if σ in X or τ in Y are degenerate simplices, then ∇(σ ⊗ τ)
is a sum of ± degenerate simplices.

(5) the Eilenberg–Zilber maps and the Alexander–Whitney maps are
inverses up to natural chain homolopies, that is, ∆ · ∇ ' 1, ∇ ·
∆ ' 1. In the case of normalized chains, ∆ · ∇ = 1, that is, the
Alexander–Whitney map is a left inverse to the Eilenberg–Zilber
map.

Remarks. All of the above properties of Eilenberg–Zilber maps except for
(3) may be found in MacLane’s book [77]. Property (3) may be found in
the paper by Eilenberg and Moore on Homology and Fibrations I [42].

If C and D are differential coalgebras, then C ⊗D is a differential coalgebra
with the tensor product differential and the diagonal

C ⊗D ∆⊗∆−−−→ C ⊗ C ⊗D ⊗D 1⊗T⊗1−−−−→ C ⊗D ⊗ C ⊗D

where T is the twist map T (c⊗ d) = (−1)deg(c)deg(d)d⊗ c.

We now define the skeletal filtration.

Definition 10.15.7. An n-simplex σ has skeletal filtration sk(σ) ≤ k if
there is a monotone map α : [n]→ [k] such that σ is in the image

α∗ : Xk → Xn.

Let us denote the skeletal filtration on a simplicial set X by

FnX = {σ εX|sk(σ) ≤ n}.

Then

FnXk =

{
Xk if k ≤ n⋃
s∗Xn if k > n where s∗ runs over k − n fold iterated degeneracies.

One checks:

Lemma 10.15.8. The skeletal fitration FnX is a subsimplicial set of X
and hence generates a subcomplex FnC(X) of the chains C(X) and a sub-
complex FnC

N (X) of the normalized chains CN (X).

Note that FnC
N (X) equals 0 in dimensions greater than n.

One can check:
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Lemma 10.15.9. The Alexander–Whitney map preserves the skeletal fil-
tration in the sense that, if (σ, τ) is a simplex of dimension n in X × Y , n =
i+ j, and sk(σ, τ) ≤ k, then sk(iσ) + sk(τj) ≤ k, that is, the Alexander–
Whitney map satisfies

∆FnC(X × Y ) ⊆ Fn(C(X)⊗ C(Y )) = Σi+j=nFiC(X)⊗ Cj(Y ).

Suppose that π : E → B is a fibration of simplical sets. The Serre filtration
on E is the inverse image of the skeletal filtration on B, that is, FnE =
π−1FnB.

Exercise

(1) Verify Lemma 10.15.1.

10.16 Eilenberg–Moore models

We shall denote pullback diagrams of simplicial sets or of topological spaces
by

Y ×X Z k−→ Z
↓ h ↓ g
Y

f−→ X

.

Assume that g is a fibration with fibre F and hence that h is also a fibration
with fibre F .

We filter X and Y by the skeletal filtrations and we filter Y ×X Z and Z
by the Serre filtrations,

The diagonal maps give maps

∆ : Y → Y × Y → Y ×X,

∆ : Z→ Z× Z→ Z×X.

Composition with the Alexander–Whitney map

∆ : C(Y × Z)→ C(Y )⊗ C(Z)

defines a map ∆ : C(Y ×X Z)→ C(Y )⊗ C(Z) given on n-simplices by

∆(σ) = Σi+j=nh(iσ)⊗ k(σj).

Lemma 10.16.1. The map ∆ is filtration preserving.

Proof: If σ is in the n-th Serre filration of Y ×X Z, that is, serre(σ) ≤ n,
then hσ is in the n-th skeletal filtration of Y , that is, sk(hσ) ≤ n. Since
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the Alexander–Whitney map preserves the skeletal filtration, sk(ihσ) +
sk(hσj) ≤ n for i+ j = n. Thus,

sk(ihσ) + sk(fhσj) ≤ n

sk(ihσ) + sk(gkσj) ≤ n

sk(ihσ) + serre(kσj) ≤ n.

�

The chain complexes C(Y ) and C(Z) are differential comodules over the
differential coalgebra C(X) via the maps

∆ : C(Y )→ C(Y × Y )→ C(Y )⊗ C(Y )→ C(Y )⊗ C(X)

∆ : C(Z)→ C(Z× Z)→ C(Z)⊗ C(Z)→ C(X)⊗ C(Z).

The associativity and naturality of the Alexander–Whitney maps show that
there is a map

∆ : C(Y ×X × Z)→ C(Y )⊗ C(X)⊗ C(Z)

such that both diagrams below commute (of course, ∆ = (1Y ⊗∆X,Z)
∆Y,X×Z = (∆Y,X ⊗ 1Z)∆Y ×X,Z).

C(Y × Z)
∆×1−−−→ C(Y ×X × Z)

↓ ∆ ↓ ∆

C(Y )⊗ C(Z)
∆⊗1−−−→ C(Y )⊗ C(X)⊗ C(Z)

and

C(Y × Z)
1×∆−−−→ C(Y ×X × Z)

↓ ∆ ↓ ∆

C(Y )⊗ C(Z)
1⊗∆−−−→ C(Y )⊗ C(X)⊗ C(Z).

Hence, we have a unique map C(Y ×X Z)→ C(Y )2C(X)C(Z) such that

C(Y ×X Z)
(h,k)−−−→ C(Y × Z)

∆×1−1×∆−−−−−−→ C(Y ×X × Z)
↓ ↓ ∆ ↓ ∆

C(Y )2C(X)C(Z) → C(Y )⊗ C(Z)
∆⊗1−1⊗∆−−−−−−→ C(Y )⊗ C(X)⊗ C(Z)

commutes.

We give C(Y )2C(X)C(Z) the subspace filtration of the tensor product, that
is,

Fn(C(Y )2C(X)C(Z)) = Fn(C(Y )2C(X)C(Z))
⋂

(C(Y )2C(X)C(Z)).
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Lemma 10.16.1 says that the map

∆ : C(Y ×X Z)→ C(Y )2C(X)C(Z)

is filtration preserving where the domain has the Serre filtration and the
range has the filtration coming from the sketetal fitration on Y and the
Serre filtration on Z.

Let X be a one-reduced simplicial set so that the normalized chains CN (X)
are a simply connected differential coalgebra. We shall change notation so
that C(X) denotes the normalized chains.

With this understanding, let

0→ C(Y )→ Q∗

be an R projective proper injective resolution of the right differential
module C(Y ) over the differential coalgebra C = C(X). We recall that
Q∗ = Q∗ ⊗ C as comodules.

Eilenberg–Moore geometric approximation theorem 10.16.2. The
composite map

C(Y ×X Z)→ C(Y )2C(X)C(Z)→ T (Q∗)2C(X)C(Z)

is a homology isomorphism, that is, there is a natural isomorphism

H(Y ×X Z)→ CotorC(X)(C(Y ), C(Z)).

Proof: Serre’s computation for a fibration asserts that, in the Serre spectral
sequence of an orientable fibration sequence F → E → B, one has

E1C(E) = HF ⊗ C(B), d1 = 1⊗ dC(B)

and hence there is a short exact sequence

0→ HF ⊗H∗B → E2C(E)→ TorZ(HF,H∗−1(B))→ 0.

In particular, if F is the fibre of Z→ X, we have a short exact sequence

0→ H∗Y ⊗HF → E2C(Y ×X Z)→ TorZ(H∗−1(Y ), HF )→ 0.

We filter T (Q∗) by the skeletal or degree filtration and C(Y ) by the skeletal
filtration. The augmentation map C(Y )→ T (Q∗) is filtration preserving.

Hence, if we filter T (Q∗)2CC(Z) by the filtration induced by the skeletal
fitration on T (Q∗) and by the Serre filtrations on C(Z) and C(Y ×X Z),
we get that the composition map

∆ : C(Y ×X Z)→ C(Y )2C(X)C(Z)→ T (Q∗)2C(X)C(Z)

is filtration preserving.
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The theorem will follow when we show that, in the spectral sequence
associated with the filtration on T (Q∗)2C(X)C(Z), we have a short exact
sequence

0→ H∗Y ⊗HF → E2(C(T (Q∗)2CC(Z))→ TorZ(H∗−1(Y ), HF )→ 0,

similar to the above sequence for E2C(Y ×X Z). Since we have an isomor-
phism at E2, we have a homology isomorphism.

In brief summary, the proof goes as follows:

E0(T (Q∗)2CC(Z)) = T (Q∗)⊗ C(Z), E0(d) = 1⊗ d0.

E1(T (Q∗)2CC(Z)) = T (Q∗)⊗ C ⊗HF = T (Q∗)⊗HF, E1(d) = dT ⊗ 1.

Hence, we get the above short exact sequence and this would complete the
proof. We now go into more detail on the identification of the differentials.

First of all, we record the following observation: We shall denote by d2 the
restriction of the tensor product differential d⊗ = d⊗ 1 + 1⊗ d on M ⊗N
to the differential on the cotensor product M2CN . Then, under the isomor-
phism ∆ : M →M2CC, the differential d2 corresponds to the differential
dM on M .

With the skeletal filtration, we have

E0(T (Q∗)) = T (Q∗), E
0(dT ) = 0,

E1(T (Q∗)) = T (Q∗), E
1(dT ) = dT ,

E2(T (Q∗)) = HT (Q∗) ∼= H(Y ).

Also with the skeletal filtration, we have

E0(C) = C, E0(dC) = d0
C = 0,

E1(C)) = C, E1(dC) = dC ,

E2(C) = H(C).

With the Serre filtration of C(Z), we have

E1(C(Z)) = C ⊗HF, d1 = dC ⊗ 1.

Hence, with the filtration of T (Q∗)⊗ C(Z), we have

E0(T (Q∗))⊗ C(Z) ) = T (Q∗)⊗ C(Z),

E0(d) = E0(dT )⊗ 1 + 1⊗ d0
C(Z) ≡ 1⊗ d0

C(Z),

E1(T (Q∗))⊗ C(Z) ) = T (Q∗)⊗ C ⊗HF,

E1(d) = dT ⊗ 1⊗ 1 + 1⊗ dC ⊗ 1.
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With the filtration of T (Q∗))2CC(Z), we have

E0(T (Q∗)2CC(Z) ) = T (Q∗)⊗ C2CC(Z) ∼= T (Q∗)⊗ C(Z),

via the differential isomorphism ∆ : C(Z)→ C2CC(Z). Hence

E0(d) = 1⊗ 1⊗ d0
C(Z) ≡ 1⊗ 1⊗ d0

C(Z) + 1⊗ d0
C ⊗ 1 ∼= 1⊗ d0

C(Z).

Thus,

E1(T (Q∗))2CC(Z) ) = T (Q∗)⊗H(C(Z), d0
C(Z))

= T (Q∗)⊗ C ⊗HF ∼= T (Q∗)⊗HF,

via the isomorphism T (Q∗)2CC ⊗HF ∼= T (Q∗)⊗HF . It follows that

E1(d) ∼= dT ⊗ 1.

Hence, E2(T (Q∗))2CC(Z) ) = H(T (Q∗)⊗HF, dT ⊗ 1) and there is a
short exact sequence

0→ H∗(T (Q∗))⊗HF → E2(T (Q∗)⊗HF )

→ TorZ(H∗−1(T (Q∗), HF )→ 0.

Since HT (Q∗) = H(Y ), the above short exact sequence is isomorphic to
what we want and the proof is complete. �

Remarks. There are two ways to replace simplicial sets by topological
spaces in the statement of the geometric approximation Theorem 10.16.2.

First, one can assume that Y and X are both simply connected spaces.
Then replace the singular complexes S(Y ) and S(X) by the first Eilen-
berg subcomplexes which are the subsimplicial sets where the 1-skeleton
is restricted to a point. Then restrict the pullback to these complexes in
the obvious way. Since the homotopy types of all the simplicial sets in the
pullback does not change, this translates into a true topological statement.

Alternatively, one can assume that X is a simply connected space and
that both Y → X and Z→ X are fibrations. Now, replace the simplicial
set S(X) by the first Eilenberg subcomplex and restrict all the singular
commplexes to being over S(X). Since fibrations restrict to fibrations, no
homotopy types change and, once again, this translates into a true topo-
logical statement.

10.17 The Eilenberg–Moore spectral sequence

Let M and N be differential comodules over a simply connected differential
coalgebra C. The Eilenberg-Moore spectral sequence is a purely algebraic
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object which relates the nondifferential Cotor on the homologies to the
differential Cotor.

Proposition 10.17.1. If C is a simply connected differential coalgebra
which is projective over the ground ring and which has flat homology HC,
then there is a functorial convergent second quadrant spectral sequence with
abutment CotorC(M,N) and with

E2
−p,q = (CotorHC−p (HM,HN))q.

Proof: Let

0→M → Q∗

be a proper injective resolution of the right comoduleM over the differential
coalgebra C. With no loss of generality, we can assume that the resolution
is tapered in the sense that each Q−p is at least 2p− 1 connected. We can
also assume that we can write each Q−p = Q−p ⊗ C as extended differential
comodules with respect to the internal differential dI and that each Q−p is
a flat R module.

Since a proper injective resolution is split as a resolution of differential
modules, it follows that the internal homology of the resolution

0→ HM → HIQ∗

is also split exact. By the Kunneth theorem HIQ∗ = HIQ∗ ⊗HC and the
resolution

0→ HM → HQ∗

is in fact a proper projective resolution of the comodule HM over the
coalgebra HC.

We filter T (Q∗)2CN by the resolution degree, that is,

Fn(T (Q∗)2CN ) = T (Q−p≤n)2CN = T (Q−p≤n)⊗N

and note that the tapering of the resolution guarantees that this filtration
is finite in each fixed degree. Hence the spectral sequence based on this
filtration will converge.

Note that

E0
−p = s−pQ−p ⊗ C ⊗N, d0 = dI ⊗ 1 + 1⊗ dN

in the spectral sequence of T (Q∗)⊗N . And

E1
−p = Hs−pQ−p ⊗HC ⊗HN = Hs−pQ−p ⊗HN, d1 = dE ⊗ 1

in this spectral sequence.
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Hence,

E0 = s−pQ−p ⊗N, d0 = dI ⊗ 1 + 1⊗ dN

in the spectral sequence of T (Q∗)2CN . And

E1 = Hs−pQ−p ⊗HN = Hs−pQ−p2HCHN, d
1 = dE2C1

in this spectral sequence.

Thus,

E2 = CotorHC(HM,HN)

in the spectral sequence which abuts to CotorC(M,N). We are done. �

Remarks. From the construction of the Eilenberg–Moore spectral
sequence, there is an increasing filtration of CotorC(M,N) indexed by the
nonpositive integers

· · · ⊆ F−n−1 ⊆ F−n ⊆ · · · ⊆ F−1 ⊆ F0 = CotorC(M,N).

Since C is simply connected, this filtration is strongly convergent in the
sense that it is finite in each fixed degree.

Note the important edge homomorphism

CotorC(M,N) = F0 → F0/F−1 = E∞0,∗ ⊆ E2
0,∗ = HM2HCHN.

Remarks. Consider the algebraic structures of associative algebras, asso-
ciative coalgebras, and (bi)associative Hopf algebras. In this book, it is
invariably the case that, if a particular differential Cotor has this struc-
ture, then the whole Eilenberg–Moore spectral sequence, including the edge
homomorphisms, respects this structure. The reason for this is that the
Eilenberg–Moore spectral sequence is defined by the filtration by resolution
degree and the various algebra structures in differential Cotor are defined
by the Künneth theorem and maps of total complexes of resolutions, both
of which are compatible with the filtration by resolution degree. In partic-
ular, these algebraic structures induce the same structures on the E2 term,
that is, on the nondifferential Cotor defined by the homologies. Important
examples are:

(1) If

E → Z
↓ ↓
Y → X

is a homotopy pullback of simplicial sets with X being 1-reduced
and, if all the spectral sequence terms are R projective, then the
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Eilenberg–Moore spectral sequence is a spectral sequence of differ-
ential coalgebras and the edge homomorphism HE → HY2HXHZ
is a morphism of coalgebras.

(2) If, in addition, the above example is a homotopy pullback of simpli-
cial monoids with X being 1-reduced and, if all the spectral sequence
terms are R projective, then the Eilenberg–Moore spectral sequence
is a spectral sequence of differential Hopf algebras and the edge
homomorphism HE → HY2HXHZ is a morphism of Hopf algebras.

(3) If C is a simply connected supplemented differential coalgebra, then
the Eilenberg–Moore spectral sequence abutting to CotorC(R,R) is
a spectral sequence of differential algebras and the edge homomor-
phism CotorC(R,R)→ R2HCR = R is an augmentation morphism
of algebras.

(4) If C = C(X) is the normalized chains on a 1-reduced simplicial set
and if all the spectral sequence terms are R projective, then the
Eilenberg–Moore spectral sequence abutting to CotorC(X)(R,R) =
H(ΩX) is a spectral sequence of differential Hopf algebras and the
edge homomorphism H(ΩX)→ R2HCXR = R is an augmentation
morphism of Hopf algebras.

The Eilenberg–Moore spectral sequence is often used for computation but
its functoriality has another use in proving a strong form of homological
invariance. Let M and N be differential comodules over a simply connected
differential coalgebra C such that C is R projective and HC is R flat.
Let M1 and N1 be differential comodules over a differential coalgebra C1

satisfying the same hypothesis.

Corollary 10.17.2. Let C → C1 be a map of differential coalgebras as
above and let M →M1 and N → N1 be maps of differential comodules with
respect to the coalgebra map. If these maps are all homology isomorphisms,
then the induced map

CotorC(M,N)→ CotorC1(M1, N1)

is an isomorphism.

10.18 The Eilenberg–Zilber theorem and the Künneth formula

The Alexander–Whitney map ∆ : C(X × Y )→ C(X)⊗ C(Y ) and the
Eilenberg–Zilber map ∇ : C(X)⊗ C(Y )→ C(X × Y ) are two natural
chain equivalences which have different uses and virtues. The use of the
Alexander–Whitney map is that, in composition with the induced map of
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the diagonal,

C(X)
C(∆)−−−→ C(X ×X)

∆−→ C(X)⊗ C(X),

it endows the chains with the structure of a differential coalgebra. The
virtue of the Eilenberg–Zilber map

∇ : C(X)⊗ C(Y )→ C(X × Y )

is that it is a map of differential coalgebras and a chain equivalence (homol-
ogy isomorphism).

Let

E
k−→ Z E1

k1−→ Z1

↓ h ↓ g and ↓ h1 ↓ g1

Y
f−→ X Y1

f1−→ X1

be two pullback squares where g and g1 are fibrations. Let

E × E1
k×k1−−−→ Z× Z1

↓ f × f1 ↓ g × g1

Y × Y1
f×f1−−−→ X ×X1

be the product pullback square.

Homological invariance and the fact the Eilenberg–Zilber maps are maps
of differential coalgebras immediately implies that:

Proposition 10.18.1. The Eilenberg–Zilber map defines an isomorphism

∇ = Cotor∇(∇,∇) : CotorC(X)⊗C(X1)(C(Y )⊗ C(Y1), C(Z)⊗ C(Z1))

→ CotorC(X×X1)(C(Y × Y1), C(Z× Z1)).

This is compatible with the Eilenberg–Zilber map

∇ : C(E)⊗ C(E1)→ C(E × E1).

Before discussing this further we shall compress the notation and denote
by X the normalized chains C(X).

Using this notation, let 0→ Y
η−→ Q∗ and 0→ Y1

η−→ Q1∗ be nice (= tapered
and R-projective) proper injective resolutions of right differential comod-
ules over the respective differential coalgebras X and X1. And let

0 → Y × Y1
η⊗η−−→ Q∗ ⊗Q1∗

↓ ↓ ∇
0 → Y × Y1

η−→ P∗
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be a map from one proper injective resolution to a proper injective resolu-
tion. (See Exercise 1 below.)

Recall that the Eilenberg–Moore geometric approximation theorem says
that the composite map

E
∆−→ Y2XZ η21−−→ T (Q∗)2XZ

is an homology isomorphism where ∆ : E → Y2XZ is the restriction to E
of the Alexander–Whitney map ∆ : Y × Z→ Y ⊗ Z and T (Q∗) is the total
complex of the resolution.

Consider the diagram

E ⊗E1
∆⊗∆−−−→ (Y 2XZ)⊗ (Y12X1Z1)

η2η⊗η2η−−−−−−→ T (Q∗)2XZ⊗ T (Q1∗)2X1Z1

↓ ↓ 1⊗ T ⊗ 1 ∼= B ↓ 1⊗ T ⊗ 1 ∼=
|∇ C (Y ⊗ Y1)2X⊗X1(Z⊗ Z1)

η⊗η⊗1⊗1−−−−−−→ T (Q∗)⊗ T (Q1∗)2X⊗X1(Z⊗ Z1)
↓ ↓ ∇2∇ A ↓ ∇2∇

E ×E1
∆−→ (Y × Y1)2X×X1(Z× Z1)

η21−−→ T (P∗)2X×X1(Z× Z1)

The top and bottom horizontal compositions are homology isomorphisms
by the geometric approximation theorem. The right and left vertical maps
are homology isomorphisms by the usual Eilenberg–Zilber theorem. (See
Exercise 2.)

The square A commutes since we have a map of resolutions extending
∇2∇. The square B commutes since we are using the same twist maps
on the left and right. The square C commutes since the Eilenberg–Zilber
map is a map of differential coalgebras and this diagram is covered by the
commutative diagram

E ⊗ E1
∆⊗∆−−−→ E ⊗ E ⊗ E1 ⊗ E1

↓ ↓ 1⊗ T ⊗ 1
|∇ E ⊗ E1 ⊗ E ⊗ E1

↓ ↓ ∇ ⊗∇
E × E1

∆−→ (E × E1)⊗ (E × E1).

If we take the homology of the above commutative diagram, we get:

Proposition 10.18.2. We have a commutative diagram

HE ⊗HE1
η⊗η−−→ CotorX(Y,Z)⊗ CotorX1(Y1,Z1)

↓ H∇ ↓ ∇
H(E × E1)

η−→ CotorX×X1(Y × Y1,Z× Z1)

in which the horizontal maps are isomorphisms and, if the homologies HE
and HE1 are flat over R, the vertical maps are isomorphisms.
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We shall call the left-hand vertical map the Eilenberg–Zilber map for dif-
ferential Cotor.

For the sake of completeness, we record from the above proof the purely
algebraic Künneth formula.

Proposition 10.18.3. The twisting map gives a morphism

CotorC(M,N)⊗ CotorC1(M1, N1)→ CotorC⊗C1(M ⊗M1, N ⊗N1)

which is an isomorphism if C,M,N,CotorC(M,N) and C1,M1, N1,
CotorC1(M1, N1) are all R projective.

Exercises

(1) If 0→M → Q∗ and 0→M1 → Q1∗ are proper injective resolutions of
right differential comodules over the differential coalgebras C and C1,
respectively, then

0→M ⊗M1 → Q∗ ⊗Q1∗

is a proper injective resolution of right differential comodules over the
differential coalgebra C ⊗ C1.

(2) Prove the map 1⊗ T ⊗ 1 restricts to an isomorphism

1⊗ T ⊗ 1 : (M2CN)⊗ (M12C1
N1)→ (M ⊗M1)2C⊗C1

(N ⊗N1).

10.19 Coalgebra structures on differential Cotor

Consider the diagonal map of pullback squares

E
k−→ Z E × E k×k−−→ Z× Z

↓ h ↓ g ∆−→ ↓ h× h ↓ g × g
Y

f−→ X Y × Y f×f−−→ X ×X,

where the map g is a fibration. When HE is R flat, this induces a coalge-
bra structure which is compatible with the Eilenberg–Moore model in the
following manner.

Whenever the homology HE of a space is flat over the ground ring it has a
coalgebra structure defined by the composition of the Alexander–Whitney
map with the induced map of the diagonal

∆ : HE
H∆−−→ H(E × E)

H∆=(H∇)−1

−−−−−−−−→ H(E ⊗ E) ∼= HE ⊗HE.
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Since we always have a commutative diagram

HE
H∆−−→ H(E ×E)

H∇←−− HE ⊗HE
↓ η ↓ η ↓ η ⊗ η

CotorX(Y,Z)
∆−→ CotorX×X(Y × Y,Z× Z))

∇←− CotorX(Y,Z)⊗CotorX(Y,Z)

in which the vertical maps are isomorphisms, it follows that, if HE ∼=
CotorX(Y,Z) is R flat, then we have coalgebra structures on HE and
CotorX(Y,Z) which are isomorphic.

Remarks. We can strenghten the Künneth Theorem 10.18.2 as follows:

If the homologies HE and HE1 are flat over R, then we have a commutative
diagram

HE ⊗HE1
η⊗η−−→ CotorX(Y,Z)⊗ CotorX1(Y1,Z1)

↓ H∇ ↓ ∇
H(E × E1)

η−→ CotorX×X1(Y × Y1,Z× Z1)

in which the horizontal maps and vertical maps are isomorphisms of coal-
gebras. All that is new is that the right hand map is a map of coalgebras.
The proof of this fact is that we already know that the horizontal maps
and the left-hand map are isomorphisms of coalgebras and hence so is the
right-hand map.

Remarks. It is important to observe that there is no intrinsically defined
coalgebra structure in a differential Cotor, CotorC(M,N), defined for dif-
ferential comodules and differential coalgebras. The coalgebra structure in
this section depends on the geometry of the Eilenberg–Zilber map.

For example, if C is a commutative differential coalgebra then the comulti-
plication C → C ⊗ C is a map of coalgebras and hence, if CotorC(R.R) is
R flat, then the induced map CotorC(R.R)→ CotorC⊗C(R⊗R,R⊗R) ≡
CotorC(R.R)⊗ CotorC(R.R) gives a coalgebra structure. But there is no
guarantee that this structure has any relation to the coalgebra structure
discussed in this section. Suppose that there is a map of differential coal-
gebras C → C(X) which is a homology isomorphism. The isomorphism of
differential Cotors

CotorC(R.R)→ CotorC(X)(R.R)

need not be a morphism of coalgebras.

Remarks. Suppose we have a pullback square

E → Z
↓ ↓
Y → X
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with the vertical maps fibrations and HE a flat R module. Since the
Eilenberg–Moore spectral sequence is defined by the filtration by resolu-
tion degree and since the maps which define the coalgebra structure on the
differential Cotor, that is, the diagonal map on a space and the Eilenberg–
Zilber map, are both compatible with this filtration, it follows that,this
Eilenberg–Moore spectral sequence is a spectral sequence of coalgebras

E2 = CotorHX(HY,HZ)⇒ CotorCX(CY,CZ).

Exercises

(1) Show that the map

CotorX(Y,Z)→ CotorR(R,R)

is a counit for the coalgebra structure in this section.

10.20 Homotopy pullbacks and differential Cotor of several
variables

Pullbacks of several variables are the geometric analoques of iterated coten-
sor products and homotopy pullbacks of several variables are the geometric
analogues of the several variable derived functors. We introduce these ideas
in this section.

For us here a pullback of several variables is just the pullback of a zigzag
diagram of maps as follows

X1 → A1 ← X2 → A2 ← X3 → . . . An−1 ← Xn−1 → An−1 ← Xn.

We write the pullback as

X1 ×A1
X2 ×A2

X3 ×A3
. . . Xn−1 ×An−1

Xn.

These pullbacks of several variables can be regarded as iterated pullbacks:

X1 ×A1
X2 ×A2

X3 ×A3
. . . Xn−1 ×An−1

Xn

≡ X1 ×A1
(X2 ×A2

(X3 ×A3
. . . (Xn−1 ×An−1

Xn) . . . )).

Consider maps X → A← Y → B ← Z. We note the following identities.

Lemma 10.20.1.

(a) Pullbacks of several variables are associative:

X ×A (Y ×B Z) ≡ (X ×A Y )×B Z.

(b) There are left and right units:

A×A X ≡ X, X ×A A ≡ X.
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(c) If ∗ is a point, then

X ×A ∗ ≡ F, ∗ ×A X ≡ F

where F is the fibre of X → A.

(d) Points induce splittings into a product:

X ×A ∗ ×B Z ≡ (X ×A ∗)× (∗ ×B Z).

We define the homotopy pullback of several variables by replacing the maps
out of the Xi by fibrations with total space Ei in the standard way:

X1 ' E1 → A1, X2 ' E2 → A1 ×A2, X3 ' E3 → A2 ×A3, . . . Xn−1

' En−1 → An−2 ×An−1, Xn ' En → An−1.

Then the homotopy pullback is

E1 ×A1
E2 ×A2

E3 ×A3
. . . En−1 ×An−1

En.

We remark that this is balanced in the sense that we get something
homotopy equivalent to the homotopy pullback if we replace all the maps
Xi → Ai−1 ×Ai by fibrations except possibly for one (which could be one
of the ends), that is,

Lemma 10.20.2.

X1 ×A1
X2 ×A2

X3 ×A3
· · · ×An−1

Xn

→ E1 ×A1
E2 ×A2

E3 ×A3
· · · ×An−1

En

is a homotopy equivalence if all of the maps Xi → Ai−1 ×Ai except possibly
one are fibrations.

There are several other ways in which we can get something equivalent to
the homotopy pullback.

Lemma 10.20.3. The above map is a homotopy equivalence if for all 2 ≤
i ≤ n the maps Xi → Ai−1 are fibrations (or if for all 1 ≤ i ≤ n− 1 the
maps Xi → Ai are fibrations).

Proof: Lemmas 10.20.2 and 10.20.3 are easy consequences of the fact that,
if X → A is a fibration, then so is X ×A Y → Y and that the inclusion of
X ×A Y into the homotopy pullback is a homotopy equivalence. See the
diagram below in the proof of Theorem 10.21.1 and the first part of that
proof for guidance. The point is that all the squares in that diagram are
forced to be homotopy equivalent to homotopy pullbacks by either of the
hypotheses of Lemmas 10.20.2 or 10.20.3. �



10.20 Homotopy pullbacks and differential Cotor of several variables 411

We note the following properties of the pathspace fibration PA→ A in the
homotopy pullback:

Lemma 10.20.4.
(a) The homotopy pullback X ×A PA is just the homotopy theoretic fibre

of X → A.

(b) Contractible spaces induce splittings of the homotopy pullback

X ×A P (A×B)×B Z ≡ (X ×A PA)× (PB ×B Z).
We recall the striking similarity between pullbacks and cotensor products.
Let M , N , and P be differential comodules over differential coalgebras C
and D. We have associativity, left and right units, primitives, and splittings
induced by the ground ring R:

Lemma 10.20.5.

(M2CN)2DP ∼= M2C(N2DP )

M2CC ∼= M, C2CN ∼= N,M2CC2CN ∼= M2CN

M2CR ∼= PM, R2CN ∼= PN

M2CR2DN ∼= (M2CR)⊗ (R2DN)

Remarks. It is worth noting in the above Lemma 10.20.5 that the two
isomorphisms

∆21, 12∆ : M2CN →M2CC2CN

are in fact the same.

Now let C1, C2, . . . , Cn−1 be differential coalgebras over a commutative
ringR. LetM1 be a right differential comodule over C1, for 2 ≤ i ≤ n− 1 let
Mi be a Ci−1 − Ci differential bicomodule, and let Mn be a left differential
comodule over Cn−1. Let 0→Mi → Qi∗ be proper injective resolutions
and let 0→Mi → T (Qi∗) be the associated total complexes. We define the
several variable differential Cotor as follows:

Definition 10.20.6. The several variable differential Cotor is

CotorC1,...,Cn−1(M1, . . . ,Mn)

= H(T (Q1∗)2C1
T (Q2∗)2C2

. . .2Cn−1
T (Qn∗)).

This is balanced in the sense that the iterated cotensor product is homology
equivalent to the several variable differential Cotor if all the differential
comodules are constructions except possibly for one (which could be one
of the ends), that is:
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Lemma 10.20.7.

M12C1
M22C2

M32C3
. . .2Cn−1

Mn

→ T (Q1∗)2C1
T (Q2∗)2C2

T (Q3∗)2C3
. . .2Cn−1

T (Qn∗)

is a homology equivalence if all of the differential comodules Mi except
possibly one are (bi)constructions.

There are several other ways in which we can get something equivalent to
the differential Cotor.

Lemma 10.20.8. The above map is a homology equivalence if for all 2 ≤
i ≤ n the Mi are right bicomodule constructions over Ci (or if for all 1 ≤
i ≤ n− 1 the Mi are left bicomodule constructions over Ci−1).

Proof: Lemmas 10.20.7 and 10.20.8 are easy consequences of the fact that,
if M is a right construction over C and N is a C −D differential bico-
module which is a right bicomodule construction over D, then M2CN is a
right construction over D and hence P 7→M2CN2DP preserves homology
isomorphisms.

For example, suppose that n = 3. Abbreviate the total complexes by
T1, T2, T3.

Assume that M2 is not necessarily a construction but that M1 and M3 are.
Then M2 → T2 and M1 → T1 are equivalences and M1, T2 are construc-
tions. Hence

M12C1
M2 →M12C1

T2 → T12C1
T2

are equivalences.

Likewise, since M3 and T12C1
T2 are constructions,

M12C1
M22C2

M3 → T12C1
T22C2

M3 → T12C1
T22C2

T3

are equivalences.

Or assume that M2,M3 are right bicomodule constructions. Then

M12C1
M2 → T12C1

M2 → T12C1
T2

are equivalences, as are

M12C1
M22C2

M3 → T12C1
M22C2

M3 → T12C1
T22C2

T3

�

Just as for homotopy pullbacks we have splittings and collapse theorems
for several variable differential Cotor. If C1 = · · · = Cn−1, we shall write

CotorC1,...,Cn−1(M1, . . . ,Mn) = CotorC(M1, . . . ,Mn).
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Lemma 10.20.9.

(a) If Mi = C, then differential Cotor reduces to differential Cotor of
one less variable, that is,

CotorC(M1, . . . ,Mn) ∼= CotorC(M1, . . . , M̂i, . . . ,Mn)

(b) If Mi = R, if C is R projective, and if all of the differential Cotors
are R flat, then

CotorC(M1, . . . ,Mn) ∼= CotorC(M1, . . . ,Mi−1, R)

⊗CotorC(R,Mi+1, . . . ,Mn).

Proof: Both parts of the lemma are consequences of the balanced prop-
erty of differential Cotor, namely, we get the same result if we neglect to
resolve one of the variables. Hence, both parts reduce to the corresponding
properties of the cotensor product. �

Remarks. In terms of constructions, Lemma 10.20.9 can be phrased in
the somewhat stronger form as follows:

Let Ti be a construction. for 1 ≤ i ≤ 3.

If C → T2 is a homology equivalence of bicomodules, then

T12CT22CT3 ← T12CC2CT3 ← T12CT3

are homology equivalences. Furthermore, if T1 is a biconstruction, then the
above are all equivalences of right constructions. And, if T3 is a biconstruc-
tion then the above are all left constructions. The obvious modifications
hold true if C = M1 or if C = M3. In particular, all the complexes are
biconstructions if T1, T2 and T3 are.

If R→ T2 homology equivalence of bicomodules, then T2 can be chosen to
be T ⊗ S where T is the total complex of a left resolution of R and S is
the total complex of a right resolution of R. Then

T12CT22CT3 ← T12C(T ⊗ S)2CT3 ←

(T12CT )⊗ (S2CT3)← (T12CR)⊗ (R2CT3)

are homology equivalences. And, if T1 and T3 are biconstructions, then

(T12CR)⊗ (R2CT3)

is a biconstruction.

These collapsing and splitting results are compatible with the Eilenberg–
Moore models as follows:
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Let X1, . . . , Xn and A be simplicial sets with A being 1-reduced. We also
use these abbreviations to denote the corresponding normalized chains.

Lemma 10.20.10. Suppose all the differential Cotors are R projective,
then there are isomorphisms of coalgebras:

(a)

H(X1 ×A · · · ∗ · · · ×A Xn)
∼=−→ H(X1 ×A . . .Xi ×A ∗)⊗H(∗ ×A Xi+1 ×A · · · ×A Xn)

↓∼= ↓∼=
CotorA(X1, . . . ,R, . . .Xn)

∼=−→ CotorA(X1, . . . ,Xi,R)⊗CotorA(R,Xi+1, . . . ,Xn)

(b)

H(X1 ×A . . .Xi ×A A×A Xi+1 ×A · · · ×A Xn)
∼=←− H(X1 ×A . . .Xi ×A Xi+1 ×A · · · ×A Xn)

↓∼= ↓∼=
CotorA(X1, . . . ,Xi,A,Xi+1, . . . ,Xn)

∼=←− CotorA(X1, . . . ,Xi,Xi+1, . . . ,Xn)

Proof: The vertical maps are isomorphisms of coalgebras and so are the top
maps. The two bottom maps are induced by the isomorphisms of complexes

T12C . . .2CR2C . . .2CTn → T12C . . .2CR⊗R2CTi+12C . . .2CTn

and

T12C . . .2CC2C . . .2CTn
12...2∆2...1←−−−−−−−− T12C . . .2CTn

and hence are part of commutative diagrams. Therefore, the bottom maps
are both coalgebra isomorphisms. �

Just as with the two variable differential Cotor, there are two possible
proofs of the fact that the several variable version of differential Cotor is
a well defined functor of several variables, independent of the choice of
resolutions and independent of extensions of maps of comodules to maps
of resolutions. We can use the balanced fact that we can omit one of the
resolutions and thus one of the choices of extensions. Or we can use the
fact that extensions of comodule maps are unique up to chain homotopy.

We note that filtering total complexes of resolutions by the resolution
degree gives an Eilenberg–Moore spectral sequence:

Let C1, . . . , Cn−1 be differential coalgebras and let M1, . . . ,Mn be differen-
tial comodules with M1 a right C1 comodule, M2 a C2 − C3 bicomodule,
. . . , and Mn a left Cn−1 comodule.

Then the same proof as in the two variable case gives the following propo-
sition.

Proposition 10.20.11. If the Ci are simply connected differential coalge-
bras which are projective over the ground ring and which have flat homolo-
gies HCi, then there is a functorial convergent second quadrant spectral
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sequence with abutment CotorC1,...,Cn−1(M1, . . . ,Mn) and with

E2
−p,q = (CotorHC1,...,HCn−1

−p (HM1, . . . ,HMn)q.

This Eilenberg–Moore spectral sequence is used to prove the homological
invariance.

Corollary 10.20.12. With hypotheses as in Lemma 10.20.10, let Ci → Di

be a maps of differential coalgebras and let Mi → Ni be maps of differential
comodules with respect to the coalgebra maps. If these maps are all homology
isomorphisms, then the induced map

CotorC1,...,Cn−1(M1, . . . ,Mn)→ CotorD1,...,Dn−1(N1, . . . , Nn)

is an isomorphism.

10.21 Eilenberg–Moore models of several variables

Consider a pullback of several variables

E = X1 ×A1
X2 ×A2

. . . Xn−1 ×An−1
Xn

where theXi and Ai are simplicial sets and the Ai are 1-reduced in the sense
that their 1-skeletons consist of a single point. (Of course, we can trans-
late the results below to simply connected spaces by considering Eilenberg
subcomplexes.)

Assume that this is a homotopy pullback in the sense that the maps Xi →
Ai are fibrations for all 1 ≤ i ≤ n− 1. We will compress notation by writing
X for the normalized chains C(X).

The Eilenberg–Moore geometric approximation theorem for sev-
eral variable homotopy pullbacks 10.21.1. There is an isomorphism
of R modules

H(E) ∼= CotorA1,A2,...,An−1(X1, X2, . . . , Xn).

Proof: For 1 ≤ i ≤ j ≤ n, write

Ei,j = Xi ×Ai Xi+1 ×Ai+1
· · · ×Aj−1

Xj .

For example,Xi = Ei,i and E1,n = E. In general, these fit into a honeycomb
diagram in which the squares are all homotopy pullbacks. For example, all
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the squares below are pullback diagrams:

X1 ← E1,2 ← E1,3 ← E1,4 ← · · ·
↓ ↓ ↓ ↓
A1 ← X2 ← E2,3 ← E2,4 ← · · ·

↓ ↓ ↓
A2 ← X3 ← E3,4 ← · · ·

↓ ↓
A3 ← X4 ← · · ·

↓
A4 ← · · ·

It is evident that, if a vertical map is a fibration, then all the squares to
its left are homotopy pullbacks and all the vertical maps to its left are
fibrations. (Of course, the same remarks apply to horizontal maps being
fibrations and to homotopy pullback squares.)

In our case, every square is a homotopy pullback square and all the vertical
maps are fibrations.

Let 0→ Xi → Ti be the supplemented total complexes of proper injective
resolutions.

The proof of geometric approximation theorem for several variables now
follows by successive application of the known two variable theorem. In
detail:

E1,2
'−→ X12A1

T2

is a homology equivalence by the two variable theorem.

Likewise,

E1,3
'−→ E1,22A2

T3

is a homology equivalence by the two variable theorem. Since T3 is a con-
struction, the composite

E1,3
'−→ E1,22A2

T3 ' X12A1
T22A3

T3

is a homology equivalence.

If we continue we see that the composite

E1,n
'−→ E1,n−12An−1

Tn ' X12A1
T22A3

T32A4
. . .2An−1

Tn

is a homology equivalence. �

For the differential Cotors where the coalgebras are the normalized chains
on a simplicial set, we have coalgebra structures coming from the fact
that the Eilenberg–Zilber maps are maps of differential coalgebras. This is
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just as in the two variable case and corresponds to the geometry via the
Eilenberg–Moore geometric approximation. In detail, the coalgebra struc-
ture is defined by the following three ingredients:

(1) There is the diagonal map of simplicial sets ∆ : X → X ×X and
hence the induced maps of differential Cotor

∆ = Cotor∆,...,∆(∆, . . . ,∆) :

∆ : CotorA1,...,An−1(X1, . . . , Xn)

→ CotorA1×A1,...,An−1×An−1(X1 ×X1, . . . , Xn ×Xn).

(2) There is the Eilenberg–Zilber map∇ : Y ⊗ Z→ Y × Z which is both
a chain equivalence and a map of differential coalgebras. It induces
an isomorphism

∇ = Cotor∇,...,∇(∇, . . . ,∇) :

CotorA1⊗B1,...,An−1⊗Bn−1(X1 ⊗ Y1, . . . , Xn ⊗ Yn)

→ CotorA1×B1,...,An−1×Bn−1(X1 × Y1, . . . , Xn × Yn).

(3) There is the Künneth theorem which is valid when the differential
Cotors are R flat (given R projective coalgebras):

CotorC1⊗D1,...,Cn−1⊗Dn−1(M1 ⊗N1, . . . ,Mn ⊗Nn)

∼= CotorC1,...,Cn−1(M1, . . . ,Mn)⊗ CotorD1,...,Dn−1(N1, . . . , Nn),

then we get just as in the two variable case:
Let

E = X1 ×A1
X2 ×A2

. . . Xn−1 ×An−1
Xn

be a homotopy pullback over 1-reduced simplicial sets A1, . . . , An−1.
The maps

E
∆−→ E × E ∇←− E ⊗ E

commute with their extensions to maps of resolutions, hence:

Proposition 10.21.2. If the homology HE is R flat, then the isomor-
phism in 10.21.1,

H(E) ∼= CotorA1,A2,...,An−1(X1, X2, . . . , Xn)

is an isomorphism of coalgebras.

Remarks. The Eilenberg–Moore spectral sequence converging to the
above coalgebra is a spectral sequence of coalgebras.
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10.22 Algebra structures and loop multiplication

We begin this section by interpreting loop multiplication in terms of homo-
topy pullbacks. Afterwards, we will discuss how this leads to a natural
associative multiplication in differential Cotor.

But first a question: Where does the loop multiplication come from in the
Eilenberg–Moore models? For most spaces X, there is no multiplication

C(X)⊗ C(X)→ C(X)

but there is one in the Eilenberg–Moore model for the loop multiplication

ΩX × ΩX → ΩX.

Where did it come from? The answer is that it came from these several
variable differential Cotors.

Consider the right and left pathspace fibrations:

PRX = {ω : I → X |ω(0) = ∗}, π : PRX → X, π(ω) = ω(1),

PLX = {γ : I → X |ω(1) = ∗}, π : PLX → X, π(γ) = γ(0).

Let Ω̃X = {(ω, γ) |ω(0) = γ(1) = ∗, ω(1) = γ(0)} and note that the map
Ω̃X → ΩX, (ω, γ) 7→ ω ∗ γ is a homotopy equivalence.

We have a map of the homotopy pullback diagram

PRX ← ΩX ← ΩX × ΩX
↓ ↓ ↓
X ← ∗ ← ΩX

↓ ↓
X ← PLX

to the homotopy pullback diagram

PRX ← PRX ← Ω̃X
↓ ↓ ↓
X ← X ← PLX

↓ ↓
X ← PLX

where the composition

ΩX × ΩX → Ω̃X → ΩX

is the standard loop multiplication (ω, γ) 7→ ω ∗ γ.
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Let C be a simply connected supplemented differential coalgebra and sup-
pose that CotorC(R,R) is R projective. The above description of loop mul-
tiplication suggests that we use the splitting and collapsing of differential
Cotor to define a multiplication in CotorC(R,R) which is natural on the
category of supplemented differential coalgebras. In this respect, it is very
different from the coalgebra structure on CotorC(X)(R,R) which is defined
and natural only on the category of simplicial sets.

Definition 10.22.1. The multiplication in differential CotorC(R,R) is:

µ : CotorC(R,R)⊗ CotorC(R,R) ∼= CotorC(R,R,R)

→ CotorC(R,C,R) ∼= CotorC(R,R).

In this definition we use the fact that R→ C is a map of differential bico-
modules over C. We now describe this multiplication explicitly in terms of
resolutions.

Let Ti be the total complex of a proper injective resolution of R and choose
T2 = S ⊗ T where S and T are the total complexes of left and right res-
olutions of R. Let T̃i be the total complex of a resolution of C. Then the
multiplication is induced by the maps of complexes

(T12CS)⊗ (T2CT3) = T12CT22CT3 → T12C T̃22CT3

← T12CC2CT3 ← T12CT3.

Associativity amounts to the easily verified statement that the two maps

CotorC(R,R,R,R)→ CotorC(R,C,C,R)

are induced by equal maps on the level of complexes.

The unit is given by the map R = R2CR→ CotorC(R,R). In terms of
the maps of resolutions, the fact that this is a left unit is proved by the
observation that, for x ε T3, 121⊗ 12x 7→ 1212x represents the identity
map in homology R⊗R2CT3 → T12CC2CT3.

This algebra structure is compatible with the Künneth theorem.

Proposition 10.22.2. If C and D are simply connected supplemented dif-
ferential coalgebras, then

ν : CotorC(R,R)⊗ CotorD(R,R)→ CotorC⊗D(R,R)

is an morphism of algebras. That is, if we write ν(α⊗ β) = α⊗ β for the
morphism and µ(α⊗ γ) = α ∗ γ for the multiplication , then

(α ∗ γ)⊗ (β ∗ ε) = (−1)deg(β)deg(γ)(α⊗ β) ∗ (γ ∗ ε)

for α, γ in CotorC(R,R) and β, ε in CotorD(R,R). (If the two Cotors are
R projective, the map ν is an isomorphism of algebras.)
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Proof: The sign in the formula comes from the fact that isomorphisms
of chain complexes X ⊗ Y → Y ⊗X use the twist morphism T (x⊗ y) =
(−1)deg(x)deg(y)(y ⊗ x). In terms of resolutions, the relevant multiplication
is given by the commutative diagram

TC1 2CR2CT
C
3 ⊗ TD1 2DR2DT

D
3 → TC1 ⊗ TD1 2C⊗DR⊗R2C⊗DT

C
3 ⊗ TD3

↓ ↓
TC1 2C T̃

C2CT
C
3 ⊗ TD1 2DT̃

D2DT
D
3 → TC1 ⊗ TD1 2C⊗DT̃

C ⊗ T̃D2C⊗DT
C
3 ⊗ TD3

↑ ↑
TC1 2CC2CT

C
3 ⊗ TD1 2DD2DT

D
3 → TC1 ⊗ TD1 2C⊗DC ⊗D2C⊗DT

C
3 ⊗ TD3

The sign comes from the top square. �

The above multiplication on differential Cotor is chosen so that it is auto-
matically compatible with the Eilenberg-Moore model for the homotopy
pullbacks:

Proposition 10.22.3. Let X be a 1-reduced simplicial set. Then the dia-
gram below commutes

H(ΩX)⊗H(ΩX) → H(ΩX × ΩX)
µ∗−→ H(ΩX)

↓∼= ↓∼= ↓∼=
CotorX(R,R)⊗ CotorX(R,R) → CotorX(R,R,R)

µ−→ CotorX(R,R)

Furthermore, if H(ΩX) is R projective. then the horizontal maps are maps
of coalgebras so that

H(ΩX)→ CotorX(R,R)

is an isomorphism of Hopf algebras.

Finally we relate this multiplication to the multiplication in the cobar or
loop construction ΩC.

Proposition 10.22.4. If C is a simply connected supplemented differen-
tial coalgebra, then there is an isomorphism of algebras

CotorC(R,R)→ HΩC.

Proof: Since the twisted tensor product ΩC ⊗τ C is an acyclic construction,
it follows that CotorC(R,R) ∼= H(ΩC ⊗τ C2CR) ∼= H(ΩC) as R modules.
Hence, we need to show that it is an isomorphism of algebras.

Since the ayclic twisted tensor products ΩC ⊗τ C and C ⊗τ ΩC are the
total complexes of resolutions of R, the multiplication is given by the map
of complexes

ΩC ⊗τ 2CR2CC ⊗τ ΩC
µ−→ ΩC ⊗τ 2CC2CC ⊗τ ΩC
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and this reduces by isomorphisms to

ΩC ⊗R⊗ ΩC
µ−→ ΩC ⊗τ C ⊗τ ΩC

where the differential in the domain is the tensor product differential and
the differential in the range is a special case of the following lemma whose
proof is left as an exercise.

Lemma 10.22.5. If A and B are augmented differential algebras and C
is a supplemented differential coalgebra with twisting cochains τ : C → A
and σ : C → B, then the differential in

A⊗τ C ⊗σ B ∼= A⊗τ C2CC ⊗σ B

is given on the left by

d = dτ ⊗ 1 + 1⊗ dσ − (1⊗ dC ⊗ 1).

(Of course the differential on the right is the restriction of the tensor prod-
uct differential dτ ⊗ 1⊗ 1 + 1⊗ 1⊗ dσ.

There are three relevant maps of differential objects.

First, there are the obvious two inclusions which play the role of left and
right units

R⊗R⊗ ΩC
α−→ ΩC ⊗R⊗ ΩC

β←− ΩC ⊗R⊗R

and, second, the map below which uses the multiplication in ΩC

ΩC ⊗τ C ⊗τ ΩC
γ−→ ΩC

where

γ(x⊗ c⊗ y) =

{
x · y if c = 1

0 if c ε C.

It is easy to check that γ is a chain map and one sees that the difference in
the signs of the left and right twisted tensor products has an essential role.

It is obvious that the compositions γ · µ · α and γ · µ · β are the identity.

We claim that µ · α and µ · β are homology isomorphisms, but, for example,
µ · α is the composition

R⊗R2CC ⊗τ ΩC → ΩC ⊗τ C2CC ⊗τ ΩC

where R⊗R→ ΩC ⊗τ C is a homology isomorphism and C ⊗τ ΩC is a
construction. Hence, µ · α and likewise µ · β are homology isomorphisms.

It follows that CotorC(R,R) and HΩC are isomorphic as algebras. �

It follows from Corollary 10.5.4 that:
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Corollary 10.22.6. If A is a augmented differential algebra and τ : C →
A is a twisting morphism such that A⊗τ C is acylic, then there is an
isomorphism of algebras

CotorC(R,R)→ HA.

Exercise

(1) Prove Lemma 10.22.5.

10.23 Commutative multiplications and coalgebra structures

In special circumstances, there are ways of getting algebra and coalgebra
structures on differential Cotor. These methods are often accessible to com-
putation.

Let C be a simply connected differential Hopf algebra. Then the multi-
plication ν : C ⊗ C → C is a map of differential coalgebras and induces a
multiplication

ν : CotorC(R,R)⊗ CotorC(R,R)

→ CotorC⊗C(R,R)
Cotorν(R,R)−−−−−−−−→ CotorC(R,R).

This multiplication has the usual unit

R ∼= R⊗R = CotorR(R,R)→ CotorC(R,R)

as a two-sided unit. Write α♦β = ν(α⊗ β) for this multiplication and write
α ∗ β = µ(α⊗ β) for the natural multiplication introduced in the previous
section. Since ν is defined by the Künneth theorem and maps of coalgebras,
ν is a morphism of the algebra structures defined by µ. This implies that:

Proposition 10.23.1. The multiplications ∗ and ♦ are the same and both
are graded commutative.

Proof: Since ν is a morphism of the natural algebra structure ∗, we have
the formula

ν((α⊗ β) ∗ (γ ⊗ ε)) = ν(α⊗ β) ∗ ν(γ ⊗ ε)

which can also be written as

(−1)deg(γ)deg(β)(α ∗ γ)♦(β ∗ ε) = (α♦β) ∗ (γ♦ε).
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Use the fact that the two multiplications have a common two-sided unit.
Hence

(α ∗ 1)♦(1 ∗ ε) = (α♦1) ∗ (1♦ε)

α♦ε = α ∗ ε.

And hence

(−1)deg(γ)deg(β)(1 ∗ γ)♦(β ∗ 1) = (1♦β) ∗ (γ♦1)

(−1)deg(γ)deg(β)γ♦β = β ∗ γ.

�

Remarks. The above proof is essentially the same proof as one of the
usual proofs used to show that the fundamental group of an H-space has
two equal multiplications both of which are commutative.

The above has a slight extension to a geometric version. Suppose that
we have a homotopy pullback diagram of simplicial monoids with strictly
multiplicative maps:

E → Z
↓ ↓
Y → X

.

For example, this could be a homotopy pullback diagram of simplicial loop
spaces. If we make the standard assumption that X is 1-reduced, then

CotorX(Y,Z)⊗ CotorX(Y,Z)

→ CotorX×X(Y × Y,Z× Z)→ CotorX(Y,Z)

defines an associative multiplication with unit

R = Cotor∗(∗, ∗)→ CotorX(R,R).

The proof of the following is left as an exercise.

Proposition 10.23.2. The map HE → CotorX(Y,Z) is an isomorphism
of algebras and, if HE is R projective, it is an isomorphism of Hopf alge-
bras.

Remarks. We can apply the above proposition to homotopy pullback dia-
grams of topological loop spaces as follows. Suppose the homotopy pullback
E over the simply connected space X is the loop of the homotopy pullback
E over the two-connected space X. Apply the singular complex functor to
E and consider the diagram which is the restriction to the second Eilenberg
subcomplex of X, that is, the maximal subcomplex whose two-skeleton is
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a point. Loop this via the Kan loop group construction and take the nor-
malized chains.

The following lemma is also left as an exercise.

Lemma 10.23.3. If C and D are (graded) commutative differential coal-
gebras, then the diagonal ∆ : C → C ⊗ C and the twist map T : C ⊗D →
D ⊗ C are maps of differential coalgebras.

Since maps of differential coalgebras induce maps of differential Cotor com-
patible with the natural multiplication, this lemma immediately gives

Proposition 10.23.4. If C is a simply connected commutative differential
coalgebra with CotorC(R,R) projective over R, then

CotorC(R,R)
Cotor∆(R,R)−−−−−−−−→ CotorC⊗C(R,R)

∼= CotorC(R,R)⊗ CotorC(R,R)

and

CotorC(R,R)→ CotorR(R,R) = R

give CotorC(R,R) the structure of a Hopf algebra with commutative diag-
onal and the natural multiplication.

Exercise

(1) Prove Proposition 10.23.2.

(2) Prove Lemma 10.23.3.

10.24 Fibrations which are totally nonhomologous to zero

Let F → E → B be a fibration sequence and assume that F and B are
connected and that the homologies HB and HF are R flat. Then the
homology HE is a comodule over HB via the coaction

∆ : HE → H(E × E)→ H(E ×B) ∼= HE ⊗HB.

The following lemma is immediate.

Lemma 10.24.1. The image of HF → HE is contained in the module of
primitives of the comodule PHB(HE) = kernel HE → HE ⊗HB.

Definition 10.24.2. A fibration sequence is totally nonhomologous to
zero if HF → HE is an R split monomorphism.

Proposition 10.24.3. If F → E → B is totally nonhomologous to zero,
then HF → PHB(HE) is an isomorphism and there is an isomorphism of
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right HB comodules

HE → HF ⊗HB.

Proof: The following lemma is an exercise.

Lemma 10.24.4. If C is a connected differential coalgebra and x is an
element of least degree such that dx 6= 0, then dx is primitive.

We claim that the homology Serre spectral sequence collapses. Since E2 =
HF ⊗HB as differential coalgebras, the coalgebra module of primitives
PE2 = PHF ⊕ PHB. Since elements in HB cannot be in the image of
a differential, the only possibility for targets of nonzero differentials is in
HF . But this is ruled out by the hypothesis of totally nonhomologous to
zero. Hence, E2 = E3 and likewise

E2 = E3 = · · · = E∞ = HF ⊗HB

as coalgebras. Hence, the edge homomorphism HF → PHB(E∞) is an iso-
morphism. Thus, the inclusion HF → PHB(HE) is also an isomorphism.

The splitting HE → HF defines a unique map of HB comodules

HE → HE ⊗HB → HF ⊗HB

such that PHB(HE)→ PHB(HF ⊗HB) = HF is an isomorphism. Since
HB is R projective, it follows from Corollary 10.9.4 that HE → HF ⊗HB
is a monomorphism of HB modules. But this is not enough. Filter HE by
the filtration coming from the Serre filtration on the chains of E. Then the
map of associated graded objects is the isomorphism

E0HE = E∞ → E0(HF ⊗HB) = HF ⊗HB.

Hence, the map HE → HF ⊗HB is an isomorphism of comodules. �

Definition 10.24.5. Let f : B → C be a morphism of connected coal-
gebras and assume that B is R flat. Then A = B2CR = kernel B →
B ⊗B → B ⊗ C → B ⊗ C is called the coalgebra kernel of f .

We need a lemma to make some sense of this.

Lemma 10.24.6.

(a) If B has a commutative diagonal, then A is a subcoalgebra of B.

(b) The composition A→ B → C factors through the ground ring R.

(c) If g : D → B is a morphism of coalgebras such that the composition
factors as f · g : D → R→ C, then g factors through A.

Proof:
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(a) If the diagonal is commutative, then

A = B2CR = R2CB.

We need to show that ∆(A) ⊆ A⊗A.
Since

A⊗A = B ⊗A
⋂
B ⊗A,

symmetry implies that it is sufficient to show that ∆(A) ⊆ B ⊗A.
Let x εA and write

∆(x) = x⊗ 1 + 1⊗ x+ Σx′ ⊗ x′′

∆(x′) = x′ ⊗ 1 + 1⊗ x′ + Σy′ ⊗ y′′.

Note that

B ⊗A ∆−→ B ⊗B 1⊗∆−−−→ B ⊗⊗C ⊗B

is exact. Associativity gives the equality

f = (1⊗∆) ·∆ = (∆⊗ 1) ·∆.

Since Σy′ ⊗ y′′ is a linear function of x′, observe that

f(x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x+ Σ1⊗ x′ ⊗ x′′

+ Σ(x′ ⊗ 1⊗ x′′ + 1⊗ x′ ⊗ x′′ + Σy′ ⊗ y′′ ⊗ x′′) = 0.

Hence, ∆(A) ⊆ A⊗A.

(b) It is clear that A ⊆ kernel(f).

(c) Since the composition f · g : D → B → C is 0 and since g is a map
of coalgebras, it follows that g(D) ⊆ A. �

Hence we should use the notion of coalgebra kernel only if the diagonal
is commutative. Let f : B → C be a morphism of connected Hopf algebras
with commutative diagonals. Then the above coalgebra kernel A is actually
a sub-Hopf algebra of B and is called the Hopf algebra kernel. We need to
check:

Lemma 10.24.7. A is a subalgebra of B.

Proof: Let x, y εB and write

∆(x) = x⊗ 1 + 1⊗ x+ Σx′ ⊗ x′′

∆(y) = y ⊗ 1 + 1⊗ y + Σy′ ⊗ y′′.

If x εA, then B ⊗B → B ⊗ C sends both 1⊗ x and Σx′ ⊗ x′′ to 0. If y εA
a similar statement holds.
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We compute ∆(xy) = ∆(x) ·∆(y) and see that xy εA. Hence A is a subal-
gebra. �

Proposition 10.24.8. Let F → E → B be a fibration sequence of con-
nected simplicial monoids with B 1-reduced. Assume that there is a short
exact sequence of graded Lie algebras

0→ L′ → L→ L′′ → 0

which are R free and such that the map HE → HB is isomorphic to the
map of universal enveloping algebras UL→ UL′′. Then there is an isomor-
phism of Hopf algebras

HF → UL′.

Proof: Since there is an isomorhism of coalgebras

UL ∼= UL′ ⊗ UL′′

and of UL′ modules, it follows that UL ∼= UL′ ⊗ UL′′ as UL′′ comodules
and that

CotorHB−n (HE,R) = CotorUL
′′

−n (UL,R)

=

{
0 if n ≥ 0

HE2HBR = UL2UL′′R = UL′ if n = 0

Hence, the edge homomorphism of the Eilenberg–Moore spectral sequence

HF = CotorCB(CE,R)→ CotorHB0 (HE,R) = HE2HBR = UL′

is an isomorphism of Hopf algebras.

Note that one can be certain that HF = UL′ as Hopf algebras since it is
embedded as a subHopf algebra of HE = UL. �

Remark. Proposition 10.24.8 has the following algebraic version. Suppose
that

A→ B → C

is a sequence of maps of simply connected commutative differential coal-
gebras and that, for all D = A,B,C, we have that CotorD(R,R) is R-
projective. Then all CotorD(R,R) are Hopf algebras with commutative
diagonal. Suppose in addition that the above sequence is a sequence of
differential Hopf algebras and that B = A⊗ C as an A module and C
comodule. Then Exercise 3 in Section 10.13 says that there is a twisting
morphism τ : C → A such that B = A⊗τ C. Hence, the homology of the
fibre is

HA = H(B2CR) = CotorC(B,R).
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If, in addition, all HD are projective over R and there is a Hopf algebra X
such that

HB = X ⊗HC

as Hopf algebras, then the edge homomorphism in the Eilenberg–Moore
spectral sequence is an isomorphism

CotorC(B,R)→ CotorHC0 (HB,R) = HB2HCR = X

and hence

HA = CotorC(B,R) = X.

Since HA = X embedds in the Hopf algebra HB, we know that HA = X
as Hopf algebras.

Exercises

(1) Prove Lemma 10.24.1.

(2) Prove Lemma 10.24.4.

10.25 Suspension in the Eilenberg–Moore models

Let ΩX
ι−→ PX

π−→ X be the path space fibration sequence. Then the homol-
ogy suspension is the map

σ : Hn−1(ΩX)
∂−1

−−→ Hn(PX,ΩX)
π−→ Hn(X).

The homology suspension provides an important connection between the
Eilenberg–Moore models and geometry. Under some circumstances it can
be used to compute the coalgebra structure in the homology of a loop
space. In what follows, we shall relate this homology suspension to the
Eilenberg–Moore spectral sequence and prove the result originally due to
George Whitehead [134].

Proposition 10.25.1. The homology suspension factors through the inde-
composables of the loop space and the primitives of the base, that is, we have
a factorization

σ : H(ΩX)→ QH(ΩX)
σ−→ PHX ⊆ H(X).

The homology suspension is inverse to the transgression τ in the homology
Serre spectral sequence in the sense that the following diagram commutes:
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Hn−1ΩX
σ−→ HnX

↓
⋃
|

En0,n−1
τ=dn←−−− Enn,0

Anticipating Proposition 10.25.1 for the moment, we shall define:

Definition 10.25.2. If the map σ : QH(ΩX)→ PHX is an isomorphism,
we shall say that the loop space is transgressive and, in this case, any lift
of the transgression to a map τ : PHX → H(ΩX) generates the homology
of the loop space as an algebra. In general, elements in the image of the
homology suspension are called transgressive elements.

Recall also that the homology suspension is related to the ordinary suspen-
sion ΣX of a space in the following manner.

The suspension of a space is defined by the cofibration sequence X →
CX → ΣX = CX/X where CX = X × I/ ∗ ×I ∪X × 0 is the cone and
X ≡ X × 1. This sequence maps to the path space fibration sequence
ΩΣX → PΣX → ΣX via the three maps:

1 : ΣX → ΣX,

CX → PΣX, 〈x, t〉 7→ ω〈x,t〉,

where ω〈x,t〉(s) = 〈x, s〉, 0 ≤ s ≤ t and ω〈x,t〉(s) = 〈x, t〉, t ≤ s ≤ 1 is the
path which stops at 〈x, t〉 and

Σ : X → ΩΣX

is the map which is the suspension, x 7→ ω〈x,1〉 = 〈x, 〉.

In particular, given a map f : ΣX → Y , one gets a commutative diagram

X → CX → ΣX
↓ Σ ↓ ↓=

ΩΣX → PΣX
π−→ ΣX

↓ Ωf ↓ ↓ f
ΩY → PY

π−→ Y

Hence, if g : X → ΩY is the adjoint of f , then the composition σ · g :
HX → HΩY → HY is the same as the composition of Σf with the usual
suspension isomorphism Σf · s : HX → HΣX → HY. In particular, the
Bott–Samelson theorem gives:

Proposition 10.25.3. If HX is a free R module, then the loop space ΩΣX
is transgressive and the suspension Σ : HX → H(ΩΣX) provides a lift of
the transgression.
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It is clear from the above that a homology suspension arises whenever we
have a sequence of augmented complexes A

ι−→ B
π−→ C (that is, the compo-

sition π · ι = 0 on the augmentation ideals) where A is a subcomplex of an
acyclic complex B. The homology suspension given by the composition

HA
∂'←−− H(B,A)

π−→ HC

and is clearly a natural transformation on the category of such sequences.

In particular, the sequence of normalized chain complexes C(ΩX)→
C(PX)→ C(X) = C is such a sequence. If we embed the C comodule
C(PX) into an augmented acyclic construction E = F ⊗ C with fibre F
and base C, we get another such sequence F → E → C and a map of the
first such sequence to this sequence. The map C(ΩX)→ F is a homology
isomorphism.

Hence, the geometric version of the homology suspension defined above is
isomorphic to this algebraic homology suspension σ : HF → H(E,F )→
HC defined for an acyclic construction E = F ⊗ C.

In more detail, this clearly agrees with the following definition of the homol-
ogy suspension:

Given x εF with dx = 0, the fact that E is acyclic means that we can
write x⊗ 1 = dz where z = 1⊗ c+ w ⊗ 1 + Σy ⊗ e and where y, w ε F and
e, c ε C.

If π : E → C is the natural map, we define the homology suspension of x
to be the homology class of π(z) = c, that is, σ[x] = [c] ε HC.

Finally, let C be an R free differential coalgebra and consider the Eilenberg–
Moore spectral sequence associated to the differential Cotor, CotorC(R,R).
If CotorC(R,R) = H(ΩX), then we have the homology suspension origi-
nally considered. Or CotorC(R,R) could be HF for an acyclic construction
F ⊗ C as above. In both cases, we want to relate these homology suspen-
sions to the Eilenberg–Moore spectral sequence. We have:

Proposition 10.25.4. The homology suspension is the composition

σ : CotorC(R,R) = F−1 → F−1/F−2 = E∞−1 ⊆ E2
−1

= CotorHC−1 (R,R) = PHC ⊆ HC

where F−n is the filtration induced by resolution degree.

To see this, we use the acyclic construction ΩC ⊗τ C. Given a cycle x in
ΩC, write as above

x⊗ 1 = dz
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where z = 1⊗ c+ w ⊗ 1 + Σy ⊗ e and where y, w ε ΩC and e, c ε C.
Reduce this equation mod F−2 and get

x⊗ 1 = dz ≡ s−1c⊗ 1 + Σ(±s−1c′ ⊗ c′′) + 1⊗ dc+ dw ⊗ 1

where ∆(c) = Σc′ ⊗ c′′ is the reduced diagonal. That is, dc = 0 and c is
primitive in C. Thus

[x]⊗ 1 = [s−1c]⊗ 1 = d(1⊗ [c])

in ΩHC ⊗τ HC. Thus, the homology suspension is as described in 10.25.4.

Remark. Note that [s−1c] is a lift of the transgression of the primitive
cycle c.

We immediately get the factorization through the primitives in Whitehead’s
Proposition 10.25.1. On the other hand, the suspension factors through
QH(CotorC(R,R)) since the square of F−1 is contained in F−2. This proves
Proposition 10.25.1.

For future reference, we record the following property of the Eilenberg–
Moore spectral sequence:

Proposition 10.25.5. If E2 = CotorHC(R,R) is generated as an algebra
by homological degree −1, that is, by E2

−1 = s−1CotorHC(R,R) = s−1PHC,
and the homology suspension σ : QCotorC(R,R)→ PHC is surjective
onto the primitives of the homology, then the Eilenberg–Moore spectral
sequence collapses, E2 = E∞, and CotorC(R,R) is transgressive, that is,
QCotorC(R,R)→ PHC is an isomorphism.

Exercises

(1) Prove Proposition 10.25.5.

(2) Let Y be a simply connected space and suppose there is a map f :
ΣX → Y which in homology is surjective onto the primitives. Show
that, if E2 is generated as an algebra by homological degree -1, then the
Eilenberg–Moore spectral sequence which abuts to H(ΩY ) collapses,
that is, E2 = E∞.

10.26 The Bott–Samelson theorem and double loops of spheres

We are going to use the Eilenberg–Moore models to compute the homol-
ogy of various loop spaces. Throughout this section, we are going to do
computations of loop space homology, not with spectral sequences, but by
replacing the normalized chains on the base space with homology isomor-
phic differential coalgebras with zero differential.
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As a first example, we are going to use the Eilenberg–Moore models to give
another proof of the Bott–Samelson theorem. We begin by showing that
the normalized chains on any connected suspension with R free homology
is homology isomorphic to a differential coalgebra with zero differential.

Lemma 10.26.1. If X is connected and HX is R free, then there is a
homology isomorphism of differential coalgebras HΣX → CN (ΣX).

Proof: We may assume that X is a simplicial set with a unique 0-vertex.
Form the model for the suspension ΣX = x ∗X/X, which is the quotient of
the cone CX = x ∗X. Simplices in the cone are of two kinds, n-simplices τ
in X and cones x ∗ τ which are n+ 1-simplices. The face operators are the
usual on τ and, on x ∗ τ , they are d0(x ∗ τ) = τ and, for i > 0, di(x ∗ τ) =
x ∗ diτ . There are similar formulas for the degeneracies.

A back n+ 1− i-face on an n+ 1-simplex x ∗ τ always involves d0 unless it
is a back n+ 1 face. Hence, in ΣX, it is a point. Hence, in ΣX it is degen-
erate unless it has dimension n+ 1 or 0. Hence, in ΣX, the Alexander–
Whitney map

∆(x ∗ τ) = Σn+1
i=0 i(x ∗ τ)⊗ (x ∗ τ)n−i

= n+1(x ∗ τ)⊗ (x ∗ τ)0 +0 (x ∗ τ)⊗ (x ∗ τ)n+1

= (x ∗ τ)⊗ 1 + 1⊗ (x ∗ τ).

Hence, the differential coalgebra CN (ΣX) is primitive, that is, it consists
entirely of the unit and primitive elements. Since HX is free, we can pick an
embedding HX ⊆ ZCN (ΣX) ⊆ CN (ΣX) which is clearly both a homology
isomorphism and an inclusion of coalgebras. �

Bott–Samelson theorem 10.26.2. If X is a connected space and HX
is R free, then there is an isomorphism of algebras

H(ΩΣX) = T (HX).

Furthermore, the Hopf algebra structure is determined by the suspension
map Σ : X → ΩΣX, that is, the inclusion HX → T (H) is a map of coal-
gebras.

Proof: Since HX is R free, the homological invariance of differential Cotor
and Lemma 10.26.1 imply that

H(ΩΣX) = CotorC(ΣX)(R,R) = CotorHΣX(R,R)

as algebras. SinceHΣX has zero differential andHΣX is a primitive coalge-
bra, the internal and external differentials in ΩHΣX are both zero. Hence,

H(ΩΣX) = ΩHΣX = T (s−1HΣX)
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as algebras where s−1 : HΣX → HΩΣX is any lift of the transgression.
Since Σ : HX → H(ΩΣX) is a canonical lift of the transgression,

H(ΩΣX) = T (HX)

as algebras.

Since Σ : X → ΩΣX is a map of spaces, it must be a map of coalgebras
and the Hopf algebra structure follows. �

Remark. It should be noted that, in the above proof, the algebra structure
of H(ΩΣX) came directly from the algebra structure of differential Cotor.
This depended entirely on the coalgebra structure of the base H(ΣX),
which in this case was always trivial. But the result implies that the coal-
gebra structure of H(ΩΣX) depends on the coalgebra structure of HX. To
determine this coalgebra structure, geometric properties of the homology
suspension had to be invoked.

We turn to the homology of the double loop spaces of spheres. We assert:

Proposition 10.26.3. With any coefficients R, there is a homology iso-
morphism of differential coalgebras

H(ΩSm+1)→ C(ΩSm+1)

and hence

H(Ω2Sm+1) = CotorH(ΩSm+1)(R,R)

as algebras.

Recalling that H(ΩSm+1) = T (ι), this proposition has the following corol-
laries which determine the mod p homology of the double loops on any
sphere. We begin with the computation of the odd dimensional case.

Corollary 10.26.4. Let p be a prime.

(a) If p is odd, there is an isomorphism of primitively generated Hopf
algebras

H(Ω2S2n+1;Z/pZ) = E(τ0, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

where deg(τi) = 2pin− 1 and deg(σi) = 2pin− 2. The homology

suspensions are στi = ιp
i

and σσi = 0.

The mod p homology Bockstein spectral sequence has first Bockstein
differentials given by β1τ0 = 0 and β1τi = σi for i ≥ 1.

(b) If p = 2, there is an isomorphism of primitively generated Hopf alge-
bras

H(Ω2Sm+1;Z/2Z) = P (ξ0, ξ2, . . . )



434 Differential homological algebra

where deg(ξi) = 2im− 1. The homology suspensions are σξi = ι2
i
.

If m is even, the mod 2 homology Bockstein spectral sequence has first
Bockstein differentials given by β1ξ0 = 0 and β1ξi = (ξi−1)2 for i ≥ 1.

The Bockstein spectral sequence enables us to determine the order of the
torsion in the integral homology. This is a consequence of the fact that
the first Bockstein differentials in Corollary 10.26.4 make the E1 term of
the homology Bockstein spectral sequence into an essential acyclic Hopf
algebra. For p odd, it is a tensor product of E(τ0) and the acyclic subHopf
algebras E(τi)⊗ P (σi) for i ≥ 1. For p = 2 and m odd, introduce the two
stage filtration which starts with all even degrees and ends with everything.
Then the associated graded object of E1 is a tensor product of E(ξ0) and
the acylic subHopf algebras E(ξi)⊗ P (ξ2

i−1) for i ≥ 1.

Corollary 10.26.5. If p is any prime and we write the homology localized
at p as

H(Ω2S2n+1) = Z(p) ⊕ V

then pV = 0, that is, the integral homology of this double loop space has all
p torsion of order exactly p.

Finally, the double loop space on even dimensional spheres reduces to the
odd dimensional case:

Corollary 10.26.6. If p is any prime, then there is an isomorphism of
primitively generated Hopf algebras over Z/pZ

H(Ω2S2n+2) = H(ΩS2n+1)⊗H(Ω2S4n+3).

Proof of 10.26.3: Let x be a primitive cycle in the normalized chains
C(ΩSm+1) which represents the generator ι of the homology H(ΩSm+1) =
T (ι). Such exists since it is contained in the m− 1 connected Eilenberg
subcomplex which is homotopy equivalent to the simplicial set of singular
simplices of ΩSm+1. Now define a homology isomorphism of differential
coalgebras

θ : T (ι)→ C(ΩSm+1)

by θ(ιk) = xk using the fact that the chains are an associative differential
Hopf algebra. This map is clearly a homology isomorphism of differential
coalgebras.

Remark. Let G be the chains on an associative H-space and recall the
fact that the Eilenberg–Zilber map ∇ : G⊗G→ G×G is a map of dif-

ferential coalgebras. Hence, the composition G⊗G ∇−→ G×G µ−→ G gives G
the structure of a differential Hopf algebra.
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Since the homology H(ΩSm+1) is free over R, we have

H(Ω2Sm+1) = CotorC(ΩSm+1)(R,R) = CotorH(ΩSm+1)(R,R)

as algebras. This proves 10.26.3.

Proof of 10.26.4: Given an element x and a positive integer k, let

Tk(x) = 〈1, x, x2, . . . , xk−1〉 ⊆ T (x)

be the subcoalgebra of the tensor Hopf algebra spanned by the powers
1, x, x2, . . . , xk−1. Observe that:

Lemma 10.26.7. Let the coefficients be Z/pZ where p is a prime.

(a) If p is odd, then

H(ΩS2n+1) = T (ι) =

∞⊗
k=0

Tp(ι
pk)

as coalgebras.

(b) If p = 2, then

H(ΩSm+1) = T (ι) =

∞⊗
k=0

T2(ι2
k

)

as coalgebras.

The proof of the above lemma is immediate. For example, when p is odd,
observe that each Tp(ι

pk) is a subcoalgebra of T (ι) and note that writing
n = akp

k + ak−1p
k−1 + · · ·+ a0 in terms of its dyadic expansion and then

using this to express xn as a product says that multiplication gives an
isomorphism

m⊗
k=0

Tp(ι
pk)→ T (ι)

on each finite tensor product. The map is a map of coalgebras since T (ι)
is a Hopf algebra. The isomorphism extends to the infinite tensor product
since it is the union of the finite tensor products.

The Künneth theorem implies that with Z/pZ coefficients:

Lemma 10.26.8.

(a) If p is odd, then

H(Ω2S2n+1) =

∞⊗
k=0

CotorTp(ιp
k

)(Z/pZ,Z/pZ)

as algebras.
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(b) If p = 2, then

H(Ω2Sm+1) =

∞⊗
k=0

CotorT2(ι2
k

)(Z/2Z,Z/2Z)

as algebras.
Caution should be taken with the coalgebra structures above. It might
be that these are not isomorphisms of Hopf algebras. It turns out that
they in fact are isomorphisms of Hopf algebras but, until we know
better, it could be otherwise.

The basic computation is:

Lemma 10.26.9. As a Hopf algebra:

(a) If p is an odd prime and x has even degree 2n, then

CotorTp(x)(Z/pZ,Z/pZ) = E(s−1x)⊗ P (z)

where deg(s−1x) = 2n− 1,deg(z) = 2pn− 2 and the homology sus-
pensions are σ(s−1x) = x, σ(z) = 0.

(b) If p = 2 and x has arbitrary degree m, then

CotorT2(x)(Z/2Z,Z/2Z) = P (s−1x)

where deg(s−1x) = m− 1, and the homology suspension is
σ(s−1x) = x.

This lemma proves the part of Corollary 10.26.4 that is concerned with the
algebra structure. We proceed to prove this lemma using duality.

If C is a finite type commutative coalgebra which is free over R, then the
dual A = C∗ is a commutative algebra and we have that TorA(R,R) is a
Hopf algebra which is dual to the Hopf algebra CotorC(R,R). If we use
Z(p) coefficients and set C = Tp(x) we get that A = Pp(y) = P (y)/(yp) =
the truncated polynomial algebra with deg(y) = deg(x).

With p an odd prime and Z(p) coefficients, consider the complex

R = A⊗ E(s)⊗ Γ(t)

with deg(s) = deg(x)− 1, deg(t) = p deg(x) and differential the derivation
defined by

dy = 0, ds = y, dt = syp−1.

R is an acyclic complex and a differential algebra. It provides a resolution
of Z(p) over the algebra A and the multiplication is a map of resolutions

R⊗R → R
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and induces a multiplication on

R⊗A Z(p) = E(s)⊗ Γ(t).

Since the latter has zero differential,

TorA(Z(p),Z(p)) = E(s)⊗ Γ(t)

as algebras.

If p is odd, both the elements s and t must be primitive for degree reasons.
Hence,in this case, we have

TorA(Z(p),Z(p)) = E(s)⊗ Γ(t)

as Hopf algebras. It follows that

CotorTp(x)(Z(p),Z(p)) = E(s−1x)⊗ P (z)

as Hopf algebras and the homology suspensions are as indicated. Of course,
we can reduce this result mod p to the desired result with Z/pZ coefficients.

If p = 2, consider the complex over the ring Z/2Z given by

R = A⊗ Γ[s]

with deg(s) = deg(x)− 1 and with the derivation defined by

dy = 0, dγk(s) = yγk−1(s).

In particular, we have

dγ1(s) = ds = yγ0(s) = y, dγ2(s) = yγ1(s) = ys.

It is an acyclic differential Hopf algebra. In particular, both the multipli-
cation and the comultiplication

R⊗R → R, R → R⊗R

are maps of resolutions. Note that y and s are primitive but

∆(γ2(s)) = γ2(s)⊗ 1 + s⊗ s+ 1⊗ γ2(s).

This is dual to the statement that the square of the 1 dimensional class is
the 2 dimensional class.

It follows that

TorA(Z/2Z,Z/2Z) = Γ[s]

as a Hopf algebra.

Hence,

CotorT2(x)(Z/2Z,Z/2Z) = P (s−1x)
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as a Hopf algebra.

The fact that the Hopf algebras in Corollary 10.26.4 are primitively gen-
erated follows from a result of Milnor and Moore which we do not prove
here.

Proposition 10.26.10. Suppose that B is a connected Hopf algebra over
Z/pZ with commutative multiplication. Let ξ : B → B be the p-th power
operation ξ(x) = xp and consider the subHopf algebra ξB ⊆ B of all p-th
powers. There is an exact sequence

0→ P (ξB)→ P (B)→ Q(B).

In particular, the kernel of the map P (B)→ Q(B) is concentrated in
degrees divisible by p.

The dual of this proposition implies that all the generators in Corollary
10.26.4 are primitive.

We complete the proof of Corollary 10.26.4 by determining the first Bock-
stein differentials β1. We start with an explicit computation over Z(p).

Lemma 10.26.11. For all primes p,

H2pn−2(Ω2S2n+1;Z(p)) = Z/pZ.

Proof: We use the cohomology version of the Eilenberg–Moore model, that
is,

H∗(Ω2S2n+1;Z(p)) = TorH∗(ΩS2n+1)(Z(p),Z(p))

where H∗(ΩS2n+1) = Γ(y) = A with deg(y) = 2n.

Let R be the free A resolution of Z(p) which is the differential algebra

A⊗ E(s)⊗ E(t)⊗ Γ(w)⊗ · · ·

with differentials

dy = 0, d(γi(y)) = 0,

ds = y, d(sγi(y)) = γ1(y)γi(y) = (i+ 1)γi+1,

d(t) = γp(y), d(w) = pt− sγp−1, · · ·

and degrees

deg(y) = 2n, deg(s) = 2n− 1, deg(t) = 2pn− 1, deg(w) = 2pn− 2, . . . .

The generators y, t and w are all introduced to kill cycles which occur in
the resolution.
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Then H∗(Ω2S2n+1) with Z(p) coefficients is the homology of

Z(p) ⊗A R = E(s)⊗ E(t)⊗ Γ(w)⊗ · · ·

with differentials

d(s) = 0, d(t) = 0, d(w) = pt, · · · ·

It follows that

H2pn−1(Ω2S2n+1;Z(p)) = Z/pZ

and thus

H2pn−2(Ω2S2n+1;Z(p)) = Z/pZ.

�

Lemma 10.26.11 is just another way of saying that the first Bockstein dif-
ferentials in the mod p homology of Ω2S2n+1 are

β1τ1 = σ1 if p is odd

β1ξ1 = ξ2
0 if p = 2 and m is even.

Now consider the Hopf invariant fibration sequence

Jp−1(S2n)→ ΩS2n+1 hp−→ ΩS2pn+1

of spaces localized at p. Recall that

Jp−1(S2n) = S2n ∪ e4n ∪ · · · ∪ e2(p−1)n

(so that, if p = 2, J1(S2n) = S2n) and that the mod p homology of the
Hopf fibration sequence is

Tp(ι)→ T (ι)→ T (ιp).

Since T (ι) = Tp(ι)⊗ T (ιp) as coalgebras, the fibration is totally nonhomol-
ogous to zero and

H(ΩS2n+1) = H(Jp−1(S2n))⊗H(ΩS2pn+1)

with mod p coefficients. Since Jp−1(S2n) is a skeleton of ΩS2n+1, we observe
that the mod p homology isomorphism of differential coalgebras

T (ι) = H(ΩS2n+1)→ CΩS2n+1)

restricts to a mod p homology isomorphism of coalgebras

Tp(ι) = H(Jp−1(S2n))→ C(Jp−1(S2n)).

Hence, in the next lemma, all the homologies of the loop spaces are given
by Cotor with respect to the homologies of the bases and we get
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Lemma 10.26.12. As algebra with mod p coefficients

H(Ω2S2n+1) = H(|ΩJp−1(S2n))⊗H(Ω2S2pn+1)

as algebras and the loops on the p-th Hopf invariant

Ωhp : Ω2S2n+1 → Ω2S2np+1

induces in homology the projection on the second tensor factor.

If p is odd, the above states that

H(Ω2S2n+1) = {E(τ0)⊗ P (σ1)} ⊗

{
E(τ1)⊗

∞⊗
i=2

E(τi)⊗ P (σi)

}
.

where the projection on the tensor factors beginning with E(τ1) is induced
by the loops on the Hopf invariant. We know that β1τ1 = σ1 in the case
of Ω2S2n+1. Since we know this result also for Ω2S2pn+1, we know that
β1τ2 must project to σ2. But these are primitive classes and so the choice
is unique, β1τ2 = σ2 in the case of Ω2S2n+1 also. Induction shows that
β1τi = σi for all i ≥ 1.

If p = 2 and m is even, a similar proof shows that β1ξi = ξ2
i−1 for all i ≥ 1.

This completes the proof of Corollary 10.26.4 when m is even.

Finally, we prove the result in Corollary 10.26.6 on double loop spaces of
even dimensional spheres. If p = 2, this is already done in Corollary 10.26.4.
If p is odd, then 10.26.6 follows from the fact that

ΩS2n+2 ' S2n+1 × ΩS4n+3

localized at an odd prime p.

Exercise

(1) (a) If p is an odd prime, then show that, with respect to the first
Bockstein differential β1, the isomorphism of mod p homology

H(Ω2S2n+2) = H(ΩS2n+1)⊗H(Ω2S4n+3)

is an isomorphism of differential Hopf algebras.

(b) If p = 2, show that

H(Ω2S2n+2) = H(ΩS2n+1)⊗H(Ω2S4n+3)

is an isomorphism of Hopf algebras and that, in the notation of
Corollary 10.26.4, the Bockstein differentials are given by

β1ξ0 = β1ξ1 = 0
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and for i ≥ 2, β1ξ = ξ2
i−1 modulo the ideal generated by ξ0. (Hint:

Use the computation of rational homology and the Hopf fibration
sequence

S2n+1 → ΩS2n+2 → ΩS4n+3.)

10.27 Special unitary groups and their loop spaces

In this section we compute the homology of some of the special unitary
groups and then use this to compute the homology of their loop spaces.
It is very useful to find a generating complex for the Lie group if there is
one. Loosely speaking, a generating complex is a subspace whose reduced
homology generates the homology Pontrjagin ring of the Lie group. It is
often the case that the homology of the Lie group is the exterior algebra
generated by the homology of the generating complex. The generating com-
plex has two uses. First, it controls the coalgebra structure of the homology
of the Lie group and, second, via the coalgebra structure and the homology
suspension, it enables the computation of the homology of the loop space.

First consider the case of the unitary group and the special unitary group.
Let V be a finite dimensional vector space over the complex number field
C and suppose we are given a positive definite Hermitian form on V , that
is, for all x, y εV , there is a complex number 〈x, y〉 which is biadditive,

〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉,

conjugate symmetric, for all x,

〈y, x〉 = 〈x, y〉,

bilinear, for all complex numbers α,

〈αx, y〉 = α〈x, y〉

and positive definite

〈x, x〉 ≥ 0

with

〈x, x〉 = 0

only if x = 0.

Definition 10.27.1. The unitary group U(V ) is the group of all invert-
ible linear operators T on V which preserve the Hermitian form, that is,
〈Tx, Ty〉 = 〈x, y〉 for all x, y ε V. The special unitary group SU(V ) is the
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subgroup of U(V ) consisting of all unitary transformations of determinant
1.

In the case x = (x1, . . . , xn), y = (y1, . . . , yn) εV = Cn, we set

〈x, y〉 = Σni=1xiyi

and write

U(n) = U(Cn), SU(n) = SU(Cn).

In particular, the standard basis e1, . . . , en for Cn is orthonormal

〈ei, ej〉 = δij .

The generating complexes for the special unitary groups are given by the
suspensions of the complex projective spaces.

Definition 10.27.2. The complex projective space CP (V ) is the space of
all complex lines in V . If x is a nonzero vector in V , we shall use 〈x〉 =
{λx |λ εC } to denote the complex line spanned by x. We write CPn−1 =
CP (Cn).

Given a unit complex number u ε S1 ⊆ C, |u| = 1 and a complex line 〈x〉
represented by a unit vector x in V , we define a unitary operator T (u, 〈x〉)
in U(V ) by

T (u, 〈x〉)(y) = [u〈y, x〉x] + [y − 〈y, x〉x],

that is, T (u, 〈x〉) multiplies the x component of y by the scalar u and is
the identity on the component of y which is orthogonal to x. Clearly, the
determinant of T (u, 〈x〉) is u. In order to get a continous map

Θ : S1 × CPn−1 → SU(n),

we define

Θ(u, 〈x〉) = T (u, 〈x〉) · T (u−1, 〈e1〉).

We note that we have a factorization

Θ = Θ · π : S1 × CPn−1 → S1 ∧ CPn−1 → SU(n)

and we claim that Θ is the embedding of a generating complex.

Consider the principal bundles

SU(n− 1)→ SU(n)
π−→ S2n−1

where n ≥ 2 and π(T ) = Ten : The following two propositions show that
S1 ∧ CPn−1 is a generating complex for SU(n) with any coefficients:
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Proposition 10.27.3. The map π : SU(n)→ S2n−1 restricts to a factor-
ization

S1 ∧ CPn−1 → S1 ∧ CPn−1/S1 ∧ CPn−2 → S2n−1

where the second map is a homeomorphism.

Proposition 10.27.4. With any coefficients, the homology

HSU(n) = E[x3, . . . , x2n−1]

as an algebra where deg(x2i−1) = 2i− 1 and the map π : SU(n)→ S2n−1

sends x2n−1 to a generator of the homology of the sphere.

The two propositions above can be combined so that the Hopf algebra
structure is determined.

Corollary 10.27.5. With any coefficients, there is an isomorphism of
Hopf algebras

E[H(S1 ∧ CPn−1)]→ HSU(n)

where E[H(S1 ∧ CPn−1)] is the exterior algebra with the coalgebra struc-
ture being the unique multiplicative structure given by the diagonal on the
generators in H(S1 ∧ CPn−1). But, since S1 ∧ CPn−1 is a suspension, this
is a primitively generated Hopf algebra.

Proof of Proposition 10.27.3: First we note that n ≥ 2 implies

π ·Θ(u, 〈x〉) = [u〈en, x〉x+ [en − 〈en, x〉x]

= (u− 1)〈en, x〉x+ en,

from which it follows that the inverse image of en is precisely when u = 1
or x ⊥ en, that is, it consists of

1× CPn−1 ∪ S1 × CPn−2.

Since the domain is compact,

S1 ∧ CPn−1/S1 ∧ CPn−2 → S2n−1

will be a homeomorphism if and only if it is one-to-one and onto away from
the basepoint.

To see that it is one-to-one, let u 6= 1 and 〈x, en〉 6= 0, |x| = 1 and suppose
that

en + (u− 1)〈en, x〉x = e 6= en.

Then

(u− 1)〈en, x〉x = e− en
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and the line 〈x〉 = 〈e− en〉 is determined by e.

That is,

x = α(e− en)

from which we get

|α|2 =
1

|e− en|2
.

Substituting these into the previous equation we get

u = 1 +
|e− en|2

〈en, e〉 − 1

and thus u is determined by e. Thus the map is one-to-one away from the
basepoint.

To see that the map is onto away from the basepoint, let e 6= en |e| = 1 and
define u and x by the formulas

x = α(e− en), |α|2 = 1
|e−en|2

u = 1 + |e−en|2
〈en,e〉−1 .

Clearly, 〈en, x〉 6= 0 and |x| = 1, u 6= 1. If it is in the domain, it is clear
that π ·Θ(u, 〈x〉) = e. So it suffices to show that |u| = 1. Write u = 1 + z
so that

|u|2 = uu = 1 + z + z + zz.

The verification that z + z + zz = 0 is a simple exercise and finishes the
proof that the map is onto. �

Proof of Proposition 10.27.4 and Corollary 10.27.5: Let x1, . . . , x2n−1 be a
basis for HCPn−1 with x2i−1 in dimension 2i− 1. The inductive statement
is to show that

HSU(n) = E[x2n−1]⊗HSU(n− 1)

as Hopf algebras.

Since SU(1) = {e}, it is trivially true for n = 1. Assume that the result is
true for n− 1 and that n ≥ 2.

Since SU(n− 1)→ SU(n)
π−→ S2n−1 is a principal bundle, the homology

Serre spectral sequence is a spectral sequence of HSU(n− 1) modules and
also of coalgebras. Hence, the existence of a generating complex immedi-
ately gives that the homology Serre spectral sequence collapses, that is,
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E2 = E∞, and hence that

HSU(n) = E[x2n−1]⊗HSU(n− 1)

as HSU(n− 1) modules. (This can also be seen by the fact that
d2n−1x2n−1 ε H2n−2SU(n− 1)) must be a primitive element and that there
are none in that dimension.)

Hence, the cohomology Serre spectral sequence (which is the dual of the
homolgy Serre spectral sequence) also collapses and

H∗SU(n) = E[z2n−1]⊗H∗SU(n− 1)

as E[z2n−1] modules. Because of the graded commutativity of the coho-
mology ring, this will be an isomorphism of algebras if we know that
(z2n−1)2 = 0. But graded commutativity implies that 2z2 = 0 for odd
dimensional cohomology classes. Since there is no 2 torsion, (z2n−1)2 = 0
and

H∗SU(n) = E[z2n−1]⊗H∗SU(n− 1)

as algebras.

Dually,

HSU(n) = E[x2n−1]⊗HSU(n− 1)

as coalgebras. In particular, they are all primitively generated. Now, in
order to show that this is an isomorphism of Hopf algebras, it suffices to
check that

[x2n−1, x2j−1] = x2n−1x2j−1 + x2j−1x2n−1 = 0 for j ≤ n

and

x2
2n−1 = 0

Since these are even dimensional primitive elements, they must be zero.

This proves Proposition 10.27.4 and Corollary 10.27.5. �

The fact that the special unitary group has a suspension as its generat-
ing complex makes the computation of the homology of its loop space an
immediate consequence of the Eilenberg–Moore spectral sequence. Recall
the commutative diagram related to the suspension

CPn−1 → C(CPn−1) → ΣCPn−1

↓ ↓ ↓
ΩSU(n) → PSU(n) → SU(n)

where the left and right vertical maps are adjoints.
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In the Eilenberg–Moore spectral sequence with any coefficients R, we have

E2
−p = CotorHSU(n)(R,R) = CotorE[x3,...,x2n−1](R,R) = P [y2, . . . , y2n−2]

as algebras where the y2i have total degree 2i, homological degree −1 and
the homology suspensions are σ(y2i) = x2i+1. Since E2 is generated as an
algebra by homological degree −1 and since the homology suspension is
surjective onto the primitives, it follows that E2 = E∞ in the Eilenberg–
Moore spectral sequence. Since ΩSU(n) is homotopy commutative, so is
its Pontrjagin ring, there are no extension problems, and hence

Proposition 10.27.6. With any coefficients,

HΩSU(n) = P [y2, . . . , y2n−2] = P [HCPn−1]

as (nonprimitively generated) Hopf algebras, that is, the diagonal is given
on generators by

∆(y2k) = Σi+j=k y2i ⊗ y2j

where y0 = 1.

Note that it is a generating complex which determines the coalgebra struc-
ture in the above.

10.28 Special orthogonal groups

The homology of the special orthogonal group looks very different depend-
ing on whether we are localized at 2 or away from 2.

In the first case, we choose mod 2 coefficients and, much like the previous
case of the special unitary group, the special orthogonal group has a gen-
erating complex which is a projective space, not the suspension of one as
in the previous case. This means that the mod 2 homology of the special
orthogonal group is not primitively generated.

Let V be a finite dimensional real vector space with a positive definite
symmetric bilinear form 〈x, y〉. Then the orthogonal group O(V ) is the
group of all invertible linear operators T on V which preserve this form,
that is, 〈Tx, Ty〉 = 〈x, y〉 for all x, y in V , and the special orthogonal group
SO(V ) is the subgroup of all such linear operators of determinant one. We
write O(n) and SO(n) for the case when V = Rn with the standard positive
definite form

〈x, y〉 = Σni=1xiyi

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
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We define for n ≥ 1 continuous maps T : RPn−1 → O(n) by

T (〈x〉)(y) = −〈y, x〉x+ [y − 〈y, x〉x = −2〈y, x〉x+ y

where x is a unit vector which represents the real line 〈x〉 spanned by x
and y is any vector in Rn. Thus, T (〈x〉) is multiplication by −1 on the line
〈x〉 and is the identity on the orthogonal complement.

If n ≥ 2 and e1, . . . , en is the standard orthonormal basis, we define Θ :
RPn−1 → SO(n) by

Θ(〈x〉) = T (〈x〉) · T (〈e1〉).

For n ≥ 2 let π : SO(n)→ Sn−1 be the map defined by π(T ) = T (en) and

we have the principal bundle sequence SO(n− 1)→ SO(n)
π−→ Sn−1.

We have the following analogues of 10.27.3, 10.27.4, and 10.27.5.

Proposition 10.28.1. The map π : SO(n)→ Sn−1 restricts to a factor-
ization

RPn−1 → RPn−1/RPn−2 → Sn−1

where the second map is a homeomorphism.

Since this is a simpler variation of Proposition 10.27.3, we leave this propo-
sition as an exercise.

Proposition 10.28.2. With mod 2 coefficients, the homology

HSO(n) = E[x1, . . . , xn−1]

as an algebra where deg(xi) = i and the map π : SO(n)→ Sn−1 sends xn−1

to a generator of the homology of the sphere.

We shall prove Proposition 10.28.2 but first we note that, since RPn−1 is
a generating complex for the mod 2 homology of SO(n), it follows that
Propositions 10.28.1 and 10.28.2 have as an immediate consequence the
Hopf algebra structure of the mod 2 homology of SO(n).

Corollary 10.28.3. With mod 2 coefficients, there is an isomorphism of
Hopf algebras

E[HRPn−1]→ HSO(n)

where E[HRPn−1] is the exterior algebra with the coalgebra structure being
the unique multiplicative structure given by the diagonal on the generators
in HRPn−1. Thus,

∆(xk) = Σi+j=k xi ⊗ xj
where x0 = 1.
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Proof of Proposition 10.28.2: We use induction on n, the case n = 1 being
trivial.

The existence of a generating complex gives that

HSO(n) = E[xn−1]⊗HSO(n− 1)

as HSO(n− 1) modules. In fact, in the homology Serre spectral sequence
of the principal bundle SO(n− 1)→ SO(n)→ Sn−1, we have that

E∞ = E[xn−1]⊗HSO(n− 1)

as coalgebras. Hence, the primitives satisfy PE∞ = 〈xn−1〉 ⊕ PHSO(n−
1) and, since primitives of HSO(n) must be detected in the associated
graded E0HSO(n) = E∞, we have

PHSO(n) ⊆ 〈xn−1〉 ⊕ PHSO(n− 1).

Since the first violation of the following equations must be primitive, it
follows for dimensional reasons that they are valid:

[xn−1, xj−1] = 0, x2
n−1 = 0, j ≤ n.

Thus,

HSO(n) = E[xn−1]⊗HSO(n− 1)

as algebras. �

We now turn to the consideration of the homology of the special orthogonal
groups with Z[ 1

2 ] coefficients.

Proposition 10.28.4. With Z[ 1
2 ] coeficients,

(a)

HSO(2n+ 1) = E[t3, . . . , t4n−1]

as primitively generated Hopf algebras where the generators t4i−1

have degree 4i− 1.

(b)

HSO(2n+ 2) = E[t3, . . . , t4n−1, x2n+1]

as primitively generated Hopf algebras where the generator x2n+1

has degree 2n+ 1.

We remark that (a) implies (b) in a straightforward manner. Since the
previous generating complex RP 2n+1 ⊆ SO(2n+ 2) is an odd dimensional
projective space, we have that H2n+1(RP 2n+1;Z) ' Z and that the com-
posite map RP 2n+1 → SO(2n+ 2)→ S2n+1 maps the generator x2n+1 of
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this homology group to the generator of the homology group of the sphere.
Hence,

HSO(2n+ 2) = E[x2n+1]⊗HSO(2n+ 1)

as HSO(2n+ 1) modules. The same arguments as in the proof of Proposi-
tion 10.27.4 show that

H∗SO(2n+ 2) = E[z2n+1]⊗H∗SO(2n+ 1)

as algebras and that

HSO(2n+ 2) = E[x2n+1]⊗HSO(2n+ 1)

as algebras and finally as primitively generated Hopf algebras. We leave to
the reader this routine verification of (b) and proceed to the proof of (a).

The proof of (a) requires that we do an induction using the principal bun-
dles

SO(2n− 1)→ SO(2n+ 1)→ SO(2n+ 1)/SO(2n− 1)

and we start by computing the homology of the unit tangent bundles
T (S2n) of the even dimensional spheres,

T (S2n) = SO(2n+ 1)/SO(2n− 1).

Lemma 10.28.5. With Z coefficients

HkT (S2n) =


Z, k = 0

Z/2Z, k = 2n− 1

Z, k = 4n− 1

0, otherwise.

Proof: Consider the homology Serre spectral sequence of the unit tangent
bundle sequence

S2n−1 → T (S2n)→ S2n

and compute the transgression in this spectral sequence by the commuta-
tive diagram

S2n−1 =−→ S2n−1 → D2n → S2n

↓= ↓ 2 ↓ ↓=
S2n−1 2−→ S2n−1 → RP 2n/RP 2n−2 → S2n

↓= ↓ ↓=
S2n−1 → T (S2n) → S2n

The top two rows are the standard cofibration sequences and the compat-
ibility of cofibration sequences with the transgression gives that d2nx2n =
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2x2n−1 in the homology Serre spectral sequence with

E2 = HS2n ⊗HS2n−1 = E[x2n]⊗ E[x2n−1].

The result of the lemma follows. �

We now finish the proof of (a). The case of n = 1 being trivially true, we
can start by using the inductive assumption that

HSO(2n− 1) = E[t3, . . . , t4n−5]

as Hopf algebras.

With Z[ 1
2 ] coefficients, the homology Serre spectral sequence of the princi-

pal bundle sequence

SO(2n− 1)→ SO(2n+ 1)→ T (S2n)

shows that

HSO(2n+ 1) = E[t4n−1]⊗HSO(2n− 1)

as HSO(2n− 1) modules. Once again, arguments identical to the ones
in the proof of Proposition 10.27.4 give that this is an isomorphism of
primitively generated Hopf algebras.

This completes the proof of Proposition 10.28.4. �

Let us consider the loop spaces of the special orthogonal groups.

First of all, suppose that G→ H is any covering of connected topological
groups and let K be the kernel. If K is finite of order n we can consider
the transfer τ : C(H)→ C(G) given on simplices σ of H by

τ(σ) = ΣgεK gσ

where σ is any choice of a lift of σ to a simplex in G. Clearly, the transfer
τ is a chain map and π · τ = n · 1H . Since G is connected we also have that

τ · π = ΣgεK `g ' n · 1G

where `g denotes left multiplication by g. Thus,

Lemma 10.28.5. If G→ H is a finite n-sheeted covering of connected
topological groups, then H∗G→ H∗H is an isomorphism of homologies with
Z[ 1

n ] coefficients.

Hence, Proposition 10.28.4 also computes the homology with Z[ 1
2 ] coeffi-

cients of the double coverings Spin(n)→ SO(n) which are the universal
covers of the special orthogonal groups. Since the groups Spin(n) are sim-
ply connected, the Eilenberg–Moore spectral sequence applies directly to
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these groups and ΩSpin(n) is the component of the identity of ΩSO(n).
We get:

Proposition 10.28.6. With Z[ 1
2 ] coefficients,

(a)

HΩSpin(2n+ 1) = P [y2, . . . , y4n−2]

(b)

HΩSpin(2n+ 2) = P [y2, . . . , y4n−1, z2n]

as algebras where the generators have the indicated degrees.

Proof: Consider part (a). The Eilenberg–Moore spectral sequence has

E2 = CotorHSpin(n)

(
Z
[

1

2

]
,Z
[

1

2

])
= CotorE[x3,...,x4n−1]

(
Z
[

1

2

]
,Z
[

1

2

])
= P [y2, . . . , y4n−2]

as algebras and all the generators are in filtration −1. Since this is a spectral
sequence of Hopf algebras, these generators must be primitive and so must
their differentials. But since the coefficient ring has no torsion, there are no
nonzero primitives in filtrations less than −1. Hence, the spectral sequence
collapses and E2 = E∞. Since these loop spaces are homotopy commutative
H-spaces and since E∞ is a free commutative algebra, there are no extension
problems and we have computed case (a).

The computation of case (b) is similar. �

Exercises

(1) (a) Show that there is a homeomorphism RP 3 → SO(3). (Hint: Show
that every element of SO(3) has at least one eigenvector of eigen-
value 1. Thus every element of SO(3) can be represented as a rota-
tion through some angle with this eigenvector as an axis, the rota-
tion being clockwise or counterclockwise depending on the choice
of the pole of the axis.)

(b) Use the above to show that Corollary 10.28.3 implies that
H∗(RP 3;Z/2Z) = a polynomial algebra on a 1 dimensional gen-
erator u truncated at height 4, u4 = 0.

(2) Verify Proposition 10.28.1.



11 Odd primary exponent theorems

In order to prove the odd primary exponent theorems for spheres and Moore
spaces, we have to use techniques from most of the chapters of this book.

We have to use localization. The theorems are not true without localization.

We have to use homotopy groups with coefficients and the structure of
Samelson products on these groups in order to construct the maps which
will give product decomposition theorems for certain loop spaces.

We have to use the fibre extensions of cubes and squares in order to tie
together in fibration sequences different product decompositions.

We have to use Bockstein spectral sequences to analyse the torsion in the
homology and homotopy of these loop spaces.

We have to use exact sequences of free differential graded Lie algebras in
order to construct tensor product decompositions of universal enveloping
algebras. In fact, it might be said that the main result of this chapter
is the geometric realization via an infinite weak product of just such a
tensor product decomposition of the universal enveloping algebra of a free
differential graded Lie algebra.

We have to use differential homological algebra, not so much in the form of
the Eilenberg–Moore spectral sequence, but in the chain equivalences with
differential Cotor which underlie the Eilenberg–Moore theory.

Surprisingly, the only chapters in this book which we do not use much of
here are the chapters on the Hopf invariants of Hilton, James, and Toda.
These are exactly the things which were used in the proofs of the original
exponents theorems of James and Toda and even of Selick.

We show here that, for a prime p greater than 3, the p-primary component
of π∗(S

2n+1) has exponent pn. This theorem is true for p = 3 but the failure
of the Jacobi identity for Samelson products in mod 3 homotopy theory
makes the proof much harder in this case. The details for the case p = 3
will be omitted but the odd primary exponent theorem and related product

452
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decompositions will be assumed to be proven for all odd primes. Since Gray
has produced infinitely elements of order pn in π∗(S

2n+1), the odd primary
exponent theorem for spheres is the best possible [46].

The question of whether there is an exponent for all of the homotopy groups
of a Moore space was first raised by Michael Barratt [9]. Minus the proof of
an important lemma, we show that pr+1 annihilates the homotopy groups of
an odd primary Moore space Pm(pr) withm ≥ 1 [102]. Since Cohen, Moore,
and Neisendorfer [27] have shown that π∗(P

m(pr)) contains infinitely many
elements of order pr+1, the result on the exponent of the homotopy groups
of odd primary Moore spaces is also the best possible. By the way, we do
give complete details of the original upper bound that p2r+1 annihilates
the homotopy groups of an odd primary Moore space Pm(pr) with m ≥ 1
[28].

Finally, we show that double loops are necessary in order to have any H-
space exponents for Moore spaces. On the single loop space of a Moore
space, no power maps are null homotopic [28].

11.1 Homotopies, NDR pairs, and H-spaces

In this section, we review some fundamental notions connected with homo-
topies and use these to show that some homotopies can be simplified in the
definitions related to H-spaces.

Recall the definition of a homotopy between two pointed maps. For the
sake of simplicity, all maps and all homotopies will preserver basepoints.

Definition 11.1.1. A homotopy H : X × I → Y from a continuous
pointed map f : X → Y to a continuous pointed map g : X → Y is a con-
tinuous map H : X × I → Y such that

(a)

H(x, 0) = f(x), H(x, 1) = g(x). for all x εX

(b)

H(∗, t) = ∗ for all t ε I.

If A ⊆ X is a subspace the homotopy is said to be stationary on A if

H(a, t) = f(a) = g(a)

for all (a, t) εA× I.

Of course, a homotopy from one pointed map to another is just a path in
the space of pointed maps map∗(X,Y ).
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Definition 11.1.2. Given homotopies H : X × I → Y from f : X → Y to
g : X → Y and K : X × I → Y from g : X → Y to h : X → Y , the compo-
sition or product homotopy H ∗G : H × I → Y is the homotopy from f to
h defined by

(H ∗G)(x, t) =

{
H(x, 2t) if 0 ≤ t ≤ 1

2

G(x, 2t− 1) if 1
2 ≤ t ≤ 1

Definition 11.1.3. Given a homotopy H : X × I → Y from f to g, the
inverse or reverse homotopy is the homotopy H−1 : X × I → Y from g to
f defined by

H−1(x, t) = H(x, 1− t).

Definition 11.1.4. Given homotopies H : X × I → Y and K : X × I →
Y , both from f : X → Y to g : X → Y , a homotopy L from H to K is a
continuous map

L : X × I × I → Y

which satisfies

L(x, s, 0) = H(x, s), L(x, s, 1) = K(x, s) for all (x, s)

L(x, 0, t) = f(x), L(x, 1, t) = g(x) for all (x, t).

Thus, a homotopy of homotopies is a path in the space of homotopies from
f to g,

mapf,g(X × I, Y ) = {H : X × I → Y |H(x, 0) = f(x), H(x, 1) = g(x)}.

The fundamental lemma is the generalization of the fact that the compo-
sition of a path with its inverse path is homotopic to the constant path:

Lemma 11.1.5. If H is a homotopy from f to g, then the composite
homotopy H ∗H−1 is homotopic to the stationary or constant homotopy
from f to f .

Proof: Let L : X × I × I → Y be defined by

L(x, s, t) =


H(x, 2s), 0 ≤ s ≤ 1

2 (1− t),
H(x, 2− 2s), 1

2 (1 + t) ≤ s ≤ 1

H(x, 1− t), 1
2 (1− t) ≤ s ≤ 1

2 (1 + t).

Then (H ∗H−1)(x, s) = L(x, s, 0) is homotopic to the constant homotopy
L(x, s, 1) = H(x, 0) = f(x). �

Definition 11.1.6. If A ⊆ X is a subspace, then the pair (X,A) is called
an NDR pair if the inclusion ι : A→ X is a cofibration, in other words,
if the pair (X,A) has the homotopy extension property. In detail, given a
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map f : X × 0→ Z and a compatible homotopy K : A× I → Z, there is a
continuous extension of f and K to a homotopy H : X × I → Z.

Of course, (X,A) is an NDR pair if and only if the inclusion

A× I ∪X × 0 ⊆ X × I

admits a retraction.

We refer to the basic paper of Steenrod [126] or to the book of George
Whitehead [134] for the proof of the following basic proposition.

Proposition 11.1.7. If (X,A) and (Y,B) are two NDR pairs, then the
product

(X,A)× (Y,B) = (X × Y,X ×B ∪A× Y )

is an NDR pair.

An immediate corollary is:

Corollary 11.1.8. If X is a space with a nondegenerate basepoint ∗, that
is, if (X, ∗) is an NDR pair, then the inclusion of the wedge

(X ×X,X ∨X) = (X ×X,X × ∗ ∪ ∗ ×X)

and the inclusion of the fat wedge

(X ×X ×X,X ×X × ∗ ∪X × ∗ ×X ∪ ∗ ×X ×X)

are both NDR pairs.

Let X be an H-space with multiplication

µ : X ×X → X, µ(x, y) = xy

and suppose that the basepoint is nondegenerate. Thus, the fact that the
basepoint is a homotopy unit says that the maps given by

x 7→ x ∗ and x 7→ ∗x

are both homotopic to the identity map of X to itself. In other words, the
composition

X ∨X ⊆ X ×X µ−→ X

is homotopic to the fold map given by

(x, ∗) 7→ x and (∗, x) 7→ x.

Since the inclusion X ∨X ⊆ X ×X is an NDR pair, it follows that

Lemma 11.1.9. In an H-space X with nondegenerate basepoint, the mul-
tiplication is homotopic to a multiplication µ : X ×X → X for which the
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basepoint is a strict unit, that is,

x∗ = x and ∗ x = x.

Hence, it is no real loss of generality to assume that an H-space X has a
nondegenerate basepoint which is a strict unit. In the remainder of this
section, we will make this assumption. We will then show that, if the H-
space is homotopy commutative, then the commuting homotopy can be
assumed to be stationary on the wedge. Similarly, we will show that, if the
H-space is homotopy associative, then the associating homotopy can be
assumed to be stationary on the fat wedge. These are both consequences
of the next lemma.

Lemma 11.1.10. Suppose (Z, B) is an NDR pair and H : Z× I →W is
a homotopy from f to g. Suppose that the restriction K : B × I →W is
homotopic to a stationary homotopy. Of course, this requires that

f(b) = g(b) = K(b, 0) = K(b, 1) ∀b ∈ B.

Then H is homotopic to a homotopy L which is stationary on B.

Proof: H can be regarded as defining a map

H ′ : Z× I × 0→W

such that

H ′(z, 0, 0) = f(z), H ′(z, 1, 0) = g(z)

for all zεZ. The fact that K is homotopic to a stationary homotopy can be
regarded as defining a compatible map

K ′ : B × I × I →W

such that

K ′(b, s, 0) = K(b, s), K ′(b, s, 1) = f(b) = g(b).

Thus K ′(b, s, 1) defines a homotopy which is stationary on B.

We let A(z, 1, t) = g(t) and note that this defines a compatible map

A : Z× 1× I →W.

Similarly, we let B(z, 0, t) = f(z) and note that this defines a compatible
map

B × 0× I →W.

We now have a map

C : Z× I × 0 ∪ Z× 0× I ∪ Z× 1× I ∪B × I × I →W.
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From the standard fact that the pair (I × I, I × 0 ∪ 0× I ∪ 1× I) is home-
omorphic to the pair (I × I, I × 0) and the fact that (Z× I,B × I) is an
NDR pair, it follows that we have an extension to a map

D : Z× I × I →W.

The restriction D(z, s, 1) = L(z, t) is the required homotopy, �

Here are some facts which I learned from Frank Adams and Michael Bar-
ratt. They are consequences of the above Lemma.

Lemma 11.1.11. Let X and Y be H-spaces with strict units and with
respective multiplications µX and µY .

(a) If f : X → Y is a basepoint preserving H-map, then the homotopy
fµx ' µY (f × f) can be chosen to be stationary on the wedge X ∨X.

(b) If X is homotopy commutative, then the commuting homotopy
µXT ' µX can be chosen to be stationary on the wedge X ∨X.

(c) If X is homotopy associative, then the associating homotopy
µX(µX × 1) ' µX(1× µX) can be chosen to be stationary on the
fat wedge ∗ ×X ×X ∪X × ∗ ×X ∪X ×X × ∗.

Proof: Let F be a homotopy from fµX to µX(f × f), that is, F : f(ab) '
f(a)f(b) for a, b ∈ X. As usual we abreviate multiplication in an H-space
by juxtaposition, µ(a, b) = ab. Let G1 be the homotopy from µY (f × f) to
itself given byG1(a, b, t) = F (a, ∗, t)f(b). The composite homotopy F ∗G−1

1

is homotopic to a homotopy F1 from fµY to µY (f × f) which is station-
ary on X × ∗. Let G2 be the homotopy from µY (f × f) to itself given by
G2(a, b, t) = f(a)F1(∗, b, t)). The composite homotopy F1 ∗G−1

1 is homo-
topic to a homotopy from fµX to µY (f × f)) which is stationary on the
wedge X ∨X. This is the required homotopy to prove a).

Part (b) follows from part (a) by considering X = Y with µY = µX ◦ T
and f = 1.

To prove part c), let F : a(bc) ' (ab)c be a homotopy. Let G1(a, b, c, t) =
(F (a, ∗, ∗, t)b)c. Then G1 : (ab)c ' (ab)c is a homotopy which agrees with
F on X × ∗ × ∗. Thus the composite homotopy F ∗G−1

1 : a(bc) ' (ab)c is
defined and is homotopic to a homotopy F1 : a(bc) ' (ab)c which is sta-
tionary on X × ∗ × ∗.

Construct homotopies F1, F2, . . . , F6 : a(bc) ' (ab)c which are respectively
stationary on the increasing unions of

X × ∗ × ∗, ∗ ×X × ∗, ∗ × ∗ ×X,

∗ ×X ×X,X × ∗ ×X,X ×X × ∗
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such that the homotopy Fi is homotopic to the composite homotopy Fi−1 ∗
G−1
i for i ≤ 4 or i = 6 and F5 is homotopic to G−1

5 ∗ F4.

Then F6 is the required homotopy which is stationary on the fat wedge.�

Exercises

(1) Fill in the details in the proof of part c) of Lemma 11.1.11.

(2) Let X be a pointed space and let the space of Moore loops LX be
the space of pairs (ω, a) where a ≥ 0 is positive real number and
ω : [0,∞)→ X is a path with ω(0) = ∗ and ω(t) = ∗ for all t ≥ a. Let
LX have the product topology where the positive reals have the usual
topology and the paths have the compact open topology. We say that
the pair (ω, a) is a loop which ends at a. Let (ω, a) be a loop which
ends at a and (γ, b) be a loop which ends at b. Define the product
loop (ω, a) ∗ (γ, b) = (ω ∗ γ, a+ b) which ends at a+ b by

(ω ∗ γ)(t) =

{
ω(t), 0 ≤ t ≤ a,
γ(t− a), a ≤ t <∞

Show that

(a) The space of Moore loops LX is a strictly associative H-space
with the basepoint being a strict unit.

(b) The space of Moore loops LX is homotopy equivalent to the loop
space ΩX.

(3) The space of Moore double loops L2X is the space of pairs
(ω, (a, b)) where a ≥ 0 and b ≥ 0 are positive real numbers and
ω : [0,∞)× [0,∞)→ X is a continuous map with ω(s, t) = ∗ unless
(s, t) is in the rectangle (o, a)× (0, b). Let L2X have the product
topology where the plane has the usual topology and the maps have
the compact open topology. We say that the pair (ω, (a, b)) is a double
loop which ends at (a, b). Let (ω, (a, b)) be a double loop which ends
at (a, b) and (γ, (c, d)) be a double loop which ends at (c, d). Define
the product double loop (ω, (a, b)) ∗ (γ, (c, d)) = (ω ∗ γ, (a+ c, b+ d))
which ends at (a+ c, b+ d) by

(ω ∗ γ)(s, t) =


ω(s, t), 0 ≤ s ≤ a, 0 ≤ t ≤ b,
γ(s− a, t− b)), a ≤ s <∞, b ≤ t <∞,
(ω ∗ γ)(s, t) = ∗ otherwise.
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(a) Show that L2X is a strictly associative H-space, has the basepoint
as a strict unit, and is homotopy commutative via a natural com-
muting homotopy which is stationary on the wedge L2X ∨ L2X.
(Hint: Mimic the classical proof that π2 is abelian.)

(b) The space of Moore double loops L2X is homotopy equivalent to
the double loop space Ω2X. .

(4) Suppose that F
ι−→ E

π−→ B is a fibration sequence of pointed spaces
and that f : X → E and g : X → E are pointed maps.

(a) Show that

mapf,g(X × I, E)→ mapπf,πg(X × I,B)

is a fibration.

(b) If the compositions πf = ∗ and πg = ∗, then

mapf,g(X × I, F )→ mapf,g(X × I, E)→ map∗,∗(X × I,B)

is a fibration sequence.

(5) Suppose that F → E → B is an orientable fibration sequence. Two
homotopies X × I → E between two maps f, g : X → E define a map

X × I × {0, 1} ∪X × {0, 1} × I → E.

(The maps f and g extend to a constant homotopy on the second
piece of the union.) Suppose that A ⊆ X is a subspace and that

A× I × I → E

is a homotopy of the restrictions of the two homotopies to A× I.
Project the above homotopies into E to two homotopies into the base
B and let

X × I × I → B

be a homotopy of these two homotopies which is compatible with
the projected homotopy of homotopies on A. This leads to the lifting
problem

X × I × {0, 1} ∪X × {0, 1} × I ∪A× I × I → E
↓ ↗ ↓

X × I × I → B.

The solution to this lifting problem is the existence of a lift of a
homotopy of homotopies. Show that the obstructions to this lifting
problem lie in the cohomology groups

Hn(X,A;πnF ).
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11.2 Spheres, double suspensions, and power maps

In this section, we will introduce some specific H-space structures on local-
ized spheres S2n−1 and on related spaces such as on localized homotopy
theoretic fibres C(n) of the double suspension Σ2 : S2n−1 → Ω2S2n+1 and
on localized homotopy theoretic fibres S2n−1{k} of k-th power maps on
spheres k : S2n−1 → S2n−1, k(x) = x . . . x = xk. (If the H-space structure
is not homotopy associative, then xk denotes some choice of a k-th power,
for example, x3 = x(xx). And these k-th power maps on spheres are of
course degree k maps.)

Throughout this section, we will assume that all spaces are localized at
an odd prime p. For example, S2n−1 will denote the localized sphere. We
have two goals. First, we wish to introduce H-space structures on the three
examples above such that the obvious maps between them are H-maps.
Second, we wish to check that these structures are homotopy commutative
and homotopy associative and that the homotopy theoretic fibres S2n−1{k}
have H-space exponent k. (That is, the k-th power maps are null homotopic
on S2n−1{k}.)

We begin by recalling the following well known general fact which will
enable us to show that the homotopy theoretic fibres C(n) and S2n−1{k}
are H-spaces.

Lemma 11.2.1. The homotopy theoretic fibre F of an H-map f : X → Y
is an H-space.

Proof: Up to homotopy equivalence, replace f by a fibration f̃ : X̃ → Y.
Then F is the actual fibre of f̃ . Furthermore, X̃ is an H-space with a
multiplication µ and f̃ is an H-map. The diagram below is homotopy com-
mutative

X̃ × X̃ µ−→ X̃

↓ f̃ × f̃ ↓ f̃
Y × Y mult−−−→ Y

.

Since f̃ is a fibration, it follows that µ is homotopic to a multiplication ν
which makes the diagram strictly commutative. Hence, with this multipli-
cation, f̃ is a strict H-map and clearly ν restricts to a multiplication on the
fibre F. �

Loosely speaking, the multiplication on the double loop space Ω2S2n+1

restricts to a multiplication on the bottom cell S2n−1. But, the fact that
these are localized spaces and not cells makes it better to convert the double
suspension Σ2 : S2n−1 → Ω2S2n+1 to a homotopy equivalent fibration Σ̃2 :
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S̃2n−1 → Ω2S2n+1 and to consider the lifting problem

S̃2n−1 × S̃2n−1 µ−→ S̃2n−1

↓ Σ̃2 × Σ̃2 ↓ Σ̃2

Ω2S2n+1 × Ω2S2n+1 mult−−−→ Ω2S2n+1

Since we can assume that we have strict units, the obstructions to this
lifting problem lie in

Hm+1(S̃2n−1 × S̃2n−1, S̃2n−1 ∨ S̃2n−1;πmC(n)).

These groups can be nonzero only if m+ 1 = 4n− 2 and πmC(n) =
π4n−3C(n) 6= 0.

Since

H∗(Ω
2S2n+1;Z/pZ) = E(τ0, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

with degree τi = 2pin− 1 and degree σi = 2pin− 2, the localized pair
(Ω2S2n+1, S2n−1) is 2pn− 3 connected, that is, the fibre C(n) is 2pn− 4
connected. Hence, π4n−3C(n) = 0 for 4n− 3 ≤ 2pn− 4, that is, for 1 ≤
2(p− 2)n which is always the case if p is an odd prime and n ≥ 1. Hence,
the lift exists. Since obstructions to uniqueness of lifts up to fibre homotopy
lie in

Hm(S̃2n−1 × S̃2n−1, S̃2n−1 ∨ S̃2n−1;πmC(n)),

it follows that

Proposition 11.2.2. If p is an odd prime and n ≥ 1, then there is an H-
space structure (unique up to homotopy if p is an odd prime and n ≥ 2 or
if n ≥ 1 and p ≥ 5) such that the double suspension Σ2 : S2n−1 → Ω2S2n+1

is an H-map.

Now, since the homotopy theoretic fibre of an H-map is an H-space, Propo-
sition 11.2.2 and Lemma 11.2.1 give that

Corollary 11.2.3. If p is an odd prime and n ≥ 1, then there is an H-space
structure on C(n) which makes C(n)→ S̃2n−1 → Ω2S2n+1 into a fibration
sequence of H-spaces and strict H-maps.

Let k be a positive integer. Consider the power maps k : S2n−1 → S2n−1

and let S2n−1{k} be the homotopy theoretic fibre. Replacing k by a fibra-

tion, we have a fibration sequence S2n−1{k} → S̃2n−1 k−→ S2n−1. Since the
power map is an H-map when the H-space is homotopy commutative and
homotopy associative, we get from Lemma 11.2.1 and Exercise 1 below

Proposition 11.2.4. If p ≥ 5 and n ≥ 1, then there is an H-space struc-
ture on S2n−1{k} which makes the fibration sequence

S2n−1{k} → S̃2n−1 k−→ S2n−1
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into a sequence of H-spaces and strict H-maps.

If k is a positive integer, then k : S̃2n−1 → S2n−1 being a fibration implies
that we can assume that the homotopy commutative diagram

S̃2n−1 k−→ S̃2n−1

↓ k ↓ k
S2n−1 k−→ S2n−1

is strictly commutative. Since we are localized at an odd prime,
π2n−1S

2n−1{k} = 0. The only possibly nonzero obstruction group
H2n−1(S̃2n−1;π2n−1S

2n−1{k}) to the fibre homotopy uniqueness of the lift

S̃2n−1 k−→ S̃2n−1 is in fact zero. Hence, the lift is unique up to fibre homotopy
and above diagram must factor as

S̃2n−1 k−→ S2n−1 1−→ S̃2n−1

↓ k ↓ 1 ↓ k
S2n−1 1−→ S2n−1 k−→ S2n−1

Hence:

Proposition 11.2.5. Localized at an odd prime, the k-th power map on
the fibre k : S2n−1{k} → S2n−1{k} is null homotopic. That is, the H-space
S2n−1{k} has H-space exponent ≤ k.

We conclude this section by proving:

Proposition 11.2.6. Localize at an odd prime. If n ≥ 2, then S2n−1{k} is
a homotopy commutative H space such that the natural map S2n−1{k} →
S2n−1 is an H map.

The H-space structure on S2n−1 is that of 11.2.2. Thus the double suspen-
sion Σ2 : S2n−1 → Ω2S2n+1 is a fibration and strict H map where Ω2S2n+1

has the double loop multiplication.

Replace the degree k map k : S2n+1 → S2n+1 by a fibration and then choose
a lift k : S2n−1 → S2n−1 to get a strictly commutative diagram

S2n−1 k−→ S2n−1

↓ Σ2 ↓ Σ2

Ω2S2n+1 Ω2k−−→ Ω2S2n+1
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If E → B is a fibration and X is a pointed space, then the map of spaces
of pointed maps map∗(X,E)→ map∗(X,B) is also a fibration. Hence, the
map

Ω2k : Ω2S2n+1 → Ω2S2n+1

is a fibration.

Replace the upper left corner of the above square so that the square is now
a totally fibred square (see section 3.2). In particular, if

E → S2n−1

↓ Σ2 ↓ Σ2

Ω2S2n+1 Ω2k−−→ Ω2S2n+1

is a pullback square, then the natural map S2n−1 → E is a fibration with
fibre H.

And H also occurs as the common fibre of the top and left rows of the
expanded 3× 3 square below in which all rows and columns are fibration
sequences.

H → C(n) → C(n)
↓ ↓ ↓

S2n−1{k} → S2n−1 k−→ S2n−1

↓ ↓ Σ2 ↓ Σ2

Ω2S2n+1{k} → Ω2S2n+1 Ω2k−−→ Ω2S2n+1

Since C(n) is 2pn− 4 connected, it follows that H is 2pn− 5 connected.

Now we use the multiplications to map the strictly commutative square

S2n−1 × S2n−1 k×k−−→ S2n−1 × S2n−1

↓ Σ2 × Σ2 ↓ Σ2 × Σ2

Ω2S2n+1 × Ω2S2n+1 Ω2k×Ω2k−−−−−−→ Ω2S2n+1 × Ω2S2n+1

to the strictly commutative square
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S2n−1 k−→ S2n−1

↓ Σ2 ↓ Σ2

Ω2S2n+1 Ω2k−−→ Ω2S2n+1

If we think of the domain square as the front face and the range square
as the back face, then in the resulting prism all faces except possibly the
top one are strictly commutative. This follows from the fact that the dou-
ble suspensions are strict H maps, from the fact that the diagram at the
beginning of this proof is commutative, and from the fact that the double
loop multiplication is natural.

But there is therefore a unique map of the front top left corner

S2n−1 × S2n−1 → E

to the pullback E which occurs above. Since the fibre H of S2n−1 → E is
2pn− 5 connected and 4n− 2 ≤ 2pn− 5, the map lifts to a map

m : S2n−1 × S2n−1 → S2n−1

which can be assumed to be the identity on the wedge. Thus the entire
prism is now strictly commutative and the multiplication m makes the
double suspension into an H map. Hence, m is homotopic to the usual
multiplication on S2n−1.

The commutative top face now induces a multiplication on the fibre
S2n−1{k}.

Since the double loop multiplication has a natural commuting homotopy,
the left and right edges of the bottom face have commuting homotopies
which are compatible with the maps given by Ω2k × Ω2k and Ω2k.

In exercise (1)(c) below, the reader will show that the commuting homo-
topies for the multiplications on Ω2S2n+1 are compatible with commuting
homotopies for the multiplications on S2n−1. All these commuting homo-
topies are constant on the wedge.

Thus there is a commuting homotopy At : S2n−1 × S2n−1 → S2n−1 for the
left edge of the top face and a similar commuting homotopy Bt : S2n−1 ×
S2n−1 → S2n−1 for the right edge of the top face. Furthermore, in the whole
diagram below, the perimeter commutes:
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S2n−1 × S2n−1 At−→ S2n−1 Σ2

−→ Ω2S2n+1

↓ k × k ↓ k ↓ Ω2k

S2n−1 × S2n−1 Bt−→ S2n−1 Σ2

−→ Ω2S2n+1

Since the perimeter of this diagram commutes, it will commute if we replace
the S2n−1 in the top row by the pullback E. Thus, the obstruction to
choosing At to make the above diagram commute lies in the group

H4n−2(S2n−1 × S2n−1, S2n−1 ∨ S2n−1;π4n−2H)

which is zero.

Finally, the compatible commuting homotopies At and Bt induce a com-
muting homotopy for the multiplication on the fibre S2n−1{k}.

Exercises

(1) Localize at a prime p.

(a) If p is an odd prime and n ≥ 2 (or if n ≥ 1 and p ≥ 5), then the
H-space structure on S2n−1 is homotopy commutative.

(b) If p ≥ 5 and n ≥ 1 , then the H-space structure on S2n−1 is homo-
topy associative.

(c) If p is an odd prime and n ≥ 2 (or if n ≥ 1 and p ≥ 5), then the
H-space structure on C(n) is homotopy commutative.

(d) If p ≥ 5 and n ≥ 1 , then the H-space structure on C(n) is homotopy
associative.
(Hints: By Exercise 4 in Section 11.1, obstructions to lifting com-
muting homotopies lie in the groups

Hm(S2n−1 × S2n−1, S2n−1 ∨ S2n−1;πmC(n))

and obstructions to lifting associating homotopies lie in the groups

Hm(S2n−1 × S2n−1 × S2n−1, fatwedge;πmC(n)).)

(e) If p ≥ 5 and n ≥ 1, then S2n−1{k} is a homotopy associative H
space such that the natural map S2n−1{k} → S2n−1 is an H map.

(2) If k is a positive integer and k : S2n−1 → S2n−1 is any k-th power map
in any H-space structure on S2n−1, show that this map is a map of
degree k.

(3) Let X be an H-space, let k be an integer, and let k : X → X be any
k-th power map. Show that
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(a) The map k induces multiplication by k on the homotopy groups
π∗(X).

(b) The two multiplications on the loop space ΩX are equal to each
other and both are homotopy associative and homotopy commu-
tative.

(c) The loop on the k-th power map is a k-th power map, that is,
Ωk = k.

11.3 The fibre of the pinch map

Throughout this chapter, we assume that p is an odd prime and that all
spaces are localized at p. Consider the pinch map q : P 2n+1(pr)→ S2n+1

which collapses the bottom cell of the Moore space P 2n+1(pr) = S2n ∪pr
e2n+1 to a point. Let F 2n+1{pr} be the homotopy theoretic fibre of q. In
this section, we will determine the homology of this fibre and give a small
model for its differential coalgebra of normalized chains.

Up to homotopy equivalence, there is a fibration sequence

ΩS2n+1 ∂−→ F 2n+1{pr} i−→ P 2n+1(pr)
π−→ S2n+1

in which the first three spaces are the sequence of a principal bundle. Thus,
there is an associative action

µ : ΩS2n+1 × F 2n+1{pr} → F 2n+1{pr}

which is compatible with the loop multiplication in the sense that the
following diagram commutes:

ΩS2n+1 × ΩS2n+1 mult−−−→ ΩS2n+1

↓ 1× ∂ ↓ ∂
ΩS2n+1 × F 2n+1{pr} µ−→ F 2n+1{pr}

With any coefficients, the group of normalized chains C(F 2n+1{pr}) is a
module over the group of normalized chains C(ΩS2n+1) via the composition

µ : C(ΩS2n+1)⊗ C(ΩS2n+1)
∇−→ C(S2n+1 × F 2n+1{pr}) µ−→ C(ΩF 2n+1{pr}

Since the diagram below commutes

C(ΩS2n+1)⊗ C(ΩS2n+1)
mult−−−→ C(ΩS2n+1)

↓ 1× ∂ ↓ ∂
C(ΩS2n+1)× C(F 2n+1{pr}) µ−→ C(F 2n+1{pr})

it follows that

x ∗ 1 = µ(x⊗ 1) = ∂∗(x)
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for all x in C(ΩS2n+1).

Recall that, with any coefficients, H(ΩS2n+1) = T (ι) = a tensor Hopf alge-
bra on a primitive generator ι of degree 2n.

Proposition 11.3.1. With coefficients Z(p):

(a) the homology H(F 2n+1{pr}) is torsion free with a basis
{1, g1, g2, . . . , gk, . . . } such that degree gk equal to 2kn for all k ≥ 1.

(b) the coproduct is given by

∆(gk) = gk ⊗ 1 + 1⊗ gk + Σk−1
i=1p

r(i, k − i)gi ⊗ gk−i.

(c) the action of H(ΩS2n+1) = T (ι) on H(F 2n+1{pr}) is given by

ιj ∗ gk = gk+j

for k ≥ 1. Thus, the reduced homology H(F 2n+1{pr}) is a free
H(ΩS2n+1) module.

(d) the inclusion of the fibre ∂ : ΩS2n+1 → F 2n+1{pr} induces ∂∗(ι
k) =

prgk in homology.

Proof: Consider the mod pr homology Serre spectral sequence of the prin-
cipal bundle sequence

ΩS2n+1 ∂−→ F 2n+1{pr} i−→ P 2n+1(pr).

It is a left module over H(ΩS2n+1) and has

E2 = H(ΩS2n+1)⊗H(P 2n+1(pr)) = T (ι)⊗ 〈1, u, v〉

with degree u = 2n and degree v = 2n+ 1.

We claim that the first nonzero differentials are given by

d2n+1(1⊗ v) = ι⊗ 1, d2n+1(1⊗ u) = 0.

This is a consequence of q∗(v) = e where e is a generator of H2n+1(S2n+1),
of naturality, of the map of fibration sequences

ΩS2n+1 =−→ ΩS2n+1

↓ ∂ ↓
F 2n+1{pr} → PS2n+1

↓ i ↓
P 2n+1(pr) → q S2n+1

into the path fibration, and of the transgression d2n+1(1⊗ e) = ι⊗ 1.

Since the spectral sequence is a spectral sequence of H(ΩS2n+1) modules,

d2n+1(ιk ⊗ u) = 0, d2n+1(ιk ⊗ v) = ιk+1 ⊗ 1
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and E2n+1 has a Z/prZ basis {1⊗ 1, 1⊗ u, ι⊗ u, ι2 ⊗ u, . . . } concentrated
in even degrees 2nk.

It follows that E2n+2 = E∞ in the mod pr spectral sequence and that the
homology H(F 2n+1{pr}) with localized coefficients Z(p) is torsion free of
rank 1 in each even degree 2nk with k ≥ 0.

With coefficients Z(p), consider the homology Serre spectral sequence of
the principal bundle sequence

ΩS2n+1 ∂−→ F 2n+1{pr} i−→ P 2n+1(pr).

Since the reduced Z(p) homology H(P 2n+1(pr)) = Z/prZ · u = a torsion
module concentrated in degree 2n, we have

E2 = H(ΩS2n+1)⊗H(P 2n+1) = E2
0,∗ ⊕ E2

2n,∗ = T (ι)⊗ 1⊕ T (ι)⊗ u.

Since the first summand is torsion free and the second summand is torsion,
we have that E2 = E∞.

Since we know that H2nk(F 2n+1{pr} is torsion free of rank 1, we have short
exact sequences

0→ H2nk(ΩS2n+1)
∂−→ H2nk(F 2n+1)→ Z/prZ→ 0.

Hence, if gk is a generator of H2nk(F 2n+1), we have ∂∗(ι
k) = prgk.

Since the coproduct

∆(ιk) = ιk ⊗ 1 + 1⊗ ιk + Σk−1
i=1 (i, k − i)ιi ⊗ ιk−i,

naturality and the preceding formula yields

∆(gk) = gk ⊗ 1 + 1⊗ gk + Σk−1
i=1p

r(i, k − i)gi ⊗ gk−i.

Finally, prgk = ∂∗(ι
k) = ιk−1 ∗ ∂∗(ι) = ιk−1 ∗ prg1 = prιk−1 ∗ g1 implies

that gk = ιk−1 ∗ g1 and that ιjgk = gk+j . �

Remark 11.3.2. It follows from 11.3.1 (b) and (d) that the embedding
of reduced Z(p) homologies H(ΩS2n+1)→ H(F 2n+1{pr}) can be identified

with the embeddingH(ΩS2n+1) ⊆ 1
prH(ΩS2n+1) inside the reduced coalge-

braH(ΩS2n+1)⊗Q. In particular, the reduced coproduct inH(F 2n+1{pr})
is compatible with the reduced coproduct in 1

prH(ΩS2n+1).

We now construct small coalgebras which are chain equivalent to the nor-
malized chains C(F 2n+1{pr}), that is, we construct small diffferential coal-
gebra models which are linked to the chains by homology equivalences.

We begin with some remarks on twisted tensor products.
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Let A be a Hopf algebra and let C be a coalgebra. Recall that the tensor
product A⊗ C is a coalgebra via the usual coproduct (or diagonal):

∆ : A⊗ C ∆⊗∆−−−→ A⊗A⊗ C ⊗ C 1⊗T⊗1−−−−→ A⊗ C ⊗A⊗ C.

Note also that this structure makes A⊗ C into an A module coalgebra.
That is, if A acts on A⊗ C ⊗A⊗ C via the Hopf algebra diagonal of A
and the twist as follows,

µ : A⊗ (A⊗ C ⊗A⊗ C)
∆⊗1⊗1⊗1⊗1−−−−−−−−→ A⊗A⊗ (A⊗ C)⊗A⊗ C 1⊗T⊗1⊗1−−−−−−→

A⊗ (A⊗ C)⊗A⊗A⊗ C µ⊗1⊗µ⊗1−−−−−−→ A⊗ C ⊗A⊗ C,

then the coproduct ∆ : A⊗ C → A⊗ C ⊗A⊗ C is a map of A modules.

Suppose now that A is a differential Hopf algebra, C is a differential coalge-
bra, and τ : C → A is a twisting morphism. Here is a special case when the
twisted tensor product A⊗τ C is a differential A module coalgebra, that
is, A⊗τ C is a differential coalgebra via the above coproduct structure on
the tensor product and the action of A is given by a map of differential
objects:

Lemma 11.3.3. Suppose that A is a differential Hopf algebra with zero
differential and that C is a differential coalgebra with trivial coproduct, that
is, C = PC. Assume that the image of the twisting morphism is primitive,
τ : C → PA ⊆ A, then the twisted tensor product A⊗τ C is a differential
A module coalgebra.

We leave the proof of this as a simple exercise.

We now construct such a twisted tensor product to model the normalized
chains C(F 2n+1{pr}). We do this by modeling the fibration sequence

ΩS2n+1 ∂−→ F 2n+1{pr} i−→ P 2n+1(pr).

Throughout the remainder of this section, the coefficient ring is Z(p).

The chains on P 2n+1 are modeled by the differential coalgebra C(r) which is
a free module with basis {1, u, v}. The respective degrees are 0, 2n, 2n+ 1
and the respective diagonals are

∆(1) = 1⊗ 1, ∆(u) = u⊗ 1 + 1⊗ u, ∆(v) = v ⊗ 1 + 1⊗ v.

The chains on ΩS2n+1 are modeled by the tensor Hopf algebra T (ι) with
zero differential and ι primitive of degree 2n.

Define a twisting morphism τ : C(r)→ T (ι) by

τ1 = 0, τu = 0, τv = −ι.
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Thus the twisted tensor product T (ι)⊗τ C(r) satisfies the hypotheses of
Lemma 11.3.3 and is a T (ι) module coalgebra. Its differential is given by

dτ (ιk ⊗ 1) = 0, dτ (ιk ⊗ u) = 0, dτ (ιk ⊗ v) = prιk ⊗ u− ιk+1 ⊗ 1.

The next result shows that this twisted tensor product and the homology
are chain equivalent to the normalized chains of C(F 2n+1{pr}).

Proposition 11.3.4. With coefficients Z(p), there are homology isomor-
phisms of differential coalgebras

H(F 2n+1{pr}) Ψ←− T (ι)⊗τ C(r)
Θ−→ C(F 2n+1{pr}).

Proof: As in Chapter 10, we can pick a primitive cycle x εC2n(ΩS2n+1)
which represents the homology class ι. It is primitive since we pick a cycle
in the 2n− 1 connected Eilenberg subcomplex which is equivalent to the
whole complex. Then the map

θ′ : T (ι)→ C(ΩS2n+1), ιk 7→ xk

is a homology isomorphism of differential Hopf algebras.

Similarly, there is a primitive cycle z εC2n(F 2n+1{pr}) which represents the
homology generator g1 εH2n(F 2n+1{pr}). And let w εC2n+1(F 2n+1{pr})
be a primitive chain such that dw = prz − ∂∗(x). Both z and w are primitive
since they come from the Eilenberg subcomplex. Let 1 be the point in the
Eilenberg subcomplex.

Now define θ′′ : C(r)→ C(F 2n+1{pr}) by

θ′′1 = 1, θ′′u = z, θ′′v = w

and define Θ : T (ι)⊗τ C(r)→ C(F 2n+1{pr}) as the composition with the
action

T (ι)⊗τ C(r)
θ′⊗θ′′−−−→ C(ΩS2n+1)⊗ C(F 2n+1{pr}) µ−→ C(F 2n+1{pr}).

Hence,

Θ(ιk ⊗ 1) = xk ∗ 1, Θ(ιk ⊗ u) = xk ∗ z, Θ(ιk ⊗ v) = xk ∗ w.

We claim that Θ is a map of differential coalgebras.

First, Θ is a map of coalgebras since θ′, θ′′, and the action µ are all maps
of coalgebras.
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Second, Θ is a map of T (ι) modules and sends the T (ι) basis elements
1⊗ 1, 1⊗ u, 1⊗ v to 1 ∗ 1 = 1, 1 ∗ z = z, 1 ∗ w = w. We check that

dΘ(1⊗ 1) = d1 = 0 = Θdτ (1⊗ 1)

dΘ(1⊗ u) = dz = 0 = Θdτ (1⊗ u)

dΘ(1⊗ v) = dw = prz − ∂∗(x) = prz − x ∗ 1 = Θ(pr1⊗ u− ι⊗ 1)

= Θdτ (1⊗ v)

Therefore, the Θ commutes with differentials and is a map of differential
coalgebras.

We claim that the elements 1⊗ 1, ιk ⊗ u represent a basis for the homol-
ogy of T (ι)⊗τ C(r). We can see this directly from the formulas for the
differential.

On the other hand, the elements 1, xk ∗ z represent 1, gk+1, which is a basis
for the homology of C(F 2n+1{pr}). Thus, Θ is a homology isomorphism.

Finally, let ξ : C(r)→ H(F 2n+1{pr}), 1 7→ 1, u 7→ z, v 7→ 0 and define the
map

Ψ : T (ι)⊗ C(r)→ H(F 2n+1{pr})

as the composition

T (ι)⊗ C(r)→ T (ι)⊗H(F 2n+1{pr}) µ−→ H(F 2n+1{pr}).

Ψ(1⊗ 1) = 1 ∗ 1 = 1, Ψ(ιk ⊗ 1) = ιk ∗ 1 = prgk,

Ψ(ιk ⊗ u) = ιk ∗ g1 = gk+1, Ψ(ιk ⊗ v) = 0.

Since ξ and the action µ are maps of coalgebras, the map Ψ is a map of
coalgebras.

Since Ψ is a map of T (ι) modules and

dΨ(1⊗ 1) = d1 = 0 = Ψd(1⊗ 1), dΨ(1⊗ u) = dg1 = 0 = Ψd(1⊗ u),

dΨ(1⊗ v) = d0 = 0 = Ψ(pr1⊗ u− ι⊗ 1) = Ψd(1⊗ v),

it follows that Ψ is a chain map and a map of differential coalgebras.

By inspection, Ψ is a homology isomorphism. �

Exercises

(1) Prove Lemma 11.3.3.

(2) Let p be an odd prime and let S2n+1{pr} be the homotopy theoretic
fibre of the degree pr power map pr : S2n+1 → S2n+1.
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(a) Show that the mod p homology

H(S2n+1{pr}) = H(ΩS2n+1)⊗H(S2n+1) = T (ι2n)⊗ E(v2n+1)

as a H(ΩS2n+1) = T (ι2n) module and the r-th the Bockstein dif-
ferential is given by βrv2n+1 = ι2n.

(b) Show that the integral homology is

Hk(S2n+1{pr}) =

{
(Z/prZ)uk if k = 2nj, j ≥ 1

0 if k 6= 2nj.

(c) Show that the map ΩS2n+1 → S2n+1{pr} induces an epimorphism
in integral homology.

(d) Show that the isomorphism with coefficients Z/pZ in part a) is an
isomorphism of primitively generated differential Hopf algebras.

(e) Show that the coalgebra structure of the integral homology is given
by

∆(uk) = uk ⊗ 1 + 1⊗ uk + Σk−1
i=1 (i, k − i)ui ⊗ uk−i.

(f) Let C = 〈1, v〉 be the coalgebra with zero differential and with v
primitive and of degree 2n+ 1. Check that τ : C → T (ι2n), τv =
prι2n is a twisting morphism.

(g) Show that, with any coefficients, there are homology isomorphisms
of differential coalgebras

T (ι2n)⊗τ C → C(S2n+1{pr}).

(h) Show that, with coefficients Z/pZ, there are homology isomor-
phisms of differential coalgebras

T (ι2n)⊗τ C → H(S2n+1{pr}).

11.4 The homology exponent of the loop space

Throughout this section, suppose that p is an odd prime and that all spaces
have been localized at p.

The fibration sequence

ΩF 2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1

shows that the rationalizations

ΩF 2n+1{pr} ⊗Q ' Ω2S2n+1 ⊗Q ' S2n−1 ⊗Q
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have the same homotopy type. Hence, the integral homology satisfies

Hk(ΩF 2n+1{pr}) =

{
Z if k = 0, 2n

p-torsion if k 6= 0, 2n.

We determine the exponent of this p-torsion in homology.

Proposition 11.4.1. The p-torsion in H(ΩF 2n+1{pr}) has exponent
pr+1.

Proof: Let C ′ = H(F 2n+1{pr}) and let C = H(ΩS2n+1).

Since there are homology isomorphisms of differential coalgebras

C ′ ← T (ι)⊗τ C(r)→ C(F 2n+1)

there are isomorphisms

H(ΩF 2n+1{pr}) = CotorC(F 2n+1{pr})(Z(p),Z(p))

= CotorT (ι)⊗τC(r)(Z(p),Z(p))

= CotorC
′
(Z(p),Z(p))

= HΩC ′.

Similarly, the homology isomorphism

C = T (ι)→ C(ΩS2n+1)

yields

H(Ω2S2n+1) = CotorC(ΩS2n+1)(Z(p),Z(p))

= CotorC(Z(p),Z(p))

= HΩC.

Since C has zero differential, the cobar construction ΩC splits into a direct
sum of tensors of length k,

ΩC =
⊕
k≥0

(ΩC)−k

where (ΩC)−k = C ⊗ · · · ⊗ C = C
⊗k

, and the differential is homogeneous
in the sense that

d(C
⊗k

) ⊆ C⊗(k+1)
.
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Hence, the homology of the cobar construction splits into a direct sum of
homogeneous pieces,

HΩC = CotorC(Z(p),Z(p))

=
⊕
k≥0

CotorC−k(Z(p),Z(p))

=
⊕
k≥0

zk(C)/bk(C)

where

zk(C) = kernel d : C
⊗k → C

⊗(k+1)
=

the cycles of tensor length k and

bk(C) = image d : C
⊗(k−1) → C

⊗(k)
=

the boundaries of tensor length k.

Similarly,

HΩC ′ = CotorC
′
(Z(p),Z(p))

=
⊕
k≥0

CotorC
′

−k(Z(p),Z(p))

=
⊕
k≥0

zk(C ′)/bk(C ′).

The fact that

H(F 2n+1{pr} = C ′ =
1

pr
H(ΩS2n+1) =

1

pr
C

and the fact that this is compatible with the reduced coproduct implies
that

C ′
⊗k

=
1

prk
C
⊗k
,

zk(C ′) =
1

prk
zk(C),

bk(C ′) =
1

pr(k−1)
zk(C).

There is a short exact sequence

0→
1
prk

bk(C)
1

pr(k−1) bk(C)
→ zk(C ′)

bk(C ′)
→

1
prk

zk(C)
1
prk

bk(C)
→ 0.
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Since

1
prk

zk(C)
1
prk

bk(C)

is isomorphic to

zk(C)

bk(C)
= CotorC−k(Z(p),Z(p)) ⊂ H(Ω2S2n+1)

with p-torsion of exponent p and since

1
prk

bk(C)
1

pr(k−1) bk(C)

is isomorphic to

bk(C)

prbk(C)

of exponent pr, it follows that the p-torsion in⊕
k≥0

zk(C ′)

bk(C ′)
= HΩC ′ = HΩF 2n+1{pr}

has exponent pr+1. �

11.5 The Bockstein spectral sequence of the loop space

Throughout this chapter, we assume that p is an odd prime and that all
spaces are localized at p. In this section, we determine the mod p homology
Bockstein spectral sequence of the loop space ΩF 2n+1{pr}.

We begin by computing the homology H(ΩF 2n+1{pr};Z/psZ) with coeffi-
cients Z/psZ where s ≤ r.

When s ≤ r, reduced homology with Z/psZ coefficients,

HP 2n(pr) = 〈u, v〉

is a free module on generators u of degree 2n and v of degree 2n+ 1. If
s = r, then the short exact sequence

0→ Z/prZ→ Z/p2rZ→ Z/prZ→ 0
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has the Bockstein connecting homomorphism βv = u, βu = 0. If s = 1,
then the Bockstein differentials are

βiv = 0, βiu = 0 if i ≤ r − 1

βrv = u, βr = 0.

Since ΩP 2n+1(pr) = ΩΣP 2n+1(pr), the Bott–Samelson theorem shows
that, when s ≤ r, the Hopf algebra

H(ΩP 2n+1(pr);Z/prZ) = T (u, v) = UL(u, v)

where T (u, v) is the tensor algebra and UL(u, v) is the universal enveloping
algebra on the free Lie algebra L(u, v). In case s = 1 or s = r, the Hopf
algebras and Lie algebras are differential objects with the differentials given
by the respective formulas βv = u and βrv = u as above.

The loops on the pinch map Ωq : ΩP 2n+1(pr)→ ΩS2n+1 induces the map
of differential Hopf algebras

H(ΩP 2n+1(pr)) = T (u, v) = UL(u, v)→ H(ΩS2n+1(pr)) = T (ι) = UL(ι)

given on generators by

v 7→ ι, u 7→ 0

where degree ι equals to 2n and where the respective differentials are βι =
0 if s = r and βiι = 0 for all i.

Let L = the kernel of the map of Lie algebras L(u, v)→ L(ι). We claim
that L is a free Lie algebra Lk≥0(adk(v)(u)) on generators

u, [v, u], [v, [v, u]], . . . , adk(v)(u), . . .

and that:

Proposition 11.5.1. With coefficients Z/psZ, s ≤ r, there is an isomor-
phism of Hopf algebras

H(ΩF 2n+1{pr}) = UL = UL(u, [v, u], [v, [v, u]], . . . , adk(v)(u), . . . )

= ULk≥0(adk(v)(u)).

Proof: Consider the fibration sequence of loop spaces

ΩF 2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1.

Since there is a short exact sequence of Lie algebras

0→ L→ L(u, v)→ L(ι)→ 0,

it follows from Proposition 10.24.8 that this fibration sequence is totally
nonhomologous to zero, and that as a H(ΩS2n+1) = UL(ι) comodule and
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UL module,

H(ΩP 2n+1(pr)) = UL(u, v) = UL⊗ UL(ι).

Proposition 10.24.8 asserts that

H(ΩF 2n+1{pr}) = CotorUL(ι)(UL(u, v),Z/psZ)

= (UL⊗ UL(ι))2UL(ι)Z/psZ = UL

as Hopf algebras.

Now refer to Proposition 8.7.3. In brief, that argument goes as follows. Since
L is a Z/psZ split subalgebra of the free Lie algebra L(u, v), it follows that
L is also free, that is, UL = T (W ) and that its module of generators W is
a free module over the algebra T (u) via the adjoint action. Since

T (W )⊗ T (v) = T (u, v)

as graded modules, the Euler–Poincare series satisfy

χ(T (u, v)) = χ(T (W )) · χ(T (v)),

that is,

1

1− t2n − t2n+1
=

1

χW
· 1

1− t2n+1
,

which can be solved to give

χ(W ) = Σ∞k=0t
2n+(2n+1)k.

Since u is surely a generator of UL = T (W ) and since W is a free T (v)
module, the computation of χ(W ) forces W to have a basis

u, [v, u], [v, [v, u]], . . . , adk(v)(u), . . . .

Thus,

L = L(u, [v, u], [v, [v, u]], . . . , adk(v)(u), . . . ) = Lk≥0(adk(v)(u)).

�

Now the mod p homology Bockstein spectral sequence of the loops on the
fibre of the pinch map is given by:

Proposition 11.5.2. The terms of the homology Bockstein spectral
sequence of ΩF 2n+1{pr} are given by:

(a) As primitively generated Hopf algebras

E1 = · · · = Er = UL = ULk≥1(adk−1(v)(u))
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and

βradk−1(v)(u) =

k−1∑
j=1

(j, k − j)[adj−1(v)(u), adk−j−1(v)(u)].

(b) As primitively generated Hopf algebras

Er+1 = H(UL, βr) == E(τ0, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

where

τk = adp
k−1(v)(u)

σk =
1

2

pk−1∑
j=1

[adj−1(v)(u), adp
k−j−1(v)(u)]

have respective degrees 2pkn− 1 and 2pkn− 2 and

βr+1τ0 = 0, βr+1σk = 0, βr+1τk = λkσk

where λk is a nonzero scalar for all k ≥ 1.

(c) And

Er+2 = · · · = E∞ = E(τ0).

Remark. Since the scalar λk is nonzero, we will often redefine σk to
include this scalar in its definition so that βr+1τk = σk.

Proof: The mod p homology of the fibration sequence

ΩF 2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1

is the sequence of universal enveloping algebras

UL→ UL(u, v)→ UL(ι)

induced by the short exact sequence of Lie algebras. Since βs = 0, s ≤
r − 1 and βrv = u in UL(u, v) = E1(ΩP 2n+1(pr)) = Er(ΩP 2n+1(pr)) in
the temporarily constant Bockstein spectral sequence, it follows that UL =
E1(ΩF 2n+1{pr}) = Er(ΩF 2n+1{pr}) in the temporarily constant Bock-
stein spectral sequence, and that the sequence

Er(ΩF 2n+1{pr})→ Er(ΩP 2n+1(pr))→ Er(ΩS2n+1)

of r-th terms of Bockstein spectral sequences is the same as the above
sequence of universal enveloping algebras at E1. But it now has the nonzero
differential βr and we wish to compute the homology

H(Er(ΩF 2n+1{pr}), βr) = Er+1(ΩF 2n+1{pr}).
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Proposition 8.3.5 implies that UL(u, v) = UL⊗ UL(ι) as a differential UL
module and as a differential UL(ι) comodule. Thus, Exercise 2 of Section
10.13 implies that there is a twisting morphism τ which makes UL(u, v) =
UL⊗τ UL(ι) into a twisted tensor product. Since this tensor product is
acyclic,

HUL(u, v) = HT (u, v) = TH〈u, v〉 = T0 = Z/pZ,

it follows that the computation of the homology of its fibre HUL is the
same as the computation in Corollary 10.26.4 of the mod p homology
H(Ω2S2n+1) of the double loop space of the odd-dimensional sphere, that
is,

Er+1(ΩF 2n+1{pr}) = HUL = H(ΩUL(ι))

= H(ΩT (ι)) = CotorT (ι)(Z/pZ,Z/pZ)

= E(τ0, τ1, τ2, . . . )⊗ P (σ1, σ2, . . . )

as algebras where degree(τk) = 2pkn− 1 and degree(σk) = 2pkn− 2.

Furthermore, for k ≥ 1, τk is characterized by its homology suspension in
the fibration sequence, that is, σ(τk) = ιk. Since Lemma 9.5.2 gives the

computation βrvk = adp
k−1(v)(u), it follows that τk = adp

k−1(v)(u) which
is a Lie bracket and therefore primitive.

We also know that the Bockstein differential βr in the graded Lie algebra
L = Lk≥1(adk−1(v)(u)) is compatible with the the trigrading imposed by
total degree, the number of occurences of u, and the number of occurences of

v. By Lemma 9.5.4, the element σk = 1
2

∑pk−1
j=1 [adj−1(v)(u), adp

k−j−1(v)(u)]
is a nonzero cycle in L with precisely two occurences of u. Since L is
generated by elements with one occurence of u and since βrτk = 0, it is
clear that σk is not a boundary in HUL. It is also clear from degree reasons
that its homology class cannot be a product of two classes, each with one
occurence of u. Thus, the generator σk = σk, which is a Lie bracket and
therefore primitive.

We know from Section 11.4 that the p-torsion in the integral homology of
ΩF 2n+1{pr} has exponent pr+1 and we know that this space is rationally
equivalent to the sphere S2n−1. Thus, Er+2 = Er+3 = · · · = E∞ = Z/pZ
and the only way to make Er+1 acyclic is via βrτk = λkσk where λk 6= 0
for k ≥ 1. �
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11.6 The decomposition of the homology of the loop space

The mod p homology Bockstein spectral sequence of ΩF 2n+1{pr} inspires
this section’s construction of a tensor product decomposition of the mod p
homology of this space.

We begin with an algebraic version of the Hurewicz theorem which relates
the homology of a free differential algebra with that of its module of inde-
composables.

Algebraic Hurewicz theorem 11.6.1. Let A be a connected supple-
mented differential algebra with A isomorphic as an algebra to a tensor
algebra. Suppose A and the module of indecomposables Q(A) are free as
modules. Suppose that the homology of the indecomposables is n connected,
that is, HkQ(A) = 0 for k < n, then the natural map

HkA→ HkQ(A)

is an isomorphism if k < 2n and an epimorphism if k = 2n.

Proof: Let I(A) be the augmentation ideal. The powers of the augmen-
tation ideal satisfy I(A)k+! ⊆ I(A)k and therefore define an increasing
filtration of A via:

FkA =


A if k ≥ 0

I(A) if k = −1

I(A)−k if k ≤ −2.

Since A is connected, this filtration is finite in each fixed degree.

If V−1,∗+1 = Q(A)∗, then the associated graded object of the above filtration
is the tensor algebra

E0(A) = T (V−1,∗).

The map A→ A/I(A)2 = R⊕Q(A) induces a map of associated graded
objects

E0(A)→ R⊕Q(A).

E0(A) is the first term of a convergent second quadrant homology spectral
sequence of algebras Es(A) with abutment the homology HA and there is
a map of spectral sequences

Es(A)→ Es(Q(A)) = R⊕Q(A)

where the range is the constant spectral sequence with abutment R⊕Q(A).
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Since these are homology spectral sequences, the differentials are

ds : Esi,j → Esi− s, j + s− 1.

It follows that

E1(A) = H(T (V−1,∗), d
0) = T (H(V−1,∗, d

0)) = T (H∗−1Q(A))

with H(V−1,∗, d
0) = 0 if ∗ − 1 < n, that is, if ∗ < n+ 1. The first possi-

bly nonzero differential is d1 : E1
−1,2n+2 → E1−2, 2n+ 2 which lands in the

indecomposables in total degree 2n. Hence, for all s ≥ 1,

Es(A)→ Es(Q(A))

is an isomorphism in total degrees < 2n and an epimorphism in total degree
= 2n.

Thus the same is true for E∞ and the abutments. �

The algebraic Hurewicz theorem enables the construction of a decreasing
filtration of the differential Lie algebra

L = L(u, [v, u], . . . , adj(v)(u), . . . ) = Lj≥0(adj(v)(u)

with degree(v) = 2n, degree(u) = 2n− 1, and differential dv = βr = u.

Proposition 11.6.2. There is a decreasing filtration Lk of the differential
graded Lie algebra L defined by

L0 = L

and

L1 = [L,L] = kernel L0 → 〈u〉

and, for k ≥ 1, there are short exact sequences of differential graded Lie
algebras

0→ Lk+1 → Lk → 〈τk, σk〉 → 0

where 〈τk, σk〉 is an abelian Lie algebra and each Lk is a free Lie algebra
and

HULk =

∞⊗
j=k

S(τj , σj) k ≥ 1

as primitively generated Hopf algebras.

Proof: We observe by inspection that HQL = H〈u, [v, u], [v, [v, u]], . . . 〉
contains 〈u〉 as a summand, in other words, QL contains 〈u〉 as a differential
summand. Hence, there is a map of differential objects

L→ QL→ 〈u〉

and L1 is the kernel of this map. Since L1 is a subalgebra of a free Lie
algebra, it is also a free Lie algebra.



482 Odd primary exponent theorems

Although inspection shows that the first two generators of L1 are [u, u]
and [v, u], the algebraic Hurewicz theorem will tell us everything we need
to know about the generators.

The short exact sequence

0→ L1 → L0 → 〈u〉 → 0

of differential Lie algebras yields a sequence of universal enveloping algebras

UL1 → UL0 → U〈u〉

with U〈u〉 = S(u) = E(u) and with the middle

ULO = UL1 ⊗τ U〈u〉

being a twisted tensor product of the ends. Since

HULO = S(u)⊗
∞⊗
j=1

S(τj , σj)→ HU〈u〉 = S(u)

is an epimorphism of homology, the algebraic version of the Eilenberg–
Moore spectral sequence in Proposition 10.24.8 shows that

HUL1 = CotorHU〈u〉(HUL0,Z/pZ)

= HUL02HU〈u〉Z/pZ =

∞⊗
j=1

S(τj , σj)

as Hopf algebras.

The algebraic Hurewicz theorem implies that 〈τ1, σ1〉 is a summand of the
homology of the indecomposables HQUL1, in other words, 〈τ1, σ1〉 is a
differential summand of the module of indecomposables QUL1.

It follows that the composition

L1 → QL1 → 〈τ1, σ1〉

is a map of differential Lie algebras and we define

L2 = kernel L1 → 〈τ1, σ1〉.

Again, since L2 is a subalgebra of a free Lie algebra, it is also a free Lie
algebra.

Just as before, the short exact sequence of differential Lie algebras

0→ L2 → L1 → 〈τ1, σ1〉 → 0

yields to a sequence of universal enveloping algebras

UL2 → UL1 → U〈τ1, σ1〉
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with

U〈τ1, σ1〉 = S(τ1, σ1) = E(τ1)⊗ P (σ1)

and with the middle equal to a twisted tensor product of the ends

UL1 = UL2 ⊗τ U〈τ1, σ1〉

and the algebraic version of the Eilenberg–Moore spectral sequence in
Proposition 10.24.8 shows that

HUL2 = CotorHU〈τ1,σ1〉(HUL1,Z/pZ)

= HUL12HU〈τ1,σ1〉Z/pZ =

∞⊗
j=2

S(τj , σj)

as Hopf algebras.

Continuing in this way, we get for all k ≥ 1 short exact sequences of differ-
ential Lie algebras

0→ Lk+1 → Lk → 〈τk, σk〉 → 0

where each 〈τk, σk〉 is an abelian Lie algebra and each Lk is a free Lie
algebra and

HULk+1 = HULk2U〈τk,σk〉Z/pZ =

∞⊗
j=k+1

S(τj , σj)

as Hopf algebras. �

Let

L∞ =
⋂
k≥1

Lk = lim
k→∞

Lk.

This is an intersection of decreasing Lie subalgebras of L and the filtration
is finite (or eventually constant) in each degree. L∞ is a subalgebra of L
and therefore is also a free Lie algebra. Furthermore,

HUL∞ = lim
k→∞

HULk = Z/pZ.

The algebraic Hurewicz theorem implies that the module of indecompos-
ables QUL∞ = QL∞ = L∞/[L∞, L∞] is acyclic. That is,

HQL∞ = 0

and therefore there is a set of generators {xα, dxα}α of L∞ which is finite in
each degree. (Note that the basis begins with [u, u] and [v, u] in degrees 2n−
2 and 2n− 1. The acyclity of the generating set is illustrated by d[v, u] =
[u, u].)
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Hence,

L∞ = L(xα, dxα)α

and

UL∞ = UL(xα, dxα)α = T (xα, dxα)α

is an acyclic tensor algebra.

We note that the isomorphisms in Proposition 11.6.2 are defined by multi-
plication

ULk+1 ⊗ U〈τk, σk〉 → ULk ⊗ ULk
mult−−−→ ULk

where

ULk+1 → ULk

is the inclusion and

U〈τk, σk〉 = S(τk, σk)→ ULk

is the obvious S(σk) = P (σk) right equivariant section determined by

1 7→ 1, σk 7→ σk, τk 7→ τk.

If we iterate the steps in the proof of Proposition 11.6.2, we get

UL = UL1 ⊗ S(u)

= UL2 ⊗ S(τ1, σ2)⊗ S(u)

= ULk ⊗
k−1⊗
j=1

S(τj , σj)⊗ S(u)

= UL∞ ⊗
∞⊗
j=1

S(τj , σj)⊗ S(u)

= T (xα, dxα)α ⊗
∞⊗
j=1

S(τj , σj)⊗ S(u)

as differential coalgebras and also as modules over the tensor algebra
T (xα, dxα)α.

By construction, this isomorphism is defined by the limit of the maps

ULk+1 ⊗ S(τk, σk)⊗ S(τk−1, σk−1)⊗ · · · ⊗ S(τ1, σ1)⊗ S(u)

→
k+2⊗
j=1

ULk
mult−−−→ ULk.
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It is important to note that the injection

S(τk, σk)⊗ · · ·S(τ1, σ1)→ UL

extends to an injection

S(τk+1, σk+1)⊗ · · ·S(τ1, σ1)→ UL.

Thus, the maps

S(τk, σk)⊗ · · · ⊗ S(τ1, σ1)→ UL⊗ · · · ⊗ UL→ UL

give a limit map

Ψ :

∞⊗
k=1

S(τk, σk)→ UL.

We then multiply this with other maps

Φ : UL∞ ⊗
∞⊗
k=1

S(τk, σk)⊗ S(u)
incl⊗Ψ⊗ι−−−−−−→ UL⊗ UL⊗ UL mult−−−→ UL

to get an isomorphism of differential coalgebras.

Exercise

(1) Use the techniques of chapter 9 to show that L1 is the free Lie algebra
generated by

[u, u], [v, u], , [u, [v, u]], [v, [v, u]], [u, [v, [v, u]]], [v, [v, [v, u]]], . . . .

11.7 The weak product decomposition of the loop space

Recall that the weak product of a countable set Xj of pointed spaces is the
direct limit of the finite products

∞∏
j=1

Xj = lim
k→∞

k∏
j=1

Xj .

Thus, with any field coefficients, the homology of a weak product is the
tensor product of the homologies,

H

 ∞∏
j=1

Xj

 =

∞⊗
j=1

H(Xj).

The purpose of this section is to prove a weak product decomposition of the
loop space ΩF 2n+1{pr}. This weak product decomposition is the geometric
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realization of the tensor product decomposition of the homology

T (xα, β
rxα)α ⊗

∞⊗
k=1

S(τk, σk)⊗ S(u) ' H(ΩF 2n+1{pr};Z/pZ)

which is given in the previous section.

Proposition 11.7.1. Localized at an odd prime p, there is a homotopy
equivalence

Φ : ΩΣ
∨
α

Pnα(pr) ×
∞∏
j=1

S2pjn−1{pr+1} × S2n−1 → ΩF 2n+1{pr}

where

(a) ∨
α

Pnα(pr)

is an infinite bouquet of mod pr Moore spaces with only finitely many
in each dimension and where the least value of nα is 4n− 1,

(b)

S2pjn−1{pr+1}

is the fibre of the degree pr+1 map

pr+1 : S2pjn−1 → S2pjn−1,

(c) S2n−1 is the localized sphere.

Remark. Proposition 11.7.1 can be thought of as illustrating the mod
p homology Bockstein spectral sequence of ΩF 2n+1{pr}. In this spectral
sequence, the homology of the first factor

H

(
ΩΣ

∨
α

Pnα(pr)

)
= T (xα, βxα)α

is acyclic with respect to the differential βr, the homology of the second
factor

H

 ∞∏
j=1

S2pjn−1{pr}

 =

∞⊗
j=1

S(τj , σj), βr+1τj = σj

is acyclic with respect to the differential βr+1, and the homology of the
third factor

H(S2n−1) = S(u) = E(u)
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survives to E∞.

Remark. Although Proposition 11.7.1 is true for all odd primes, the fail-
ure of the Jacobi identity for mod 3 homotopy groups makes it necessary
for the proof to become very, very much more complicated if p = 3 and
r = 1. Hence, for the purpose of this proof, we will assume that p > 3 or
that r ≥ 2.

Proof: We need to construct three maps

χ : ΩΣ
∨
α

Pnα(pr)→ ΩF 2n+1{pr},

θ :

∞∏
j=1

S2pjn−1{pr} → ΩF 2n+1{pr},

µ : S2n−1 → ΩF 2n+1{pr}

with respective images in mod p homology isomorphic to the tensor algebra

T (xα, β
rxα)α,

the tensor product

∞⊗
j=1

S(τj , σj),

and the exterior algebra

S(u) = E(u).

Then multiplying these maps together via

ΩΣ
∨
α

Pnα(pr)×
∞∏
j=1

S2pjn−1{pr} × S2n−1 χ×θ×µ−−−−→

ΩF 2n+1{pr} × ΩF 2n+1{pr} × ΩF 2n+1{pr} mult−−−→ ΩF 2n+1{pr}

gives a mod p homology isomorphism.

Since these spaces are all finite type localized at p, this is a homology iso-
morphism with local coefficients Z(p) and hence a homotopy equivalence of
spaces localized at p. (Since these are H-spaces, it is a homotopy equivalence
even in the nonsimply connected case when n = 1.)

Before beginning the construction of these three maps, we need some pre-
liminaries.

First, note that we have maps

ν = Σ : P 2n(pr)→ ΩP 2n+1(pr)
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and that the Bockstein (= restriction to the bottom cell) βν = µ factors
through ΩF 2n+1{pr}, that is,

S2n−1 µ−→ ΩF 2n+1{pr} ι−→ ΩP 2n+1(pr).

If we are careful, no confusion will result by identifying the map

ν : P 2n(pr)→ ΩP 2n+1(pr)

with its mod p reduction

ρν = ν · ρ : P 2n(p)
ρ
−→ P 2n(pr)

ν−→ ΩP 2n+1(pr).

Similarly, we will identify the map µ with its mod pr and mod p reductions
ρµ = βrν

P 2n−1(pr)→ S2n−1 µ−→ ΩF 2n+1{pr}

P 2n−1(p)
ρ
−→ P 2n−1(pr)→ S2n−1 µ−→ ΩF 2n+1{pr}.

We note that the Bockstein formula βν = µ is valid in integral homotopy
or in mod pr homotopy and the Bockstein differential formula βrν = µ is
valid in the mod p homotopy Bockstein spectral sequence.

The Hurewicz maps satisfy

φ(ν) = v, φ(µ) = u,

mod pr, mod p, or integrally, whatever is appropriate.

Second, since the composition is null homotopic in the cofibration sequence

S2n1
pr−→ S2n−1 → P 2n+1(pr)

it follows that we have a lift of this to the path space P (P 2n+1(pr)) and
hence a map of fibration sequences

S2n−1{pr} ψ−→ ΩP 2n+1(pr)
↓ ↓

S2n−1 → P (P 2n+1(pr))
↓ pr ↓
S2n−1 → P 2n+1(pr)

and that the map ψ : S2n−1{pr} → ΩP 2n+1(pr) is equivariant with respect
to the right actions of ΩS2n+1 on the domain and range.

Thus, the map in mod p homology

H(S2n−1{pr}) = S(u, v)→ H(ΩP 2n+1(pr)) = T (u, v)

is the standard S(v) = P (u) = T (u) right equivariant injection determined
by v 7→ v, u 7→ u.
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We now construct the map

χ : ΩΣ
∨
α

Pnα(pr)→ ΩF 2n+1{pr}.

Since the elements xα which are generators of the tensor algebra
T (xα, β

rxα)α are Lie brackets of the elements v and u, they can be inter-
preted as relative Samelson products

χα : Pnα(pr)→ ΩF 2n+1{pr}

of the homotopy classes ν and µ. We can also reduce mod p and, whether
we do or not, the Hurewicz map satisfies

φ(χα) = xα.

We also have the relative Samelson products

βrχα : Pnα−1(pr)→ ΩF 2n+1{pr}

and the Hurewicz map satisfies

φ(βrχα) = βrφ(χα) = βrxα.

For each α we have a map χα : Pnα(pr)→ ΩF 2n+1{pr} with the reduced
homology image spanned by φ(χα) = xα and φ(βrχα) = βrxα. We add
these up to get a map ∨

α

Pnα(pr)→ ΩF 2n+1{pr}.

Denote the multiplicative extension of this map by

χ : ΩΣ
∨
α

Pnα(pr)→ ΩF 2n+1{pr}.

We note that χ induces an isomorphism in mod p homology

χ : H

(
ΩΣ

∨
α

Pnα(pr)

)
→ T (xα, β

r) ⊆ H(ΩF 2n+1{pr})

onto the tensor subalgebra.

We now construct the map

θ :

∞∏
j=1

S2pjn−1{pr+1} → ΩF 2n+1{pr}.

It is sufficient to construct the maps

θk : S2pjn−1{pr} → ΩF 2n+1{pr}
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which are mod p homology injections onto

S(τk, σk) ⊆ UL

and then use the loop multiplication on ΩF 2n+1{pr} to multiply them
together. It is convenient to use the Moore loops with strict associativity
and strict unit. In this way, the map of the finite product

k∏
j=1

S2pjn−1{pr+1} → ΩF 2n+1{pr}

extends to a map of one more factor

k∏
j=1

S2pjn−1{pr+1} → ΩF 2n+1{pr}

and one can take the direct limit to get a map of the infinite weak product.

Consider the relative Samelson product

τk(ν) = adp
k−1(ν)(µ) : P 2pkn−1(pr)→ ΩF 2n+1{pr}.

In the presence of the Jacobi identity (which is valid if either p > 3 or if
r ≥ 2), Lemma 9.5.2 implies that the Bockstein βτk(ν) is divisible by p (=
zero mod p), that is, with respect to the Bockstein cofibration sequence

P 2pkn−2(p)
β
−→ P 2pkn−1(pr)

ρ
−→ P 2pkn−1(pr+1)

the composition

βτk(ν) = τk(ν) · β : P 2pkn−2(p)
β
−→ P 2pkn−1(pr)

τk(ν)−−−→ ΩF 2n+1{pr}

is null homotopic. Hence, there exists an extension of τk(ν) to a map

τk(ν) : P 2pkn−1(pr+1)→ ΩF 2n+1{pr}

such that the mod pr reduction satisfies

ρτk(ν) = τk · ρ = τk(ν).

Let e generate the top nonzero mod p homology group of P 2pkn−1(pr) and

let e generate the top nonzero mod p homology group of P 2pkn−1(pr+1).
Then e maps to e. Since the Hurewicz map in mod p homology satisfies

φ(τk(ν)) = τk(ν)∗(e) = τk(v) = τk,

it follows that

(τk(ν)∗(e) = τk(v) = τk.
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In addition,

(τk(ν)∗(β
re) = βr(τk(ν)∗(e) = βrτk(v) = σk(v)

up to a nonzero scalar.

Let

θk : ΩΣP 2pkn−1(pr+1)→ ΩF 2n+1{pr}

be the multiplicative extension of τk(ν) and let

θk : S2pkn−1{pr+1} ψ−→ ΩP 2pkn+1(pr+1)→ ΩP 2n+1(pr)

be the composition with the equivariant map ψ constructed above.

Then θk maps the mod p homology H(S2pkn−1{pr+1}) isomorphically onto
S(τk, σk) ⊆ UL, as desired.

Finally, the fact that

µ : S2n1 → ΩF 2n+1{pr}

maps the mod p homology isomorphically onto S(u) = E(u) ⊆ UL com-
pletes the proof of the weak product decomposition Theorem 11.7.1. �

We adopt the shorthand notations

Ωr = ΩΣ
∨
α

Pnα(pr)

∏
r

=

∞∏
j=1

S2pjn−1{pr}

so that the equivalence in 11.7.1 becomes

Φ : Ωr ×
∏
r+1

×S2n−1 '−→ ΩF 2n+1{pr}.

We use the weak product decomposition of Proposition 11.7.1 to define:

Definition 11.7.2. For all r ≥ 1, the map of localized spaces

πr : ΩS2n+1 → S2n−1

is defined to be the composition

proj · Φ−1 · Ω∂ : Ω2S2n+1 → ΩF 2n+1{pr} →

Ωr ×
∏
r+1

× S2n−1 → S2n−1
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where Ω∂ is the loop of the connecting map in the fibration sequence, Φ−1

is the homotopy inverse to the equivalence in Proposition 11.7.1, and proj
is the projection onto the sphere factor of the product decomposition.

One easily checks that the map πr has degree pr on the bottom cell, that
is, that the composition with the double suspension map

πr · Σ2 : S2n−1 → ΩS2n+1 → S2n−1

has degree pr. The case r = 1 is particularly important and will be denoted
by π = π1.

In the next section, we will prove another weak product decomposition
which gives further information about the maps πr.

Exercises

(1) Verify that the map πr in Definition 11.7.2 has degree pr on the bottom
cell.

(2) Use Toda’s odd primary exponent result

p2π ∗ (ΩS2n+1) ⊆ Σ2π∗(S
2n−1)

and the map π in Definition 11.7.2 to prove that

p3π∗(ΩS
2n+1) ⊆ p2Σ2π∗(S

2n−1).

(3) If p is an odd prime, prove that pn+1 annihilates the p-primary com-
ponent of π∗(S

2n+1) for all n ≥ 1.

11.8 The odd primary exponent theorem for spheres

Let p be an odd prime. In this section, we prove the odd primary exponent
theorem for odd dimensional spheres. This is a consequence of a weak prod-
uct decomposition for the loops on the homotopy theoretic fibre E2n+1{pr}
of a map P 2n+1(pr)→ S2n+1{pr}.

Since the composition in the cofibration sequence

P 2n+1(pr)
q−→ S2n+1 pr−→ S2n+1

is null homotopic, we can replace pr by a fibration and (assuming that this
has been done but not changing the notation) we get as in Proposition
3.2.3 the fibre extension of a totally fibred square, that is, up to homotopy
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a commutative diagram

E2n+1{pr} → P 2n+1(pr)
t−→ S2n+1{pr}

↓ λ ↓= ↓ j
F 2n+1{pr} → P 2n+1(pr)

q−→ S2n+1

↓ κ ↓ ↓ pr
ΩS2n+1 → ∗ → S2n+1

in which the rows and columns are all fibration sequences up to homotopy.

The subject of this section is the loop of this square and its continuation
one step to the left as a 3 × 4 diagram in which all the rows and columns
are fibration sequences up to homotopy. That is, in the homotopy commu-
tative diagram below, all rows and columns are fibration sequences up to
homotopy. (Recall that the loop of a k-th power map is also a k-th power
map.)

Ω2S2n+1{pr} δ−→ ΩE2n+1{pr} → ΩP 2n+1(pr)
Ωt−→ ΩS2n+1{pr}

↓ Ω2j ↓ Ωλ ↓= ↓ Ωj

Ω2S2n+1 Ω∂−−→ ΩF 2n+1{pr} → ΩP 2n+1(pr)
Ωq−→ ΩS2n+1

↓ Ω2pr ↓ Ωκ ↓ ↓ Ωpr

Ω2S2n+1 =−→ Ω2S2n+1 → ∗ → ΩS2n+1

Let C(n) be the homotopy theoretic fibre of the double suspension Σ2 :
S2n−1 → Ω2S2n+1. Since the map

Ωκ : ΩF 2n+1{pr} → Ω2S2n+1

is degree 1 on the bottom factor S2n−1 of the weak product decomposition
of ΩF 2n+1{pr}, there is a map of fibration sequences

C(n) → S2n−1 Σ2

−→ Ω2S2n+1

↓ ↓ µ ↓=
ΩE2n+1{pr} → ΩF 2n+1{pr} Ωκ−−→ Ω2S2n+1

.

We note that multiplication of the double suspension sequence by the factor
Ωr ×

∏
r+1 yields the fibration sequence

Ωr ×
∏
r+1

×C(n)→ Ωr ×
∏
r+1

×S2n−1 τ−→ Ω2S2n+1,

where the fibre space projection τ is the composition of the projection on
the sphere factor with the double suspension, τ = Σ2 · proj1.

The main result of this section is that the above fibration sequence is equiv-
alent to one which occurs in the above fibre extension of the totally fibred
square.
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Proposition 11.8.1. There is a homotopy equivalence from the top fibra-
tion sequence to the bottom fibration sequence in

Ωr ×
∏
r+1×C(n) → Ωr ×

∏
r+1×S2n−1 → Ω2S2n+1

↓ Ψ ↓ Φ ↓=
ΩE2n+1{pr} → ΩF 2n+1{pr} Ωκ−−→ Ω2S2n+1

.

Furthermore, the vertical maps are constructed by multiplying the above
map of the double suspension sequence by lifts of the maps χ and θ used in
Proposition 11.7.1.

One gets the immediate corollary:

Corollary 11.8.2. If p is an odd prime, then the compositions

πr · Σ2 : S2n−1 → Ω2S2n+1 → S2n−1

and

Σ2 · πr : Ω2S2n+1 → S2n−1 → Ω2S2n+1

are both pr power maps, that is,

πr · Σ2 = pr, Σ2 · πr = Ω2pr = pr.

Proof of Corollary 11.8.2: The first equation πr · Σ2 = pr is a consequence
of the definition of πr as the projection on the bottom cell of ΩF 2n+1{pr}.
In detail, the fact that the integral homotopy exact sequence of the fibration

π2n−1(Ω2S2n+1)
Ω∂−−→ π2n−1(ΩF 2n+1{pr})→ π2n−1(ΩP 2n+1(pr))

is equal to

Z pr−→ Z→ Z/prZ

implies the first equation.

If we use the equivalence of Proposition 11.8.1 to identify

Ωr ×
∏
r+1

×S2n−1 ∼= ΩF 2n+1{pr},

then the map Ωκ annihilates the first two factors and therefore the com-
position Ωpr = Ωκ · Ω∂ factors through the bottom cell S2n−1.

In detail, the equation Σ2 · πr = Ω2pr follows from the fact that

Ωκ · Φ

(
Ωr ×

∏
r+1

)
= ∗
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and thus

Ωκ · Φ = Ωκ · µ · proj.

Hence,

Ω2pr = Ωκ · Ω∂ = Ωκ · Φ · Φ−1 · Ω∂ =

Ωκ · µ · proj · Φ−1 · Ω∂ = (Ωκ · µ) · (proj · Φ−1 · Ω∂) = Σ2 · πr.

�

By setting r = 1 in Corollary 11.8.2, we immediately get the odd primary
exponent theorem for odd dimensional spheres.

Corollary 11.8.3. If p is an odd prime, then the localized groups satisfy

p π∗(Ω
2S2n+1) ⊆ Σ2π∗(S

2n−1)

and induction starting with n = 1 gives

pnπ∗(S
2n+1) = 0 for all n ≥ 1.

Proof of Proposition 11.8.1: We begin with a discussion of Samelson prod-
ucts in the loop space ΩP 2n+1(pr), relative Samelson products in the fibra-
tion sequence

ΩF 2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1,

and Samelson products over the loops on an H-space in the fibration
sequence

ΩE2n+1{pr} → ΩP 2n+1(pr)→ ΩS2n+1{pr}.

Samelson products of interest are formed from the even class ν : P 2n(pr)→
ΩP 2n+1(pr) and the odd class µ : S2n−1 → ΩF 2n+1{pr} → ΩP 2n+1(pr).

It is obvious that the only nontrivial length 2 products are [ν, µ], [µ, µ]
and, even if we know nothing about relative products or products over the
loops on an H-space, it is obvious that these lift to ΩF 2n+1{pr} since at
least one of the factors vanishes in the base ΩS2n+1. Moreover, these lifts
will have proper Hurewicz images as commutators since there is a mod p
homology monomorphism ΩF 2n+1{pr} → ΩP 2n+1(pr).

But we need to know about the theory of relative products in order to call
these lifts Samelson products and to use the Lie identities. For example,
the Lie identity [µ, [ν, µ]] = [[µ, ν], µ] + [ν, [µ, µ]] needs to be justified in
ΩF 2n+1{pr} by the theory of relative Samelson products. Lie identities are
necessary in order to prove the vanishing of the r-th Bockstein differential,
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βrτk(ν) = 0. This identity is vital in the construction of the map∏
r+1

→ ΩF 2n+1{pr}.

Similarly, it is obvious that the nontrivial length 2 products [ν, µ], [µ, µ] lift
to ΩE2n+1{pr} even though neither of the two classes ν, µ vanish in the
base ΩS2n+1{pr}. This base is the loops on an H-space and hence Samelson
products vanish in it and thus lift to the fibre ΩE2n+1{pr}. But we cannot
call these lifts Samelson products without a theory to include them, and
hence we cannot use the Lie identities. Fortunately, we have the theory of
Samelson products over the loops on an H-space. (Historical note: When
Proposition 11.8.1 was first proved, there was a theory of relative products
but no theory of products over the loops on an H-space. This was overcome
then by an ad hoc argument)

Since S2n+1 is an H-space, the relative Samelson products

χα : Pnα(pr)→ ΩF 2n+1{pr}

which occur in the proof of Proposition 11.7.1 can be regarded as Samelson
products defined over the loops on an H-space. Since the multiplication on
S2n+1{pr} is defined so that the map S2n+1{pr} → S2n+1 is an H-map,
these Samelson products are natural with respect to the maps of fibration
sequences

ΩE2n+1{pr} → ΩP 2n+1(pr)
Ωt−→ ΩS2n+1{pr}

↓ Ωλ ↓= ↓ Ωj

ΩF 2n+1{pr} → ΩP 2n+1(pr)
Ωq−→ ΩS2n+1

and we can regard the Samelson products χα as being in ΩE2n+1{pr}. If
we add them up and take the multiplicative extensions, we get a map

χ : Ωr → ΩE2n+1{pr}

which is a lift of the map

χ : Ωr → ΩF 2n+1{pr}.

Since we are localized at an odd prime we can assume that the H-space
structures on S2n+1 and S2n+1{pr} are homotopy commutative and com-
patible (11.2.6 or [101]) and hence that the Jacobi identities and anti-
commutativity hold for these Samelson products defined over the loops on
H-spaces. It follows that, not only do the elements

τk(ν) = adp
k−1(ν)(µ)

lift from ΩF 2n+1{pr} to ΩE2n+1{pr}, the Bocksteins βτk(ν) are zero mod p
in both spaces. Hence there exist mod pr+1 extensions τk(ν) of the elements
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τk(ν) in both spaces. That is, we have factorizations

P 2pkn−1(pr)→ P 2pkn−1(pr+1)
τk(ν)−−−→ ΩE2n+1{pr} → ΩF 2n+1{pr}.

Just as in the proof of Proposition 11.7.1, we get lifts to maps

θ : S2pkn+1{pr+1} → ΩE2n+1{pr}

and can multiply them together to get a map of the weak infinite product

θ :
∏
r+1

→ ΩE2n+1{pr}

which is a lift of the previous map θ into ΩF 2n+1{pr}.

We start with a map of fibration sequences

C(n) → S2n−1 → Ω2S2n+1

↓ ↓ Φ ↓=
ΩE2n+1{pr} → ΩF 2n+1{pr} Ωκ−−→ Ω2S2n+1

and multiply the left-hand vertical map by the maps

Ωr → ΩE2n+1{pr},
∏
r+1

→ ΩE2n+1{pr}

and the middle vertical map by

Ωr → ΩF 2n+1{pr},
∏
r+1

→ ΩF 2n+1{pr}

to get the map of fibration sequences

Ωr ×
∏
r+1×C(n) → Ωr ×

∏
r+1×S2n−1 → Ω2S2n+1

↓ Ψ ↓ Φ ↓=
ΩE2n+1{pr} → ΩF 2n+1{pr} Ωκ−−→ Ω2S2n+1

.

of Since the maps of the bases and the total spaces are homotopy equiv-
alences of spaces localized at p, the map Ψ of the fibre spaces is also a
homotopy equivalence of spaces localized at p. This completes the proof of
Proposition 11.8.1. �

11.9 H-space exponents

The factorization of the p-th power on the double loop space

p = Σ2 · π : Ω2S2n+1 π−→ S2n−1 Σ2

−→ Ω2S2n+1
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lifts to a map of 2n− 1 connected covers via the maps of fibration sequences

(Ω2S2n+1)〈2n− 1〉 π−→ S2n−1〈2n− 1〉 Σ2

−→ (Ω2S2n+1)〈2n− 1〉
↓ ↓ ↓

Ω2S2n+1 π−→ S2n−1 Σ2

−→ Ω2S2n+1

↓ ↓ ↓
K(Z(p), 2n− 1)

p−→ K(Z(p), 2n− 1)
=−→ K(Z(p), 2n− 1).

Thus we have a factorization of the p-th power on the connected covers

p : (Ω2S2n+1)〈2n− 1〉 π−→ S2n−1〈2n− 1〉 Σ2

−→ (Ω2S2n+1)〈2n− 1〉.

If we iterate this we get a factorization of the pn-th power on universal
covers of 2n-fold loop spaces

pn : (Ω2nS2n+1)〈1〉 → S1〈1〉 Σ2n

−−→ (Ω2nS2n+1)〈1〉.

Since the universal cover S1〈1〉 = R is contractible, we get the following
H-space exponent theorem.

Proposition 11.9.1. If p is an odd prime, the pn-th power map is null
homotopic on the universal cover of the localized 2n-fold loop space

(Ω2nS2n+1)〈1〉 = Ω2n(S2n+1〈2n+ 1〉).

Remark. The above proposition was first proved for n = 1 by Selick, for
p > 3 by Cohen, Moore, and Neisendorfer, and for p = 3 by Neisendorfer.
Earlier results due to James for the prime 2 and due to Toda for odd primes
had shown that the p2n-th power map is null homotopic on the component
of the identity in the localized iterated loop spaces

Ω2n+1S2n+1.

Remark. Exercise 1 of Section 2.10 shows that, for any prime p, there is
no H-space exponent for the localized loop space

Ω2n−2(S2n+1〈2n+ 1〉),

that is, no matter how large k is, the pk-th power map is not null homo-
topic on this space. The best possible results on number of loops [115] are
known since Selick’s result for the three-sphere combines with the above
factorization of the p-th power map to improve Proposition 11.9.1 to show
that only 2n− 1 loops are required, that is, pn is null homotopic on the
localized loop space

Ω2n−1(S2n+1〈2n+ 1〉).

We conclude this section with:
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Proposition 11.9.2. If p is an odd prime, then the p-th power map is
null homotopic on the localized fibre C(n) of the double suspension Σ2 :
S2n−1 → Ω2S2n+1.

Proof: Recall that, if we replace the double suspension by a homotopy
equivalent fibration

τ : S̃2n−1 → Ω2S2n+1,

then the multiplication on the total space is homotopic to one for which
τ is a strict H-map and the multiplication on the fibre C(n) is defined so
that the inclusion C(n)→ S̃2n1 is a strict H-map. It follows that the p-th
power maps induce maps of fibration sequences

C(n)
p−→ C(n)

↓ ↓
S̃2n−1 p−→ S̃2n−1

↓ ↓
Ω2S2n+1 p−→ Ω2S2n+1.

We claim that the above map of fibration sequences factors up to fibre
homotopy as

C(n) → ∗ → C(n)
↓ ↓ ↓

S̃2n−1 p−→ S2n−1 '−→ S̃2n−1

↓ ↓= ↓
Ω2S2n+1 π−→ S2n−1 Σ2

−→ Ω2S2n+1.

Observe that the lower left-hand square is homotopy commutative but,
since the identity map S2n1 → S2n−1 is a fibration, it can be assumed
to be strictly commutative. That the lower right-hand square is strictly
commutative is a property of the standard construction which replaces a
map by a fibration.

The maps on the bases of the two diagrams are homotopic. After a fibre
homotopy on the first diagram we can assume that the maps on the bases
are equal. Given that, the only obstruction to the existence of a fibre homo-
topy lies in

H2n−1(S̃2n−1;π2n−1C(n)) = 0.

�
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11.10 Homotopy exponents of odd primary Moore spaces

In this section we prove exponent theorems for odd primary Moore
spaces. For p an odd prime, we give complete details for the proof that
p2r+1π∗(P

m(pr)) = 0 for all m ≥ 3. We also prove the best possible result
that pr+1π∗(P

m(pr)) = 0 for all m ≥ 3, but for the latter we need a hard
lemma, the proof of which is too complicated to give here. In both cases,
we prove that there are H-space exponents for the double loop spaces
Ω2Pm(pr).

Remark. If we recall that the universal cover of P 2(s) has the same homo-
topy type as a bouquet of s− 1 copies of S2, then we see that the restriction
to Moore spaces of dimension m ≥ 3 is necessary in order for the homotopy
groups to have an exponent.

We begin with the remarkable

Lemma 11.10.1. If the suspension Σf of a map f : ΩZ→ X out of a loop
space admits a retraction θ : ΣX → ΣΩZ, θ · Σf = 1ΣΩZ, then f admits a
retraction κ : X → ΩZ, κ · f = 1Z

Proof: Consider the diagram

ΩZ f−→ X
↓ Σ ↓ Σ

ΩΣΩZ ΩΣf−−−→ ΩΣX
Ωg−→ ΩΣΩZ

↓ Ωe ↓ Ωe
ΩZ 1 → ΩZ

where e : ΣΩZ→ Z is the evaluation.

Then κ = Ωe · Ωg · Σ is the retraction. �

Lemma 11.10.2. If g : W → Y is a mod p homology monomorphism and
W and Y are both bouquets of mod pr Moore spaces with r fixed, then there
is a retraction h : Y →W, h · g = 1W .

We need a lemma to prove a lemma.

Lemma 11.10.3. If A is an acyclic differential module over a field, then
A has a so-called acyclic basis of the form {xα, dxα}α.

Proof: We have d : A/ker d
∼=−→ ker d. Pick elements xα in A which project

to a basis xα of A/ker d. Then dxα is a basis of ker d. The exact sequence

0→ ker d→ A→ A/ker d→ 0

shows that {xα, dxα}α is a basis for A. �
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Proof of 11.10.2: With mod p coefficients and the r-th Bockstein dif-
ferential βr, the reduced homology groups H(W ) and H(Y ) are both
acyclic. Hence the quotient H(Y )/H(W ) is also acyclic. Choose a subset
{yβ , βryβ}β ⊆ H(Y ) which projects to an acyclic basis of H(Y )/H(W ).

If X is a bouquet of mod pr Moore spaces and x εHk(X), there is a map
P k(pr)→ X which sends the k-dimensional generator in the mod p homol-
ogy of P k(pr) to x. Thus the image in reduced mod p homology is generated
by x, βrx.

Let

Z =
∨
β

P |yβ |(pr)→ Y

be a map of a bouquet of mod pr Moore spaces whose span is 〈yβ , βryβ〉β .

Then the map W ∨ Z→ Y is a mod p homology isomorphism, therefore a
homotopy equivalence. Using this equivalence, we can project onto the first
summand, Y →W , to get a retraction. �

Lemmas 11.10.1 and 11.10.2 imply:

Corollary 11.10.4. The map χ : Ωr → ΩP 2n+1(pr) has a retraction κ :
ΩP 2n+1(pr)→ Ωr, κ · χ = 1Ωr .

The classifying maps

Σ
∨
α

Pnα → E2n+1{pr} → F 2n+1{pr} → P 2n+1(pr)

define a commutative diagram of horizontal fibration sequences

Ωr → ΩE2n+1{pr} → V 2n+1{pr} → Σ
∨
α P

nα → E2n+1{pr}
↓= ↓ ↓ ↓= ↓
Ωr → ΩF 2n+1{pr} → W 2n+1{pr} → Σ

∨
α P

nα → F 2n+1{pr}
↓= ↓ ↓ ↓= ↓
Ωr → ΩP 2n+1(pr) → T 2n+1{pr} → Σ

∨
α P

nα → P 2n+1(pr).

The retraction in Corollary 11.10.4 gives compatible retractions

ΩE2n+1{pr} → Ωr
↓ ↓=

ΩF 2n+1{pr} → Ωr
↓ ↓=

ΩP 2n+1{pr} → Ωr
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and hence multiplying the maps in the above fibration sequences with the
retractions gives a commutative diagram of homotopy equivalences

ΩE2n+1{pr} '−→ Ωr × V 2n+1{pr}
↓ ↓

ΩF 2n+1{pr} '−→ Ωr ×W 2n+1{pr}
↓ ↓

P 2n+1(pr)
'−→ Ωr × T 2n+1{pr}.

,

Recall that there are homotopy equivalences

ΩP 2n+2(pr) ' S2n+1{pr} × Ω

∞∨
k=0

P 4n+2kn+3(pr)

and

Pm(pr) ∧ Pn(pr) ' Pm+n(pr) ∨ Pm+n−1(pr).

Hence, the Hilton–Milnor theorem implies that all loops on odd primary
Moore spaces are weak infinite products of two types of spaces.

Proposition 11.10.5. Let p be an odd prime. For all integers m ≥ 3,
the spaces ΩPm(pr) are weak infinite products of spaces T 2k+1{pr} and
S2`+1{pr}.

The next two results say that the factor Ωr can be excised from the fibration
sequences in the second diagram which appears at the beginning of Section
11.8.

Lemma 11.10.6. There is a homotopy equivalence of fibration sequences∏
r+1×C(n)

'−→ V 2n+1{pr}
↓ ↓∏

r+1×S2n−1 '−→ W 2n+1{pr}
↓ ↓

Ω2S2n+1 =−→ Ω2S2n+1.

Lemma 11.10.7. There is a homotopy commutative diagram

V 2n+1{pr} → T 2n+1{pr} → ΩS2n+1{pr}
↓ ↓= ↓

W 2n+1{pr} → T 2n+1{pr} → ΩS2n+1

↓ ↓ ↓
Ω2S2n+1 → ∗ → ΩS2n+1

in which the rows and columns are all fibration sequences up to homotopy.



11.10 Homotopy exponents of odd primary Moore spaces 503

Proof: Consider the fibre extension of the totally fibred square which begins
Section 11.8, that is, the strictly commutative diagram

E2n+1{pr} → P̂ 2n+1(pr)
t−→ S2n+1{pr}

↓ λ ↓= ↓ j
F 2n+1{pr} → P̃ 2n+1(pr)

q−→ S̃2n+1

↓ κ ↓ ↓ pr
ΩS2n+1 → C → S2n+1,

where C is contractible and all the rows and columns are actual fibration
sequences. Since the adjoint

Σ
∨
α

Pnα(pr)→ P 2n+1(pr)

factors through E2n+1{pr}, there is a strictly commutative diagram

which we can enlarge into the fibre extension of a totally fibred cube, that
is, extend the fibrations to fibre sequences so that all the rows and columns
are fibration sequences up to homotopy.

The back face of this fibre extension is Lemma 11.10.6.

If we consider the left-hand corner of the back face and take one more step
back, then we get a map of fibration sequences

ΩE2n+1{pr} → V 2n+1{pr}
↓ ↓

ΩF 2n+1{pr} → W 2n+1{pr}
↓ ↓

Ω2S2n+1 =−→ Ω2S2n+1.

Omitting the Ωr factor in the decompositions of ΩE2n+1{pr} and
ΩF 2n+1{pr} gives Proposition 11.10.5. �

Now the fact that S2n+1{pr} has a null homotopic pr-th power map, that
C(n) has a null homotopic p-th power map, the homotopy equivalences in
Lemma 11.10.6, and the fact that the looped fibration sequence

Ω
∏
r+1

×ΩC(n)→ ΩT 2n+1{pr} → ΩS2n+1{pr}

is a multiplicative sequence of H-maps yields



504 Odd primary exponent theorems

Proposition 11.10.8. If p is an odd prime, then the p2r+1-st power map
is null homotopic on ΩT 2n+1{pr}.

Proof: The power map pr : ΩT 2n+1{pr} → ΩT 2n+1{pr} projects to a null
homotopic map in ΩS2n+1{pr} since this latter space has a null homo-
topic pr-th power. Hence, this power map factors through the fibre
Ω
∏
r+1×ΩC(n) which has a null homotopic pr+1-st power. Hence, the

power p2r+1 = pr+1 · pr is null homotopic on ΩT 2n+1{pr}. �

The multiplicative decomposition of Ω2Pm(pr) into a weak infinite product
of spaces ΩT 2k+1{pr} and ΩS2`+1{pr} yields:

Proposition 11.10.9. If p is an odd prime and m ≥ 3, then the p2r+1-st
power map is null homotopic on Ω2Pm(pr).

In order to prove a better result for the H-space exponent of a mod pr

Moore space we need the following theorem whose proof will not be given
here.

Lemma 11.10.10. There exists a map

θ : T 2n+1{pr} →
∏
r

such that the composition∏
r+1

→ T 2n+1{pr} →
∏
r

has fibre
∏

1 .

Lemma 11.10.10 has the following corollary:

Proposition 11.10.11. There is a fibration sequence∏
1

×C(n)→ T 2n+1{pr} →
∏
r

×ΩS2n+1{pr}.

Proof: Consider the commutative square

T 2n+1{pr} → ΩS2n+1{pr}
↓ θ ↓∏
r → ∗

and enlarge it to the fibre extension in which the rows and columns are all
fibration sequences up to homotopy

Y → X → ΩS2n+1{pr}
↓ ↓ ↓=∏

r+1×C(n) → T 2n+1{pr} → ΩS2n+1{pr}
↓ ψ ↓ θ ↓∏
r

=−→
∏
r → ∗ .
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The composition

C(n)→ S2n−1 → T 2n+1{pr} θ−→
∏
r

is null homotopic for dimensional reasons. Since the map∏
r+1

×C(n)→ T 2n+1{pr}

is defined by multiplying maps and since θ is null on the inclusion of C(n),
it follows that ψ factors through the projection on the first factor

ψ = θ · proj :
∏
r+1

×C(n)→
∏
r+1

θ−→
∏
r

and hence that the fibre Y of ψ is
∏

1×C(n).

The fact that we have a fibre extension implies that there is a fibration
sequence up to homotopy

Y → T 2n+1{pr} →
∏
r

×ΩS2n+1{pr}

where the base is the (homotopy) pullback of the original commutative
square. �

Just as before, the loop of the fibration sequence in Proposition 11.10.11 is
multiplicative, which implies the next two results.

Proposition 11.10.12. If p is an odd prime, then the pr+1-st power map
is null homotopic on ΩT 2n+1{pr}.

Proposition 11.10.13. If p is an odd prime and m ≥ 3, then the pr+1-st
power map is null homotopic on Ω2Pm(pr).

Recall that Proposition 9.6.3 shows that there exist infinitely many ele-
ments of order pr+1 in the integral homotopy groups of P 2n+1(pr) for all
n ≥ 1 and therefore also in the integral homotopy groups of Pm(pr) for all
m ≥ 3. Hence the result in Proposition 11.10.8 is the best possible H-space
exponent.

11.11 Nonexistence of H-space exponents

The double loops in Proposition 11.10.8 is required since there is no H-
space exponent for the single loop space ΩPm(pr). It is the object of this
section to prove this fact. It is remarkable that this result is a consequence
of the mod p Pontrjagin ring H(ΩPm(pr);Z/pZ).

First we note that the localized homotopy groups imply:
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Lemma 11.11.1. Let X be a homotopy associative H-space localized at a
prime p. If X is not contractible and k is an integer relatively prime to p,
then the power map k : X → X is not null homotopic.

Hence, for homotopy associative H-spaces localized at a prime p to have a
null homotopic power map it must have one of the form ps : X → X.

Let A be a connected Hopf algebra and assume that A has a commutative
and associative diagonal and an associative multiplication. This is called
a homology Hopf algebra. If X be a connected homotopy associative H-
space, then the homology H(X) with field coefficients is a homology Hopf
algebra.

Let k be a positive integer. Let

∆(k) : A→
k⊗
A

be the k-fold diagonal of A. Since A has a commutative diagonal, ∆(k) is
a map of Hopf algebras. Let

µ(k) :

k⊗
A→ A

be the k-fold multiplication of A. Since A is a Hopf algebra, µ(k) is a map
of coalgebras.

Definition 11.11.2. The k-th power map of A is the map of coalgebras

ρ(k) = µ(k) ·∆(k) : A→ A.

We note the obvious

Lemma 11.11.3. If X is a connected homotopy associative H-space, k is
a positive integer, and F is a field, then the power map k : X → X induces
the k-th power map k∗ = ρ(k) : H(X;F )→ H(X;F ) on the homology Hopf
algebra.

The basic computation proving the nontriviality of power maps is

Proposition 11.11.4. Let A be a connected homology Hopf algebra over
a field of characteristic p 6= 0 and let k = pr. If x1, . . . , xk are k primitive
elements of A, then

ρ(k)(x1 . . . xk) =
∑
σεΣn

ρ(k)σ(x1 ⊗ · · · ⊗ xk).
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Proof: The k-fold diagonal ∆(k)(x1 . . . xk) = ∆(k)(x1) . . .∆(k)(xk) is the
product of the elements

∆(k)(xi) =
∑

(1⊗ · · · ⊗ 1⊗ xi ⊗ 1⊗ · · · ⊗ 1).

The distributive law yields

∆(k)(x1 . . . xk) =
∑
y

sgn(y) y,

this sum being taken over all tensor products

y = y1 ⊗ . . . yk

where each yj is either 1 or a nontrivial ordered product of some subset of
the xi with each xi occurring precisely once in the set of products y1, . . . , yk
and where sgn(y) is the sign introduced by shuffling the xi.

Hence, the k-th power map is

ρ(k)(x1 . . . xk) =
∑
y

sgn(y) y1 . . . yk.

For each y we can associate the subset π ⊆ {1, . . . , k} which consists of
those j such that yj = 1. The j’s which are not in π index the yj which are
a nontrivial ordered product of xi s. Define Sπ =

∑
sgn(y)µ(k)y, the sum

being taken over all y associated to π. Then

ρ(k)(x1 . . . xk) =
∑
π

Sπ.

We observe that Sπ = 0 if π = {1, . . . , k} and

Sπ =
∑
σεΣn

ρ(k)σ(x1 ⊗ · · · ⊗ xk)

if π = φ is the empty set.

We also observe that Sπ = Sτ if the cardinalities of the subsets π and τ are
equal. The number of such subsets of cardinality ` is(

k

`

)
=

(pr)!

`!(pr − `)!

which is divisible by p if 1 ≤ ` ≤ k − 1.

Hence

ρ(k)(x1 . . . xk) =
∑
σεΣn

ρ(k)σ(x1 ⊗ · · · ⊗ xk).

�
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Lemma 11.11.5. Suppose that A is a connected homology Hopf algebra
over a field of characteristic p 6= 0. If A is isomorphic as an algebra to a
tensor algebra on more than one generator, then, for all r ≥ 1, the pr-th
power map ρ(pr) is nontrivial.

Proof: Suppose A is the power map ρ(pr) : A→ A is trivial. Then it is
also trivial for the associated graded Hopf algebra E0(A) which arises from
the filtration of A by the powers of the augmentation ideal. But E0(A)
is the primitively generated tensor algebra with the same module of inde-
composables. Let u and v be two primitive generators of E0(A). Since the
elements adj(v)(u) are infinitely many algebraically independent primitive
elements which freely generate a tensor subalgebra of E0(A) it follows from
Proposition 11.11.4 that ρ(pr) is nontrivial. �

Proposition 11.11.6. Let X be a connected space localized at p and sup-
pose that the reduced mod p homology H(X) is nonzero. Then ΩΣX has
no null homotopic power maps.

Proof: Suppose that ΩΣX has a null homotopic power map. We may sup-
pose that this is a power of p.

There is a least q such that the integral homology Hq(X) 6= 0. The first
nonvanishing integral homotopy group πq(ΩΣX) = Hq(ΩΣX) = Hq(X) is
a nonzero group localized at p which has an exponent. A theorem of Kaplan-
sky [72] implies that Hq(X) is a nontrivial direct sum of cyclic groups
Z/psZ. Hence, the mod p homology H(X;Z/pZ) = QH(ΩΣX;Z/pZ) has
more than two generators and no power map ρ(pr) can be trivial on the
Hopf algebra H(ΩΣX;Z/pZ). �

Exercise

(1) Let A be a connected homology Hopf algebra over a field.

(a) If k and ` are two positive integers, show that ρ(k`) = ρ(k) · ρ(`).

(b) If the ground field of A has finite characteristic p and k is the least
positive integer such that the power map ρ(k) : A→ A is trivial,
then k is a power of p.



12 Differential homological algebra of
classifying spaces

This chapter completes the presentation of differential homological alge-
bra which was started in Chapter 10. Following the presentation of Moore
in the Cartan seminar [94], we show how the homology of a topological
group determines the homology of its classifying space. This leads to the
first quadrant Eilenberg–Moore spectral sequence which has also gone by
a variety of other names, for example, the Milnor–Moore spectral sequence
or the Rothenberg–Steenrod spectral sequence.

We try to emphasize the fact that the spectral sequence is a secondary
object which comes from a chain model of the classifying space. Unfortu-
nately, this approach is not as successful here as it was with the applications
in Chapter 11 of the second quadrant Eilenberg–Moore spectral sequence.
For example, the Borel transgression theorem requires the use of the spec-
tral sequence.

The algebra of this first quadrant Eilenberg–Moore spectral sequence is
based on the fact that the normalized chains of a topological group form a
differential Hopf algebra. The second quadrant Eilenberg–Moore spectral
sequence was based on the fact that the normalized chains on a topological
space form an associative differential coalgebra.

In the case of the second quadrant Eilenberg–Moore models, the dominant
algebraic structure is the structure of an associative algebra in differential
Cotor. In the case of the first quadrant Eilenberg–Moore models to be
studied here, the dominant algebraic structure is that of an associative
coalgebra in differential Tor. There can be other structures but they are
not always present. When present, they are consistent with the dominant
structure. For example, if we get an algebra structure in differential Tor, it
combines with the coalgebra structure to give a Hopf algebra structure.

We apply the first quadrant Eilenberg–Moore spectral sequence to the com-
putation of the cohomology of the classifying spaces of the orthogonal and

509
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unitary groups. We use this to verify the axioms for Chern and Stiefel–
Whitney classes. Then we close the book by following Milnor and Stasheff
[91] in presenting the lovely applications of Stiefel–Whitney classes to non-
immersion and nonparallelizability results for real projective spaces and to
the nonexistence of real division algebras. Their presentation of these appli-
cations cannot be improved upon. The major difference in our treatment
from theirs is in our use of the Eilenberg–Moore spectral sequence to pro-
vide a uniform computation of the cohomology of the relevant classifying
spaces.

In all honesty, it must be admitted that there is a computation of the
cohomology of the classifying spaces of the orthogonal and unitary groups
which uses only the Gysin sequence and some facts about Euler classes. It
is given as an exercise in this chapter.

12.1 Projective classes

Let A be an abelian category. The definition of a projective class in A is the
strict dual of the definition of injective class which was given in Chapter
10. It is of course due to Eilenberg and Moore [43].

Let P be a class of objects in A. Define the associated class of relative
epimorphisms as

P∗ = {f : M → N | f ∗ : map∗(P,N)→ map∗(P,M) is a surjection

∀P ∈ P}.

Let E be a class of morphisms in A. Define the associated class of relative
projective objects as

E∗ = {P | f ∗ : map∗(P,N)→ map∗(P,M) is a surjection

∀f : M → N ∈ E}.

Definition 12.1.1. The pair (P, E) is a projective class in A if

(a) P∗ = E ,

(b) E∗ = P, and

(c) there are enough projective objects in the sense that

∀M ∈ A, ∃f : P →M with P ∈ P and f ∈ E .

We note that

Lemma 12.1.2.
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(a) P∗ is always closed under right factorization, that is, f · g ∈ P∗
implies that f ∈ P∗.

(b) E∗ is always closed under retracts, that is, P ∈ E∗ and Q a retract
of P implies that Q ∈ P∗.

The following lemma is often used to define projective classes.

Lemma 12.1.3. Suppose that E is a class of morphisms in A which is
closed under right factorization and define P = E∗. If there are enough
projective objects, that is,

∀M ∈ A, ∃f : P →M with P ∈ P and f ∈ E ,

then the pair (P, E) is a projective class in A.

Definition 12.1.4. We say that a sequence M1
g−→M2

f−→M3 is relative
short exact if f ∈ E and g = kernel(f).

We say that a complex

. . .
dn+1−−−→ Pn

dn−→ Pn−1
dn−1−−−→ . . .

d1−→ P0
ε−→M

is relative exact (or relative acyclic) if all the

K0 → P0
ε−→M

Kn → Pn
dn−→ Kn−1, n ≥ 1

are relative short exact where K0 = kernel(ε), Kn = kernel(dn), n ≥ 1.

If all the Pn are relative projective objects, we say that P∗
ε−→M is a relative

projective complex. A complex which is both a relative projective complex
and is relative acyclic is a relative projective resolution. The usual proofs
show that relative projective resolutions exist and are functorial up to chain
homotopy, that is,

Proposition 12.1.5. Given an object M in an abelian category with a
projective class, there exists a relative projective resolution P∗

ε−→M.

Proposition 12.1.6.

(a) Given a morphism f : M → N , a relative projective complex P∗
ε−→

M , and a relative acyclic complex Q∗
ε−→ N , there exists a map of

complexes F : P∗ → Q∗ which covers f , that is,

. . .
dn+1−−−→ Pn

dn−→ Pn−1
dn−1−−−→ . . . . . .

d1−→ P0
ε−→ M

↓ Fn ↓ Fn−1 ↓ F0 ↓ f
. . .

dn+1−−−→ Qn
dn−→ Qn−1

dn−1−−−→ . . . . . .
d1−→ Q0

ε−→ N
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commutes.

(b) Furthermore, any two maps of complexes F, G : P∗ → Q∗ which
cover the same f are chain homotopic, that is, there exists a chain
homotopy H : P∗ → Q∗+1 such that

d1 ·H0 = F0 −G0, dn+1 ·Hn +Hn−1 · dn = Fn −Gn ∀n ≥ 1.

We now specialize to the projective classes which are called proper and are
the basis for the differential homological algebra in this section.

First, let R be a principal ideal domain and let DmodR be the cate-
gory of nonnegatively graded differential modules over R. Similarly, let
A be a differential graded algebra over R and let DmodA be the category
of negatively graded differential A modules. We have a forgetful functor
( )# : DmodA → DModR. The projective classes which form the basis
for this chapter are the so-called proper projective classes in these cate-
gories.

Definition 12.1.7.

(a) The proper projective class in DmodR consists of all morphisms f :
M → N with f : M → N and the map of cycles Z(f) : ZM → ZN
surjections. These are called the proper epimorphisms. The relative
projectives are all objects M with M and HM projective over R.

(b) The proper projective class in DmodA consists of all morphisms
f : M → N such that f# : M#→ N# is a proper epimorphism in
DmodR. The relative projectives are all objects which are retracts
of A⊗RM with M a proper projective in DmodR,

It is clear that, if f : M → N is a proper epimorphism, then the induced
map in homology Hf : HM → HN is an epimorphism. It is also clear that,
if P is a proper projective, then HP is a projective HA module.

Proper projective classes were invented for the Eilenberg–Moore spectral
sequence. The key properties are:

(1) If P is a proper projective and N is any differential A module, then

H(P ⊗A N) = HP ⊗HA HN.

(2) If P∗ →M is a proper projective resolution, then HP∗ → HM is a
projective resolution of HA modules.

We leave it as an exercise to check that the definitions above constitute
projective classes.

In Chapter 10, a notion of a proper injective class is defined for the category
of differential graded comodules over a differential graded coalgebra. This
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notion is the dual of the following notion of very proper projective class of
differential graded modules over a differential graded algebra.

Definition 12.1.8. A morphism f : M → N in DmodA is a very proper
epimorphism if f# : M#→ N# is a split epimorphism in DmodR. A very
proper projective object is any retract of A⊗RM where M is any object
in DmodR.

The dual of this definition is used in the definition of differential Cotor. (But
there is the difference that dualization here would produce differentials of
degree +1 and not −1 as in Chapter 10!)

We shall leave further discussion of this definition and the verification that
it is a projective class to the exercises.

Exercises

(1) Prove Lemma 12.1.2.

(2) Prove Lemma 12.1.3.

(3) Let E , F be classes of morphisms and let P, Q be classes of objects
in A. Show that

(a) E ⊆ F implies F∗ ⊆ E∗

(b) P ⊆ Q implies Q∗ ⊆ P∗

(c) E ⊆ E∗∗, P ⊆ P∗∗

(d) E∗ = E∗∗∗, P∗ = P∗∗∗

(4) Let A, B be abelian categories and let

S : A → B, T : B → A

be a pair of adjoint functors with a natural bijection

A(TB,A) ' B(B,SA) ∀ A ∈ A, B ∈ B.

If (P, E) is a projective class in B, show that (TP, S−1E) is a projective
class in A where

TP = the set of all retracts of TP where P ∈ P

S−1E = the set of all f ∈ A such that Sf ∈ E .

(5) Verify that the proper projective classes in Definition 12.1.7 are pro-
jective classes.

(6) Verify that the very proper projective class in Definition 12.1.8 is a
projective class.
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(7) Suppose that f : M → N is a proper epimorphism in DmodA and that
HN is projective over the ground ring R which is a principal ideal
domain. Show that f is a very proper projective epimorphism.

(8) Suppose that HA and HM are projective over a principal ideal domain
R. Show that there exists a proper projective resolution P∗ →M , which
is also a very proper projective resolution.

12.2 Differential graded Hopf algebras

For any space X, the coalgebra structure on the normalized chains is given
by the Alexander–Whitney map ∆ : C(X)→ C(X)⊗ C(X). One of the
remarkable technical facts discovered by Eilenberg and Moore is that the
Eilenberg–Zilber map ∇ : C(X)⊗ C(Y )→ C(X × Y ) is a map of differen-
tial coalgebras [42]. Furthermore, it is associative and commutative in the
sense that the following diagrams are strictly commutative

C(X)⊗ C(Y )⊗ C(Z)
∇⊗1−−→ C(X × Y )⊗ C(Z)

↓ 1⊗∇ ↓ ∇
C(X)⊗ C(Y × Z)

∇−→ C(X × Y × Z)

C(X)× C(Y )
∇−→ C(X × Y )

↓ T ↓ T∗
C(Y )⊗ C(X)

∇−→ C(Y ×X).

If we define the cross product of chains by α× β = ∇(α⊗ β) ∈ C(X × Y )
for α ∈ C(X), β ∈ C(Y ), then the associativity and commutativity of the
Eilenberg–Zilber map is:

(α× β)× γ = α× (β × γ), T∗(α× β) = (−1)deg(α)·deg(β)β × α.

Let G be a topological monoid with multiplication µ : G×G→ G. The
Pontrjagin product of chains is defined by

µ : C(G)× C(G)
∇−→ C(G×G)

µ−→ C(G), µ(α⊗ β) = α · β.

The good properties of the Eilenberg–Zilber map yield that C(G) is a
differential graded Hopf algebra and, if G is commutative, it has a graded
commutative multiplication.

Furthermore

Lemma 12.2.1. If G and H are topological monoids, then

∇ : C(G)⊗ C(H)→ C(G×H)

is a map of differential Hopf algebras.
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Proof: The only question is whether ∇ is a map of algebras. Consider the
diagram

C(G)⊗ C(H)⊗ C(G)⊗ C(H)
∇⊗∇−−−→ C(G×H)⊗ C(G×H)

↓ T ↓ ∇
C(G)⊗ C(G)⊗ C(H)⊗ C(H) C(G×H ×G×H)

↓ ∇ ⊗∇ ↓ 1× T × 1

C(G×G)⊗ C(H ×H)
∇−→ C(G×G×H ×H)

↓ µ⊗ µ ↓ µ× µ
C(G)⊗ C(H)

∇−→ C(G×H)

Since the Eilenberg–Zilber map is a natural transformation, the bottom
square commutes. Since

(−1)deg(β)·deg(γ)(α× γ × β × δ) = (α× T (β × γ)× δ),

the top square commutes. Hence, ∇ is a map of algebras. �

Let G be a topological monoid and let X be a left G space with action
µ : G×X → X. Just as above, we have that

µ : C(G)⊗ C(X)
∇−→ C(G×X)

µ−→ C(X)

is a map of differential coalgebras which gives C(X) the structure of a
differential C(G) module coalgebra.

Let Gi be a topological monoid and let Xi be a left Gi space for i = 1, 2.
Just as above,

C(X1)⊗ C(X2)
∇−→ C(X1 ×X2)

is a map of differential module coalgebras with respect to the map of dif-
ferential Hopf algebras

C(G1)⊗ C(G2)
∇−→ C(G1 ×G2).

Exercise

(1) Prove the two statements on differential module coalgebras which con-
clude this section.

12.3 Differential Tor

The algebraic analog of a space with an action of a topological group is
a differential module M over a differential algebra A. If we start with an
arbitrary differential module M over a differential algebra A, we can find
a homologically equivalent differential module by a process of assembling
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a proper projective resolution of M into a total complex. We describe this
process in detail now.

Let P∗
ε−→M be a proper projective resolution. Then P∗ has two differ-

entials, an internal differential and an external differential. The internal
differential dI : Pn → Pn lowers degree by 1, satisfies dI · dI = 0 and is a
derivation over A, that is, dI(ax) = (da)x+ (−1)deg(a)a(dIx). The exter-
nal differential dE : Pn → Pn−1 preserves degree, satisfies dE · dE = 0, and
is linear over A, that is, dE(ax) = a(dEx). These internal and external dif-
ferentials commute with each other, that is, dE · dI = dI · dE . We assemble
a resolution P∗ into a total complex T (P∗) as follows:

Definition and Lemma 12.3.1.

(a)

T (P∗) =
⊕
n≥0

snPn

where (sM)n = Mn−1 is the suspension operator.

(b) dI and dE are defined on T (P∗) by

dI(s
nx) = (−1)nsn(dIx), dE(snx) = sn−1dE(x)

where

dI · dI · sn = 0, dE · dE = 0, dI · dE · sn = −dE · dI · sn.

(c) If A acts on T (P∗) by asn(x) = (−1)nsn(ax), then dE and dI on
T (P∗) satisfy

dE(asnx) = (−1)deg(a)a(dEs
nx),

dI(as
nx) = da(snx) + (−1)deg(a)a(dIs

nx).

(d) The internal differential makes snPn into a proper projective module
over A.

We leave the verification of the above lemma to the exercises.

Definition and Lemma 12.3.2.

(a) The total differential on T (P∗) is dT = dI + dE . The total differen-
tial makes T (P∗) into a differential module over A, that is,

dT · dT = 0, dT (ax) = (da)x+ (−1)deg(a)a(dTx) ∀x ∈ T (P∗).

(b) The map ε : T (P∗)→M defined by

ε : P0 →M, ε = 0 : snPn →M ∀n ≥ 1

is a chain equivalence (= homology isomorphism).
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Proof: Part (a) is an immediate consequence of Lemma 12.3.1. To prove
part (b), filter T (P∗) by internal degree so that

E0
p,qT (P∗) = Pq,p, d0 = dE : E0

p,q = Pq,p → Pq−1,p = E0
p,q−1.

Then

E1
p,q =

{
Mp, q = 0

0, q 6= 0.

Hence T (P∗)
ε−→M is a homology isomorphism. �

Lemma 12.3.3. Let H : P∗ → Q∗+1 be a chain homotopy between chain
maps F, G : P∗ → Q∗ of complexes over A. That is, each H : Pn → Qn+1

is linear over A and

H · dI = dI ·H, dE ·H +H · dE = F −G.

Then defining

F · sn = sn · F, G · sn = sn ·G, H · sn = sn+1 ·H

creates A linear maps F, G : T (P∗)→ T (Q∗) and a chain homotopy H :
T (P∗)→ T (Q∗) which satisfies

H(asnx) = (−1)deg(a)aH(snx), H · dI · sn = −dI ·H · sn,

(dE ·H +H · dI) · snE=(F −G) · sn, (dT ·H +H · dT ) · snE=(F −G) · sn.

This lemma is also an exercise.

We are now ready to define differential Tor.

Definition 12.3.4. Let M be a right differential module and let N be a left
differential module over a differential algebra A. Choose proper projective
resolutions P∗ →M and Q∗ → N and define

TorA(M,N) = H{T (P∗)⊗A T (Q∗)}.

The lemmas above insure that TorA(M,N) is well defined and functorial
up to natural isomorphism.

The following notion of a construction is a generalization of the total com-
plex of a proper projective resolution and is sufficient to define TorA(M,N).
A construction is the appropriate algebraic analog of a principal bundle.

Definition 12.3.5. A (left) construction over a differential algebra A is
a differential module D over A such that there is an increasing filtration
Fn(D) of D by differential submodules with associated graded

E0
n(D) = A⊗Dn, d0 = d⊗ 1 : A⊗D → A⊗D
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where D is projective over R.

Since the Dj are projective, there is no problem in lifting them up to D so
that

D = A⊗
⊕
j

Dj

and the filtration is then

Fn(D) = A⊗
⊕
j≤n

Dj .

The differential is

d(a⊗ x) = da⊗ x+
∑

b⊗ y, a, b ∈ A, x ∈ Dn, y ∈ Dj , j < n.

Examples of left constructions over A are twisted tensor products A⊗τ C
with

Fn(A⊗τ C) = A⊗ Cj≤n

and total complexes of resolutions T (P∗) with T (P∗) = A⊗ T (P∗) and

Fn(T (P∗)) = A⊗ {T (P∗)}≤n.

The next proposition and its corollary show that constructions can replace
resolutions and also that TorA(M,N) is a balanced functor in the sense
that we can get differential Tor by resolving only one of the variables.

Proposition 12.3.6. Let f : M1 →M2 be a homology isomorphism of
right differential modules over a differential algebra A. Let D be a left
construction over A. Then we have a homology isomorphism

M1 ⊗A D
f⊗1−−→M2 ⊗A D.

Proof: Consider the increasing filtrations of Mi ⊗A D defined by

Fn(Mi ⊗A D) = Mi ⊗A Fn(D).

There is a map of filtered objects and we have the following maps of asso-
ciated graded objects

E0
n(M1 ⊗A D) = M1 ⊗Dn → E0

n(M2 ⊗A D) = M2 ⊗Dn

and, in the domain and the range, we have the formula for the differential
d0(x⊗ y) = dx⊗ y. Thus there is an isomorphism of E1 terms and also a
homology isomorphism. �

Of course, we can interchange left and right in the above proposition and
this gives:
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Corollary 12.3.7. Choose proper projective resolutions P∗ →M and
Q∗ → N and suppose there is a homology isomorphism D

'−→M where D
is a construction. Then there are homology isomorphisms

D ⊗A N
'←− D ⊗A T (Q∗)

'−→M ⊗A T (Q∗)
'←− T (P∗)⊗A T (Q∗)

Remark. The above corollary has the consequence that the induced maps
on TorA(M,N) depend only on the maps of the variable entries A,M,N.
They do not depend on the covering maps of resolutions or constructions
since we can, one at a time, omit the resolution or construction. We already
knew this when differential Tor was defined by proper projective resolu-
tions. Now we know it even if we define it by constructions.

We record the following Künneth formula.

Künneth formula 12.3.8.

TorA⊗B(M1 ⊗M2, N1 ⊗N2) ' TorA(M1, N1)⊗ TorB(M2, N2)

provided that either TorA(M1, N) or TorA(M1, N) is flat over R.

Proof: If P1∗ →M1, P2∗ →M2 are proper projective right resolutions over
A and B respectively and Q1∗ → N1, Q2∗ → N2 are proper projective left
resolutions over A and B respectively, then

P1∗ ⊗ P2∗ →M1 ⊗M2

and

Q1∗ ⊗Q2∗ → N1 ⊗N2

are right and left proper projective resolutions over A⊗B.

Thus,

{T (P1∗)⊗ T (P2∗)} ⊗A⊗B {T (Q1∗)⊗ T (Q2∗)}
1⊗T⊗1−−−−→ {T (P1∗)⊗A T (Q1∗)} ⊗R {T (P2∗)⊗B T (Q2∗)}

is an isomorphism. �

We now come to the important (first quadrant) algebraic Eilenberg–Moore
spectral sequence. Let A be a differential algebra and let M and N be right
and left differential modules over A.

Algebraic Eilenberg–Moore spectral sequence 12.3.9. There exists
a functorial first quadrant homology spectral sequence with

E2
p,q = {TorHAp (HM,HN)}q
dr : Erp,q → Erp−r,q+r−1



520 Differential homological algebra of classifying spaces

and converging strongly to its filtered abutment

{HM ⊗HA HN}p+q = F0 ⊆ F1 ⊆ · · · ⊆ Fp ⊆ · · · ⊆ F∞ = TorA(M,N)p+q.

Proof: Let Q∗ → N be a proper projective resolution of N so that

TorA(M,N) = H(M ⊗A T (Q∗))

and

TorHA(HM,HN) = H(HM ⊗HA T (HQ∗)).

Without loss of generality, we may assume that each Qp = A⊗Qp is a free
A module with tensor product differential dI = dA ⊗ 1 + 1⊗ dI , so that
HQp = HA⊗HQp with respect to the internal differential dI .

Filter M ⊗A T (Q∗) by the increasing filtration of resolution degree, that is,

Fn(M ⊗A T (Q∗)) =
⊕
p≤n

M ⊗A spQp.

Then the associated graded object is

E0
p,q = {M ⊗A spQp}p+q = {M ⊗ spQp}p+q

d0 = dM ⊗A 1 + 1⊗A dI = dM ⊗ 1 + 1⊗ dI

and hence

E1
p,q = {HM ⊗ spHQp}p+q = {HM ⊗HA spHQp}p+q

= {HM ⊗HA HQp}q.

The differential is d1 = 1⊗HA dE and hence

E2
p,q = {TorHAp (HM,HN)}q.

The convergence of the spectral sequence is strong since the filtrations are
finite in each fixed degree. �

The convergence of the algebraic Eilenberg–Moore spectral sequence imme-
diately yields the homological invariance of differential Tor.

Corollary 12.3.10. Homology isomorphisms A1 → A2, M1 →M2 and
N1 → N2 induce an isomorphism

TorHA1(HM1, HN1)→ TorHA2(HM2, HN2).

The fact that the Eilenberg–Zilber map induces homology isomorphisms
implies the geometric Künneth theorem:
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Corollary 12.3.11. Let Gi be topological monoids with right and left Gi
spaces Xi and Yi for i = 1, 2. Then there are isomorphisms

TorC(G1)⊗C(G2)(C(X1)⊗ C(X2), C(Y1)⊗ C(Y2))
Tor∇(∇,∇)−−−−−−→

TorC(G1×G2)(C(X1 ×X2), C(Y1 × Y2)).

The algebraic Eilenberg–Moore spectral sequence has the Künneth spectral
sequence as an interesting special case.

Künneth spectral sequence 12.3.12. Let M and N be right and left
chain complexes over an algebra with zero differential A. Suppose that M
is flat over A. Then there is a first quadrant homology spectral sequence
with

E2
p,q = {TorAp (HM,HN)}q

and strongly converging to Hp+q(M ⊗A N).

Proof: The algebraic Eilenberg–Moore spectral sequence has the correct
E2 term. All we have to prove is that TorA(M,N) = H(M ⊗A N).

Filter M by total degree,

FpM =
⊕
r≤p

Mr.

Filter T (Q∗) by complementary degree,

FqT (Q∗) =
⊕

p≥0,s≤q
spQp,q.

Filter M ⊗A T (Q∗) by the product filtration,

Fn(M ⊗A T (Q∗)) =
⊕
p+q=n

Fp(M)⊗A Fq(T (Q∗))

and then the associated graded object is

E0 = M ⊗A T (Q∗), d0 = 1⊗ dE .

Since M is flat over A,

E1 = M ⊗A H(T (Q∗), dE) = M ⊗A N.

Hence, E2 = H(M ⊗A N). Since the spectral sequence is confined to a
single line, it collapses, E2 = E∞, and there are no extension problems.
Therefore,

TorA(M,N) = H(M ⊗A T (Q∗)) = H(M ⊗A N).
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�

Exercises

(1) Prove Lemma 12.3.1.

(2) Prove Lemma 12.3.2.

(3) Refer to Chapter 10 and to Section 12.1 in order to do this exercise on
duality.

(a) If A, M, N are all finite type and projective over R, show that
there is an isomorphism

(M ⊗A N)∗ 'M ∗2A∗N
∗.

(b) If A, ,M, N are all finite type and projective over a principal ideal
domain R, show that there is an isomorphism

{TorA(M,N)}∗ ' CotorA∗(M
∗, N ∗).

(4) Let R be a principal ideal domain, letK be an R module, and letM and
N be chain complexes over R where M is flat over R. Use the Künneth
spectral sequence to prove the Künneth and universal coefficient exact
sequences:

0→ {HM ⊗R HN}n → H(M ⊗R N)→ {TorR1 (M,N)}n−1 → 0

0→ HnM ⊗R K → H(M ⊗R K)→ TorR1 (HMn−1,K)→ 0.

12.4 Classifying spaces

According to Dold, a cover V = {Vλ}λ of a topological space X is called
numerable if it has a partition of unity subordinate to it and a bundle
π : E → X is called a numerable bundle if it has a numerable cover V such
that the restrictions π : π−1Vλ → Vλ are trivial bundles for all λ.

The definition of a numerable bundle can be applied to any class of bundles,
for example, if G is a topological group, there are numerable principal G
bundles. And there are numerable real vector bundles and numerable com-
plex vector bundles. We shall denote by kG(X), kR, and kC the respective
isomorphism classes of numerable bundles of these three types.

Definition 12.4.1. A principal G bundle π : E → B is called a universal
bundle if it is numerable and the natural transformation

[X,B]→ kG(X), [f ] 7→ f ∗E
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gives a bijection for all X between homotopy classes and isomorphism
classes. The base B of a universal bundle is called a classifying space.
Universal real and complex vector bundles are defined in a similar fashion.

Dold has proved the definitive theorem in this direction [32].

Dold’s theorem 12.4.2. If π : E → B is a numerable principal G bundle
and E is contractible, then it is a universal principal G bundle.

Proof: We will be content to sketch the demonstration of the bijection in
the simple case when the base is a CW complex.

Let A ⊆ Y be a subspace. A map of a trivial bundle into E, f : A×G→ E,
is completely determined by the restriction to a section h = f( , e) : A→ E
with f(a, g) = f(a, e)g. So an extension H : X → E of h : A→ E defines
an extension of f to a bundle map F : X ×G→ E.

We know that bundles are trivial over contractible spaces. If π : D → X is
any principal G bundle over a CW complex X, then D is trivial when pulled
back to any cell. Hence, induction over the cells of a CW complex X shows
that there is a bundle map D → E. Hence, the natural transformation is
surjective for X.

There is a principal G bundle τ = 1× π : I ×D → I ×X and the same
argument as above shows that any bundle map of τ−1(1×X ∪ 0×X)→
E can be extended to a bundle map of I ×D → E. Hence, the natural
transformation is injective for X. �

Milnor has given an elegant and functorial construction [86] of a classifying
space for a topological group G. Let

G∗n = {t0g0 + t1g1 + · · ·+ tngn | ti ≥ 0,
∑

ti = 1 , gi ∈ G}

be the n-fold join where we identify

t0g0 + t1g1 + · · ·+ tngn = t0g0 + t1g1 + · · ·+ ˆtigi + · · ·+ tngn, ti = 0.

Thus, there is an embedding G∗n ⊆ G∗(n+1).

Clearly G acts on the right (or the left) of G∗n compatible with the embed-
dings, on the right by (∑

tigi

)
g =

∑
ti(gig).

The direct limit

EG = lim
n→∞

G∗n

is a numerable principal G bundle for which EG is contractible. The base
space BG = EG/G is called the classifying space of G. This construction
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was introduced by Milnor who showed that it was a principal G bundle with
πiEG = 0 for all ı ≥ 0. He based this on the simple fact that the iterated
joins become more and more connected. The fact that it is numerable and
contractible was shown by Dold [32].

If U(n) is the unitary group, then a principal U(n) bundle is the same
thing as a bundle of orthonormal complex n-frames. Let π : E → X be
a principal U(n) bundle with fibres π−1x = {(f1, . . . , fn)} ' U(n) where
(f1, . . . , fn) is a complex n-frame. There is an associated complex n-plane
bundle τ : CE → X with fibres τ−1x = 〈f1, . . . , fn〉.

Conversely, if τ : D → X is any numerable complex n-plane bundle with
fibres τ−1x, it has a choice of a Hermitian metric and an associated n-frame
bundle π : FD → X with fibres π−1x = {(f1, . . . , fn)} where (f1, . . . , fn) is
an n-frame in the complex vector space τ−1x.

Given two choices of Hermitian metrics on D, they are homotopic through
Hermitian metrics, that is, there is a Hermitian metric on I ×D → I ×B
which restricts to the two choices on the ends. The bundle F(I ×D)→
I ×B restricts to the two choices of FD on the ends. Hence, classification
of n-frame bundles via the universal U(n) bundle EU(n)→ BU(n) shows
that the construction FD is independent up to isomorphism of the choice
of the Hermitian metric.

Hence, we have natural isomorphisms

FCE ' E, CFD ' D.

It follows that: CEU(n)→ BU(n) is a universal complex n-plane bundle.
In this case, the total space has the same homotopy type as the base space.
The universal bundle is contractible only in the case of principal bundles.

Similarly, REO(n)→ BO(n) is a universal real n-plane bundle.

Exercise

(1) Show that any two classifying spaces for principal G bundles are homo-
topy equivalent.

12.5 The Serre filtration

Let G be a topological group. If G0 is the component of the identity, it
is a normal subgroup and the group of components G/G0 acts on HG0

by conjugation. Note that H0G = HG/G0 = R[G/G0]. In homology, the
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conjugation is

H0G⊗HG0 → HG0,
∑

g∈G/G0

rgg ⊗ β 7→
∑

g∈G/G0

rgg
−1βg.

If α =
∑
g∈G/G0

rgg, we write this action as α⊗ β 7→ c(α)β.

The algebra HG is the semi-direct tensor product

HG = H0G⊗HG0, (α⊗ β) · (γ ⊗ δ) = α · γ ⊗ (c(γ)β) · δ.

Suppose F → E
π−→ B is a fibration sequence. Recall that the Serre filtration

on the chains C(E) is the inverse image of the skeletal filtration on the
chains C(B). When the base and fibre are connected, then Serre [116]
has computed that the E1 term of the associated Serre spectral sequence
satisfies

E1 = HF ⊗ C(B).

Consider a left principal G bundle of a topological group,

G→ E → B

where

B = ∗ ×G E = {(∗, e) | e ∈ E, (∗, e) ∼ (∗, ge), g ∈ G}.

Since E is also a principal G0 bundle, that is, there is a principal bundle
sequence G0 → E → B0 with B0 = ∗ ×G0

E.

There is a factorization E → B0 → B where the second map is a covering
space with discrete fibre G/G0. Hence, C(B0) is a free H0G = R[G/G0]
module and, as a nondifferential module, is a tensor product

C(B0) = H0G⊗ C(B).

The differential has a “twisting” coming from the action of the covering
group G/G0.

The Serre filtration on G→ E → B is identical to the Serre filtration on
G0 → E → B0. Serre’s computation of the E1 term applies to the latter,
so we have

E1 = HG0 ⊗ C(B0) = HG0 ⊗H0G⊗ C(B) = HG⊗ C(B)

but the last identification does not respect the differential and therefore it
is better to write

E1 = HG⊗H0G C(B0).
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Consider the Serre filtration on a Borel construction

X ×G E = {(x, e) | x ∈ X, e ∈ E, (xg, e) ∼ (x, ge), g ∈ G}

where X is a right G space and E is a left principal G bundle. If X is
connected, we can apply Serre’s computation of E1 directly to the fibration
sequence

X → X ×G E → ∗×G E = B

with fibre X and we get

E1 = HX ⊗ C(B) = HX ⊗H0G C(B0).

12.6 Eilenberg–Moore models for Borel constructions

In this section we construct the chain models for Borel constructions X ×G
E where X is a right G space and E is a left principal G bundle.

Let P∗ → C(E) be a proper projective resolution of C(E) over the differ-
ential algebra C(G). The total complex of the resolution gives a homology
isomorphism T (P∗)→ C(E) and the main result of this section is the fol-
lowing theorem.

Geometric approximation theorem 12.6.1 [94]. There is a homology
isomorphism

C(X)⊗C(G) T (P∗)→ C(X ×G E),

that is, there is an isomorphism

TorC(G)(C(X), C(E)) ∼= H(X ×G E).

Proof: First of all, we construct the map. The associativity of the
Eilenberg–Zilber map gives the commutative diagram

C(X)⊗ C(G)⊗ C(E)
∇−→ C(X ×G)× E)

µ⊗ 1 ↓↓ 1⊗ µ µ× 1 ↓↓ 1× µ
C(X)⊗ C(E)

∇−→ C(X × E)
↓ ↓

C(X)⊗C(G) C(E) −− → C(X ×G E)

which defines a map C(X)⊗C(G) C(E)→ C(X ×G E) and composition
gives the required map

C(X)⊗C(G) T (P∗)→ C(X)⊗C(G) C(E)→ C(X ×G E).
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Filter T (P∗) by the C(G) module filtration generated by skeleta, that is,

FpT (P∗) = image C(G)⊗ {T (P∗)}≤p
µ−→ T (P∗).

The p-th filtration is generated by elements of the form ax with a ∈ C(G)
and deg(x) ≤ p. On such an element, the total differential is dT (ax) =
(da)x+±a(dTx) ≡ (da)x mod filtration p− 1.

In addition, if x = sny, y ∈ Pn, and dEy =
∑
bw +

∑
ct with b ∈

C0(G), c ∈ C>0(G), then

dTx ≡ dIx±
∑

bsn−1w

mod filtration p− 2.

If C(E) is given the Serre filtration, then the map T (P∗)→ C(E) is filtra-
tion preserving.

The map induces a map of spectral sequences, converging to an isomor-
phism of HE, with the map of E1 terms being

HG⊗ (R⊗C(G) T (P∗))→ HG⊗ C(B).

The comparison theorem of Moore, as quoted in [22] and proved in the
exercises below, shows that

H0G⊗ (R⊗C(G) T (P∗))→ H0G⊗ C(B)

is a homology isomorphism on the edge, that is,

E1
∗,0 → E1

∗,0

is an isomorphism.

Remark. In the domain of this map on the edge, the above computation
of the differential mod filtration p− 2 shows that it is important that the
H0G factor be included in E1

∗,0 in order to keep the edge closed under the
d1 differential. Similarly, in order for E1

∗,0 in the range to be closed under
the d1 differential, E1

∗,0 must be C(B0) = H0G⊗ C(B) where B0 = E/G0

is the covering space of B with covering group G/G0.

The Künneth spectral sequence implies that

R⊗CG T (P∗) = R⊗H0G H0G⊗CG T (P∗)→ C(B)

= R⊗H0G H0G⊗ C(B)

is a homology isomorphism.

In other words, we have proved the following special case of Theorem 12.6.1.
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Proposition 12.6.2.

TorC(G)(R,C(E)) ∼= HB

Filter C(X)⊗C(G) T (P∗) by

Fp{C(X)⊗C(G) T (P∗)} = C(X)⊗C(G) FpT (P∗).

If C(X ×G E) is given the Serre filtration, then the map

C(X)⊗C(G) T (P∗)→ C(X ×G E)

is filtration preserving and the resulting map of the E1 terms of the spectral
sequences is

HX ⊗H0G H0G⊗ (R⊗C(G) T (P∗))→ HX ⊗H0G H0G⊗ C(B)

which is a homology isomorphism since

H0G⊗R⊗C(G) T (P∗)→ H0G⊗ C(B)

is a homology isomorphism. Thus, the map of spectral sequences is an
isomorphism at E2 and therefore also at E∞. Hence,

C(X)⊗C(G) T (P∗)→ C(X ×G E)

is a homology isomorphism. �

Exercises

(1) Let f : M → N be a map of differential graded modules over a differ-
ential graded algebra A. The mapping cylinder of f is the differential
graded module defined by

Z(f) = M ⊕ sM ⊕N

with differential d defined by

d|M = dM , d|N = dN , , d(sx) = −s(dx) + x− fx ∀x ∈M.

(a) Show that Z(f) is a differential graded module over A, that is,
show

d2 = 0, d(a y) = (da) y + (−1)deg(a)a (dy), a ∈ A, y ∈ Z(f).

(b) There is a factorization of f into a composite of maps of differential
graded modules M → Z(f)→ N .

(c) The map Z(f)→ N is a homology isomorphism.

(d) The map Hf : HM → HN is an isomorphism if and only if
H(Z(f)/M) = 0.
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(2) Suppose M is a filtered differential graded module over a differential
graded algebra A and assume that

E1
p,q = E1

p,0 ⊗H0A HqA

and that HA = H0A⊗ F is free over H0A. Show that HM = 0 if and
only if E1

p,0 = 0, ∀ p ≥ 0.

(3) Suppose that f : M → N is a map of filtered differential graded mod-
ules, both satisfying the hypotheses of Exercise 2. Suppose that the
induced map E1

p,q(M)→ E1
p,q(N) is isomorphic to a tensor product

map

E1
p,0(M)⊗H0A HqA→ E1

p,0(N)⊗H0A HqA.

Show that Hf : HM → HN is an isomorphism if and only if
E1
p,0(M)→ E1

p,0(N) is a homology isomorphism, that is, if and only
if E2

p,0(M)→ E2
p,0(N) is an isomorphism.

12.7 Differential Tor of several variables

The several variable version of differential Tor is the way to establish the
connection between the algebraic coproduct and the geometric diagonal.
For example, the diagonal is represented by

E ×G G×G E → E ×G ∗ ×G E

which corresponds to

TorA(R,R) = TorA(R,A,R)→ Tor(R,R,R)

= TorA(R,R)⊗ TorA(R,R).

This idea was introduced in Moore’s expose 7 in the Cartan seminar [95].
One could get away without it by just using the geometric diagonal since
C(G) is a differential Hopf algebra. But you cannot do this evasive sort of
thing in the cobar world. Hence, differential Cotor is used in Chapter 10.
This is here in Chapter 12 to be symmetric with that, and it is the neatest
way to establish the connection between the geometric diagonal and the
coproduct in the bar construction.

Let A and B be differential graded algebras. A differential graded R module
M is an A−B differential bimodule if it is a differential left A module and
a differential right B module together with an extra associativity which
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makes µ : A⊗M ⊗B →M well defined, that is, the diagram below com-
mutes

A⊗M ⊗B µ⊗1−−→ M ⊗B
↓ 1⊗ µ ↓ µ
A⊗M µ−→ M .

The opposite algebra Bop is: Bop = B as an R module and with multipli-
cation

µop = µ · T : B ⊗B → B ⊗B → B.

That is,

b1 ∗ b2 = µop(b1 ⊗ b2) = (−1)deg(b1)deg(b2)b2b1

where b1 ∗ b2 is the multiplication in the opposite algebra.

Observe that , if M a left differential Bop module, then M is a right differ-
ential B module via the action

M ⊗B T−→ Bop ⊗M µ−→M, mb = (−1)deg(m)·deg(b)bm, b ∈ B, m ∈M.

The notion that M is an A−B differential bimodule is equivalent to the
notion that M is a left A⊗Bop differential module.

Explicitly, given an A−B differential module M , it is left A⊗Bop differ-
ential bimodule via the left action

A⊗Bop ⊗M 1⊗T−−→ A⊗M ⊗B µ−→M

(a⊗ b)m = (−1)deg(m)·deg(b)amb, a ∈ A, m ∈M, b ∈ B.

Conversely, given a left A⊗Bop differential module, it is by restriction
both a left A and a left B module and this makes it an A−B differential
bimodule via:

amb = (−1)deg(m)·deg(b)(a⊗ b)m

Hence, if M is an A−B differential bimodule, we know that there exists a
proper projective resolution of bimodules P∗ →M since this is just a proper
projective resolution of differential left A⊗Bop modules. And these proper
projective resolutions are functorial up to chain homotopy.

We now define the notion of differential Tor of several variables:

Let M1 be a right differential A module, Mn be a left differential A module,
and Mi a differential A−A bimodule for i = 2, . . . , n− 1.



12.7 Differential Tor of several variables 531

Let Pi,∗ →Mi be proper projective resolutions and Ti = T (Pi, ∗) their
respective total complexes.

Definition 12.7.1. Differential Tor of n variables is:

TorA(M1, . . . ,Mn) = H{T1 ⊗A T2 ⊗A · · · ⊗A Tn}

Since proper projective resolutions are functorial up to chain homotopy,
the definition of differential Tor in Definition 12.7.1 is well defined and
functorial up to natural isomorphism.

Just as in the case of 2 variables, we can use constructions instead of
resolutions to compute differential Tor of several variables. Even though
the notion of a biconstruction is already defined as a left construction over
the differential algebra A⊗Bop, it is worthline to make it explicit:

Definition 12.7.2. A biconstruction over a pair of differential algebras A
and B is a differential A−B bimodule D over A such that there is an
increasing filtration Fn(D) of D by differential subbimodules with associ-
ated graded

E0
n(D) = A⊗Dn ⊗B,

d0 = d⊗ 1⊗ 1 + 1⊗ 1⊗ d : A⊗D ⊗B → A⊗D ⊗B

where D is projective over R.

Thus the filtration of a biconstruction is

Fn(D) = A⊗
⊕
j≤n

Dj ⊗B.

Observe that a total complex T (P∗) of a A−B proper projective resolution
is also a left construction with the filtration

Gn(T (P∗)) = A⊗

{ ⊕
p+q≤n

{T (P∗)}≤p ⊗B≤q

}
.

The several variable version of differential Tor has three useful properties.
It is balanced, it splits, and it collapses. We proceed to explain these ideas.

Tor is balanced in the sense that, in the computation of Tor, we may omit
the total complex Ti in any one variable (in the middle or on the ends) and
replace it by Mi, that is:

T1 ⊗A T2 ⊗A · · · ⊗A Ti ⊗A · · · ⊗A Tn
→ T1 ⊗A T2 ⊗A · · · ⊗AMi ⊗A · · · ⊗A Tn
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is a homology isomorphism. Thus

TorA(M1, . . . ,Mn) = H{T1 ⊗A T2 ⊗A · · · ⊗AMi ⊗A · · · ⊗A Tn}.

More generally, let Dj
'−→Mj be homology isomorphisms for j 6= i and sup-

pose that Dj is a right construction for j < i and a left construction for
j > i. The interior Dj are also required to be bimodules. Then Proposition
12.3.6 implies that there are homology isomorphisms

D1 ⊗A . . . Di−1 ⊗A Ti ⊗A . . . Dn → D1 ⊗A . . . Di−1 ⊗AMi ⊗A . . . Dn.

With a little work, this implies that:

Proposition 12.7.3. For any choice of 1 ≤ i ≤ n, differential Tor of n
variables can be computed with n− 1 constructions as follows:

TorA(M1, . . . ,Mn) = H{D1 ⊗A · · · ⊗AMj ⊗A · · · ⊗Dn}.

Proof: We give the proof that TorA(M1,M2,M3) = H{D1 ⊗AM2 ⊗A D3).
There are homology isomorphisms

T1 ⊗A T2 ⊗A T3
'−→ M1 ⊗A T2 ⊗A T3

'←− D1 ⊗A T2 ⊗A T3

'−→ D1 ⊗A T2 ⊗AM3
'←− D1 ⊗A T2 ⊗A D3

'−→ D1 ⊗AM2 ⊗A D3.

�

Remark. This is a repeat of the remark about differential Tor for 2 vari-
ables. The above proposition has the consequence that the induced maps
on differential Tor depend only on the maps of the variable entries. They do
not depend on the covering maps of resolutions or constructions since we
can, one at a time, omit the resolution or construction. We already knew
this when differential Tor was defined by proper projective resolutions. Now
we know it even if we define it by constructions.

Tor is split in the interior variables in the sense that the isomorphism
R ≡ R⊗R R implies the isomorphism

T1 ⊗A T2 ⊗A · · · ⊗A Ti−1 ⊗A R⊗A Ti+1 ⊗A · · · ⊗A Tn
≡ {T1 ⊗A T2 ⊗A · · · ⊗A Ti−1 ⊗A R} ⊗R {R⊗A Ti+1 ⊗A · · · ⊗A Tn}

and hence

Proposition 12.7.4.

TorA(M1, . . . ,Mi−1, R,Mi+1, . . . ,Mn)

≡ TorA(M1, . . . ,Mi−1, R)⊗ TorA(R,Mi+1, . . . ,Mn)
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whenever one or both of the tensor factors is projective over R.

Tor collapses in the sense that

T1 ⊗A T2 ⊗A · · · ⊗A Ti−1 ⊗A A⊗A Ti+1 ⊗A · · · ⊗A Tn
≡ T1 ⊗A T2 ⊗A · · · ⊗A Ti−1 ⊗A Ti+1 ⊗A · · · ⊗A Tn

and hence

Proposition 12.7.5.

TorA(M1, . . . ,Mi−1, A,Mi+1, . . . ,Mn)

≡ TorA(M1, . . . ,Mi−1,Mi+1, . . . ,Mn).

Exercise

(1) If M is a right B module and b ∗ c is the multiplication in the opposite
algebra, check that M is a left Bop algebra by verifying

(b ∗ c)m = b(cm)

where the definition of the left action is bm = (−1)deg(b)·deg(m)mb.

12.8 Eilenberg–Moore models for several variables

Let G be a topological group. With the exception of one fixed 1 ≤ i ≤ n,
suppose that E1 is a free right G space (= right principal G bundle), En
is a free left G space, and, for i = 2, . . . n− 1, Ei is a free G−G space
(= free left Gop ×G space). In the case of the one Ei = X we drop all free
conditions on it.

Let Pi,∗ → C(Ei) be proper projective resolutions and let Ti = T (P∗)→
C(Ei) be the maps of total complexes. As with two variables, the Eilenberg–
Zilber map

∇ : C(E1)⊗ · · · ⊗ C(En)→ C(E1)× . . . C(En)

induces a map

C(E1)⊗C(G) · · · ⊗C(G) C(En)→ C(E1 ×G · · · ×G En).

The Eilenberg–Moore geometric approximation theorem for several vari-
ables is

Proposition 12.8.1. The composite map

T1 ⊗C(G) · · · ⊗C(G) C(X)⊗C(G) · · · ⊗C(G) Tn
'−→ C(E1 ×G · · · ×G En)
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is a homology isomorphism. That is, there is a natural isomorphism

TorC(G)(C(E1), . . . , C(En)) ' H(E1 ×G · · · ×G En).

Proof: The proof is a simple induction using the two-variable theorem. We
do it in detail for the case

T1 ⊗C(G) C(X)⊗C(G) T3
'−→ C(E1 ×G X ×G E3).

The two-variable theorem says that there is a homology isomorphism

T1 ⊗C(G) C(X)→ C(E1 ×G X).

It follows from the two-variable theorem and the fact that T3 is a construc-
tion that there are homology isomorphisms

T1 ⊗C(G) C(X)⊗C(G) T3
'−→C(E1 ×G X)⊗C(G) T3

'−→ C(E1 ×G X ×G E3).

�

The identity ∗ ≡ ∗ × ∗ gives the geometric splitting

E1 ×G × ∗ ×GE3 ≡ (E1 ×G ×∗)×G (∗ ×G ×GE3.

The fact that the Eilenberg–Zilber map

∇ : C(E1)× C(X)× C(Y )× C(E3)→ C(E1 ×X × Y × E3)

factors as ∇ · (∇⊗∇) and the compatibility with the diagonal shows that

C(E1)⊗C(G) R⊗C(G) C(E3)
'−→ C(E1)⊗C(G) R⊗R⊗C(G) C(E3)

↓ ∇ ↓ ∇
C(E1 ×G ∗ ×G E3)

≡−→ C(E1 ×G ∗ × ∗ ×G E3)

commutes.

Hence,

T1 ⊗C(G) R⊗C(G) T3
'−→ T1 ⊗C(G) R⊗R⊗C(G) T3

↓ ∇ ↓ ∇
C(E1 ×G ∗ ×G E3)

≡−→ C(E1 ×G ∗ × ∗ ×G E3)

commutes. If at least one of H(E1 ×G ∗) or H(∗ ×G E) is projective over
R, we can combine this with the Künneth isomorphisms to get that

Proposition 12.8.2.

TorC(G)(C(E1), R, C(E3))
≡−→ TorC(G)(C(E1), R)⊗ TorC(G)(R,C(E3))

↓ ∇ ↓ ∇
H(E1 ×G ∗ ×G E3)

≡−→ H(E1 ×G ∗ × ∗ ×G E3)

is a commutative diagram of isomorphisms.
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We have shown that the splitting of differential Tor is compatible with the
geometric splitting.

Similarly, we have the compatibility of the collapse of the differential Tor in
the geometric approximation with geometric collapse. It follows from the
associativity and naturality of the Eilenberg–Zilber maps.

Proposition 12.8.3.

TorC(G)(C(E1), C(G), C(E3))
≡−→ TorC(G)(C(E1), C(E3))

↓ ∇ ↓ ∇
H(E1 ×G G×G E3)

≡−→ H(E1 ×G E3)

is a commutative diagram of isomorphisms.

Finally, we have the following geometric form of the Künneth theorem: Let
G and H be topological groups, let X be a right G space and E a free left
G space, and let Y be a right H space and F a free left H space.

Geometric Künneth theorem 12.8.4. There is a commutative diagram:

TorC(G)(C(X), C(E))⊗TorC(H)(C(Y ), C(F )) → TorC(G×H)(C(X × Y ), C(E × F ))

↓≡ ↓≡
H(X ×G E)⊗H(Y ×H F ) → H((X × Y )×G×H (E × F ))

where the vertical maps are all isomorphisms and the top horizontal map
is the composition

TorC(G)(C(X), C(E))⊗ TorC(H)(C(Y ), C(F ))

→ TorC(G)⊗C(H)(C(X)⊗ C(Y ), C(E)⊗ C(F ))

Tor∇(∇,∇)−−−−−−→ TorC(G×H)(C(X × Y ), C(E × F )).

If H(X ×G E) and H(Y ×H F ) are R projective, then the horizontal maps
are isomorphisms.

Proof: The associativity and commutativity of the Eilenberg–Zilber maps
give a commutative diagram

C(X)⊗C(Y )⊗C(G)⊗C(H) C(E)⊗C(F )
∇⊗∇−−−→ C(X × Y )⊗C(G×H) C(E × F )

↓ ∇ · (1⊗ T ⊗ 1) ↓ ∇
C(X ×G E × Y ×H F )

≡−→ C(X × Y ×G×H E × F )

Denote the total complexes of the appropriate proper projective resolutions
by TX , TY , TE , TF , TX×Y , TE×Y . Then we get a map

TX ⊗ TY ⊗C(G)⊗C(H) TE ⊗ TF → TX×Y ⊗C(G×H) TE×F

which covers the top map and induces the map of differential Tors in the
top horizontal map of the proposition. �
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Exercise

(1) Check the details in the proofs of 12.8.2 and 12.8.3.

12.9 Coproducts in differential Tor

The collapse and splitting of differential Tor enable us to define a coproduct
in an R projective differential TorA(R,R) via the fact that the augmenta-
tion ε : A→ R is a map of A−A bimodules:

TorA(R,R) ≡ TorA(R,A,R)
TorA(1,ε,1)−−−−−−−→ TorA(R,R,R)

≡ TorA(R,R)⊗ TorA(R,R).

Up to the isomorphisms of collapse and splitting, the coproduct is the map

∆ : TorA(R, ε,R) : TorA(R,A,R)→ TorA(R,R,R)

which can be described in terms of resolutions as follows:

Let T1 be the total complex of a right resolution of R and let T3 be the
total complex of a left resolution of R. Let T2 = S ⊗ T where S = T3 is the
total complex of a left resolution of R and T = T1 is the total complex of
a right resolution of R. Let T̂2 be the total complex of a biresolution of A.
Then the coproduct ∆ is defined by the map of complexes

T1 ⊗A T̂2 ⊗ T3 → T1 ⊗A T2 ⊗ T3.

The iterated coproducts

(∆⊗ 1) ·∆, (∆⊗ 1) ·∆ : TorA(R,A,A,R)→ TorA(R,R,R,R)

are defined by the two natural composite maps of the complexes, depending
on whether the second or third variable is mapped first,

T1 ⊗A T̂2 ⊗A T̂2 ⊗A T3 → T1 ⊗A T2 ⊗A T2 ⊗A T3.

Since these are equal maps on the level of complexes, the coproduct is
associative.

A counit ε : TorA(R,R)→ R is defined by the map of complexes

T1 ⊗A T3 → R⊗R R.

Since the composition

T1 ⊗A T̂2 ⊗A T3 → T1 ⊗A T2 ⊗A T3 → R⊗R ⊗AT3

is the natural equivalence, it follows that ε is a left (and right) counit.

We have shown
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Proposition 12.9.1. For any differential algebra A, there is a natural
coalgebra structure on any R projective TorA(R,R). This is called the
canonical coalgebra structure.

We claim that

Proposition 12.9.2. There is a natural isomorphism

HBA = TorA(R,R)

where BA is the classifying or bar construction. This is an isomorphism of
coalgebras if HBA is R projective.

Proof: There are acyclic constructions BA⊗τ A and A⊗τ BA. In terms of
these constructions, the coproduct is defined by the map of complexes

BA⊗τ A⊗A A⊗A A⊗τ BA→ BA⊗A⊗A R⊗A A⊗τ BA.

(See Section 10.4 for the definition of the differentials of these twisted tensor
products.)

Up to natural isomorphism, the coproduct is defined by the map of com-
plexes

BA⊗τ A⊗τ BA→ BA⊗τ R⊗τ BA, x⊗ a⊗ y 7→ x⊗ ε(a)⊗ y

where the differential on the range is given by

d(x⊗ a⊗ y)

= dx⊗ a⊗ y + (−1)deg(x)x⊗ da⊗ y + (−1)deg(x)+deg(a)x⊗ a⊗ dy

+
∑

x′ ⊗ τ(x′′)a⊗ y + (−1)deg(x)+deg(a)(x⊗ aτ(y′)⊗ y′′

and where ∆(x) =
∑
x′ ⊗ x′′ and ∆(y) =

∑
y′ ⊗ y′′ are the diagonals in

the bar construction.

Lemma 12.9.3. The map defined by the diagonal in the bar construction

δ : BA→ BA⊗τ A⊗τ BA, , δ(x) =
∑

x′ ⊗ 1⊗ x′′

is a chain map which is naturally isomorphic to the identity in homology.

Proof: It is easy to check that this map is a chain map.

The composition

BA→ BA⊗τ A⊗τ BA→ R⊗R⊗BA

is the identity and, reversing the collapse of the tensor product, the second
map

BA⊗τ A⊗A A⊗τ BA→ R⊗R⊗A A⊗τ BA
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is the natural homology isomorphism which is the tensor product over A
with the construction in the second factor. �

We have the general result:

Proposition 12.9.4. Let A⊗σ C be an acyclic twisted tensor product with
twisting morphism σ : C → A. There is an isomorphism

HC → TorA(R,R)

which is an isomorphism of coalgebras if HC is R projective.

Proof: Refer to Section 10.5 on universal twisting morphisms.

The universal property of the twisting morphism of the bar construction
yields a factorization

σ : C
σ−→ BA

τ−→ A

where σ : C → BA is a morphism of differential coalgebras which is a
homology isomorphism when A⊗σ C is acyclic. �

Exercise

(1) Prove directly from the splitting of differential Tor of several vari-
ables that the coproduct in TorA(R,R) is associative. Can you think
of another (easier) proof?

12.10 Künneth theorem

The purpose of this section is to prove the Künneth theorem.

Künneth theorem 12.10.1. There is a map

TorA(R,R)⊗ TorB(R,R)→ TorA⊗B(R,R)

which is an isomorphism of coalgebras if both factors are projective over
R.

Let C be a differential coalgebra and let A be a differential algebra.

Definition 12.10.2. Given a twisting cochain σ : C → A, there is a chain
map

δ : C → C ⊗σ A⊗σ C ≡ C ⊗σ A⊗A A⊗σ C

given by δ(c) =
∑
c′ ⊗ 1⊗ c′′ where ∆(c) =

∑
c′ ⊗ c′′ is the diagonal.

The composition

C
δ−→ C ⊗σ A⊗σ C → C ⊗R⊗ C ≡ C ⊗ C

is the diagonal.
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Definition 12.10.3. Given twisted tensor products A⊗σ C and B ⊗γ D,
the tensor product

(A⊗σ C)⊗ (B ⊗γ D) ≡ (A⊗B)⊗ξ (C ⊗D)

is a twisted tensor product via the twisting morphism

ξ = (σ ⊗ 1)(η ⊗ ε) + (1⊗ γ)(ε⊗ η) : C ⊗D → C ⊗R⊕R⊗D → A⊗B.

Apply Definition 12.10.3 to the tensor product of the bar constructions
A⊗σ BA and B ⊗γ BB to get the twisting morphism ξ : BA⊗BB → A⊗
B. The universal property of the twisting morphism of the bar construction
τ : B(A⊗B)→ A⊗B gives a lift to a map of differential coalgebras ξ :
BA⊗BB → B(A⊗B), that is, this diagram below commutes

BA⊗BB ξ−→ B(A⊗B)
↘ ξ ↓ τ

A⊗B

Lemma 12.10.4. The map ξ : BA⊗BB → B(A⊗B) is a homology iso-
morphism of differential coalgebras.

Proof: This is a consequence of the Zeeman comparison theorem and the
fact that the twisted tensor products (A⊗B)⊗ξ (BA⊗BB) and (A⊗
B)⊗τ B(A⊗B) are both acyclic. �

Clearly, the above proves the Künneth Theorem 12.10.1.

Exercises

(1) Verify that the map δ in Definition 12.10.2 is a chain map.

(2) Verify that the tensor product of twisted tensor products is given by
the twisting morphism in Definition 12.10.3.

12.11 Products in differential Tor

The Künneth theorem in the previous section shows that other algebraic
structures can sometimes be introduced into differential Tor.

For example, if A is a commutative differential graded algebra, then the
multiplication A⊗A→ A is a map of differential algebras and induces a
map

TorA(R,R)⊗ TorA(R,R)→ TorA⊗A(R,R)→ TorA(R,R.)
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Whether or not TorA(R,R) is projective over R, this makes it into a
(graded) commutative algebra over R. If it is projective over R, then the
above is a map of coalgebras and hence TorA(R,R) is a Hopf algebra.

Suppose that A is a differential Hopf algebra, for example, A could be C(G)
where G is a topological group. Suppose that M and N are right and left
differential module coalgebras over A. Then the diagonals ∆ : A→ A⊗
A,M →M ⊗M,N → N ⊗N are map of differential algebras and module
coalgebras and induce a map

∆∗ : TorA(M,N)→ TorA⊗A(M ⊗M,N ⊗N)

which is a map of coalgebras if TorA(M,N) is projective over R. Hence, if
TorA(M,N) is projective over R, this gives a coalgebra structure

δ : TorA(M,N)→ TorA(M,N)⊗ TorA(M,N)

which is also a morphism of the usual coalgebra structure discussed in
Section 9 and and which is denoted by ∆ : TorA(M,N)→ TorA(M,N)⊗
TorA(M,N). Since the structure δ is the one which is often computable, it
is fortunate that we have

Proposition 12.11.1. If C is a coalgebra with diagonal ∆ : C → C ⊗ C
and δ : C → C ⊗ C is a map of coalgebras with a counit in common with ∆,
then they are equal, ∆ = δ, and both are (graded) commutative, T · δ = δ.

Proof: The common counit hypothesis is

∆(c) = c⊗ 1 + 1⊗ c+
∑

cα ⊗ cβ , δ(c) = c⊗ 1 + 1⊗ c+
∑

cα ⊗ cβ

and the following diagram commutes

C —————————--→ ∆−→ C ⊗ C
↓ δ ↓ δ ⊗ δ

C ⊗ C ∆⊗∆−−−→ C ⊗ C ⊗ C ⊗ C 1⊗T⊗1−−−−→ C ⊗ C ⊗ C ⊗ C.

Start in the upper left-hand corner. Go right and down and see
the terms

∑
1⊗ cα ⊗ cβ ⊗ 1. Go down and right and see the terms∑

(−1)deg(cα)·deg(cβ)1⊗ cβ ⊗ cα ⊗ 1. Thus, T · δ = ∆.

Go right and down and see the terms
∑
cα ⊗ 1⊗ 1⊗ cβ . Go down and

right and see the terms
∑
cα ⊗ 1⊗ 1⊗ cβ . Therefore, ∆ = δ. �

Here is the algebraic form of the Borel transgression theorem.

Borel transgression Theorem 12.11.2. Let E(V ) be an exterior algebra
with V concentrated in odd degrees (but with no such degree restrictions if
R is a field of characteristic 2). Then

TorE(V )(k, k) = Γ(sV )
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is a divided power algebra as Hopf algebras.

Proof: Since E and Γ both commute with direct limits and since

E(V ⊕W ) = E(V )⊗ E(W ), Γ(sV ⊕ sW ) = Γ(sV )⊗ Γ(sW ),

it is sufficient to demonstrate the one generator case

TorE(x)(R,R) = Γ(sx).

Recall that Γ(sx) has a basis 1 = γ0, γ1 = sx, γ2 = γ2(sx), . . . , γi =
γi(sx), . . . with multiplication

γi · γj = (i, j)γi+j

and diagonal

∆(γn) =
∑

p+q=n

γp ⊗ γq.

The differential Hopf algebra

R = E(x)⊗ Γ(sx), dx = 0, d(γi) = xγi−1, i ≥ 1

is an acyclic construction over E(V ). Let

A = R⊗E(V ) R = Γ(sx).

The multiplication R⊗R → R is a map of constructions with respect to
the multiplication map E(V )⊗ E(V )→ E(V ) and the diagonal map R →
R⊗R is a map of constructions with respect to the diagonal map E(V )→
E(V )⊗ E(V ).

Hence, these induce a Hopf algebra structure on A which has zero differ-
ential and hence is TorE(x)(R,R) as a Hopf algebra. �

Exercise

(1) Assuming that the differential Tors are all projective over R, verify
that

TorA⊗B(R,R) ≡ TorA(R,R)⊗ TorB(R,R)

as Hopf algebras if A and B are commutative differential graded alge-
bras.

12.12 Coproducts and the geometric diagonal

Let G be a topological group with a right G space X and a free left G space
E.
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Proposition 12.12.1. If H(X ×G E) is R projective, then

TorC(G)(C(X), C(E)) = H(X ×G E)

as coalgebras.

Proof: Since the geometric diagonal defines a differential Hopf algebra
structure on C(G) and differential module coalgebra structures on C(X)
and C(E), it defines a coalgebra structure on TorC(G)(C(X), C(E)) which
is identical to the canonical one when both are defined.

We have a commutative diagram

TorC(G)(C(X), C(E))
Tor∆(∆,∆)−−−−−−−→ TorC(G×G)(C(X ×X), C(E × E))

↓ ↓
H(X ×G E)

∆−→ H((X ×X)×G×G (E × E))

.

When combined with the Künneth isomorphisms, this gives the desired
result. �

Suppose that G and H are topological groups. Using Milnor’s functorial
construction of the classifying space, the projection maps define a homotopy
equivalence B(G×H)

'−→ BG×BH.

If G is a commutative topological group, the multiplication µ : G×G→ G
is a homomorphism and the commutative diagram below shows that BG
is an H-space:

B(∗ ×G)
↓ ↘=

BG×BG '←− B(G×G)
Bµ−−→ BG

↑ ↗=
B(G× ∗)

The details of the following proposition are similar to those of Proposition
12.12.1:

Proposition 12.12.2. If G is a commutative topological group, then there
is an isomorphism of algebras

TorC(G)(R,R)→ HBG.

If, in addition, HBG is R projective, then this is an isomorphism of Hopf
algebras.

We illustrate Proposition 12.12.2 with the computation of the homology
Hopf algebra structures of HBG when G is a cyclic group.

Discrete groups
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In the case of a discrete group π, the normalized chains Cπ are nothing but
the integral group ring R[π]. The multiplication of the group defines the
algebra structure on generators of R[π] via g · h = gh and the coalgebra
structure δ : R[π]→ R[π]⊗R[π] is given on generators by δ(g) = g ⊗ g.
The element 1 is a unit and the augmentation ε : R[π]→ R, ε(g) = 1 is the
counit.

In this case, the differential Hopf algebra Cπ has zero differential and hence
the proper projective class over A is the same as the usual projective class.
In other words, a proper projective resolution is the same as a projective
resolution. Hence, HBπ = HK(π, 1) = TorR[π](R,R).

The infinite cyclic group

The integral group ring Z[Z] = Z[t, t−1] = A = the ring of finite Laurent
polynomials. There is a projective resolution of Z over A given by

0→ Ae1
d−→ Ae0

ε−→ Z→ 0

where

de1 = (t− 1)e0, ε
(∑

ait
i
)
e0 =

∑
ai.

We denote this resolution by S → Z and note that

Z⊗A S = 〈e0 = 1, e1〉.

Hence,

HBZ = 〈1, e1〉 = E(e1)

and it is clear that this is even an isomorphism of primitively generated
Hopf algebras. We have computed the homology of a circle!

Finite cyclic groups

Let π = {1, t, , tn−1}, tn = 1. The integral group ring is

A = Z[t]/〈tn − 1〉.

Let ∆ = t− 1 and N = 1 + t+ · · ·+ tn−1. There is a projective resolution
S ε−→ R, that is,

· · · d−→ Aei
d−→ Aei−1 → · · ·

d−→ Ae0
ε−→ R→ 0

where

ε(e0) = 1, de2i+1 = ∆e2i, de2i+2 = Ne2i+1.

Let R = Z/nZ. With R coefficients,

HBπ = R⊗A S = 〈e0 = 1, e1, . . . , ei, . . .〉 =
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a free R module with one generator in each positive degree.

It is easy to compute the algebra structure in HBπ but the coalgebra
structure is somewhat more difficult.

Define an algebra structure on S by a map µ : S ⊗ S → S extending the
multiplication A⊗A→ A. On generators the map is

µ(e2r ⊗ e2s) = (r, s)e2r+2s

µ(e2r+1 ⊗ e2s) = µ(e2r ⊗ e2s+1) = (r, s)e2r+2s+1

µ(e2r+1 ⊗ e2s+1) = 0.

It is easy to see that this multiplication commutes with the differential
and hence induces the multiplication on HBπ given by the above formulas
on generators. Hence, as an algebra it is the tensor product of an exterior
algebra with a divided power algebra,

HBπ = E(e1)⊗ Γ(e2).

In order to compute the coalgebra structure in HBπ, we follow Steenrod
and introduce the following element

Ω =
∑

0≤i<j<n
ti ⊗ tj ∈ R[π]⊗R[π].

Define a coproduct

δ : S → S ⊗ S

on generators by

δe2i =

i∑
j=0

e2j ⊗ e2i−2j +

i−1∑
j=0

Ω(e2j+1 ⊗ e2i−2j−1)

δe2i+1 =

i∑
j=0

(e2j ⊗ e2i−2j+1 + e2j+1 ⊗ te2i−2j).

Make this a map of modules with respect to the diagonal δ : A→ A⊗A.

Lemma 12.12.3. The following identities hold:

t⊗ t− 1⊗ 1 = 1⊗∆ + ∆⊗ t

(t⊗ t)Ω− Ω = N ⊗ 1− 1⊗N

1⊗ 1 + t⊗ t+ · · ·+ tn−1 ⊗ tn−1 = 1⊗N + Ω(∆⊗ 1)

1⊗ t+ t⊗ t2 + · · ·+ tn−1 ⊗ 1 = N ⊗ 1− Ω(1⊗∆).
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These identities show that the above map δ : S → S ⊗ S is a map of
chain complexes. Hence, with coefficients R = Z, the coalgebra structure
on HBπ = R⊗A S is given by the formulas

δe2i =

i∑
j=0

e2j ⊗ e2i−2j +

i−1∑
j=0

n(n−1)
2 (e2j+1 ⊗ e2i−2j−1)

δe2i+1 =

i∑
j=0

(e2j ⊗ e2i−2j+1 + e2j+1 ⊗ e2i−2j).

We break this into three cases.

If n is odd, take coefficients R = Z/nZ, and note that the second term of
the coproduct on an even dimensional class vanishes. Hence, the coalgebra
is exterior tensor divided power, that is,

HBπ = HK(Z/nZ, 1);Z/nZ) = E(e1)⊗ Γ(e2)

as coalgebras. If we compare this with the algebra computation, we see that
this is an isomorphism of Hopf algebras.

If n = 2r with r ≥ 2, then take coefficients R = Z/2Z, and note that the
second term of the coproduct on an even dimensional class vanishes. Hence,
as above,

HBπ = HK(Z/2rZ, 1);Z/2Z) = E(e1)⊗ Γ(e2)

as Hopf algebras.

But, if n = 2 and we take coefficients R = Z/2Z, the second term of the
coproduct on an even dimensional class does not vanish and we see that

HBπ = HK(Z/2Z, 1);Z/2Z) = H(RP∞;Z/2Z) = Γ(e1)

is a divided power algebra as a Hopf algebra.

Exercises

(1) Verify the details of Proposition 12.12.2.

(2) Verify Lemma 12.12.3 and the fact that the map δ : S → S ⊗ S is a
map of chain complexes.

(3) Use the cohomology Serre spectral sequence of the fibration sequence

S1 → S∞ → CP∞

to show that the Hopf algebra

H∗CP∞ = P (u) =
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a primitively generated polynomial algebra generated by an element u
of dimension 2.

(4) The fibration sequence S1 → K(Z/nZ, 1)→ K(Z, 2)
n−→ K(Z, n) begins

with a principal bundle S1 → K(Z/nZ, 1)→ K(Z, 2). This princi-
pal bundle allows us to compute the cohomology Hopf algebra of
K(Z/nZ, 1) without the use of resolutions.

(a) Use the cohomology Serre spectral sequence to show that

H∗(K(Z/nZ, 1);Z/nZ) = E(e)⊗H∗CP∞ = E(e)⊗ P (u)

as modules over the polynomial algebra P (u) where the degree of
e is 1 and the degree of u is 2.

(b) If n = 2, show that Sq1(e) = e ∪ e = u and conclude that

H∗(K(Z/2Z, 1),Z/2Z) = P (e) =

a polynomial algebra on a generator of dimension 1.

(c) If n = 2r with r ≥ 2, show that, as algebras,

H∗(K(Z/2rZ, 1),Z/2Z) = E(e)⊗ P (u) =

an exterior algebra tensor a polynomial algebra.

(d) If n is odd, show that

H∗(K(Z/nZ, 1);Z/nZ) = E(e)⊗ P (u)

as algebras.

(e) Show that the cohomology generator u is primitive in all cases
(a) through (d) and hence that the Hopf algebra structure of
H∗(K(Z/nZ, 1)) is determined with the above coefficients.

12.13 Suspension and transgression

In Section 10.25 the homology suspension is treated in the context of the
second quadrant Eilenberg–Moore models such as the cobar construction.
In this section we treat it in the context of the first quadrant models such
as the bar construction.

Let F
ι−→ E

π−→ B be a fibration sequence. In general, the homology suspen-
sion is the relation

σ : H∗F
∂←− H∗+1(E,F )

π−→ H∗+1B
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and its inverse relation is called the transgression

τ : H∗+1B
π←− H∗+1(E,F )

∂−→ H∗F.

Both of these concepts are useful in general, but they are most useful when
some ambiguity is removed and one or both of the homology suspension
and the transgression become well defined maps.

In particular, the homology suspension is a well defined map if the total
space E is contractible and hence ∂ : H(E,F )→ HF is an isomorphism.
For example, let E = PB be the path space and then the fibre is the loop
space F = ΩB. We have the fundamental proposition originally due to G.
Whitehead:

Proposition 12.13.1. If B is simply connected with HB projective over
R, the homology suspension factors through the indecomposables of the loop
space and the primitives of the base as follows

σ : H∗ΩB → Q∗HΩB → PH∗+1B ⊆ H∗+1B.

Proof: Since the base is simply connected the E2 term of the Serre spectral
sequence has the simple form E2

p,q = Hp(B)⊗HqF. It is a fundamental
property of the homology Serre spectral sequence of the fibration that the
suspension can be defined as follows

Hn−1ΩB = E2
0,n−1 → En0,n−1

dn'←−− Enn,0 ⊆ E2
n,0 = HB.

The acyclicity of the total space guarantees that the last “transgressive”
differential is an isomorphism. (It is for this reason that the inverse to the
homology suspension is called the transgression.)

It is sufficient to prove two things:

(1) the kernel of E2
0,n−1 → En0,n−1 contains all decomposables.

(2) the module of transgressive elements Enn,0 is contained in the module
of primitives.

Let z = xy be a Pontrjagin product of two positive degree classes x y ∈
HΩB. Since the spectral sequence is “acyclic”, we know that x = drw for
some r < n. Since the spectral sequence is a module over the algebra HΩB,
we have

dr(wy) = (drw)y = xy.

Hence, the decomposable xy is zero in En0,n−1.

Now, let z ∈ Enn,0 ⊆ HB. We claim that z is primitive. Since the spectral
sequence is acyclic, we have that Enr,0 = 0 for all 0 < r < n. But the diagonal
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satisfies

∆(z) ∈
∑
r+s=n

Enr,0 ⊗ Ens,0.

Hence, the transgressive element z is primitive. �

Exactly the same proof applies to universal principal G bundles. However,
with the use of a little more geometry and algebra, we can eliminate the
hypothesis that the base be simply connected with projective homology
over R.

Proposition 12.13.2. If G is a topological group, then the homology sus-
pension factors as

σ : H∗G→ Q∗HG→ PH∗+1BG ⊆ H∗+1BG.

Proof: Consider the embedding G ∗G ⊆ EG of the two-fold join into the
infinite join. Under the action of G, the orbit spaces are ΣG ⊆ BG where
the suspension space

ΣG = I ×G/(1.g) ∼ ∗1, (0, g) ∼ ∗2

is the unreduced suspension which is the quotient of the cone

G ∗ e→ ΣG tg + (1− t)e 7→ [t, g].

The commutative diagram

G → G ∗ e → ΣG
↓= ↓⊆ ↓⊆
G → EG → BG

shows that the homology suspension factors as

σ : H∗G
∂'←−− H∗+1(G ∗ e,G)→ H∗+1ΣG→ H∗+1BG.

But with any coefficients, the positive degree elements in the homology of
a suspension are primitive. Hence, the image of the homology suspension
is primitive.

In order to show that the homology suspension annihilates the decompos-
ables in HG, we interpret the homology suspension in terms of the alge-
braic bar construction. Let A = CG be the chains on the topological group
and consider the acyclic twisted tensor product A⊗τ BA where the twist-
ing morphism τ : BA→ A is nontrivial only on length one tensors and is
given on those by τ [a] = a. There is a chain equivalence BA→ C(BG). In
fact, the sequence A→ A⊗τ BA→ BA is chain equivalent to the sequence
CG→ CEG → CBG.
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Let a be a cycle in A. Since d[a] = a in the twisted tensor product A⊗τ BA,
it follows that the homology suspension is given by σa = [a]. By the way,
this shows again that σa is primitive, even as a chain.

Let a = bc be a product of two cycles in A. Since d(b[c]) = ±bc = ±a, it
follows that σa = 0 = the image of b[c] in BA. Hence, the homology sus-
pension annihilates decomposable elements. �

Exercises

(1) If M and N are differential modules over a differential Hopf algebra
A, show that M ⊗N is a differential module over A via the diagonal
action

A⊗M ⊗N ∆⊗1⊗1−−−−→ A⊗A⊗M ⊗N
1⊗T⊗1−−−−→ A⊗M ⊗A⊗N µ⊗µ−−→M ⊗N.

(2) If A is a differential Hopf algebra and E and F are acyclic construc-
tions over A, show that there are homology equivalences of differential
modules over A,

F
'←− E ⊗ F '−→ E

and hence a there are homology equivalences

R⊗A F
'←− R⊗A (E ⊗ F )

'−→ R⊗A E.

(3) If G is a topological group, show that there is a sequence of homology
equivalences leading from the bar construction on the chains BCG to
the chains on the classifying space CBG. Conclude that the description
given in the proof of Proposition 12.13.2 of the homology suspension
given in terms of the bar construction is correct.

12.14 Eilenberg–Moore spectral sequence

The algebraic Eilenberg–Moore spectral sequence 12.3.9 specializes to the
geometric version below.

Proposition 12.4.1. Let G be a topological group with right G-space X
and left free G-space E. Then there is a first quadrant homology spectral
sequence with

E2
p,q = {TorHGp (HX,HE)}q
dr : Erp,q → Erp−r,q+r−1

and converging strongly to its filtered abutment

{HX ⊗HA HE}p+q = F0 ⊆ F1 ⊆ · · · ⊆ Fp ⊆ · · · ⊆ F∞ = Hp+q(X ×G E).
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If all Er are projective over R, then this is a spectral sequence of commu-
tative coalgebras.

The classifying space situation is important enough to be mentioned sepa-
rately:

Proposition 12.14.2. If G is a topological group, then there is a first
quadrant homology spectral sequence with

E2
p,q = {Torp(R,R)}q

converging strongly to its filtered abutment

R = F0 ⊆ F1 ⊆ · · · ⊆ Fp ⊆ · · · ⊆ F∞ = HBG

and the homology suspension σ : H∗G→ H∗+1BG factors as follows

HnG→ QnHG ≡ TorHG1 (R,R)→ F1 → F∞ = HBG.

When the terms of the spectral sequence are all projective over R, then it
is a spectral sequence of commutative coalgebras.

If all the terms Er are projective over R and of finite type, taking duals
implies that the above propositions can be given in cohomology versions
which we record here.

Proposition 12.14.3. Let G be a topological group with right G-space X
and left free G-space E. Suppose all homologies HG, HX, HE are all pro-
jective and finite type over R and, in addition, all Er are projective over R,
then there is a first quadrant cohomology spectral sequence of commutative
algebras with

Ep,q2 = {CotorpHG(HX,HE)}q

dr : Ep,qr → Ep+r,q−r+1
r

and converging strongly to its filtered abutment

{H∗X2H∗AH
∗E}p+q � F 0 � F 1 � · · ·� F p � · · ·� F∞

= Hp+q(X ×G E).

The classifying space situation is:

Proposition 12.14.4. Let G be a topological group with R projective finite
type homology. If all Er are projective over R, then there is a first quadrant
cohomology spectral sequence of commutative algebras with

Ep,q2 = {CotorH
∗G

p (R,R)}q

converging strongly to its filtered abutment

Rp+q = F 0 � F1 � · · ·� F∞ = Hp+qBG
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and the cohomology suspension σ∗ : H
∗+1

BG→ H
∗
G factors as follows

H
n+1

BG� Qn+1H∗BG ≡ F∞ � F 1 ≡ E1,n
∞ → E1,n

2

≡ {CotorH
∗G

1 (R,R)}n ≡ {PH∗G}n.

We close with the following statement of the Borel transgression theorem
[10] in terms of cohomology.

Borel trangression theorem 12.14.5. Suppose

H∗G = E(V )

as algebras with V concentrated in odd degrees, projective and finite type
over R. Then the cohomology of the classifying space is the polynomial
algebra

H∗BG = P (sV ∗)

where the the transgression τ : PH∗G = V ∗ → sV ∗ = QH∗BG is an iso-
morphism from the exterior primitives to the polynomial generators.

Proof: In the cohomology version of the Eilenberg–Moore spectral
sequence,

E2 = CotorH∗G(R,R) = CotorE(V ∗)(R,R) = P (sV ∗).

Since the spectral sequence is concentrated in even degrees, it must collapse
and E2 = E∞ = P (sV ∗). Since the abutment H∗BG is a commutative
algebra and E∞ is a free commutative algebra, there are no extension
problems. That is, lifting the polynomial generators up to F∞ = H∗BG
gives an isomorphism H∗BG ' P (sV ∗). �

12.15 Euler class of a vector bundle

A real vector bundle ξ of dimension n (a real n-plane bundle) consists
of a total space E = E(ξ), a base space B = B(ξ) and a continuous map
π : E → B such that:

(1) for all x ∈ B, each Ex = π−1(x) is a real vector space of dimension
n and

(2) there exists an open cover U of B and homeomorphisms ψU :
U ×Rn → π−1(U) covering the identity map on U such that the
restriction, for all x ∈ B to each fibre {x} ×Rn → Ex is a vector
space isomorphism.
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We adopt the following notation: E0 = E(ξ)0 = E − {0x |x ∈ B} = the
complement of the 0-section, Rn0 = Rn − {0} = the complement of the ori-
gin, if A ⊆ B, then EA = π−1(A) is the restriction of the bundle over A,
and

ψU,V = ψ−1
V · ψU : (U ∩ V )×Rn → (V ∩ U)×Rn,

ψU,V (x, v) = (x, gU,V (x)(v))

for the transition functions. Thus, each gU,V (x) is a linear isomorphism
which depends continuously on x ∈ U ∩ V.

There are three definitions of orientability for a real vector bundle.

Definition 12.15.1. A real vector bundle is geometrically orientable if all
of the gU,V (x) can be chosen to have positive determinant.

Definition 12.15.2. A real vector bundle is locally orientable with coef-
ficients R if, for each x ∈ B, there is a continuous choice of a generator
µx ∈ Hn(Ex, Ex0;R). The choice is continous in the sense that each x has
a neighborhood U ⊆ B and a class µU ∈ Hn(EU , EU,0;R) which restricts
to µy for all y ∈ U.

Definition 12.15.3. A real vector bundle is orientable with coefficients
R if there is a class µ ∈ Hn(E,E0;R) which restricts to a generator µx ∈
Hn(Ex, Ex0;R) for all x ∈ B. The class µ = µξ is called the Thom class of
the bundle.

The following proposition describes the sense in which these three defini-
tions are equivalent.

Proposition 12.15.4.

(a) Local orientability with coefficients R is equivalent to orientability
with coefficients R.

(b) Orientability with integral coefficients Z implies orientability with all
coefficients R.

(c) Geometric orientability is equivalent to orientability with integral
coefficients Z.

Before proving the above, we prove [91]

Thom isomorphism Theorem 12.15.5. Let ξ be a real n-plane bundle
which is orientable over R, There is an isomorphism

Φ : Hk(B)⊗Hn(Rn, Rn0 )→ Hn+k(E,E0)

given by Φ(α⊗ en) = π∗α ∪ µ with π∗α ∈ Hk(E) and µ ∈ Hn(E,E0) is the
Thom class.
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Proof: In the cohomology Serre spectral sequence of the bundle pair
(E,E0)→ (B,B),

Ep,q2 = HpB ⊗Hq(Rn, Rn0 )

and the orientability implies that the generator e ∈ Hn(Rn, Rn0 ) survives
to represent the Thom class in E∞. Hence, E2 = E∞ and the map Φ :
H∗(B)⊗H∗(Rn, Rn0 )→ H∗(E,E0) is an isomorphism. �

Remark. The Thom isomorphism theorem may be restated as the fact
that cupping with the Thom class is an isomorphism,

( ) ∪ µ : HkE
'−→ Hk+n(E,E0), α 7→ α ∪ µ.

Proof of Proposition 12.15.4

Part (a1): Orientability with coefficients R implies local orientability with
coefficients R. This follows since we can define µx ∈ Hn(Ex, Ex0) to
be the restriction of the Thom class.

Part (a2): Local orientability with coefficients R implies orientability with
coefficients R. Since we have orientability over the neighborhoods U ,
we have the Thom isomorphism neighborhood over these neighbor-
hoods and, in particular, we have Hk(EU , EU0) = 0 for k < n.

Now suppose that A is a maximal open subset of B for which EU
is orientable with coeffiencts R. If there exists x ∈ B −A, then the
Meyer–Vietoris exact sequence formed from the restriction maps

0→ Hn(EUx∪A, EUx∪A0)
ρ⊕ρ−−→ Hn(EUx , EUx 0)⊕Hn(EA, EA0)

(ρ,−ρ)−−−−→ Hn(EUx∩A, EUx∩A0)

shows that there exists a unique Thom class for the bundle over
Ux ∪A, which contradicts the maximality of A.

Part (b): If the bundle is orientable over the integers, then Hn(E,E0;R) =
Hn(E,E0;Z)⊗R shows that it is orientable with any coefficients.

Part (c1): Geometric orientability implies local orientability over the inte-
gers: For each set U in an open cover of B, the maps

φ∗U : Hn(EU , EU0)→ H0(U)⊗Hn(Rn, Rn0 )

are isomorphisms. Choose µU ∈ Hn(EU , EU0) which map to the
preferred generator 1⊗ en ∈ H0(U)⊗Hn(Rn, Rn0 ). Geometric ori-
entability implies that this is a coherent choice of generators.

Part (c2): Orientability over the integers implies geometric orientability.
For each connected open set U choose the maps ψU : U ×Rn → EU
so that ψ∗U : Hn(E,E0)→ H0(U)⊗Hn(Rn, Rn0 ) sends the restric-
tion of the Thom class to the preferred generator. �
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Remark. It is clear that all vector bundles are orientable with mod 2
coefficients. It is also clear that complex n-plane bundles are integrably
orientable when regarded as real 2n-plane bundles since elements of the
complex general linear group all have positive determinant.

Definition 12.15.6. Let ξ be a real n-plane bundle which is orientable
with R coefficients, with maps π : E → B and j : E → (E,E0). The Euler
class χξ ∈ Hn(B;R) is the unique class related to the Thom class by

π∗χξ = j∗µξ.

Suppose that ξ1 and ξ2 are real vector bundles of respective dimensions
m and n. Then the product bundle ξ1 × ξ2 is the bundle with dimension
m+ n and with product total space and product base space, that is,

E1 × E2 → B1 ×B2.

If B1 = B2, the Whitney sum ξ1 ⊕ ξ2 is the bundle with dimension m+ n
which is the pullback of the product bundle over the diagonal

ξ1 ⊕ ξ2 = ∆∗(ξ1 × ξ2), E1 ⊕ E2 → B.

Since

(Rm+n, Rm+n
0 ) = (Rn, Rn0 )× (Rm, Rm0 )

(E1 × E2, (E1 × E2)0) = (E1, E10)× (E2, E20)

it is clear that the product bundle ξ1 × ξ2 is orientable if ξ1 and ξ2 are and
that it has Thom class

µξ1×ξ2 = µξ1 × µξ2 ∈ Hm+n(E1 × E2, (E1 × E2)0).

The Euler class is given by the product formula

χξ1×ξ2 = χξ1 × χξ2 ∈ Hm+n(B1 ×B2).

Similarly, the Whitney sum of two orientable bundles is orientable and has
Thom class

µξ1⊕ξ2 = ∆∗(µξ1 × µξ2) = µξ1 ∪ µξ2 ∈ Hm+n(E1 ⊕ E2, (E1 ⊕ E2)0).

The Euler class is given by the product formula

χξ1⊕ξ2 = χξ1 ∪ χξ2 ∈ Hm+n(B).

The Euler class of an orientable bundle can also be defined in terms of the
transgression in the cohomology Serre spectral sequence.

The cohomology exact sequence

· · · → Hi(E,E0)→ Hi(E)→ Hi(E0)
δ−→ Hi+1(E,E0)→ · · ·
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of the pair (E,E0) transforms via the Thom isomorphism ( ) ∪ µ :
Hi−n(E)→ Hi(E,E0) into the exact sequence

· · · → Hi−n(E)
( )∪µ−−−→ Hi(E)→ Hi(E0)

δ−→ Hi−n+1E → · · · .

The isomorphism π∗ : H∗B
'−→ H∗E transforms the exact sequence into the

exact Gysin sequence

· · · → Hi−n(B)
( )∪χξ−−−−→ Hi(B)

π∗−→ Hi(E0)
δ−→ Hi−n+1B → · · · .

Hence, the Euler class χξ is a generator of the kernel of the map Hn(B)
π∗−→

Hn(E0). But, up to a unit multiple, this is clearly the transgression of the
preferred generator in the cohomology of the fibre of the fibration sequence

Rn0 → E0
π−→ B.

Proposition 12.15.7. If ξ is an orientable bundle, then, up to a unit
multiple, the transgression in the cohomology Serre spectral sequence of the
fibration Rn0 → E0

π−→ B is given by the Euler class,

τen−1 = χξ.

Exercises

(1) If ξ and ρ are n-plane bundles, a bundle map f = (f, f) :
(E(ξ), B(ξ))→ (E(ρ), B(ρ)) is a commutative diagram of maps

E(ξ)
f−→ E(ρ)

↓ ↓

B(ξ)
f
−→ B(ρ)

where f restricts to a linear isomorphism on each fibre. Show that ξ is
isomorphic to the pullback bundle f ∗ρ.

(2) If the bundles are orientable and the base B(ξ) is connected, then show
that f either preserves orientation on all fibres or reverses orientation
on all fibres.

(3) If the map in Exercise 1 is a bundle map of complex n-plane bundles,
then show that it preserves orientation on all fibres.

(4) If the map in Exercise 1 preserves orientation on all fibres, then show
that the Euler class is natural in the sense that f ∗χρ = χξ. If it reverses
orientation on all fibres, then show that f ∗χρ = −χξ.
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(5) If E → B is an orientable vector bundle of dimension n, then the map
π∗ : HiB → HiE0 is an isomorphism for i < n− 1 and a monomor-
phism for i = n− 1.

(6) Let ξ be a bundle over B and let B2
f−→ B1

g,h−−→ B be maps. Show that

(a) There is an isomorphism of pullback bundles f ∗(g∗ξ) ' (gf)∗ξ.

(b) If g and h are homotopic, there is a bundle isomorphism g∗ξ ' h∗ξ.
(Hint: You may do this the easy way by using classification.)

(c) If g is null homotopic, then g∗ξ is isomorphic to a trivial (product)
bundle.

12.16 Grassmann models for classifying spaces

It is convenient to introduce the classical Grassmann models for the clas-
sifying spaces of the orthogonal and unitary groups.

Let Gk(Rn+k) denote the set of real k-planes V through the origin in Rn+k.
Every such k-plane V and its orthogonal complement V ⊥ are spanned by
orthonormal bases B and C, the assignment (B, C) 7→ V defines a surjective
map

π : O(n+ k)→ Gk(Rn+k)

and we give the so-called Grassmann manifold Gk(Rn+k) the quotient
topology. There is a homeomorphism

O(n+ k)/O(k)×O(n)
'−→ Gk(Rn+k)

Similarly, let Vk(Rn+k) denote the set of orthonormal k-frames in Rn+k

and topologize it via the quotient map

O(n+ k)→ Vk(Rn+k)

so that there is a homeomorphism

O(n+ k)/1k ×O(n)
'−→ Vk(Rn+k).

The frame bundle π : Vk(Rn+k)→ Gk(Rn+k) is a principal bundle with
fibre O(k).

The universal O(k) bundle π : V Rk → GRk is gotten by letting n go to infini-
tity. That is,

V Rk = lim
n→∞

Vk(Rn+k), GRk = lim
n→∞

Gk(Rn+k).
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Since Vk(Rn+k) is n-connected, it follows that all the homotopy groups of
the limit V Rk are zero. Hence, according to Steenrod [125], it is a universal
bundle for all principal O(k) bundles where the base is a CW complex.

Remark. In fact, it is a universal bundle for all principal bundles over a
paracompact base space. This follows from a result of Milnor and Stasheff
[91]. See the remark below.

Using the correspondence between frame bundles and vector bundles, we
see that the so-called canonical k-plane bundle γk is a universal vector
bundle. In detail, this vector bundle has the total space

ERk = E(γk) = {(V, v) |V ∈ BRk , v ∈ V }

and projection map

π : E(γk)→ BRk , π(V, v) = V.

Remark. In Milnor and Stasheff [91], it is verified that this vector bun-
dle has a paracompact base and is a universal vector bundle for all vector
bundles over paracompact bases. Hence, the corresponding frame bundle
V Rk is a universal principal O(k) bundle for all principle bundles over para-
compact base spaces.

Let

G̃Rk−1 = {(V, v) |V ∈ GRk , 0 6= v ∈ V }

and define a canonical (k − 1)-plane bundle γ̃k−1 over G̃Rk by

E(γ̃k−1) = Ẽk−1 = {(V, v, w) | (V, v) ∈ G̃Rk−1,

w ∈ v⊥ = {w ∈ V | 〈w, v〉 = 0}

with the obvious projection map.

Recall that bundle maps

f = (f, f) : (E(ξ), B(ξ))→ (E(ρ), B(ρ))

are defined to be vector space isomorphisms on each vector space fibre so
that f ∗ρ ' ξ.

Since the vectors v span a one-dimensional trivial bundle ε over G̃Rk−1, we
have a bundle map of k-plane bundles

γ̃k−1 ⊕ ε→ γk, (V, v, w, tv) 7→ (V,w + tv)

which covers the obvious map

π : G̃Rk−1 → GRk , (V, v) 7→ V.
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We also have a bundle map of (k − 1)-plane bundles

γ̃k−1 → γk−1, (V, v, w) 7→ (v⊥, w)

which covers the obvious map

τ : G̃Rk−1 → GRk−1, (V, v) 7→ v⊥.

In the diagram below, the horizontal and vertical rows are bundle sequences

R∞0
↓

Rk0 → G̃Rk−1
π−→ GRk

↓ τ
GRk−1

where the fibres are punctured Euclidean spaces.

Since R∞0 is contractible, the map τ is a homotopy equivalence, and up to
homotopy equivalence, the map π produces a bundle sequence

Rn0 → GRk−1 → GRk .

Or, in the language of classifying spaces, up to homotopy equivalence, we
have a commutative diagram of bundle sequences

O(k) → EO(k) → BO(k)
↓ ↓ ↓=

Sk−1 → BO(k − 1) → BO(k)
.

The first vertical map selects the last element of a k-frame, the second
vertical map uses the last element of a k-frame to determine an orthogonal
complement in the vector space spanned by the frame, the third vertical
map is the identity.

Of course, we could have replaced the real numbers R with the complex
numbers C and repeated all of the above, using Hermitian metrics, com-
plex orthonormal frames, the unitary groups, and ending up with a bundle
sequence

Ck0 → G̃Ck−1 → GCk

and, up to homotopy equivalence, a commutative diagram of bundle
sequences

U(k) → EU(k) → BU(k)
↓ ↓ ↓=

S2k−1 → BU(k − 1) → BU(k)
.

Exercise
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(1) (a) Show that the map G̃Rk−1 → GRk can be covered by a map from a
(k − 1)-frame bundle to a k-frame bundle which is equivariant with
respect to the inclusion O(k − 1)→ O(k).

(b) Show that the map G̃Rk−1 → GRk−1 can be covered by a map from a
(k − 1)-frame bundle to a (k − 1) frame bundle.

(c) Show that there is a map GRk−1 → GRk which can be covered by a
map of universal frame bundles which is equivariant with respect
to the inclusion O(k − 1)→ O(k).

(d) Conclude that the above map BO(k − 1)→ BO(k) is the map
induced by the inclusion of topological groups.

12.17 Homology and cohomology of classifying spaces

Since the homology of a unitary group is an exterior algebra on generators
of odd degree, it follows directly from the homology version of the Borel
transgression theorem that:

Proposition 12.7.1. With any coefficients

HBU(n) = Γ(σQHU(n))

as a coalgebra.

But we prefer the cohomology version.

Proposition 12.7.2. With any coefficients

H∗(BU(n)) = H∗(GCn ) = P (c1, . . . , cn) =

a polynomial algebra where the generators ci have dimension 2i and cn is
the Euler class of the universal complex n-plane bundle.

The classes ci = ci(γn) are called the universal Chern classes of the univer-
sal complex n-plane bundle γn over BU(n) = GCn .

Included in the Borel transgression theorem is that the statement that
the generators ci are the transgressions of the generators of the module of
primitives

PH∗U(n) = 〈e1, e2, . . . , en〉, deg(ei) = 2i− 1

There is a map of bundle sequences

U(n) → V Cn → GCn
↓ ↓ ↓
Cn0 → G̃Cn−1 → GCn
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where the left-hand map sends the generator of the cohomology of the
punctured complex n-plane to the primitive generator en. The naturality
of the transgression and Proposition 12.15.7 show that the transgression
τen = cn is the Euler class χ of the universal complex n-plane bundle.

Furthermore, Proposition 12.15.7 shows that the Chern class cn = cn(γn)
maps to zero via

H∗GCn → H∗G̃Cn−1.

Since the canonical (n− 1)-plane bundle γ̃k−1 is a universal vector bundle,
the associated (n− 1)-frame bundle FE(γ̃k−1) = Ṽ Cn−1 is a universal (n−
1)-frame bundle.

The map of bundle sequences

U(n− 1) → Ṽ Cn−1 → G̃Cn−1

↓ ↓ ↓
U(n) → V Cn → GCn

and the naturality of the transgression shows that, for all i < n, the Chern
class ci = ci(γn) maps to ci = ci(γ̃n−1) via

H∗GCn → H∗G̃Cn−1.

�

The computation of the cohomology ring of BO(n) requires mod 2 coeffi-
cients and slightly more care. But the result is similar.

Proposition 12.17.3. With mod 2 coefficients

H∗(BO(n)) = H∗(GRn ) = P (w1, . . . , wn) =

a polynomial algebra where the generators wi have dimension i and, if n >
1, wn is the mod 2 Euler class of the universal real n-plane bundle.

The classes wi = wi(γn) are called the universal Stiefel–Whitney classes of
the universal real n-plane bundle γn over BO(n) = GRn .

We prove the result by induction on n. The case n = 1 is simply the coho-
mology of the infinite real projective space,

H∗BO(1) = H∗(GR1 ) = H∗RP∞ = P (w1).

Assume that we know the result for n− 1. Consider the map O(n− 1)→
O(n) and the corresponding map of cohomology Eilenberg–Moore spectral
sequences. At the E2 level we have the surjective map of algebras

P (w1, . . . , wn)→ P (w1, . . . , wn−1),
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where the wi are the transgressions of the primitive generators of the coho-
mology of the groups. We know that the generators wi of bidegree (1, i− 1)
survive to E∞ in the range. Since the differentials dr go from (1, i− 1) to
(1 + r, i− r), the differentials on wi for i < n cannot involve wn and must
be zero in the domain also. In the domain, the differentials on wn can be
nonzero only if some polynomial in the wi for i < n is annihilated. That
cannot happen since these wi generate a free commutative algebra in the
range. Hence, all of the generators w1, . . . , wn are infinite cycles in the
domain. Thus, E2 = E∞ = P (w1, . . . , wn) in the domain. Lifting up the
wn to H∗BO(n) shows that H∗BO(n) = P (w1, . . . , wn).

In order to ensure that wn goes to zero in H∗BO(n− 1), it may have to
be adjusted by the addition of a polynomial in the lower degree Stiefel–
Whitney classes. But this being done, Proposition 12.15.7 says that wn
must be the mod 2 Euler class of the universal n-plane bundle. �

Exercises

(1) Use the Gysin sequences of the sphere bundles

Sn−1 → BO(n− 1)→ BO(n)

and

S2n−1 → BU(n− 1)→ BU(n)

to give inductive proofs of the computations in Propositions 12.17.2
and 12.17.3. Hint: You may assume that wn 6= 0 ∈ H∗(B0(n);Z/2Z).
Use the inductive hypotheses that

0→ HiB0(n)
( )∪wn−−−−→ Hi+nBO(n)→ Hi+nBO(n− 1)→ 0

is exact. Get a similar inductive hypothesis for the unitary groups
without assuming anything about cn.

12.18 Axioms for Stiefel–Whitney and Chern classes

We define Stiefel–Whitney classes for all real vector bundles by means of
the computation of the mod 2 cohomology ring of the classifying spaces
GRn .

Definition 12.18.1. If ξ is a real n-plane bundle with a classifying
map f : B → GRn such that f ∗γn ' ξ, the Stiefel–Whitney classes wi(ξ) ∈
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Hi(B;Z/2Z) are

wi(ξ) =


1 i = 0

f ∗wi(γn) 1 ≤ i ≤ n
0 i > n.

These Stiefel–Whitney classes satisfy the following axioms.

Axioms for Stiefel–Whitney classes 12.18.2.

(a) Dimension axiom: If dimension ξ equals n, then w0(ξ) = 1 and
wi(ξ) = 0 for i > n.

(b) Naturality under bundle maps: If ξ → ρ is a bundle map of n-plane
bundles covering a map f : B(ξ)→ B(ρ), then f ∗wi(ρ) = wi(ξ) for
all i ≥ 0.

(c) Stability: If ε and ξ are bundles over the same base space B and ε
is a trivial (product) bundle, then wi(ξ ⊕ ε) = wi(ξ) for all i ≥ 0.

(d) Nontriviality: w1(γ1) is a generator of H1(RP∞;Z/2Z).

(e) Whitney product formula: If η and ξ are bundles over bases Bξ and
Bρ, then

wk(η × ξ) =
∑
i+j=k

wi(η)× wj(ξ) ∈ H∗(Bξ ×Bρ;Z/2Z).

Proof: The dimension axiom, the naturality axiom, and the nontriviality
axiom are true by definition.

In order to check the stability axiom, it is sufficient to consider the case
where ε is a trivial line bundle and ξ is a bundle of dimension n− 1. Con-
sider the diagram

G̃Rn−1
h−→ GRn

g ↗ ↓ k
B

f−→ GRn−1

where k and h are the natural maps and f ∗γn−1 ' ξ.

Since γ̃n−1 is a universal (n− 1)-plane bundle, there is a map g : B → G̃Rn−1

such that g∗γ̃n−1 ' ξ. Since k∗γn−1 ' γ̃n−1, it follows that k · g ∼ f.

Since h∗γn ' γ̃n−1 ⊕ ε, it follows that g∗h∗γn ' ξ ⊕ ε and hence

wi(ξ ⊕ ε) = g∗h∗wi(γn) = g∗wi(γ̃n−1)

= g∗k∗wi(γn−1) = f ∗wi(γn−1) = wi(ξ).
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We now verify the Whitney product formula. Since γm × γn is an m+ n-
plane bundle over GRm ×GRn , it is classified by a map φm,n : GRm ×GRn →
GRm+n, that is,

φ∗m,nγm+n ' γm × γn.

Since Stiefel–Whitney classes are natural with respect to maps, the general
Whitney product formula is equivalent to the universal product formula

φ∗m,nwk(γm+n) =
∑
i+j=k

wi(γm)× wj(γn).

The mod 2 cohomology ring H∗(GRm ×GRn ) = H∗(GRm)⊗H∗(GRn ) is the
polynomial ring freely generated by the Stiefel–Whitney classes

w1(γm), . . . , wm(γm), w1(γn), . . . , wn(γn).

Hence, ψ∗m,nwk(γm+n) must be equal to a polynomial in these classes.

We claim that this polynomial is

φ∗m,nwk(γm+n) =
∑
i+j=k

wi(γm)wi(γn).

Assume that this formula is true for all m′ ≤ m and n′ ≤ m with m′ + n′ <
m+ n and hence that the Whitney product formula is true for all bundles
of these dimensions.

Replacing γm by ε⊕ γm−1 and γm+n by ε⊕ γm+n+1 has the effect of set-
ting wm(γm) = 0 and wm+n(γm+n) = 0 and leaving all the other Stiefel–
Whitney classes unchanged. Hence, our inductive hypotheses shows that
the formula is true modulo the ideal generated by wm(γm).

Similarly, the formula is true modulo the ideal generated by wn(γn). Since
we are in a unique factorization domain, the formula is true modulo the
ideal generated by the product wm(γm)wn(γn). Thus the formula is true
for all k < m+ n and

φ∗m,nwm+n(γm+n) = wm(γm)wn(γn)

modulo the ideal generated by wm(γm)wn(γn). But this is the top Stiefel–
Whitney class and is therefore equal to the mod 2 Euler class. The product
formula for mod 2 Euler classes says that this formula is exactly true. �

Since the Whitney sum bundle ξ ⊕ ρ is the pullback of the product bundle
via the diagonal ∆∗(ξ × ρ), we can also write the Whitney product formula
in cup product form:
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Whitney product formula 12.18.2.

wk(ξ ⊕ ρ) =
∑
i+j=k

wi(ξ) ∪ wj(ρ).

If ξ is any complex n-plane bundle over B with classifying map f : B → GCn ,
that is, there is an isomorphism with the pullback of the universal complex
vector bundle, f ∗γn ' ξ, then the Chern classes can be defined in a similar
fashion f ∗ci(γi) = ci(ξ) and the obvious analogs of Definition 12.18.1 and
Axioms 12.18.2 can be verified by essentially the same proofs.

12.19 Applications of Stiefel–Whitney classes

Let ξ be a real vector bundle over a base space B. The total Stiefel–Whitney
class of ξ is the formal sum

w(ξ) = 1 + w1(ξ) + w2(ξ) + · · ·+ wk(ξ) + · · ·

in the mod 2 cohomology ring

HΠ(B) = H0B ⊕H1B ⊕H2B ⊕ · · · ⊕HkB ⊕ · · · .

Since the leading coefficient is 1, w(ξ) is a unit in this ring with multiplica-
tive inverse

w(ξ) = 1 + w1(ξ) + w2(ξ) + · · ·+ wk(ξ) + · · · .

The terms wk(ξ) are uniquely determined by the relations

wk(ξ) + wk−1(ξ)w1(ξ) + wk−2(ξ)w2(ξ) + · · ·+ w1(ξ)wk−1(ξ) + wk(ξ) = 0.

In terms of the total Stiefel–Whitney class, the Whitney product formula
for Whitney sums becomes

w(ξ ⊕ η) = w(ξ)w(η).

Suppose that M is a differentiable manifold of dimension n and that there
is an immersion f : M → Rn+k into some Euclidean space. We will denote
the n-dimensional tangent bundle of M by τm and the k-dimensional nor-
mal bundle to the immersion by νM . Since τM ⊕ νM ' εn+k is an (n+ k)-
dimensional trivial bundle, we have

Whitney duality theorem 12.19.1. The total Stiefel–Whitney class of
the normal bundle is the multiplicative inverse of the total Stiefel–Whitney
class of the tangent bundle,

w(νM ) = w(τM ) = w−1(τM ).
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Hence, in order to study immersions of manifolds, we need to identify the
tangent bundle.

Let γ1,n be the canonical line bundle over the real projective space RPn.
The total space is

E(γ1,n) = {(L, v) |L ∈ RPn is a line through the origin in Rn+1 v ∈ L}.

Since this is the pullback (= restriction) of the universal line bundle γ1

over RP∞, we have the total Stiefel–Whitney class

w(γ1,n) = 1 + u

where u is the generator of the mod 2 cohomology group H1(RPn).

Proposition 12.9.2. If ε1 is a trivial line bundle, then

τRPn ⊕ ε1 ' γ1,n ⊕ · · · ⊕ γ1,n = (n+ 1)γ1,n

is a Whitney sum of n+ 1 copies of the canonical line bundle.

Proof: The total space of the canonical line bundle has two descriptions as
identification spaces

E(γ1,n) =

{
{(x, tx) |x ∈ Sn, (x, tx)∼(−x, tx)} or, sending (x, tx) 7→ (x, t),

{(x, t) |x ∈ Sn, (x, t) ∼ (−x,−t)}.

The total space of the tangent bundle is the identification space

E(τRPn) = {(x, v) |x ∈ Sn, v ∈ Rn+1, v ⊥ x, (x, v) ∼ (−x,−v)}.

Hence, the total space

E(τRPn ⊕ ε1) = {(x, v, t) |x ∈ Sn, v ∈ Rn+1, v ⊥ x,

(x, v, t) ∼ (−x,−v, t)} = {(x, v, tx) |x ∈ Sn, v ∈ Rn+1, v ⊥ x,

(x, v, tx) ∼ (−x,−v,−tx)} = {(x,w) |x ∈ Sn, w ∈ Rn+1,

(x,w) ∼ (−x,−w)}.

Writing w = t1e1 + t2e2 + · · ·+ tn+1en+1 shows that τRPn ⊕ ε1 ' (n+
1)γ1,n. �

The Whitney product formula shows

Corollary 12.9.3. The total Stiefel–Whitney class of the tangent bundle
of the n-dimensional real projective space is

w(τRPn) = (1 + u)n+1 = 1 + (n+ 1)u+

(
n+ 1

2

)
u2 + · · ·+

(
n+ 1

n

)
un.

We can prove the following nonimmersion theorem.
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Proposition 12.19.4. If RPn immerses in the Euclidean space Rn+k and
n = 2r is a power of 2, then k ≥ n− 1.

Proof: Since

w(τRPn) = (1 + u)n+1 = (1 + u)2r (1 + u) = (1 + u2r )(1 + u) = 1 + u+ u2r

mod 2, it follows that the total Stiefel–Whitney class of the normal bundle
is

w(νRPN ) = w−1(τRPn)

= 1 + (u+ u2r ) + (u+ u2r )2 + · · · = 1 + u+ u2 + · · ·+ u2r−1.

Hence, the dimension of the normal bundle is ≥ n− 1. �

Remark. In fact the Whitney immersion theorem says that every n-
dimensional manifold can be immersed in the Euclidean space R2n−1 if
n > 1. Hence, in this one case, the above nonimmersion result is the best
possible.

We note that the total Stiefel–Whitney class w(τRPn) = (1 + u)n+1 = 1 if
and only if n+ 1 = 2r is a power of 2. Hence

Proposition 12.19.5. If the projective space RPn is parallelizable, that
is, has a trivial tangent bundle, then n = 2r − 1 must be one less than a
power of 2.

This is related to the nonexistence of real divison algebras by the following
result of Stiefel.

Proposition 12.19.6. If there exists a bilinear product operation

Rn ×Rn → Rn, (x, y) 7→ x · y

with no zero divisors, then the projective space RPn−1 is parallelizable,
hence, n must be a power of 2.

Proof: Let e1, . . . , en be a fixed basis of Rn.Given an x the equation a · e1 =
x can be solved uniquely for a = f(x) where f(x) is a one to one onto linear
function of x. Suppose that x and hence a are nonzero.

The elements a · e1, . . . , a · e2, . . . , a · en are linearly independent and hence
so are the elements x, x2, . . . , xn where xi is the projection of a · ei on the
orthogonal complement of x. Since changing the sign of x changes the sign
of the xi, the vectors x2, . . . , xn provide a framing of the tangent bundle of
RPn−1. �

Remark. The real numbers, the complex numbers, the quaternions, and
the Cayley numbers provide examples of real division algebras in the only
dimensions 1,2,4, and 8 where they actually exist. [2, 74, 12]
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homotopy pullbacks

several variables, 409

balanced, 410
collapse, 409

loop multiplication, 418
product splitting, 409

homotopy theoretic fibres, 100

Hopf algebra kernels, 426
Hopf algebras, 251

Borel, 258

Hopf-Borel, 258
primitive-indecomposable exact

sequence, 251, 438

when primitives are indecomposable,
318

Hopf invariant one, 95, 294

equivalent forms, 304
Hurewicz homomorphism, 4, 26

factored, 315

Hurewicz isomorphism theorem, 28, 71

immersions, 564
injective class

proper

comodules, 364
differential comodules, 365

split, 363

injective classes, 325, 362
injective resolutions, 360

existence, 360

uniqueness up to chain homotopy, 361

James construction, 112, 117

James fibrations, 124, 141, 145, 149
James-Hopf invariants, 147

combinatorial definition, 148
decomposition definition, 150
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Künneth formula, 406

Künneth spectral sequence, 521
Künneth theorem, 515, 538, 539

algebraic, 519

geometric, 520, 535

Lie algebras, 7

differential graded, 8
free, 7

homology

free differential graded, 9
kernels, 7

limits and derived functors, 56
localization, 37

abelian groups, 48

classical localization of spaces, 50
fracture lemmas, 73

localization of connected covers, 80

loop construction on a differential
coalgebra, 338

loop structures

completions of spheres, 93
loops on the fibre of the pinch map

Bockstein spectral sequence, 477

mod p homology, 476

mapping cylinder, 528
Mayer-Vietoris homotopy sequence, 44

Miller’s theorem, 82

Milnor-Moore, 5
mod 2 Euler class, 554

modules, 349

differential, 349
free, 350

indecomposables, 349, 355

projective, 350
projective and bounded below implies

free, 351

Moore comparison theorem, 527

Nakayama’s lemma, 277, 350

dual, 358
normal bundles, 564

normalized chains, 393
numerable bundles, 522

opposite algebras, 530

Peterson-Stein formula, 104

Poincaré-Birkhoff-Witt, 260, 266
basis free, 274

product decomposition theorems, 6

Cohen-Moore-Neisendorfer, 8, 10

geometric realization, 295, 297, 300,
452

fibres of power maps, 299

Hilton–Milnor, 2
Hilton-Milnor, 8, 112, 119, 290, 300

homology of the loop space, 484
lift to loop space, 493

loops on even dimensional Moore

spaces, 293, 296
loops on the fibre of the pinch map, 486

Serre, 2, 142, 292–294

universal enveloping algebras, 6
projective class, 510

projective classes, 325

projective resolutions
existence, 351

uniqueness up to chain homotopy, 351

proper injective comodule, 366
proper injective resolutions

functorial, 367
proper monomorphism, 366

proper projective class, 512

real projective space, 565

canonical line bundle, 565

immersions in Euclidean space, 565
parallelizability, 566

tangent bundle, 565

reflection via adjoint functors, 363, 513
relative epimorphisms, 510

relative injective resolutions, 367

existence, 367
uniqueness up to chain homotopy, 367

relative injectives, 364
relative monomorphisms, 364

relative projective resolutions, 511

existence, 511
uniqueness up to chain homotopy, 511

relative projectives, 510

relative short exact sequences, 366, 511

Samelson products, 4, 164

Bockstein derivations, 196
external, 164, 186

Lie identities, 191

failure of Jacobi identity, 195
internal, 164, 193

Lie identities, 194
Jacobi identity, 5
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over loops on an H-space, 218, 495

universal models, 218
over loops on H-spaces, 165

relative, 165, 205, 209, 495

universal models, 209
vanishing, 174

Serre filtration, 343, 397, 525

Serre’s conjecture, 84
simplicial sets, 391

skeletal filtration, 396, 397

smash products of Moore spaces, 164
existence, 172

uniqueness, 178
special orthogonal groups

homology away from 2, 448

mod 2 generating complexes, 447
mod 2 homology, 447

special unitary groups

generating complexes, 442
homology, 443

homology of loop space, 446

spectral systems, 230
Spin(n)

homology of loop space away from 2,

450
standard proper embedding, 366

Stiefel-Whitney classes, 559
axioms, 562

definition, 560, 561

supplemented coalgebras, 329
coderivations, 332

differential, 330

primitives, 330
reduced coalgebra filtration, 331

retraction onto primitives, 332

suspension, 546

tapered resolutions, 376

tensor algebras
generators of subalgebras, 289
homological characterization, 283

tensor products of graded modules, 353
right exactness, 353

Toda fibrations, 141, 155, 161
Toda-Hopf invariants, 141, 157

torsion in H-spaces, 250
total complexes, 376, 515
total Stiefel-Whitney class, 564
totally nonhomologous to zero, 424

short exact sequence of graded Lie
algebras, 427

transgression, 546

geometric suspension, 546

twisted tensor products, 324, 341, 386
acyclic, 346

homology of fibre equals differential

Cotor, 427
universal acyclic, 346, 347

twisting morphisms, 341

universal associative algebras, 334

universal associative coalgebra, 335
universal bundles, 522

universal twisting morphisms, 344

universal property, 345

vector bundles, 551, 557

orientable, 552

Whitehead products, 175

vanishing, 175
Whitney duality theorem, 564

Whitney product formula, 563

Zabrodsky mixing, 90

Zeeman comparison theorem, 52, 343


