
N O D E . J S
TOMASZ PAWLAK, PHD
MARCIN SZUBERT, PHD
INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY

I N T E R N E T S Y S T E M S

P R E S E N T A T I O N O U T L I N E

• What is Node.js?

• Design of Node.js

• Modules

• Web frameworks for Node.js

• Node tools for front-end developers

• Node.js combined with a client-side MV* framework,
a NoSQL database (such as MongoDB or CouchDB)
and JSON offers a unified
JavaScript development stack.

M O T I V A T I O N

• Node.js might be the most exciting single piece of
software in the current JavaScript universe — used
by LinkedIn, Groupon, PayPal, Walmart, etc.

• Node.js is one of the most watched projects on
GitHub; it has more than million
modules in npm package manager.

W H A T I S N O D E . J S ?

• Node.js is a platform built on Chrome’s JavaScript V8
runtime for building scalable network applications.

• Node.js uses an event-driven, non-blocking I/O
model that makes it lightweight and efficient, perfect
for data-intensive real-time applications that run
across distributed devices.

• Node is a way of running JavaScript outside the
browser.

W W W . N O D E J S . O R G

https://nodejs.org

W H E N T O U S E N O D E . J S ?

• Node.js allows the creation of web servers and
networking tools, using JavaScript and a collection
of modules that handle various core functionality.

• Modules handle file system I/O, networking, binary
data (buffers), cryptography functions, data streams,
etc.

• Frameworks can be used to accelerate the
development of web applications; common
frameworks are Express.js, Koa, Sails.js, Total.js.

• Node.js is not limited to the server-side — it
provides a number of tools for frontend
development workflows.

N O D E . J S A N D J A V A S C R I P T

• JavaScript is a compilation target, and there are
a number of languages that compile to JavaScript
already.

• JSON is a very popular data interchange format
today and is native to JavaScript.

• JavaScript is the language used in various NoSQL
databases so interfacing with them is a natural fit.

• V8 gives Node.js a huge boost in performance
because it prefers straight compilation into native
machine code over executing bytecode or using an
interpreter.

P R E S E N T A T I O N O U T L I N E

• What is Node.js?

• Design of Node.js

• Modules

• Web frameworks for Node.js

• Node tools for front-end developers

T H E B I R T H O F N O D E . J S

• Ryan Dahl started the Node.js
project in 2009 out of frustration
with the current state of web
servers in the industry.

• The core premise behind Node's design:
most web applications are Input/Output (I/O)
bound.

• I/O-bound programs are constrained by data
access. These are programs where adding more
processing power or RAM often makes little
difference — the bottleneck of their performance
is the latency of I/O.

I / O L A T E N C Y

T A B L E F R O M R Y A N D A H L ' S 2 0 0 9 . 1 1 . 0 8 P R E S E N T A T I O N O N N O D E . J S
H T T P S : / / N O D E J S . O R G / J S C O N F . P D F

Operation CPU Cycles
L1 3 cycles
L2 14 cycles

RAM 250 cycles
DISK 41 000 000 cycles

NETWORK 240 000 000 cyles

https://nodejs.org/jsconf.pdf

B L O C K I N G I / O
• In many programming languages I/O operations are

blocking — they block the progress of the program
while waiting on an I/O task such as reading from the
hard drive or making a network request.

$result = mysql_query('SELECT * FROM myTable');
print_r($result);

S C A L I N G W I T H T H R E A D S

• If a program blocks on I/O, what does the server do
when there are more requests to handle?

• A typical approach is to use multithreading —
employ one thread per connection and set up
a thread pool for those connections.

S C A L I N G W I T H T H R E A D S

• While this approach allows us to scale by adding
more threads, each thread still spends most of its
time waiting for I/O, not processing your application
logic.

• Unfortunately, continuing to add threads introduces
context switching overhead and uses considerable
memory to maintain execution stacks.

S C A L I N G W I T H N O D E . J S

• Node.js employs a single thread, using non-blocking I/O
— any function performing I/O is handled asynchronously
and then triggers a callback.

db.query("select..", function (result) {
doSomething(result);

});
nextTask();

S C A L I N G W I T H N O D E . J S

• By using a single thread with an event loop, instead of
threads, Node.js supports tens of thousands of concurrent
connections without incurring the cost of thread context-
switching.

• However, tasks in the event loop must execute quickly to avoid
blocking the queue — be careful with CPU intensive tasks.

E V E N T - D R I V E N P R O G R A M M I N G

• Event-driven programming — a programming paradigm
in which the flow of the program is determined by events
such as user actions, sensor outputs, or messages from
other programs.

• The dominant paradigm used in graphical user interfaces
and applications (e.g. JavaScript web apps) that are
centered on performing certain actions in response to
user input.

• Writing event-driven programs is easy if the programming
language provides high-level abstractions, such as closures.

• JavaScript is an event-driven language — it has always
dealt with user interaction, employed an event loop to
listen for events, and callback functions to handle them.

N O D E . J S I S E V E N T - D R I V E N
A N D A S Y N C H R O N O U S

• Node.js brings event-driven programming to the server.

• The fundamental design behind Node is that an application is
executed on a single thread, and all events are handled
asynchronously.

• Node.js uses the event loop architecture to make programming
highly scalable servers both easy and safe.

• Programming concurrency is hard — Node sidesteps this
challenge while still offering impressive performance.

• To support the event-loop approach, Node supplies a set of
nonblocking I/O modules — these are interfaces to things such as
the filesystem or databases, which operate in an event-driven
way.

P R E S E N T A T I O N O U T L I N E

• What is Node.js?

• Design of Node.js

• Modules

• Web frameworks for Node.js

• Node tools for front-end developers

M O D U L E S

• Modules are reusable software components that
form the building blocks of applications.

• Modular programming is a software design
technique that emphasizes separating the
functionality of a program into independent,
interchangeable modules such that each covers
only one aspect of the desired functionality.

• Modules should be FIRST:
• Focused.
• Independent.
• Reusable.
• Small.
• Testable.

M O D U L E S I N J A V A S C R I P T

• Benefits of modular programming include:
• easier understanding of your large system
• simplified debugging
• separation of concerns
• an increase in maintainability
• code reuse

• Although ECMAScript 5 does not have built-in
support for modules, there are ways to define
modules in JavaScript:
• the module pattern,
• CommonJS modules (the inspiration for Node modules)
• AMD (Asynchronous Module Definition)

M O D U L E P A T T E R N I N E C M A S C R I P T 5

var testModule = (function () {
var counter = 0;

return {
incrementCounter: function () {
return counter++;

},

resetCounter: function () {
console.log("counter value prior to reset: " + counter);
counter = 0;

}
};

})();

// Increment our counter
testModule.incrementCounter();

// Check the counter value and reset
testModule.resetCounter();

C O M M O N . J S M O D U L E S

• CommonJS is a project with the goal of specifying an ecosystem
for JavaScript outside the browser (for example, on the server)

• CommonJS provides specification for JavaScript environments
that attempts to make engine implementations more
compatible.

• CommonJS describes a simple syntax for JavaScript programs to
require (or import) other JavaScript programs into their context.

• The Node module system is an implementation of the
CommonJS specification.

• A Node module is a JavaScript library that can be modularly
included in Node applications using the require() function.

C O M M O N . J S M O D U L E S

//math.js
exports.add = function() {

var sum = 0, i = 0, args = arguments, l = args.length;
while (i < l) {

sum += args[i++];
}
return sum;

};

//increment.js
var add = require('math').add;
exports.increment = function(val) {

return add(val, 1);
};

//program.js
var inc = require('increment').increment;
var a = 1;
console.log(inc(a)); // 2

M O D U L E S I N N O D E . J S

• Node core is made up of about two dozen
modules, some lower level ones like events and
stream, some higher level ones like http.

// Load the http module to create an http server.
var http = require('http');

// Configure our HTTP server to respond with Hello World
var server = http.createServer(function (request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.end("Hello World\n");

});

// Listen on port 8000, IP defaults to 127.0.0.1
server.listen(8000);

// Put a friendly message on the terminal
console.log("Server running at http://127.0.0.1:8000/");

http://127.0.0.1:8000/

M O D U L E S I N N O D E . J S

• Node core is supposed to be small, and the modules
in core should be focused on providing tools for
working with common protocols and formats in a way
that is cross-platform.

• For everything else there is npm; anyone can create a
node module that adds some functionality and publish
it to npm.

• The idea of many small programs working together is
one of the foundations of Node.js.

• This helps us steer clear of large monolithic libraries
such as jQuery — libraries of that size would be split
up into smaller modules, allowing the user to use only
what they require.

N P M

• npm makes it easy for JavaScript developers to share
and reuse code in the form of modules.

• npm comes preinstalled with Node distributions.

• npm runs through the command line and allows to
retrieve modules from the public package registry
maintained on http://npmjs.org

• It is the fastest growing package manager:
http://www.modulecounts.com

http://npmjs.org/
http://www.modulecounts.com/

• A package is a folder containing a program described by
a package.json file — a package descriptor.

• A package descriptor is used to store all metadata
about the module, such as name, version, description,
author etc.

• This file is a manifest of your Node project and should
be placed at your project root to allow:
• reinstalling your dependencies by defining a dependencies

field;
• publishing your module to npm by defining the name and

version fields,
• storing common scripts related to the package by defining the

scripts object.

P A C K A G E . J S O N

P R E S E N T A T I O N O U T L I N E

• What is Node.js?

• Design of Node.js

• Modules

• Web frameworks for Node.js

• Node tools for front-end developers

E X P R E S S . J S

• Express.js is the most popular Node.js web
application framework used today.

• Express.js is a minimal yet flexible and
powerful web development framework
inspired by Sinatra.

• Features of Express.js include:
• Robust routing
• Focus on high performance
• View system supporting several template engines
• Content negotiation
• Executable for generating applications quickly

E X P R E S S . J S

var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World!');

});

var server = app.listen(3000, function () {

var host = server.address().address;
var port = server.address().port;

console.log('Listening at http://%s:%s', host, port);

});

R E S T I F Y

• Restify is a Node.js module built specifically to enable
you to build correct / strict REST web services that
are maintanable and observable.

• It intentionally borrows heavily from express as that is
more or less the de facto API for writing web
applications on top of node.js.

• Express' use case is targeted at browser applications
and contains a lot of functionality, such as templating
and rendering, to support that. Restify does not.

• Restify gives control over interactions with HTTP and
full observability into the latency and the other
characteristics of the applications — automatic DTrace
support for all your handlers.

S A I L S . J S

• Sails is the most popular MVC framework for Node.js built
on top of Express and inspired by Ruby on Rails.

• Sails.js API scaffolding (blueprints) allows to automatically
build RESTful JSON API for your models.

• Sails bundles a powerful ORM, Waterline, which provides
a simple data access layer that just works, no matter what
database you're using.

• Sails supports WebSockets with no additional code — Sails
translates incoming socket messages for you, they're
automatically compatible with every route in your Sails app.

K O A . J S

• Koa is a next-generation web framework
designed by the team behind Express, which
aims to be a smaller, more expressive, and
more robust foundation for web applications
and APIs.

• Koa employs generators, a feature that’s
a part of the ECMAScript 6 specification,

• Koa aims to save developers from the
spaghetti of callbacks, making it less error-
prone and thus more manageable.

G E N E R A T O R S I N E C M A S C R I P T 6

• The function* declaration defines a generator
function:

• Generators are functions which can be exited
and later re-entered. Their context (variable
bindings) will be saved across re-entrances.

• Calling a generator function does not execute
its body immediately; an iterator object for the
function is returned instead.

function* name([param[, param[, ... param]]]) {
statements

}

G E N E R A T O R S I N E C M A S C R I P T 6

function* idMaker(){
var index = 0;
while(index < 3)
yield index++;

}

var gen = idMaker();

console.log(gen.next().value); // 0
console.log(gen.next().value); // 1
console.log(gen.next().value); // 2
console.log(gen.next().value); // undefined

• When the iterator's next() method is called, the generator
function's body is executed until the first yield expression.

• The next() method returns an object with a value property
containing the yielded value and a done property which indicates
whether the generator has yielded its last value.

P R E S E N T A T I O N O U T L I N E

• What is Node.js?

• Design of Node.js

• Modules

• Web frameworks for Node.js

• Node tools for front-end developers

N P M O N T H E C L I E N T - S I D E

• A common misconception about Node and npm is that
they can only be used for server side JavaScript
modules.

• Node.js is not limited to the server-side — the npm
modules themselves can be whatever you want.

• The cutting-edge tools for the latest versions of HTML
and JavaScript are developed in the Node universe:
• package managers
• task runners
• generators

• npm is the gateway to other tools.

B R O W S E R I F Y

• Browserify is a build tool that lets you use Node's
CommonJS module system for frontend JavaScript
development.

• Browserify tries to convert any Node module into code
that can be run in browsers — it brings modularity to
the browser.

• It integrates seamlessly with npm, and you can use the
same npm workflow for installing and publish modules.

• Browserify also opens up the possibility of code reuse
between the server and the client.

B R O W S E R I F Y

• Browserify starts at the entry point files that you give it and
searches for any require() calls it finds using static
analysis of the source code's abstract syntax tree.

• For every require(), browserify resolves those modules to
file paths and then searches those paths for require() calls
recursively until the entire dependency graph is visited.

• Each file is concatenated into a single javascript bundle file.

• This means that the bundle you generate is completely self-
contained and has everything your application needs to
work.

B O W E R

• Bower is to the web browser what npm is to Node.js.

• It is a package manager built by Twitter for your
front-end development libraries like jQuery,
Bootstrap etc.

• Bower is optimized for the front-end. Bower uses
a flat dependency tree, requiring only one copy for
each package, reducing page load to a minimum.

• It works similarly to npm, using bower.json file and
providing command line interface with bower
install, bower init and bower search
commands.

G R U N T

• Grunt is the JavaScript Task Runner which allows to
automate repetitive tasks like minification, compilation,
unit testing, end-to-end testing, linting, etc.

• Grunt and Grunt plugins are installed and managed via
npm.

• Once installed, we can execute grunt on the command
line. This tells Grunt to look for a Gruntfile.js file which
typically resides next to package.json in the root directory
of the project.

• Gruntfile is the entry point to our build, which can define
tasks inline, load tasks from external files and configure
these tasks.

// Every Gruntfile defines the "wrapper" function
module.exports = function(grunt) {

// Project and tasks configuration
grunt.initConfig({
pkg: grunt.file.readJSON('package.json'),
jshint: {
files: ['Gruntfile.js', 'src/**/*.js', 'test/**/*.js']

},
watch: {
files: ['<%= jshint.files %>'],
tasks: ['jshint']

}
});

// Loading Grunt plugins and tasks.
grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-contrib-watch');

// A very basic default custom task.
grunt.registerTask('default', 'Log some stuff.', function() {
grunt.log.write('Logging some stuff...').ok();

});
};

Y E O M A N

• Yeoman has become the de-facto standard
scaffolding toolkit for creating modern JavaScript
applications.

• Yeoman is build around generators for particular
types of projects and provides the infrastructure for
running them.

• Yeoman helps you kickstart new projects,
prescribing best practices and tools to help you
stay productive.

• Yeoman as well as its generators are distributed as
a Node modules.

Y E O M A N W O R K F L O W

• The Yeoman workflow comprises three types
of tools for improving your productivity when
building a web app:
• the scaffolding tool (yo),
• the build tool (Grunt, Gulp, etc)
• the package manager (like Bower and npm).

C R E A T E A N E W
W E B A P P

yo webapp
yo angular
yo express

H A N D L E
D E P E N D E N C I E S

bower search
bower install

P R E V I E W ,
T E S T , B U I L D

grunt serve
grunt test
grunt

C O N C L U S I O N S

• The fundamental design behind Node is that an
application is executed on a single thread, and all
events are handled asynchronously.

• Like any technology, Node is not a silver bullet. It just
helps you tackle certain problems and opens new
possibilities.

• Node is extremely extensible, with a large volume
of community modules that have been built in the
relatively short time since the project’s release.

• Among modules there are many tools that can
improve also client-side web development.

R E F E R E N C E S

• Node: Up and Running — Tom Hughes-Croucher, Mike Wilson
O’Reilly Media, Inc., 2012, available online at:
http://chimera.labs.oreilly.com/books/1234000001808

• Speaking JavaScript — Axel Rauschmayer, O’Reilly Media, Inc., 2014
http://speakingjs.com

• Node.js in Action — Alex Young, Bradley Meck, and Mike Cantelon
with Tim Oxley, Marc Harter, T.J. Holowaychuk, and Nathan Rajlich,
Manning Publications, 2017

• JavaScript Guide at Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

• http://jsbooks.revolunet.com

• http://javascript.crockford.com

http://chimera.labs.oreilly.com/books/1234000001808
http://speakingjs.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
http://jsbooks.revolunet.com/
http://javascript.crockford.com/

