
Appendix A

Fixed point theorems for first- and second-order
polynomial mappings

A.1 Introduction

In this appendix we provide a deeper insight into the fixed point theorem that was
presented and used in Chapter 3. In particular, we concentrate on two of the simplest but
most important special cases of this theorem, one for linear or affine mappings (in Sec.
A.2), and the other for second-order polynomial mappings (in Sec. A.3). The importance
of these particular cases is twofold: On the one hand, these cases cover many of the layer
transformations being used in the figures and in the examples throughout this book; but
on the other hand, these cases may also serve as simple illustrations to the general case
involving more complex mappings. A further generalization to the case of mutual fixed
points between two mappings is discussed in Sec. A.4.

A.2 The fixed point theorem for linear or affine mappings

As we have seen in Sec. 3.2, the affine fixed point theorem states that all non-degenerate
affine mappings g(x,y) from RR2 onto itself have a single fixed point.

In order to more deeply understand this theorem, we start by analyzing the different
possible types of affine mappings g(x,y). The most general form of an affine mapping is:

x' = a1x + b1y + x0

y' = a2x + b2y + y0

(A.1)

Let us first consider the homogeneous mapping that is associated with g(x,y), i.e. the
corresponding linear transformation where the shift (x0,y0) is zero:

x' = a1x + b1y

y' = a2x + b2y  
(A.2)

Such a linear transformation may either:

(a) map RR2 onto the whole of RR2 (this occurs, for example, in rotations, scalings, flipping
over an axis, etc.);

(b) map RR2 onto RR (this occurs, for example, in a projection onto the x axis); or

(c) map RR2 onto the origin (0,0) (this occurs in the zero transformation that maps all the
points (x,y) onto (0,0)).
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Cases (b) and (c) occur when the linear transformation (A.2) is singular, i.e. when its
determinant equals zero:

a1  b1

 a2 b2
 = a1b2 – a2b1 = 0     (A.3)

The same three cases occur also in the affine mapping (A.1), except that here, in cases
(b) and (c) RR2 is mapped, respectively, onto a shifted line (x0,y0) + RR or onto a shifted
point (x0,y0).

The degenerate linear or affine transformations of types (b) and (c) do not interest us, of
course, in our study on superpositions of transformed layers, since their application would
completely destroy our 2D layers. Consequently, we are only interested in linear or affine
transformations belonging to type (a), namely, cases in which determinant (A.3) is non-
zero. These cases are called regular or non-singular.

Let us now proceed to the fixed points of such non-singular transformations. A non-
singular linear transformation (A.2) may either:

(1) have a single fixed point, located at the origin (this occurs, for example, in rotations,
scalings, etc.);

(2) have a full line of fixed points that passes through the origin (this occurs, for example,
in transformations such as flipping over the x axis, or scaling in the y direction alone,
in both of which all points of the x axis are fixed points); or

(3) have all the points of the entire x,y plane as fixed points (this occurs in the identity
transformation).

When does each of these cases occur? As we know, the fixed points of the linear
transformation (A.2) are those points of the plane which satisfy (x',y') = (x,y), namely:1

x = a1x + b1y

y = a2x + b2y  
(A.4)

This gives us the following linear set of equations for x and y:

(1 – a1)x    – b1y = 0

  –a2x  + (1 – b2)y = 0 
(A.5)

Clearly, cases (2) and (3) above occur when this linear set of equations is singular, i.e.
when:

1 – a1 –b1

–a2 1 – b2
 = 1 – a1 – b2 + a1b2 – a2b1 = 0     (A.6)

1 Note that here g(x,y) = (x,y) (or equivalently, in terms of matrices, Ax = x) does not mean that λ = 1 is
an eigenvalue of g(x,y) [Kreyszig93 p. 157], since in our case it may certainly happen that x = (0,0) is
the only solution of g(x) = x (as in the case of a scaling or rotation transformation g).
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In such cases the associated affine mapping (A.1), which is obtained by adding to (A.2)
a shift of (x0,y0), may have either infinitely many fixed points, or no fixed points at all.
Only in case (1), i.e. when determinant (A.6) is non-zero, the associated affine mapping
(A.1) has precisely one single fixed point; its location is given then by Eq. (3.13).

Let us first consider transformations that satisfy both conditions (a) and (1), i.e. where
both of the determinants (A.3) and (A.6) are non-zero. We call such affine mappings
non-degenerate affine mappings.

It is clear, therefore, that all non-degenerate affine mappings g(x,y) from RR2 onto itself
have a single fixed point; this is, indeed, precisely what is claimed by our affine fixed point
theorem in Sec. 3.2. But this theorem does not say anything about degenerate
transformations that do not satisfy condition (a) or condition (1).

As an illustration, let us mention that mappings such as rotations, scalings, etc. as well as
their combinations have, indeed, a single fixed point. This is also true for all of their
combinations with translation, but not for pure translations. Note that pure translations are
excluded, since their determinant (A.6) is zero; this can be understood more intuitively as
follows: The homogeneous transformation (A.2) associated with a pure translation is the
identity transformation, that belongs to class (3) above and has all the points of the x,y
plane as fixed points. But the addition of a translation to the identity transformation
destroys all of its fixed points, so that a pure translation has no fixed points at all.

As a second example, let us consider the linear transformation which consists of vertical
scaling. This transformation belongs to class (2) above, and has all the points of the x axis
as fixed points. What happens now when we add to this linear transformation a
translation? In this case, the answer depends on the direction of the translation: If the
translation is horizontal, it is clear that all the fixed points on the x axis are destroyed, and
the resulting affine mapping g(x,y) has no fixed points. But if the translation is vertical, the
resulting affine mapping g(x,y) will still have a full line of fixed points, which is parallel to
the x axis. Note, however, that such cases are not treated by our affine fixed point theorem,
since their determinant (A.6) is zero: As we have seen, this theorem only considers non-
degenerate affine mappings, but it does not say anything about degenerate affine
mappings. Indeed, some degenerate affine mappings have a full line of fixed points, while
others have no fixed points at all.

Thus, in order to cover all of the possible cases we need to introduce a more general
version of our theorem, that treats all affine mappings from RR2 onto itself, including
degenerate cases such as vertical scalings and translations:

Generalized affine fixed point theorem: An affine mapping g(x,y) from RR2 onto itself
has a fixed point (either one or infinitely many) iff rankA = rankB, where A is the 2×2
coefficient matrix of the homogeneous system of Eqs. (A.5) and B is the 2×3 extended
matrix that includes x0 and y0 in its third column:
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A = 
1 – a1 –b1

–a2 1 – b2
B = 

1 – a1 –b1

–a2 1 – b2

x0

y0

Moreover, if the rank of both A and B is 2, the fixed point is unique; if their rank is 1,
there exists a full line of fixed points; and if their rank is 0, all the points of the x,y plane
are fixed points of g(x,y) (this occurs if g(x,y) is the identity mapping without translation).
But if rankA ≠ rankB, the affine mapping g(x,y) has no fixed points at all.  

This generalized theorem is, in fact, an application to the particular case of Eqs. (A.5) of
the algebraic theorem on the dimension of the solution space of a system of linear
equations [Bronshtein97 p. 143].

A.3 The fixed point theorem for second-order polynomial mappings

As we have seen in Secs. 3.2 and A.1, the affine fixed point theorem states that all non-
degenerate affine mappings g(x,y) from RR2 onto itself have a single fixed point.

This theorem can be generalized to the case of second-order polynomial mappings. By a
second-order polynomial mapping (or simply, a mapping of order 2) we mean a mapping
g(x,y) that is defined by a pair of algebraic equations of order 2, namely:

x' = a1x2 + b1xy + c1y2 + d1x + e1y + x0

y' = a2x2 + b2xy + c2y2 + d2x + e2y + y0

(A.7)

Just as in the affine case, such transformations do not necessarily map RR2 onto the
entire RR2: in some degenerate cases the transformation (A.7) maps RR2 onto a straight or a
curved line, or even into a single point. For example, the second order transformation
g(x,y) = (x,x2) maps RR2 onto the parabola y = x2. Such situations occur when the mapping
g(x,y) defined by the set of equations (A.7) is singular, namely, when the two equations
forming the set are not independent. Two equations g1(x,y) = 0 and g2(x,y) = 0 are
said to be independent (or functionally independent) if there exists no function f(u,v) other
than f(u,v) ≡ 0 such that f(g1(x,y),g2(x,y)) = 0 is satisfied for all (x,y). Equivalently, this
means that the Jacobian:

J(x,y) = 

∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

 = ∂g1

∂x
∂g2

∂y
 – ∂g2

∂x
∂g1

∂y
    (A.8)

is not identically zero (see [Bronstein90 pp. 226, 430–431] or [Courant88 pp. 154–155]).
If g1(x,y) and g2(x,y) are dependent, for instance if g2(x,y) = g1(x,y)2, they are a
consequence of each other, and hence the 2D transformation g(x,y) = (g1(x,y),g2(x,y)) they
define is singular, and it maps RR2 onto a 1D curve or even a single point in RR2.

In the particular case of polynomial mappings of order 2, the condition for Eq. (A.7) to
be singular is, therefore, that the Jacobian (A.8) be identically zero, namely:
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(2a1x + b1y + d1)(b2x + 2c2y + e2) – (2a2x + b2y + d2)(b1x + 2c1y + e1) ≡ 0     (A.9)

which gives:

2(a1b2 – a2b1)x2 + 4(a1c2 – a2c1)xy + 2(b1c2 – b2c1)y2 + (b2d1 – b1d2 + 2a1e2 – 2a2e1)x

+ (2c2d1 – 2c1d2 + b1e2 – b2e1)y + (d1e2 – d2e1) ≡ 0

But since this expression must be identically zero for any values of x and y, this means
that Eq. (A.7) is singular when all of the following conditions are simultaneously satisfied:

a1b2 = a2b1

a1c2 = a2c1

b1c2 = b2c1

b2d1 + 2a1e2 = b1d2 + 2a2e1

(A.10)

2c2d1 + b1e2 = 2c1d2 + b2e1

d1e2 = d2e1

Such degenerate cases do not interest us, of course, in our study on superpositions of
transformed layers, since the mappings g(x,y) they represent do not map RR2 onto itself; we
will only be interested in non-singular mappings of order 2, namely, cases in which Eq.
(A.7) is non-singular.

We now proceed to discuss the fixed points of non-singular mappings of order 2. The
fixed points of transformation (A.7) are those points of the plane for which (x',y') equals
(x,y), namely:

x = a1x2 + b1xy + c1y2 + d1x + e1y + x0

y = a2x2 + b2xy + c2y2 + d2x + e2y + y0

(A.11)

This gives us the following system of equations for x and y:

a1x2 + b1xy + c1y2 + (d1 – 1)x + e1y + x0 = 0

a2x2 + b2xy + c2y2 + d2x + (e2 – 1)y + y0 = 0   
(A.12)

A general rule in algebra states that a system of two equations p1(x,y) = 0, p2(x,y) = 0,
where p1(x,y) is an m-order polynomial in x and y and p2(x,y) is an n-order polynomial in x
and y, has mn solutions (x,y), real or complex [Bronstein90 pp. 226–227]. This means that
in our case the system of equations (A.12) has up to 4 real solutions (x,y). This agrees,
indeed, with our geometric intuition, since each equation of order 2 represents in fact a
conic curve in the plane, and the intersection of two such conics clearly gives up to 4 real
solutions. However, depending on the locations and orientations of the two conic curves,
they may have only 3, 2, 1 or even 0 intersection points. Moreover, just like in the affine
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case, there may exist here, too, degenerate systems (A.12) with infinitely many solutions,
meaning that the corresponding mapping g(x,y) defined by (A.7) has infinitely many fixed
points. In general, the system of equations (A.12) may either:

(1) have between 0 and 4 solutions (which are fixed points of the mapping (A.7));

(2) have a full straight or curved line of solutions (fixed points of (A.7)); or

(3) have the full x,y plane as solutions (fixed points of (A.7)).

Cases (2) and (3) occur when the set of equations (A.12) is singular, or in other words,
if the two equations forming the set are not independent. This happens when their
Jacobian is identically zero:2

J(x,y) = 

∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

 = ∂g1

∂x
∂g2

∂y
 – ∂g2

∂x
∂g1

∂y
 =

       = (2a1x + b1y + d1 – 1)(b2x + 2c2y + e2 – 1)

– (2a2x + b2y + d2)(b1x + 2c1y + e1) ≡ 0   (A.13)

which gives:

2(a1b2 – a2b1)x2 + 4(a1c2 – a2c1)xy + 2(b1c2 – b2c1)y2

+ [b2(d1 – 1) – b1d2 + 2a1(e2 – 1) – 2a2e1]x

+ [2c2(d1 – 1) – 2c1d2 + b1(e2 – 1) – b2e1]y

+ [(d1 – 1)(e2 – 1) – d2e1] ≡ 0

But since this expression must be identically zero for any values of x and y, it follows
that Eq. (A.12) is singular when all of the following conditions are simultaneously
satisfied:

a1b2 = a2b1

a1c2 = a2c1

b1c2 = b2c1

b2(d1 – 1) + 2a1(e2 – 1) = b1d2 + 2a2e1

(A.14)

2c2(d1 – 1) + b1(e2 – 1) = 2c1d2 + b2e1

(d1 – 1)(e2 – 1) = d2e1

2 Note that g1(x,y) and g2(x,y) in this Jacobian are the functions in the left hand side of Eqs. (A.12),
while g1(x,y) and g2(x,y) in the Jacobian (A.8) are the functions in the right hand side of Eqs. (A.7).
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Figure A.1: An example with 4 fixed points: The superposition of two originally
identical aperiodic dot screens, one of which has undergone the second-
order transformation g(x,y) = (x – ay2 + x0, y – ax2 + y0). Fig. 3.15 shows
a slightly different variant in which both of the layers have undergone
second-order transformations.

We call second-order polynomial mappings g(x,y) for which both the Jacobians (A.9)
and (A.13) are not identically zero non-degenerate second order mappings. We obtain,
therefore, the following result:

The fixed point theorem for second-order polynomial mappings: A non-degenerate
second-order polynomial mapping g(x,y) from RR2 onto itself may have up to 4 fixed
points.  

An example of a layer superposition in which one of the two layers has undergone a
second-order mapping g(x,y) having 4 fixed points is shown in Fig. A.1. In this case we
have a1 = 0, b1 = 0, c1 = –a, d1 = 1, e1 = 0, a2 = –a, b2 = 0, c2 = 0, d2 = 0 and e2 = 1, so that
a1c2 ≠ a2c1 in conditions (A.10) and (A.14), meaning that both of the Jacobians (A.9) and
(A.13) are not identically zero. Note, however, that if g(x,y) is only non-singular (meaning
that only the Jacobian (A.9) is not identically zero), it will have infinitely many fixed
points, for example one or two full lines of fixed points. Such cases are illustrated in Figs.
3.5(c),(d) and 3.6; the mappings in these cases are clearly non-singular (they map RR2 onto
the whole of RR2), and yet they have infinitely many fixed points. (Explanation: in these
mappings, given by Eq. (3.19), we have a1 = 0, b1 = 0, c1 = –a, d1 = 1, e1 = 0, a2 = 0,
b2 = 0, c2 = 0, d2 = 0 and e2 = 1. Therefore we have in conditions (A.10) d1e2 ≠ d2e1, while
in conditions (A.14) we have instead (d1 – 1)(e2 – 1) = d2e1 and all the equalities are
satisfied.)

As we have seen above, a detailed analysis of all the different possible cases for
mappings of order 2 amounts to an analysis of the intersection points between two conics
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in the plane. A full discussion on the intersection of conics can be found, for example, in
[Barrett97].

A.4 Mutual fixed points between two mappings; application to the moiré theory

As we have seen in Chapter 3, when we superpose two originally identical aperiodic
layers (such as random or pseudo-random screens) that have undergone transformations
g1(x,y) and g2(x,y), respectively, we may obtain in the superposition a visible Glass pattern
about each mutual fixed point of the transformations g1(x,y) and g2(x,y) (see Sec. 3.5). The
fixed point theorems described in Secs. A.2 and A.3 above correspond, in fact, to the case
where one of the two layer transformations, say, g2(x,y), is the identity transformation,
meaning that only one of the two layers has been transformed. In such cases the mutual
fixed points of the two layers are obtained at the points (x,y) where g1(x,y) = (x,y), which is
precisely the situation described in Eqs. (A.4) and (A.11). In the more general case where
both of the superposed layers have been transformed, the mutual fixed points of g1(x,y)
and g2(x,y) are the points that satisfy g1(x,y) = g2(x,y), namely:

gM(x,y) = g1(x,y) – g2(x,y) = (0,0)   (A.15)

In componentwise notation, these points are the solutions of the system of equations:

gM1
(x,y) = g1,1(x,y) – g2,1(x,y) = 0

gM2
(x,y) = g1,2(x,y) – g2,2(x,y) = 0

(A.16)

where g1(x,y) = (g1,1(x,y),g1,2(x,y)), g2(x,y) = (g2,1(x,y),g2,2(x,y)) and gM(x,y) = (gM1
(x,y),

gM2
(x,y)).

Therefore, in cases where both of the layers have been transformed, conditions (1)–(3)
in Secs. A.2 and A.3 apply, in fact, to the solutions of equations (A.15) or (A.16). For
example, the layer superposition may have a linear Glass pattern when g1(x,y) and g2(x,y)
have a full line of mutual fixed points, i.e. when gM(x,y) = (0,0) has a full continuous line
(or curve) of solutions within the x,y plane. Note that these points are not fixed points of
the transformation gM(x,y) itself (the fixed points of gM(x,y) are given by the solutions of
gM(x,y) – (x,y) = (0,0), not by the solutions of gM(x,y) = (0,0)).

This generalization to the case of two transformed layers is valid for any transformations
g1(x,y) and g2(x,y), and not only for first- or second-order polynomial mappings.
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The various interpretations of a 2D transformation

B.1 Introduction

Consider a system of two equations in two independent variables x and y:

u = g1(x,y)

v = g2(x,y)
(B.1)

or in vector notation:

u = g(x)     (B.2)

where x = (x,y), u = (u,v), and g(x,y) = (g1(x,y),g2(x,y)). Clearly, both g1(x,y) and g2(x,y) are
scalar functions, i.e. functions that return for each point (x,y) ∈RR2 a single real value:

g1: RR2 → RR,      g2: RR2 → RR

whereas g(x,y) is a mapping (or, equivalently, a transformation), i.e. a vector function that
returns for each point (x,y) ∈RR2 a new point (u,v) ∈RR2:

g: RR2 → RR2

We denote this function by a boldface letter g since the value it returns, g(x,y), is a vector.

The mathematical relationship defined by (B.1) (or alternatively by (B.2)) can be
interpreted in several different yet completely equivalent ways, as explained in the
following sections. Because all of these interpretations are mathematically equivalent, we
are free in each application to choose any of them according to our convenience. It is
important, however, to be aware of the different interpretations, and to know which of them
is being used in each case, in order to avoid any possible confusions.

B.2 Interpretation as two surfaces over the plane or as two sets of level lines

Each of the two real valued functions of the system (B.1) defines a surface (manifold)
z = g(x,y) over the x,y plane, where z represents the altitude of the surface at the point (x,y)
in terms of the vertical axis, perpendicularly to the x,y plane. Therefore, the 2D mapping
g(x,y) can be interpreted geometrically as a pair of surfaces (see Fig. B.1).

The level lines (or level curves) of each of these surfaces are given by:

gi(x,y) = const.



290                                          Appendix B: The various interpretations of a 2D transformation

In particular, the set of points (x,y) satisfying gi(x,y) = 0 (i.e. the solution of the equation
gi(x,y) = 0) can be interpreted as the zero level line of the surface gi(x,y), namely, the
intersection of the surface with the x,y plane. Therefore, the set of points (x,y) satisfying
the two equations:

g1(x,y) = 0

g2(x,y) = 0
(B.3)

(i.e. the simultaneous solution of both equations) consists of the points of intersection
between the zero level curves of g1(x,y) and the zero level curves of g2(x,y). Depending on
the case, there may exist zero, one, several, or even infinitely many such intersection
points. For example, if the zero level curves of the two functions are two intersecting
straight lines, then the system (B.3) has a single solution (intersection point). As a further
example, if the zero level lines of the two functions are second-order curves such as
parabolas or ellipses, they may have up to 4 intersection points (see Sec. A.3 in Appendix
A). Finally, in the case where the zero level curves of g1(x,y) and g2(x,y) coincide there
exist infinitely many intersection points; and in the case where the two zero level curves
are parallel to each other (or when at least one of the two surfaces does not intersect the x,y
plane at all) the system (B.3) has no solutions.

In the example shown in Fig. B.1, where g(x,y) = (2xy, y2 – x2), the zero level lines of the
surface g1(x,y) are two perpendicular lines that coincide with the x and y axes, and the zero
level lines of the surface g2(x,y) are two perpendicular lines that coincide with the main
diagonals. Their intersection consists, therefore, of a single point at the origin. But if we
consider, instead, the two functions defined by g(x,y) = (2xy – 1, y2 – x2 – 1), the zero level
lines of the two surfaces become hyperbolic (see in Fig. B.1 the level lines corresponding
to the altitude z = 1), and their intersection consists of two points.

It should be noted that the system of equations (B.3) is not equivalent to (B.1) because it
only takes into consideration the subsets of the surfaces u = g1(x,y) and v = g2(x,y) where
the surface altitude is zero. The generalization to any other altitudes c,k is straightforward
(by considering the equations g1(x,y) = c and g2(x,y) = k); but none of these equation pairs
is equivalent to (B.1), either.

B.3 Interpretation as a mapping from the plane into itself

So far, we considered (B.1) as a system consisting of two scalar functions, g1(x,y) and
g2(x,y). However, using an alternative interpretation, we may consider the vector function
g(x,y) of (B.2) as a mapping from the x,y plane onto the u,v plane (or a subset thereof).
Thus, the transformation g maps each point (x,y) of the domain of g in the x,y plane into its
image point (u,v) = g(x,y) in the u,v plane. This is concisely expressed by the notation:
(x,y) |→ g(x,y). The interpretation of g as a mapping is illustrated in Fig. B.2 for the same
transformation as in Fig. B.1.
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Figure B.1: Illustration of the transformation g(x,y) = (2xy, y2 – x2) as a pair of
surfaces. (a) The surface g1(x,y) = 2xy. (b) The surface g2(x,y) = y2 – x2.
Gray levels indicate the surface altitude: brighter shades represent
higher values and darker shades represent lower values. The curves
plotted on each of the surfaces are its level lines.

Note, however, that a mapping g(x,y) does not necessarily map RR2 onto the entire RR2, or
even onto a 2D subregion thereof: In some degenerate cases g(x,y) may map RR2 into a
straight or a curved line, into a single point, or even into an empty set. For example, the
second order transformation g(x,y) = (x,x2) (namely, u = x, v = x2) maps RR2 onto the
parabola v = u2 which is only a 1D curve within the u,v plane. As another example,
the transformation u = x , v = ––x  maps RR 2 onto the single point (0,0), while the
transformation u = x , v = 1/ ––x  maps RR2 onto an empty set. Such situations occur
when the mapping g(x,y) (or equivalently, the system of equations (B.1)) is singular,
namely, when the two equations forming the system are not independent.

Definition B.1: Two functions (or equations) u = g1(x,y) and v = g2(x,y) are said to be
independent (or functionally independent) if there exists no function f(u,v) other than
f(u,v) ≡ 0 such that f(g1(x,y),g2(x,y)) = 0 is satisfied for all (x,y). Equivalently, this means
that the Jacobian:

J(x,y) = 

∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

 = ∂g1

∂x
∂g2

∂y
 – ∂g2

∂x
∂g1

∂y
    (B.4)

is not identically zero (see, for example, [Bronstein90 pp. 226, 430–431] or [Courant88
pp. 154–155]).  
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Figure B.2: Illustration of the transformation g(x,y) = (2xy, y2 – x2) as a direct
mapping (x,y) |→ g(x,y). (a) A periodic dot screen in the original x,y
plane. (b) The transformed dot screen after each of its dots (x,y) has
been moved by the mapping g to its new location g(x,y). The “seam”
along the negative part of the y axis in (b) was left intentionally, to
clearly illustrate how the upper half plane of (a) is deformed around
the origin in (b), and covers the entire destination plane. The lower half
plane of (a) is deformed upwards in a similar way, and it covers once
again the entire destination plane. See also Fig. B.4(a),(b).

If g1(x,y) and g2(x,y) are dependent, for instance if g2(x,y) = g1(x,y)2, they are a
consequence of each other, and hence the 2D transformation g(x,y) = (g1(x,y),g2(x,y)) they
define is singular, and it maps RR2 onto a 1D curve or even into a single point or an empty
set in RR2. This can be easily seen from Definition B.1: If there exists a function f(u,v)
other than f(u,v) ≡ 0 such that f(g1(x,y),g2(x,y)) = 0 for all x,y, then the image of our
transformation (u,v) = g(x,y) satisfies f(u,v) = 0, which means, indeed, that the image of g is
a 1D curve (or a point, or even an empty set) within the 2D u,v space.

Thus, in order to avoid such degenerate cases, we must request that the functions g1(x,y)
and g2(x,y) be independent.

Example B.1: Consider the system consisting of the two functions:

u = f(x) cosy

v = f(x) siny

This transformation is, in fact, a generalization of the polar to Cartesian coordinate
transformation u = rcosθ, v = rsinθ where the radius length r is replaced by its modulated
version f(r). It is easy to see that the Jacobian of this transformation is given by:

(a) (b)



B.3 Interpretation as a mapping from the plane into itself 293

Figure B.3: Illustration of g(x,y) = (2xy, y2 – x2) as a domain transformation. It
operates on the original image r(x,y) shown in (a), and gives the
transformed image r(g(x,y)) shown in (b). The original image r(x,y) in
(a) is the same periodic dot screen as in Fig. B.2(a). Note that the left
half plane of (a) is mapped twice into the two left quadrants of (b);
similarly, the right half plane of (a) is also mapped twice into the two
right quadrants of (b). See also Fig. B.4(c),(d).

J(x,y)  = f(x) d
dx

f(x) cos2y + f(x) d
dx

f(x) sin2y  = f(x) d
dx

f(x)

If we take, for example, f(x) = sinx we obtain the system:

u = sinx cosy

v = sinx siny
(B.5)

These two functions are clearly independent, since their Jacobian is not identically zero;
and indeed, they map RR2 onto a 2D subregion of RR2, the entire unit disk. On the other
hand, if we take f(x) = 1 then the Jacobian becomes identically zero, meaning that the two
functions u = cosx, v = sinx are dependent; and indeed, this system maps RR2 onto a 1D
curve within RR2, the perimeter of the unit circle.

It may be also instructive to see what happens to the independent system u = rcosθ,
v = rsinθ (that maps RR2 onto RR2) as it gradually approaches its dependent counterpart
u = cosθ, v = sinθ (that maps RR2 onto a 1D curve). This can be done, for example, by
observing the system u = (1+εr)cosθ, v = (1+εr)sinθ while ε gradually tends to zero.  

Remark B.1: When (u,v) = g(x,y) is a linear transformation, the two surfaces defined
over the x,y plane by the functions u = g1(x,y), v = g2(x,y) (see Sec. B.2) are planes that
pass through the origin. Hence, the equations g1(x,y) = 0, g2(x,y) = 0 may have either a

(a) (b)
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single common solution at the origin (if the zero level lines of the two planes have a single
intersection point), a full straight line of solutions passing through the origin (if the two
planes have a common zero level line), or a full plane of solutions (in the degenerate case
where both planes fully coincide with the x,y plane).1 Now, because g is a linear
transformation, it must satisfy the relationship dim Ker g + dim Im g = 2 (see Sec. 5.4.1 in
Vol. I). It follows, therefore, that g1(x,y) and g2(x,y) are independent (i.e. dim Im g = 2) iff
they have a single solution point (i.e. dim Ker g = 0). Thus, if g1(x,y) and g2(x,y) have a full
continuous line of solutions in common, they must be dependent and the transformation
g(x,y) necessarily maps RR2 onto a 1D line. For example, in the case of the linear
transformation g(x,y) = (x,2x) the planes u = g1(x,y) = x and u = g2(x,y) = 2x have a full
continuous line of solutions in common along the y axis; and indeed, g(x,y) maps the
entire plane RR2 into the line y = 2x.2

It is interesting to note, however, that the situation in non-linear transformations is more
flexible than in the linear case: The two functions u = g1(x,y), v = g2(x,y) may have a full
continuous curve of solutions in common (or even several or infinitely many such curves)
without necessarily being dependent (and hence, without implying that the system (B.1) is
singular and maps its entire 2D domain into a 1D curve). For example, both of the
functions u = x, v = xey have a full line of solutions along the y axis; but they are still
independent (their Jacobian is not identically zero), and g(x,y) = (x,xey) still maps RR2 onto
a 2D subrange of RR2 (the first and third quadrants of the plane). As a second example,
consider the two functions of (B.5). These functions are clearly independent, and indeed,
they map RR2 onto a 2D subrange of RR2 (the unit disk). And yet, they have infinitely many
continuous lines of solutions in common (all the vertical lines x = nπ, n ∈ZZ). Incidentally,
in this case each of the two functions has also infinitely many additional zeros that are not
shared with the other: The first function has the horizontal lines y = (m + 1

2)π, m ∈ZZ as
zeros, while the second function has the horizontal lines y = mπ, m ∈ZZ as zeros.

It turns out that if the Jacobian is non-zero at a solution point (x0,y0) of the system
(u,v) = g(x,y) then that solution point is isolated [Howse95 p. 14]. Note, however, that
although the converse is true for linear transformations, it is not necessarily true in the
general case. For example, the point (0,0) is clearly an isolated solution of the system
(u,v) = (2xy, y2 – x2), and yet the Jacobian J(x,y) = 4x2 + 4y2 vanishes at this point.  

B.4 Interpretation as a domain transformation r(g(x,y))

Suppose we are given a scalar function (i.e. a surface) r(u,v), and that we apply to it the
transformation (u,v) = g(x,y). The resulting distorted function (or surface) is given,

1 Note that the case with no solutions at all (where the two planes, and hence their zero level lines, are
parallel to each other) is excluded when g is linear, since both planes of a linear transformation must
pass through the origin. This case may occur, however, if g is an affine transformation.

2 More generally, this situation occurs in all linear transformations having the form u = ax + by,
v = s(ax + by). The common zeros of these two planes (i.e. Ker g) consist of the entire line ax + by = 0,
and the image of the transformation (Im g) consists of the line v = su.
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therefore, by r(g(x,y)). This is illustrated in Fig. B.3, where the original function r(u,v) is
shown in (a), and the resulting distorted function r(g(x,y)) is shown in (b). This figure
uses, again, the same transformation g(x,y) = (2xy, y2 – x2) as in Fig. B.2, and yet, the effect
of the transformation seems to be completely different: While in Fig. B.2 the distortion
generated by g(x,y) seems to be parabolic, in Fig. B.3 the distortion seems to be
hyperbolic. How can we explain this fact?

As pointed out in Sec. D.6 of Appendix D, each transformation g(x,y) can be used in
two different ways: either as a direct transformation, or as a domain, inverse
transformation. Consider, for example, the transformation g(x,y) = (2x,2y). Clearly, this
transformation maps each point (x,y) to the new location (2x,2y), and thus it expands the
original layer by two. This is, indeed, the interpretation of g(x,y) as a direct transformation.
However, when the same transformation g(x,y) is used as a domain transformation, for
example, when it acts on the original layer r(u,v) to give r(2x,2y), its effect is inversed:
r(2x,2y) is a two-fold shrinked version of r(u,v), while the two-fold expansion of r(u,v) is
expressed by r(x/2,y/2), i.e. by using the inverse transformation g–1(x,y) = (x/2,y/2). This
inversion effect of domain transformations is explained in detail in Sections D.6 and D.10
of Appendix D; see also Remark 4.1 in Sec. 4.4.

Returning now to our case, we see that the transformation g(x,y) = (2xy, y2 – x2) is used
in Fig. B.2 as a direct transformation (x,y) |→ (2xy, y2 – x2), while in Fig. B.3 it is used as a
domain (and hence, inverse) transformation that distorts r(u,v) into r(2xy, y2 – x2). This
explains, indeed, the different geometric shapes that are obtained by the same
transformation in Figs. B.2 and B.3. The effects of the same transformation g(x,y) =
(2xy, y2 – x2) as a direct transformation and as an inverse transformation are also illustrated
in Fig. B.4.

The lesson is, therefore, that in situations where g(x,y) can be used in both ways, it is
important to clearly indicate which of the interpretations of g(x,y) is intended, in order to
avoid any possible confusion.

B.5 Interpretation as a coordinate change

If we consider the level lines of the function u = g1(x,y) and the level lines of the function
v = g2(x,y) as two sets of curvilinear coordinates, we may interpret system (B.1) or its
vector representation (B.2) as a transformation from Cartesian to curvilinear coordinates in
the plane. In other words, we can regard (B.1) or (B.2) as a mapping from RR2 onto itself
that defines a new curvilinear coordinate system u,v in the plane, instead of the original
Cartesian coordinate system x,y (see Fig. B.1 and Fig. B.4(d)).

According to this interpretation of g(x,y), the zero level curves g1(x,y) = 0 and g2(x,y) = 0
are simply the curvilinear axes u = 0 and v = 0 of the new curvilinear coordinate system
defined by the transformation g(x,y). The other coordinate curves u = m and v = n for all
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m,n ∈ZZ are given by the two curve families defined by g1(x,y) = m and g2(x,y) = n, which
are, respectively, integer level lines of g1(x,y) and integer level lines of g2(x,y).

It is interesting to note, however, that the curvilinear coordinate system obtained from the
level lines of u = g1(x,y) and v = g2(x,y) corresponds to the effect of g(x,y) as an inverse
transformation (for example, in the case shown in Fig. B.1 we obtain a hyperbolic
coordinate net rather than a parabolic one). This phenomenon is explained in detail in Sec.
D.4 of Appendix D.

Obviously, in order to provide a useful coordinate system the transformation
(u,v) = g(x,y) must satisfy the condition J(x,y) ≡ 0 set by definition B.1. We have seen in
Sec. B.3 that this condition eliminates the risk that g(x,y) maps RR2 into a degenerate subset
of RR2 such as a 1D curve, a single point, or an empty set. In terms of coordinate lines, the
condition J(x,y) ≡ 0 guarantees that the two components of (u,v) = g(x,y), namely,
u = g1(x,y) and v = g2(x,y), do not have exactly the same level curves [Kaplan03 p. 162].
But while this condition is obviously necessary, it is not yet sufficient to guarantee that the
resulting coordinate system is useful, and it does not exclude other pathologic situations
that can make our new coordinate system useless. For instance, each of the surfaces
u = g1(x,y), v = g2(x,y) still may have several distjoint zero level curves, meaning that each
of the resulting curvilinear coordinate axes g1(x,y) = 0 and g2(x,y) = 0 consists of several
disjoint branches. This occurs, for example, in the case of g(x,y) = (2xy, y2 – x2), where
each of the surfaces has two perpendicular zero level lines (see Fig. B.1), or in its variant
g(x,y) = (2xy – 1, y2 – x2 – 1), where each of the surfaces has a hyperbolic zero level line
composed of two disjoint branches. Furthermore, the curvilinear axes g1(x,y) = 0 and
g2(x,y) = 0 may have several intersection points even if the Jacobian is not identically zero;
this may happen, for example, if the axes are second order curves such as parabolas,
hyperbolas or ellipses, since such curves may have up to 4 intersection points. Even worse,
as we have already seen in Remark B.1, the two functions u = g1(x,y), v = g2(x,y) may have
coinciding zero level curves (and hence generate a useless, degenerate coordinate system)
even if their Jacobian is not identically zero: Indeed, the condition J(x,y) ≡ 0 excludes the
possibility that all the level curves of g1(x,y) and g2(x,y) be identical, but g1(x,y) and g2(x,y)
still may have some (and even infinitely many) coinciding level lines. For example, as we
have seen in Remark B.1, they may have coinciding zero level lines, and thus give
coinciding coordinate axes. It is clear, therefore, that in order to obtain a useful coordinate
system we need a stronger condition than simply having a non-identically zero Jacobian
J(x,y). For example, we may require that g1(x,y) and g2(x,y) satisfy also the following
identities, which are known as the Cauchy-Riemann conditions:

      (a) ∂g1

∂x
 = ∂g2

∂y
, ∂g1

∂y
 = – ∂g2

∂x
      or     (b) ∂g1

∂x
 = – ∂g2

∂y
, ∂g1

∂y
  = ∂g2

∂x
     (B.6)

In this case, the transformation g(x,y) is called conformal [Courant88 pp. 166–167], and
it maps the straight lines x = const., y = const. into curve families u = const. and v = const.
which intersect at right angles. This orthogonality is clearly stronger than the mere
independence of g1(x,y) and g2(x,y); and indeed, condition (a) implies J(x,y) > 0, and
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Figure B.4: (a),(b) Representation of the same transformation g(x,y) = (2xy, y2 – x2)
as a coordinate change in RR2. (c),(d) Representation of the inverse
transformation g–1 as a coordinate change in RR2 (see Example D.5 in
Appendix D).

condition (b) implies J(x,y) < 0. Such an orthogonality is not required for having a useful
coordinate system (see for instance Fig. 10.2(b) in Vol. I), but it is certainly advantageous.
But on the other hand, this condition is not yet sufficient for excluding cases with
multiple-branch coordinate axes or with coordinate axes having several intersection points.
For example, although the transformation g(x,y) = (2xy, y2 – x2) shown in Fig. B.1 is
clearly conformal, each of its new coordinate axes g1(x,y) = 0 and g2(x,y) = 0 consists of
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(c) (d)
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two perpendicular lines. Usually such pathologies can be resolved, however, by
considering our transformation on a suitable subrange of RR2.

B.6 Interpretation as a 2D vector field

Another useful interpretation is obtained by considering the vector function g(x,y) of Eq.
(B.2) as a vector field. A vector field in RR2 is a function g(x,y) that assigns to each point
(x,y) in the x,y plane a vector (u,v) = g(x,y). Well known examples in physics include
electric or magnetic fields as well as the gravitation field of the earth, all of which are
vector fields that are defined in the 3D space RR3.

A vector field in RR2 can be illustrated graphically by drawing an arrow emanating from
each point (x,y) of the x,y plane (or, more practically, from some representative points on a
given grid within the x,y plane), where the length and the orientation of each arrow indicate
the length and the orientation of the vector g(x,y) that has been assigned by g to the point
(x,y) (see Fig. B.5(a)).3 It is important to note, however, that each such arrow does not
connect the point (x,y) to its destination g(x,y) under the transformation g, but rather to the
point (x,y) + g(x,y). Note also that the null vector (0,0) is assigned to a point (x,y) iff (x,y) is
a solution of the system (B.3). As we have seen, depending on the case there may exist
one such point, several such points, infinitely many, or even none at all. It is important to
stress, however, that these points are not fixed points of g(x,y), since they do not satisfy
g(x,y) = (x,y) (they are, however, fixed points of the transformation g(x,y) + (x,y), since
they do satisfy, of course, g(x,y) + (x,y) = (x,y)).

The vector field interpretation of g(x,y) is closely related to the interpretation of g(x,y) as
a direct mapping. For example, by comparing Fig. B.5 with Fig. B.4 it can be seen that the
vector g(x,y) attached to the point (x,y) = (1,0) of the vector field is precisely the destination
of the point (1,0) under the direct transformation, namely (0,–1) (Fig. B.4(b)), and not the
destination of (1,0) under the inverse transformation, which is ( 2√

2 , 2√
2 ) (Fig. B.4(d)). And

yet, as we can clearly see in the figures, the geometric shapes of the direct transformation
and of its corresponding vector field may look significantly different. In fact, all the
various representations of the same transformation g(x,y) — as a vector field, as a direct
mapping and as an inverse mapping — can be completely different from each other. We
will return to this point in more detail in Sec. B.7.

As an alternative way of visualizing a vector field one may also draw its trajectories
(also known as field lines). Loosely speaking, these are the curves obtained by following
the arrows in Fig. B.5(a) and joining them into continuous curves in the x,y plane (see Fig.
B.5(b)). More precisely, trajectories (or field lines) are curves for which the tangent vector
to the curve at each point (x,y) is exactly g(x,y). Thus, at every point (x,y), the direction in

3 For practical reasons it is customary to scale the arrow length in the drawing by a constant factor, in
order to avoid drawings with too short, hard-to-see arrows, or drawings with too long, overlapping
arrows.
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Figure B.5: (a) Illustration of the same transformation g(x,y) = (2xy, y2 – x2) as a
vector field in RR2. (b) Some trajectories of this vector field. Note that
these trajectories are given by the family of the vertically tangent circles
(x – c)2 + y2 = c2 (i.e. y = 2cx – x2 ) for all possible values of the
constant c ∈RR; this can be easily shown by calculating dx/dy and
verifying that it satisfies Eq. (B.9), namely: dx/dy = 2xy/(y2 – x2).

which the trajectory runs is determined by the vector g(x,y). Note that except for points
where g(x,y) is not defined or where g(x,y) = 0, every point in the plane belongs to one and
only one trajectory. This also means, up to the same exceptions, that trajectories do not
intersect. The advantage of drawing the trajectories of a vector field is that they are easier
to picture visually. However, although the trajectories clearly show the directions of a
vector field, they do not convey the information on the length of its vectors, and hence they
are not a full representation of g(x,y). We will return to this point in Remark B.2 below.

The trajectories of a vector field g(x,y) are given in the parametric form by a family of
curves (x(t),y(t)) whose members differ from each other by a constant c; these curves are
the solutions of the system of differential equations (see [Bronshtein97 p. 526]):

d
dt

x(t) = g1(x(t),y(t))

d
dt

y(t) = g2(x(t),y(t))
(B.7)

where t is the parameter of each of the curves.4 Using the vector notation x(t) = (x(t),y(t))
this can be written more compactly as:

4 Remember that a curve in the x,y plane can be generally defined in Cartesian coordinates in three
equivalent forms: explicitly by y = h(x), implicitly by f(x,y) = 0, or parametrically by x = f1(t),
y = f2(t), where the parameter t varies continuously throughout an interval such as –∞ < t < ∞
[Bronshtein97 pp. 75–76]. Conversions between these forms can be done as explained in [Bronshtein97
p. 551], but they are not always possible [Harris98 p. 121].
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x'(t) = g(x(t))     (B.8)

Note the close similarity between the equations of the vector field g(x,y) (Eqs. (B.1) or
(B.2)) and the parametric equations defining its trajectories (Eqs. (B.7) or (B.8),
respectively). But if we prefer the explicit form y = f(x) of the trajectories instead of their
parametric form given by (x(t),y(t)), then the corresponding differential equation that
defines them is:5

dy
dx

 = 
g2(x,y)
g1(x,y)

    (B.9)

Ways of solving systems of differential equations such as (B.7) can be found, along
with many illustrative examples and figures showing their trajectories, in Chapter 4 of
[Kreyszig93]. Equivalent ways for the solution of the corresponding differential equation
(B.9) can be found, for example, in [Bronshtein97 pp. 395–398]. A complete
classification of the different trajectory shapes for linear differential equation systems,
including nodes, saddle points, center points, spirals, etc. can be found in [Kreyszig93 pp.
176–178], [Gray97 pp. 551–567] or in Sec. 1.4 of [Tabor89]. A similar classification for
non-linear differential equation systems can be found in [Gray97 pp. 586–602].

Remark B.2: It should be remembered that because the trajectories do not contain all the
information of the vector field (they only convey the vector directions but not their
lengths), a vector field g(x,y) cannot be uniquely determined by its trajectories y = f(x). For
example, the two vector fields g(x,y) = (2y,–2x) and g(x,y) = (–y/(x2+y2), x/(x2+y2)) have the
same trajectories (a family of circles x2 + y2 = c2 for any constant c), the difference being
only in the vector lengths along these circles. More generally, if g(x,y) has circular or
radial trajectories, it is clear that all the vector fields h(r)g(x,y) with r = x2 + y2  have the
same trajectories y = f(x) as g(x,y). But if we use the parametric form of the trajectories,
(x(t),y(t)), then the trajectories may be expressed differently for each of these vector fields,
the difference being not in the shape of the curves but in their tracing speed in terms of the
parameter t. For example, (cost, sint) and (cos2t, sin2t) represent the same circle, the
difference being only in the parametrization (the speed of drawing the curves as t
advances). Thus, if we consider the tracing speed of the trajectories as an indication to the
vector lengths in g(x,y), the parametric form of the trajectories may convey both the vector
directions and the vector lengths of the vector field (up to a constant).

An alternative way for sorting out this problem consists of drawing the trajectories so
that the strength of the vector field (i.e. the vector lengths) is represented by the density of
the trajectories [Needham97 pp. 453 and 494]: the closer together the trajectories, the

5 Note that the explicit form of the trajectories, which is obtained by solving the differential equation
(B.8), may have singular points wherever g1(x,y) = 0 (i.e. at vertical tangencies of the solution). An
advantage of the parametric form of the trajectories, which is obtained by solving the system of
differential equation (B.7), is that such points are no longer singular points [Birkhoff89 p. 134].
Another advantage of the parametric form is that it explicitly indicates the direction of each trajectory:
The positive sense of a trajectory is defined as the sense in which the curve is traced out for increasing
values of t [Kreyszig93 p. 457].
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stronger the vector field (just as the density of the level lines in a topographic map
indicates the steepness of the ground).  

Remark B.3: Note that in physics the trajectories of a vector field are often interpreted as
curves which trace the motion of particles under the influence of the field. If the parameter
t is understood as time, the trajectory (x(t),y(t)) gives the path of the particle, namely, the
location of the particle at each moment t. The derivative of this curve, ( d

dt
x(t), d

dt
y(t)), given

by Eqs. (B.7), defines the velocity of the particle (which is a vectorial entity, too) at each
moment t. For other possible physical interpretations see [Needham97 pp. 451–454].  

Remark B.4: Although in many cases it is easy to guess intuitively the trajectories
(solution curves) of a differential equation from its vector field, it is a well known fact that
in some cases this task is not as easy as it sounds. More details on this subject, as well as
several illustrated examples, can be found in [Schwalbe97, pp. 39–42 and 69].  

Remark B.5: There exists another remarkable visual difference between g(x,y) as a
transformation and g(x,y) as a vector field, which concerns their behaviour under various
symmetry operations: When considered as transformations, g(–x,–y) is a global 180°
rotation of g(x,y) and g(x,–y) is a global vertical reflection of g(x,y) (see Sec. C.2 in
Appendix C and the figures therein). However, when considered as vector fields, g(–x,–y)
only differs from g(x,y) in the sense of its vectors, while g(x,–y) looks completely
different. For example, the vector field g(x,y) = (x,y) consists of radial trajectories
emanating from the origin, and the vector field g(x,y) = (–x,–y) consists of radial
trajectories pointing to the origin; but the vector field g(x,y) = (x,–y) has a completely
different shape, and it consists of hyperbolic trajectories. One should be aware of such
differences in order to avoid mistakes when trying to interpret intuitively the meaning of
g(–x,–y), g(x,–y), etc.  

B.7 Relationship between the different representations of g(x,y)

As we have seen, any transformation g(x,y) can be interpreted in several different ways,
whose graphical representations can be very different. For example, Figs. B.4(b), B.4(d)
and B.5 show the graphical representations of the same transformation g(x,y) = (2xy,
y2 – x2) when it is interpreted, respectively, as a direct transformation, as a domain
transformation, and as a vector field. What are the mathematical relationships between the
curve families that represent the same transformation g(x,y) = (g1(x,y),g2(x,y)) in its various
interpretations? The answer is as follows: The level lines of g(x,y) when it is viewed as a
domain transformation (in our example, the two families of curves shown in Figs. B.1 or
B.4(d)) are given by the curve families g1(x,y) = const. and g2(x,y) = const. The level lines
of g(x,y) when it is viewed as a direct transformation (in our example, the two families of
curves shown in Fig. B.4(b)) are given by the curve families g 1

– 1(x,y) = const. and
g 2

– 1(x,y) = const., where g 1
– 1(x,y) and g 2

– 1(x,y) are the two components of the inverse
transformation g–1(x,y), namely: g–1(x,y) = (g 1

– 1(x,y),g 2
– 1(x,y)). And finally, the trajectories
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(field lines) of g(x,y) when it is viewed as a vector field (in our example, the curve family
shown in Fig. B.5(b)) are given by the family of parametric curves (x(t),y(t)) that are the
solutions of the system of differential equations (B.7).

It is interesting to note that given a real valued function (i.e. a surface) z = g(x,y) over the
x,y plane, the gradient of g(x,y), denoted by ∇g(x,y), gives at each point (x,y) a vector
defining the maximal slope of g(x,y) at this point. This is, indeed, a vector field whose
definition is:

∇g(x,y) = ( ∂
∂x

g(x,y) , ∂
∂y

g(x,y))   (B.10)

For example, for the paraboloid g(x,y) = x2 + y2 we have: g(x,y) = ∇g(x,y) = (2x,2y). The
trajectories of this vector field are the lines of maximal slope of g(x,y); they are called
gradient lines or gradient curves of g(x,y). Note that the gradient lines of g(x,y) are
orthogonal to the level lines of g(x,y). In our example of the paraboloid the trajectories of
the vector field (B.10) are given by the following system of linear differential equations:

d
dt

x(t) = 2x(t)

d
dt

y(t) = 2y(t)
(B.11)

whose solution curves consist of the family of straight lines that is given in parametric
form by x(t) = c1et, y(t) = c2et for any constants c1, c2, or in explicit form by y = cx for any
constant c [Kreyszig93 p. 168]). These lines are, indeed, the gradient lines of our
paraboloid.

Note, however, that while for every reasonably well behaved surface g(x,y) there exists a
vector field g(x,y) such that g(x,y) = ∇g(x,y), the converse is not necessarily true: Not every
transformation g(x,y) = (g1(x,y), g2(x,y)) can be represented as a gradient field of some
surface g(x,y). For example, the transformation g(x,y) = (2y,–2x) has no surface g(x,y) such
that ∂

∂x
g(x,y) = 2y and ∂

∂y
g(x,y) = –2x, since this would imply by integration that g(x,y) =

2xy  + c1(y) and g(x ,y) = –2xy  + c2(x), but these two conditions on g(x ,y) are
contradictory.6 On the other hand, the transformation g(x,y) = (2x,2y) does have a surface

6 This can be also explained geometrically: The trajectories of g(x,y) = (2y,–2x) are concentric circles
about the origin; their parametric and implicit expressions are given below after Eq. (B.14). Note,
however, that it is only the additional information conveyed by the parametric expression of these
circles (their relative “tracing speed” as a function of the parameter t) or, equivalently, the information
provided by the vector lengths within the vector field g(x,y), that prevents these circles from being
gradient lines of any surface g(x,y). For if we only consider the geometric shape of these circles, as it is
conveyed by their implicit expression (x2 + y2 = c2 for any constant c), there do exist surfaces g(x,y)
having these circles as gradient lines. For example, these circles are the gradient lines of the helicoid
g(x,y) = a arctan(y/x) [Weisstein99 p. 810]: indeed, the gradient field of this surface is ∇g(x,y) =
(–y/(x2 + y2), x/(x2 + y2)), whose trajectories have the same implicit expression x2 + y2 = c2 as the
trajectories of our vector field g(x,y) = (2y,–2x). The difference lies in the evolution of the tracing speed
(or of the vector lengths) between the inner and the outer circles, information which is only conveyed
by the parametric expression of these circles. To see this, note that in the helicoid the steepness of the
gradient curves along the surface increases as their radius gets smaller (meaning that the inner vectors of
the vector field are longer), while in the surface that would have as its gradient lines the circular
trajectories of g(x,y) = (2y,–2x), the steepness of the gradient curves along the surface would remain
identical for all radiuses (since the vector lengths within the vector field increase linearly with the
radius); but this is geometrically impossible.
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g(x,y) such that ∂
∂x

g(x,y) = 2x and ∂
∂y

g(x,y) = 2y, since by integration we have g(x,y) =
x2 + c1(y) and g(x,y) = y2 + c2(x), and indeed, taking c1(y) = y2 and c2(x) = x2 we obtain
g(x,y) = x2 + y2.

A vector field g(x,y) for which there exists a surface g(x,y) such that g(x,y) = ∇g(x,y) is
said to be a conservative vector field [Kreyszig93 p. 479; Weisstein99 p. 311]; in this
case g(x,y) is said to be a potential function of g(x,y). And it turns out [Kaplan03 pp. 326–
327] that if the domain of g(x,y) is simply connected (a region without holes) then g(x,y) is
conservative iff it is irrotational, i.e. curl g = 0. In the 2D case curl g = 0 means:

∂
∂x

g2(x,y) – ∂
∂y

g1(x,y) = 0   (B.12)

which is precisely the second part of the Cauchy-Riemann condition (b) (see Eq. (B.6))
for the transformation g(x,y) = (g1(x,y), g2(x,y)).

Note, however, that even when such a surface g(x,y) does exist it is clearly not unique,
since any surface g(x,y) + c has the same gradient field as g(x,y). It follows, therefore, that
if g(x,y) exists then it is unique up to an additive constant [Ivanov95 p. 247].

In a similar way, one may also define for the same surface z = g(x,y) a different vector
field, that we denote here by Hg(x,y), in which the trajectories coincide with the level lines
of the surface, g(x,y) = const. In this vector field the trajectories are perpendicular at each
point to the gradient of the surface. This vector field is given by (see [Birkhoff89 p. 135]):

Hg(x,y) = ( ∂
∂y

g(x,y) , – ∂
∂x

g(x,y))   (B.13)

This follows, indeed, from (B.10) if we remember that the vector (b,–a) is perpendicular to
the vector (a,b). Note that we could also take the vector field –Hg(x,y), whose trajectories
follow the same level lines but in the opposite direction; which of the two is used is just a
matter of convention.

In our present example of the paraboloid g(x,y) = x2 + y2, the vector field (B.13) is
h(x,y) = Hg(x,y) = (2y,–2x). Its trajectories are given by the following system of linear
differential equations:

d
dt

x(t) = 2y(t)

d
dt

y(t) = –2x(t)
(B.14)

whose solution curves consist of the family of concentric circles that is given in parametric
form by x(t) = c1 cos t + c2 sin t, y(t) = –c1 sin t + c2 cos t  for any constants c1, c2, or in
implicit form by x2 + y2 = c2 for any constant c [Kreyszig93 p. 170]. These circles are,
indeed, the level lines of our paraboloid.

However, just as in the case of gradient fields, it turns out that while for every reasonably
well behaved surface g(x,y) there exists a vector field g(x,y) such that g(x,y) = Hg(x,y), the
converse is not necessarily true: Not every transformation g(x,y) = (g1(x,y),g2(x,y)) can be
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represented as a vector field Hg(x,y) of some surface g(x,y). For example, the
transformation g(x,y) = (2x,2y) has no surface g(x,y) such that ∂

∂y
g(x,y) = 2x and

– ∂
∂x

g(x,y) = 2y, since this would imply by integration that g(x,y) = 2xy + c1(y) and
g(x,y) = –2xy + c2(x), but these two conditions on g(x,y) are contradictory. On the other
hand, the transformation g(x,y) = (2y,–2x) does have a surface g(x,y) such that
∂

∂y
g(x,y) = 2y and – ∂

∂x
g(x,y) = –2x, since this implies by integration that g(x,y) = y2 + c1(x)

and g(x,y) = x2 + c2(y), and indeed, by taking c1(x) = x2 and c2(y) = y2 we obtain
g(x,y) = x2 + y2.

It can be shown that for a given g(x,y) there exists a surface g(x,y) such that
g(x,y) = Hg(x,y) iff g(x,y) is a solenoidal vector field, which means (see [Kaplan03 p. 184;
Weisstein99 p. 1671–1672]) that div g = 0, or in the 2D case:

∂
∂x

g1(x,y) + ∂
∂y

g2(x,y) = 0   (B.15)

Such a surface g(x,y) is often called a Hamiltonian potential function of g(x,y) [Howse95].
Note that condition (B.15) is precisely the first part of the Cauchy-Riemann condition (b)
(see Eq. (B.6)) for the transformation g(x,y) = (g1(x,y), g2(x,y)).

These results allow us to answer the following interesting questions: Given a
transformation g(x,y) = (g1(x,y),g2(x,y)) with two known families of level lines, can we find
vector fields v1(x,y) and v2(x,y) having the same two curve families as trajectories (field
lines)? And conversely, given a vector field v(x,y) with known trajectories, can we find a
transformation g(x,y) = (g1(x,y),g2(x,y)) whose level lines (the level lines of g1(x,y) or of
g2(x,y)) are identical to these trajectories? This would give us an interesting connection
between the level lines of transformations (that are viewed as a pair of surfaces over the x,y
plane) and the trajectories of other transformations (that are considered as vector fields).

The answer to the first question is, indeed, affirmative: As we have seen above, the two
level line families of the domain transformation g(x,y) = (g1(x,y),g2(x,y)) can be also
regarded as the trajectories of the vector fields Hg1(x,y) and Hg2(x,y). And similarly, the
two level lines of the direct transformation g(x,y) can be also regarded as the trajectories of
the vector fields Hg 1

– 1(x,y) and Hg 2
– 1(x,y), where g 1

– 1(x ,y) and g 2
– 1(x,y) are the two

components of the inverse transformation g–1(x,y), namely: g–1(x,y) = (g 1
– 1(x,y),g 2

– 1(x,y)).
For example, in the case of the domain transformation g(x,y) = (2xy, y2 – x2), whose level
lines are given by the two families of hyperbolas 2xy = m and y2 – x2 = n for any m and n
(see Figs. B.1 and B.4(d)), these two hyperbolic curve families are also the trajectories of
the vector fields Hg1(x,y) = (2x,–2y) and Hg2(x,y) = (2y,2x) (see Fig. B.6). However, going
the other way around is not always possible: Given a vector field v(x,y) it is not always
possible to find a transformation g(x,y) = (g1(x,y),g2(x,y)) whose level lines (i.e. the level
lines of one of the surfaces g1(x,y) or g2(x,y)) correspond to the trajectories of the vector
field v(x,y); as we have just seen, this is only possible if v(x,y) is solenoidal.

Any vector field v(x,y) can be classified as conservative, solenoidal, both conservative
and solenoidal, or neither  conservative  nor  solenoidal.  For  example,  the  vector  field
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Figure B.6: The level lines of the domain transformation g(x,y) = (g1(x,y),g2(x,y)) =
(2xy, x2 – y2) (see Figs. B.1 or B.4(d)) are identical to the trajectories of
the vector fields (a) Hg1(x,y) = (2x,–2y) and (b) Hg2(x,y) = (2y,2x).

g(x,y) = (2xy, x2 – y2) is both conservative and solenoidal, while the vector field
g(x,y) = (x, y + x), which corresponds to a linear shear transformation, is neither
conservative nor solenoidal. A vector field that is both conservative and solenoidal is called
a harmonic vector field [Ivanov95 p. 242]. If v(x,y) is a harmonic vector field, it is possible
to find a transformation g(x,y) = (g1(x,y),g2(x,y)) where g1(x,y) is a surface whose level
lines correspond to the trajectories of the given vector field, and g2(x,y) is a surface whose
gradient lines correspond to the trajectories of the given vector field. In this case, the level
lines of the surfaces g1(x,y) and g2(x,y) of g(x,y) give two orthogonal sets of curves that
correspond respectively to the trajectories and to the equipotential lines7 of the harmonic
vector field v(x,y) [Kreyszig93 pp. 886–889]. Thus, a harmonic vector field v(x,y) can be
also depicted by the net consisting of its trajectories and its equipotential lines [Ivanov95
p. 248]; but this graphic representation of the vector field v(x,y) should not be confused
with the curvilinear net that represents v(x,y) as a transformation (compare Figs. B.5(b)
and B.4(b); note that the equipotential lines are not shown in Fig. B.5(b), but they are a
90° rotated copy of the trajectory lines).

Clearly, if v(x,y) = (v1(x,y),v2(x,y)) is harmonic it satisfies conditions (B.12) and (B.15),
i.e. the two Cauchy-Riemann conditions (b) (see Eq. (F.6)), and hence it is a conformal
transformation (see Sec. B.5). However, the converse is not necessarily true: Although the
transformation u(x,y) = (v1(x,y),–v2(x,y)) is conformal, since it satisfies the two Cauchy-
Riemann conditions (a), it is not a harmonic vector field. For example, consider

7 The equipotential lines are to the trajectories (field lines) of a harmonic vactor field g(x,y) what the
level lines are to the gradient lines of the surface g(x,y).
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v(x,y) = (2xy, x2–y2) and u(x,y) = (2xy, y2–x2): Although both are conformal, v(x,y) is
harmonic but u(x,y) is not (to convince oneself, it is easy to verify that there exists no
surface g(x,y) such that u(x,y) = ∇g(x,y), and no surface g(x,y) such that u(x,y) = Hg(x,y)).
On the other hand, the transformation w(x,y) = (–v2(x,y),v1(x,y)) is harmonic, since it
satisfies the Cauchy-Riemann conditions (b). This transformation is said to be
harmonically conjugate to v(x,y) [Ivanov95 p. 242]; its equipotential lines are the
trajectories of v(x,y), and vice versa [Ivanov95 p. 248; Needham97 p. 509].

Interestingly, these results also suggest that there may exist two different ways for
representing a general 2D transformation g(x,y) as a pair of surfaces: Either, as explained
in Sec. B.2, as the pair of surfaces g1(x,y) and g2(x,y) which are the two Cartesian
components of g(x,y):

g(x,y) = (g1(x,y), 0) + (0, g2(x,y)) = (g1(x,y), g2(x,y))   (B.16)

or as a pair of surfaces g(x,y) and h(x,y) such that:

g(x,y) = ∇g(x,y) + Hh(x,y)   (B.17)

which means, in componentwise notation:

= ( ∂
∂x

g(x,y) + ∂
∂y

h(x,y), ∂
∂y

g(x,y) – ∂
∂x

h(x,y))

This last decomposition of g(x,y) is known as a gradient-Hamiltonian decomposition,
and the functions g(x,y) and h(x,y) are called, respectively, a gradient potential function of
g(x,y) and a Hamiltonian potential function of g(x,y). However, this representation of
g(x,y) is not necessarily unique. More details on the gradient-Hamiltonian decomposition
and on its limitations can be found in [Howse95 pp. 60, 67–68]. Note that this
decomposition sheds a new light on the fact already mentioned above that if g(x,y) is not a
conservative vector field, there is no surface g(x,y) such that g(x,y) = ∇g(x,y): As we can
now understand, this simply means that the gradient-Hamiltonian decomposition of such
transformations g(x,y) must have a non-vanishing Hamiltonian component. The
Hamiltonian component vanishes iff g(x,y) is conservative and hence can be represented as
g(x,y) = ∇g(x,y), and the gradient component vanishes iff g(x,y) is solenoidal and hence can
be represented as g(x,y) = Hh(x,y). If g(x,y) is harmonic, i.e. both conservative and
solenoidal, its gradient-Hamiltonian decomposition cannot be unique, since in this case we
have both g(x,y) = ∇g(x,y) with h(x,y) ≡ 0, and g(x,y) = Hh(x,y) with g(x,y) ≡ 0.

B.8 Remark on the local reflection of a 2D transformation

A transformation g(x,y) is said to be locally reflecting or locally non-reflecting around
the point (x,y) according to whether the Jacobian at that point is positive or negative (see
Appendix C). For example, the transformation g(x,y) = (2xy, y2 – x2) is non-reflecting
throughout the plane (since J(x,y) = 4(x2 + y2) > 0), whereas the transformation g(x,y) =
(2xy, x2 – y2) is reflecting throughout the plane (since J(x,y) = –4(x2 + y2) < 0).   An
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Figure B.7: Same as Fig. B.3, but this time using in the original image (a) a dot screen
with the asymmetric element “1” rather than the symmetric element “•”.
This allows to clearly show the local orientation of the transformed plane
at each point, and thus to distinguish between transformations such as:
(b) g(x,y) = (2xy, y2 – x2), (c) g(x,y) = (2xy, x2 – y2), and (d) g(x,y) =
–(2xy, y2 – x2). Note that these transformations only differ in their local
orientation at each point (x,y), but not in their global geometry.

example of a transformation that is reflecting in some parts of the plane and non-reflecting
in other parts of the plane is given by Eq. (7.32), which corresponds to the moiré effect
shown in Fig. 7.12(b).

(a) (b)

(c) (d)
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The information about the local orientation of a transformation g(x,y) at each point (x,y)
is obviously lost when we represent g(x,y) graphically as a coordinate change, like in Fig.
B.4. But when we illustrate the effect of g(x,y) as we do in Figs. B.2 and B.3, there exists a
simple “trick” that allows us to clearly show the local orientation of g(x,y) at any point of
the plane. All that we need to do is to apply g(x,y) to a structure made of asymmetric rather
than symmetric elements. When we do so, the local orientation of the transformation at
each point (x,y) is indicated by the local orientation of the corresponding asymmetric
element in the transformed plane. This is clearly illustrated in Fig. B.7, where three
different transformations are applied to the same periodic dot screen (a) that consists of
asymmetric “1”-shaped dots. The transformations being applied are: (b) g(x,y) = (2xy,
y2 – x2); (c) g(x,y) = (2xy, x2 – y2); and (d) g(x,y) = –(2xy, y2 – x2). Note that in (c) all the
“1”-shaped elements are mirror-imaged, while in (b) and (d) they are just rotated, but not
mirror-imaged. This illustrates the fact that transformation (c) is reflecting throughout the
plane, while the transformations (b) and (d) are non-reflecting.

More details on the connection between the Jacobian of a transformation g(x,y) and the
properties of the transformation can be found in Appendix C.



Appendix C

The Jacobian of a 2D transformation and its significance

C.1 Introduction

Let g(x,y) be the 2D transformation whose two components are:

u = g1(x,y)

v = g2(x,y)
(C.1)

The Jacobian matrix of this transformation is the matrix:

∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

    (C.2)

Note that the rows of this matrix correspond to the gradients of g1(x,y) and g2(x,y) (see Eq.
(B.10) in Appendix B), while the columns of this matrix correspond to the directional
derivatives of g(x,y) in the x and y directions, respectively. The Jacobian determinant (or
simply the Jacobian) of the transformation g(x,y) is the scalar function J: RR2 → RR that is
defined as the determinant of this matrix:1

J(x,y) = 

∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

 = ∂g1

∂x
∂g2

∂y
 – ∂g2

∂x
∂g1

∂y
    (C.3)

We have already seen in Appendix B that the Jacobian is tightly related to the
mathematical properties of the transformation g(x,y). We will now explain the geometric
interpretation of the Jacobian, and see in more detail its special role in connection with the
transformation g(x,y). Other properties of g(x,y) that can be deduced from its Jacobian
matrix (C.2) are discussed later in Secs. C.4–C.5.

C.2 Geometric interpretation of the Jacobian

Consider a 2D transformation g: RR2 → RR2. Clearly, this transformation maps any
square element of the original x,y plane into its distorted image in the destination u,v plane.
The area of the new distorted element can be smaller, equal or larger than the area of the
original, undistorted element, depending on the local properties of the transformation g at

1 Confusingly, some references use the term “Jacobian” for the Jacobian matrix, while other references use
it, as we do, for the Jacobian determinant.
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that point. In order to investigate how g influences the area at each point of the plane, we
consider an infinitesimal square area-element dxdy within the original x,y plane, and its
distorted image dudv in the transformed u,v plane. It turns out that at any point (x,y) we
have (see [Weisstein99 p. 950] or [Colley98 p. 347]):

dudv = J(x,y) dxdy     (C.4)

More generally, if A[S] and A[g(S)] denote, respectively, the area of a closed region S of
the x,y plane and the area of its image g(S) in the u,v plane, then we have at the limit when
A[S] approaches zero [Spiegel63 p. 108]:

lim
A[g(S)]

A[S]
 = J(x,y)     (C.5)

This means that the Jacobian is, in fact, an infinitesimal scale factor that indicates the local
area scaling caused by the transformation g(x,y) at each point (x,y). Negative scaling values
indicate that local scaling at (x,y) is also accompanied by local reflection (mirror imaging).
If the Jacobian equals zero at a certain point (x,y), it means that the transformation g maps
elements with non-zero area around that point to a zero-area image; the point (x,y) is called,
then, a singular point of the transformation g.

Note that the Jacobian matrix of a transformation (u,v) = g(x,y) and the Jacobian matrix
of the inverse transformation (x,y) = g–1(u,v) are inverse matrices of each other [Kaplan03
p. 120; Courant89 p. 252]. This implies that the Jacobian Jg(x,y) of g and the Jacobian
Jg–1(x,y) of g–1 are reciprocals of each other: Jg–1(x,y) = 1/Jg(x,y). Hence, if one Jacobian is
non-singular (different from zero) at the point (x,y), so is the other. Furthermore, a
transformation g(x,y) is invertible over RR2 or a subregion thereof (meaning that there
exists a transformation g–1(u,v) such that g–1(g(x,y)) = (x,y) within that region) iff the
Jacobian of g is not identically zero within that region. Other important theorems on
transformations and their Jacobians can be found, for example, in [Spiegel63 p. 108].

Remark C.1: When g is a linear transformation the two functions g1(x,y) and g2(x,y) of
Eq. (C.1) are linear:

u = a1x + b1y

v = a2x + b2y
(C.6)

and their slopes ∂g1

∂x
, ∂g1

∂y
, ∂g2

∂x
, ∂g2

∂y
 reduce into the constant values a1, b1, a2, b2. This means

that when g is linear, its Jacobian matrix is simply reduced to the matrix of the linear
transformation, and the Jacobian is reduced to the determinant of this matrix:

J(x,y) = 
a1 b1

a2 b2
    (C.7)

so that the Jacobian J(x,y) becomes a constant number, J(x,y) = a1b2 – a2b1.
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Viewed the other way around, non-linear transformations can be seen as a generalization
of linear transformations into the case where the slopes of g1(x,y) and g2(x,y) are no longer
constant but rather vary with x and y. And indeed, if the transformation is not linear, then
the Jacobian matrix will vary from point to point. Nevertheless, it may still be regarded as
a local linear approximation to the true mapping (plus a relocation of the origin), and the
Jacobian J(x,y) can still be interpreted as the local area scale factor, which may now change
from point to point. In other words, the Jacobian matrix of a non-linear transformation
g(x,y) can be viewed at any given point (x,y) as the matrix of a linear transformation g'(x,y)
that approximates the non-linear transformation g(x,y) at the point (x,y), and whose
constant coefficients a1, b1, a2, b2, are, respectively, the values of ∂g1

∂x
, ∂g1

∂y
, ∂g2

∂x
, ∂g2

∂y
 at that

particular point.

It is interesting to note in this context that in linear algebra determinants play the role of
area (or volume) functions [Lay03 pp. 204–209]. For example, the determinant (C.7) of
the matrix of the linear transformation (C.6) gives the area of the parallelogram that is
determined by the columns of the matrix, i.e. by the vectors (a1,a2) and (b1,b2) [Lay03 p.
205]. But these vectors are precisely the images under our linear transformation of the
standard basis vectors (1,0) and (0,1) [Lang87 pp. 394–395]. Thus, if we denote by S the
parallelogram determined by the basis vectors (1,0) and (0,1), and by A[R] the area of the
region R, then we have for any linear transformation g:

A[g(S)] = 
a1 b1

a2 b2
A[S]     (C.8)

Furthermore, as long as g is a linear transformation this property remains valid for any
parallelogram S in the plane [Lang87 p. 457], and even for any arbitrary closed region S of
the plane [Lay03 pp. 207–209]. Eq. (C.8) is, indeed, the linear equivalent of Eqs. (C.4)
and (C.5).

In non-linear transformations the area scaling effect of g may be different at each point
(x,y) of the plane, and therefore Eq. (C.8) is no longer globally valid for all arbitrary closed
regions S; but it remains valid locally, for any infinitesimal region, as expressed, indeed, by
Eqs. (C.4) and (C.5).  

C.3 Properties of the transformation g(x,y) that can be deduced from its Jacobian

As we have seen in the previous section, a 2D transformation g(x,y) is closely related to its
Jacobian. Therefore, it is not surprising that the Jacobian can provide precious information
on the nature of the transformation in question. In the present section we provide a
summary of various properties of the transformation g(x,y) that can be deduced directly
from its Jacobian. We start with a few results concerning the global nature of the Jacobian
and its effect on the global properties of the transformation g(x,y), and then we proceed to
some of their local counterparts. Note that g(x,y) is considered here as a direct
transformation; but if g(x,y) is used as a domain transformation (for example, if it is
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applied to an image r(x,y) to give the distorted image r(g(x,y)), as in Figs. C.1, C.2 or B.6),
then we are concerned in fact with the inverse transformation g–1, whose properties can be
deduced from the nature of the reciprocal Jacobian 1/J(x,y).

(1) If |J(x,y)| < 1 everywhere, then g(x,y) is area-contracting.

(2) If |J(x,y)| > 1 everywhere, then g(x,y) is area-expanding.

(3) If J(x,y) > 0 everywhere, then g(x,y) is non-reflecting. Such a mapping can locally
represent rotations, scalings and shearing deformations and it can globally represent
“rubber-sheet” distortions, but it will nowhere cause reflection. A string of text
subjected to such a mapping would remain legible (although possibly highly
distorted), and it would not be converted into a mirror image of itself. For example,
when such a transformation g is applied to a periodic dot screen consisting of
asymmetric “1”-shaped elements (Fig. C.1(a)), it maps each of these elements into a
distorted and possibly rotated “1”-shaped element, but none of the resulting distorted
“1”s is mirror imaged (see Figs. C.1(b),(c),(f),(g),(h) and Figs. B.6(a),(d)). Note that
such transformations are also called in literature orientation-preserving [Courant89 p.
260], but this term may be somewhat misleading since the image of our “1”-shaped
elements under such transformations may still be rotated. A better term would be
sense-preserving.

(4) If J(x,y) < 0 everywhere, then g(x,y) is reflecting. Such a mapping will locally include
reflection (possibly also combined with rotations, scalings and shearing deformations)
and it can globally represent a “rubber-sheet” distortion combined with reflection. A
string of text subjected to such a mapping would be converted into a mirror image of
itself (in addition to any other distortions). For example, when such a transformation g
is applied to a periodic dot screen consisting of asymmetric “1”-shaped elements
(Fig. C.1(a)), it maps each of these elements into a mirror imaged and possibly
otherwise distorted and rotated “1”-shaped element (see Figs C.1(d),(e) and Fig.
B.6(c)). Note that such transformations are also called in literature orientation-
reversing [Courant89 p. 260], but this term may be confusing since pure rotations that
are not accompanied by reflection (including a rotation by 180°) are not orientation-
reversing transformations. A better term would be sense-reversing.

(5) If J(x,y) = const. everywhere, then g(x,y) has a constant scaling factor throughout. This
obviously occurs if g(x,y) is a linear or affine transformation, but it may also occur in
non-linear transformations (such as (C.9) below; see Fig. C.1(b)).

(6) If J(x,y) = 1 everywhere, then g(x,y) is area-preserving. This occurs, for example, if
g(x,y) is a rotation or a shift transformation, but it may occur also in non-linear
transformations (such as (C.9) below; see Fig. C.1(b)).

(7) If J(x,y) = –1 everywhere, then g(x,y) is area-preserving and reflecting. This occurs,
for example, if g(x,y) is a reflection or a rotoinversion (namely, rotation combined with
reflection [Cantwell02 p. 9]), but it may occur also in non-linear transformations.
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(8) If J(x,y) = 0 everywhere, then g(x,y) is degenerate, meaning that it maps RR2 or any 2D
subregion thereof onto a 1D curve, a single point, or an empty set (see Sec. B.3 in
Appendix B). This occurs iff the two components of g(x,y), i.e. g1(x,y) and g2(x,y), are
dependent (see Definition B.1 in Appendix B). For example, the transformation
(u,v) = g(x,y) = (x,x2) maps the entire x,y plane onto the 1D parabola v = u2.

(9) If J(x,y) ≠ 0 and J(x,y) ≠ ±∞ everywhere, then g(x,y) has no singularities, and it is one-
to-one and invertible.

The remaining points of the list concern the local properties of the Jacobian around a
given point (x0,y0) and their local influence on the transformation g(x,y):

(10) If |J(x0,y0)| < 1 at the point (x0,y0), then g(x,y) is area-contracting near that point.

(11) If |J(x0,y0)| > 1 at the point (x0,y0), then g(x,y) is area-expanding near that point.

(12) If J(x0,y0) > 0 at the point (x0,y0), then g(x,y) is non-reflecting (orientation-preserving)
near that point [Courant89 p. 260]. For example, an asymmetric “1”-shaped element
near that point will be mapped by g into a distorted but not mirror-imaged “1”.

(13) If J(x0,y0) < 0 at the point (x0,y0), then g(x,y) is reflecting (orientation-reversing) near
that point [Courant89 p. 260]. For example, an asymmetric “1”-shaped element near
that point will be mapped by g into a distorted, mirror-imaged “1”.

(14) If J(x0,y0) = 0 at the point (x0,y0), then g(x,y) has a local area scaling of zero at that
point. This means that g maps elements with non-zero area around the point (x0,y0) to a
zero area (or an almost-zero area) image. This occurs, for example, at the point (0,0) in
Fig. B.2(b).

(15) If J(x0,y0) = ∞ at the point (x0,y0), then g(x,y) has an infinitely big local area scaling at
that point. This occurs, for example, at the point (0,0) in the transformation shown in
Fig. B.3(b), whose expression as a direct transformation is given by g–1(x,y) =
( u2 + v 2 – v /2, u2 + v 2 + v /2 ); see Example D.5 in Appendix D.

(16) If J(x0,y0) = –∞ at the point (x0,y0), then g(x,y) has an infinitely big local area scaling
at that point, and, in addition, g(x,y) is also reflecting at that point.

In all of the cases (14)–(16) the transformation g(x,y) is said to be singular at the point
(x0,y0), or, equivalently, to have a singular point at (x0,y0).

Figs. C.1 and C.2 illustrate some of these cases by applying various domain
transformations to a periodic dot screen r(x,y) consisting of asymmetric “1”-shaped
elements (Fig. C.1(a)). The transformations being used are all variants of the parabolic
transformation g(x,y) that is given by:

u = x

v = y – a(x – c)2
(C.9)
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Figure C.1: A dot screen r(x,y) composed of asymmetric “1”-shaped dots (a), and
its deformations r(g(x,y)) under different variants of the domain
transformation (C.9). Note the influence of each of the transformations
on the orientation of the parabolas, on the local orientation of the
“1”-shaped elements (cells), and on the global orientation of the
distorted image. The transformations being used (and their effects) are:
(b) u = x, v = y – a(x – c)2   (top-opened parabolas, upright “1”s);
(c) u = x, v = y + a(x – c)2  (bottom-opened parabolas, upright “1”s);
(d) u = x, v = –y + a(x – c)2  (top-opened parabolas, reflected “1”s);
(e) u = x, v = –y – a(x – c)2  (global vertical reflection of (b));
(f) u = y – a(x – c)2, v = –x  (top-opened parabolas, rotated “1”s);
(g) u = –x, v = –y + a(x – c)2  (top-opened parabolas, rotated “1”s);
(h) u = –y + a(x – c)2, v = x   (top-opened parabolas, rotated “1”s).

(a) (b)

(c) (d)
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Figure C.1: (continued.) Note that for practical reasons the upright orientation of
the “1”s in the original dot screen (a) is not vertical, but rather rotated
by –45° (in order to avoid vertical collisions between the “1” elements
in successive rows). This implies that each of the transformed “1”s,
too, is in fact a distorted version of the rotated “1”.

When (C.9) is applied as a domain transformation, it bends the horizontal coordinate
lines of the x,y pane into equispaced top-opened parabolas that are shifted by a constant c
to the right (see Fig. C.1(b)). We have chosen this transformation because of its global
asymmetry with respect to the origin and with respect to the main axes. This asymmetry
allows us to investigate different variants of this transformation, and to clearly visualize

(e) (f)

(g) (h)
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Figure C.2: Same as in Fig. C.1, with other variants of the domain transformation (C.9):
(a) u = –x, v = y – a(x + c)2   (global horizontal reflection of Fig. C.1(b));
(b) u = x, v = y – a(x + c)2  (horizontally reflected parabolas, upright “1”s);
(c) u = y, v = –x – a(y – c)2  (global 90° rotation of Fig. C.1(b));
(d) u = x + a(y – c)2, v = y  (90° rotated parabolas, upright “1”s);

their effect on the resulting transformed plane. In particular, it allows us to easily
distinguish between: (1) Global reflections and rotations of the entire plane (see Figs.
C.1(b) and C.1(e)); (2) reflections or rotations of the parabolic geometry alone, with no
influence on the local orientation of the “1”-shaped elements (see Figs. C.1(b) and

(a) (b)

(c) (d)
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g1(x,y)          g2(x,y) g1(x,y)       g2(x,y)

Figure C.3: The two components (surfaces) g1(x,y) and g2(x,y) of each of the
transformations shown in Figs. C.1(a)–(h). The curves plotted on each
of the surfaces are level lines, and the gray levels show the surface
altitude: brighter shades indicate higher values and darker shades
indicate lower values.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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C.1(c)); and (3) local reflections or rotations of the “1”-shaped elements alone, with no
global reflections or rotations (see Figs. C.1(b) and C.1(d),(f)–(h)).

The global and local orientation properties of the different variants of (C.9) are best
explained by Fig. C.3, which shows for each of the cases of Fig. C.1 the two components
(surfaces) g1(x,y) and g2(x,y) of the transformation being used (see Sec. B.2 in Appendix
B). The cells shown in Fig. C.1 (each of which contains a “1”-shaped element) are, in
fact, the curved quadrilaterals that are formed by the curvilinear coordinate lines, i.e. by the
level curves of the surfaces g1(x,y) and g2(x,y). The cell orientations in the transformed
plane simply reflect the orientations of these two families of level curves, where the
orientation of each curve family corresponds to the direction of increasing curve altitudes.
The ascending order of the level curves in each family is clearly indicated in Fig. C.3 by
the gray levels that show the corresponding surface altitude, going from dark (lower
levels) to bright (higher levels). Note that the difference between cases (b) and (c) is only
in the orientation of the parabolic level curves, but not in their order; while the difference
between cases (b) and (d) is only in the order of the parabolic level curves, but not in their
orientation. The difference between cases (b) and (e) is both in the orientation and in the
order of the parabolic level curves. Note also the difference between cases (d) and (h),
which simply consists of interchanging g1(x,y) and g2(x,y).

Thus, as we can see by comparing Figs. C.1(a)–(h) with their corresponding families of
level curves in Figs. C.3(a)–(h), the global geometry of the cells in the transformed plane
is due to the shape of the corresponding level curves, while the local orientation of the
cells is due to the ordering of the level curves. For example, when the level curves are
identical in their shape but their order is inversed, the result is a local sense inversion
(compare Figs. C.1(b) and C.1(d)). As another example, interchanging g1(x,y) and g2(x,y)
does not modify the shape of the level curves, and it only causes a reflection of the cells
(compare Figs. C.1(d) and C.1(h)).

Table C.1 gives the full list of the different variants of transformation (C.9) involving
top-opened and bottom-opened parabolas. A similar table can be also constructed for the
cases involving a global horizontal reflection (whose top-opened parabolas are shifted
from the center to the left rather than to the right) and for the cases involving global
rotations by 90° or 270° (which give left-opened and right-opened parabolas, respectively).
Some of these cases are shown in Fig. C.2.

In the general case of a transformation u = g1(x,y), v = g2(x,y) the total number of
different possible symmetric variants is 512: There exist 16 possible sign combinations
for x and y (such as u = g1(–x,y), v = g2(x,–y), etc.); for each of these we have 4 possible
sign variations of g1 and g2 themselves (such as u = –g1(x,y), v = g2(x,y)); then we have 4
possible permutations of x and y within g1 and g2 (for example, u = g1(y,x), v = g2(x,y));
and for each of the 256 combinations we have so far there still exist two possible
permutations of g1 and g2 themselves (such as u = g2(x,y), v = g1(x,y)). The total number of
variants may significantly reduce in simple cases such as g1(x,y) = x, but on the other hand
it may further increase if we also consider the signs of the individual terms within g1(x,y)
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and g2(x,y), as we did in the case of g2(x,y) = y – a(x – c)2. Note, however, that if the
transformation g(x,y) is symmetric, as was the case in Fig. B.7, then many of its different
variants may give the same result. In Fig. C.1 we have intentionally chosen a highly
asymmetric transformation g(x,y), which allows us to clearly distinguish in the figure
between its different variants.

C.4 The local orientation properties of a transformation g(x,y)

As we have seen in Sec. C.3, the Jacobian of a transformation g(x,y) contains in a
nutshell all the information about the local magnification and reflection properties of the
transformation. It does not provide, however, any information related to the local
orienration (or rotation) properties of the transformation; for example, it does not account
for the difference between the transformations that generate Figs. C.1(b) and C.1(f)–(h).
What other mathematical construct or criterion can be used to provide this missing
information?

In order to answer this question, suppose that each of the cells generated by the
coordinate grid of the original, untransformed image (the “1”-shaped elements in Fig.
C.1(a)) is drawn by a laser beam or by a plotter, that scans the entire cell line-by-line. We
assume that the beam scans the cell in horizontal lines that follow the positive x direction,
and that successive horizontal lines are ordered from the bottom upward, following the
positive y direction. When the transformation g(x,y) is applied, each of the original square
elements is distorted into a curvilinear quadrilateral. Consider the distorted element located
at the point (x,y). When the laser beam draws this distorted element, each of the originally
straight scanlines is distorted into a curvilinear line, and the vertical step of the beam, as it
advances between the successive curvilinear scanlines, is also distorted (see Fig. C.4).

When we proceed to the limit, each of the curvilinear quadrilaterals becomes
infinitesimally small, and the direction of the scanlines and the direction of the steps
between successive scanlines reduce into the local tangent slopes of the curvilinear
coordinates at the point (x,y). It turns out that these directions are given by the two
following vectors:

Scanline direction: v1(x,y) = 1
J(x,y)

( ∂
∂y

g2(x,y) , – ∂
∂x

g2(x,y))

Interline direction: v2(x,y) = 1
J(x,y)

(– ∂
∂y

g1(x,y) , ∂
∂x

g1(x,y))
(C.10)

The orientations of these two vectors give us the local scanline direction and the local
interline direction at the point (x,y), and their lengths indicate the local stretching factor of
the distorted cell in these two directions. Note that the scanline direction v1(x,y) and the
interline direction v2(x,y) are perpendicular to the gradients ∇g1(x,y) and ∇g2(x,y) (see Fig.
C.4(b)); but they are not necessarily perpendicular to each other.
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Transformation J(x,y) v1(x,y)
v2(x,y)

Parabola
orientation

Element
orientation

Fig. Rem-
arks

   1
u = x
v = y – a(x – c)2

1
(1, 2a(x–c))

(0, 1)
↑ C.1(b) (1)

   2
u = y – a(x – c)2

v = –x
1

(0, 1)
(–1, –2a(x–c))

↑ C.1(f) (2)

   3
u = –x
v = –y + a(x – c)2

1
(–1, –2a(x–c))

(0, –1)
↑ C.1(g) (2)

   4
u = –y + a(x – c)2

v = x
1

(0, –1)
(1, 2a(x–c))

↑ C.1(h) (2)

   5
u = y – a(x – c)2

v = x
–1

(0, 1)
(1, 2a(x–c))

↑  R

   6
u = –x
v = y – a(x – c)2

–1
(–1, –2a(x–c))

(0, 1)
↑ R

   7
u = –y + a(x – c)2

v = –x
–1

(0, –1)
(–1, –2a(x–c))

↑ R

   8
u = x
v = –y + a(x – c)2

–1
(1, 2a(x–c))

(0, –1)
↑ R C.1(d) (3)

   9
u = x
v = y + a(x – c)2

1
(1, –2a(x–c))

(0, 1)
↓ C.1(c) (4)

 10
u = y + a(x – c)2

v = –x
1

(0, 1)
(–1, 2a(x–c))

↓

 11
u = –x
v = –y – a(x – c)2

1
(–1, 2a(x–c))

(0, –1)
↓

 12
u = –y – a(x – c)2

v = x
1

(0, –1)
(1, –2a(x–c))

↓

 13
u = y + a(x – c)2

v = x
–1

(0, 1)
(1, –2a(x–c))

↓  R

 14
u = –x
v = y + a(x – c)2

–1
(–1, 2a(x–c))

(0, 1)
↓ R

 15
u = –y – a(x – c)2

v = –x
–1

(0, –1)
(–1, 2a(x–c))

↓ R

 16
u = x
v = –y – a(x – c)2

–1
(1, –2a(x–c))

(0, –1)
↓ R C.1(e) (5)

Table C.1: (continued on the opposite page)



C.4 The local orientation properties of a transformation g(x,y) 321

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Legend:

Parabolas orientation: ↑ = top-opened parabolas;  ↓ = bottom-opened parabolas. Cells
orientation:  = upright orientation;  = rotated by 90°;  = rotated by 180°;

 = rotated by 270°;  = reflected (i.e. mirror-imaged);  = reflected and rotated by
90°;  = reflected and rotated by 180°;  = reflected and rotated by 270°. All cases
involving reflection are indicated by R.

Remarks:
(1) All the “1”-shaped cells preserve their original orientation, and the parabolas have an

upright orientation. This case serves us as a reference when comparing between cases.
(2) The “1”-shaped cells are rotated, but the parabolas preserve their original upright

orientation.
(3) The “1”-shaped cells are reflected in the vertical sense, but the parabolas preserve their

upright orientation.
(4) The parabolas are reflected vertically, but the “1”-shaped cells preserve their original

orientation.
(5) A global reflection about the horizontal axis: both the parabolas and the “1”-shaped

cells are vertically reflected.
Note that the upright orientation of the “1”-shaped elements is , and all rotations and
reflections are considered with respect to this original orientation. J(x,y) is the Jacobian of
the transformation in question, and v1(x,y) and v2(x,y) are the scanline and interline
orientation vectors (see Sec. C.4).
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table C.1: (continued.) Different variants of the parabolic transformation (C.9) and
some of their local and global properties. The legend and the remarks for
the table are given above. Cases 1–4: Local rotations of the cells. Cases
5–8: Local rotoinversions of the cells. Cases 9–12: Same as cases 1–4
but with vertically reflected parabolas. Cases 13–16: Same as cases 5–8
but with vertically reflected parabolas. The different transformations
g(x,y) are applied to a periodic dot screen r(x,y) (see Fig. C.1(a)) as
domain (inverse) transformations, and the distorted result is r(g(x,y)) as
shown in Figs. C.1(b)–(h).

To illustrate this result, let us return to Figs. C.1(b) and C.1(f)–(h). We see that in all of
these figures the level curves are identical in their geometric shape, and what distinguishes
between the 4 cases is only the order of the level curves, which determines the local
orientation vectors v1(x,y) and v2(x,y) and hence the scanning order of the “1”-shaped
elements. The local orientation vectors v1(x,y) and v2(x,y) are given in Table C.1 for each
of the transformations in question. Another case illustrating the use of this result for the
explanation of the orientation of moiré patterns is shown in Fig. 7.12.

As we can see, the vectors v1(x,y) and v2(x,y) are, in fact, the two columns of the Jacobian
matrix of the inverse transformation g–1(x,y):
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∂g1

∂x
∂g1

∂y
∂g2

∂x
∂g2

∂y

–1

 = 1
J(x,y)

∂g2

∂y
– ∂g1

∂y

– ∂g2

∂x
∂g1

∂x

(C.11)

It should be noted, however, that Eqs. (C.10) are based on the assumption that g(x,y) is
used as a domain (inverse) transformation, i.e. that it is applied to an original image r(x,y)
to give the distorted image r(g(x,y)), as in Figs. C.1 and C.2. But if g(x,y) is used as a
direct transformation, then the vectors v1(x,y) and v2(x,y) are given by the columns of the
inverse of matrix (C.11), namely, by the columns of the Jacobian matrix (C.2) of g(x,y)
itself:

Scanline direction: v1(x,y) = ( ∂
∂x

g1(x,y) , ∂
∂x

g2(x,y))

Interline direction: v2(x,y) = ( ∂
∂y

g1(x,y) , ∂
∂y

g2(x,y))
(C.12)

This is illustrated in Fig. C.5 for the simple case of a linear transformation. The top row
of the figure shows the effect of the direct transformation (u,v) = (x + y, 2y), while the
bottom row shows the effect of its inverse, (x,y) = (u – 1

2v, 1
2v). As we can clearly see, the

Jacobian matrix of the direct transformation g is 1 1
0 2  and the Jacobian matrix of the

inverse transformation g–1 is 1
2

2 –1
0 1 . And indeed, the scanline and interline directions of the

direct transformation are given, in accordance with Eqs. (C.12), by v1 = (1,0), v2 = (1,2)
(see Fig. C.5(b)), while those of the inverse transformation are given, in accordance with
Eqs. (C.10), by v1 = (1,0), v2 = (–1

2,
1
2) (see Fig. C.5(d)).

C.5 Other properties of g(x,y) that can be deduced from its Jacobian matrix

The Jacobian matrix of a transformation g(x,y) can provide further information on the
nature of g(x,y), in addition to the local scaling, reflection and orientation properties
already mentioned so far. Some of these additional properties are briefly summarized
below.

(1) If all the entries of the Jacobian matrix are constant numbers (rather than functions of
x and y), the first-order derivatives of g(x,y) are constant and they do not vary from
point to point. This means that g(x,y) is either affine or linear (depending on whether
or not it also shifts the origin). Such transformations always map straight lines into
straight lines.

(2) If there is at most one element in each row and column of the Jacobian matrix which is
not identically zero, then the transformation (u,v) = g(x,y) is independent. This means
that a change in each of its input variables (x or y) causes a corresponding change in
only a single distinct output variable (u or v). Such a mapping will preserve the
independence of the coordinate axes. A simple example would be the interchange of
the two axes, g(x,y) = (y,x).
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(3) If the Jacobian matrix is diagonal (i.e. all its elements which are not located on its main
diagonal are identically zero), then the transformation (u,v) = g(x,y) is diagonal. This
means that each output variable of the transformation (u or v) depends only on the
corresponding input variable (respectively, x or y), so that the coordinate axes are
preserved. A simple example would be the non-linear scaling transformation g(x,y) =
(logx, logy). Note that a diagonal mapping is more strongly constrained than an
independent mapping in which the coordinate axes may be interchanged. A diagonal
mapping is necessarily independent.

Figure C.4: Explanation of the local orientation properties of a transformation g(x,y).
(a) The original coordinate grid before the application of g(x,y). (b) The
distorted grid after the application of g(x,y). Each grid cell in (a) is drawn
by a succession of scanlines, which is distorted in (b) into a succession of
curvilinear scanlines. The scanline direction and the interline direction in
(b) determine the local cell orientations in the distorted grid. (c) Another
variant of the transformation g(x,y), in which the global geometry remains
the same as in (b) but the cells are rotated by 90°.
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(4) The Cauchy-Riemann conditions that determine whether a given transformation g(x,y)
is conformal (see at the end of Sec. B.5 in Appendix B) can be also expressed in
terms of the Jacobian matrix of g(x,y). In these terms, a transformation g(x,y) is
conformal iff its Jacobian matrix has the form:

    (a) a –b
b  a

            or:         (b) a  b
b –a

  (C.13)

where a and b are functions f1(x,y) and f2(x,y) (note that the signs of a and b can be
also negative). When the elements a and b are constant these matrices correspond to a
linear (or affine) similarity transformation, namely, a transformation that is composed
of a rotation and a uniform scaling [Casselman04 p. 144; Lay03 p. 339], and possibly
also a reflection,2 and (in the affine case) a shift. And indeed, in sufficiently small
regions a conformal mapping looks like a linear (or affine) similarity transformation: it
locally preserves shapes and angles (possibly up to a reflection) — even though it may
distort large shapes wildly. We can say, therefore, that a conformal transformation is a
transformation that behaves locally as a linear (or affine) similarity transformation,
although at each point (x,y) the similarity transformation in question may be different.
Note that the Jacobian determinant of a conformal transformation g(x,y) can be zero at
some isolated points (x,y); these are the singular points of the transformation.

A conformal transformation g(x,y) can be also characterised as isotropic. This means
that g(x,y) may apply a local scale factor to the distances between neighbouring points,
but this factor does not depend on the orientation of the line between the two points,
although it may vary from point to point. An isotropic mapping g(x,y) will convert a
circle at any point in the plane into another circle (but possibly of a different size and
in a different place), whereas a non-isotropic mapping would produce an ellipse. If the
mapping is also linear then circles of any size will behave in this way, whereas with a
non-linear mapping this may only be true for circles of infinitely small size.

Note that an alternative condition on the Jacobian matrix J in order that the
transformation g(x,y) be conformal is that J satisfies  JTJ = f(x,y)I,  where JT denotes
the transpose of the matrix J, f(x,y) is a function and I is the identity matrix. The
equivalence of this condition with the Cauchy-Riemann conditions (a) or (b) of Eq.
(C.13) can be easily obtained by performing explicitly the matrix multiplication JTJ:

a c
b d

a b
c d

 = a2 + c2 ab + cd
ab + cd b2 + d2

where a, b, c, d stand for functions f1(x,y),...,f4(x,y). By equating the elements of the
product matrix with the elements of a diagonal matrix having equal elements on the
diagonal we obtain the two identities:

2 Note that case (a) in Eq. (C.13) corresponds to a direct similarity, that preserves shapes and angles,
while case (b) corresponds to an opposite similarity, that preserves shapes and angles up to a reflection
(meaning that angles are reversed).
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Figure C.5: Top row: the scanline and interline directions of the direct transformation
g given by (u,v) = (x + y, 2y) are v1 = (1,0), v2 = (1,2). Bottom row: the
scanline and interline directions of the inverse transformation g–1,
(x,y) = (u – 1

2v, 1
2v), are v1 = (1,0), v2 = (–1

2,
1
2).

ab + cd = 0

a2 + c2 = b2 + d2

Substituting d = –ab/c from the first identity into the second identity we get:

c2(a2 + c2) = b2(a2 + c2)
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which means, in conjunction with the first identity, that either c = –b, a = d or c = b,
a = –d; these are, indeed, the Cauchy-Riemann conditions of Eq. (C.13).



Appendix D

Direct and inverse spatial transformations

D.1 Introduction

Because spatial transformations (i.e. 2D functions of the form (u,v) = g(x,y)) are widely
used in science and technology, one cannot overestimate the importance of their full
understanding. And yet, there exist several different potential sources of confusion in the
handling of such transformations. The risk of confusion is increased even further due to
the existence of different notation standards, as well as different paradigms for the
software algorithms which implement these transformations (or rather their discrete
forms) in computer applications. It is therefore our aim in this appendix to develop an
intuitive understanding of such transformations, to shed some additional light on their
behaviour, and to explain the main sources of confusion and how to avoid them.

We start our discussion in Sec. D.2 with a general reminder whose aim is to put our
spatial transformations (u,v) = g(x,y) in their right mathematical context and to help us
understand their various graphical representations. In Sec. D.3 we deepen our
understanding of the interconnections between the domain and range planes of a
transformation g. Then, in Sec. D.4 we introduce g–1, the inverse transformation of g, and
discuss the relationship between these two transformations and their respective coordinate
systems. In Sec. D.5 we explain the active and passive interpretations of a transformation
g, and then, in Sec. D.6 we discuss the very important notions of domain and range
transformations. In Sec. D.7 we present the relative point of view, which explains the
relationship between object deformations and coordinate deformations. In Sec. D.8 we
provide several examples that show the various graphical representations of some typical
linear and non-linear transformations, to illustrate the main subjects that were discussed so
far. In Sec. D.9 we proceed to the explanation of some other possible sources of
confusion, including forward and backward transformations in computer applications, and
the use of pre-multiplication or post-multiplication formalisms. Then we discuss the
implications of all these results to the moiré theory, and in particular to the preparation of
our moiré figures (in Sec. D.10), and to the fixed points between the superposed layers (in
Sec. D.11). Finally, in Sec. D.12 we derive some useful approximations that allow us to
formulate our main results in terms of either direct or inverse transformations.

D.2 Background and basic notions

A transformation (or mapping) from D ⊂ RRm to R ⊂ RRn is a function g: D → R
that returns for each point (x1,...,xm) ∈D a new point (y1,...,yn) ∈R. The set D is called
the domain of the transformation g, the set R is called the range of g (or the image of the
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Figure D.1: (a) Schematic graphic representation of a function y = g(x) as a curve
in the 2D plane. (b) Schematic graphic representation of a function
z = g(x,y) as a surface in the 3D space. (c) Schematic graphic repre-
sentation of a function z = g(x,y) as a topographic map. (d) Schematic
graphic representation of a function (y,z) = g(x) as a curve in the 3D
space.

domain D under g), and the new point (y1,...,yn) is said to be the image of the original point
(x1,...,xm) under the transformation g; symbolically, this is denoted by:

(y1,...,yn) = g(x1,...,xm)

In the moiré theory we usually have m = n = 2, and therefore we will be mainly
interested in transformations of the form (u,v) = g(x,y). However, for didactic reasons, let
us first briefly review here the simpler cases in which m < 2 or n < 2.
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(c) (d)
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The simplest possible case is that of the functions of the form y = g(x), which have a 1D
domain and a 1D range. Such functions can be illustrated pictorially as a graph in the x,y
plane that shows, for each original point x along the horizontal axis, the image y to which it
is mapped by g (see Fig. D.1(a)). Thus, if g is a continuous function, it can be viewed as a
curve in the x,y plane. Simple examples include y = 2x or the non-linear function y = x2.

The next simple case is that of the functions of the form z = g(x,y), which have a 2D
domain and a 1D range. Such functions can be illustrated pictorially as a 3D graph (or
rather as a 2D perspective view of such a 3D graph) that shows for each original point
(x,y) in the x,y plane the value z to which it is mapped by g (see Fig. D.1(b)). Thus, if g is a
continuous function, it can be interpreted as a surface in the 3D x,y,z space. A function
z = g(x,y) can be also represented graphically as a topographic map in the x,y plane; in this
case the relief of the surface is represented by level lines (see Fig. D.1(c)).

Yet another simple case, although less frequently encountered, is that of the functions
(y,z) = g(x), which have a 1D domain and a 2D range. We denote such a function by a
boldface letter g since the value g(x) it returns for each original scalar x is a vector. Such a
function can be illustrated, once again, as a 3D graph (or rather as its 2D perspective
view). But this time the graph shows, for each given point along the x axis, the value (y,z)
to which it is mapped by g (see Fig. D.1(d)). Thus, if g is a continuous function, it can be
interpreted as a curve in the 3D x,y,z space.

Having reviewed the simpler cases with m < 2 or n < 2, we arrive now to our main case
of interest, that of the transformations (u,v) = g(x,y), which have a 2D domain and a 2D
range. Clearly, a full graphic representation of such a transformation requires a 4D
drawing in the four coordinates x,y,u,v, which shows for each original point (x,y) in the 2D
domain its corresponding image (u,v) in the 2D range. But because such a 4D drawing is
not realizable, several different more-or-less tricky methods exist to allow us represent the
transformations (u,v) = g(x,y) graphically, within the limits of the possible. These different
representations of the transformation g and the interconnections between them have been
reviewed in detail in Appendix B; here, for the sake of our introductory survey, we only
give a short reminder of the main representations, and we refer the reader to the
appropriate sections in Appendix B for further details.

(1) The most straightforward method for representing the transformation (u,v) = g(x,y)
graphically consists of drawing its 2D domain and its 2D range separately, as two
different planes (see, for example, Fig. D.4 in the next section). The 2D domain is
drawn with its standard Cartesian x,y coordinate system, and the 2D range is drawn
with its own standard Cartesian u,v coordinate system. This representation illustrates
the action of the transformation (u,v) = g(x,y) by showing within its range (the u,v
plane) how the original x,y coordinate grid of the domain plane has been affected. This
gives in the u,v plane a distorted, curvilinear grid (the image of the original x,y grid
under the transformation g), in addition to the standard Cartesian u,v grid of the u,v
plane itself. More details on this method can be found in Sec. B.3 of Appendix B.
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Figure D.2: Schematic graphic representation of a transformation (u,v) = g(x,y) as
a pair of surfaces u = g1(x,y), v = g2(x,y) in the 3D space.

(2) Another variant of method (1) consists of drawing the two planes, the 2D domain and
the 2D range, superposed on top of each other within a single plot (see, for example,
Fig. D.3 in the next section). Although this graphic representation of (u,v) = g(x,y)
may become overcrowded with details from both planes, it still allows to compare
easily the original x,y grid with its distorted image, and it can be used as a
“dictionary” (correspondance map) between the x,y and the u,v coordinate systems.
For more details on this variant see Sec. B.5 in Appendix B.

(3) A third representation of the transformation (u,v) = g(x,y) is based on its component-
wise notation:

u = g1(x,y)

v = g2(x,y)

This notation allows us to interpret the transformation (u,v) = g(x,y) as a pair of
functions of the form z = g(x,y), each of which can be illustrated, as we have seen
above, as a surface in the 3D space (see Fig. D.2). More details on this method can be
found in Sec. B.2 of Appendix B.

(4) In another variant of method (3), each of the two surfaces is drawn as a separate
topographic map with its own level lines (see, for example, Fig. B.1 in Appendix B).
The axes in both of the maps are x and y.

(5) A further method for representing the transformation (u,v) = g(x,y) graphically consists
of showing its effect within a single planar plot as a vector field. This is done by
drawing an arrow emanating from each point (x,y) of the x,y plane (or more practically,
from some representative points on a given grid within the x,y plane), where the length
and the orientation of each arrow indicate the length and the orientation of the vector
(u,v) = g(x,y) that is assigned by g to the point (x,y); see, for example, Fig. D.9(f)
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below.1 It is important to stress, however, that each such arrow does not connect the
point (x,y) to its image (u,v) = g(x,y), but rather to the point (x,y) + g(x,y). The axes of
the vector field remain, therefore, x and y. For more detail on this method see Sec. B.6
in Appendix B.

(6) In another variant of this method, successive vectors of the vector field are connected
into continuous curves, known as the trajectories (or field lines) of the vector field (see
Fig. B.5(b) in Appendix B). This allows to illustrate the effect of the vector field
(u,v) = g(x,y) along its trajectories, much like the graphical description of an electric or
magnetic field in physics. More details can be found in Sec. B.6 of Appendix B.

There also exist other, more exotic methods for representing the transformation (u,v) =
g(x,y). Although they are quite rarely used, it may still be interesting to mention some of
them briefly:

(7) In a different variant of the vector field (method (5)), each arrow emanates from the
point (x,y) and points to its image (u,v) = g(x,y). This variant is rarely if ever used in the
literature; but in fact it is equivalent to the vector field of the relative transformation
k(x,y) = g(x,y) – (x,y), where each arrow (before its length is possibly being scaled)
connects the point (x,y) to the point (x,y) + k(x,y) = g(x,y).

(8) Another unusual representation of the transformation (u,v) = g(x,y) is a variant of
method (1) in which the action of the transformation is not demonstrated by the way it
affects the standard Cartesian x,y grid, but rather by the way it affects some other
curves in the x,y plane. This can be advantageous when the transformation g maps the
straight lines of the x,y grid into too complicated curves, or in cases in which it is easier
or more interesting to see how g acts on some other curve families. Perhaps the most
classical example of this type is the Cartesian to polar coordinate transformation
(r,θ) = ( x2 + y 2 , arctan(y/x)), which is represented in the literature by its effect on the
concentric circles and the radius lines that surround the origin of the x,y plane; we will
return to this case in more detail in Sec. D.8, Example D.4. Several other examples can
be found in [Needham97]; see, for example, the figures in pp. 58, 100 and 163 there.
Yet another example appears in [Kreyszig93 p. 745, Fig. 304].

All these different representations of the transformation (u,v) = g(x,y) are in fact
equivalent, although each of them focuses on some different facets of the transformation.
It is therefore up to us to choose in each case the most suitable representation of g,
depending on the circumstances. For example, if we are mainly interested in the effect of
the transformation g on the original Cartesian coordinate system, the most natural
representation to consider is (1); but if we want to visually detect the critical points of g
(the points where g(x,y) = (0,0)), then the most suitable representation would certainly be
(5) or (6). In the remaining sections of this appendix we will mainly use representations

1 For practical reasons it is customary to scale the arrow lengths in the drawing by a constant factor, in
order to avoid drawings with too short, hard-to-see arrows, or drawings with too long, overlapping
arrows.



332                                                      Appendix D: Direct and inverse spatial transformations

Figure D.3: The effect of a transformation (u,v) = g(x,y) (in the present example: a
rotation by angle α), shown within the original x,y coordinate system.
Domain coordinates x,y and range coordinates u,v are marked along
the same original axes. Note that the dashed lines do not represent
the u and v axes (see Remark D.3).

(1) and (2) and their counterparts for the inverse transformation (x,y) = g–1(u,v). Note,
however, that some of the other methods are also frequently used in this book; it is
therefore important to recognize the different methods correctly and to understand which
of them is being used in each case, in order to avoid confusion. In particular, we should be
attentive to the fact that one and the same transformation may look completely different in
each of its various graphic representations; several illustrative examples are provided in
Sec. D.8 below.

D.3 A deeper look into the domain and range planes of the mapping (u,v) = g(x,y)

Suppose we are given a transformation (u,v) = g(x,y) that operates on the x,y plane:
g: RR2 → RR2. As a simple example we may consider the transformation which rotates the
plane by angle α about the origin. When the transformation g is applied, it moves each
point P = (x,y) of the x,y plane to a new point Q whose location in the same x,y plane is
given by g(x,y). This mapping effect of g is often denoted in literature by (x,y) |→ g(x,y) or
(x,y) |→ (u,v) (see, for example, [Lang87 p. 386]). Fig. D.3 shows the image Q of a point
P under the transformation of rotation by angle α, as well as the images of the original x
and y axes under the same transformation (the dashed lines).

Note that in Fig. D.3 we have drawn the effect of the transformation (u,v) = g(x,y) within
the original x,y coordinate system (also called the x,y space). This means that Fig. D.3
shows simultaneously the situations before and after the application of the transformation
g (see method (2) above). But for the sake of clarity, in order not to overload the drawing
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Figure D.4: The effect of a transformation (u,v) = g(x,y) (the same transformation
as in Fig. D.3), shown in two separate plots: (a) The domain of g (the
x,y plane before the application of the transformation). (b) The range
of g (the u,v plane after the application of the transformation). A more
detailed version of this figure is provided in Fig. D.5.

with details, it is often preferable to use method (1), and to illustrate the original and the
transformed planes (i.e. the domain and the range of g) in separate plots, as shown in Fig.
D.4. In this case the standard axes of the domain of g are denoted x and y, as shown in
Fig. D.4(a); but after the transformation has been applied, i.e. in the range of g, the x and y
axes are already transformed (distorted or simply moved to new locations), and the role of
the standard axes is taken over by u and v (see Fig. D.4(b)). Note that the new standard
axes u and v are identical to the old standard x and y axes as they existed before the
application of g. A more detailed version of Fig. D.4 is shown in Fig. D.5; this figure
clearly shows the effect of the rotation transformation g, which simply rotates the entire
plane shown in (a) into the plane shown in (b). The images of the original x and y axes
under the transformation g are called in Fig. D.5(b) the x and y axes, since they
correspond, respectively, to the curves y = 0 and x = 0 in the u,v coordinate system of Fig.
D.5(b). These axes form, indeed, the transformed coordinate system of the u,v plane, and
in the general case they may be curvilinear (see, for example, Figs. D.9(a),(b) below).

It may be sometimes helpful to describe the effect of the transformation (u,v) = g(x,y)
using the following physical interpretation (see Figs. D.9(a),(b)): Imagine that the original
x,y coordinate system is printed on a flat sheet of flexible rubber, and that this sheet
undergoes a planar transformation while remaining flat. Depending on the forces that are
applied to that rubber sheet, the result may appear rotated, scaled, or otherwise distorted;
but it always remains flat. Now, we copy the resulting distorted x,y plane on a new sheet of
paper; this sheet corresponds to the range of the transformation g(x,y) (see Fig. D.9(b)).
We draw on this sheet a new Cartesian coordinate system, identical to the original
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untransformed x,y coordinate system of Fig. D.9(a); these new undistorted axes are the u
and v coordinates of the range of our transformation (see Fig. D.9(b)).

Remark D.1: The fact that the new u,v axes are identical to the original, undistorted x,y
axes will allow us later to compare any object in the plane before and after it undergoes
the transformation (u,v) = g(x,y).

Remark D.2: Note the double role of the x,y coordinate system: on the one hand it refers
to the original, undistorted coordinate system before the application of the transformation
(u,v) = g(x,y), i.e. in the domain of g(x,y); but on the other hand it also refers to the
distorted coordinate system after the application of the transformation, i.e. in the range of
g(x,y), whose new undistorted coordinates are u,v.

Having understood the coordinate systems involved in the domain and in the range of
the transformation g, we now present the terminology that is used to refer to them.2 The
u,v coordinate system of the range of g (see Fig. D.5(b)) is called the u,v space, the target
space or the destination space of the transformation g. The x,y coordinate system of Fig.
D.5(a), showing the situation before the transformation g has been applied, is called the
original x,y space, and the distorted x,y coordinate system of Fig. D.5(b), showing the
situation after the transformation g has been applied, is called the g-transformed x,y space
or simply the transformed x,y space. Note that the values of the x,y coordinates are not
affected by the transformation: If point P has coordinates (x,y) in the original x,y space, its
image Q has the same (possibly curvilinear) coordinates (x,y) in the transformed x,y space
(while its Cartesian coordinates in terms of the u,v space are (u,v) = g(x,y)).3

As we can see, Fig. D.5 has an important advantage over Fig. D.4 in that it allows us to
easily visualize for any given point in the plane the correspondence between its x,y
coordinate values and its u,v coordinate values. We will return to this point in Sec. D.5,
where we discuss the active and passive interpretations of a transformation (u,v) = g(x,y).

Remark D.3: Since the transformation (u,v) = g(x,y) maps any original point (x,y) into its
image (u,v), it also maps in Fig. D.3 the original x and y axes into the two respective
dashed lines. Therefore, it may be tempting to call these dashed lines in Fig. D.3 “the u
and v axes”. However, this reasoning is wrong since the points (x,0), which form the x
axis, are not mapped by the transformation g into the points (u,0), which form the u axis,
but rather into the points (u,v) = g(x,0). And indeed, as clearly shown in Fig. D.5(a), the u
and v axes are obtained by applying to the x and y axes the inverse transformation (in our
case: a rotation in the negative direction). To better understand this, consider our example
of a rotation by angle α. This transformation is given by:

u
v

 = cosα –sinα
sinα cosα

x
y

 = xcosα – ysinα
xsinα + ycosα

    (D.1)

2 Unfortunately, as we will see later in Sec. D.6.2, a different convention also coexists, and is being used.
3 Note that although u and v are obtained by transforming the original x,y coordinates through (u,v) =

g(x,y), they appear in Fig. D.5(b) as untransformed (because they are the standard coordinates of the
range of g), while the transformed axes in this figure belong to the transformed x,y coordinates.
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Figure D.5: Same as Fig. D.4, but this time showing both the x,y and the u,v coor-
dinates in (a) as well as in (b). This figure clearly illustrates the active
interpretation of the transformation (u,v) = g(x,y), which amounts to the
rotation of the entire plane of (a) into the plane shown in (b). Each of
the views (a) and (b) also illustrates the passive interpretation of the
same transformation, which consists of the conversion of x,y coordi-
nates into u,v coordinates. (The active and passive interpretations are
discussed in Sec. D.5.)

Its inverse transformation, (x,y) = g–1(u,v), is the rotation by angle –α, namely:

x
y

 = cosα sinα
–sinα cosα

u
v

 = ucosα + vsinα
–usinα + vcosα

    (D.2)

Now, the u axis is given by definition by the curve v = 0. This curve can be also
expressed in our example, using the bottom row of Eq. (D.1), as:

xsinα + ycosα = 0

namely: y = –xtanα = xtan(–α)

This means that the u axis is represented in Fig. D.3 by a line whose angle is –α, and
not by the dashed line whose angle is α. This fact is clearly shown in Fig. D.5(a).

On the other hand, the dashed lines in Fig. D.5(b) do represent the x and y axes. To see
this, remember that the x axis is, by definition, the line y = 0, which can be also expressed
in our case, using the bottom row of Eq. (D.2), as:

–usinα + vcosα = 0

namely: v = utanα
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This is clearly a line passing through the origin of the u,v plane at the angle of α. This
means that the dashed line located above the u axis in the u,v system of Fig. D.5(b)
represents, indeed, the x axis. A similar reasoning can be formulated for the y axis, too.

The possible confusion in labelling the transformed axes in Fig. D.3 occurs since Fig.
D.3 attempts to show both the domain of g (Fig. D.5(a)) and the range of g (Fig. D.5(b))
within the same coordinate system, while the axis names in Fig. D.5(a) and Fig. D.5(b)
are not the same. This fact further justifies why we prefer to illustrate the effect of a
transformation g in two separate plots, as shown in Figs. D.4 or D.5, rather than in a
single plot, as in Fig. D.3. Drawing a single plot is, of course, allowable, and sometimes
even advantageous, but it should be done with care.4

D.4 2D transformations and their inverse

In order to further clarify the situation in the 2D case, let us describe in more detail the
effect of the 2D transformation (u,v) = g(x,y) and the effect of its inverse (x,y) = g–1(u,v) on
each point of the plane (see Fig. D.9).5 Note that in the following we will sometimes need
the componentwise notation of the transformation (u,v) = g(x,y):

u = g1(x,y)

v = g2(x,y)
(D.3)

Similarly, the componentwise notation of the inverse transformation (x,y) = g–1(u,v) is:

x = g 1
– 1(u,v)

y = g 2
– 1(u,v)

(D.4)

where g 1
– 1(u,v) and g 2

– 1(u,v) are the components of the inverse transformation g–1(u,v).
Note that the inverse of the inverse transformation (x,y) = g–1(u,v) is the original
transformation (u,v) = g(x,y) itself. The original transformation g is also called the direct
transformation (as opposed to the inverse transformation g–1).

Remark D.4: Once we have defined the inverse transformation (x,y) = g–1(u,v), it becomes
a transformation in its own right, and we can obviously write it with any variables we may
wish. Thus, if we prefer to maintain our convention of using the x,y variables for the
transformation’s domain and the u,v variables for its range, we may write our inverse

4 For example, if one insists on naming the rotated, dashed axes of Fig. D.3 by u and v, then the
transition from x,y to u,v values must be expressed mathematically by the inverse transformation, in our
case: a rotation by angle –α. This practice can be found, for example, in [Knopp74 pp. 401–407] or in
[Spiegel68 p. 36]. Note that in references using this convention the transformation (u,v) = g(x,y) is
often called “a transition from u,v to x,y” (see, for example, [Knopp74 p. 406]), in order to avoid the
inversion effect between the figure and the formula (see also Remark D.16 in Sec. D.6.2).

5 For the sake of the present discussion we suppose that the transformation (u,v) = g(x,y) is sufficiently
well behaved, and that it has a unique inverse transformation (x,y) = g–1(u,v).
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transformation as: (u,v) = g–1(x,y). This also allows us to compare g and g–1 by plotting
them together in the same drawing without having to bother about the axes names.
Moreover, this even allows us to define new combined transformations such as
h(x,y) = g(x,y) – g–1(x,y). In fact, for any rational polynomial r(x) = ∑anxn with positive
and negative powers n ∈ZZ we can define a corresponding functional polynomial in g(x,y),
r(x,y) = ∑ang[n] (x,y), where the “powers” in brackets indicate composition of transfor-
mations (or inverse transformations), as follows: g[1] = g, g[2] = g ° g, g[3] = g ° g ° g, etc.,
g[0] = i (the identity transformation i(x,y) = (x,y)), g[–1] = g–1 (the inverse transformation
of g), g[–2] = g–1 ° g–1, etc. For example, the rational polynomial r(x) = 3x2 + 5x + 2 + 4

x
defines the functional polynomial:

r(x,y) = 3g[2](x,y) + 5g[1](x,y) + 2g[0](x,y) + 4g[–1](x,y)

= 3[g ° g](x,y) + 5g(x,y) + 2(x,y) + 4g–1(x,y)

Thus, one should not be shocked if we occasionally say that the inverse of the
transformation g(x,y) is g–1(x,y) (rather than g–1(u,v)). In fact, it would be desirable to stick
systematically to either of these two conventions; however, it turns out that each of the two
may be more suitable in some different situations. We therefore have to live with both
conventions, but whenever this may cause confusion we will add an adequate remark to
clarify our intentions.

D.4.1 The image of the standard Cartesian grid under the transformations g and g–1

Suppose now that a moving point P = (x,y) describes a curve in the domain of our
transformation g(x,y), i.e. within the x,y plane. As we already know, the image of this point
in the range of our transformation will likewise describe a curve in the u,v plane, which is
called the image curve of the original curve.6 For example, to the line x = c, which is
parallel to the y axis, there corresponds in the u,v plane the image curve given in parametric
form by the pair of equations [Courant88 pp. 134–135]:

u = g1(c,y)

v = g2(c,y)

or, more concisely:

(u,v) = g(c,y)     (D.5)

where y is the parameter of the curve. Similarly, to the line y = k there corresponds in the
u,v plane the image curve given in parametric form by the pair of equations:

u = g1(x,k)

v = g2(x,k)

6 We could also draw the resulting curve within the original x,y plane, like in Fig. D.3; but as already
mentioned above, we prefer to draw it in a separate figure in order not to overload the original figure,
and in order to avoid confusion in the axis names.
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or, more concisely:

(u,v) = g(x,k)     (D.6)

where x is the parameter of the curve.7 Note that the image curves (D.5) and (D.6) can be
also expressed in the implicit form, in terms of the inverse transformation (x,y) = g–1(u,v).
Since they are the image curves of the lines x = c and y = k, they can be written,
respectively, using Eqs. (D.4), as follows [Courant88 p. 135]:

g 1
– 1(u,v) = c     (D.7)

and: g 2
– 1(u,v) = k     (D.8)

Now, if we assign to c and k sequences of equidistant values c1, c2, c3, ... and k1, k2, k3, ...
(for instance, consecutive integer values), then the rectangular coordinate grid consisting of
the lines x = ci and y = ki in the x,y plane (see Fig. D.9(a)) gives rise to a corresponding
curvilinear grid consisting of two families of curves (D.7) and (D.8) in the u,v plane (see
Fig. D.9(b)). This curvilinear grid furnishes a useful geometric picture of the mapping
(u,v) = g(x,y) that clearly shows how it distorts the original x,y plane.

Remark D.5: It follows from Eqs. (D.7) and (D.8) that the two families of curvilinear
lines in the u,v plane, that are the image under g of the standard unit grid of the x,y plane,
are simply the level lines of the two surfaces defined, respectively, by the two components
of the inverse transformation g–1: The images of the lines x = m, m ∈ZZ under (u,v) =
g(x,y) are the level lines g 1

– 1(u,v) = m of the surface z = g 1
– 1(u,v) (see the plain lines in Fig.

D.9(b)), and the images of the lines y = n, n ∈ZZ under (u,v) = g(x,y) are the level lines
g 2

– 1(u,v) = n of the surface z = g 2
– 1(u,v) (see the dashed lines in Fig. D.9(b)).

Consider now the inverse transformation, (x,y) = g–1(u,v). Obviously, this transformation
maps the curvilinear lines in the u,v plane that are defined by Eq. (D.5) or, equivalently, by
Eq. (D.7) (see the plain curves in Fig. D.9(b)) back into the original straight vertical lines
x = c in the x,y plane (Fig. D.9(a)). Likewise, it maps the curvilinear lines in the u,v plane
that are defined by Eq. (D.6) or, equivalently, by Eq. (D.8) (see the dashed curves in Fig.
D.9(b)) back into the original straight horizontal lines y = k in the x,y plane. Thus, the
inverse transformation undoes the effects of the original transformation g(x,y), and brings
each distorted entity in the u,v plane back into its undistorted state in the original x,y plane.
This can be clearly seen by comparing Figs. D.9(b) and D.9(a).

However, it is also possible to consider the inverse transformation (x,y) = g–1(u,v) as a
transformation in its own right, as shown in Figs. D.9(c),(d).8 From this point of view, the

7 In a similar way we can also find the image of a curve, say, y = x2 + k, by plugging its equation
(instead of the equation y = k) into (u,v) = g(x,y). For example, the image of the curve y = x2 + k in the
u,v plane is given in parametric form by (u,v) = g(x, x2 + k). This is further explained in Remark D.8
below.

8 As we have seen in Remark D.4, because g–1 is a transformation in its own right, we could also
consider it in the x,y space. But in order to avoid confusion we prefer to use here the variables x,y for the
domain of g (and the range of g–1), and the variables u,v for the range of g (and the domain of g–1).
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transformation g–1(u,v) maps the standard Cartesian coordinate grid of its own domain, the
u,v plane, into a curvilinear grid within its range, the x,y plane. Thus, to each line u = p,
which is parallel to the v axis in the u,v plane, there corresponds in the x,y plane a curve,
which is given in parametric form by the pair of equations:

x = g 1
– 1(p,v)

y = g 2
– 1(p,v)

or, more concisely:

(x,y) = g–1(p,v)     (D.9)

where v is the parameter of the curve. Similarly, to the line v = q in the u,v plane there
corresponds in the x,y plane a curve, which is given in parametric form by the pair of
equations:

x = g 1
– 1(u,q)

y = g 2
– 1(u,q)

or, more concisely:

(x,y) = g–1(u,q)   (D.10)

where u is the parameter of the curve. Note that the curves (D.9) and (D.10) can be also
expressed in the implicit form, in terms of the original transformation g(x,y). Since they
are the image curves of the lines u = p and v = q, they can be written, respectively, using
Eqs. (D.3):

g1(x,y) = p   (D.11)

and: g2(x,y) = q   (D.12)

If we assign to p and q sequences of equidistant values p1, p2, p3, ... and q1, q2, q3, ... (for
instance, consecutive integer values), then the rectangular coordinate grid consisting of the
lines u = pi and v = qi in the u,v plane (Fig. D.9(c)) gives rise to a corresponding
curvilinear grid in the x,y plane (Fig. D.9(d)) which consists of the two families of curves
(D.9) and (D.10). This curvilinear grid furnishes a useful geometric picture of the inverse
mapping (x,y) = g–1(u,v) that clearly shows how it distorts its original u,v plane.

Remark D.6: It follows from Eqs. (D.11) and (D.12) that the two families of curvilinear
lines in the x,y plane, that are the image under g–1 of the standard unit grid of the u,v plane,
are simply the level lines of the two surfaces defined, respectively, by the two components
of the direct transformation g: The images of the lines u = m, m ∈ZZ under (x,y) = g–1(u,v)
are the level lines g1(x,y) = m of the surface z = g1(x,y) (see the plain lines in Fig. D.9(d)),
and the images of the lines v = n, n ∈ZZ under (x,y) = g–1(u,v) are the level lines g2(x,y) = n
of the surface z = g2(x,y) (see the dashed lines in Fig. D.9(d)).
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Figure D.6: Transformation (D.13) maps the cosinusoidal curve r = 6cosθ in the
θ,r plane (a) into the circle (u–3)2 + v2 = 9 in the u,v plane (b). Note
that the radial and circular grid lines in (b) are the images of the vertical
and horizontal θ,r grid lines in (a) under the transformation (D.13);
they represent, therefore, the transformed θ,r plane. The values along
the u and v axes in (b) correspond to the Cartesian coordinates of the
destination u,v plane, i.e. to the vertical and horizontal grid lines u = c,
v = k; but these lines are not shown in the figure in order not to
overload it with details. Note that all angles are measured in radians.

Remark D.7: Note that one can express the curvilinear grid lines of both g(x,y) and its
inverse g–1(u,v) without knowing the explicit expression of the inverse transformation: The
curvilinear grid lines of g(x,y) can be expressed in parametric form by Eqs. (D.5) and
(D.6), and the curvilinear grid lines of g–1(u,v) can be expressed in implicit form by Eqs.
(D.11) and (D.12). All of these equations only require the knowledge of the direct
transformation g(x,y).

This last fact allows us in Fig. D.9 to plot the effects of both g and g–1 even if the
explicit expression of g–1 is unavailable. This technique has been used, indeed, to generate
the figures that accompany the examples in Sec. D.8.

D.4.2 The image of a general curve under the transformations g and g–1

We have seen above in detail how the transformation (u,v) = g(x,y) acts on the straight
grid lines x = c and y = k of the x,y plane, and how the images under g of these grid lines
are expressed as curves in the u,v plane. Similarly, we have also seen how the inverse
transformation (x,y) = g–1(u,v) acts on the straight grid lines u = c and v = k of the u,v
plane, and how the images under g–1 of these grid lines are expressed as curves back in the
x,y plane. But because the transformation (u,v) = g(x,y) maps the x,y plane into the u,v
plane, it is clear that it also maps any subset of the x,y plane into a subset of the u,v plane.
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For example, the rotation transformation (D.1) maps any subset of the x,y plane into a
similar subset of the u,v plane which has only been rotated by angle α about the origin. A
more interesting example is given by the non-linear transformation:9

u = rcosθ

v = rsinθ
(D.13)

This transformation converts polar coordinates θ,r into Cartesian coordinates u,v.
Knowing the inverse of this transformation (see Example D.4 in Sec. D.8 below),
r = u2 + v 2 , θ = arctan(v/u), we can see from Eqs. (D.7) and (D.8) how transformation
(D.13) acts on the straight grid lines of the θ,r plane: It maps each horizontal line r = c of
the θ,r plane (where c is an arbitrary constant) into a circle centered about the origin with
radius c in the u,v plane, that is expressed by u2 + v 2  = c. Similarly, it maps each vertical
line θ = k of the θ,r plane into a radial line in the u,v plane which emanates from the origin
at the angle of k radians, and whose expression is arctan(v/u) = k.

Proceeding with the same example, consider now the planar curve defined by the
equation r = 6cosθ. When plotted in the θ,r plane this equation gives a cosinusoidal curve
(see Fig. D.6(a)).10 However, the image of this curve in the u,v plane under the
transformation (D.13) is a circle tangent to the vertical axis, as shown in Fig. D.6(b)
[Colley98 pp. 68–69]. In other words, when the point P in Fig. D.6(a) traces out the
cosinusoidal curve, its image Q traces out the circle shown in Fig. D.6(b). We see,
therefore, that the non-linear transformation (D.13) maps cosinusoidal curves in the polar
θ,r plane into circles tangent to the vertical axis in the Cartesian u,v plane. Other interesting
examples showing how various curves in the θ,r plane are transformed into the u,v plane
under the transformation (D.13) can be found in [Lang87 pp. 254–257].

So how can we express mathematically the new curve which is obtained in the u,v plane
as the image under transformation g of a given curve f(x,y) = 0 in the x,y plane? Just as we
did in the case of the straight grid lines, we replace each occurrence of x and y in the curve
equation f(x,y) = 0 by the respective component from Eq. (D.4), and we obtain:
f(g 1

– 1(u,v),g 2
– 1(u,v)) = 0, or more concisely, using vector notation: f(g–1(u,v)) = 0. This is,

indeed, the implicit form of our image curve in the u,v plane.

Returning to our example, the image in the u,v plane of the original cosinusoidal curve
r = 6cosθ under the transformation (D.13) is obtained by plugging in this curve equation
the two components of the inverse transformation, r = u2 + v 2 , θ = arctan(v/u). We get,
therefore:

9 Note that the names of the variables have no real importance, and they can be chosen as desired. In this
case we have preferred to keep using the range coordinates u,v in accordance with our usual convention,
but to use the classical polar coordinate names r,θ rather than our usual domain coordinate names x,y.
Depending on the context we may prefer in other circumstances to make other choices, such as (u,v) =
(xcosy, xsiny) or (x,y) = (rcosθ, rsinθ).

10 Note that because in this case r is considered as a function of θ, it is more natural to talk about the θ,r
plane, in which θ is the horizontal axis and r is the vertical axis. But in other situations it is often more
convenient to refer to the polar coordinates plane as the r,θ plane.
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u2 + v 2  = 6 cos(arctan(v/u))

and using the identity cosx = 1/ 1 + tan2x  [Spiegel68 p. 15] and hence cos(arctan(v/u)) =
u/ u2 + v 2  we obtain the desired curve equation in the u,v plane:

u2 + v2 = 6u

or equivalently, (u–3)2 + v2 = 9

This is, indeed, a circle tangent to the vertical v axis (see Fig. D.6(b)).

Similar results can be also obtained for the image of a curve f(u,v) = 0 under the inverse
transformation (x,y) = g–1(u,v). We have, therefore, the following general result:

Proposition D.1: Let f(x,y) = 0 be a curve in the x,y plane. The image in the u,v plane
of this curve after the application of the direct transformation (u,v) = g(x,y) is
f(g 1

– 1(u,v),g 2
– 1(u,v)) = 0, or in vector notation, f(g–1(u,v)) = 0. Conversely, if f(u,v) = 0 is a

curve in the u,v plane, then the image in the x,y plane of this curve under the inverse trans-
formation (x,y) = g–1(u,v) is f(g1(x,y),g2(x,y)) = 0, or in vector notation, f(g(x,y)) = 0.

Remark D.8: It is interesting to note that if the curve f(x,y) = 0 is also known in
parametric form, x = f1(t), y = f2(t), then the image in the u,v plane of this curve under the
direct transformation (u,v) = g(x,y) can be also expressed, in parametric form, by (u,v) =
g(f1(t),f2(t)).11 Similarly, if the curve f(x,y) = 0 is known in the explicit form y = h(x), then
the image in the u,v plane of this curve under the same direct transformation (u,v) = g(x,y)
can be also expressed in the parametric form (u,v) = g(x,h(x)).12

Conversely, if the curve f(u,v) = 0 is also known in parametric form, u = f1(s), v = f2(s),
then the image in the x,y plane of this curve under the inverse transformation (x,y) =
g–1(u,v) can be also expressed, in parametric form, by (x,y) = g–1(f1(s), f2(s)). Similarly, if
the curve f(u,v) = 0 is known in the explicit form v = h(u), then the image in the x,y plane
of this curve under the same inverse transformation (x,y) = g–1(u,v) can be also expressed
in the parametric form (x,y) = g–1(u,h(u)).

We have already met a few such parametric examples earlier in Sec. D.4 (see, for
instance, Eqs. (D.5), (D.6) and the footnote thereafter, and Eqs. (D.9) and (D.10)).
Note that in Proposition D.1 we have to plug the two components of the (inverse)
transformation into the curve’s definition, while here we have to plug the two components
of the curve into the spatial transformation’s definition.

11 A curve in the plane can be generally defined in three equivalent forms: explicitly by y = h(x),
implicitly by f(x,y) = 0, or parametrically by x = f1(t), y = f2(t), where the parameter t varies
continuously throughout an interval such as –∞ < t < ∞ [Bronshtein97 pp. 75–76]. Conversions
between these forms can be done as explained in [Bronshtein97 p. 551]. Depending on the case, one or
the other of these equivalent forms may have a simpler expression or be more convenient to use; note,
however, that not every curve can be expressed in the explicit form.

12 Note that this is equivalent to the parametric form (u,v) = g(f1(t), f2(t)) where f1(t) = t and f2(t) =
h(t).
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D.5 The active and passive interpretations of a transformation13

A transformation (u,v) = g(x,y) can be interpreted in two different ways (see [Courant88
pp. 133–140]): either as a mapping (the active interpretation), or as a coordinate change
(the passive interpretation).

According to the active interpretation, the one we have tacitly adopted thus far, the
transformation g moves (or maps) each point P = (x,y) of the original x,y plane into its
image point Q = (u,v). This destination point can be represented either in the original x,y
coordinate system, where the values (u,v) returned by the transformation are understood as
new values along the original x and y axes (as in Fig. D.3), or in the target u,v coordinate
plane, as in Fig. D.5(b). Note that g moves any point (x,y) of the original x,y plane (Fig.
D.5(a)) to the point having the same coordinates (x,y) in the distorted x,y plane (Fig.
D.5(b)). The active point of view is also illustrated in Figs. D.9(a),(b), where the non-
linear transformation g maps the original axes of the x,y plane (a) into the distorted x,y
axes in the destination u,v plane (b).

On the other hand, in the passive interpretation of the transformation g we only
concentrate on the plane after its deformation by g has been completed (Fig. D.5(b)), but
we consider this plane through two different coordinate nets: the distorted x,y coordinate
net and the new undistorted u,v coordinate net.14 This allows us to interpret the
transformation (u,v) = g(x,y) as a coordinate change in the plane, or, in other words, as a
“dictionary” that translates the position of any given point in the plane from the x,y
language to the u,v language, without actually moving the given point from one location in
the plane to another; see Fig. D.5(b).15 If (u,v) = g(x,y) is a one-to-one transformation we
can in general assign to each point (x,y) the corresponding values (u,v) as new coordinates,
because each pair of values (x,y) uniquely determines the pair (u,v), and vice versa. Thus,
both (x,y) and (u,v) uniquely determine the position of any given point in the plane. The
direct transformation (u,v) = g(x,y) translates from the x,y language to the u,v language, and
the inverse transformation (x,y) = g–1(u,v) translates from the u,v language to the x,y
language.16

13 The material in this section is only used within the present appendix, but it is not required elsewhere
in the book. It is given here for the sake of completeness only, and may be skipped if desired.

14 It may be helpful to imagine that these coordinate nets are printed on two different transparencies, that
can be superposed on top of the same distorted plane. This is clearly illustrated in Fig. 9: Fig. D.9(b)
shows the distorted plane superposed by the distorted x,y coordinate net, and Fig. D.9(c) shows the
same plane superposed by the undistorted u,v coordinate net.

15 Note that the passive interpretation of the transformation can be also considered in Fig. D.5(a) which
shows the domain of g, i.e the situation before the transformation has been applied. However, this may
be somewhat less natural since in order to draw the u and v axes in Fig. D.5(a) we need to apply to the
x and y axes the inverse transformation g–1.

16 Note the inherent inversion that exists in the passive interpretation: The coordinates (x,y) of any given
point in terms of the x,y coordinate system are translated by the transformation (u,v) = g(x,y) into the
coordinates (u,v) of the same point in terms of the u,v coordinate system; and yet, the u,v coordinate
system is obtained from the x,y system by applying the inverse transformation, g–1 (see Remark D.3).
For example, when g represents a rotation by angle α (Fig. D.5), the u,v axes are obtained from the x,y
axes by a rotation by –α.
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The active and passive interpretations of a transformation (u,v) = g(x,y) are concisely
summarized as follows:

Proposition D.2: A transformation (u,v) = g(x,y) can be interpreted in two different ways:
either as a mapping which actually moves each point (x,y) into a new location (u,v) within
one and the same coordinate system (the active interpretation), or as a coordinate change
which converts each point from the x,y coordinate system to the u,v coordinate system (the
passive interpretation).17

The active and passive interpretations of a transformation (u,v) = g(x,y) are very closely
interrelated. The curves in the u,v plane that are, according to the active interpretation, the
images under g of straight lines parallel to the axes in the x,y plane (see Eqs. (D.7) and
(D.8)), can be also regarded according to the passive interpretation as the coordinate
curves for the curvilinear coordinates x = g 1

– 1(u,v), y = g 2
– 1(u,v) in the u,v plane (see Fig.

D.9(b)). Similarly, the curves in the x,y plane that are, according to the active interpretation,
the images under g–1 of straight lines parallel to the axes in the u,v plane (see Eqs. (D.11)
and (D.12)), can be also regarded as the coordinate curves for the curvilinear coordinates
u = g1(x,y), v = g2(x,y) in the x,y plane (see Fig. D.9(d)).

Thus, the difference between the two interpretations is mainly in the point of view. If we
are mainly interested in the x,y plane, we regard u and v simply as a new means of locating
points in the x,y plane, and the u,v plane becomes then merely subsidiary (as in Fig. D.3).
But if we are equally interested in the two planes, the x,y plane and the u,v plane, it is
preferable to regard the transformation (u,v) = g(x,y) as specifying a correspondence
between the two planes, i.e., as a mapping of one on the other (as in Fig. D.4).18 It is,
however, often desirable to keep the two interpretations in mind at the same time.

Let us consider as a final example the polar to Cartesian transformation (D.13) which is
illustrated in Fig. D.6. In this case we say, according to the active interpretation, that the
transformation maps any point P = (θ,r) into its image Q = (u,v) = (rcosθ, rsinθ); for
example, the point P = (π/4, 3 2) is mapped into the point Q = (3,3). Furthermore, by
considering successive points P along the curve r = 6cosθ shown in Fig. D.6(a), we can
see that our transformation maps (or distorts) this curve from a cosinusoidal line in the
original θ,r plane into a circle (u–3)2 + v2 = 9 in the transformed θ,r plane (whose new
standard coordinate axes are u and v; see Fig. D.6(b)). What is, then, the passive
interpretation of the same transformation (D.13)? Consider again point Q in Fig. D.6(b):
If we regard (D.13) as a dictionary, we see that without actually moving the point Q, our
transformation (u,v) = (rcosθ, rsinθ) converts the point coordinates from the θ,r language,
(π/4, 3 2), to the u,v language, (3,3). By considering now the entire circle of Fig. D.6(b),

17 These two interpretations can be also described as “different objects viewed in the same coordinates”
and “the same object viewed in different coordinates”, respectively.

18 This difference of point of view is often reflected by the notation being used to express the given
transformation. For example, the notation g(x,y) = (2xy, y2 – x2), which does not explicitly mention the
u,v coordinates, suggests that one is mainly interested in the x,y plane, while the equivalent notation
(u,v) = (2xy, y2 – x2) suggests that one is interested in both the x,y and u,v planes.



D.5 The active and passive interpretations of a transformation 345

we see that our transformation (D.13) converts the mathematical expression of our circle
(without distorting the circle itself!) from the θ,r language, r = 6cosθ, into the u,v language,
u2 + v2 = 6u, or equivalently (u–3)2 + v2 = 9 (see the mathematical derivation in Sec.
D.4.2). Similar results can be obtained for any other curve or object in the plane.

Remark D.9: It should be noted that there does exist one real difference between the two
points of view: (u,v) = g(x,y) always defines a mapping, no matter how many points (x,y) it
maps to one point (u,v); but it cannot define a meaningful coordinate change if the
correspondence is not one-to-one (such a case is illustrated in Example D.7 below).

Remark D.10: To see how all this is related to the well-known theorems on coordinate
(or basis) changes in linear algebra, consider the particular case in which (u,v) = g(x,y) is a
linear transformation. Let e1, e2 be the standard basis of the original x,y space: e1 = (1,0),
e2 = (0,1), and let f1, f2 be the standard basis of the g-transformed x,y space (see Fig.
D.5(b)), expressed in terms of the basis vectors e1 and e2: f1 = (f1,1, f1,2), f2 = (f2,1, f2,2),
namely:

f1 = f1,1e1 + f1,2e2

f2 = f2,1e1 + f2,2e2

(D.14)

Then, according to well known results in linear algebra (see, for example, [Lang87 p. 394–
395] or [Lay03 p. 249]), the matrix representation of the transformation g is given by:

u
v

 = 
f1,1 f2,1

f1,2 f2,2

x
y

  (D.15)

where the components of f1 and f2 form the columns of the matrix. For instance, if
(u,v) = g(x,y) represents rotation by angle α we have: f1 = (cosα, sinα), f2 = (–sinα, cosα),
and hence the transformation is given by:

u
v

 = cosα –sinα
sinα cosα

x
y

  (D.16)

which agrees, indeed, with Eq. (D.1).

In linear algebra books transformation (D.15) is considered as a change of coordinates
from the basis f1, f2 to the standard basis e1, e2 (see, for example, [Lay03 p. 249]): Given a
point (x,y) in terms of the basis f1, f2 of the transformed x,y space, g returns the coordinates
(u,v) of the same point in terms of the standard basis e1, e2. Restated in our terms, we can
say that transformation (D.15) is considered in linear algebra as a “dictionary” that
translates coordinates of any given point in terms of the transformed x,y space into the
coordinates of the same point in terms of the u,v space (see Fig. D.5(b)). For example, in
the case of rotation, the point (1,0) in terms of the rotated x,y coordinates is converted by
the transformation (D.16) into (cosα, sinα), which specifies the coordinates of the same
point in terms of the u,v space. This corresponds, indeed, to the passive interpretation of
the linear transformation (u,v) = g(x,y).
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On the other hand, it is also possible to consider the active interpretation of the same
linear transformation: According to this point of view, the transformation moves (or maps)
any point xe1 + ye2 in the original plane to its image point xf1 + yf2 in the same plane (see
Fig. D.3) or, equivalently, to the point (u,v) in terms of the target plane (see Fig. D.5).
Note that just as in the general case, a linear transformation g moves any point (x,y) given
in the original x,y coordinate system to the point having the same coordinates (x,y) in the
transformed x,y coordinate system. More details on active and passive linear
transformations in a given vector space can be also found in [Wolf79 Sec. 1.3].19

Remark D.11: Note that the matrix in Eq. (D.15) is called in some references “the
transition matrix from the old basis e1, e2 to the new basis f1, f2” (see, for example,
[Lipschutz68 p. 153] and the remark following Theorem 7.4 there), while in other
references it is called “the change-of-coordinates matrix from the basis f1, f2 to the basis
e1, e2” (see, for example, [Lay03 pp. 249, 273]). The reason for this terminological
inconsistency is that the matrix in question contains the coefficients fi,j that are used to
convert the old basis vectors e1, e2 into the new basis vectors f1, f2 (see Eq. (D.14)); and
yet, a multiplication by this matrix, as shown in Eq. (D.15), converts the coordinates (x,y)
given in terms of the new basis f1, f2 back into coordinates (u,v) given in terms of the old
basis e1, e2.

Remark D.12: Another possible source of confusion exists due to terminological
inconsistencies in the literature regarding the active and passive interpretations of a
transformation. In some references such as [Harris98 pp. 351–353] the active
transformation has the same meaning as in our definition, i.e. moving a point from its
original location P to its image location Q within the same coordinate system (like in Fig.
D.3); but the passive transformation means moving the coordinate axes from their original
location to their image location under g while the point P itself does not move. In this case,
the coordinates of the point P in terms of the new coordinate axes are given by the inverse
transformation g–1. For example, if the active transformation g consists of displacing any
point (x,y) to the point (x + a, y + b):

u = x + a

v = y + b
(D.17)

then the passive transformation, according to this interpretation, consists of displacing the
coordinate system by (a,b), while the point (x,y) itself remains in its original location. The
new coordinates of the point (x,y) are expressed, therefore, by the inverse transformation:

19 It is interesting to note that the active interpretation of linear transformations is rarely mentioned in
linear algebra books (with [Mansfield76 pp. 202–206] being a remarkable exception), while in calculus
books the active interpretation is used frequently (see, for example, [Colley98 pp. 326–327, 334–335]).
The reason is that calculus begins with a single coordinate system, while linear algebra is at the other
extreme: its main concern is in considering all possible bases (or linear coordinate systems) for a given
vector space, and then choosing the one which is most convenient depending on the nature of the
problem at hand [Mansfield76 p. 60], for example the one which gives the simplest matrix
representation for a given linear transformation.
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u = x – a

v = y – b
(D.18)

[Harris98 p. 351]. This does not agree with our terminology, based on [Courant88 pp.
133–140], according to which the active and the passive points of view are merely two
different interpretations of the same transformation (u,v) = g(x,y). For example, according
to our passive interpretation the transformation (D.17) simply translates the transformed
x,y coordinates of any given point back to the u,v coordinates of the same point: u = x + a,
v = y + b, and no use is made of the inverse transformation (D.18).

The difference between these two views of the passive interpretation of g can be
illustrated by splitting Fig. D.5(b) into two different figures, one showing the point Q
superposed by the standard u,v coordinates and the other showing the same point Q
superposed by the transformed x,y coordinates. According to our passive point of view,
both figures show the range of the transformation g after its action has already been
completed. But according to the other point of view, the first figure shows the initial
situation, and the other figure shows how the transformation g actively distorts the original
coordinate system, while the point Q remains in its original location. The coordinates of Q
with respect to the new distorted coordinate system are obtained, therefore, by applying
the inverse transformation g–1 to the coordinates of Q in the undistorted coordinate
system.

Remark D.13: Although the terms “mapping” and “transformation” are synonyms,
they are often used in slightly different connotations. The term “mapping” usually
implies the active interpretation, where points P of one space are mapped to corresponding
points Q in another space. On the other hand, the term “transformation” is often utilized
when the target space is the same as the source space, and it refers to a deformation or a
rearrangement of that space.

D.6 Domain and range transformations of a function

So far we have considered the influence of transformations (u,v) = g(x,y) on the plane or
on its 2D or 1D subsets. We now proceed to the influence of such transformations on
functions that are defined on the plane. This will bring us to the important notions of
domain and range transformations, which have a central role in our work on the moiré
theory.

Let z = f(u,v) be a function f: RR2 → RR. As we already know from Sec. D.2, such a
function can be interpreted geometrically as a surface over the u,v plane. Since a function
is always defined between two spaces, its domain and its range,20 each function z = f(u,v)

20 The domain of the function z = f(u,v) is the 2D set consisting of the points (u,v) on which the
function is defined, and the range of the function is the 1D set consisting of the values z it returns. The
reason we use here the domain variables u,v rather than x,y is explained in Footnote 24 below.
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Figure D.7: (a) The influence of the range transformation s = 2z on the function
z = cos u. The dashed curve represents the resulting function,
s = 2cosu. (b) The influence of the domain transformation u = 2x on
the same function z = cos u. The dashed curve represents the
resulting function, z = cos(2x). In both (a) and (b) the transformed
and untransformed functions are plotted on the same axes, in order
to allow the comparison between them.

can be distorted in two different ways: either by transforming its domain, or by
transforming its range. We can distinguish, therefore, between domain and range
transformations as follows:21

(1) A domain transformation of the function z = f(u,v) is a transformation (u,v) = g(x,y),
g: RR2 → RR2, which is applied to the domain of f(u,v). Following this operation the
original function f(u,v) is transformed into the new function f(g(x,y)).

(2) A range transformation of the same function z = f(u,v) is a transformation s = t(z),
t: RR → RR, which is applied to the range of f(u,v) (i.e. to the values z it returns).
Following this operation the original function f(u,v) is transformed into the new
function t(f(u,v)).

Geometrically speaking, a domain transformation distorts the surface f(u,v) spatially (for
example: by rotation, translation, scaling along the u,v directions, etc.). In other words, it
moves each point (u,v) to a new location (x,y) = g–1(u,v), without affecting the z coordinate
assigned to the point. On the other hand, a range transformation distorts the surface f(u,v)
vertically (for example: by scaling it by 2 in the z direction, by taking the cosine of the
altitude z, etc.). In other words, it changes the z coordinate assigned to each point into
s = t(z), without affecting the point’s u,v coordinates (see Fig. D.7(a)).

It is important to note that domain and range transformations are not different types of
transformations, but rather different uses or applications of a transformation. Thus, in

21 Although these definitions are given here for the case of a function z = f(u,v), they are, in fact,
completely general, and apply to any other types of functions, including z = f(u), (x,v) = g(u), etc. (see
Sec. D.2), with the appropriate adaptations to the dimensionalities of their domain and range.

(a) (b)
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cases where the domain and the range of f have the same dimensionality (like in the 1D
case z = f(u) that we discuss in Sec. D.6.1 below) the very same transformation can be
applied either to the domain of f or to the range of f. In the first case it will play the role of
a domain transformation of the function f, while in the second case it will play the role of a
range transformation of f.

Remark D.14: As we have already seen, transformations can be applied not only to
functions defined over the plane, but also directly to the plane itself or to objects that are
subsets of the plane. For example, if z = f(u,v) is a function (surface) over the u,v plane,
f(u,v) = 0 defines a curve in the u,v plane (which corresponds to the zero level line of the
surface z = f(u,v)). But unlike the surface z = f(u,v), which has both a domain and a range,
the planar curve f(u,v) = 0 only has a domain (since its range is reduced to the degenerate
space {0}), and therefore it can only undergo domain transformations.

While the effect of a range transformation on the original function f is rather
straightforward, the effect of a domain transformation on the function f may be less
obvious and sometimes even quite confusing. It is therefore our aim here to help in
developing an intuitive understanding of range and domain transformations and to point
out the main pitfalls in their use.

D.6.1 The 1D case

In order to better understand the situation, let us start with the simpler, 1D case. Suppose
that we are given a function z = f(u), for example z = cosu. Note that in this case both the
range and the domain of the function f are one-dimensional, so that any function
g: RR → RR may be applied to f either as a range transformation, giving g(f(u)), or as a
domain transformation, giving f(g(x)).

We start with the case of a range transformation. Suppose that the transformation
s = t(z) is applied to our function z = f(u) as a range transformation. The effect of this
transformation on f(u) is straightforward: for example, if we apply to f(u) the range
transformation s = 2z we obtain a vertically stretched version of f(u), namely, 2f(u). This
transformation maps each value z on the vertical axis to 2z, without affecting the u
coordinate; this can be clearly seen by plotting the two functions on top of each other (see
Fig. D.7(a)).22

Now, suppose that instead of the range transformation s = t(z) we apply to our function
z = f(u) a domain transformation u = g(x); for example, we may choose once again the
same two-fold magnification transformation, u = 2x. Clearly, this transformation maps
each value x on the horizontal axis to the value 2x, without affecting the z coordinate.
Based on our experience with range transformations it could be natural, therefore, to
expect that the application of this transformation would stretch our function z = f(u)
laterally by a factor of 2. However, in reality f(2x) is not a stretched version of f(u), but

22 Note that in order to compare the two functions we must plot both of them on the same axes.
Therefore, in Fig. D.7(a) the vertical axis represents both of the variables z and s (see Remark D.1).
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rather a condensed version of f(u) which has been squeezed laterally by a factor of 2. For
example, z = cos(2x) is a laterally condensed version of z = cosu; this can be clearly seen
by plotting the two functions on top of each other (see Fig. D.7(b)).23

This difference between the influence of range and domain transformations can be
explained as follows. The application of a domain transformation u = g(x) to the given
function z = f(u) gives z = f(g(x)), i.e. it moves each point u in the domain of the original
function z = f(u) into the new location x which is determined by the inverse of the
transformation g, namely, x = g–1(u). But when we apply to the given function z = f(u) a
range transformation s = t(z), it simply modifies the z coordinate assigned to each point
into the new value s = t(z), and no inversion is involved. This is schematically illustrated
by the commutative diagram shown in Fig. D.8(a). The original function z = f(u) is
represented in this figure by the top horizontal arrow. After applying to this function both
a domain transformation u = g(x) and a range transformation s = t(z) we obtain the
resulting function s = fr(x), whose variables are x and s rather than u and z; this function is
represented in our figure by the bottom horizontal arrow. The new function fr can be
expressed in terms of the known functions g, f and t by:

fr(x) = t(f(g(x)))   (D.19)

as shown by the circular arrow in the figure. (Note the order inversion in (D.19): although
t appears first in the equation, in reality it operates last, after g and f.) In particular, if g is
the identity transformation, fr is simply a range transformation of f; while if t is the identity
transformation, fr is a domain transformation of f: fr(x) = f(g(x)).

Fig. D.8(a) illustrates the fundamental difference which exists between the two
transformations that we have applied to our original function z = f(u) to obtain the new
function s = fr(x): While the range transformation s = t(z) maps the variable z of our
original function into the transformed variable s of the new function s = fr(x), the domain
transformation u = g(x) maps the variable x (the variable of the new, distorted function
s = fr(x)) back into the variable u (the variable of our original, undistorted function
z = f(u)). The transformation from the original variable u into the new, distorted variable x
is given, therefore, by the inverse transformation, x = g–1(u), and not by the transformation
u = g(x) that we actually plug into the given function f(u). And indeed, by drawing the
functions f(g(x)) and f(u) on the same coordinate system we can see that the influence of
the domain transformation u = g(x) on f(u) is inverse. For example, f(2x) is a squeezed
version of f(u); f(x +1) is a unit translation of f(u) to the negative direction; etc. If we wish
to stretch our function f(u) laterally by a factor of 2 within the original coordinate system,
we need to take f(x/2) and not f(2x).

23 Once again, in order to compare the two functions we must plot both of them on the same axes.
Therefore, in Fig. D.7(b) the horizontal axis represents both of the variables u and x (see Remark D.1).
In fact, we could say that “the function z = f(2u) is a laterally condensed version of z = f(u)”; but in
order to avoid any confusion due to the use of the original variable u in the transformed function, too, it
would be better to use instead a more “neutral” variable name, such as w, and say that “the function
z = f(2w) is a laterally condensed version of z = f(w)”. In this case the horizontal axis would be simply
named w.
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Figure D.8: (a) Commutative diagram illustrating the influence of a domain
transformation u = g(x) and a range transformation s = t(z) on a
given 1D function z = f(u). (b) Commutative diagram illustrating the
influence of a domain transformation (u,v) = g(x,y) and a range
transformation s = t(z) on a given 2D function z = f(u,v). Note that
while the range transformation t maps the original variable z of our
function f to the new, distorted variable s, the domain transformation
maps the new, distorted variables x,y back to the original variables u,v
of our function f.

Remark D.15: Note that any expression of the form f(g(x)) can be interpreted in two
different ways: either as the application of g (as a domain transformation) to the given
function f, or as the application of f (as a range transformation) to the given function g.
Although both interpretations give, of course, the same result, in each situation one or the
other may be easier to understand. The same is also true for expressions of the form
f(g(x,y)) (where f(u) is still a 1D function): For example, the expression cos(2π x2 + y 2 )
can be understood either as the result of bending the original straight cosinusoidal surface
cos(2πu) into a circular cosinusoidal surface, or as the result of applying the function
cos(2πz) to the z values (altitude) of the original conic surface z = x2 + y 2 .

D.6.2 The 2D case

The same considerations hold also in the 2D case. Suppose that we are given a function
z = f(u,v). Just as in the 1D case, the influence of a range transformation s = t(z) on this
function is straightforward: it simply maps each z value (altitude) of z = f(u,v) to the new
value t(z), without affecting the u and v coordinates. Thus, if we apply to f(x,y) the range
transformation s = 2z, we obtain a vertically stretched version of f(u,v), namely, 2f(u,v).

Now, let us proceed to the influence of a domain transformation (u,v) = g(x,y) on our
function z = f(u,v). As a simple example we may consider the domain transformation
(u,v) = (2x,2y). Clearly, this transformation maps each point (a,b) of the plane to the point
(2a,2b). But in spite of this stretching effect, it turns out that plugging this transformation
into the function z = f(u,v) gives z = f(2x,2y), which is not a spatially stretched version of
f(u,v) but rather a spatially condensed version of f(u,v). The reason for this inversion is that
the application of a domain transformation (u,v) = g(x,y) to the given function z = f(u,v)
gives z = f(g(x,y)), i.e. it moves each point (u,v) in the domain of the original function
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z = f(u,v) into the new location (x,y) which is determined by the inverse of the transfor-
mation g, namely, (x,y) = g–1(u,v). This is illustrated by the commutative diagram shown in
Fig. D.8(b). The original function z = f(u,v) is represented here by the top horizontal
arrow, and the resulting function fr obtained by applying to f both a domain transformation
g and a range transformation t is represented by the bottom horizontal arrow. But the
effect of fr can be also expressed, by following the circular arrow, as:

fr(x,y) = t(f(g(x,y)))   (D.20)

Clearly, if g is the identity transformation, fr is simply a range transformation of the
function f; and similarly, if t is the identity transformation, fr is a domain transformation of
the function f: fr(x,y) = f(g(x,y)).

Fig. D.8(b) shows that just as in the 1D case, the influence of the transformation (u,v) =
g(x,y) when it is applied as a domain transformation to our function f(u,v) is, in fact,
inverse: it maps the transformed variables x,y of the new function s = fr(x,y) back into the
untransformed variables u,v of the original function z = f(u,v). Hence, the transition from
the original u,v space of f(u,v) into the new, distorted x,y space of f(g(x,y)) is represented
by the inverse transformation, g–1, although we have plugged into f  the transformation g
itself and not its inverse g–1.

To better illustrate this, let us consider again the planar transformation (u,v) = g(x,y) =
(2x,2y), which corresponds to a two-fold expansion of the x,y plane. When we apply g as a
domain transformation to the function f(u,v) = u2 + v2 – 1 (a top opened paraboloid), we
clearly obtain the inverse effect since f(2x,2y) = (2x)2 + (2y)2 – 1 is a spatially shrinked
version of the original function f(u,v). The expansion effect is obtained by applying to
f(u,v) the domain transformation (u,v) = g–1(x,y) = (x/2,y/2) (see Remark D.4 on the
variable names).

Note that the same rule applies also to any subsets of the function z = f(u,v), for example
to the curve defined by its zero level line f(u,v) = 0. Thus, proceeding with the same
example, if we apply our two-fold magnification (u,v) = g(x,y) = (2x,2y) as a domain
transformation to the circle f(u,v) = u2 + v2 – 1 = 0, we obtain:

(2x)2 + (2y)2 – 1 = 0

namely: x2 + y2 = (1
2)

2

which is clearly a two-fold reduced circle. Note, however, that when we consider our
transformation (u,v) = g(x,y) = (2x,2y) as a direct transformation that operates on the
original, undistorted x,y plane, it indeed magnifies the entire x,y plane, including the circle
x2 + y2 = (1

2)
2 that is embedded in it, into the target u,v plane and its circle u2 + v2 = 1.

(Remember that according to Proposition D.1 the image of the curve f(x,y) = 0 under the
direct transformation (u,v) = g(x,y) is given by the implicit equation f(g 1

– 1(u,v),g 2
– 1(u,v)) = 0.

In our case, plugging x = u/2 and y = v/2 into the circle’s equation x2 + y2 = (1
2)

2 gives,
indeed, u2 + v2 = 1.)
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Proposition D.3: Suppose we are given a transformation (u,v) = g(x,y). When this
transformation is applied to the original, undistorted x,y plane (or any subset thereof) as a
direct transformation, we obtain in the target u,v plane the g-transformed copy of the x,y
plane (or of its subset). For example, the transformation (u,v) = (2x,2y) gives us in the
target u,v plane a two-fold magnified version of the original x,y plane (or any subset
thereof). But when the same transformation is applied to the function z = f(u,v) (or any
subset thereof, such as the level line f(u,v) = const.) as a domain transformation, we obtain
a g–1-transformed copy of the function f (or of its subset). For example, when our
transformation (u,v) = (2x,2y) is applied as a domain transformation to the function
z = f(u,v), we obtain a spatially condensed version of this function, z = f(2x,2y).

Note that although the transformation (u,v) = g(x,y) acts on the original, undistorted x,y
space and yields its distorted image in the target u,v space, when g is applied as a domain
transformation to a function z = f(u,v) the roles are inversed: The original undistorted
function f is given in the u,v coordinate system, while the domain-transformed function
f(g(x,y)) subsists over the x,y space.24

As a further example, let (u,v) = g(x,y) be the planar transformation which corresponds
to a rotation by 90° counterclockwise about the origin:

u
v

 = 0 –1
1 0

x
y

 = 
–y
x

Clearly, this transformation rotates each point (x,y) of the plane by 90° counterclockwise
(for example, it maps the point (1,0) on the horizontal axis to the point (0,1) on the vertical
axis, etc.). Thus, the vector (u,v) is a copy rotated by +90° of the vector (x,y). However, for
any given function f(u,v), its transformed counterpart f(g(x,y)), that is, f(–y,x), is a –90°
rotated version of f(u,v). This can be easily verified by plotting the original and the
transformed functions.

More generally, the transformation (u,v) = g(x,y) consisting of a rotation by angle α
counterclockwise about the origin is defined by Eq. (D.1):

u
v

 = cosα –sinα
sinα cosα

x
y

 = xcosα – ysinα
xsinα + ycosα

but the function f(xcosα – ysinα, xsinα + ycosα) is a rotated version of f(u,v) by –α, not
by α. Thus, if we wish to rotate f(u,v) by angle α within the original coordinate system, the
transformation we need to apply to its domain is the inverse transformation which
corresponds to a rotation by –α. The rotated version of f(u,v) by angle α is, therefore,
f(xcosα + ysinα, –xsinα + ycosα).

24 This agrees with our general convention in the moiré theory, that the geometrically transformed layers
subsist in the x,y space (see, for example, the transformed gratings and screens in Chapters 3, 6 and 7 of
this volume or in Chapter 10 of Vol. I; for instance, the top-opened parabolic cosinusoidal grating of
Fig. 10.1(c) in Vol. I is expressed by r(x,y) = cos(2π f[y – ax2])). Note, however, that in our
discussions on the moiré theory we usually denote the original, undistorted coordinate space by the
variables x',y' rather than u and v, since u and v are reserved in our work to the Fourier, spectral domain.
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Similarly, applying the direct transformation (D.1) to any curve f(x,y) = 0 in the x,y plane
gives in the u,v plane a copy rotated by α of the original curve (see Proposition D.1). But
applying (D.1) as a domain transformation to the curve f(u,v) = 0 rotates this curve by –α.
Note that in the first case the untransformed curve is f(x,y) = 0, while in the second case
the untransformed curve is given by f(u,v) = 0.

Obviously, if we wish to leave f(u,v) unchanged and to consider the influence of g(x,y)
on the coordinate system and on its axes, the result will be inversed. For example, in the
case of rotation we will obtain a rotation of the u,v axes by angle α to the positive
direction [Weisstein99 p. 1580]. Similarly, if g(x,y) is defined by g(x,y) = (2x,2y) the result
can be seen as a twofold expansion of the axes while the surface f(u,v) itself remains
unchanged; and if g(x,y) = (x+1,y) the result can be seen as a unit translation of the
horizontal axis to the positive direction. This point will be addressed in Sec. D.7 below.

Remark D.16: We may mention at this point yet another possible source of confusion
due to terminological inconsistencies in the literature, this time related to the naming
conventions in domain transformations. A transformation (u,v) = g(x,y) is usually called in
the literature a transformation from the x,y space to the u,v space, because it translates the
coordinates of any given point in the plane from the x,y language to the u,v language. For
instance (see Example D.4 below), the transformation (r,θ) = ( x2 + y 2 , arctan(y/x)) is
known as the Cartesian to polar coordinate transformation, and its inverse, (x,y) = 
(rcosθ, rsinθ), is called the polar to Cartesian coordinate transformation [Colley98 p.
68]. Note, however, that in some references the naming conventions are inversed, and the
transformation (u,v) = g(x,y) is considered as a mapping from the u,v space to the x,y space
(see, for example, [Spiegel63 pp. 108, 124, 182]). This naming convention can be
explained by the fact that if we are given a function z = f(u,v) in the u,v space, and we apply
to it (u,v) = g(x,y) as a domain transformation, we obtain the function z = f(g(x,y)) in the x,y
space. This situation occurs, for example, when changing variables under a double integral
in order to facilitate its calculation (see a few such examples in [Colley98 pp. 336–338]).
Thus, the transformation (u,v) = g(x,y) translates the function f from the u,v language to the
x,y language, although it actually converts the x,y space into the u,v space.25 This is, again,
a consequence of the inversion property inherent to domain transformations.26

Remark D.17: The extension of Remark D.15 to the case of a 2D function f is rather
straightforward. Thus, any expression of the form f(g(x,y)) can be interpreted either as the
application of (u,v) = g(x,y) (as a domain transformation) to the given function z = f(u,v),
or as the application of z = f(u,v) (as a range transformation) to (u,v) = g(x,y). Note,
however, that in this 2D case the second interpretation is less useful, since it maps the 2D
range of g into a new 1D range. And yet, both interpretations are completely equivalent
and give the same result.

25 In computer graphics (image warping) it is often said that g transforms the image f from the x,y
transformed, destination space back into the u,v original, undistorted space.

26 A useful trick for avoiding confusion (or lengthy explanations) in the case of polar to Cartesian or
Cartesian to polar coordinate transformations is to use the ambiguous term “polar coordinate
transformation”.



D.6 Domain and range transformations of a function 355

D.6.3 The effect of transformation g on objects and on their characteristic functions

We conclude this section with the following result, which illustrates from a slightly
different angle Propositions D.1 and D.3 and the potentially confusing nature of domain
transformations.

Suppose we are given a point P in the x,y plane, say, the point P = (1,0) on the x axis.
The characteristic function of this point (i.e. the function that takes the value 1 at this
point and remains zero everywhere else) is defined over the x,y plane by:

 1    (x,y) = (1,0)
f(x,y) =    (D.21)

 0 otherwise

Now, suppose that we apply to the x,y plane a 2D transformation, say, a rotation by 90°
counterclockwise:

u
v

 = g
x
y

 = 0 –1
1 0

x
y

As a result of this transformation our point P is rotated to a new location, the point (0,1)
on the vertical axis:

0 –1
1 0

1
0

 = 0
1

However, if we wish to express the very same result using the characteristic function of
the point P, Eq. (D.21), we need to apply to it the inverse transformation, that is given by:

x
y

 = g–1 u
v

 = 0 1
–1 0

u
v

 = v
–u

By applying g–1 to f(x,y) as a domain transformation we obtain:

h(u,v) = f(g–1(u,v)) = f(v,–u) =

 1    (v,–u) = (1,0)
= 

 0 otherwise

 1    (u,v) = (0,1)
= 

 0 otherwise

This is, indeed, the characteristic function in the u,v plane of our rotated point, (0,1).

Since this result holds for any given point, it obviously remains true for any object on
the plane. For example, suppose we draw the standard unit grid on the x,y plane. This unit
grid can be represented by its characteristic function which is defined by:

 1    x ∈ZZ  or y ∈ZZ
f(x,y) =    (D.22)

 0 otherwise
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If we plot this function, we get a white grid on black background. (We could also
interchange the 1 and 0 values in this definition in order to obtain a black grid on white
background, in order to be consistent with our figures.) This function is, indeed, the
mathematical representation of our unit grid. Now, suppose that we apply to the x,y plane a
2D transformation g(x,y), say, the transformation defined by (u,v) = (2x,2y). As a result of
this transformation the unit grid undergoes a two fold magnification, as shown in Figs.
D.10(a),(b). However, if we wish to express the resulting distorted grid using its definition
by Eq. (D.22), the domain transformation we have to apply to the characteristic function
f(x,y) is the inverse transformation g–1(u,v). In other words:

Proposition D.4: If the characteristic function of an object in the x,y space is given by
f(x,y), then the characteristic function of the same object after it has been distorted by the
transformation g(x,y) is given by f(g–1(u,v)). Thus, although the object itself is distorted by
the original transformation g(x,y), its mathematical expression, f(x,y), is affected by g–1, not
by g.

D.7 The relative point of view: object deformations vs. coordinate deformations27

It may be sometimes useful to focus our attention on an object z = f(u,v) which is
defined on the u,v plane, or any subset thereof, such as f(u,v) = 0. (The 1D equivalent
would be the object z = f(u) which is defined on u.) We may then think of the range
transformation s = t(z) and of the domain transformation (u,v) = g(x,y) (or u = g(x), in the
1D case) in three different ways:28

(1) We can consider them as mappings which affect the entire space (2D plane or 1D
line), including the object and the coordinate system.

(2) Alternatively, we can consider them as mappings which only affect the object itself,
without influencing the underlying coordinate system.

(3) Finally, we can also consider them as transformations which only affect the coordinate
system, while our object itself (say, a rigid physical object) remains unchanged.

For example, in the 1D case we may consider the curve z = cosu either (1) as a subset of
the z,u plane that undergoes the same domain or range transformation as the entire plane;
(2) as a free, flexible curve which undergoes the distortions defined by u = g(x) and s =
t(z) within the original, unchanged coordinate system (see Fig. D.7); or (3) as a fixed,
rigid curve which remains unchanged while the transformations u = g(x) and s = t(z) are
applied to the coordinate system. In the more interesting 2D case, we may consider
z = f(u,v) either (1) as an object in space which undergoes the same transformation as the

27 The material in this section is only used within the present appendix, but it is not required elsewhere
in the book. It is given here for the sake of completeness only, and may be skipped if desired.

28 As we saw in Remark D.14, if the object in question is a planar curve or any other subset of the plane,
it can only undergo domain transformations since its range is reduced to the degenerate space {0}.
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entire space; (2) as a free, flexible object which undergoes the distortions defined by
(u,v) = g(x,y) (rotation, spatial scaling, etc.) and by s = t(z) (vertical scaling) within the
original, unchanged coordinate system; or (3) as a fixed, rigid object which remains
unchanged while the transformations (u,v) = g(x,y) and s = t(z) are applied to the coordi-
nate system. Note that in all of these cases the transformations in question are viewed as
active transformations, since they distort the given object, the coordinate system, or both.

Clearly, point of view (3) implies that the new coordinates of our given object, after the
transformation has been applied, are obtained by the inverse transformation g–1. For
example, if the transformation g consists of rotation by angle α, the application of g to the
axes implies that our object’s coordinates with respect to the new axes are obtained by a
rotation by –α.

The inversion effect due to the relative point of view (object or coordinate distortion)
also occurs in range transformations. For instance, the effect of the range transformation
s = 2z is inversed between points of view (2) and (3) (our object becomes larger or smaller
with respect to the vertical axis).

It is important to note, however, that the inversion effect due to the relative point of view
does not account for the fundamental inversion effect which is inherent to domain
transformations (Sec. D.6). Indeed, as we have just seen, the inversion effect due to the
relative point of view affects both domain and range transformations in the same way.

All of the three points of view (1)–(3) are used in the literature; for example, [Courant88
p. 135] uses the first convention, while [Cantwell02 p. 14] uses the second convention.
The first convention is used, for example, when plotting data on a logarithmic paper. The
third convention is mainly used in the case of linear or affine transformations, such as
rotations, scaling and translations. In the case of non-linear transformations, keeping the
object unchanged while the coordinate system is being distorted may seem rather unusual;
and yet, this is routinely done, for example, when one wishes to consider a given physical
object in terms of polar rather than Cartesian coordinates.

More details on object transformations, coordinate changes and the conversions between
them, along with several illustrated examples (for linear and affine cases only), can be
found in [Foley90 Sec. 5.8].

D.8 Examples

Let us consider now a few examples to better illustrate our discussion. Most of these
examples show simple transformations (u,v) = g(x,y) that are well known and widely used.
And yet, it turns out that some of these transformations are mainly known in the literature
through one particular representation (which may differ from case to case), while their
other representations often remain unfamiliar and sometimes even quite surprising. But
because in the present book we often need to consider a given transformation through
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several of its different representations, we must get acquainted with all of them, even those
that are rarely if ever mentioned in the literature. These hidden facets of our
transformations are revealed here through a systematic graphical comparison, which is
obtained by showing each of the transformations in its different representations, keeping
in all cases the same structural framework as in the model shown in Fig. D.9.

Fig. D.9 illustrates a general, arbitrary transformation (u,v) = g(x,y). We have
intentionally chosen for this purpose a non-linear reminiscent of the rotation by angle α,
in order to facilitate the understanding of the general case based on the intuition we have
acquired in the case of pure rotation. Fig. D.9(a) shows the original x,y space before the
application of the direct transformation g, and Fig. D.9(b) shows the target u,v space and
the distorted x,y space after the application of this transformation. Similarly, Figs. D.9(c)
and (d) show the effect of the inverse transformation, (x,y) = g–1(u,v), which corresponds
to a “non-linear rotation” by angle –α. Fig. D.9 serves us as a model, and all of the
figures throughout this section are constructed according to this model.

The following list contains the main questions that can be answered by each of these
figures (followed by the parts of the figure that illustrate the answer, with an arrow
indicating the direction of the effect, when applicable):29

1. What is the effect of g on the standard Cartesian grid?  (a) → (b)

2. What is the effect of g–1 on the standard Cartesian grid?  (c) → (d)

3. To what curves x = g 1
– 1(u,v) = m and y = g 2

– 1(u,v) = n in the u,v plane does g map the
straight lines x = m and y = n of the x,y plane?  (a) → (b)

4. How does g–1 map these curves in the u,v plane back into the original straight lines
x = m and y = n of the x,y plane?  (a) ← (b)

5. To what curves u = g1(x,y) = m and v = g2(x,y) = n in the x,y plane does g–1 map the
straight lines u = m and v = n of the u,v plane?  (c) → (d)

6. How does g map these curves in the x,y plane back into the original straight lines u = m
and v = n of the u,v plane?  (c) ← (d)

7. How do the curves x = c and y = k look like when plotted on the u,v plane? (b)

8. How do the curves u = c and v = k look like when plotted on the x,y plane? (d)

9. How do the level lines of the surfaces z = g1(x,y) and z = g2(x,y) look like?  (d)

10. How do the level lines of the surfaces z = g 1
– 1(u,v) and z = g 2

– 1(u,v) look like?  (b)

11. How does g distort an object?  (a) → (b)

12. How does g–1 undo this object deformation?  (a) ← (b)

29 Note that parts (g) and (h) of the figures are only provided in cases where the explicit expression of
g–1 is available. Consequently, they are missing in Figs. D.9 and D.18.
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13. What happens when the object is rigid and can’t be distorted by g, and instead, to
obtain an equivalent effect, the inverse transformation g–1 is applied to the x,y
coordinates?  (a) → (d)

14. What is the effect of (u,v) = g(x,y) as a domain transformation, and how does f(g(x,y))
look like? For example, how does cos(g1(x,y)) look like?  (e)

15. What is the effect of (x,y) = g–1(u,v) as a domain transformation, and how does
f(g–1(u,v)) look like? For example, how does cos(g1

–1(x,y)) look like?  (g)

16. What is the effect of g as a vector field?  (f)

17. What is the effect of g–1 as a vector field?  (h)

Note that in all the following figures, both parts (a) and (d) show the same original x,y
plane before the application of the transformation g; the only difference is that part (a)
shows this plane covered by the x,y coordinate net, while part (d) shows it covered by the
u,v coordinate net. In fact, we could have plotted the two coordinate nets in both
figures (compare with Fig. D.5(a)), but for the sake of clarity we prefer to show them
separately. In a similar way, both parts (b) and (c) show the same target u,v plane after the
application of the transformation g, but the former shows it with the x,y coordinate net
while the latter shows it with the u,v coordinate net (compare with Fig. D.5(b)). Hence, in
all the following figures parts (a) and (d) represent the domain of the transformation g
(and the range of its inverse g–1), while parts (b) and (c) represent the range of g (and the
domain of g–1).

Remark D.18: In the figures which accompany the following examples we provide,
whenever possible, the graphic representations of both g and its inverse g–1. However,
what we want to stress by doing so is not merely the fact that a transformation and its
inverse look different; this fact is, indeed, rather obvious. The important point here is that
the very same mathematical expression g(x,y) (for example, g(x,y) = (2xy, y2 – x2), which
is shown in Fig. D.15) may have completely different “incarnations” depending on how
it is being used: When it is used as a direct transformation it bends the original unit grid
into a certain curvilinear shape; when it is used as a domain (and hence, inverse)
transformation it bends the unit grid (or any other rectilinear structure) into a different
curvilinear shape, which corresponds, in fact, to the inverse transformation; and when it is
used as a vector field, it yields yet a different graphical representation. Each of these
“incarnations” simply reveals a different facet of the same transformation g(x,y), and one
should always be sure to understand which of them is being used in any particular
situation in order to avoid confusion.

Finally, before we proceed to the examples themselves, let us remind here that the effect
of the inverse transformations, shown in parts (c),(d) in each of the following figures, has
been obtained using the technique described in Remark D.7. This allows us to draw parts
(c) and (d) of the figures in all cases, even in cases where the explicit expression of the
inverse transformation g–1 is not available (like in Figs. D.9 and D.18). However, parts (g)
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Figure D.9: A generic transformation (u,v) = g(x,y) (top row) and its inverse
(x,y) = g–1(u,v) (bottom row) for illustrating the general concepts. In
both cases the vertical plain grid lines are mapped into the respective
plain curves, and the horizontal dashed grid lines are mapped into the
respective dashed curves. For the interested readers, the actual
transformation used to obtain this “non-linear rotation” effect is
(u,v) = (x – argsinh(y), y + argsinh(x)). Note that (b) and (c) show the
same distorted u,v plane (the range of the transformation g) which is
only covered by different coordinate nets: the distorted x,y coordinate
net in (b), and the standard, undistorted u,v coordinate net in (c).
Similarly, (a) and (d) show the same undistorted x,y plane (the domain
of the transformation g) which is only covered by different coordinate
nets: the standard, undistorted x,y coordinate net in (a), and the
distorted u,v coordinate net in (d).
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Figure D.9: (continued.) (e) The application of (u,v) = (x – argsinh(y), y + argsinh(x))
as a domain transformation to the vertical unit-period cosinusoidal
grating z = cos(2πu) gives z = cos(4π[x – argsinh(y)]), a “non-linearly
rotated” copy of the original function; compare with the effect of the
inverse transformation on the plain grid lines in (d). (f) The effect of the
same transformation as a vector field. Note that in the present example
the explicit form of the inverse transformation is not readily available.

and (h) of the figures do not make use of this technique, and hence, as already mentioned,
they are only provided when the explicit expression of g–1 is available.

Example D.1: We start with the simple linear transformation (u,v) = g(x,y) = (2x,2y), that
is illustrated in Figs. D.10(a),(b). Fig. D.10(a) shows the unit grid made of the lines x = m
and y = n, m,n ∈ZZ before the application of this transformation, and Fig. D.10(b) shows
the image of this grid after the application of the transformation. For example, the image
of the vertical line x = 1 of Fig. D.10(a) is u = 2.30 As we can clearly see, this transfor-
mation uniformly expands the plane by a factor of 2.

The effect of the inverse transformation g–1, which is given by (x,y) = (u/2,v/2), is
illustrated in Figs. D.10(c),(d). Fig. D.10(c) shows the unit grid made of the lines u = m
and v = n, m,n ∈ZZ before the application of this inverse transformation, and Fig. D.10(d)
shows the image of this grid after the application of the inverse transformation. For
example, the image of the vertical line u = 1 of Fig. D.10(c) is x = 1

2. As we can see, this
transformation uniformly shrinks the u,v plane by a factor of 2.

Note, however, that when we apply the transformation (u,v) = g(x,y) to a given function
z = f(u,v) as a domain transformation, the resulting function z = f(g(x,y)) is distorted in

30 Although the present example is rather trivial, it may still be instructive to see how this result is
formally obtained using Proposition D.1. Indeed, the image of the original curve x = 1 under g is simply
u/2 = 1, which means u = 2.
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Figure D.10: (a),(b) The effect of the transformation (u,v) = (2x,2y) on the unit grid
consists of uniformly expanding it by a factor of 2. (c),(d) The effect
of the inverse transformation (x,y) = (u/2,v/2) on the unit grid consists
of uniformly shrinking it by a factor of 2. In both cases the vertical
plain grid lines are mapped into the respective plain lines, and the
horizontal dashed grid lines are mapped into the respective dashed
lines.

accordance with the inverse transformation, g–1. For example, considering the vertical unit-
period cosinusoidal grating z = cos(2πu), it is clear that z = cos(4πx) is its shrinked
counterpart with half the period (see Fig. D.10(e)). If we wish to double the period of
z = cos(2π x), we need to apply to it the inverse transformation g–1, which gives
z = cos(πu) (see Fig. D.10(g), and Remark D.4 on the variable names).
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Figure D.10: (continued.) (e) The application of (u,v) = (2x,2y) as a domain trans-
formation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(4πx), a spatially two-fold shrinked version of
the original function; compare with the effect of the inverse
transformation on the plain grid lines in (d). (f) The effect of the
same transformation as a vector field. (g) The application of the
inverse transformation (x,y) = (u/2,v/2) as a domain transformation to
the vertical unit-period cosinusoidal grating z = cos(2πx) gives
z = cos(πu), a spatially two-fold expanded version of the original
function; compare with the effect of the direct transformation on the
plain grid lines in (b). (h) The effect of the same inverse
transformation as a vector field. Note that the vectors in (f) and (h)
have the same radial orientations, and they only differ in their
lengths; but the arrow lengths in both drawings have been scaled
down in order to avoid overlappings.
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Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.10(f) and D.10(h), respectively. Note that both of these vector fields consist of radial
vectors that emanate from the origin, and the difference is only in the vector lengths.

Example D.2: Consider now the linear transformation (u,v) = g(x,y) given by Eq. (D.1):
(u,v) = (xcosα – ysinα, xsinα + ycosα). The effect of this transformation on the original
x,y plane is illustrated by Figs. D.11(a),(b). Fig. D.11(a) shows the unit grid made of
the lines x = m and y = n, m,n ∈ZZ before the application of this transformation, and Fig.
D.11(b) shows the image of this grid after the application of the transformation. As we
can see, this transformation rotates the plane by angle α counterclockwise.

The effect of the inverse transformation, (x,y) = (ucosα + vsinα, –usinα + vcosα), is
illustrated by Figs. D.11(c),(d). Clearly, this transformation rotates the plane by angle –α.

Note that when we apply the transformation (u,v) = g(x,y) to a given function z = f(u,v)
as a domain transformation, the resulting function z = f(g(x,y)) is distorted in accordance
with the inverse transformation, g–1. For example, z = cos(2π[xcosα – ysinα]) is the
counterpart of the cosinusoidal surface z = cos(2πu) which has been rotated by angle –α
(see Fig. D.11(e)). In order to rotate the cosinusoidal surface z = cos(2πx) by angle α, we
need to apply to it the inverse transformation g–1, which gives z = cos(2π [u cosα +
vsinα]) (see Fig. D.11(g)). Similarly, the rotated version of the planar parabolic curve
y = x2 by angle α is given, in implicit form, by: (–usinα + vcosα) = (ucosα + vsinα)2

(see Proposition D.1).

Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.11(f) and D.11(h), respectively. Note that both of these vector fields consist of vectors
that follow spiral trajectories, and the difference between them is only in the direction of
the spirals.

Example D.3: Let us consider, as our first non-linear example, the transformation
(u,v) = g(x,y) defined by (u,v) = (x2,y2). As we can see in Figs. D.12(a),(b), this
transformation maps any x value into u = x2, and any y value into v = y2. The result is a
non-linear expansion of the plane, whose effect increases as we move away from the
origin. Note that this transformation “folds” the entire plane into the first quadrant; this is
explained and illustrated in detail in [Callahan74 p. 232].

The effect of the inverse transformation, (x,y) = ( u , v ), is illustrated by Figs.
D.12(c),(d). As we can clearly see, this transformation non-linearly shrinks the plane,
where the shrinking effect becomes stronger as we move away from the origin. If we take
into account both positive and negative values of the roots, the three quadrants that are
“lost” when applying g(x,y) “reappear” under g–1(u,v).

Hence, the range of the transformation g(x,y) and the domain of its inverse, g–1(u,v), only
consist here of the first quadrant of the plane. Such “losses” in the range or in the
domain occur quite often in non-linear transformations.



D.8 Examples 365

This example can be also used to illustrate Remarks D.5 and D.6 in Sec. D.4.1: The
level lines of the surfaces z = x2 and z = y2 (the two components of the original
transformation g(x,y)) are represented, respectively, by the plain and dashed lines of Fig.
D.12(d), a figure which illustrates the effect of the inverse transformation g–1(u,v). Note
that these level lines become closer to each other as we move away from the origin,
reflecting the increasing steepness of the surfaces z = x2 and z = y2 (remember that level
lines represent constant differences in the altitude z). Similarly, the level lines of the
surfaces z = u  and z = v  (the two components of the inverse transformation g–1(u,v))
are represented, respectively, by the plain and dashed lines of Fig. D.12(b), a figure which
illustrates the effect of the direct transformation g(x,y).

When we apply the transformation (u,v) = g(x,y) to a given function z = f(u,v) as a
domain transformation, the resulting function z = f(g(x,y)) is distorted in accordance with
the inverse transformation, g–1. For example, the 2D function z = cos(2πx 2) is a non-
linearly shrinked version of z = cos(2πu), whose corrugations become narrower as we
move away from the origin, just like the vertical lines of Fig. D.12(d) (which are, indeed,
as we have just seen above, the level lines of z = x2). This is clearly shown in Fig. D.12(e).
If we wish to obtain a non-linearly expanded version of z = cos(2πx), whose corrugations
behave like the vertical lines of Fig. D.12(b), we need to apply to it the inverse
transformation g–1, which gives z = cos(2π u ).

Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.12(f) and D.12(h), respectively.

Remark D.19: To visualize the level lines z = n of a surface z = f(x,y) one may draw the
surface cos(2π f(x,y)); its maxima, which are given by the locus f(x,y) = n, n ∈ZZ in the x,y
plane, represent these level lines.

Example D.4: Consider the well known Cartesian to polar coordinate transformation
(r,θ) = ( x2 + y 2 , arctan(y/x)). (Note that we have replaced here our usual range axis
names u,v by the more familiar ones, r,θ.) Although this transformation is widely used in
mathematics and in engineering, it still may reserve us some surprises. To start with, let us
consider the effect of this transformation on the original x,y plane. This effect is shown in
Figs. D.13(a),(b): Part (a) of the figure shows the unit grid made of the lines x = m and
y = n, m,n ∈ZZ before the application of this transformation, while part (b) of the figure
shows the image of this grid after the application of the transformation.

The effect of the inverse transformation, the polar to Cartesian coordinate transformation
(x,y) = (rcosθ, rsinθ), is illustrated by Figs. D.13(c),(d). As we can see, this transfor-
mation maps the vertical lines r = m, m ∈ZZ into the concentric circles x2 + y 2  = m, and
the horizontal dashed lines θ = n, n ∈ZZ into the radial dashed lines arctan(y/x) = n.31

31 Note that some references use to limit the values of r and θ to r ≥ 0 and 0 ≤ θ < 2π, so that to each
point (x,y) except for the origin there corresponds a unique point (r,θ) and vice versa. However, this
restriction is not always advantageous [Colley98 pp. 67–69], and we prefer not to impose it here. Thus,
the vertical lines r = m and r = –m are both mapped into the same circle; similarly, the horizontal lines
θ = n and θ = 2πkn for any k ∈ZZ are mapped into the same radial line.
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Figure D.11: (a),(b) The effect of the transformation (u,v) = (x cosα  – y sinα ,
x sinα + y cosα) on the unit grid consists of rotating it counter-
clockwise by angle α. (c),(d) The effect of the inverse transformation
(x,y) = (ucosα + vsinα, –usinα + vcosα) on the unit grid consists of
rotating it by angle –α. In both cases the vertical plain grid lines are
mapped into the respective plain lines, and the horizontal dashed grid
lines are mapped into the respective dashed lines.

Interestingly, in this case it is the effect of the inverse transformation g–1 on the unit grid
that is widely known (Figs. D.13(c),(d)), while the effect of g itself on the unit grid looks
quite unfamiliar (Figs. D.13(a),(b)), and is rarely if ever mentioned in the literature. It can
be easily verified, using Eqs. (D.7) and (D.8), that g maps the vertical grid lines x = m,
m ∈ZZ in Fig. D.13(a) into the family of curves rcosθ = m, namely, the secant curves
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Figure D.11: (continued.) (e) The application of (u,v) = (xcosα – ysinα, xsinα +
y cosα) as a domain transformation to the vertical unit-period
cosinusoidal grating z = cos(2πu) gives z = cos(4π[xcosα – ysinα]),
a copy of the original function that is rotated by angle –α; compare
with the effect of the inverse transformation on the plain grid lines in
(d).  (f) The effect of the same transformation as a vector field; note
the left-oriented spiral shape of this vector field. (g) The application of
the inverse transformation (x,y) = (ucosα + vsinα, –usinα + vcosα)
as a domain transformation to the vertical unit-period cosinusoidal
grating z = cos(2πx) gives z = cos(2π[ucosα + vsinα]), a copy of the
original function that is rotated by angle α; compare with the effect of
the direct transformation on the plain grid lines in (b). (h) The effect
of the same inverse transformation as a vector field; note the right-
oriented spiral shape of this vector field.
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Figure D.12: (a),(b) The effect of the transformation (u,v) = (x2,y2) on the unit grid
consists of a non-linear expansion. Each of the four objects in (a) is
mapped into the same image in (b). (c),(d) The effect of the inverse
transformation (x,y) = ( u , v ) on the unit grid consists of a non-
linear contraction. In both cases the vertical plain grid lines are
mapped into the respective plain lines, and the horizontal dashed grid
lines are mapped into the respective dashed lines. Note that part (d)
has been magnified to better show details.

r = msecθ; similarly, g maps the dashed horizontal grid lines y = n, n ∈ZZ in Fig. D.13(a)
into the family of dashed curves rsinθ = n, which are the cosecant curves r = ncosecθ.
(The shapes of the multi-branched curves y = secx and y = cosecx can be found in any
mathematical handbook such as [Bronshtein79 p. 69] or [Harris98 p. 301].)
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Figure D.12: (continued.) (e) The application of (u,v) = (x2,y2) as a domain trans-
formation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(2πx2), a non-linearly shrinked version of the
original function; compare with the effect of the inverse
transformation on the plain grid lines in (d). (f) The effect of the
same transformation as a vector field. (g) The application of the
inverse transformation (x,y) = ( u , v ) as a domain transformation
to the vertical unit-period cosinusoidal grating z = cos(2πx) gives
z = cos(2π u ), a non-linearly expanded version of the original
function; compare with the effect of the direct transformation on the
plain grid lines in (b). (h) The effect of the same inverse
transformation as a vector field. Note that part (e) has been
magnified to better show details.
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Figure D.13: (a),(b) The effect of the transformation (r,θ) = ( x2 + y 2 , arctan(y/x))
on the unit grid: Each vertical line x = m is mapped into a secant
curve r = m secθ, and each horizontal line y = n is mapped into a
cosecant curve r = n cosecθ. Note that the rectangular object is
mapped into infinitely many images. (c),(d) The effect of the inverse
transformation (x,y) = (rcosθ, rsinθ) on the unit grid: Each vertical
line is mapped into a circle, and each horizontal line is mapped into a
radial line. Note that the horizontal line θ = 1 is mapped into the
radial line whose angle is 1 radian (i.e. 180°/π ≈ 57.2958°), the line
θ = 2 is mapped into the line at 2 radians, and so forth.32

32 Note that the lines θ = –10, θ = –9, ... , θ = 10 of Fig. D.13(c) are mapped into almost equispaced
radial lines in Fig. D.13(d). This happens since by pure coincidence 11 radians almost exactly coincide
with an integer multiple of 270° (3 quadrants), so that the images of the lines θ = k and θ = k + 22 fall
almost precisely on the same radial line. But in reality, the image of the infinite family of lines θ = k,
k ∈ZZ is everywhere dense in the x,y plane (see the lemma in [Arnold73 pp. 163–164]).
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Figure D.13: (continued.) (e) The application of (r,θ) = ( x2 + y 2 , arctan(y/x)) as a
domain transformation to the vertical unit-period cosinusoidal
grating z = cos(2πr) gives z = cos(2π x2 + y 2 ), a circular version of
the original function; compare with the effect of the inverse
transformation on the plain grid lines in (d). (f) The effect of the
same transformation as a vector field. (g) The application of the
inverse transformation (x ,y) = (r cosθ , r sinθ) as a domain
transformation to the vertical unit-period cosinusoidal grating
z = cos(2πx) gives z = cos(2πrcosθ), a curved version of the original
function whose corrugations have the shape of multi-branch secant
curves; compare with the effect of the direct transformation on the
plain grid lines in (b). (h) The effect of the same inverse
transformation as a vector field.
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Figure D.14: (a),(b) The effect of the transformation (u,v) = (rcosθ, rsinθ) on the
unit grid: Each vertical line is mapped into a circle, and each
horizontal line is mapped into a radial line. Note that infinitely many
objects in (a) are mapped into the same object in (b). (c),(d) The
effect of the inverse transformation (r,θ) = ( u2 + v 2 , arctan(v/u)) on
the unit grid: Each vertical line is mapped into a multi-branch secant
curve, and each horizontal line is mapped into a multi-branch
cosecant curve. All angles are measured in radians.

So far, in all the previous examples, we described the effect of a transformation g(x,y) by
means of its influence on the unit grid of the x,y plane. However, we can also describe the
effect of g(x,y) by studying its influence on other curves in the x,y plane (see Sec. D.4.2).
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Figure D.14: (continued.) (e) The application of (u,v) = (rcosθ, rsinθ) as a domain
transformation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(2πr cosθ), a curved version of the original
function whose corrugations have the shape of multi-branch secant
curves; compare with the effect of the inverse transformation on the plain
grid lines in (d). (f) The effect of the same transformation as a vector
field. (g) The application of the inverse transformation (r,θ) = ( u2 + v 2 ,
arctan(v/u)) as a domain transformation to the vertical unit-period
cosinusoidal grating z = cos(2πr) gives z = cos(2π u2 + v 2 ), a circular
version of the original function; compare with the effect of the direct
transformation on the plain grid lines in (b). (h) The effect of the same
inverse transformation as a vector field.
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For example, our transformation (r,θ) = ( x2 + y 2 , arctan(y/x)), which maps vertical or
horizontal straight lines into secant or cosecant curves, also maps the circles x2 + y 2  = m,
m ∈ZZ into the vertical lines r = m, and the radial lines arctan(y/x) = n, n ∈ZZ into the
horizontal lines θ = n. This can be seen by drawing circles and radial lines on top of Fig.
D.13(a) and tracing out their images in Fig. D.13(b), or, equivalently, by considering the
image under g of the circles and of the radial lines of Fig. D.13(d), as shown in Fig.
D.13(c). Note that the mapping from Fig. D.13(d) back into Fig. D.13(c) corresponds to
the inverse of g–1, which is g itself. Interestingly, this effect of the Cartesian to polar
coordinate change (r,θ) = ( x2 + y 2 , arctan(y/x)) is much more familiar than its effect on
the Cartesian x,y grid that is shown in Figs. D.13(a),(b). This is, in fact, the way this
transformation is described in the literature (see, for example, [Courant88 pp. 137–139]).
Indeed, this case is a classical example of a transformation that is not illustrated in the
literature by its effect on the standard x,y grid, but rather by its effect on some other curves
in the x,y plane (see representation (8) in Sec. D.2).

Note that when we apply the transformation (u,v) = g(x,y) to a given function z = f(u,v)
as a domain transformation, the resulting function z = f(g(x,y)) is distorted in accordance
with the inverse transformation, g–1. For example, after the application of g(x,y) the straight
vertical corrugations of the cosinusoidal function z = cos(2πr) in the r,θ space become in
the x,y space, in the resulting function z = cos(2π x2 + y 2 ), a family of concentric circular
corrugations that surround the origin (see Fig. D.13(e), and compare with Fig.
D.13(d)).33 On the other hand, applying the inverse transformation g–1 to the function
z = cos(2πx) gives the unfamiliar function z = cos(2π rcosθ) which is shown in Fig.
D.13(g); compare also with Fig. D.13(b).

Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.13(f) and D.13(h), respectively. As we can see, both of these vector fields look rather
unfamiliar, and they are rarely if ever mentioned in the literature.

Because of the particular importance of the transformation discussed in this example, we
also show its inverse (the polar to Cartesian coordinate conversion) as a transformation in
its own right in a separate figure, Fig. D.14. Note that Fig. D.14 shows how the inverse
transformation distorts a given rectangular object, whereas Fig. D.13 shows a much less
familiar result, the way in which g(x,y) itself distorts a rectangular object.

Example D.5: Figs. D.15(a),(b) illustrate the influence on the x,y plane of the transfor-
mation g(x,y) given by (u,v) = (2xy, y2 – x2) [Courant88 pp. 136–137]. The vertical lines
x = m, m ∈ZZ in Fig. D.15(a) are mapped by this transformation into the family of top-
opened parabolas v = 1

4m2
u2 – m2, while the horizontal dashed lines y = n, n ∈ZZ in Fig.

D.15(a) are mapped into the family of bottom-opened parabolas v = n2 – 1
4n2

u2 shown in
Fig. D.15(b) by dashed lines.34

33 This explains, indeed, why in some references the transformation g(x,y) is called polar to Cartesian
rather than Cartesian to polar coordinate transformation (see Remark D.16).

34 Note that the vertical lines x = m and x = –m are both mapped into the same top-opened parabola;
similarly, the horizontal lines y = n and y = –n are both mapped into the same bottom-opened parabola.
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In this case the explicit expression of the inverse transformation is quite complicated:
(x,y) = ( u2 + v 2 – v /2, u2 + v 2 + v /2 ). We therefore use this example to illustrate
how the influence of the inverse transformation on the u,v plane can be found without even
knowing its explicit form (see Remark D.7): As shown in Figs. D.15(c),(d), the vertical
lines u = m, m ∈ZZ are mapped by the inverse transformation into the family of hyperbolas
which are given according to Eq. (D.11) by u = 2xy = m, namely, y = m

2x
. Similarly, the

horizontal dashed lines v = n, n ∈ZZ are mapped by the inverse transformation into the
dashed family of hyperbolas which are given according to Eq. (D.12) by v = y2 – x2 = n,
namely, y = ± n + x 2 . Thus, we avoided using here the explicit form of g–1.

Note that just as we did in the previous example, we may also consider the effects of
g(x,y) and of its inverse g–1(u,v) on curved line families. For example, we can see by
comparing Fig. D.15(d) with Fig. D.15(c) that g(x,y) (the inverse of g–1(u,v)) maps the
hyperbolic lines 2xy = m, m ∈ZZ into the vertical lines u = m and the dashed hyperbolic
lines y2 – x2 = n, n ∈ZZ into the dashed horizontal lines v = n. Similarly, we can see by
comparing Fig. D.15(b) with Fig. D.15(a) that the inverse transformation g–1(u,v) maps
the top-opened parabolas of Fig. D.15(b) into the vertical lines of Fig. D.15(a) and the
dashed, bottom-opened parabolas into horizontal lines.

This example can be also used to illustrate Remarks D.5 and D.6 in Sec. D.4.1: The
level lines of the surfaces z = 2xy and z = y2 – x2 (the two components of the original
transformation g(x,y)) are represented, respectively, by the plain and dashed hyperbolas of
Fig. D.15(d), a figure which illustrates the effect of the inverse transformation g–1(u,v).
Similarly, the level lines of the surfaces z = u2 + v 2 – v /2 and z = u2 + v 2 + v /2
(the two components of the inverse transformation g–1(u,v)) are represented, respectively,
by the plain and dashed parabolas of Fig. D.15(b), a figure which illustrates the effect of
the direct transformation g(x,y).

Once again, note that when we apply the transformation (u,v) = g(x,y) to a given function
z = f(u,v) as a domain transformation, the resulting function z = f(g(x,y)) is distorted in
accordance with the inverse transformation, g–1. For example, following the application of
g(x,y) the straight vertical corrugations of the function z = cos(2π u) become in the
resulting function, z = cos(4πxy), a family of hyperbolic corrugations, just like the plain
curves in Fig. D.15(d) (which are, indeed, as we have just seen above, the level lines of
z = 2xy). This is clearly shown in Fig. D.15(e). On the other hand, applying the inverse
transformation g–1 to the function z = cos(2πx) gives a family of parabolic corrugations
(see Fig. D.15(g)), just like the plain curves in Fig. D.15(b).

Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.15(f) and D.15(h), respectively. While the vector field of g is widely known (see, for
example, Fig. 4.14(a) in Chapter 4), the vector field of g–1 looks rather unfamiliar.

Example D.6: Suppose we wish to construct a transformation g(x,y) that bends vertical
lines into right-opened parabolas. This transformation shifts each point (x,y) to the right
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Figure D.15: (a),(b) The effect of the transformation (u,v) = (2xy, y2 – x2) on the unit
grid: Each vertical line is mapped into a top-opened parabola,
while each horizontal line is mapped into a bottom-opened
parabola. Both of the objects in (a) are mapped into the same object in
(b). (c),(d) The effect of the inverse transformation on the unit grid:
Each vertical line is mapped into a hyperbola which is asymptotic to
the axes, while each horizontal line is mapped into a hyperbola which
is asymptotic to the main diagonals. Note that part (d) has been
magnified to better show details.

by ay2, a being a positive constant, while the y coordinate remains unchanged (see Fig. 3.4
in Chapter 3). It is clear, therefore, that this transformation is given by (u,v) = (x + ay2, y).
And indeed, as we can clearly see by comparing Fig. D.16(a) with Fig. D.16(b), this
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Figure D.15: (continued.) (e) The application of (u,v) = (2xy, y2 – x2) as a domain
transformation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(4πxy), a hyperbolic version of the original
function; compare with the effect of the inverse transformation on
the plain grid lines in (d). (f) The effect of the same transformation
as a vector field. (g) The application of the inverse transformation as
a domain transformation to the vertical unit-period cosinusoidal
grating z = cos(2πx) gives a parabolic version of the original
function; compare with the effect of the direct transformation on the
plain grid lines in (b). (h) The effect of the same inverse
transformation as a vector field. Note that part (e) has been
magnified to better show details.
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Figure D.16: (a),(b) The effect of the transformation (u,v) = (x + ay2, y) on the unit
grid: Each vertical line is mapped into a right-opened parabola, while
each horizontal line is simply shifted to the right. (c),(d) The effect of
the inverse transformation (x,y) = (u – av2, v) on the unit grid: Each
vertical line is mapped into a left-opened parabola, while each
horizontal line is simply shifted to the left.

transformation bends each vertical line x = m, m ∈ZZ into a right-opened parabola
x = ay2 + m, while each horizontal dashed line y = n, n ∈ZZ is simply shifted to the right,
i.e. mapped into itself. Consequently, this transformation maps the unit grid of the x,y
plane (Fig. D.16(a)) into a right-opened parabolic grid (Fig. D.16(b)); this is, in fact, a
non-linear horizontal shearing operation. Similarly, the inverse transformation, which is
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Figure D.16: (continued.) (e) The application of (u,v) = (x + ay2, y) as a domain
transformation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(x + ay2), a left-opened parabolic version of
the original function; compare with the effect of the inverse
transformation on the plain grid lines in (d). (f) The effect of the
same transformation as a vector field. (g) The application of the
inverse transformation (x,y) = (u – av2, v) as a domain transformation
to the vertical unit-period cosinusoidal grating z = cos(2πx) gives
z = cos(2π[u – av2]), a right-opened parabolic version of the original
function; compare with the effect of the direct transformation on the
plain grid lines in (b). (h) The effect of the same inverse transfor-
mation as a vector field.
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Figure D.17: (a),(b) The effect of the transformation (u,v) = (x – ay2, y) on the unit
grid: Each vertical line is mapped into a left-opened parabola, while
each horizontal line is simply shifted to the left. (c),(d) The effect of
the inverse transformation (x,y) = (u + av2, v) on the unit grid: Each
vertical line is mapped into a right-opened parabola, while each
horizontal line is simply shifted to the right.

given by (x,y) = (u – av2, v), maps the unit grid (Fig. D.16(c)) into a left-opened parabolic
grid (Fig. D.16(d)).

However, if our aim is to construct a transformation that bends the vertical corrugations
of the function z = cos(2πu) into right-opened parabolas, as shown in Fig. D.16(g), then
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Figure D.17: (continued.) (e) The application of (u,v) = (x – ay2, y) as a domain
transformation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(2π[x – ay2]), a right-opened parabolic
version of the original function; compare with the effect of the
inverse transformation on the plain grid lines in (d). (f) The effect of
the same transformation as a vector field. (g) The application of the
inverse transformation (x,y) = (u + av2, v) as a domain transfor-
mation to the vertical unit-period cosinusoidal grating z = cos(2πx)
gives z = cos(2π[u + av2]), a left-opened parabolic version of the
original function; compare with the effect of the direct transfor-
mation on the plain grid lines in (b). (h) The effect of the same
inverse transformation as a vector field.
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the transformation we need is the inverse of g(x,y), which is given, back in the original
coordinate system (see Remark D.4 on the variable names), by (u,v) = (x – ay2, y). This
transformation is shown as a transformation in its own right in a separate figure, Fig.
D.17. As shown in Figs. D.17(a),(b), this transformation bends each vertical line x = m,
m ∈ZZ into a left-opened parabola, while each horizontal dashed line y = n, n ∈ZZ is simply
shifted to the left, i.e. mapped into itself. In other words, this transformation maps the unit
grid of the x,y plane (Fig. D.17(a)) into a left-opened parabolic grid (Fig. 17(b)). But
because of the inversion effect that is inherent to domain transformations, when this
transformation is applied to the function z = cos(2πu), it bends its vertical corrugations
into right-opened parabolas, in accordance with the effect of the inverse of this
transformation, (x,y) = (u + av2, v), shown in Figs. D.17(c),(d). The resulting function,
z = cos2π(x – ay2), corresponds, therefore, to our requirements, as shown in Fig. D.17(e).

Finally, the effects of the transformations g and g–1 as vector fields are shown in Figs.
D.16(f) and D.16(h), respectively.

Example D.7: Suppose now we wish to construct a 2-fold counterpart of the previous
example, which bends the vertical corrugations of z = cos2π x into right-opened parabolas,
as shown in Fig. D.17(e), and the horizontal corrugations of z = cos2πy into top-opened
parabolas. Using the same logic as at the end of the previous example, taking into account
the inversion effect of domain transformations, it is clear that the transformation g(x,y) we
seek here is defined by (u,v) = (x – ay2, y – ax2). But although this transformation seems
to be a straightforward generalization of the transformation (u,v) = (x – ay2, y) that is
shown in Fig. D.17, it is in fact much more interesting. As we can see in Figs. D.18(a),(b),
this transformation maps the vertical lines x = m, m ∈ZZ into a family of shifted, left-
opened parabolas, and the horizontal dashed lines y = n, n ∈ZZ into a family of shifted,
bottom-opened parabolas. However, it turns out that this transformation is quite unusual in
several aspects: First, the individual parabolas within each family intersect each other.
Moreover, as we can see in Fig. D.18(b), this transformation is neither surjective (its
image does not cover the entire u,v plane) nor injective (it maps different points (x,y) to the
same image (u,v)). And finally, as a consequence of all these pathologies, the inverse
transformation does not have a simple explicit expression. Nevertheless, as we already
know from Remark D.7, the effect of the inverse transformation (x,y) = g–1(u,v) on the
plane can be determined, without even knowing its explicit expression. And indeed, as
clearly shown in Figs. D.18(c),(d), this inverse transformation maps the vertical lines
u = m, m ∈ZZ into the family of equispaced right-opened parabolas x – ay2 = m, and the
horizontal dashed lines v = n, n ∈ZZ into the family of equispaced top-opened parabolas
y – ax2 = n.

Viewed the other way around, this also means, of course, that g(x,y) maps each of the
parabolas of Fig. D.18(d) into the corresponding straight line in Fig. D.18(c). Note,
however, that as the point P = (x,y) traces out the parabola, its image Q = (u,v) in Fig.
D.18(c) moves along the corresponding straight line slowlier and slowlier, until it reaches
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the border of the range of the transformation, where it stops and starts moving backwards
along the same straight line.

In accordance with Remark D.6, the plain and dashed parabolas of Fig. D.18(d) are,
respectively, the level lines of the surfaces z = x – ay2 and z = y – ax2 (the two components
of the direct transformation g). Similarly, in accordance with Remark D.5, the plain and
dashed parabolas of Fig. D.18(b) are the level lines of the two surfaces defined by the
inverse transformation g–1. However, since the level lines within each of these two surfaces
intersect each other, it follows that neither of these surfaces is single valued: As shown in
Fig. D.19, each of these surfaces may have 0, 1, 2, 3 or 4 z-values in different parts of the
plane. In fact, each of these surfaces resembles a handkerchief that has been folded twice;
see also [Callahan74 p. 232] or [Koenderink90 pp. 332–334].

Note that in this example neither g nor g–1 can be used to define a meaningful coordinate
system, since these transformations are not one-to-one (see Remark D.9).

Now, as we already know, when we apply the transformation (u,v) = g(x,y) to a given
function z = f(u,v), the resulting function z = f(g(x,y)) is distorted in accordance with
the inverse transformation, g–1. For example, following the application of g(x,y) the
straight vertical corrugations of z = cos(2π u) become in the resulting function,
z = cos(2π[x – ay2]), a family of equispaced right-opened parabolic corrugations (see Fig.
D.18(d)). And indeed, it is mainly for this inverse effect of the domain transformation
(although we don’t even know the explicit expression of g–1) that we are interested in the
transformation (u,v) = (x – ay2, y – ax2) in our work (see, for example, Figs. A.1 and 3.15).

Finally, the effect of the transformation g as a vector field is shown in Fig. D.18(f). Note
that this vector field clearly shows the two critical points of the transformation g (i.e. the
points where g(x,y) = (0,0); see Sec. H.1 in Appendix H), which are (0,0) and (1/a,1/a).
The critical points of a transformation g are clearly revealed by its vector field
representation, but they are not as easily seen in the other representations of g.

It is interesting to note that the transformation (u,v) = (x – ay2, y – ax2) of the last
example belongs, in fact, to a larger family of transformations, whose graphical behaviour
can be easily understood using the following result:

Proposition D.5: Suppose we are given a transformation (u,v) = g(x,y) that is defined by:

u
v

 = x + f1(y)
y + f2(x)

  (D.23)

where z = f1(s) and z = f2(s) are arbitrary 1D functions. Then, the geometric effects of the
transformation g and of its inverse g–1 on the coordinate grid of the plane can be pictured
as follows:

(a) The inverse transformation (x,y) = g–1(u,v) maps the vertical lines u = m, m ∈ZZ of the
u,v plane into a family of parallel curves x = –f1(y) + m in the x,y plane, that are unit-
spaced copies of the curve x = –f1(y) shifted along the x axis. Similarly, g–1 distorts the
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Figure D.18: (a),(b) The effect of the transformation (u,v) = (x – ay2, y – ax2) on
the unit grid: The vertical lines of the grid are mapped into a self-
intersecting family of shifted, left-opened parabolas, while the
horizontal lines of the grid are mapped into a self-intersecting family
of shifted, bottom-opened parabolas. (c),(d) The effect of the inverse
transformation on the unit grid: The vertical lines of the grid are
mapped into a family of right-opened parabolas, while the horizontal
lines of the grid are mapped into a family of top-opened parabolas.
Note that the unprinted area of the u,v plane is never accessed by
these transformations.

horizontal lines v = n, n ∈ZZ  of the u,v plane into a family of parallel curves
y = –f2(x) + n  in the x,y plane, that are unit-spaced copies of the curve y = –f2(x)
shifted along the y axis.
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Figure D.18: (continued.) (e) The application of (u,v) = (x – ay2, y – ax2) as a domain
transformation to the vertical unit-period cosinusoidal grating z =
cos(2πu) gives z = cos(2π[x – ay2]), a right-opened parabolic version
of the original function; compare with the effect of the inverse
transformation on the plain grid lines in (d). (f) The effect of the same
transformation as a vector field. Note that in the present example the
explicit form of the inverse transformation is not readily available.

(b) The direct transformation (u,v) = g(x,y) maps the vertical lines x = m, m ∈ZZ of the x,y
plane into a family of curves u = f1(v – f2(m)) + m in the u,v plane, that are parallel
copies of the curve u  = f1(v), and whose origins are centered at the points
(u,v) = (f2(m), m) along the curve v = f2(u). Similarly, g distorts the horizontal lines
y = n, n ∈ZZ of the u,v plane into a family of curves v = f2(u – f1(n)) + n in the x,y plane,
that are parallel copies of the curve v = f2(u), and whose origins are centered at the
points (u,v) = (f1(n), n) along the curve u = f1(v).

The mathematical demonstration of this result is quite simple: Part (a) follows from the
fact that for any u = m we have from the first line of (D.23) x = –f1(y) + m; and similarly,
for any v = n we have from the second line of (D.23) y = –f2(x) + n. Part (b) follows from
the fact that for any x = m we have from (D.23) u = f1(y) + m, v = f2(m) + y, which gives
y = v – f2(m) and hence u = f1(v – f2(m)) + m; similarly, for any y = n we have from (D.23)
u = f1(n) + x, v = f2(x) + n, which gives x = u – f1(n) and hence v = f2(u – f1(n)) + n.

Note that several of the transformations we have seen in the examples above have the
form (D.23). This includes the transformations (u,v) = (x – argsinh(y), y + argsinh(x))
(see Fig. D.9), (u,v) = (x + ay2, y) (Fig. D.16), (u,v) = (x – ay2, y) (Fig. D.17) and (u,v) =
(x – ay2, y – ax2) (Fig. D.18). And indeed, the geometric behaviour of each of these
transformations and of its inverse, as shown in the figures, is clearly explained by
Proposition D.5 (even if the explicit form of the inverse transformation is not available).
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D.9 Other possible sources of confusion

As we can see, the handling of spatial transformations or coordinate changes can be
often quite confusing. In particular, it may be sometimes unclear whether one should use
the direct transformation g or its inverse g–1 to obtain the desired effect. In many cases
(like in Figs. D.11 and D.16) the penalty for using the wrong direction is just a sign
inversion. Such sign inversions are often mistakenly attributed to a “forgotten sign”, and
rectified by inverting the sign without even caring to understand why. But in other cases
the difference between the results obtained by using g or g–1 is much more significant, and
it cannot be simply dismissed as a “forgotten sign”. For example, the transformation
(u,v) = (2xy, y2 – x2) (see Example D.5 above) distorts the standard Cartesian grid into two
families of parabolas as in Fig. D.15(b), while the inverse transformation distorts the
standard Cartesian grid into two families of hyperbolas as in Fig. D.15(d). And indeed, it
turns out that in some circumstances the effect of the transformation (u,v) = (2xy, y2 – x2)
is depicted by two families of parabolas (see, for example, [Spiegel68 p. 126]), while in
other circumstances it is depicted by two families of hyperbolas (see, for example,
[Spiegel63 p. 185] or Example 10.23 and Fig. 10.36 in Chapter 10 of Vol. I). In fact, both
representations are correct — depending on the point of view and on the application:
When (u,v) = (2xy, y2 – x2) is used as a direct transformation it indeed distorts the original
Cartesian grid into two families of parabolas, but when it is used as a domain (and hence
inverse) transformation, it distorts the original Cartesian grid (or any other rectilinear
structure) into two families of hyperbolas (see Proposition D.3). In fact, the same
transformation may also have a third graphical representation when it is interpreted as a
vector field; in this case its graphical representation resembles the physical illustration of a
magnetic field (see Fig. D.15(f)). On the other hand, although polar coordinates are
introduced in the literature either by (r,θ) = ( x2 + y 2 , arctan(y/x)) (see, for example,
[Courant88 p. 138]), or by its inverse, (x,y) = (r cosθ, r sinθ) (see, for example,
[Kreyszig93 p. 672]), both of these transformations are systematically illustrated in the
literature by Figs. D.14(a)(b), and rarely — if ever — by Figs. D.13(a),(b).

All these potential sources of confusion are intrinsic to the use of transformations and
coordinate changes, and they originate from pure mathematical considerations. But as if
these were not enough, there exist also several extraneous potential sources of confusion.
One of these is related to the discrete representation of images on digital computers, and
another is related to the existence of two different standards of notation in the literature.
These additional sources of confusion are shortly described in the following subsections.

D.9.1 Forward and backward mapping algorithms in digital imaging

Although spatial transformations are basically continuous mathematical entities, in most
modern applications they are implemented by digital computers, and they operate on
digital, discrete images. This means that the input and the output spaces are represented as
2D (or more generally, N-dimentional) arrays of pixels lying on an integer grid. This
discrete nature of digital images and of their transformations introduces several complica-



D.9 Other possible sources of confusion 387

Figure D.19: The multivalued surfaces (a) z = g 1
– 1(u,v) and (b) z = g 2

– 1(u,v) of
Example D.7. These are the surfaces whose level lines are shown,
respectively, by the continuous and dashed parabolas of Fig.
D.18(b). Note that for the sake of clarity the surfaces have been
drawn for a larger span of u and v values than Fig. D.18(b). Parts
(c) and (d) show the same surfaces as in the upper figures, but here
they have been vertically truncated at the levels z = 20 and z = –20 in
order to clearly show the parabolic shape of their level lines.

tions, that are addressed in various ways by the algorithms which perform digital
transformations. These algorithms can be divided into two main families, known as
forward mapping and backward mapping, each having its own advantages and
shortcomings [Wolberg90 pp. 42–45].35

A forward mapping operates by scanning the original input image pixel by pixel, and
copying the value of the image at each input pixel location (x,y) onto the corresponding

35 Note that these terms should not be confused with the terms direct mapping and inverse mapping,
which refer to a transformation (u,v) = g(x,y) and its inverse (x,y) = g–1(u,v).
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position (u,v) in the output image. The output position (u,v) is determined by passing the x
and y coordinates of each input pixel through the transformation:

(u,v) = g(x,y)

Note, however, that in general the coordinates u and v thus obtained are real numbers
even if x and y are integers. This would not be a problem if the output domain were
continuous. But in our discrete case the positions u and v must be discretized (for example
by rounding or truncation) in order to fit to the underlying discrete grid of the output
image, so that every pixel in the input image can be copied into a pixel in the output image.
This seemingly innocent discretization may give rise to two types of problems in the
output image: holes and overlaps. Holes occur in the output image if contiguous pixels in
the input image are mapped into sparse positions in the output grid, and overlaps occur
when different input pixels happen to fall on the same destination pixel in the output
image (see [Wolberg90 pp. 42–44] for a more detailed explanation).

Due to these as well as other shortcomings of forward mapping, the use of backward
mapping is more common in most digital image applications. A backward mapping
operates by scanning the target output image pixel by pixel, and copying onto each output
pixel location (u,v) the value of the input pixel at the corresponding (x,y) position in the
input image. The input position (x,y) that corresponds to a given output pixel location is
determined by passing the u and v coordinates of each output pixel through the inverse
transformation:

(x,y) = g–1(u,v)

Just as in the previous case, the continuous x and y locations thus obtained are, in
general, real numbers, even though u and v are integers. This means that, here too, the
values x and y must be discretized in order to fit to the underlying discrete grid of the input
image.36 Note, however, that unlike in the forward mapping scheme, the backward
mapping scheme guarantees that all output pixels are computed. For this reason, backward
mapping proves to be a much more convenient approach than forward mapping, although
it requires that the explicit expression of the inverse transformation g–1 be available.
Another advantage of backward mapping that is often overlooked in the literature is that it
behaves exactly as a domain transformation, meaning that if our input image corresponds
to the function z = f(x,y), the resulting output image after applying the transformation is
exactly f(g(x,y)).

This last point brings us back to the potential confusion which may occur due to the
use of forward or backward algorithms in digital imaging. Suppose we are given two
different image-processing programs, one based on a forward-mapping algorithm and
the other based on a backward-mapping algorithm. If we use in both programs the same

36 In fact, a better solution consists of interpolating between the values of the input image at the pixel
locations surrounding the non-integer location (x,y), in order to determine the theoretic value of the
underlying continuous input image at the point (x,y).
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transformation g(x,y), say, (u,v) = (2xy, y2 – x2), we will get two completely different
transformed images: one will look like Fig. D.15(b), and the other will look like Fig.
D.15(d). The situation is even worse if we do not know which type of algorithm is
implemented in the software being used, since then we may obtain the wrong result
without even being aware of the risk. In cases such as rotation transformations the
difference is merely in the direction of the rotation, so that we may be tempted to
“rectify” the error by inverting the sign of a variable within the program. But this
“remedy” will not help in other cases; on the contrary, it may even worsen the situation
when other transformations will be used.

Finally, as already mentioned, it may happen in some cases that the explicit formula of
the inverse transformation g–1(u,v) is unknown or unavailable. In such cases the use of a
backward mapping scheme for applying g to the input image is not possible. However, in
such cases one can still apply g to the input image by supplying g itself to a program
which is based on a forward mapping algorithm.

Remark D.20: The layer transformations in most of the figures throughout this volume
have been obtained by a forward-mapping algorithm, a PostScript program that moves
each dot of the given dot screen (periodic or not) from its original location (x,y) to its new
location (u,v) = g(x,y). However, some of the figures — notably those that show the
transformation of more complicated images — have been obtained by a backward-
mapping algorithm, a C language program that takes an input image f(x,y) and generates
its distorted version f(g(x,y)). In all cases care has been taken to supply to the program in
question the right transformation, either g or g–1, in order to obtain the intended effect in
the figure. Note, however, that our figure legends do not usually mention the
implementation-dependent technicalities that were involved in the figure-generation
process, and they only concentrate on the mathematical and visual effects that are
demonstrated by each figure.

We will return to some of these issues in more detail in Sec. D.10.

D.9.2 Pre-multiplication and post-multiplication based notations

The last source of confusion we discuss here concerns transformations that can be
expressed in matrix form. In addition to linear transformations, this includes also affine,
bilinear, and some other types of transformations [Wolberg90 pp. 45–61]. The problem
arises here from the two different standard notations that are widely used in the literature
for expressing such transformations, using pre-multiplication or post-multiplication form
[Lipschutz68 p. 157]. In the first case the transformation matrix precedes the vector to
which it is applied:

u
v

 = a b
c d

x
y

  (D.24)

while in the second case the transformation matrix is written after the vector:
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(u,v) = (x,y)
e f
g h

  (D.25)

Both notation standards are fully equivalent, provided that we consistently stick to the
same notation. It should be noted, however, that the matrix representation of a given
transformation is different in each of these two notation standards, so when we copy a
formula from a book, we must carefully check whether the copied matrix agrees with our
notation system. For example, in the present work we always use the pre-multiplication
notation (Eq. (D.24)); in this notation the matrix form of a rotation by positive angle α is
given by:

cosα –sinα
sinα cosα

and the inverse transformation is given by:

cosα sinα
–sinα cosα

However, in books using the post-multiplication notation these matrices are interchanged
(see, for example, [Wolberg90 pp. 49 and 217]). The rule is that if we wish to use a matrix
taken from the other notation standard, we must first take the transpose of the matrix, as
illustrated below:

u
v

 = a b
c d

x
y

 = 
ax + by
cx + dy

(u,v) = (x,y) a b
c d

T
 = (x,y) a c

b d
 = (ax + by, cx + dy)

D.10 Implications to the moiré theory: issues related to the figures

In the previous sections of this appendix we have presented various results about direct,
inverse, domain and range transformations, as well as about forward and backward-
mapping algorithms in software applications; but the reasons that we actually need all
these results in our work may still be unclear. In the present section and in the following
one we therefore try to show some of the actual implications of these results to the moiré
theory: In the present section we will see their practical implications to the generation of
our moiré figures, and in the following section we will see the implications to the fixed
points between the superposed layers.

As we already know (see Remark 4.1 in Chapter 4), the classical moiré theory between
periodic or repetitive layers is based, as a rule, on the interpretation of the layer
transformations as domain (and hence, inverse) transformations. This rule holds, for
example, in the explanation of the moiré effects that are obtained when we apply the
transformations g1(x,y) and g2(x,y) to the original periodic layers p1(x',y') and p2(x',y'),
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giving the distorted layers p1(g1(x,y)) and p2(g2(x,y)) (see Propositions 10.2 and 10.5 in
Vol. I). In fact, domain transformations are used throughout Chapters 10 and 11 of Vol. I,
which present the theory of curvilinear moiré effects between geometrically transformed
periodic layers (see Sec. 10.2 and in particular Footnote 1 and Remark 10.2 there, as well
as Secs. 11.2.2, 11.3 and 11.4, all in Vol. I). Domain transformations are also used in the
case of aperiodic layers, as we have seen throughout the present volume, with just one
outstanding exception: When it comes to dot trajectories, the transformation g(x,y) that is
applied to a dot screen is understood as an operation that moves each point (x,y) of the
original dot screen to its new destination under g, namely: (x,y) |→ g(x,y). This means, as
explained in Chapter 4, that in the context of dot trajectories we are interested in the effect
of g as a direct transformation. (Note that in Vol. I, too, there exist some circumstances
where the transformations gi(x,y) are not used as domain transformations, and the
expressions involved are formulated in terms of direct rather than inverse transformations;
see, for example, Eq. (3.1) and its vector form in Sec. 3.4.1 of Vol. I.)

However, the fact that we need to use the same transformation alternately as a domain
transformation or as a direct transformation, depending on the context, may cause us
trouble in the generation and in the interpretation of our figures. The following examples
will help us understand this point.

Example D.8: Consider the following cases, which illustrate the use of the inverse
mapping as a domain transformation:

(a) Suppose we are given a layer p(x',y'). In order to rotate it by positive angle α
counterclockwise we have to apply to p(x',y') the following domain transformation:

x' = xcosα + ysinα

y' = –xsinα + ycosα

which corresponds, in fact, to the inverse transformation (rotation by angle –α; see
Example D.2 above). For instance, in order to rotate the vertical cosinusoidal grating
cos(2πfx') by angle α (see Fig. D.11(g)) we have to plot the function:

r(x,y) = cos(2πf[xcosα + ysinα])

where the original variable x' has been replaced by xcosα + ysinα.

(b) Bending a periodic layer p(x',y') into a right-opened parabolic shape is obtained by
applying to p(x',y') the domain transformation:

x' = x – ay2

y' = y

which corresponds, in fact, to the inverse transformation (see Example D.6 above).
Taking again the example of the vertical cosinusoidal grating cos(2πfx'), we can bend it
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into a right-opened parabolic cosinusoidal grating (see Fig. D.16(g)) by plotting the
function:

r(x,y) = cos(2πf[x  – ay2])

Another example consists of the distorted periodic and aperiodic layers shown in Figs.
3.5(a),(b), which are expressed mathematically by r(x,y) = p(x – ay2, y).

(c) Bending a two-fold periodic dot screen p(x',y') into a 2D hyperbolic dot screen is
obtained by applying to p(x',y') the domain transformation:

x' = 2xy

y' = y2 – x2

(see Example D.5 above). The resulting geometrically transformed dot screen is
expressed, therefore, by p(2xy, y2–x2) (see Figs. B.7(a),(b) in Appendix B).

Naturally, it would be best to generate all the distorted gratings and dot screens in the
figures that accompany our discussions on the classical moiré theory by an algorithm
based on backward mapping. As we have seen in Sec. D.9.1, backward-mapping
algorithms operate on the original image exactly as a domain transformation does, and
therefore the explicit expressions that we have to provide to the algorithm are identical to
those used in our equations, and the resulting moirés obtained in the figures fully
correspond to our mathematical results as we indeed obtain them in terms of domain
transformations. However, in reality three different problems may occur:

Problem 1: Because in the context of dot trajectories (in Chapter 4) we need to express
the transformed layers in terms of direct transformations while elsewhere (in Chapters 3, 6
and 7) we need to express the same transformed layers in terms of domain (and hence,
inverse) transformations, we are facing a dilemma in our figure legends: Given that each
figure can be used in all chapters, which of the two expressions should we present in the
figure legend? For example, taking the parabolically distorted dot screens shown in
Fig. 3.5, should we say in the figure legend that they were obtained by applying the
transformation g(x,y) = (x – ay2, y), as we would do in Chapters 3, 6 and 7 — or by
applying the transformation g(x,y) = (x + ay2, y), as we would do in Chapter 4? The
solution we have adopted is to provide in the figure legends just a verbal description of the
transformations, without giving their explicit formulas. But when we still wish to add the
formulas, the convention we adopt in the figure legends throughout this volume
corresponds to the normal usage of transformations in the classical moiré theory as
domain transformations. In cases where the transformation should be understood as a
direct transformation, we either say it explicitly, or use the barred notation g(x,y), as
explained in Sec. 4.4, Remark 4.1.

Problem 2: When we generate our figures using a program based on a backward-
mapping algorithm the transformations we have to supply to the program correspond to
those being used as domain transformations (in Chapters 3, 6 and 7), but not to those
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being used as direct transformations (in Chapter 4). Therefore, in order to generate using
such a backward-mapping algorithm figures that come to illustrate dot trajectories, as in
Chapter 4, we must supply to the program the inverse of the transformations being used in
the text. Note, however, that this is just a technical problem that should be taken into
account when generating the figures, but we can forget about it once the figures are done.

Of course, if we generate our figures using a program that is based on a forward-
mapping algorithm, the inverse problem will occur. And indeed, as mentioned in Remark
D.20, most of the transformed dot screens shown in the figures throughout the present
volume were produced, for technical reasons, by an algorithm based on forward mapping.
This algorithm uses the most straightforward and natural approach for distorting a random
or periodic dot screen: it simply maps each dot of the original, undistorted dot screen from
its original location (x,y) to the new, transformed location (u,v) = g(x,y).37 This forces us,
in order to obtain the correct results in the figures, to provide to the forward-mapping
program the direct transformation of each of the layers, namely, the inverse of the
transformation g that is used in the mathematical expression p(g(x,y)). But once again, this
technicality in the figure generation does not affect our mathematical developments, and
once the figures are ready we continue to assume that the transformed layers in question
have been obtained by applying g as a domain (and hence inverse) transformation, as
usual.

Example D.9: The following cases illustrate the use of direct transformations in the
forward-mapping program that generates most of the layer superpositions in this volume:

(a) In order to rotate a dot screen by positive angle α counterclockwise we have to provide
to the forward-mapping program the following direct transformation:

u = xcosα – ysinα

v = xsinα + ycosα

This means that a dot that should have been printed in the original, untransformed dot
screen at the location (x,y) will be printed in reality at the location (u,v) as defined
above (see, for example, Fig. 2.1(d)). And yet, assuming that the original, undistorted
dot screen is given by p(x',y'), the rotated dot screen continues to be expressed
mathematically by p(xcosα + ysinα, –xsinα + ycosα), using the inverse mapping
(x',y') = (xcosα + ysinα, –xsinα + ycosα) as a domain transformation.

(b) In order to bend an original dot screen into a right-opened parabolic dot screen we
have to provide to the forward-mapping program the following direct transformation:

u = x + ay2

v = y

37 The reason for using a forward-mapping algorithm to generate the figures in this volume is basically
practical. Note that in the case of random screens the use of a backward-mapping algorithm may be more
difficult.
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(see, for example, Fig. 3.5). And yet, assuming that the original, undistorted dot screen
is given by p(x',y'), the distorted dot screen of the resulting figure is expressed
mathematically, as explained in Sec. 3.4.1, by p(x–ay2, y), using the inverse mapping
(x',y') = (x–ay2, y) as a domain transformation.

(c) Finally, if we bend an original dot screen p(u,v) by using in the forward-mapping
program the transformation:

u = 2xy

v = y2 – x2

the resulting dot screen will be distorted into a parabolic shaped screen (see
Fig. D.15(b)). If we wish to obtain the hyperbolic screen which is expressed by
p(2xy, y2 – x2), as shown in Fig. D.15(d) or in Fig. B.7 of Appendix B, we have to
provide to our forward-mapping program the inverse transformation, i.e. the rather
complicated expression with the nested roots that is given in Example D.5 above.

Problem 3: The fact that the transformations used to draw the figures are sometimes
inversed with respect to the conventions used in the theoretic results may raise an
additional problem. According to Proposition 5.1 in Sec. 5.3 (see also the second part of
Proposition 10.5 in Sec. 10.9.2 of Vol. I), when we apply the domain transformations
g1(x,y) and g2(x,y), respectively, to two periodic layers, the resulting (1,-1)-moiré in the
layer superposition undergoes the domain transformation gM(x,y) = g1(x,y) – g2(x,y). Thus,
in order to obtain in the layer superposition a (1,-1)-moiré having the domain trans-
formation k(x,y), we have to apply to the two original layers, respectively, such domain
transformations g1(x,y) and g2(x,y) that give the difference k(x,y); for example
g1(x,y) = (x,y) + k(x,y) and g2(x,y) = (x,y), or alternatively, g1(x,y) = (x,y) + 1

2 k(x,y) and
g2(x,y) = (x,y) – 1

2 k (x ,y) (see also Eqs. (3.41) and (3.42)). This would pose no
problems if we were to draw the figure using a program that is based on a backward-
mapping algorithm. But as we have seen in Problem 2 above, in order to draw these
distorted layers using our forward-mapping algorithm we have to provide to our program
the inverse expressions [(x,y) + k(x,y)]–1 and [(x,y)]–1 = (x,y), or [(x,y) + 1

2 k(x,y)]–1 and
[(x,y) – 1

2 k(x,y)]–1; but these expressions may turn out to be too complex or simply
unavailable.

What happens, then, if we “forget” the inversions and provide to the forward-mapping
program the known, non-inverted expressions (namely, (x,y) + k(x,y) and (x,y), or
(x,y) + 12 k(x,y) and (x,y) – 1

2 k(x,y))? The respective domain transformations become, in this
case, [(x,y) + k(x,y)]–1 and [(x,y)]–1 = (x,y), or [(x,y) + 1

2 k(x,y)]–1 and [(x,y) – 1
2 k(x,y)]–1.

Hence, the differences between the layer’s domain transformations become, respectively:

[(x,y) + k(x,y)]–1 – (x,y)   (D.26)

and: [(x,y) + 1
2 k(x,y)]–1 – [(x,y) – 1

2 k(x,y)]–1   (D.27)
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Figure D.20: The effects of using forward mapping to transform the original layers
in a screen superposition. (a) The moiré effect obtained in Fig. 4.13(b),
which is drawn using forward mapping, when the transformation
k(x,y) = (2xy, y2 – x2) is equally distributed between the two layers.
This moiré effect fully agrees with the results that are obtained when
the layers are drawn by backward mapping. (b) When the
transformation k(x,y) is entirely taken care of by the first layer, the
resulting moiré is significantly distorted. (c),(d) Same as (a) and (b),
but this time using the transformation k(x,y) = (ay2 + x0, y0 – ax2), a
slightly different variant of Fig. 3.15(b). Note that the same
phenomenon occurs also in the aperiodic counterparts of these
superpositions, but the distortions in the aperiodic case are less visible.

(a) (b)

(c) (d)



396                                                      Appendix D: Direct and inverse spatial transformations

Figure D.21: The effect of the transformation g(x,y) = (x,y) + k(x,y) where k(x,y) is
a very weak non-linear transformation, k(x,y) = (2xy, y2 – x2)/100.
Note that k(x,y) is in fact a strongly diluted version of the non-linear
transformation shown in Fig. D.15, and its influence here on the
underlying linear transformation g1(x,y) = (x,y) is very moderate.
Therefore, the inverse of g(x,y), shown in (d), is almost identical to
(x,y) – k(x,y):  [(x,y) + k(x,y)]–1 ≈ (x,y) – k(x,y).

According to our proposition, these differences express the domain transformation of
the resulting moiré in the layer superposition. But clearly, none of these differences can be
expected to give the desired result, k(x,y), as was the case when backward mapping was
used and no inversions were needed (see Eqs. (3.41) and (3.42)):
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Figure D.22: Same as in Fig. D.21, but here the non-linearity introduced by k(x,y)
is ten times higher: k(x,y) = (2xy, y2 – x2)/10. Note that in this case the
approximation [(x,y) + k(x,y)]–1 ≈ (x,y) – k(x,y) is no longer valid.

[(x,y) + k(x,y)] – (x,y)  = k(x,y)

[(x,y) + 1
2 k(x,y)] – [(x,y) – 1

2 k(x,y)]  = k(x,y)

However, surprisingly, superposition tests with various transformations show that when
forward mapping is being used to draw the layers, the difference (D.27), which
corresponds to an equal distribution of the distortion between the two layers, does give in
the layer superposition the same moiré effect k(x,y) as in the case of backward mapping
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(up to a sign inversion). Even more surprisingly, it turns out that this occurs only if k(x,y)
is equally distributed between the two layers, as in Eq. (D.27). When the distortion is not
equally distributed, for instance in the case of Eq. (D.26), the moiré effect obtained with
forward mapping is not –k(x,y), but rather a distorted version of –k(x,y) (see Figs.
D.20(b),(d); note that in this case –k(x,y) = k(x,y)). In other words: the expected moiré
k(x,y) = g1(x,y) – g2(x,y), as predicted by Proposition I.10.5, can be obtained in the
superposition (up to a sign inversion) even if we perform the two layer transformations
gi(x,y) by means of forward mapping, but this happens only if the deformation k(x,y) is
equally distributed between the two original, undistorted layers. This, however, seems to
contradict Proposition I.10.5, which guarantees that the resulting moiré effect must have
the shape of the difference k(x,y) = g1(x,y) – g2(x,y) in all cases, no matter how k(x,y) is
distributed between g1(x,y) and g2(x,y). How can it be?

These surprising results are explained as follows: Remember that in our case we only
use weak layer transformations g(x,y), in order not to destroy the correlation between the
superposed layers. This means that our layer transformations g(x,y) are of the form:

g(x,y) = (x,y) – o(x,y)

or: g(x,y) = (x,y) + o(x,y)

where o(x,y) is a negligible transformation that differs only slightly, within the zone
covered by the layer superposition, from the zero transformation z(x,y) = (0,0).

And indeed, it turns out (see Proposition D.9 in Sec. D.12 below) that if g(x,y) is such
a weak layer transformation then we have for its inverse, g–1(x,y), the following close
approximations:

[(x,y) – o(x,y)]–1 ≈ (x,y) + o(x,y)

[(x,y) + o(x,y)]–1 ≈ (x,y) – o(x,y)

or, in a more compact notation, denoting the identity transformation by i:

[i – o]–1 ≈ i + o   (D.28)

[i + o]–1 ≈ i – o   (D.29)

(see also Figs. D.21 and D.22). Furthermore, Proposition D.9 also asserts that the
approximation error e1 in (D.28) and the approximation error e2 in (D.29) (both of which
are functions of x and y, e1(x,y), e2(x,y)) are almost identical. Therefore, denoting this
common approximate error by e(x,y) we obtain for Eq. (D.27):

[(x,y) + 1
2 k(x,y)]–1 – [(x,y) – 1

2 k(x,y)]–1 = 

= [(x,y) – 1
2 k(x,y) + e(x,y)] – [(x,y) + 1

2 k(x,y) + e(x,y)]

= –k(x,y)   (D.30)
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whereas for Eq. (D.26) we have:

[(x,y) + k(x,y)]–1 – (x,y) = 

= [(x,y) – k(x,y) + e(x,y)] – (x,y)

= –k(x,y) + e(x,y)   (D.31)

This explains, indeed, why, when providing to the forward-mapping algorithm the
inverse layer transformations rather than the direct ones, we still obtain the correct moiré
effect if the distortion k(x,y) is equally distributed between the two superposed layers; but
if the distortion is only taken care of by one of the two layers, the resulting moiré is rather
distorted, as shown in Fig. D.20. Note that Eq. (D.30) also explains why the obtained
moiré is identical (up to a sign inversion) to the moiré k(x,y) which is expected when using
a backward-mapping algorithm, and not to its inverse, [k(x,y)]–1.

D.11 Fixed points of a superposition in terms of direct or inverse transformations

In this section we provide several useful results that can help us better understand our
discussions on fixed points in layer superpositions. We start with the simpler case which
occurs when only one of the superposed layers is transformed, and then we proceed to the
more general case where both layers are transformed.

D.11.1 Fixed points when only one layer is transformed

Suppose we are given two identical dot screens r1(x,y) and r2(x,y), periodic or not, that
are superposed on top of one another in full coincidence, dot on dot. We apply to one of
the layers (say, the first one) a transformation g(x,y); as a result, the original layer r1(x,y)
changes into r1(g(x,y)).

Let gM(x,y) denote the transformation that is undergone by the resulting moiré. We have
seen in Chapter 3 that:

gM(x,y) = g(x,y) – (x,y)   (D.32)

(which is exactly the same result as in the case of the (1,-1)-moiré between periodic or
repetitive layers; see Propositions 10.2 and 10.5 in Sec. 10.9 of Vol. I). Note that g(x,y)
and gM(x,y) are understood here as the domain transformations undergone by the layer
r1(x,y) and by the resulting moiré, respectively; this means that both g(x,y) and gM(x,y) are
used here as inverse transformations.

As we have seen in Chapter 3, thanks to the layer transformation g(x,y) one or more
Glass patterns may be generated in the layer superposition r1(g(x,y))r2(x,y). Typically, a
Glass pattern occurs around each of the fixed points of the layer superposition, namely,
around each point (x,y) that satisfies gM(x,y) = (0,0), or equivalently:
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g(x,y) = (x,y)   (D.33)

And yet, the same layer transformation g(x,y) can be also expressed in terms of its effect
on the locations of the individual screen dots, as we do in Chapter 4. Clearly, each point
(x,y) of the original layer r1(x,y) is moved by our transformation to a new location g(x,y):

(x,y) |→ g(x,y)

However, in this case the effect of the layer transformation is understood as a direct
transformation, meaning that g(x,y) is, in fact, g–1(x,y), the inverse of the domain
transformation g(x,y) (the reasons for using the barred notation to denote direct
transformations are explained in Sec. 4.4, Remark 4.1). For example, suppose that we are
given the original dot screen r1(x,y). If we apply to it the domain transformation
g(x,y) = (x/2,y/2) we obtain the transformed screen r1(x/2,y/2), which is a two-fold
expanded version of the original screen r1(x,y). But the effect of this two-fold expansion
on each individual dot of the screen is expressed by means of the direct transformation
g(x,y) = (2x,2y):

(x,y) |→ (2x,2y)

which is the inverse of the transformation g(x,y) = (x/2,y/2).

Now, as explained in Sec. 4.4, the effect of the direct transformation g(x,y) on any
individual dot is best described by the vector field:

h(x,y) = g(x,y) – (x,y)   (D.34)

This vector field assigns to each point (x,y) the vector g(x,y) – (x,y) that connects (x,y) to its
destination g(x,y) under the transformation g.

As we can see, Eqs. (D.32) and (D.34) represent the same physical reality in two
different ways: Eq. (D.32) is expressed in terms of inverse transformations, while Eq.
(D.34) is expressed in terms of direct transformations. It is important to note, however,
that although g(x,y) and g(x,y) are mutually inverse transformations, h(x,y) is not the
inverse of gM(x,y).

Now, based on Eq. (D.34), it is clear that we can also define the fixed points of the
superposition as those points (x,y) that satisfy h(x,y) = (0,0), or equivalently:

g(x,y) = (x,y)   (D.35)

We have obtained, therefore, two different ways to express the fixed points in the
resulting layer superposition: On the one hand we say in Eq. (D.33), just as we did in
Chapter 3, that the fixed points of the superposition are those points (x,y) for which
g(x,y) = (x,y); but on the other hand, based on different considerations, we say in Eq.
(D.35) that the fixed points of the same superposition are those points for which
g(x,y) = (x,y). This seems to be incoherent, since obviously g(x,y) and g(x,y) (i.e. g–1(x,y))
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are different transformations. But fortunately, the following result comes here to the
rescue:

Proposition D.6: Let g(x,y) be a 2D transformation, and let g–1(x,y) be its inverse (we
assume here, as usual, that g(x,y) is sufficiently well-behaved, and that it satisfies all the
conditions required in order to be invertible). Then, any fixed point of g is also a fixed
point of g–1, and any fixed point of g–1 is also a fixed point of g.

To see this, suppose that (xF,yF) is a fixed point of g. This means that at the point (xF,yF)
we have:

g(xF,yF) = (xF,yF)

but then, we also have at the same point:

g–1(g(xF,yF)) = g–1(xF,yF)

which means:

(xF,yF) = g–1(xF,yF)

so that (xF,yF) is, indeed, a fixed point of g–1, too. The other direction can be shown in a
similar way.

We see, therefore, by virtue of this proposition, that the two different definitions of fixed
points in our layer superposition are fully equivalent: Any point (xF,yF) that satisfies
g(xF,yF) = (xF,yF) satisfies also g–1(xF,yF) = (xF,yF), and vice versa. (Incidentally, this implies
also that at any fixed point (xF,yF) we have g(xF,yF) = g–1(xF,yF)). In conclusion:

Proposition D.7: When one of the two superposed layers is transformed by g(x,y)
but the other layer remains unchanged, the fixed points can be expressed by either
g(x,y) = (x,y)  or g(x,y) = (x,y).

D.11.2 Fixed points when both layers undergo transformations

Unfortunately, this happy situation does not extend to the more general case in which
both of the superposed layers undergo transformations. Suppose, for example, that our
two original layers r1(x,y) and r2(x,y) undergo, respectively, the domain transformations
g1(x,y) and g2(x,y). We have, therefore, the following generalization of Eq. (D.32):

gM(x,y) = g1(x,y) – g2(x,y)   (D.36)

where gM(x,y) is the domain transformation undergone by the resulting moiré.

Clearly, the fixed points of this superposition are those points (x,y) that satisfy
gM(x,y) = (0,0), or equivalently:38

g1(x,y) = g2(x,y)   (D.37)

38 These points are the mutual fixed points of the transformations g1 and g2 (see Sec. 3.5).
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On the other hand, just as we did in the simpler case before, we can also consider the
effect of the layer transformations on the locations of the individual screen dots. In this
case, each original point (x,y) in the first layer is moved by the transformation g1 to a new
location g1(x,y), while in the other layer the same point (x,y) is moved by the
transformation g2 to another destination, g2(x,y):

(x,y) |→ g1(x,y)

(x,y) |→ g2(x,y)

Note that g1 and g2 are the direct transformations that express the same physical layer
distortions as the domain transformations g1 and g2 above, so that we have g1 = g1

–1 and
g2 = g2

–1. For example, a two-fold expansion of the first layer can be expressed either by
r1(x/2,y/2), using the domain transformation g1(x,y) = (x/2,y/2), or by (x,y) |→ (2x,2y), using
the direct transformation g1(x,y) = g1

–1(x,y) = (2x,2y).

As we have seen in Sec. 4.5, the effect of the direct transformations g1 and g2 on any
individual dot is described by the vector field:

h(x,y) = g1(x,y) – g2(x,y)   (D.38)

This vector field assigns to each point (x,y) the vector g1(x,y) – g2(x,y) that connects the
destination of the original point (x,y) under the transformation g2 (the point g2(x,y)) to the
destination of the same point (x,y) under the transformation g1 (the point g1(x,y)).39

As we can see, Eqs. (D.36) and (D.38) represent the same physical reality in two
different ways: Eq. (D.36) is expressed in terms of inverse transformations, while Eq.
(D.38) is expressed in terms of direct transformations. Note, however, that although g1

and g1 as well as g2 and g2 are mutually inverse transformations, h(x,y) is not the inverse
of gM(x,y).

Now, based on Eq. (D.38) one may also define the fixed points of our superposition as
those points that satisfy h(x,y) = (0,0), or equivalently:

g1(x,y) = g2(x,y)   (D.39)

Hence, just as in the simpler case with g2(x,y) = (x,y), we have obtained here two different
ways to express the fixed points in the resulting layer superposition: On the one hand we
say in Eq. (D.37) that the fixed points of the superposition are those points (x,y) for which
g1(x,y) = g2(x,y); but on the other hand, Eq. (D.39) suggests that the fixed points of the
superposition are those points for which g1(x,y) = g2(x,y). Based on our experience from
the simpler case with g2(x,y) = (x,y), we might expect that conditions (D.37) and (D.39)
give exactly the same fixed points. However, it turns out that this is not always true. As a
simple counter-example, consider the case where the first layer undergoes a scaling by

39 Note that for any points (a,b) and (c,d) in the plane, when the tail of the vector (a,b) – (c,d) is
attached to the point (c,d), its head is located at the point (a,b); this means that the vector (a,b) – (c,d)
connects the point (c,d) to the point (a,b).
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Figure D.23: (a) Two functions g1(x) and g2(x) that coincide at a certain point xF.
(b) The inverse functions g1

–1 and g2
–1 coincide at the point

uF = g1(xF) = g2(xF). Note that the inverse functions are the
reflections of the direct functions with respect to the main diagonal.

factor s and the second layer is shifted by (a,b). It is easy to verify that the fixed point
between the direct transformations, i.e. the point which satisfies (sx,sy) = (x + a, y + b), is
given by (xF,yF) = ( a

s – 1
, b

s – 1
), whereas the fixed point between the inverse transformations,

which satisfies (x/s,y/s) = (x – a, y – b), is given by (xF,yF) = ( sa
s – 1

, sb
s – 1

). (Incidentally, it is
interesting to note that in this case the distance between the two fixed points is exactly
( sa
s – 1

, sb
s – 1

) – ( a
s – 1

, b
s – 1

) = (a,b), for any values of a, b and s.)

The reason for this discrepancy between Eqs. (D.37) and (D.39) is that Proposition D.6
cannot be generalized to the case of fixed points between two transformed layers. In other
words, the fact that at a given point (xF,yF) we have g1(xF,yF) = g2(xF,yF) does not guarantee
that we have at the same point g1

–1(xF,yF) = g2
–1(xF,yF), too. This is clearly illustrated by the

counter-example above. In fact, the reason for this failure is much easier to understand by
considering the 1D counterpart of this question: As shown in Fig. D.23, the inverse of any
function g(x) is simply its reflection about the main diagonal. And indeed, a glance at Fig.
D.23 shows that if g1(x) and g2(x) coincide at a certain point xF, g1(xF) = g2(xF), then their
inverse functions g1

–1 and g2
–1 do not necessarily coincide at the same point xF, but rather

at the point uF = g1(xF) = g2(xF), giving g1
–1(uF) = g2

–1(uF) = xF. Only in the particular case
where the point of coincidence (xF,uF) happens to fall on the main diagonal, so that uF = xF,
we have, indeed, g1

–1(xF) = g2
–1(xF). It is obvious, therefore, that this alwasy happens when

one of the two functions is the identity function (and hence coincides with the main
diagonal). As we have seen above, the same is also true in the case of 2D transformations,
but in this case the visualization of the “diagonal” is less obvious since it resides in a 4D
space.

(a) (b)

u

x

x

u

•

uF

xF

x = g (u)
1
–1

uF

xF

u = g (x)
1

u = g (x)
2

•

x = g (u)
2
–1
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But although Proposition D.6 cannot be extended to the more general case, it turns out
that under the conditions mentioned below — that are anyway satisfied in our case — we
can still obtain the following weaker, yet quite useful result:

Proposition D.8: If g1 and g2 are weak transformations, i.e. transformations that only
slightly differ from the identity transformation i(x,y) = (x,y):

g1(x,y) = (x,y) + o1(x,y)

g2(x,y) = (x,y) + o2(x,y)

then g1(xF,yF) = g2(xF,yF) implies that g1
–1(xF,yF) ≈ g2

–1(xF,yF), and g1
–1(xF,yF) = g2

–1(xF,yF)
implies that g1(xF,yF) ≈ g2(xF,yF).

The 1D counterpart of this result is, indeed, quite obvious, since here both g1(x) and
g2(x) are close to the diagonal. In the 2D case this result follows from the fact that
any weak transformation g = i + o satisfies the approximation [i + o]–1 ≈ i – o (see
Proposition D.9 below). Using this result we have, therefore:

g1
–1(x,y) = [(x,y) + o1(x,y)]–1 ≈ (x,y) – o1(x,y)

g2
–1(x,y) = [(x,y) + o2(x,y)]–1 ≈ (x,y) – o2(x,y)

But since at the point (xF,yF) we have g1(xF,yF) = g2(xF,yF) it follows that we also have there
o1(xF,yF) = o2(xF,yF), and thus we obtain, indeed:

g1
–1(xF,yF) ≈ (xF,yF) – o1(xF,yF) = (xF,yF) – o2(xF,yF) = g2

–1(xF,yF).

Thus, as long as g1 and g2 are weak transformations, our two possible definitions of a
fixed point between the two superposed layers can be considered as practically equivalent.
But since in our case we are anyway forced to use weak layer transformations, in order not
to destroy the correlation between the superposed layers, it follows that for our needs we
can freely use either of the two definitions of a fixed point, (D.37) or (D.39). Interestingly,
in some cases (see Remark D.22) both definitions become fully identical.

Remark D.21: Just for the sake of completeness, it is interesting to note that if we allow
both of the superposed layers to be modified, there exist infinitely many different ways to
distribute a given additive distortion between the two layers. Consider, for example, the
case in which the first layer is scaled by factor s and the second layer remains unchanged,
and suppose that the distortion we wish to add consists of a lateral shift of (a,b). If we
consider the layer transformations as domain transformations, the same effect will be
obtained when we apply a shift of –(a,b) to the first layer or when we apply a shift of (a,b)
to the second layer, since:

gM(x,y) = (x/s + a, y/s + b)  –  (x,y)   (D.40)

is identical to: gM(x,y) = (x/s, y/s)   –   (x – a, y – b)   (D.41)



D.12 Useful approximations 405

The same effect is also obtained when the shift is equally distributed between the two la-
yers, i.e. when the first layer is shifted by –1

2(a,b) and the second layer is shifted by 1
2(a,b):

gM(x,y) = (x/s + 12a, y/s + 12b)  –  (x – 12a, y – 1
2b)

Clearly, there exist infinitely many different ways to distribute the distortion between the
two layers, all of which give exactly the same result gM(x,y), and hence, the same
macroscopic moiré in the superposition (by virtue of Proposition 5.1 in Sec. 5.3, or the
second part of Proposition 10.5 in Sec. 10.9.2 of Vol. I). However, when we consider the
very same distorted layers in terms of direct transformations (for example, in order to
study the dot trajectories in the layer superposition, as explained in Chapter 4), each of
these cases gives a different result. For example, in the case of Eq. (D.40) we have:

h1(x,y) = [(x/s + a, y/s + b)]–1  –  [(x,y)]–1

=   (s(x – a), s(y – b))   –   (x,y)   (D.42)

(since the inverse transformation of u = x/s + a, v = y/s + b is x = s(u – a), y = s(v – b);
see also Remark D.4 on the variable names), while in the case of Eq. (D.41) we obtain:

h2(x,y) = [(x/s, y/s)]–1 – [(x – a, y – b)]–1

=    (sx, sy)    –    (x + a, y + b)   (D.43)

where clearly h2(x,y) ≠ h1(x,y).

Because all the different distributions of the shift between the two layers are equivalent
in terms of domain transformations, it is clear that all of them have the same fixed point in
accordance with Eq. (D.37); and indeed, both (x/s,y/s) = (x – a, y – b) and (x/s + a, y/s + b)
= (x,y) give the same fixed point, (x,y) = ( sa

s – 1
, sb

s – 1
).

However, using the definition (D.39), which is based on direct transformations, Eq.
(D.42) gives the fixed point (x,y) = ( sa

s – 1
, sb

s – 1
) while Eq. (D.43) gives the fixed point

(x,y) = ( a
s – 1

, b
s – 1

). But among all of the different possible cases, there exists only a single
one that gives the same fixed point as in Eqs. (D.40) and (D.41): By virtue of Proposition
D.6, this is precisely the case in which only one of the superposed layers undergoes a
transformation, while the other layer remains unchanged (in our example above this is the
case given in Eq. (D.42)). Nevertheless, as we have just seen above, if the transformations
applied to our layers are weak then the difference between the resulting values is
practically negligible.

D.12 Useful approximations

In this appendix we provide some approximations that are often handy to use, because
they allow us to formulate our main results in terms of either direct or inverse
transformations. We start with the following informal definitions:
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Definition D.1: A transformation (u,v) = o(x,y) is said to be almost zero or almost null if
it differs only slightly, within our zone of interest (i.e. within the area covered by the layer
superposition), from the zero transformation (u,v) = z(x,y) = (0,0).

Definition D.2: A transformation (u,v) = g(x,y) is said to be weak or almost identity if it
differs only slightly, within our zone of interest (i.e. within the area covered by the layer
superposition), from the identity transformation (u,v) = i(x,y) = (x,y). In other words, g(x,y)
is a weak transformation if it satisfies g(x,y) = (x,y) + o(x,y), where o(x,y) is an almost zero
transformation.

We now provide the following useful result:

Proposition D.9: If o(x,y) is an almost zero transformation, then:

(a) [(x,y) – o(x,y)]–1 ≈ (x,y) + o(x,y)

(b) [(x,y) + o(x,y)]–1 ≈ (x,y) – o(x,y)

or, in a more compact notation, denoting the identity and the zero transformations by i and
o, respectively:

(a) [i – o]–1 ≈ i + o

(b) [i + o]–1 ≈ i – o

Furthermore, the errors in the two approximations (a) and (b) are almost identical.

Note that this proposition also means that if g(x,y) is a weak transformation, so that
g(x,y) = (x,y) + o(x,y), then g–1(x,y) ≈ (x,y) – o(x,y); see also Figs. D.21 and D.22.

To derive this proposition, note that an almost zero transformation o is almost linear,
because in its 2D Taylor series development (see, for example, [Courant89 pp. 68–70] or
[Strogatz94 p. 150]) all the non-linear terms (i.e. the terms of second and higher orders)
are negligible and can be dropped out. Therefore we can use the distributive law for the
composition of linear transformations [Mansfield76 p. 168], and we obtain, denoting by
“°” the composition of transformations:

(i + o)°(i – o) = i°i + o°i – i°o – o°o

= i – o°o

≈ i

(since the influence of o°o is negligible). This means, indeed, that the transformations
i + o and i – o are approximately the inverse of each other (see [Weisstein99 p. 901]
for an equivalent reasoning in terms of matrices).

An alternative approach for deriving this proposition is based on the following well-
known identities [Harris89 p. 540]:
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(1 – x)–1 = 1 + x + x2 + x3 + x4 + x5 + ... ( |x| < 1)

(1 + x)–1 = 1 – x + x2 – x3 + x4 – x5 + ... ( |x| < 1)

or rather on their matrix counterparts [Horn85 p. 301]:

(I – A)–1 = I + A + A2 + A3 + A4 + A5 + ... (||A|| < 1)

(I + A)–1 = I – A + A2 – A3 + A4 – A5 + ... (||A|| < 1)

where A is a square matrix (in our case 2×2), ||A|| is its norm, and I denotes the unit
matrix.40

These matrix identities mean, in terms of the linear transformation g(x,y) that
corresponds to the matrix A (see, for example, [Kreyszig78 p. 375]):41

(i – g)–1 = i + g + g°g + g°g°g + g°g°g°g + g°g°g°g°g + ... ( ||g|| < 1)

(i + g)–1 = i – g + g°g – g°g°g + g°g°g°g – g°g°g°g°g + ... ( ||g|| < 1)

Consider now the almost-zero transformation o(x,y). As we have seen above, this
transformation is almost linear, and therefore we have:

(i – o)–1 ≈ i + o + o°o + o°o°o + o°o°o°o + o°o°o°o°o + ... ( ||o|| < 1)

(i + o)–1 ≈ i – o + o°o – o°o°o + o°o°o°o – o°o°o°o°o + ... ( ||o|| < 1)

But since we assume that o is an almost zero transformation, the influence of the
mapping compositions o°o, o°o°o, etc. is negligible; and indeed, by omitting them we
obtain the two desired approximations:

[i – o]–1 ≈ i + o

[i + o]–1 ≈ i – o

Furthermore, it turns out that the approximation error e1 in (a) and the approximation
error e2 in (b), both of which are functions of x and y, e1(x,y), e2(x,y), are almost identical.
To see this, note that the approximation errors e1 and e2 are given by:42

e1 = o°o + o°o°o + o°o°o°o + o°o°o°o°o + ...

e2 = o°o – o°o°o + o°o°o°o – o°o°o°o°o + ...

40 It turns out that these matrix series converge if ||A|| < 1 for any matrix norm ||A|| [Horn85 pp. 258,
301]. This condition is clearly satisfied by matrices that are very close to the zero matrix O, as in our
case.

41 The norm ||g|| can be defined, for example, by ||g|| = sup
|(x,y)| = 1

|g(x,y)| [Kreyszig78 p. 92], where |(u,v)| is
the length of the vector (u,v).

42 Note that e1 and e2 express the truncation errors in (a) and (b), and therefore they accurately represent
the errors when o is a linear transformation (that corresponds to the matrix A). But when o is only
almost linear, the errors e1 and e2 are only approximate.
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It follows, therefore, because o is an almost zero transformation, that the difference:

e1 – e2 = 2o°o°o + 2o°o°o°o°o + ...

is negligible with respect to e1 and e2, since o°o°o is of lower order of magnitude than o°o.
This means, indeed, that e1 ≈ e2.

Using this result we provide now the following useful approximations that connect
between Eqs. (D.36) and (D.38):

Proposition D.10: If g1 and g2 are weak transformations then:

g1(x,y) – g2(x,y) ≈ g2(x,y) – g1(x,y)   (D.44)

This means, using our notations from Eqs. (D.36) and (D.38), that the following
approximations:

h(x,y) ≈ –gM(x,y)   (D.45)

h(x,y) ≈ g2(x,y) – g1(x,y)   (D.46)

gM(x,y) ≈ g2(x,y) – g1(x,y)   (D.47)

also hold.

To see this, let g1 = i + o1 and g2 = i + o2 be weak transformations. We have, therefore:

g1(x,y) – g2(x,y) = [(x,y) + o1(x,y)]–1 – [(x,y) + o2(x,y)]–1

Using Proposition D.9:   ≈ [(x,y) – o1(x,y)] – [(x,y) – o2(x,y)]

  = [(x,y) + o2(x,y)] – [(x,y) + o1(x,y)]

  = g2(x,y) – g1(x,y)

The other approximations, (D.45)–(D.47), are simply different variants of (D.44). This
proposition is very useful in cases where we do not have the explicit forms of the inverse
(or of the direct) transformations, since it still allows us to obtain a close approximation
based on those transformations whose expicit forms are known (see, for instance,
Example 5.5 in Sec. 5.3).

Remark D.22: It is interesting to note that for some categories of transformations g1(x,y)
and g2(x,y) the approximations given in Proposition D.10 turn into identities. For example,
it is easy to see that if (u,v) = g1(x,y) and (u,v) = g2(x,y) are given, respectively, by:

u
v

 = x + f1(y)
y

u
v

 = x
y + f2(x)

  (D.48)

where z = f1(s) and z = f2(s) are arbitrary 1D functions, then their inverse transformations
are given, respectively, by:
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x
y

 = u – f1(v)
v

x
y

 = u
v – f2(u)

and thus we have:

g1(x,y) – g2(x,y) = (f1(y), –f2(x))

g2(x,y) – g1(x,y) = (f1(y), –f2(x))

meaning that the following identity holds:

g1(x,y) – g2(x,y) = g2(x,y) – g1(x,y)   (D.49)

Another example consists of all the transformations g1(x,y), g2(x,y) having the form:

(u,v) = (f1(x), f2(y)) (u,v) = (f1
–1(x), f2

–1(y))   (D.50)

where z = f1(s) and z = f2(s) are arbitrary 1D functions. In this case we have: g1(x,y) =
g2(x,y) and g2(x,y) = g1(x,y), and therefore identity (D.49) holds, again.

There also exist other families of transformation pairs that satisfy identity (D.49);
but for all other pairs g1 and g2 that do not satisfy the identity we still have the
approximation given by Proposition D.10, provided that g1 and g2 are sufficiently weak
transformations.

Finally, note that whenever the approximations of Proposition D.10 turn into identities,
this also implies that the approximations given by Proposition D.8 turn into equalities, so
that a point in the plane is a mutual fixed point of g1(x,y) and g2(x,y) iff it is a mutual fixed
point of g1

–1(x,y) and g2
–1(x,y). The converse, however, is not necessarily true. For

example, consider the simple case in which one of the two superposed layers remains
unchanged: g2(x,y) = (x,y). We already know from Proposition D.6 that in this case any
fixed point of g is also a fixed point of g (and vice versa), so that any point that satisfies
g1(x,y) – (x,y) = (0,0) also satisfies (x,y) – g1(x,y) = (0,0). However, this does not yet imply
that for any point (x,y) we have g1(x,y) – (x,y) = (x,y) – g1(x,y). For example, if one of the
layers has undergone a two-fold magnification g1(x,y) = (2x,2y) and the other layer
remains unchanged, then:

g1(x,y) – (x,y) = (2x,2y) – (x,y) = (x,y)

while: g1(x,y) – (x,y) = (x/2,y/2) – (x,y) = –(x/2,y/2)

This clearly shows that in this case identity (D.49) is not satisfied; and yet, the fixed
points of g1 and g1 are, indeed, identical (the point (0,0)).

We conclude this appendix with some further approximations that prove to be useful in
Chapter 4 (see Remark 4.3):
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Proposition D.11: If g1 and g2 are weak transformations, i.e. transformations that only
slightly differ from the identity transformation i(x,y) = (x,y) (at least within our zone of
interest), then the following approximations:

g1(g2(x,y)) – (x,y) ≈ g2(x,y) – g1(x,y) ≈ g1(x,y) – g2(x,y)   (D.51)

(x,y) – g2(g1(x,y)) ≈ g2(x,y) – g1(x,y) ≈ g1(x,y) – g2(x,y)   (D.52)

also hold.

This result can be demonstrated as follows:

Denoting (x',y') = g2(x,y) we have:

g1(g2(x,y)) – (x,y) = g1(x',y') – (x,y)

Now, using g1 = i + o1 and hence g1 = [i + o1]–1:

    = [(x',y') + o1(x',y')]–1 – (x,y)

which gives, by virtue of Proposition D.9:

≈ (x',y') – o1(x',y') – (x,y)

and by substituting back (x',y') = g2(x,y) and using g2 = i + o2:

    = (x,y) + o2(x,y) – o1((x,y) + o2(x,y)) – (x,y)

But since within our zone of interest o1 is almost linear we obtain:

≈ (x,y) + o2(x,y) – o1(x,y) – o1(o2(x,y)) – (x,y)

which gives in turn, because o1(o2(x,y)) is negligible:

≈ g2(x,y) – g1(x,y)

or, using (D.44): ≈ g1(x,y) – g2(x,y)

Eq. (D.51) shows that when g1 and g2 are weak transformations Eq. (4.7) of Sec. 4.5 is
indeed a close approximation to Eq. (4.8). This explains also why vector field (4.7) gives a
good approximation to the dot trajectories in cases where both of the original layers are
being transformed, provided that both layer transformations are rather weak. Note that we
are allowed to use these approximations because in our application we must anyway
restrict ourselves to weak layer transformations, in order not to destroy the correlation
between the superposed layers within our zone of interest.



Appendix E

Convolution and cross correlation

E.1 Introduction

Convolution and cross correlation are operations on functions: each of these operations
takes two functions f(x) and g(x), and produces from them a new function of the same
variable x, that is customarily denoted by h(x) = f(x) * g(x) or by cf,g(x) = f(x) g(x),
respectively.1 The need for the subscript in the cross correlation cf,g(x) will become clear
shortly. In the 2D case the convolution and the cross correlation of the functions f(x,y) and
g(x,y) are denoted by h(x,y) = f(x,y) ** g(x,y) and cf,g(x,y) = f(x,y) g(x,y). A full
description of convolution and cross correlation can be found in the literature (see, for
example, Chapters 6 and 9 in [Gaskill78], Chapters 5 and 7 in [Cartwright90], or Chapter
5 in [Bracewell95]); in this appendix we only provide a general overview and discuss
those properties that may be needed for our application. Because we are basically
interested in 2D images this appendix is mostly formulated in terms of 2D functions; but
the corresponding 1D results can be deduced from their 2D counterparts without
difficulty. Note also that this appendix only deals with the continuous case. The discrete
case — where the functions or images being treated are discrete (i.e. composed of pixels)
— is basically obtained by replacing integrations by summations, but it remains beyond
our scope here. More details on discrete convolution and cross correlation can be found in
books on digital image processing or digital signal processing.

E.2 Convolution

The convolution of two real-valued functions f(x,y) and g(x,y) is defined to be:

h(x,y) = f(x,y) ** g(x,y) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g(x – x', y – y') dx'dy'      (E.1)

Because this integral is clearly a function of the independent variables x and y, the
resulting function h(x,y) is again a function of x and y.2 As we will see soon, the
convolution operation may be viewed as one of finding the volume of the product of
f(x',y') and g(x – x', y – y') as x and y are allowed to vary. In general, the resulting function
h(x,y) is smoother than either f(x,y) or g(x,y): The fine structure of the original functions

1 More formally, convolution and cross correlation are binary operators that act on functions. Such
binary operators are often written in the form h = L[f,g]. Simple examples of such operators include
S[f,g] = f + g, P[f,g] = fg, C[f,g] = f g, etc. Similarly, there exist also unary operators that act on a
single function, such as U[f] = f2 or the Fourier transform, F [f] [Cartwright90 p. 135].

2 Note that inside the integral the x and y axes are renamed x' and y'; thus, after integrating over the plane
the dummy integration variables x' and y' disappear, and we are left with a function of x and y.
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tends to be washed out, the sharp peaks and valleys tend to be rounded, etc., but the
amount of smoothing depends on the exact nature of f(x,y) and g(x,y) (see [Gaskill78 pp.
162–163]).

Definition (E.1) may seem at first sight quite obscure, but in fact it has a quite intuitive
graphical interpretation that gives a good visual insight into the nature of the convolution
operation — the “move and multiply” interpretation (see, for example, [Rosenfeld82 pp.
13–14] or [Gaskill78 pp. 151–154, 291–292]): In order to obtain graphically the
convolution of f(x,y) and g(x,y), we first draw the function g(–x',–y'), which is simply a
180° rotation of g(x',y'), and then we shift it along the x and y directions on top of f(x',y').
For each position x,y of the moving function, the resulting value of h(x,y) is simply the
volume under the product of the two functions (the fixed function f(x',y') and the moving
function g(–x',–y') when it is shifted by x,y, i.e., g(–(x' – x), –(y' – y)) = g(x – x', y – y')).

The convolution operation has several useful properties, such as commutativity:

f(x,y) ** g(x,y) = g(x,y) ** f(x,y)      (E.2)

associativity:

[f1(x,y) ** f2(x,y)] ** f3(x,y) = f1(x,y) ** [f2(x,y) ** f3(x,y)]      (E.3)

homogeneity:

[cf(x,y)] ** g(x,y) = c[f(x,y) ** g(x,y)]

f(x,y) ** [cg(x,y)] = c[f(x,y) ** g(x,y)]
(E.4)

distributivity over addition:3

[f1(x,y) + f2(x,y)] ** g(x,y) = [f1(x,y) ** g(x,y)] + [f2(x,y) ** g(x,y)]

f(x,y) ** [g1(x,y) + g2(x,y)] = [f(x,y) ** g1(x,y)] + [f(x,y) ** g2(x,y)]      
(E.5)

and shift preservation:

f(x – a, y – b) ** g(x,y) = f(x,y) ** g(x – a, y – b) = h(x – a, y – b)      (E.6)

Another interesting property is that the volume under the convolution h(x,y) equals the
product of the volumes under f(x,y) and g(x,y) [Bracewell95 p. 193]. Other properties of
the convolution operation can be found, for example, in [Gaskill78 pp. 159–166, 292–
294] and in [Poularikas96 pp. 27–32].

3 More formally, properties (E.4) and (E.5) together imply that the convolution operator is linear
[Cartwright90 p. 130]. In general, a binary operator L[f,g] is said to be linear if it is homogeneous and
additive in each of its two arguments, i.e. if it has the following properties: L[cf,g] = cL[f,g],
L[f1 + f2, g] = L[f1,g] + L[f2,g], L[f,cg] = cL[f,g], and L[f, g1 + g2] = L[f,g1] + L[f,g2]. Similarly, a
unary operator U[f] is said to be linear if U[cf] = cU[f] and U[f1 + f2] = U[f1] + U[f2]; an example of
such an operator is the Fourier transform F [f] [Cartwright90 p. 90].
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E.3 Cross correlation

Given two real-valued functions f(x,y) and g(x,y), we define the cross correlation of f(x,y)
and g(x,y) to be:

cf,g(x,y) = f(x,y) g(x,y) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g(x' – x, y' – y) dx'dy'

= ∫
-∞

∞

∫
-∞

∞

f(x" + x, y" + y) g(x",y") dx"dy"      

(E.7)

(where the second integral is obtained from the first one by a simple change of variables,
x" = x' – x, y" = y' – y). The cross-correlation function cf,g(x,y) indicates the relative amount
of agreement between the two given functions f(x,y) and g(x,y) for all possible degrees of
misalignment (displacements). In other words, the function cf,g(x,y) is a measure of the
similarity between f(x,y) and a moving copy of g(x,y), and it gets its maximum at the point
(x,y) representing the displacement of g for which its similarity with f is the highest.4

As we can see, the cross-correlation operation, too, can be presented graphically using
the “move and multiply” interpretation. It is important to note, however, that although this
operation is similar to convolution, there is one very significant difference: the function
g(x,y) is not rotated as in convolution. This fact implies that convolution and cross
correlation behave very differently. An example illustrating graphically the difference
between f(x) * g(x) and f(x) g(x) for some given functions f(x) and g(x) can be found, for
instance, in [Coulon84 pp. 82–83]. In fact, it is easy to see from definitions (E.1) and
(E.7) that cross correlation can be expressed in terms of convolution by:

f(x,y) g(x,y) = f(x,y) ** g(–x,–y)      (E.8)

It follows, therefore, that unlike convolution, the cross-correlation operation is not
commutative, meaning that in general f(x,y) g(x,y) ≠ g(x,y) f(x,y). For this reason
we have to clearly distinguish between the two functions cf,g(x,y) = f(x,y) g(x,y) and
cg, f(x,y) = g(x,y) f(x,y); the relationship between the two is given by:5

cg, f(x,y) = cf,g(–x,–y)      (E.9)

Another consequence of Eq. (E.8) is that if g(–x,–y) = g(x,y) then f(x,y) g(x,y) is
identical to the convolution f(x,y) ** g(x,y). In this particular case the cross correlation is,
of course, commutative; such exceptional commutativity may also occur in some other
special cases (see Problem 5-10 in [Bracewell95 pp. 201 and 643]).

Note that in the case of complex-valued functions f(x,y) and g(x,y) one can also define
the complex cross correlation of f(x,y) and g(x,y):

4 Note that in order to facilitate comparisons of the correlation between different functions it may be
useful to normalize the cross correlation by dividing it by the square root of the product of the volume
under [f(x,y)]2 and the volume under [g(x,y)]2. This ensures that the values of the normalized cross
correlation are always between –1 and 1 [Cartwright90 p. 174].

5 More formally, this means that the cross correlation operator C[f,g] is anti-symmetric: C[g(x), f(x)] =
C[f(–x), g(–x)] [Cartwright90 pp. 174, 176].
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γf,g(x,y) = f(x,y) g*(x,y) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g*(x' – x, y' – y) dx'dy'

= ∫
-∞

∞

∫
-∞

∞

f(x" + x, y" + y) g*(x",y") dx"dy"    

(E.10)

where g*(x,y) is the complex conjugate of the function g(x,y). This definition is largely
used in the literature, but because in our case we are only interested in real-valued
functions (images), it is clear that g*(x,y) = g(x,y) and therefore the complex cross
correlation (E.10) reduces into the cross correlation as defined in Eq. (E.7).

Remark E.1: There exists in the literature an alternative convention for the definition of
convolution and cross correlation, in which the roles of f and g under the integral are
inversed (see, for example, [Bracewell95 pp. 176–179]). Although this does not have any
effect on the resulting function in the case of convolution (due to the commutativity of this
operation), in the case of cross correlation this alternative definition inverses the meanings
of cf,g(x,y) and cg, f(x,y), and gives instead of (E.8): f(x,y) g(x,y) = f(–x,–y) ** g(x,y). In
order to avoid confusion we will stick here to our definitions (E.1) and (E.7), following the
notations in [Gaskill78].  

Cross correlation is less generous than convolution in terms of nice mathematical
properties. We have already mentioned its lack of commutativity, but in fact, it also lacks
associativity (as one can see by rewriting the expressions [f1(x,y) f2(x,y)] f3(x,y)
and f1(x,y) [f2(x,y) f3(x,y)] in terms of convolution, using Eq. (E.8)). And yet,
cross correlation still does have some other useful properties, such as homogeneity
[Cartwright90 p. 174]:

[cf(x,y)] g(x,y) = c[f(x,y) g(x,y)]

f(x,y) [cg(x,y)] = c[f(x,y) g(x,y)]
(E.11)

distributivity over addition [Cartwright90 p. 174]:6

[f1(x,y) + f2(x,y)] g(x,y) = [f1(x,y) g(x,y)] + [f2(x,y) g(x,y)]

f(x,y) [g1(x,y) + g2(x,y)] = [f(x,y) g1(x,y)] + [f(x,y) g2(x,y)]    
(E.12)

an asymmetric shift-preservation property:

f(x + a, y + b) g(x,y) = f(x,y) g(x – a, y – b) = cf,g(x – a, y – b)    (E.13)

and in spite of its non-commutativity it still satisfies the identity [Weisstein99 p. 352]:

(f g)  (f g) = (f f)  (g g)    (E.14)

Further properties of cross correlation are mentioned at the end of this section.

6 Once again, like in the case of convolution, properties (E.11) and (E.12) together mean that cross
correlation is a linear operator. Note that the lack of commutativity, C[g, f] ≠ C[f,g], does not contradict
the linearity of the operator (i.e., its homogeneity and additivity in each of its two arguments).
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An interesting particular case of cross correlation occurs when the functions f and g are
identical; in this case the operation (E.7) is called the autocorrelation of f(x,y), and denoted
by cf, f (x,y) = f(x,y) f(x,y).  The autocorrelation operation is described in detail in
[Bracewell95 pp. 181–193]. It has several interesting properties some of which do not, in
general, hold for either cross correlation or convolution, not even for self convolution
f(x,y) ** f(x,y) [Gaskill78 pp. 174–176]:

(1) The autocorrelation cf, f(x,y) has a twofold rotational symmetry about the origin (see a
few examples in [Bracewell95 p. 185, Fig. 5-10]).7

(2) Its value is maximum at the origin: cf, f(x,y) ≤ cf, f(0,0).

(3) Its central value cf, f(0,0) is the volume under the function [f(x,y)]2 [Bracewell95 p.
192].

(4) The volume under the autocorrelation function is the square of the volume under f(x,y)
[Bracewell95 p. 192]. (Note that this is not the same as the volume under [f(x,y)]2 in
the previous property.)

(5) The autocorrelation is invariant under shifts of f(x,y):
f(x – a, y – b) f(x – a, y – b) = f(x,y) f(x,y) [Bracewell95 pp. 185–196].

Note that some of these properties of autocorrelation can be partially generalized into
the case of cross correlation between two different functions f(x,y) and g(x,y). Property (2)
can be generalized as follows [Coulon84 p. 82], [Bendat93 p. 48]:

[cf,g(x,y)]2 ≤ cf, f(0,0) cg,g(0,0) (E.15)

Note, however, that unlike in autocorrelation this does not mean that the absolute value of
cross correlation is maximum at the origin. The counterpart of property (3) says in the
case of cross correlation that cf,g(0,0) is the volume under the product f(x,y)g(x,y). The
counterpart of property (4) says that the volume under the cross correlation f(x,y) g(x,y)
equals the product of the volumes under f(x,y) and g(x,y); this is obtained from the
analogous property of convolution (see at the end of Sec. E.2) by using Eq. (E.8) and
noting that the area under g(–x,–y) equals the area under g(x,y). Finally, the counterpart of
property (5) for cross correlation is already given in Eq. (E.13) above; note that this shift-
preservation property is weaker than the invariance under shifts in autocorrelation, since it
only asserts that shifting f(x,y) or g(x,y) gives a shifted version of cf,g(x,y), but it does not
give cf,g(x,y) itself.

E.4 Extension to more general cases

Definitions (E.1) and (E.7) are only appropriate in cases where the integrals have finite
values. This includes cases where one (or both) of the functions is a finite-energy signal

7 This also means that the unary operator of autocorrelation U[f] is symmetric: U[f(x,y)] = U[f(–x,–y)].
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(i.e. square integrable) [Champeney73 pp. 59, 68], but it obviously excludes cases with
functions of constant character, periodic functions, or stationary random functions. But
there exists a way for generalizing the notions of convolution and cross correlation to
functions that are finite-power signals [Champeney73 pp. 59, 63, 68]; those include also
constant functions, step functions, periodic functions and stationary random functions.
This generalization is done by replacing the integral by a limiting process (see, for
example, [Cartwright90 pp. 174–175], [Gaskill78 p. 158] or [Coulon84 pp. 34, 91–92]):8

f(x,y) ** g(x,y) = lim
a → ∞

1
a 2 ∫

-a/2

a/2

∫
-a/2

a/2

f(x',y') g(x – x', y – y') dx'dy'    (E.16)

f(x,y) g(x,y) = lim
a → ∞

1
a 2 ∫

-a/2

a/2

∫
-a/2

a/2

f(x',y') g(x' – x, y' – y) dx'dy'    (E.17)

In the periodic case, where both of the given functions f and g are assumed to have the
same period T, the limits given in Eqs. (E.16) and (E.17) are identical to the mean values
calculated on a single period. Therefore, in this case we have [Coulon84 p. 99]:

f(x,y) ** g(x,y) = 1
T 2 ∫

T
∫

T
f(x',y') g(x – x', y – y') dx'dy'    (E.18)

f(x,y) g(x,y) = 1
T 2 ∫

T
∫

T
f(x',y') g(x' – x, y' – y) dx'dy'    (E.19)

This gives, of course, periodic functions having the same period T as f and g. These
functions are known, respectively, as T-convolution and T-cross correlation (or cyclic
convolution and cyclic cross-correlation). An extension to cases where the functions f and
g have different periods is also possible, as shown in [Gaskill78 p. 158].

E.5 The Fourier transform of convolution and of cross correlation

The operations of convolution and cross correlation play a major role in the Fourier
theory thanks to two fundamental theorems, that are known as the convolution theorem
and the cross-correlation theorem. Given two real-valued functions f(x,y) and g(x,y), the
convolution theorem asserts that the Fourier transform of the convolution h(x,y) =
f(x,y) ** g(x,y) is given by the product of the individual Fourier transforms:

H(u,v) = F(u,v)G(u,v)    (E.20)

As an immediate result, the autoconvolution theorem says that the Fourier transform of
the autoconvolution h(x,y) = f(x,y) ** f(x,y) is given by:

H(u,v) = F(u,v)2    (E.21)

8 In fact, this is a generalization of the normalized versions of Eqs. (E.1) and (E.7) that are divided by
the area a2 in which the integration is taking place (assuming that the functions f and g have a finite
spatial extent).
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On the other hand, given the same real-valued functions f(x,y) and g(x,y), the cross-
correlation theorem says that the Fourier transform of the cross correlation cf,g(x,y) =
f(x,y) g(x,y) is given by [Gaskill78 p. 200]:

Cf,g(u,v) = F(u,v)G(–u,–v)    (E.22)

As a particular case, the autocorrelation theorem says that the Fourier transform of the
autocorrelation cf, f(x,y) = f(x,y) f(x,y) is given by:

Cf, f(u,v) = F(u,v)F(–u,–v)    (E.23)

but since in our case f(x,y) is real it follows that F(u,v) is Hermitian, and therefore F(–u,–v)
is just the complex conjugate F*(u,v) [Bracewell95 p. 208], and we obtain:

Cf, f(u,v) = F(u,v)F*(u,v) = |F(u,v)|2    (E.24)

This means that the Fourier transform of the autocorrelation function cf, f(x,y) is the
power spectrum of f(x,y).9 This result is also known as the Wiener-Khintchine theorem.

In the case of finite-power signals (see Sec. E.4), the Fourier  transform does not always
exist; for example, stationary random functions do not have Fourier transforms
[Champeney73 p. 59].10 In such cases Eqs. (E.20) and (E.22) do not hold. And yet, it
turns out that Eq. (E.24) does have a valid counterpart: As explained in [Coulon84 p. 93]
for the 1D case, if f(x) is a finite-power signal, then r(x,a) = f(x) rect(x/a) is a finite-energy
signal that satisfies f(x) = lim

a → ∞
r(x,a).  Let R(u,a) be the Fourier transform of r(x,a); by the

1D analog of Eq. (E.24) we have Cr, r(u,a) = |R(u,a)|2; and it turns out that:11

Cf, f(u) = lim
a → ∞

1
a |R(u,a)|2    (E.25)

In the particular case of finite-power signals where the given functions f and g are
periodic with the same period T the convolution and cross-correlation theorems do hold,
but they must be adapted accordingly, replacing convolution and cross correlation by
T-convolution and T-cross correlation. This gives the T-convolution and the T-cross-
correlation theorems. More details can be found in Secs. 4.2 and 4.3 of Vol. I and in
[Champeney87 p. 166].

9 Note the major difference between this result and its counterpart for autoconvolution which is given in
Eq. (E.21). The difference is that unlike F(u,v)2, the power spectrum |F(u,v)|2 contains no phase
information; this also means that the autocorrelation function cf, f(x,y), too, unlike the autoconvolution
function h(x,y), contains no information about the phase of f(x,y) [Bracewell86 p. 115]. This difference
originates from the fact that for any complex number z = |z|eiθ, the value |z|2 is purely real and has no
phase component, whereas the value z2 equals |z|2 ei2θ and in general has a non-zero phase component.
Remark that the loss of phase information occurs either while taking the cross correlation
(f(x,y) ⇒ cf, f (x,y)) or while taking the power spectrum (f(x,y) ⇒ |F(u,v)|2), but not while taking the
Fourier transform (cf, f(x,y) ⇒ Cf, f(u,v)). The Fourier transform does not cause any loss of information.

10 Note that this fact concerns theoretical stationary random functions, that extend throughout the range
–∞ < x < ∞, but not their practical approximations whose spatial extent is finite.

11 Note that in some references such as [Champeney73, Chapter 4] it is customary to call this limit the
power spectrum of the finite-power signal f(x), and to use the term energy spectrum for |F(u)|2 in cases
where f(x) is a finite-energy signal. However, we do not follow this convention, and prefer to use the
same term, power spectrum, in all circumstances.
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E.6 Methods for quantifying the correlation; similarity measures

It is often desirable to compare the degree of correlation between functions; for example,
one may want to know if the functions f1(x,y) and f2(x,y) are more correlated (i.e. more
similar to each other) than f1(x,y) and f3(x,y). How can we formally formulate the degree of
correlation between two functions (or in our application, between two images)? As we have
seen, the cross correlation operation between two functions f(x,y) and g(x,y) may be a
useful starting point. However, the cross correlation is again a 2D function, and the
question remains how we can use it to compare the degree of correlation between the two
images; in other words, how can we extract from the 2D cross correlation (or even better,
from the normalized 2D cross correlation) a single number, known as a matching score,
that can be used to evaluate the similarity between f(x,y) and g(x,y)? In fact, this question
does not have a unique answer, and one could think of several ways of doing so. Let us
evaluate here some of the most plausible methods that may come to one’s mind.

(1) The volume under the cross correlation. This seems to be a promissing method, but in
fact it turns out to be useless. Suppose, for example, that g(x,y) is a rotated version of
f(x,y). Clearly, the more g(x,y) is rotated, the lower the similarity between g(x,y) and
f(x,y). However, as we have seen, the volume under the cross correlation equals the
product of the volumes under f(x,y) and under g(x,y); but the volumes under both f(x,y)
and g(x,y) are independent of the rotation angle. This means that the area under the
cross correlation remains constant when we rotate g(x,y), and therefore it cannot be
used to determine the degree of correlation between the two images.

(2) The maximum value or the maximum absolute value of the cross correlation. This
method is used, indeed, in template matching, where the problem is to find the closest
match between a given unknown image and a set of known images.12 In this approach
one computes the cross correlation between the unknown and each of the known
images, and the closest match is then found by selecting the image that yields the
cross-correlation function with the largest value. Since the resultant cross correlations
are 2D functions, this involves searching for the largest amplitude of each such
function [Gonzalez87 p. 92]. Note that if we only look for the position of g(x,y) in
which it is most similar to f(x,y) (for example, if we search the position of a letter
“M” within an image consisting of some given text) then the procedure is simpler: In
this case the desired location is simply the point (x,y) for which the cross correlation
of the two images has the highest value [Gonzalez87 pp. 425–427]. If g(x,y) is
identical to f(x,y) the highest value is located at the origin, and it equals the volume
under the function [f(x,y)]2 (see properties (2) and (3) of autocorrelation in Sec. E.3).

One may also think of other matching scores based on cross correlation to quantify the
similarity between two functions. It should be remembered, however, that the cross-
correlation operation (and hence, any similarity score that is based on it) is only capable of
detecting similarities between functions f(x) and g(x) that are basically related by a simple

12 Such situations frequently occur in digital image processing when the images in question are discrete,
but the principles are the same for both discrete and continuous cases.
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relationship of the type: g(x) = cf(x – b), namely, amplitude scaling and lateral shift. Even
simple linear relationships such as g(x) = f(ax), let alone non-linear relationships such as
g(x) = f(x2), cannot be uncovered by cross correlation [Cartwright90 p. 174]. The 2D
counterpart of this fact is, indeed, nicely illustrated in our discussion on Glass patterns in
Sec. 7.8. In order to overcome this significant restriction, it is customary to undo any
geometric transformations that were undergone by the signals (or images) to be compared
— of course, provided that these transformations are known in advance, or that they can be
estimated (for example, there exist methods based on log-polar mapping or on the Mellin
transform for recovering scale and rotation transformations that were undergone by an
image; see, for instance, [Feitelson88 Sec. 3.2], [Hotta99] and [Casasent76]).

It should be noted that methods based on cross-correlation are not the only ones that can
be used to estimate the degree of similarity between two functions f(x) and g(x). Other
similarity metrics include the coherence [Cartwright90 pp. 179–180; Coulon84 p. 146];
the scalar product of f and g, s[f,g] = ∫ f(x)g(x) dx (or its normalized version, that is called
in [Cartwright90 pp. 169–171] the correlation coefficient of the functions f and g); the
Euclidean distance d2[f,g] = [∫ |f(x) – g(x)|2 dx]1/2; and other distance functions that are
based on different norms such as d1[f,g] = ∫ |f(x) – g(x)| dx or d∞[f,g] = sup|f(x) – g(x)|
[Lipschutz01 pp. 252–254].13 An example showing a graphical comparison between
some of these distances can be found in [Coulon84 pp. 44–46]. Among the distance
functions the Euclidean distance is the most useful, but the other distances are
occasionally used, too, either because they are better adapted for a given context, or simply
because they allow easier calculation [Coulon84 p. 43].

Note that unlike cross correlation all of these techniques yield the distances between the
given functions as a single number and not as a function, and they do not take into account
displacements between the given functions.

Remark E.2: Some of the similarity measures mentioned above are, indeed, interrelated.
For example, the Euclidean distance between two functions f and g is related to their scalar
product by the relation [Coulon84 p. 48]:

(d2[f,g])2 = s[f,f] + s[g,g] – 2s[f,g]    (E.26)

In particular, if f and g are orthogonal, meaning that s[f,g] = 0, this relation reduces into
the Pythagoras theorem:

(d2[f,g])2 = s[f,f] + s[g,g]

   = (d2[f,0])2 + (d2[g,0])2

There also exists a relationship between the cross correlation of f and g and their scalar
product: If we denote by gx the counterpart of g which has been translated by x, namely,

13 Note that the entities we denote here by lower case, such as s[f,g], d[f,g] etc. are not operators, like
C[f,g], but functionals: for any two functions f and g they yield a number, and not another function.
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gx(x') = g(x' – x), then the cross-correlation function cf,g(x) expresses the evolution of the
scalar product as a function of the translation x:

cf,g(x) = s[f,gx]    (E.27)

Similarly, there also exists a relationship between the cross correlation of f and g and the
Euclidean distance between them as a function of the translation x [Coulon84 p. 81]:

(d2[f,gx])2 = cf, f(0) + cg,g(0) – 2cf,g(x)    (E.28)

(using property (3) of autocorrelation). Note that Eq. (E.26) is simply a particular case of
this relationship where the translation is x = 0.  

Remark E.3: At each value of the translation x where the cross-correlation function cf,g(x)
equals zero, the functions f and g are non-correlated, and the functions f and gx are
orthogonal.  

Remark E.4: It may be theoretically possible to define other variants of cross correlation
(and convolution) that would account for other misregistrations of g(x,y) than simple
translation. For example, a variant of cross correlation that accomodates scalings of g(x,y)
rather than translations could be defined by:

sf,g(a,b) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g(ax', by') dx'dy'

and a variant that accomodates both scalings and translations could be defined by:

sf,g(x,y,a,b) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g(ax' – x, by' – y) dx'dy'

This last variant would give peaks in the 4D space spanned by the x, y, a and b axes at
those values of (x,y,a,b) for which the best correlation is found between f(x,y) and the
scaled and shifted variants of g(x,y). Similar definitions could be also provided to allow for
rotations, general linear or affine transformations, or even non-linear transformations.
Such an approach has been presented, for the discrete case, in [Pratt91 pp. 669–671].

However, the interest in such generalizations is usually limited, because the same effects
can be obtained by first undoing the transformations undergone by g(x,y) (and possibly
also by f(x,y)), and then applying standard cross correlation to the untransformed f(x,y) and
g(x,y). This approach is more economical in terms of computational load since it does not
require to run throughout a four- or even higher-dimentional space, and moreover, it
allows us to use the large body of already existing theoretical results (including the
convolution and the cross-correlation theorems) without having to adapt them (if at all
possible) to each particular family of transformations we might wish to consider.  



Appendix F

The Fourier treatment of random images
and of their superpositions

F.1 Introduction

The Fourier theory is very well adapted to the study of random structures, too (see, for
example, [Bracewell86 Chapters 15–16], [Champeney73 Chapter 6] or [Coulon84
Chapters 5–6]). The main difference between the Fourier treatment of deterministic
signals and that of random signals is that in the latter case all the phase information is lost,
and we no longer have the full spectral representation of the signals but only their power
spectra (see, for example, [Castelman79 pp. 199–201], [Bracewell86 p. 381]).

And yet, as we will see below, given a fully known random image such as the random dot
screen shown in Fig. 2.1(a), we can still consider it as being deterministic, and treat it just
like any other image. For example, we can apply to it the Fourier transform and obtain its
full spectral representation, including all the phase information. In this appendix we
evaluate both the stochastic and the deterministic approaches in the particular context of
the moiré theory (the investigation of Glass patterns between random layers). We first
provide in Secs. F.2–F.4 a short review of the stochastic approach, and then, in Sec. F.5
we explain why we have chosen to use the deterministic rather than the stochastic
approach.

Note that whenever we wish to cover both the 1D and the 2D cases we use the generic
term “signal” rather than our usual term “image”, which has a strong 2D connotation.

F.2 Stochastic processes and their power spectra

Signals can be classified into two distinct categories: deterministic signals and random
(or stochastic) signals. A signal is said to be deterministic if its values are fully known
throughout its domain of definition, or if its values can be predicted by an appropriate
mathematical formula or model. On the other hand, a signal is said to be random (or
stochastic) if its precise values are not fully predictable and they depend, at least partly, on
the laws of probability; such a signal does not have an analytic representation and it can
only be described using statistical considerations.1 As we clearly see from this definition,
a signal does not need to be completely unknown in order to be random; for example, a
signal whose shape is fully known and only its position along the axes is unknown (such

1 Stated in other words, the values of such a signal f(x) do not depend in a completely definite way on
the independent variable x, as in a deterministic signal; instead, the evolution of the signal depends also
on chance, so one gets in different observations different realizations of f(x).
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as a sinusoidal signal whose initial phase is unknown) is already considered as a random
signal. Note, however, that although a random signal does not have an analytic
representation, it still can be characterized by its statistical properties (such as the
probability distribution of its values, its average, its standard deviation, etc.) and by its
frequential properties (its spectral decomposition in terms of its power spectrum).

Any observed random signal should be considered as one particular case among all the
similar signals that could be produced by the same phenomenon or random process.
Mathematically, a random process (or a stochastic process) is defined as an ensemble of
signals, {fζ (x)}, where the variable x represents a point in the signal’s domain of
definition (for example, along the time axis in the 1D case or within the x,y plane in the 2D
case), and the variable ζ represents an element of the ensemble, i.e. one among all the
possible signals that may result from the same statistical experiment [Papoulis65 pp. 279–
281]. Note that each of the variables ζ and x may be either continuous or discrete. A
stochastic process is said to be continuous or discrete depending on whether ζ is
continuous or discrete; if the variable x is discrete the process is called a random
sequence, and if both ζ and x are discrete the process is called a point process. Each
member of the ensemble {fζ(x)} is called a particular instance or a particular realization
of the random process, and is, in itself, a random signal.2

The concept of a stochastic process can be illustrated pictorially as a series of random
functions fζ(x) that are stacked along the ζ axis. Assume that we draw the 3D x,y,z space
such that the x axis points to the right within the paper’s plane, the z axis points upward
within the paper’s plane, and the y axis is perpendicular to this plane and points toward the
observer. If the variable x is 1D, we can identify the ζ axis with our y direction, so that
each of the functions z = fζ(x) of the random process can be drawn within the paper’s
plane or parallel to it along the ζ axis (see Fig. 5.1 in [Coulon84 p. 112] or Fig. 1.1 in
[Bendat93 p. 2]). If the variable x is 2D, the random process is best represented as a stack
of planar gray level plots fζ(x,y) that is viewed from a lateral perspective, where the ζ axis
(the stacking direction) coincides with our z direction (see Fig. 8 in [Rosenfeld82 p. 40]).

Clearly, statistical properties of a stochastic process such as its mean value can be
approached in two different ways: they can be either computed along the x axis (or the x,y
axes in the 2D case), or along the ζ axis. In the first case the mean value we obtain is
called a time average (or spatial average), while in the second case, when the mean is
computed over the different realizations of the random process, the value we obtain is
called an ensemble average. A stochastic process is said to be ergodic if (1) the time
averages of all its member functions are equal; (2) the ensemble average is constant with
time; and (3) the time average and the ensemble average are equal [Castelman79 p. 200].

2 It should be stressed, however, that once a random signal has been observed or recorded, all its values
are fully known, and it should be therefore considered as a deterministic signal, albeit of random origin.
This fact may cause some terminological confusion, because such a signal is still very often called a
random signal. For example, all the random dot screens and line gratings in the figures throughout this
volume are, in fact, deterministic signals of random origin, because they are fully known. But in most
cases the intended meaning can be understood from the context without difficulty.
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(Note that this definition is formulated here for the 1D case, but its 2D counterpart is
easily obtained by replacing the term “time average” by “spatial average”). Thus, for
ergodic processes, time averages (or spatial averages) and ensemble averages are
interchangeable. This is also true for higher-order statistical averages such as the mean
quadratic value of the process, its standard deviation, etc. (see Table 5.2 in [Coulon84 p.
117]). Hence, whenever ergodicity can be assumed one may compute the statistical
properties of the stochastic process by analyzing the temporal (or spatial) behaviour of a
single signal (a single member of the ensemble), which is obviously much easier to do in
practice. Fortunately, ergodic processes model commonly encountered random signals
quite well [Castelman79 p. 201]. In the following we will assume, indeed, that all our
stochastic processes are ergodic.

We now proceed to the spectral properties of a random process; but before doing so, let
us first consider its autocorrelation function. The autocorrelation function of a signal is
defined as a time (or spatial) average by:

cf, f(x,y) = f(x,y) f(x,y) = ∫
-∞

∞

∫
-∞

∞

f(x',y') g(x' – x, y' – y) dx'dy'

(see Sec. E.3 in Appendix E). In an ergodic stochastic process the autocorrelation function
is the same for all member signals, and thus it characterizes the ensemble. Therefore,
although the precise values of an ergodic stochastic process are unknown, its
autocorrelation function is fully known; this function reflects, in fact, our partial knowledge
of the stochastic process. Now, since the autocorrelation cf, f(x,y) of the process is known,
its Fourier transform Cf, f(u,v) is also known; but according to the autocorrelation theorem
(see Sec. E.5 in Appendix E), this is precisely the power spectrum of the process. This
means that the power spectrum of a stochastic process is also fully known, just like the
autocorrelation function; in fact, both of them contain the same information, which is only
presented in a different way, in the spectral domain or in the image domain. It is important
to note, however, that although we know the power spectrum of the stochastic process, and
hence its amplitude spectrum, too (which is simply the square root of the power
spectrum), we do not know the phase spectrum of the stochastic process.3 This means
that unlike in deterministic signals, random signals do not have a full Fourier spectrum,
and one can only deal with their power (or amplitude) spectra [Castelman79 p. 201;
Bracewell86 p. 381]. Another explanation why random signals only have power spectra is
provided in [Champeney73 pp. 79–80]: it turns out that any attempt to generalize the
Fourier transform to random signals is doomed to be unsuccessful, while the power
spectrum can be generalized to such cases.

The power spectrum of a stochastic process can be seen as the mean (i.e. expectance) of
the power spectra of all the infinitely many individual signals that make up the stochastic
process [Coulon84 pp. 135–136]. Under the assumption of ergodicity, this is also equal

3 Remember that the Fourier transform F(u) of a function f(x) is a complex-valued entity, so that it can
be presented either in terms of its real part Re[F(u)] and its imaginary part Im[F(u)], where
F(u) = Re[F(u)] + i Im[F(u)], or, equivalently, in the polar representation, in terms of its amplitude
spectrum Abs[F(u)] and its phase spectrum Arg[F(u)], where F(u) = Abs[F(u)] ·e iArg[F(u)].
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to the mean power spectrum (E.25) of any individual signal (particular instance) of the
process [Papoulis65 p. 343]. Due to the averaging effect the power spectrum of a
stochastic process is much smoother than the power spectra of the individual signals of
the process: Usually, because the structure of each individual signal of the process is
rather irregular, its power spectrum may be jumpy or noisy, and it often admits a typical
diffuse appearance (see [Bracewell95 pp. 586–590, 600–601] and Problem 2-2). However,
in the power spectrum of a stochastic process the fluctuations that are inherent to each of
the individual spectra are smoothed out, so that we are left with a “clean” representation
of the net spectral behaviour of the process. This ideal average power spectrum, in which
all random effects have been averaged out, may typically consist of smooth curves and
isolated impulses, but it is no longer buried in a diffuse random background noise. Several
pictorial illustrations of such power (or rather amplitude) spectra can be found in the
central column of the figure in [Coulon84 p. 500].

This clean look of the theoretic, average power spectrum of the stochastic process
certainly facilitates the understanding of the underlying spectral information, and is
therefore more attractive to use than the noisy spectra of the individual random signals.4

However, if an individual signal of the process is fully known, we still may prefer to
consider it as a deterministic signal, even though it originates from a random process. This
would allow us to take the Fourier transform of the signal and obtain its full spectral
information, i.e. both its amplitude spectrum and its phase spectrum (although both of
them would usually contain some diffuse noise, too). This would also allow us to freely
pass between the original signal in the image domain and its spectrum in the frequency
domain and vice versa, and to benefit from fundamental results such as the convolution
theorem (which allows us to consider products in one domain as convolutions in the other
domain and vice versa). On the other hand, when we are dealing with a random process we
have no longer access to the Fourier spectrum but only to the amplitude (or power)
spectrum, and all the phase information (the phase spectrum) is lost. This means that we
can no longer freely pass between the image and spectral domains, and furthermore, we
can no longer use the convolution theorem (note that power spectra have no equivalent to
the convolution theorem; more about the properties and non-properties of power spectra
can be found in [Champeney73 pp. 64–65]). We will return to these considerations in
more detail in Sec. F.5, where we evaluate the stochastic and the deterministic approaches
in the particular context of the moiré theory.

Remark F.1: Note that in a deterministic signal f(x) the power spectrum Pf (u) can be
obtained in two different ways: Either directly from the Fourier transform F(u) of the
signal: Pf (u) = |F(u)|2, or indirectly, using the autocorrelation theorem (see Sec. E.5 in
Appendix E). In the indirect way we first have to find the autocorrelation function cf, f(x) of
the given signal f(x), and then we apply to it the Fourier transform: Pf (u) = Cf, f (u).
However, if f(x) is not a deterministic signal but a random process the direct approach is
no longer available, because a random process does not have a Fourier transform. In this

4 A more detailed discussion on the averaged, limit power spectrum and its possible uses can be found in
[Gardner88 pp. 5–6, 67–72].
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case the power spectrum can only be found in the indirect method, using the
autocorrelation theorem; this also explains why the power spectrum of a random process
is often defined in the literature as the Fourier transform of the autocorrelation (see, for
example, [Papoulis65 p. 338]).  

F.3 Possible stochastic modelizations of random screens and gratings

Stochastic processes may be used to modelize many different types of random images; a
non-exhaustive, illustrated survey of several different types of such random images can be
found in Chapter 17 of [Bracewell95]. In the present section we briefly review some of the
stochastic processes that can be used for the modelization of random images of the types
we mostly use, such as dot screens, line gratings, etc. The different models are presented
in increasing order of their suitability to our needs.

F.3.1 Point processes

The simplest and most natural approach for the stochastic modelization of random
structures such as random dot screens is based on spatial point processes. A spatial point
process is any stochastic mechanism which generates a point pattern, i.e. a countable set
of points xi in the plane [Diggle83 Chapter 4]. Clearly, such a model only takes into
account the random locations of our screen elements, but not the elements themselves
(their shapes, sizes, etc.). In fact, we can think of each particular instance of the spatial
point process as a nailbed consisting of randomly located impulses; our random dot
screen can be then considered as the convolution of this random nailbed with a single dot,
as we will see in the following subsection.

The simplest point process is the Poisson process. This is, indeed, the cornerstone on
which the theory of spatial point processes is built. This model is used in applications as
an idealized standard of complete spatial randomness; although unattainable in practice, it
often provides a useful approximate description of an observed pattern [Diggle83 p. 50].
Informally, a Poisson process can be seen as a 1D or 2D impulse train (i.e. a comb or a
nailbed) whose individual impulses are positioned at random:

q(x) = ∑
n

δ(x – xn)      (F.1)

The formal requirements on (F.1) for being a Poisson process (i.e. the formal
requirements for the dot locations xn to be fully random) are given, for example, in
[Diggle83 p. 50].

The statistical properties of a Poisson process are well established, and they can be
found in the literature (see, for example, [Diggle83 pp. 50–51] or [Papoulis65 pp. 284–
287]; note that the latter uses the term “Poisson impulses” for what we call here a
Poisson process). Let us briefly consider now the spectral properties of such a process.



426              Appendix F: The Fourier treatment of random images and of their superpositions

The power spectrum of a Poisson process (i.e. the power spectrum of a random nailbed)
is given by (see, for example, [Champeney73 pp. 82–83]):

Pq(u) = η + η2 δ(u)      (F.2)

where η is the average number of dots per unit interval.5 Upon Fourier inversion this also
gives us the autocorrelation function of the Poisson process:

cq,q(x) = ηδ(x) + η2      (F.3)

As we can see from Eq. (F.2), the power spectrum of a random impulse train is evenly
distributed over all frequencies, and the Poisson process is therefore an example of “white
noise” (with an additional DC impulse at the spectrum origin). Note, however, that this
power spectrum is not unique to random combs, and it is shared with infinitely many other
random processes, including continuous, non-impulsive ones (remember that unlike the
Fourier transform F(u), the power spectrum Pf (u) does not uniquely originate from a
single function f(x)).

Apart from the Poisson process there exist many other types of point processes, having
different statistical distribution rules for the random points and different spatial and
spectral properties. These processes include, for example, inhomogeneous Poisson
processes, clustered processes, inhibition processes, Markov point processes, lattice-based
processes, etc. A short survey on some of the main types of point processes and their
properties can be found, for example, in [Diggle83, Chapter 4].

It should be noted, however, that all point processes are based on the simplifying
assumption that we are dealing with a random arrangement of impulses; as already
mentioned above, this means that point processes can only modelize the locations of our
screen dots, but they do not take into account the actual geometric shapes and sizes of the
individual dots. If we wish to obtain a better approximation by taking also into
consideration the shapes of the individual elements of our random layers (dot screens, line
gratings, etc.), we may use another type of random process which is known as shot noise.

F.3.2 Shot noise

A shot noise random process ([Champeney73 p. 82], [Papoulis65 p. 288]) is a random
process whose individual signals are produced as a sum of randomly located copies of a
given function (for example, a dot or a pulse). In the 1D case, if the individual dot has the
profile d(x) then the shot noise process is given by:

f(x) = ∑
n

d(x – xn)      (F.4)

where the values xn form a random sequence. As we can easily see, this is precisely the
convolution of the random nailbed (F.1) with the dot d(x):

5 This last value is usually denoted in the literature by λ, but we prefer to use here η since we have
already used λ in a different context, that of colour layers (see Chapter 9 in Vol. I).
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f(x) = d(x) * q(x)      (F.5)

Remark that we denote here an individual element of the shot noise process by d(x) and
call it a dot in anticipation of the 2D case where d(x) represents a 2D dot (like in a dot
screen). It should be understood, however, that in our application a general random dot
screen can only be approximated by shot noise, since in shot noise overlapping dots are
summed up (as clearly indicated by Eq. (F.4); see also Fig. 9–8 in [Papoulis65 p. 288]),
whereas in random screens overlapping black dots remain black and overlapping white
dots remain while. This means, indeed, that a multiplicative version of shot noise would be
better adapted to our needs; but under the assumption that the random screen dots do not
overlap, a random screen made of white dots on black background can be aptly modelized
by the shot noise f(x), and its inverse video, consisting of black dots on white background,
can be modelized by 1 – f(x).

Proceeding now to the spectral domain, it is clear that if the signal f(x) is deterministic,
then we immediately have its Fourier transform (using the shift and addition theorems):

F(u) = D(u) ∑
n

e–i2π xnu

On the other hand, if we consider f(x) as a random process we no longer have its Fourier
transform, since all the phase information is lost. And yet, we do have a simple expression
for the power spectrum of the random process f(x): Using the fact that the power
spectrum of a convolution of two functions is the product of their individual power spectra
[Champeney73 pp. 64–65] we get from Eq. (F.5):

Pf (u) = Pd(u)Pq(u)      (F.6)

where Pf (u), Pd(u) and Pq(u) are, respectively, the power spectra of the random process
f(x), of the individual dot d(x) and of the Poisson process q(x). Therefore, using Eq. (F.2)
we obtain (see also [Papoulis65 p. 358]):

Pf (u) = ηPd(u) + η2Pd(u) δ(u)

= ηPd(u) + η2 [D(0)]2 δ(u)

where δ(u) is an impulse at the origin, and D(u) is the Fourier transform of the dot d(x).
There also exist simple expressions for the autocorrelation cf, f(x), the mean value µ and the
variance σ2 of the shot noise process f(x) (see, for example, [Champeney73 pp. 82–83]):

cf, f(x) = η cd,d(x) + µ2

µ = η∫ d(x) dx = η D(0)

σ 2 = η∫[d(x)]2 dx

Using the above expression for µ the power spectrum of the shot noise process becomes
(see also [Champeney73 pp. 82, 230–231]):
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Pf (u) = ηPd(u) + µ2 δ(u)      (F.7)

It may be instructive to notice the smoothness of this power spectrum: indeed, it is
composed of a smooth curve plus an impulse at the origin, but it includes no diffuse
random noise. As explained above in Sec. F.2, this property is common to the power
spectra of all random processes due to the averaging effect that is inherent to their
definition.

A particular case of Eq. (F.7) occurs when the mean value µ of f(x) is zero. In this case
the impulse at the origin disappears and we obtain (see [Champeney73 pp. 82, 230–231]):

Pf (u) = ηPd(u)      (F.8)

It should be remembered, however, that all the above power spectra are based on the
power spectrum Pq (u) of the Poisson process; this means that they are based on the
assumption that the dot locations are fully random and hence uncorrelated. If the dot
locations (i.e. the impulse locations of the underlying point process) are correlated, so that
for a dot which has occurred at x1 the probability of having another dot in the infinitesimal
interval between x1 + x and x1 + x + dx is, say, p(x)dx, then Eq. (F.7) becomes
[Champeney73 p. 231]:

Pf (u) = ηPd(u) (1 + P(u))      (F.9)

where P(u) is the Fourier transform of the probability density function p(x). This means
that if the dot locations are correlated the power spectrum is no longer determined by
Pd(u) alone, and it includes an additional term which depends on P(u), too. Consider, for
example, the 2D case of a random dot screen in which the distances between neighbouring
dots are highly correlated, with a characteristic nearest-neighbour distance of r. Such dot
screens tend to give a ring-like power spectrum where the mean radius of the ring is 1/r
(see, for example, the figures in [Yellott82] and [Yellott83], Plates 15–16 in [Harburn75],
or Fig. 10.25 in [Glassner95 p. 433]; in all of these cases the ring-like envelope of the
power spectrum is not explained by the shape of the power spectrum Pd (u,v) of the
individual dot d(x,y), but rather by the shape of P(u,v), the Fourier transform of the
probability density function p(x,y)).

Further generalizations of Eq. (F.9) are also possible. For example, [Heiden69] derives
the power spectrum of shot noise processes whose pulse widths and pulse amplitudes are
not constant but rather random entities that are correlated with the pulse locations.

Finally, it should be mentioned that the above power spectra are only valid when the
process f(x) is not periodic. If f(x) is periodic its power spectrum no longer contains the
continuous component νPd(u), and it becomes purely impulsive. This can be easily seen
by reconsidering Eqs. (F.5) and (F.6): Suppose, for example, that f(x) is periodic with
period 1. If we denote by III(x) the unit-period comb of impulses, we have in this case
instead of Eq. (F.5):

f(x) = d(x) * III(x)
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and the power spectrum of f(x) becomes:

Pf (u) = Pd(u) PIII(u)    (F.10)

where the power spectrum PIII(u) of III(x) is the unit-frequency impulse comb III(u). This
means, indeed, that in this case Pf (u) is a unit-frequency comb whose impulse amplitudes
are modulated by Pd(u), the power spectrum of the isolated dot d(x).

A further generalization of Eq. (F.10) is provided in [Williams86] and more recently in
[Ridolfi04 p. 67]. It is shown there that if the location of each dot in the periodic process
f(x) is slightly randomized (or “jittered”) where each dot is perturbed independently of
the other dots, and the probability of each of the dots to lie in an infinitesimal area dx is
given by p(x)dx, then the power spectrum of f(x) becomes:

Pf (u) = Pd(u)Pp(u)PIII(u) + ηPd(u) (1 – Pp(u))    (F.11)

where Pp(u) is the power spectrum of the probability density function p(x). The first term
in (F.11) is a unit-frequency comb whose impulse amplitudes are modulated by the
product Pd(u)Pp(u), and the second term is a continuous function. This means that the
power spectrum (F.11) is no longer purely impulsive: in addition to the impulses of Eq.
(F.10) (whose amplitude is modulated here by Pp(u), too), it also contains a new
continuous part whose shape depends on both Pd(u) and Pp(u). Note that in the particular
case where the dot locations are fully periodic (no random perturbation in the dot
locations) we have p(x) = δ(x), whose Fourier transform is P(u) = 1 and whose power
spectrum is therefore Pp(u) = 1; and indeed, putting this back in Eq. (F.11) gives us again,
as expected, the purely impulsive power spectrum of Eq. (F.10).

F.3.3 Random fields

A random field is a stochastic process {fζ(x)} whose argument x varies in a continuous
fashion over some subset of RRn, the n-dimensional Euclidean space [Adler81 p. ix]. Of
course, in our application we will be most interested in the case of n = 2; in this case a
random field is a family of 2D functions {fζ(x,y)} defined over the x,y plane (or a subset
thereof). Typical examples of random fields include, for instance, the infinite family of
functions {z = fζ(x,y)} that describe the height z of a wavy sea surface, or the surface of
any rough plate [Adler81 pp. 1–4]. Unlike point processes and shot noise, which are
based on a discrete distribution of points in the plane (the locations of the screen dots),
random fields are completely general, and they can take into account all the properties of
our original random layers, including the dot shapes, sizes, intensities, etc.

Because the study of random fields is, by definition, the study of random functions over
some Euclidean space, this study can cover an extremely wide area, since any question that
can be asked about an ordinary non-random function, or class of functions, can just as
readily be asked about their random counterparts. Hence, the general theory of random
fields is certainly at least as large as the general theory of functions. And indeed, adding a
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random component to the theory of functions makes it much larger, more interesting, and
often more complex subject [Adler81 p. 1].

Due to its vast extent, we will not attempt here to go into details of the random field
theory. Interested readers can find further information on random fields and on their
spectral representation in references such as [Rosenfeld82 pp. 38–47] or [Adler81]. A
general overview on random fields is also provided in [EncStat82, Vol. 7, pp. 508–512].

F.4 Stochastic modelization of layer superpositions

Having understood how random layers (random dot screens, random line gratings, etc.)
can be modelized as stochastic processes, we now proceed to the modelization of
superpositions of such layers.

As we know from the deterministic case, the superposition of layers is usually best
modelized as a product of the individual layers (although in some particular cases other
models may be more appropriate; see Sec. 2.2). This can be extended to the stochastic
case, too. Intuitively, the probability of seeing white at a point (x,y) of the layer
superposition is the product of the probabilities of seeing white at the point (x,y) in each of
the two original layers. However, this is only true if the two superposed layers are
statistically independent of each other. But in our application, when we come to study the
moiré or Glass patterns in the superposition of two layers, we cannot make the simplifying
assumption that the two layers are independent; on the contrary, we clearly know that they
are dependent (remember the high correlation that is required between the two layers in
order that a Glass pattern be generated).

Although there exist in the literature models that allow the treatment of such layer
superpositions (see, for example, the superposition of two Poisson point processes in
[Stoyan95 pp. 152–153]), the fact that our original layers are not independent of each
other considerably complicates things and may render a detailed investigation intractable.
For example (see [Coulon84 p. 152]), if two stochastic signals are independent then the
autocorrelation function of their product is the product of the individual autocorrelation
functions, and the power spectrum of the product is the convolution of the individual
power spectra; but if the signals are correlated these results do not necessarily hold.6

F.5 Evaluation of the stochastic vs. deterministic approaches for our application

The need for a statistical treatment may arise in several situations. The most obvious
situation occurs when we do not have full information about the phenomenon that is to be

6 This is true for both random and deterministic signals; indeed, the counterpart of the convolution
theorem for power spectra only holds for functions that are not correlated. Note, however, that the
converse direction of the convolution theorem does hold, meaning that the power spectrum of the
convolution of two signals is the product of the two power spectra [Champeney73 pp. 64–65].
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treated (1D signal, 2D image, etc.), and we only know its statistical properties. This may
be the case when we are dealing with a process whose physics is not fully understood, or
with a process too complicated to analyze in detail. In other situations a statistical
treatment may be needed even though the signal is deterministic (fully known). This may
happen, for example, when we are given an ensamble of similar signals, and we simply do
not know in advance which of them will occur. In this situation, too, we can only treat the
general properties of the ensamble (such as the average power spectrum), but not the
properties of an individual signal. The need to use a statistical approach may also arise
when one is specifically interested in the statistical properties (distribution, mean value,
standard deviation, etc.) of the given signals — which may be either deterministic or not
— and in the statistical properties of various combinations of these signals (for example,
in our case, the layer superposition).

It should be remembered, however, that even if the given signals were originally
generated by a random process, once they are fully known, it is no longer needed to treat
them statistically, and we can treat them like any other deterministic signals. In our case,
for example, every given dot screen that we fully know can be considered as a
deterministic signal and undergo a standard Fourier treatment even if its elements have
been positioned in the plane in a random manner (see, for example, Problems 2-1–2-13 in
Chapter 2).7 The advantage of doing so is that this way we have full access to all the
information related to the signal, and we do not lose its phase information.

Let us try to see more closely what this means in our particular case of interest, the study
of moiré effects in the superposition of dot screens or line gratings whose individual
elements, dots or lines, are randomly positioned. For this end, let us consider Fig. 7.7 that
illustrates the core of our Fourier-based explanation of the macroscopic moiré or Glass
patterns which may occur in a layer superposition. If we choose to treat our given layers
statistically, we no longer have access to their Fourier transforms, but only to their power
spectra. However, in this case we lose all the Fourier considerations that we have used in
Chapter 7: First of all, we can no longer pass freely between the image and spectral
domains of Fig. 7.7, since the transition from the power spectrum back to the original
images is not possible. But even worse, in this case we can no longer use the convolution
theorem, since the power spectrum of the product is not necessarily equal to the
convolution of the individual power spectra [Champeney73 pp. 64–65].

As an alternative approach, we may consider altering both rows of Fig. 7.7, namely,
replacing the original layers shown in the top row of the figure (the image domain) by
their respective autocorrelation functions, and the spectra of the original layers shown in
the bottom row of the figure (the spectral domain) by the respective power spectra. In this
case, the bidirectional Fourier relationship between the entities in the image and in the
spectral domains remains fully available, thanks to the autocorrelation theorem which

7 In other words, when we superpose two random dot screens we are not actually superposing two
random processes, but rather two specific realizations of these random processes; and the moiré (or
Glass) pattern we obtain is, again, a specific realization, not an ensemble of moiré (or Glass) patterns.
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states that the autocorrelation function and the power spectrum are a Fourier pair. This
guarantees, indeed, that we can freely move from the image domain to the spectral domain
and vice versa without any loss of information; furthermore, in this case we can also use
the convolution theorem. However, this happy situation should not mislead us to believe
that by passing to statistical reasoning we do not lose information: True, the Fourier
transform itself does not cause any loss of information when we pass from one domain to
the other; but it simply operates on entities in the image and in the spectral domains that
have already lost all the phase information. Indeed, it is the passage from the original
images to their autocorrelation functions (in the image domain), or equivalently, the
passage from the Fourier transforms of the original images to the power spectra of the
original images (in the spectral domain), that causes the loss of information. Specifically,
returning to Fig. 7.7, we would no longer have in its upper row the original layers, their
superpositions and their moiré phenomena, but only the corresponding autocorrelations.
But this loss of information in the image domain along with the loss of the direct contact
with the original layers themselves make our Fourier-based reasoning less effective in the
explanation of the moiré phenomenon.

Another drawback of the stochastic approach is that it requires a full, prior mathematical
knowledge of the underlying stochastic process, and if the problem at hand does not fall
within the framework of a known stochastic process that has already been worked out in
the known literature, one will have to invest some efforts in order to find its various
properties. In fact, this is precisely the situation that we are facing in our application, since
the statistical processes representing our individual layers may be quite complex
(remember, for example, that overlapping dots in a random dot screen are not really
summed up as in shot noise but rather multiplied). Furthermore, when we wish to study
the superposition of two layers we cannot make the simplifying assumption that the two
layers are not correlated; on the contrary, we do know that they are correlated, due to the
high correlation that is required between the two layers in order that a Glass pattern be
generated.

In conclusion, we see that in our application the use of the stochastic approach is not
quite appropriate, because it is not easily tractable (at least if we require a good
approximating model), and also because it causes the loss of important information.
Therefore, since in our case the given random images and their superpositions are fully
known, we have all good reasons to treat them as deterministic images instead of using a
stochastic approach. This has also the important advantage of providing a unified
treatment for all types of images, periodic, aperiodic or random.
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Integral transforms

G.1 Introduction

In Chapter 7 we have presented the fundamental Glass pattern theorem for the
superposition of geometrically transformed aperiodic layers. But although we mentioned
there that this result is valid for both linear and non-linear layer transformations, we only
explained it, via spectral domain considerations, for linear transformations (see Fig. 7.7).
For the more general case involving non-linear transformations we only presented the
image-domain results (see Fig. 7.12), without giving their spectral-domain interpretation
as we did in Fig. 7.7 for the case of linear transformations. The reason is that in the case
of non-linear transformations a general spectral-domain analysis is not possible, since
there exists no general expression for the Fourier transform of f(g(x)) when g(x) is non-
linear. In the present appendix we present a generalized fourier decomposition of f(g(x))
that allows us to obtain our main results (including the fundamental Glass pattern theorem
and its counterpart for periodic structures, the fundamental moiré theorem) even if g(x) is
non-linear. Although in this approach we lose the direct connection with the spectral,
frequency domain (since the transformed domain no longer coincides with the Fourier,
spectral domain), this approach still proves to be very useful.

G.2 Fourier decomposition of periodic and aperiodic structures

Let f(x) be an aperiodic function whose Fourier transform is F(u). This means, using the
definition of the Fourier transform, that:

F(u) = ∫
–∞

∞

f(x) e–i2πux dx     (G.1)

Similarly, using the definition of the inverse Fourier transform we also have:

f(x) = ∫
–∞

∞

F(u) ei2πux du     (G.2)

Note that Eq. (G.2) expresses the decomposition of the image-domain function f(x) into
its spectral components. This is, indeed, the continuous-frequency counterpart of the
Fourier series decomposition of a periodic function p(x), which is given by:

p(x) = ∑
n=–∞

∞
cn ei2π fn x     (G.3)

with the Fourier coefficients:

cn = 1
T∫

T
p(x) e–i2π fnx dx     (G.4)
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where fn = n/T, n ∈ZZ (see Eqs. (A.5) and (A.6) in Appendix A of Vol. I). As explained in
Sec. B.6 of Vol. I, F(u) in Eq. (G.2) plays the same role as the Fourier coefficients cn in
Eq. (G.3), namely, it assigns the proper amplitudes (weights) to the various frequencies in
the spectral decomposition of f(x). The difference between the two cases is that in Eq.
(G.3), where the given image-domain function p(x) is periodic, the spectral decomposition
only consists of a denumerable set of frequencies, fn = n/T, n ∈ZZ, and the spectrum is
impulsive; while in Eq. (G.2), where the image-domain function f(x) is aperiodic, the
spectral decomposition consists of a continuum of frequencies u ∈RR. In this case the
summation over the frequencies is no longer denumerable, and it turns into integration, the
continuous counterpart of the discrete summation.

G.3 Generalized Fourier decomposition of geometrically transformed structures

Suppose now that the image-domain function f(x) undergoes a mapping (coordinate
transformation) g(x), so that we obtain a new, transformed version of f(x), that we denote
by r(x):

r(x) = f(g(x))

How does the application of the mapping g(x) to f(x) affect the spectrum of f(x)? As
mentioned in Sec. 10.3 of Vol. I, when the transformation g(x) is linear or affine, the
spectrum R(u) of the transformed function r(x) can be readily expressed in terms of the
original spectrum F(u). However, in the more general case where g(x) is non-linear, no
general rule exists which tells us how the spectrum will be influenced. This renders the
Fourier approach in the general case intractable unless the non-linear mapping g(x) is
particularly simple.

However, in Chapter 10 of Vol. I, where we studied geometric transformations of
periodic functions p(x), we have found a way to bypass this problem by representing the
transformed function r(x) = p(g(x)) as a generalized Fourier series. As explained in Sec.
10.5 of Vol. I, instead of considering the spectrum R(u) of r(x) = p(g(x)), whose analytical
expression may be unknown or hard to find, we make the following two-step reasoning:
We start with the Fourier decomposition (G.3) of the original periodic function p(x'),
using here the variable x' rather than x:

p(x') = ∑
n=–∞

∞
cn ei2π fn x'     (G.5)

and then we make in this Fourier series the formal substitution x' = g(x), keeping the
coefficients cn unchanged:

r(x) = p(g(x)) = ∑
n=–∞

∞
cn ei2π fn g(x)     (G.6)

Although the resulting generalized Fourier series (G.6) is not the actual spectral
decomposition of r(x) = p(g(x)), it still turns out to be extremely useful. As we have seen
in Sec. 10.9 of Vol. I, this approach allowed us to to analyze the superposition of
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geometrically transformed periodic layers and the resulting moiré effects, without having
to resort to the spectra R(u) of these curvilinear structures; and indeed, this approach led
us in Vol. I to the main results of Chapter 10, the fundamental moiré theorems for the
superposition of geometrically-transformed periodic layers.

Based on the success of this approach in the case of periodic functions p(x), it may be
asked, therefore, weather a similar reasoning could be also used in our present case of
interest, where the original functions f(x) are aperiodic.

To answer this question, let us return to the spectral decomposition of the image-domain
function f(x') as given by Eq. (G.2), using the variable x' rather than x:

f(x') = ∫
–∞

∞

F(u) ei2πux' du     (G.7)

Now, just as we did above in the case of discrete spectral decompositions, let us formally
replace x' in this expression with x' = g(x), keeping the “coefficients” (i.e. the Fourier
transform) F(u) unchanged:

r(x) = f(g(x)) = ∫
–∞

∞

F(u) ei2πug(x) du     (G.8)

Obviously, this formal construct is not the spectral decomposition of r(x), but some kind
of generalization thereof. The actual spectral decomposition of r(x) would be given,
according to Eq. (G.2), by:

r(x) = f(g(x)) = ∫
–∞

∞

R(u) ei2πux du     (G.9)

where R(u) is the Fourier transform of r(x); but as we have seen above, the problem here is
that when the mapping g(x) is non-linear, we do not always know the Fourier transform
R(u), and therefore we do not have the spectral decomposition (G.9), either. But although
the generalized decomposition provided by Eq. (G.8) is not the spectral decomposition of
r(x), it still proves to be very useful for our needs, i.e. for understanding the behaviour of
our aperiodic layers, their superpositions and their moiré (or Glass) patterns.

G.4 Integral transforms and their kernels

Before we go any further into these considerations, let us try to better understand the
meaning of the construct provided by Eq. (G.8). So far we already know what this
construct is not — it is not the Fourier spectral decomposition of the transformed function
r(x) = f(g(x)) — but we would like now to see what exactly it is. For this end, we recall
that the Fourier transform is, in fact, just one member from a larger class of transforms
that are known as integral transforms. An integral transform Fk(u) of a function f(x) is
defined by the integral:

Fk(u) = ∫a

b

f(x) k(x,u) dx   (G.10)
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where the function k(x,u) is called the kernel of the integral transform, and a and b are the
integration limits. The class of functions to which f(x) may belong and the range of the
variable u are to be prescribed in each case; in particular, they must be so prescribed that
the integral (G.10) converges [Churchill72 pp. 2, 317]. An integral transform is uniquely
determined by its kernel k(x,u) and by its integration limits a and b.1 Note that an integral
transform is in fact an operator that maps a given function f(x) into another function Fk(u);
this is more clearly expressed by the notation Fk[f(x)] = Fk(u). The resulting function
Fk(u) is called the Fk-transform of f(x), and its variable u is known as the variable of the
transformed domain.2 For example, in the case where k(x,u) = e–i2πux, a = –∞ and b = ∞
the resulting function Fk(u) is the Fourier transform of f(x), and its variable u represents
the frequency in the Fourier, spectral domain.

In principle, any function k(x,u) of two variables gives rise to an integral transform, but
in practice, few such kernels yield useful transforms [Cartwright90 p. 195]. Some of the
most useful kernels are listed in Table G.1 along with the integral transforms they provide.
Note also that for any function g(x), if k(x,u) = g(u–x) then the integral transform Fk(u) is
simply the operation of convolution with g(x), since for any given function f(x) it yields the
function f(x) * g(x):

Fk(u) = ∫ f(x) g(u–x) dx

In particular, if g(x) = δ(x) we get the kernel k(x,u) = δ(u–x), and the resulting integral
transform is the so-called “identity transform”, usually denoted by I, which maps any
given function f(x) into itself: I[f(x)] = f(x).

As we can see, each kernel provides a different integral transform, which maps the given
function f(x) into a different function Fk(u). While some of these integral transforms have
very specialized uses and are rarely encountered, others have found very important
applications in mathematics or in other fields. The most widely known integral transform
is the Fourier transform, but in certain applications other integral transforms may prove to
be more suitable. For example, because many functions have a Laplace transform but not a
Fourier transform,3 the Laplace transform turns out to be more useful in numerous
applications, such as in the solution of certain classes of differential equations
[Cartwright90 p. 193]. However, the essential advantage of the Fourier transform over all
the other integral transforms is its physical interpretability as a frequency spectrum

1 Some references such as [Andrews03 p. 496] use an alternative notation, in which the integration limits
are incorporated within the kernel itself, by multiplying k(x,u) with suitable functions that take the
value 1 within the integration range and the value 0 everywhere else. In this case the integration is
always performed between –∞ and ∞, and the integral transform is uniquely determined by its kernel.

2 Note the slight terminological ambiguity due to the use of the term “transform” for both the resulting
function Fk(u) and the operator Fk itself. This ambiguity could be avoided, as done in [Churchill72 pp.
2–3], by using the term transformation for the operator, while keeping the term transform for the
resulting function. But this convention would simply shift the ambiguity elsewhere, since we already
use the term transformation in the context of coordinate transformations, or more generally, as a
synonym for a mapping g(x).

3 This happens, for instance, in functions with exponential growth such as f(x) = ex [Cartwright90 pp.
192–193].
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[Bracewell86 p. 220]. Although the Laplace and the other transforms can be used as
efficient mathematical tools for solving various problems, they do not provide the spectral
decomposition (or the frequency content) of the given function f(x). In such integral
transforms the “transformed” domain is not the spectral domain, and its variable u does
not represent frequencies as it does in the case of the Fourier transform. Therefore, in
such cases we no longer speak of the “image domain” and the “frequency domain”, but
rather of the “original domain” and the “transformed domain”.

Integral transform k(x,u) a b Ref.

Fourier transform e–i2π ux –∞ ∞ p. 7

Laplace transform e–ux –∞ ∞ p. 219

Cosine transform 2cos(2πux) 0 ∞ p. 17

Sine transform 2sin(2πux) 0 ∞ p. 17

Hankel transform 2πxJ0(2πux) 0 ∞ p. 248

Mellin transform xu–1 0 ∞ p. 254

Abel transform
2x

x2 – u 2
0 ∞ p. 262

Hilbert transform
1

π (x – u) –∞ ∞ p. 267

Table G.1: Some of the most useful integral transforms, their kernels and their
integration limits. The page numbers in the last column refer to
[Bracewell86]. Note that many of these transforms have in the
literature several different variants that differ from each other in their
kernel k(x,u) or in the integration limits a, b. For example, different
variants of the Fourier transform are given in [Bracewell86 p. 7].
Obviously, each of these variants maps the given function f(x) into a
different function Fk(u), and it could be therefore included in the table
as a new entry. Note also that many of the transforms in the table have
a distinct inverse transform, which is also an integral transform on its
own right and could be added to the table. For example, the inverse
Fourier transform has the kernel k(x,u) = ei2πux, and the other variants
of the Fourier transform, too, have their respective inverse transforms
with their own kernels [Bracewell86 p. 7].
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It is interesting to note that although the properties of the different integral transforms
vary widely, they still have some properties in common. For example, every integral
transform Fk is a linear operator, meaning that it satisfies:

Fk[c1 f1(x) + c2 f2(x)] = c1Fk[ f1(x)] + c2Fk[ f2(x)]

for any two functions f1(x), f2(x) and constants c1, c2; this property is a straightforward
consequence of the fact that the integral is a linear operator [Debnath95 p. 4]. In fact, if the
kernel is allowed to be a generalized function then the converse is also true, meaning that
all linear operators are integral transforms. A properly formulated version of this statement
is the Schwartz kernel theorem [Wikipedia05; Ehrenpreis56].4 Furthermore, it turns
out that each integral transform F has an inverse integral transform F –1 such that
F –1[F(u)] = f(x); accordingly, F –1F = F F –1 = I, where I  is the identity transform
mentioned above [Debnath95 p. 4]. It can be also proved that integral transforms are
unique, meaning that if Fk[f1(x)] = Fk[f2(x)] then f1(x) = f2(x) under suitable conditions;
this is known as the uniqueness theorem [Debnath95 p. 4].

The usefulness of integral transforms lies in the simplification that they bring about, for
example in dealing with differential equations. A proper choice of the transform often
makes it possible to convert an intractable problem in the original domain into a much
simpler problem in the transformed domain that can be easily solved. The solution
obtained is, of course, the transform of the solution of the original problem, and if the
solution is required in the original domain, one still needs to apply the inverse transform to
complete the operation. Hence, the typical procedure in such cases is to transform the
original problem, solve the transformed problem, and then use the inverse transform to
obtain a solution to the original problem. In many situations the type of the integral
transform to be used is determined by the nature of the problem at hand; for example, the
Fourier transform is the natural choice whenever we wish to make use of spectral
considerations in the frequency domain. But in other situations, the art of choosing the
best integral transform (or the best kernel) is often the key to a successful solution of the
given problem. Some insights into the question of how to construct the best kernel can be
found, for example, in [Ferraro88] and [Rubinstein91], in the context of pattern
recognition in deformed images. A method for constructing an integral transform that
solves a given differential equation can be found in [Churchill72, Chapter 10 and pp. 24–
25, 384].

Finally, it should be noted that integral transforms can be easily generalized to functions
of several variables. In this case Eq. (G.10) becomes [Debnath95 p. 4]:

Fk(u) = ∫
S
f(x) k(x,u) dx

where x = (x1,...,xn), u = (u1,...,un) and S ⊂ Rn.

4 A nice explanation showing how the integral transform (G.10) can be seen as the continuous-space
counterpart of the linear vector transformation fk = K· f can be found in [Churchill72 pp. 25–26]. It is
based on the interpretation of a function f(x) as the continouos generalization of a vector f = (f1,..., fn).
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Returning now to the question that opened this section, concerning the meaning of the
generalized decomposition of r(x) that is provided by Eq. (G.8), we can clearly see now
the answer: This expression is simply an integral transform of F(u), whose kernel is given
by:

k(x,u) = ei2πug(x)

In the particular case where g(x) = x (the identity transformation), this gives back the
kernel of the inverse Fourier transform, and Eq. (G.8) becomes the spectral decomposition
of the function f(x), as in Eq. (G.2). However, when g(x) is not the identity transformation,
Eq. (G.8) is no longer the spectral decomposition of r(x) = f(g(x)), but simply another
integral transform, that we may call the g-Fourier transform. But although this mathema-
tical construct no longer has a spectral interpretation (formally, instead of the spectral
decomposition of r(x) we obtain here its g-spectral decomposition), it still may be used as
a mathematical tool for solving our particular problems, just as the Laplace and the other
integral transforms are used for solving various problems without necessarily providing a
spectral decomposition of the functions in question.5

G.5 The use of generalized Fourier transforms in the moiré theory

Let us see now how the generalized g-Fourier formulation can help us to understand the
superposition of two transformed, aperiodic layers and the resulting moiré effects. Note
that the following discussion simply extends to the continuous case the generalized
Fourier series approach we have already introduced in Chapter 10 of Vol. I for the case of
transformed periodic layers; the main difference is that in our present case summation is
replaced by integration.

Let f1(x',y') and f2(x',y') be two 2D aperiodic layers whose Fourier transforms are F1(u,v)
and F2(u,v), respectively. We therefore have, using the more compact vector notation x' =
(x',y') and u = (u,v), the following Fourier spectral decompositions, just like in Eq. (G.7):

f1(x') = ∫ F1(u) ei2π u·x' du

f2(x') = ∫ F2(u) ei2π u·x' du
(G.11)

Suppose, now, that we apply to the layers f1(x') and f2(x') the geometric transformations
x' = g1(x) and x' = g2(x), respectively. By substituting these transformations in Eqs.
(G.11) we obtain the formal expressions:

5 As clearly expressed by Eq. (G.8), g-Fourier transforms decompose any given function f(x) into a
continuous set of basis functions b(u) = ei2π ug(x), whose proper weights are assigned by F(u), the
Fourier transform of f(x). If the mapping g(x) is rather weak, meaning that it differs just slightly from
the identity mapping g(x) = x, then the resulting g-Fourier transform is still close to the Fourier
transform, and its basis functions b(u) are closely sinusoidal, and are therefore strongly localized in the
frequency spectrum. In the case of the Fourier transform itself (when g(x) = x), each basis function is
perfectly sinusoidal and corresponds to a single frequency component in the spectrum.
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r1(x) = f1(g1(x)) = ∫ F1(u) ei2π u·g1(x) du

r2(x) = f2(g2(x)) = ∫ F2(u) ei2π u·g2(x) du
(G.12)

which are simply the decompositions of r1(x) and r1(x) into their respective g1- and g2-
Fourier transform components. The superposition of the transformed layers is therefore
expressed by:

r1(x) r2(x) = (∫ F1(u) ei2π u·g1(x) du) (∫ F2(w) ei2π w·g2(x) dw)

= ∫ ∫ F1(u)F2(w) ei2π [u·g1(x) + w·g2(x)] dudw   (G.13)

Note that in the particular case where g1(x) = g2(x) = x Eq. (G.13) is simply the inverse
Fourier transform of the convolution F1(u) ** F2(u), as indeed predicted by the
convolution theorem, since in this case:

r1(x) r2(x) = ∫ ∫ F1(u)F2(w) ei2π (u + w)·x dudw

and by substituting z = u + w:

= ∫ [∫ F1(u)F2(z – u) du] ei2π z·x dz

= ∫ [F1(z) ** F2(z)] ei2π z·x dz

= F –1[F1(z) ** F2(z)]

Returning to Eq. (G.13), let us consider now, just as we did in the discrete case of
Fourier series in Sec. 10.7 of Vol. I, the partial sum (or rather the partial integral) that
consists of all the terms in which w = –u:

m1,-1(x) = ∫ F1(u)F2(–u) ei2π u·[g1(x) – g2(x)] du   (G.14)

This partial integral corresponds to a sub-structure that is present in the superposition
r1(x) r2(x) of Eq. (G.13), but is not present in either of the original layers r1(x) and r2(x)
themselves. And indeed, just as in the discrete case of Sec. 10.7 in Vol. I, this structure is
simply the substructive (1,-1)-moiré that is generated in the superposition. Note that in
Sec. 10.7 of Vol. I we defined, more generally, the substructures of the superposition
which correspond to its (k1,k2)-moirés; but as we already know (see Sec. 7.5), in the case
of aperiodic layers no moirés other than the (1,-1)-moiré can exist, since in such cases
there is no correlation between the superposed layers (for example, the correlation between
a random screen r(x,y) and its scaled version r(2x,2y) is practically zero). Therefore,
although we can technically define mk1,k2

(x) for any (k1,k2) (and in fact, even for non-
integer values of k1 and k2), the only visible sub-structure in the superposition of aperiodic
layers corresponds to the (1,-1)-moiré. (As we have seen in Sec. 10.7.1 of Vol. I, in the
discrete case, too, we can technically define a (k1,k2)-moiré mk1,k2

(x) for any integers (k1,k2),
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but in practice only a few of them are really visible in the given superposition, depending
on the case).

Now, if we define the normalized profile of m1,-1(x) by:

p1,-1(x') = ∫ F1(u)F2(–u) ei2π u·x' du

we see that p1,-1(x') is simply the inverse Fourier transform of the product F1(u)F2(–u),
and hence, by the convolution theorem we have:

p1,-1(x') = p1(x') ** p2(–x') = p1(x') p2(x')

where p1(x') and p2(x') are the normalized profiles of the original, untransformed layers
f1(x) and f2(x), and x' = g1(x) – g2(x) is the coordinate transformation which brings
p1,-1(x') into the geometric layout of the (1,-1)-moiré. This leads us, indeed, to the
fundamental Glass pattern theorem (see Sec. 7.8). Note that this way we obtain, indeed,
the generalized version of Proposition 7.7 for any linear or non-linear transformations
gi(x), whereas in Sec. 7.4.1 the proposition was only justified for the case of linear
transformations (see the footnote at the end of Sec. 7.4.1).

Note that in the particular case where g1(x) = g2(x) the two superposed layers are
identical (up to their intensity profiles) and the moiré (or Glass) pattern becomes singular
and hence invisible. On the other hand, when g1 and g2 are completely different, the moiré
effect is too weak to be visible due to the lack of correlation between the superposed
layers. Thus, the most interesting cases occur when g1 and g2 are just slightly different, so
that the moiré effect is not yet singular, but not too weak, either.

Eq. (G.14) can be considered, in fact, as a (g1–g2)-Fourier transform. This formal
construct allows us, indeed, to extract mathematically the moiré (or Glass) pattern from the
global structure of the layer superposition — without really knowing their Fourier spectra
in the frequency domain.

As we can see, the g-Fourier formalism is simply a working tool that we use here to
simplify our problem by considering it in the transformed domain. It is clear that in the
particular case where g(x) = x the g-Fourier transform simply reduces into the Fourier
transform; but in fact, a similar situation occurs for any linear or affine mapping
g(x) = ax + b, since in such cases Eq. (G.8) becomes:

r(x) = f(ax + b) = ∫
–∞

∞

F(u) ei2π u(ax + b) du

which gives after some short manipulations (see, for example, [Gaskill78 pp. 194–195]):

  = ∫
–∞

∞

R(u) ei2πux du

where R(u) is the Fourier transform of r(x). It follows, therefore, that whenever g(x) is
linear (or affine) the g-Fourier transform can be seen as a Fourier transform, and therefore
in such cases we can also interpret our transformed-domain reasoning in terms of the
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classical Fourier spectral domain. But even when the mapping g is non-linear and the
Fourier spectral interpretation is no longer possible, the g-Fourier formalism still remains
extremely useful, as we have seen above.



Appendix H

Miscellaneous issues and derivations

H.1 Classification of the dot trajectories

Suppose we are given two identical aperiodic dot screens that are superposed on top of
each other dot on dot, and that we apply to the two layers the direct transformations g1(x,y)
and g2(x,y), respectively. As we have seen in Chapter 4, if the layer transformations g1(x,y)
and g2(x,y) are not too violent, the microstructure of the resulting superposition may give
rise to visible dot trajectories whose shapes are determined, to a close approximation, by
the trajectories (field lines) of the vector field:

h(x,y) = g1(x,y) – g2(x,y)

As we already know from Sec. B.6 of Appendix B, the trajectories of a vector field
h(x,y) are given by the solution curves of the system of differential equations:

d
dt

x(t) = h1(x(t),y(t))

d
dt

y(t) = h2(x(t),y(t))
(H.1)

where h1(x,y) and h2(x,y) are the two cartesian components of h(x,y), namely, h(x,y) =
(h1(x,y), h2(x,y)). Although the system of differential equations (H.1) is relatively easy to
solve when h(x,y) is linear (see, for example, Chapter 4 in [Kreyszig93]), its solution in
non-linear cases may present a more difficult challenge. However, it turns out that it is
often possible to get a qualitative idea about the shape of these solution curves
(trajectories) without even having to solve the system of differential equations (H.1). This
follows as a straightforward outcome of the characterization and classification of the
critical points of the system of differential equations, since the behaviour of the trajectories
surrounding a critical point highly depends on the properties of the critical point itself.

A point (x,y) is called a critical point of the vector field h(x,y) or of the system of
differential equations (H.1) if it satisfies h1(x,y) = 0 and h2(x,y) = 0 [Birkhoff89 p. 133;
Kreyszig93 p. 176].1 At such a point we have d

dt
x(t) = 0 and d

dt
y(t) = 0, and hence the

direction of the solution curves of Eq. (H.1) there is indeterminate: dy
dx

 = dy/dt
dx/dt

 = 0
0
.

(Equivalently, we may say that at a critical point the direction of the trajectories of the
vector field h(x,y) is indeterminate; another way to see this is that the vector field h(x,y)
assigns to this point the null vector (0,0), whose direction is obviously undefined.) In the

1 Confusingly, some references use the term “fixed point” for a critical point (see, for example,
[Strogatz94 pp. 124, 150; Weisstein99 p. 652]). Note that a point (x,y) for which we have h(x,y) =
(0,0) is a zero of h(x,y), and not a fixed point of h(x,y); it is, however, a mutual fixed point of g1(x,y)
and g2(x,y), since it satisfies, of course, h(x,y) = g1(x,y) – g2(x,y) = (0,0).
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following subsections we will see how the classification of the critical points can give us
clues to the qualitative behaviour of the trajectories of the system (H.1), and hence to the
shape of the dot trajectories in our layer superpositions. We start, as usual, with the
simplest case, in which h(x,y) is linear.

H.1.1 Classification of the dot trajectories in the linear case

Suppose first that the vector field h(x,y) is linear. This obviously occurs when both of
the layer transformations g1(x,y) and g2(x,y) are linear, but it may also happen when g1(x,y)
and g2(x,y) are non-linear, and their non-linear components are mutually cancelled out
in the difference h(x,y) = g1(x,y) – g2(x,y). In both of these cases the linearity of h(x,y)
implies, of course, that the set of differential equations (H.1) is linear, too:

d
dt

x(t) = a1x(t) + b1y(t)

d
dt

y(t) = a2x(t) + b2y(t)
(H.2)

Because of its linearity, h(x,y) is clearly zero at the origin, and thus the origin is a critical
point of the system of differential equations (H.2). (Note that if the linear transformation
h(x,y) is singular it may have a full critical line passing through the origin, i.e. a line all of
whose points satisfy h(x,y) = (0,0). However, the origin itself is always a zero of any linear
h(x,y), be it singular or regular, and hence Eq. (H.2) always has a critical point at the
origin.)

Now, in the theory of differential equations there exists a simple technique that allows us
to characterize and classify the critical point of the linear system (H.2), and hence to find
qualitatively the behaviour of the trajectories (solution curves) that surround it, without
having to solve the system. This technique is based on the two eigenvalues of the matrix of
the linear transformation h(x,y) (see, for example, Sec. 16.1 in [Gray97]). For instance, if
the matrix of h(x,y) has two real eigenvalues with opposite signs then the critical point is a
saddle point and the trajectories surrounding it are hyperbolic, and if the eigenvalues are
purely imaginary then the critical point is a center with circular or elliptical trajectories
surrounding it. The full classification of the critical points is given in Table H.1 below,
which is based on [Gray97 p. 566].2 As we can see from this table, eigenvalues with a
positive real part always cause repulsion from the origin, whereas eigenvalues with a
negative real part cause attraction to the origin;3 the imaginary part of the eigenvalues
indicates rotation of the trajectories about the origin, and a zero eigenvalue corresponds to
degenerate cases with an entire critical line.

2 Note that the nomenclature used to designate the different types of critical points significantly varies
from reference to reference. For example, center points, spiral points and degenerate nodes according to
the terminology used in [Gray97] are called in [Birkhoff89] vortex points, focal points and star points,
respectively; similarly, improper nodes in [Gray97] correspond to degenerate nodes in [Strogatz94 p.
136], while degenerate nodes in [Gray97] refer to stars in [Strogatz94 p. 135]. In Table H.1 we have
chosen the names that best suit our needs and our general conventions.

3 Note that this is immaterial for our needs, since the dot trajectories in the layer superposition do not
show the sense of the arrows along the curves.
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Remark H.1: This classification can be further simplified thanks to the fact that the
eigenvalues of a linear transformation h(x,y) depend only on the trace t and the
determinant d of the matrix of that linear transformation [Strogatz94 p. 130; Kreyszig93
p. 176]. This eliminates the need for calculating the eigenvalues of the matrix, and allows
an alternative, elegant classification of the different types of critical points and the
trajectories surrounding them in terms of the two real numbers t and d. This classification
can be represented graphically in the t,d plane, as shown, for example, in figure 5.2.8 in
[Strogatz94 p. 137]. Note, however, that this graphical classification still may require the
calculation of t2 – 4d in order to determine in which region of the graph our particular case
(t,d) is situated; furthermore, this graphical method may be ambiguous in some particular
cases such as stars and improper nodes, which are both located in the t,d plane along the
border of the parabola t2 – 4d = 0. For these reasons we prefer to stick here to the original
classification of Table H.1, that is based on the eigenvalues of the matrix.  

Example H.1: Consider the superposition shown in Fig. 2.1(e). In this case the layer
transformations are given by:

g1(x,y) = ((1+ε)x, (1+ε)y)

g2(x,y) = (x,y)

where ε is a small positive fraction, and therefore we have:

h(x,y) = g1(x,y) – g2(x,y) = (εx,εy)

In this case the matrix of the linear transformarion h(x,y) is ε 0
0 ε , and its two eigenvalues

are simply λ1 = λ2 = ε where ε > 0, meaning that the critical point at the origin is a star (see
case 6 in Table H.1). And indeed, this fully agrees with the dot trajectories that surround
the origin in the layer superposition that is shown in Fig. 2.1(e).  

Example H.2: Consider now the superposition shown in Fig. 2.2(a). In this case one
layer is obtained from the other by a slight scaling of sx = 1 – ε  in the x direction, and a
slight scaling of sy = 1 + ε  in the y direction (ε being a small positive fraction). Therefore
the layer transformations g1(x,y) and g2(x,y) are given by:

g1(x,y) = ((1–ε)x, (1+ε)y)

g2(x,y) = (x,y)

so that:

h(x,y) = g1(x,y) – g2(x,y) = (–εx,εy)

In this case the matrix of the linear transformarion h(x,y) is –ε 0
0 ε , and its two eigenvalues

are λ1 = –ε and λ2 = ε. As we can see in case 3 of Table H.1 the critical point in this case
is a saddle point, that is surrounded by hyperbolic trajectories. And indeed, this fully
agrees with the dot trajectories that surround the origin in the layer superposition that is
shown in Fig. 2.2(a).  



446 Appendix H: Miscellaneous issues and derivations

Eigenvalues Type of critical points Fig. Rem-
arks

   1 0 < λ1 < λ2 Repelling node

   2 λ1 < λ2 < 0 Attracting node

   3 λ1 < 0 < λ2 Saddle 2.2(a) (1)

   4 0 = λ1 < λ2 Repelling line 2.3(a) (2)

   5 λ1 < λ2 = 0 Attracting line (3)

   6
λ1 = λ2 > 0

Two eigenvectors
Repelling star 2.1(e)

   7
λ1 = λ2 < 0

Two eigenvectors
Attracting star

   8
λ1 = λ2 > 0

One eigenvector
Repelling improper node

   9
λ1 = λ2 < 0

One eigenvector
Attracting improper node

 10
λ1 = λ2 = 0

One eigenvector
Linear center 2.3(c) (4)

 11
λ1, λ2 = α ± iβ

α > 0, β ≠ 0
Repelling spiral 2.1(g)

 12
λ1, λ2 = α ± iβ

α < 0, β ≠ 0
Attracting spiral

 13
λ1, λ2 = ± iβ

β ≠ 0
Center

2.1(c),
2.2(c)

(5)

Table H.1: (continued on the opposite page)

Example H.3: Consider the superposition shown in Fig. 2.3(a). In this case the layer
transformations are given by:

g1(x,y) = (x, (1+ε)y)

g2(x,y) = (x,y)
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Remarks:
(1) The critical point is surrounded by hyperbolic trajectories.
(2) An entire critical line, with parallel straight trajectories emanating from it.
(3) An entire critical line, with parallel straight trajectories pointing to it.
(4) An entire critical line, with parallel straight trajectories parallel to it.
(5) The critical point is surrounded by circular or elliptic trajectories.
Note that for our own needs (the characterization of the dot trajectories in a dot screen
superposition) the sense of the trajectories is immaterial, and hence we do not need to
distinguish between the repelling and attracting variants in each type of critical points.
Nevertheless, we still maintain this distinction in the table for the sake of completeness.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table H.1: (continued.) Summary of all the different types of critical points that may
occur in a 2D linear system of differential equations, and the conditions
on the eigenvalues of the matrix of the system that give rise to each of
these types. Note that in cases 1–3, 6–9, 11–13 the critical point is
isolated and located at the origin, while in all the other cases (which are
called degenerate or singular cases) there exists a full line of critical
points passing through the origin.

where ε is a small positive fraction, and therefore we have:

h(x,y) = g1(x,y) – g2(x,y) = (0,εy)

The matrix of the linear transformarion h(x,y) is 0 0
0 ε

, and its two eigenvalues are λ1 = 0
and λ2 = ε > 0, meaning that the critical point at the origin is in this case a repelling line
(case 4 in Table H.1). And indeed, this fully agrees with the dot trajectories that surround
the origin in the layer superposition that is shown in Fig. 2.3(a).  

It should be noted, however, that the classification provided by Table H.1 is only valid
for linear cases, and even in affine cases, where a mere constant shift has been added (see,
for example, Figs. 2.3(e),(g)), the table can no longer be used to determine the shape of the
trajectories.

H.1.2 Classification of the dot trajectories in the non-linear case

What happens now when h(x,y) is not linear? Unlike a linear vector field that always has
a critical point at the origin (or, in singular cases, an entire critical line passing through the
origin), a non-linear vector field may have, depending on the case, no critical points at all,
one or more isolated critical points, or even one or more straight or curved critical lines.
But because the behaviour of the trajectories surrounding a critical point highly depends
on the properties of the critical point itself, in cases where critical points do exist it should
be possible to get a qualitative idea about the shape of the trajectories of h(x,y) (i.e., the
solution curves of Eq. (H.1)) simply by identifying the critical points and studying their
properties, without having to solve the system (H.1). As said in [Tabor89 p. 20], critical
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points can be thought of as the “organizing centers” of a system’s dynamics; thus, by
identifying them and their properties one can build up a fairly global picture of the
system’s behaviour.

In Sec. H.1.1 we have seen that if h(x,y) is linear it has a critical point at the origin, and
that we can characterize and classify this critical point by studying the eigenvalues of the
matrix of the linear transformation h(x,y). And indeed, it turns out that this technique can
be also extended to the case of non-linear h(x,y), i.e. to cases where the system (H.1) is
non-linear.

This extended technique is based on the linearization of the non-linear system about
each of its critical points separately (see, for example, [Kreyszig93 Sec. 4.5], [Strogatz94
Sec. 6.3], or [Gray97 pp. 588–590]). That is, instead of considering the original non-
linear system (H.1) itself, we study its close approximation by the following linear system,
which is simply its first-order Taylor approximation about the critical point (xc,yc):

d
dt

x(t)

d
dt

y(t)
 = 

∂h1(x,y)
∂x

∂h1(x,y)
∂y

∂h2(x,y)
∂x

∂h2(x,y)
∂y

x = xc

y = yc

x(t)

y(t)
    (H.3)

Note that the matrix of the system (H.3) consists of constant coefficients, meaning that
(H.3) is, indeed, a linear system of differential equations. But since h(x,y) is non-linear,
this linear approximation obviously varies from point to point, and we have to recalculate
the constant coefficients of its matrix for each critical point (xc,yc) separately. Thus, for
each critical point of the non-linear system (H.1) we obtain a separate linear system of the
form (H.2) that approximates the non-linear system (H.1) about that critical point. Note
that each of these approximating linear systems is, in fact, shifted so as to bring the critical
point (xc,yc) to the origin; this can be easily seen in the Taylor development that leads to
Eq. (H.3), as explained in each of the references mentioned above.

Therefore, all that we have to do in the non-linear case is to solve the system of
equations h1(x,y) = 0, h2(x,y) = 0 in order to identify the isolated critical points of the
system, and then, for each of these points (xc,yc), to calculate the numeric values of the
partial derivatives of h(x,y) at this point. This gives us for each of the critical points a linear
system (H.2), and thus we can characterize and classify each of the critical points
separately using the method of Sec. H.1.1 for linear cases. Note that the matrix we use in
the linear approximation (H.3) is simply the Jacobian matrix of h(x,y), evaluated at the
critical point (xc,yc).

It should be emphasized that for each critical point we have a different linearized system,
and the properties of the linearized system in each critical point may be radically different.
But when we “piece together” the different linearized systems, we may obtain a fairly
accurate picture of the nonlinear system and its trajectories. Note, however, that this
technique can only be used for isolated critical points of the non-linear system, but not for
critical lines or for non-linear systems having no critical points at all.
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Example H.4: As we have seen in Sec. 3.4, when two originally identical aperiodic dot
screens undergo non-linear transformations, several Glass patterns may be simultaneously
generated in their superposition. Let us consider, as an illustration, Fig. 3.15(a). This
figure shows two originally identical aperiodic dot screens that give in their superposition,
after each of them has undergone a different non-linear transformation, 4 distinct Glass
patterns. The two domain transformations undergone in this case by the original layers are
(see Eq. (3.35)):

g1(x,y) = (x, y + y0 – ax2)

g2(x,y) = (x + x0 – ay2, y)

where a  > 0, x0 > 0 and y0 > 0. As explained in Examples 3.6 and 5.3, these
transformations have 4 different mutual fixed points that are located at:

(x,y) = (± y0/a, ± x0/a)

(see Eq. (3.39)); and indeed, each of the 4 Glass patterns in the layer superposition is
generated about one of these 4 fixed points.

However, as we can clearly see in Fig. 3.15(a), it turns out that the dot trajectories
surrounding these Glass patterns are not identical: While the two Glass patterns that are
located along the main diagonal are surrounded by circular dot trajectories, the two Glass
patterns that are located along the other diagonal are surrounded by hyperbolic dot
trajectories. How can we explain this fact?

According to Proposition 4.3, the dot trajectories that are generated in the superposition
due to the application of the direct layer transformations g1(x,y) and g2(x,y) are closely
approximated by the vector field:

h(x,y) = g1(x,y) – g2(x,y)

In our present case (see Example 5.3) the direct layer transformations are given by:

g1(x,y) = g1
–1(x,y) = (x, y – y0 + ax2)

g2(x,y) = g2
–1(x,y) = (x – x0 + ay2, y)

where a > 0, x0 > 0 and y0 > 0, and therefore we have:

h(x,y) = g1(x,y) – g2(x,y) = (x0 – ay2, ax2 – y0)

But because h(x,y) is clearly non-linear, we need in order to find the properties of its
trajectories to use the linearization technique. As we can see by solving the system of
equations h1(x,y) = 0, h2(x,y) = 0, h(x,y) has 4 critical points that are precisely located at:

(x,y) = (± y0/a, ± x0/a)
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Let us therefore evaluate the matrix of the linearized system (H.3) for each of these 4
critical points separately; this will allow us to characterize each of these critical points
using the method of Sec. H.1.1.

It is easy to see that the Jacobian matrix of Eq. (H.3) is in our case:

∂h1(x,y)
∂x

∂h1(x,y)
∂y

∂h2(x,y)
∂x

∂h2(x,y)
∂y

 = 
0 –2ay

2ax 0

We now evaluate this matrix and its eigenvalues at each of the 4 critical points of h(x,y):

(a) At the critical point (+ y0/a, + x0/a) the matrix becomes:

0 –2a x0/a

2a y0/a 0

The two eigenvalues of this matrix are purely imaginary:

λ1, λ2 = ± –4a x0y0

(because x0, y0, a > 0), and therefore, according to case 13 in Table H.1, this critical
point is a center. This explains, indeed, why the dot trajectories about this point in Fig.
3.15(a) are circular.

(b) At the second critical point on the main diagonal, (– y0/a, – x0/a) the matrix is:

0 2a x0/a

–2a y0/a 0

and the two eigenvalues are the same as in case (a). And indeed, the dot trajectories
about this point in Fig. 3.15(a) are, again, circular.

(c) At the third critical point, (+ y0/a, – x0/a), the matrix is:

0 2a x0/a

2a y0/a 0

The two eigenvalues of this matrix are:

λ1, λ2 = ± 4a x0y0

but because x0, y0, a > 0 these eigenvalues are purely real, with opposite signs. This
corresponds to case 3 in Table H.1, meaning that this critical point is a saddle point that
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is surrounded by hyperbolic trajectories. And indeed, this result fully agrees with the
dot trajectories about this point in Fig. 3.15(a).

(d) Finally, at the fourth critical point, (– y0/a, + x0/a), the matrix is:

0 –2a x0/a

–2a y0/a 0

and the two eigenvalues are the same as in case (c). And indeed, the dot trajectories
about this point in Fig. 3.15(a) are, again, hyperbolic.  

Example H.5: Consider the superposition shown in Fig. 2.3(e). This case is identical to
that of Example H.3, except that a horizontal shift has been added to one of the layers:

g1(x,y) = (x + x0, (1+ε)y)

g2(x,y) = (x,y)

and therefore we have:

h(x,y) = g1(x,y) – g2(x,y) = (x0,εy)

Note that because of the shift of x0 this transformation is no longer linear but rather
affine, and therefore the classification of Table H.1 no longer holds for it. And indeed, in
this case the vector field h(x,y) and its corresponding system of differential equations have
no critical points at all, and we cannot derive the behaviour of the trajectories from
properties of the critical points.  

H.2 The connection between the vector fields h1(x,y) and h2(x,y) in Sec. 4.5

We have seen in Sec. 4.5 of Chapter 4 that in cases where both of the superposed layers
are distorted by transformations g1(x,y) and g2(x,y) the vector field which accurately
represents the dot trajectories is given by Eq. (4.8):

h1(x,y) = g1(g2(x,y)) – (x,y)

However, we have seen there that a similar reasoning may lead us to a different vector
field, which also represents accurately the dot trajectories in the same superposition, and
which is given by Eq. (4.9):

h2(x,y) = (x,y) – g2(g1(x,y))

Clearly, vector fields (4.8) and (4.9) are not necessarily identical (see, for example, Figs.
4.11(b)–(d) and 4.12(b)–(d)). In fact, these vector fields happen to be identical only if our
transformations satisfy the identity:
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g1(g2(x,y)) – (x,y) ≡ (x,y) – g2(g1(x,y))

which means:

1
2 [g1(g2(x,y)) + g2(g1(x,y))] ≡ (x,y)     (H.4)

but this identity is certainly not satisfied by all transformation pairs g1, g2. So how is it
possible that the two different vector fields (4.8) and (4.9) represent the same dot
trajectories in the layer superposition?

The answer to this question is given, indeed, by Proposition 4.2: As we can see from this
proposition, the dot trajectories obtained by applying the transformations g1(x,y) and
g2(x,y) to our original screens are not uniquely obtained by this specific pair of layer
transformations, and there exist in fact infinitely many transformation pairs that give the
same dot trajectories. Among these transformation pairs there exist precisely two, the pair
g1(g2(x,y)) and (x,y) and the pair (x,y) and g2(g1(x,y)), in which only one of the two
superposed layers is transformed, and for which we know, therefore, by virtue of
Proposition 4.1, the precise vector field representations. These two vector fields have,
indeed, different mathematical expressions — but as we have just seen, by virtue of
Proposition 4.2, both of them represent the same dot trajectories in the superposition.

Incidentally, it is interesting to note that the two transformations g1(g2(x,y)) and
g2(g1(x,y)) are, in fact, the inverse of each other. This can be seen by applying the general
rule [f1 ° f2]–1 = f2

–1 ° f1
–1 [Bernstein05 p. 6; Halmos74 p. 40], where “°” indicates the

composition of transformations, to g2 and g1; this gives us [g2 ° g1]–1 = g1 ° g2, which
means, indeed, [g2(g1(x,y))]–1 = g1(g2(x,y)). And in fact, it can be shown that any two vector
fields h1(x,y) = g(x,y) – (x,y) and h2(x,y) = (x,y) – g–1(x,y) with an arbitrary g(x,y) represent
equivalent dot trajectories: Clearly, the vector field h1(x,y) connects by an arrow the point
(x,y) to its destination under g, the point g(x,y), while the second vector field h2(x,y)
connects the point g–1(x,y) to its destination under g, the point (x,y).4 This means that both
vector fields correspond to the application of the same transformation g, although the
departure points to which g is applied are not the same in both cases. But because in both
superpositions the same transformation g is applied to one of two identical random
screens, the resulting dot trajectories in the superposition are, indeed, equivalent. This can
be seen from Proposition 4.2 by taking g1(x,y) = g(x,y), g2(x,y) = (x,y) and f(x,y) = g–1(x,y).

H.3 Hybrid (1,-1)-moiré effects whose moiré bands have 2D intensity profiles

As we have seen in Chapters 6 and 7, the transition from periodic line gratings to
aperiodic (yet correlated) line gratings results in the loss of repetitivity in the resulting
moiré effect: Instead of having infinitely many moiré bands, we are left in the aperiodic

4 Remember that for any points (a,b) and (c,d) in the plane, when the tail of the vector (a,b) – (c,d) is
attached to the point (c,d), its head is located at the point (a,b); this means that the vector (a,b) – (c,d)
connects the point (c,d) to the point (a,b).
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case with a single moiré band, i.e. a Glass pattern (see, for example, Figs. 6.1, 6.2 and
7.13). This typical behaviour is general to both 1D (1,-1)-moirés between line gratings and
2D (1,0,-1,0)-moirés between dot screens, independently of their intensity profiles (see, for
example, Figs. 2.1 and 7.1).5

It is not surprising, therefore, that the same behaviour subsists in the (1,-1)-moiré even
when the intensity of each individual line in the original gratings is modulated by some
given 1D or 2D information. Part (b) of Fig. H.1 shows the superposition of two such
periodic line gratings: The first grating consists of lines whose individual profiles are
modulated by some 2D information (in the present example: a flattened version of the
letters “EPFL”, as clearly seen in the leftmost part of the figure), while the second grating
consists of narrow white lines or “slits” on a black background. In such cases, if both
gratings have similar periods and angles, the resulting superposition shows a (1,-1)-moiré
effect that is a largely magnified version of the first grating; for example, in the case
shown in our figure each of the moiré bands consists of a largely stretched-out (and
possibly sheared) version of the letters “EPFL”. In other words, in such cases the 2D
information that modulates the intensity profile of each of the moiré bands in the
superposition is a largely stretched-out (and possibly sheared) version of the 2D
information that modulates the intensity of each individual line of the first grating.6

Part (a) of Fig. H.1 shows, on its part, the aperiodic counterpart of Fig. H.1(b). Here, the
individual lines in each of the two gratings are still the same as in Fig. H.1(b), but their
locations have been randomized (using the same random numbers for both of the
superposed layers). And indeed, as expected, this aperiodic superposition contains only
one moiré band, the Glass pattern, whose intensity profile remains modulated by the same
2D information (the letters “EPFL”) as each of the moiré bands in Fig. H.1(b).

Note that replacing in Figs. H.1(a),(b) the modulated lines of both of the superposed
gratings by simple black lines on a white background brings us back to the classical moiré
(or Glass) patterns of Figs. 6.2(a),(b). The difference between Figs. H.1 and 6.2 in terms
of the moiré intensity profile is, in fact, the 1D equivalent of the difference between Figs.
7.1 and 2.1 (see Secs. 7.2.4 and 7.4.2).

A similar phenomenon occurs also in superpositions of curvilinear line gratings. For
example, if we replace the simple curved lines in the grating shown in Fig. 6.7 by
modulated curved lines having the same profiles as in Fig. H.1, the intensity profile of the
resulting curvilinear moiré (or Glass) pattern will be simply modulated by the letters
“EPFL”. The same result can be also obtained, of course, by applying to the straight
gratings of Fig. H.1 the geometric layer transformations that are used in Fig. 6.7. This is,
indeed, the 1D equivalent of the transition between Figs. 7.1 and 7.12.

5 Note, however, that this behaviour does not extend to moirés of higher orders, as shown in Sec. 7.5.
6 This phenomenon, originally discovered in the 1980s by Joe Huck in his artistic work [Huck03], has

been investigated in depth in [Hersch04] and [Chosson06]. A Fourier-based explanation of this
phenomenon is provided in Sec. C.14 of Appendix C in the second edition of Vol. I.
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Figure H.1: (a) A superposition of two aperiodic (yet fully correlated) line gratings, one of
which is composed of straight lines that contain some given 2D information
(the flattened letters “EPFL”, as clearly seen in the leftmost line), while the
other consists of narrow slits on a black background. As expected, a single
moiré band (Glass pattern) appears in the center of the superposition, and its
intensity profile contains a largely stretched-out (and possibly sheared) version
of the 2D information that appears in each of the individual lines of the first
grating (the letters “EPFL”). Compare with Fig. 6.2(a), in which both of the
superposed gratings consist of simple black lines. The difference between
Figs. H.1(a) and 6.2(a) is similar to the difference between Figs. 7.1(a) and
2.1(c) in the 2D case.
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Figure H.1: (continued.) (b) The periodic counterpart of (a): The superposition of two
periodic line gratings, one of which is composed of straight lines that contain
some given 2D information (the flattened letters “EPFL”, as clearly seen in
the leftmost line), while the other consists of narrow slits on a black
background.  Each of the bands of the resulting (1,-1)-moiré is a duplicate of
the central band, and contains the same 2D information. Compare with Fig.
6.2(b), in which both of the superposed gratings consist of simple black lines.
The difference between Figs. H.1(b) and 6.2(b) is similar to the difference
between Figs. 7.1(b) and 2.1(d) in the 2D case. Note that due to some
particularities of the human visual system the effects shown in Figs. H.1(a),(b)
are more easily perceived when the figures are rotated by 90° (try and see!).
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Finally, it is interesting to see how the fundamental Glass-pattern theorem (Sec. 7.8 in
Chapter 7) applies to our present hybrid case, in which the individual lines in one of the
superposed gratings have a 2D profile, while the lines in the other grating (the slits) only
have a 1D profile. To see this, consider the full componentwise notation of the layer
transformations g1(x) and g2(x) and of the moiré (or Glass pattern) transformation g(x):

g1(x) = 
g1,1(x,y)
g1,2(x,y)

, g2(x) = 
g2,1(x,y)
g2,2(x,y)

, g(x) = 
g1(x,y)
g2(x,y)

According to Eq. (7.37) of the fundamental Glass-pattern theorem, the transformation
g(x) undergone by the moiré (or Glass pattern) is given by g(x) = g1(x) – g2(x). In the 2D
case, where both of the original, untransformed layers are dot screens, this simply means:

g1(x,y)
g2(x,y)

 = 
g1,1(x,y)
g1,2(x,y)

 – 
g2,1(x,y)
g2,2(x,y)

    (H.5)

However, in the 1D case, i.e. when both of the original, undeformed layers consist of
lines with a purely 1D profile, the second component in each of the above transformations
becomes irrelevant, and we obtain:

g1(x) = 
g1,1(x,y)

0
, g2(x) = 

g2,1(x,y)
0

, g(x) = 
g1(x,y)

0

or even, more simply, by dropping the unused components and indices:

g1(x) = g1(x,y), g2(x) = g2(x,y), g(x) = g(x,y)

In this case Eq. (7.37) reduces into its single-component counterpart:

g(x,y) = g1(x,y) – g2(x,y)     (H.6)

which is precisely Eq. (7.35) of the fundamental Glass-pattern theorem for line gratings,
as we have seen in Sec. 7.8.

We now return to our present hybrid case. In this case, only one of the two original,
untransformed gratings (the second one) has a purely 1D profile, and therefore we have:

g1(x) = 
g1,1(x,y)
g1,2(x,y)

, g2(x) = 
g2,1(x,y)

0
, g(x) = 

g1(x,y)
g2(x,y)

Hence, Eq. (7.37) of the fundamental Glass-pattern theorem simply becomes here:

g1(x,y)
g2(x,y)

 = 
g1,1(x,y)
g1,2(x,y)

 – 
g2,1(x,y)

0
    (H.7)

which is, indeed, intermediate between the 2D case of Eq. (H.5) and the 1D case of Eq.
(H.6). This suggests that our hybrid superposition could be considered, in fact, as a
“ 11

2 D case”. A more detailed discussion on this case can be found in the second edition
of Vol. I in Sec. C.14 of Appendix C.



Appendix I

Glossary of the main terms

I.1 About the glossary

Several thousands of publications on the moiré phenomenon have appeared during the
last decades, in many different fields and applications. However, as already mentioned in
Vol. I, the terminology used in this vast literature is very far from being consistent and
uniform. Different authors use different terms for the same entities, and what is even
worse, the same terms are often used in different meanings by different authors. To
mention just one example, Glass patterns have been also called in literature moiré fringes
[Glass69], random-dot interference patterns [Glass73], quasi-moiré patterns [Garava-
glia01], and even flash correlation artifacts, or in short, FCAs [Prokoski99].

Obviously, in such an interdisciplinary domain as the moiré theory it would be quite
impossible to adopt a universally acceptable standardization of the terms, because of the
different needs and traditions in the various fields involved (optics, mechanics,
mathematics, printing, etc.). Nevertheless, even without having any far-reaching
pretensions, we were obliged to make our own terminological choices in a systematic and
coherent way, in order to prevent confusion and ambiguity in our own work. We tried to
be consistent in our terminology throughout this work, even if it forced us to assign to
some terms a somewhat different meaning than one would expect (depending on his own
background, of course).

We included in the present glossary all the terms for which we felt a clear definition was
desirable to avoid any risk of ambiguity. But although this glossary is basically devoted to
the terms that are being used in the present volume, we have also included, for the sake of
completeness, some entries from the glossary of Vol. I, often with some additions or
adaptations to our needs in the present volume. Just as in Vol. I, this glossary is not
ordered alphabetically; rather, we preferred to group the various terms according to
subjects. We hope this should help the reader not only to clearly see the meaning of each
individual term by itself, but also to put it in relation with other closely related terms
(which would be completely dispersed throughout the glossary if an alphabetical order
were preferred). Note that terms in the glossary can be found alphabetically through the
general index at the end of the book.

I.2 Terms in the image domain

grating (or line-grating) —
A pattern consisting of parallel lines. A grating can be periodic or aperiodic.
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curvilinear grating —
A pattern consisting of parallel curvilinear lines. A curvilinear grating can be seen
as a non-linear transformation of an initially uncurved periodic or aperiodic grating
of straight lines.

cosinusoidal grating (not to be confused with cosine-shaped grating) —
A grating with a cosinusoidal periodic-profile; for example, a cosinusoidal circular
grating is a circular grating with a cosinusoidal periodic-profile. Note, however,
that since reflectance and transmittance functions always take values ranging
between 0 and 1, the cosinusoidal grating is normally “raised” and rescaled into
this range of values. For example, a reflectance function in the form of a vertical
straight cosinusoidal grating is expressed by: r(x,y) = 1

2 cos(2π fx) + 1
2.

cosine-shaped grating (not to be confused with cosinusoidal grating) —
A grating (with any periodic-profile form) whose corrugations in the x,y plane are
bent into a cosinusoidal shape, like in Fig. 6.17.

grid (or line-grid; also called in literature cross-line grating) —
A pattern consisting of two superposed line-gratings, periodic or aperiodic,
crossing each other at a non-zero angle. Unless otherwise mentioned it will be
assumed that a grid consists of two binary straight line gratings. Note that every
grid can be also seen as a screen (whose dot-elements are the spaces left between
the lines of the grid).

regular grid (or square grid) —
A 2-fold periodic grid composed of two superposed straight line-gratings that are
identical but perpendicular to each other.

curved grid —
A pattern obtained by applying a non-linear transformation to a periodic or to an
aperiodic grid.

screen (or dot-screen) —
A pattern consisting of dots. A screen can be periodic (as in Fig. 2.1(b)) or
aperiodic (as in Fig. 2.1(a)).

regular screen —
A 2-fold periodic screen whose dot arrangement is orthogonal and whose periods
(or frequencies) to both orthogonal directions are equal.

curved screen —
A pattern obtained by applying a non-linear transformation to a periodic or to an
aperiodic screen (see, for example, Figs. 3.5(a),(b)).

halftone screen —
A binary screen in which the size (and the shape) of the screen dots may vary
(typically, according to the gray level of a given original continuous-tone image). A
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halftone screen may be periodic or not. Halftone screens are used in the printing
world for the reproduction of continuous-tone images on bilevel printing devices.

screen gradation (or wedge) —
A halftone screen whose screen dots vary gradually (in their size and possibly also
in their shape) across the image, generating a halftoned image with a smooth and
uniform tone gradation.

image (has nothing to do with the image of a transformation) —
The most general term we use to cover “anything” in the image domain. It may be
periodic or not, binary or continuous, etc. In principle, a monochrome (black-and-
white) image has reflectance (or transmittance) values that vary between 0 (black)
and 1 (white); similarly, a colour image has reflectance (or transmittance) values
varying between 0 and 1 for each wavelength λ of its colour spectrum.

period (or repetition-period of a function p) —
A number T ≠ 0 such that for any x ∈R, p(x+T) = p(x). Note that the set of all the
periods of p(x) forms a lattice in R. In the case of a 2-fold periodic function p(x,y),
a double period (or period parallelogram) of p(x,y) is any parallelogram A which
tiles the x,y plane so that p(x,y) repeats itself identically on any of these tiles (see
also Sec. A.3.4 in Appendix A of Vol. I).

period-vector (of a periodic function p(x,y)) —
A non-zero vector P = (x0,y0) such that for any (x,y)∈R2, p(x+x0,y+y0) = p(x,y). If
there exist two non-collinear vectors P1, P2 having this property, p(x,y) is said to be
2-fold periodic; in this case, for any point x ∈R2 the points x, x + P1, x + P2,
x+P1+P2 define a period parallelogram of p(x,y).

periodic function —
A function having a period. Note that a 2D function p(x,y) can be 2-fold periodic
(such as p(x,y) = cosx + cosy) or only 1-fold periodic (such as p(x,y) = cosx).

almost-periodic function —
See Secs. B.3, B.5 in Appendix B of Vol. I.

aperiodic function —
A function which is not included in the class of almost-periodic functions. This
also implies that the function in question is not periodic (see Fig. B.3 in Appendix
B of Vol. I). Note, however, that although repetitive functions formally fall within
the scope of this definition of aperiodic functions, we prefer to exclude them from
our present definition, because they are still structurally ordered, and they have
already been investigated in Chapters 10 and 11 of Vol. I. We therefore adopt the
definition saying that a function is aperiodic if it is neither periodic (or almost-
periodic) nor a geometrically transformed version thereof.
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repetitive structure (or repetitive function) —
A structure (or a function) which is repetitive according to a certain rule, but which
is not necessarily periodic (or almost-periodic). For example: concentric circles;
gratings with logarithmic line-distances; screen gradations; etc. Note that such
structures are sometimes called in literature quasi-periodic (like in [Bryngdahl74
p. 1290]); however, we reserve the term quasi-periodic only to its meaning in the
context of the theory of almost-periodic functions (see Sec. B.5 in Appendix B of
Vol. I).

random structure —
A structure consisting of randomly positioned elements. Note that every random
structure is aperiodic, but the converse is not necessarily true. See also Sec. 2.4

coordinate-transformed structure —
A structure r(x,y) which is obtained by the application of a non-linear coordinate
transformation g(x,y) to a certain initial periodic or aperiodic structure p(x,y). Note
that g(x,y) is applied to the original structure p(x,y) as a domain transformation;
more formally, using vector notation, r(x) = p(g(x)). Curvilinear gratings (such as
parabolic or circular gratings) and gratings with a varying frequency (such as a
grating with logarithmic line-distances) are coordinate-transformed structures.
Examples of coordinate-transformed gratings (both periodic and aperiodic) are
shown in the top row of Fig. 6.3, and examples of coordinate-transformed dot
screens (both periodic and aperiodic) are shown in the top row of Fig. 3.5.

profile-transformed structure —
A structure r(x,y) which is obtained by the application of a non-linear transfor-
mation t(z) to the profile of a certain initial periodic or aperiodic structure p(x,y).
Note that t(z) is applied to the original structure p(x,y) as a range transformation;
more formally, using vector notation, r(x) = t(p(x)). Screen gradations are an
example of profile-transformed structures.

coordinate-and-profile transformed structure —
A structure r(x,y) which is obtained from a certain initial periodic or aperiodic
structure p(x,y) by the application of both a non-linear coordinate-transformation
g(x,y) and a non-linear profile-transformation t(z). More formally, using vector
notation, r(x) = t(p(g(x))).  An example of a coordinate-and-profile-transformed
structure is given in Remark 2 of Sec. 10.2 in Vol. I.

intensity profile (of a structure r(x,y)) —
A function over the x,y plane whose value at each point (x,y) indicates the intensity
(or more precisely, the reflectance or the transmittance) of the structure r(x,y).

periodic profile (of a curvilinear grating, curved grid, etc.) —
The periodic profile of a curvilinear grating or a curved screen r(x,y) is defined as
the intensity profile of the original, uncurved periodic grating (or screen), before
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the non-linear transformation has been applied to it (see Sec. 10.2 in Vol. I). Note
that in periodic structures the periodic profile coincides with the intensity profile.

normalized periodic profile (of a curvilinear grating, curved grid, etc.) —
See Sec. 10.2 in Vol. I.

geometric layout (of a curvilinear grating, curved grid, etc.) —
The geometric layout of a curvilinear grating r(x,y) is the locus of the centers of its
curvilinear corrugations in the x,y plane; it is defined by the bending transformation
of the curvilinear grating (see Sec. 10.2 in Vol. I). Similarly, the geometric layout
of a curved grid or a curved screen is defined by its two bending functions.

bending transformation (of a curvilinear grating, curved grid, etc.) —
The bending transformation of a curvilinear grating r(x,y) = p(g(x,y)) is the non-
linear coordinate transformation g(x,y) which bends the original, uncurved grating
p(x') into the curvilinear grating r(x,y). The bending transformation of a curved
grid or a curved screen r(x,y) = p(g1(x,y),g2(x,y)) is the non-linear coordinate
transformation g(x,y) = (g1(x,y),g2(x,y)) which bends the original, uncurved grid or
screen p(x',y') into the curved structure r(x,y). We usually assume that the bending
transformation is smooth (a diffeomorphism), so that it has no abrupt jumps or
other troublesome singularities.

I.3 Terms in the spectral domain

spectrum (or frequency spectrum; not to be confused with colour spectrum) —
The frequency decomposition of a given function, which specifies the contribution
of each frequency to the function in question. The frequency spectrum is obtained
by taking the Fourier transform of the given function.

visibility circle —
A circle around the spectrum origin whose radius represents the cutoff frequency,
i.e., the threshold frequency beyond which fine detail is no longer detected by the
eye. Obviously, its radius depends on several factors such as the viewing distance,
the light conditions, etc. It should be noted that the visibility circle is just a first-
order approximation. In fact, the sensitivity of the human eye is a continuous 2D
bell-shaped function [Daly92 p. 6], with a steep “crater” in its center
(representing frequencies which are too small to be perceived), and “notches” in
the diagonal directions (owing to the drop in the eye sensibility in the diagonal
directions [Ulichney87 pp.79–84]).

frequency vector —
A vector in the u,v plane of the spectrum which represents the geometric location of
an impulse in the spectrum (see Sec. 2.2 and Fig. 2.1 in Vol. I).
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DC impulse —
The impulse that is located on the spectrum origin. This impulse represents the
frequency of zero, which corresponds to the constant component in the Fourier
decomposition of the image; the amplitude of the DC impulse corresponds to the
intensity of this constant component. This impulse is traditionally called the DC
impulse because it represents in electrical transmission theory the direct current
component, i.e., the constant term in the frequency decomposition of an electric
wave; we are following here this naming convention.

comb (or impulse-comb, Dirac-comb, impulse-train) —
An infinite train of equally spaced impulses located on a straight line in the
spectrum. Any 1D periodic function is represented in the spectrum by a comb
centered on the spectrum origin. The step and the direction of this comb represent
the frequency and the orientation of the periodic function; its impulse amplitudes,
which are given by the Fourier series development of the periodic function,
determine its intensity profile.

nailbed (or impulse-nailbed) —
An infinite 2D train of equally spaced impulses located in the spectrum on a dot-
lattice (either square-angled or skewed). Any 2D periodic function is represented
in the spectrum by an impulse nailbed centered on the spectrum origin. The steps
and the two main directions of this nailbed represent the frequency and the
orientation of the two main directions of the function’s 2D periodicity; the impulse
amplitudes, which are given by the 2D Fourier series development of the periodic
function, determine its intensity profile.

support (of a comb, a nailbed, a spectrum, etc.) —
The set of the geometric locations on the u,v plane of all the impulses of the
specified comb, nailbed, or spectrum.

line-impulse —
A generalized function which is impulsive along a 1D line through the plane, and
null everywhere else. A line-impulse can be graphically illustrated as a “blade”
whose behaviour is continuous along its 1D line support but impulsive in the
perpendicular direction. For example, the spectrum of an aperiodic line grating is a
Hermitian line impulse (see Sec. 7.3.1 and Figs. 7.7, 7.8). As another example, the
spectrum of a parabolic cosinusoidal grating consists of two parallel line-impulses
(see Example 10.5 in Sec. 10.3 of Vol. I). Note that the amplitude of a line-impulse
does not necessarily die out away from its center, and it may even rapidly oscillate
between two constant values.

curvilinear impulse —
A generalized function which is impulsive along a 1D curvilinear path through the
plane, and null everywhere else. A curvilinear impulse can be graphically illustrated
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as a curvilinear “blade” whose behaviour is continuous along its 1D curvilinear
support but impulsive in the perpendicular direction.

hump —
A 2D continuous surface, often bell-shaped, elliptic or hyperbolic, which is defined
around a given center on the plane. For example, the spectrum of an aperiodic dot
screen is a Hermitian hump (see Sec. 7.4.1 and Fig. 2.10(e)). As another example,
the convolution of two non-parallel line-impulses gives a hump (see Sec. 7.3.1, or
Sec. 10.7.3 and Fig. 10.13 in Vol. I). Note that the amplitude of a hump does not
necessarily die out away from its center, and in some cases it may even rapidly
oscillate between two constant values.

impulsive spectrum —
A spectrum which only consists of impulses, i.e., whose support consists of a
finite or at most denumerably infinite number of points. All periodic and almost-
periodic functions have impulsive spectra.

line-spectrum —
A spectrum which consists of line impulses (see, for example, Fig. 10.11 in Vol. I).

hybrid spectrum —
A spectrum which contains any combination of impulses, line-impulses and
continuous humps (as opposed to a purely impulsive spectrum, a purely line-
spectrum or a purely continuous spectrum). See, for instance, Example 10.14 of
Sec. 10.7.4 and Fig. 10.13 in Vol. I.

singular support (of a spectrum, etc.; distinguish from a singular locus of a moiré) —
The subset of the spectrum support over which the spectrum is impulsive. The
singular support of a given spectrum includes the support of all the impulsive
elements which are included in the spectrum (impulses, line-impulses, etc.), but not
the support of continuous elements such as humps or wakes.

I.4 Terms related to moiré

moiré effect (or moiré phenomenon) —
A visible phenomenon which occurs when repetitive structures (such as line-
gratings, dot-screens, etc.) are superposed. It consists of a new pattern which is
clearly observed in the superposition, although it does not appear in any of the
original structures. Moiré effects may occur also in the superposition of correlated
(or at least partially correlated) aperiodic layers; such moiré effects are called
Glass patterns.

Glass pattern —
A moiré pattern that occurs between two aperiodic layers (which are correlated or
at least partially correlated; note that uncorrelated aperiodic layers do not generate
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Glass patterns). Unlike moiré patterns between periodic or repetitive layers, a
Glass pattern typically consists of a single structure (see, for example, Figs. 2.1–
2.2). Often (but not always, as clearly shown in Chapter 7) a Glass pattern is
brighter in its center (where the correlation between the layers is maximal and their
individual elements almost coincide), and farther away it stabilizes at a darker gray
level (because the layers are no longer correlated and their elements more often fall
between each other, leaving less white area in the superposition). The Glass pattern
reflects, therefore, the macroscopic gray level variations in the layer superposition.
Usually it is also surrounded by typical geometric dot alignments in the
microstructure, which are known as dot trajectories. Glass patterns are called after
Leon Glass, who described them in the late 1960s [Glass69, Glass73].

linear Glass pattern —
A Glass pattern that is generated in the layer superposition along a straigt line (a
fixed line). See, for example, Figs. 2.3 and 6.1.

curvilinear Glass pattern —
A Glass pattern that is generated in the layer superposition along a curvilinear line
(a curvilinear fixed line). See, for example, Figs. 3.16 and 6.7.

(k1,...,km)-moiré —
The 1-fold periodic structure in the image domain which corresponds to the
(k1,...,km)-comb in the spectrum convolution (the spectrum of the superposition);
see Sec. 2.8 in Vol. I. In other words, this is the moiré which is generated due to
the interaction between the ki harmonic frequencies of the respective layers in the
superposition. This moiré may be visible if at least its fundamental impulse, the
(k1,...,km)-impulse, is located inside the visibility circle. More details on our moiré
notational system can be found in Sec. 2.8 of Vol. I.

singular moiré (or singular state, singular superposition) —
A configuration of the superposed layers in which the period of the moiré in
question becomes infinitely large (i.e., its frequency becomes 0), and hence it can
no longer be seen in the superposition. Singular moirés are unstable moiré-free
states, since the slightest deviation in the angle or scaling of any of the superposed
layers may cause the moiré in question to “come back from infinity” and to
reappear with a large, visible period. See Sec. 2.3.2.

stable moiré-free state —
A moiré-free configuration of the superposed layers in which no moiré becomes
visible even when small deviations occur in the angle or in the scaling (or
frequency) of any of the layers (see Sec. 2.3.2).

unstable moiré-free state —
A moiré-free configuration of the superposed layers in which any slight deviation
in the angle or in the scaling (or frequency) of any of the layers causes the
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reappearance of a moiré with a large, visible period (see Fig. 2.5). Any singular
state is an unstable moiré-free state.

moiré profile (or moiré intensity profile; moiré intensity surface) —
A function which defines the intensity level (the macroscopic gray level) of the
moiré at any point of the image (see Sec. 7.1, or Secs. 2.10 and 4.1 in Vol. I).

macrostructure, microstructure (within a superposition) —
The superposition of two or more layers (gratings, screens, etc.) may generate new
structures which appear in the superposition but not in the original layers. These
new structures can be classified into two categories: the macrostructures, i.e., the
moiré effects proper, which are much coarser than the detail of the original layers;
and the microstructures, i.e., the tiny geometric forms which are almost as small as
the periods of the original layers, and are normally visible only from a close
distance or through a magnifying glass. In the periodic case the microstructure
may consist of rosettes (see Chapter 8 in Vol. I), while in the aperiodic case the
microstructure may consist of dot trajectories (see Secs. 2.2 and 2.3.3).

rosettes —
The various tiny flower-like shapes which are often present in the microstructure
of periodic dot-screen or grid superpositions (see Chapter 8 in Vol. I).

dot trajectories (not to be confused with trajectories) —
This term is reserved to the typical microstructure dot alignments that appear in the
superposition of correlated aperiodic layers. These dot trajectories may have
various geometric shapes, depending on the transformations undergone by the
superposed layers. In the case of simple linear transformations such as layer
rotations, layer scalings, etc. the resulting dot trajectories are rather simple (circular,
radial, spiral, elliptic, hyperbolic, linear, etc.); see Figs. 2.1–2.3. But when the layer
transformations are more complex, the resulting dot trajectories may have more
interesting shapes (see, for example, Fig. 5.1). Dot trajectories are a typical
property of the superposition of aperiodic layers, and they are not visible in
superpositions of periodic layers.

additive / subtractive moiré (not to be confused with additive superposition) —
Classical terms often used in literature to designate moirés which are generated by
frequency sums or frequency differences, respectively, in the spectrum. For
example, the (1,-1)-moiré is subtractive, while the (1,1)-moiré is additive. Note,
however, that these terms cannot be generalized to more complex cases such as the
(1,1,-1)-moiré between three gratings. These terms are mostly useful in the
superposition of two curvilinear gratings, where both the additive and the
subtractive moiré are often observed simultaneously, each of them having a
different shape and location (see, for example, Fig. 10.31 in Vol. I). In this case the
most convenient way to define them is based on their indicial equations (see Sec.
11.2 in Vol. I): the additive moiré is the system of moiré fringes which



466 Appendix I: Glossary of the main terms

corresponds to the indicial equation m+n = p, while the subtractive moiré is the
system of moiré fringes which is selected by the indicial equation m–n = p. Note
that additive moirés are not generated between aperiodic layers (see Sec. 7.5).

I.5 Terms related to light and colour

colour spectrum (not to be confused with frequency spectrum) —
The wavelength decomposition of a given light,  which specifies the contribution of
each visible light wavelength λ (approximately between λ = 380 nm for violet and
λ = 750 nm for red) to the given light. The colour spectrum determines the visible
colour of the light in question. See Chapter 9 in Vol. I for more details.

monochrome (or black-and-white; not to be confused with monochromatic) —
Achromatic light, image, etc. involving only black, white and all the intermediate
gray levels. The colour spectrum of an ideal monochrome light is flat, i.e., it has a
constant value (between 0 and 1) for all wavelengths λ of the visible light.

monochromatic (not to be confused with monochrome) —
Chromatic light, image, etc. involving only a single pure wavelength λ of the visible
light. The colour spectrum of an ideal monochromatic light consists of a single
impulse of intensity 1 at the wavelength λ.

reflectance (or reflectance function) —
A function r(x,y) which assigns to any point (x,y) of a monochrome image viewed
by reflection a value between 0 and 1 representing its light reflection: 0 for black
(or no reflected light), 1 for white (or full light reflection), and intermediate values
for in-between shades. More formally, reflectance is defined at any point (x,y) as
the ratio of reflected to incident radiant power [Wyszecki82 p. 463].

transmittance (or transmittance function) —
A function r(x,y) which assigns to any point (x,y) of a monochrome image viewed
by transmission (such as a transparency, a film, etc.) a value between 0 and 1
representing its light transmission: 0 for black (or no transmitted light), 1 for white
(or full light transmission), and intermediate values for in-between shades. More
formally, transmittance is defined at any point (x,y) as the ratio of transmitted to
incident radiant power [Wyszecki82 p. 463].

chromatic reflectance (or chromatic reflectance function) —
A function r(x,y;λ) which assigns to any point (x,y) of a colour image viewed by
reflection its full colour spectrum. In other words, it gives for every wavelength λ
of the visible light (approximately between λ = 380 nm and λ = 750 nm) a value
between 0 and 1, which represents the reflectance of light of wavelength λ at the
point (x,y) of the image. This is a straightforward generalization of the reflectance
function r(x,y) in the monochrome case (see Chapter 9 in Vol. I).
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chromatic transmittance (or chromatic transmittance function) —
A function r(x,y;λ) which assigns to any point (x,y) of a colour image viewed by
transmission its full colour spectrum. In other words, it gives for every wavelength
λ of the visible light (approximately between λ = 380 nm and λ = 750 nm) a value
between 0 and 1, which represents the transmittance of light of wavelength λ at the
point (x,y) of the image. This is a straightforward generalization of the
transmittance function r(x,y) in the monochrome case (see Chapter 9 in Vol. I).

I.6 Miscellaneous terms

binary (grating, etc.) —
A structure which contains only two transmittance (or reflectance) levels: 0 and 1.

discrete —
A subset D of Rn is called discrete if there exists a number d > 0 so that for any
points a,b∈D the distance between a and b is larger than d. Note, however, that the
term discrete is also used as the opposite of continuous. For example: periodic
functions have discrete spectra, while aperiodic functions have continuous spectra.

domain / range transformation —
Any image r(x,y) (or function r: R2 → R) can undergo two types of coordinate
transformations: Either a transformation of its domain, r(x,y) |→ r(g(x,y)), or a
transformation of its range, r(x,y) |→ t(r(x,y)). As explained in Sec. D.6 of
Appendix D, in the first case g(x,y) is applied as an inverse transformation, while in
the second case t(x) is used as a direct transformation. Similarly, any mapping
f(x,y), f: R2 → R2, can undergo two types of coordinate transformations: Either a
transformation of its domain, f(x,y) |→ f(g(x,y)), or a transformation of its range,
f(x,y) |→ g(f(x,y)). Again, in the first case g(x,y) is applied as an inverse transfor-
mation, while in the second case it is used as a direct transformation.

direct / inverse mapping (not to be confused with forward / backward mapping algo-
rithm) —
The mathematical terms used to designate a mapping (geometric transformation) g
and its inverse g–1. We have, therefore, g°g–1 = g–1°g = i, where i is the identity
transformation i(x,y) = (x,y), and where “°” is the operation of mapping
composition: (f°g)(x,y) = f(g(x,y)). Note that the designations direct and inverse
are interchangeable, and they depend on our point of view; thus, if we focus our
attention to the mapping h = g–1, we may consider h as the direct mapping and
h–1 = (g–1)–1 = g as its inverse. For example, if g(x,y) = (2x,2y) then g–1(x,y) =
(x/2,y/2); and if g(x,y) = (x/2,y/2) then g–1(x,y) = (2x,2y). Note that the terms
direct / inverse transformations are also used in the same meaning, whereas the
terms direct / inverse transforms are reserved to operations such as the Fourier
transform.
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forward / backward mapping algorithm (not to be confused with direct / inverse
mapping) —
Digital imaging terms used to designate two different types of graphical algorithms
or computer programs: A forward mapping operates by scanning the original
input image pixel by pixel, and copying the value of the image at each input pixel
location (x,y) onto the corresponding position (u,v) in the output image. The output
position (u,v) is determined by passing the x and y coordinates of each input pixel
through the transformation (u,v) = g(x,y). On the other hand, a backward mapping
operates by scanning the target output image pixel by pixel, and copying onto each
output pixel location (u,v) the value of the input pixel at the corresponding (x,y)
position in the input image. The input position (x,y) that corresponds to a given
output pixel location is determined by passing the u and v coordinates of each
output pixel through the inverse transformation, (x,y) = g–1(u,v). For more details
on forward and backward mapping algorithms see Sec. D.9.1 in Appendix D.

trajectories (not to be confused with dot trajectories) —
This term is reserved to the solution curves of a system of differential equations,
or, equivalently, to the field lines of the corresponding vector field. A system of
differential equations d

dt
x(t) = g1(x(t),y(t)), d

dt
y(t) = g2(x(t),y(t)) has for solutions a

family of curves in the x,y plane, whose parametric representation is (x(t),y(t)), and
whose members differ from each other by some constants c [Kreyszig93 180–
186]. Each of these solution curves is called a trajectory since it traces out the
evolution of the curve as the parameter t is being varied. These trajectories are also
the field lines of the mapping g(x,y) = (g1(x,y),g2(x,y)) where this mapping is
regarded as a 2D vector field that assigns to each point (x,y) the vector g(x,y). Note
that the trajectories (field lines) of a vector field g(x,y) are the curves that are
tangent to the vectors of the vector field at any point in the plane. For more details
on the connections between the vector field g(x,y), the corresponding system of
differential equations and their trajectories see Sec. B.6 in Appendix B.

critical point (not to be confused with a fixed point) —
A point (x,y) is called a critical point of the vector field g(x,y) or of the system
of differential equations d

dt
x(t) = g1(x(t),y(t)), d

dt
y(t) = g2(x(t),y(t)) if it satisfies

g1(x,y) = 0, g2(x,y) = 0 [Birkhoff89 p. 133; Kreyszig93 p. 176]. For more details
see Sec. H.1 in Appendix H. Note that the term critical point is also used in
mathematics to designate a point (x,y) where a surface g(x,y) has an extremum or a
horizontal inflection point, i.e. where ∂

∂x
g(x,y) = 0 and ∂

∂y
g(x,y) = 0 (see, for

example, Sec. 2.19 in [Kaplan03]).

fixed point (not to be confused with a critical point) —
A point (xF,yF) is said to be a fixed point of transformation g(x,y) if it is not affected
by the transformation, meaning that g(xF,yF) = (xF,yF). Note, however, that some
references use the term “fixed point” for a critical point (see, for example,
[Strogatz94 pp. 124, 150; Weisstein99 p. 652]).
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fixed locus —
Transformation g(x,y) is said to have a fixed locus if it has a locus consisting of
fixed points. For example, the transformation shown in Fig. 3.17 has a fixed locus
consisting of an isolated point at the origin and a family of equispaced concentric
circles surrounding it. Note that each point in a fixed locus is mapped by g(x,y) to
itself; it is not sufficient that each point of the locus be mapped by g(x,y) to another
point within the locus.

fixed line —
A fixed locus consisting of a straight line. Transformation g(x,y) has a fixed line if
it has an entire straight line of fixed points. For example, each of the two
transformations shown in Fig. 2.3(a)–(d) has a fixed line along the x axis, while
each of the transformations shown in Fig. 3.6 has two fixed lines parallel to the x
axis.

mutual fixed point —
A point (xF,yF) is said to be a mutual fixed point of transformations g1 and g2 if
g1(xF,yF) = g2(xF,yF). Note that the term common fixed point of g1 and g2 is already
used in the mathematical literature for a point (x F ,y F) that satisfies
g1(xF,yF) = (xF,yF) = g2(xF,yF), but this definition is too restrictive for our needs.

mutual fixed locus —
Transformations g1 and g2 are said to have a mutual fixed locus if there exists a
locus in the x,y plane that consists of mutual fixed points of g1 and g2.

almost fixed point —
A point (xF,yF) is said to be an almost fixed point of transformation g(x,y) if it is
only very slightly affected by the transformation, meaning that g(xF,yF) ≈ (xF,yF).
Similarly, (xF,yF) is an almost mutual fixed point of g1 and g2 if g1(xF,yF) ≈ g2(xF,yF).

correlation (between two signals, images, etc.) —
A general term referring to the agreement or similarity between the two entities in
question. Confusingly, this term is routinely used in several different meanings,
notably as an abbreviation to the terms local correlation, global correlation or
cross correlation (see below).

local correlation (between two signals, images, etc.) —
Two entities (signals, images, functions, etc.) are said to be locally correlated (or to
be well correlated in a certain location) if they highly agree with each other in the
specified location. As its name indicates, this is a local property, so that two given
images can be highly correlated in some areas but not at all correlated in other
areas. Local correlation between two superposed layers is the reason for the
appearance of a Glass pattern in that area of the superposition. For example, the
Glass patterns shown in Fig. 7.12 consist of four dark “2”-shaped areas; within
these areas the two superposed layers are well correlated (the pinholes of the
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second layer coincide with the tiny “2”-shaped dots of the first layer), while in the
remaining areas of the figure the correlation between the two layers is low. See
also Secs. 2.2, 7.8 and Problem 7-13.

global correlation (between two signals, images, etc.) —
Two entities (signals, images, functions, etc.) are said to be globally correlated if
they highly agree with each other throughout their entire domain of definition. For
example, two identical copies r1(x) and r2(x) of the same aperiodic signal (one or
both of which may have undergone some amplitude transformation or have some
additive random noise) are globally correlated. However, the signal r1(x) is no
longer globally correlated with the shifted signal r2(x – x0) or with the stretched
signal r2(ax). See also Secs. 2.2, 7.8 and Problem 7-13.

cross correlation (between two signals, images, etc.) —
The cross correlation between two functions f(x) and g(x) is a third function cf,g(x)
that indicates the relative amount of agreement between f(x) and g(x) for all
possible degrees of misalignments (shifts). At each point x the value of the
function cf,g(x) is defined as the area under the product of f and g after g has been
shifted by x. For example, if r1(x) and r2(x) are defined as above (see under
“global correlation”) then their cross correlation function consists of a high peak
about x = 0, and low values everywhere else. The reason is that r1 and r2 are
globally correlated when the shift between them is x = 0, but for any other shift
they are no longer globally correlated. In the case of 2D images, points (x,y) in
which the value of the cross correlation function is high indicate displacements of
x,y between the two images in which the volume under the product of the two entire
layers is high. Obviously, the cross correlation can detect displacements x,y in
which the two entire images are globally well correlated, but it cannot detect
isolated zones of local correlation between the two images, since the contribution
of such local zones is relatively small, and it may be buried and lost within the
global volume under the product of the entire images. The formal definition of
cross correlation as well as its main mathematical properties are given in Appendix
E. See also Secs. 2.2, 7.8 and Problem 7-13.

finite energy function (or signal) (not to be confused with finite power function) —
A function f(x) is called a finite energy function (or a finite energy signal) if it is
square integrable, i.e. if it satisfies:

∫
-∞

∞

| f(x)|2 dx  < ∞

The class of finite energy functions includes all physically realizable functions, but
it does not include many other useful functions such as constant functions, step
functions, periodic functions or stationary random functions [Champeney73 p. 59;
Coulon84 pp. 33–35].
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finite power function (or signal) (not to be confused with finite energy function) —
A function f(x) is called a finite power function (or a finite power signal) if it
satisfies:

lim
a → ∞

1
a ∫

-a/2

a/2

| f(x)|2 dx  < ∞

The class of finite power functions is larger than that of finite energy functions,
and it includes, for example, constant functions, step functions, periodic functions
and stationary random functions [Champeney73 p. 59; Coulon84 pp. 33–35].

almost-zero transformation (or almost-null transformation) —
A transformation (u,v) = o(x,y) is said to be almost zero or almost null if it differs
only slightly, within our zone of interest (i.e. within the area covered by the layer
superposition), from the zero transformation (u,v) = z(x,y) = (0,0). See Sec. D.12
in Appendix D.

weak transformation (or almost-identity transformation) —
A transformation (u,v) = g(x,y) is said to be weak or almost identity if it differs
only slightly, within our zone of interest (i.e. within the area covered by the layer
superposition), from the identity transformation (u,v) = i(x,y) = (x,y). In other
words, g(x,y) is a weak transformation if it satisfies g(x,y) = (x,y) + o(x,y), where
o(x,y) is an almost-zero transformation. See Sec. D.12 in Appendix D.

diffeomorphism —
A diffeomorphism (in our case, on R2) is a one-to-one continuously differentiable
mapping of R2 onto itself whose inverse mapping is also continuously differen-
tiable.

scaling (of a comb, nailbed, etc.) —
We distinguish between amplitude scalings, and period or frequency scalings (in
which the expansion or contraction occurs along the x,y axes in the image, or the
u,v axes in the spectrum).

phase (of a periodic function, a periodic moiré, etc.) —
See Sec. C.4 in Vol. I and Chapter 7 Secs. 7.1–7.5 in Vol. I.

separable function (of two variables) —
A function f(x,y) is said to be separable if it can be presented as (or separated into)
a product of a function of x and a function of y: f(x,y) = g(x)·h(y) [Gaskill78 pp.
16–17; Cartwright90 p. 117]. Note, however, that we use this term in a slightly
larger sense: A 2D function f(x,y) is separable if it can be presented as a product of
two independent 1D functions. Therefore, although f(x,y) = g(x)·h(y)  may no
longer be separable (in the narrower sense) after it has undergone a rotation or a
skewing transformation, we will still consider it as separable (with respect to the
rotated or skewed axes x' and y': f(x',y') = g(x')·h(y')).
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inseparable function (of two variables) —
A function that is not separable. For example, the function representing a square
white dot is separable: rect(x,y) = rect(x)·rect(y), while the function representing a
circular white dot is inseparable.

spatially separable (not to be confused with a separable function) —
Two functions F(u,v) and G(u,v) in the spectrum are called spatially separable if
their supports in the u,v plane are not overlapping. Spatially separable elements in
the spectrum can be separated and extracted by means of filtering, i.e., by
multiplying the spectrum with an appropriate 2D low-pass or band-pass filter.

spatially inseparable (not to be confused with an inseparable function) —
Two functions F(u,v) and G(u,v) in the spectrum are called spatially inseparable if
their supports in the u,v plane are at least partially overlapping. Spatially
inseparable elements in the spectrum cannot be separated or extracted by
multiplying the spectrum with 2D low-pass or band-pass filters.

dots per inch (dpi) (or dots per centimeter; not to be confused with lines per inch) —
A term used to specify the resolution of a digital device such as a printer, a scanner,
etc. For example, a device whose resolution is 300 dpi can only address points on
an underlying pixel-grid whose period is 1/300 of an inch, and no in-between
points or pixel-fractions can be addressed. Some devices have different resolutions
in the horizontal and in the vertical directions.

lines per inch (lpi) (or lines per centimeter; not to be confused with dots per inch) —
A term used to specify the frequency of gratings, dot-screens, etc. This term
specifies the number of periods per inch. For example: the finest grating that can
be produced on a 300 dpi device, namely: a sequence of alternating one-pixel wide
black and white lines, is a grating of 150 lpi (since one period consists here of two
device pixels).



List of notations and symbols

This list consists of the main symbols used in the present volume. They appear with a
very brief description and a reference to the page in which they are first used or defined.
Obvious symbols such as ‘+’, ‘–’, etc. have not been included.

Symbol Short description Page

x, y The coordinates (axes) of the image plane 15

u, v The coordinates (axes) of the spectral plane 15

x', y' Rotated coordinates (axes) in the image plane 56

r(x,y) A 2D reflectance (or transmittance) function 15

R(u,v) The spectrum of r(x,y) 15

d(x,y) A single dot (of a dot-screen) 32

D(u,v) The spectrum of d(x,y) 32

* 1D convolution (or T-convolution)            245, 436

* * 2D convolution (or T-convolution) 15, 251, 411

1D cross correlation            246, 268

2D cross correlation 258, 269, 413

cf,g The cross correlation between the functions f and g              17, 413

α, θ, ... Angles 56, 58

ϕM Angle of a moiré effect 231

α→0 The angle α tends to 0 76

f,  f1, ... Frequencies of 1D periodic functions p(x), p1(x), ... 228, 231

fM Frequency of a moiré effect 231

T, T1, ... Periods of 1D periodic functions p(x), p1(x), ... 59, 231

TM Period of a moiré effect 59, 231
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F, P Matrices 62

F–1 The inverse of matrix F 63, 322

FT The transpose of matrix F 390

| F | The determinant of matrix F 255, 282

J(x,y) The Jacobian determinant of a transformation 255, 309

a, b, r, s, t Real numbers (sometimes also used as integer numbers) 58

i, j, m, n, p, q Integer numbers 159, 189

i (In complex numbers): the imaginary unit, –1 32, 38

a, b, x, u Vectors 62, 231, 438

f1,...,fm Frequency vectors in the u,v plane of the spectrum 230

Z The set of all integer numbers (positive, negative, and 0) 159

R The set of all real numbers 16, 48

Rn The n-dimensional Euclidean space 47, 429, 463

dim V Dimension of vector space V 294

Im g The image of linear transformation g 294

Ker g The kernel of linear transformation g 294

Re[ ] The real-valued part of a complex entity    34, 38

Im[ ] The imaginary-valued part of a complex entity    34, 38

Abs[ ] The magnitude of a complex entity    36, 38

Arg[ ] The phase of a complex entity    36, 38

g(x,y) A 2D transformation 48

g(x,y) A 2D transformation (used as direct mapping) 107, 110

(x,y) |→ g(x,y) The transformation g maps the point (x,y) to g(x,y)        110

g: R2 → R2 A transformation g from R2 to R2            289, 327

a·b Multiplication 15

v·w Scalar product of two vectors            246, 439
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f1 ° f2 The composition of transformations f1 and f2, i.e. f1(f2(x))    337, 406, 452

ε, δ Arbitrarily small, positive real numbers 83, 88

|a| The absolute value of the number a (real or complex) 42, 179, 417

F(u,v) = F [f(x,y)] F(u,v) is the Fourier transform of f(x,y) 32

≈ Approximately equal 131, 406

<< Much smaller than          76

m The number of superposed layers 15

(k1,...,km) An index-vector: an m-tuple of integers 231

fk1,...,km
The frequency-vector of the (k1,...,km)-impulse 230

ak1,...,km
The amplitude of the (k1,...,km)-impulse 230, 235

(k1,...,km)-moiré The 1D moiré corresponding to the (k1,...,km)-comb 231, 235

δ(u) The impulse symbol 426

δ(u,v) The 2D impulse symbol 32

rect(x) A square pulse: 1 in the range –0.5 ≤ x ≤ 0.5,  and 0 elsewhere 214

rect(x,y) A 2D square pulse: 1 in the range –0.5 ≤ x,y ≤ 0.5,  and 0 elsewhere 32

sinc(x) sin(πx)
πx

  for x ≠ 0,  and 1 for x = 0 32

End of example, proof, etc. 16

List of abbreviations

Symbol Short description Page

1D 1-dimensional 48, 187

2D 2-dimensional 48, 187

DC The impulse at the spectrum origin (i.e., at frequency zero) 438



476 List of abbreviations

CMYK The four process ink colours: Cyan, Magenta, Yellow, blacK 45

DFT Discrete Fourier transform 34

FFT Fast Fourier transform 46

dpi Dots per inch (printer resolution) 448

lpi Lines per inch (frequency of a grating or a screen) 448

iff If and only if 22
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Index

Page numbers followed by the letter “g” indicate entries in the glossary (Appendix I).

A

additive moiré, 260, 465g
additive superposition, see under superposition

rules
affine transformation, 51–63, 281–284
almost fixed point, see under fixed point
almost-identity transformation, see under

transformation
almost-null transformation, see under

transformation
almost-periodic function, 459g
almost-zero transformation, see under

transformation
amplitude spectrum, see under spectrum
anti-counterfeiting, see applications of Glass

patterns: document security
aperiodic function, 16, 459g
aperiodic layer, see under layer
applications of Glass patterns, 4–5

art, 4
comparison of patterns, 4, 46
comparing the scale of two copies of an 

image, 96
detection and measurement of slight 

displacements or deformations, 4, 42, 97,
221, 259

detection of periodic noise (or periodic 
residues) in an aperiodic structure, 275

determination of the axis of rotation, 4, 96
determination of the similarity or the degree

of correlation between patterns, 4, 19
document security (authentication, anti-

counterfeiting), 4, 97, 259, 270
high-precision registration, 4, 96, 221, 259
human visual system, 4, 259
identification of a given pattern within an 

image, 4, 46

latent images, 97, 224
optical alignment, 4, 96, 221, 259
speckle interferometry, 43–44
speckle metrology, 4, 42–43
stereo matching, 44, 48
visualizing the curve family of an indefinite

integral of a function, 4, 151
visualizing the flow lines of a vector filed, 4,

105, 148
visualizing the solutions of differential 

equations, 105, 148
visualizing the solutions of equations, 4, 98
visually locating (or illustrating) the fixed 

points of a transformation, 4, 63, 97
approaches for investigating Glass patterns:

indicial equations, 159, 193–196
probabilistic (or stochastic) approach, 279–

280, 422–432
spectral, Fourier-based approach, 15, 225, 

238–280
authentication, see applications of Glass

patterns: document security
autocorrelation, see under correlation
autocorrelation theorem, 417

B

backward mapping algorithm (in digital
imaging), 386–389, 468g

bending rate, 65
bending transformation, 215, 461g
binary, 467g
blade, see line-impulse

C

cardioid, 100
Cartesian coordinates, see under coordinates
charecteristic function, 355
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cluster, 228, 235
colour printing, 4, 24, 45–46
colour spectrum, 466g
comb, 228, 462g
conformal transformation (or mapping), 296–

298, 305, 324
congruent layers, 239, 243, 249–250
constraint, 191–193, 208–214
contour lines, see level lines
convolution, 15, 271, 411–420

of combs, 230
of line-impulses (blades), 240–242
of nailbeds, 234–235

convolution theorem, 15, 226, 230, 235, 240,
244, 249–250, 416–417

coordinate-and-profile transformed structure,
460g

coordinate transformation, 295–298
see also transformation

coordinate-transformed structure, 460g
coordinates:

Cartesian, 85–86, 100–102, 230–231, 329, 
332–336, 341, 354, 365–374

curvilinear, 295–298, 332–336
polar, 85–86, 100–102, 228, 341, 354, 365–

374
correlation, 17, 418–420, 469g

autocorrelation, 415, 423
cross correlation, 17, 246, 258, 264–269, 

271–273, 411–420, 470g
global correlation, 17, 264–269, 272–273, 

470g
local correlation, 17, 264–269, 272–273, 

469g
cosinusoidal grating, see under grating
counterfeit deterrents, see applications of Glass

patterns: document security
critical point:

of a system of differential equations, 443, 
468g

of a transformation, 331, 468g
of a vector field, 443, 468g

cross correlation, see under correlation
cross-correlation theorem, 416–417
curved grid, 458g
curved screen, 65–82, 254–258, 458g
curvilinear grating, 196–208, 453, 458g
curvilinear impulse, 462g
cutoff frequency, 228
cyclic convolution, see T-convolution

D

DC impulse, 462g
decorrelation, 96

deterministic signal or image, 32, 421, 430–432
diffeomorphism, 471g
difference moiré, see subtractive moiré
diffraction, 6
direct transformation, 109–110, 133, 151–152,

160–161, 183–186, 292, 295, 327–410, 467g
discrete, 467g
displacement, see shift
document security, see under applications of

Glass patterns
domain, 327, 332–336, 347
domain transformation, 56, 65, 82, 109–110,

133, 151–152, 158–160, 183–186, 218, 273,
293–295, 347–356, 460, 467g

dot-screen, see screen
dot shape, 156, 236–238
dot trajectories, 8, 12–14, 19–29, 105–156, 158–

161, 465g
classification, 443–451
curve equations, 114–123, 152
invariance properties, 175–181
morphology, 106–107
synthesis, 134–137, 149–151, 259, 280
under different superposition rules, 139–140,

156
visual interpretation, 140–148

dots per inch (dpi), 472g

E

eigenvalues of a matrix, 444–454
element distribution, see under layer
extraction of a moiré, see moiré extraction

F

field line, see trajectory
finite-energy signal (or function), 415–416,

470g
finite-power signal (or function), 416–417,

471g
first order moiré, 158, 180, 222
fixed dot shape, 240, 252
fixed element shape, 240, 248
fixed line, 60–62, 65, 254–258, 469g

almost fixed line, 90–95, 104
fixed line shape, 240
fixed locus, 47–72, 469g

almost fixed locus, 64, 82, 87–96, 104
mutual fixed locus, 72–82, 469g
synthesis, 83–87, 100–102, 280

fixed point, 47–72, 189–193, 399–405, 443,
468g

almost fixed point, 64, 82, 87–96, 104, 469g
mutual fixed point, 72–82, 154–156, 258, 

288, 401–405, 469g
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multiple fixed points, 65, 80–82, 254–258, 
287

fixed point theorem, 47–49, 281–288
fixed point theorem for affine mappings, 48,

281–284
fixed point theorem for second-order 

polynomial mappings, 284–288
flash correlation artifacts, 46, 457
flow line, see trajectory
forward mapping algorithm (in digital imaging),

386–389, 468g
Fourier-based approach, see also under

approaches for investigating Glass 
patterns

generalized, 252, 269, 433–442
in the aperiodic case, 238–269
in the periodic case, 226–238

Fourier decomposition, 433–434
generalized, 434–435

Fourier series, 228, 433
coefficients, 433
generalized, 434

Fourier spectrum, see spectrum
Fourier transform, 15, 32, 421, 423, 433

g-Fourier transform, 439
generalized, 433–442
inverse, 232, 236, 244, 250, 433

frequency domain, see spectral domain; spectrum
frequency vector, 228, 230, 233, 461g
functional, 419
fundamental Glass-pattern theorem:

for the superposition of aperiodic gratings, 
268, 456

for the superposition of aperiodic screens, 
269, 456

G

generalized Fourier series, see under Fourier
series

generalized Fourier transform, see under Fourier
transform

geometric layout, 159, 174, 280, 461g
geometric location of an impulse, see impulse:

location
Glass pattern, 1–5, 11–14, 19, 51–53, 64, 82, 

158–161, 180, 222, 457, 463g
applications, see applications of Glass 

patterns
artificial, 275–277
behaviour under affine layer transformations,

59–63
behaviour under layer rotations, 51–53
behaviour under layer scalings, 53–54
behaviour under layer shifts, 54–59, 96

behaviour under non-linear layer 
transformations, 63–72

between aperiodic line gratings, 187–224, 
238–248

curvilinear, 464g
historical background, 4–5
hybrid (1,-1)-Glass pattern whose band 

carries 2D information, 452–456
in multilayer superpositions, 30–31, 104
intensity profile, 214–220, 224, 225, 238–

269
invariance properties, 175–181, 222, 224
linear, 66–67, 70, 149, 240, 244, 288, 464g
radius of, 277–278
singular, 272
synthesis, 47, 83–87, 100–102, 222–223, 

259, 270, 280
theorem, see fundamental Glass pattern 

theorem
global correlation, see under correlation
gradient lines (or curves), 302
grating, 187–224, 457g

aperiodic, 196
cosine shaped, 458g
cosinusoidal, 458g
curvilinear, see curvilinear grating
periodic, 196
repetitive, 196

gray-level surface, 215
grid, 458g

curved, see curved grid
regular (or square), 458g

H

halftone screen, 458g
see also halftoning

halftoning, 4, 24, 45
Hermitian, 240, 249
higher order moiré, 54, 158
human visual system, 4, 7, 228, 259
hump, 242, 249, 463g
hybrid between Glass and moiré pattern, see

superposition: of partly periodic layers
hybrid (1,-1)-Glass pattern whose band carries

2D information, 452–456
hybrid (1,-1)-moiré whose bands carry 2D

information, 452–456
hybrid spectrum:

continuous and impulsive, 463g

I

image, 15, 459g
image domain, 15
image of a linear transformation, 294
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impulse, 228
amplitude, 228
DC, see DC impulse
line, see line-impulse
location, 228

impulsive spectrum, see under spectrum
indicial equations, see under approaches for

investigating Glass patterns
inseparable, 472g
integral transform, 433–442
intensity profile, 214–220, 224, 225, 238–259, 

452–456, 460g
see also under moiré, Glass pattern

inverse Fourier transform, see Fourier transform:
inverse

inverse transformation, 109–110, 327–410, 467g
isometric layers, 238, 244–246, 250, 258
isotropic mapping, 324

J

Jacobian, 255, 284, 286, 291, 309
geometric interpretation, 309–311

Jacobian matrix, 309, 322–326, 448–451

K

kernel of a linear transformation, 294
kernel of an integral transform, 435–439

L

laser speckle, see speckle
latent images, see under applications of Glass

patterns
layer:

aperiodic, 1–3, 11, 15–19, 63–64
constrained, see constraint
deterministic, 421, 430–432
element distribution within a layer, 28–30
intermediate between periodic and aperiodic,

17, 50–51, 98–101, 172–174, 260–262
periodic, 1–3, 11, 15–19, 63–64
pseudo-random, 28, 275–276
random, 1–3, 11, 15–19, 28–29, 421–432
repetitive, 1–3, 11, 15–19, 63–64
stochastic, 16

level lines, 100, 159, 162, 164,–167, 170, 174,
289–291, 295, 303–305, 330, 338–339, 358

limaçon, 100
line-grating, see grating
line-grid, see grid
line impulse, 240–248, 462g
line of coincidence, 189–193
linear algebra, 345–346
lines per inch (lpi), 472g
local correlation, see under correlation

locally reflecting transformation, see reflecting
transformation

lpi (lines per inch), 472g

M

macrostructure, 18, 26–28, 180, 214, 222, 465g
and microstructure, 18, 26–28

magnitude spectrum, see spectrum: amplitude
spectrum

mapping, see transformation
measuring (displacements, deformations, etc.),

see various entries under applications of
Glass patterns

metrology, see under applications of Glass
patterns

microstructure, 18, 19, 26–28, 105–156, 180, 
465g

and macrostructure, 18, 26–28
artifacts, 28, 142–143
morphology, 106–107
under different superposition rules, 139–140,

156
invariance properties, 175–181
visual interpretation, 140–148

moiré, 1–3, 11, 24, 64, 158–161, 463g
additive, see additive moiré
between aperiodic layers, see Glass pattern
between periodic and aperiodic layers, 46
between periodic layers, 1, 11, 64
between random layers, see Glass patterns
hybrid (1,-1)-moiré whose bands carry 2D 

information, 452–456
indexing, see moiré notational system
intensity profile, 214–220, 225–238, 465g
invariance properties, 175–181
notational system for, see moiré notational 

system
of higher order, see higher order moiré
of the first order, see first order moiré
period, 230–231
profile, see moiré: intensity profile
profile extraction:

in superposed gratings, 232–233, 244–
245

in superposed screens, 235–236, 249–250
singular, 464g
subtractive, see subtractive moiré
temporal, 6
theorem, see fundamental moiré theorem
unwanted, see unwanted moirés

moiré analysis:
qualitative, 225
quantitative, 225

moiré extraction, 232, 236, 244, 249–250
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moiré-free superposition, 24–26
stable (non-singular), 24–28, 464g
unstable (singular), 24–26, 464g

moiré notational system, 231
(1,-1)-moiré, 231–233, 242–243, 259–260, 

440
(1,1)-moiré, 260
(1,0,-1,0)-moiré, 235, 249, 254, 259–260
(1,0,1,0)-moiré, 260
(k1,k2)-moiré, 231, 260, 440
(k1,k2,k3,k4)-moiré, 235, 260
(k1,...,km)-moiré, 464g

monochromatic, 466g
monochrome, 15, 259, 466g
multichromatic, see polychromatic
multilayer superposition, see under

superposition
multiplicative superposition, see under

superposition rules
mutual fixed locus, see under fixed locus
mutual fixed point, see under fixed point

N

nailbed, 38, 228, 230, 233, 462g
non-reflecting transformation, 255, 306–308,

312–313
normalization, 232, 236, 244–245, 250–251
notational system for moirés, see moiré

notational system

O

operator:
binary, 411
linear, 412
unary, 411

optical alignment, see under applications of
Glass patterns

P

parallax, 6
period, 459g
period-vector, 459g
periodic function, 16, 459g

1-fold periodic function, 459g
2-fold periodic function, 459g

periodic layer, see under layer
periodic profile, 460g

normalized, 461g
phase, 471g
phase spectrum, see under spectrum
pinhole screen, see under screen
point of coincidence, 52, 70, 77
point process, 422, 425–426
Poisson process, 425–426

polar coordinates, see under coordinates
polychromatic, 15, 259
power spectrum, see under spectrum
precision alignment, see applications of Glass

patterns: optical alignment
precision measurement, see various entries

under applications of Glass patterns
profile, see intensity profile; periodic profile
profile-transformed structure, 460g
pseudo-random, see under layer

Q

qualitative moiré analysis, see under moiré
analysis

quantitative moiré analysis, see under moiré
analysis

R

random scanning, 45
random field, 429–430
random image, see layer: random
random layer, see layer: random
random process, 32, 422
random sampling, 44–45
random structure, 460g
range, 327, 332–336, 347
range transformation, 218, 347–356, 460, 467g
reflectance function, 15, 466g

chromatic, 466g
reflecting transformation, 255, 306–308, 312–

313
repetitive layer, see under layer
repetitive, non-periodic structure, 460g
rosettes, 465g

S

sampling moiré, 44–45
scaling, 411, 471g
scanning moiré, see sampling moiré
screen, 458g

curved, see curved screen
halftone, see halftone screen; halftoning
pinhole, 227, 236, 252–253
regular, 458g

screen gradation, 459g
separable, 471g

see also spatially separable
shift, 54–59
shot noise, 426–429
similar layers, 239, 249–250
similarity matrix (or transformation), 58, 324
singular:

Glass pattern, see Glass pattern: singular
linear transformation, 282
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moiré, see moiré: singular
state, see superposition: singular
superposition, see superposition: singular
support, 463g

slits, 453
spatially separable, 472g
speckle, 42–44

interferometry, see under applications of 
Glass patterns

metrology, see under applications of 
Glass patterns

spectral approach, see under approaches for 
investigating Glass patterns

in the periodic case, 226–238
in the aperiodic case, 238–269

spectral domain, 15, 226
see also spectrum

spectrum, 15, 461g
amplitude spectrum, 32–42, 423
colour, see colour spectrum
continuous, 16, 38, 226, 230, 248
diffuse, 16, 32–33, 38, 226, 230, 424
hybrid, see hybrid spectrum
imaginary part, 32–42, 423
impulsive, 16, 39, 226, 230, 248, 463g
magnitude spectrum, see spectrum: amplitude

spectrum
of a (k1,k2)-moiré between two periodic 

gratings, 231
of a (k1,k2,k3,k4)-moiré between two periodic

screens, 235
of a partially periodic function (intermediate

between periodic and aperiodic), 17, 38
of a periodic function, 16, 32–42, 226, 228
of a random screen, 32–42
of a superposition, 15
of an aperiodic function, 16, 32–42, 226, 

228, 230
phase spectrum, 32–42, 423
power spectrum, 32, 417, 421–432, 423–425
real part, 32–42, 423

stable moiré-free state, see under moiré-free
superposition

stochastic process, see random process
subtractive moiré, 260, 465g
superposition, 1, 15

macrostructure of, see macrostructure
microstructure of, see microstructure
of aperiodic layers, 1–5, 11, 19–29, 50, 157
of correlated aperiodic gratings, 240–246
of correlated aperiodic screens, 249–252
of line-gratings, 187–224, 230–233
of partly correlated layers, 21, 262–264

of partly periodic (or partly random) layers, 
50–51, 98–101, 172–174, 260–262

of periodic layers, 1–2, 11, 50, 157
of random layers, 1–5, 11
of repetitive, non-periodic layers, 1–2, 11, 63
of screens, 12–31, 233–238, 248–259
of several layers, 30–31, 104
of uncorrelated aperiodic gratings, 246–248
of uncorrelated aperiodic screens, 258–259
singular, 24–26

superposition moiré in colour printing, 45–46
superposition rules, 15–16, 139–140, 156, 280

additive, 15–16
inverse additive, 16
multiplicative, 15

support (of a comb, a nailbed, a spectrum etc.), 
462g

singular, 463g
synthesis of dot trajectories, see dot trajectories:

synthesis
synthesis of Glass patterns, see Glass pattern:

synthesis

T

T-convolution, 233, 236, 416
T-convolution theorem:

in one dimension, 233
in two dimensions, 236

T-cross-correlation, 416
Talbot effect, 6
temporal moiré, 6
trajectory, 105, 107, 148, 298, 331, 468g
transform, 436, 467

see also Fourier transform, integral transform
transformation, 289, 327, 347, 436

see also direct transformation, inverse 
transformation, domain transformation, 
range transformation

active and passive interpretations, 343–347
affine, see affine transformation
almost identity, 406, 471g
almost null, 406, 471g
almost zero, 406–410, 471g
Cartesian to polar coordinate transformation,

340–341, 354, 365–374
conformal, see conformal transformation
direct, see direct transformation
identity, 337, 404, 406
interpretations of a 2D transformation, 289–

308, 329–331
inverse, see inverse transformation
linear, 281–282
parabolic, 64–72
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polar to Cartesian coordinate transformation,
340–341, 354, 365–374

second-order polynomial, 65, 284–288
weak, 98, 123, 132–133, 155, 161, 167, 174–

175, 182, 406–410, 471g
zero, 406

transformation surface, 215
translation, see shift
transmittance function, 15, 466g

chromatic, 467g

U

unstable moiré-free state, see under moiré-free
superposition

unwanted moirés, 4–5
avoiding, 4–5, 44–45

V

vector field, 102, 109–111, 298–301, 330
visibility circle, 228, 461g

W

weak transformation, see under transformation
wedge, see screen gradation

Z

zero transformation, see under transformation
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