

Sampling for Particle Size Analysis

Mark Bumiller mark.bumiller@horiba.com www.horiba.com/particle

© 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Particle Sizing Workflow

Sampling Workflow

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Measurement Error Sources

Small particles

- Smaller extraction errors (A)
- Larger sample prep errors (C)

Large particles

- Larger extraction errors (B)
- Smaller sample prep errors (D)

Particle size

HORIBA

Instrument error relatively small

May increase w/decreasing particle size (less so w/LA-950)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Errors vs. Errors

Accuracy

• Is the size reported same as referee technique?

- •RI, dispersion, method
- Repeatability
 - •As sample recirculates, get same result?
 - Is sample stable
- Reproducibility
 - Sample, disperse, measure, clean, repeat
 - Good sampling, dispersion, stability

Sampling from Flowing Powder

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved.

Sampling from Flowing Powder

Cross-cut sampling: $w = \underbrace{L}_{v} \underbrace{W}_{v} b = \underbrace{Wb}_{v}$

v = sampling speed (m/s)

W = sample mass

- L = width of powder stream
- b = sample cutter width*

Cross-cut sampler

*Masuda, H, Powder Technology Handbook, CRC Press, p 771

Explore the future

Sampling from Drums

Powder Thief

www.samplingsystems.com

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Sampling from Drums

www.samplingsystems.com

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Sub-sampling for Measurement

bulk or process	gross	laboratory	test	measurement
stream	sample	sample	sample	sample
(10 ⁿ kg)	(> kg)	(< kg)	(g)	(mg)

- Not all of sample brought to lab is analyzed
- Must sub-divide sample
- How to introduce representative sample into instrument
- Amount measured varies wet vs. Dry, choice of sample presentation unit

Technique: Grab Sampling

Place spatula into powder, extract small amount for analysis

- Easy, most used method
- Maybe worse method
- May be acceptable for narrow distributions
- Problem: segregation of larger particles w/wide distribution
 - Large particles percolate upward
 - Small particles gravitate downward

Explore the future

© 2012 HORIBA, Ltd. All rights reserved

Grab Sampling from Bottle

When a powder is stored in a container, it can be mixed by rolling and tumbling the container. The container should <u>not be more than half to two-thirds full</u>. It is important to perform this action before "grabbing" a sample with a spatula.

Then pull sample with a spatula.....

Technique: Coning & Quartering

Pile of powder is divided into 4 sections.

Two diagonal sections are discarded, and two are retained and mixed together.

Mixture is again divided into 4 sections, and two diagonal sections are mixed.

Process is repeated until remaining sample is correct amount for analysis.

Can be carried out with very small sample amount or very large samples.

Opposite quarters taken for mixing and forming

Technique: Chute Riffling

Chute splitting allows sample to vibrate down a chute to vanes which separate the mass into two portions. Each portion moves further where they each are divided into two parts, now giving four parts. This may be continued until usually 8 or 16 portions are obtained.

Technique: Rotary Riffling

The <u>best method</u> of representative splitting of powders is the ROTARY RIFFLER. The complete sample to be split is directed down a chute into open containers. Each container will receive a sample which is representative of the original bulk material because the distribution of material is averaged over time. The complete amount of the original bulk sample must be consumed.

These splitters are commercially available from companies that market various types of sample splitters.

See: www.retsch.com

www.quantachrome.com

www.microscal.com

Explore the future

Sample Dividers

Laboratory sample divider PT 100

- for pourable powders and granules
- feed size up to 10 mm
- division into 6, 8 or 10 representative samples

Laboratory rotary tube sample divider PKZ 1000

- for pourable powders and granules
- feed size up to 10 mm
- various division ratios

Sample splitter RT

- for bulk materials
- feed size up to max. 50 mm

HORIBA

division into 2 samples

Explore the future

© 2012 HORIBA, Ltd. All rights reserved

HORIBA

Sample Splitting

Particle max. size (mm)	Opening width (mm)
20-16	50
16-10	30
10-5	20
5-2,5	10
below 2,50	6

Measure the entire finally divided sample

© 2012 HORIBA, Ltd. All rights reserved.

Cleanliness

- Must clean splitter or riffler after use
- Main reason spinning riffler not used???
- Cross contamination must be avoided
- But not really so hard
- Speed
 - Don't be in a hurry when using spinning riffler

Avoid exposure to dust

Sampling Technique Error Levels

Standard Deviation (σ) in % Sugar-Sand Mixture

SCOOP SAMPLING	6.31
TABLE SAMPLING	2.11
CHUTE RIFFLER	1.10
SPINNING RIFFLER	0.27

Density of sand and sugar respectively 2.65 and 1.64 g/ml

Reference: Allen, T. and Khan, A.A. (1934), Chem Eng, 238, CE 108-112

Method	Relative Standard Deviation (%)
Cone & Quartering	6.81
Scoop Sampling	5.14
Table Sampling	2.09
Chute Riffling	1.01
Spin Riffling	0.125

Sampler Error w&w/o Riffler

LA-950 WET without Riffler			
Sample Name	D(v, 0.1)	D(v, 0.5)	D(v, 0.9)
Run #1	3.080	38.018	203.416
Run #2	3.091	36.672	195.089
Run #3	2.915	35.762	200.610
Mean	3.029	36.817	199.705
Std. Dev.	0.099	1.135	4.237
COV (%)	3.255	3.083	2.121

LA-950 WET Analysis with Riffler			
Sample Name	D(v, 0.1)	D(v, 0.5)	D(v, 0.9)
Run #1	2.796	36.848	202.660
Run #2	2.828	37.260	205.074
Run #3	2.895	35.998	200.843
Mean	2.840	36.702	202.859
Std. Dev.	0.051	0.644	2.123
COV (%)	1.779	1.753	1.046

Sample riffled All of sub sample dispersed and measured as a suspension

Technique: Sampling from Beaker

Liquid should be in motion vertically and horizontally to insure good mixing.

Pipette should be about one-third of the way from the bottom when extracting sample.

Alternative: When mixing powders into a slurry: make paste, pipette from paste

Sampler Error w&w/o Mixing

LA-950 WET Analysis without Mixing			
Sample Name	D(v, 0.1)	D(v, 0.5)	D(v, 0.9)
Run #1	8.365	43.867	92.267
Run #2	12.596	61.324	113.839
Run #3	14.722	76.164	156.757
Mean	13.659	68.744	135.298
Std. Dev.	1.503	10.493	30.348
COV (%)	11.007	15.264	22.430

LA-950 WET Analysis with Mixing			
Sample Name	D(v, 0.1)	D(v, 0.5)	D(v, 0.9)
Run #1	11.476	66.064	160.472
Run #2	12.296	65.121	152.838
Run #3	12.722	66.164	156.757
Mean	12.509	65.642	154.798
Std. Dev.	0.301	0.737	2.771
COV (%)	2.409	1.123	1.790

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Summary

Explore the future

Resources: www.horiba.com/particle

