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Preface

Systems health management (SHM) has emerged over recent years as significant
technologies that are making an impact on both military and commercial mainte-
nance practices. This discipline links studies of failure mechanisms to system
lifecycle management and is often referred to as prognostics and health manage-
ment (PHM), or in transportation applications—vehicle health management
(VHM). Technical approaches to building models in SHM/PHM can be categorized
broadly into data-driven approach, model-based approach, and hybrid approach.
The data-driven approach for SHM/PHM is also explained in condition-based
maintenance (CBM). CBM can be applied as a technical architecture and engi-
neering strategy of data-driven PHM. In this book, data-driven PHM/CBM is
introduced in details, which mainly emphasis functions of condition monitoring,
fault diagnosis, and prognosis.

Condition monitoring, fault diagnosis, and prognosis of engineering systems
have received considerable attention in recent years and are increasingly becoming
important in industry because of the need to increase reliability and decrease
possible loss of production due to faulty systems. Early fault detection, diagnosis,
and prognosis can increase system availability and performance, reduce conse-
quential damage, prolong machine life, and reduce spare parts inventories and
breakdown maintenance. With the development of artificial intelligence techniques,
many intelligent systems have been employed to assist the maintenance manage-
ment task to correctly interpret the fault data.

This book aims to provide latest research findings and advanced techniques for
the fault diagnosis and prognosis area of engineering systems. It introduces the
developments and applications of intelligent diagnosis and prognosis techniques in
recent years.

This book details the technique for intelligent fault diagnosis and prognosis that
implements data-driven approach. Data-driven methodology consists of data
acquisition, feature extraction, feature selection, classification, prognosis and data
fusion algorithms, etc. for decision making. Each step of data-driven strategy is
reviewed including examples. It provides a foundation in the data acquisition,
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analysis, feature extraction and selection, classification of equipment faults and
prognosis through text discussion, worked examples, applications, and use of
modern computer tools. Most chapters include with examples showing how to use
these tools to solve situations not easily amenable to analytic solutions. This book
provides practice in identifying, formulating, and solving fault diagnosis and
prognosis problems. An extensive set of worked examples offers the opportunity to
apply concepts discussed in the book to analyze and solve a variety of problems.

The organization and basic subject matter for this book parallel a 17 intensive
course entitled “Engineering Systems Health Management” offered by Dr. Gang
Niu at Tongji University.

Shanghai, China Gang Niu
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Chapter 1
Background of Systems Health
Management

1.1 Introduction

As the global competition intensifies in the manufacturing sector, the players are
forced to compute on several measures, such as costs, quality, on-time delivery, and
time to market. This new environment has forced managers and engineers to
optimize all systems involved in their organizations. The manufacturing facilities
hence become very important engineering assets. The capital invested in an orga-
nization’s assets requires maximum benefit to be obtained from them throughout
their life cycle—an asset out of use is a direct cost to the bottom line. Thus, assets
must be managed in order to minimize downtime and sweat the assets for maximum
usage. To effectively manage the assets requires a full understanding of the asset
from an engineering point of view:

• Configuration control: It is essential to know the build structure of an asset and
the configuration standard of the constituent parts, to ensure that the overall
configuration is maintained when replacement of a part becomes necessary.

• Maintenance management: Where an asset has predictable wear characteristics,
or is subject to degradation of performance with time, the life of the asset can be
prolonged by anticipating probable failure and conducting maintenance tasks to
avoid the failure. It is also important to record the occurrences of random failure
to assist in identification of recurring problems.

• Component living: If a component has a known life, this needs to be identified
within any software tool that may be employed by the asset manager. Life usage
can then be recorded against the component as it is operated, which in turn
enables the replacement or reconditioning of the component to be planned into
engineering activities for the component or its parent platform.

Maintenance management plays a key role in achieving organizational goals and
objectives. The term maintenance is normally used to cover a broad range of
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planned or unplanned activities for preserving an asset in its original condition.
Maintenance generally consists of the following (Vanier 2001):

• Inspections are carried out periodically to monitor and record how systems are
performing;

• Preventive maintenance ensures that systems or components continue to per-
form their intended functions throughout their service life;

• Repairs are required when defects occur and unplanned intervention is required;
• Rehabilitation replaces one major component of a system when the system is

reaching the end of its service life of the system.

An efficient and effective maintenance becomes crucial for reducing costs,
ensuring on-time product deliveries, minimizing equipment downtime, improving
quality, increasing productivity, and providing reliable equipment that is safe and
well configured to achieve timely delivery of orders to customers.

Operational reliability of industrial machinery and production systems has a
significant influence on the profitability and competitiveness of industrial compa-
nies. This emphasizes the increasing importance of online condition monitoring,
diagnosis and prognosis of machinery, and production processes and system in
industry (Helle 2006).

Over the past 20 years, maintenance also has greatly changed because of a huge
increase in the number and variety of plants and equipments, which must be
maintained throughout much more complex designs, new maintenance techniques,
and changing views on maintenance organization and responsibilities.

Recently, DiStefano and Covino (2007) studied statistics from the US
Department of Commerce, including their measurement of what they call net stock
of private fixed assets in various industries. This measurement is a close proxy of
replacement asset value (RAV). In 2003, there were $4.9 trillion of physical assets
on the ground in the US industry. They have a proprietary benchmarking system
that measures actual maintenance spends (as a percentage of RAV) in about 10

Utilities, 46

Light
Manufacturing, 45

Mining, 4

Paper, 5

Primary Metals, 6

Refining &
Chemistry, 15

Wholesale 
Trade, 18

Upstream 
O&G, 20

Transportation, 25Fig. 1.1 Annual excess
maintenance spend (in billion
US $) by US industry
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different industries. As it turns out, the average spends is between 5 and 8 %, with
the best performers spending less than 2–3 %. They applied their proprietary
benchmarking system to the US Department of Commerce Statistics and dollarized
the value of elevating fourth, third, and second quartile plants to first quartile in
maintenance spend. The result is shown in Fig. 1.1 and suggests that industry
wastes more than $180 billion in excess maintenance spend annually.

1.2 Maintenance Strategy

In maintenance, there are three basic approaches: corrective maintenance, sched-
uled maintenance, and preventive maintenance. According to the way these basic
approaches are applied, five basic maintenance policies need to be distinguished:
failure-based maintenance, design-out maintenance, use-based maintenance,
condition-based maintenance, and detection-based maintenance. The advantages
and disadvantages of each maintenance policy are well documented by
Waeyenbergh and Pintelon. From a time perspective, the evolution of maintenance
is represented in Table 1.1.

The development of the maintenance concept started after the study of existing
maintenance concepts: reliability-centered maintenance, total productive mainte-
nance, business-centered maintenance, integrated logistic support, and logistic sup-
port analysis. These concepts are often very time-consuming to implement or only
valid for a special class of equipment or a specific industry. Recently, a new gener-
ation of maintenance, e-maintenance, emerges with globalization and fast growth of
the communication technologies, and computer and information technologies.

Table 1.1 Maintenance in a time perspective (Waeyenbergh and Pintelon 2002)

<1950 1950–1975 >1975 2000–

Manpower
(simple)

Mechanization
(complex)

Automation
(more complex)

Globalization (crossing
boundaries)

“Fix it when
it breaks”

“I operate—you
fix” (availability,
longevity, cost)
PM, WO
management

RAM (safety, quality,
environment), CBM,
CM, DOM,
multi-skilling, MMIS
asset management

Optimal
concept + Outsourcing
and ICT

Maintenance
is “a
production
task”

Maintenance is “a
task of the
maintenance
department”

Maintenance is
“(may be) not an isolated
function integration
efforts”

Maintenance is
“external and internal
partnerships”
Maintenance meets
production

“Necessary
evil”

“Technical matter” “Profit contributor” “Partnership”

RAM reliability, available, maintainability; PM preventive maintenance; ICT information and
communication technology; CBM condition-based maintenance; CM condition monitoring; WO
work order
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The concept of e-maintenance refers to a major pillar in modern industries that
supports the success of the integration of production (e-manufacturing) and business
(e-business) (Han and Yang 2006; Muller et al. 2007).

The evolution of maintenance strategies can be summarized from breakdown
maintenance (BM) and preventive maintenance (PM) to predictive maintenance
(PdM). BM is also known as reactive maintenance or corrective maintenance. BM
is essentially the run-it-till-it-breaks mode and is performed when action is taken to
restore the functional capabilities of failed or malfunctioned equipment or systems.
There are no routine maintenance tasks to perform, and equipment is repaired or
replaced only when obvious problems occur. This is a reactive approach to
maintenance because the action is triggered by the unscheduled event of an
equipment failure. Since companies do not incur any maintenance expense until
something breaks, reactive maintenance may appear to be the least expensive
approach. The result is more frequent replacement and higher capital costs. In this
maintenance policy, the maintenance costs are usually higher because downtime
events are often unplanned, more frequent, and longer in duration and also due to
the following reasons:

• The high cost of restoring equipment to an operable condition under crisis
situation,

• The secondary damage and safety/health hazards inflicted by the failure, and
• The penalty associated with lost production.

Reactive maintenance works well if equipment shutdowns do not affect product
quality or revenue generation and if higher repair/replacement costs and a longer
mean time to repair are within an acceptable range.

PM is the approach developed to avoid this kind of waste. PM is also known as
time-based maintenance or periodic preventive maintenance. This assumes that the
estimated failure behavior of the equipment, i.e., the mean time between failures
(MTBF), has statistically or experimentally been known during equipment and
machinery degrading within normal usage. PM takes mainly the form of equipment
overhaul or item replacement. This practice is known as time-directed maintenance
which is performed on a monthly, quarterly, biannual, or annual basis depending on
the type of equipment, performance against specifications, and operating condi-
tions. The reasons for performing PM tasks are to prevent the failure, to detect the
onset of failure, and to discover the hidden failure. Most common type of PM task is
done at hard time intervals regardless of other information that may be available
when the preset time occurs. Also, it requires an intrusion into the equipment,
thereby rendering it out of service until the task is completed. While this approach
can help reduce equipment failure and extend component life, the process can be
labor-intensive, maintenance is performed based on the preset schedule regardless
of the condition of the equipment.

PdM is to monitor the equipment for changes that could be destructive in the
future, but allows you to correct them before the destruction starts or to identify
production equipment needing maintenance attention before product quality is
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reduced or an unplanned shutdown occurs (Thorp 2007). PdM is also known as
on-condition maintenance, condition-based maintenance (CBM), or
condition-directed maintenance. This approach involves monitoring the condition
and operation of equipment to assess whether the equipment will fail during some
future period, and then taking action to avoid the consequences of that failure.
Unlike preventive maintenance, the need here is based on the actual condition of the
asset rather than on some preset schedule. Although PdM require an investment in
order to effectively implement, operate, and maintain them, the actual cost is
substantially lower than the lost production resulting from failure. PdM is designed
to detect the onset of a failure/fault and applied to critical equipment where a failure
would interrupt a continuous process or impact quality. It is an appropriate option
for PM when the following conditions apply:

• Either failure prevention is not feasible, or how it can be achieved is not yet
known, as in cases where the event leading to failure occurs in a predominantly
random manner;

• A measurable parameter which correlates with the onset of fault has been
identified; for example, the vibration level is an indicator of the machine
condition;

• It is possible to identify a value of that parameter when action may be taken
before full fault occurs, such as the setting of warning limits for the vibration.

PdM does not normally involve an intrusion into the equipment, and the actual
preventative action is taken only when it is believed that an incipient fault has been
detected. This strategy works well if maintenance personnel are properly trained
and have the time to perform the necessary maintenance work to address the
potential problem.

Table 1.2 summarizes these different strategies of maintenance which being
commonly practiced in the industry. Table 1.3 shows a survey conducted by
Rockwell Automation and leading maintenance trade publications. Even though
companies ideally want to spend most of their time on predictive maintenance, a
large percentage of their time is being spent on preventive and reactive activities
(Fig. 1.2).

According to the Federal Energy Management Program (FEMP) in USA, a
functional PdM program can provide savings of 8–12 % over a program utilizing

Table 1.2 Types of maintenance strategies

Maintenance strategy Maintenance
approach

Signification

Breakdown
maintenance (BM)

Fix it when broke Large maintenance budget

Preventive maintenance
(PM)

Scheduled
maintenance

Periodic component replacement

Predictive maintenance
(PdM)

Condition-based
monitoring

Maintenance decision based on
equipment condition
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only PM strategies. The FEMP also came up with the following industrial savings
based on the initiation of a functional PdM program (Thorp 2007).

• Return on investment: 10 %,
• Reduction in maintenance costs: 25–30 %,
• Elimination of breakdowns: 70–75 %,
• Reduction in downtime: 35–45 %, and
• Increase in production: 20–25 %.

Figure 1.3 shows the maintenance cost by maintenance strategy which sum-
marized by an Electric Power Research Institute (EPRI) study.

Table 1.3 Percentage of time spent on equipment maintenance activities

Maintenance strategy Plant services Maintenance
technology

Ideal Actual (%) Ideal Actual (%)

Breakdown maintenance (BM) 12 29 12 40

Preventive maintenance (PM) 35 33 44 32

Predictive maintenance (PdM) 18 10 33 15

Shutdown/turnaround 10 11 11 13

Change in maintenance philosophy

F
ai

lu
re

 r
at

e 

Breakdown 
maintenance

- High risk of secondary
failure

- High production downtime
- High costs of spare parts
- Overtime labor
- Safety hazardous

+ Machines are not
“over maintained”

+ No condition monitoring
related costs

Planned maintenance 
Historical maintenance
Calendar-based maintenance

- Machines are repaired when
there are no faults

- Repair often causes more
harm than good

- There are still “unscheduled”
breakdowns

+ Maintenance is performed in
controlled manner

+ Fewer catastrophic failures
+ Greater control over stored

parts and costs
+ Unexpected machinery

failure should be reduced

Condition-based maintenance

- High investment costs
- Additional skills required

+ Unexpected breakdown
is reduced

+ Parts are ordered when needed
+ Maintenance is performed

when convenient
+ Equipment life is extended

Corrective Maintenance
“Run-to-failure maintenance”

Predetermined Maintenance
“Fix it before it breaks”

Predictive Maintenance
“If it isn’t broke, don’t fix it”

Fig. 1.2 Strengths and weaknesses of different maintenance types (Bengtsson et al. 2004)
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In general, maintenance strategy should be a mix of predictive, preventive, and
reactive methods, depending on the desired goal and part of the process being
maintained. In applications where the criticality of the equipment and the impact of
unplanned downtime and quality are high, a maintenance strategy that includes
preventive or predictive components offers numerous advantages. Independent
studies indicate that preventive maintenance has a 5:1 cost advantage over reactive
maintenance.

In practice, the choice of the optimum maintenance strategy is not as simple as
noted above. Not all failures can be detected by monitoring. The economics of the
situation may limit the number of components that can be monitored. There will
also be a number of components and/or machines for which condition monitoring is
not particularly appropriate. In many cases, these three strategies (BM, PM, and
PdM) mentioned above are used simultaneously within an organization. Therefore,
decision makers face such questions as follows (Mechefske and Wang 2003):

• Which strategy should be introduced for a specific type of machine?
• How to justify their decision?

Answering these questions is a difficult task. There are always a variety of
objectives that a company wants to achieve through its maintenance strategy. Most
traditional economic analysis methods are based upon a comparison of the initial
investigation to the estimated cost savings and often focus on easily quantifiable
factors. The majority of the recognized benefits of condition monitoring are con-
sidered to be “intangible” or “non-monetary.” They are hard to quantify and
therefore often ignored in traditional discounted cash flow analysis methods.

The decision elements with respect to maintenance strategy are shown in
Table 1.4 (Pintelon et al. 2006). The first four decision elements in Table 1.4 can be
viewed as the maintenance resources.

RTF PM PdM PCM
Run to Preventive Predictive Proactive Condition
Failure Maintenance Maintenance Monitoring
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Fig. 1.3 Maintenance cost
versus maintenance practices
employed (EPRI)
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They are termed as structural, because decisions made in those areas are gen-
erally assumed to be fixed. For instance, a company outsourcing its entire main-
tenance activities cannot revert immediately to in-house maintenance. The majority
of the maintenance budget is consumed by these structural elements. The last six
infrastructure elements can be viewed as maintenance management elements. These
structural and infrastructure elements are interrelated. For instance, effective uti-
lization of maintenance resources depends upon the decisions taken in the infras-
tructure elements. Over a period of time, decisions must be made in all of these
maintenance strategy elements. The way these elements are managed or utilized can
have a major impact on the maintenance function’s ability to implement and sup-
port the company’s manufacturing and business strategies.

Companies mainly differ in their maintenance strategies by the combination of
decisions taken in these elements. Several operating aspects and business require-
ments influence these decisions. An effective maintenance strategy is one that fits
the needs of the business. Its performance is judged based on certain measurable

Table 1.4 Summary of maintenance strategy decision elements

Structural decision elements

Maintenance capacity Capacity in terms of work force, supervisory, and
management staff. Shift patterns of work force,
temporary hiring of work force

Maintenance facilities Tools, equipment, spares, workforce specialization
(mechanics, electricians, etc.), location of workforce

Maintenance technology Predictive maintenance, or condition monitoring
technology, expert systems, maintenance technology
(intelligent maintenance)

Vertical integration In-house maintenance versus outsourcing and
relationship with suppliers

Infrastructure decision elements

Maintenance organization Organization structure (centralized, decentralized, or
mixed), responsibilities

Maintenance policy and concepts Policies such as corrective, preventive, and predictive
maintenance. Concepts such as total productive
maintenance (TPM) and reliability-centered
maintenance (RCM)

Maintenance planning and control
systems

Maintenance activity planning and scheduling. Control
of spares, costs, etc. Computerized maintenance
management systems (CMMS)

Human resources Recruitment policies, training and development of
workforce, and staff. Culture and management style

Maintenance modifications Maintenance modifications, equipment design
improvements, new equipment installations, and new
machine design support

Maintenance performance
measurement and reward systems

Performance recognition, reporting and reward systems,
overall equipment effectiveness (OEE), and balanced
score card (BSC)
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criteria. Cholasuke et al. (2004) studied the status of maintenance management in
UK manufacturing organizations based on a pilot survey. They categorized the
maintenance effectiveness measures into nine areas based on a literature study.
Most of these measures fall under the structural and infrastructure elements shown
in Table 1.4. The measures constitute the following:

• Policy deployment and organization,
• Human resources management,
• Financial aspects,
• Continuous improvement,
• Contracting out maintenance,
• Maintenance approach,
• Task planning and scheduling,
• Information management,
• Computerized maintenance management systems (CMMSs), and
• Spare parts management.

Maintenance management is an orderly and systematic approach to planning,
organizing, monitoring, and evaluating maintenance activities and their costs. The
maintenance management system is usually designed to optimize the management
of deferred maintenance and capital improvement activities throughout the service.
This can be achieved by using standardized procedures to document and prioritize
the field facility and resources needed and to report accomplishments. Several
activities should be supported by the maintenance management system, which can
be summarized (Piotrowski 2001) as follows:

• Work order generation, work prioritization, and tracking by asset;
• Tracking of scheduled and unscheduled maintenance activities;
• Historical tracking of all work orders generated;
• Storing of all technical documents and reports;
• Generation of real-time reports of ongoing activities;
• Capital and labor cost tracking by component as well as shortest, median, and

longest times to close a work order by component; and
• Complete asset, inventory, equipment, and material records.

Maintenance information systems, such as CMMS and enterprise resource
planning systems (ERP), has been developed for data storage and handling. The
main objectives of a CMMS can be summarized as follows (Wireman 1994):

• Improve maintenance efficiency,
• Reduce maintenance cost,
• Reduce asset downtime by scheduling preventive maintenance,
• Increase the design life of an asset,
• Provide historical records to assist in maintenance planning and budgeting, and
• Provide maintenance reports in a format that is required by the user.

1.2 Maintenance Strategy 9



CMMS is computer-based software program used to control work activities and
resources used as well as to monitor and report work execution. CMMS is tools for
data capture and data analysis. Managing and processing maintenance operations
data constitutes probably the main contribution of current CMMS. CMMS
transform maintenance records with data into proper information for decision
making in maintenance. In order to do so, they need to have a suitable technical
database structure and an efficient work order management system for easy data
input, update and control.

With the rapid development of computer and advanced sensor technologies, data
acquisition facilities and technologies have been more powerful and less expensive,
making data acquisition for condition-based maintenance (CBM) implementation
more affordable and feasible.

CBM and prognostics and health management (PHM) are essential components
of a robust systems health management. The aim of CBM is diagnostic in nature.
Given the current condition, it tries to identify appropriate maintenance actions to
detect a fault condition before it turns into a failure. PHM is predictive in nature,
aiming to determine how long from now will a fault happen in a system given the
current operating conditions (Sreerupa et al. 2012). Both PHM and CBM analyses
determine a set of maintenance actions based on real-time or near real-time
assessment systems health.

1.3 From Maintenance to PHM

The concept and framework of PHM have been developed based on the well-known
maintenance methodologies and diagnostics techniques, such as preventative main-
tenance (PM), reliability-centered maintenance (RCM), and condition-based
maintenance (CBM). The future development of PHM will be mutually inspired
and promoted from various fields besides engineering. The related research topics in
meteorology/climatology, decision science/policy, financial/economic, and other
fields can also be followed to expand the vision of PHM.

CBM consists of data acquisition and data processing (condition monitoring),
resulting in actionable condition information on which maintenance decision
making can be based, thus avoiding unnecessary maintenance tasks. Currently,
more and more research effort has shifted toward prognostics and health manage-
ment which focuses more on incipient failure detection, current health assessment,
and remaining useful life prediction. However, in various maintenance scenarios
with different system complexities and uncertainties, the maintenance strategies
should be different. Figure 1.4 is the maintenance transformation map in which
diverse maintenance strategies are shown with the system complexity and
uncertainty.

CBM can be applied in systems that (1) can be regarded as being deterministic to
some extent, (2) is stationary or static, and (3) for which signal variables that can be
good health indicators can be extracted, despite low dimensionality. If the system is
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a probabilistic system for which the output cannot be easily determined with a
known relationship model and is conditionally dependent upon the input, output
data will not always be repeatable in instances observed at different timings. Hence,
the future behavior cannot be predicted accurately based on the domain knowledge
of the system and the historical observations. In such an uncertainty laden system as
described, RCM is more suitable. RCM focuses on the ability of a system to have
expected reliability in a certain period of time and utilizes statistical tools such as
failure modes and effects criticality analysis (FMECA) to retrieve the information
that can help identify failure modes and possible durations before each of the modes
can happen. Since RCM relies on statistical estimation of the total operation life
expectation, it can reduce unscheduled or unnecessary maintenance if the system is
static and the failure modes are well studied. However, RCM is still prone to large
deviation of the system dynamic and it lacks significant insight into the actual
system performance. If the system uncertainty is more complicated, like in a highly
dynamic system in which the behavior varies over time, robust design should be
considered. In this scenario, resources should be allocated to the design processes,
rather than relying on inspection to ensure quality. As well, the product perfor-
mance, due to robust design being deployed, should have minimal sensitivity to
material, manufacturing, or operation variations.

Along the other axis in Fig. 1.4, if a system has a high level of complexity and a
large number of variables that represent different aspects of the system, such as
vibration, position, velocity, stress, current, environment, and controller parameters,
e-maintenance is preferred as CBM techniques usually deal with low dimension of
data. By using Internet and tether-free communication technologies, e-maintenance
enables a system to achieve near-zero-breakdown performance on a common
platform to integrate information. Moreover, by linking with industrial business
systems, e-maintenance is able to align the maintenance process with the business

Fig. 1.4 Maintenance
transformation map (Lee et al.
2013)
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and operations processes to achieve optimally integrated production and asset
management. But if the system complexity is even higher so that only non-intrusive
approaches can be applied to the system, which means no or only very limited
instrumentation can be applied due to the product package, seal, and the concern
that externally added components will dramatically affect the precision and effi-
ciency of the products, preventive maintenance may be chosen rather than CBM or
e-maintenance which requires systems to be heavily instrumented. Preventive
maintenance is a time-driven maintenance strategy that schedules maintenance for a
machine or component based on the experience of the mean time between failures
(MTBF). This method follows strong assumptions that the machine is working
under deterministic and static conditions, and therefore cannot be applied to system
that operates in dynamic working regimes. Hence, preventive maintenance may
lead to untimely maintenance and non-optimal cost.

PHM can be treated as an evolved form of CBM. CBM techniques can be used
to provide input for the prognostics models in PHM and support the timely,
accurate decision making that prevents downtime and maximizes profit. For its
capability to assess the health status and predict the occurrence of failure and
downtime, PHM is considered to be the foundation, when complemented with other
techniques, for advanced areas including self-maintenance, resilient system, and
engineering immune systems. The disciplines of PHM need to be further developed
and extended to help building these areas.

1.4 Definitions and Terms of Systems Health Management

Both diagnostics and prognostics originally come from the medical field. As
machinery maintenance technology and engineering systems health management
emerged, diagnostics and prognostics gradually permeated all areas of systems
engineering. Nowadays, there are many kinds of professional instruments, such as
sensors, meters, controllers, and computational devices, for conducting fault diag-
nostics. These instruments can be used to acquire and analyze signals from a
machine or process. More and more sophisticated diagnostics methodologies are
available to determine the root causes of component failure. However, diagnostics,
which is conducted when a fault has already occurred, is a reactive process for
maintenance decisions and cannot prevent downtime as well as corresponding
expense from happening. In order to reduce the maintenance cost and maintain the
machine uptime at the highest possible level, maintenance should be carried out in a
proactive way that means a transformation of maintenance strategy from the tra-
ditional fail-and-fix practices (diagnostics) to a predict-and-prevent methodology
(prognostics).

Prognostics has been applied to the field of maintenance for more than 10 years;
however, most of these applications only address forecasting, or remaining useful
life (RUL) prediction, which is just one facet of PHM.
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As an engineering discipline, PHM aims to provide users with an integrated
view of the health state of a machine or an overall system. Diagnostics is also
included in prognostics and health management. Diagnostics can be summarized as
the process of identifying and determining the relationship between cause and effect
in that its function is to isolate faults and identify failure root causes. Prognostics
can be interpreted as the process of health assessment and prediction, which
includes detecting incipient failure and predicting RUL.

Health management is the process of taking timely, appropriate maintenance
actions and making accurate logistics decisions based on the outputs from
diagnostics and prognostics, available resources, and operational demand. It focuses
on assessing impact of failures and minimizing impact and loss with maintenance
management.

An effective PHM system is expected to provide early detection and isolation of
the precursor and/or incipient fault of components or subelements; to have the
means to monitor and predict the progression of the fault; and to aid in making or
autonomously triggering maintenance schedule and asset management decisions or
actions. The detected, incipient fault condition should be monitored, trended from a
small fault as it progresses to a larger fault, until it warrants some maintenance
action and/or replacement. By employing such a system, the health of a machine,
component, or system can be known at any point of time, and the eventual
occurrence of a failure can be predicted and prevented, enabling the achievement of
near-zero downtime performance. Unnecessary and costly preventive maintenance
can be eliminated, maintenance scheduling can be optimized, and lead time for
spare parts and resources can be reduced—all of which can result in significant cost
savings.

1.5 Preface to Book Chapters

This book details the technologies in data-driven PHM/CBM that have been
introduced over the recent past by researchers and practitioners and are making
significant inroads in such application domains such as mechanical, thermal,
electromechanical, and, more recently, electrical and electronics systems.

This book is structured as follows: Chapter 2 introduces those fundamental
system concepts that set the stage for the effective design of systems health man-
agement. We review systems-based methodologies that have a direct and significant
impact on the design of PHM/CBM systems.

Chapter 3 gives an overview of data-driven PHM/CBM approach. OSA-CBM
architecture is explained in detail which includes 7 layers: data acquisition, data
manipulation, condition monitor, health assessment, prognostics, automatic deci-
sion reasoning, and human–computer interface.

Following the contents above, Chaps. 4–8 address the key issues regarding data
acquisition processing and analysis, feature extraction and clustering, feature
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selection optimization, intelligent fault diagnosis and prognosis, and typical tech-
nical and methodology. Related case study will be exhibited.

Then, Chap. 9 emphasis utilizing data fusion strategy to improve the performance
of data-driven PHM/CBM, fusion architectures, and classical fusion methodology in
feature layer and decision layer, which will be described with engineering case
study.

The tenth chapter answers the question of the following: How to make decisions
based on the output results of anomaly detection, diagnosis, and prognosis? A
data-driven PHM/CBM-based intelligent maintenance platform will be proposed; in
addition, autonomous control and contingency management also will be introduced.
Future development of systems health management toward engineering immune
systems will be clarified at last.
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Chapter 2
Design Approach for Systems Health
Management

2.1 Introduction

Over the last several decades, there has been a wide range of approaches and
implementation strategies for performing manual, semiautomated, or fully automated
fault diagnosis and prognosis (i.e., health management) on critical systems in
commercial and defense markets. Associated with these diagnostic and prognostic
systems, designs are an equally diverse number of philosophies and associated
architectures used to implement them for particular application.

Following the evolution of diagnostic systems in the modern industry, prog-
nostic initiatives stared to be introduced in order to try to take advantage of the
maintenance planning and logistics benefits. However, the early prognostic initia-
tives often were driven by infield failures that resulted in critical safety or high-cost
failures, and thus, retrofitted technology was hard to implement and costly to
develop. Hence, diagnostic and prognostic systems developers found the need to
analyze and describe the benefits associated with reducing infield failures and their
positive impact on safety, reliability, and overall lifecycle cost reduction. This leads
to many cost–benefit analyses and ensuing discussions and presentations to engi-
neering management about why the diagnostic and prognostic technologies need to
be included in the design process of the system and not simply an afterthought once
field failures occur. This had us to the point where many complex vehicle/system
designs such as advanced fighter and high-speed train are now developing “de-
signed in” health management technologies that can be implemented within an
integrated maintenance and logistics system that supports the equipment throughout
its lifetime. This “designed in” approach to health management is performed with
the hardware design itself and also acts as the process for systems validation and
managing inevitable changes from infield experiences and evaluating systems
design trade-offs, as shown in Fig. 2.1.
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Realizing such an approach will involve synergistic deployments of component
health monitoring technologies, as well as integrated reasoning capabilities for the
interpretation of fault-detect outputs. Further, it will involve the introduction of
learning technologies to support the continuous improvement of the knowledge
enabling these reasoning capabilities. Finally, it will involve organizing these ele-
ments into a maintenance and logistics architecture that governs integration and
interoperation with the system, between its onboard elements and their
ground-based support functions and between the health management system and
external maintenance and operation functions.

Condition-based maintenance (CBM) is the use of machinery run-time data to
determine the machinery condition, and hence, its current fault/failure condition,
which can be used to schedule, required repair and maintenance prior to breakdown.
Prognostics and health management (PHM) refers specifically to the phase
involved with predicting future behavior, including remaining useful life (RUL), in
terms of current operating state and the scheduling of required maintenance actions
to maintain systems health. Detecting a component fault or incipient failure for a
critical dynamic system (aircraft, gas turbine, pump, etc.) and predicting its
remaining useful life necessitate a series of studies that are intended to familiarize
the PHM/CBM designer with the physics of failure mechanisms associated with the
particular system/component. Moreover, the designer must have a thorough
understanding of methods for optimal selection of monitoring strategies, tools, and
algorithms needed to detect, isolate, and predict the time evolution of the fault, as
well as systems approaches for designing experiments and testing protocols, per-
formance metrics, and means to verify and validate the effectiveness and perfor-
mance of the selected models.

This chapter will introduce the concept of a system, as well as an engineering
viewpoint for thinking about systems. The general consideration for systems health
management (SHM) life cycle and analysis models is described. Then, two
systems-based methodologies for the design of health management systems will be
introduced.

Fig. 2.1 The “designed in”
approach to health
management (Vachtsevanos
et al. 2006)
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2.2 Systems Engineering

Systems engineering is presented as a framework organized around stages of the
product development life cycle. We specify a systems health management (SHM)
process view of the systems engineering life cycle which provides a basis for
understanding the broader issues of SHM and how they fit into the system life
cycle. This supports the very important notion that SHM is an essential property of
engineered systems that exerts considerable influence on system performance and
affordability—it, therefore, must be addressed with an appropriate level of concern
early on and throughout the product life cycle.

The term “systems engineering” was introduced by Bell Labs in the late 1940s,
and by the latter part of the twentieth century, the field of systems engineering was
recognized by most engineering organizations as a functional and integral part of
the design process.

Systems engineering is concerned with the use of work products, processes, and
tools to support and manage the design of complex engineering projects. A systems
engineering implementation is typically organized around the system life cycle,
addressing the identification and definition of customer requirements, creation, and
analysis of alternative design artifacts by performing relevant trade studies, the
implementation and integration of selected design approaches, verification and
validation of the implementation, and then production support and
evaluation/maturation of the embodiment of the design.

There is general agreement in the engineering community as to the nature and
components of the systems engineering life cycle (ISO 2008). Figure 2.2 illustrates
the most atomic stages of the systems engineering life cycle. These stages should
not be construed as discrete events in a timeline, but rather as evolutionary phases
with a necessary order of evolution, including the parallel utilization and support
stages.

Concept Stage

Development Stage

Production Stage

Utilization Stage Support Stage

Retirement Stage

Fig. 2.2 The components of
the systems engineering life
cycle (Stephen et al. 2011)
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2.3 Systems Engineering, Dependability, and Health
Management

The creation of systems involves the application of methods from a variety of
disciplines, coordinating and controlling the system creation process, and per-
forming these functions under the influence of a number of external factors.
Creating dependable systems requires that systems engineers develop an awareness
of the holistic, interdependent nature of these processes and their effects on the
dependability of the systems being created.

Dependable systems are those that perform their intended function when called
upon to do so within their expected lifetime while not performing any unintended
functions (Campbell et al. 1992). Dependability does not mean perfect, and while
experienced engineers will tell you that you cannot build a perfect system, it is
generally a critically important requirement that the system must be able to survive
and recover from a failure condition (mission-critical function of SHM). This
simple requirement has far-reaching implications, however, because systems of this
nature typically do not exist in isolation. Engineered systems are generally hier-
archical in nature, interact freely with each other, and in general exhibit behavior of
an extremely complex nature. A less critical requirement may be that system fail-
ures be predicted or detected and isolated in a manner that supports efficient
maintenance processes (support-critical function of SHM).

The notion of health management (HM) in complex systems, therefore, tran-
scends engineering, management, and social processes and can only be obtained as
an emergent property of a system that accounts for all of these issues. This “health”
property is best viewed as the result of a dynamic process that changes based on the
context of the lifecycle phase in which one is operating, the scale and complexity of
the system being created, and the social interactions that take place between the
individuals and organizations involved in the overall task of creating the system.
The multi-organizational nature of the product development process adds a con-
siderable degree of difficulty in understanding, analysis, and mitigation of system
failures.

This systems engineering perspective provides us with a convenient framework
for representing the SHM process. This perspective supports representation of the
roles and interactions of system management methods, engineering activities, and
cross-functional teams in the planning, implementation, and evaluation of the SHM
process. SHM can be treated as a specialized view of the systems engineering
process (ISO 2008). In this specialized process view, one can represent the HM
design for a system as a system in its own right. In this view, HM system influences
and interactions cut across multiple subsystems, serving to integrate the SHM
perspective at each of the levels of hierarchy, as shown in Fig. 2.3.

Figure 2.3 expands upon the composite system view by including the notion of a
health management system that encompasses all of the aircraft system components.
This implies that each of the vehicle/system components participates in the health
management system and that the health management system is itself hierarchical in
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nature. The figure also shows that the health management system encompasses
elements of the maintenance and supply chain systems. Health management system
functions provide critical decision support functions to maintenance and supply
chain systems, and in some applications, maintenance and supply chain system
states may inform the health management systems. As described above, there are
numerous other (unrepresented) internal and external elements, not shown here,
which may influence all of the elements in this SHM hierarchy in unanticipated
ways, providing significant challenges to the overall system designers and
operators.

The creation of the SHM process then can be thought of as a HM-specific view
of the systems engineering process, with its own lifecycle stages mapped to those of
the systems engineering process. The SHM lifecycle stages are shown in Fig. 2.4.
Note that the SHM systems engineering process stages exhibit the notion of iter-
ation and feedback between stages and reference a function common to each stage
labeled “Monitor and Control.” This is because the SHM development process is
highly distributed; elements of an integrated SHM solution are provided from the
distributed elements of multi-disciplinary, multi-organizational teams. Suppliers
and systems integrators must work together to achieve the most affordable and safe
SHM solution possible for the system under development. Therefore, one of the
primary functions of any SHM development team is to monitor these disparate
process inputs, in order to coordinate and control the timing and quality of the
various work products across both internal and multi-organizational design teams.

The mapping of the SHM process to the core systems engineering process also
implies that there is a rough correlation in time between the two lifecycle views of
system development. For example, when the primary system (or delivered product)
is being manufactured, the SHM system may be in the design synthesis and inte-
gration stage. These mappings are given in Table 2.1, and we describe the HM
systems engineering lifecycle phases in the following sections.

Health Management System

Aircraft System

Drive
System

Brake
System

Other
System

Supply Chain System

Maintenance System

Fig. 2.3 Integrated SHM perspective (Stephen et al. 2011)
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2.4 SHM Lifecycle Stages

2.4.1 Research Stage

The primary activity in the research stage is the identification, selection, and
refinement of technologies or methods to meet customer operational needs. This is
generally applied scientific research, based on more generic basic research executed
by the participating organizations and the supporting academic community. This

System Operational 
and Support Goals

Research

Requirements Development

System/Functional Analysis

Design Synthesis & 
Integration

System Test & Evaluation

HM System Maturation

Safe and Affordable 
System

Monitor
and

Control

Fig. 2.4 The components of
the SHM systems engineering
life cycle (Stephen et al.
2011)

Table 2.1 Mapping of the
SHM systems engineering
process stages to core systems
engineering process stages

Core systems engineering
stages

Health management lifecycle
stages

Preconcept Research

Concept Requirements development

Development System/functional analysis

Manufacturing Design synthesis and integration

Utilization System test and evaluation

Support Health management system
maturation

Retirement N/A
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includes research in topic areas leading to product discriminators—those system
features that are novel or so advanced compared to the competition as to provide
some competitive advantage—as well as research performed to advance the
maturity of technologies for use in the product line under development. A number
of pure research centers, academic institutions, nonprofit centers, system providers,
and integrators may be engaged in separate or coordinated research activities.

The initial selection of technologies and processes can have a significant effect
on overall system dependability: “Numerous retrospective studies indicate that
uncertainties often constitute a central consideration in the performance of engi-
neering systems”. Uncertainty can be managed in part by the selection of proven,
well-developed technologies that are understood and have historical performance
data available that allows the system creator to assess their dependability. Where
newer technologies are anticipated for inclusion in the system proposal, careful
planning of trade studies and other technology integration activities supporting risk
reduction is essential. While it is not always the case that experimental or new
technologies have greater chances of failure, they are less understood and inject a
greater degree of uncertainty into the system creation process. The system goals and
objectives will determine whether the development or use of new technologies is
required. They may also place limits on the selection of existing technologies.

In addition to research into the dependability of advanced product features, this
phase also is characterized by the development of advanced HM capabilities aimed
at providing improved support for operational and safety goals compared to current
product generations.

2.4.2 Requirements Development Stage

The purpose of the SHM requirements development stage is to define a complete set
of system requirements that can be effectively used to manage the HM development
process and assure that the end product will satisfy all customer needs and
expectations.

From the system developer (or integrator) point of view, the primary activity in
this stage is the requirements analysis leading to the development of a system
concepts. These requirements define what the system must do to meet customer
needs; the analysts must also consider requirements for how the building, testing,
and operation of the system will be conducted.

Some of these activities relate to the management and administration of the
system creation process. Budgets and schedules are developed. The management
team is created, usually consisting of a project manager, systems engineers, tech-
nical experts, and administrative personnel. Legal and reporting requirements are
determined. The effectiveness of these organizational and management structures
has a profound influence on the dependability of the system being created. Shenhar
and Bonen state: “both project management and systems engineering practice differ
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with each specific system [being created] and that management attitudes must be
adapted to the proper system type” (1997).

This is also the time to integrate SHM into the total system design. Including
consideration of SHM methods in all phases of the system life cycle and defining
requirements for their implementation result in increased system dependability. It is
during the requirements development phase that system development process
leaders must arrive at a consensus which balances initial system delivery costs with
overall system lifecycle costs.

Many, but not all, elements of SHM are developed by multi-organizational
teams. As a result, much of the HM requirements definition occurs within the
framework of the initial contractual process; that is, operational requirements for the
system are defined as part of the published request for proposal (RFP) and are the
basis for supplier selection and subsequent contracting. During this phase, supplier
requirements may be further tailored as necessary to capture system technical
details and programmatic constraints. The RFP typically includes formal procure-
ment documents such as performance specifications, statements of work, supplier
data list, and bidder’s instructions. This information is distributed to prospective
suppliers, who then submit proposals. During the source selection process, these
items may be further tailored to each potential supplier based on how they propose
to do business.

The goal here is to try and arrive at a clear understanding of the requirements for
the multi-organizational system development team to provide the most
cost-effective solution supporting systems operational and safety requirements. To
that end, the procuring organization typically identifies and performs operational
and support system trade studies to determine the system architectural and devel-
opment features that have the greatest impact on these goals. The initial SHM
concept may include elements detailing the architecture of distributed HM system
elements (within either the platform boundaries, or extending to off-platform
components), hardware and software configuration identification and management
plans (an understanding of specific system configuration is crucial to effective HM),
and HM system interfaces and data collection mechanisms—again, both on- and
off-platform.

Definition of a detailed concept supported by architectural trades as just
described will support the development of a cross-functional and interorganiza-
tional program management plan to support the execution of an effective SHM
program and help initiate the development of another critical program element, the
risk management plan.

SHM program risks can originate from numerous areas; a few notable sources to
initiate the development of a SHM risk management plan could include the HM
performance of similar systems in relevant field environments, knowledge of
technical performance or business practices of potential system development
partners, and anticipated issues with proposed customer HM requirements speci-
fications. Customer requirements are allocated to subsystems and incorporated into
the RFPs for each specific subsystem component procurement document. Specific
targets for failure prediction, failure detection, and fault isolation, as well as criteria
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such as false alarms (FAs) and cannot duplicates (CNDs), are allocated and dis-
tributed to potential partners, as well.

Anticipation and worst-case analyses of systems performance in anticipated field
conditions are a critical part of the requirements analysis process, and as these are
performed, mechanisms for collecting relevant field data should be postulated and
work initiated to ensure that such mechanisms are deployed to adequately support
the HM systems maturation stage (as is discussed in that upcoming section of this
chapter).

Another important part of initial communication with potential system devel-
opment partners is to make expectations known for program information exchange,
analytical tool and metric considerations, and the relationship of the delivery of data
elements, analyses, and metric pass/fail criteria and expectations to proposed pro-
gram schedules.

Ultimately, the goal of the requirements development stage is to determine the
most affordable manner in which each product development partner can contribute
to an acceptable overall technical systems design and then to enact an effective
organizational infrastructure to manage the product development process.
A satisfactory conclusion to this stage includes a well-formed design team with a
clear understanding of mutual goals, the establishment of program management
criteria as well as documented processes and tools to help ensure successful systems
deployment and satisfaction of customer goals and requirements.

2.4.3 System/Functional Analysis

The purpose of the SHM system/functional analysis stage is to develop a prelim-
inary functional design that allows all SHM program requirements to be satisfied.
To do this, a system functional analysis is performed, in which the system is
decomposed into the relevant top-level functions and lower-level subfunctions
required to meet system performance goals. Alternative mechanisms to perform
these functions are assigned and assessed by design teams, and means to assess or
potentially guarantee the performance of system functions are postulated and
analyzed. This is a matter of assessing the inherent system dependability from a
standpoint of system reliability and developing operational health assessment and
failure mitigation strategies that support contractual and operational goals. During
the systems engineering development stage, requirements developed during the
conceptual stage are translated into conceptual product architectures, and alternative
designs for specific and tangible elements that will execute the system functions are
postulated. These activities may vary significantly based on the type of system
being created. Aerospace systems, software, and nuclear power plants, for example,
have different approaches and methodologies for system design. The common
factor is the goal of designing the product to meet the established systems opera-
tional requirements. From the SHM standpoint, however, during the corresponding
system/functional analysis stage, engineers and system analysts perform detailed
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modeling and analyses that support the system designers’ requirements and con-
cepts through an integrated approach to system condition monitoring, failure pre-
diction, detection and isolation, and correlation of system health effects across
hierarchical system boundaries.

From a top-level functional perspective, SHM design is derived from an
assessment of the needed dependability of each function in the system decompo-
sition, and then a decision as to whether failure prevention provides sufficient
reliability, or whether active operational failure mitigation methods will be required
to achieve the needed reliability of each function. Put another way, every function
in the system must be considered from the perspective of its failure and the con-
sequent effect of that failure on the system. Completeness of the SHM design
derives from complete coverage of SHM failure preventions or operational failure
mitigations across all branches of the “function tree decomposition.” Note that
failure mitigation may include the possibility of doing nothing at the time of failure,
if the failure is not safety or mission-critical, until a later time when proper
maintenance can address the failure.

Proposed failure prevention and mitigation design mechanisms are allocated for
each function and analyzed using historical and analytical techniques to determine
whether the needed reliability can be achieved for that function. If failure mitigation
is selected, then the proposed failure mitigation design mechanism must be able to
detect the actual or potential loss of functionality and respond quickly enough so
that it successfully completes before the critical failure effects that it is attempting to
mitigate and propagate to cause functional failure. If the mechanism does not
operate quickly enough, then it is usually true that the mitigation mechanisms must
be driven further down the function tree into lower-level components, which are
closer to the originating fault, thus detecting the problem faster and providing more
time for the response actions to complete. System reliability is estimated by sta-
tistical summation of all component reliabilities to determine whether the system’s
overall dependability goals are achieved. If the system reliability does not meet
these goals, then the SHM design must be improved in one or more components:
The system’s operational concept must be changed, or the system’s dependability
goals must be relaxed, or a combination of these actions must be taken to satisfy the
design goals. System dependability estimates must include estimates of the
potential failure of the SHM design mechanisms, which prominently include
interactions between SHM detection and response mechanisms with each other,
with the mission sequences, and with the system’s control system. Specific activ-
ities in the SHM system/functional analysis stage include allocation of HM
requirements to responsible subsystem design teams, discussions of architectural
issues with strategic and technology partners, and trade studies to optimize archi-
tectural partitioning decisions (e.g., on-platform vs. off-platform, distributed vs.
centralized, diagnostic vs. prognostic approaches). SHM approaches are selected
from best-of-class technology resources that will satisfy operational and techno-
logical health requirements and then optimized on cost, safety, reliability, and
diagnostic characteristics using a variety of engineering analysis tools.
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System partners work with system integrators to ensure that distributed devel-
opment schedules are all integrated into program management plans and schedules,
and specific trade studies supporting HM development activities around the
evolving SHM architecture are agreed to and planning initiated. Plans, schedules,
and trade studies all support the requirements and functional areas covered in the
requirements development stage.

Preliminary reliability, safety, and diagnostic analyses are performed using
models derived from initial system design data, anticipated system operational
usage, and system support specification. System failure modes are analyzed for
their probability of occurrence and potential detectability. Failures with relatively
low probability of occurrence or minor consequential effects are considered with
respect to the resources required to detect them. Specific cost–benefit studies may
be initiated in this SHM development stage—as initial product design begins to
evolve from a functional architecture into a physical manifestation, evaluations of
the cost-effectiveness of predictive versus diagnostic or scheduled maintenance
solutions, as well as on-platform versus off-platform trades— and can be evaluated.
These trade studies, besides targeting individual system drivers, can be evaluated as
a whole in order to determine the most cost-effective overall approach to the overall
SHM solution. In general, the cost ramifications of each design decision are con-
sidered against the projected lifecycle cost targets, and the implementation risks are
evaluated against systems risk management plans initiated in the previous stage.

At the conclusion of this stage, the preliminary SHM design approach and
proposed concrete implementation should be specified and supported by detailed
functional analytical studies as system design becomes concrete.

2.4.4 Design, Synthesis, and Integration

The purpose of the design synthesis and integration stage is to develop and integrate
a detailed design solution that meets all SHM program requirements.
Implementation of selected SHM approaches is initiated, and analytical models are
further refined with details of selected approaches and design knowledge as system
and subsystem designs mature.

Complex systems are often characterized by two notable characteristics: (1) in-
corporation of an increasing number of functionalities that increase the integration
of the number of parts and components (multi-component) as well as services and
(2) incorporation of a number of maturing technologies (Dosi et al. 2003).
Verification of the capability of these maturing technologies (providing product
differentiation or other advanced capabilities to support system design goals) to
support the requirements for which they are intended is performed in this stage.
Partner design instantiations are verified by analysis and benchmarking against the
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agreed-to system performance metrics, and interfaces are evaluated for
compatibility.

This stage initiates the process of verification and validation (V&V) of the SHM
system. Verification is the process of ensuring that the system has metal of the
developed requirements. Validation is the process of ensuring the correct system to
meet customer needs has been constructed. Verification activity in the design
synthesis and integration stage is strongly connected to the requirements devel-
opment and system analysis stages, on one the hand, and with the validation
activities in the system test and evaluation stage on the other hand. During the
requirements phase, system objectives and goals are translated into requirements.
These are further elaborated via the design process to greater levels of detail in the
system. These requirements determine system specifications and impact the selec-
tion of materials and components; they further provide a basis for additional
development of requirements and specifications and criteria for the verification of
system performance and dependability.

Requirements verification is usually based on analytical approaches begun in the
previous stage. Trade studies of the proposed SHM approaches are finalized and
analyzed to assess the potential effectiveness of selected SHM approaches and
system design decisions. Detailed reliability, safety, failure detection, fault isola-
tion, and verticality verification analyses are performed based on specific schematic
diagram and part information to support the understanding of the chosen SHM
approach and ongoing assessment and management of requirements compliance.

It is usually not possible to have a “perfect” approach to detection and reme-
diation of all failure modes as they exist in the initial design concept. At this point,
in the design process, the areas that may be deficient are addressed through alter-
native approaches to system design, modification of the operations concept, or
supplemental support procedures that may be outside the scope of initial design
considerations. The coordination of this effort can be challenging because of the
number of partners that may contribute to the development and production of any
complex system. The close relationships of these partners in the design and pro-
duction process are reflected in the coupling of the information flow and analysis
required to support verification. At the completion of the design synthesis and
integration stage, the SHM detailed design approach should be integrated with
overall system design in a way that satisfies SHM requirements and is fully sup-
ported by interorganizational hardware design and analysis data.

Throughout the functional analysis and design synthesis stages, trade studies are
continually performed that evaluate the efficacy of the proposed failure detection,
isolation, prediction, and mitigation approaches with alternatives. This process
continues until a satisfactory SHM approach has evolved that meets system design
goals.
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2.4.5 System Test and Evaluation

The purpose of the system test and evaluation phase is to qualify the implemented
SHM solutions for delivery to the customer as part of the overall system. Activities
in this stage will:

(1) Verify that the detailed design solution, which was previously verified by
analysis to assure compliance with specification requirements, will actually
achieve all SHM requirements upon delivery. As is the case in fundamentally
sound software testing, system requirements are mapped to a collection of tests
that will formally verify those requirements (answering the question “is the
system built right?”). This can be perceived as a “bottom-up” approach that
will provide traceability of the system design and development work per-
formed to the specified requirements.

(2) Validation methods in this stage use demonstrable measures of reliability,
availability, and dependability in conjunction with detailed system simulations
of SHM system performance to determine whether the system is capable of
achieving its goals as expressed in the system concepts—a “top-down”
approach to functional verification that thoroughly exercises safety- and
performance-critical HM functionality. This will provide a level of confidence
that the system design is both correct and will satisfy customer goals and
expectations. So, while verification determines whether the system has been
built right, validation determines whether the right system has been built.

SHM verification and validation (V&V) activities include fault insertion, qual-
ification, integration, and operational testing. Failure detection and fault isolation
predictions and methodology are verified, and susceptibility to unexplained
anomalies (UAs), false detections or false alarms (FAs), and cannot duplicates
(CNDs) is assessed and their risk mitigated through various means. It is also
possible at this point to identify and develop supplemental test and other support
system elements.

The central model to the implementation of the SHM failure mitigation approach
—the failure detection and fault isolation model(s)—can be verified analytically,
but V&V of the SHM system requires that a fault insertion approach be employed,
as diagnostic software is opportunistic (i.e., it only performs its intended job in the
presence of failures). The implemented SHM approach can therefore be validated
using one or more of the following approaches, depending on the criticality of the
application and the corresponding stringency of customer requirements:

(1) Detailed simulation models of the subject system can be built and exercised in
conjunction with the implemented SHM approach. System component faults
can be inserted and the performance of the SHM system validated based on the
response of the simulation models. This would require detailed validation of
the simulation model itself.
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(2) The system could be validated in a laboratory setting, where an actual system
is placed in a simulated representative environment on a test bench, and then,
system component faults can be inserted and SHM system response in the
presence of failures can be verified. The simulation environment will again
need to be verified to some degree, but this “hardware in the loop” approach
does have the advantage of exercising the actual system.

(3) Finally, failures could be inserted in an actual operational environment (e.g.,
flight test of an aircraft system) and the SHM system then validated under
actual operating conditions.

In practice, a mix of the three methods just described is typically employed
based on factors such as availability of system hardware, operational parent systems
or laboratory hardware, and cost considerations. Regardless of the methods used, as
deficiencies are discovered, corrective actions are implemented and validated before
the demonstration is considered successfully completed.

FAs and CNDs are undesired design characteristics that cannot truly be predicted
or systematically tested, so there is no true validation possible. However, there is
risk reduction activities that can be performed in conjunction with other program
validation efforts to reduce the likelihood that FA/CND programs will occur during
system operation. The only way to observe these system anomalies is by exercising
the system in conditions as close to operating conditions as possible. There is a
great deal of uncertainty associated with the design, development, and deployment
of a HM system, and often, its performance cannot be accurately predicted due to
emergent “metasystem” behaviors deriving from the interaction of the engineered
system and its operating environment (as discussed early in this chapter). The more
the system is exercised, and particularly if it can be exposed to operational con-
ditions that may exceed the envelope considered during initial design, the better the
chance one has to observe and then correct the root cause of the issue prior to actual
deployment.

As the validation phase draws to a close, any system failures identified as
sufficiently probable and consequential to warrant inclusion in the SHM detection,
prediction, isolation, and mitigation strategy that remain undetectable should be
addressed by an alternate means in accordance with customer requirements or other
remedial action (redesign, additional testing, support system workarounds, etc.).
Any additional support system requirements should be documented as part of the
evolving requirements for the support infrastructure. Any potential impacts to
customer requirements must be coordinated prior to delivering hardware and
software to the customer. At the conclusion of the system test and validation stage,
the SHM system is a fully qualified, production-ready integrated hardware and
software design.
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2.4.6 HM System Maturation

The purpose of the system maturation process is to effectively measure actual SHM
system performance and to identify/implement corrective actions as required to
satisfy all customer needs and expectations. The system maturation stage actually
overlaps with system test and evaluation and continues throughout product
deployment (corresponding to the core systems engineering utilization and support
stages). The maturation process in brief consists of these major activities: (1) collect
system operational (including performance and maintenance) data; (2) identify
anomalous or unwanted SHM performance issues; (3) perform root cause analysis;
(4) identify potential corrective actions; and (5) implement identified changes
within formal closed-loop corrective action processes. Corrective actions may
include physical system design changes, SHM system design changes, additional
supplemental tests, or other support system element or process changes. Another
way of viewing the closed-loop corrective action process is that it is just the
iteration in the evolution of the SHM system within the product life cycle.

The operation phase of the systems engineering life cycle is where the system
actually performs its intended functions. Operations typically involve environ-
mental and human–machine interactions that can have a significant effect on system
dependability. Interaction of the system with its operational environment has been,
until deployment, a matter of engineering conjecture—actual interactions with the
environment may provide significantly different outcomes than those anticipated in
system design. This is because the development of effective SHM solutions requires
prediction of complex systemic interactions and the effect of presupposed external
stimuli. It is nearly always the case that unforeseen emergent behaviors (those that
result from unpredicted system interactions) of fielded systems within their oper-
ational context create deviations from anticipated SHM system performance.
Similarly, the operational infrastructure (including human, facility, and supply
chain resources), details of process definitions, extent of operator training, and the
functionality of human–machine interfaces are all critical influences on system
dependability and may often not be accurately assessed until the system has been
deployed within the support infrastructure, and interactions between these elements
can be observed.

Initial test and maintenance solutions that are deployed to support new complex
systems are therefore generally imperfect (by definition) and are initially liable to
contribute substantially to system ownership costs. This suggests a need for pro-
cesses and tools to (1) monitor the effectiveness of produce HM solutions in their
application domains, (2) collect data that validate and document system perfor-
mance, and (3) pinpoint and analyze relevant patterns that can help mitigate the
issues that arise. The ability to mature the effectiveness of fielded system test,
diagnostic, and maintenance procedures is a critical factor in an overall system
operational and support posture. The process of identifying and implementing
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corrective actions as required to satisfy customer SHM requirements is known as
the health management maturation cycle. A maturation cycle should primarily be
initiated as a function of system supportability performance monitoring; however,
customer requests and other internal investigations can also trigger a cycle.

Another important consideration is the feedback connection between the
requirements, design synthesis/integration, and maturation stages. System require-
ments are the drivers that guide the designer and ensure that the system does what it
is intended to do. The operation of a system in its fielded environment provides the
ultimate integration testing (or validation) of system requirements. Observation of
unanticipated behaviors can often trigger a new cycle through the SHM system life
cycle (or its corresponding product system engineering life cycle).

If the developers who are writing requirements in the planning phase do not
understand what the actual operational conditions are, then they cannot write good
requirements.

2.5 A Systems-Based Methodology for PHM/CBM Design

A systems-based methodologies have a direct impact on the design of PHM/CBM
systems: a formal framework to conduct trade studies that are intended to compare
alternative options for the selection of components, sensors, and algorithms and to
assist in the selection of “best” alternative technologies according to specified
requirements. Failure modes and effects criticality analysis (FMECA) forms the
foundation for good PHM/CBM design. In concert with reliability-centered main-
tenance (RCM), a FMECA study decides on the severity of candidate failure
modes, their frequency of occurrence, and their testability. For each failure mode, it
considers fault symptoms and the required sensor suite to monitor their behavioral
patterns. In advanced versions, FMECA studies also may list the candidate diag-
nostic and prognostic algorithms that are best suited to address the identified failure
modes. New fault data may be required in most cases that are essential for training
and validating diagnostic and prognostic routines if historical data collected through
on-system monitoring or test bench testing are not sufficient or nonexistent. Means,
therefore, must be sought to devise and design a test plan, execute it, and assess the
statistical significance of the collected data. Technical and economic performance
metrics must be defined to guide the design process and evaluate the effectiveness
and performance of the overall PHM/CBM system and its individual modules.

Figure 2.5 depicts the main modules of an integrated approach to PHM/CBM
system design with the systems-based components of the architecture described.
The schematic indicates feedback loops that are intended to optimize the approach
and complete the data collection and analysis steps that are essential inputs to the
development of the fault diagnostic and prognostic algorithms.
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In Fig. 2.6, one can identify a preliminary off-line phase and an online imple-
mentation phase of PHM/CBM. The online phase includes obtaining
vehicle/system data from sensors, signal preprocessing, extracting the features that
are the most useful for determining the current status or fault condition of the
system, fault detection and classification, prediction of fault evolution, and
scheduling of required maintenance.

Design & 
Trade Studies

FMECA

CBM Testing

Data Collection

Data Analysis

Algorithm 
Development

Implementation 
Validation & 
Verification

Fig. 2.5 An integrated approach to PHM/CBM design (Vachtsevanos et al. 2006)

Fig. 2.6 The CBM/PHM cycle (Vachtsevanos et al. 2006)
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2.6 A Proposed PHM Design Approach for Rotary
Machinery Systems

To conduct step-by-step design and deployment of a PHM system, 5S approach is
adopted to convert multivariate data to abstract prognostics information, utilizing
different computing tools for different steps (Lee et al. 2013). 5S, as shown in
Fig. 2.7, stands for Streamline, Smart Processing, Synchronize & See, Standardize,
and Sustain.

The first “S,” Streamline, focuses on identifying critical components and pri-
oritizing data to ensure the accuracy of the second “S,” which is Smart Processing.
Identifying the critical components for which the prognostics should be performed
is the first key step of smart processing by determining which components’
degradation or failure has the most significant impact on a system in terms of
performance and/or cost of downtime. In real-world applications, data collected
from multiple sensors are not necessarily in a readily usable form due to issues such
as missing data, redundant data, noise, or even sensor degradation problems.
Therefore, it is necessary to sort, filter, and/or prioritize the raw data before pro-
cessing it.

The second “S,” Smart Processing, focuses on utilizing computing tools to
convert data into information for different purposes, such as health degradation
evaluation, performance trend prediction, and potential failure diagnosis. Currently,
most manufacturing, mining, farming, and service machines (e.g., elevators) are
actually quite “smart” on their own; many sophisticated sensors and computerized
components are capable of delivering data concerning status and performance. In
many situations, a large amount of data is available, but it is often not known which
prognostics technologies should be applied. A systematic methodology for the
design of a PHM system should include a means of selecting and combining a set of
data-to-information conversion tools to convert machine data into
performance-related information to provide real-time health indicators/indices for
decision makers to effectively understand the current performance and make
maintenance decisions before potential failures occur. This would prevent waste in
terms of time, spare parts, and personnel and ensures the maximum uptime of
equipment, resulting in significant cost-savings.
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Processing
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& See
Standardize Sustain
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Select the right 
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interface for DAQ
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Select the right mgt 
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value chain

Select the right mgt 
tools
Select the right 
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Fig. 2.7 5S approach (Lee et al. 2013)
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Synchronize & See is the third “S” of the 5S methodology. It integrates the
results of the first two S’s (Streamline and Smart Processing) to enable the selection
of the right hardware solutions and software platforms to most effectively facilitate
data-to-information conversion and information transmission. Advanced technolo-
gies, such as embedded agents and tether-free communication, are considered to
realize prognostics information transparency between manufacturing operations,
maintenance practitioners, suppliers, and customers. Prognostics information is
demonstrated using information visualization tools. These tools allow decision
makers to use decision support tools, based on the delivered information, to assess
and predict the performance of machines in order to make the right maintenance
decisions before failures can occur. Prognostics information can be further inte-
grated into an enterprise asset management system, which can greatly improve
productivity and asset utilization by providing a direct link between machine status
and support availability.

The fourth “S,” Standardize, has great impacts for enterprises, especially in
terms of deploying large-scale information technology applications. The interface
for acquiring prognostics information from the Synchronize & See stage and
importing the information into enterprise business systems, such as supply chain
management (SCM) and enterprise resource planning (ERP) systems, needs to be
constructed. The implementation of those applications can benefit from a stan-
dardized open architecture, information sharing interface, and plant operation flow,
which brings cost-effective information integration between different systems that
can aid in realizing the implementation of e-manufacturing.

The fifth “S,” Sustain, aims to technically enable a sustainable closed-loop
product life cycle. To accomplish this, management tools need to be selected and
value chains need to be defined. Product information, such as product usage pro-
files, historical data, and middle-of-life (MOL) and end-of-life (EOL) service data,
can be provided as feedback to designers and lifecycle management systems.
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Chapter 3
Overview of Data-Driven PHM

3.1 Introduction

In this book, technical approaches of data-driven PHM are introduced. The related
methodology and frameworks are explained. The CBM can be regarded as a
technical architecture and engineering strategy for data-driven PHM. Therefore,
here we unify CBM and data-driven PHM and give general terms and
methodology.

Fault is an abnormal condition or defect at the component, equipment, or sub-
system level which may lead to a failure. A system fault occurs when the condition
of any system of its components or their assembly is degraded or exhibits an
abnormal behavior. This may lead to failure. According to US Federal Standard
1037C, the term fault has the following meanings:

• An accidental condition that causes a functional unit to fail to perform its
required function.

• A defect that causes a reproducible or catastrophic malfunction. A malfunction
is considered reproducible if it occurs consistently under the same
circumstances.

Failure in general refers to the state or condition of not meeting a desirable or
intended objective. The failure of a component/subsystem occurs when one or more
of the principle functions are no longer available. This generally happens when one
or more of its components are in a fault condition.

Condition monitoring is defined as a means to prevent catastrophic failure of
critical component/subsystem and as a maintenance scheduling tool that uses var-
ious analysis data to determine the need for corrective maintenance actions (Davies
1998). The parameters to monitor should be characteristics that will indicate an
assets condition. The parameters to monitor should be selected by the ones that in
normal mode remain stable but in abnormal or unhealthy mode will indicate some
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sort of a trend, e.g., increased vibration levels, increased noise, or decreased
pressure. (Yam et al. 2001).

Failure analysis is the process of collecting and analyzing data to determine the
cause of a failure and how to prevent it from recurring. It is an important discipline
in many branches of manufacturing industry, where it is a vital tool used in the
development of new products and for the improvement of existing products.

Fault diagnosis is detecting, isolating, and identifying and impending incipient
failure condition, while the affected components (subsystem, system) are still
operational even though at a degraded mode.

Failure diagnosis is detecting, isolating, and identifying a component (subsys-
tem, system) that has ceased to operate.

Prognosis (prognostics) is the estimation of time to failure and risk for one or
more existing and future failure modes. An alternative to definition of prognosis is a
point estimate of the remaining life of an equipment (or component) based on one
or more condition or performance signals observed at some point during its life.

The terms fault detection, isolation, and identification are topically employed to
convey the following meaning:

• Fault (failure) detection. An abnormal operating condition is detected and
reported.

• Fault (failure) isolation. Determining which component is failing or has failed.
• Fault (failure) identification. Estimating the nature and extent of the fault or

failure.

Although the terms fault isolation and fault detection are sometimes used syn-
onymously, fault detection means determining that a problem has occurred,
whereas fault isolation pinpoints the exact cause and location.

As illustration, in order to estimate the remaining useful lifetime or time to
failure of a failing component, that is, to conduct fault prognosis and maximize
uptime through CBM. We seek to determine accurately and without false alarm
impending or incipient failure condition, that is faults. Thus, fault diagnosis is
aimed at determining accurately without false alarm impending or incipient failure
conditions. In this case, engineer’s objective is to achieve the possible performance
of a given diagnostic routine by minimizing the false positive or false negative
while reducing the time delay between the initiation and detection/isolation of a
fault even.

In relation with CBM, the last step of a CBM program is maintenance decision
making. Sufficient and efficient decision support would be crucial to maintain
personnel’s decisions on taking maintenance actions. Techniques for maintenance
decision support in a CBM program can be divided into two main categories:
diagnosis and prognosis. As mentioned earlier, fault diagnosis focuses on detection,
isolation, and identification of faults when they occur. Prognosis, however, attempts
to predict faults or failures before they occur. Obviously, prognosis is superior to
diagnosis in the sense that prognostics can prevent faults or failures, and if
impossible, be ready (with prepared spare parts and planned human resources) for
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the problems, and thus save extra unplanned maintenance cost. Nevertheless,
prognostics cannot completely replace diagnosis since in practice there are always
some faults and failures which are not predictable. Besides, prognostics, like any
other prediction techniques, cannot be 100 % sure to predict faults and failures. In
the case of unsuccessful prediction, diagnosis can be a complementary tool for
providing maintenance decision support. In addition, diagnosis is also helpful to
improving prognostics in the way that diagnosis information can be useful for
preparing more accurate event data and hence building better CBM model for
prognostics.

Furthermore, diagnosis information can be used as useful feedback information
for system redesign. Jardine (2002) reviewed and compared several commonly used
CBM decision strategies such as trend analysis that is rooted in SPC, expert sys-
tems, and neural networks. Wang and Sharp (2002) discussed decision aspect of
CBM and reviewed the recent development in modeling CBM decision support.

3.2 PHM Technical Approaches

Prognostics is an engineering discipline focused on predicting the time at which a
system or a component will no longer perform its intended function (Vachtsevanos
2006). This lack of performance is most often a failure beyond which the system
can no longer be used to meet desired performance. The predicted time then
becomes the remaining useful life (RUL), which is an important concept in decision
making for contingency mitigation. Prognostics predicts the future performance of a
component by assessing the extent of deviation or degradation of a system from its
expected normal operating conditions (Pecht 2008). The science of prognostics is
based on the analysis of failure modes, detection of early signs of wear and aging,
and fault conditions. An effective prognostics solution is implemented when there is
sound knowledge of the failure mechanisms that are likely to cause the degradations
leading to eventual failures in the system. It is, therefore, necessary to have initial
information on the possible failures (including the site, mode, cause, and mecha-
nism) in a product. Such knowledge is important to identify the system parameters
that are to be monitored. Potential uses for prognostics are in condition-based
maintenance. The discipline that links studies of failure mechanisms to system life
cycle management is often referred to as prognostics and health management
(PHM), sometimes also system health management (SHM) or—in transportation
applications—vehicle health management (VHM), or engine health management
(EHM). Technical approaches to building models in prognostics can be categorized
broadly into data-driven approaches, model-based approaches, and hybrid
approaches as follows:

Data-driven approaches are appropriate when the understanding of first prin-
ciples of system operation is not comprehensive or when the system is sufficiently
complex such that developing an accurate model is prohibitively expensive (Liu
and Wang 2009). Therefore, the principal advantages to data-driven approaches are
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that they can often be deployed quicker and cheaper compared to other approaches,
and that they can provide system-wide coverage (e.g., physics-based models, which
can be quite narrow in scope). The main disadvantage is that data-driven approa-
ches may have wider confidence intervals than other approaches and that they
require a substantial amount of data for training. Data-driven approaches can be
further subcategorized into fleet-based statistics and sensor-based conditioning. In
addition, data-driven techniques also subsume cycle counting techniques that may
include domain knowledge.

As mentioned, a principal bottleneck is the difficulty in obtaining run-to-failure
data, in particular for new systems, since running systems to failure can be a lengthy
and rather costly process. When future usage is not the same as in the past (as with
most non-stationary systems), collecting data that includes all possible future
usages (both load and environmental conditions) becomes often nearly impossible.
Even where data exist, the efficacy of data-driven approaches is not only dependent
on the quantity but also on the quality of system operational data. These data
sources may include temperature, pressure, oil debris, currents, voltages, power,
vibration and acoustic signal, spectrometric data as well as calibration and calori-
metric data. Features must be extracted from (more often than not) noisy,
high-dimensional data (Mosallam et al. 2013).

Model-based approaches attempt to incorporate physical understanding (phys-
ical models) of the system into the estimation of RUL. Modeling physics can be
accomplished at different levels, for example, micro and macro levels. At the micro
level (also called material level), physical models are embodied by series of
dynamic equations that define relationships, at a given time or load cycle, between
damage (or degradation) of a system/component and environmental and operational
conditions under which the system/component are operated. The micro-level
models are often referred as damage propagation model. Yu and Harris’s fatigue life
model for ball bearings, which relates the fatigue life of a bearing to the induced
stress, (Yu and Harris 2001) Paris and Erdogan’s crack growth model, (Paris and
Erdogan 1963) and stochastic defect propagation model [citation needed] are other
examples of micro-level models. Since measurements of critical damage properties
(such as stress or strain of a mechanical component) are rarely available, sensed
system parameters have to be used to infer the stress/strain values. Micro-level
models need to account in the uncertainty management of the assumptions and
simplifications, which may pose significant limitations of that approach.

Macro-level models are the mathematical model at system level, which defines
the relationship among system input variables, system state variables, and system
measures variables/outputs where the model is often a somewhat simplified rep-
resentation of the system, for example, a lumped parameter model. The trade-off is
increased coverage with possibly reducing accuracy of a particular degradation
mode. When this trade-off is permissible, faster prototyping may be the result.
However, when systems are complex (e.g., a gas turbine engine), even a
macro-level model may be a rather time-consuming and labor-intensive process. As
a result, macro-level models may not be available in detail for all subsystems. The
resulting simplifications need to be accounted for by the uncertainty management.
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Hybrid approaches attempt to leverage the strength from both data-driven
approaches as well as model-based approaches (Pecht 2010; Liu et al. 2012). In
reality, it is rare that the fielded approaches are completely either purely data-driven
or purely model-based. More often than not, model-based approaches include some
aspects of data-driven approaches and data-driven approaches glean available
information from models. An example for the former would be where model
parameters are tuned using field data. An example for the latter is when the set
point, bias, or normalization factor for a data-driven approach is given by models.
Hybrid approaches can be categorized broadly into two categories, preestimate
fusion and post-estimate fusion.

3.3 Data-Driven PHM/CBM System Architecture

In order for a system to achieve full potential as a data-driven PHM/CBM system, it
needs to be constructed by a number of different functional capabilities. The open
system architecture for condition-based maintenance organization (OSA-CBM) has
specified an open standard proposal on how a CBM system should be designed
technically. The OSA-CBM is an industry consortium that includes industrial,
commercial, and military participants. The open, non-proprietary, standard proposal
was developed in order to create a free market for CBM components, where users
of CBM technology will be able to choose CBM components from different
manufactures. The organization has divided a CBM system into seven different
technical modules (Thurston 2001) (see Fig. 3.1) including prognosis function,
which can be regarded as an infrastructure of data-driven PHM. The standard
proposal covers more than the technical design of CBM systems, e.g., means of
communication within the system; this chapter, though, will solely focus on the
architecture design.

Layer 1 Sensor module: The sensor module provides the CBM system with digi-
tized sensor or transducer data.
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Layer 2 Signal processing: The signal processing module receives signals and data
from the sensor module or other signal processing modules. The output from the
signal processing module includes digitally filtered sensor data, frequency spectra,
virtual sensor signals, and other CBM features.
Layer 3 Condition monitor: The condition monitor receives data from the sensor
modules, the signal processing modules, and other condition monitors. Its primary
focus is to compare data with expected values. The condition monitor should also
be able to generate alerts based on preset operational limits.
Layer 4 Health assessment: The health assessment module receives data from
different condition monitors or from other health assessment modules. The primary
focus of the health assessment module is to prescribe if the health of the monitored
component, subsystem, or system has degraded. The health assessment module
should be able to generate diagnostic records and propose fault possibilities. The
diagnosing should be based upon trends in the health history, operational status and
loading, and maintenance history.
Layer 5 Prognosis: The prognosis module should have the possibility to take account
data from all the prior layers. The primary focus of the prognosismodule is to calculate
the future health of an asset, with account taken to the future usage profiles. The
module should report the future health status of a specified time or the RUL.
Layer 6 Decision support: The decision support module receives data from the
health assessment module and the prognosis module. Its primary focus is to gen-
erate recommended actions and alternatives. The actions can be related to main-
tenance or how to run the asset until the current mission is completed without
occurrence of breakdown.
Layer 7 Presentation: The presentation module should present data from all the
previous modules. The most important layers to present would be the data from the
health assessment, prognosis, and decision support modules as well as alerts gen-
erated from the condition monitors. The ability to look even further down in the
layer should be a possibility. The presentation module could be built into a regular
machine interface.

3.4 Role of Condition Monitoring, Fault Diagnosis,
and Prognosis

Data-driven PHM/CBM seeks to implement a policy wherein maintenance man-
agement decisions are based on the identification of the current condition of
monitored machinery. The implementation of efficient maintenance management
strategies based on CBM presupposes that adequate condition monitoring, as well
as system fault diagnosis and prognosis are in place (Jardine 1973).

Reliable prognosis itself relies on condition monitoring and fault diagnosis, as
prediction of the future state of system implies that the current state of system is
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known. Therefore, condition monitoring and fault diagnosis are central to the
implementation of efficient maintenance management strategies (Emmanouilidis
et al. 2006). In terms of condition monitoring and fault diagnosis, this means that
the primary use is to predict unplanned equipment failures and assess equipment
condition. Through the use of condition monitoring and fault diagnosis technolo-
gies, the following benefits can be achieved:

• Improving equipment reliability through the effective prediction (and then
avoidance) of equipment failures.

• Minimizing downtime through the integrated planning and scheduling of repairs
indicated.

• Maximizing component life by avoiding the conditions that reduce equipment
life (for example, by ensuring ongoing precision alignment, minimal lubricant
contamination).

• Reducing excessive electric power consumption caused by inefficient machinery
performance.

• Reducing the number of dissatisfied customers or lost customers and rework due
to poor quality—with less than optimal machine performance.

• Improving operator safety through reducing the potential for destructive failure
which could cause personal injury or death.

• Minimizing maintenance costs.

3.5 Fault Diagnosis Framework

A general fault diagnosis can be performed using residual signal, and this technique
is depicted in Fig. 3.2. Residual signal is a signal that represents a deviation from
standard operating conditions which is generated by comparing, for example, a
model output with the actual system output. Based on this signal, one makes
decision about the operating condition of the machinery.

The other techniques for fault detection are model-based and data-driven, as
shown in Fig. 3.3. Model-based technique relies on an accurate dynamic model of
the system and is capable for detecting even unanticipated faults. It takes advantage
of the actual system and model outputs to generate a discrepancy or residual, as it is
known, between two outputs that are indicative of a potential fault condition. In this
method, bank of filter can be used to pinpoint the identity of the actual fault
component.
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On the other hand, data-driven technique often addresses only anticipated fault
conditions, where a fault model now is a construct or a collection of constructs such
as neural network, expert systems, fuzzy logic, support vector machines (SVMs),
etc. that must be trained first with known prototype fault pattern and then employed
online to detect and determine the faulty component’s identity.

In this book, we will present feature-based fault diagnosis technique using fault
representation. A general procedure for online fault diagnosis is shown in Fig. 3.4.
Themajor task in thismethod is data collection through sensor outputs and building of
a feature representation or feature vector that contains enough information about the
currentmachine operating condition to allow for fault identification and classification.
The information contained in the feature vectors can be obtained by three ways:

• Model-based method (e.g., identification of physical model parameters using,
for example, Kalman filter or recursive least squares)

• Data-driven method (e.g., vibration and current signal statistical moments,
vibration and current frequency spectrum information)

• Statistical regression and clustering technique on existing historical legacy data.
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Once the feature vectors have been obtained, it is used as input to a fault
classification that contains various types of decision-making algorithms. If more
information is needed before a decision can be reached, probing signals can be sent
back to the machine (e.g., inject test vibration signal into a machinery mount to test
for loose fittings).

3.6 Problems During Implementation

While importance of condition monitoring and fault diagnosis is evident, reliable
automated identification of system condition is not straightforward, as system
malfunction demonstrates itself with different signal patterns, depending on the
particular kind of problem encountered. These patterns of behavior can vary con-
siderably even for the same fault types on similar system. During maintenance
implementation, the problems encountered are listed:

(1) No associates training on maintenance know-how for top persons which
results in lack of management support

(2) Lack of operator’s comprehension
(3) Lack of resources
(4) Lack of involvement of production associates
(5) Lack of long-term vision; quick return expected by management
(6) Lack of sustained momentum.

People management level is the key to success or failure. They have to be well
trained. From the training, they can learn about the benefits and effects of the
maintenance program in the company. They know that management commitment
for maintenance implementation is the fundamental precept. Also they can realize
that maintenance is not a onetime activity for continuous improvement. It is a long
term and never ending improvement activity. In this way, issues (1), (4), (5), and
(6) can be resolved. Maintenance is carried out in cooperation with operators,
maintenance technicians, and engineers. The advantage of having such an operator
involved is that the operator knows the environment and conditions better than
anyone. Thus, brief introductory training for all is necessary. Through training,
issue (2) can be overcome, and they can understand the actual meaning of main-
tenance implementation as well as their role and responsibility. Issue (3) is a vital
factor that constrains maintenance performance since current maintenance is still far
away from full automation. Due to the lack of manpower and information
resources, the diagnosis and repair on failed equipment usually cannot be performed
immediately, hence lead to long downtime of equipment and causes a significant
production loss. Advanced techniques provide a solution to this issue. Recently,
artificial intelligence techniques have been widely applied for equipment degra-
dation assessment, statistic failure analysis, prognosis, and intelligent diagnosis. For
instance, expert systems, artificial neural networks (ANNs), fuzzy logic systems,
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and genetic algorithms have been employed to assist the diagnosis and condition
monitoring task to correctly interpret the fault data. The application of AI tech-
niques makes maintenance process intelligent, improves accuracy, and decreases
people involvement. Effective maintenance case management also can relieve this
pressure. Case-based reasoning should be the best choice for this task, including
retain, retrieve, reuse, and revise.

Although condition monitoring, fault diagnosis, and prognosis can assist in
improving maintenance during planned maintenance phase, most of final results are
failure due to lack of long-term vision-quick return expected by management, lack
of sustained momentum, and lack of resource, etc. Among above mentioned rea-
sons, lack of manpower is one of the main factors.

Condition monitoring, fault diagnosis, and prognosis require experienced staff
whose role is to diagnose abnormal plant conditions and advise operational per-
sonnel on the remedial actions required. This means that accurate diagnosis and
prognosis of equipment failure is largely dependent on the skill and experience of
individual staff. Failure to do so can lead to incorrect diagnosis and prognosis being
made. The skill of specialists is based on the combination of quantitative and
qualitative information regarding a problem, in addition to their extensive experi-
ence in dealing with similar problems.

Unfortunately, such specialists are relatively rare in the field. Even if specialists
are available, the technical information needed by the engineers is not always to
hand or received in the first instance. This is because the information is distributed
centrally, but it is the responsibility of the distributor or subsidiary to relay it, and
there are difficulties in remembering and applying this amount of knowledge for
experts. Also, there are a number of problems associated with traditional method of
condition monitoring and diagnosis as follows:

• The number of specialists skilled in the monitoring analysis, diagnosis, and
prognosis of plant problems has been reduced due to the rationalization of
operational functions within the industry. Also, it is sometimes practically
infeasible for experts to be available to monitor the plant on a 24-h basis.

• Specialists might require additional sources of effective guidance (e.g., they may
need to collaborate with other specialists, or use simulation, modeling, or sta-
tistical tools), particularly when under severe time pressure, in order to support
operational decision making.

• Although modern monitoring and control systems provide plant operator with
immediate access to a range of raw data, only domain specialists with clear
diagnostic or prognostic knowledge are capable of providing qualitative inter-
pretation of acquired data, an ability which will be lost when the specialists
retire.

Many intelligent diagnosis and prognostics tools have been developed with
successful results in the identification of faults that occur during operation.
However, experience in the design, implementation, and operation of intelligent
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systems for fault diagnosis and prognosis in engineering applications has shown
that the scope, functionality, and process of constructing such systems could be
significantly enhanced through the integration of a range of appropriate techniques.

3.7 Related Techniques

In order to solve above stated problems, many techniques have been developed for
last two decades. The most common and widely used tool in modern industry is
spectral analysis of the vibration signals. Over the last 20 years, the connections
between certain spectral properties and the fundamental nature of various vibration
problems and their origins have been perfected and widely used in the industrial
fields.

The fault diagnosis system should perform two tasks: fault detection and fault
diagnosis. The former is to determine that a fault has occurred in the system. To
achieve this goal, all the available information from the system should be collected
and processed to detect any change from nominal behavior of the process. The latter
is devoted to locate the fault category or the fault source. In rotating machinery, the
root cause of faults is often from rolling element bearings, gears, and so on. One
way to increase operational reliability of machine is to monitor and diagnose
incipient faults in these mechanical elements. Generally, vibration signals can be
used to detect the incipient fault of the machine components and reduce the pos-
sibility of catastrophic damage and the downtime, through the online monitoring
and diagnosis system.

Recently, numerous machine learning techniques have been applied to the areas
of fault diagnosis and prognosis, such as ANNs, genetic algorithm, fuzzy reasoning,
decision tree, case-based reasoning, et al. Artificial intelligence techniques have
been employed to assist the diagnosis and condition monitoring task to correctly
interpret the fault data, which makes monitoring and diagnosis process intelligent,
improves accuracy, and decreases people involvement. Machine learning refers to a
system capable of the autonomous acquisition and integration of knowledge. This
capacity to learn from experience, analytical observation, and other means, results
in a system that can continuously self-improve and thereby offer increased effi-
ciency and effectiveness. Learning, like intelligence, covers such a broad range of
processes that it is difficult to define precisely. A dictionary definition includes
phrases such as to gain knowledge, or understanding of, or skill in, by study,
instruction, or experience, and modification of a behavioral tendency by experi-
ence. Certainly, many techniques in machine learning derive from the efforts of
psychologists to make more precise their theories of animal and human learning
through computational models. It seems likely also that the concepts and techniques
being explored by researchers in machine learning may illuminate certain aspects of
biological learning.

As regards machines, very broadly, that a machine learns whenever it changes its
structure, program, or data based on its inputs or in response to external information
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in such a manner that its expected future performance improves. Some of these
changes, such as the addition of a record to a database, fall comfortably within the
province of other disciplines and are not necessarily better understood for being
called learning. Machine learning usually refers to the changes in systems that
perform tasks associated with artificial intelligence. Such tasks involve recognition,
diagnosis, planning, prediction, etc. (Nilsson 1996).

Pattern recognition is the research area that studies the operation and design of
systems that recognize patterns in data. It encloses subdisciplines like discriminant
analysis, feature extraction, error estimation, cluster analysis (together sometimes
called statistical pattern recognition), grammatical inference and parsing (some-
times called syntactical pattern recognition). Important application areas are image
analysis, character recognition, speech analysis, man and machine diagnostics,
person identification, and industrial inspection. A branch of artificial intelligence
concerned with the classification or description of observations. Pattern recognition
aims to classify data (patterns) based on either a priori knowledge or on statistical
information extracted from the patterns. The patterns to be classified are usually
groups of measurements or observations, defining points in an appropriate multi-
dimensional space.

Some intelligent learning algorithms, such as ANNs and SVMs have been
successfully applied to automated detection, diagnosis, and prognosis of system
conditions. The main difference between ANNs and SVMs is in their risk mini-
mization. For SVMs, structured risk minimization principle is used to minimize an
upper bound based on an expected risk. In ANNs, traditional empirical risk mini-
mization is used to minimize the error in training of data. The difference in risk
minimization leads to a better generalization performance for SVMs than ANNs.
However, in real-world applications, the classification result of the practically
implemented SVMs is often far from the theoretically expected level, because their
implementations are based on the approximated algorithms due to the high com-
plexity of time and space.

Data mining, known as knowledge discovery in databases, is the process of
discovering interesting patterns in databases that are meaningful in decision making
and is also an application area that can provide significant competitive advantage to
an organization. According to a general model (Fig. 3.5), in the first step for data
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mining the main data sets that may be retrieved from operational databases or data
warehouse are selected. The selected data set then undergoes cleaning and pre-
processing for removing discrepancies and inconsistencies to improve its quality
(Huang et al. 2007).

Next, the data set is analyzed to identify patterns that represent relationship
among data by applying algorithms, such as neural networks, decision trees, and so
on. Then the patterns are validated with new data set. A pattern that satisfies these
conditions becomes organizational knowledge. The steps in the mining process are
iterative until meaningful knowledge is extracted.

With the development of computer and information technologies, traditional
data-based condition monitoring, fault diagnosis, and prognosis are gradually
replaced by feature-based due to fast transfer, small storage space, and high
accuracy. Here, feature means some value that can represent machines conditions.
Features also can be considered as data compression. Referring to features, feature
extraction and feature selection technologies are indispensable which have gained
much attention recently.
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Chapter 4
Data Acquisition and Preprocessing

4.1 Introduction

The process of condition monitoring, fault diagnosis, and prognosis can be sum-
marized as follows: data acquisition, data processing, data analysis, and decision
making. Here, data represent system condition, so it can be called condition-based
(data-driven) systems health management. The main problems of such a system are
data transfer and data storage. For example, when we monitor a huge generator
condition, we should install several of sensors to assure diagnosis reliability. Such
many sensors result in a lot of data coming out.

With the globalization and fast growth of the Internet technologies and computer
and information technologies, online or continuous condition monitoring has
gained much attention. Data transfer and data storage problem become more seri-
ous. If transferring plenty raw data directly, longtime delays due to heavy traffic
may be experienced, which results in the lost of monitoring and diagnosis in time.

Data represented as features provide a best solution for this problem that greatly
reduces the requirement of transfer number and save storage space. That data are
compressed as features from many domains with keeping data information as high
as possible. Relative feature construction techniques come out, such as feature
representation, feature extraction, and feature selection.

The typical feature-based condition monitoring and fault diagnosis structure are
illustrated in Fig. 4.1 that can be summarized as follows:

• Data are acquired online after preprocessing. The data can be vibration, voltage,
current, acoustic emission, sound signals, etc. Corresponding to the object,
different preprocessing approaches are used, such as filtering (high-, low-, and
band-pass), wavelet transform, and averaging.

• Features are calculated from various domains: time, frequency, cepstrum, and
wavelet domain. In this way, the information of raw data is kept at best to meet
different analysis methods in future. Furthermore, the transfer and storage
problems of data can be solved.
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• Many calculation parameters and many domains result in many features. All of
them are not useful for condition analysis; sometimes, some of them even can
increase analysis difficulty and degrade accuracy. Reducing feature dimen-
sionality is necessary, which removes excessive and garbage features.

• According to monitoring object, the features that can significantly represent
equipment performance are selected.

• The selected features are sent to condition monitoring system and fault diagnosis
system to get equipment condition.

4.2 Data Acquisition

Data acquisition is a process of collecting and storing useful data (information)
from targeted engineering assets for the purpose of condition monitoring and
diagnosis. This process is an essential step in implementing for machinery fault
diagnosis and prognosis.

Data collected in a condition-based maintenance program can be categorized
into two main types: event data and condition monitoring data. Event data include
the information on what happened (e.g., installation, breakdown, and overhaul, and
what the causes were) and/or what was done (e.g., minor repair, preventive
maintenance, and oil change) to the targeted asset (Jardine et al. 2006). Condition
monitoring data are the measurements related to the health condition/state of the
engineering asset. Condition monitoring data are very versatile. It can be vibration,
acoustic, oil analysis, temperature, pressure, moisture, humidity, weather or envi-
ronment data, etc. Various sensors, such as accelerometer, proximity probe, ultra-
sonic sensors, acoustic emission sensors, current probe, and flux sensors, have been
designed to collect different types of data.

Taking data acquisition of rotating machinery as example, the vibration signal is
usually selected and will be reviewed in detail. The acquisition of proper vibration
data is the key to effective machine monitoring, fault diagnosis, and prognosis.
Quality data acquisition requires planning involving the machine, the nature of
expected vibration data, available instrumentation, and the purpose of the testing.
The topic presented in this section includes the selection of the measures
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(displacement, velocity, or acceleration), transducers, mounting technique, and
location. The process of data acquisition including acquisition times and sample
size must be considered well before storage process due to digitization of measured
data. It is important to show the proper displays that are useful for analysis and
evaluation.

4.2.1 Selecting a Proper Measure

A measure is defined as a unit or standard of measurement that provides a means for
evaluating data. In vibration analysis, three measures are available: displacement,
velocity, and acceleration. The measure is selected based on the frequency content
of vibration present, type of machine, type of the analysis to be conducted, and
information sought.

Absolute displacement is used for low frequency of structural vibration, 0–
20 Hz. This is typically measured with a double-integrated accelerometer. Relative
shaft displacement, which is measured with a proximity probe, shows the extent of
bearing clearance taken up by vibration and is used over a wide frequency range.

Velocity is the best measure. Velocity is defined as a time rate of change of
displacement which is dependent upon both frequency and displacement, and also,
it is related to fatigue. It is considered to be a good measure in the span of 10 Hz–
1 kHz for general condition monitoring of machinery because a single value of root
mean square (RMS) or peak velocity can be used in rough assessment of condition
without the need to consider frequency. This is typically measured with a
single-integrated accelerometer.

Acceleration is the measure used above 1 kHz. It relates to force and is used for
such high-frequency vibration as gear mesh and rolling element bearing defects.
Acceleration and velocity are absolute measures taken on the bearing housing or as
close to it as possible. Relative displacement between the machine housing and the
rotor is typically measured by a permanently mounted proximity probe.

The summary of measures in vibration analysis is presented in Table 4.1, and the
default of frequency spans of data acquisition is shown in Table 4.2.

Table 4.1 Machine vibration measure

Measure Frequency
span

Physical
parameters

Application

Relative
displacement

0–1 kHz Stress/motion Relative motion in bearing/casing

Absolute
displacement

0–20 Hz Stress/motion Structural motion

Velocity 10 Hz–
1 kHz

Energy/fatigue General machine condition,
medium-frequency vibration

Acceleration >1 kHz Force General machine condition, medium-/
high-frequency vibration
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Example 4.1 Select measure for an induction motor 2500 RPM that uses ball
bearing (SKF 230–600) with N = 29 rolling elements.

Solution: Because the highest rolling element bearing is the ball frequency of
inner race (BPFI), it can be estimated as

BPFI ¼ 0:6� RPM� N

¼ 0:6� 2500� 29 ¼ 43; 500CPM = 725Hz

where 0.6 is estimated value of BPFI (see Eshleman 1999).
Therefore, the frequency span is 7,250 Hz (see Table 4.2 for BPFI). This fre-

quency is within the acceleration range (see Table 4.1).
Often, the selection of the parameter to be measured is predetermined by related

standards or by specifications. When this is not the case, it is helpful to apply the
considerations given in Table 4.3 (Harris 1997).

4.2.2 Vibration Transducers

A transducers or sensor is a device that receives a signal and responds with an
electrical signal. A sensor or other technical measurement devices have some
advantages to human inspection: They are reliable and precise, they can measure in
unhealthy and hazardous conditions, they work fast, they work continuously, and
they can perform measurements to a relatively low cost.

The information of vibration is acquired by transducers positioned at optimal
location on the machine system. Transducers convert mechanical vibrations to
electronic signals that are conditioned and processed by digital signal analyzer
instrument. Transducer selection is based on the sensitivity, size required, selected
measure, frequency response, and machine design and speed. The response of any
transducers determines how well the instruments respond to a stimulus (voltage or
vibration) at a given frequency. Vibration analysts want a flat frequency response at
all frequencies.

Figure 4.2 shows the frequency response of a velocity transducer that is not flat.
At the lower frequencies, it rolls off, and it responds less to the same strength signal

Table 4.2 Default of
frequency spans for data
acquisition

Component Frequency span

Shaft vibration 10 � rotating frequency

Gearbox 3 � gear mesh frequency

Rolling element bearing 10 � ball frequency of inner race

Pumps 3 � vane passing frequency

Motors/generators 6 � line frequency

Fans/blowers 3 � blade-passing frequency

Sleeve bearings 10 � rotating frequency
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Table 4.3 A Guide for the selection of the parameter to be measured

Measure Consideration

Acceleration • Suitable for high frequencies where acceleration measurements provide the
highest signal outputs

• Used where forces, loads, and stresses must be analyzed; force is known
proportional to acceleration

• Used where a transducer of small size and small mass is required, since the
accelerometers usually are somewhat smaller than velocity or displacement
pickup

Velocity • Used where vibration measurements are to be correlated with acoustic
measurements since the sound pressure is proportional to the velocity of the
vibrating surface

• Used at the intermediate frequencies where displacement measurement
yields transducer output which may be too small to measure conveniently

• Used extensively in measurements of machinery where the velocity
spectrum usually is more uniform than either the displacement or
acceleration spectra

Displacement • Used where amplitude of displacement is particularly important, e.g., where
vibrating parts must not touch or where displacement beyond a given value
results in equipment damage

• Used where the magnitude of displacement may be an indication of stresses
to be analyzed

• Used at low frequencies where output of the accelerometers or velocity
pickups may be too small for useful measurement

• Used to measure relative motion between rotating bodies and structures of
machine

Fig. 4.2 An example of frequency response of velocity transducer (B&K Vibro)
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than it does at frequencies greater than 30 Hz. The sensitivity of the transducer is
depend on its voltage output for given vibration input, for example, 200 mV/mil,
120 mV/mm/s, 500 mV/(in/s), and 100 mV/g. The higher the voltage output per
engineering unit, the more the sensitive transducers.

(1) Proximity probes

The proximity probe or non-contacting displacement transducer which is in a
general class of transducers measures the static and dynamic displacement of a shaft
relative to the bearing housing (Fig. 4.3). Several position sensing techniques are
used by non-contact displacement transducers, including capacitance, optical, laser,
and inductive (eddy current) transducers. The most widely used non-contacting
probes on rotating machinery are the eddy current type, commonly known as
proximity probes. Proximity probes are used because they are durable, and they can
directly measure shaft to bearing clearance.

Fig. 4.3 Proximity probe.
a Eddy current type (Bently
Navada), b inductive type
(Rhein Taco), and c laser type
(Keyence)
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Usually, it is permanently mounted on many machines for condition monitoring
and fault diagnosis. The eddy current proximity probes consist of two parts, the
probe and the oscillator–demodulator (Fig. 4.3). The high-frequency oscillator is
used to induce an eddy current on the shaft’s surface without actually touching it.
The probes can sense the gap between the probe tip and the conductive surface of
the rotating shaft. As the shaft moves relative to the sensor, more or less energy
goes into the eddy current. These eddy current energy changes modulate the
amplitude of the oscillator voltage. This signal is demodulated, providing an output
voltage proportional to the change in gap. As the rotating surface moves away from
the probe tip, less eddy current energy is lost and the voltage output of the
demodulator becomes more negative. As the gap gets smaller, more eddy current is
lost in the shaft surface and the output becomes less negative. The indicated gap
change causes the voltage to change about the probe’s set point.

The probe is coil of wire surrounded by a non-conductive plastic or ceramic
material contained in a threaded body. An oscillator–demodulator is required to
excite the probe that is about 1.5 MHz. The resulting magnetic field radiates from
the tip of probe. When a shaft is brought close to the probe, eddy currents are
induced that extract energy from the field and decrease its amplitude. This decrease
in amplitude provides an AC signal directly proportional to vibration. The DC
voltage from oscillator–demodulator varies in proportion to distance between the
probe and the conducting material. The sensitivity of the probe generally
200 mV/mil (8 mV/lm) with a gap ranges from 0 to 80 mils. The oscillator–
demodulator requires a supply of 24 V DC. The probe must be shielded and
grounded.

(2) Velocity transducers

The velocity pickup (Fig. 4.4) is a very popular transducer for condition monitoring
the vibration of rotating machinery. This transducer installs easily on machines and
generally costs less than other sensors. The transducer is ideal for general purpose
machine applications. Velocity transducers have been used on rotating machines for
a very long time and are still utilized for a variety of applications today. Velocity
transducers are available in many different physical configurations and output
sensitivities.

When a coil of wire is moved through a magnetic field, a voltage is induced
across the end wires of the coil. The induced voltage is caused by the transferring of

Fig. 4.4 Velocity transducer
(Courtesy of Bently Nevada,
Shinkawa)
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energy from the flux field of the magnet to the wire coil. As the coil is forced
through the magnetic field by vibratory motion, a voltage signal representing the
vibration is produced. The self-generated signal can be directly passed to an
oscilloscope or signal analyzer.

Velocity transducers will have different frequency responses depending on the
manufacturer. However, most transducers have a frequency response range in the
order of 10 Hz–2 kHz. This is an important consideration when selecting a velocity
pickup for a rotating machine application. The transducer’s frequency response
must be within the expected vibration frequencies of the machine. The transducer is
self-excited that requires no power supply and consists of a permanent magnet
mounted on springs encased in a cylindrical coil of wires. A typical velocity
transducer generates 500 mV/(in/s) except at frequencies below 10 Hz which is the
natural frequency of the active element. The reduction of output below 10 Hz
requires that a frequency-dependent compensation factor be applied to the ampli-
tude of the signal. The measured phase also changes with frequency at frequencies
below 10 Hz. The velocity transducer can be used to evaluate vibration velocity in
order to assess machine condition when the frequency range of concern is within
the flat frequency response (10 Hz–2 kHz) of the transducer. Velocity transducer
can be used to measure shaft vibration with a fish tail, a simple wooden device that
attaches to the transducer. A vee notch permits the fish tail to ride on the rotating
shaft. Keys and other variations of the shaft surface pose to safety hazards.

(3) Accelerometers

Accelerometers have been a popular choice for rotating machinery vibration
monitoring. They are a rugged, compact, lightweight transducer with a wide fre-
quency response range. Accelerometers have been used extensively in many
machinery monitoring applications. This transducer is typically attached to the
outer surface of machinery. Generally, this machinery will have parts that generate
high-frequency signals, such as rolling element bearings or gear sets.
Accelerometers are used to measure vibration levels on casing and bearing hous-
ings. This will provide continuous or periodic sensing of absolute case motion
(vibration relative to free space) in terms of acceleration. Accelerometers are inertial
measurement devices that convert mechanical motion to an electrical signal. This
signal is proportional to the vibration’s acceleration using the piezoelectric prin-
ciple. Inertial measurement devices measure motion relative to a mass. This follows
Newton’s third law of motion: Body acting on another will result in an equal action
on the first.

An accelerometer (Fig. 4.5) consists of a small mass mounted on the piezo-
electric crystal that produces an electrical output proportional to the acceleration
when the force is applied to the form of a vibrating mass. Force transducers such as
modal hammer (or impact hammer) and force gauges (Fig. 4.6) also contain a
pie-piezoelectric crystal, but the output of crystal is proportional to the force
applied.
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The piezoelectric crystal generates a high-impedance signal that must be mod-
ified by the charge of voltage conversion to low impedance. The size of
accelerometer is proportional to its sensitivity. Small accelerometers may have
sensitivity of 5 mV/g (1 g = 9.806 m/s2) and a flat frequency response to 25 kHz.
The vibration analyst must be aware of the properties of each accelerometer being
used.

If vibration velocity is desired, the signal is usually integrated before it is
recorded or analyzed; an analog integrator/power supply is needed. This device has
an own frequency response characteristics and rolls off at low frequencies.
Accelerometers are recommended for permanent seismic monitoring because of
their extended life and because of their cross-sensitivity that is low.
Cross-sensitivity means that the transducer generates a signal in x direction from
vibration in y direction. However, cable noise, transmission distance, and temper-
ature sensitivity of the accelerometer must be carefully evaluated. Usually, an
excellent guidance is available from vendors for accelerometer use.

(4) Key-phasor

The key-phasor provides a once-per-revolution reference signal for angular mea-
surements on rotating shaft. The purpose of a key-phasor is to relate the rotating
reference frame of the shaft to the stationary reference frame of the vibration or
displacement sensors. A key-phasor sensor has similar output voltage characteris-
tics as a proximity probe shown in Fig. 4.7. The voltage swing goes from −2 to
−5 V range for almost the complete revolution to −16 to −22 V as the slot passes
under the probe.

Fig. 4.6 Impulse hammer

Fig. 4.5 Accelerometers and amplifier
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The ideal key-phasor signals would have a very fast and large change in voltage
as a high or low spot edge passes under the probe. The optimum setup for an eddy
current phase sensor is to adjust it for a maximum voltage swing. In the case where
a slot (keyway) is the reference transition, the probe sees a small gap for almost the
complete revolution. The key or slot should be at least two probe tip diameters in
width.

The optical pickup is most often used to obtain the once-per-revolution reference
signal required to measure the phase angle between a piece of reflecting tape on a
shaft and a once-per-revolution vibration peak. When energized by the light pulses
from the reflecting tape, the pickup sends a voltage pulse to the analyzer. The
analyzer can compare the timing of the tape (shaft reference pulse) to the other
events, i.e., other marks on the shaft, vibration peaks, or its own reading to
determine the shaft speed.

Optical pickups can also used to observe the time elapsed between equally
spaced marks on a rotating shaft when torsional vibration measurements are made.
The optical system includes pickup mounted adjacent to the shaft, reflective tape on
the shaft, and a power amplifier.

The rapid technology developments within the sensor industry have pressured
both the prices and sizes of sensors. MEMS (micro-electromechanical systems) and
smart sensors have made it into the market of condition-based maintenance as the
lowest level of systems health management. Sensors that have decreased in size can
perform more tasks than conventional sensors.

4.2.3 Transducer Selection

Important considerations in transducer selection include frequency response,
signal-to-noise ratio (SNR), the sensitivity of the transducer, and the strength of the
signal being measured. The frequency range of the transducer must be compatible
with the frequency generated by the mechanical components of the machine.
Otherwise, another transducer must be selected, and the signal must be converted to
the proper measures. For example, if the velocity measure is desired at frequency

Fig. 4.7 A typical key-phasor setup with a key slot
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above 2 kHz, an accelerometer integrated to velocity should be selected to obtain
the signal. If the time waveform of the velocity measure is desired, the signal must
be acquired from a velocity pickup or analog integrated signal from an
accelerometer, either within or external to the data collector.

A single transducer, usually an accelerometer because of its small size and
frequency characteristics, is provided with most electronic data collector. The fre-
quency response characteristic of the unit must be assessed so that user will not try
to detect vibration to which the collector does not respond. For example, if a typical
collector with an accelerometer is set up to respond to frequencies up to 8 kHz and
a gearbox has gear mesh at 10 kHz, the signal will be dropped out. Acceleration is
measured, and most collectors provide readouts in acceleration or velocity. The
parameter selected depends on the criteria selection.

4.2.4 Transducer Mounting

Proximity probes are seldom mounted on machines in the ideal horizontal and
vertical orientation due to bearing split lines and interference of oil lines. As a
result, X-Y probe pairs are often encountered that are rotated from the ideal hori-
zontal and vertical position (Fig. 4.8). The probe pairs shown are rotated +45° from
horizontal and vertical. On many machinery trains, several different probe pair
orientation may be encountered.

If you want to compare orbits along a machinery train with different probe
orientations, you must rotate the orbits back to a common horizontal and vertical
position as shown in Fig. 4.9 (Eisenmann 1997). The rotation correction is very
critical when the measurement results are to be communicated clearly to others and
when multi-plane balancing is done.

The method used to mount a vibration transducer can affect the frequency
response curve because the natural frequency of an accelerometer can decrease,
depending on the mounting method used, i.e., handheld or fixed method such as

Fig. 4.8 Mounting method
of proximity probes (Agilent
Technologies)
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magnetic, adhesive, and threaded stud (Fig. 4.10). Therefore, it is important to
ensure that the frequency response is adequate before measurements are taken
(Figs. 4.11 and 4.12).

Each of the above methods of mounting has its advantages and disadvantages.
The appropriate choice for a given measurement problem depends on a number of
factors, including the following:

• Effect of the mounting on the useful frequency range of the transducer;
• Effect of mass loading of the transducer mounting on the test surface;
• Maximum level of vibration the mounting can withstand;
• Measurement accuracy;
• Repeatability of measurements;
• Stability of the mounting with time;

Fig. 4.9 Proximity probe pair angular locations and identification

Mica
washer

Insulating
stud

Cement

Cementing
stud

Cement Self-
adhesive
mount

Magnet

(a)    (b)     (c)

(d) (e)  (f)

Fig. 4.10 Mounting technique of accelerometer (Harris 1997)
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• Requirement that the test surface not be damaged by screw holes;
• Requirement for electrical insulation of the transducer;
• Time required for preparing mounting;
• Time required for removing mounting;
• Difficulty in cleaning the transducer after removal from test transducer;
• Difficulty in cleaning test surface after transducer removed;
• Skill required for preparing mounting;
• Cost of mounting; and
• Environmental problem (dirt, dust, oil, moisture).

(1) Stud Mounting

A typical stud-mounted transducer is shown in Fig. 4.10a. The transducer is fixed to
the test surface by means of a threaded metal screw. One method of insulating the
stud-mounted transducer from the test surface is shown in Fig. 4.10b. The metal
stud is replaced with one which is fabricated of insulating material, and a mica
washer is inserted between the transducer and the test surface. Other manufacturers
employ a threaded, insulated stud with a flange made of the same material. The
flange, midway along the length of the stud, serves as the base for the
accelerometer.

Where stud mounting is practical, and it is the best type to use for the following
reasons:

• It provides the highest resonance frequency (up to 20 kHz) of any mounting
techniques.

• It permits measurements at very high vibration levels without the loosening of
the transducer from the test surface.

• It does not reduce the maximum permissible operating temperature at which
measurement position can be made.

• It permits accurate and reproducible results since the measurement position can
always be duplicated.

(2) Cement mounting

The cement mounting of a transducer provides excellent frequency response, as
shown in Fig. 4.10c for three conditions: accelerometer cemented directly of the
surface, accelerometer cemented with a soft adhesive (not recommended), and
accelerometer with a cementing stud which is cemented to the surface with hard
cement.

This type of mounting may be used at high levels of vibration if the cementing
surfaces are carefully prepared. The maximum temperature at which measurements
can be made is limited by the physical characteristic of the cement employed
usually about 80 °C, although some cements such as 3 M Cyanolyte 303 have an
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upper limit as high as 200 °C. This type of mounting has good stability with the
time.

(3) Wax Mounting

Beeswax or a petroleum-based petrowax may be used to attach a transducer to a flat
test surface. If the bonding layers are thin (no greater than 0.2 mm), it is possible to
obtain a resonance frequency almost as high as for the stud mounting, but if the test
surface is not smooth, a thicker layer of wax is required and the natural frequency
will be reduced. If the mating surface is clean and free from moisture, the transducer
can be mounted fairly and easily. The transducer can be removed rapidly with
naphtha-type solvent. Disadvantages include the possibility of disattachment of the
transducer at high vibration levels, a temperature limitation because of the relatively
low melting point of wax, and poor longtime stability of the mounting. The
maximum temperature at which measurements can be made with this mounting
technique is usually about 40 °C.

(4) Adhesive mounting

An adhesive film may be used to mount a small transducer on a flat, clean test
surface by means of the double-sided adhesive tape. This technique is shown in
Fig. 4.10e and is rapid and easy to apply. Furthermore, such a mounting has the
advantage of providing electrical insulation between the transducer and test surface
and does not require the drilling of a hole in the test surface. It is particularly
applicable for use with a transducer having no tapped hole in its base. The tem-
perature of the test surface is usually below 95 °C.

(5) Magnetic mounting

The use of magnetic mounting is shown in Fig. 4.10f, a permanent magnet attaches
the transducer to the test surface, which must be ferromagnetic, flat, free from dirt
particles, and reasonably smooth. The transducer can be attached to the test surface
easily and moved quickly from one measurement point to another. For example, in
condition monitoring system, it can be used to determine a suitable measurement
location for a transducer to be mounted permanently on large rotating machine. In a
heavy machine, the use of magnetic mounting does not give the effect of added
mass on test surface, but in the other problems, the additional mass loading on the
test surface may make the use of magnetic mounting unacceptable. Furthermore, if
the acceleration is sufficiently high, as the impact testing, the magnet may become
loosened momentarily. This can result inaccurate reading and possibly a slight
position change in the position of the transducer, which would also change the
reading. The maximum temperature at which measurement can be made with this
mounting technique is usually about 150 °C (Fig. 4.11).

(6) Handheld mounting

A transducer which is held against the test surface by hand provides the poorest
performance of any of the techniques described here, but it sometimes can be useful
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in making a rapid survey of a test surface because the measurement location can be
changed more rapidly. The frequency response is highly restricted about 20–
1,500 Hz; furthermore, this technique should not be employed for accelerations
greater than 1 g. Thus, this technique is used when measurement accuracy is not
essential, e.g., in finding the nodal points on a vibration surface (Fig. 4.12).

4.2.5 Transducer Location

All vibration sensors measure motion along their major axis. This fact should be
considered in choosing the number of sensors. Due to the structural asymmetry of

Fig. 4.11 Frequency response of fixed mounting (B&K Vibro)

Fig. 4.12 Frequency response of handheld mounting (B&K Vibro)
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machine cases, the vibration signals in the three axes of motion may differ. Where
practical, a transducer should be mounted in the vertical, horizontal, and axial
planes to measure vibration in the three directions. The three sensors will provide a
complete definition of the vibration signature.

The key to the accurate vibration measurement is the placement of the transducer
at a point that is responsive to machine condition. In any event, the transducer
should be placed as close to the bearing as it is physically possible. Figure 4.13
shows the recommended locations for mounting transducer for data acquisition. The
axial, horizontal, and vertical locations at the bearing centerline are shown. These
locations are used to sense the vibration from radial forces such as mass unbalance.
Vibrations from axially directed forces are measured in the axial direction in the
load zone.

The transducer must be located as close to the bearing as possible, even though
placement is restricted by such components as housings, coupling guards, and fan
covers.

When comparing readings, it is essential that all readings are taken at the same
location and the same plane. Even small differences in location can affect the overall
readings. All vibration transducers are single-plane devices and only measure in the
plane in which they are held or are mounted.

Fig. 4.13 Recommended locations for mounting transducer (ISO 10816-1)
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Clearly, we can reduce some of measuring points and still reach the target,
increase the monitoring level for critical failures. Often, the sensors are systemat-
ically placed to measure at horizontal direction based on the fact that the support
stiffness generally is at minimum in this direction. However, the support stiffness is
not always a right ground to choose the measuring direction. The correlation matrix
over the different measurement channels is shown in Fig. 4.14 (Järvinen and
Miettinen 2006). The correlation is calculated by using the RMS velocity from
narrow band close to the rotational frequency. By referring to the vibration features
by that way, we will find the specific measuring points, in which the features are
unique. It helps us to choose the right measurement channels and the minimum
amount of measuring points.

4.2.6 Frequency Span

Spectra can be collected as part of the screening function on most data collectors.
The frequency spans must properly reflect the sample. And the proper transducer
must be selected. Geared units may generate must frequencies with significant
harmonics that are clipped by the 2 kHz roll-off of velocity transducer. Therefore,
measurement must be based on acceleration. Clipping can be also occurred when
the range is less then the maximum frequency being transmitted. Table 4.2 contains
recommended frequency spans for spectra taken from rotating machines for con-
dition monitoring and analysis. The spans are based on RPM and other machine
frequencies. Clipping in the frequency span is indicated by spectral energy values
that are significantly lower than overall levels.
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However, if the spectral span is broad, resolution can be reduced to the point that
no discrete frequency information is available. If adequate resolution is not avail-
able from the default frequency spans, multiple data samples must be acquired and
analyzed. An optimum configuration allows sufficient resolution to analyze the
operating speed frequency and sidebands as well as the range to measure higher
bearing or gear mesh frequencies. It is desirable to split the data point into two or
three spans or to increase lines of resolution to obtain better resolution. Therefore,
either several data acquisition cycles may be necessary at the same test point or the
data collector must be capable of processing the data in several spans from a single
sample.

4.2.7 Data Display

Vibration data from a machine running at a constant operating speed are generally
repetitive. Small variations do occur as a result of the influenced load, temperature,
and process. Environmental load conditions should be noted when the data are
taken. Data are typically displayed in the spectrum, waveform, and orbit.

(1) Time waveform

Time waveform is a plot of vibration amplitude versus time. It reflects the physical
behavior of the machine in the vibration signal. The waveform is useful in iden-
tifying unique events in a machine and the rate at which they are repeated. The
length (in second) of the display of data from the time waveform depends on the
information sought. It is typically related to the operating period s of the machine; s
in second is equal to 60/RPM. The example of time waveform is presented in
Fig. 4.15.

Example 4.2 Determine the frequency of waveform in Fig. 4.15 that shows the
time waveform of the pump. The time spacing between the impacts is 0.0337 s.

Solution: From the time spacing information, the frequency can be determined as

f ¼ 1
s
¼ 1

0:0337
¼ 29:67Hz ¼ 1780RPM

This indicates the impact is occurring at the rotating frequency of 1 � RPM.

In most situations, the time waveform pattern is very complex as illustrated
below (Fig. 4.16), and therefore, the determination of frequency components is
extremely difficult using this method and is not recommended. So these time
waveform data are best utilized by applying the principles of pattern recognition
and if necessary calculating the frequency components of the major events in the
waveform pattern.
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Time waveform can be used effectively to enhance spectral information in the
following applications:

• Low-speed applications (less than 100 RPM),
• Indication of true amplitude in situations where impacts occur such as assess-

ment of rolling element bearing defect severity,

Fig. 4.15 Time waveform of pump

Fig. 4.16 A complex time waveform of pump
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• Gears,
• Sleeve bearing machines with X-Y probes (2 channel orbit analysis), and
• Looseness, rubs, beats.

(2) Spectrum

The setup of spectrum (Fig. 4.17) is determined by the frequency span of the data in
order that all information will be obtained. Resolution, dynamic range, and
amplitude accuracy are determined by the setup of the fast Fourier transform
(FFT) analyzer (Fig. 4.18). In 1965, Cooley and Tukey devised a FFT algorithm,
making the calculation of the frequency spectra of a signal far more efficient and
rapid than that was previously possible in a digital computer. The FFT spectrum
analyzer is an electronic device that is capable of taking the time waveform of a
given signal and converting it into its frequency components. This analyzer is
capable of rapidly calculating the Fourier transform of a vibration signal from a
machine.

Fig. 4.17 Spectrum and time waveform

Fig. 4.18 Spectrum analyzer (Courtesy of Rohde and Schwarz)
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In Fig. 4.17, the response at operating speed (1X) of the shaft to vibration is
being analyzed. A 10X frequency span was thus selected. These data were pro-
cessed in a fixed 400 line analyzer. Thus, no variability is allowed on resolution
except for the window. A flattop window was used so that the correct amplitude
would be obtained. In such a situation, if the frequency span and better resolution
are needed, two or more spectra should be processed in difference frequency spans.
With a data collector, the analyst has the option of increasing the lines of resolution
instead of taking more spectra.

(3) Orbit

Orbits, or X versus Y displays of shaft position change versus angle of rotation,
were first measured by placing a needle point on a turbine shaft end and then
observing the motion with a microscope. This discovery from the 1930s was
replaced long ago by pairs of proximity probes, digital vector filters, and an
oscilloscope (Fig. 4.18).

Orbit displays give a two-dimensional visual picture of the motion of a rotating
shaft. Orbits can be contaminated by shaft-related noise. Removing the noise using
slow roll compensation techniques greatly improves the quality of orbit data.

Figure 4.19 shows a two-dimensional display of the vibration at point on a
machine. This figure displays whirl orbit of the rotor system with squeeze fluid
damper using magnetic fluid with different current (A). These orbits are collected
from proximity probes, which show the physical motion of the shaft with respect to
bearing. Orbits are useful in showing the motion of pedestals, piping, or any
structure when a better visualization of the vibrating objects is desired (Fig. 4.20).

To Channel 1

To Channel 2

To Channel 1

To Channel 2

Fig. 4.19 A block diagram to measure and display an orbit (Agilent Technologies)
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4.3 Data Processing

Data processing for waveform data is also called signal processing. Various signal
processing techniques have been developed to analyze and interpret waveform data
to extract useful information for further diagnosis and prognosis purpose. The
purpose of signal processing in diagnosis applications and condition-based main-
tenance is as follows:

• Remove distortions and restore the signal to its original shape,
• Remove sensor data that is not relevant for diagnosis or predictions, and
• Transform the signal to make relevant features more explicit (may be hidden in

the signal, FFT analysis is an example of such a transformation).

Distortions in sensor data may be caused by an imperfect:

• Sensor,
• Media (metal, water, air, etc.) in which the signal travels before reaching the

sensor, and
• Media from the sensor to an analog/digital converter.

Signal processing may also manipulate the signal that some characteristics
enabling prognosis are more visible (for an analysis program or a human). Creating
a feature vector from a signal is an abstraction of the signal, preserving the features
used in diagnosis and prognosis.

The first step of data processing is data cleaning (denosing). This is an important
step since data always contain errors. Data cleaning ensures or at least increases the
chance that clean (error-free) data are used for further analysis and modeling.
Without the data cleaning step, one may get into the so-called garbage in garbage
out situation (Jardine et al. 2006). Data errors may be caused by sensor faults. In

Fig. 4.20 An example of
orbital display
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general, there is no simple way to clean data. Sometimes, it requires manual
examination of data.

The next step of data processing is data analysis. A variety of models, algo-
rithms, and tools are available in the literature to analyze data for better under-
standing and interpretation of data. The methods used for data analysis depend
mainly on the types of data collected.

In this section, signal preprocessing techniques for waveform data are reviewed
and then data analysis techniques for other types of data are discussed.

Data preprocessing describes any type of processing performed on raw data to
enhance the data’s reliability and, thereby, to improve the accuracy of the signal
analysis. Commonly used as a preliminary data practice, data preprocessing
transforms the data into a format that will be more easily and effectively processed
for the purpose of the user, for example, in a neural network. There are a number of
different tools and methods used for preprocessing which are as follows (Bengtsson
et al. 2004):

• Sampling which selects a representative subset from a large population of data,
• Transformation which manipulates raw data to produce a single input,
• Denoising which removes noise from data,
• Normalization which organizes data for more efficient access, and
• Feature extraction which pulls out specified data that are significant in some

particular context.

In this section, we mentioned data preprocessing just means denoising. In other
words, we just focus on how to increase signal-to-noise ratio through highlighting
the signals interested, removing, or reducing noise influence. About sampling,
transformation, and normalization, they are described with other modules.

(1) Wavelet transform

When current signals show non-stationary or transient characteristics, the con-
ventional Fourier transform technique is not suitable. The analysis of non-stationary
signals can be performed using time–frequency techniques (short-time Fourier
transform) or time-scale techniques (wavelet transform).

The wavelet transform is a remarkably powerful and general method for its many
distinct merits. Newland’s work (Newland 1994) made the wavelet popular in
engineering applications, especially for vibration analysis; and later on, the wavelet
prevailed in the machine condition monitoring and fault diagnosis. Wavelet was
applied to analyze the gear vibration signals to detect incipient failure. The cracks in
rotor system or in structures were other important objects for the application of the
wavelets (Adewusi and Al-Bedoor 2001; Queck et al. 2001; Jones 2001; Zou et al.
2002). The wavelet in the denoising is also used widely for signal preprocessing in
the monitoring and fault diagnostic field (Menon et al. 2000).

The wavelet transform decomposes a concerned signal into a linear combination
of a time-scale unit. It analyzes original signals and organizes them into several
signal components according to the translation of the mother wavelet (or wavelet
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basic function), which changes the scale and shows the transition of each frequency
component (Daubechies 1992).

Several families of wavelets that have proven to be especially useful are included
in wavelet toolbox of MATLAB. The families of wavelets are Haar (“Haar” or
“db1”), Daubechies (“db1”–“db10”), Biorthogonal (“bior”), Coiflets (“coif”),
Symlets (“sym”), Morlet (“morl”), Mexican Hat (“mexh”), and Meyer (“meyer”).
Continuous wavelet transform (CWT): The continuous wavelet transform is the
integration with respect to the total time of the product of the target signal f(t) and
the mother wavelet wa,b. Using the mathematical expression, the continuous
wavelet transform of time function f(t) can be written as follows:

CWTða; bÞ ¼
Z1
�1

f ðtÞwa;bdt; wa;b ¼
1ffiffiffi
a

p w
t � b
a

� �
ð4:1Þ

where a, b, and wa,b indicate the scale, translation parameters, and the mother
wavelet, respectively.

The transform result represents the correlation between the signal and the
transform of the mother wavelet being scaled and translated. If the signal and
mother wavelet are similar, the transform result will have large values. This means
that lead and delay are translation, while the scale is an expansion and compression.
As the low scale is a compressing wavelet, it becomes a rapid changing signal; that
is, it improves the sensitivity in the time domain for high-frequency signals and in
the frequency domains for low-frequency signals. This makes it possible to perform
a multi-resolution analysis.

Example 4.3 Using CWT for denoising of a noisy sinusoidal signal is described as
follows:

Solution: From the MATLAB, type:

� load noissin;

� whos

Name Size Bytes Class

noissin 1�1000 8000 double array

Grand total is 1000 elements using 8000 bytes

� c ¼ cwt noissin; 1:48; 0db40ð Þ;
� c ¼ cwt noissin; 1:48; 0db40; 0plot0ð Þ;
� colormap pinkð Þ;
� c ¼ cwt noissin; 2:2:128; 0db40; 0plot0ð Þ; %De-noising using scale from 2 to 128

After denoising, the plot gives a clearer picture of denoising using CWT
(Figs. 4.21, 4.22, and 4.23).
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Fig. 4.21 A noisy sinusoidal signal
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Fig. 4.22 CWT for a noisy sinusoidal signal

4.3 Data Processing 73



Discrete wavelet transform (DWT): At CWT, it takes a long time due to calculating
the wavelet coefficient at all scales, and it produces a lot of data. To overcome such
a disadvantage, we can reduce the elapsed time and keep accuracy by performing
the wavelet transform at a scale of power 2.

At the discrete wavelet transform, the scale function /(t) and wavelet function
w(t) are defined as follows:

/ðtÞ ¼
X
k

ck/ð2t � kÞ; wðtÞ ¼
X
k

ð�1Þkck/ð2tþ k � N þ 1Þ ð4:2Þ

where N is the number of data, which is a power of 2, and ck is the wavelet
coefficient. The input signal that passed through the high-pass filter becomes the
wavelet coefficient, and the input signal, which passed through the low-pass filter,
moves to next DWT transform loop. The DWT is carried out by the repetition of
this process.

Example 2.4 Using DWT for denoising of a noisy signal of leleccum, this signal is
particularly interesting because of the noise introduced when a defect developed in
the monitoring equipment as the measurements were being made. Wavelet analysis
effectively removes the noise.
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Fig. 4.23 CWT for a noisy sinusoidal signal after denoising
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Solution: From the MATLAB, type:

� load leleccum;

� plot leleccumð Þ;
� s ¼ leleccum 1 : 3920ð Þ; % setting variables

� ls ¼ length (s);

� ½C, L� ¼ wavedec s; 3; 0db10ð Þ; %Multi level decomposition using db1

� %ConstructingApproximations andDetails

� cA3 ¼ appcoef C;L; 0db10; 3ð Þ;
� cD3 ¼ detcoef C;L; 3ð Þ;
� cD2 ¼ detcoef C;L; 2ð Þ;
� cD1 ¼ detcoef C;L; 1ð Þ;
� % Signal reconstructions

� A3 ¼ wrcoef 0a0;C;L; 0db10; 3ð Þ;
� D1 ¼ wrcoef 0d0;C;L; 0db10; 1ð Þ;
� D2 ¼ wrcoef 0d0;C;L; 0db10; 2ð Þ;
� D3 ¼ wrcoef 0d0;C;L; 0db10; 3ð Þ;
� subplot 2; 2; 1ð Þ; plot A3ð Þ; title 0ApproximationA30ð Þ;
� subplot 2; 2; 2ð Þ; plot D1ð Þ; title 0Detail D10ð Þ;
� subplot 2; 2; 3ð Þ; plot D2ð Þ; title 0Detail D20ð Þ;
� subplot 2; 2; 4ð Þ; plot D3ð Þ; title 0Detail D30ð Þ;

Denoised leleccum signal is shown in Fig. 4.26 of level 3 approximation
(Figs. 4.24, and 4.25).

� subplot 2; 1; 1ð Þ; plot sð Þ; title 0Original0ð Þ;
� subplot 2; 1; 2ð Þ; plot A3ð Þ; title 0Level 3Approximation0ð Þ;

Using wavelet to remove noise from a signal requires identifying which com-
ponents contain the noise and then reconstruct the signal without those components.
In this example, we note that successive approximations become less noisy as more
and more high-frequency information is filtered out of the signal. The level 3
approximation, A3, is quite clean as comparison between it and original signal
shows.

There are many basic wavelet functions; they have their own characteristics. For
different conditions, different basic wavelet functions are used. For an example,
when the signal is composed of impulses, such as the bearing fault signal and gear
signal, the Morlet wavelet should be used due to his wave feature similar with
impulse (Lin and Qu 2000).
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The fast Fourier transform (FFT) and the discrete wavelet transform (DWT) are
both linear operations that generate a data structure that contains log2

n segments of
various lengths, usually filling and transforming it into a different data vector of
length 2n. The mathematical properties of the matrices involved in the transforms
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Fig. 4.24 Signal leleccum
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Fig. 4.25 Three-level decompositions using “db1”
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are similar as well. The inverse transform matrix for both the FFT and the DWT is
the transpose of the original. As a result, both transforms can be viewed as a
rotation in function space to a different domain. For the FFT, this new domain
contains basis functions that are sines and cosines. For the wavelet transform, this
new domain contains more complicated basis functions called wavelets, mother
wavelets, or analyzing wavelets.

Both transforms have another similarity. The basis functions are localized in
frequency, making mathematical tools such as power spectra (how much power is
contained in a frequency interval) and scalegrams (to be defined later) useful at
picking out frequencies and calculating power distributions. The most interesting
dissimilarity between these two kinds of transforms is that individual wavelet
functions are localized in space. Fourier sine and cosine functions are not. This
localization feature, along with wavelets’ localization of frequency, makes many
functions and operators to use wavelets’ sparse when transformed into the wavelet
domain. This sparseness, in turn, results in a number of useful applications such as
data compression, detecting features in images, and removing noise from time
series. One way to see the time–frequency resolution differences between the
Fourier transform and the wavelet transform is to look at the basis function cov-
erage of the time–frequency plane. Figure 4.27 shows a windowed Fourier trans-
form, where the window is simply a square wave. The square wave window
truncates the sine or cosine function to fit a window of a particular width. Because a
single window is used for all frequencies in the WFT, the resolution of the analysis
is the same at all locations in the time–frequency plane.
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Fig. 4.26 Original signal and denoised signal of leleccum
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An advantage of wavelet transforms is that the windows vary. In order to isolate
signal discontinuities, one would like to have some very short basis functions. At
the same time, in order to obtain detailed frequency analysis, one would like to have
some very long basis functions. A way to achieve this is to have short
high-frequency basis functions and long low-frequency ones. This happy medium is
exactly what you get with wavelet transforms. Figure 4.28 shows the coverage in
the time–frequency plane with one wavelet function, the Daubechies wavelet.
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One thing to remember is that wavelet transforms do not have a single set of
basis functions like the Fourier transform, which utilizes just the sine and cosine
functions. Instead, wavelet transforms have an infinite set of possible basis func-
tions. Thus, wavelet analysis provides immediate access to information that can be
obscured by other time–frequency methods such as Fourier analysis.

(2) Averaging

Averaging can be divided into two types: One is synchronous averaging (some-
times also called time synchronous averaging), and the other is spectrum averag-
ing. From the view of process domain, they are done in time domain and frequency
domain, respectively. Synchronous averaging is very useful in reducing both
non-synchronous components and non-coherent components in the measurement,
or in reducing the effect of other interfering signals such as components from
another nearby machine, which requires a tachometer to synchronize each snapshot
of the signal to the running speed of the machine. This is a fundamental process to
many shaft diagnosis, gear diagnosis, and balance algorithms. A common rule of
thumb is that the amount of attenuation is inversely proportional to

ffiffiffiffi
N

p
where N is

the number of averages. This rule is highly representative for the non-coherent
components but is not representative for the non-synchronous components
(Hochmann and Sadok 2004).

Synchronous averaging is a fundamentally different process than the usual
spectrum averaging that is generally done in FFT analysis. It is used to greatly
reduce the effects of unwanted noise in the measurement. The waveform itself is
averaged in a time buffer before the FFT is calculated, and the sampling of the
signal is initiated by a trigger pulse input to the analyzer. If the trigger pulse is
synchronized with the repetition rate of the signal in question, the averaging process
will gradually eliminate the random noise because it is not synchronized with the
trigger. However, the signal that is synchronous with the trigger will be emphasized
as shown in Fig. 4.29.

For doing time-domain averaging on the vibration signal from a real machine,
the averaged time record gradually accumulates those portions of the signal that are
synchronized with the trigger, and other parts of the signal, such as noise and any
other components such as other rotating parts of the machine, are effectively
averaged out. This is the only type of averaging that actually does reduce noise.

An important application of time synchronous averaging is in the waveform
analysis of machine vibration, especially in the case of gear drives. In this case, the
trigger is derived from a tachometer that provides one pulse per revolution of a gear

Fig. 4.29 Time synchronous averaging. a 1st average, b 10th average, c 100th average
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in a machine. This way, the time samples are synchronized in that they all begin at
the same exact point in the angular position of the gear.

A signal, which is synchronous with the rotation of the shaft of the gear being
monitored, is measured to obtain a synchronizing reference that is synchronous
with the rotation of the shaft. Hence, the synchronizing reference signal remains
synchronous with the excitation when the excitation frequency or shaft speed
changes. However, the response is not synchronous with the reference signal,
owing to the phase change imposed by the transmission path when the rotational
speed of the machine changes. It is only practically feasible to measure a reference
signal which is synchronous with the excitation and shaft rotation. The concern
about phase shifting becomes apparent when rotation domain averaging (RDA) is
performed. In the RDA process, a constant number of samples are interpolated from
the measured vibration signal for predetermined angles of shaft rotation. The angle
of shaft rotation is calculated from the reference signal, which is synchronous with
the shaft rotation. If the rotational speed of a gear being monitored changes, the
RDA process will ensure that the order content in the signal remains correct, but the
phase shift will be neglected.

Another type of averaging that is important in machinery monitoring is fre-
quency averaging. In performing spectrum analysis, regardless of how it is done,
some form of time averaging must be done to accurately determine the level of the
signal at each frequency. In vibration analysis, the most important type of averaging
employed is linear spectrum averaging, where a series of individual spectra are
added together and the sum is divided by the number of spectra.

Averaging is very important when performing spectrum analysis of any signal
that changes with time, and this is usually the case with vibration signals of
machinery. Linear averaging smoothes out the spectrum of the random noise in a
spectrum making the discrete frequency components easier to see, but it does not
actually reduce the noise level. Unlike time synchronous averaging, spectrum
averaging does not reduce noise. Instead, it finds the average magnitude at each
frequency, where a series of individual spectra are added together and the sum is
divided by the number of spectra.

Vibration response signals containing periodic components such as obtained
from rotating equipment and gears can be effectively analyzed in the frequency
domain. The averaging of spectra wherein the Fourier transform operation is syn-
chronized with a particular periodic component will reinforce that frequency
component and all of its harmonics, while all non-synchronous data will tend to be
non-reinforced, thereby enhancing the synchronous spectral components. Features
such as gear teeth and turbine blade-passing frequencies, and their related side-
bands, can be extracted as signatures for baseline comparison and fault evaluation.

(3) Enveloping

Enveloping is a method for intensifying the repetitive components of a dynamic
signal to provide an early warning of deteriorating mechanical condition.
Enveloping is a tool that can give more information about the life and health of
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important plant assets. Common applications are concerned with rolling element
bearings and gear mesh fault analyses in gearboxes. Usually, envelop analysis first
filters out the rotational components with low frequency from the complex signal.
The high-frequency repetitive components are enhanced and converted down to the
fault spectrum range while machine noise is reduced by a significant signal-to-noise
factor.

Enveloping is a multiple-step process that extracts signals of interest from an
overall vibration signal (Fig. 4.30). In a rolling element bearing, the interaction
between bearing elements and defects excites a structural resonance in the bearing
support structure. A seismic transducer measures the vibration, and this signal is
band-pass filtered to keep only signal components around the resonance frequency.
The filtered signal is rectified and then enveloped, which removes the structural
resonance frequency and preserves the defect impact frequency. A low-pass filter
then eliminates some of the extraneous high-frequency components, and a spectrum
is generated. Frequency components are correlated with physical bearing parame-
ters, and a trend of the spectra can show progression of defects (Weller 2004).

Enveloped acceleration is an especially valuable parameter to trend, as the
progression of machine condition can be evaluated. Enveloping can reveal faults in
their earliest stages of development, before they are detectable by other machinery
vibration measurements. Without an early fault detection technique like enveloping,
personnel must wait until the latter stages of failure; when overall vibration
increases, lubricants become contaminated, and temperatures rise. By this time, the
remaining usable life of the failing machine elements could be very short and the
damage more extensive than if the fault had been detected earlier. The enveloping
technique enables the detection and analysis of low-level, repetitive vibrations by
extracting them from the overall machinery vibration signal. It is important to note
that the successful application and interpretation of enveloping data require

Fig. 4.30 Typical steps in the implementation of enveloping (Weller 2004)
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experience. Enveloping is just one tool in the analyst’s toolbox, and it is best used
as one of a number of techniques for complete monitoring of a machine.

(4) Cepstrum

The power cepstrum introduced by Bogert et al. (1963) was used first for the
detection or the suppression of echoes. It has also been used in vibratory rotating
machine diagnosis, because the presence of faults induces in signals some recurrent
patterns (echoes).

Cepstrum is the name given to a range of techniques all involving functions
which can be considered as a spectrum of a logarithmic spectrum or the forward
Fourier transform of logarithm of the spectrum of the signal.

Cepstrum analysis is the name given to a calculation technique involving a
function that can be described as a “spectrum of a logarithmic spectrum” or a
backward transform to the time domain. Because it is basically a “spectrum of a
spectrum,” the name was derived by reversing part of the word spectrum, and a
number of terms are commonly used for the parameters of a cepstrum, namely

• Quefrency instead of frequency
• Rahmonics instead of harmonics, and
• Gamnitude instead of magnitude.

The real cepstrum of a signal z is defined as follows:

CrðzÞ ¼ realðF�1 logð FðzÞj jÞÞ ð4:3Þ

where F denotes Fourier transform and F−1 inverse Fourier transform.
The following behaviors have already been observed and have been used in

diagnosis (Randall 1980):

• The cepstrum includes as many sets of decreasing positive peaks as there are
rotating members in the system. The spacing of these sets corresponds to each
rotation period.

• The existence of a comb peak is due exclusively to the presence of a periodicity
in the signal.

• The amplitude of a comb increases when the energy emitted by the corre-
sponding member increases, for example, in the case where the member
develops a defect.

• The sum of the first peaks of every comb is constant; therefore, when the
amplitude of one comb increases, it is to the detriment of others.

The application of the power cepstrum to machine fault extraction is based on its
ability to detect the periodicity in the frequency spectrum, e.g., families of uni-
formly spaced harmonics and sidebands, while binge insensitive to the transmission
path of the signal from an internal source to an external measurement point. Any
periodicities in a frequency spectrum will be shown as one or two specific com-
ponents in the cepstrum. The value of the main cepstrum peak was shown to be an
excellent trend parameters; as it represents the average over a large number of
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individual harmonics, fluctuations in latter (e.g., as a result of load variations) were
largely averaged out in the cepstrum value, which gave a smooth trend curve with
time.

The cepstrum can therefore be said to be extremely advantageous for the fol-
lowing two tasks in vibration monitoring and analysis (Brüel & Kjær Vibro 2006):

For fault detection,

• It is a sensitive measure of the growth of harmonic/sideband families and
• The data is reduced to a single line per family,
• It is insensitive to

– Measurement point location,
– Phase combination, amplitude, and frequency, and
– Loading.

For fault diagnosis

• It is an accurate measure of spacing,
• Can be calculated from any section of a spectrum,
• Can be used for separation of different families, and
• It is sensitive to tooth and blade differences but not uniform wear.

With the appropriate application cepstrum, we can make the job of the diagnosis
technician easier and more certain when it comes to a correct diagnosis of a fault
that may require a shutdown of a machine (Figs. 4.31, 4.32, and 4.33).
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Fig. 4.31 Signals s1 and s2
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Fig. 4.32 A complex cepstrum of s2
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Fig. 4.33 A real cepstrum of s2
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Example 4.5 Try using cceps in an echo detection application. First, create a 45 Hz
sine wave sampled at 100 Hz.

Solution: From the MATLAB, type:

� t ¼ 0:0:01:1:27;

� s1 ¼ sin 2�pi�45�tð Þ;
� %Add an echo of the signal;with half the amplitude;

0:2 seconds after the beginning of the signal:

� s2 ¼ s1þ 0:5� zeros 1; 20ð Þ s1 1:108ð Þ½ �;
� c ¼ cceps s2ð Þ; %The complex cepstrum of this new signal is

� plot t; cð Þ
� y ¼ rceps s2ð Þ; %The real cepstrum of s2

4.4 Data Analysis

Data analysis is one of the most important steps used for condition monitoring, fault
diagnosis, and prognosis, whose aim is to find a simple and effective transform to
the original signals. The important information (dominant features) contained in the
signals can be extracted for condition monitoring and fault diagnosis.

In many pattern classification applications, data are represented by features that
can be characteristic values, colors, and so on. For condition monitoring and fault
diagnosis, features are some representative values, which can indicate machine
conditions. For continuous, online, or remote monitoring, the way of feature is
necessary and important since the transform and storage problems can be solved.

The represented features include time-domain features such as root mean square
(RMS), variance, skewness, and kurtosis, frequency-domain features such as con-
tent at the feature frequency and the amplitude of FFT spectrum, and time-domain
and frequency-domain features such as the statistical characteristics of short-time
Fourier transform (STFT), Wigner-Viller distribution, and wavelet transform.

Transforming from data to features, feature representation module plays a very
important role, which directly affects the performance of the whole system. In other
words, the better the features can be tailored to reflect the requirements of the task, the
better the results will be. In order to keep data information at highest level, features are
calculated from time domain, frequency domain, and autoregression estimation.

4.4.1 Features in Time Domain

When carrying out vibration analysis in time domain, some simple quantities can be
used such as RMS, crest factor, kurtosis, and other statistical moments, but often
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they do not offer enough information on the vibrations for diagnosis. A traditional
tool for more enhanced signal description in time domain is time-series analysis.
The time-series analysis is suitable for the description of dynamic phenomenon.

(1) Cumulants

The features described here are termed statistics because they are based only on the
distribution of signal samples with the time series treated as a random variable.
Many of these features are based on moments or cumulants. In most of the cases,
the probability density function (pdf) can be decomposed into its constituent
moments. If a change in condition causes a change in the probability density
function of the signal, then the moments may also change, and therefore, moni-
toring these can provide diagnosis information.

The moment coefficients of time waveform data can be calculated using fol-
lowing equations:

mn ¼ Efxng ¼ 1
N

XN
i¼1

xni ð4:4Þ

where E{�} represents the expected value of the function, xi is the ith time historical
data, and N is the number of data points.

The first four cumulants, mean c1, standard deviation c2, skewness c3, and
kurtosis c4, can be computed from the first four moments using the following
relationships:

c1 ¼ m1

c2 ¼ m2 � m2
1

c3 ¼ m3 � 3m2m1 þ 2m3
1

c4 ¼ m4 � 3m2
2 � 4m3m1 þ 12m2m

2
1 � 6m4

1

ð4:5Þ

The first moment is the mean of the signal, while the second is defined as the
signal’s mean squared value. The moments are commonly defined about the mean
so as to obtain the statistical central moment. The second central moment is called
variance. The third and fourth central moments are usually normalized. As a result
of the normalization, the skewness and kurtosis are obtained, respectively. The
skewness measures the asymmetry of the process’s pdf, and the kurtosis is a
measure of the degree of flatness of the pdf distribution near its center.

In the case of a Gaussian process (i.e., a stationary signal with a Gaussian pdf),
the first- and second-order statistics completely describe the properties of the signal.
In particular, a Gaussian process has null skewness, while its kurtosis value is 3. It
may be concluded that if a signal is non-Gaussian, then higher-order moments are
needed to completely describe its properties.

In addition, non-dimensional feature parameters in time domain are more pop-
ular, such as shape factor SF and crest factor CF.
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SF ¼ xrms

xabs
; CF ¼ xp

xrms
ð4:6Þ

where xrms, xabs, and xp are root-mean-squared value, absolute value, and peak
value, respectively.

(2) Upper and lower bound of histogram

The histograms, which can be thought of as a discrete probability density function,
are calculated in the following way. Let d be the number of divisions we wish to
divide the ranges into, and let hi with 0 � i < d be the columns of the histogram.
Assume we are doing it for the time xi only. Then,

hi ¼
Xn
j¼0

1
n
riðxiÞ; 8i; 0� i\d ð4:7Þ

riðxÞ ¼ 1; if
iðmaxðxiÞ �minðxiÞÞ

d
� x\

ðiþ 1ÞðmaxðxiÞ �minðxiÞÞ
d

0; otherwise

(
ð4:8Þ

The lower bound hL and upper bound hU of histogram are defined as follows:

hL ¼ maxðxiÞ � D=2; hU ¼ maxðxiÞþD=2 ð4:9Þ

where D ¼ fmaxðxiÞ �minðxiÞg=ðn� 1Þ.
Effectively, this normalizes by two things: the length of the sequence and the

column divisions. Since the sum term above includes a 1/n term, and every xi must
fall into exactly one hi column, the net effect is that R hi = 1 (i = 0, …, d − 1). The
column divisions are relative to the bounding box, and thus, most of hi above will
not be zero. This is desirable, since it essentially removes the issue of size of a sign
and low resolution on small signs, with lots of empty columns. The alternative
would be to have absolute locations, which would be nowhere near as closely
correlated with the information in the sign itself.

Other approach is based on statistical properties of intensity histogram. One such
measure is based on statistical moments. The expression for the nth-order moments
about the mean is given by

ln ¼
XL�1

i¼0

ðZi � mÞnpðziÞ ð4:10Þ

where Zi is a random variable indicating intensity, p(zi) is the histogram of the
intensity levels in a region, L is the number of possible intensity levels, and m is the
mean (average) intensity. We have considered similarly other five more descriptors,
and their details are shown in Table 4.4.
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(3) Entropy estimation and error

In information theory, uncertainty can be measured by entropy. The entropy of a
distribution is the amount of a randomness of that distribution. Entropy estimation
is two-stage processes; first, a histogram is estimated, and thereafter, the entropy is
calculated. The entropy estimation Es(xi) and standard error Ee(xi) are defined as
follows:

EsðxiÞ ¼ �
X

pðxiÞln pðxiÞ; EeðxiÞ ¼
X

pðxiÞln pðxiÞ2 ð4:11Þ

where xi is discrete-time signals, and p(xi) is the distribution on the whole signal.
Here, we estimate the entropy of vibration signal and stator current signal with
using unbiased estimate approach.

(4) Autoregression coefficients

Since different faults display different characteristics in the time series, autore-
gression (AR) is used to establish a model. Then, the autoregressive coefficients are
extracted as fault features. The first 8-order coefficients of AR models are selected
through Burg’s lattice-based method using the harmonic mean of forward and
backward squared prediction errors. A common approach for modeling univariate
time series is the autoregressive (AR) model as follows:

yt ¼ a1yt�1 þ a2yt�2 þ � � � þ anyt�n þ et ¼
Xn
i¼1

aiyt�i þ et ð4:12Þ

where ai are the autoregression coefficients, yt is the time series under investigation,
and n is the order of the AR model (n = 8) which is generally very much less than
the length of the series.

Table 4.4 Descriptors of the intensive histogram

Moment Expression Measure

Mean m ¼ PL�1
i¼0 zi pðziÞ A measure of average intensity

Standard
deviation

r ¼ ffiffiffiffiffiffiffiffiffiffiffi
l2ðzÞ

p ¼
ffiffiffiffiffi
r2

p
A measure of average contrast

Smoothness R ¼ 1� 1
1þ r2

Measures the relative smoothness of the
intensity in a region

Skewness l3 ¼
PL�1

i¼0 ðZi � mÞ3 pðziÞ Measures the skewness of a histogram

Uniformity U ¼ PL�1
i¼0 p2ðziÞ Measures the uniformity of intensity in the

histogram

Entropy e ¼ �PL�1
i¼0 pðziÞ log2 pðziÞ A measure of randomness
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The noise term or residual et is almost always assumed to be Gaussian white
noise. An autoregression model is simply a linear regression of the current value of
the series against one or more prior values of the series. The current term of the
series can be estimated by a linear weighted sum of previous terms in the series.
The weights are the autoregression coefficients.

The problem in AR analysis is to derive the best values for ai given a series yt.
The majority of methods assume the series yt is linear and stationary. By con-
vention, the series yt is assumed to be zero mean, if not this is simply another term
a0 in front of the summation in the equation above.

A number of techniques exist for computing AR coefficients. The main two
categories are least squares and Burg method. Within each of these there are a few
variants, the most common least squares method is based upon the Yule–Walker
equations. MATLAB has a wide range of supported techniques; note that when
comparing algorithms from different sources, there are two common variations:
First is whether or not the mean is removed from the series, and the second is the
sign of the coefficients returned (this depends on the definition and is fixed by
simply inverting the sign of all the coefficients).

The most common method for deriving the coefficients involves multiplying the
definition above by yt−d, taking the expectation values, and normalizing (Box and
Jenkins 1976) that gives a set of linear equations called the Yule–Walker equations
that can be written in matrix form as follows:

1 r1 � � � rn�1

r1 1 � � � rn�2

� � � � � �
rn�1 rn�2 � 1

2
664

3
775

a1
a2
�
an

2
664

3
775 ¼

r1
r2
�
rn

2
664

3
775 ð4:13Þ

where rd is the autocorrelation coefficient at delay d.

4.4.2 Features in Frequency Domain

Through the frequency-domain parameter indices, the primary diagnosis is avail-
able. In other words, the features can indicate the faults. Because these index
calculations are simple and fast, they can be used in the online condition moni-
toring. When there are some changes on the parameters, the faults should be there.
Then, precision diagnosis and prognosis can deal with the problem.

The signals of the ball bearing are composed of many stochastic elements;
different faults have different spectrum in the frequency domain. But in some cases,
we cannot distinguish them from the power spectrum. As mentioned above, fre-
quency parameter indices can show the faults in the beginning of the failure. So we
also can use the indices to run the condition monitoring and diagnosis.

4.4 Data Analysis 89



(1) Fourier transform

The fast Fourier transform (FFT) which used the Fourier transform is one of the
most widely used and well-established methods. The Fourier transform is a
mathematical tool that allows the representation of a time signal f(t) in the fre-
quency domain as a function F(x). In this domain, the explicit harmonic content of
a signal and its distribution in terms of the frequency x are revealed. If the temporal
variable t is continuous, then the Fourier transform is continuous (continuous
Fourier transform, CFT), but if t belongs to a discrete set of values, we talk about
discrete Fourier transform (DFT). Its definition is given by

FðkÞ ¼
XN�1

n¼0

f ðnTÞ e�j2pnk=N ; f ðnTÞ ¼ 1
N

XN�1

n¼0

FðkÞ ej2pnk=N ð4:14Þ

Unfortunately, the FFT-based methods are not suitable for non-stationary signal
analysis and are not able to reveal the inherent information of non-stationary signal.
However, the change of the environment and the fault from the machine itself often
make the output signals of the running machine to contain non-stationary compo-
nents which include abundant information about machine faults.

(2) Spectral analysis

Spectral analysis of vibrations has been used in machine fault diagnosis for decades.
It is claimed that vibration monitoring is the most reliable method of assessing the
overall health of the machinery. Usually, machines have complex mechanical
structures that vibrate, and coupled parts of machines transmit these vibrations. This
results in machine-related frequency spectrum that characterizes healthy machine
behavior. When a mechanical part of the machine either wears or breaks up, some
frequency components in the spectrum will change. In fact, each fault in a machine
produces vibrations with distinctive characteristics that can be measured and
compared with reference ones in order to perform the fault detection and diagnosis.
Figure 4.34 shows the comparison of normal condition and bearing faults (outer
race and inner race) of machine taken from machine fault simulator. From this
figure, we can see the differences among machine under normal condition and
faulty bearing condition. These differences indicate that any degradation has
occurred in the machine, and the analyst must keep attention to it and then do
actions for preventing catastrophic condition.

One of the most used tools in signal analysis is the power spectrum. For a
discrete-time series x(n), the discrete Fourier transform (DFT) X(f) of x(n) is defined
to be

Xðf Þ ¼
X1
n¼�1

xðnÞ e�2jpn ð4:15Þ
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Fig. 4.34 Spectral analysis of machine with different condition. a Normal condition, b bearing
outer race fault, and c bearing inner race fault
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In the well-known second-order measure, the power spectral density (PSD) P
(f) of x(n) can be defined in terms of X(f) as follows:

Pðf Þ ¼ E½Xðf ÞX�ðf Þ� ð4:16Þ

where E½�� is the statistical expectation, or average, and X*(f) is the complex con-
jugate of X(f).

The PSD is a linear transform and is a function of the frequency index f. The
power spectrum can be considered as the decomposition of the signal power, i.e.,
the signal’s second moment, over frequency. The power spectrum is of limited
value in analyzing signals where nonlinearities are involved. Extending these
definitions to third- and fourth-order measures gives rise to the bispectrum B(f1, f2)
and trispectrum T(f1, f2, f3), which are defined, respectively, as

Bðf1; f2Þ ¼ E½Xðf1ÞXðf2ÞX�ðf1 þ f2Þ� ð4:17Þ

Tðf1; f2; f3Þ ¼ E½Xðf1ÞXðf2ÞXðf3ÞX�ðf1 þ f2 þ f3Þ� ð4:18Þ

Unlike the PSD, the bispectrum and trispectrum are functions of more than one
frequency index, and further, it may also be seen that they are complex quantities;
i.e., they contain both magnitude and phase information about the original time
series x(n).

(3) Frequency parameter indices

The signal power spectrum shows the power distribution with the frequency. When
the frequency elements and their power change, the position of the main spectrum
peak will change. The characteristics of the frequency domain can be shown well,
through frequency parameter indices as follows:

Frequency center (FC)

FC ¼
R1
0 f sðf ÞdfR1
0 sðf Þdf ð4:19Þ

Mean square frequency (MSF)

MSF ¼
R1
0 f 2 sðf ÞdfR1
0 sðf Þdf ð4:20Þ

Root-mean-squared frequency (RMSF)

RMSF ¼
ffiffiffiffiffiffiffiffiffiffi
MSF

p
ð4:21Þ
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Variance frequency (VF)

VF ¼
R1
0 ðf � FCÞ2 sðf ÞdfR1

0 sðf Þdf ð4:22Þ

Root variance frequency (RVF)

RVF ¼
ffiffiffiffiffiffiffi
VF

p
ð4:23Þ

where s(f) is the signal power spectrum. FC, MSF, and RMSF show the position
changes of main frequencies; VF and RVF describe the convergence of the spec-
trum power.

From the view of physics, we consider the power spectrum s(f) as the mass
density function of a stick in the ordinate axis. Accordingly, FC is the mass center
in the abscissa. When larger the density is near the origin, the distance between FC
and the origin is closer. RMSF is a rotating radial circling the stick. The relation
between the distance and density is same with above-mentioned FC. Due to real
calculation, the frequency spectrum needs to be discrete:

FC ¼
PN

i¼2 _xixi
2p

PN
i¼1 x

2
i

; MSF ¼
PN

i¼2 _x
2
i

4p2
PN

i¼1 x
2
i

; VF ¼ MSF� FC2 ð4:24Þ

where _xi ¼ ðxi � xi�1Þ=D.
(4) Higher-order spectra (HOS)

HOS (also known as polyspectra) are relatively new tool in the area of signal
processing. The second-order spectrum, that is the power spectrum, is very satis-
factory in many vibration signals, but it is obviously of limited value in other
signals where nonlinearities are involved. Nevertheless, the traditional linear
spectral analysis can be employed in analyzing vibrations of nonlinear system. As a
matter of fact, the second-order frequency response function and the coherence
function are commonly used to detect deviations from linearity of a system.
However, their computation requires two measurement sensors. Since only
Gaussian process can be completely described by their second-order statistics, HOS
give information about the signal’s non-Gaussianity. HOS are defined in term of
higher-order statistics, and they have attractive properties considering signal pro-
cessing for the purpose of condition monitoring.

The k-order polyspectrum is defined as the Fourier transform of the corre-
sponding cumulant sequence in Eq. (4.25)

s2ðxÞ ¼
X1
k¼�1

c2ðkÞe�j2pxk ð4:25Þ
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s3ðx1;x2Þ ¼
X1
k¼�1

X1
l¼�1

c3ðk; lÞe�j2px1k e�j2px2l ð4:26Þ

s4ðx1;x2;x3Þ ¼
X1

k;l;m¼�1
c4ðkÞe�j2pðx1kþx2lþx3mÞ ð4:27Þ

which are, respectively, the power spectrum (second-order spectrum), the bispec-
trum, and the trispectrum. Note that bispectrum is a function of two frequencies,
whereas the trispectrum is a function of three frequencies. In contrast to the power
spectrum which is real valued and nonnegative, bispectra and trispectra are complex
valued.

For a real-valued process, symmetry properties of cumulant carry over to
symmetry properties of polyspectra. The power spectrum is symmetric s2(x) =
s2(−x). The symmetry properties of the bispectrum are given by

s3ðx1;x2Þ ¼ s3ðx2;x1Þ ¼ s3ðx1;�x1 � x2Þ
¼ s3ð�x1 � x2;�x2Þ ¼ s�3ð�x1;�x2Þ

ð4:28Þ

while the symmetry properties of trispectrum include

s4ðx1;x2;x3Þ ¼ s4ðx1;x3;x2Þ ¼ s4ðx2;x1;x3Þ
¼ s4ð�x1;x2 � x1;x3 � x1Þ ¼ s�3ð�x1;�x2;�x3Þ

ð4:29Þ

The bispectrum is a decomposition of the skewness of a signal over frequency
and as such can detect asymmetric nonlinearities. The bicoherence is a normal-
ization method for the bispectrum. The trispectrum is the fourth-order spectrum and
is sensitive to the signal kurtosis. Therefore, it can detect symmetric nonlinearities.
The normalization of the trispectrum leads to the tricoherence which is sensitive to
the cubic phase coupling.

4.4.3 Features in Time–Frequency Domain

As some supplementary methods for non-stationary signal analysis, a variety of
time–frequency analysis methods such as Wigner–Ville distribution
(WVD) (Russell et al. 1998), the short-time Fourier transform (STFT) (Koo and
Kim 2000), and instantaneous power spectrum distribution (IPS) (Cohen 1989)
have been introduced for the analysis of vibration signals to extract useful diag-
nostic information. These methods perform a mapping of one-dimensional signal x
(t) to a two-dimensional function of time and frequency and therefore are able to
provide true time–frequency representation for the signal. It is no doubt that the
WVD has good concentration in the time–frequency plane. However, even support
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areas of the signal do not overlap each other; interference terms will appear on the
time–frequency plane which misleads the signal analysis. In order to overcome
these disadvantages, many improved methods have been proposed such as Choi–
Williams distribution (CWD) and cone-shaped distribution.

These methods can exhibit local features of signals and give an account of how
energy distribution over frequencies changes from one instant to the next. Of these
methods, the WVD and IPS transforms are bilinear distributions, which result in
interference terms when a multi-component signal is analyzed, and this might make
the interpretation of distribution difficult. In contrast, the STFT and CWT perform
linear decompositions of the analyzed signal and therefore do not cause any
interference, which might detract from the interpretation of the targeted signal.
However, the STFT employs a constant window size during the analysis and,
hence, results in a constant time–frequency resolution. On the contrary, the CWT
performs a decomposition of the analyzed signal into a set of waves (or wavelets),
which are derived from a single wavelet, and wavelets at different frequencies are
generated by introducing dilation into the analyzing wavelet. A large window is
used for low-frequency estimates with poor time resolution, whereas the window
automatically narrows at high frequencies, improving time resolution of the
transform, but the frequency resolution deteriorates according to the uncertainty
principle. Therefore, the wavelet transform provides a good compromise between
localization and frequency resolution.

(1) Short-time Fourier transform (STFT)

Spectral representation is a stationary measure, which indicates the frequency
content of the signal, but it does not reveal any time information regarding these
frequency components. When the amplitude and frequency content of the signal
change in time, combined time–frequency methods can be used effectively.
The STFT, which maps the signal into a two-dimensional function in a time–
frequency plane, can be expressed as follows (Cohen 1989; Wang and McFadden
1993):

STFTðt; f Þ ¼
Ztþ T=2

t�T=2

xðsÞw�ðs� tÞe�j2p f sds ð4:30Þ

where x(t) denotes time waveform being analyzed, t is the analysis instant, f is
frequency, s is time variable, * represents complex conjugation, T is window
interval, and w(s) is the windowing function which satisfies w(s) = 0 for |s| > T/2.

Using the STFT transform, an energy density can be achieved by computing the
spectrogram S(t, f), which is the squared magnitude of the STFT. That is,

Sðt; f Þ ¼ STFTðt; f Þj j2 ð4:31Þ

which represents the energy density of the original signal x(t) windowed by w(t).
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The ordinary energy density can be obtained by setting ||w||2 = 1, where ||�||2
denotes the norm for the space L2(R). Signal energy is preserved by the spectrogram
and can be obtained by integrating spectrogram over the whole t–f plane. That is,

E ¼
Z1
�1

xðtÞj j2dt ¼
Z1
�1

Z1
�1

Sðt; f Þdf dt ð4:32Þ

It is shown in Eqs. (4.30) and (4.31) that the window length remains constant
during the spectrogram analysis, and consequently, a constant time–frequency
resolution is obtained in the whole t–f plane. However, analysis of signals with a
mix of short-term impulsive events requires the use of a short window, whereas a
longtime window should be employed when long-term harmonic components are
analyzed.

(2) Wavelet transform

Over the past 10 years, wavelet theory has become one of the emerging and
fast-evolving mathematical and signal processing tools. The novel concept of
wavelet was first put forward definitely by Morlet in 1984. Different from the
STFT, the wavelet transform can be used for multi-scale analysis of a signal
through dilation and translation, so it can extract time–frequency features of a signal
effectively. Therefore, the wavelet transform is more suitable for the analysis of
non-stationary signals.

A time function f(t) 2 L2 (square integral) can be expressed in terms of some
basis functions wj,k(t) and /k(t) by means of the following decomposition.

f ðtÞ ¼
X1
k¼�1

ckukðtÞþ
X1
j¼0

X1
k¼�1

dj;kwj;kðtÞ ð4:33Þ

where wj,k(t) and /k(t) are orthonormal set of basis function of L2 which satisfy
some properties and are denominated wavelet functions. The coefficients ck and dj,k
correspond to the discrete wavelet transform coefficients of the function f(t) known
as approximation and decomposition coefficients, respectively, which is defined as
follows:

dj;k ¼ f ðtÞ; wj;kðtÞ
� � ¼

Z1
�1

f �ðxÞwj;kðtÞ dt ð4:34Þ

ck ¼ f ðtÞ; /kðtÞh i ¼
Z1
�1

f �ðtÞ/kðtÞ dt ð4:35Þ
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The more commonly used basis is the so-called Harr wavelets whose definition
are given by

wj;kðtÞ ¼ 2j=2wð2 jt � kÞ j; k 2 Z ð4:36Þ

/kðtÞ ¼ /ðt � kÞ ð4:37Þ

where wj,k(t), denominated as mother wavelet, and /k(t), the scale function, are
defined as follows:

wðtÞ ¼ /ð2tÞ � /ð2t � 1Þ ð4:38Þ

/ðtÞ ¼ 1 if 0� t� 1
0 other

�
ð4:39Þ

where the subindexes j and k are denominated decomposition level and the shifting
time, respectively.

Table 4.5 shows a comparison of performances of continuous wavelet transform
(CWT), short-time Fourier transform (STFT), Wigner–Ville distribution (WVD),
Choi–Williams distribution (CWD), and cone-shaped distribution (CSD) (Peng and
Chu 2004).

Table 4.5 Comparison of the performances of the different methods (Peng and Chu 2004)

Methods Resolution Interference
term

Speed

CWT Good frequency resolution and low time
resolution for low-frequency components.
Low-frequency resolution and good time
resolution for high-frequency components

No Fast

STFT Dependant on window function, good time, or
frequency resolution

No Slower
than
CWT

WVD Good time and frequency resolution Severe
interference
terms

Slower
than
STFT

CWD Good time and frequency resolution Less
interference
than WVD

Very
slow

CSD Good time and frequency resolution Less
interference
than CWD

Very
slow
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Chapter 5
Statistic Feature Extraction

5.1 Introduction

Feature extraction is a commonly used technique applied before diagnosis and
prognosis when a number of measures, or features, have been taken from a set of
objects in a typical statistical pattern recognition or trending reasoning task. The
goal is to define a mapping from the original representation space into a new space
where the classes are more easily separable. This will reduce the classifier or
prediction complexity, increasing in most cases accuracy.

Accurate data-driven PHM/CBM needs multi-sensor to obtain detailed condition
information, which results in plenty of raw data, thereby many features are cal-
culated corresponding to last section to keep data information at the highest level.
Too many features can cause curse of dimensionality and peaking phenomenon that
greatly degrades classification accuracy. Also many features still can bring traffic
jam or storage problem. So what are the curse of dimensionality and peaking
phenomena and how to handle them?

Two important phenomena that can be identified are the so-called curse of
dimensionality and peaking phenomenon. The performance of a data-driven
PHM/CBM system depends on the interrelationship between sample size, number
of features, and algorithm complexity. If one consider a very simple naive
table-lookup technique consisting in partitioning the feature space into cells and
associating a class label to each cell, it can be pointed out that this technique
requires a number of training data points which is exponential in the feature space
dimension (Bishop 1995). This phenomenon is termed the curse of dimensionality
which produces as a consequence the peaking phenomenon in classifier design.
This is a paradoxical effect that appears by considering the following; it is well
known that the probability of misclassification of a decision rule does not increase
as the number of considered features increases, as long as the class-conditional
densities are known (or alternatively the number of training samples is arbitrarily
large and representative of the underlying densities).
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However, it has been often noticed in practice that increasing the features to be
considered by a classifier may degrade its performance if the number of training
examples that are used to design the classifier is small relative to the number of
features. This paradoxical behavior is termed the peaking phenomenon (Raudys and
Jain 1991). The explanation stands in the following: The most commonly used
parametric classifier estimates the unknown parameters and plugs them in for the
true ones in the class-conditional densities. For a fixed sample size, as the number
of features increases, and consequently the number of unknown parameters to be
estimated from the sample, the reliability of parameter estimation decreases. As a
consequence, the performance of the resulting classifier, for a fixed sample size,
may degrade with an increase in the number of features.

Trunk (1979) provided a simple example to illustrate the curse of dimensionality
which we reproduce below. Consider the two-class classification problem with
equal prior probabilities, and a d-dimensional multivariate Gaussian distribution
with the identity covariance matrix for each class. The mean vectors for the two
classes have the following components

m1 ¼ 1;
1ffiffiffi
2

p ;
1ffiffiffi
3

p ; . . .;
1ffiffiffi
d

p
� �

; m2 ¼ �1;� 1ffiffiffi
2

p ;� 1ffiffiffi
3

p ; . . .;� 1ffiffiffi
d

p
� �

ð5:1Þ

Note that the features are statistically independent and the discriminating power
of the successive features decreases monotonically with the first feature providing
the maximum discrimination between the two classes. The only parameter in the
densities is the mean vector, m = m1 = −m2.

Trunk considered the following two cases:

• The mean vector m is known. In this situation, we can use the optimal Bayesian
decision rule (with a 0/1 loss function) to construct the decision boundary. The
probability of error as a function of d can be expressed as:

PeðdÞ ¼
Z1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

1
i

� �vuut 1ffiffiffiffiffiffi
2p

p � e�1
2z

2
dz ð5:2Þ

It is easy to verify that limd!1 peðdÞ ¼ 0. In other words, we can perfectly
discriminate the two classes by arbitrarily increasing the features, d.

• The mean vector m is unknown and n label training samples are available.
Trunk found the maximum likelihood estimate m̂ of m and used the plug-in
decision rule (substitute m̂ for m in the optimal Bayes decision rule). Now the
probability of error which is a function of both n and d can be written as:

Peðn; dÞ ¼
Z1

hðdÞ

1ffiffiffiffiffiffi
2p

p � e�1
2z

2
dz ð5:3Þ
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where

hðdÞ ¼
Pd

i¼1
1
i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 1

nÞ
Pd

i¼1
1
i

� �þ d
n

q ð5:4Þ

Trunk showed that limd!1 peðn; dÞ ¼ 1=2, which implies that the probability of
error approaches the maximum possible value of 0.5 for this two-class problem.
This demonstrates that, unlike the first case, we cannot arbitrarily increase the
number of features when the parameters of class-conditional densities are estimated
from a finite number of training samples. The practical implication of the curse of
dimensionality is that a system designer should try to select only a small number of
salient features when confronted with a limited training set.

All of the commonly used classifiers can suffer from the curse of dimensionality.
While an exact relationship between the probability of misclassification, the number
of training samples, the number of features, and the true parameters of the
class-conditional densities is very difficult to establish, some guidelines have been
suggested regarding the ration of the sample size to dimensionality. It is generally
accepted that using at least ten times as many training samples per class as the
number of features (n/d > 10) is good practice to follow in classifier. The more
complex the classifier, the greater should the ratio of sample size to dimensionality
be to avoid the curse of dimensionality.

There are two methods that can realize feature dimensionality reduction: feature
extraction and feature selection, see in Fig. 5.1. Methods that create new features
based on transformations or combinations of the original feature set are called
feature extraction. The term feature selection refers to algorithms that select the best
feature subset from the all features. Often feature extraction precedes feature
selection; firstly feature dimensionality is greatly reduced by extraction and then the
significant features are selected from transformed features. Feature extraction leads
to savings in computation time cost. Feature selection contributes to monitoring and
diagnosis accuracy.

Problem with high-dimensional data, known as the curse of dimensionality in
pattern recognition, implies that the number of training samples must grow expo-
nentially with the number of features in order to learn an accurate model. Therefore,

Fig. 5.1 Feature extraction and feature selection
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reducing the number of features by extracting or selecting only the relevant and
useful ones is desirable. There are two ways to reduce the dimensionality: feature
extraction and feature selection. Feature extraction means transforming the existing
features into a lower-dimensional space, and feature selection means selecting a
subset of the existing features without any transformation (Han et al. 2005).

Multivariate analysis is an important branch of statistics whose purpose is to
study random systems with more than one random variable of interest. Many
multivariate statistical techniques had been developed and applied to fault diagnosis
such as distance-based methods, principal component analysis (PCA), probability
principal component analysis (PPCA), partial least squares (PLS), Fisher discrim-
inant analysis (FDA), and discriminant partial least squares (DPLS). Given a
number of data in the historical database, each associated with a different fault, the
goal of fault diagnosis is equivalent to that of classification so that the out-of-control
observation is assigned to the most similar or closely related fault group or class.

Feature extraction methods can be divided into linear and nonlinear, depending
on the nature of the mapping function. They can also be classified as supervised or
unsupervised, depending on whether the class information is taken into account or
not. Most of feature extraction techniques have based on linear technique such as
PCA (unsupervised), linear discriminant analysis (LDA, supervised), and inde-
pendent component analysis (ICA, unsupervised). Schematically, PCA preserves as
much variance of the data as possible; LDA attempts to group patterns of the same
class while separating them from the other classes, and ICA obtains a new set of
features by extracting the less correlated (in a broad sense) directions in the data set
(Perez-Jimenez and Perez-Cortes 2006). After doing feature extraction sometimes,
there is still high noise, irrelevant or redundant information in these extracted
features.

On the other hand, well-known nonlinear methods are Sammon’s mapping
(unsupervised) (Sammon 1969), nonlinear discriminant analysis (NDA, supervised)
(Mao and Jain 1995), self-organizing map (SOM, unsupervised) (Kohonen 1990),
evolutionary extraction (supervised) (Liu and Motoda 1998), and so on. Sammon’s
mapping tries to keep the distances among the observations using hill-climbing or
neural network methods; NDA obtains new features from the coefficients of the
second hidden layers of a multilayer perceptron and Kohonen maps project data in
an attempt to preserve the topology. Finally, evolutionary extraction uses a genetic
algorithm to find combinations of original features in order to improve classifier
accuracy (Perez-Jimenez and Perez-Cortes 2006).

The examples of using PCA and ICA are presented as follows. PCA with
statistical process control has employed to enhance the discrimination features from
the undamaged and damaged structures. Sohn et al. (2000) implemented visual-
ization and dimension reduction for damage detection (Worden and Manson 1999).
Beside of this, a number of applications of ICA have been reported in image
processing (Antonini et al. 2006), biomedical signal processing (Vigario 1997),
financial (Back and Weigend 1998), and medical area (Biswall and Ulmer 1999).
The use of ICA in machine condition monitoring and fault detection application has
reported in the field of structural damage detection (Zang et al. 2004) and
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submersible pump (Ypma and Pajunen 1999). However, there are still relatively
few real engineering applications of ICA in machine condition monitoring and fault
diagnosis.

The kernel trick is one of the crucial tricks for machine learning. Its basic idea is
to project the input data into a high-dimensional implicit feature space with a
nonlinear mapping, and then the data are analyzed so that nonlinear relations of the
input data can be described. Recently, Bach and Jordan (2002) presented a new
learning method of ICA which use contrast function based on canonical correlation
in reproducing a kernel Hilbert space (RKHS). The other method proposed by
Harmeling et al. (2001) uses a kernel-based blind source separation algorithm in the
blind separation of nonlinearly mixed speech signal.

5.2 Basic Concepts

5.2.1 Pattern and Feature Vector

The corrected data of an object, y(t), are firstly processed by a parameter extractor.
Information relevant to pattern classification is extracted from y(t) in the form of a
p-dimensional parameter vector y. Vector y is then transformed to a feature vector
x, which has a dimensionality m (m � p), by a feature extractor. Feature vector x is
assigned to one of the K classes, X1, X2, …, XK, by the classifier based on a certain
type of classification criteria.

Pattern is a quantitative or structural description of an object or some other entity
of interest. It is usually arranged in the form of a feature vector as

x ¼
x1
x2
..
.

xn

2
6664

3
7775

where x1, x2, …, xn are the features.
Depending on the measurements of an object, features in a pattern can be rather

discrete number or real continuous values. The requirement on features is that the
features can reflect the characteristics of desired objects and differ from those of
other objects to the largest extent.

5.2.2 Class

Class or pattern class is a set of patterns that share some common properties. The
feature vectors of the same type of objects will naturally form one set. Due to the
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diversity of the objects, the patterns extracted from the same type of objects are
seldom identical. This can be interpreted as clusters of points in an n-dimensional
space, which are called distributions of classes. Since the purpose of pattern
recognition is to classify these patterns, the distributions of classes are desired to be
separable and not empty. Suppose we have K classes, in a mathematical form, the
requirement is

Xk 6¼ /; k ¼ 1; 2; . . .;K

Xk \Xl ¼ /; k 6¼ l 2 f1; 2; . . .;Kg:

5.3 Parameter Evaluation Technique

To select the optimal parameters that can well represent the fault features, a feature
extraction method based on the distance evaluation technique was presented by
Yang et al. (2004, 2005).

Step 1: calculate the average distance of the same condition data (di,j) and then
get the average distance of total conditions (dai)
The equations can be defined as follows:

di;j ¼ 1
N � ðN � 1Þ

XN
m;n¼1

pi;jðmÞ � pi;jðnÞ
�� ��;

m; n ¼ 1; 2; . . .;N;m 6¼ nð Þ
ð5:5Þ

where N is the number of the same condition, Pi,j is the eigenvalue, di,j is
the average distance of the same condition, and i and j represent the
number of parameters and conditions, respectively.

d
ai
¼ 1

M

XM
j¼1

di;j ð5:6Þ

where M is the number of different conditions.
Step 2: calculate the average distance between different condition data (d′ai)

d0ai ¼
1

M � ðM � 1Þ
XM
m;n¼1

pai;m � pai;n
�� ��; ðm; n ¼ 1; 2; . . .;M;m 6¼ nÞ

ð5:7Þ
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where dai
′ is the average distance of different conditions data, and Pai, j is

the average value of the same condition data.

pai;j ¼ 1
N

XN
n¼1

pi;jðnÞ; ðn ¼ 1; 2; . . .;NÞ ð5:8Þ

Step 3: calculate the ratio dai/dai
′

Step 4: selecting the feature parameters ai from large value to small value. dai is
the smaller, the better; on the contrary, dai

′ is the bigger, the better. So,
bigger ai represents the feature well.

ai ¼ d0ai=dai ð5:9Þ

where ai is the effectiveness factor of features.

5.4 Principal Component Analysis (PCA)

PCA is a statistical technique that linearly transforms an original set of variables into
a substantially smaller set of uncorrelated variables that represents most of the
information in the original set of variables (Jolliffe 1986). It can be viewed as a
classical method of multivariate statistical analysis for achieving a dimensionality
reduction. Because of the fact that a small set of uncorrelated variables is much easier
to understand and use in further analysis than a larger set of correlated variables, this
data compression technique has been widely applied to virtually every substantive
area including cluster analysis, visualization of high-dimensionality data, regression,
data compression, and pattern recognition.

Given a set of centered input vectors xt (t = 1, …, l and Rxt = 0), each of which
is of m dimension xt = [xt(1), xt(2), …, xt(m)]

T usually m < l, PCA linearly trans-
forms each vector xt into a new one st by

st ¼ UT � xt ð5:10Þ

where U is the m � m orthogonal matrix whose ith column ui is the eigenvector of
the sample covariance matrix

C ¼ 1
l

Xl
t¼1

xt � xTt ð5:11Þ
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In other words, PCA firstly solves the eigenvalue problem

kiui ¼ C � ui; i ¼ 1; . . .;m ð5:12Þ

where ki is one of the eigenvalues of C, ui is the corresponding eigenvector. Based
on the estimated ui, the components of st are then calculated as the orthogonal
transformations of xt

stðiÞ ¼ uTi xt; i ¼ 1; . . .;m ð5:13Þ

The new components are called principal components. By using only the first
several eigenvectors sorted in descending order of the eigenvalues, the number of
principal components in st can be reduced. So PCA has the dimensional reduction
characteristic. The principal components of PCA have the following properties:
st(i) are uncorrelated and has sequentially maximum variances and the mean
squared approximation error in the representation of the original inputs by the first
several principal components is minimal.

Example 5.1 Calculate the covariance matrix of features vector acquired from
vibration signal and determine its eigenvalue and eigenvector. Based on the
eigenvalues, reduce the dimension of feature vectors.

From Fig. 5.2, the feature dimension can be reduced based on eigenvalues; for
example, we can select only 5 feature vectors based on biggest eigenvalue of
covariance matrix.

Example 5.2 Calculate principal component of vibration signal in Example 5.1.
The principal components of signal vibration from channel 1 are presented in
Fig. 5.3. Each principal component consists of 9 conditions of induction motor with
20 measurements.
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Fig. 5.2 Eigenvalue for
dimensional reduction
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5.5 Independent Component Analysis (ICA)

ICA is a technique that transforms multivariate random signal into a signal having
components that are mutually independent in complete statistical sense. Recently,
this technique has been demonstrated to be able to extract independent components
from the mixed signals. Here independence means the information carried by one
component cannot inferred from the others. Statistically, this means that joint
probability of independent quantities is obtained as the product of the probability of
each of them. A generic ICA model can be written as

x ¼ A � s ð5:14Þ

where A is an unknown full-rank matrix, called the mixing matrix, and s is the
independent component (IC) data matrix, and x is the measured variable data
matrix. The basic problem of ICA is to estimate the independent component matrix
s or to estimate the mixing matrix A from the measured data matrix x without any
knowledge of s or A.

The ICA algorithm normally finds the independent components of a data set by
minimizing or maximizing some measures of independence. Cardoso (1998) gave a
review of the solution to the ICA problem using various information theoretic
criteria, such as mutual information, negentropy, and maximum entropy, as well as
maximum likelihood approach. The fixed-point algorithm used due to its suitability
for handling raw time domain data and good convergence properties. This algo-
rithm will now be described briefly.
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Fig. 5.3 Five principal components of vibration signal channel 1
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The first step is to pre-whiten the measured data vector x by a linear transfor-
mation, to produce a vector ~x whose elements are mutually uncorrelated and all
have unit variance. Singular value decomposition (SVD) of the covariance matrix
C ¼ E ½xxT � yields

C ¼ WRWT ð5:15Þ

where
P

= diag(r1, r2, …, rn) is a diagonal matrix of singular values and W is the
associated singular vector matrix. Then, the vector ~x can be expressed as

~x ¼ WR�1=2WTx ¼ QAs ¼ Bs ð5:16Þ

where B is an orthogonal matrix as verified by the following relation:

E ~x � ~xT� 	 ¼ BE s � sT� 	
BT ¼ BBT ¼ I ð5:17Þ

An advantage of using an SVD-based technique is the possibility of noise
reduction by discarding singular values smaller than a given threshold. We have
therefore reduced the problem of finding an arbitrary full-rank matrix A to the
simpler problem of finding an orthogonal matrix B since B has fewer parameters to
estimate as a result of the orthogonality constraint.

The second step is to employ the fixed-point algorithm. Define a separating
matrix W that transforms the measured data vector x to a vector y, such that all
elements yi are both mutually correlated and have unit variance. The fixed-point
algorithm then determines W by maximizing the absolute value of kurtosis of
y. The vector y has the properties required for the independent components, thus

~s ¼ y ¼ Wx ð5:18Þ

From Eq. (5.16), we can estimate s as follows:

~s ¼ BT~x ¼ BTQx ð5:19Þ

From Eqs. (5.18) and (5.19), the relation of W and B can be expressed as

W ¼ BTQ ð5:20Þ

To calculate B, each column vector bi is initialized and then updated so that ith
independent component si ¼ ðbiÞT~x may have great non-Gaussianity. Hyvärinen
and Oja (2000) showed that non-Gaussian represents independence using the
central limit theorem. There are two common measures of non-Gaussianity: kurtosis
and negentropy. Kurtosis is sensitive to outliers. On the other hand, negentropy is
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based on the information theoretic quantity of (differential) entropy. Entropy is a
measure of the average uncertainty in a random variable and the differential entropy
H of random variable y with density f(y) is defined as

HðyÞ ¼ �
Z

f ðyÞ log f ðyÞdy ð5:21Þ

A Gaussian variable has maximum entropy among all random variables with
equal variance (Hyvärinen and Oja 2000). In order to obtain a measure of
non-Gaussianity that is zero for a Gaussian variable, the negentropy J is defined as
follows:

JðyÞ ¼ HðyGaussÞ � HðyÞ ð5:22Þ

where yGauss is a Gaussian random variable with the same variance as y. Negentropy
is nonnegative and measures the departure of y from Gaussianity. However, esti-
mating negentropy using Eq. (5.22) would require an estimate of the probability
density function. To estimate negentropy efficiently, simpler approximations of
negentropy are suggested as follows:

JðyÞ � ½EfGðyÞg � EfðtÞg�2 ð5:23Þ

where y is assumed to be of zero mean and unit variance, v is a Gaussian variable of
zero mean and unit variance, and G is any non-quadratic function. By choosing
G wisely, one obtains good approximations of negentropy. A number of functions
for G are:

G1ðtÞ ¼ 1
a1

log cos hða1tÞ ð5:24Þ

G2ðtÞ ¼ expð�a2t
2=2Þ ð5:25Þ

G3ðtÞ ¼ t4 ð5:26Þ

where 1 � a1 � 2 and a2 � 1. Among these three functions, G1 is a good
general-purpose contrast function and was therefore selected for use in the present
study.

Based on the approximate form for the negentropy, Hyvärinen (1999) introduced
a very simple and highly efficient fixed-point algorithm for ICA, calculated over
sphered zero-mean vector ~x: This algorithm calculates one column of the matrix
B and allows the identification of one independent component; the corresponding
independent component can then be found using Eq. (5.19). The algorithm is
repeated to calculate each independent component.
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5.6 Kernel PCA

Kernel PCA is one approach of generalizing linear PCA into nonlinear case using
the kernel method. The idea of kernel PCA is to firstly map the original input
vectors xt into a high-dimensional feature space uðxtÞ and then calculate the linear
PCA in uðxtÞ:

Given a set of centered input vectors xt (t = 1, …, l and Rxt = 0), each of which
is of m dimension xt = (xt(1), xt(2), …, xt(l))

T. By mapping xt into uðxtÞ whose
dimension is assumed to be larger than the number of training samples l, kernel
PCA solves the eigenvalue problem

kiui ¼ ~Cui; i ¼ 1; . . .; l ð5:27Þ

where ~C is the sample covariance matrix of uðxtÞ, ki is one of the nonzero
eigenvalues of ~C, and ui is the corresponding eigenvectors. The ~C on the feature
space can be constructed by

~C ¼ 1
l

Xl
t¼1

uðxtÞuðxtÞT ð5:28Þ

From Eq. (5.28), we can obtain the nonzero eigenvalues that are positive. Let us
define matrix Q as

Q ¼ ½uðx1Þ; . . .;uðxlÞ� ð5:29Þ

Then, Eq. (5.28) can be expressed by

~C ¼ 1
l
QQT ð5:30Þ

Moreover, we can construct a Gram matrix using Eq. (5.29) in which their
element can be determined by kernel

R ¼ QTQ ð5:31Þ

Rij ¼ uðxtÞTuðxtÞ ¼ ðuðxiÞ � uðxjÞÞ ¼ Kðxi; xjÞ ð5:32Þ

Denote V = (c1, c2, …, cl) and K = diag(k1, k2, …, kl) are eigenvectors and
eigenvalues of R, respectively, we can calculate the orthonormal eigenvectors bj as

bj ¼
1ffiffiffiffi
kj

p Q cj; j ¼ 1; . . .;m ð5:33Þ
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Then we define matrix B as

B ¼ ðb1; b2; . . .; bmÞ ¼ QVK�1=2 ð5:34Þ

The whitening matrix P can be derived from Eq. (5.34) and expressed by

P ¼ B
1
l
K

� ��1=2

¼
ffiffi
l

p
QVK�1 ð5:35Þ

The mapped data in feature space can be whitened by the following
transformation:

r ¼ PTuðxÞ
¼

ffiffi
l

p
K�1VTQTuðxÞ ¼

ffiffi
l

p
K�1VT ½Kðx1; xÞ;Kðx2; xÞ; . . .;Kðxl; xÞ ¼

ffiffi
l

p
K�1VTRx

ð5:36Þ

There are several kernel functions described in Table 5.1 which can be used to
accomplish Eq. (5.32), such as linear, polynomial, and Gaussian RBF.

5.7 Kernel ICA

Practically speaking, the kernel ICA is the combination of centering and whitening
process using kernel PCA as previously explanation and iterative section using
ICA. The following task is to find the mixing matrix W in the kernel
PCA-transformed space to recover independent components s from r, recall
Eq. (5.18)

ŝ ¼ W x ¼ W r ð5:37Þ

In summary, the nonlinear feature extraction using kernel ICA in this chapter
performs two phases: whitening process using kernel PCA and ICA transformation
in the kernel PCA-whitened space.

Example 5.3 Find 5 independent components of vibration signal using kernel PCA
and kernel ICA with RBF kernel function (Figs. 5.4 and 5.5).

Table 5.1 Formulation of
kernel functions

Kernel K(x, xj)

Linear xT � xj
Polynomial (c xT � xj + r)d, c > 0

Gaussian RBF exp(–||x – xj||
2/2c 2)

Sigmoid tan h(s0 (x
T � xj) + s1)
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Fig. 5.4 Five principal components of vibration signal channel 1 using kernel PCA
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Fig. 5.5 Five independent components of vibration signal channel 1 using kernel ICA
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5.8 Fisher Discriminant Analysis (FDA)

Fisher discriminant analysis (FDA) is a traditional statistical method and a linear
dimensionality reduction technique, optimal in terms of maximizing the separation
between several classes for feature extraction. It provides a lower-dimensional
representation of data in that several groups or classes can be discriminated as
clearly as possible. FDA has been shown to be the good linear technique for fault
diagnosis and to outperform PCA-based diagnosis methods. A disadvantage of
using linear FDA (LFDA) in multivariate fault diagnosis problems is that nonlinear
behavior in the data cannot be represented well. Although LFDA is an effective
technique for feature extraction, it is still a linear technique in nature. To overcome
such a limitation, kernel trick has been used to develop a nonlinear kernel version of
FDA, called kernel FDA (KFDA) (Baudat and Anouar 2000). The basic idea of the
kernel trick is that input data are mapped into a kernel feature space by a nonlinear
mapping function and then these mapped data are analyzed. A number of powerful
kernel-based techniques have been developed, including support vector machines
(Cortes and Vapnik 1995), kernel PCA (Scholkopf et al. 1998), kernel PLS (Rosipal
and Trejo 2000), and kernel FDA (Baudat and Anouar 2000).

The selection of linear (LFDA) and nonlinear (KFDA) techniques for solving
fault diagnosis problems depends on the characteristics of target processes of
interest. In linear case, fault groups or cases in data are separated easily using linear
technique. Such a linear case is the simplest problem, in which both linear and
nonlinear techniques are expected to produce a good classification performance.
The use of linear techniques in nonlinear case, however, may not classify most of
data correctly. In this respect, a nonlinear technique such as KFDA will be useful
for diagnosis because they have more nonlinear characteristics involved when
compared to continuous processes. Thus, it is essential to develop a more efficient
diagnosis method for engineering systems.

In this section, we describe KFDA briefly as follows. As above mentioned,
KFDA is the nonlinear kernel version of linear FDA to deal with the feature
extraction of nonlinear characteristics.

Let us consider a set of M observations in an n-dimensional space xk 2 ℜn,
k = 1, …, M. For a given nonlinear mapping U, the input space can be mapped into
feature space F, U: ℜn ! F, x ! U(x). Note that the feature space F could have a
much higher, possibly infinite, dimensionality. The objective is kernel FDA is to
find certain directions in the original variable space, along which latent groups or
clusters in ℜn are discriminated as clearly as possible. Kernel FDA performs LFDA
in the feature space F, which is nonlinearly related to the input space ℜn. As a
result, kernel FDA produces a set of nonlinear discriminant vectors in the input
space. The discriminant weight vector is determined by maximizing between-class
scatter matrix SUb while minimizing total scatter matrix SUt , which are defined in
F as follows:
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SUb ¼ 1
M

XC
i¼1

ciðmU
i �mUÞðmU

i �mUÞT ð5:38Þ

SUt ¼ 1
M

XM
i¼1

ðUðxiÞ �mUÞðUðxiÞ �mUÞT ð5:39Þ

where mU
i represents the mean vector of the mapped observations of class i, mU the

mean vector of the mappedM observations, ci the number of observations of class i,
and C the total number of class of xk, k = 1, …, M.

Similarly to the formation of LFDA, this can be done by maximizing the Fisher
criterion:

JUðWÞ ¼ WTSUbW

WTSUt W
; W 6¼ 0 ð5:40Þ

The optimal discriminant vectors in feature space F can be obtained by solving
the eigenvalue problem SUbW ¼ k SUt W instead of Eq. (5.40). They are actually the
eigenvectors of SUbW ¼ k SUt W:

The use of a kernel function K(xi, xj) allows us to compute dot products in
F without nonlinear mapping U. By replacing canonical (Euclidean) dot products
x; yh i in F by a kernel function of the form K xi; xj

� � ¼ U xið Þ;U xj
� �
 �

, we do not
need to execute nonlinear mapping U and dot products in F, which is called the
kernel trick (Cortes and Vapnik 1995). Consider a simple mapping U:

x ¼ ðx1; x2Þ ! UðxÞ ¼ ðx21;
ffiffiffi
2

p
x1x2; x

2
2Þ ð5:41Þ

The computation of a dot product between two mappings U(x) and U(y) in F can
be easily expressed in terms of a kernel function of the form k x; yð Þ ¼ x; yh i2 as
follows:

UðxÞ; UðyÞh i ¼ x21;
ffiffiffi
2

p
x1x2; x

2
2

� T
y21;

ffiffiffi
2

p
y1y2; y

2
2

� 
¼ x1; x2ð ÞT y1; y2ð Þ� � ¼ x; yh i2

ð5:42Þ

where K x; yð Þ ¼ x; yh i2 is the second-order polynomial kernel function.
Some of the most widely used kernel functions are described in Table 5.1.

Example 5.4 Perform kernel Fisher discriminant analysis (KFDA) and compare the
feature extraction with linear Fisher discriminant analysis (FDA).

Solution: Firstly, we must calculate the kernel matrix for mapping data into feature
space using kernel function, i.e., RBF kernel function. User must adjust and select
proper kernel parameter to find optimal feature extraction using KFDA. Try to use
different kernel parameter for comparison with Fig. 5.6 (Fig. 5.7).
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5.9 Linear Discriminant Analysis (LDA)

Although PCA finds components that are useful for representing data, there is no
reason to assume that these components must be useful for discriminating between
data in different classes. Where PCA seeks directions that are efficient for repre-
sentation, discriminant analysis seeks directions that are efficient for discrimination.

LDA projects feature from parametric space onto feature space through a linear
transformation matrix T. Suppose the input observation vector x be a p-dimensional
feature and T be a p � m (p � m) matrix. The extracted features are y = TTx. This
method maximizes the ratio of between-class variance to the within-class variance.

One of linear discriminant methods is Fisher’s linear discriminant that is to well
separate the classes by projecting classes’ samples from p-dimensional space onto a
finely orientated line. For a K-class problem, m = min(K − 1, p) different lines will
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be involved. Thus, the projection is from a p-dimensional space to a c-dimensional
space.

Suppose we have K classes, X1, X2, …, XK. Let the ith observation from the Xi

be xji, where j = 1,…, K, i = 1,…, Nj and Nj is the number of observations from
class j. The within-class covariance matrix SW is as follows:

SW ¼
XK
j¼1

Sj ð5:43Þ

where

Sj ¼ 1
Nj

XNj

i¼1

ðxji � ljÞðxji � ljÞT ; lj ¼
1
Nj

XNj

i¼1

xji ð5:44Þ

The between-class covariance matrix SB is given as:

SB ¼
XK
j¼1

Njðlj � lÞðlj � lÞT ð5:45Þ

where

l ¼ 1
N

XK
j¼1

XNj

i¼1

xji: ð5:46Þ

Here we give a two-class example. In order to obtain good separation of the
projected data, we really want the difference between the means to be large and the
total within-class covariance to be smaller. Thus, the Fisher linear discriminant
employs that linear function TTx for which the criterion function

JðwÞ ¼ ~l1 � ~l2j j2
~s21 þ~s22

ð5:47Þ

To obtain J(·) as an explicit function of w, after transformation the criterion
function can be written as:

JðwÞ ¼ wTSBw
wTSWw

ð5:48Þ

It is easy to show that a vector w that maximizes J(·) must satisfy

SBw ¼ kSWw ! S�1
W SBw ¼ kw ð5:49Þ
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It is unnecessary to solve for the eigenvalues and eigenvectors of S�1
W SB due to

the fact that SBw is always in the direction of m1 − m2. Because the scale factor for
w is immaterial, the solution for the w is that optimizes J(·):

w ¼ S�1
W ðm1 �m2Þ ð5:50Þ

Example 5.5 Compute the matrices SW and SB of iris data (downing from https://
archive.ics.uci.edu/ml/datasets/Iris).

Solution: Iris data are very famous for simulation of classification problem. This
data contain 3 classes that describe iris flower: Setosa, Versicolor, and Virginia.

	 data ¼ load 0iris0ð Þ;
	 dim;num data½ � ¼ size data:Xð Þ;

nclass ¼ max data:yð Þ;
	 mean X ¼ mean data:X; 2ð Þ;

Sw¼zeros dim;dimð Þ;
Sb¼zeros dim;dimð Þ;

	 for i ¼ 1:nclass;

inx i ¼ find data:y¼¼ið Þ;
X i ¼ data:X :;inx ið Þ;
mean Xi ¼ mean X i;2ð Þ;
Sw ¼ Swþ cov X i0; 1ð Þ;
Sb ¼ Sbþ length inx ið Þ
 mean Xi�mean Xð Þ
 mean Xi�mean Xð Þ0;
end;

	 Sw

Sw ¼
0:0499 0:0315 0:0361 0:0229

0:0315 0:0704 0:0214 0:0357

0:0361 0:0214 0:0457 0:0290

0:0229 0:0357 0:0290 0:0790

	 Sb

Sb ¼
4:0514 �2:2479 12:1200 14:4533

�2:2479 2:2681 �7:3854 �8:1791

12:1200 �7:3854 36:6850 43:3410

14:4533 �8:1791 43:3410 51:5866
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Example 5.6 Compute the projection matrix of SW and SB.

Solution: The projection matrix can be calculated using singular value decompo-
sition by svd.m that is available in MATLAB.

	 U;D;V½ � ¼ svd inv Swð Þ
Sbð Þ;
	 U

U ¼
�0:3386 0:1426 �0:8329 �0:4139

�0:3536 �0:6131 0:3451 �0:6164

0:7870 0:1497 0:0031 �0:5985

0:3755 �0:7624 �0:4327 0:3008

	 D

D ¼
1:0eþ 003


2:1606 0 0 0

0 0:0135 0 0

0 0 0:0000 0

0 0 0 0:0000

	 V

V ¼
0:2064 �0:1337 0:6897 0:6811

�0:1311 �0:9068 �0:3422 0:2083

0:6281 0:2350 �0:5884 0:4517

0:7388 �0:3233 0:2469 �0:5373

Example 5.7 Perform dimensionality reduction of iris data from original 4 features
dimension into 2 features using LDA algorithm as shown in Fig. 5.8.
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5.10 Generalized Discriminant Analysis (GDA)

The generalized discriminant analysis deals with a nonlinear discriminant analysis
using kernel function operator. GDA method provides a mapping of the input
vectors into high-dimensional feature space.

Given a set of centered input vectors xt (t = 1, …, l and Rxt = 0); each of which
is of m dimension xt = (xt(1), xt(2), …, xt(m))

T usually m < l in the input set X. For
N is the number of classes, the cardinality of subset Xm is denoted by km, thusPN

l¼1 km ¼ l. The covariance matrix can be calculated as

C ¼ 1
l

Xl
t¼1

xt � xTt ð5:51Þ

Suppose that the space X is mapped into a Hilbert space F through a nonlinear
mapping function /, so that

/ : X ! F

x ! /ðxÞ ð5:52Þ

The covariance matrix in the feature space F is

C ¼ 1
l

Xl
i¼1

/ðxiÞ/TðxiÞ ð5:53Þ

Let B the covariance matrix of the class centers. B represents the interclass
inertia in the space F

B ¼ 1
l

Xl
j¼1

km�/j
�/T
j ð5:54Þ

where �/j is the mean value of the class j

�/j ¼
1
km

Xkm
k¼1

/ðxjkÞ ð5:55Þ

where xjk is the element k of the class j.
In the same manner, covariance matrix in Eq. (5.53) can be rewritten using the

class indices

C ¼ 1
l

Xl
j¼1

Xkm
k¼1

/ðxjkÞ/TðxjkÞ ð5:56Þ
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C represents the total inertia of the data into feature space F.
In order to simplify, when there is no ambiguity in index of xjk, the class index

j is omitted.
Introducing the kernel function into Eq. (5.56) yields

C ¼ 1
l

Xl
j¼1

Xkm
k¼1

Kðxjk; xjkÞ ð5:57Þ

The kernel operator K allows the construction of nonlinear separating function in
the feature space F. As such for the LDA, the purpose of the GDA is to maximize
the interclass inertia and minimize the intraclass inertia. This maximization is
equivalent to the following eigenvalue decomposition

kCv ¼ Bv ð5:58Þ

The largest eigenvalue of Eq. (5.58) gives the maximum of the following
quotient of the inertia

k ¼ vTBv
vTCv

ð5:59Þ

As the eigenvector is the linear combination of F elements, there exist coeffi-
cients a such that

v ¼
XN
p¼1

Xkm
q¼1

apq/ðxpqÞ ð5:60Þ

All solutions v lie in the span on /(xjk). Then, Eq. (5.59) is equal to the fol-
lowing quotient

k ¼ aTKWKa
aTKKa

ð5:61Þ

where W is the block diagonal matrix (l � l) with terms all equal to 1/km; K is the
kernel matrix defined on the class element that is composed by dot product in
feature space F. Interested readers are suggested to see Boudat and Anouar (2000)
for detailed derivation of equation.

Premultiplying Eq. (5.58) by /T(xjk) yields

k/TðxjkÞCv ¼ /TðxjkÞBv ð5:62Þ
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We can rewrite two terms of Eq. (5.62) in a matrix form using matrices K and
W which gives Eq. (5.63). Interested readers must see Boudat and Anouar (2000)
for complete derivation.

Considering kernel matrix K, let us use its eigenvector decomposition so that

K ¼ PCCT ð5:63Þ

where C is the diagonal matrix of nonzero eigenvalue and P is the matrix of
normalized eigenvectors associated with C, thus C−1 exists. P is the orthonormal
matrix that is

PTP ¼ I ð5:64Þ

Substituting K into Eq. (5.61) yields

k ¼ ðCPTaÞTPTWPðCPTaÞ
ðCPTaÞTPTPðCPTaÞ ð5:65Þ

Let us define Eq. (5.66) such that

b ¼ CPTa ð5:66Þ

k ¼ bTPTWPb
bTPTPb

ð5:67Þ

Therefore, we obtain

kPTPb ¼ PTWP b ð5:68Þ

As P is orthonormal, the latter equation can be simplified and gives Eq. (5.69),
in which solutions are to be found by maximizing k

kb ¼ PTWPb ð5:69Þ

For a given b, there exists at least one a satisfying Eq. (5.66) in the form
a = PC−1b that is not unique.

Thus, the first step of the system resolution consists in finding b according to
Eq. (5.69), which corresponds to a classical eigenvector system resolution. Once b
is calculated, the a is computed then normalized by requiring that the corresponding
vectors v be normalized in feature space F so that

vTv ¼ 1 ð5:70Þ
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Using Eq. (5.69), we obtain

vTv ¼
XN
p¼1

Xkm
q¼1

XN
r¼1

Xkn
s¼1

apqars/
TðxpqÞ/ðxrsÞ ¼ 1

:¼
XN
p¼1

XN
r¼1

aTpKprar ¼ 1

¼ aTKa ¼ 1

ð5:71Þ

The coefficients a are divided by
ffiffiffiffiffiffiffiffiffiffiffiffi
aTKa

p
in order to get normalized vector

v. Knowing the normalized vector v, the projections of test point z are computed by

vT/ðzÞ ¼
XN
p¼1

Xkm
q¼1

apqKðxpq; zÞ ð5:72Þ

Finally, the GDA procedure can be summarized as follows:

Step 1: Compute the matrices K and W.
Step 2: Decompose K using eigenvectors and eigenvalue.
Step 3: Compute eigenvectors b and eigenvalues of the system.
Step 4: Compute eigenvectors v using a and normalize them.
Step 5: Compute projections of test points onto the eigenvectors v.

Example 5.8 Calculate the decomposition of kernel matrix in Eq. (5.63) of iris
data. Use RBF kernel function with kernel width parameter c = 1. Then calculate
block diagonal matrix W and finally perform dimensionality reduction from 4
features into 2 features of 3-class iris as shown in Fig. 5.9.
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Example 5.8 shows that 2-dimensional data extracted from the originally
4-dimensional iris data set using the GDA. In contrast to LDA (see Fig. 5.8 for
comparison), the class clusters are more compact but at the expense of a higher risk
of overfitting.

5.11 Clustering

Clustering can be considered the most important in unsupervised learning problem.
So, as very other problem of this kind, it deals with finding a structure in a col-
lection of unlabeled data. A loose definition of clustering could be the process of
organizing objects into groups whose members are similar in some way. A cluster is
therefore a collection of objects which are similar between them and are dissimilar
to the objects belonging to other clusters. We can see this determination by a simple
example in Fig. 5.10.

In Fig. 5.10, we can easily identify the 4 clusters into which the data can be
divided. The similarity criterion is distance: Two or more objects belong to the
same cluster if they are close according to a given distance (in this case, geometrical
distance). This is so-called distance-based clustering. Another kind of clustering is
conceptual clustering: Two or more objects belong to the same cluster if this one
defines a concept common to all that objects. In other words, objects are grouped
according to their fit to descriptive concepts, not according to simple similarity
measures.

The goal of clustering is to determine the intrinsic grouping in a set of unlabeled
data. But how to decide what constitutes a good clustering is relatively depended on
the need of clustering. It can be said that there is no absolute best criterion which
would be independent of the final aim of the clustering. Consequently, it is the user
that must supply this criterion, in such way that the result of the clustering will suit
their needs. For instance, we could be interested in finding representatives for
homogeneous groups (data reduction), in finding natural cluster and describe their
unknown properties (natural data types), in finding useful and suitable groupings
(useful data classes), or in finding unusual data objects (outlier detection).

Fig. 5.10 A simple clustering
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The main requirements that a clustering algorithm should satisfy are as follows:

• Scalability
• Dealing with different types of attributes
• Discovering clusters with arbitrary shape
• Minimal requirement for domain knowledge to determine the input parameters
• Ability to deal with noise and outliers
• Insensitivity to order of input records
• High dimensionality
• Interpretability and usability

When we deal with clustering, there are a number of problems may occur as
follows:

• Current clustering techniques do not address all the requirements adequately
(and concurrently)

• Deal with large number of dimension of data items can be problematic due to
complexity

• The effectiveness of the method depends on the definition of distance (for
distance-based clustering)

• If an obvious distance measure does not exist, we must define it, which not
always easy, especially in multi-dimensional spaces

• The result of the clustering algorithm can be interpreted in different ways

An important component of a clustering algorithm is the distance measure
between data points. This section will discuss the distance metrics that frequently
used for clustering measures.

A general class of metrics for d-dimensional patterns is the Mikowski metrics
defined by

Lpðx; yÞ ¼
Xd
i¼1

jxi � yijp
 !1=p

ð5:73Þ

where x and y are vectors represent clustered data points, and p is a positive integer.
It is also referred to as the Lp norm. A normalized version can be defined if the
measured values are normalized via division by the maximum value in the
sequence.

The Euclidean distance is a special case where p = 2, it so-called the L2 norm
given by

L2ðx; yÞ ¼
Xd
i¼1

jxi � yij2
 !1=2

ð5:74Þ
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The Manhattan or city block distance is the other case where p = 1; it is known
as L1 norm

L1ðx; yÞ ¼
Xd
i¼1

jxi � yij ð5:75Þ

The other distance metrics is L∞ norm that gives the maximum of the distances
along individual coordinate axes, given by

L1ðx; yÞ ¼ max
d

i¼1
xi � yij j ð5:76Þ

Suppose we compute the distance between the projections of x and y onto each
of the d coordinate axis, the L∞ is distance between x and y corresponds to the
maximum of these projected distances as described in Fig. 5.11.

The other distance measures are also available when clustering will be per-
formed such as cosine distance and correlation distance given by

dcosðx; yÞ ¼ 1� xy0

ðx0xÞ1=2ðy0yÞ1=2
 !

ð5:77Þ

dcorrðx; yÞ ¼ 1� ðx� �xÞðy� �yÞ0
½ðx� �xÞðx� �xÞ0�1=2½ðy� �yÞðy� �yÞ0�1=2

 !
ð5:78Þ

Example 5.9 Calculate the distance metrics of X using Mikowski, Euclidean, City
block, and Cosine measures.

X ¼
1 2
1 3
2 2
3 1

2
664

3
775

p = ∞

p = 2

p = 1

p = ∞

p = 2

p = 1

Fig. 5.11 Each shape
consists of points at a distance
1.0 from the origin, measured
using different values of p in
the Mikowski Lp metric
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Solution: Function pdist.m in MATLAB computes the distance between objects in
the data matrix, X, using the method specified by “metric,” where “metric” can be
any of the following character strings that identify ways to compute the distance.

5.11.1 k-Centers Clustering

k-centers method is categorized in boundary method which covers the data set with
k small balls with equal radii (Ypma and Duin 1998). This description has a
resemblance to the covering numbers of Kolmogorov (Kolmogorov and
Tikhomirov 1961) and it is used to characterize the complexity of an (unlabeled)
data set. Unlike the covering numbers, here the ball centers’ lk is placed on training
objects such that the maximum distance of all minimum distances between training
objects and the centers is minimized. In the fitting of the method to the training data,
the following error is minimized

>> X = [1 2; 1 3; 2 2; 3 1]

X =

1     2

1     3

2     2

3     1

>> % Mikowski, p =3

>>Y1 = pdist(X,'minkowski',3)

Y1 =

1.0000    1.0000    2.0801  1.2599    2.5198    1.2599

>> Y2 = pdist(X,'euclidean')

Y2 =

1.0000    1.0000    2.2361    1.4142    2.8284    1.4142

>> Y3 = pdist(X,'cityblock')

Y3 =
1     1     3     2     4     2

>> Y4 = pdist(X,'cosine')

Y4 =

0.0101    0.0513    0.2929    0.1056    0.4000    0.1056
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ek-ctr ¼ max
i
ðmin

k
jxi � lkj2Þ ð5:79Þ

The k-centers method uses a forward search strategy starting from a random
initialization. The radius is determined by the maximum distance to the objects that
the corresponding ball should capture. By this construction, the method is sensitive
to the outliers in the training set, but it will work well when clear clusters are
present in the data.

When the centers have been trained, the distance from a test object z to the target
set can be calculated. This distance is now defined as

dk-ctr ¼ min
k

jz� lkj2 ð5:80Þ

To avoid a suboptimal solution during training, several random initializations are
tried and the best solution (in terms of the smallest ek-ctr) is used. The number of
parameters which is optimized in the minimization of error in Eq. (5.80) may seem
to be kd at first sight, for the k-centers lk in d dimensions. But the centers of the
balls are constrained to training objects, and therefore, only k indices out of
N indices have to be selected. The number of free parameters is therefore

nfree ¼ k

The user has to supply both the number of balls k and the maximum number of
retries.

Example 5.10 Find the clustering of iris data using k-centers with respect to
Euclidean distance and city block distance. The iris data contain 4 classes are
available. We can perform clustering with corresponding to the Euclidean distance
measures as shown in Fig. 5.12.
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5.11.2 k-Means Clustering

k-means clustering is categorized into simplest reconstruction method that is pro-
posed by Bishop (1995). In this method, it is assumed that the data are clustered and
be characterized by a few prototype objects or vector lk. Most of target objects are
represented by nearest prototype vector measured by the Euclidean distance. In the
k-means clustering, the placing of the prototypes is optimized by minimizing the
following error.

ek�m ¼
X
i

ðmin
k

jxi � lkj2Þ ð5:81Þ

The k-means clustering method resembles the k-centers method, but the
important difference is the error which is minimized. The k-centers method focuses
on the worst case objects and tries to optimize the centers and the radii of the balls
to accept all data. In the k-means method, the distance of the prototype of all objects
is averaged, and therefore, the method is more robust against remote outliers.
Furthermore, in the k-centers method the centers are placed, per definition, on some
of the training objects, while in the k-means method, all center positions are free.

In Fig. 5.13, the examples of the boundaries of the k-means method and the k-
centers method are shown. The placing of the centers of the hyperspheres by both
methods is very similar. The exact positions are determined by the extreme objects
for the k-centers and by means of the different clusters for the k-means clustering.
The most appealing difference is that the k-centers method places a hypersphere on
the objects in the lower right of the data set, while the k-means method treats is as
an outlier.

The distance d of an objects z to the target set is then defined as the squared
distance of that object to the nearest prototype.

dk�mðzÞ ¼ min
k

jz� lkj2 ð5:82Þ

k-means
k-centers
k-means
k-centers

Fig. 5.13 Comparison
between the boundary
obtained by k-means and k-
centers methods
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Example 5.11 Find the clustering of iris data using k-means with respect to
Euclidean distance and city block distance.

Solution: Using kmeans.m function we can perform clustering with corresponding
to the distance measures. “sqEuclidean” and “cityblock” are Euclidean and city
block measures, respectively.

	 data ¼ load 0riply trn0ð Þ;
	 X¼data:X0;
	 cidx; ctrs½ �¼kmeans X; 4; 0 dist0;0 sqEuclidean0;0 rep0; 5;0 disp0;0 final0ð Þ; %Using k ¼ 4

7 iterations; total sum of distances ¼ 12:3798

11 iterations; total sum of distances ¼ 12:3798

8 iterations; total sum of distances ¼ 12:3798

10 iterations; total sum of distances ¼ 12:3798

11 iterations; total sum of distances ¼ 12:3798

	 plotðX cidx¼¼1; 1ð Þ;X cidx¼¼1;2ð Þ;0 r0; . . .
X cidx¼¼2; 1ð Þ;X cidx¼¼2;2ð Þ;0 bo0; . . .
X cidx¼¼3; 1ð Þ;X cidx¼¼3;2ð Þ;0 c
0; . . .
X cidx¼¼4; 1ð Þ;X cidx¼¼4;2ð Þ;0 ms0Þ;

	 hold on; plot ctrs :;1ð Þ; ctrs :;2ð Þ;0 ko0;0 MarkerSize0; 12ð Þ;

Figure 5.14 shows the k-means clustering using Euclidean distance measure.
By replacing “sqEuclidean” with “cityblock,” or “cosine” in kmeans.m function,

we can perform k-means clustering with respect to related distance measure. Results
of city block and cosine clustering are shown in Figs. 5.15 and 5.16. These figures
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show that the centers are relatively similar when k-means use Euclidean and city
block distances; however, it shows difference center if it uses cosine distance
measure of clustering (Figs. 5.15 and 5.16).

5.11.3 Hierarchical Clustering

Let us consider a sequence of partitions of the n samples into c clusters. The first of
these is a partition into n clusters, each cluster containing exactly one sample. The
next is a partition into n − 1 clusters, the next a partition into n − 2, and so on until
the nth, in which all the samples form one cluster. We shall say that we are at level
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k in the sequence when c = n – k − 1. Thus, level one corresponds to n clusters and
level n corresponds to one cluster. Given any two samples x and x′, and at some
level that will be grouped together in same cluster. If the sequence has the property
that whenever two samples are in the same cluster at level k they remain together at
all higher levels, and then the sequence is said to be hierarchical clustering.

The most natural representation of hierarchical clustering is a corresponding
tree, called a dendrogram, which shows how the samples are grouped. Figure 5.17
shows a dendrogram for a simple problem involving eight samples. Level k = 1
shows the eight samples as singleton clusters. At level 2, samples x6 and x7 have
been grouped to form a cluster, and they stay together at all subsequent levels. If it
is possible to measure the similarity between clusters, then the dendrogram is
usually drawn to scale to show the similarity between the clusters that are grouped.
In Fig. 5.17, for example, the similarity between two groups of samples that are
merged at level 5 has a value of roughly 60.

Another representation for hierarchical clustering is based on sets, in which
each level of cluster may contain sets that are subclusters, as shown in Fig. 5.18.
Yet another, textual, representation uses brackets, such as {{x1, {x2, x3}}, {{{x4,
x5}, {x6, x7}, x8}}. While such representations may reveal the hierarchical structure
of the data, they do not naturally represent the similarities quantitatively. For this
reason, dendrograms are generally preferred.
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Fig. 5.17 Dendrogram can
represent hierarchical
clustering algorithm
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Usually, dendrogram using linkage function specifies the algorithm used to
generate the hierarchical cluster tree information. These linkage algorithms are
based on different ways of measuring proximity between two groups of objects. For
example, If nr is the number of objects in cluster r and ns is the number of objects in
cluster s, and xri is the ith object in cluster ri, then the definitions of these various
measurements are as follows:

• Single linkage, also called nearest neighbor, uses the smallest distance between
objects in the two groups.

dðr; sÞ ¼ minðdistðxri:xsjÞÞ; i 2 ði; . . .; nrÞ; j 2 ð1; . . .; nsÞ ð5:83Þ

• Complete linkage, also called furthest neighbor, uses the largest distance
between objects in the two groups.

dðr; sÞ ¼ maxðdistðxri:xsjÞÞ; i 2 ði; . . .; nrÞ; j 2 ð1; . . .; nsÞ ð5:84Þ

• Average linkage uses the average distance between all pairs of objects in cluster
r and cluster s.

dðr; sÞ ¼ 1
nrns

Xnr
i¼1

Xns
j¼1

distðxri; xsjÞ ð5:85Þ

• Centroid linkage uses the distance between the centroids of the two groups.

dðr; sÞ ¼ distð�xr;�xsÞ ð5:86Þ

where �xr ¼ 1
nr

Pnr
i¼1

xri and �xs is defined similarly.

The centroid method can produce a cluster tree that is not monotonic. This
occurs when the distance from the union of two clusters r [ s to a third cluster
is less than the distance from either r or s to that third cluster. In this case,
sections of the dendrogram change direction. This is an indication that you
should use another method.

• Ward linkage uses the incremental sum of squares, that is, the increase in the
total within-group sum of squares as a result of joining groups r and s. It is given
by

dðr; sÞ ¼ nrnsd
2
rsðnr þ nsÞ

where drs is distance between cluster r and cluster s in the centroid linkage.
The within-group sum of squares of a cluster is defined as the sum of the squares
of the distance between all objects in the cluster and the centroid of the cluster.
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Interested readers are suggested to refer to Duda et al. (2001) for detailed
explanation.

Example 5.12 Calculate the hierarchical cluster tree, using the single linkage
algorithm of matrix X. Use Euclidean distance for distance measure.

X ¼

3 1:7
1 1
2 3
2 2:5
1:2 1
1:1 1:5
3 1

2
666666664

3
777777775

Solution: In statistical toolbox that is available in MATLAB package, we can find
function linkage.m that is useful for this calculation.

	 X ¼ 31:7; 11; 23; 22:5; 1:21; 1:1 1:5; 31½ �;
Y ¼ pdist Xð Þ; %Default Euclidean distance

Z ¼ linkage Y;0 single0ð Þ
Z ¼
2:0000 5:0000 0:2000

3:0000 4:0000 0:5000

6:0000 8:0000 0:5099

1:0000 7:0000 0:7000

9:0000 11:0000 1:2806

10:0000 12:0000 1:3454

Example 5.13 Find the dendrogram of random matrix X = rand(100, 2) using city
block distance measure.

Solution: Using function dendrogram.m of statistical toolbox that is available in
MATLAB package, we can calculate the dendrogram for clustering (Fig. 5.19).

	 X ¼ rand 100;2ð Þ;
Y¼pdist X;0 cityblock0ð Þ;
Z¼linkage Y;0 average0ð Þ
½H;T� ¼ dendrogram Z;0 orientation0;0 bottom0ð Þ;
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5.12 Other Techniques

Neural networks can also be used directly for feature extraction. The self-organizing
map (SOM), or Kohonen map, can also be used for nonlinear feature extraction.
In SOM, neurons are arranged in an m-dimensional grid, where m is usually 1, 2, or
3. Each neuron is connected to all the d input units. The weights on the connections
for each neuron form a d-dimensional weight vector. During training, features are
presented to the network in a random order. At each presentation, the winner whose
weight vector is the closest to the input vector is first identified. All the neurons in
the neighborhood of the winner are updated such that their weight vectors move
toward the input vector. Consequently, after training is done, the weight vectors of
neighboring neurons in the grid are likely to represent input patterns which are close
in the original feature space. Thus, a topology-preserving map is formed. SOM
offers an m-dimensional map with a spatial connectivity that can be interpreted as
feature extraction. The properties of these feature extraction methods are illustrated
in Table 5.2.
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Fig. 5.19 A dendrogram for hierarchical clustering

136 5 Statistic Feature Extraction



References

Antonini G, Popovici V, Thiran JP (2006) Independent component analysis and support vector
machine for face feature extraction. Signal Processing Institute, Swiss Federal Institute of
Technology Lausanne. http://ltsww.epfl.ch

Bach FR, Jordan MI (2002) Kernel independent component analysis. J Mach Learn Res 3:1–48
Back AD, Weigend AS (1998) A first application of independent components analysis to

extracting structure from stock returns. Int J Neural Syst 8(4):473–484
Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural

Comput 12:2385–2404
Bishop CM (1995) Neural network for pattern recognition. Clarenderon Press, Oxford
Biswall BB, Ulmer JL (1999) Blind source separation of multiple signal sources of MRI data sets

using independent components analysis. J Comput Assist Tomogr 23(2):265–271
Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86(10):2009–2020
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience, New York
Han T, Son JD, Yang BS (2005) Fault diagnosis system of induction motors using feature

extraction, feature selection and classification algorithm. In: Proceedings of VS Tech2005
Harmeling S, Ziehe A, Kawanabe M, Blankertz B, Muller K (2001) Nonlinear blind source

separation using kernel feature spaces. In: Proceedings of international workshop on
independent component analysis and blind signal separation, pp 102–107

Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Networks 10:626–634

Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural
Networks 13(4–5):411–430

Jolliffe IJ (1986) Principal component analysis. Springer, New York
Kohonen T (1990) The self-organizing map. Proc IEEE 1464–1480

Table 5.2 Feature extraction methods

Method Property Comments

PCA Linear mapping, fast,
eigenvalue-based and unsupervised,
uncorrelated

Known as Karhunen–Loeve expansion,
good for Gaussian data

ICA Linear mapping, fast,
eigenvalue-based and unsupervised,
independent

Originally known as blind signal
separation, non-Gaussian data

KPCA Nonlinear mapping,
eigenvalue-based and unsupervised

PCA-based method, using kernel
functions to transform feature space

KICA Nonlinear mapping, fast,
eigenvalue-based and unsupervised,
independent

ICA-based method, using kernel functions
to transform feature space

LDA Linear mapping, fast,
eigenvalue-based, supervised

Better than PCA for classification, limited
to c−1 components.

GDA Nonlinear mapping, fast,
eigenvalue-based, supervised

Better performance in separation
compared with PCA, KPCA, and LDA

SOM Nonlinear map and iterative Based on a grid of neurons in the feature
space, suitable for extracting spaces of low
dimensionality

References 137

http://ltsww.epfl.ch


Kolmogorov A, Tikhomirov V (1961) &#x03B5;-entropy and &#x03B5;-capacity of sets in
function spaces. Trans Am Math Soc 17:277–364

Liu H, Motoda H (eds) (1998) Feature extraction, construction and selection: a data mining
perspective. Kluwer Academic Publishers, London

Mao J, Jain A (1995) Artificial neural networks for feature extraction and multivariate data
projection. IEEE Trans Neural Networks 6(2):296–317

Perez-Jimenez AJ, Perez-Cortes JC (2006) Genetic algorithm for linear feature extraction. Pattern
Recogn Lett 27:1508–1514

Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition:
recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264

Rosipal R, Trejo LJ (2000) Kernel partial least squares regression in reproducing kernel Hilbert
space. J Mach Learn Res 2:97–123

Sammon J (1969) A non-linear mapping for data structure analysis. IEEE Trans Comput 18
(5):401–409

Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput 10:1299–1319

Sohn H, Czarnecki JA, Farrar CR (2000) Structural health monitoring using statistical process
control. J Struct Eng 126(1):1356–1363

Sung CK, Tai HM, Chen CW (2000) Locating defects of a gear system by the technique of wavelet
transform. Mech Mach Theory 35:1169–1182

Trunk GV (1979) A problem of dimensionality: A simple example. IEEE Trans Pattern Anal Mach
Intell 1(3):306–307

Vigario R (1997) Extraction of ocular artifacts from EEG using independent components analysis.
Electroencephalogr Clin Neurophysiol 103(3):395–404

Yang BS, Han T, An JL (2004) ART-KOHONEN neural network for fault diagnosis of rotating
machinery. Mech Syst Signal Process 18:645–657

Yang BS, Han T, Hwang WW (2005) Fault diagnosis of rotating machinery based on multi-class
support vector machines. J Mech Sci Technol 19(3):846–859

Ypma A, Duin R (1998) Support objects for domain approximation, ICANN’98. Skovde, Sweden
Ypma A, Pajunen AP (1999) Rotating machine vibration analysis with second order independent

components analysis. In: Proceeding of the workshop on ICA and signal separation, pp 37–42
Worden K, Manson G (1999) Visualization and dimension reduction of high-dimensional data for

damage detection. IMAC 17:1576–1585
Zang C, Friswell MI, Imregun M (2004) Structural damage detection using independent

components analysis. Struct Health Monit 3(1):69–83

138 5 Statistic Feature Extraction



Chapter 6
Feature Selection Optimization

6.1 Introduction

Reduction of feature dimensionality is a considerable importance data-driven
PHM/CBM. The reason for being so is twofold: to reduce the computational
complexity and to improve the algorithm’s generalization ability. The first moti-
vation is quite evident, since fewer features require less run time to train and to
apply the classifier. The second motivation is low-dimensional representation
reducing the risk of overfitting. As a rule of thumb, a minimum of 10 d � c training
samples is required for a d-dimensional classification problem of c classes. When it
is impractical and even impossible to obtain the required number of training
samples, the reduction of feature dimensionality helps decrease the size of the
training samples and consequently improves the generalization performance of the
classification algorithm.

Feature extraction and feature selection are two different approaches for the
reduction of dimensionality. Feature extraction involves linear or nonlinear trans-
formation from the original feature space to a new one of lower dimensionality.
Although it does reduce the dimensionality of the vectors fed to the algorithm, the
number of features that must be measured remains the same. Feature selection, on
the other hand, directly reduces the number of original features by selecting a subset
of them that still retains sufficient information for classification and prediction.

Feature selection is the important issue in pattern classification for equipment
fault diagnosis, even prognosis. It has three goals:

• Reducing the cost of extracting features,
• Improving the classification accuracy, and
• Improving the reliability of the estimate of performance.

© Springer Science+Business Media Singapore and Science Press, Beijing, China 2017
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Usually, a large number of features often include many garbage features. Such
features are not only useless in classification, but also sometimes degrade the
performance of a classifier designed on the basis of a finite number of training
samples. In such a case, removing the garbage features can improve the classifi-
cation accuracy.

The choice of an algorithm for selecting features, for example, from an initial set
X depends on the number of features in X. We can say that the feature selection
problem is small scale, medium scale, or large scale if the number of features
belongs to (0–19), (20–49), or (50–∞), respectively.

The problem of feature selection is defined as follows: Given a set of d features,
select a subset of size m that leads to the smallest classification error. There has
been a resurgence of interest in applying feature selection methods due to the large
number of features encountered the following situation:

• Multi-sensor fusion: Features, computed from different sensor modalities, are
concatenated to form a feature vector with large number of components.

• Integration of multiple data models: Sensor data can be modeled using different
approaches, where the model parameters serve as features, and the parameters
from different models can be pooled to yield a high-dimensional feature vector.

Moreover, the feature selection approach can solve the problem of irrelevant
information in feature space. The benefits of feature selection include a reduction in
the amount of data needed to achieve learning, improving classification accuracy,
more compact and easily understanding knowledge base, and reducing execution
time (Kumar et al. 2005). These are some feature selection methods such as con-
ditional entropy (Lehrman et al. 1997), genetic algorithm (GA) (Jack and Nandi
2002), and distance evaluation technique (Yang et al. 2004, 2005), which have been
implemented in real application.

Usually, feature selection methods can be divided into three categories: expo-
nential algorithms, sequential algorithms, and randomized algorithms (see
Table 6.1). In addition to these selection strategies, another way is that the users
define an evaluation criterion for features and select them based on it. Feature
distribution ranking algorithm belongs to this category. GA is one of the ran-
domized algorithms. Exponential algorithms include exhaustive search, brand and
bound, and beam search. These algorithms can find the best feature subsets due to
exponential search. However, the calculation time is very expensive for the same
reason. Therefore, this strategy is suitable for the off-line feature selection and
small-size feature selection. For example, exhaustive evaluation of 10 out of 29
features involves 184,756 feature subsets, whereas exhaustive evaluation of 10 out
of 100 involves more than 1013 feature subsets.

Sequential search takes feature dependencies into account, which has the
characteristic of fast speed. But the best optimal solution usually cannot be
obtained. The representative algorithms are sequential forward selection (SFS) and
sequential backward selection (SBS). In order to make up the disadvantages of both
algorithms, more sophisticated algorithms are developed, such as plus-l minus-
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R selection (LRS), bidirectional search (BDS), and sequential floating selection
(SFFS or SFBS). Some of the feature selection techniques will be discussed in the
following section.

In the machine learning literature, the feature selection algorithms are often
categorized as “filter” or “wrapper” approaches. Filter approaches evaluate the
“goodness” of each feature based on an evaluation criterion independent from the
classification design. Chi-square test, t test, and signal-to-noise ratio present some
examples of popular univariate filter approach. In contrast, in the wrapper approach,
the “goodness” of a subset of features is directly evaluated by their corresponding
classification performance. Wrapper approaches consider the combinatorial effects
of a subset of features and are multivariate (Blum and Langely 1997). Exhaustive
search and GA are examples of the wrapper approach.

For the purpose of predictive analysis, a feature selection algorithm can be
assessed based on the time complexity, the resulting classification accuracy and
generalizability of the identified feature subset. Although an exhaustive wrapper
approach feature selection algorithm results in the highest classification accuracies,
with small sample numbers, the identified feature subset may not “generalize” well
to unseen samples. Additionally, this approach is computationally expensive and
may be intractable.

6.2 Individual Feature Evaluation (IFE)

This algorithm is suitable for feature selection of supervised classification, which
consists of two parts. First part is to classify subclasses for each known class based
on the histogram statistics and then create new labels for the subclasses. Second part
is to evaluate individual feature according to the space distribution. The detail
procedure can be summarized as follows:

Step 1: extracting same class data according to the given labels and, then for
each class, calculating the frequencies within the limited region using histogram:

Table 6.1 Categories of feature selection methods (Mineichi and Jack 2000)

Accuracy Complexity Advantages Disadvantages

Exponential Always finds the
optimal solution

Exponential High accuracy High
complexity

Sequential Good if no
backtracking needed

Quadratic Simple and fast Cannot
backtrack

Randomized Good with proper
parameter selection

Generally
low

Designed to
escape local
minima

Difficult
parameters
selection
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hs ¼
Xn
j¼0

1
n
rsðxi;jÞ; s ¼ 1; 2; . . .; b: ð6:1Þ

rsðxÞ ¼ 1; if sðmaxðxi;jÞ�minðxi;jÞÞ
b � x\ ðsþ 1Þðmaxðxi;jÞ�minðxi;jÞÞ

b
0; otherwise

(
ð6:2Þ

where xi,j is the feature value, i and j are the ith feature and sample numbers,
respectively, and hs is the frequencies within the bins we wish to divide the ranges.

Step 2: estimating the number of subclass for each class based on the peaks and
bottoms of the histogram using differential calculation:

hf ¼ diff hsð Þ
ind p ¼ find hf 0

� �
\0

� �
& 0 hf

� �� 0
� �� �

;

ind b ¼ find hf 0
� �� 0
� �

& 0 hf
� �

\0
� �� �

;

ð6:3Þ

Step 3: redefining the labels for subclasses.
Step 4: calculating the mean value of each subclass mi,n and then getting the total

mean value mi.

mi;n ¼ 1
M

XM
j¼1

xi;j; then mi ¼ 1
c

Xc

n¼1

di;n ð6:4Þ

where M is the number of subclass sample data and c is the number of subclasses
for ith feature.

Step 5: calculating the average distance df between different classes (mi,n).

df ¼ 1
c� ðc� 1Þ

Xc

p;q¼1

mi;p � mi;q

�� ��; ðp; q ¼ 1; 2; . . .; c; p 6¼ qÞ ð6:5Þ

Step 6: calculating the ratio of the average distance and total mean value for each
feature and then selecting the good classification features.

ai ¼ df =mi ð6:6Þ

Example 6.1 Select the optimal features using individual feature evaluation
(IFV) method of vibration features collected from the induction motor. This feature
data set consists of matrix [180 � 63] obtained from 20 vibration measurements of
9 conditions of induction motors using 3 directions of accelerometers. In feature
representation, 21 features are calculated from each accelerometer, so total 63
features were collected. Plot of two selected features (features 15 and 18) using IFB
method is shown in Fig. 6.1. From this figure, each class can be clustered even
though still contains overlapping between classes.

142 6 Feature Selection Optimization



6.3 Conditional Entropy

A good feature should map two different classes to two separate locations in feature
space. Such class separability can be analyzed by the mutual information I(X; C)
between the set of feature values X and the set of classes C. The mutual information
I(X; C) measures the interdependence between two random variables X and C. It can
be computed as follows:

IðX;CÞ ¼ EsðCÞ � EsðC jXÞ ð6:7Þ

Entropy can measure the degree of uncertainty in the system. For class C the
entropy is given by

EsðCÞ ¼ �
X

pðcÞ ln pðcÞ ð6:8Þ

where p(c) is the probability density function (pdf) of c.
The conditional entropy Es(C|X) measures the degree of uncertainty entailed by

the set of classes C given the set of feature value X, and can be computed as

EsðC jXÞ ¼
X
c2C

Z
x2X

pðx; cÞ ln pðx j cÞpðcÞ
pðxÞ ð6:9Þ

The integration in the expression above signifies that the feature space is con-
tinuous. However, in order to implement the computation, the feature space should
be discretized into intervals of width Dx, so the integration is replaced with a
summation. Thus, the discrete form of Eq. (6.9) is as follows:
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EsðC jXÞ ¼
X
c2C

X
x2X

pðx; cÞ ln pðx j cÞpðcÞ
pðxÞ Dx; ð6:10Þ

but pðx; cÞ ¼ pðx j cÞpðcÞ, so

EsðC jXÞ ¼
X
c2C

pðcÞ
X
x2X

pðx j cÞDx ln
pðx j cÞpðcÞ

pðxÞ ð6:11Þ

The first term in expression Eq. (6.7) is the entropy Es(C). It depends only on the
classes and does not depend on the design or selection of features. It provides an
upper bound of the mutual information I (X; C) since 0 � Es(C | X) � Es(C). The
second term in expression Eq. (6.7), −Es(C | X), can be interpreted as the decrease
in the uncertainty. That is, with a higher interdependence between the feature values
X and the classes C, one has a higher certainty (i.e., lower uncertainty) in classifying
is given by its feature value. The mutual information I (X; C) is at maximum when
X and C are totally dependent on each other. Conversely, it is at minimum when
there is no relationship between X and C. Thus, in order to maximize the class
separability, one objective is to maximize the mutual information I (X; C) between
the feature values and the classes.

Example 6.2 Select the optimal features using entropy information method of
vibration features collected from the induction motor in Example 6.1. Plot of two
selected features (features 5 and 27) using conditional entropy is shown in Fig. 6.2.
From this figure, the clustering process is shown even though it still contains
overlapping between classes.
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6.4 Backward Feature Selection

For explanation, we assume that the features are functions of all the original
variables, thus preserving as much classification information as possible contained
in the original variables. This assumption is reasonable in many applications of
pattern recognition, particularly for the classification of random processes. A feature
selector for random processes may be interpreted as a filter, with the output
time-sampled values to be functions of all input time-sampled values. However, in
some other applications such as machine diagnosis, we need to evaluate the
effectiveness of individual tests (variables) or their combinations for classification,
and select only the effective ones. This problem is called feature subset selection.
The best subset of m variables out of n may be found by evaluating a criterion of
class separability for all possible combinations of m variables. However, the

number of all possible combinations
n
m

� �
becomes prohibitive even for modest

values of m and n. For example, with n = 24 and m = 12, the number becomes
2,704,156. Therefore, we need some procedures to avoid the exhaustive search.

Let us study a simple example in which two features are chosen out of four as
shown in Fig. 6.3. The subset of features a, b, and c is denoted by (a, b, c).
A criterion of class separability is selected, and its value for (a, b, c) is expressed by
J3(a, b, c) where the subscript indicates the number of features in the subset.

The backward selection procedure starts from the full set (1, 2, 3, 4). Then,
eliminating one feature from four, all possible subsets of three features are obtained
and their criterion values are evaluated. If J3(1, 3, 4) is the largest among the four J3
subset, (1, 3, 4) is selected as the best subset of three variables. Then, eliminating
one more feature only from (1, 3, 4), we can obtain the subsets of two features,
among which the subset with the largest J2 is chosen as the best solution of the
problem.

Example 6.3 Given a random data set, demonstrate the feature selection process
using backward selection. The original features and selected features are shown in
Fig. 6.4a, b. From the figures, although the features were selected, the clustering
was not performed well using this technique. The performance of feature selection
process is evaluated based on 1-nearest neighbor and resulted J = 0.7.
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Fig. 6.3 Backward selection

6.4 Backward Feature Selection 145



6.5 Forward Feature Selection

The forward selection procedure starts from the evaluation of individual features as
shown in Fig. 6.5. Let the problem be to select three features out of four. If J1(2) is
the largest among all J1(�) subset, one feature is added to feature 2 to form the
subset of two features. If J2(2, 3) is the largest among all J2(2, �) subset, one more
feature is added to (2, 3) to form the subset of three features. Among all possible (2,
3, �) subset, the best subset is the one which gives the largest J3(2, 3, �).
Example 6.4 Demonstrate the feature selection process using forward selection of a
given data in Example 6.3. In this example, features 5 and 7 are the best of 5
selected features. Figure 6.6a, b is the plot of original and best selected features,
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respectively. From the figures, although the features were selected, the clustering
was not performed well using this technique. The performance of feature selection
process is evaluated based on 1-nearest neighbor and resulted J = 0.67.

The reason why this method cannot necessarily select the optimum subset may
be understood by observing the forward selection procedure. Suppose that x1 and x2
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Fig. 6.5 Forward selection
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of Fig. 6.6 are two features among n, from which m features are to be selected
(Fukunaga 1990). Since the x1 and x2 marginal density function of x1 are heavily
overlapped, x1 drops out when individual features are evaluated. The same is true
for x2. Thus, one of the other features, say x5, and others are examined, and so on.
As a result, the combination of features including both x1 and x2 might not come up
for evaluation at the later stages. As shown in Fig. 6.6, although x1 and x2 are poor
features individually, their combination gives a good feature space in which the x1

and x2 distributions are well separated. The forward selection procedure could fail
to pick that information. This phenomenon is observed frequently when two fea-
tures are highly correlated. In general, it is true for signal representation that we can
eliminate one feature when two features are highly correlated. This is due to the fact
the second feature gives little extra information for representing signals. For
example, in Fig. 6.7, knowing one’s height (x1) we can well guess the weight (x2).
On the other hand, highly correlated features could enhance the class separability
significantly, as shown in Fig. 6.7. Eliminating one, we might lose vital information
for classification.

Thus, both backward and forward selection procedures give simple search
techniques which avoid exhaustive enumeration. However, the selection of the
optimal subset is not guaranteed.

6.6 Branch and Bound Feature Selection

Branch and bound methods have been developed to obtain optimal solutions to
combinatorial problems without involving exhaustive enumeration (Golomb and
Baumert 1965; Nilsson 1971; Narendra and Fukunaga 1977). In this section, we
formulate the feature subset selection as a combinatorial optimization problem and
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Fig. 6.7 An example of feature extraction for classification
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develop an efficient algorithm for selecting feature subsets. The subset selected by
this procedure is guaranteed to be the best among all the possible combinations of
features.

Rather than enumerating the subsets of m features, we will find it more con-
venient to enumerate the subsets of �m ¼ n� m features discarded from the n fea-
ture set. Let ðz1; . . .; z�mÞ denote the set of those �m discarded features. Each variable
zi can take on integer values in {1, …, n}. However, since the order of the zi is
immaterial, every permutation of the sequence ðz1; . . .; z�mÞ will yield the same value
of the criterion. Moreover, all the zi should be different. Hence, it is sufficient to
consider the sequences which satisfy

z1\z2\ � � �\z�m ð6:12Þ

The feature selection criterion is a function of the m features obtained by deleting
the �m features from the n feature set. However, for notational convenience, we write
the criterion as J�mðz1; . . .; z�mÞ. Then, the subset selection problem is to find the
optimum sequence ðz�1; . . .; z��mÞ such that

J�mðz�1; . . .; z��mÞ ¼ max
z1;...;z�m

J�mðz1; . . .; z�mÞ ð6:13Þ

If the criterion were to be minimized instead, all the inequalities in the following
discussion would be reversed.

Enumeration of the sequences ðz1; . . .; z�mÞ satisfying Eq. (6.12) can be illustrated
by a solution tree. Figure 6.8 is an illustration for solution tree corresponding to
n = 6 and m = 2 (�m ¼ 4). A node at level i is labeled by the value of zi. Also, each
node can be identified by the sequence of discarded features, for example, (1, 4) for
node A. At level 1, zi can only assume values 1, 2, or 3, because with zi greater than
3, it would not be possible to have sequences (z1, …, z4) satisfying Eq. (6.12).
Similar considerations govern the enumeration at other levels of the tree, and the
largest value for zi must be (m + i) in general.
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Fig. 6.8 The solution tree for
the basic algorithm (n = 6,
m = 2, and �m ¼ 4)
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Let us assume that the criterion J satisfies monotonicity, which is defined as

J1ðz1Þ� J2ðz1; z2Þ� � � � � J�mðz1; . . .; z�mÞ ð6:14Þ

The monotonocity is not particularly restrictive, as it merely implies that a
subject of features should be no better than any larger set that contains the subset.
Indeed, a large variety of feature selection criteria do satisfy the monotonicity
relation. They are the Bayes error, asymptotic k-NN error, and the function of the
scatter matrices.

Let a be the best (maximum) value of J�mðz1; . . .; z�mÞ found so far in the search. If

Jkðz1; . . .; zkÞ� a for k\�m ð6:15Þ

then by Eq. (6.14)

J�mðz1; . . .; zk; zkþ 1; . . .; z�mÞ� Jkðz1; . . .; zkÞ� a ð6:16Þ

for all possible fzkþ 1; . . .; z�mg.
This means that whenever the criterion evaluated for any node is less than a, all

nodes that are successors of that node also have criterion values less than a and
therefore cannot be optimal. This forms the basis for the branch and bound
algorithm.

The branch and bound algorithm successively generates portions of the solution
tree and computes the criterion for the nodes explored. Whenever a suboptimal
partial sequence of nodes is found to satisfy Eq. (6.16), the subtree under the node
is implicitly rejected, and enumeration begins on partial sequences which have not
yet been explored.

We shall give a simple procedure for enumerating the partial sequences with
z1 < ��� < z2 as follows:

Basic algorithm

Step 1: Initialization

Set a ¼ �1; the level i ¼ 1; and z0 ¼ 0: ð6:17Þ

Step 2: Generate successors

Initialize LIST(i) which is the list of the feature values that can assume given
the values of (z1, …, zi−1). That is,

LISTðiÞ ¼ fzi�1 þ 1; zi�1 þ 2; . . .;mþ ig ði ¼ 1; . . .; �mÞ ð6:18Þ
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Step 3: Select new node

If LIST(i) is empty, go to step 5.
Otherwise, set zi = k, where

Jiðz1; . . .; zi�1; kÞ ¼ max
j2LISTðiÞ

Jiðz1; . . .; zi�1; jÞ ð6:19Þ

Delete k from LIST(i).

Step 4: Check bound

if Jiðz1; . . .; ziÞ\a; go to step 5: ð6:20Þ

If the level i = �m, go to step 6

Otherwise; set i ¼ iþ 1 advance to a new levelf g ð6:21Þ

Go to step 2.

Step 5: Backtrack to lower level

Set i ¼ i� 1; if i ¼ 0; terminate the algorithmf g ð6:22Þ

Otherwise go to step 3.

Step 6: Last level

Set a ¼ J�mðz1; . . .; z�mÞ and set ðz�1; . . .; z��mÞ ¼ ðz1; . . .; z�mÞ: ð6:23Þ

Go to step 5.

The functioning of the algorithm is as follows. Starting from the root of the tree,
the successors of the current node are enumerated in LIST(i). The successor, for
which the partial criterion Ji(z1, …, zi) is maximum (the most promising node), is
picked as the new current node, and the algorithm moves on to the next higher
level. The lists LIST(i) at each level i keep track of the nodes that have not been
explored. Whenever the partial criterion is found to be less than a, the algorithm
backtracks to the previous level and selects a hitherto unexplored node for
expansion. Whenever the algorithm reaches the last level �m, a is updated to be the
current value of J�mðz1; . . .; z�mÞ and the current sequence ðz1; . . .; z�mÞ is saved as
ðz�1; . . .; z��mÞ. When all the nodes in LIST(i) for a given i are exhausted, the algorithm
backtracks to the previous level. When the algorithm backtracks to level 0, it
terminates. Upon termination, the current value of ðz�1; . . .; z��mÞ gives the comple-
ment of the optimum set of m features and the current value of a gives the optimum
value of the criterion. The procedure guarantees that all sequences are either
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explicitly evaluated or implicitly rejected, and thus, the sequence ðz�1; . . .; z��mÞ gives
the best subset of features among all possible subsets.

Example 6.5 Demonstrate the feature selection process using branch and bound
selection of a given random data in Example 6.1.

Figure 6.9a, b is the plot of original and best selected features, respectively.
From the figures, although the features were selected, the clustering was not per-
formed well using this technique. The performance of feature selection process is
evaluated based on the 1-nearest neighbor and resulted J = 0.56.
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6.7 Plus l-Take Away r Feature Selection

The well-known SFS and SBS are step optimal only since the best (the worst)
feature is always added (discarded) in SFS and SBS, respectively. These results are
nested feature subsets without any chance to correct the decision in later steps,
causing the performance to be often far from optimal.

A definitive improvement can be obtained by combining SFS and SBS to avoid
the nesting effect. The plus l-take away r method (Stearns 1976) consists of applying
SFS l times followed by r steps of SBS with this fixed cycle of forward and backward
selection repeated until the required number of features is reached. Therefore, it
results in a forward method if l > r or a backward one if l < r. In this case, features
that have been previously added can be removed in posterior steps, thus avoiding the
nesting effect. In this case, the method allows a fixed backtracking defined by the
values of l or r depending whether the search is top down or bottom up.

The plus l-take away r algorithm and, consequently, the SFS [(1, 0)-search] and
SBS [(0, l)-search] algorithms can be described in an algorithmic way as follows:

Step 1: Input

Y ¼ fyj j j ¼ 1; . . .;Dg ==availablemeasurement== ð6:24Þ

Step 2: Output

Xk ¼ fxj j j ¼ 1; . . .k; xj 2 Yg; k ¼ 0; 1; . . .;D ð6:25Þ

Step 3: Initialization

if l[ r then k :¼ 0; X0 :¼ 0; ð6:26Þ

Go to step 5.

else k :¼ D; XD :¼ Y ; ð6:27Þ

Go to step 6.

Step 4: Termination, stop when k equals the number of features required
Step 5: Inclusion, repeat l times

xþ :¼ arg max
x2Y�Xk

JðXk þ xÞ: ð6:28Þ

{The most significant features with respect to Xk}

Xkþ 1 :¼ Xk þ xþ ; k :¼ kþ 1 ð6:29Þ

G o to step 6.
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Step 6: Exclusion, repeat r times

x� :¼ argmax
x2Xk

JðXk � xÞ; ð6:30Þ

{The least significant features in Xk}

Xk�1 :¼ Xk � x�; k :¼ k � 1 ð6:31Þ

Go to step 5.
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This procedure can be generalized to search a larger region of the space by
substituting l steps forwarded by the search of the best superset that can be formed
by adding l features (the same for backward). Even though the problem of nested
features can be partially overcome with this procedure, another problem arises;
there is no way of predicting the best values of l and r to obtain good enough
solutions with a moderate amount of computation.

Example 6.6 Demonstrate the feature selection process using plus l-take away
r selection of a given random data in Example 6.1.

In this case, features 10 and 3 are the best of 5 selected features. The original
features and selected features are plotted in Fig. 6.10a, b. In those figures presenting
the selected features, the clustering was not performed well using this technique.
The performance of feature selection process is evaluated based on 1-nearest
neighbor and resulted J = 0.61.

6.8 Floating Forward Feature Selection

Floating search method is very efficient and effective even on the problems of high
dimensionality involving non-monotonic feature selection criterion functions (Pudil
et al. 1994). The floating search method is related to the plus l-take away r algo-
rithm, but in contrast to the latter, the number of forward and backtracking steps is
dynamically controlled instead of being fixed beforehand. Procedures of this
method are constructed in parallel with feature sets of all dimensionalities up to a
specified threshold. By means of sequential forward and backward selection, these
sets are updated whenever the modification results in a better performance. In
consequence, the resulting feature sets, as in the case of the (l, r) sequential
algorithm, are not necessarily nested. By the same token, the selection process can
correct for any effects caused by non-monotonicity of the feature selection criterion.

The sequential floating forward selection procedure consists of applying after
each forward step a number of backward steps as long as the resulting subsets are
better than the previously evaluated ones at that level. Consequently, there are no
backward steps at all if the performance cannot be improved. This method can be
described algorithmically in a similar way to the previous method as follows:

Step 1: Input

Y ¼ fyj j j ¼ 1; . . .;Dg ==availablemeasurement== ð6:32Þ
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Step 2: Output

Xk ¼ fxj j j ¼ 1; . . .; k; xj 2 Yg; k ¼ 0; 1; . . .;D ð6:33Þ

Step 3: Termination, stop when k equals the number of features required
Step 4: Inclusion

xþ :¼ arg max
x2Y�Xk

JðXk þ xÞ; ð6:34Þ

{The most significant features with respect to Xk}

significant feature: xþ satisfies JðXk þ xþ Þ ¼ max
x2Y�Xk

JðXk þ xÞ
	 


ð6:35Þ

Xkþ 1 :¼ Xk þ xþ ; k :¼ kþ 1 ð6:36Þ

Step 5: Conditional inclusion

x� :¼ argmax
x2Xk

JðXk � xÞ; ð6:37Þ

{The least significant features in Xk}

if JðXk � fx�gÞ[ JðXk � 1Þ then ð6:38Þ

Xk�1 :¼ Xk � x�; k :¼ k � 1 ð6:39Þ

Go to step 5
Else

Go to step 6.

The backward counterpart of this algorithm can be obtained in a straightforward
manner by substituting inclusion by exclusion and initializing in the previous
description. Both algorithms allow a self-controlled backtracking, so they can
eventually find solutions by adjusting the trade-off between forward and backward
steps dynamically. It is possible to say that in a certain way, they compute only
what they need without any parameter setting.

Example 6.7 Demonstrate the feature selection process using floating forward
selection of a given random data.

156 6 Feature Selection Optimization



In this case, features 10 and 3 are the best of 6 selected features. The original
features and selected features are plotted in Fig. 6.11a, b. Examining the figures,
although the features were selected, the clustering was not performed well using
this technique. The performance of feature selection process is evaluated based on
the 1-nearest neighbor and resulted J = 0.67.
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6.9 Distance-Based Evaluation Technique

Step 1: Calculate the relative average value of the sampling data for the same class
di,j and then obtain the average distance of class dai. The equation can be defined as
follows:

di;j ¼ 1
N � ðN � 1Þ

XN
m;n¼1

pi;jðmÞ � pi;jðnÞ
�� �� ðm; n ¼ 1; 2; . . .;N;m 6¼ nÞ ð6:40Þ

where N is the sampling number of each class and pi,j is the value of ith feature
under jth class.

dai ¼ 1
M

XM
j¼1

di;j ð6:41Þ

where M is the number of class.
Step 2: Calculate the average distance of interclass d0ai

d0ai ¼
1

M � ðM � 1Þ
XM
m;n¼1

pai;m � pai;n
�� �� ðm; n ¼ 1; 2; . . .;M;m 6¼ nÞ ð6:42Þ

where pai,m and pai,n are the average values of the sampling data under different
class.

pai;j ¼ 1
N

XN
n¼1

pi;jðnÞ ðn ¼ 1; 2; . . .;NÞ ð6:43Þ

Step 3: Calculate the ratio dai=d0ai
Step 4: Select the eight largest feature parameters ai. Bigger ai represent a

well-selected feature. This requires a small dai and a large d0ai.

ai ¼ d0ai=dai ð6:44Þ

where ai (i = 1, …, k) is the effectiveness factor of the features and k is the number
of selected features.

Given ai, one can now establish a raking methodology among the individual
feature components. The useful features are expected to show high values of ai,
indicating a good interclass spread in the classifier.

158 6 Feature Selection Optimization



6.10 Taguchi Method-Based Feature Selection

The Taguchi method, based in part on the Fisher’s experimental methods, was
applied for the robust design of products by Taguchi in the early 1950s. One basic
ingredient of the Taguchi method is the orthogonal array (OA) which is used to find
the important control variables that influence the performance of a product among
many candidate variables based on the experiments and to assign them appropriate
values. First, some control variables that are suspected of influencing the perfor-
mance of a product are selected, and then, experiments are performed by changing
the values of the control variables systematically. Then, the best combinations of
the values of the control variables are found. Here, Taguchi method-based selection
method is reviewed briefly, which was proposed by Kwak and Choi (2002).

The following is a short explanation of how to apply the Taguchi method to the
input feature selection problem (Tables 6.2 and 6.3). First, we make an OA and let
each column correspond to each input feature. Each row corresponds to one training
of the classifier with input features set to level 1 or level 2 in that row. After all of
the rows are trained, we compare the average performance with a specific feature in
the input vector and that without the feature. Then, we choose features which gives
better average improvement in performance. In this algorithm when there are
N inputs, we need 2ðlog2 N þ 1Þ trainings. As we need O(N) experiments, we conclude
that if we choose inputs in this way, we can get good input features with a relatively
small number of trainings. The computational effort increases linearly with the
number of features. Therefore, the method can be applied with effect to large
problems without excessive computational effort. A demonstration as to how to use
the OA for the input feature selection problem will be given with the example of
Table 6.2. There are three input features (F1–F3), and we used the OA of L4 as
shown in Table 6.2.

In Table 6.3, the first row of OA represents that all the three features are selected
as the input features. The NN with these features are trained to give 90 % of the
classification rate (in this case, the performance measure is the classification rate).
The second row of the table shows that the network trained solely with F1 gives
30 % of the classification rate. In this way, after all the four trainings listed in the
OA have been finished, the average performance using each feature and without it
is calculated. For example, for F1 the average performance using this feature is
60 % (= (90 + 30)/2) and that without it is 50 % (= (40 + 60)/2). With this average
performance, the improvement of the average performance for each feature is
evaluated. It is 10 % for F1 and 20 % for F2, while F3 shows a 40 % improvement.

Table 6.2 Example of
orthogonal array (L4) for input
feature selection

Run F1 F2 F3

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1
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This means that F3 has the most influence on the performance of the network and
can be regarded as the most salient feature. So we selected features F3, F2, and F1 in
that order.

For most OAs, the first row has a series of 1s and the others have 1s less than
half the number of columns. If we use level 1 for the inclusion and level 2 for the
exclusion of features, the training corresponding to the first row will always include
all the features. Such an unbalance in the number of included features between the
runs can degrade the performance of the selection procedure. To avoid this prob-
lem, we train the classifier all over again with input vectors replacing level 1 (level
2) by level 2 (level 1) in Table 6.3. With this additional training, we can select
better features.

A relevant question to ask is what if there are hundreds of features that can make
the size of OA extremely large. In such cases, we can use the Taguchi method after
reducing the features by other selection algorithms such as the greedy selection
algorithms described in the previous section, and in doing so, better performance
can be expected.

The feature selection algorithm using the Taguchi method is summarized as
follows:

Step 1 (filtering): If there are too many features, reduce the number of features to
twice the number we want to select by using some algorithms.
Step 2 (obtaining the OA): Obtain the OA corresponding to the number of features
which are filtered in step 1.
Step 3: Repeat the following steps with i = 1, 2.
Step 3-1 (form an input feature vector for classifier): For each row of the OA, form
an input feature vector with features whose values are in the OA.
Step 3-2 (training the classifier): For each row, train the classifier with the training
data and store the performance for the test data.
Step 3-3 (analysis of the mean): Calculate the average performance of each feature
for its inclusion and exclusion in the input feature vector. Then, for each feature,
evaluate the performance increment for its inclusion case over the exclusion case.

Table 6.3 Example of input feature selection (○: select and –: do not select)

Classifier training F1 F2 F3 Performance (%)

1 ○ ○ ○ 90

2 ○ – – 30

3 – ○ – 40

4 – – ○ 60

Average performance (select) (%) 60 65 75

Average performance (not select) (%) 50 45 35

Average improvement of performance (%) 10 20 40

Order of selection 3 2 1
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Step 4 (selecting the input features): For each feature, average out the two incre-
ments in performance for i = 1 and i = 2 cases in step 3 and select input features by
the order of these averaged terms.

6.11 Genetic Algorithm

6.11.1 General Concept

Genetic algorithm simulates a probabilistic search technique that is analogous to the
biological evolutionary process. The GA consists of three main strategies: repro-
duction, crossover, and mutation. The performance of the GA depends on the
operating parameters, namely crossover, mutation, and reproduction.

The GA consists of three main strategies (reproduction, crossover, and muta-
tion). Using reproduction in the GA, individuals are selected from the population
and recombined, producing offspring, which will comprise the next generation.
Two individuals are selected, and their chromosomes are recombined. Crossover is
the operation when two individuals are taken and their chromosomes are cut at
some randomly chosen position, to produce two head and tail segments. These
segments are swapped to reproduce two new full-length chromosomes. The off-
spring inherits some genes from each parent. Mutation is the technique used to
randomly alter the genes with a small probability and is typically applied after
crossover. Crossover is more important for rapidly exploring a search space.
Usually, mutation provides a small amount of random search.

A GA for a particular problem must have the following five components:

• A genetic representation for potential solutions to the problem,
• A way to create an initial population of potential solutions,
• An evaluation function that plays the role of the environment, rating solution in

terms of their fitness,
• Genetic operator that alters the composition of children from parents, and
• Values for various parameters such as population size and probabilities of

applying genetic operators.

The parameters to be optimized are usually represented in a string (or chro-
mosome) form since genetic operators are suitable for this type of representation.
The method of representation has a major impact on the performance of the GAs.
Different representation schemes might cause different performances in terms of
accuracy and calculating time. There are two common representation methods for
numerical optimization problems.

It seems that there are two important issues in the evolution process of the GA:
One is population diversity and the other is selective pressure. These factors are
strongly related: An increase in the selective pressure decreases the diversity of the
population and vice versa. In other words, strong selective pressure supports the
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premature convergence of the GA and a weak selective pressure can make the
search ineffective. Thus, it is important to keep a balance between these two factors.

There are three common genetic operators: selection, crossover, and mutation.
An additional reproduction operator, inversion, is sometime also applied.

(1) Selection

The aim of the selection procedure is to reproduce more copies of individuals
whose fitness values are higher than those whose fitness values are low. The
selection procedure has a significant influence on driving the search toward a
promising area and finding food solutions in a short time. However, the diversity of
the population must be maintained to avoid the premature convergence and to reach
the global optimal solution. Selection determines the reproduction probability of
each individual in selection pool. This probability depends on the own objective
value and the objective value of all other individuals. Three kinds of selection
method are usually used in application.

Roulette wheel selection (Holland 1975): The mechanism of this selection is
reminiscent of the operation of a roulette wheel. Fitness values of individuals
represent the widths of slots on the wheel. After a random spinning of the wheel to
select an individual for the next generation, individuals in slots with large widths
representing high fitness values will have a higher chance to be selected.

Rank-based selection (Baker 1985): According to this procedure, each individual
generates an expected number of offspring, which is based on the rank of its fitness
value and not on the actual evaluation values. This strategy is similar to roulette
wheel selection, excluding the application of uniform region and controlling better
the selective pressure than that of the roulette wheel strategy.

Tournament selection (Goldberg 1990): This method selects randomly a group,
k, of individuals from a beginning population, and from this group, the most fitness
individual is chosen to move on to the next population. This process is repeated
population-size number of times. It is clear that large value of k increases selective
pressure of this procedure.

(2) Crossover

This operator is considered the one that makes the GA different from other algo-
rithms, such as dynamic programming. It is used to create two new individuals
(children or offspring) from two existing individuals (parent) picked from the
current population by the selection operation. There are several ways of doing this.

Simple crossover: Simple crossover is two kinds of crossover, single or one
point crossover and multi-point crossover. First, two individuals are randomly
selected as parents from the pool of individuals formed by the selection procedures.
Second, they are cut at a randomly chosen point. Finally, the tails, which are the
parts after the cutting point, are swapped, and then, two new individuals (offspring)
are produced.

Uniform crossover: Uniform crossover is proposed to overcome the problem that
the process of simple crossover may be lost a sequence of string, which is schema.
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This is important in that an individual solution is coded as a string. In the concept,
uniform crossover is similar to multi-point crossover. The difference between
simple crossover and uniform crossover is in the way that a swapping point is
selected.

(3) Mutation

The part of mutation is that the initial individuals are widely distributed in the
search space and prevented the initial local convergence. In this procedure, all
individuals in the population are checked bit by bit and the bit values are randomly
reversed according to a specified rate. Unlike crossover, this is a monadic operation.
That is, a child string is produced from a single parent string. The mutation operator
forced the algorithm to search new areas. Eventually, it helps the GA avoid pre-
mature convergence and find the global optimal solution. In the binary coding, this
simply means changing 1 to 0 and vice versa and is the occasional random alter-
ation of the value of a string position.

Classical mutation: Goldberg (1989) proposed this strategy in a basic GA, which
was modeled by Holland (1975). A genotype of selected parent is exchanged by
mutation rate, which is similarly small (or smaller) in natural population.

Uniform mutation: It is similar to the definition of the classical version, which
searches a new point with a uniform probability distribution. This operator requires
a single parent x and produces a single offspring x′. The operator selects a random
component k 2 (1, …, q) of the vector x ¼ ðx1; . . .; xk; . . .; xqÞ and

Produces x0 ¼ ðx1; . . .; x0k; . . .; xqÞ

x0k ¼ xLk þ nðxUk � xLk Þ; n 2 R½0 1� ð6:45Þ

where xLk and xUk are the lower and upper boundaries of the parameter xk , respec-
tively, and n is the real value selected randomly from 0 to 1.

Dynamical mutation: If a high mutation rate is applied to the all stages, we may
be lost the searched good candidates for optimum solutions at the previous gen-
eration. In order to avoid this problem, the elite preservation strategy and the
dynamical mutation are applied. The one conserves the individuals that have higher
fitness with a certain proportion rate and the other guarantees that the search point
(initial candidates) is wildly distributed in the search space.

Equation (6.46) shows the dynamical mutation, which is considered in the
global search steps.

Mi ¼ exp � D
5ðdi þ 1Þ �

4gi
G

� �
ð6:46Þ

where gi is the ith generation number, G is the total generation number, di is the
reproduced offspring number at the ith generation, and D is the population number.
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The feature of the dynamical mutation decreases exponentially at once with the
generation increasing and is fluctuated by the reproduction rate, which is a total
population number to a generation number.

6.11.2 Differences from Other Traditional Methods

Goldberg had summarized the characteristic of GA in comparison with conven-
tional optimizations as follows (Goldberg 1989):

• GA is a multi-point search algorithm using a population, which is a set of
random solutions, not using a potential solution;

• GA works with a coding of candidate set, not solutions themselves;
• GA uses only fitness function, not derivative or other auxiliary knowledge;
• GA is a stochastic search algorithm based on the mechanism of natural world

and natural genetic. GA starts with an initial set of random solutions called
population; and

• GA uses probabilistic transition rules, not deterministic rules.

GA does not have much mathematical requirements about the optimization
problems. Due to their evolutionary nature, GAs will search for solutions without
regard to the specific inner workings of the problem. GAs can handle any kind of
objective functions and any kind of constraint (i.e., linear or nonlinear) defined on
discrete, continuous, of mixed search spaces. GA does not associate with an initial
point problem. To be precise, because GAs compose randomly a group of potential
solutions, GAs do not have the notion of an initial point problem. That provides us
with the great belief that GAs can find out global optimum solutions and a flexi-
bility to hybridize with domain-dependent heuristics to make an efficient imple-
mentation for a specific problem.

However, GAs have also the following drawbacks or limitations:

• A binary code is not free to make a genotype of individuals.
• The fittest individual may be lost during the selection process due to its

stochastic nature.
• Fit individuals may be copied several times, and a fit individual may quickly

dominate the population at an early stage, especially, if the population size is
small.

• The selection operation alone explores no new points in a search space. In other
words, if cannot create new schemata.

• Different genetic parameters such as population size, crossover probability, and
mutation probability greatly affect the accuracy and calculation time of optimum
solution.
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6.11.3 Simple Genetic Algorithm (SGA)

Figure 6.12 shows the flowchart of simple GA. A simple GA randomly generates
an initial population. The GA proceeds for a fixed number of generations or until it
satisfies some stopping criterion. During each generation, the GA performs fitness
proportionate selection, followed by single-point crossover and mutation.

Figure 6.13 illustrates closely a process of evolution at k generation. First, fitness
proportionate selection assigns each individual structure in the population �P,
according to the ratio of fitness and the probability of selection. Second, using the
single-point crossover ~P is composed. After the crossover stage has finished, the
mutation stage begins. For every string that advances to the mutation stage, each of
its bits is flipped with probability (mutation rate). The population resulting from the
mutation stage then overwrites the old population (the one prior to selection),
completing one generation (k + 1). Subsequent generations follow the same cycle
of selection, crossover, and mutation.

Start

Production of the initial 
individuals

Calculation of the fitness 

Reproduce individual

Selection

Crossover and Mutation

Terminal
condition OK

Change old population
with new population

No

Yes
End

Fig. 6.12 Flowchart of the
simple genetic algorithm
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6.11.4 Feature Selection Using GA

A standard GA is used as a feature selector in this chapter. GA has been known to
have superior performance to other search algorithms for data sets with high
dimensionality. A GA is a parallel search procedure that simulates the evolutionary
process by applying genetic operators. Here, a brief introduction of a standard GA
is given for completeness. More extensive discussion on GA can be found in
Goldberg.

The string length of the simple binary-based chromosome is determined by two
parts: One is the number of features indicating whether the corresponding feature is
selected or not (1 if a feature is selected and 0 otherwise) and the other is a structure
parameter of ANN which varies with selected feature subset. Once fitness values
are assigned to each chromosome in the current population, the GA proceeds to the
next generation through three genetic operators: selection (or reproduction),
crossover, and mutation.

Selection: This operator is to pick up excellent parents to reproduce promising
individuals whose characteristics may be better than the last generation. This
procedure has a significant influence on driving the search toward a promising area
and finding good solutions in a short time. The roulette wheel selection is used for
individual selection. The selection probability Ps(si) of the ith individual is
expressed as follows:

PsðsiÞ ¼ f ðsiÞPN
j¼1 f ðsjÞ

; ði ¼ 1; 2; . . .;NÞ ð6:47Þ

01110111
01111110
11000101
01000100

Evaluation
Fitness

P(k+1) P(k+1)

P(k) P(k+1)

k k+1
Generation
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11000101
01000100

Mutation

01110111
01111110
11000101
01000100

Crossover

Evaluation
Fitness

01110111
01111110
11000101
01000100

~_

Fig. 6.13 Structure of the simple genetic algorithm
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where s is an individual, f(si) is the fitness value of the ith individual si, and N is the
number of individual. According to the values of Ps(s), each individual is defined
for the widths of slots on the wheel.

Crossover: The crossover operator is used to create two new individuals (chil-
dren or offspring) from two existing individuals (parents) picked from the current
population by the selection operation. This operator combines a part of one string
with a part of another string and is controlled by a crossover probability Pc. Many
different kinds of crossover operators have been proposed including single-point,
two-point, and uniform crossover. Single-point crossover is used for this process.
After that, all individuals in the population are checked bit by bit and the bit values
are randomly reversed according to a specified rate.

Mutation: This operator assigns a new value to a randomly chosen gene and is
controlled by a mutation probability Pm. It prevents to converge to a local optimum
and can be find the global optimal solution. In the binary coding, this simply means
changing 1–0 and vice versa. In the standard GA, the mutation probability is set
equal to a constant. However, it is clear in examining the convergence character-
istics of GA that what is actually desired is a probability of mutation which varies
during generational processing. In early generations, the population is diverse and
mutation may actually destroy some of the benefits gained by crossover. Thus, in
early generations, it would be desired to have a low probability of mutation. In later
generations, the population is losing diversity as all members move “close” to the
optimal solution, and thus, a higher probability of mutation is needed to maintain
the search over the entire design space. Thus, the selection of the probability of
mutation must carefully balance these two conflicting requirements. The mutation
probability Pm(si) is then tied to the diversity measure through an exponential
function:

Pm sið Þ ¼ 1� 0:99 expð�4� Ni=NtÞ ð6:48Þ

where Ni and Nt are the number of the ith generation and total generation,
respectively.

Evaluation metrics: The goal of feature subset selection is to use fewer features
to achieve the same or better performance. Therefore, the fitness evaluation usually
contains two terms: (i) accuracies which are the higher the better from the training
and validation data and (ii) fewer number of features used. Since GA is also used to
optimize the ANN, the structure parameter q is added to consider in the fitness
evaluation and the value is the smaller the better which is explained in the next
section. The objective is aimed at finding solutions by minimizing the fitness value
as follows:

fitness ¼ 1
104 � ðgt þ gvÞ=2þ 102=q� N0

ð6:49Þ
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where gt and gv represent the classification success rates of training data and
validation data, respectively. q is a structure parameter of ANN explained in next
section. N0 is the number of selected features in the chromosome. The coefficients
of variances are set by the importance degree.

The flowchart of the GA procedure for feature selection is shown in Fig. 6.14.
After setting the initial parameters of GA, first-generation population is generated.
Corresponding to the population strings, “1” features are selected from
PCA-transformed feature base. The selected features are evaluated by the classifier,
and the results are sent to the fitness function. The fitness value is calculated. If the
maximum generation does not reach, produce new population through selection,
crossover, and mutation and repeat the above process. At last, the smallest fitness
value is selected; the corresponding feature subset is considered as the best one.

Example 6.8 Select the optimal features using GA method of vibration and current
features collected from induction motor.

Twenty generation is performed during feature selection process by GA. This
parameter is adjusted from setting function. From feature selection, 11 features are
selected as best features.

The performance of feature selection is shown in Figs. 6.15 and 6.16. Two from
the best features (features 8 and 14) are plotted in Fig. 6.15. From this figure, each
class can be clustered even though it still contains of overlapping between classes.
The user should try adjusting parameters of GA to reach the better performance in
feature selection.

Figure 6.16 shows the convergence of fitness function according to the gener-
ation. In this example, fitness function reaches convergence at 15 generation.

Fig. 6.14 Flowchart of
feature selection by GA
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6.12 Summary

A fundamental problem of data-driven PHM/CBM is to find a reasonable number
of useful features, which will then be used for diagnosis and prognosis. Although
there does not exists a general theory for the design of such features, if one has got a
fixed set of feature X = {xi | i = 1, 2, …, n}, there are methods to estimate their
quality. Unfortunately, it is not sufficient to just evaluate the discriminatory power
of the features individually, but all 2n subsets must be considered to find the best
combination. Because the number of subsets grows exponentially with n, various
suboptimal algorithms have been suggested to find an at least “good” solution. All
of the algorithms consist of two main components: the feature selection algorithm
itself and the separability criterion which measures the discriminatory power of the
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subset under consideration. In this chapter, several methods of feature selection
such as SFS, SBS, plus l-take away r, sequential forward floating selection, and
sequential backward floating selection have been presented. All these algorithms
use stepwise inclusion and exclusions of features into/from the subset of consid-
eration, but they differ in their strategy of applying them. Although the floating
methods are considered to be more intelligent, they are still suboptimal and even
more there is no warranty that they yield better results. Also, the examples are
included to illustrate the process of feature selection.

Table 6.4 summarizes the feature selection methods and their characteristics.
However, how reliable are the feature selection results when ratio of the available
number of training samples and number of features is depending on the criterion
used. In this chapter, several examples used 1-NN as criterion for performance
measure of feature selection method, but the effect of feature selection can be seen
clearly when classification process is performed. We can plot the classification error
and the number of features for different of number of training patterns, and then, the
effect of feature selection can be highlighted.

Table 6.4 Summary of feature selection methods (Jain et al. 2000)

Method Property Remark

Exhaustive
search

Evaluate all possible subset Guaranteed to find the optimal
subset; not feasible for even
moderately large values of m and d

Sequential
forward
selection
(SFS)

Select the best single feature and then
add the one feature at a time which in
combination with the selected features
maximizes the criterion function

Once feature is retained, it cannot be
discarded; computationally attractive
since to select a subset of size 2, it
examines only (d − 1) possible
subset

Sequential
backward
selection
(SBS)

Start with all the d features and
successively delete one feature at a
time

Once feature is deleted, it cannot be
brought back into the optimal subset
and requires more computation than
SFS

Branch and
bound search

Uses well-known branch and bound
search method; only a fraction of all
possible feature subsets needs to be
enumerated to find the optimal subset

Guaranteed to find the optimal subset
provided the criterion function
satisfies the monotonicity property;
the worst-case complexity of this
algorithm in exponential

Plus-l take
away
r selection

First, enlarge the feature set by
l features using forward selection and
then delete r features using backward
selection

Avoid the problem of feature set
nesting encountered in SFS and SBS
methods, need to select values of
l and r (l > r)

Floating
forward
selection

A generalization of plus-l take away
r method; the values of l and r are
determined automatically and updated
dynamically

Provide close to optimal solution at
an affordable computational cost
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Chapter 7
Intelligent Fault Diagnosis Methodology

7.1 Introduction

There are many approaches that can be used to design a data-driven diagnosis
algorithm. Usually, we divide them into three strategies. The simplest and the most
intuitive approach to classifier design is based on the concept of similarity: Patterns
that are similar should be assigned to the same class. So, once a good metric has
been established to define similarity, patterns can be classified by template
matching or the minimum-distance classifier using a few prototypes per class. The
choice of the metric and the prototypes is crucial to the success of this approach.
One of the representative algorithms is k-nearest neighbor (k-NN).

The second main strategy is based on the probabilistic approach. The optimal
Bayes decision rule assigns a pattern to the class with the maximum posterior
probability. This rule can be modified to take into account costs associated with
different types of misclassifications. For known class-conditional densities, the
Bayes decision rule gives the optimum classifier, in the sense that for given prior
probabilities, loss function, and class-conditional densities, no other decision rule
will have a lower risk. The third category of classifiers is to construct decision
boundaries directly by optimizing certain error criterion. While this approach
depends on the chosen metric, sometimes classifiers of this type may approximate
the Bayesian classifier. The driving force of the training procedure is the mini-
mization of a criterion such as the apparent classification error or the mean-squared
error (MSE) between the classifier output and preset target value.

A special type of classifier is the decision tree that is trained by an iterative
selection of individual features, which are most salient at each node of the tree. The
criteria for feature selection and tree generation include the information content and
the node purity. During classification, just those features are under consideration, so
feature selection is implicitly built-in. The most commonly used decision tree
classifiers are binary in nature and use a single feature at each node, resulting in
decision boundaries that are parallel to the feature axes.

© Springer Science+Business Media Singapore and Science Press, Beijing, China 2017
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In this chapter, several classifier algorithms will be reviewed based on similarity
of patterns and probabilistic approaches. Moreover, after presenting the basic the-
ory, some examples are also presented to give better understanding of classifier
algorithms. Finally, the end of this chapter will discuss several case studies of fault
diagnosis of induction motors based on reviewed classifier algorithms.

7.2 Linear Classifier

The goal of classification is to group items that have similar feature values, into
groups. A linear classifier achieves this by making a classification decision based on
the value of the linear combination of the features.

The linear classification rule of n-dimensional input space can be given as
follows:

q : X�Rn ! Y ¼ f1; 2; . . .; cg ð7:1Þ

that is composed of a set of discriminant functions

fyðxÞ ¼ hwy � xiþ by; 8y 2 Y ð7:2Þ

which are linear with respect to both the input vector x 2 Rn and their parameter
vector w 2 Rn. The scalar by, 8y 2 Rn introduces bias to the discriminant function.
The input vector x 2 Rn is assigned to the class y 2 Y and its corresponding
discriminant function fy attains the maximal rule

y ¼ arg max
y2Y

fyðxÞ ¼ arg max
y2Y

ðhwy � xiþ byÞ ð7:3Þ

In the particular binary case, i.e., Y = {1, 2}, the linear classifier is represented
by a single discriminant function

f ðxÞ ¼ hw � xiþ b ð7:4Þ

given by parameter vector w 2 Rn and bias b 2 R.
The input vector x 2 Rn is assigned to class y 2 {1, 2} as follows:

qðxÞ ¼ 1 if f ðxÞ ¼ hw � xiþ b� 0
2 if f ðxÞ ¼ hw � xiþ b\0

�
ð7:5Þ

The data type used to describe the linear classifier and the implementation of the
classifier is described by a finite set T = {(x1, y1), …, (xl, yl)} containing pairs of
observations x 2 Rn and the corresponding class label yi 2 Y.
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Example 7.1 Demonstrate the linear classifier using given train and test data sets
based on Fisher linear discriminant theory.

According to the test result, the accuracy of the classification is low. This
phenomenon also is shown in Fig. 7.1.

7.2.1 Linear Separation of Finite Set of Vectors

The input training data T = {(x1, y1),…, (xl, yl)} consist of pairs of observations x 2
Rn and the corresponding class labels yi 2 Y = {1, …, c}. The implemented
methods solve the task of

(1) Training separating hyperplane for binary case c = 2,
(2) Training optimal hyperplane, and
(3) Training multi-class linear classifier. The definitions of this task are given

below.

The problem of training the binary linear classifier in Eq. (7.5) with zero training
error is equivalent to finding the hyperplane

H ¼ fx : hw � xiþ b ¼ 0g ð7:6Þ

which separates the training vectors of the first y = 1 and the second y = 2 class.
The problem is formally defined as solving the set of linear inequalities

hw � xiiþ b� 0; yi ¼ 1

hw � xiiþ b\0; yi ¼ 2
ð7:7Þ
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with respect to the vector w 2 Rn and the scalar b 2 R. If the inequalities in
Eq. (7.7) have a solution, then the training data T are linearly separable, and the
optimal separating hyperplane can be defined as the solution of the following task:

ðw�; b�Þ ¼ argmax
w;b

mðw; bÞ

¼ argmax
w;b

min min
i2y1

hw � xiiþ b
jjwjj ;min

i2y2
�hw � xiiþ b

jjwjj
� � ð7:8Þ

The optimal separating hyperplane H� ¼ fx : hw� � xiþ b� ¼ 0g separates the
training data T with maximal margin m(w*, b*). The optimal separating hyperplane
cannot be found exactly except the special case. Therefore, the numerical algo-
rithms seeking the approximate solution are applied instead. The e-optimal solution
is defined as the vector w and the scalar b such that the inequality

mðw�; b�Þ � mðw; bÞ� e ð7:9Þ

holds. The parameter e� 0 defines the closeness to the optimal solution in terms of
the margin. The problem of training the multi-class linear classifier c > 2 with zero
training error is formally stated as the problem of solving the set of linear inequalities

hwyi � xiiþ byi [ hwy � xiiþ by; i ¼ 1; . . .; l; yi 6¼ y ð7:10Þ

with respect to the vectors wy 2 Rn, y 2 Y and scalars by 2 Rn, y 2 Y.
The task of Eq. (7.10) can be solved by the perceptron and Kozinec’s algorithm

described in the following section.

7.2.2 Perceptron Algorithm

The input is the data set T = {(x1, y1), …, (xl, yl)} of binary labeled yi = {1, 2}
training vectors xi 2 Rn. The problem of training the separating hyperplane in
Eq. (7.5) can be formally rewritten to a simpler form

hv � zii[ 0; i ¼ 1; . . .; l ð7:11Þ

where the vector v 2 Rn+1 is constructed as follows:

v ¼ ½w; b� ð7:12Þ

and transformed training data z = {z1, …, zl} are defined as follows:

zi ¼ ½xi; 1� if yi ¼ 1
�½xi; 1� if yi ¼ 2

�
ð7:13Þ
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The problem of solving Eq. (7.11) with respect to the unknown vector v 2 Rn+1 is
equivalent to the original task Eq. (7.5). The parameters (w, b) of the linear classifier
are obtained from the found vector v by inverting the transformation Eq. (7.12).

The perceptron algorithm is an iterative procedure which build a series of vectors
v(0), v(1), …, v(t) until the set of inequalities Eq. (7.11) is satisfied. The initial vector
v(0) can be set arbitrarily (usually v = 0). The Novikoff’s theorem (Novikoff 1962)
ensures that the perceptron algorithm stops after finite number of iterations t if the
training data are linearly separable.

Example 7.2 Apply the perceptron algorithm to find the binary linear classifier for
synthetically generated 2D data using random data simulation as shown in Fig. 7.2.

7.2.3 Kozinec’s Algorithm

The input is data set T = {(x1, y1), …, (xl, yl)} of binary labeled yi = {1, 2} training
vectors xi 2 Rn. The Kozinec’s algorithm builds a series of vectors

wð0Þ
1 ;wð1Þ

1 ; . . .;wðtÞ
1 and wð0Þ

2 ;wð1Þ
2 ; . . .;wðtÞ

2 which converge to the vector w�
1 and w�

2,
respectively. The vectors w�

1 and w�
2 are the solutions of the following task:

w�
1;w

�
2 ¼ argmin

w12X1;w22X2

jjw1 � w2jj ð7:14Þ

where X1 stands for the convex hull of the training vectors of the first class
X1 = {xi: yi = 1} and X2 for the convex hull of the second class likewise. The vector
w� ¼ w�

1 � w�
2 and the bias b� ¼ 1

2 ðjjw�
2jj2 � jjw�

1jj2Þ determine the optimal
hyperplane Eq. (7.8) separating the training data from the maximal margin.

The Kozinec’s algorithm is proven to converge to the vectors w�
1 and w�

2 in
infinite number of iterations t = ∞. If the e-optimal optimality stopping condition is
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used, then the Kozinec’s algorithm converges in the finite number of iterations. The
Kozinec’s algorithm can also be used to solve a simpler problem of finding the
separating hyperplane Eq. (7.5). Therefore, the following two stopping conditions
are implemented:

• The separating hyperplane Eq. (7.5) is sought for e < 0. The Kozinec’s algo-
rithm is proven to converge in a finite number of iterations of the separating
hyperplane that exists.

• The e-optimal hyperplane Eq. (7.9) is sought for e � 0. Note that setting e = 0
forces the algorithm to seek the optimal hyperplane which is generally ensured
to be found in an infinite number of iterations t = ∞.

Example 7.3 Same as Example 7.2, apply the Kozinec’s algorithm for linear
classification as shown in Fig. 7.3.

7.2.4 Multi-class Linear Classifier

The input training data T = {(x1, y1), …, (xl, yl)} consist of pairs of observations xi
2 Rn and the corresponding class labels yi 2 Y = {1,…, c}. The task is to design the
linear classifier Eq. (7.3) which classifies the training data T without error. The
problem of training in Eq. (7.3) is equivalent to solving the set of linear inequalities
in Eq. (7.10).

The inequalities in Eq. (7.10) can be formally transformed to a simpler set

hv � zyi i[ 0; i ¼ 1; . . .; l; y ¼ Ynfyig ð7:15Þ

where the vector v 2 R(n+1)c contains the originally optimized parameters
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v ¼ ½w1; b1;w2; b2; . . .;wc; bc� ð7:16Þ

The test of vectors zyi 2 Rðnþ 1Þc; i ¼ 1; . . .; l; y 2 Ynfyig is created from the
training set T such that

zyi ðjÞ ¼
½xi; 1�; for j ¼ yi
�½xi; 1�; for j ¼ y
0; otherwise

8<
: ð7:17Þ

where zyi ðjÞ stands for the jth slot between coordinates (n + 1)(j − 1) + 1 and
(n + 1)j. The described transformation is known as the Kesler’s construction.

The transformed task in Eq. (7.15) can be solved by perceptron algorithm. The
simple form of the perceptron updating rule allows us to implement the transfor-
mation implicitly without mapping the training data T into (n + 1)c-dimensional
space.

Example 7.4 Apply the perceptron algorithm to find the multi-class linear classifier
for synthetically generated 2-D simulated data as shown in Fig. 7.4.

7.3 Quadratic Classifier

The quadratic classification rule of n-dimensional input space can be given as
follows:

q : X�Rn ! Y ¼ f1; 2; . . .; cg ð7:18Þ

which is composed of a set of discriminant functions
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fyðxÞ ¼ hx � Ayxiþ hby � xiþ cy; 8y 2 Y ð7:19Þ

which are quadratic with respect to the input vector xi 2 Rn. The quadratic dis-
criminant function fy is determined by a matrix Ay [n	n], a vector by [n	1], and a
scalar cy [1	1]. The input vector xi 2 Rn is assigned to the class y 2 Y and its
corresponding discriminant function fy attains the maximal value

y ¼ argmax
y2Y

fyðxÞ ¼ argmax
y2Y

ðhx � Ayxiþ hby � xiþ cyÞ ð7:20Þ

In the particular binary case Y = {1, 2}, the quadratic classifier is represented by
a single discriminant function

f ðxÞ ¼ hx � Axiþ hb � xiþ c ð7:21Þ

It is given by a matrix A [n	n], a vector b [n	1], and a scalar c [1	1]. The input
vector xi 2 Rn is assigned to the class y 2 {1, 2} as follows:

qðxÞ ¼ 1 if f ðxÞ ¼ hx � Axiþ hb � xiþ c� 0
2 if f ðxÞ ¼ hx � Axiþ hb � xiþ c\0

�
ð7:22Þ

Example 7.5 Perform classification using quadratic classifier to a given training
data, and then evaluate the classification process as shown in Fig. 7.5.
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7.4 Bayesian Classifier

The object under study is assumed to be described by a vector of observations x 2
X and a hidden state y 2 Y. The x and y are realizations of random variables with a
joint probability distribution PXY(x, y). A decision rule q: X ! D takes a decision
d 2 D based on the observation x 2 X. Let W: D 	 Y ! R be a loss function with
penalizes the decision q(x) 2 D when the true hidden state is y 2 Y, and let X � Rn

and the sets Y and D are finite. The Bayesian risk R(q) is an expectation of the value
of the loss function W when the decision rule q is applied, i.e.,

RðqÞ ¼
Z
X

X
y2Y

PXY ðx; yÞWðqðxÞ; yÞ dx ð7:23Þ

The optimal rule q* which minimizes the Bayesian risk of Eq. (7.23) is referred
to as the Bayesian rule

q�ðxÞ ¼ argmin
y

X
y2Y

PXY ðx; yÞWðqðxÞ; yÞ; 8x 2 X ð7:24Þ

For minimization of classification task, the set of decision D coincides with the
set of hidden states Y = {1, …, c}. The loss function given by:

WðqðxÞ; yÞ ¼ 0 for qðxÞ ¼ y
1 for qðxÞ 6¼ y

�
ð7:25Þ

is used. The Bayesian risk in Eq. (7.23) with the loss function corresponds to the
expectation of misclassification. The rule q: X!Y which minimizes the expectation
of misclassification is defined by

qðxÞ ¼ argmax
y2Y

PY jXðyjxÞ ¼ argmax
y2Y

PXjYðxjyÞPYðyÞ ð7:26Þ

For classification task with reject point, the set of dimension D is assumed to be
D = Y [ {don’t_know}. The loss function is defined as follows:

WeðqðxÞ; yÞ ¼
0 for qðxÞ ¼ y
1 for qðxÞ 6¼ y
e for ¼ dont know

8<
: ð7:27Þ

where e is penalty for the decision don’t_know.
The rule q: X!Y which minimizes the Bayesian risk with the loss function

Eq. (7.27) is defined as follows:

qðxÞ ¼
argmax

y2Y
PXjYðxjyÞPYðyÞ if 1�max

y2Y
PY jXðyjxÞ\e

dont know if 1�max
y2Y

PY jXðyjxÞ� e

8<
: ð7:28Þ
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To apply the optimal classification rules, one has to know the class-conditional
distributions PX|Y and the prior distribution PY (or their estimates).

Example 7.6 Apply Bayesian classifier to the given data. The Bayesian classifier
needs class-conditional distribution modeled by the Gaussian mixture model
(GMM).

Figure 7.6 shows how to visualize the decision boundary of the found Bayesian
classifier minimizing the misclassification (solid black line). The Bayesian classifier
splits the feature space into two regions corresponding to the first class and the
second class. The decision boundary of the reject option rule (dashed line) is
displayed for comparison. The reject option rule splits the feature space into three
regions corresponding to the first class, the second class, and the region in between
corresponding to the don’t know decision.

7.5 k-Nearest Neighbors (k-NN)

Nearest-neighbor methods can be used as an important pattern recognition tool
(Duda et al. 2001). In such methods, the aim is to find the nearest neighbors of an
undefined test pattern within a hypersphere of predefined radius in order to deter-
mine its true class. The traditional NN rule has been described as follows:

• Out of N training vectors, identify the k-NN, irrespective of the class label.
• Out of these k samples, identify the number of vectors ki that belong to class ci,

i = 1, 2, …, l. Obviously, R ki = k.
• Assign x to the class ci with the maximum number ki of samples.

Nearest-neighbor methods can detect a single or multiple numbers of nearest
neighbors. A single nearest-neighbor method is primarily suited to recognize data
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where we have sufficient confidence in the fact that class distributions are
non-overlapping and the features used are discriminatory. In most practical appli-
cations, however, the data distributions for various classes are overlapping and
more than one nearest neighbors are used for majority voting.

For illustration, let us define the set of training data T = {(x1, y1), …, (xl, yl)} to
be a set of prototype vector xi 2 X 2 Rn and hidden states yi 2 Y = {1, …, c}. Let
RnðxÞ ¼ fx0jjx� x0jj � r2g be a ball centered in the vector x in which lie k proto-
type vectors xi, i 2 {1, …, l}, i.e.,|{xi : xi 2 Rn (x)}| = k. The k-nearest-neighbor
classification rule q: X!Y is defined as follows:

qðxÞ ¼ argmax
y2Y

vðx; yÞ ð7:29Þ

where v(x, y) is the number of prototype vectors xi with hidden state yi = y which
lies in the ball xi 2 Rn(x). The classification rule Eq. (7.29) is computationally
demanding if the set of prototype vectors is large.

Example 7.7 Perform classification using k-nearest neighbor (k = 10) to labeled
training data, and then evaluate the classification process using test data as shown in
Fig. 7.7.

7.6 Self-Organizing Feature Map (SOFM) Neural
Network

The SOFM is a neural network model that implements a characteristic nonlinear
projection from a high-dimensional space of sensory or other input signals onto a
low-dimensional array of neurons. The SOFM is an unsupervised learning algo-
rithm which produces a map pattern feature on its output layer (Kohonen 1995).
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Input patterns with similar features are mapped onto neighboring output nodes. The
network consists of an input layer with m neurons and an output layer with
n neurons as shown in Fig. 7.8.

The image of the signal space tends to manifest the clusters of input information
and their relationship on the feature map. With every node j, a parametric reference
vector wj 2 Rn is associated. In an abstract scheme, it may be imagined that at time
k, the input x(k), by means of some parallel computing mechanisms, is compared
with all wj(k), and the location of the best match in some metric is defined as the
location of the response. However, in many practical applications, the Euclidean
distances ||x(k) – wj(k)|| can be made to define the best-matching node (neuron)
i which is signified by the index i(x) (Fig. 7.9):

iðxÞ ¼ arg min xðkÞ�wjðkÞ ¼ argminfj jj jejðkÞ
�� ���� ��g; ð7:30Þ

where j = 1, 2, …, N; k = 1, 2, …, M; x(k) = {x1, x2, …, xM}
T represents the input

vectors, and wj (k) = [wj1, wj2,…, wjM]
T (j = 1, 2,…, N) represents the weight

vectors of the jth output vectors. ej(k) is the error which is given by ||x(k) – w,i

(x)(k)|| = min{||ej(k)||}.
Initially, the reference vectors wj(0) are random. Self-organization is achieved by

using the following learning process:

wjðkþ 1Þ ¼ wjðkÞþ hðkÞhj;iðxÞðkÞejðkÞ ð7:31Þ

y1

y2

y3

yn

x1

x2

x3

xm

w
Input layer Output layer

… …

Fig. 7.8 Structure of the
SOFM network

Fig. 7.9 Two-dimensional
(2D) mapping of SOFM
network
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where k = 0, 1, 2, …, and M is an integer and discrete-time coordinate. η(k) is the
learning rate factor which decreases with increasing iterations (0 < η(k) < 1). hj,i(x)
is the neighborhood function and plays an important role in the learning process; hj,i
(x)(k) ! 0 when k ! ∞ (Fig. 7.10).

The Gaussian distribution function is usually selected for the neighborhood
function and is shown in Eq. (7.32).

hj;iðxÞðkÞ ¼ expf�d2j =2r
2ðkÞg ð7:32Þ

where dj is the grid distance between the best-matching neuron i and the j neigh-
borhood neurons. r(k) is the effective width of the neighborhood and is defined as a
monotonically decreasing function of the time with rt being a constant value,

rðkÞ ¼ r0 expð�k=rtÞ ð7:33Þ

The algorithm is repeated using the successive data samples, and as the algo-
rithm proceeds, different neurons start representing specific clusters of the input
space. It can be shown that the algorithm can be interpreted as a gradient approach
to minimize the energy function Ej(k) in each neuron j (Figs. 7.11 and 7.12):

EjðkÞ ¼
X

hj;iðxÞðjÞðejðjÞTejðjÞÞ; j ¼ 0; 1; . . .; k ð7:34Þ

The process of SOFM can be summarized as follows (Fig. 7.13).

Example 7.8 Classify the iris data according to their classes using SOFM method
(Fig. 7.14).

From the U-matrix, it is easy to see that the top three rows of the SOFM are from
a very clear cluster. By looking at the labels, it is immediately seen that this
corresponds to the Setosa subspecies. The two other subspecies Versicolor and
Virginia form the other cluster. The U-matrix shows no clear separation between
them, but from the labels, it seems they correspond to two different parts of the
cluster. From the component planes, it can be seen that the petal length and the petal

Fig. 7.10 Gaussian
neighborhood function
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Fig. 7.11 Two different output neuron type of two-dimensional map

Fig. 7.12 Unified map of all components after training

Initialization Setup of wj (synaptic weight vectors of input and output neurons) 

Competition Calculate i(t) (best-matching neurons; output neurons which are 
most similar to input neurons) 

Cooperation Calculate hj,i(t) (lateral distance between best-matching neurons
and its neighbor neurons) 

Adaptation Calculate wj(t+1) (process of resembling between weight vectors 
and input neurons) 

Repetition
Assign weight vectors which is most similar to input neurons to
output neurons and continue to competition procedure until the
feature map converged 

Fig. 7.13 The flowchart of SOFM
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width are very closely related to each other. Also, some correlations exist between
them and sepal length. The Setosa subspecies exhibits small petals and short but
wide sepals. The separating factor between Versicolor and Virginia is that the latter
has bigger leaves.

7.7 Learning Vector Quantization (LVQ) Neural Network

LVQ as proposed by Kohonen (1992) is a simple and intuitive, though very suc-
cessful prototype-based clustering algorithm. It combines the simplicity of
self-organizing learning with the accuracy of supervised training algorithms.
Successful applications can be found in widespread areas such as data mining,
robotics, or linguistics.

LVQ consists of two layers: competitive layer and linear layer, shown in
Fig. 7.15. The competitive layer selects the winner based on the distance calcula-
tion between the input vector and codebook vectors. The linear layer transforms the
competitive layer’s classes into target classifications defined by the user. We refer
to the classes learned by the competitive layer as subclasses and the classes of the
linear layer as target classes (Fig. 7.15).
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Fig. 7.14 Visualization classification of the SOFM of iris data: U-matrix (top left), then
component planes, and map unit labels on bottom right
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Learning vector quantization (LVQ1, LVQ2, LVQ2.1, and LVQ3) is a
nearest-neighbor classification method in which a fixed number of prototype vectors
are progressively modified to cover the input space. The LVQ family of algorithms is
concerned with the optimal placement of these prototypes, so as to reflect the
probability distribution of the training samples. From now, we review LVQ3
algorithm briefly which was previously published by Kohonen (1992). LVQ does
phase classification which enhances the characteristics of classification boundaries
via supervised learning using input vectors (or codebook vectors) x(k). The input
layer of an LVQ network is connected directly to the output layer. Each node in the
output layer has a weight vector (or prototype) attached to it. Assume that a number
of codebook vectorsmi(k) (free parameter vectors) are placed into the input space to
approximate various domains of the input vector by their quantized values. Some
parts of the entire codebook vectors can be used for reducing calculation speed and
memory allocation. It is assumed that the output vector of LVQ is mi(k).

If mi(k) is the most similar vector to x(k), mc is determined by the k-
nearest-neighbor rule,

mcðkÞ ¼ argmin xðkÞ�miðkÞj jj j; ði ¼ 1; 2; . . .;NÞ ð7:35Þ

Equation (7.35) defines the nearest mi(k) to x(k) and is denoted by mc(k). The
values for mi(k) that approximately minimize the misclassification errors in the
above nearest-neighbor classification can be found as asymptotic values in the
following learning process. Let x(k) be a sample of input, and let themi(k) represent
the sequences of the mi(k) in the discrete-time domain.

Starting with properly defined initial values, the following equations define the
basic LVQ process. If x(k) and mc(k) belong to the same class,

mcðkþ 1Þ ¼ mcðkÞþ aðkÞðxðkÞ �mcðkÞÞ ð7:36Þ

If x(k) and mc(k) belong to the different class,

mcðkþ 1Þ ¼ mcðkÞ�aðkÞðxðkÞ �mcðkÞÞ ð7:37Þ

Fig. 7.15 LVQ network architecture
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Otherwise, for i 6¼ c,

mcðkþ 1Þ ¼ miðkÞ ð7:38Þ

Here, 0 < a(k) < 1, and learning rate a(k) may be constant or monotonically
decreases with time. It is recommended that the initial value of a(k) is not to be
taken more than 0.1 in accordance with the basic LVQ algorithm.

The data can be learned in a self-organized fashion by only choosing the learning
rate and the number of output neurons. Also, the feature map capability has an
added advantage, and it can visualize the classification result.

Example 7.9 Classify the iris data according to their classes using LVQ method as
shown in Fig. 7.16.
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7.8 Radial Basis Function (RBF) Neural Network

Currently, the RBFN is attracting a lot of interest due to its rapid learning, gen-
erality, and simplicity (Yang et al. 2002). A RBFN can be trained fast while
exhibiting none of the conventional back-propagation algorithm’s training prob-
lems such as saturation and local minima. This network utilizes the overlapping
localized regions formed by simple kernel functions (usually a Gaussian function)
to handle complex decision regions. There are two main subdivisions of the
regression problems in statistics: parametric and nonparametric. In the parametric
regression, the form of the functional relationship between the dependent and
independent variables is known. On the other hand, in the nonparametric regres-
sion, there is none or very little a priori knowledge about the form of the true
function that is being estimated. In the RBFN, if the outputs of the estimated
function are interpreted as being proportional to the probability that the input
belongs to the corresponding class, classification problems can be made to look like
nonparametric regression. The training output values are vectors of length equal to
the number of classes and containing a single one and otherwise zeros. After
training, the network responds to a new pattern with continuous values in each
component of the output vector that can be interpreted as being proportional to the
class probability.

The most basic form of the RBFN involves three layers with entirely different
roles (Fig. 7.17). The input layer is made up of source nodes (sensory units) that
connect the network to its environment. The middle layer, the only hidden layer in
the network, applies a nonlinear transformation from the input space to the hidden
space; in most applications, the hidden space has high dimensionality. The output
layer is linear, supplying the response of the network to the information applied to
the input layer. Each middle node evaluates a kernel function on the incoming
input, and the classifier output is simply a weighted linear summation of the kernel
function. The kernel function gives the highest output when the input is close to its
center and a monotonically decreasing output as the input moves away from the
center. The center that is the weights between the input and the hidden layers is
usually computed by a clustering algorithm such as k-means and the SOFM
method. The weights between the hidden and output layers are computed by the
gradient descent method.

For the centers in the hidden layer, there are two methods of making centers: the
direct use of training data and the clustering method. It determines the function in
the hidden layer with a spread constant r which determines the property of the
RBFN. Usually, it is calculated as the standard deviation std(x) of input vectors x in
the training data.
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r ¼ c stdðxÞ ð7:39Þ

where c is an arbitrary constant with an initial value of 1.
It makes an important effect on the classification capability of the RBFN.

hðx; ci;rÞ ¼ expð�jjx�cijj2=r2Þ ð7:40Þ

where h() is a radial basis function and ci is the center of the ith cluster.
The weights of the neuron between the hidden neuron and the output neuron are

calculated by using Eq. (7.41), where, the pseudo inverse has the same role as the
network with the least mean-square (LMS) method.

y ¼ WAðx; c; rÞ ! W ¼ yATðAATÞ�1 ð7:41Þ

where W is the weight matrix, A is the output of the hidden layer, and y is the
output of the output layer.

The classification procedure using the trained RBFN is as follows:

Step 1: Calculation of the Euclidean distances between the centers and the inputs,
Step 2: Calculation of the output of the hidden layer by the radial basis function,

Eq. (7.40),
Step 3: Linear combination of hidden layer outputs with the weighting values,
Step 4: Decision of the input data class. The class is determined by the maximum

element in the output vector.

Figure 7.18 shows the flowchart of the RBFN.

Example 7.10 Perform the classification process using RBFN method as shown in
Fig. 7.19.

Input layer Hidden layer Output layerInput layer Hidden layer Output layer

Fig. 7.17 The structure of
the RBFN

7.8 Radial Basis Function (RBF) Neural … 191



7.9 ART Kohonen Neural Network (ART-KNN)

Presently, the fault diagnosis is increasingly intelligent with wide applications of
artificial neural networks (ANNs). However, “off-line” NNs are unable to well
adapt to unexpected changes in the environment. Furthermore, the data of the data
set used to train networks need to be added, as new fault occurs. In this case, the
“off-line” network requires to be retrained using the complete data set. This can
result in a time-consuming and costly process (Liobet et al. 1999). In the real world,
although part of fault signals can be obtained, it is very difficult to compose the
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Fig. 7.18 Flowchart of the
RBFN
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training data set representing the features of all faults. Nobody knows what will
happen next time. These characteristics limit the applications of “off-line” NNs in
fault diagnosis field. The NNs for fault diagnosis of machinery are required to learn
gradually the knowledge in operating process, and to have the adaptive function
expanding the knowledge continuously without the loss of the previous knowledge
during learning new knowledge. A human brain is able to learn many new events
without necessarily forgetting events that occurred in the past. So we want an
intelligent system capable of adapting “online” to changes in the environment, and
the system should be able to deal with the so-called the stability-plasticity dilemma
(Carpenter and Grossberg 1987, 1988, 1992). That is, the system should be
designed to have some degree of plasticity to learn new events in a continuous
manner and should be stable enough to preserve its previous knowledge and to
prevent new events destroying the memories of prior training. As a solution to this
problem, the adaptive resonance theory (ART) networks were developed and have
been applied with some success to real-time training and classification. The ART
network is a neural network that self-organizes stable recognition codes in real time
in response to arbitrary sequences of input patterns and is a vector classifier as the
mathematical model for the description of fundamental behavioral functions of the
biological brain such as the learning, parallel and distributed information storage,
short- and long-term memory, and pattern recognition.

The Kohonen neural network (KNN) is also called self-organizing feature map
(SOFM) network, and it defines a forward two-layer neural network that imple-
ments a characteristic nonlinear projection from the high-dimensional space of
sensory or other input signals onto a low-dimensional array of neurons (Kohonen
1995). The KNN consists of three major steps: competition, cooperation, and
adaptation. In the first step, the network compares the output values with the input
vector according to a chosen discriminating function. Among the output neurons,
only one particular neuron with the closest relationship to the input vector is picked
up and labeled as the winning (best-matching) neuron. Once the winning neuron is
picked up, the next step is to select those neurons within a predefined neighbor-
hood. Only the weights of those neurons defined within the topological neigh-
borhood of the winning neuron will be updated. The synaptic weights of neurons
outside the neighborhood will remain unchanged. As the winning neuron best
matches the input vector in the sense of the Euclidean distance, the above learning
strategy is able to move the synaptic weight vectors toward the distribution of the
input vectors.

In this section, it describe a fault diagnosis network, the adaptive resonance
theory Kohonen neural network (ART-KNN) (Yang et al. 2004a, b), which does
not destroy the initial learning and can adapt the additional training data that are
suitable for fault diagnosis of rotating machinery.

The characteristics of ART networks are suitable for the condition monitoring
and fault diagnosis. There are two general classes of ART networks: ART1, and
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ART2 and ART3. The ART1 is for classifying the binary input patterns, while the
ART2 and ART3 are for the binary and decimal input patterns.

But the ART networks have some disadvantages for the fault diagnosis. The
input patterns to the input layer are normalized before passing through the adaptive
filter defined the pathways from input layer to discernment layer. Because the
absolute values of input signals represent only the image brightness and sound level
for the image and sound classifications, the relative value normalized is important to
analyze the image and sound discrimination. But, the absolute value of vibration
signal is important information for the fault diagnosis. When it is normalized, some
important information to detect the faults may be lost. At the same time, the ART2
and ART3 adequately control the noise of the input signal; the initial signal
becomes fussy after filtering. So the features of fault signals are destroyed to some
degree.

In this paper, the proposed ART-KNN combines the theory of ART with
Kohonen’s learning strategy to realize machinery fault diagnosis. The architecture
of ART-KNN is shown in Fig. 7.20. It is similar to ART1’s, excluding the adaptive
filter. ART-KNN is also formed by two major subsystems: the attentional sub-
system and the orienting subsystem. Two interconnected layers, discernment layer
and comparison layer, which are fully connected bottom-up and top-down, com-
prise the attentional subsystem. The application of a single input vector leads to the
patterns of neural activity in both layers. The activity in discernment nodes rein-
forces the activity in comparison nodes due to top-down connections. The inter-
change of bottom-up and top-down information leads to a resonance in neural
activity. As a result, critical features in comparison are reinforced and have the
greatest activity. The orienting subsystem is responsible for generating a reset
signal to discernment when the bottom-up input pattern and top-down template
pattern mismatch at comparison, according to a similarity. In other words, once it
has detected that the input pattern is novel, the orienting subsystem must prevent

Fig. 7.20 Architecture of the
ART-KNN network

194 7 Intelligent Fault Diagnosis Methodology



the previously organized category neurons in discernment from learning this pattern
(via a reset signal). Otherwise, the category will become increasingly non-specific.
When a mismatch is detected, the network adapts its structure by immediately
storing the novelty in additional weights. The similarity criterion is set by the value
of the similarity parameter. A high value of the similarity parameter means that only
a slight mismatch will be tolerated before a reset signal is emitted. On the other
hand, a small value means that large mismatches will be tolerated. After the res-
onance check, if a pattern match is detected according to the similarity parameter,
the network changes the weights of the winning node.

The learning strategy is introduced by the Kohonen neural network. The
Euclidean distances of all weights between input vector X and each neuron of
the discernment layer are evaluated as the similarity given by Eq. (7.42), and the
smallest one becomes the winning neuron.

BJ�Xj jj j\ Bj�X
�� ���� ��; ðj; J ¼ 1; 2; . . .; n; j 6¼ JÞ ð7:42Þ

where Bj is the weight of jth neuron in the discernment layer and BJ is the weight of
the winning neuron.

After producing the winning neuron, input vector X returns to the comparison
layer. The absolute similarity S is calculated by

S ¼ jjBJ jj � jjBJ � Xjj
jjBJ jj ð7:43Þ

If BJ and X in Eq. (7.43) are same, ||BJ − X|| is equal to 0, and S is 1. The larger
the Euclidean distance between BJ and X is, the smaller the S is. A parameter q is
introduced as the evaluation criterion of similarity. If S > q, it indicates that the Jth
cluster is sufficiently similar to X. So X belongs to the Jth cluster. In order to make
the weight more accurate to represent the corresponding cluster, the weight of the
Jth cluster is improved by the following equation:

BJ ¼ ðn � BJ0 þXÞ=ðnþ 1Þ ð7:44Þ

where BJ is the enhanced weight, BJ0 is the origin weight, and n is the changed
time.

On the contrary, as S < q, it means that X is much different than the Jth cluster.
Thus, there is no cluster that matches X in the original network. The network needs
one more neuron to remember this new case by resetting the discernment layer. The
weight of the new neuron is given by:

Bnþ 1 ¼ X ð7:45Þ
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The detail procedure of ART-KNN training can be summarized as follows:

4. Generating a new neuron. 
If No. of N (neuron) < 1 then

N (weights) = ones (1 × R), R is same size of input vector 
Else

N (weights) = Input vector (1 × R)
End

5. Distance calculation between input vector and neurons, and selection the 
winner neuron. 

D = dis (X(i), N); 
D_winner = Min (D); 

6. Similarity measurement and comparing with criterion value. 

dis( _winner,O)- _winnerS  
dis( _winner,O)

N D
N

ρ<=

 If ρ<S then

Go to step 4
Else

Existing winner neuron weights updating
N (weights) = (N (weights) + X(i) )/(n + 1), n is updating time.

End
7. Training completion

1. Start with empty network structure. 

2. Input training data X (Q × R). 
3. Setting initial structure parameters: criterion value (p) and relative origin 

point (O). 

7.10 Support Vector Machines (SVMs)

SVMs are a relatively new computational learning method based on the statistical
learning theory presented by Vapnik (1999). In SVMs, original input space is
mapped into a high-dimensional dot product space called a feature space, and in the
feature space, the optimal hyperplane is determined to maximize the generalization
ability of the classifier. The maximal hyperplane is found by exploiting the opti-
mization theory and respecting insights provided by the statistical learning theory.
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SVMs have the potential to handle very large feature spaces, because the training
of SVMs is carried out so that the dimension of classified vectors does not have as
distinct an influence on the performance of SVM as it has on the performance of
conventional classifier. That is why it is noticed to be especially efficient in large
classification problem. This will also benefit in fault classification, because the
number of features to be the basis of fault diagnosis may not have to be limited.
Also, SVM-based classifiers are claimed to have good generalization properties
compared to conventional classifiers, because in training SVM classifier the
so-called structural misclassification risk is to be minimized, whereas traditional
classifiers are usually trained so that the empirical risk is minimized. The perfor-
mance of SVMs in various classification task is reviewed, e.g., in Christianini and
Shawe-Taylor (2000).

Given the data input xi (i = 1, 2, …, M), M is the number of samples. The
samples are assumed to have two classes, namely positive class and negative class.
Each of the classes is associated with labels yi = 1 for positive class and yi = −1 for
negative class, respectively. In the case of linear data, it is possible to determine the
hyperplane f(x) = 0 that separates the given data

f ðxÞ ¼ wTxþ b ¼
XM
j¼1

wjxj þ b ¼ 0 ð7:46Þ

where w is theM-dimensional vector and b is a scalar. The vector w and scalar b are
used to define the position of separating hyperplane. The decision function is made
using sign f(x) to create separating hyperplane that classifies the input data in either
positive class or negative class.

A distinctly separating hyperplane should satisfy the constraints

f ðxiÞ ¼ 1 if yi ¼ 1
f ðxiÞ ¼ �1 if yi ¼ �1

�
ð7:47Þ

or it can be presented in complete equation

yif ðxiÞ ¼ yiðwTxi þ bÞ� 1 for i ¼ 1; 2; . . .;M ð7:48Þ

The separating hyperplane that creates the maximum distance between the plane
and the nearest data, i.e., the maximum margin, is called the optimal separating
hyperplane. An example of the optimal hyperplane of two data sets is presented in
Fig. 7.21.

In Fig. 7.21, a series data points for two different classes of data are shown,
black squares for negative class and white circles for positive class. The SVMs try
to place a linear boundary between the two different classes and orientate it in such
a way that the margin represented by the dotted line is maximized. Furthermore,
SVMs attempt to orientate the boundary to ensure that the distance between the
boundary and the nearest data point in each class is maximal. Then, the boundary is
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placed in the middle of this margin between two points. The nearest data points that
used to define the margin are called support vectors, represented by the gray circles
and squares. When the support vectors have been selected, the rest of the feature set
is not required, as the support vectors can contain all the information based need to
define the classifier. From the geometry, the geometrical margin is found to be ||
w||−2.

Taking into account the noise with slack variables ni and the error penalty C, the
optimal hyperplane separating the data can be obtained as a solution to the fol-
lowing optimization problem:

Minimize
1
2
jjwjj2 þC

XM
i¼1

ni ð7:49Þ

subject to yiðwTxi þ bÞ� 1� ni; i ¼ 1; . . .;M
ni � 0 i ¼ 1; . . .;M

�
ð7:50Þ

where ni measures the distance between the margin and the examples xi that lie on
the wrong side of the margin. The calculation can be simplified by converting the
problem with Kuhn–Tucker condition into the equivalent Lagrangian dual problem,
which will be

Minimize Lðw; b; aÞ ¼ 1
2
jjwjj2 �

XM
i¼1

aiyiðw � xi þ bÞþ
XM
i¼1

ai ð7:51Þ

Fig. 7.21 Classification of
two classes using SVM
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The task is to minimize Eq. (7.51) with respect to w and b, while requiring the
derivatives of L to a to vanish. At optimal point, we have the following saddle point
equations:

@L
@w

¼ 0;
@L
@b

¼ 0 ð7:52Þ

which replace into the form

w ¼
XM
i¼1

aiyixi;
XM
i¼1

aiyi ¼ 0 ð7:53Þ

From Eq. (7.53), we find that w is contained in the subspace spanned by the xi.
Substituting Eq. (7.53) into Eq. (7.51), we get the dual quadratic optimization
problem

Maximize LðaÞ ¼
XM
i¼1

ai � 1
2

XM
i;j¼0

aiajyiyjxi � xj

subject to ai � 0; i ¼ 1; . . .;M:

ð7:54Þ

XM
i¼1

aiyi ¼ 0 ð7:55Þ

Thus, by solving the dual optimization problem, one obtains the coefficients ai
which are required to express the w to solve Eq. (7.49). This leads to the nonlinear
decision function.

f ðxÞ ¼ sign
XM
i;j¼1

aiyiðxixjÞþ b

 !
ð7:56Þ

SVMs can also be used in nonlinear classification tasks with the application of
kernel functions. The data to be classified are mapped onto a high-dimensional
feature space, where the linear classification is possible. Using the nonlinear vector
function UðxÞ ¼ ð/1ðxÞ; . . .;/lðxÞÞ to map the n-dimensional input vector x onto
l-dimensional feature space, the linear decision function in dual form is given by:

f ðxÞ ¼ sign
XM
i;j¼1

aiyiðUTðxiÞ �UðxjÞÞþ b

 !
ð7:57Þ

Working in the high-dimensional feature space enables the expression of com-
plex functions, but it also generates the problem. Computational problem occurs
due to the large vectors, and the overfitting also exists due to the high
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dimensionality. The latter problem can be solved by using the kernel function.
Kernel is a function that returns a dot product of the feature space mappings of the
original data points, stated as Kðxi; xjÞ ¼ ðUTðxiÞ �UjðxjÞÞ: When applying a
kernel function, the learning in the feature space does not require explicit evaluation
of U and the decision function will be

f ðxÞ ¼ sign
XM
i;j¼1

aiyiKðxi; xjÞþ b

 !
ð7:58Þ

Any function that satisfies the Mercer’s theorem (Vapnik 1999) can be used as a
kernel function to compute a dot product in feature space. There are different kernel
functions used in SVMs, such as linear, polynomial, and Gaussian RBF. The
selection of the appropriate kernel function is very important, since the kernel
defines the feature space in which the training set examples will be classified. The
definition of legitimate kernel function is given by the Mercer’s theorem. The
function must be continuous and positive definite. In this work, linear, polynomial,
and Gaussian RBF functions are evaluated and formulated in Table 7.1.

7.10.1 Wavelet SVM

The idea of wavelet analysis is to approach a function or signal using a family of
functions which are produced by translation and dilatation of the mother wavelet
function wa,b(x)

wa;bðxÞ = jaj�1=2w
x� b
a

� �
ð7:59Þ

where x, a, b 2 R, a is the dilatation factor, and b is the translation factor. The
wavelet transform of any function f(x) can be expressed as follows:

Wa;bðf Þ ¼ hf ðxÞ;wa;bðxÞi; f ðxÞ 2 L2ðRÞ ð7:60Þ

where the notation h ; i refers to the inner product in L2(R).
Equation (7.60) means that any function f(x) can be decomposed on a wavelet

basis wa,b(x) if it satisfies the condition (Daubechies 1990)

Table 7.1 Formulation of
kernel functions

Kernel K(x, xj)

Linear xT ∙ xj
Polynomial (c xT ∙ xj +r)

d, c > 0

Gaussian RBF exp(– ||x – xj||
2/2c 2)
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Cw ¼
Z

01
jHðxÞj2
jxj dx\1 ð7:61Þ

where H(x) is the Fourier transform of wa,b(x).
Following (Daubechies 1990), the function f(x) can be reconstructed as follows:

f ðxÞ ¼ 1
Cw

Z1
�1

Z1
0

Wa;bðf Þ wa;bðxÞ
da
a2

db ð7:62Þ

To approximate Eq. (7.62), then the finite can be written as follows:

f̂ ðxÞ ¼
Xl
i¼1

Wiwai;biðxÞ ð7:63Þ

Using Eq. (7.63), f(x) can eventually be approximated by f̂ ðxÞ:
For a common multidimensional wavelet function, the mother wavelet can be

given as the product of one-dimensional (1-D) wavelet function (Zhang and
Benveniste 1992)

wðxÞ ¼
YN
i¼1

wðxiÞ ð7:64Þ

where x ¼ ðx1; . . .; xNÞ 2 RN . So, every 1-D wavelet mother w(x) must satisfy
Eq. (7.61).

Recalling the decision function for SVM in Eq. (7.58), the dot product can be
replaced using kernel function as it was done by Vapnik (1995), so that Kðx; x0Þ ¼
Kðhx � x0iÞ: In SVM theory, any function which satisfies the Mercer’s condition can
serve as a kernel function (Christianini and Shawe-Taylor 2000).

Suppose K is a continuous symmetric function on RN, such that integral operator
TK: L2(R

N) ! L2(R
N),

ðTKÞf ð�Þ ¼
Z

RdKð�; xÞf ðxÞ dx ð7:65Þ

is positive. Let /i 2 L2ðRNÞ be the eigenfunction of Tk associated with the eigen-
value ki � 0 and be normalized in such a way that jj/ijjL2 ¼ 1; and then the kernel
function Kðx; x0Þ can be expanded as follows:

Kðx; x0Þ ¼
X1
i¼1

ki/iðxÞ/iðx0Þ ð7:66Þ

and must satisfy the positivity condition of the following integral (Christianini and
Shawe-Taylor 2000)
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Z Z
L2
L2

Kðx; x0Þf ðxÞf ðx0Þdx dx0 � 0 ;8 f 2 L2ðRNÞ ð7:67Þ

For building a new kernel using wavelet, it may be helpful to refer to the frame
theory, introduced by Duffin and Schaeffer (1952), which is an extension of the
normalized orthogonal basis. In the frame theory, one can reconstruct perfectly a
function f in a Hilbert space H from its inner product h;i with family vectors {wk} if
they satisfy

Ajjf jj2 �
X
k

jhf ; �wkij2 �Bjjf jj2 ð7:68Þ

where the constants A and B satisfy the condition 0\A�B\1.
Any function in a Hilbert space can be decomposed as follows:

f ¼
X
k

hf ; �wkiwk ¼
X
k

hf ;wki�wk ð7:69Þ

where �wk ¼ ðT �TÞ�1wk is the dual frame of wk and T is the frame operator.
In L2(R

N), if f = {wi} is a frame and {ki} is a positive increasing sequence, a
function Kðx; x0Þ can be given by:

Kðx; x0Þ ¼
X1
i¼1

ki wiðxÞwiðx0Þ ð7:70Þ

Equation (7.70) is similar to Eq. (7.66) since both of them satisfy the condition
of kernel function. Moreover, a mother wavelet wa,b(x) is called a frame wavelet if
w 2 L2(R

N), a > 1, b > 0 and the family function

fwmng ¼ fDamTnbwg ð7:71Þ

where D and T are unitary dilatation operator and unitary translation operator,
respectively, while a is the scale parameter and b is the translation parameter.

A wavelet kernel function can be constructed by any mother wavelet which can
generate frame wavelet while satisfying the Mercer’s condition in Eq. (7.67). In
addition to the inner product, there exists a kernel called translation-invariant kernel
(Smola et al. 1998) such that

Kðx; x0Þ ¼ Kðhx� x0iÞ ð7:72Þ

If the translation-invariant kernel is admissible in SVM kernel function, then the
necessary and sufficient condition of the Mercer’s theorem must be satisfied. The
other theorem stated that a translation-invariant kernel is an admissible support
vector (SV) kernel if and only if the following Fourier transforms (Smola et al. 1998)
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F½K�ðxÞ ¼ ð2pÞ�N=2
Z
RN

expð�jðx � xÞÞKðxÞ dx ð7:73Þ

are nonnegative. Based on the mother wavelet, the wavelet kernel which satisfies
the translation-invariant theorem can be given as follows:

Kðx; x0Þ ¼ Kðx� x0Þ ¼
YN
i¼¼1

w
xi � x0i
ai

� �
ð7:74Þ

The construction of wavelet kernel function using Haar, Daubechies, and
Symmlet is shown in Fig. 7.22.

7.10.2 Multi-class Classification

The above discussion deals with binary classification where the class labels can take
only two values: 1 and −1. In the real-world problem, however, we find more than
two classes for example: In fault diagnosis of rotating machineries, there are several
fault classes such as mechanical unbalance, misalignment, and bearing faults.

The earliest used implementation for SVM multi-class classification is
one-against-all methods. It constructs k SVM models where k is the number of
classes. The ith SVM is trained with all of the examples in the ith class with positive
labels and all the other examples with negative labels. Thus, given l training data
(x1, y1), …, (xl, yl), where xi 2 Rn, i = 1, …, l and yi 2 {1, …, k} is the class of xi,
the ith SVM solves the following problem:

Minimize :
1
2
jjwijj2 þC

Xl
i¼1

nijðwiÞT ð7:75Þ

subject to : ðwiÞT/ðxjÞþ bi � 1� nij; if y ¼ i ð7:76Þ

ðwiÞT/ðxjÞþ bi � � 1þ nij; if y 6¼ i ð7:77Þ

niJ � 0; j ¼ 1; . . .; l ð7:78Þ

where the training data xi are mapped to a higher dimensional space by function /
and C is the penalty parameter.

Minimizing Eq. (7.75) means we would like to maximize 2/||wi||, the margin
between two groups of data. When data are not separable, there is a penalty term
C
Pl

i¼1 ni;i which can reduce the number of training errors.
Another major method is called one-against-one method. This method constructs

k(k − 1)/2 classifiers where each one is trained on data from two classes. For
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Fig. 7.22 Wavelet kernel
function. a Haar kernel.
b Daubechies kernel.
c Symmlet kernel

204 7 Intelligent Fault Diagnosis Methodology



training data from the ith and the jth classes, we solve the following binary clas-
sification problem:

Minimize :
1
2
jjwijjj2 þC

X
t

nijt ðwijÞT ð7:79Þ

subject to : ðwijÞT/ðxtÞþ bij � 1� nijt ; if yt ¼ i ð7:80Þ

ðwijÞT/ðxtÞþ bij � � 1þ nijt ; if yt ¼ j ð7:81Þ

nijt � 0; j ¼ 1; . . .; l ð7:82Þ

There are different methods for doing the future testing after all k(k − 1)/2
classifiers are constructed. After some tests, the decision is made using the fol-
lowing strategy: If sign ((wij)T/(x) + bij) says x is in the ith class, then the vote for
the ith class is added by one. Otherwise, the jth is increased by one. Then, x is
predicted in the class using the largest vote. The voting approach described above is
also called as max win strategy.

7.10.3 Sequential Minimal Optimization (SMO)

Vapnik (1982) describes a method which used the projected conjugate gradient
algorithm to solve the SVM-QP problem, which has been known as chunking. The
chunking algorithm uses the fact that the value of the quadratic form is the same if
you remove the rows and columns of the matrix that corresponds to zero Lagrange
multipliers. Therefore, chunking seriously reduces the size of the matrix from the
number of training examples squared to approximately the number of nonzero
Lagrange multipliers squared. However, chunking still cannot handle large-scale
training problems, since even this reduced matrix cannot fit into memory. Osuna
et al. (1997) proved a theorem which suggests a whole new set of QP algorithms for
SVMs. The theorem proves that the large QP problem can be broken down into a
series of smaller QP subproblems. Sequential minimal optimization
(SMO) proposed by Platt (1999) is a simple algorithm that can be used to solve the
SVM-QP problem without any additional matrix storage and without using the
numerical QP optimization steps. This method decomposes the overall QP problem
into QP subproblems using the Osuna’s theorem to ensure convergence. In this
paper, the SMO is used as a solver and detail descriptions can be found in Platt
(1999).

In order to solve the two Lagrange multipliers a1, a2, SMO first computes the
constraints on these multipliers and then solves for the constrained minimum. For
convenience, all quantities that refer to the first multiplier will have a subscript 1,
while all quantities that refer to the second multiplier will have a subscript 2. The

7.10 Support Vector Machines (SVMs) 205



new values of these multipliers must lie on a line in (a1, a2) space and in the box
defined by 0 � a1, a2 � C.

a1y1 þ a2y2 ¼ aold1 y1 þ aold2 y2 ¼ constant ð7:83Þ

Without loss of generality, the algorithm first computes the second Lagrange
multipliers a2

new and successively uses it to obtain a1
new. The box constraint 0 �

a1, a2 � C, together with the linear equality constraint Rai yi = 0, provides a more
restrictive constraint on the feasible values for a2

new. The boundary of feasible region
for a2 can be applied as follows:

If y1 6¼ y2; L ¼ maxð0; aold2 �aold1 Þ;H ¼ minðC;Cþ aold2 �aold1 Þ ð7:84Þ

If y1 ¼ y2; L ¼ maxð0; aold1 þ aold2 �CÞ;H ¼ minðC;Cþ aold1 þ aold2 Þ ð7:85Þ

The second derivative of the objective function along the diagonal line can be
expressed as follows:

g ¼ Kðx1; x1ÞþKðx2; x2Þ�2Kðx1; x2Þ ð7:86Þ

Under normal circumstances, the objective function will be positive definite,
there will be a minimum along the direction of the linear equality constraint, and η
will be greater than zero. In this case, SMO computes the minimum along the
direction of the constraint:

anew2 ¼ aold2 þ y2ðEold
1 � Eold

2 Þ
g

ð7:87Þ

where Ei is the prediction error on the ith training example. As a next step, the
constrained minimum is found by clipping the unconstrained minimum to the ends
of the line segment:

anew;clipped2 ¼
H if anew2 �H
anew2 if L\anew2 \H
L if anew2 � L

8<
: ð7:88Þ

Now, let s = y1 y2. The value of a1
new is computed from the new a2

new:

anew1 ¼ aold1 þ sðaold2 � anew2 Þ ð7:89Þ

Solving Eq. (7.26) for the Lagrange multipliers does not determine the threshold
b of the SVM, so b must be computed separately. The following thresholds b1, b2
are valid when the new a1, a2 are not at the each bound, because it forces the output
of the SVM to be y1, y2 when the input is x1, x2, respectively.
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b1 ¼ E1 þ y1ðanew1 �aold1 ÞKðx1; x1Þþ y2ðanew;clipped2 �aold2 ÞKðx1; x2Þ þ bold

b2 ¼ E2 þ y1ðanew1 �aold1 ÞKðx1; x2Þþ y2ðanew;clipped2 �aold2 ÞKðx2; x2Þþ bold
ð7:90Þ

When both b1 and b2 are valid, they are equal. When both new Lagrange
multipliers are at bound and if L is not equal to H, the interval between b1 and b2 is
all thresholds that are consistent with the Karush–Kuhn–Tucker conditions which
are necessary and sufficient for an optimal point of a positive definite QP problem.
In this case, SMO chooses the threshold to be halfway between b1 and b2 (Platt
1999).

Example 7.11 Perform the binary classification of given data using SMO solver for
classification.

The circles in Fig. 7.23 refer to the selected support vector for defining hyper-
plane in the classification process.

Example 7.12 Perform multi-class classification of given data using one-against-all
decomposition strategy as shown in Fig. 7.24. SMO binary solver is used to train
the binary SVM subtasks.

Example 7.13 Perform multi-class classification of given data using
one-against-one decomposition strategy as shown in Fig. 7.25.

Example 7.14 Classify the iris data using wavelet SVM. In this example, Haar
wavelet is selected as shown in Fig. 7.26. User can select the other wavelet, i.e.,
Daubechies and Symmlet. This procedure also needs wavelet toolbox developed by
Donoho (WaveLab802) for wavelet function selection.
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7.11 Decision Tree

Decision trees are a rule-based classification model and classify the data according
to the previous rule when new data enter. Decision trees are recursive algorithms
that partition data according to a splitting criterion taken from predictor, or inde-
pendent, variables of the data. The data are recursively partitioned so as to decrease
an impurity function with respect to the dependent variable for the subsets.
Consequently, as you descend the tree, the subsets that it contains are more
homogeneous with respect to the impurity function chosen. Decision trees are
useful tools for data exploration tasks of the following:

• Description, because they allow for data reduction and a compact description of
the data,

• Classification, because they allow for the discovery of hypothesis based on
separable classes that can be explained by their predictor variables, and

• Generalization, because they uncover mapping from independent variables to
dependent variables.

The most common types of decision trees are binary. They have zero or two
directed outgoing edges from any node of the tree. A node with zero outgoing edges
is called a leaf node; all other nodes are called internal nodes. Leaf nodes are
labeled with class labels: a category of the dependent variable. An internal node, n,
is labeled with a predictor attribute, and this is known as the splitting attribute. The
predictor attribute of the node has a splitting predicate associated with it. An
internal node produces a splitting of the database into two disjoint subsets. The part
of the original data that fits the criterion will be considered by the left subtree of the
decision tree, and the part of the data that do not satisfy the splitting predicate will
be considered by the right subtree. Now, a path from the root to a leaf represents a
classification rule. For each left subtree taken, the predicate of the node is conjoined
to the previous predicates, and for each right subtree taken, the negation of the
predicate is conjoined.

Two key concerns in constructing a decision tree are the selection of split points
used in the internal nodes and the growth of a right-sized tree. Decision tree
construction is accomplished in two phases. The first phase is known as the growth
phase of the decision tree. In this phase, an overly large decision tree is grown.
While the resubstitution error for a tree grown using a consistent training set can be
driven to zero, the danger is that the tree will be overfitted to the training set and
will not generalize to test data. The second phase prunes the tree. Here, the aim is to
keep the misclassification rate low while reducing the size of the tree in the hope of
producing a tree that generalizes well.

The advantages of DT are described as follows:

• DT is easy to understand that informs the baseline for prediction and
classification.

• DT is easy to find the important attributes that affect classification.
• DT demands less time than other classification models.
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• DT is easy to select the proper data when there are too many attributes which are
not good to construct the classification model.

• DT reduces the time and effort spent during the data conversion process among
knowledge discovery processes because it can deal with continuous and nominal
attributes without changing its type.

7.11.1 Building Decision Tree

Decision tree is described well in Fig. 7.27. Table 7.2 explains each term which is
used in building decision tree. X1 and X2 are also called parent node, and A, B, and
C are called child nodes. According to attribute values, some cases are determined
what classes they belong to.

When constructing the decision tree, we should estimate all instances to divide
and conquer. Criterion has an important role at this step. The construction of the
tree is determined how to take some attributes into node to split the instances.
Consequently, criterion searches the best attribute to split the instances and stop the
growth of the tree. There are many decision tree inducers such as ID3, C4.5, and
CART. ID3 which is proposed by Quinlan uses information gain as split criterion.
The growing stops when all instances belong to a single value of target feature or
when the best information gain is not greater than zero. ID3 does not consider
numeric attributes and missing values.

C4.5 is a developed inducer of ID3, presented by the same author. It uses gain
ratio as split criterion. The split stops when the number of instances to be split is

X1

X2 A

Yes

B C

Yes

No

No

Fig. 7.27 Description of
decision tree

Table 7.2 Definition of decision tree

Symbols Name Example

X1, X2 Attribute name What is the predominant frequency?

Yes, No Attribute value 1X, 2X, unknown

A, B, C Class Unbalance, misalignment
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below a certain threshold. It is also capable of dealing with numeric attributes. It
can induce from a training set that incorporates missing values by correcting gain
ratio criterion. CART is developed by Breiman and is characterized by the fact that
it constructs binary trees, namely each internal node has exactly two outgoing
edges.

The tree growth phase involves choosing a splitting selection that minimizes the
overall misclassification error. The most common form of the split selection
methods is the impurity-based selection methods. These methods find the splitting
criterion by minimizing a concave impurity function, i(t), at a node t. Examples of
impurity functions are the well-known entropy measure, Gini index, and twoing
rule:

Entropymeasure: iðtÞ ¼ �
Xc
j¼1

Pj log Pj ð7:91Þ

Gini index: iðtÞ ¼ 1�
Xc
j¼1

P2
j ð7:92Þ

where Pj is the probability for class xj and c is the total number of classes.
Gini index metric is based on the Gini criterion by Breiman, but modified as in

OC1 by Murthy. The Gini index measures the probability of misclassifying a set of
instances. Twoing rule is also proposed by Breiman and used in Murthy’s OC1 and
compares the number of examples in each category on each side of the proposed
split (Fig. 7.28).

Gini index looks for the largest class in database (e.g., class A) and strives to
isolate it from all other classes. For example, with four classes, A, B, C, and D,
representing 40, 30, 20, and 10 % of the data, respectively, the Gini rule would
immediately attempt to pull out the class A records into one node. Of course, such a
separation may not be possible using the available data, but if it is, the Gini opts for
that split. The diagram below shows the best possible Gini split for these data.

Once the first split is made, Gini index continues attempting to split the data that
require further segmentation, i.e., the right child node that contains classes B, C,
and D. Using the same strategy, Gini index attempts to pull out all the class B
records, separating them from the other classes in the node. Gini index then tackles

Fig. 7.28 The best possible
Gini split
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the last heterogeneous node, striving to separate class C from class D. If the Gini
rule is successful, the final tree would contain four “pure” child nodes.

A pure decision tree such as the above is attainable only in very rare circum-
stances; in most real-world applications, database fields that clearly partition class
from class are not available. If they were, no one would ever receive an unwelcome
direct mail piece and bank losses on bad debts would be zero. Therefore, we cannot
expect to grow trees like the ones above routinely; however, Gini index will try to
come as close as possible to this ideal. A hypothetical example of a more realistic
decision tree grown by Gini index is displayed in Fig. 7.29. While imperfect, it is
still an unusually accurate tree (Fig. 7.30).

Gini index attempts to separate classes by focusing on one class at a time. It will
always favor working on the largest or, if you use costs or weights, the most
“important” class in a node. While this approach might seem short-sighted, Gini
index performance is frequently so good that you should always experiment with it
to see how well it does. Gini index is the default rule in CART precisely because it
is so often the best splitting rule (Fig. 7.31).

The philosophy of twoing rule is far different than that of Gini index. Rather than
initially pulling out a single class, twoing rule first segments the classes into two
groups, attempting to find groups that together add up to 50 % of the data. Twoing
rule then searches for a split to separate the two subgroups. The diagram below
shows the best possible split the twoing rule could find.

Again, this is an ideal split. It is unlikely that any real-world database would
allow you to cleanly separate four important classes into two subgroups in this way.
However, splits that approach this ideal might be possible, and these are the splits
that twoing rule seeks to find. The entropy rule, which is very similar to twoing rule
in practice, strives for similar splits. Table 7.3 shows the results which are applied
for three types of criteria.

Fig. 7.29 Final tree using
Gini splitting rule
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We concluded that entropy criterion is the best among them. So we constructed
tree using entropy criterion which is based on the information theory and is pro-
posed by Quinlan. We then use information entropy evaluation function based on
the information theory.

This entropy evaluation function is calculated in the following way:

Step 1: Calculate info(T) necessary to identify the class in the training set T.

infoðTÞ ¼ �
Xk
j¼1

freqðCj; TÞ
Tj j 	 log2

freqðCj; TÞ
Tj j

� �� �
ð7:93Þ

Fig. 7.30 Gini splitting rule

Fig. 7.31 Twoing splitting
rule
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where |T| is the number of cases in the training set. Cj is a class j, k is the
number of classes, and freq(Cj, T) is the number of cases included in T.

Step 2: Calculate the expected information value, infoX(T) for test X to divide
into T.

infoXðTÞ ¼
Xn
i¼1

Tij j
Tj j 	 infoðTiÞ

� �
ð7:94Þ

where n is the number of outputs for test X and Ti is a subset of
T corresponding to output i.

Step 3: Calculate the mutual information value acquired from division according
to test X.

gainðXÞ ¼ infoðTÞ � infoXðTÞ ð7:95Þ

Step 4: Calculate the dividing information value split info(X) acquired for T and
divide into n subsets.

split infoðTÞ ¼ �
Xn
i¼1

Tij j
T

	 log2
Tij j
T

� �� �
ð7:96Þ

Step 5: Calculate the ratio of gain(X) over split info(X).

GRðXÞ ¼ gainðXÞ
split infoðXÞ ð7:97Þ

The GR(X) compensates for the weak point of gain(X) which represents the
quantity of information provided by X in the training set. Therefore, an attribute
with the highest GR(X) is taken as the root of the decision tree.

7.11.2 Pruning Decision Tree

Through the pruning step, we can construct a complete tree able to exactly classify
all the instances, increase statistical reliability and predictability over the whole

Table 7.3 The result of split criterion

Criterion Type Unknown attributes Tree size Error rate (%)

Gini index Numeric Ignored 21 9.5

Twoing 21 38

Entropy measure 21 0

Nominal Considered 25 3.8

25 7.7
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space of instances, and improve the understandability. There are many pruning
methods to improve the tree’s performance. Pruning methods are classified into two
types according to those properties. One is overpruning method, and the other is
underpruning method. Cost-complexity pruning (CCP) and reduced error pruning
(REP) belong to the former. Error base pruning (EBP), pessimistic error pruning
(PEP), and minimum error pruning (MEP) belong to the latter. Many pruning
methods have been applied in decision trees and compared each other in perfor-
mance of classification. EBP is powerful to classify the data with continuous
attributes and used in C4.7. CCP is powerful which has discrete attributes. We can
look for the empirical comparison among pruning methods proposed by Quinlan.
Pessimistic pruning method is the best about many data in his test except EBP
(Table 7.4).

The EBP is the best one among other methods through data group applied in
Floriana. Consequently, we selected the EBP.

In this chapter, the examples of decision tree method for classification routine
will be presented using MATLAB. The computational statistical toolbox is adopted.

Example 7.15 Build a tree using decision tree inducers CART and then prune it.
We see in Fig. 7.32 that the tree has partitioned the feature space into eight

decision regions or eight terminal nodes.

Table 7.4 The comparison of pruning methods

Category Properties

CCP, REP Overpruning trendy, smaller size, less exact

EBP, PEP, MEP Underpruning trendy, bigger size, better exact

x1 < 0.031

x2 < 0.51 x2 < 0.58

C- 1 C- 2
x1 < 0.49 x1 < 0.5

x2 < 0.48 x2 < 0.5
C- 2 C- 1

C- 1 C- 2C- 2 C- 1

Fig. 7.32 The classification
tree of CART
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The input argument is a tree and the output argument is a cell array of subtrees,
where the first tree corresponds to the tree T and the last tree corresponds to the root
node.

The resulting sequence for complexity parameter (a) is

alpha ¼ 0 0:0100 0:0300 0:0700 0:0800 0:1033

7.12 Random Forest

In recent years, a number of papers reported the classifiers to produce the fault
diagnosis in the machine such as artificial neural networks (ANNs), support vector
machines (SVMs), rule-based induction, and case-based reasoning. The proposed
techniques and their extended research increase the intelligence, preciseness, and
applicability in diagnosis domain. While the passion for developing fault diagnosis
methods is increasing, there are a number of obstacles before researchers. That is, the
correct diagnosis of faults is rather complicated. The reasons are listed as follows:

• Different kinds of faults may result in a certain symptom.
• Because of the background noise, some faults are difficult to be distinguished in

the machine.
• There are a number of subassemblies with rotating machinery and a high-level

internal interaction between these subassemblies such as bearings and rotor.

Hence, the machine fault diagnosis method which is employed to make
hypotheses should be powerful enough to classify the malfunctions in a correct
way. The critical issue in classification is how to integrate the classification power
to achieve higher classification accuracy. To do that, improving the capability of
diagnosis is the main motivation to inspire researchers synchronizing existent
technologies and exploring new theories.

Ensemble classification methods train several classifiers and combine the deci-
sion of a set of classifiers by weighted or unweighted voting process to classify
unknown examples. An ensemble classifier is generally found to be more accurate
than any of the individual classifiers making up the ensemble (Dietterich 2002). The
most widely used ensemble methods are bagging (an acronym of bootstrap
aggregating) (Breiman 1996) and boosting (Bauer and Kohavi 1999). Bagging is
based on training many classifiers on bootstrap samples from the training set, which
has been shown to reduce the variance of the classification (Gislason et al. 2006).
Boosting was introduced by Schapire (1990) as a method for boosting the perfor-
mance of a weak learning algorithm. Boosting uses iterative retraining, where the
incorrectly classified samples are given increased weighting as the iteration pro-
gresses. Therefore, it generally reduces both the variance and the bias of the
classification and has been shown to be a very accurate classification method
(Joelsson et al. 2005). However, it has various drawbacks: It is very slow, it can
overtrain, and it is sensitive to noise (Briem et al. 2002).
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Random forest algorithm (RF) which is introduced by Breiman (2001) is a
general term for ensemble methods using tree-type classifiers. RF builds a large
amount of decision trees (Quinlan 1986a, b; Yang et al. 2000a, b) out of sub-data
set from a unique original training set by using bagging which is a meta-algorithm
to improve classification and regression models according to stability and classi-
fication accuracy. Bagging reduces variance and helps to avoid overfitting syn-
chronously. This procedure extracts cases randomly from original training data set,
and the bootstrap sets are used to construct each of the decision trees in the RF.
Each tree classifier is named component predictor. The RF makes decision by
counting the votes of component predictors on each class and then selecting the
winner class in terms of number of votes to it (Breiman 2006).

RF has been employed in various fields such as land cover (Pal 2005), drug
discovery (Remlinger 2003), and geographic data (Gislason et al. 2006; Ham et al.
2005). The possibilities of using RF in machine fault diagnosis application are
being considered only by authors (Di et al. 2006). RF provides good performance in
applications in these fields. RF can be a competitor for rotating machinery fault
diagnosis, because of these distinctive features:

• It is unexcelled in accuracy among current algorithms.
• It runs efficiently on large databases.
• It can estimate the importance of each variable in the classification.
• It has methods for estimating missing data and maintains accuracy when a large

proportion of the data are missing.
• It computes proximities between pairs of cases that can be used in clustering,

locating outliers, or five interesting views of the data.
• It generates an internal unbiased estimate of the generalization error as the forest

building progresses.

In this section, we confirm the possibilities of using RF in machine fault diag-
nosis and propose an optimized RF method combined with genetic algorithm (GA)
to improve the classification accuracy. To increase the diagnosis accuracy, we
acquire the data of three-direction vibration signals as the original inputs of system.
And a number of feature parameters in time and frequency domains and regression
coefficients are calculated to extract helpful information and remove the back-
ground noise of the data. Then, RF diagnosis system detects the certain faulty-type
bases on these features. It is an effective approach to promote the capability of
diagnosis system (Yang et al. 2004a, b). Experimental result shows that the opti-
mized RF-based method achieves a very high accuracy by combining RF with GA.

7.12.1 Random Forest

RF which is derived from decision tree classifier is an assembled method, and it
grows tree using CART (classification and regression tree) methodology to
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maximum size and without pruning. Figure 7.33 shows the construction of a RF.
Therefore, this of the building blocks for CART-based RF (RF-CART) explored in
this section.

(1) CART methodology

CART (Breiman et al. 1984) grows classification and regression trees to predict
continuous dependent variables (regression) and categorical predictor variables
(classification). There are four basic steps in CART methodology. At first step, a tree
is built by using recursive splitting of nodes. Each terminal node is assigned to a
certain class, judged by class probability distribution of the dependent variable at
terminal node. The assignment of a predicted class to each node occurs whether or not
that node is subsequently split into child nodes. The second step consists of stopping
the tree-growing process. And the final two steps, tree pruning and optimal tree
selection, are ignored because RF grows trees freely without any pruning process.

(2) Tree building

The tree-building process begins with departing the root node into binary nodes by
a very simple question of the form, x � d? Here, x is a variable in the data set and
d is a real number. Initially, all observations are located in the root node. CART
implements a computer-intensive algorithm that searches for the best split at all
possible split points for each variable. The methodology which CART uses for
building trees is known as binary recursive partitioning. Adopting the Gini diversity
index as a splitting rule, the tree-building process is as follows:

Step 1: CART splits the first variable at all of its possible split points, at all of
the values the variable assumes in the sample. At each possible split
point of a variable, the sample splits into binary or two child nodes.
Cases with a “yes” response to the question posed are sent to the left
node and those with “no” responses are sent to the right node.

Step 2: CART then applies its goodness-of-split criteria to each split point and
evaluates the reduction in impurity that is achieved using the formula:

Tree 1

Decision

Tree 1

Bootstrap
Sample 1

Bootstrap
Sample 2

Bootstrap
Sample N

Tree 1 Tree 1

Majority Voting Process

Original Features
Fig. 7.33 Construction of
random forest
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Diðs; tÞ ¼ iðtÞ � pL iðtLÞ½ � � pR iðtRÞ½ � ð7:98Þ

where s is a particular split, pL is the proportion of the observations at
node t which go into the left child node tL, and pR is for the right node tR
similar with pL. i(tL) and i(tR) are impurity of left and right nodes,
respectively.

Step 3: CART selects the best split of the variable as that split for which the
reduction in impurity is highest. Three steps above are repeated for each
of the remaining variables at the root node.

Step 4: CART then ranks all of the best splits on each variable according to the
reduction in impurity achieved by each split and selects the variable and
its split point that most reduced the impurity of the root or parent node.

Step 5: CART then assigns classes to these nodes according to the rule that
minimizes misclassification costs. CART has a built-in algorithm that
takes into account user-defined variable misclassification costs during the
splitting process. The default is unit or equal to misclassification costs.

Because the CART procedure is recursive, steps 1–5 are repeatedly applied to
each non-terminal child node at each successive stage.

(3) Stopping tree building

CART stops the splitting process when:

• There is only one observation in each of the child nodes.
• All observations within each child node have the identical distribution of pre-

dictor variables, making splitting impossible.
• The user sets an external limit on the number of levels in the maximal tree

previously.

Stand by these steps, a CART algorithm-based decision tree without pruning and
optimizing will be built.

7.12.2 Random Forest Algorithm (RF)

RF has greatly improved the classification accuracy resulting from growing an
ensemble of trees and making them vote for the most promising class. A convenient
method to build the ensembles is by random vectors which are generated via
random selection procedure from integrated training set. The constituent in this
method is that we prepare k random vectors, Hk, which are independent of the past
random vectors H1, H2, H3, …, Hk-1 but with the same distribution to build the
trees among the RF. The corresponding individual classifier is noted by C(X, Hk).
For example, in bagging processing, the random vector H as the N observations
randomly draws out from entire training data proportionally where N is the number
of observations of training data. And then, they vote for the most popular class.

7.12 Random Forest 219



Breiman names these procedures as RFs. A definition drawn from the original paper
is available here (Breiman 2001).

Definition 1 A RF is a classifier consisting of a collection of tree-structured
classifiers {C(X,Hk), k = 1,…} where theHk is identically distributed independent
random vectors and each tree casts a unit vote for the most popular class at input X.

(1) Two randomized procedures in RF tree building

As mentioned below, RF enhances the classification accuracy compared with
decision tree classifier significantly. It is the reason that RF applies two randomized
procedures when it builds trees. Each tree is built as follows. Firstly, assume that the
number of cases in the training set is N and the number of variables in the classifier is
M. Select the number of input variables that will be used to determine the decision at
a node of the tree. This number, m, should be much less thanM (m � M). Secondly,
choose a training set by choosing N samples from the training set with replacement.
And then, for each node of the tree, randomly selectm of theM variables on which to
base the decision at that node. Calculate the best split based on these m variables in
the training set. Finally, each tree is fully grown and not pruned.

The two distinctive randomized procedures exist among the four steps below.
That is, RF extracts a fixed quantity from training set randomly, or names it a
bagging processing (Breiman 1996). Each base classifier in the ensemble is trained
on a bootstrap from the entirety of available data. However, each of these bootstrap
replicates tends to leave out roughly one-third of the sample. Thus, each classifier in
the ensemble is trained on roughly two-thirds of the original data. Consequently,
each element in the sample of size n trains roughly (2/3)k of all classifiers in the
ensemble so that it can be used to validate the remaining k/3 classifiers (Fig. 7.34)
where n is the number of training data and k is the total number of single-tree
classifier. This part of data is named out-of-bag data to get an unbiased estimate of

Fig. 7.34 Schematic of bagging using the decision tree as the base classifier
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the test set error of an individual tree. The rest of the data are used to build the
single-tree classifier.

After the bagging processing, the other randomized procedure is emerged in
node splitting during tree classifier built. Different from the normal CART-like
decision tree-splitting algorithm, CART within RF algorithm searches only in
n variables which are small amount and drawn at random from all M variables
instead of entire variables.

The research of Breiman states why these two randomized procedures make
classification accuracy increase effectively: Improvement will occur for unstable
procedures where a small change in training set can result in large change between
component classifiers and classifier trained by entire training set. In RF, whatever
the bagging processing or the random selection of variables to split the node both
makes difference in individual tree and forests. Therefore, these two sources of
randomness are most important features of RF.

(2) Convergence of RF

RF adopts an ensemble of decision trees and determines the categorical classes by
majority vote algorithm. Thus, a serious consideration of overfitting is necessary for
testing RF performance. Normally, an overfitting will occur where learning is
performed too long or where training examples are rare, and the learner may be
limited in very specific random features of the training data that have no causal
relation with the target function. But RF can avoid the overfitting completely
(Breiman 1996). To affirm this point, we define a margin function first.

Given an ensemble of a series of classifiers C1(X), C2(X), …, Ck(X), and with
the training set drawn at random from the distribution of the random vector Y, X,
define the margin function as follows:

mgðX; YÞ ¼ avkIðCkðXÞ ¼ YÞ �maxj6¼Y avkIðCkðXÞ ¼ jÞ ð7:99Þ

where X is the input metric, avk is the average number of votes at X, Y for the
corresponding class, and I(�) is the indicator function. Themarginmeasures the extent
to which the average number of votes at X, Y for the right class exceeds the average
vote for any other class. The larger the margin, the more confidence the classification.

According to this function, the generalization error is given by:

PE� ¼ PX;Y ðmgðX; YÞ\0Þ ð7:100Þ

where PX,Y indicates the probability which is over the X, Y space.

Theorem 7.1 As the number of trees increases, for almost surely all sequencesH1,
PE� converges to:

PX;Y PH C X;Hð Þ ¼ Yð Þ �maxj6¼Y PH C X;Hð Þ ¼ jð Þ\0
� � ð7:101Þ

Theorem 7.1 is proved with the strong law of large numbers and the tree
structure. It indicates that it is unnecessary for RF to employ common
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anti-overfitting methods for instance, cross-validation, early stopping, etc. RF does
not overfit when more trees are added; meanwhile, it results in a limiting value of
the generalization error. This is another important feature of RF besides the two
randomized procedures mentioned above.

(3) Accuracy of RF depending on strength and correlation

In the previous section, the anti-overfitting characteristic of RF is proved. But we
concern more about its accuracy. According to the analysis built in references, an
upper bound of RF can be derived for the generalization error in terms of two
parameters that are measures of how accurate the individual classifiers are and of
the dependence between them. These also lead an in-depth view of how RF works.
Firstly, we define a margin function and raw margin function for RF.

The margin function for a RF is:

mrðX; YÞ ¼ PHðCðX;HÞ ¼ YÞ �maxj 6¼Y PHðCðX;HÞ ¼ jÞ ð7:102Þ

The raw margin function is:

rmgðH;X; YÞ ¼ IðCðX;HÞ ¼ YÞ � IðCðX;HÞ ¼ ĵðX; YÞÞ ð7:103Þ

Distinctively, mr(X, Y) is the expectation of rmg(H, X, Y) with respect to H.
And the strength of the number of individual classifiers C(X, H) is:

S ¼ EX;YmrðX; YÞ ð7:104Þ

where EX,Y is the expected value of margin function over X, Y space.
Then, we compute the variance of margin function:

varðmrÞ ¼ �qðEHsdðHÞÞ2 � �qEHvarðHÞ ð7:105Þ

Write

EHvarðHÞ�EHðEX;YrmgðH;X; YÞÞ2 � S2 � 1� S2 ð7:106Þ

where �q is the mean value of the correlation and sd(�) is the standard deviation of
rmg(H,X,Y). Considering Eqs. (7.104) and (7.105) and Chebyshev inequality,
Theorem 7.2 can be concluded.

Theorem 7.2 An upper bound for the generalization error is given by:

PE� � �qð1� S2Þ=S2 ð7:107Þ

Although the bound is likely to be loose, it fulfills the same suggestive function
for RF as VC-type bounds do for other types of classifiers. It shows that the two
ingredients involved in the generalization error for RFs are the strength of the
individual classifiers in the forest and the correlation between them in terms of the
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raw margin functions. There is a conclusion drawn from this upper bound, that is,
the smaller this ratio is, the better performance RF provided.

Example 7.16 Demonstrate the random forest algorithm for classification of arti-
ficial data.

Number of trees: 50

No. of variables tried at each split: 2
OOB estimate error rate for training data: 9.8083 %

Confusion Matrix For Training Set

1 2 3 4 5 6 err %

1 1050 2 15 0 5 0 2.522

2 1 468 1 2 3 4 2.2965

3 6 1 921 22 0 11 4.1623

4 7 4 84 237 3 80 42.8916

5 32 4 1 4 393 36 16.3830

6 1 0 29 60 17 931 10.3083

See Fig. 7.35.

7.12.3 Genetic Algorithm

RF is strengthened by a standard genetic algorithm (GA) (Goldberg 1989) in this
paper. GA is a simulation of evolution where the rule of survival of the fittest is
applied to a population of individuals, or it can be considered as a parallel search
procedure that simulates the evolutionary process by applying genetic operators.

Fig. 7.35 Variable
importance
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Comparing with other search algorithms, GA has been well known for its superior
performance. And the most powerful feature of GAs is its great simplicity. They do
not need too much code and no differentiability or continuity requirements to be
satisfied. The usual GA flowchart (Fig. 7.36) and steps are shown as follows:

Step 1: Coding. Generate an initial population (usually a random string).
Step 2: Fitness evaluation. Apply some function or formula to the individuals to

get the fitness of each individual.
Step 3: Selection. According to the fitness, individuals are selected to be the

parents of next generation.
Step 4: Crossover. It is used to create two child individuals from the parent

which pass the selection successfully via exchanging their
chromosomes.

Step 5: Mutation. It assigns a new value to a randomly chosen gene and is
controlled by a mutation probability.

Step 6: Repeat steps 3 to 5 until the evolved result satisfies the termination
criteria, or a certain fixed number of generations are achieved.

The function of GA is to evaluate the best parameters of RF. Fitness is the
criterion which indicates the capacity of each individual. In RF, the diagnosis
accuracy rate value is assigned to fitness which represents the performance of
certain parameters. After generating the initial population, fitness values are cal-
culated and assigned to individuals which include two key parameters of RF.
The GA proceeds to the next generation through three genetic operators: selection,
crossover, and mutation.

Selection is the most important part of GA. This operator impacts on the trend of
GA and makes GA’s running time shorten. It picks up the excellent parents to

Population
(Two key

parameters)

Selection
Crossover &

Mutation

Population
initialized Input features

Last generation ?

Random forest
classifier

Fitness evaluation

Parameter setting

Best
result

Fig. 7.36 Flowchart of
genetic algorithm
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reproduce the individuals within the limitation. The normalization probability for
individuals to be selected, Np, is described as follows:

NpðiÞ ¼ BsðiÞ
1� 1� BsðiÞð ÞNgðiÞ ð7:108Þ

where i is an individual and Ng is the number of generations. Bs is the probability of
selecting best individual from the current population.

The selection probability of each individual is:

PsðiÞ ¼ NðiÞ 1� BsðiÞð ÞIðiÞ ð7:109Þ

where I(i) is the sorted index of individuals according to the fitness.
The selection probability stands for the opportunity of individuals to be chosen

as parents of the next generation. The new individuals are reproduced by the
survivals from selection by crossover and mutation procedure.

7.13 Adaptive Neurofuzzy Integrated System (ANFIS)

Artificial neural networks (ANNs) have been proven as a reliable technique to
diagnose the condition of a motor and have a good learning capability. However,
ANNs are not highly interpretable and understandable, i.e., they are incapable of
explaining a particular decision to the user in a human-comprehensible form. Fuzzy
logic is another method, which has been used for fault detection and diagnosis
(Benbouzid and Nejjari 2001). It has the ability of modeling human knowledge in
the form of if-then rules by easily understandable linguistic term. It has the capa-
bility of transforming linguistic and heuristic term into numerical values for use in
complex machine computation via fuzzy rules and membership functions. The
if-then rules and the initial parameters of membership functions are prepared by an
expert. Thus, fuzzy logic requires fine-turning in order to get acceptable rule base
and optimize parameters for available data (Shukri et al. 2004). The problems arise
from fuzzy logic or ANN alone can be solved by the integration of both methods
and is proven for motor fault diagnosis (Goode and Chow 1995).

The adaptive neurofuzzy inference system (ANFIS) (Jang 1993) is a specific kind
of neurofuzzy classifier approach which integrates the ANNs’ adaptive capability
and the fuzzy logic qualitative approach. ANFIS has been successfully applied to
automated fault detection and diagnosis of induction machines (Shukri et al. 2004;
Altug et al. 1999). Recently, ANFIS and its combination with other methods were
also employed as an enhanced tool for fault classification such as ANFIS and genetic
algorithms (Lei et al. 2007), and ANFIS and wavelet transform (Lou and Loparo
2004) for bearing fault diagnosis. ANFIS has been also applied in classifying the
faults of induction motor with variable driving speed (Ye et al. 2006).
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The data obtained from measurements are normally high dimension and have a
large amount of redundant features. If it is directly inputted into classifier, the
performance will be significantly decreased. Feature extraction and feature selection
have been utilized for reducing dimension of data and selecting the important
features wherein feature extraction means transforming the existing features into a
lower dimensional space (Yang et al. 2006). Nevertheless, each feature set contains
redundant or irrelevant features as well as salient features in feature space after the
feature extraction has been done. Consequently, we need feature selection proce-
dure for selecting a few features which obviously characterize the machine con-
ditions from the whole feature set (Lei et al. 2007). In this study, decision tree is
utilized as feature selection procedure to remove irrelevant features for the purpose
of reducing the amount of data needed to achieve good learning, improving clas-
sification accuracy, attaining compact and easily understanding knowledge base,
and reducing computational time (Kumar et al. 2005).

In this study, an integrated method which combines classification and regression
tree (CART) and ANFIS is used for the fault diagnosis of induction motors. The
proposed approach includes the two following procedures. First, the CART is
performed as a feature selection tool to get the valuable features and identifies the
structure of classifier in the next step. Second, the ANFIS classifier is used to
diagnose the faults of induction motors wherein the parameters of membership
functions are tuned throughout the learning process.

7.13.1 Classification and Regression Tree (CART)

CART algorithm (Breiman et al. 1984) is similar to other seminal ones used in
decision tree induction such as ID3 and C4.5 (Quinlan 1986a, b). One of the major
distinctions is that CART induces strictly binary trees through a process of binary
recursive partitioning of feature space of a data set (Jang et al. 1996). The trees
produced by CART also consist of internal nodes (with two children) and terminal
nodes or leaf nodes (without children). Each internal node is associated with a
decision function to indicate which node to visit next, while each terminal node
shows the output of a given input vector that leads the visit to this node (Jang 1994).
The decision tree shown in Fig. 7.37 evidently classifies the input space into four
mutually exclusive rectangular regions which are assigned a labeled class. As ID3
or C4.5, CART extensively builds the tree by using the data set of already classified
instances which is called training set and then prunes the tree back based on a
minimum cost-complexity principle. The first phase is the so-called tree building,
and the other is tree pruning.

(1) Tree building

The initial state of a decision tree is the root node (the first internal node) that is
assigned all the examples of training set. If it is the case that all examples belong to
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the same class, no further decisions need to be made to partition the examples, and
the solution is completed. Conversely, if the examples at this node belong to two or
more classes, a test is made at the node that will result in a split and the training set
is then divided into two subspaces. The process is recursively repeated for each of
the new terminal nodes until a completely discriminating tree is obtained.

The test at internal nodes is determined based on a measure of impurity to
choose which feature to be selected and which threshold value to be chosen. The
best-known measure of impurity for CART is entropy impurity given by:

EðtÞ ¼ �
X#class

j¼1

pðwjjtÞ log pðwjjtÞ ð7:110Þ

where E(t) is the entropy impurity at node t and p(wj|t) is the fraction of patterns at
node t that belongs to the class wj.

The optimal splitting value s* at node t is chosen from a set of all splitting
candidates S so that the drop of impurity is maximized as follows:

DEðs�; tÞ ¼ max
s2S

DEðs; tÞ ð7:111Þ

where ΔE(s,t) is the drop of impurity given by:

DEðs; tÞ ¼ EðtÞ � pLEðtLÞ � pREðtRÞ ð7:112Þ

x > a

y > b y > c

z = f1 z = f2 z = f3 z = f4

f4

f1

f2

f3

y = c

y = b

x = a x

y

(a)

(b)

Fig. 7.37 Decision tree (Jang
1994). a Binary decision tree.
b Feature space partitioning
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where tL and tR are left and right branch nodes, E(tL) and E(tR) are the impurities of
the left and right branch nodes, and pL and pR are the fraction of patterns at node t,
respectively.

(2) Tree pruning

The tree obtained by preceding building phase is biased the training set and may
have a large number of branches which substantially increase the tree’s complexity,
while they do not yield higher accuracy if resulting from noisy data. It is therefore
necessary to prune the tree to improve the accuracy of the classifier and overcome
the familiar overfitting problem. The method for pruning in CART is based on the
principle of minimum cost complexity. Let Tmax denote a wholly expanded tree that
is grown in building phase, and the cost-complexity measure Ea(T) of subtree T �
Tmax is defined by:

EaðTÞ ¼ EðTÞ � a eT�� �� ð7:113Þ

where eT�� �� is the number of terminal nodes in T and a is a complexity parameter.
The general process for pruning tree is executed as follows:

Step 1: Beginning at the internal node t that is upward terminal node of a tree T.
Step 2: Calculating the value of a, denote by at, that makes T − Tt as the next

minimizing tree for each internal node t. The at is given by:

at ¼ EðtÞ � EðTtÞeTt

�� ��� 1
ð7:114Þ

Step 3: Finding the minimal at and choosing T − Tt as the next minimizing tree.
Step 4: Repeating the process until getting the optimum-sized tree by using an

independent testing data set or performing cross-validation.

The resulting decision tree is an easy to interpret representation of the nonlinear
input–output mapping. Furthermore, it is also easy for generating decision rules.
For instance, the decision tree shown in Fig. 7.37 is equivalent to a set of crisp rules

If x[ a and y[ b then z ¼ f1
If x[ a and y� b then z ¼ f2
If x� a and y[ c then z ¼ f3
If x� a and y� c then z ¼ f4

ð7:115Þ

Those crisp rules and thresholds are utilized to define the structure of neurofuzzy
classifier that will be briefly described in the next section. However, the disconti-
nuities at the decision boundaries are crisp and lead to large output variations for
small changes in input features when such features are closed to decision
boundaries.
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7.13.2 Adaptive Neurofuzzy Inference System (ANFIS)

(1) Architecture of ANFIS based on CART

The ANFIS architecture is an integration of fuzzy logic and neural network algo-
rithm (Jang 1994; Jang et al. 1996) so as to use learning abilities of neural networks
with human knowledge representation abilities of fuzzy systems.

In order to present the ANFIS architecture based on CART, the crisp rules (6) in
the previous section are considered. Assuming that any input vector (x, y) is given,
only one rule out of four will be fired at full strength, while the other three rules will
not be activated and the output is solely determined by the fired rule. Furthermore,
the crisp sets reduce the computation burden in constructing the tree using CART,
but it also gives undesired discontinuous boundaries as mentioned above. This
problem can be solved by using fuzzy sets that can smooth out the discontinuities at
each split. Fuzzy sets, therefore, are used to represent the premise part of the rule set
in Eq. (7.115). Equation (7.115) is converted into a set of fuzzy rules of either zero
order (when f 0i s are constant) or first order (when f 0i s are linear equations).
Assuming that a first-order Sugeno fuzzy model (Sugeno and Kang 1988) is con-
sidered, the crisp rules in Eq. (7.115) can be expressed as follows:

Rule 1 : If x[ a and y[ b then z ¼ f1 ¼ p1xþ q1yþ r1
Rule 2 : If x[ a and y� b then z ¼ f2 ¼ p2xþ q2yþ r2
Rule 3 : If x� a and y[ c then z ¼ f3 ¼ p3xþ q3yþ r3
Rule 4 : If x� a and y� c then z ¼ f4 ¼ p4xþ q4yþ r4

ð7:116Þ

where x and y are the inputs, fi are the outputs within the fuzzy region specified by
the fuzzy rule, and pi, qi, and ri are the design parameters that are determined during
the learning process.

The ANFIS architecture to implement these rules consists of five layers as shown
in Fig. 7.38. In this architecture, circles indicate fixed nodes, while squares indicate
adaptive nodes. Nodes within the same layer perform identical functions as detailed
below.

Layer 1: All the nodes are adaptive nodes. The outputs of this layer are the fuzzy
membership grade of the inputs, which are given by:

O1
i ¼ lx�dðxÞ; O1

i ¼ lx�dðyÞ ð7:117Þ

where d is the decision boundaries and lx�dðxÞ; lx�dðyÞ can adopt any fuzzy
membership function. For instance, the statement y > c can be represented as a
fuzzy set characterized by either the sigmoid membership function with one
parameter a (Jang et al. 1996):

7.13 Adaptive Neurofuzzy Integrated System (ANFIS) 229



ly[ cðy; aÞ ¼ sigðy; a; cÞ ¼ 1
1þ exp �aðy� cÞ½ � ð7:118Þ

or the extended sigmoid membership function with two parameters: a and c

ly[ cðy; a; cÞ ¼ sigðy; a; c; cÞ ¼

0 if y� c� a
1
2

y�ðc�aÞ
a

h i2c
if c� a\y� c

1� 1
2

cþa�y
a

	 
2c
if c\y� cþ a

1 if cþ a\y

8>>><
>>>:

ð7:119Þ

where a, c, and c are the modifiable parameters governing the shape of the mem-
bership functions. Parameters in this layer are referred to as premise parameters.

Layer 2: The nodes are fixed nodes labeled with P, indicating that they perform
as a simple multiplier. Each node in this layer calculates the firing strengths of each
rule via multiplying the incoming signals and sends the product out. The outputs of
this layer can be represented as follows:

O2
i ¼ wi ¼ liðxÞliðyÞ; i ¼ 1; 2; 3; 4 ð7:120Þ

Layer 3: The nodes are also fixed nodes. They are labeled with N, indicating that
they play a normalization role to the firing strengths from the previous layer. The ith
node of this layer calculates the ratio of the ith rule’s firing strength to the sum of all
rules’ firing strengths:

O3
i ¼ �wi ¼ wiP4

i¼1 wi

¼ wi

w1 þw2 þw3 þw4
ð7:121Þ
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Fig. 7.38 ANFIS architecture of first-order Sugeno fuzzy model
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Note that this layer is not needed if the constraints: (a) lx[ aðxÞþ lx� aðxÞ ¼ 1
and (b) multiplication is used as the T-norm operator to calculate each rule’s firing
strength, then the summation over each rule’s firing strength is always equal to one.

Layer 4: The nodes are adaptive nodes. The output of each node in this layer is
simply the product of the normalized firing strength and a first-order polynomial.
Thus, the outputs of this layer are given by:

O4
i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ; i ¼ 1; 2; 3; 4 ð7:122Þ

Layer 5: There is only single fixed node labeled with R. This node performs the
summation of all incoming signals. Hence, the overall output of the model is given
by:

O5
i ¼

X4
i¼1

�wifi ¼
P

i wifiP
i wi

ð7:123Þ

Thus, we have constructed an adaptive network that has exactly the same
function as a Sugeno fuzzy model.

(2) Learning algorithm of ANFIS

The task of learning algorithm for ANFIS architecture is to tune all the modifiable
parameters, namely premise parameters {a, c, c} and consequent parameters {pi, qi,
ri}, to make the ANFIS output match the training data. The least squares method
can be used to identify the optimal values of these parameters easily. When the
premise parameters are not fixed, the search space becomes larger and convergence
of the training becomes slower. A hybrid algorithm combining the least squares
method and the gradient descent method is adopted to solve the problem. The
hybrid algorithm is composed of a forward pass and a backward pass. In the
forward pass, the least squares method is used to optimize the consequent param-
eters with the fixed premise parameters. Once the optimal consequent parameters
are found, the backward pass commences immediately. In the backward pass, the
gradient descent method is used to adjust the premise parameters corresponding to
the fuzzy sets in the input domain, while the consequent parameters remain fixed.
This procedure is repeated until either the squared error is less than a specified value
or the maximum number of training epochs is encountered.

Example 7.17 Classify the iris data using ANFIS algorithm. The membership
functions before and after training are presented in Figs. 7.39 and 7.40. The result
of classification using ANFIS is presented in Fig. 7.41.

Example 7.18 Classify the riply data using ANFIS algorithm (Fig. 7.42).
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Fig. 7.39 Initial membership functions
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Fig. 7.41 Classification by ANFIS. a Result of testing. b Testing data
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7.14 Case Studies: Fault Diagnosis of Induction Motors

Several case studies are presented for giving better understanding of the classifi-
cation process. The selected methods for case studies are wavelet SVM (W-SVM),
decision tree, random forest algorithm, and CART-ANFIS. Those classifier algo-
rithms are applied to induction motor fault diagnosis using vibration and current
signals.

7.14.1 W-SVM

(1) Experiment and data acquisition

Data acquisition was conducted on induction motor of 160 kW, 440 V, 2 poles as
shown in Fig. 7.43. Six accelerometers were used to pick up vibration signal at
drive-end and non-drive-end on vertical, horizontal, and axial directions, respec-
tively. The maximum frequency of the used signals and the number of sampled data
were 60 Hz and 16,384, respectively (Table 7.5).

(2) Feature calculation

The condition of the induction motor is briefly summarized in Table 7.7. Each
condition was labeled as class from 1 to 7. There are totally 126 features calculated

Fig. 7.43 Data acquisition of induction motor
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from 6 signals, 21 features, and 98 data calculated from 7 conditions and 14
measurements.

(3) Feature extraction and reduction

Basically, feature extraction is the mapping process of data from high-dimension
into low-dimension space. This step is intended to avoid the curse dimensionality
phenomenon. Structures of three first original features, which are mean, RMS, and
shape factor, are plotted in Fig. 7.44. This figure shows the performance of original
features that are containing overlap in some conditions. Then, applying component
analysis is suggested to make original features well clustered.

Component analysis via ICA, PCA, and their kernel is then used to extract and
reduce the feature dimensionality based on the eigenvalue of covariance matrix as
described in Fig. 7.45. After performing the component analysis, the features have
been changed into independent and principal components, respectively. The first
three independent and principal components from PCA, ICA, and their kernel are
plotted in Fig. 7.46. It can be observed that the clusters for seven conditions are
separated well. It indicates that component analysis can perform feature extraction
and all at once do clustering of each condition of induction motors.

Table 7.5 Condition of induction motor

Class No. Condition Description Others

1 Bent rotor Maximum shaft deflection 1.45 mm

2 Eccentricity Static eccentricity (30 %) Air gap: 0.25 mm

3 MCDE Magnetic center moved (DE) 6 mm

4 MCNDE Magnetic center moved (NDE) 6 mm

5 Normal No faults –

6 Unbalance Unbalance mass on the rotor 10 gr

7 Weak-end shield Stiffness of the end cover –
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According to the eigenvalue of covariance matrix, the features were changed
into component analysis and reduced only 5-component analysis needed for clas-
sification process. The other features are discarded due to small eigenvalue of
covariance matrix. The selected component analysis is then used by W-SVM
classifier as input vectors for fault diagnosis using classification routine.

Fig. 7.45 Feature reduction using component analysis
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Fig. 7.46 The first three principal and independent components. a Principal components.
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(4) Training and classification

The SVM-based multi-class classification is applied to perform the classification
process using one-against-all methods. To solve the SVM problem, Vapnik (1982)
describes a method which used the projected conjugate gradient algorithm to solve
the SVM-QP problem. In this study, SVM-QP was performed to solve the classi-
fication problem of SVM. The parameters C (bound of the Lagrange multiplier) and
A (condition parameter for OP method) were 1 and 10−7, respectively.

Wavelet kernel function using Daubechies series was performed in this study.
The parameter d in wavelet kernel refers to the number of vanishing moments and is
set 4. In the training process, the data set was also trained using RBF kernel
function as comparison. The parameter c for bandwidth RBF kernel was
user-defined which is equal to 0.7.

(5) Result and discussion

The complex separation boundaries are presented in Fig. 7.47 from which the
separation of W-SVM can be shown. In these figures, the circle refers to the support
vector that states the correct recognition in W-SVM. Each condition of induction
motor is well recognized using Daubechies wavelet kernel. In the classification
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Fig. 7.47 Separation boundaries of W-SVM. a Daubechies kernel with PC data. b Daubechies
kernel with IC data. c Daubechies kernel with kernel PC data. d Daubechies kernel with kernel IC
data
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process using W-SVM, each condition of induction motors can be clustered well.
The good separation among conditions shows the performance of W-SVM doing
recognition of component analysis from vibration signal features.

The performance of classification process is summarized in Table 7.6. All data
sets come from the component analysis are accurately classified using Daubechies
wavelet kernel and SVM and reached 100 % accuracy in training and testing,
respectively. SVM using RBF kernel function with kernel width c = 0.5 is also
performed in classification for comparison with Daubechies wavelet kernel. The
results show that the performance of W-SVM is similar to SVM using RBF kernel
function, which are 100 % in accuracy of training and testing, respectively. In the
case of number support vectors, SVM with RBF kernel function needs lower than
W-SVM except kernel PCA.

7.14.2 Decision Tree

Induction motors have been widely used in industries due to its reliability and
simplicity of structure. Although induction motors have advantages as above, they
are subject to some faults. These faults may be inherent to the machine itself or due
to operation conditions. The cause of inherent faults results from the mechanical or
electrical forces acting in the machine enclosure. Many researchers have studied a
variety of machine faults, such as winding faults, unbalanced stator and rotor faults,
broken rotor bar, eccentricity, and bearing faults.

The motor faults can be divided into two types: mechanical and electrical.
Mechanical faults in the rotor are identified as eccentricity (static/dynamic) and
misalignment, while stator eccentricity and core slacking are the main types of
mechanical faults in the stator. Moreover, bearing faults, which may also cause
rotor eccentricity, are the common mechanical faults in the induction motors.
Except these faults, there are rotor rubbing, stator rubbing, etc. Winding faults such
as turn-to-turn, phase-to-phase, and winding to earth faults are the root of electrical
faults in the rotor of slip ring induction motor. The roots for electrical faults in the
squirrel cage rotor are bars crack, bars slack, and bad connection with the end rings.

When these faults happened, we can see some features from vibration or current
spectrum. For example, if induction motor has a fault in rotor bar, we can find many

Table 7.6 Results of classification

Kernel Accuracy (train/test), % Number of SVs

IC PC Kernel
IC

Kernel
PC

IC PC Kernel
IC

Kernel
PC

Wavelet
Daubechies

100/100 100/100 100/100 100/100 35 39 39 17

RBF Gaussian
(c = 0.5)

100/100 100/100 100/100 100/100 22 22 25 33
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symptoms and properties. Broken or cracked rotor bars will produce high 1X
(running speed) vibration with pole pass frequency sidebands Fp. Severity of
broken rotor bar is difficult to diagnose through the vibration spectrum. So we need
to utilize the current signal. And loose rotor bars are indicated by 2X line frequency
(2FL) sidebands surrounding the rotor bar pass frequency (RBPF) and/or its har-
monics. Besides, there are many attributes to indicate a feature of fault, such as
whirling motion, phase angle variation, and temperature.

This is considered as the most applicable and effective tool for diagnosis of
broken rotor bar. And this is needed zooming for detecting the sidebands of the
fundamental frequency. The spectrum of current signal is different according to the
load condition. This is very important method to judge the state of machine.

As mentioned before, we made a cause–result matrix which consists of the
relations between attributes and classes as shown in Table 7.7. Attributes means the
feature frequencies incurrent and vibration signal and other symptoms when the
induction motors are under operation. The relations between class and attribute are
collected from general knowledge of induction motor faults and the fault histories
of some motors. Especially, fault histories of motors have been reported primarily
about the symptom and diagnosis result when the field experts observed the state of
induction motor using the analysis techniques through the world industry.

First, we made two data. One is motor fault data, and the other is bearing data.
There are some reasons to divide data like this. The attributes of motor fault are
different from those of bearing. The size of the data becomes bigger when we
combine the two data. And it demands more cases to construct a complete decision
tree (Fig. 7.48).

We tested the training data which are constructed through the cause–result
matrix, using C7.0 program. C7.0 uses C4.5 criterion and error-based pruning
method. The purpose of this test is to find the best training set for classification rate.
Test data were mixed with many random unknown values. Table 7.8 shows the
results for applied three types of data.

Data type I is constructed with 280 instances, and each class has instances of the
same number. Type II is done with the same instances, and each class has instances
of the random number. Type III complies with the survey ratio of EPRI and IEEE.
All types of data have 280 instances and same unknown attributes in common. We
selected data type III from this result. The effect of pruning revealed is to be

Table 7.7 Example of cause–result matrix

Class 1X m_1X s_1X 1X ± fp
Broken rotor bar Initial O O

Bad O O O

Rotor shorting rings O O

Rotor bar crack O O O

Rotor rubbing O O O

Rotor bar looseness O
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improved for data type II. The others are the same according to the degree of
pruning without changing the error rate.

Figure 7.48 expresses the consultant window of system which asks users for
what they have measured about the state of induction motor. Questions for attri-
butes are seen and proceeded step by step. When the users do not know or have not
measure any attributes, they can check in unknown value term. This means that
most of the users do not have all the information about the state or symptom of

Fig. 7.48 Consultant window for diagnosis

Table 7.8 Test results of data type using C7.0

Data
type

Type I
(made with same number)

Type II
(random weighting)

Type III
(weighting for standards)

Training Test Training Test Training Test

Degree of pruning

Degree Size Error
(%)

Size Error
(%)

Size Error
(%)

Size Error
(%)

Size Error
(%)

Size Error
(%)

1 31 0 31 32.3 19 3.3 19 54.8 31 0 31 16.1

2 31 0 31 32.3 19 3.3 19 54.8 31 0 31 16.1

5 31 0 31 32.3 19 3.3 19 54.8 31 0 31 16.1

10 31 0 31 32.3 21 2.8 21 48.4 31 0 31 16.1

15 31 0 31 32.3 21 2.8 21 48.4 31 0 31 16.1

20 31 0 31 32.3 21 2.8 21 48.4 31 0 31 16.1

25 31 0 31 32.3 21 2.8 21 48.4 31 0 31 16.1

240 7 Intelligent Fault Diagnosis Methodology



induction motor. Answer “y” or “n” means that what percents users have confi-
dence for some attributes they have measured. We made an expert system with
visual basic programming using the C4.5 inducer of Quinlan. We used the input
data decided as above. Figure 7.49 stands for the decision tree of induction motor
which is made from input data. We have difficulty finding the path to arrive from
the root to special fault due to their complex constructions. So tree needs to be
automated to look for the paths.

Figure 7.50 shows the diagnosis result of decision tree after some questions
through interfacing with consultant window. This is expressed as charts which are
easy for users to find the type of faults.

Fig. 7.49 Decision tree of induction motor

Fig. 7.50 Diagnosis result of decision tree
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We can look for the consultant process in window of Fig. 7.51. Some faults can be
detected with minimum attributes and the others be done with many ones. If we
cannot observe enough to diagnose the fault type, we can look for the consultant
process in window of Fig. 7.51. Some faults can be detected with minimum attributes
and the others be done with many ones. If we cannot observe enough to diagnose the
fault type, we should check the unknown values. In general, there are some difficulties
to measure all attributes. The result of Fig. 7.48 is due to many unknown values.

Fault of induction motor results in serious economical loss when we cannot find
the symptom and anticipate them. We made the expert system which can have a
role of expert in field and is based on the inducer called decision tree. We arranged
the relations between attributes and classes and symptoms and faults as in
Table 7.8. Then, we made the cause–result matrix as described above. Input data
for expert system was selected with criterion test and data construction which can
choose the best data for classification rate. Expert system is applied to induction
motors for fault diagnosis through the consultant window, using real data for
inspection.

7.14.3 Random Forest

(1) Data acquisition and feature calculation

The experiment is designed to simulate six most universal categories of induction
motor faults which are broken rotor bar, bowed rotor, bearing outer race fault, rotor

Fig. 7.51 Description of consultant process
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unbalance, and adjustable eccentricity motor (misalignment) and phase unbalance
(Yang et al. 2006). First, four motor faults are shown in Fig. 7.52 as an example.
The platform of this experiment consists of six 0.5 kW, 60 Hz, 4-pole induction
motors, pulleys, belt, shaft, and fan. The detailed information of faults is listed in
Table 7.9.

Three AC current probes and another three accelerometers were used to measure
the stator current of three-phase power supply and vibration signals of horizontal,
vertical, and axial directions for evaluating the RF-based fault diagnosis system.

After measuring the raw data, a preprocessing is implemented on the data to
obtain the most important features for the RF-based diagnosis methodology.
Finally, there are 63 features left which are prepared for the next procedure,
induction motor fault diagnosis by RF. The description of features is shown in
Table 7.10.

Figure 7.53 marks the eight conditions of faulty motor and one normal condition
via selecting the two features from the all randomly for three times. The purpose is
to explain the relation between features and fault categories. It can be seen that
although selected features are calculated for standing difference out among diverse
fault categories, but overlap cannot be avoided, in some samples it is even serious
based on two randomly selected features.

Fig. 7.52 Faults on introduction motor

7.14 Case Studies: Fault Diagnosis of Induction Motors 243



Generally, some statistical techniques, such as principal component analysis
(PCA), kernel PCA, and linear discriminant analysis, are employed to compress the
data again by reducing the number of dimensions of data. But for RF-based system,
it is wised to do diagnosis without such techniques because of the two reasons.
First, information of data has been extracted when features are calculated. If
dimension-reducing technique is employed, it may cause overcompressing problem
of data. Second, according to Breiman’s test (Breiman 2001), RF always gives good
performance when the data scale is large. Therefore, RF is more sensitive to the
overcompressing problem. Thus, RF finished diagnostic task without any feature
extraction methods, and excellent experiment result shows that it is unnecessary at
all.

(2) Fault diagnosis result and discussion

In this section, RF was run on the induction motor fault data. Number and faulty
sorts of training and testing data are shown in Table 7.11. The experimental results
for RF-based method are given in Table 7.12. Confusion matrices for the training
data in RF are given by Tables 7.13 and 7.14 which indicate the accuracies of each
fault class for training and testing data with 907 trees and selecting 1 variable in
every split.

Table 7.9 Fault category of induction motors

Fault condition Fault description Others

Broken rotor bar Number of broken bars: 12 ea Total number of 34 bars

Bowed rotor Max. bowed shaft deflection: 0.075 mm Air gap: 0.25 mm

Faulty bearing A spalling on outer raceway #6203

Rotor unbalance Unbalance mass on the rotor 8.4 g

Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal

Phase unbalance Add resistance on one phase 8.4 %

Table 7.10 Representation of input features for RF

Time domain Frequency domain Autoregression

Mean Root-mean-squared frequency AR coefficients

RMS Frequency center (a1 * a8)

Shape factor Root variance frequency

Skewness

Kurtosis

Crest factor

Entropy error

Entropy estimation

Histogram lower

Histogram upper

244 7 Intelligent Fault Diagnosis Methodology



Figure 7.54 shows the classification rate according to the experiment which
represents three characteristics of RF very clearly. First, compared with the number
of component classification trees, the parameter, random split number at each node,
is more sensitive to the classification accuracy. Hence, a prudential searching
procedure is necessary to find the best split variable number by an experimental
way. Second, if the split variable number is decided, the sum of individual tree
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Fig. 7.53 Connection between features and fault categories. a 1st time. b 2nd time. c 3rd time

Table 7.11 Information of class and samples

Class No. Class Training samples Test samples

1 Angular misalignment 20 10

2 Bowed rotor 20 10

3 Broken rotor bar 20 10

4 Bearing outer race fault 20 10

5 Mechanical unbalance 20 10

6 Normal condition 20 10

7 Parallel misalignment 20 10

8 Phase unbalance (30°) 20 10

9 Phase unbalance (50°) 20 10

Total samples 180 90
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classifier should achieve an appropriate quantity to get a better performance. Last
one, when we increase trees to a high number, for example 5000 or 10,000, there is
no overfitting occurred, but a little undulating exists.

Table 7.14 indicates that incorrect diagnosis of RF-based methodology often
occurs at certain fault category. So we can apply some assistant diagnosis method
which is function in that specific kind of fault to improve the diagnosis precision.

Table 7.12 Fault diagnosis accuracies (%) based on RF

No. of trees Split variables

1 5 8

200 88.89 71.11 81.22

500 94.44 77.56 83.33

1200 97.56 72.23 82.34

2000 93.33 73.34 83.33

5000 92.23 72.23 78.89

10,000 92.25 74.44 77.78

Table 7.13 Accuracy of each fault class for training data with 907 trees and selecting 1 variable
every split

Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 20 0 0 0 0 0 0 0 0 100

2 0 20 0 0 0 0 0 0 0 100

3 0 0 20 0 0 0 0 0 0 100

4 0 0 0 20 0 0 0 0 0 100

5 0 0 0 0 20 0 0 0 0 100

6 0 0 0 0 0 20 0 0 0 100

7 0 0 0 0 0 0 20 0 0 100

8 0 0 0 0 0 0 0 20 0 100

9 0 0 0 0 0 0 0 0 20 100

Table 7.14 Accuracy of each fault class with 907 trees and selecting 1 variable every split

Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 10 0 0 0 0 0 0 0 0 100

2 0 10 0 0 0 0 0 0 0 100

3 0 0 10 0 0 0 0 0 0 100

4 0 0 0 10 0 0 0 0 0 100

5 0 0 0 0 9 1 0 0 0 90

6 0 0 0 0 0 10 0 0 0 100

7 0 0 0 0 0 0 10 0 0 100

8 0 0 0 0 0 0 0 10 0 100

9 0 0 0 0 0 0 0 0 10 100
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In general, the normal RF has achieved the satisfied fault diagnosis accuracy.
But it should be noticed that two parameters, the number of trees and random split
number, which greatly affect classification result are set manually. It means accu-
racy of normal RF depends on researcher’s experience. This situation exists at
almost all the applications of RF. So that applying the GA to do the parameter
optimization is exigent. The effect of this cooperation is proved by using the same
data. According to the pervious research, in order to reduce executed time of GA
program and find the optimized point synchronously, the number of trees and
random split number are limited in the range from 500 to 1500 and from 1 to 10,
respectively.

Figure 7.55 shows the trace information of every generation. Fitness adopts the
classification accuracy of the test data set. The solid line is the best fitness value,
and the other one is mean fitness value of each generation. The risen and convergent
trend of mean fitness value indicates that GA well cooperates with RF-based
methodology on the motor fault diagnosis, and the best fitness value lays out of the
optimization point which is 907 trees and 1 random split created by 9th generation.
The classification accuracy at this point achieves the 98.89, 3.33 % higher than the
best value of normal RF. It means GA can enhance the capability of RF distinctly.

Finally, we have also investigated the accuracy of other classifiers, adaptive
resonance theory Kohonen neural network (ART-KNN) (Yang et al. 2004a, b),
SVM (Widodo et al. 2007), and CART (Breiman et al. 1984). Classification
accuracies (Table 7.15) were obtained as 97.56 % for RF only and 98.89 % for RF
optimized by GA (RFOGA), while the classification accuracies were 86.67 % for
ART-KNN, 87.15 % for SVM, and 77.78 % for CART. It can be seen from the
results that RFOGA and RF only achieve higher classification rates than
ART-KNN, SVM, and CART. RF has greatly increased the capability of tree
classification method, to 97.56 % from 77.78 % for CART.

Fig. 7.54 Classification rate against random split number and tree number
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This comparative result means all we have done is significant and the farther
research is important and necessary.

The purpose of this paper is to confirm the possibilities of using random forest
algorithm (RF) in machine fault diagnosis and propose a hybrid method combined
with genetic algorithm to improve the classification accuracy. The proposed method
is based on RF, a novel ensemble classifier which builds a large amount of decision
trees to improve the single-tree classifier. Although there are several existed tech-
niques for fault diagnosis, the research on RF is meaningful and necessary because
of its fast execution speed, the characteristic of tree classifier, and high performance
in machine fault diagnosis. Evaluation of the RF-based method has been demon-
strated by a case study on induction motor fault diagnosis. Experimental results
indicate the validity and reliability of RF-based fault diagnosis method. In this
paper, the RF and optimized RF-based fault diagnosis method of rotating
machinery were investigated. The performance of two methods was proved by the
fault diagnosis test of an induction motor. The optimized approach attains a high
accuracy rate of diagnosis, 98.89 %. The comparison result also shows that the
optimized RF-based method is competitive with other classification methods. The
extended research will focus on two parts. First part is to improve this hybrid
method RFOGA: Not only GA is used for the parameter optimization, but also it
can be used to select the best combination of subclassification trees from the forest
to get the more accurate result. As the second part, we will decrease the redundancy
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Table 7.15 Overall
classification accuracy of each
classifier

Classifier Overall accuracy (%)

ART-KNN 86.67

SVM 87.15

CART 77.78

RF only 97.56

RFOGA 98.89
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of the RF and try other optimization algorithms or more effective voting principle.
The extended research will focus on decreasing the redundancy of the RF and try
other optimization algorithms or more effective voting principle.

7.14.4 CART-ANFIS

(1) Data acquisition

To validate the CART-ANFIS model, the experiment was carried out by using test
rig that consists of a motor, pulleys, belt, shaft, and fan with changeable blade pitch
angle that represents the load. The load can be changed by adjusting blade pitch
angle or the number of blades. Six induction motors of 0.5 kW, 60 Hz, 4 poles
were used to create data. One of the motors is good condition (healthy), which is
considered as a benchmark in comparison with faulty motors. The others are faulty
motors, which are rotor unbalance, broken rotor bar, phase unbalance, bearing outer
race fault, bowed rotor, and adjustable eccentricity motor, as shown in Fig. 7.52.
The conditions of faulty motors are described in Table 7.9.

For acquiring data from test rig, three AC current probes and three accelerom-
eters were used to measure the stator current of three-phase power supply and
vibration signal of horizontal, vertical, and axial directions for evaluating the fault
diagnosis system, respectively. The maximum frequency of the signal was 3 kHz,
the number of sampled data was 16,384, and the measured time was 2.133 s. The
time waveform of vibration and stator current signals is shown in Fig. 7.56. From
vibration signals, we can see that there is much difference between the waveforms
of normal, rotor unbalance, rotor bar broken, and phase unbalance, which are
approximate sine waves same with running speed; the characteristics of misalign-
ment waveforms are sinusoidal with one or two clear cycles per revolution; and
many impacts are in bowed rotor and faulty bearing waveforms. For stator current
signals, much difference cannot be found among these faults from time waveforms
since the main component is line frequency and fault signals are modulated or
riding on the sine wave of line frequency (60 Hz).

(2) Feature calculation

The measured signals after being obtained from the experiment were calculated to
get the most significant features by feature calculation. The accuracy of feature
calculation is of substantial importance since it directly affects the final diagnosis
results. In this paper, the feature calculation using statistical feature parameters from
time domain and frequency domain was used. Sixty-three features in total are
calculated from 10 feature parameters of time domain. These parameters are mean,
RMS, shape factor, skewness, kurtosis, crest factor, entropy error, entropy esti-
mation, histogram upper, and histogram lower. And three parameters are from
frequency domain (RMS frequency, frequency center, and root variance frequency)
using three-direction vibration signals and three-phase current signals. The total of
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feature parameters is shown in Table 7.16. The data sets of the features include 270
samples. For each operating condition, 20 samples are employed for training pro-
cess and 10 samples for testing. The detailed descriptions of those data sets are
shown in Table 7.17.

(3) Feature selection and classification

A decision tree grows wholly based on training data sets and then prunes the tree
back to give the final tree. Figures 7.57 and 7.58 depict the trees corresponding to
the data set of features obtained from vibration signal and current signal, respec-
tively. Obviously, a number of features are strikingly diminished and only 4 fea-
tures (x2, x5, x15, and x23) of vibration signal and 7 features (x2, x5, x6, x8, x11, x15,
and x19) of current signal are remained. The reduction of features will decrease
burden computation for ANFIS classifier in the next step. Furthermore, the structure
of ANFIS classifier can be defined based on the crisp rules and boundary values of
the decision trees.

In order to implement the fault diagnosis of induction motors by using ANFIS
classifier, the structure identification for classifier is antecedently defined. This
structure includes fuzzy rule set and membership functions. The fuzzy rule set is
also crisp rule set of decision tree that has been fuzzified. Bell-shaped membership
functions, whose initial parameters are determined based on boundary values, are
chosen for our classifiers. For instance, the topology of ANFIS architecture
designed by using MATLAB software package with fifteen fuzzy rules for vibration
signal data set is shown in Fig. 7.59, from where the number of nodes in each layer,
the number of fuzzy rules, and other meaningful information can be seen.

Fig. 7.56 Vibration and current signals of each condition
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The system parameters and the chosen membership functions are automatically
adjusted during the learning process. The convergence of the root-mean-squared
(RMS) error is utilized to evaluate the learning process. If the decreasing rate of the
RMS error and the performance are not significant, the learning process can be
terminated.

In Fig. 7.60, the RMS error decreased to 0.087 after 800 training epochs for
vibration signal data set which meant the network had learned the training data very
well. In other words, the premise parameters of the membership functions corre-
sponding to the inputs were changed for the sake of network convergence according

Table 7.16 Feature parameters

Signals Position Feature parameters

Time domain Frequency domain

Vibration Vertical Mean RMS variance frequency

Horizontal RMS Frequency center

Axial Shape factor Root variance frequency

Current Phase A Skewness

Phase B Kurtosis

Phase C Crest factor

Entropy error

Entropy estimation

Histogram lower

Histogram upper

Table 7.17 Descriptions of data sets

Label of
classification

Condition Number of training
samples

Number of testing
samples

C1 Angular
misalignment

20 10

C2 Bowed rotor 20 10

C3 Broken rotor bar 20 10

C4 Bearing outer race
fault

20 10

C5 Mechanical
unbalance

20 10

C6 Normal condition 20 10

C7 Parallel
misalignment

20 10

C8 Phase unbalance
(30°)

20 10

C9 Phase unbalance
(50°)

20 10

Total samples 180 90
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to the given training samples. The membership function of each input parameter
was divided into three regions, namely small, medium, and large.

Figure 7.61 shows the initial (before training) and final (after training) mem-
bership functions of the four input parameters, using the generalized bell-shaped
membership function. From this figure, one can see that changes of the final
membership functions of input 2 (x5) and input 3 (x15) are similar, while input 1 (x2)
and input 4 (x23) are changed.

The classification results are calculated using a tenfold cross-validation evalu-
ation where the data set to be evaluated is randomly partitioned so that 180 samples
are used for training and 90 samples are used for testing. The process is iterated

C3

X2<0.002497

X2<0.00157
X2<0.0059

X15<-0.195

X23<0.00588

C6 C5 C8 C9

X15<0.14812

C1 C7

X5<4.2128

C4 C2

X23<0.00612

Fig. 7.57 Decision tree of features obtained from vibration signals
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X8<0.0056 X2<0.032

C8 C9

Fig. 7.58 Decision tree of features obtained from current signals
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with different random partitions, and the results are averaged. The CART-ANFIS
achieved 100 % classification accuracy without misclassification out of 180 training
data for vibration and current signals. After training, the CART-ANFIS was tested
against the testing data. The confusion matrix showing the classification results of

Input
Input

membership Rule
Output

membership Output

AND operator

X2

X5

X15

X23

Fig. 7.59 Topology of ANFIS architecture for vibration signals
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the CART-ANFIS created with 800 epochs of training cycle is given in Table 7.18.
In confusion matrix, each cell contains the raw number of samples classified for the
corresponding combination of desired and actual network outputs. The total clas-
sification accuracy for the test data was found as 91.11 % with 8 misclassifications
out of 90 test samples for vibration signal, while 76.67 % with 21 misclassifications
out for current signal. For example, according to the confusion matrix for current
signals, one subject from C1 was incorrectly classified as subjects from C3, and two
subjects from C1 were classified as subjects from C8. Two subjects from C2 were
classified as subjects from C8, while one subject from C3 was classified as a subject
from C8.
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The test performance of the classifier can be determined by the computation of
statistical parameters such as sensitivity, specificity, and total classification accu-
racy defined by:

• Sensitivity: number of true-positive decisions/number of actually positive cases.
• Specificity: number of true-negative decisions/number of actually negative

cases.
• Total classification accuracy: number of correct decisions/total number of cases.

The values of statistical parameters are given in Table 7.19. The CART-ANFIS
model classified C1 to C9 subject with the accuracy of 100/70, 100/80, 70/90,
90/80, 80/70, 100/70, 90/70, 100/80, and 90/80 % for vibration and current signals,
respectively. All of the data sets were classified with the accuracy of 91.11 %/
76.67 % (total classification accuracy).

A combination of classification and regression tree (CART) algorithm and
adaptive neurofuzzy inference system (ANFIS) have been presented to perform the
fault diagnosis of induction motors. The implementation of CART-ANFIS-based

Table 7.18 The confusion matrix for CART-ANFIS of 800 epochs

Output/
desired

Confusion matrix (vibration/current signals)

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 10/7 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

C2 0/0 10/8 0/0 1/0 1/0 0/0 1/1 0/1 0/0

C3 0/1 0/0 7/9 0/1 0/1 0/2 0/0 0/0 1/2

C4 0/0 0/0 0/0 9/8 0/1 0/0 0/1 0/1 0/0

C5 0/0 0/0 0/0 0/0 8/7 0/0 0/0 0/0 0/0

C6 0/0 0/0 0/0 0/0 0/0 10/7 0/0 0/0 0/0

C7 0/0 0/0 0/0 0/0 0/0 0/1 9/7 0/0 0/0

C8 0/2 0/2 1/1 0/1 1/0 0/0 0/0 10/8 0/0

C9 0/0 0/0 2/0 0/0 0/1 0/0 0/1 0/0 9/8

Table 7.19 The value of statistical parameters

Data set
label

Statistical parameters (vibration/current signals)

Sensitivity (%) Specificity (%) Total classification accuracy (%)

C1 100/70 100/100 91.11/76.67

C2 100/80 96.5/97.5

C3 70/90 98.75/91.25

C4 90/80 100/96.25

C5 80/70 100/100

C6 100/70 100/100

C7 90/70 100/98.75

C8 100/80 97.5/92.5

C9 90/80 97.5/97.5
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classifier requires two consecutive steps. Firstly, CART is utilized to select the
relevant features in data set obtained from feature calculation part. The output of
CART is decision tree that is employed to product the crisp if-then rule set.
Secondly, the structure of ANFIS classifier is defined based on the obtained rules,
which are fuzzified in order to avoid classification surface discontinuity; a hybrid
algorithm is further used to tune the parameters’ fuzzy memberships. The classi-
fication results and statistical measures were used for evaluating the CART-ANFIS
model. The total classification accuracy was 91.11 and 76.67 % for vibration and
current signals, respectively. The results indicate that the proposed CART-ANFIS
model can be used in diagnosing induction motor faults.
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Chapter 8
Science of Prognostics

8.1 Introduction

The word prognosis comes from the Greek prognostikos (of knowledge before-
hand). It combines pro (before) and gnosis (a knowing). Hippocrates used the word
prognosis, much as we do today, to mean a foretelling of the course of a disease. In
the field of engineering systems health management, prognosis is regarded as sci-
ence and often called prognostics.

In today’s highly competitive marketplace, industries strive to minimize their
capital and operational costs by trying to utilize the full life cycle of their equip-
ments or components without sacrificing human, production, or environmental
safety. Condition-based maintenance (predictive maintenance) is most useful in
predicting equipment failure and avoiding unnecessary maintenance activities.
Prognostics is the ability to assess the current health of a part and predict in the
future the health of a part for a fixed time horizon or predict the time to failure.
Being able to perform reliable prognosis is the key to PHM/CBM. Prognostics is
critical to the subsystem or component for improving safety, planning missions,
scheduling maintenance costs, and downtime.

We often observe in practice that the life of a piece of production equipment can
be divided into two stages. The first stage is referred to as the normal working stage
where no significant deviation from the normal operating state is observed. The
second stage is called the failure delay period, since a defect may be initiated and
progressively develop into an actual failure, i.e., the equipment is in a defective
stage but still working during this stage. With the help of condition monitoring,
hidden defects already present in the equipment may be detected, but for mainte-
nance planning purposes, the prediction of the initiation point of the second stage
and, more importantly, the residual life thereafter is important (Wang 2007). This
relates to the concept of the delay time originally developed by Christer (1976) as
shown in Fig. 8.1.

© Springer Science+Business Media Singapore and Science Press, Beijing, China 2017
G. Niu, Data-Driven Technology for Engineering Systems Health Management,
DOI 10.1007/978-981-10-2032-2_8

259



We are interested in how to detect the initial point u and the length of the delay
time h. By condition monitoring, it might be easier to detect u, but difficult to assess
the severity of the defect and its impact on the residual life. In other words, we are
even more interested in assessing the residual life given the available condition
information.

A reliable prognostic system is very useful to predict the fault propagation trend
in an equipment or component and to provide an alarm before a fault reaches
critical levels. An online prognostic system can also be used to improve the reli-
ability of the equipment fault diagnosis by adaptively verifying the diagnostic
results and modifying the knowledge (rule) base (Pourahmadi 2001; Wang et al.
2001, 2007).

In recent years, in order to reduce costs and shorten repair time, condition-based
predictive maintenance has become an efficient strategy for modern industries
which necessitates advanced tools in prognostics. Prognostics is the use of pre-
dictive maintenance practices and tools to analyze the trends of equipment or
component performance against known engineering limits for the purpose of
detecting, analyzing, and correcting problems before failure occurs. More advanced
prognostics is focused on performance degradation monitoring and assessment, so
that failures can be predicted and prevented. To fulfill the goal of prognostics, three
crucial steps are needed. First, the defect or abnormality should be able to be
detected at an early stage. Second, the equipment or component performance should
be assessed robustly and tracked continuously. Finally, the remaining useful life (or
residual useful life) and possible failure mode of the system or component should
be effectively predicted. Estimating the remaining useful life is most important in
these three steps, because the remaining useful life directly serves decision variables
of prognostics.

However, challenges in effectively predicting the remaining useful life of
mechanical elements exist. One of the challenges of life prediction is figuring out
how to set up an appropriate degradation indicator based on a vibration signal.
Usually, the time features, such as average, RMS, kurtosis, or crest factor of the
vibration signals, and frequency features such as the average of the amplitudes of
the defective frequency and its harmonics over time as the degradation index was
often chosen. However, these indexes either have a low sensitivity to incipient
defect or do not fit, very well, under highly accelerated tests. In fact, even though a
large variety of features can be extracted to describe the characteristics of a
vibration signal from other aspects, previous research work has shown that each
feature is only effective for a certain defect at a certain stage. A good performance
assessment method should take advantage of mutual information from multiple

New u Failure

Normal Working Becomes Defective

Delay Time, hFig. 8.1 The delay time
concept (Christer 1976)
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features for system degradation assessment. In addition, a good degradation signal
must not only capture the physical transitions that the bearing undergoes during
different stages of its life, but must also be easy to operate in an actual situation.

Another challenge is how to establish a life prediction model of the components
to effectively estimate failure times. There are many techniques centered on life
prediction models. Some of these are based on crack initiation models and crack
propagation models, namely Paris law. Researchers have also developed physical
models for estimating remaining useful life.

In the determination of remaining useful life, one must consider the following
fundamental factors:

• Physical deterioration, which is the wear from the use of the asset during its
operating life.

• Functional obsolescence which is obsolescence due to technological factors,
inadequacy, inefficiency, and/or excessive operating costs.

Depreciation attributable to physical deterioration or functional obsolescence can
be divided into two categories: curable and incurable. Curable depreciation is
depreciation that can be reversed or cured by corrective intervention. Incurable
depreciation is depreciation due to technological advances based on external factors
that cannot be corrected or cured in a cost-effective manner. In the final analysis, if a
reasonable remaining lifetime for the current equipment or component or if the
equipment or component cannot be converted to production of alternate products,
corrective action must be taken. Remaining useful life (or the remaining possibility
of use) represents that portion of the normal useful life of an asset that is defined as
the period of time expressed in years, running from the date of appraisal to the end
of economic use of the asset. This period is conditioned on various factors such as
age, conditions of service, physical characteristics of the asset, state of repair,
technological advance, and the materials from which the asset is constructed.
Normal useful life of an asset is the period of time, expressed in years, running from
the date at which the asset is first put into use to the time when the asset is no longer
able to be economically productive for its intended use. Proper determination of that
portion of the useful life that is remaining is not a matter of simple arithmetic
calculation. One must consider the entire maintenance history of the asset, such as
major overhauls and upgrades, done over the years that can increase the remaining
useful life of the asset. Therefore, the limits of the normal useful life of an asset can
be influenced by type and timing of major maintenance that has been performed
(Kallberg and Rossi 2007).

Machine learning is a branch of artificial intelligence that employs a variety of
statistical, probabilistic, and optimization techniques that allow computers to learn
from past examples and to detect hard-to-discern patterns from large, noisy, or
complex data sets. This capability is particularly well suited to engineering appli-
cations. As a result, machine learning is frequently used in fault diagnosis and
detection. More recently, machine learning has been applied to fault prognostics
and prediction. This latter approach is particularly interesting as it is part of a
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growing trend toward personalized, predictive system. The ability to predict failures
in system before they occur would save time, money, and lives. Mechanical
components could be replaced before they caused catastrophic damage.

Most of the earlier research on the subject of damage (failure) detection and
identification was concentrated on the development of heuristic methods based on
time- or frequency-domain signal processing techniques. More recent research
focuses on heuristic methods that can utilize both time- and frequency-domain
information. In both cases, these are mainly failure detection methods, i.e., the main
emphasis is on the development of a feature vector that will indicate when the
system parameters have reached some preset failure values. The main advantage of
these methods is that they are easy to implement and sometimes work very well.
However, there is no theoretical basis to determine a priori if a given method is
going to work well for a particular system without prior experimentation or
knowledge.

Model-based methods, in contrast, overcome some of the limitations of heuristic
methods at the expense of more complex development and higher implementation
costs. They are general in the sense that if some properties of the system or damage
physics change, models can be readjusted to accommodate the change. Their main
advantage is that knowing a model structure gives the ability to tie the changes in
feature vectors to model parameter changes. However, in many cases, one does not
know the appropriate model for the system, and since most damage processes are
nonlinear, model development costs are high. This problem is addressed by the
methods that use neural networks, genetic algorithms, and other data-based mod-
eling techniques to replace physics-based models. However, in this approach, we
lose the ability to directly tie damage evolution to changes in a system’s physical
parameters. It should be mentioned that most of the model-based schemes, just like
most heuristic methods, are used primarily as damage detection methods.

Equipment or component condition prognosis means the use of available (cur-
rent and previous) observations to forecast upcoming states of it. Several temporal
patterns can be used for equipment or component condition prognosis, such as
vibration features and debris properties of the lubrication oil. The vibration-based
monitoring, however, is a well-accepted approach due to the ease of measurement
and analysis, and thus, it is used in this chapter.

Bearings are among the most precise components in mechanical assemblies and
are manufactured to very tight tolerances. They are normally found in most rota-
tional equipment. The condition and health of bearings play an important role in the
functionality and performance of these equipments. This work focuses on using
vibration analysis to monitor the condition of rolling element bearings and to
predict bearing residual life in real time. The significance of using vibration analysis
lies in the degradation process of the bearing. Bearing fatigue normally begins with
subsurface cracks initiating within the raceway material. During service, cracks
propagate and eventually reach the surface of the race dislodging a piece of metal
from the surface. This results in what is known as a spall and in many applications
is defined as the onset of failure. Rolling elements (balls or rollers) rotate over the
race causing repetitive impacts each time they pass over the spall. Consequently, a
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distinctive frequency known as the defective frequency is excited. The frequency is
a function of the number of balls, the rotational speed, geometry of the bearing, and
types of defects and their location. Thus, vibration analysis becomes the most
suitable condition monitoring technique for investigating the evolution of these
defective frequencies over time once a spall has occurred.

Several vibration-based techniques have been proposed in the literature for
time-series prediction. The classical approaches mainly use stochastic models such
as the autoregressive (AR) model (Tong and Lim 1980), the bilinear model (Rao
1981), and multivariate adaptive regression splines (Friedman 1991). However,
these stochastic models are usually difficult to implement in forecasting the
dynamic response of complex systems. Recent studies in time-series prediction
have focused on the use of flexible models, such as neural networks (NNs) and
fuzzy systems. NN predictors are built automatically by training, without the need
for the identification of model structures and parameters. NNs have two typical
connection architectures: feedforward and recurrent networks, and both have been
employed in system behavior forecasting (Husmeier 1999; Connor et al. 1994;
Atiya et al. 1999). From the modeling point of view, a feedforward network is a
special case of nonlinear AR models, whereas a recurrent network is a nonlinear AR
moving average model. From this, we can see that recurrent network predictors
have the advantages over feedforward network predictors in much the same way as
the AR moving average models have over the AR models. This conclusion was
verified by Tse and Atherton (1999) using simulation and practical tests.

Fuzzy system uses linguistic rules for system behavior forecasting. It starts from
highly formalized insights about the dynamic behavior of the system and then
formulates expert knowledge in fuzzy if-then rules in a way to mimic humans to
deal with a forecasting task (Vukovic 2001). However, fuzzy systems lack learning
capability. Sometimes, it is difficult to properly determine the fuzzy rules and to
optimize the membership functions, especially when more input variables are
applied. A solution to overcoming these disadvantages is to use the integrated
systems, e.g., using NNs to train the fuzzy structure and parameters. Jang et al.
(1997) proposed a neurofuzzy (NF) system for time-series prediction. Through
simulation, they found that the NF predictor gave higher forecasting accuracy than
both the classical AR models and the feedforward NNs.

8.2 Prognostic Approaches

There are essentially three different approaches for the development of prognostics
reasoner techniques. The first are physical models. These are models that have been
developed by experts in the component field and validated on large sets of data to
show that they are indeed accurate. The second are systems that embody rules of
thumb that have been developed and refined by human maintenance experts.
Examples of these systems are rule-based expert systems and fuzzy logic systems.
The third are statistical models that “learn” from examination of real data that
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contain nominal and known fault conditions. Examples of these are neural networks
and data mining systems.

Physical models and rule-based systems have the good feature of containing
information for anticipated fault events that have yet to occur on the component that
is being monitoring. This is in contrast to “learning” systems. Learning systems are
only as good as the data from which they have been trained.

On the other hand, “learning” systems have the good feature that they can
process a wide variety of data types and potentially have performance superior to
rule-based systems because they exploit the nuances in the data that are not covered
by general rules. This is particularly true for new sources of data for which expert
analysis, physical models, and rules have not been developed.

8.2.1 Rule-based Approach

By definition, artificial intelligence (AI) programs are intended to give the
appearance of human behavior. AI programming languages supplied tools for
programs to be built that closely resemble human logic and expertise in their
implementation. These programs are called expert systems.

Rule-based expert systems are one of the most commonly used approaches for
developing expert systems. In this approach, rules are used to represent heuristics,
or “rules of thumb,” that specify a set of actions to be performed for a given
situation. We usually think of the rule-based expert system as a list of “if” and
“then” statements. The “if” portion of a rule is a series of patterns which specify the
facts (or data) which cause the rule to be activated. The expert system tool provides
a mechanism, called the inference engine, which automatically matches facts
against expert systems that have a major advantage over all the “learning” systems
in that real data are not required in order to develop the system. However, a
knowledgeable expert is required. Also, the rules tend to follow the structure of the
rule development environment that is being used. As such, possible nonlinear and
correlated relationships may be lost.

8.2.2 Fuzzy Logic Approach

Fuzzy sets were introduced by Zadeh (1965). Fuzzy sets were first invented as a
means of generalizing conventional set theory to model the realities of everyday life
(Bezdek and Pal 1992), including applications to industrial problems (Yen et al.
1995). We have all heard the examples; the fuzzy set of operating temperatures of a
machine can be (hot, cold), while the actual measurement is a “crisp” number, i.e.,
T = 516.7°. Based on T is the machine “hot” or “cold”? Fuzzy set theory would
assign a membership to both “hot” and “cold.” Fuzzy set theory has been extended
to include fuzzy logic for prognostic reasoner applications. The critical step is the
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development of ways to aggregate fuzzy measurements to form fuzzy rules.
Standard software packages are available for the development of fuzzy systems.
The fuzzy membership functions can be developed “by hand” using the developer’s
intuition/expertise as the shape of the functions. Or the functions can be estimated
from training data. There, the developer specifies the function parametric shape
(i.e., trapezoid or Gaussian) and the parameters are estimated from the data. The
advantage of fuzzy rules over those developed with an expert system is that the
degree of membership is carried out through the computation and a “hard” decision
is only generated at the very last step.

8.2.3 Model-Based Approach

Model-based approaches utilize an explicit mathematical model for the equipment
or component being monitored (Gertler 1998). The models can be physical models
or statistical models (Box and Jenkins 1976). Physical models are useful in
accounting for all operating conditions. Component life models are included here.
As mentioned above, these may be based on the physics of the components being
monitored. However, for most applications, these are based on statistics collected
over a large set of samples and are used to define an average component.

Model-based approaches are only as good as the models developed. For very
simple systems, for example with a single input/output pair that is linearly related,
likely the model developed is good. As inputs and complexity of the real system
grow, the chances of the model being “exact” diminish. For statistical models, data
from all modes of operation and fault conditions must be collected. This is often not
possible. Physical models potentially cover these holes. However, to validate a
complicated physical model, data from all modes of operation and fault conditions
must also be collected.

Several model-based approaches are presented as follows:

(1) Physics-based model

A physics-based model is a technically comprehensive modeling approach that has
been traditionally used to understand component failure mode progression.
Physics-based models provide a means to calculate the damage to critical compo-
nents as a function of operating conditions and assess the cumulative effects in
terms of component life usage. By integrating physical and stochastic modeling
techniques, the model can be used to evaluate the distribution of remaining useful
component life as a function of uncertainties in component strength/stress proper-
ties, loading, or lubrication conditions for a particular fault. Statistical representa-
tions of historical operational profiles serve as the basis for calculating future
damage accumulation. The results from such a model can then be used for real-time
failure prognostic predictions with specified confidence bounds.
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A block diagram of this prognostic modeling approach is given in Fig. 8.2. As
illustrated at the core of this figure, the physics-based model utilizes the critical,
life-dependent uncertainties so that current health assessment and future remaining
useful life (RUL) projections can be examined with respect to a risk level.

Model-based approaches to prognostics differ from feature-based approaches in
that they can make RUL estimates in the absence of any measurable events, but
when related diagnostic information is present (such as the feature described pre-
viously), the model can often be calibrated based on this new information.
Therefore, a combination or fusion of the feature-based and model-based approa-
ches provides full prognostic ability over the entire life of the component, thus
providing the valuable information for planning which components to inspect
during specific overhaul periods. While failure modes may be unique from com-
ponent to component, this combined model-based and feature-based methodology
can remain consistent across different types of critical components or line
replaceable units (LRUs).

To perform a prognosis with a physics-based model, an operational profile
prediction must be developed using the steady-state and transient loads, tempera-
tures, or other online measurements. With this capability, probabilistic critical
component models can then be “run into the future” by creating statistical simu-
lations of future operating profiles from the statistics of past operational profiles or
expected future operating profiles.

Based on the expert’s past experience correlating operational profile statistics
and component or LRU life usage, the nonlinear nature associated with many
damage mechanisms is dependent on both the inherent characteristics of the profiles
and operational mix types. Significant component damage resulting from the large
variability in the operating environment and severity of the missions directly affects
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Fig. 8.2 Physics-based modeling approach (Vachtsevanos 2006)
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the vehicle component lifetimes. Very often, component lives driven by fatigue
failure modes are dominated by unique operational usage profiles or a few, rare,
severe, randomly occurring events, including abnormal operating conditions and
random damage occurrences. For this reason, it recommends a statistical charac-
terization of loads, speeds, and conditions for the projected future usage in the
prognostic models as shown in Fig. 8.3.

Moreover, the formulation of physical phenomena through mathematical for-
mulation can be used for prognostics of the system.

For example, crack propagation model is one of the interests from the prognosis
viewpoint. Fatigue crack growth in such typical system components as bearings,
gears, shaft, and aircraft wings is affected by variety factors, including stress state,
material properties, temperature, lubrication, and other environmental effects.
Variation of available empirical and deterministic fatigue crack propagation models
is based on Paris formula:

da
dN

¼ C0ðDKÞn ð8:1Þ

where a is the instantaneous length of dominant crack, N is the running cycles, C0,
n are material-dependent constants, and DK is the range of stress-intensity factor
over loading cycle.

Fig. 8.3 Operation profile and loading model for prognosis (Vachtsevanos 2006)

8.2 Prognostic Approaches 267



The crack propagation model was applied to determine the cycles required to
propagate the crack from the initial a inches to the critical crack length. During a
crack growth simulation, at each step of propagation, the direction and extent of
crack growth at the each point along the crack front have to be determined.

(2) System dynamic model

In many cases involving complex system, it is very difficult or impossible to derive
dynamic models based on all the physical process involved. In such case, it is
possible to assume a certain form from the dynamic model and then use observed
inputs and outputs of the system to determine the model parameters needed so that
the model indeed serves as an accurate surrogate for the system. This is known as
model identification. To introduce this method, we will begin by considering a
classic identification/prediction problem: given input-output data of dynamic sys-
tem, then how do we develop a model to predict the system’s future behavior.

The clear example of system dynamic model prediction is presented by Luo et al.
(2003). The interested readers are suggested to refer to this reference. They
developed an integrated prognostic process based on data collected from
model-based dynamic system. Prognostic model is constructed based on different
random load conditions (modes). Remaining life predictions are performed by
mixing mode-based life predictions via time-averaged mode probabilities.

(3) Probabilistic model

Probabilistic methods for prognosis are very effective in such situations. These
methods require less detailed information than model-based techniques because the
information for prognosis resides in various probability density functions (PDF),
not in dynamic differential equations. Advantages are that the required PDF can be
found from observed statistical data and that the PDF are sufficient to predict the
quantities of interest in prognosis. Moreover, these methods also generally give
confidence limits about the result, which are important in giving a feeling for the
accuracy and precision of the predictions. The probabilistic methods that can serve
prognosis are Bayesian theory (Lewis 1986) and Weibull model (Groer 2000;
Schomig and Rose 2003).

The Weibull cumulative distribution is:

FðxÞ ¼ 1� e�ðx=bÞa

where x is the data value (either time or value of an independent variable), a is the
shape (or slope) parameter, and b is the location parameter. Parameters can be
estimated with maximum-likelihood method, probability plotting, etc. Weibull
distribution has been used to provide reasonable model for lifetime of equipments
such as ball bearing, mill, and aircraft engine. However, this yields mainly a mean
residual life estimate, and thus, it is somewhat unreliable in practice. Practical,
dynamic residual life estimates based on monitored condition-related variables such
as vibration acceleration are required.
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A comprehensive description on the probabilistic techniques in prognosis as
related to predicting the remaining useful life (RUL) is given by Engel et al. (2000).
The seminal notions presented in this paper serve to clarify our thinking about
remaining useful life prediction. A key concept in this framework is the remaining
useful life failure probability density function (PDF). In this representation, a
component or LRU is recommended to be removed from service prior to attaining a
high probability of failure, set based on the criticality. This concept is depicted in
Fig. 8.4, in terms of the RUL PDF, where a just-in-time point is defined for removal
from service that corresponds to a 95 % probability that the component has not yet
failed.

A key issue, unfortunately, is that the RUL PDF is actually a conditional PDF
that changes as time advances. In fact, one must recompute the RUL PDF at each
time t based on the new information that the component has not yet filed at that
time. This concept is shown in Fig. 8.5. One starts with a priory of PDF similar to
hazard function.

Then, as time passes, one must recompute the a posteriori RUL PDF based on
the fact that the failure has not yet occurred. This involves renormalizing the PDF at
each time so that its area is equal to one. As time passes, the variance of the
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Fig. 8.4 A probability density function (PDF) for prognosis (Engel et al. 2000)
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Fig. 8.5 Updated prognostic probability density function (Engel et al. 2000)
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RUL PDF decreases; that is, the PDF becomes narrower. This corresponds to the
fact that as time passes and one approaches the failure point, one becomes more and
more certain about the time of failure and its predicted value becomes more
accurate.

8.2.4 Trend-Based Evolutionary Approach

A trend-based evolutionary prognostic approach relies on the ability to track and
trend deviations and associated rates of change of these deviations of specific
features or measurements from their normal operating condition. Figure 8.6 is an
illustration of such a technique.

Evolutionary prognostics may be implemented on systems or subsystems that
experience conditional or slow degradation-type faults such as an efficiency loss in
a turbo-machinery. Generally, trend-based prognostics works well for system-level
degradation because conditional loss is typically the result of interaction of multiple
components functioning improperly as a whole. This approach requires that suffi-
cient sensor information is available to assess the current condition of the system or
subsystem and relative level of uncertainty in this measurement. Furthermore, the
parametric conditions that signify known performance-related fault must be iden-
tifiable. While a physical or statistical model that can help classify a specific fault is
beneficial, it is not a requirement for this technical approach. An alternative to the
physical model is built-in “expert” knowledge of the fault condition and how it
manifests itself in the measured and extracted features.

Incipient faults and performance degradations in electrical and mechanical
systems exhibit detectable features that provide a means to diagnose and predict the
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Fig. 8.6 Trend-based or evolutionary approach (Romer et al. 2001)
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future progression of that fault under known operating conditions. Feature-based
prognostics can be implemented for electronic systems based on changes in a
variety of measurable quantities including temperature, current, and voltage at
various locations in the system. Features such as heat generation and power con-
sumption that correlate with known faults can be extracted from the sensed data.
Once these features are obtained, they can be tracked and trended over the com-
ponent’s life and compared with remaining useful life estimates to provide cor-
roborative evidence of a degrading or failing condition.

8.2.5 Data-Driven Model Based Approach

In many instances, one has historical fault/failure data in terms of time-domain plots
of various signals leading up to the failure, or statistical data sets. In many of these
cases, it is either difficult or impractical to determine a physics-based model for
prediction purposes. In such situations, one may use nonlinear network approxi-
mators that can be tuned using well-established formal algorithms to provide
desired outputs directly in terms of the data. Nonlinear networks include the neural
network, which is based on signal processing techniques in biological nervous
systems, and fuzzy logic systems, which are based on the linguistic and reasoning
abilities of humans. These are similar in that they provide structured nonlinear
function mappings with very desirable properties between the available data and the
desired outputs.

Hence, with an understanding of how the fault/failure signature is related to
specific measurable or inferred features from the system being monitored, a
data-driven modeling approach is a commonly utilized approach. Based on the
selected input features that correlate with the failure progression, a desired output
prediction of the time to failure is produced based on a training process in which the
network will automatically adjust its weights and thresholds based on the rela-
tionships it sees between the time to failure and the correlated feature magnitudes.
Figure 8.7 shows an example of a network after being trained by some vibration
feature data sets for predicting a gear failure. The difference between the network
output and the “ground truth” probability of failure curve is due to error that still
exists after the network parameters have optimized to minimize this error. Once
trained, the network architecture can be used to predict the same feature progres-
sions for a different test under similar operating conditions.

The techniques can be utilized to perform data-driven-based model are as
follows:

(1) Neural networks

Artificial neural networks or neural nets (NNs) are an attempt to model the brain by
the dense interconnection of a large set of simple processing elements. Details of
neural net processing and development can be found in several books
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(Heicht-Nielsen 1990; Haykin 1994). There are two easy-to-read papers that give
good introductions to the two most popular neural nets, the multilayer perceptron
(MLP), and radial basis function (RBF) neural network (Hush and Horne 1993).
Neural nets have proven useful in a variety of areas: detection, classification,
multidimensional function approximation, and predictive modeling of data. They
are ideal for developing nonlinear transformations to map input data to outputs.
Thus, they can be used for classification as well as prediction. NNs are “trained” by
presenting examples of input/output pairs of data. For most applications, the output
data have been “labeled” as to the correct class or function response. During
training, the parameters in the neural net are adjusted until the neural net classifi-
cation performance reaches an acceptable level.

Two types of NNs that are used extensively are the MLP and RBF NNs.
MLP NN has been shown to be excellent for nonlinear function approximation and
for solving classification problems. They have been shown to be Bayesian classi-
fiers. However, MLPs are not capable of performing novelty detection: An MLP
cannot detect when data for which it has not been trained are present at the inputs.
The RBF NN has also been demonstrated to be an excellent classifier and function
approximator. For the standard implementation of the RBF, all processing elements
in the middle layer apply a multidimensional Gaussian function to the input data.
The output layer is the weighted sum of the basis function outputs. The RBF can be
thought of as a nearest-neighbor classifier.

As such, it can perform novelty detection. This is important for many applica-
tions, as we would like the system to let us know when inputs do not match
anything seen before. It also has the ability to let the user know “why” the NN
performed as it did. Both the MLP and RBF NNs require real data that represent
known fault classes to be trained. As such, when first used for a prognosis problem

Fig. 8.7 Data-driven modeling approach (Romer et al. 2001)
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with limited training data, they likely will not operate very well. However, as more
data are collected and examples of fault classes of interest are examined, the NN can
be updated using the new data.

(2) Support vector regression (SVR)

Support vector machine (SVM), introduced originally by Vapnik (1995), is one of
the machine learning methods and AI techniques which have been rapidly devel-
oped and applied for classification and regression problems (Gun 1998; Muller
et al. 1997). SVM is quite satisfying from a theoretical point of view and can lead to
great potential and superior performance in practical applications. This is largely
due to the structural risk minimization (SRM) principle in SVM, which has greater
generalization ability and is superior to the empirical risk minimization
(ERM) principle as adopted in neural networks. Furthermore, SVM is adaptive to
complex system and robust in dealing with nonlinear data.

Recently, the application of SVM to time-series prediction, called support vector
regression (SVR), has shown many breakthroughs and plausible performance, such
as travel-time prediction (Wu et al. 2004), wind speed prediction (Mohandes et al.
2004), electricity load forecasting (Li et al. 2005), and water lake prediction (Khan
and Coulibaly 2006). However, paper that concerns with prediction system of
machines and mechanical equipments are much fewer. The reported paper in this
area is an applied research conducted by Yang and Zhang (2005). They used SVM
for condition trend prediction of generator machine sets. The influence of cost
functions, kernel functions, and parameters on prediction performance of SVM was
studied.

Since there is much evidence from previous research results of time-varying
application with SVR prediction, it motivates the research in using SVR for
machine prognosis system modeling. In this chapter, SVR is applied to predict time
series of failure trending data of machines. The aims are to investigate the feasibility
and to evaluate the performance and reliability of SVR in failure trending data
prediction and also to develop a reliable prognosis method for equipment or
component condition prediction.

(1) Linear support vector regression

The basic idea of support vector regression (SVR) is mapping the data x into a
high-dimensional space via nonlinear mapping and performing linear regression in
this feature space. The linear equation of SVM can be expressed in the form

f ðxiÞ ¼ hw; xiiþ b ð8:2Þ

where ;h i denotes the dot product in Rn.
Flatness in the case of Eq. (7.2) means the one seeks small w. One way to ensure

this is to minimize the Euclidean norm, i.e., ||w||2. Formally, the problem of Eq. (7.2
) can be written as convex optimization problem by requiring
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minimize 1
2 wk k2

subject to
yi � hw; xii � b� e
hw; xiiþ b� yi � e

� ð8:3Þ

The tacit assumption in Eq. (8.3) is that such a function f(x) actually exists that
approximately all pairs (xi, yi) with e precision, or in other words, the convex
optimization is feasible. However, this may not be the case, or we also may want to
allow some errors. Analogously to the soft margin in Vapnik (1995), one can
introduce slack variables ni, ni

* to cope with otherwise infeasible constraints to
optimization Eq. (8.3). Hence, we present the formulation described by Vapnik
(1995).

minimize 1
2 wk k2 þC

Pl
i¼1

ðni þ n�i Þ

subject to
yi � hw; xii � b� eþ ni
hw; xiiþ b� yi � eþ n�i
ni; n

�
i � 0

8<
:

ð8:4Þ

The constant C > 0 determines the trade-off between the flatness of f(x) and the
amount up to which deviations larger than e tolerated. The formulation above
corresponds to dealing with a so-called e-insensitive loss function |n|e described by

nj je¼
0 if nj j � e
nj j � e otherwise

�
ð8:5Þ

Figure 8.8 depicts situation graphically. Only the points outside the shaded
region contribute to the cost insofar, as the deviations are penalized in a linear
fashion. It turns out that the optimization problem in Eq. (8.4) can be solved more
easily in its dual formulation. The dual function provides the key for extending
SVM to nonlinear functions.

The calculation can be simplified by converting into the equivalent Lagrangian
dual problem, which will be

Lðw; b; aÞ ¼ 1
2

wk k2 þC
Xl
i¼1

ðni þ n�i Þ �
Xl
i¼1

aiðeþ ni � yi þhw; xiiþ bÞ

�
Xl
i¼1

a�i ðeþ n�i � yi þhw; xii � bÞ �
Xl
i¼1

ðgini þ g�i n
�
i Þ

ð8:6Þ

Then, the task is minimizing Eq. (8.4) with respect to primal variables (w, b, ni,
ni
*) that have to be vanished for optimality.
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@L
@w

¼ w�
Xl
i¼1

ða�i � aiÞxi ¼ 0 ð8:7Þ

@L
@b

¼
Xl
i¼1

ða�i � aiÞ ¼ 0 ð8:8Þ

@L

@nð�Þi

¼ C � að�Þi � gð�Þi ¼ 0 ð8:9Þ

Substituting Eqs. (8.7)–(8.9) into Eq. (8.6) yields the dual optimization problem.

minimize 1
2

Pl
i;j¼1

ðai � a�i Þðaj � a�j Þhxi; xji � e
Pl
i¼1

ðai þ a�i Þþ
Pl
i¼1

yiðai � a�i Þ
(

subject to
Pl
i¼1

ðai � a�i Þ ¼ 0

ai; a�i 2½0;C�

8<
:

ð8:10Þ

In deriving Eq. (8.10), the dual variables ηi, ηi
* have eliminated through con-

dition Eq. (8.9), as the variables did not appear in the dual objective function
anymore but only were present in the dual feasibility conditions. Equation (8.7) can
be rewritten as follows:

w ¼
Xl
i¼1

ðai � a�1Þxi ð8:11Þ

Fig. 8.8 The soft margin loss
setting for linear SVR
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And therefore, Eq. (8.12) can be expressed as follows:

f ðxÞ ¼
Xl
i¼1

ðai � a�i Þhxi; xiþ b ð8:12Þ

This is the so-called support vector expansion, i.e., can be completely described
as a linear combination of the training patterns xi. The Lagrange multipliers ai and
ai
* represent solutions to the above quadratic problem, which act as forces pushing

predictions toward target value yi. Only the nonzero values of the Lagrange mul-
tipliers in Eq. (8.10) are useful in forecasting the regression line.

For the variable b in Eq. (8.12), it can be computed by applying the Karush–
Kuhn–Tucker condition, and in this case, the interested readers can refer to Muller
et al. (1997) for detail explanation.

(2) Nonlinear support vector regression

In most real applications, linear function approximation is of limited practical use.
The solution is to map the input data in a higher dimensional feature space, in which
the training data may exhibit linearity and then to perform linear regression in this
feature space. Let xi be mapped into a feature space by a nonlinear function /ðxiÞ,
and the decision function becomes

f ðxiÞ ¼ w;/ðxiÞh iþ b ð8:13Þ

Similarly, the nonlinear regression problem can be expressed as optimization
problem given in Eq. (8.4) with modification of term w;/ðxiÞh i.

minimize 1
2 wk k2 þC

Pl
i¼1

ðni þ n�i Þ

subject to
yi � hw;/ðxiÞi � b� eþ ni
w;/ðxiÞh iþ b� yi � eþ n�i
ni; n

�
i � 0

8<
:

ð8:14Þ

Figure 8.9 shows the concept of nonlinear SVR, corresponding to Eq. (8.13)
Then, the dual form of the nonlinear SVR can be expressed as follows:

minimize 1
2

Pl
i;j¼1

ðai � a�i Þðaj � a�j Þh/ðxiÞ;/ðxjÞi � e
Pl
i¼1

ðai þ a�i Þþ
Pl
i¼1

yiðai � a�i Þ
(

subject to
Pl
i¼1

ðai � a�i Þ ¼ 0

ai; a�i 2 ½0;C�

8<
:

ð8:15Þ
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Unfortunately, the computation of /ðxiÞ;/ðxjÞ
� �

in the feature space may be too
complex to perform. Therefore, an advantage of SVM is useful to overcome this
difficulty that the nonlinear function /ðxiÞ need not be used. The computation in
input space can be performed using kernel function.

In Eq. (8.15), the dot product of /ðxiÞ;/ðxjÞ
� �

can be replaced with kernel
function K(xi, x). Kernel functions enable the dot product to be performed in
high-dimensional feature space using low-dimensional space data input without
knowing the transformation. All kernel function must satisfy the Mercer’s condition
(Cristianini et al. 2000) that corresponds to the inner product of some feature space.
In this chapter, the RBF kernel function is used for performing nonlinear regression

Kðxi; xÞ ¼ exp �c xi � xj j2
n o

ð8:16Þ

The verification performance statistic, such as the root-mean-square error
(RMSE) and correlation statistic coefficient (R), are used to examine the system.
RMSE provides a general illustration of the overall accuracy of the predictions they
show the global goodness of fit, given as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðyi � ŷiÞ2
N

s
ð8:17Þ

where N represents the total number of data points in the test set, y represents the
observed value, and ŷ represents the predicted value. The R measure, the linear
correlation between the actual and predicted values, can be calculated as follows:

Ry;ŷ ¼ Covðy; ŷÞ
ryrŷ

ð8:18Þ

Fig. 8.9 Nonlinear SVR with
Vapnik’s e-insensitive loss
function
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where R is the correlation coefficient and Cov(y, ŷ) is the covariance between
observed and predicted values, which can be calculated as follows:

Covðy; ŷÞ ¼ 1
N

XN
i¼1

ðyi � �yÞðŷi � �̂yÞ ð8:19Þ

where �y is the mean of the observed value and �̂y is the mean of the predicted value.
The standard deviation of the observed and predicted values, ry and rŷ, respec-
tively, can be calculated as follows:

ry ¼ 1
N � 1

XN
i¼1

ðyi � �yÞ2
 !1=2

ð8:20Þ

rŷ ¼ 1
N � 1

XN
i¼1

ðŷi � �̂yÞ2
 !1=2

ð8:21Þ

8.2.6 State Estimator-Based Approach

State estimation techniques such as Kalman filters or various other tracking filters
can also be implemented as a prognosis technique. The Kalman filter (Lewis 1986;
Drexel 2001) is a dynamical systems tool for estimating unknown states by com-
bining current measurements with the most recent state estimate. It can be con-
sidered as a virtual sensor in that it takes current available sensor measurements and
provides optimal estimates (or predictions) of quantities of interest that may in
themselves not be directly measurable. Knowledge of noise processes is used to
minimize the estimation error covariance, via the optimal determination of the
so-called Kalman gain.

It is typically implemented with the use of a linear system model, but can also be
extended to nonlinear systems through the use of the extended Kalman filter
algorithm that linearizes the system about an operating point. The discrete-time
system with internal state xk and sensor measurements zk may be described in terms
of the recursive difference equation

xkþ 1 ¼ Akxk þBkuk þGkwk

zk ¼ Hkxk þ vk
ð8:22Þ

where uk is a control input, wk is a process noise that captures uncertainties in the
process dynamics, such as modeling errors and unknown disturbances (e.g., wind
gusts in aircraft), and vk is a measurement noise. This is depicted in Fig. 8.10.
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In this type of application, the minimization of error between a model and
measurement can be used to predict future feature states and hence the behavior of
the modeled system. Either fixed or adaptable filter gains can be utilized (Kalman is
typically adapted, while alpha-beta-gamma is fixed) within an nth-order state
variable vector.

In a slightly different application of the Kalman filter, measured or extracted
features f can be used to develop a state vector as shown below.

x ¼ f _f €f
� �T ð8:23Þ

Then, the state transition equation can be used to update these states based on a
model. A simple Newtonian model of the relationship between the feature position,
velocity, and acceleration can be used if constant acceleration is assumed. This
simple kinematic equation can be expressed as follows:

f ðnþ 1Þ ¼ f ðnÞþ _f ðnÞtþ 1
2
€f ðnÞt2 ð8:24Þ

where f is again the feature and t is the time period between updates. There is an
assumed noise level on the measurements and model related to typical
signal-to-noise problems and unmodeled physics. The error covariance associated
with the measurement noise vectors is typically developed based on actual noise
variances, while the process noise is assumed based on the kinematic model. In the
end, the tracking filter approach is used to track and smooth the features related to
predicting a failure.
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Fig. 8.10 State estimation Kalman filter implementation approach
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8.2.7 Statistical Reliability and Usage-Based Approach

In situations where sophisticated prognostic models are not warranted due to the
lower level of criticality or low failure occurrence rates and/or there is an insuffi-
cient sensor network to assess condition, a statistical reliability or usage-based
prognostic approach may be the only alternative. This form of prognostic algorithm
is the least complex and requires the component of line replaceable unit
(LRU) failure history data and/or operational usage profile data. Typically, failure
and/or inspection data are compiled from legacy systems and a Weibull distribution
or other statistical failure distribution can be fitted to the data (Groer 2000; Schomig
2003). An example of these types of distributions is given in Fig. 8.11. Although
simplistic, a statistical reliability-based prognostic distribution can be used to drive
interval-based maintenance practices that can then be updated on regular intervals.
An example may be the maintenance scheduling for an electrical component or
airframe component that has few or no sensed parameters and is not critical enough
to warrant a physical model. In this case, the prognostics of when the component
will fail or degrade to an unacceptable condition must be based solely on the
analysis of past experience or reliability. Depending on the maintenance complexity
and criticality associated with the component, the prognostics system may be set up
for a maintenance interval (i.e., replace every 1000+/−20 engine flight hours) and
then updated as more data become available. The benefit of having a regularly
updated maintenance database as happens in autonomic logistics applications is
significant for this application.

The next logical extension to this type of reliability-based statistical model is to
correlate the failure rate data with specific operational usage profiles that are more
directly related to the way a specific vehicle is used. In this manner, statistical
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Fig. 8.11 Statistical
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damage accumulation models or usage models for specific components/LRUs can
be directly tied to the loading profiles inferred from the high-level operations data
sets, for example, fatigue cycles that are a function operating conditions such as
speed or maneuvering conditions. An example of this is shown in Fig. 8.12, where
a usage model (in this case damage accumulation model) was developed based on
the operating speed of an engine. This type of usage models is often referred to as
regime recognition in the helicopter community.

It is important to recognize that this is not another form of reliability-centered
maintenance, in which we replace components based on a conservative safe-life
operational time. It is a method to include the operational profile information and
up-to-date reliability/inspection data in an automated algorithm that will augment
existing fault detection conclusions or provide a prediction when more accurate
means are not justified. More accurate prognostic methods are described further.

8.2.8 Adaptive Prognostics

As a direct extension to the concept presented above, the idea of updating the
prognosis PDF based on additional state awareness (fault detection and diagnosis)
information that can become available over time is also desirable. The adaptive
prognostics concept entails that information available at the current time (which
may or may not be diagnostic in nature) be used to modify future predictions, hence
updating the prognosis PDF. This idea is illustrated in Fig. 8.13 (Engel et al. 2000)
and briefly described next.

Consider point d0 to be the mean initial damage condition for a prognostic
model. A prognosis of life, from time k to predetermined damage level, is found to
be represented by RUL0 or remaining useful life. Suppose that some imperfect
measurement z(k) regarding the damage state becomes available at time k = k + pΔt.
The challenge is to find optimal current damage state to reinitialize the model and/or

Fig. 8.12 Usage-based damage accumulation approach
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adjust model parameters so that a calibrated and more accurate prognosis can be
established.

Though the utilization of a new initial condition, ~dðkÞ at time k = k + pΔt as
shown in Fig. 8.13, it is apparent that the prediction mean has shifted and the
confidence bounds on the resulting RUL have less variance than the original (blue
prediction). The prediction accuracy improvement would generally mean that a
decision to take action based on failure probability will likely reduce the lost
operational availability over a run-to-failure maintenance plan.

8.2.9 Data Mining and Automated Rule Extraction

Data mining and automated rule extraction are synonymous. Data mining and rule
extraction have been in development in the financial community for a number of
years. In that field, managers are interested in processing data to target customers
for marketing. There are a variety of commercially available software packages to
perform data mining.

Those tools can be applied to the development of the prognostic reasoner as
well. In most rule extraction processing, rules are extracted from input data by brute
force examination of the data. Input data must consist of fault class-labeled samples.
Rule extraction has several advantages over neural nets:

• Comprehensibility: Something that humans can understand.
• Explanation: Let the user know “why” the system did what it did.
• Validation: The user can explore all possible set of inputs to ensure the system

operates as expected under all conditions.
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Fig. 8.13 Adaptive prognosis concept (Engel et al. 2000)
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• Discovery: Find something “new” in the features of data not known before.
• As mentioned, rule extraction is performed by brute force examination of the

input data. Typical rules are found as a binary tree.

Data mining is a powerful new method with which to develop classifiers. The
advantages are as described above. However, as with the other “trained” classifiers,
real data that are representative of all the conditions expected to be encountered
need to be collected.

8.2.10 Distributed Prognostic System Architecture

The cornerstone of an effective prognostics and health management (PHM) system
is the information/data architecture and the ability for understanding and managing
the anomaly, diagnostic, and prognostic (A/D/P) information from the LRU level
all the way up through to the subsystem- and vehicle-level reasoners. This concept
is briefly illustrated in Fig. 8.14, where faults detected and predicted at the LRU
level are assessed through the hierarchy of reasoners in order to determine the root
causes of vehicle malfunctions and contingency option for impending failures.

In general, the A/D/P technologies implemented at the lower levels (LRUs) are
used to detect and predict off-nominal conditions or damage accumulating at an
accelerated rate. In the distributed PHM architecture, this information is analyzed
through the hierarchy of reasoners to make informed decisions on the health of the

Fig. 8.14 Distributed prognostic system architecture
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vehicle subsystems/systems and how they affect total vehicle capability. This
integration across LRUs, subsystems, and systems is vital to correctly isolate the
root cause of failures and understanding the propagation of up/downstream effects
of the faults. Integration of the individual subsystem PHM results is eventually
accomplished with the vehicle-level reasoner, which will assess the intrasystem
A/D/P results in order to prioritize the recommended maintenance action(s) to
perform in order to correct the problem.

A distributed PHM architecture, such as that shown below, has many benefits
including:

• Optimal computational resource management (i.e., placing high bandwidth
processing at the lowest level and only passing up critical features);

• Supports the concept of “smart LRU/subsystem,” where the most detailed
“intelligence” about the system exists (i.e., supplier/designer responsibility);

• Provides the ability to isolate and assess the extent of multiple faults and battle
damage, hence improving survivability of the vehicle;

• Hierarchical reasoners have a “built-in” data management capability for con-
taining erroneous information and utilizing multiple data and information
sources;

• Ability to capture and localize system degradations (as opposed to only hard
failures), based on increased health awareness of the lowest level LRUs, hence
providing a more accurate vehicle availability assessment.

8.3 Applications

8.3.1 Bearing Prognostics

There has been a clear motivation to develop adequate systems monitoring and
process prediction techniques due to high cost associated with equipment downtime
in the manufacturing industry. Since rotating machinery exists in the almost every
mechanical equipment, it is important to develop reliable techniques for the pre-
diction of rotating element failure early enough to facilitate preventive maintenance.
The failure of rolling element bearing is one of the primary causes of breakdown in
rotating machinery. Bearing failure can be catastrophic in certain situations, such as
in the cases of helicopter rotors and automatic processing machines. To prevent
disastrous consequences from a bearing failure, fatigue life prediction and bearing
operating endurance limit research have been in strong demand.

Romer et al. (2001) developed the method presented in Fig. 8.15 for bearing
prognostics and health management module. Various sources of diagnostic infor-
mation can be combined in the model-based and feature-based prognostic inte-
gration algorithm for the specific bearing under investigation, utilizing probabilistic
update process.
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Knowledge of how the specific bearing is being loaded, historical failure mode
information, and inspection data feedback can also be accommodated within the
generic prognostic architecture. Moreover, in the developed system, data fusion
also can be accommodated for determining RUL of bearing. Fusion can play a role
in advanced prognostics process in terms of producing useful features, combining
features, and incorporating model-based information.

As there are many different architectures for fusion, there are also many different
algorithms themselves for performing the fusion. Most sophisticated techniques,
specially Bayesian and Dempster–Shafer combination, are briefly described.
Bayesian inference can be used to determine the probability that a diagnostic is
correct, given a piece of a priori information. Analytically, Bayes theorem is
expressed as follows:

Pðf1jOnÞ ¼ PðOnjf1Þ � Pðf1ÞPn
j¼1 PðOnjf1Þ � Pðf1Þ ð8:25Þ

where P(f|O) is the probability of fault (f) given a diagnostic output (O), P(O|f) is the
probability that a diagnostic output (O) is associated with fault (f), and P(f) is the
probability of fault (f) occurring.

In the Dempster–Shafer approach, uncertainty in the conditional probability is
considered. The Dempster–Shafer methodology hinges on the construction of a set,
called the frame of discernment, which contains every possible hypothesis. Every
hypothesis has a belief denoted by a mass probability (m). Beliefs are combined
with the following equation:

BeliefðHnÞ ¼
P

A\B¼Hn
miðAÞ � mjðBÞ

1�PA\B¼0 miðAÞ � mjðBÞ ð8:26Þ

Fig. 8.15 Prognostic architecture through data fusion (Romer et al. 2001)
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Model-based approaches to prognostics differ from feature-based approaches in
that they can make RUL estimating in the absence of any measurable events, but
when related diagnostic information is present (such as feature described previ-
ously), the model can often be calibrated based on the new information. For
model-based prognostics of bearing, there are two well-known approaches as
follows:

(1) Spall initiation model

A variety of these exist for predicting spall initiation from bearing dimensions,
loads, lubricant quality, and view empirical constants. Many modern theories are
based on the Lundberg–Palmgren (L-P) model (Lundberg and Palmgren 1947) that
was developed in 1940. Yu and Harris (Y-H) model (Yu and Harris 2001) proposed
a stress-based theory in which relatively simple equations are used to determine the
fatigue life purely from the induced stress. The fundamental equation of Y-H model
is stated as follows:

ln
1
S

� 	
/Ne

Z
V

scdV

0
@

1
A ð8:27Þ

This equation relates the survival rate (S) of the bearing to a stress-weighted
volume integral as shown below. The model utilizes a new material property for the
stress exponent (c) to represent the material fatigue strength and the conventional
Weibull slope parameter to account for dispersion in the number of cycles (N). The
fatigue initiating stress (s) may be expressed using sines multi-axial fatigue criterion
for combined alternating and mean stresses, or as a simple Hertz stress.

(2) Spall progression model

Once initiated, a spall usually grows relatively quickly, producing increased
amounts of oil debris, high vibration levels, and elevated temperatures that even-
tually lead to bearing failure. While spall progression typically occurs more quickly
than spall initiation, a study by Kotzalas and Harris (2001) showed that 3–20 % of
the useful life of a particular bearing remains after spall initiation. The study
identified two spall progression regions. Stable spall progression is characterized by
gradual spall growth and exhibits low broadband vibration amplitudes.

Kotzalas and Harris also presented a spall progression model. The model relates
the spall progression rate (dSp/dN) to the spall amplitude (Wsp) using two constants
(C and m). The spall similitude is defined in terms of the maximum stress (rmax),
average shearing stress (savg), and the spall length (Sp).

dSp
dN

¼ CðWspÞm ð8:28Þ

Wsp ¼ ðrmax þ savgÞ
ffiffiffiffiffiffiffi
pSp

p ð8:29Þ
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Spall progression data were collected during Kotzalas–Harris study using
ball/V-ring test device. The data were collected at the Pennsylvania State
University. Each of the lines shown in Fig. 8.16 represents spall progression of a
ball bearing. For one ball, indicated by multiple markers, the test was periodically
suspended to measure the spall length. Only two spall length measurements, initial
and final values, were taken for the other balls. The figure shows a large dispersion
of the spall initiation life, which is indicated by the lowest point of each line. The
figure also shows a large dispersion of the spall progression life, which can be
inferred from the slope of the lines.

8.3.2 Gear Prognostics

In the case of gear prognostics, a high fidelity stress, fatigue and crack propagation
model with fits within generic prognostics module architecture is shown in
Fig. 8.17, configured for components that fail via fatigue mechanisms.

This comprehensive approach allows for the integration of material-level mod-
els, systems-level data/information fusion algorithms, and adaptive modeling
techniques for tuning key failure mode variables at a local material/damage site.
The output failure rate prediction is developed within a probabilistic framework to
identify directly confidence bounds associated with the specific component failure

Fig. 8.16 Spall progression data (Kotzalas and Harris 2001)
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mode progression. By providing continuous updates to critical parameters used by
the probabilistic fatigue/damage models, based on observing systems-level mea-
surements, more accurate failure rate prediction is possible throughout the life of the
component.

Before performing prognostics, it is important to know the failure mode and
characterization of gear. The principal failure mode considered in this gear prog-
nostics module development was a single fatigue crack propagating from the filet
region for a single tooth. This is an important failure mode to consider because the
separation of a single tooth can lead to complete loss of power transmission under
the certain conditions. Common failure modes for gears involve the following:

• Tooth separation due to a fatigue crack initiating in the fillet region. Crack
initiation in this area is driven by high tensile bending stresses along fillet.
A surface defect may not be required for a failure to occur.

• Partial tooth separation due to fatigue crack initiating from surface damage sites
such as one or more pits, and scoring and scuffing marks.

• Excessive contact surface damage due to pitting, scoring, or scuffing that can
lead to high levels of vibration and noise.

• Propagating cracks can initiate from accidental nicks during assembly or surface
damage from oil debris.

Model-based gear prognostics can be developed through FEM model that gen-
erates the model of gear properties and behavior including material, load, and
failure model scenario.

Fig. 8.17 Gear prognostics approach (Roemer et al. 2001)
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Impact technologies generated model of gear pinion geometry and associated
load definition, which represented the pinion’s load history through a complete
engagement with the mating gear shown in Fig. 8.18. This model is developed
using ANSYS that three pinion teeth defined about the global origin of the pinion
and a load history, which encompassed one tooth having load applied from initially
being at zero to a maximum and then unloaded back to zero.

A typical failure scenario would involve formation and propagation of a crack in
the tooth fillet region. The primary stress field in this area is nominally uniaxial and
is oriented along the fillet. Therefore, the initial crack formation and propagation
would be perpendicular to the base fillet. However, computational fracture
mechanics models show that once crack grows past the field of influence of the
fillet, the crack trajectory is influenced by the rim design for the gears.

In order to simulate the proposed prognostics approach, an EDM notch was
placed at the root of one of the gear teeth to accelerate the crack initiation process.
For predicting the total fatigue life of a component without notches, strain-life data
obtained from tests on uniaxial specimen should not be directly used because they
are subject to uniform strain across the entire test cross section. For notched
component, there is a severe stress gradient within the notch region, and therefore,
special attention must be paid to this region by dividing it into subzones and
calculating fatigue life for each zone independently. This approach facilitates the
definition of crack initiation and thereby provides an unambiguous way to transition
from the crack initiation phase to the crack propagation phase and circumventing an
historical dilemma. The dilemma is that if crack initiation is defined as creation of a
defect of an arbitrary length, then the associated stress intensively range (DK) from
the Paris law can be made arbitrarily small or large. If the crack tip will be smaller
than the DKthreshold for the material (depending on the R ratio) and therefore based
on the fracture mechanics principles, the crack will not propagate. On the contrary,
if crack initiation is defined as a large crack, then the predicted cycles for crack
propagation could be rather small. Concisely, the prediction of the total fatigue life
is greatly influenced by the definition of what constitutes the crack.

Fig. 8.18 Gear using FEM model (Lewicki 2001)
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Chapter 9
Data Fusion Strategy

9.1 Introduction

With industry system becoming more and more complex, maintenance personnel
tend to utilize the multi-type sensors to collect signals from the machine being
monitored. By comparing these acquired signals with healthy signals (bench-
marking signals), the maintenance personnel are able to assess the running condi-
tion of the monitored machines. Moreover, they may also be able to identify the
special faults based on their knowledge of fault signatures. However, this is a hard
work even for experts. One reason is that the signal qualities acquired from different
types of sensors may be different. Given various types of sensors, a requirement is
to know the performance of different types of sensors in condition monitoring and
fault diagnosis. Another reason is that the signals collected from industrial envi-
ronments are often masked by random noise so do not appear to be in accordance
with the standard signatures.

In recent years, numerous intelligent systems have been employed to assist
system fault diagnosis and prognosis tasks by correctly interpreting the fault and
degradation data such as expert systems, artificial neural networks, support vector
machines, and fuzzy logic systems, and the results of these techniques are
promising. However, many researches have shown that an individual decision
system with a single data source can only acquire a limited classification or pre-
diction capability, which may be not enough for a particular application. Therefore,
the application of data fusion methodology has received a lot of interests in recent
years, and researchers have achieved considerable successes from this approach to
solve complex pattern recognition and prediction tasks.

The fusion is a relatively new term to the engineering system in health man-
agement community. A “fused” definition, which fits many examples in engi-
neering, is identified as the process of combining data and knowledge from different
sources with the aim of maximizing the useful information content, for improved
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reliability or discriminant capability, while minimizing the quantity of data ulti-
mately retained.

Most application of data fusion can be found at decision level. Decision fusion is
also called multiple classifiers fusion, combination of classifiers, multiple experts,
and hybrid method. Due to the integration of different decisions from multiple
classifiers, the technique can boost the accuracy of recognition. The multiple
classifiers fusion can be categorized into two classes: the static and the dynamic
methods. The static combination strategies are simple but only concentrate on the
output of the classifiers, such as majority voting (Ruta and Gabrys 2000), minimum
and maximum (Kuncheva 2002), and average (Taniguchi and Tresp 1997). By
comparison, the dynamic methods are more elaborate which take into account the
information from the training phase on the behavior of the classifiers which include
the Bayesian method, behavior knowledge space, and Dempster–Shafer theory (Xu
et al. 1992; Hang and Suen et al. 1993; Yang and Kim et al. 2006)

This chapter describes the data fusion strategies for condition monitoring, fault
diagnosis, and prognosis, which integrates data sources of different features or
sensors and decisions of multiple classifiers or prediction tools.

9.2 Fusion Application Areas

In the sensor and signal processing area, fusion is used to synthesize the results of
two or more sensors. In the decision and recognition area, fusion is used to deduce
the most reliable conclusion from different decisions.

For data-driven PHM/CBM, a machine is repaired or serviced only when an
intelligent monitoring system indicates that it cannot fulfill its mission require-
ments. Condition monitoring system should be processed large amount of data if
proper assessment of the machine’s health is to be ensured. The data may contain
vibration, temperature, pressure, oil analysis, and other measurements that encap-
sulate the parametric properties of the system and can aid in its condition assess-
ment. The examination of data can be tedious and sensitive to errors.

An important aspect of condition monitoring is the fidelity of information
received by the sensor units. The data acquired must be consistent and as much
noise-free as possible. After the data have been acquired at the source level, it
passes through to the preprocessing for digital conversion and proper manipulation.
The processed data are then routed according to the level of fusion sought, i.e., raw
data, feature, or decision-level fusion. The selection of fusion level must be made
depending upon the application.

Data-driven PHM/CBM has been an integral part of maintenance strategy. In
order to monitor the deteriorating state, the analysis of vibration, acoustic emission,
and wear debris was conducted. Data fusion encompasses the theory, techniques,
and tools conceived and employed for exploiting the synergy in the information
acquired from multiple sources (sensor, databases, information gathered by human,
etc). The resulting decision or action is better than the information sensed by a
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single sensor without exploiting the synergy of many sensors. Data fusion tech-
niques combine data from multiple sensors and retrieved related information from
the associated databases to achieve improved accuracies and with more specific
inferences than that could be achieved by the use of a single sensor. Moreover,
decisions from several systems can be fused and deduced to acquire the most
reliable conclusion.

Depending on the nature of the available information, various models can be
used for its representation. These models range from fully quantitative frameworks,
such as probability theory, belief function-based evidence theory, and upper and
lower probabilities, to more qualitative ones, such as possibility theory and
non-monotonic or para-consistent logics.

9.3 Data Fusion Architectures

Identifying an optimal fusion architecture and approach at each level is a vital
factor, assuring that the realized system truly enhances health monitoring capabil-
ities. A brief explanation of fusion architectures will be provided here. In terms of
different fusion phases of measured information, fusion architectures can be cate-
gorized into three levels: data level, feature level, and decision level (Hall and
Llinas 1997).

9.3.1 Data-Level Fusion

All sensor raw data from a measured object are combined directly, and a feature
vector is then extracted from the fused data. At this stage, a pattern recognition
process is performed as shown in Fig. 9.1. Methods for this feature-based identity
declaration include neural networks, template methods, and pattern recognition
methods such as cluster algorithms. Fusion of data at this level contains the most

Data Source 1 Data Source 2 Data Source n

Feature Extraction

Fusion

Recognition

Data Source 1 Data Source 2 Data Source n

Feature Extraction

Fusion

Recognition

Fig. 9.1 Data-level fusion
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information and can give good results. However, the sensors used in this level must
be commensurate. That means the measurement has to be the same or has similar
physical quantities or phenomena such as a vibration signal. As a consequence, the
data-level application is limited in the real environment where there are many
physical quantities having to be measured for synthesis analysis.

9.3.2 Feature-Level Fusion

In this level, features are extracted from each sensor according to the type of raw
data. Then, the information of these non-commensurate sensors is combined at the
phase of the feature level. All the features vectors are combined in turn into a bigger
single feature vector, which is then used in a special classification model such as
neural network or cluster algorithm for decision making as shown in Fig. 9.2. The
function of feature vector normalization should still be performed prior to linking
the feature vectors from individual sensor into a single larger feature vector in order
to scale them into a same range.

9.3.3 Decision-Level Fusion

In this structure, the processes of feature extraction and pattern recognition are
applied for single-source data obtained from each sensor. Then, the generated
decision vectors are fused using decision-level fusion techniques such as voting
strategy, Bayesian method, behavior knowledge space, and Dempster–Shafer the-
ory, as shown in Fig. 9.3.
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Fig. 9.2 Feature-level fusion
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9.4 Data Fusion Techniques at Decision Level

There is a large of techniques for performing data, feature, or decision fusion.
Because of this fact, sorting through which technique is the best can be a daunting
and involved task. In addition, there are no hard and fast rules about what fusion
techniques or architectures work best for any particular application. This section
will describe some common fusion approaches at decision level.

According to the characteristics of output information of the classifiers, decision
fusion methods can be divided into three styles (Xu et al. 1992):

• The abstract style: A classifier C only generates a single class output with an
input x;

• The rank style: A classifier C ranks all classes in a queue and chooses the top
one; and

• The measurement style: A classifier C evaluates each class using a probability
value that the x subjects to the class.

Among the styles mentioned above, the required information for a classification
increases in sequence, and the abstract style contains the least information, while
the measurement style contains the most information. Accordingly, the classifier
fusion algorithms of the measurement style can produce the best results. However,
the classifiers being able to output each class’s probability are seldom available. As
a result, the classifier fusion algorithms belonging to an abstract style are commonly
used. The methods used in abstract style mainly consist of voting, Bayesian, BKS,
and Dempster–Shafer theory.

9.4.1 Voting Method

There are various voting strategies such as first past the post, threshold, majority,
and Borda count. First past the post or winner-takes-all is a method in which a
single winner is chosen in a given constituency by having the most votes, regardless
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of whether or not he or she has a majority of votes. By comparison, threshold voting
method considers a specified threshold; the term will be selected, provided it is
equal to or greater than that threshold.

Borda count (BC) (Verma et al. 2001) is defined as a mapping from a set of
individual rankings to a combined ranking leading to the most relevant decision.
For a particular class ck, Borda count B(ck) is defined as a sum of the number of
classes ranked below class ck by each classifier. The magnitude of the BC reflects
the level of agreement that the input pattern belongs to the considered class. To a
certain degree, the BC can be treated as a generalization of the majority voting rule.
This method is based on the assumption of additive independence among the
contributing classifiers. It is easy to implement and does not require any training.
Weak point of this technique is that it treats all classifiers equally and does not take
into account the confidence values produced by various classifiers.

Totally, in various voting methods, majority voting may be the most popular
method. In this method, the class voted by most of classifiers will be regarded as the
result of fusion decision. If no class won more than half of the votes, the input is
rejected. The method is simple and easy to realize. Nevertheless, it does not con-
sider the characteristics of each classifier which are related with the performance of
classifier fusion.

As an improvement of traditional majority algorithm, weighted majority algo-
rithm (WMA) (Littlestone and Warmuth 1989) is a meta-learning algorithm used to
construct a compound algorithm from a pool of prediction algorithms, which could
be any type of learning algorithms, classifiers, or even real human experts. The
algorithm assumes that we have no prior knowledge about the accuracy of the
algorithms in the pool, but there are sufficient reasons to believe that one or more
will perform well.

Assume that the problem is a binary decision problem. To construct the com-
pound algorithm, a positive weight is given to each of the algorithms in the pool.
The compound algorithm then collects weighted votes from all the algorithms in the
pool and gives the prediction that has a higher vote. If the compound algorithm
makes a mistake, the algorithms in the pool that contributed to the wrong prediction
will be discounted by a certain ratio b where 0 < b < 1.

9.4.2 Bayesian Belief Fusion

Bayesian belief algorithm (Xu et al. 1992) offers a soft fusion strategy, which is
based on the assumption of mutual independency of classifiers and considers the
error of each classifier. For a multiple class recognition problem with classes 1
through M, the error for kth classifier can be represented by a two-dimensional
confusion matrix.
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PTk ¼
n11 n12 � � � n1M
n21 n22 � � � n2M
� � � � � � � � �
nM1 nM2 � � � nMM

2
664

3
775; k ¼ 1; . . .;Kð Þ ð9:1Þ

where the rows stand for classes c1, …, cM which consist of input sample x, and the
columns indicate the classes which consist of the input sample assigned by the
classifier ek. The element nij illustrates the input samples from class ci while
assigned to class cj by the classifier ek. On the basis of the confusion matrix, a belief
measure of recognition can be calculated for each classifier by the belief function:

Belðx 2 ci=ekðxÞÞ ¼ Pðx 2 ci=ekðxÞ ¼ jkÞ ð9:2Þ

where i, j = 1, …, M and

Pðx 2 ci=ekðxÞ ¼ jkÞ ¼ nðkÞij =
XM

i¼1
nðkÞij ð9:3Þ

Combining the belief measures of all fusion classifiers can result in the final
belief measure of the multiple classifier system and is shown as follows:

BelðiÞ ¼ Pðx 2 ciÞ
YK

k¼1
Pðx 2 ci=ekðxÞ ¼ jkÞQK
k¼1 Pðx 2 ciÞ

ð9:4Þ

For practical implementation, an approximation of Eq. (9.4) is often used as
follows:

BelðiÞ ¼ g
YK
k¼1

Pðx 2 ci=ekðxÞ ¼ jkÞ ð9:5Þ

where η is a constant and has

1
g
¼

XM
i¼1

YK
k¼1

Pðx 2 ci=ekðxÞ ¼ jkÞ ð9:6Þ

The highest combined belief measure Bel(i) is chosen as the final classification
decision. However, one of the significant limitations of Bayesian method is that it
requires mutual independencies among multiple classifiers, which does not usually
hold in real application.
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9.4.3 Behavior Knowledge Space (BKS)

When compared with the Bayesian method, this method does not emphasize
independence of the decisions made by classifiers. BKS (Hang and Suen 1993) is a
k-dimensional space where each dimension corresponds to a single classifier. Each
classifier could produce N + 1 crisp decisions, N class labels, and one rejection
decision. The intersection of the decisions of every single classifier occupies one
unit of the BKS, and each unit contains three elements: the total number of
incoming samples, the best representative class, and the number of incoming
samples of each class. The unit, which is the intersection of the classifiers’ decisions
of the current input, is called the focal point. For an unknown test sample, the
decision of the individual classifiers indexes a unit of BKS and the unknown sample
is assigned to the class with the most training samples in the BKS unit. In the BKS
method, large numbers of training data are required to build the BKS so that the
lack of enough training data often is a problem.

Constantinidis et al. (2000) suggested an improved BKS method called aug-
mented behavior knowledge space (ABKS), which is an extended and enhanced
implementation of the established BKS technique. ABKS contains two rules:

Rule 1: The ABKS classification rule using information for the best representative
class:

EðxÞ ¼ Reð1Þ; ...; eðKÞ when Teð1Þ; ...; eðKÞ [ 0 ð9:7Þ

and

neð1Þ;...;eðKÞðReð1Þ;...;eðKÞÞ
Teð1Þ;...;eðKÞ

� k ð9:8Þ

where k is the accuracy level threshold.
If the focal unit addressed by the unknown sample has been initialized during the

ABKS training process and the ratio of the total number of samples belonging to the
best representative class divided by the total number of samples that have entered
the focal unit is greater than the desired accuracy level k, then the sample is
classified according the most frequent class ðReð1Þ; ...; eðKÞÞ. Therefore, different
performance profiles are generated according to the desired accuracy threshold level
k ð0� k� 1Þ.
Rule 2: The ABKS classification rule using the individual expert confidence levels:

EðxÞ ¼ CCeð1Þ; ...; eðKÞ when Teð1Þ; ...; eðKÞ ¼ 0 ð9:9Þ

If the focal unit addressed by the unknown sample has not been initialized during
the ABKS training process, the sample is classified according to the decision of the
classifier that demonstrates the highest level of confidence.
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Figure 9.4 illustrates the overall decision model. Firstly, the ABKS space is
initialized with the training data set. Then, in the sample classification stage, all the
unknown samples are processed. If the experts point to a focal unit that has been
initialized during the training phase of the ABKS, then the sample is classified
according to the Rule 1. Otherwise, if the focal unit was not initialized, the
unknown sample is classified according to the Rule 2.

9.4.4 Dempster–Shafer Theory

Evidence theory is initially based on Dempster’s work (Dempster 1967) concerning
lower and upper probability distribution. From these mathematical foundations,
Shafer (1976) has shown the ability of the belief functions to model uncertain
knowledge. The basic concepts and mechanisms of the Dempster–Shafer theory are
introduced in this section. For detailed tutorials on the subject, the reader can refer
to Basir and Yuan (2007), Smets and Kennes (1994), Yager (2001), and references
cited therein.

Let X be a finite non-empty set of mutually N exhaustive and exclusive
hypotheses about some problem domain. Evidence theory first assumes the defi-
nition of a set of hypotheses X = {A1, A2, …, AN} called the frame of discernment.
Let us denote 2X, the power set composed with the 2N proposition A of X:

2X ¼ f/; A1f g; A2f g; . . .; ANf g; fA1 [ A2g; fA1 [A3g; . . .;Xg ð9:10Þ

A key point of evidence theory is the basic belief assignment (BBA). The mass
of belief in an element of X is quite similar to a probability distribution, but differs
by the fact that the unit mass is distributed among the elements of 2X, that is to say
not only on the singletons An in X but also on composite hypotheses too. The belief

Initialize ABKS space

Processing unknown sample

Is the focal unit
Initialized ?

Use classifiers’ confidence
levels to make a decision 
“Rule 2”

Use the best representative
class information to make 
a decision “Rule 1”

Final decision

No Yes

Initialize ABKS space

Processing unknown sample

Is the focal unit
Initialized ?

Use classifiers’ confidence
levels to make a decision 
“Rule 2”

Use the best representative
class information to make 
a decision “Rule 1”

Final decision

No Yes

Fig. 9.4 Schematic of ABKS decision procedure
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mj assigned to an information source Sj is thus defined by mj: 2
X ! [0, 1]. This

function verifies the following properties:

mjð/Þ ¼ 0;
X
A�X

mjðAÞ ¼ 1 ð9:11Þ

The mass mj (A) represents how strongly the evidence supports A which, in the
case of a disjunction of hypotheses, has not been assigned to a subset of A because
of insufficient information. This mass can be reassigned more precisely to the
subsets of A if additional information is available. Each subset A � X such as
mj(A) > 0 is called the focal element of m. The belief function Belj(A) and the
plausibility function Plj(A) are defined, respectively, for all A � X as

BeljðAÞ ¼
X
B�A

mjðBÞ; PljðAÞ ¼ 1� BeljðAÞ ¼
X

B\A6¼/

mjðBÞ ð9:12Þ

where �A is the negation of a hypothesis A.
Belj(A) represents the minimal (necessary) support for A and can be interpreted

as a global measure of one’s belief that hypothesis A is true. Belief of A is the sum
of all the belief masses allocated to hypothesis B. Plj (A) provides a maximal
(potential) support for A and is the sum of the parts of belief that are allocated to
hypothesis B and are compatible with A.

From the basic belief assignment denoted by mj obtained for each information
sources Sj, it is possible to use a combination rule in order to provide combined
masses synthesizing the knowledge of the different sources. These belief masses
can then be used by a decision process with the benefit of the whole knowledge
contained in the belief functions given by each source. Evidence can be combined
by calculating the orthogonal sum using Dempster’s rule of combination where
evidence A and evidence B are used for calculating a new belief function for a focal
element C as follows:

mðCÞ ¼ m1 � m2ðCÞ ¼ ð1� KÞ�1 �
X

A\B¼C

m1ðAÞm2ðBÞ ð9:13Þ

where

K ¼
X

A\B¼/

m1ðAÞm2ðBÞ

The combination rule states that representing the combination of m1 and m2

apportions the total amount of belief among the subsets of X by assigning m1(A)
m2(B) to the set resulting from interaction of sets A and B. K is often interpreted as a
measure of conflict between the two sources and is a normalization factor. The
larger the K is, the more the sources are conflicting and the less sense their
combination.
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A belief function has to be transformed into a probability function for decision
making. The only transformation satisfying elementary rationality requirements was
shown by Smets and Kennes (1994) to be the pignistic transformation, in which
each mass of belief m(A) is distributed equally among the elements of A for all
A � X. This leads to the pignistic probability distribution of class x defined as
(Denoeux 2000)

BetPðxÞ ¼
X
x2A

mðAÞ
jAj ; 8x 2 X ð9:14Þ

where |A| denotes the cardinality of A � X.
Dempster–Shafer theory is considered uncertainty using belief function and has

some characteristics as follows:

• Evidential reasoning method which is an extension of Bayesian inference that
overcomes some of the drawbacks;

• Can be used without prior probability distributions;
• Ability to deal with ignorance and missing information;
• Can deal with any union of classes (in the classification problem);
• Frame of discernment (hypothesis space) X contains every single hypothesis

considered and the null set; and
• Dempster–Shafer reasoning considers every element of the power set 2X and

results complex and computation time necessary.

9.4.5 Multi-Agent Fusion

Multi-agent fusion algorithm (Kou and Zhang 2003) is an extension of Bayesian
belief theory. This method absorbs the properties of multi-agent system into the
algorithm of classifiers fusion. It integrates Bayesian belief at the starting phase and
majority voting at the final phase. A codecision matrix is set up for information
exchange between the classifier agents, so that Bayesian belief matrix can be
modified dynamically until a predetermined criterion is satisfied. Finally, a com-
bination decision is made. The flowchart of multi-agent fusion algorithm is shown
in Fig. 9.5.

Confusion matrix is firstly created as a training parameter, which accumulates
the errors of each classifier. Then, an initial belief matrix can be calculated easily
for each test sample based on the training parameter. In the initial belief matrix, the
rows indicate kth classifier, where k = 1, …, K, and columns stand for class c1, …,
cM. The elements in kth row show the probabilities of an input sample x belonging
to different classes estimated by kth classifier using Eq. (9.15). The processes to
calculate the confusion matrix and initial belief matrix are based on the Bayesian
belief method.
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After calculating the two matrixes, a five-dimensional codecision matrix is
required as the last training parameter. Each cell in the codecision matrix stands for
decision correlation between two classifiers, which is calculated through Eq. (9.15)
where E = i is the expectation of input sample x, that is, the real class of x ranges
from c1 to cM, j1, and j2, respectively, and stands for the decision of classifiers k1 and
k2 where k1 6¼ k2. U2 is the training sample set of the fusion model. Each element in
the matrix shows the probability of classifier k1 classifying x as j1 class and clas-
sifier k2 assigning x as j2 class.

dj1;j2;i;k1;k2 ¼P E ¼ i ek1 ¼ j1; ek2 ¼ j2jð Þ

¼ x EðxÞ ¼ i; ek1ðxÞ ¼ j1; ek2ðxÞ ¼ j2; 8x 2 U2jf gj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x EðxÞ ¼ i;j ek1ðxÞ ¼ j1; 8x 2 U2f gj jp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x EðxÞ ¼ i; ek2ðxÞ ¼ j2; 8x 2 U2jf gj jp
ð9:15Þ

After obtaining the necessary statistical parameters, the confusion matrix and
codecision matrix, the initial vote rates for input sample x can be calculated. The
column class corresponding to the maximum of kth row of belief matrix is regarded
as kth classifier’s decision. By doing this, the belief matrix can be transformed into
a decision label vector. Then, the voting strategy can be employed. The original
vote rate of each class is calculated for input x.

Next, an accordance criterion is set to compare with the maximum vote rate.
Higher accordance criterion is set to allow for less different decisions. If the
maximum vote rate is less than the threshold, a repeating modification scheme is
fired and the original belief degrees have to be modified dynamically. The exchange
of information of the two classifiers based on the codecision matrix is added to the
vote rates using the following equation:
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Fig. 9.5 Flowchart of
multi-agent fusion algorithm
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bki ¼ bki þ 1
K

XK
kn¼1;kn 6¼k

dj;jn;i;k;kn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bki � bkn;i

p ð9:16Þ

where the original belief matrix b is acquired by the confusion matrix, K is the
number of total fusion classifiers, bki represents the belief probability of classifier
k to class i and dj;jn;i;k;kn which is the exchange of information between kth classifier
and knth classifier.

After the modified belief degree, a normalization process is required to bring the
summation of each row probabilities of new belief matrix equals to one. Then, the
new belief matrix b can be transformed into a decision vector, so the new vote rates
can be acquired. If the maximum vote rate is still less than the predetermined
criterion, the repeating modification process will continue until the maximum vote
rate reaches the threshold. Finally, an improved majority voting method is utilized
for the output of fusion decision, which only chooses the class gaining the most
votes as the fusion decision and needs not beyond half of votes as original voting
strategy.

9.4.6 Decision Templates (DTs)

Decision templates (Kuncheva et al. 2001) are a robust classifier fusion scheme that
combines classifier outputs by comparing them to a characteristic template for each
class.

Let Z ¼ z1; . . .; zNf g; zj 2 Rn be the crisply labeled training data set.

Definition 1 Let D1ðxÞ; . . .;DLðxÞf g be the set of L classifiers, which denote the
output of the ith classifier as DiðxÞ ¼ ½di;1ðxÞ; . . .; di;cðxÞ	T , where di;jðxÞ is the
degree of support given by classifier Di to the hypothesis that x comes from class j.

We construct D̂, the fused output of the L first-level classifiers as
D̂ðxÞ ¼ uðD1ðxÞ; . . .;DLðxÞÞ, where u is called aggregation rule. The classifier
outputs can be organized in a decision profile (DP) as shown in Fig. 9.6.

Fig. 9.6 Organization of
classifier outputs
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Definition 2 The decision template DTiðZÞ of class i is the L� c matrix DTiðZÞ ¼
½dtiðk; sÞðZÞ	 whose ðk; sÞ the element is computed by

dtiðk; sÞðZÞ ¼
PN

j¼1 Indðzj; iÞdk;sðzjÞPN
j¼1 Indðzj; iÞ

; k ¼ 1; . . .; L; s ¼ 1; . . .; c; ð9:17Þ

where Indðzj; iÞ is an indicator function ith value 1 if zj has crisp label i, and 0,
otherwise.

To simplify the notation DTiðZÞ will be denoted by DTi. Figure 9.7 illustrates
how the DT scheme operates. The decision templates are calculated in advance
using Z in Eq. (9.17). The decision template DTi for class i is the average of the
decision profiles of the elements of the training set Z labeled in class i.When x 2 Rn

is submitted for classification, the DT scheme matches DPðxÞ to DTi, i ¼ 1; . . .; c,
and produces the soft class labels.

liDðxÞ ¼ uðDTi;DPðxÞÞ; i ¼ 1; . . .; c; ð9:18Þ

where u is interpreted as a similarity measure.
The higher the similarity between the decision profile of the current x(DP(x)) and

the decision template for class iðDTiÞ, the higher the support for that class ðlibDðxÞÞ.
A method to determine similarity is based on Euclidean distance between matrices
DP and DTi,
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Fig. 9.7 Architecture of the decision templates classifier fusion scheme
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NðDP;DTiÞ ¼ libDðxÞ ¼ 1� 1
Lc

XL
k¼1

Xc

s¼1

ðdtiðk; sÞ � dk;sðxÞÞ2 ð9:19Þ

The label with maxim similarity is assigned to the test sample.

9.5 Data Fusion for Condition Monitoring

As far as real-time condition monitoring is concerned, timely indicating potential
failures relies on reliable degradation indicator and appropriate alarm setting.
Failures can often be attributed to many correlated degradation processes, which
could be reflected by multiple degradation indicators extracted from sensor signals
(Lee et al. 2006). These features are the major source of information regarding the
health of the component under monitoring; however, the failure boundary is hard to
define using these features. In reality, the same feature vector could be attributed to
totally different combinations of the underlying degradation processes and their
severity levels. In other words, the failure boundary is gray by monitoring the
degradation features. Each degradation indicator has its own merits and short-
comings and is only effective for certain failure at certain stage (Boutros and Ling
2007). Another important aspect is the difficulty in threshold setting when different
indices are used, each with its own threshold setting scheme.

Therefore, fusing multiple indicators can provide a simple and reliable solution
to degradation monitoring. Also, alarm setting determines a division between
normal and degradation operating condition of system, which is important, so that a
slight change in a threshold can mean a drastic change in false alarms, missed
detections, and prognosis prediction time horizons.

9.5.1 A Proposed Fusion System for Condition Monitoring

In this section, an intelligent condition monitoring system is introduced based on
the data fusion strategy. The flowchart of the proposed system is shown in Fig. 9.8.
The proposed system is based on the OSA-CBM architecture and focused on the
condition monitoring module and prognosis module. Data fusion strategy is
emphasized and employed in the whole system to enhance the reliability and
universality of the system health assessment. This section will focuses on the
description of fusion condition monitoring, and the introduction of fusion prog-
nostics will be addressed in Sect. 9.7. The procedures of the system can be sum-
marized as follows.

Condition monitoring determines where a system or component is on the indi-
cation curve. Is it “nominal”? Does some “anomaly” condition exist? Or, is it
somewhere between those two extremes? Determining where we are on the health
curve is the first step in prognosis.
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In this module, at first, signals of multi-sensors attached on the operating
machine are collected and features embossing the operating state are extracted.
Then, those calculated features are normalized and grouped as input set for a
feature-level fusion algorithm. The enormous mutual information reflecting
equipment health is expected to generate a robust health degradation indicator for
machine monitoring, diagnosis, and prognosis. Self-organizing map (SOM) neural
network is chosen as a feature-level fusion algorithm. The fused output, minimum
quantization error (MQE), has the merits of unsupervised learning, short training
time, easy operation, and consistent tracking performance.

Next, the process of denoising is considered for filtering process noise of features
extraction and fusion. The methods of smoothing and wavelet decomposition are
suggested. Smoothing is an easy but efficient way, which can capture important
patterns in the data, while leaving out noise. Furthermore, wavelet decomposition is
performed to delete the detail noise and increasing smoothness. After the denoised
process, a clear tracking trend of operating state is picked out. Next, an automatic
alarm setting strategy is suggested based on the largest time constant of machine
and statistical properties of the candidate baseline, which can be employed to solve
the problem of non-RMS indicator alarm setting. Finally, condition monitoring can
be carried out and a comparison is exerted continuously between the alarm
threshold and each coming MQE value. If the monitored indicator reaches to the
threshold, a data-driven prognosis module would be triggered.

Data acquisition 
(Vibration signal)

No YesTrigger ?

On-line condition 
monitoring module

Data-driven
prognosis module

Feature extraction 
(RMS, envelope)

Features normalization

Feature-level fusion 
(SOM neural network)

De-noising
(Smoothing, Wavelet)

Automatic alarm setting 
(Alarm set, trip set)
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(MQE curve)
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(RUL, confidence interval)

Prediction fusion 
(Linear-weight fusion)

Degradation prediction 
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Time-series reconstruction 
(FNN, C-C)

Fig. 9.8 The flowchart of proposed system
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9.5.2 Degradation Indicator Using SOM Neural Network
Fusion

9.5.2.1 Theoretical Background of SOM

The SOM is a neural network concept developed by Kohonen in 2001. It forms a
one- or two-dimensional presentation from multi-dimensional data. The topology of
the data is kept in the presentation such that data vectors, which closely resemble
one another, are located next to each other on the map. In contrast to traditional
methods, such as principal component analysis, the SOM can also be created from
highly deviating, nonlinear data (Jounela et al. 2003).

The map units of SOM, or neurons, form usually a two-dimensional regular
lattice. Each neuron i of the SOM is represented by a n-dimensional weight, or
model vector, mi ¼ mi1;mi2; . . .;mim½ 	T (n is the dimension of the input vector). The
neurons of the map are connected to adjacent neurons by a neighborhood relation,
which indicates the topology, or the structure, of the map. Usually, rectangular or
hexagonal topology is used.

After the input data are normalized, the SOM is trained iteratively. In each
training step, one sample vector X from the input data set is chosen randomly, and
the distance between it and all the weight vectors of the SOM, which is originally
initialized randomly, is calculated using some distance measure, such as Euclidian
distance. The Best Matching Unit (MBU) is the map unit whose weight vector is
closest to X. After the BMU is identified, the weight vectors of the BMU as well as
its topological neighbors are updated so that they are moved closer to the input
vector in the input space. The vectors are updated following the learning rule:
miðtþ 1Þ ¼ miðtÞþ aðtÞ � hðnBMU ; ni; tÞðX � miðtÞÞ where hðnBMU ; ni; tÞ is the
neighborhood function, which is monotonically deceasing with respect to the dis-
tance between the BMU nBMU and ni in the grid, and the training time; aðtÞ is the
learning rate, a decreasing function with 0\aðtÞ\1.

At the end of the learning process, the weight vectors are grouped in clusters
depending on their distance in the input space. The SOM can be interpreted by
labeling the units according to input vectors, whose type or operation state is
known. Unlike networks based on supervised learning which require that target
values corresponding to input vectors are known, the SOM can be used for clus-
tering data without knowing the class membership of the input data. It can be used
to detect feature inherent to the problem. Therefore, the SOM is an effective tool for
condition monitoring and system degradation detection.

9.5.2.2 SOM Degradation Detection and Fusion

If data from multiple operation regions as well as faulty operation states are
available, the trained SOM can be treated as a state space, where different clusters
represent different operation states. The condition of the machine can be described
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by its matching region in SOM. And the operation state changes can be described
by the trajectory of its BMUs in SOM. In normal operation, the BMUs should
follow well-defined paths or trajectories in normal regions. When an incipient fault
appears, its BMU would deviate from the normal region. The deviation will depend
on the type and severity of the abnormality. By plotting the trajectory of current
data on a labeled map, the machine condition can be followed over time.
Furthermore, if a probability of the next BMUs is available, a prediction of the next
possible machine state can be assessed.

Given the fact that most of the time, it is hard to acquire a data set representative
of the whole failure space, whereas the normal operation space can be characterized
very accurately, fault detection can be based on the quantization error away from
the normal feature space. At first, the SOM is trained with normal operation data,
which reduces, even avoids, the influence of the local minima problem. Then, the
feature vector corresponding to the unidentified measurement is compared with the
weight vectors of all map units, and if the smallest difference exceeds a predeter-
mined threshold, the process is probably in a fault situation. This conclusion is
based on the assumption that a large quantization error corresponding to the
operation point belonging to the space not covered by the training data. Therefore,
the situation is new and something is possibly going abnormal. Depending on how
far away the current process is deviating from the normal operation state, a
quantitative degradation index can be calculated (Qiu et al. 2003).

Practically, the quantitative degradation assessment can be determined by the
calculation of minimum quantization error (MQE) of the mew measurement data to
an SOM trained using normal operation data sets. From a degradation monitoring
point of view, the distance between the BMU and the input data actually indicates
how far the input data deviate from the region of normal operation. Thus, the MQE
can be defined as follows:

MQE ¼ D� mBMUk k ð9:20Þ

where D is the input data vector and mBMU stands for the weight vector of the
BMU. An extremely high MQE value may occur for two reasons: Either the testing
feature vector is an outlier or it belongs to a fault class (Kang 2003). Therefore, the
condition degradation can be quantized and visualized by following the trends of
MQE.

The advantages of MQE index are summarized by Huang et al. (2007) as
follows:

• It takes advantage of mutual information from multiple features for the system
and uses it for degradation assessment;

• Its learning process is unsupervised;
• Training the SOM does not require very much time, and the MQE index is easy

to operate in an actual situation; and
• The MQE index is more consistent than any other.
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Usually, it would be very difficult to establish a deterministic model that can
accurately describe the variable process of defect propagation. Therefore, a practical
approach to describe the component degradation should base on the combination of
trend analysis and robust performance assessment that derives from the under-
standing of the historical behaviors and in-process condition symptoms.

9.5.3 Automatic Alarm Setting Strategy

The alarm setting is based on applying an alarm coefficient that is multiplied by the
established baseline value. Alarm is used to provide a warning that a defined value
of indicator has been reached or a significant change has occurred, at which
remedial action may be necessary. In general, if an alarm situation occurs, operation
can continue for a period, while investigations are carried out to identify the reason
for the change in indicator value and to define any remedial action.

The alarm values may vary considerably, up or down, for individual machines.
The values chosen will normally be set relative to a baseline value determined from
the experience for the measurement position or direction for that particular machine.
Where there is no established baseline (e.g., with a new machine), the initial alarm
setting should be based either on experience with other similar machines or relative
to agreed acceptance values. After a period of time, the steady-state baseline value
will be established and the alarm setting should be adjusted accordingly. Where the
baseline signal is non-steady and non-repetitive, some method of time averaging of
the signal is required. This could be achieved with the aid of a computer.

By comparison, trip value is considered to specify the magnitude of indictor
beyond which further operation of the equipment may cause damage. If the trip
value is exceeded, immediate action should be taken to reduce the indicator value or
the equipment should be shut down. Basically, trip value is a fixed value corre-
sponding to the maximum value of operating indicator to which the equipment
should be subjected.

Recently, Ginart et al. (2006) put forward a new alarm setting mechanism based
on the largest time constant of system and statistical properties of the candidate
baseline, which can be employed to solve the problem of fused indicator alarm
setting. Firstly, the baseline candidate is decided by calculating the mean and
deviation of fused indicator data set in good operational and health condition. Then,
the indicator is checked and an alarm coefficient is determined according to a
proposed table, which is established according to the extensive references from
heuristics, norms, basic mathematical structure of acceleration model, ration
SD/mean, and slope of baseline. Finally, the alarm setting is finished by multiplying
an alarm coefficient with the established baseline. Two criteria are considered in
checking the acceptance of monitoring indicator and determining alarm coefficient
as follows:
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9.5.3.1 Criteria Based on Largest Time Constant

The largest time constant of the system is related with the size of the system and the
processes themselves. For large industrial equipment such as huge pumps, blowers,
and centrifuges, 20 min is usually a very conservative estimation. In general terms,
it is reasonable to establish a time window t that is at least three times of the largest
time constant of the system. This allows the system hearing up fully and reaching at
least a quasi-steady state, which can allow only changes coming from the failure not
from the process itself.

The response for a step functions in the first-order system is:

cðtÞ ¼ 1� e�t=s ð9:21Þ

where s is the time that taken for any first-order system to reach 67 % of the final
steady state (Ogata 2009). Its slope of Eq. (9.21) can be computed as follows:

@cðtÞ
@t

¼ 1
s
e�t=s ¼ m ð9:22Þ

The first criterion for selecting a baseline in mathematical terms is:

mj j\0:017 ð9:23Þ

where m is the slope of the linear regression of the candidate baseline.

9.5.3.2 Criteria Based on Statistics (6r)

This criterion is based on the very low probability, assuming Gaussian distribution,
of obtaining a consistence value greater than six times the standard deviation (6r)
normalized by the mean (l) of the indicator value (Fig. 9.9). This restriction
minimizes the possibility down to very low random probabilities of having a false
alarm when the machine is in good operational and health condition (Byington et al.
2003). Based on this phenomenon, the acceptable baseline usually complies with
the following relation:

k ¼ r
l
\

1
6

ð9:24Þ

Based on the criteria above, Fig. 9.9 shows the examples of acceptable and
unacceptable baselines.

Totally, using parameters to establish acceptable baselines, the bounded limit
derived from acceleration model, norms, and heuristic knowledge is proposed as the
following alarm coefficients as shown in Table 9.1.
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Finally, the proper alarm setting can be calculated as follows:

AlarmmeanðdeviationÞ ¼ Alarm coefficient� BaselinemeanðdeviationÞ ð9:25Þ

9.5.4 Condition Monitoring of Compression Using Fusion
Techniques

In this section, an experiment based on the proposed method in Fig. 9.8 is
described. The experiment object is a low methane compressor driven by an
induction motor 440 kW, 6600 V, and 2 poles with operating speed of 3565 rpm.
The built online monitoring system consists of acceleration sensors located in only
the horizontal direction of four locations, namely drive-end motor, non-drive-end

Fig. 9.9 Unacceptable and acceptable baselines examples

Table 9.1 Proposed alarm
coefficients

a/l < 0.04 a/l < 0.082 a/l < 0.167

m < 0.004 2 3 4

m < 0.0082 3 4 5

m < 0.0167 4 5 5
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motor, male rotor compressor, and suction part of compressor. In addition, a
ground-coupling cable was utilized to filter the influence of electromagnetism noise
to the collected signal. A record of the vibration signals of the methane compressor
from August 15, 2005, to November 22, 2005, was analyzed, predicted, and vali-
dated. The sampling period of the originally measured signals was 6 h and four
times measurements per day. Thus, a total of 400 time-series samples were obtained
which involved a process of performance degradation from normal to abnormal
running condition.

Two monitoring indicators, RMS and envelope features, are extracted from
collected raw signals as shown in Fig. 9.10. It is shown that the collected
time-series data set involves a process of performance degradation from healthy to
abnormal operating sate.

After extracting features of vibration signals, a process of normalization is
conducted to transform values of features into a common scale and group them as
input set for feature-level fusion. Next, SOM-based neural network, explained in
Sect. 9.5.2, is employed to combine the input set into a single out indicator, MQE,
as shown in Fig. 9.11. The correlated training parameters of SOM, that is, the
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Fig. 9.10 Original time-series RMS and envelope plot. a RMS plot. b Envelope plot
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number of neurons and epochs, are set up as 30 and 10, respectively. The SOM
training map is shown in Fig. 9.12. If more train samples are given, better map
topology will be obtained and SOM will be trained well. Comparing with the plots
of RMS and envelope features, it can be seen that MQE indicator maintains a more
steady state than the envelop curve, while it enhances a degradation trend than the
RMS curve, which is particularly appropriate for initial fault detection and health
degradation prediction. Therefore, MQE is considered as a good health monitoring
indicator for followed analysis.

Furthermore, the step of denoising is performed to reduce the influence of
random noise generated in the processes of feature extraction and fusion, which is
contributable in following trend analysis.

Based on the denoised MQE indicator, alarm value is set up using the proposed
methods in Sect. 9.5.3. A data set in healthy and steady operating stage, ranging
from point 50 to point 200, was picked out for baseline statistic. The calculated
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baseline mean value is 0.00696 with the deviation interval [0.00673, 0.00719].
According to the operating history of this machine, the largest constant time was
chosen as 20 min. And the span of time window is set as three times of largest
constant time. Referencing the calculated values m and k and Table 9.1, the alarm
coefficient was selected as 4. As a result, alarm mean value was calculated as
0.02784 with the deviation interval [0.02692, 0.02876]. In addition, the trip mean
value was set as six times of alarm mean value in this experiment, which was based
on the estimated maximum vibration to which the machine may be subjected.

With the continuous condition monitoring to this machine, the indicator MQE
shows an ascending trend as shown in Fig. 9.13. At the time point of 277, the state
curve crosses through the given threshold of alarm. This action triggers a prognosis
module and declares a start of performance degradation. Initial fault should be
detected; meanwhile, prediction and evaluation of RUL together with its uncer-
tainty interval of this machine should be carried out.

9.5.5 Detection Matrix

Faults are malfunctions that are observed in the monitoring system. Two types of
errors can occur during automated fault detection: (1) missed detections or (2) false
alarms. The practical consequence of either type of error is that a failed component
may not be replaced when necessary, or alternatively, may be unnecessarily ser-
viced due to a false alarm (Bock 2006).

The false alarm problem is particularly troublesome for condition-based main-
tenance and prognostics problems where fault signatures necessarily need to be
detected at lower levels. It is well known that two types of errors are possible during
automated fault detection: (1) An incipient fault is present, but remains unrecog-
nized by the condition indicators (CI). This is a missed detection or false negative.
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(2) A fault alarm is raised by the CI, when in truth no fault is present. Here, a false
alarm is said to have occurred.

An estimate of the fault detection performance can be computed directly using a
decision matrix approach (Fig. 9.14a), which is based on a hypothesis testing
methodology and represents the possible fault detection combinations that may
occur with an automated fault detection system. As shown in the figure, Column 2
of the matrix lists all the cases in which a fault is present in a monitored component.
Column 3 consists of all cases in which no fault occurs in the system. Row 2
represents an indicated fault by the detection logic, and Row 3 represents when a
fault is not indicated by the monitoring logic. Cells A, B, C, and D are populated by
the results using the fault detection logic, and the performance metrics can by
computed from these data.

Accuracy:
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Fig. 9.14 Detection metrics. a Cells of detection metrics. b Statistical equations
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Figure 9.14b lists the detailed metrics that are used for statistical detection
performance analysis. Many well-developed metrics for analysis of detection exist;
however, a consolidated tool that incorporates raw data, algorithm interfaces, and
metrics-based analysis would prove valuable for development and long-term sup-
port for specific applications.

9.6 Data Fusion for Fault Diagnosis

Individual diagnosis system with a single data source can only acquire a limited
classification capability that may not be enough for a particular application.
Meanwhile, with the rapid development of computer in hardware techniques,
stronger calculation capacity of chips and larger storage of memory make it possible
for the application of data fusion to fault diagnosis, and many related theory and
methods are built up to assist decision as partly introduced in Sect. 9.4.

9.6.1 Classifier Selection

It is essential for data fusion at decision level to have a proper method of classifier
selection because the combination of different classifiers can affect fusion accuracy.
Given various classifiers and sensor data sets, how to select them is often a problem
before a final fusion strategy is employed. A proper classifier team should be robust
and can generate the best fusion performance. It also should be optimal so that it
can reduce the time for calculation and saving the data in the memory.

The process of classifier selection can be seen the analogy with the feature
selection problem, where the techniques for choosing those features that are most
effective for preserving class reparability have been developed. Accordingly,
techniques for evaluating the degree of error diversity of classifiers that form an
ensemble have been used for classifier selection purposes. The goal of the choice
phase is to select the subset C* of classifiers that can be combined to achieve
optimal accuracy. There are various approaches to choose the classifiers for suc-
cessful fusion.

Classifiers selection technique is an ongoing active research area in recent years.
Most of the selection methods are based on the statistic theory such as Q statistic
(Kuncheva et al. 2003), generalized diversity (Partridge and Krzanowski 1997), and
agreement (Petrakos and Benediktsson et al. 2001), among which agreement theory
received much attentions as its availability. Agreement measurement mainly con-
tains two methods: correlation measure and kappa measure. In this section, cor-
relation measure (Goebel et al. 2002) will be introduced.
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9.6.1.1 2-Classifier Correlation Analysis

Based on the classifier outputs on the labeled training data, a 2 � 2 matrix N shown
in Fig. 9.15 can be created for each classifier pair. And each element in the matrix is
explained in Fig. 9.16.

The cell at the lower right part of the table gives the number of samples that will
inevitably be misclassified; if divided by the total number of the classified samples,
it also gives an upper limit of the classification accuracy. On the contrary, the cell at
the upper left side gives the number of samples we cannot possibly misclassify and
if divided by the total number of samples gives a lower limit of the classification
accuracy of any combined classifier. Then, the off-diagonal cells provide the rel-
ative goodness of the two classifiers. Classifiers with fewer samples in the
off-diagonal cells have little to gain from their combination no matter how suc-
cessfully it is performed, because they are correlated. What one classifier decides
tell us a lot about what the other’s decision will be. The degree of correlation
between two classifiers is defined as follows:

q2 ¼
2� NFF

NTF þNFT þ 2� NFF
ð9:26Þ

9.6.1.2 Multi-classifier Correlation Analysis

Based on the formula, Goebel recommended an effective method for classifier
selection using the correlation degree of n different classifiers and is shown in
Eq. (9.27).
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qn ¼
nN f

N � N f � Nr þ nN f
ð9:27Þ

where N f means the number of samples which are misclassified by all classifiers, Nr

means those data which are classified correctly by all classifiers, and N is the total
number of experiments samples. Generally, smaller correlation degree q can lead to
better performance of classifier fusion because the independent classifiers can give
more effective information.

According to the correlation measurement principle, a team of classifiers can be
selected and the steps of classifier selection can be summarized as follows:

Step 1: Select an appropriate performance measure as the initial evaluation crite-
rion, such as accuracy rate which is the ratio of number of samples clas-
sified correctly to the total samples;

Step 2: Find the best performing classifier as the first classifier of the team;
Step 3: Calculate the correlation degree between the first classifier and the other

classifiers, respectively, using Eq. (9.27);
Step 4: Select the classifier having the “low correlation” for fusion. A practical

improvement is that when a similar low correlation degree appears for
more than one classifier, the classifier that has the highest recognition rate
is chosen;

Step 5: Repeat step 3 to step 4 between selected classifiers and the classifiers
unselected yet until all the classifiers are determined;

Finally, the optimal sequence of classifiers can be found.

9.6.2 Decision Fusion System

In this section, a whole decision fusion system (Niu 2007a, b) is introduced as
shown in Fig. 9.17, which considers vibration and current signal; the similarity can
be extended to other input source. Here, vi and ci indicate label vectors of vibration
and current data of the electric motors assigned by classifier i, i = 1, …, k.

9.6.2.1 Level 1 to Level 3: Preparation for Decision Fusion

The levels 1–3 are regarded as a process of preparation for decision fusion. First,
vibration and stator current signals are collected from accelerometers and current
probes, respectively. Then, a step of features calculation was exerted. Although the
time-series data contain abundant feature information, the important part cannot
show intuitively and that much unnecessary information also is contained.
Therefore, the feature extraction is essential for effectual estimation conditions of
machine. Statistical parameters, calculated in the time domain, frequency domain,
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and autoregression, are generally used to define average properties of acquired data.
Next, several classifiers are utilized to classify the calculated features of vibration
and current and generate the decision vectors which are regarded as input source of
decision fusion parts from level 4 to level 6.

9.6.2.2 Level 4: Decision-Level Data Fusion

For fault diagnosis of rotating machinery, current signal analysis is equally
important as vibration analysis. Therefore, data fusion of the two types of sensors is
expected to provide more accurate information to multi-classifiers system.

The labels of a vector are usually diverse for different classifiers with the same
data set. From character of relativity, one can notice that the outputs could also be
changed for different data sets classified by a same classifier so that two data sets
classified by a same classifier separately can be seen as one data set assigned by two
different classifiers. From this view, the structure of multi-sensors fusion at decision
level (Fig. 9.3) can be improved and shown in Fig. 9.18. As a result, k classifiers
with i data sets can be regarded as i � k classifiers owning one data set.

9.6.2.3 Level 5: Classifier Selection

After feature extraction and data fusion, a classifier selection process is often
welcomed for the i � k classifiers (a collection of labels vectors) by correlation

Fig. 9.17 Flowchart of the fusion decision system
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measure method. As a result, an optimal team of classifiers containing classes
information both vibration and current signals is formed to improve classification
accuracy.

9.6.2.4 Level 6: Classifiers Fusion

The last step of this system is a multi-classifier of decisions fusion, and the selected
labels vectors generated by multi-classifier would be sent into a decision fusion
model to deduce the most reliable conclusion of fault diagnosis.

9.6.3 Faults Diagnosis of Test Rig Motors Using Fusion
Techniques

To demonstrate the effectiveness of the proposed decision fusion strategy, an
experiment was carried out using a self-designed test rig motors.

9.6.3.1 Data Acquisition

The test specimens consist of six 0.5 kW, 60 Hz, and 4-pole induction motors to
create the data needed. This motor was set to operate at full-load conditions. One of
the motors is normal (healthy), which is used as a benchmark in comparison with
faulty motors. The others are faulty motors with broken rotor bar, bowed rotor,
bearing outer race fault, rotor unbalance, rotor eccentricity, and phase unbalance.
Three AC current probes and three accelerometers were used to measure the stator
current of three-phase power supply and vibration signals. The maximum frequency
of the signals was 3 kHz, the number of sampled data was 16,384, and the mea-
sured time was 2.1333 s. For each condition, 40 samples were measured, 20 of
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them were used for training parameters of the classifiers, 10 for training parameters
of the multi-agent fusion model, and the other 10 for testing.

9.6.3.2 Feature Calculation and Classification

After data acquisition, a process of features calculation was exerted. A total of 63
features (21 parameters � 3 signals) are calculated for vibration and current signals.
Next, six classifiers were utilized to classify the calculated features of vibration and
current, which are support vector machine (SVM), linear discriminant analysis
(LDA), k-nearest neighbors (k-NN), improved iterative scaling (IIS), Gaussian
mixture model (GMM), and learning vector quantization (LVQ).

Figure 9.19 shows the training accuracy of the six classifiers. It is shown that the
classification accuracy of vibration signal is far better than the ones obtained from
stator current signal. The best classification accuracy is using vibration data by
SVM and k-NN classifiers with a value of 0.867. When using current signal by
SVM, the accuracy is 0.678. As far as performance of the six classifiers is con-
cerned, SVM and k-NN produced superior results.

9.6.3.3 Classifiers Selection and Fusion

The six classifiers were used to classify the features data of the vibration samples,
and the generated decision vectors were named as vectors 1–6 in sequence. The
process was then repeated for the current data with the result vectors named from 7–
12. Next, the 12 decision vectors were sent for classifiers selection in order to find
the best sequence of classifier fusion. Finally, multi-agent algorithm was utilized for
decision fusion. The comparison of classification accuracy between the fusion data
and single data using the vibration or current signal is shown in Fig. 9.20. It is
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shown that the highest accuracy of single-source data, after classifiers selection and
combination, is 0.922 for vibration data and 0.722 for current data. Table 9.2 shows
the fusion performance of vibration and current data. The fusion sequence of
classifiers is acquired by the selection step for the 12 decision vectors using clas-
sifier selection methods (Goebel et al. 2002).

9.6.3.4 Classifiers Fusion Comparison

In this case, three classifiers fusion algorithms were used for comparison, i.e.,
majority voting, Bayesian belief, and multi-agent algorithms. The results are shown
in Fig. 9.21. The maximum fusion accuracy for multi-agent method was 0.989,
while the accuracy using Bayesian belief and majority voting methods were 0.989
and 0.911, respectively. Figure 9.21 shows that the multi-agent and Bayesian belief
methods are far superior to the majority voting strategy.
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Table 9.2 Fusion performances of vibration and current signals

Classifier Signal SVM LDA k-NN IIS GMM LVQ

Serial numbers
of classifiers

Vibration 1 2 3 4 5 6

Current 7 8 9 10 11 12

Fusion sequence
of classifiers

Vibration No. 1 No. 7 No. 5 No. 10 No. 11 No. 4

Current No. 6 No. 8 No. 3 No. 9 No. 12 No. 2

Fusion accuracy Vibration 0.867 0.989 0.956 0.989 0.989 0.944

Current 0.967 0.989 0.944 0.989 0.989 0.867
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9.6.4 Faults Diagnosis of Elevator Motor Using Fusion
Techniques

The next example is to demonstrate the effectiveness of decision fusion in
real-world operating conditions; a case of experiment is investigated to an elevator
motor system. The elevator is driven by a motor connected to the sheave at the top
of the elevator system as shown in Fig. 9.22.
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9.6.4.1 Data Acquisition

The test objects are ten 15 kW, 50 Hz, and 4-pole induction motors for elevators.
These motors are set to operate at full-load conditions. One of the motors is normal
(healthy), which is used as a benchmark in comparison with faulty motors. The
others are faulty motors with rotor unbalance, stator eccentricity, rotor eccentricity,
broken rotor bar, bearing housing looseness, bearing inner race looseness, ball fault,
bearing outer race fault, and inner race fault, as shown in Fig. 9.23. The conditions
of faulty induction motors are described in Table 9.3.

Three accelerometers and one AC current probe were used to measure the
vibration signals of horizontal, vertical, axial directions, and stator current signal to
evaluate the fault diagnosis system. The maximum frequency of sampling signals is
3 kHz, and the number of sampled data is 16,384. Sampling time is 2.133 s, and
Hanning window was chosen for filtering. The permitted measuring time for each
fault is 15 s containing three running conditions: speedup, steady, and slowdown.
A real limitation is that many times of measurement for each fault is nearly
impossible, or else the elevator will break down severely. As a result, each fault was
measured for two times in our experiment, and then, steady signals were picked out
for analysis. Considering the few raw data that are not enough for fusion analysis
and the periodicity of steady signal, we employed an “overlap method” to solve the
problem. This method picks out each sample from collected steady signal in terms

Fig. 9.23 Some faults on the induction motors. a Broken rotor bar, b rotor unbalance, c stator
eccentricity and d outer race fault

Table 9.3 Description of
fault types of the motor tested

Fault types Fault details

Rotor unbalance In-phase, 60 g mm/kg

Stator eccentricity 30 % (+0.23 mm)

Rotor eccentricity Out-of-phase, 80 g mm/kg

Broken rotor bar 3 spots

Bearing housing
looseness

Between outer race and housing

Inner race looseness Between shaft and inner race

Ball fault Diameter 2 mm, depth 1.5 mm

Outer race fault Diameter 2 mm, depth 2 mm

Inner race fault Diameter 2 mm, depth 2 mm
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of an overlap rate predetermined. The overlap rate was set as 0.75 in this experi-
ment. Using this method, we extended the steady signal of one time measurement
into 10 times. So finally, we acquire 20 samples per fault and total samples are 200.
Among them, 100 samples were divided for training classifiers, 50 samples for
training fusion algorithms, and the left 50 samples for test.

The waveforms of time-domain signal collected from accelerometer and current
probe are shown in Fig. 9.24. It is shown that there are some differences in
waveform of each condition when observing vibration signal. However, there is no
obvious difference in the waveforms of current signal.

9.6.4.2 Feature Calculation and Classification

After the signals are collected from the tested motors, a process of features cal-
culation is exerted. And then, a process of classification is exerted for five classifiers
(SVM, ART-KNN, LDA, RF, and k-NN).

The comparison of accuracy rates for test samples is shown in Table 9.4. It is
shown that classification performance using vibration data is better than the current
data obviously. Among them, three classifications can achieve 100 % accuracy
rates for vibration data. However, the highest accuracy rate for current data is less
than 75 % from SVM. Due to the high classification accuracy rates using vibration
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Fig. 9.24 Waveform of time-domain signal of vibration and current. a Vibration signal and
b current signal
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feature data, the fusion experiment is intended to focus on the current data for
classifiers fusion.

Moreover, a detailed comparison of the accuracy rates for each fault using
current feature data is shown in Table 9.5, which tells some valuable information:
Types of faults, such as broken rotor bar, ball fault, outer race fault, and housing
looseness are hard to detect while constituting major faults in induction motor. As
far as classification performance is concerned, SVM is the best and, nevertheless,
still gives bad diagnosis results to housing looseness and outer race fault.
ART-KNN is the worst, while gives the better diagnosis accuracy to housing
looseness fault. The above analysis indicates necessity and potential values of
multi-classifier fusion diagnosis.

9.6.4.3 Classifier Fusion

After acquired diagnosis results from each classifier, Bayesian belief algorithm is
employed to enhance diagnosis performance by fusing decisions of multi-classifier.
Fusion accuracy of each fault for different numbers of classifiers is shown in
Table 9.6. The results show that the diagnosis accuracy of types of faults (bearing
inner race looseness, rotor unbalance, rotor eccentricity, and stator eccentricity)
increased to 100 % remarkably. The fusion performance improves with the
increasing in number of classifiers.

Table 9.4 Accuracy rates of individual classifier

Classifier SVM ART-KNN LDA RFA k-NN

Accuracy Vibration signal 100 90 100 100 98

Rate (%) Current signal 74 60 72 72 66

Table 9.5 Accuracy rates of classification of each fault for current data

Fault types Classifier

SVM ART-KNN LDA RFA k-NN

F1 Broken rotor bar 40 60 60 80 40

F2 Ball fault 80 20 40 40 60

F3 Inner race fault 100 20 100 100 100

F4 Outer race fault 20 0 20 0 0

F5 Bearing housing looseness 0 80 60 40 40

F6 Inner race looseness 100 80 80 100 100

F7 Rotor unbalance 100 100 60 100 80

F8 Rotor eccentricity 100 100 100 80 100

F9 Stator eccentricity 100 40 100 80 40

F10 Normal condition 100 100 100 100 100
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The experiment results show excellent performance was acquired when com-
pared with single classification method. Multi-classifier fusion strategy can improve
the faults diagnosis accuracy remarkably. Fusion accuracy utilizing Bayesian
method arrived at ideal results, 100 %, while only 74 % from the best individual
classifier, SVM, for current data in this experiment.

9.7 Data Fusion for Failure Prognostics

9.7.1 A Proposed Fusion Strategy for Failure Prognostics

This section discusses data fusion application in terms of the failure prognostics.
Integrating fusion technology for condition monitoring introduced in Sect. 9.5, a
data fusion-enabled prognostics strategy (Niu and Yang 2010) is proposed, as
shown in Fig. 9.25.

Usually, performance degradation trend is reflected as nonlinear or chaotic
character. Therefore, state space reconstruction becomes the first step in nonlinear
chaotic time-series prediction. To get appropriate reconstruction input vectors, two
basic parameters, delay time and minimum embedding dimension, need to be
determined at first. In this system, delay time is selected by C–C method and
minimum embedding dimension is chosen by false nearest neighbor (FNN) method,
respectively, due to their merits, which will be introduced in the following section.

Then, the degradation prediction is conducted. In this process, two data-driven
models, Dempster–Shafer regression (DSR) and least square support vector
machine (LS-SVM), are particularly appropriate for nonlinear time-series prediction
and therefore proposed as tools for data-driven prognosis. In addition, the two
models can give predictions of not only degradation trend (or point estimate) but

Table 9.6 Fusion accuracy of each fault for different numbers of classifiers using Bayesian belief
theory

Fault types Accuracy rates of classifier fused (%)

No. 1 No. 1–2 No. 1–3 No. 1–4 No. 1–5

Broken rotor bar 80 60 60 100 100

Ball fault 80 80 100 80 100

Inner race fault 100 40 100 100 100

Outer race fault 0 60 40 100 100

Housing looseness 0 80 60 100 100

Inner race looseness 100 100 100 100 100

Rotor unbalance 100 100 100 100 100

Rotor eccentricity 100 100 100 100 100

Stator eccentricity 100 100 100 100 100

Normal condition 100 100 100 100 100

9.6 Data Fusion for Fault Diagnosis 329



also uncertainty bounds (or interval estimate). Next, combining the prediction
results of DSR and LS-SVM is conducted by a linear weight fusion method.
Finally, prognosis assessment (PA) is carried out. The cores of PA is estimating the
remaining useful lifetime of a failing component or system and assigning uncer-
tainty bounds to the degradation trend that will provide maintainers with the earliest
and the latest (with increasing risk) time to perform maintenance and the associated
risk factor when maintenance action is delayed.

9.7.2 Time-Series Prediction

The first step of time-series prediction is a process of reconstruction in high
dimensions. The state space parameters, delay time, s, and embedding dimension,
m, should be selected appropriately. In addition, we need to determine prediction
way that is one-step-ahead (OS) or multi-step-ahead (MS) prediction, and the dif-
ference of them and analysis are introduced. At last, two time-series models, DSR
and LS-SVM, are explained, which are partially suitable for data-driven prognostics
due to its ability of nonlinear time-series prediction and uncertainty bias
assessment.

Data acquisition 
(Vibration signal)

No YesTrigger ?

On-line condition 
monitoring module

Data-driven
prognosis module

Feature extraction 
(RMS, envelope)

Features normalization

Feature-level fusion 
(SOM neural network)

De-noising
(Smoothing, Wavelet)

Automatic alarm setting 
(Alarm set, trip set)

Condition monitoring 
(MQE curve)

Prognosis assessment (PA)
(RUL, confidence interval)

Prediction fusion 
(Linear-weight fusion)

Degradation prediction 
(DSR, LS-SVR)

Time-series reconstruction 
(FNN, C-C)

Fig. 9.25 A proposed data fusion strategy for failure prognostics
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9.7.2.1 State Space Reconstruction

State space reconstruction is the first step in nonlinear chaotic time-series predic-
tion. The fundamental theorem of reconstruction is pioneered by Takens (1981) and
subsequently expanded by Sauer et al. (1991). The reconstruction consists of
viewing a time series, xk = x(kss), where k = 1, …, N in a Euclidean space R

m,
where m is the minimum embedding dimension and ss is the sampling time.
A standard way to reconstruct the state space is the method of delays (MOD).
Using MOD, each m-dimensional embedding vector is formed as follows:

xk ¼ xk; xkþ p; . . .; xkþðm�1Þp
� �T ð9:28Þ

where p is the multiple integer of ss so that the delay time s equals pss. The
m coordinates of each point xk are samples from the time series covering a time
window of length sw = (m − 1)s. An example of embedding of Lorenz System with
the effect of different values of m and s on reconstruction of the original system is
shown in Fig. 9.26 where (a) is original Lorenz attractor with x/y/z variables, (b) is
a single time series of variable x, (c)–(f) are reconstructed attractors from variable x
with various m and s. From the example, it is clear that for correct state space
reconstruction (or reconstruction of the attraction), a fine estimation of the
parameters (m and s) is needed. In practice, with a limited number of possibly noisy
observations, the selection of s and m is rather difficult to ensure the quality of the
reconstruction.

Fig. 9.26 An example of reconstruction of the attraction
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9.7.2.2 One-Step-Ahead/Multi-step-Ahead Prediction

The time-series prediction problem is the prediction of future values based on the
previous values and the current value of the time series. They are used as inputs for
the prediction model. One-step-ahead prediction is needed in general and is referred
to as short-term prediction. However, when multi-step ahead predictions are nee-
ded, it is called a long-term prediction problem (Sorjamaa et al. 2007).

Unlike the one-step-ahead time-series prediction, the multi-step-ahead predic-
tion is typically faced with growing uncertainties arising from various sources. For
instance, the accumulation of errors and the lack of information make the prediction
more difficult.

In some cases, such as slow-changing signal, the predicted time intersection is
long enough that the real value at the first step prediction has already been obtained
before the second step prediction, and then we can take place the predicted value in
real value, which becomes one-step-ahead prediction.

In machinery prognostics, collected data change rapidly with time such as the
vibration and acoustic emission signals. Hence, engineers need to acquire infor-
mation several steps ahead in the future horizon, that is, multi-step ahead prediction
(MS model), to assess the remaining useful life (RUL) of the failing
component/system, which is regarded as one of the main outputs of prognosis.

There are two typical alternatives to build MS models: One is iterated prediction
and the other is direct prediction. The choice between iterated and direct prediction
involves a trade-off between bias and estimation variance.

The iterative multi-step prediction can be divided into three processes as shown
in Fig. 9.27. The first steps of prediction stage can be estimated by the actual values
of previous sliding window. And then, the next steps can be predicted by the
proceeding sliding window with mixed embedding elements of actual values and
predicted values. Finally, the left steps can be predicted by only previous predicted
values. It is obvious that using the previous predicted values as inputs, it can
gradually deteriorate the accuracy of the prediction.

9.7.2.3 Time-Series Model

After selecting the appropriate reconstruction parameters and prediction way in
multi-step-ahead according to the real requirement from machinery prognostics,
suitable time-series models should be considered to predict future trajectory of
performance degradation based on the previous and the current monitored
descriptors. Usually, the collected monitored signal of machine is nonlinear and the
time-series prediction of it contains uncertainty more or less; hence, the time-series
model with the characters of nonlinear and uncertain estimation will be welcome.
Regression analysis can be taken as an effective approach for time-series prediction
such as Dempster–Shafer regression (DSR) and least square support vector machine
(LS-SVM) models.
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9.7.3 Failure Prognostics of Compression Using Fusion
Techniques

After accumulating techniques above, a whole data-driven prognostics experiment
about performance degradation of a methane compressor can be carried out fol-
lowing the case of monitoring alarm in Sect. 9.5.4. Particularly, remain useful life
(RUL) and its deviation of the operating machine could be predicted, which provide
the most valuable maintenance decisions. Due to the difficulty of wide uncertainty,
data fusion techniques are proposed to improve the prognosis accuracy and
precision.

In this measurement, 400 time-series samples were obtained which involved a
process of performance degradation from normal to abnormal running condition.
The first 300 samples, involving the main part of a normal condition and a small
part of initial abnormal condition indicating a potential fault, are employed to train
the DSR and LS-SVM models. Then, the system was employed to predict the
degradation trend of the left 100 steps. The predicted results will then be compared
with the actual 100 test samples.

Before carrying out time-series prediction, the time-series should be recon-
structed in high dimensions. The state space parameters, delay time, s, and
embedding dimension, m, were selected using C–C method and FNN method,
respectively, in this case. The delay time is chosen as 61, and embedding dimension
is chosen as 4.
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Fig. 9.27 Sketch map of iterative multi-step-ahead time-series prediction (Niu and Yang 2009)

9.7 Data Fusion for Failure Prognostics 333



Next, time-series prediction is performed using DSR and LS-SVM models,
respectively, by strategy of iterated multi-step-ahead (MA). According to the time
point of alarm triggered shown in Sect. 9.5.4, the previous 277 samples are used for
training models and the left 123 samples for validating the degradation prediction.
The predicted degradation curve and its prediction interval are shown in Fig. 9.28
for DSR model and in Fig. 9.29 for LS-SVM model. The predicted results are
compared to the two models in terms of prediction point estimate and prediction
interval estimate.

(1) Accuracy: prediction point estimate (PP)
Accuracy is a measure of how close a point estimate of failure time is to the
actual failure time. For degradation prediction, if the prediction is earlier than
the actual curve, a correct premaintenance can be carried out. On the contrary,
if the prediction is made after actual failure occurred, prediction becomes
meaningless. Therefore, given the same error size, it is in most situations
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Fig. 9.28 Degradation prediction using DSR model
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Fig. 9.29 Degradation prediction using LS-SVM model
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preferable to have a positive bias (early prediction), rather than a negative one
(late prediction). Comparing PP estimates in Figs. 9.28 and 9.29, DSR does
not trigger the trip setting, even though the actual failure occurs, while
LS-SVM generates an appropriate positive prediction. Quantitatively, the
root-mean-squared error (RMSE) of PP estimate for LS-SVM is 0.019, less
than 0.063 for DSR. Therefore, LS-SVM shows higher accuracy than DSR.

(2) Precision: prediction interval estimate (PI)
Precision is a measure of the narrowness of an interval in which the remaining
life falls. The interval is enclosed by upper and lower bounds. A narrow PI
estimate indicates high precision. In particular, for degradation prediction, a
positive upper bound is welcome.

Narrowness ¼ 1
n

Xn
t¼1

ŷsupðtÞ � ŷinfðtÞ
�� �� ð9:29Þ

where ŷsupðtÞ and ŷinfðtÞ stand for the upper and lower bound of predicted
degradation curve, respectively.

Comparing PI estimates in Figs. 9.28 and 9.29, LS-SVM shows a positive upper
bound, while the upper bound in DSR is a little reluctant. Quantitatively, the
narrowness of PI estimate for LS-SVM is 0.105, less than 0.112 for DSR.
Therefore, LS-SVM also shows higher precision than DSR.

After obtaining the prediction results from DSR and LS-SVM, linear weight
fusion is employed to combine the predicted results of the two models. The weights
of the DSR and LS-SVM are given as 0.15 and 0.85, respectively, considering the
previous compared results. The better one deserves a higher weight. The final fused
results are shown in Fig. 9.30. It is shown that the PP estimate is closer to actual
trend curve with RMSE of 0.013. The fused PP is improved comparing with single
best LS-SVM, with a proper positive upper bound.
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Fig. 9.30 Degradation prediction fusing DSR and LS-SVM (linear weight combination)
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According to the fused prediction results, the PP estimate crosses through the
predetermined threshold of trip at point 310, and the upper bound crosses through
the threshold at point 294. Finally, the predicted RUL is 33 steps (198 h), with
maximum uncertain upper bound of 17 steps (102 h). Comparing with the actual
RUL with 33 steps (198 h), the results give a positive prediction, with appropriate
time in indicting repair to the machine. Hence, the aims of cost-effective mainte-
nance can be acquired.

9.8 A Framework of Cost-Effective and Accurate
PHM/CBM System

Ideal data-driven PHM/CBM will allow the maintenance personnel to do only the
right things, minimizing spare parts cost, system downtime, and time spent on
maintenance. In reality, however, exerting a reliable and effective data-driven
PHM/CBM faces two challenges: Above all, stating to use data-driven PHM/CBM
is costly. Often, the cost of sufficient instrumentation can be quite large, especially
on equipment that is already installed. It is therefore important to decide whether
checked equipment is sufficiently important to justify the investment. Secondly,
data-driven PHM/CBM stands for accurate maintenance, which is not easy to reach
due to the complex outer environment or inner structure of equipment, and abstruse
failure mechanisms.

For the purpose of cost-effective maintenance, data-driven PHM/CBM tool is
suggested to be carried out through the advanced maintenance management
mechanism. Furthermore, when the functions of the component and its importance
are considered at the same time, reliability-centered maintenance (RCM) also seems
an appropriate choice. Usually, the aim of RCM is to maximize the result with
regard to system reliability or outage cost reduction (Lehtonen 2006).

For the purpose of accurate maintenance, data fusion techniques are suggested
containing data-level fusion, feature-level fusion, and decision-level fusion (Hall
and Llinas 1997). Applying fusion techniques into engineering practice has been
receiving increasing attentions in recent years. In particular, with the rapid progress
of advanced sensor and signal processing technologies, fusing large of mutual
information becomes possible, which is expected to bring about accurate
data-driven PHM/CBM.

This section develops an optimal data-driven PHM/CBM system (Niu, et al.
2010) as shown in Fig. 9.31, which integrates data fusion strategy with traditional
OSA-CBM in the architecture of RCM management. RCM is employed for the
process management of cost-effective maintenance, while data fusion technology is
considered during the CBM processes of monitoring, diagnostics, and prognostics
for improving the maintenance accuracy. The procedure of the system can be
described as follows.
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9.8.1 Integrating CBM and RCM: Cost-Effective
Maintenance

The general steps to work through when apply the RCM method can be summa-
rized as seven steps.

(1) Defining system functions, performance standards, and system boundary
definition.

(2) Determining the ways in which the system functions may fail.
(3) Determining the significant failure modes.
(4) Assessing the effects and consequences of the failures.
(5) Identifications of maintenance tasks by means of a decision logic scheme.
(6) Identification of maintenance tasks interval.
(7) Auditing, implementation, and feedback.

The RCM analytical approach assists the maintenance manager in identifying
potential failures and supporting the selection of viable courses of action. RCM
tools help define the optimal failure management strategies. Meanwhile, CBM is
built on the foundation of the RCM methodology. CBM is not a process in itself. It
is a comprehensive strategy to select, integrate, and focus a number of process
improvement capabilities, thereby enabling maintenance managers and their cus-
tomers to attain the desired levels of system and equipment readiness in the most
cost-effective manner. CBM strategy includes a number of capabilities and
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Fig. 9.31 Flowchart of purposed CBM system
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initiatives, some procedural and some technical, that can enhance the basic RCM
tasks. In this way, CBM enables a more effective RCM analysis.

If the RCM analysis suggests revision of maintenance tasks, then the mainte-
nance manager should accomplish an assessment of how CBM capabilities may be
applied to support the revised maintenance task procedures. Often, the revised tasks
require fundamental changes to the maintenance strategy such as transition from
time cycle repair intervals to CBM.

9.8.2 Integrating CBM and Data Fusion: Accurate
Maintenance

In engineering system maintenance, except for the requirement of cost-effectiveness
as above, accurate maintenance is also imperative, especially for core functional
components or subsystem. Integration of CBM and data fusion strategy is expected
to obtain improved maintenance decisions. A flowchart of CBM integrating data
fusion strategy is shown in Fig. 9.32.
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Fig. 9.32 Flowchart of CBM integrating data fusion
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First, raw signals are collected, signal preprocessing is exerted, and then, the
appropriate features are extracted which indicates the state information of running
machine. Next, a step of feature selection is designed, and the features that can
recognize different faults clearly are selected for diagnostics analysis, while those
features indicating degradation trend of equipment health are chosen for monitoring
and prognostics task to predict equipment remain useful life (RUL). Then, fusion
strategy is considered and employed in the followed two subsystems: fault diag-
nostics, condition monitoring, and prognostics.

As far as health degradation is concerned, each degradation indicator has its own
merits and shortcomings and is only effective for certain failure at certain stage.
Therefore, fusing multiple degradation indicators would provide an accurate and
reliable way for degradation monitoring. When the monitored index exceeds the
predetermined alarm set, the processes of diagnosis and prognosis are trigged.

In order to get accurate diagnostics result, feature-level or decision-level fusion
strategy can be used. Moreover, in order to get a near-ideal prediction of RUL with
its uncertainty interval, data fusion at feature-level also can be employed. Finally,
optimal maintenance actions can be established based on the results of monitoring,
diagnostics, and prognostics.

References

Basir O, Yuan XH (2007) Engine fault diagnosis based on multi-sensor information fusion using
Dempster-Shafer evidence theory. Inf Fusion 8(4):379–386

Bock JR, Brotherton T, Grabill P, Gass D, Keller JA (2006) On false alarm mitigation. In:
Proceedings of the IEEE aerospace conference, Big Sky, MT, March 4–11

Boutros T, Ling M (2007) Mechanical fault detection using fuzzy index fusion. Int J Mach Tools
Manuf 47:1702–1714

Byington CS, Watson M, Kalgren P, Safa-Bakhsh R (2003) Metrics evaluation and tool
development for health and usage monitoring system technology. In: AHS Forum 59, Phoenix,
Arizona

Constantinidis AS, Fairhurst MC, Rahman AFR (2000) Detection of circumscribed masses in digital
mammograms using behaviour-knowledge space method. IEE Electron Lett 36(4):302–303

Dempster AP (1967) Upper and lower probabilities induced by multivalued mappings. Ann Math
Stat 38:325–339

Denoeux T (2000) A neural network classifier based on Dempster-Shafer theory. IEEE Trans Syst
Man Cybernet A: Syst Hum 30(2):131–150

Ginart A, Barlas I, Goldin J, Dorrity JL (2006) Automated feature selection for embeddable
prognostic and health monitoring (PHM) architectures. In: IEEE System Readiness
Technology Conference, USA

Goebel K, Yan WZ, Cheetham W (2002) A method to calculate classifier correlation for decision
fusion. In: Proceedings of decision and control, pp 135–140

Hall DL, Llinas J (1997) An introduction to multisensor data fusion. IEEE Digit Object Identif 85
(1):6–23

Hang YS, Suen CY (1993) The behavior-knowledge space method for combination of multiple
classifiers. In: IEEE, pp 347–352

9.8 A Framework of Cost-effective and Accurate PHM/CBM System 339



Huang R, Xi L, Li X, Liu CR, Qiu H, Lee J (2007) Residual life predictions for bass bearings
based on self-organizing map and back propagation neural network methods. Mech Syst Signal
Process 21:193–207

Jounela SJ, Vermasvuorim M, Enden P, Haavisto S (2003) A process monitoring systems based on
the Kohonen self-organizing maps. Control Eng Pract 18(1):78–84

Kang P, Birtwhistle D (2003) Condition assessment of power tansformer on load tap changers
using wavelet analysis and self-organizing map: field evaluation, IEEE Trans on Power Deliver
18:78–84

Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, ISBN 3-540-67921-9
Kou JB, Zhang CS (2003) Multi-agent based classifier combination. Chin J Comput 1–5

(in Chinese)
Kuncheva L (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Syst 24

(2):281–286
Kuncheva LI, Bezdek JC, Duin RPW (2001) Decision templates for multiple classifier fusion: an

experimental comparison. Pattern Recogn 34:299–314
Kuncheva LI, Whitaker CJ, Shipp CA (2003) Limits on the majority vote accuracy in classifier

fusion. Pattern Anal Appl 6:22–31
Lee J, Ni J, Djurdjanovic D, Qiu H, Liao H (2006) Intelligent prognostic tools and e-maintenance.

Comput Ind 57:476–489
Lehtonen M (2006) On the optimal strategies of condition monitoring and maintenance allocation

in distribution systems. In: 9th International Conference on Probabilistic Methods Applied to
Power Systems, June 11–15, 2006, Stockholm, Sweden

Littlestone N, Warmuth M (1989) Weighted majority algorithm. In: IEEE symposium on
foundations of computer science, pp 256–261

Niu G, Yang BD (2009) Dempster-Shafer regression for multi-step-ahead time-series prediction
towards data-driven machinery prognosis. Mech Syst Signal Process 23:740–751

Niu G, Yang BS (2010) Intelligent condition monitoring and prognostics system based on
data-fusion strategy. Expert Sys with Appl 37:8831–8840

Niu G, Yang BS, Pecht M (2010) Development of an optimized condition-based maintenance
system by data fusion and reliability-centered maintenance. Reliab Eng Syst Saf 95:786–796

Niu G, Han T, Yang BS, Tan ACC (2007a) Multi-agent decision fusion for motor fault diagnosis.
Mech Syst Signal Process 21(3):1285–1299

Niu G, Son JD, Achmad W, Yang BS (2007b) A comparison of classifier performance for fault
diagnosis of induction motor using multi-types signals. Struct Health Monit 6(3):0215-15

Ogata K (2009) Modern control engineering, 5th edn. Prentice Hall. ISBN: 9780137133376
Partridge D, Krzanowski W (1997) Software diversity: practical statistics for its measurement arid

exploitation. Inf Softw Technol 39(10):707–717
Petrakos M, Benediktsson JA (2001) The effect of classifier agreement on the accuracy of the

combined classifier in decision level fusion. Trans Geosci Remote Sens 39(11):2546–2569
Qiu H, Lee J, Lin J, Yu G (2003) Robust performance degradation assessment methods for

enhanced rolling element bearing prognostics. Adv Eng Inform 17:127–140
Ruta D, Gabrys B (2000) An overview of classifier fusion methods. IEEE Comput Inf Syst 1–10
Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616
Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
Smets P, Kennes R (1994) The transferable belief model. Artif Intell 66:191–243
Sorjamaa A, Hao J, Reyhani N, Ji Y, Lendasse A (2007) Methodology for long-term prediction of

time series. Neurocomputing
Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS

(eds) Dynamical systems and turbulence. Springer, New York, pp 366–381
Taniguchi M, Tresp V (1997) Averaging regularized estimators. Neural Computation 9(5):

1163–1178
Verma B, Gader P, Chen W (2001) Fusion of multiple handwritten word recognition techniques.

Pattern Recogn Lett 22:991–998

340 9 Data Fusion Strategy



Xu L, Krzyzak A, Suen C (1992) Methods of combining multiple classifiers and their applications
to handwriting recognition. IEEE Trans Syst Man Cybernet 22(3):418–435

Yager RR (2001) Dempster-Shafer belief structures with interval valued focal weights. Int J Intell
Syst 16:497–512

Yang BS, Kim KJ (2006) Application of Dempster-Shafer theory in fault diagnosis of induction
motors using vibration and current signals. Mech Syst Signal Process 20(2):403–420

References 341



Chapter 10
System Support and Logistics

10.1 Introduction

System support and logistics are the terms used to describe all the processes,
personnel, equipment, and facilities necessary to support a system during its
intended life. An effective PHM/CBM system is expected to provide early detection
and isolation of the precursor and/or incipient fault of components or subelements;
to have the means to monitor and predict the progression of the fault; and to aid in
making, or autonomously trigger maintenance schedule and asset management
decisions or actions. The detected incipient fault condition should be monitored,
trended from a small fault as it progresses to a larger fault, until it warrants some
maintenance action and/or replacement. By employing such a system, the health of
a system, component, or subsystem can be known at any point of time, and the
eventual occurrence of a failure can be predicted and prevented, enabling the
achievement of near-zero downtime performance. Unnecessary and costly pre-
ventive maintenance can be eliminated, maintenance scheduling can be optimized,
and lead time for spare parts and resources can be reduced—all of which can result
in significant cost savings.

To do so, the operator must have a continuous and accurate assessment of
system performance and awareness as early as possible of the presence of faults that
will degrade system performance. System support and logistics is a system of
systems that delivers the necessary information, material, and skilled labor to
sustain the operations of a system and its constituent components.

Developing the ability to identify and characterize faults (diagnosis) and predict
the system or component’s useful life (prognosis) is only useful if those facts are
turned into action. The first objective of any diagnostic or prognostic system is to
provide the operator or maintenance technician with the facts: There is a fault in a
specific component, and within a given period of time, the system will degrade
beyond useful limits. But there is much more to consider because those facts are
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important to the full spectrum of activities in logistics or product support: getting
the right information, material, equipment, and skilled personnel to the right
operation or autonomous control at the right time to sustain the system. This chapter
will introduce two application approaches for Data-driven PHM/CBM: Intelligent
maintenance for logistics support and autonomous control for system safety
operation.

10.2 Intelligent Maintenance Platform

Tran and Yang (2012) proposed architecture of Intelligent CBM (I-CBM) platform
as shown in Fig. 10.1.

This platform contains modules with the aim of converting the rotating
machinery signals into useful information for the maintainers to take remedial
actions, inspect the conditions, and conduct a repair on the defect before the
catastrophic failure occurs. In each module, many applicable algorithms could be
appropriately selected to obtain the best result. As depicted in Fig. 10.1, data can be
obtained from the sensors installed on the machinery for condition monitoring or
manually input working conditions. Subsequently, these data are transformed into
features by selecting appropriate algorithms for signal processing, feature extrac-
tion, and feature selection. In the feature space, a proper algorithm is employed for
each task of classifying the type of faults, performing the degradation, and fore-
casting the remaining lifetime of machinery.

Fig. 10.1 The architecture of I-CBM platform (Tran and Yang 2012)
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10.2.1 Data Acquisition

A major challenge confronted with CBM is that how the functional symptoms are
monitored in terms of measurable machinery states. Data are the requirement for
this challenge. Data acquisition is a process of collecting and storing useful data
from target system to monitor the condition, diagnoses the faults, and prognosticate
the future states and remaining lifetime. According to Jardine et al. (2006), data
used for CBM could be categorized into two main types: event data and condition
monitoring data. The former includes the information on what has happened (e.g.,
installation, breakdown, and overhaul) and what has been done (e.g., minor repair,
preventive maintenance, and oil change) to the machinery. The latter is the mea-
surements related to the health condition/states of the machinery. Condition mon-
itoring data are very versatile which could be vibration, acoustic, oil analysis,
temperature, pressure, moisture, humidity, weather, or environment data, etc. In this
platform, vibration and current data are commonly used due to the easy-to-measure
signals and analysis.

10.2.2 Signal Processing

Signal processing is a process of removing distortions and restoring the original
shape of signals, removing sensor data which is not relevant, and transforming the
signal to make relevant features more explicit. Many methods could be applied for
this process in I-CBM platform, for example, wavelet transform and fast Fourier
transforms (FFT).

10.2.3 Feature Representation

Data obtained from signal processing process are rarely usable in its raw form due
to the huge dimensionality. The huge dimensionality causes not only difficulties of
data storage but also data transfer. Therefore, representing data as features is the
demand for reduce the huge dimensionality. Feature representation or feature cal-
culation module is a submodule of feature-based techniques and plays a crucial role
in attaining the performance of I-CBM platform.

Here, the represented features include time domain features (e.g., root mean
square, variance, shape factor, skewness, kurtosis, and crest factor) and frequency
domain features (e.g., content at the feature frequency and the amplitude of FFT
spectrum). Figure 10.2a presents an example of feature representation module for
vibration signals.
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Fig. 10.2 Feature representation extraction and selection in I-CBM platform (Tran and Yang
2012). a Feature representation, b feature extraction, and c feature selection
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10.2.4 Feature Extraction and/or Feature Selection

Total features obtained in the previous process can cause a curse of dimensionality
and peaking phenomenon that greatly degrade the classification accuracy. Feature
extraction can be viewed as a prepruning process to choose a small subset of total
features that is necessary and sufficient to describe the overall operations of
machine systems. The importance of feature extraction is not only to reduce the
search space but also to speed up the process of classification and also to improve
the quality of classification. The extracted feature vectors will serve as one of the
essential inputs to fault diagnosis and prognosis algorithms. In this platform,
common algorithms used for feature extraction are principal component analysis
(PCA), independent component analysis (ICA), kernel PCA, kernel ICA, linear
discriminant analysis, etc. as shown in Fig. 10.2b.

Even though dimensionality is reduced by the feature extraction process, each
feature set contains many redundant or irrelevant features as well as salient features
in feature space. Consequently, feature selection process is of necessity to find an
optimal subset of features that maximizes information content or predictive accu-
racy. Figure 10.2c gives the result obtained from feature selection process.

Fig. 10.2 (continued)
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10.2.5 Diagnostics

This module is used for analyzing the pattern embedded in the features to determine
the root causes of previous observed faults or degradation. In order to attain this
purpose by using the I-CBM platform, several classification methods are applied.
Furthermore, the maintainers can compare the performance of each method to
certainly affirm the condition of machine. Figure 10.3a describes the diagnosing
results of induction motor faults.

10.2.6 Health Assessment

The health status and the degradation of machinery are performed in this module by
using condition parameters. It also provides the unacceptable level or the failure

Fig. 10.3 An example of fault diagnostics and prognostics in I-CBM platform (Tran and Yang
2012). a Fault diagnostics, b failure prognostics
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threshold for the operations, so that the appropriate actions will be taken to avoid
the consequences of failure before the failure occurs.

10.2.7 Prognostics

Prognostics are the ability to predict the remaining lifetime, future health states, or
reliability of machinery based on current health assessment and historical trends.
Thus, there are two main functions of prognostics: failure prediction and remaining
lifetime estimation. Failure prediction allows the pending failures to be identified
before they come to a serious situation. Remaining lifetime is the time left before a
particular fault will occur or any part needs to be replaced. The techniques related to
prognostics can be classified as experience-based, model-based, and
data-driven-based. The prognostics module of I-CBM platform addresses both these
functions in which most of methods belong to data driven-based techniques.
Figure 10.3b shows a forecasted result of kurtosis feature of bearing by using
ARMA/GARCH model (Pham and Yang2010).

10.3 Autonomous Control for Safety Operation

A substantial benefit may be realized from the application of PHM technologies to
critical systems by taking advantage of the diagnostic and prognostic pronounce-
ments and exploiting them in a feedback configuration to reconfigure or restructure
system controls, replan missions, and sustain stable operating conditions in the
presence of non-catastrophic failures. Failures and damage accommodation of
critical system components (aircraft actuators, control surfaces, etc.) has been the
subject of intense research activities in recent years. Automated contingency
management (ACM) aims to optimize available assets and control authority so that
the system (unmanned aerial vehicles, engines, etc.) continues to operate within an
acceptable and stable regime (operation envelope, stable state, etc.).

Concepts of fault-tolerant control (FTC) and fault accommodation are promoted
to assist not only the operator but also the system designer in optimizing system
design, sensor requirements, component redundancy, active controls, etc. so that
modern critical assets exhibit attributes of high confidence. Furthermore, notions of
active/adaptive control are investigated in an attempt to design an added control
authority (not a part of the conventional controller design) that may extend the flight
or stability envelope in critical situations. Consider, for example, the case of an
unmanned aerial vehicle (UAV) that experiences a collective actuator failure in
flight. Such an event invariably will drive the vehicle to an unstable state resulting
in loss of the aircraft. If a controller is designed and implemented to regulate the
RPMs of the helicopter’s main rotor and is activated immediately after the failure is
detected and isolated, the UAV will remain stable and land safely during the
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emergency. The system designer stands to benefit from PHM by gaining a better
understanding of the physics of failure mechanisms, the need for monitoring and
sensing, issues of hardware and analytic redundancy, and means to design and build
high confidence systems.

Key ACM/FTC assumptions include:

• The failures or system parameter changes are unanticipated,
• After the appearance of a failure, the system operates in an emergency mode

with another criterion until the failure is recovered,
• Nonstandard techniques, effectors, and configurations may be required,
• The available reaction time is small,
• The handling qualities of the restructured/reconfigured system may be degraded,

and
• The failure, in general, may influence the system’s behavior and stability.

Sensor, component, and operational failures are considered. The last category
refers to such failure modes for a typical rotorcraft as rotor stall, engine stall and
surge, rapid battery discharge, loss of data link, etc. Figure 10.4 shows an engine
perspective that illustrates the application of PHM at various levels of the control
hierarchy. At the higher echelons, mission replanning and midlevel “intelligent”
controls are exercised to safeguard the engine’s operational integrity, whereas gain
scheduling is practiced at the lowest level to ascertain system stability.

Next, consider the case of a vertical takeoff and landing (VTOL) UAV suffering
a fault condition in flight. The vehicle is equipped with appropriate PHM sensors
and active controllers designed to accommodate certain fault modes. A fault
detection and identification (FDI) routine receives periodic sensor information,

Fig. 10.4 ACM, an engine perspective (Vachtsevanos et al. 2006)
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extracts “features” from the signals, and compares these features with known fault
signatures. When a failure is identified, a fault-mode signal is generated that con-
tains information about the nature of the fault. An FTC routine determines the
reconfiguration actions necessary to maintain system stability and performance.
These actions may include:

• Starting new algorithms (controllers),
• Changing the source of certain signals (i.e., sensor signals and actuator

commands),
• Changing set points, and
• Modifying local controller parameters.

The FTC routine also sets new priority and quality-of-service (QoS) require-
ments for signals during the fault recovery process. Figure 10.5 is a schematic
representation of the integration of PHM and control systems.

A three-level control reconfiguration hierarchy is suggested:

• Redistribution of control authority between subsystems,
• Updating of local controller set points (based on reconfigured overall system),
• Reconfiguration of local controllers.

A typical FDI/FTC example situation involves a stuck collective actuator while
the helicopter is descending from 300 to 100 ft. Without reconfiguration, the vehicle
would be unable to slow its descent, as shown in Fig. 10.6 and validated via
computer simulations.

With FDI/FTC, the FDI routine detects the stuck collective actuator and outputs
a fault-mode signal. The FTC routine receives the fault mode signal and proceeds to
reconfigure the system; that is, it starts the RPM controller routine, stops the

Fig. 10.5 Integration of PHM and control systems (Vachtsevanos et al. 2006)

10.3 Autonomous Control for Safety Operation 351



nominal (collective) controller, and the RPM controller subscribes the sensor
information and outputs low-level actuator commands. The vehicle hovers at 30 ft,
now attaining a stable state, as shown in Fig. 10.7.

Researchers at the Georgia Institute of Technology have developed and
validated/verified via simulation and flight testing this and other control reconfig-
uration algorithms under the Software Enabled Control (SEC) Program. They used
for this purpose the GTMax, an experimental VTOL UAV instrumented and owned
by Georgia Tech.

Fig. 10.6 UAV bob-down maneuver without FDI/FTC (Vachtsevanos et al. 2006)

Fig. 10.7 UAV bob-down maneuver with FDI/FTC (Vachtsevanos et al. 2006)

352 10 System Support and Logistics



10.4 Future PHM

PHM is a generic way of dealing with a certain degree of system uncertainty and
complexity. In situations, in which system uncertainty and complexity further
increase in future, self-maintenance abilities, resilient systems and engineering
immune systems are necessary and should be developed (Lee et al. 2013), as shown
in Fig. 10.8. Systems with high uncertainty and are applicable to nonintrusive
approaches only require solutions that are more advanced than preventive main-
tenance in order to avoid untimely maintenance and nonoptimal cost.
Self-maintenance could be a suitable approach to this problem. Self-maintenance
refers to the ability to carry out regular quality and safety checking by machine
itself, to detect anomaly, and to make immediate repairs when needed by using
stocked spare parts to avoid potential catastrophic loss. Based on the PHM func-
tions, such as current health assessment and RUL prediction, self-maintenance will
be achievable. High complexity and dynamic are noticeable challenges for current
PHM techniques. Resilient system could be the solution to this situation. Resilient
systems can manage functions across multiple possible states, resist different types
of disorder, and gradually return to the equilibrium state. Compared with the
concept of robustness of a system which mainly refers to a static behavior of the
system, resilience means the system is capable to dynamically survive different
unforeseen impacts and adaptive to disturbance to reach a new stable status at a
steady rate. Resilience is one of many qualities to be integrated into future system

Fig. 10.8 PHM transformation and future trends (Lee et al. 2013)
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with the support of advanced PHM techniques. Beyond self-maintenance and
resilient system, engineering immune system (EIS) will be the next-generation PHM
(Lee et al. 2013). EIS is an analogy of the biological immune system which protects
against invasion and infection by identifying and killing the pathogens. It can
address the machine maintenance issues in highly complex and uncertain envi-
ronment. The goal of having an EIS is to achieve efficient near-zero breakdown
performance with minimal human intervention. EIS should be robust in diverse and
dynamic environment, adaptive to learn and respond to new infections, adaptive to
retain memory to facilitate future responses, and autonomous for self-controlled
ability with no requirement of external control. Currently, artificial immune system
has already been developed to enable computing system to manage itself and adjust
to accommodate varying circumstances with minimized interference from human
operator. To improve the prognostics performance of the engineering system, fur-
ther development of EIS is essential.
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