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PLAN AR OVER THE CELL ROUTING 

Srinivasa R. Danda, M.S. 

Western Michigan University, 1995 

Planar over the cell routing in standard cell layouts is an important prob­

lem and it has been studied quite extensively. In two layer standard cell design 

methodology, Ml layer is typically used for connections internal to the cell, and 

the M2 layer is available for routing over-the-cell. In this thesis, we consider the 

Two Row Maximum Planar Subset(TRMPS) problem in Over-The-Cell routing. 

The TRMPS problem requires selection of the maximum planar subset of nets, 

which can be routed between two rows of terminals in a cell row. This problem 

was first encountered by Cong, Liu, and Preas [3]. They stated the complexity 

of this problem to be unknown, and presented a min{l, d(�)} approximation al­

gorithm, where k is the number of tracks available over the cell area and d( S) is 

the density of a solution S.

We show that TRMPS problem can be solved optimally in polynomial time. 

We present a O(kn2) dynamic programming algorithm for the TRMPS problem, 

where n is the number of nets. Our algorithm can also be extended to solve the 

TRMPS problem, in the presence of pre-routed nets, a chosen subset of nets, as 

well as for planar channel routing. We also apply our technique to obtain a 0.5 

approximation, for over the cell routing in middle terminal model, thus improving 

the best known existing algorithm. The weighted version of the TRMPS problem, 

as well as, all the extensions can also be solved in O(kn2) time. 
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CHAPTER I 

INTRODUCTION 

Over The Cell Routing 

Channel routing in standard cell layouts is an important problem in VLSI 

design and as a result, it has been studied quite extensively (see chapter 7 of [12)). 

In fact, existing channel routers can produce solutions, very close to optimal, 

for most channels [11]. However, further reduction in channel height has been 

obtained by routing some nets in over-the-cell areas. This style of routing is called 

over-the-cell routing [13, 5, 1, 4]. With the availability of more metal routing 

layers, over-the-cell routing has not only become feasible, but also necessary to 

achieve high density layout. 

The over the cell channel routing problem(OTC-CRP), is a generalization 

of the conventional channel routing problem(CRP), and it follows naturally from 

the intractability of CRP, that the OTC-CRP is also NP-hard. Therefore research 

has been concentrated on the development of heuristic algorithms. 

In two layer standard cell design methodology, Ml layer is typically used 

for connections internal to the cell, and the M2 layer is available for routing 

over-the-cell. Figure l(a) shows the net connections, in three consecutive cell 

rows, Ro, R1, and R2, of a standard cell layout. Figure l(b) shows the set of 

nets that are suitable for routing over the cell row R1. In a HCVC (Horizontally 

Connected Vertically Connected) model (See Section I), the main problem in two 

layer over the cell routing is to select a maximum planar subset of nets which 

are suitable for routing in a single layer, available over the cell rows [3]. The 
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remaining connections are completed in the channel. We call this problem, the 

Two Row Maximum Planar Subset (TRMPS) problem. Figure l(c) shows the 

maximum planar subset of nets, that can be routed over R1 , which is an optimal 

solution, for the instance of the TRMPS problem, shown in Figure l(b). Notice, 

that the tracks are shared between the top row nets and the bottom row nets, so 

as to efficiently utilize the over-the-cell area. 

(b) 

(a) (c) 

Figure 1. An Example of the TRMPS Problem. 

The TRMPS problem, is formally defined as follows. Given two rows of 

terminals T = {t1, t2, ... , tL} and B = {b1,b2, ... ,bL} and two sets of nets NT = 

tracks between the two rows, find the maximum planar subset Np � NT U N8

of the two sets in k tracks. We call this problem as the Two Row Maximum 
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Planar Subset problem (TRMPS). In the weighted version of this problem, each 

net Ni E N7 UN8 is assigned a weight Wi, and it is required to find the maximum 

weighted planar subset. We call this problem as the Weighted Two Row Maximum 

Planar Subset problem (WTRMPS). 

The TRMPS problem was first encountered in Over the Cell routing in 

the BTM-HCVC model, by Cong, Liu and Preas [3]. They stated that the 

complexity of the problem is unknown and presented an approximation algorithm 

with a performance ratio of min { 1, d(�)
}, where k is the number of tracks available

and d(S) the density of the solution, for solving this problem. Since then, the 

complexity of this problem has remained open. 

The single-row version of the TRMPS problem is to find a maximum planar 

subset of nets, on a row of terminals, using a fixed number of tracks, on one side of 

the terminals. This problem is called the One-Row Fixed height Planar Routing 

(OFPR) problem, and a polynomial algorithm, that solves this problem optimally, 

was presented in [3]. lnfact, we use this algorithm in the early stages of solving 

the TRMPS problem. 

There are several simpler variants of the TRMPS problem, which can be 

easily solved in polynomial time. The simplest variant is, when there is only one 

track between the terminal rows. In this case, the optimal solution can be ob­

tained, by taking the maximum independent set in the interval graph, constructed 

from the corresponding intervals of the nets in N7 U N8. Another variant of this 

problem, that can also be solved easily, is the topological version of the prob­

lem. Here, the nets are not assigned to any of the tracks, but are topologically 

routed. In this case, the optimal solution can be found, by using the algorithm 

for solving the OFPR problem, independently for the two terminal rows T and B, 

assuming that atleast d number of tracks are available between the terminal rows, 
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where d is the density of maximum topologically planar subset of combined set 

of nets. Yet another variant of this problem, has the region between the terminal 

rows, vertically divided into two sub-regions. This is called the HCVD (Horizon­

tally Connected Vertically Divided) model [3). In this case, the upper and lower 

regions can be independently routed, by applying the algorithm for solving the 

OFPR problem, to the top and bottom terminal rows respectively. 

In all the above variants, there is no track sharing, i.e, no track is shared 

by the nets belonging to both the top and bottom terminal rows. It is precisely 

the track sharing and not the net selection, that causes the main difficulty in 

optimally solving the TRMPS problem. Infact, the TRMPS problem is very close 

to another problem called the Two Maximum Planar Subsets problem (TMPS). 

Given a row of terminals and a set of nets, the TMPS problem is to find two 

planar subsets of the nets, with maximum combined cardinality. This problem 

is equivalent to the problem of finding the maximum bipartite subgraph in a 

circle graph ( or equivalently in an overlap graph), which is a known NP-complete 

problem [10, 8). 

We show that the TRMPS problem can be solved optimally in O(kn2 ) time. 

We use a dynamic programming approach followed by a backtracking procedure to 

solve this problem. We have extended our algorithm to solve several variants of the 

TRMPS problem listed below, with no additional penalty in the time complexity. 

1. Zero Dogleg Planar Channel Routing: There exist some nets

of the form (ti , bi ), such that, ti ET and b1 E B. This problem arises in planar 

channel routing, which has been studied extensively [2, 9, 14). 

2. TRMPS with Pre-routed Nets: Some of the nets which are critical,

are already routed and the objective of this problem is to find the maximum planar 

subset of the remaining set of nets such that, the overall solution which includes 
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the pre-routed nets is planar and is maximum. 

3. TRMPS with a Chosen Subset of Nets: This is a generalization

of the TRMPS problem with pre-routed nets. Unlike the case of pre-routed nets, 

the tracks in which the chosen subset of nets are routed are not initially specified. 

4. An Improved Approximation for Over The Cell Routing in

MTM (Middle Terminal Model) Layouts: If the terminals on the same 

column in a cell row are equipotential, as in MTM layouts, then the problem of 

finding the maximum planar independent subset is shown to be NP-hard [13]. 

In the same paper, authors developed an approximation algorithm with a per­

formance ratio of p 2 0.5 max{l, �}, where k is the number of tracks available 

between the terminal rows and d is the net density. In this thesis, we present a 

0.5 approximation algorithm for this problem. 

The rest of the thesis is organized as follows. In the next Section, we discuss 

the BTM-HCVC model and define the required terminology. In the next chapter 

we present a detailed description of our algorithm. In Chapter III, we discuss 

the extensions of our algorithm to several variants of the TRMPS problem, and 

conclude with Chapter IV. 

Preliminaries 

As mentioned earlier, the TRMPS problem was encountered in over-the-cell 

routing in the BTM-HCVC model. The HCVC (Horizontally Connected Vertically 

Connected) model, which is a type of BTM (Boundary Terminal Model), is shown 

in Figure 2. In this model, the terminals and the feedthroughs are on the Ml layer. 

The power bus is on the M2 layer, in the channel just above the top terminal row, 

and the ground bus is on the M2 layer, in the channel just below the bottom 

terminal row, In the channels, the horizontal wire segments (trunks) are routed 
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on M2, and the vertical wire segments (branches) are routed on Ml. Hence, the 

entire M2 layer over the cells, is available for over-the-cell routing. 

Let L denote the total number of columns in a cell row, numbered from left 

to right. In BTM-HCVC, the terminals are located at the intersection points of 

the upper or the lower horizontal boundaries of a cell row and the vertical columns. 

If a terminal is not used by any net, then that terminal is called a vacant terminal. 

If both the upper and lower terminals of a column are vacant, then that column 

is called a vacant abutment. The total number of tracks available in the OTC 

area of a cell row, for routing, is denoted by k ( cell height), and the tracks are 

numbered from top to bottom. Then, an instance of the TRMPS problem can be 

formally represented as a 7-tuple I= (T, B,N7,N8 , k, n, L). We call an instance

of the TRMPS problem, as a Canonical Instance, if there are no vacant abutments 

in that instance. If n is the number of nets in a canonical instance I, then the 

number of columns (L ), can be at most 2n. This is because, in the worst case, 

each column has atmost one vacant terminal, either in the top or the bottom 

terminal row. 

Figure 2. BTM-HCVC Model. 
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In this thesis, we consider only canonical instances, and we assume that all 

the nets are two terminal nets, unless explicitly stated otherwise. It is easy to see 

that all results reported in this thesis are applicable to non-canonical instances. 

A net is denoted by a pair of terminals. A net (ti, t1 ), where 1 � i, j � L, is called 

a top net. Similarly, a net (bi,b1 ), where 1 � i,j � L, is called a bottom net. 

We define the span of a two terminal net, as the absolute difference between the 

column numbers on which the terminals of the net are located. For example, the 

span of the net Na. = (ti , t1 ), is given by, 

span(Na.) =I i - j I 

We define a region Rm of a cell row, as a rectangular region of the cell row, 

containing the columns in the range [1,m], where 1 � m � L. A net (ti,t1 ) (or 

bi , b1 ) ), is said to be completely contained in the region Rm, if 1 � i, j � m. 
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CHAPTER II 

THE OPTIMAL ALGORITHM 

In this chapter, we discuss the optimal algorithm in detail. We will give 

an overview of the algorithm in the next section, and detailed description of each 

phase will be discussed in the subsequent sections. 

Overview of the Algorithm 

In this section, we present an overview of our algorithm for solving the 

TRMPS problem optimally. We use T(j) to denote the optimal TRMPS solution 

in a rectangular region Rj , The T(j) solution is computed for all j, 1 � j � L, 

using a dynamic programming technique. Finally, the T(L) solution gives the

optimal solution, for a given instance I of the TRMPS problem. In order to 

compute the T(j) solution, the region Ri is partitioned into two or three sub 

regions. depending on the existence of top nets and bottom nets, completely 

contained in Rj , with one of their terminals at column j, as shown in Figure 3. 

Let N rx. = (ti , ti) be the only net with a terminal at column j, and which is

completely contained in Ri . In this case, Ri is divided into an L-shaped region R, 

and a rectangular region r which consists of a single row of tenninals (Figure 3(a) ). 

The optimal T(j) solution, may or may not contain Na. If Na is included, then 

the T(j) is summation of the optimal solutions in the L-shaped region R and the

rectangular region r, and the net Na itself. If Na is not included, then the T(j) 

solution is the same as the T(j - 1) solution. The maximum of the above two 

solutions, is taken as the optimal T(j) solution. 
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Let No. = (ti, tj) and NfJ = (bm, bj) be the nets with terminals at column j, 

and which are completely contained in 'Rj . Then, the optimal T(j) solution may 

include 

1. None of the nets No. and NfJ : In this case, the T(j) solution is the

same as the T(j - 1) solution. 

2. Only the net No. : In this case, the T(j) solution can be computed as

shown in Figure 3(a). 

3. Only the net NfJ : In this case also, the T(j) solution can be computed

as shown in Figure 3( a). 

4. Both the nets No. and NfJ : In this case, if i =I- m, then nj is partitioned

into an L-shaped region R, and two rectangular regions r1 and r2, which consist 

of a single row of terminals (Figure 3(b) ). If i = m, then 'Rj is partitioned into a 

rectangular region R, which consists of two rows of terminals, and two rectangular 

regions r1 and r2, which consist of a single row of terminals (Figure 3( c)). Then, 

the T(j) is simply summation of the optimal solutions in the regions R, r1 and 

r2, and the nets No. and NfJ . 

The optimal T(j) solution, is the maximum among all the above four so­

lutions. 

klttltfultfl±t:tilr,tttt:J:::jt:tij kt����ttttttfft�t��11:t:l k���tttt!tt:��11!tt�� 
L L L 

w � w 

Figure 3. Schematic Overview of the Algorithm ALGO-TRMPS. 

9 



From the above discussion, it is clear that, the single row solutions and the 

solutions in the L-shaped regions need to be computed, before computing the two 

row solutions. Our algorithm consists of the following three phases. 

1. In the first phase, we compute the single row solutions of the terminal

rows T and B, individually. Each single row solution of a terminal row, is an 

(i,j,t) solution, where 1 � i,j �Land 1 � t � k. This problem, is equivalent 

to the one-row fixed-height planar routing (OFPR} problem, described in Chapter 

1. For the sake of completeness we describe the algorithm presented in [3] in this

chapter. Using this algorithm we compute the (i,j, t) solutions of the terminal 

rows T and B, which we denote by St(i,j, t) and Sh(i,j, t) respectively. 

2. In this phase, we compute the maximum two row planar subset (T(j))

for the given terminal rows, where 1 � j � L by using a dynamic programming 

approach. Here, the St(i,j,t) and Sh(i,j,t) solutions, computed in the first phase 

will be used. As described above, finding the T(j) solution also involves finding 

the maximum planar subset in L-shaped regions. We describe this in detail, in 

this chapter. 

3. The solution obtained in phase 2, gives the number of nets in the optimal

solution for a given instance of the TRMPS problem. In this phase, the actual 

planar subset of nets in the optimal solution, is determined by backtracking. 

Single Row Maximum Independent Subset 

In this section, for the sake of completeness we present an overview of the 

algorithm presented in [3], which is essentially an extension of the algorithm for 

maximum independent set in circle graphs [6]. 

From a routing perspective, this problem is equivalent to assigning the 

maximum number of intervals to k tracks such that, if interval (i,j) is assigned 
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to track f, then no interval assigned to tracks 1, 2, ... , f - 1 should intersect 

columns i and j. Let MIS( i, j, J) denote the solution of the OFPR problem 

resulting from restricting the intervals to be in the range of (i, j] and allowing f 

tracks for routing, where 1 � i,j �Land 1 � J � k. The (i,j,J) solution is 

computed using dynamic programming. Notice that, to compute M IS(i, j, f), we 

have the following three cases: 

1. If j is vacant, then

MIS(i,j,J) = MIS(i,j -1,J) 

2. There exists a net Na with terminals j and m but m tf_ [i,j). Then,

MIS(i,j, f) = MIS(i,j - 1, f) if m tf_ [i,j) 

11-+-+-+-+-+-+-+-+-+-+-+-1-+-1-+-1-H-' t-+-1 
• 1-+-+-+-+-+-+-+-+-+-+-+-1-+-1-+-t-f-t-+-1 

Ii m 

Figure 4. Single Row Maximum Independent Set. 

3. There exists a net N
a 

with terminals j and m such that m E (i,j), then

11 



(a) Excluding the net N,. in the solution leads to

MIS(i,j,J) = MIS(i,j -1,J) 

(b) Including the net N,. in the solution results in

MIS(i,j, J) = MIS(i, m -1, J) + MIS(m + l,j -1, f- 1) + 1 

As shown in Figure 4, if m E [i, j), we need to check if including N
,. 

will

lead to a better solution or not. Therefore, 

MIS(i,j,f) = max (MIS(i,j- l,J),MIS(i,m- l,f) +

MIS(m+ 1,j-1,J-1) + 1 if j' E [i,j) 

The complexity of this algorithm is given by the following theorem, stated in [3). 

Theorem 1 {3} The two-terminal net OFPR problem can be solved in O(kn2) 

time, where n is the number of nets and k is the number of available tracks. 

Using the above algorithm the maximum k-planar subsets St and Sb are computed, 

for the top and bottom terminal rows respectively, and all the intermediate solu­

tions are stored. 

The weighted version of the OFPR problem is to find the maximum weighted 

independent subset of nets, that can be routed in k tracks, such that the selected 

nets will not overlap with each other. 

Corollary 1 The weighted version of the OFPR problem can be solved in O(kn2) 

time. 
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Two Row Maximum Planar Subset 

In this section, we describe the algorithm ALGO-TRMPS, that computes 

the T(j) solutions. Since, computing the T(j) solution, involves computing the 

solutions in L-shaped regions. we first describe a scheme to represent an L-shaped 

region. 

Figure 5 shows two types of L shaped regions. We denote an £-shaped 

region shown in Figure 5(a), by the 3-tuple (i,j, !), where 

1. i is the column number of the terminal ti, which is the rightmost corner

of the L-shaped region, in the top terminal row. 

2. j is the column number of the terminal b1, which is the rightmost corner

of the L-shaped region, in the bottom terminal row. 

3. f is the track, that forms part of the horizontal boundary of the L­

shaped region (See Figure 5(a)). 

The maximum planar subset in the L-shaped region, shown in Figure 5(a), 

is denoted by L( i, j, f). Following the same convention described above, the in­

verted L-shaped region, shown in Figure 5(b) is denoted by (j, i, f), and the so­

lution in this region is denoted by L(j, i, !). The method of computing solutions 

in L-shaped regions is described in this chapter. 

While computing the T(j) solution in the rectangular region R1, the algo­

rithm deals with the following three cases. 

Case 1: There exists a top net Nn = (ti, t1), which is completely contained 

in 'R1(Figure 6(a)).

Case 2: There exists a bottom net NfJ 

contained in R1 (Figure 6{b)). 

(bi, b1 ), which is completely 

Case 3: There exists a top net Nn (t1 , t1 ) , and a bottom net NfJ 
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1 

f _____ ,.,.,,.,, __ 

1 1 

L(ij,f) L(j,i,f) 

Figure 5. L-Shaped Regions. 

( bm, bi ), which are completely contained in ni (Figure 6( c)). 

Let us consider each of the above listed cases in detail. 

1 

f 

Case 1: Depending on whether the net N
,. is in the optimal T(j) solution, or 

not, the algorithm has to deal with the following sub-cases. 

Case l(a): Excluding the net N,. leads to 

T(j) = T(j 
- 1)

Case l(b): If the net N,. is included, such that, it is assigned to a track f, 

1 :'.S f '.S k, then we have the following solution, which we denote by T'(j). 

T'(j) = St(i + 1,j -1,f -1) + 1 + L(i -1,j -1,f + 1) 

By considering all possible track assignments, the track to which N,. can be as­

signed is found, so as to maximize the T(j) solution. 

Then, the T(j) solution obtained by choosing N
,.
, which we denote by T"(j), is 
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17 

L L 

given by, 

(a) (b) 

Figure 6. Cases 1 and 2 in ALGO-TRMPS. 

T"(j) = mk:{T'(j)} 
f=l 

The optimal T(j) solution will then be the maximum of the two solutions obtained 

by including and excluding the net N,.,. . Therefore, 

T(j) = max{T(j - 1), T"(j)}

Case 2: This is symmetric to Case 1. 

Case 3: Here, the following three sub-cases are possible (Figure 7). 

Case 3(a): Span(N,.,.) > Span(N(J) 

Case 3(b): Span(N,.,.) < Span(NfJ) 

Case 3( c): Span(N,.,.) = Span(NfJ) 

For each of the above sub-cases, the following solutions are computed. 

W0(j): Two row solution of Rj , which does not consist of N,.,. and NfJ. 

W1 (j): Two row solution of Ri , which consists of only N,.,.. 

W2 (j): Two row solution of Rj , which consists of only NfJ . 

W12(j): Two row solution of Rj , which consists of N,.,. and NfJ. 
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tion. 

The maximum of Wo, W1, W2 and W12 solutions is the optimal T(j) solu-

I m 

(a) 

L 

f 
f+l�\l,i,l<-f'f ... "+'+++++---++++++-IH 

(b) 

Figure 7. Cases 3(a),(b) and (c). 

(c) 

If both the nets N0 and NfJ are included in the optimal solution T(j), then 

a simple observation, regarding the track assignment of the nets N0 
and NfJ , is 

stated in the following lemma. 

Lemma 1 If N
0 

= (t1,t1) and NfJ = (bm ,b1), are two nets, which are completely

contained in R1 , and the optimal W12(j) solution has the net N0 in track Ji, and 

NfJ in track h such that 1 :s; Ji < h :s; k, then, 

1. If span(N
0

) > span(NfJ), then, the solution in which, the net NfJ zs

assigned to a track Ji + 1 is also an optimal W12(j) solution. 

2. If span(N
0

) < span(N(J), then, the solution in which, the net N
0 

zs

assigned to a track h - 1 is also an optimal W12(j) solution.

3. If span( N 0) = span( NfJ), then, the solution in which, the net NfJ is

assigned to a track Ji+ 1, and the solution in which, the net N0 is assigned to a 

track h - 1 are also optimal W12(j) solutions. 

Proof: If span(N
0

) > span(NfJ) then, no other net could have been assigned to 
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any of the contiguous tracks, in the range (fl, J2), between the columns in the 

range [m, j], as this would violate the planarity property. Therefore, if the net 

Nfl is assigned to the track Ji+ 1, then the resulting W12(j) solution, would still 

be optimal. The other cases stated in this lemma, can also be proved in a similar 

manner. □.

We now consider the three sub-cases listed above, in detail. 

Case 3(a): In this case, since span(Na) > span(Nfl), column l is to the left of 

column m (Figure 7(a)). The W0(j) solution, in which both the nets are excluded 

is given by, 

Wo(j) = T(j - 1) 

The W1(j) solution can be computed as follows. Suppose, the net Na is assigned 

to track J, 1 � f � k, then, the following solution, which we call W{(j). 

W{(j) = St(l + 1,j - 1, f
- 1) + 1 + L(l - 1,j - 1, f + 1)

By trying all possible track assignments, the track to which Na can be assigned 

is found, so as to maximize the W1 (j) solution. The W1 (j) solution is given by, 

W1(j) = m�{W{(j)} 
f=l 

The W2(j) solution can be computed in a similar manner as W1(j). 

The W12(j) solution can be computed as follows. From lemma 1, it is clear 

that in the optimal W12(j) solution, the nets Na and NfJ are assigned to adjacent 

tracks. Suppose, the net Na is assigned to track J, and Nfl in track J + 1, then 
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the following solution, which we call W{
2 is obtained. 

L(l -1, m -1, f + 1) + St(l + 1, j -1, f
-

1)

+ Sb(m+l,j-1,J+2)+2

The adjacent tracks, to which Na. and Nfl can be assigned is found, so as to 

maximize W12(j). 

k-1 { 1 ( .)}W12 = max W12 J 
f=l 

Then, the optimal T(j) solution will be the maximum of Wo, W1, W2 and W12 

solutions. Therefore, 

Case 3(b): This is symmetric to Case 3(a). 

Case 3(c): In this case, span(Na.) = span(N{I). (Figure 7(c)). 

Here, the W0(j), W1 (j) and W2(j) solutions are the same as for Case 

3(a) and Case 3(b) However, the W12 solution differs slightly. According to the 

Lemma 1, the nets Na. and Nfl can be assigned to adjacent tracks (say J and J + 1 

respectively) . Then the W{
2 

will be 

T(l -1) + St(l + 1,j -1, f - 1)

+ Sb(l + 1,j -1, f + 2) + 2

By trying all possible track assignments, we can find two adjacent tracks, on which 
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we can place Na and Nf-J so as to maximize the W12 solution. Therefore, 

Then the optimal solution is given by, 

T(j) = 
max{Wo(j), W1(j), W2(j), W12(j)} 

We have the following theorems on the time complexity and optimality of 

ALGO-TRMPS. 

Theorem 2 The time complexity of ALGO-TRMPS is O(kn2 x f(k, n)), where 

n is the number of nets, k is the number of tracks availa ble on over-the-cell area 

and f(k, n} is the time to compute solution in each L-shaped region. 

Proof: At each column j the algorithm ALGO-TRMPS computes the following. 

1. In the worst case at column j, ALGO-TRMPS may compute k number

of T(j) solutions and finds the maximum among them. The computation of each 

T(j) solution may involve computation of two row solutions in O(kj) number of L­

shaped regions. Assume that time required to compute solution in each L-shaped 

regions is f(k, n). 

Hence at column j the total computation time is O(k + kj x f(k, n)) and 

for L columns the total computation time will be 

L)k + kj x f(k, n))
j=l 
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Since L = O(n), the total time is

kn +k x J(k, n) n(n

2
+ l)

=kn + f (k, n) x O(kn
2) 

= O(f (k, n) x (kn
2) 

Hence, the theorem. □

Now, we state the corollary for the WTRMPS problem. 

Theorem 3 Given a n insta nce I, of TRMPS problem, ALGO-TRMPS produces 

a n optimal solutio n. 

Proof: We prove this theorem by induction. 

Basis: When j = 1, ALGO-TRMPS generates an optimal solution, which 

is null. 

Induction Hypothesis: Assume that ALGO-TRMPS has generated an 

optimal solution, T(j), for j columns. 

Inductive Step: Now we have to prove that, for j + 1 columns, the T(j + 1) 

solution, generated by this algorithm is also optimal. 

If I has an j + 1 solution S with maximum number of nets, then S may be 

equal to T(j) or greater than T(j). 

At column j + 1, one can have any of the following situations. 

1. There can be only one net, Na = (ti, ti+1) or NfJ = (bi, b1+1), with a

terminal at column j + 1, such that 1 � i < j + 1. In this case, the optimal solution 

may or may not contain the net Na or NfJ . Since, ALGO-TRMPS considers both 

the cases, and takes the maximum of the two solutions obtained, by taking and 

not taking Na(NfJ), it generates an optimal T(j + 1) solution. 
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2. There are two nets N0 = (ti, tH1) and Nfi = (bi, b1+1), with one of their

terminals at column j + 1, such that 1 � i, m < j + l. Here, the optimal solution 

may consist of (a) none of the nets N0 and Nfi, (b) only the net Nm (c) only the 

net Nfi, or ( d) both the nets N0 and Nfi . 

Since, ALGO-TRMPS considers all the above cases exhaustively, and takes 

the maximum of the four solutions obtained, for all those cases, it generates an 

optimal T(j + 1) solution □.

In this section, we discussed all the possible cases the algorithm has to 

deal with, while computing the two row maximum planar subset. So far, we have 

assumed that, we already know the solutions in the L-shaped regions. In the 

following subsection we give a detailed description of computing the maximum 

planar subset in an L-shaped region. 

Maximum Planar Subset in an L-Shaped Region 

In this section, we describe the method of computing the solutions in an L­

shaped region ( i, j, !), where i < j. The solutions in an inverted L-shaped region 

(where i > j), can also be computed in a similar manner. The L(i,j, f) solutions 

can be classified into the following four types depending on the existence of a 

bottom net which is completely contained in R1, with b1 as one of its terminals. 

Case 1: There is no bottom net, which is completely contained in R1, with b1 as 

one of its terminals (Figure 8(a)). In this case 

L(i,j,f) = L(i,j- l,f) 
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Case 2: There is a net Nr, = (bm., bi), which is completely contained in Ri, such 

that, span(Nr,) < (j - i), i.e., column m is to the right of column i, as shown in 

Figure 8(b). Excluding the net Nr, leads to, 

L(i,j,J) = L(i,j- l,f) 

Let us assume that, the L(i,j, J) solution that includes the net Nr,, is maximum, 

by assigning Nr, to track Ji, such that Ji � f. Also notice that the optimal 

L( i, j, J) solution cannot consist of any other nets, that lie entirely in the L­

shaped region, represented by ( i, j, !), in the shaded area shown in Figure 8(b ). If 

any such net exists, then the L( i, j, J) solution, which includes the net Nr,, would 

not be planar. Therefore the L(i,j, J) solution remains maximum, even if Nr, is 

assigned to track h, such that f < h < fi. Therefore, we can assign Nr, to track 

f + I. Now, the L(i,j, J) solution, which includes Nr,, consists of 

1. The nets enclosed by Nr,, which is Sh(m+ l,j- l,k- f- 1).

2. The net Nr, itself, and

3. The solution of the L-shaped region, represented by L(i - 1, m - 1, !).

The L(i,j, J) solution that includes Nr,, which we denote by L'(i,j, J) is 

given by 

L' ( i, j, J) = Sh ( m + 1, j - 1, J + 2) + 1 + L( i, m - 1, J)

The optimal L( i, j, J) solution will be, the maximum of the solutions obtained by 

excluding and including the net Nr,. Therefore, 

L(i,j,J) = max{L(i,j,f - l),L'(i,j,J) 
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(a) (b) 

mi 

(c) (d) 

Figure 8. The Four Cases of L-shaped Solutions. 

Case 3: There is a net N/3 = (bm., bi ), which is completely contained in Ri, such 

that, span(N/3) = (j - i), i.e., column m and column i are the same, as shown in 

Figure 8( c ). This is similar to the Case 1, except that, the L( i, j, f) solution, which 

includes the net N/3, consists of the single row solution, in the region enclosed by 

N/3, the net Nr,, and the two row solution T(i-1). Therefore, the L(i,j, f) solution 

is given by, 

L(i,j, J) max{L(i,j - 1, J),

Sh(i + 1,j - 1, f + 2) + 1 + T(i - 1)} 

Case 4: There is a net N/3 = (bm., bi ), which is completely contained in Rj, such 

that, span(Nfl) > (j - i), i.e., column m is to the left of column i, as shown in 
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FigureA8(d).A ExcludingAtheAnetANr-, leadsA to,A

L(i,j,f) = L(i,j-1,f) 

SupposeAweAplaceAtheAnetANr-, inAtrackAJi,Af <AJi :SAk, thenATheAL(i,j, f) solution,A

thatAincludesAtheAnetANr-,, inAtrackAf1, f <AJi :SAk; denotedAbyAL'(i,j, f) isAconsistsA

ofA

1. TheAnetsAenclosedAbyANr-,, whichAisASh(mA+ 1,jA- 1,Ak - Ji - 1).

2. TheAnetANr-, itself,Aand

3. TheAsolutionAofAtheAL-shapedA region,ArepresentedAbyA(i,Am - 1,Af).

ThereforeAtheAL(i,j, f) solution,AwhichAincludesANr-, inA trackAJi isAgivenAbyA

L'(i,j, f) Sh(mA+ 1,jA- 1,AkA- JiA- 1)A+ 1A

+ L(i,m - 1,Af)

ByAvaryingA f fromAf + 1A toAk, weAcanAfindAtheAtrack,AonAwhichAweAcanAplaceANr-, 

soAasAtoAmaximizeA theAL(i,j, f) solution.A Then,AtheAL(i,j, f) solutionAweAget,AbyA

choosingANr-,, whichAweAdenoteAbyAL"(i,j, f) isAgivenAbyA

L"(i,j, f) = m1axA{L'(i,j,AJ)} 
/i=f+l 

TheAoptimalAL( i,Aj, f) solutionAwillAbe,AtheAmaximumAofAtheAsolutionsAobtainedAbyA

excludingAandAincludingAtheAnetANr-,
. ThereforeA

L(i,j, f) max{L(i,j,Af - 1),AL"(i,j, J)} 

TheAcomputationAofAeachAT(j) solution,AinvolvesA theAcomputationAofA solutionsA inA
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several L-shaped regions. Therefore, the worst case running time of the algorithm 

ALGO-TRMPS, depends on the the number of L-shaped regions. We have the 

following lemma on the number of L-shaped regions. 

Lemma 2 In canonical representation the number of L-shaped regions is O(kn2), 

where k is the number of tracks and n is the numqer of nets. 

Proof: Consider a K x L rectangular grid. The two types of L-shaped regions in

Fig 5 are presented by the 3-tuples (i,j,f) and (j,i,f) respectively. 

For a fixed value of i, where 1 < i < L, the number of L-shaped regions 

obtained by varying j from i + 1 to L and f from 1 to k, which are of type 

(i,j,f) is k(L - i), and the number of L-shaped regions of type (j,J,i) are also 

k(L - i). Therefore the total number of the L-shaped regions, for a fixed value 

of i is 2K(L - i). As i ranges from 2 to (L - I), the total number of L shaped 

regions is given by 
L-1

2 L K(L - i) 
i=2 

which is equal to K(L2 - 3L + 2) = O(kn2) □.

Lemma 3 Each L(i,j, !) solution ,where I :S i,j :S L and I :S f :S k, zs com­

puted once and it takes constant time to compute the solution. 

Proof: By the time we compute L(i,j, !) we have the following solutions at 

disposal. 

L( i', J', j') where I :S i' :S i, 1 :S j' :S j, and I :S J' < f 

L( i', J', j') where I :S i' :S i, 1 :S j' < j, and I :S J' :S f 

L( i', J', j') where I :S i' < i, 1 :S j' :S j, and I :S J' :S f 
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From the cases discussed above it can be concluded that 

L(i,j, J) = max{L(i, f - I, j), L(i,j, f') + Sh(i,j, f)} 

Since the values of L(i, f-1,j), L(i,j, f), and Sh(i,j, f) are available computation 

of L(i,j, J) takes constant time. □

Theorem 4 The computation time of ALGO-LMPS is O(kn2 ), where k is the 

number of tracks in a cell row, and n is the number of nets. 

Proof: At each column j the algorithm ALGO-LMPS computes the following. 

ALGO-LMPS may have to compute the solutions in O(jk) number of L­

shaped regions at column j. Computation of the solution for each L-shaped region 

takes constant time, since the solutions of the smaller L-shaped regions and smaller 

rectangular regions are already known. 

Hence at column j the total computation time is O(k + kj) and for L 

columns the total computation time will be 

Since L = 0 ( n), the total time is 

Hence, the theorem. □ 

�(kj) 
j=l 

k 
n(n + 1)

2 

Theorem 5 Given an Instance I, ALGO-LMPS produces an optimal solution. 
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Proof: Proof for this theorem is very similar to the proof presented for the 

Theorem 3 .  D 

In the next section we formally present our algorithm, that solves the 

TRMPS problem, optimally. 

The Optimal Algorithm 

Algorithm ALGO-TRMPS(NT,NB, n, T, B,N, L) 

Input: Sets of nets, N7,N8 , Sets of terminals, T, B. 

Number of nets n, Number of columns L, 
Output: Optimal two planar subset Np . 

Begin 
SRMPS(); 
for j = 1 to L 

case(neLtype(j) ) :  
Type 1: TRMPS(j) = Tl; 
Type 2: TRMPS(j) = T2; 
Type 3 :  case(nets_at(j)) 

type a: T RM P S(j) = T3a 
type b: TRMPS(j) = T3b 
type c: TRMPS(j) = T3c 

End(for) 
for j = L to 1 

if(T(j -1) < T(j)) 
if(type = 1) Np = Np u N0

else if(type = 2) Np = Np U Nr-, 

else if(type = 3) Np = Np u N0 u Nr-, 

End(if) 
End(for) 

End; 

Figure 9. Algorithm ALGO-TRMPS. 

In this section, we present ALGO-TRMPS formally. The input to the 
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algorithm is an instance I of the linear TRMPS problem, and the output is a set 

of nets .N,,, to I. 

The algorithm to compute T RM PS is formally presented in Figure 9. Our 

results on the TRMPS problems are stated in the following two theorems. 

From the theorems 3 and 5 we conclude the following theorem. 

Theorem 6 Given an instance I, ALGO-TRMPS provides an optimal solution 

to the two row maximum planar subset problem. 

From the theorems 2 and 4 we conclude the following theorem. 

Theorem 7 The complexity of the ALGO-TRMPS is O(kn2 ), where k is the

number of tracks available over-the-cell area and n is the number of nets. 

The TRMPS problem, can be easily modified to solve the weighted version 

of the problem (WTRMPS). For example the weighted version of the expression 

for Case l(b), is as follows. 

WT(j) = m1a.x{WSt(i + 1,j -1, f -1) + Wa + WL(i -1,j, f + 1)} 
/=l 

In the above expression, W St is the maximum weighted single row solution, W L

is the maximum weighted solution in the L-shaped region defined by the tuple 

(i - 1,j, f + 1) and Wa
is the weightage given to the net Na .

The WTRMPS problem is important because, weights can be assigned to 
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each net so as to find a better planar subset of nets, such that, the nets which are 

selected will contribute significantly towards the density reduction in the channels. 

The following corollary holds for WTRMPS problem. 

Corollary 2 The time complexity of WTRMPS problem is O(kn2) time. 
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CHAPTER III 

EXTENSIONS 

In this chapter we will discuss some of the extensions for TRMPS problem, 

such as TRMPS with choosen subset of nets, pre-routed nets, TRMPS in presence 

of crossing nets. We also present 0 .. 5 approximation algorithm for MTM planar 

routing problem. 

TRMPS With Chosen Subset and Prerouted Nets 

There are several important extensions of TRMPS problem which need 

attention. One important case is pre routing of critical nets. In many practical 

routing methodologies, timing critical nets are manually routed or special routers 

are used to pre-route the nets. The remaining nets must account for presence of 

these nets. 

A set of nets is chosen if it is required to in the solution. Note, it should 

be a planar set by definition. A chosen subset of nets is called pre-routed if each 

net of the set has been assigned a track. 

In this chapter, we present the optimal algorithms ALGO-CSS and ALGO­

PRN that solves the T RM PS problem in the presence of a chosen subset of nets 

and in the presence of pre-routed nets, respectively. 

30 



Definition:A net N,.,_ = (t1, tm. ) is said to be contained by a net Nfl = (t;, ti ), 

if i < l and m < j. In the other words, net Nfl contains net N,.,_ .

Definition:A net N,.,_ = (t 1, tm.) is said to be overlapping with a net N
fl =

(ti, ti ), if i < l < j < m or l < i < m < j.

Since the routing of the nets which overlap with the chosen subset of nets 

or pre-routed nets violates the planarity property, the nets which are overlapping 

with the chosen subset of nets and pre-routed nets are removed from the input of 

the problem. 

Chosen Subset of Nets 

In this section, we present the algorithm ALGO-CSN to compute the 

TRMPS solution in the presence of chosen subset of nets. Let Nf � NT and 

N� � Nn. Let Nfn = Nf UN� be the chosen subset of N, which should be 

included in the solution. In order to be in the solution the subset NT n should be 

planar and routable in k tracks. The possible range of tracks that a net N,.,_ can 

be assigned is stored as an additional information with each net N,.,_ E N7 U N8 . 

While computing the T(j) solution, the algorithm has to deal with the 

following four cases. 

1. There is no net N ,.,_ E Nf n, or N fl E Nf n , with one of their terminals at

column j. In this case, the T(j) solution is computed , as explained in in previous 

chapter. 
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2. There exists a net N,. = (t1, t1 ), such that, N,. E NTB and it can be

assigned to any track between tracks Ji and f2. In this case N,. has to be in 

the T(j) solution. Therefore, the T(j) solution consists of the maximum planar 

subset in the region enclosed by N,.
, the net N

,. 
itself, and the maximum planar 

subset in the L-shaped region (l, J, j), where J is· the track assigned to N
,.

.

T(j) = nfh{St(l + 1,j -1, J - 1) + 1 + L(l,j, J)}
f==h 

The solution T(j) is given by above equation. 

3. There exists a net Nfl = (b1, b1 ), such that, Nfl E N78 , and it can be 

assigned to any track between tracks hand f4. In this case Nfl has to be included 

in the T(j) solution. This case is very similar to the case discussed above. 

4. There exists nets N,. = (t1, t1) and Nfl = (b1, b1 ), such that, N,., Nfl E

NTB · In this case both N,. and Nfl have to be included in the T(j) solution. 

T(J') f==h{�==,&.'1<f' { s (l + 1 . -1 f - 1) + S (m + 1 . -1 k -J') + 2
f-J J'-J

t , J , h , J , 

- 1, - 3, 

+ L(l -1,m-1,J' -1)}

Based on the above discussion we conclude the following theorem. 

Theorem 8 Given an instance I of the TRMPS problem with the chosen subset 

of nets, ALGO-CSS solves the problem optimally in O(kn2) time. 

For the WTRMPS problem in the presence of chosen subset of nets the 
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following corollary holds. 

Corollary 3 The WTRMPS problem in the presence of chosen subset of nets can 

be solved optimally in O(kn2) time. 

Pre-Routed Nets· 

In this section, we present the optimal algorithm ALGO-PRN, to compute 

the TRMPS solution in the presence -f pre-routed nets. Let NT � NT and Nb �

Nn. Let NTn = NT uNT be the prerouted subset of N, which should be included 

in the solution. In order to be in the solution the subset NTn should be planar 

and routable in k tracks. 

If there exists a pre-routed net Na
= (ti,ti) then the subset of nets Nur, 

which are overlapping with the pre-routed nets are unroutable because routing of 

N,,r violates the planarity property. The subset of nets N
r:p

, which are contained 

by pre-routed nets are routable only in the tracks below the tracks used by the 

pre-routed nets. Since no other nets can use the tracks below the track of pre­

routed net Na, except the nets belong to N
r:p 

the maximum number of nets that 

can be routed under the pre-routed net Na are St ( i + 1, j - 1, f - 1). The same 

explanation applies to Np also. Hence the optimal solution consists of St(i,j, J). 

Hence, the following lemma. 

Lemma 4 If there exists a pre-routed net Na (or Np) = (ti, ti)(or (b1, bm. )) in the 

track f (g), then, the optimal solution S consists of nets in St( i, j, J) (or Sh( i, j, !)). 
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The subset of nets N.,r, which overlap with the set of pre-routed nets Nf n, 

are removed from the netlist. The subset of nets which are contained by the pre­

routed net NP,,,, = (ti,ti) which is in track J, and not in St(i+ 1,j-1,J-1) are 

removed from the netlist. The subset of nets N
p
.•• which are contained by N

P
,,,, 

and in St(i + 1,j -1, f - 1) are added into the solution and N
p
.• is removed from

the netlist.

Now the netlist contains the subset of nets Nr.o , where each net of Nr.o

contains one or more pre-routed nets. The possible range of tracks that a net 

Na E N'r.0 can be assigned is computed and stored as an additional information 

with each net. 

There is a net Na = (ti, ti) E N'r.0 , which can be assigned to any track 

between Ji and h, and another net NfJ = (bm, bi) E Nr.o, which can be assigned 

to any track between h and f 4. Here, we have the following 4 cases.

Case 1: If both the nets are excluded then, the solution W1 (j) is 

W1(j) = T(j -1) 

Case 2: If the net Na is included in the solution W2(j), and the net NfJ is excluded 

from the solution. 

w2U) = lnc&{L(i - 1,j -1, 1 + 1) + st(i + 1,j -1, 1 - 1) + 11
!=Ii 
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Case 3: If the net Nfl is included in the solution W3(j), and the net Na is excluded 

from the solution. 

W3 (j) = /nl.¾_ { L(j -1, m - 1, f - 1) + S h(-m + 1, j -1, f - 1) + 1}
!=fa 

Case 4: If both the nets Na and Nfl are included in the solution W4(j). 

f=h.hi==,&'1<1' {L(i -1 m -1 J' - 1) + St(i + 1 j - 1 f - 1)
f=li,f'=fa ' ' ' ' ' 

+ Sh(m+l,j-1,k-J')+2}

Now the solution T(j) is 

Based on the above discussion we conclude the following theorem. 

Theorem 9 Given an instance I of the TRMPS problem with a set of pre-routed 

nets, ALGO-PRN solves the problem optimally in O(kn2) time. 

For the WTRMPS problem in the presence of pre-routed nets , the follow­

ing corollary holds. 

Corollary 4 The WTRMPS problem in the presence of pre-routed set of nets can 

be solved optimally in O(kn2) time. 
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Zero Dogleg Planar Channel Routing 

In this section, we extend our algorithm to zero dogleg planar channel 

routing. The planar routing model is also called the river routing model. The 

planar routing model is used for such tasks as routing the chip inputs and outputs 

to the pads on the chip boundary, or routing wires on a single layer in routing 

schemes where the layer assignment is determined by technological constraints, 

such as in power-supply routing. Planar channel routing has the best developed 

theory of all detailed-routing problems. Practically all optimization versions of 

the detailed planar routing problem that involve two terminal nets can be solved 

with efficient algorithms whose run time does not exceed 0( n2) [7). 

In channel routing, in addition to NT and N8 , there exists another set 

of nets Ne, called crossing nets. These nets are of the form (ti , bi), such that 

ti E T and bi E B. The zero dogleg planar channel routing problem is to find 

the maximum planar subset of nets, which can be routed in one layer without 

any doglegs, in the channel. This is a special case of the general river routing 

problem [2]. A restricted case of the general river routing problem, which has 

attracted a great deal of attention, is called, the simple river routing problem [2, 

9, 14). It is a planar channel routing problem for two terminal nets, such that, 

each net has one terminal on each terminal row i.e., each net is of the form (ti , b1).

The planar channel routing problem, we described is an extended version of the 

simple river routing problem, since there exists nets with both the terminals on 
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the same terminal row such as N (Y. = (ti, tj) and N r, = (bi, bj ). 

Now, we describe the algorithm ALGO-PCR, to compute T(j) solutions, 

where 1 :s; j :s; L, in planar channel routing. 

Phase I: In this phase, the single row solutions Su( i, j, f) and S1( i, j, J) 

are computed, ignoring the crossing nets. 

Phase II: The two row solution for each column is computed in this phase. 

While computing the two row solution, the algorithm has to deal with the following 

cases. 

(a) There are no crossing nets which lie entirely within the first j columns

and have a terminal at column j, either in the top or bottom terminal rows. In 

this case, the T(j) solution is computed, as explained in previous chapter. 

(b) There exists a net N (Y. = (bi, tj) as shown in Figure 10( a). If N (Y. is

excluded in the solution, then the T(j) solution which is denoted as T9(j), can 

be computed, as explained in previous chapter. If N(Y. is included in the solution, 

then assume that it is assigned to track f. Let us denote this solution by T'(j). 

Then, the T'(j) solution consists of the single row solution in the region enclosed 

by N(Y. is Su( i + 1, j, f - l ), the net N(Y. itself, and the solution in the L-shaped 

region (j, J, i). Therefore, 

T' (j) = S,, ( i + 1, j, f - l) + 1 + L( i - 1, f + l, j - 1)

By checking the all possible track assignments for N(Y., the track on which the T'(j) 
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solution is maximum is found,. s.uch t)lat No. is in the solution. Let us denote this 

solution by T"(j). Therefore, 

T"(j) = rnhx{T'(j)} 
/=1 

then, the optimal T(j) solution will be, 

T(j) = max{T8(j), T"(j)} 

the maximum of the two solutions obtained, by including and excluding the net 

( c) There exists a net NfJ = (ti, b;) as shown in Figure lO(b). This case is

very similar the case discussed above. 

(d) There exists a net No. = (t;,b;) as shown in Figure lO(c). In this case

T(j) will have Nr-1-

T(j) = T(j - 1) + 1 

(e) There exists two nets No. = (ti,b;) and NfJ = (t;,bm) as shown in

Figure 10( d). Here, one can have the following two choices. 

i. If No. is chosen, then the T(j) solution can be computed as in Case 2,

discussed above. Let us denote this solution by To.(j). 

ii. If NfJ is chosen, then the T(j) solution can be computed as in Case 3,
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discussed3above.3 Let3us3denote3 this3solution3by3Tt1(j).3
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Figure3 10.3 Cases3in3Crossing3Nets.3
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Note3that3 one3cannot3 choose3both3Na and3N/1 as3 both3 these3nets3 cannot3

be3 routed3 on3 a3 single3 plane3 without3 doglegging.3 The3optimal3T(j)3 solution3will3

then3be,3

T(j)3

the3maximum3of3Ta(j)3and3Tf1(j)3solutions.3

(3f) There3 exists3 a3 net3 Na (b1 ,3u1) as3shown3m3

Figure3 10(3e).3 Here3one3can3have3 the3 following3four3cases.3
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i. Not taking both the nets N,.,_ and NfJ into the solution T(j).

T(j) = T(j - 1) 

ii. Including the top net N,.,_ and excluding the bottom net NfJ in T(j)

solution. This case is similar to the Case 1 described in previous chapter. 

iii. Including the bottom net NfJ and excluding the top net N,.,_ in T(j)

solution. This case is similar to the case 2( c) described in this section. 

iv. Including both the nets N,.,_ and NfJ in T(j) solution.

T(j) 1y!f{S1,,(i + 1, m - 1, f - 1) + Su(m + 1,j - 1, f - 2)

+ L(i - 1,j - 1, f + 1)} + 2

T(j) solution is the maximum of the above four cases. 

(g) There exists a net N,.,_ = (ti, l1) and a net NfJ = (bi, bi) as shown in 

Figure 10( e). This case is symmetric to the above case. 

In this section, we presented a detailed description on solving the planar 

channel routing problem. The following theorem states the complexity of ALGO­

PCR for TRMPS with crossing nets. 

Theorem 10 The time complexity of ALGO-PCR, is O(kn2). 

The weighted version of the zero dogleg planar channel routing (WPCR) 

problem can also be solved using the algorithm presented above. 
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Corollary 5 The time complexity of ALGO-PCR for WPCR problem is O(kn2). 

Approximation Algorithm for OTC Routing in MTMs 

In this section, we present an improved approximation algorithm for over 

the cell routing in Middle Terminal Model (MTM) standard cell layouts [13]. It 

is a modification of the approximation algorithm presented in [13]. 

In MTM, the terminals are located in two rows. The top terminal row T, 

which is located k1 tracks below the _top cell boundary, and the bottom terminal 

row B, which is located k3 tracks above the bottom cell boundary. There a.re k 

tracks available between T and B. The MTM based cells have the following three 

rectangular regions in M2 and M3 as described below {Figure 11 ): 

T area: An area with k1 tracks between the top cell boundary and the 

top terminal row. 

C area: An area. with k tracks between the top terminal row and the 

bottom terminal row. 

D area: An area with k3 tracks between the bottom terminal row and the 

bottom cell boundary. 

In MTM cells, the terminals on the the same column are equi-potential. 

The MTM-V router which was described in [13] does not allow vias in over-the-cell 

area. Therefore, in MTM-V, the routing in over-the-cell areas must be planar. 

Furthermore, the terminals cannot be 'brought-up' to M3, as that would require a 
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Figure 11. Middle Terminal Model. 

via. Thus, the nets from all the terminals must be routed on M2, till they 'reach' 

the cell boundary, where vias may be used to complete the connections. 

The basic steps of the MTM-V router described in [13) are given below: 

1. Net classification, decomposition and weighting.

2. Maximum planar equi-potential set selection for the M2 in C area.

3. Boundary terminal assignment and M2 river routing.

4. Routing in M3 layer of OTC areas, and in channel areas.

All the nets are decomposed into two terminal nets and classified into the 

following two types. 

TYPE I net: A net which has terminals on the same cell row. 
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TYPE II net: A net which has terminals on different cell rows (One 

terminal on T and the other on B). 

In step 2 a set of nets is selected for routing in the M2 layer in C area. 

Let N be the set of TYPE I nets for a given cell row. As terminals on the same 

column are equi-potential, four routing choices are available as described below 

for routing a net Ni EN in the C area(Figure 12). 

1. ( ui, Uj) top routing choice (t).

2. (li, li) bottom routing choice (b).

3. (ui, li) right crossing routing choice (r).

4. (li, Uj) left crossing routing choice (l).

Given a positive integer a, a set of routing choices f3 � { t, b, r, l}, and a set 

N of TYPE I nets, then a set S � N is said to be an equipotential planar subset 

denoted by EPS(a,/3,N), if all the nets Si ES are routable in a planar fashion, 

using one of the routing choices in /3, using a tracks. The maximum weighted 

EPS(a,/3,N) is referred to as MEPS(a,/3,N). In short MEPS(a,/3,N) is 

denoted by S(a,/3,N). 

The MES problem is finding S(k,{t,b,r,l},N) and in [13] the following 

result was proved. 

Theorem 11 [13} MES is NP-Hard. 

The algorithm presented in [13] solves the MES problem by transforming 

a planar problem into a topological problem as described below. 

43 



The terminals t1 to tL are represented as points p1 through PL on the

circumference of a circle, in the clockwise direction. Similarly, the terminals b1

through b L are represented as points q1 through qL on the circumference of the

circle, in the anti-clockwise direction. For each point Pi(and similarly for qi), let 

p�(qD = Pi(qi) + E and p�'(qn = Pi(qi) - Ebe new p·oints 011 the right and the left 

of Pi {qi), respectively. Let C represent the set of chords of the circle. For each 

net Ni= (ti,tj) EN, C contains three chords Cib = (qi,qj) cir = (Pi,q'j), and 

cil = (q�,Pi) representing the bottom, right, and left routing choices, respectively 

{See Figure 13). Each chord Ciz EC (z E {t,r,l}) has a weight w(ni) associated 

with it. Let C* be the set of maximum weighted independent chords in C. Note 

that for a net Ni, C* may contain at most one chord among cib, cir, and cil 

as each pair of chords in { Cib, cir, c1z} intersect each other. S2 is represented by 

The following theorem states the performance ratio of the above algorithm. 

Theorem 12 [13} The performance ratio of ALGO-MTM is 

where k is the number of tracks available in C area, and d is the optimal number 

of tracks required for routing the nets with oo number of tracks by using the ( b, l, -r) 

choices. 
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Figure 12. Four Routing Choices. 

The solution obtained by the algorithm requires d number of tracks to 

route the nets, but k number of tracks are available in over-the-cell area. Hence, 

the factor � is appearing in the approximation. If k value is low and d is very high 

then the performance the algorithm is less than 0.5, which is an unfo,vorable result. 

An instance of the MTM problem and a solution was presented in Figure 14. 

In the next section we present an improved approximation algorithm ALGO­

MTM that solves the MES problem and has a performance ratio of 0.5. 

ALGO-MTM 

In this section, we present algorithm ALGO-MTM to solve the MES prob­

lem discussed above. The solution S = MEPS(k,{t,l,r},N) is computed by 
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Figure 13. Four Routing Choices Representation in a Circle. 

using the zero dogleg planar channel routing algorithm, described in the previous 

chapter. The steps in the computation of S are described below. 
' 

At each column j 

1. Compute T1 (j) for the left routing choice of the net.

2. Compute Tr(j) for the right routing choice of the net.

3. Compute Tt(j) for the top routing choice of the net using ALGO­

TRMPS described in the previous chapter. 

4. Maximum among T,(j), Tr(j), and T1(j) is considered as T(j).

T(j) = ma.x{T,(j), Tr(j), Tt(j)} 

Assume that the optimal solution, s• consists oft•, b*, r•, an<l l* number of nets 
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Figure 14. An Instance of MTM Problem and Solution. 

oft, b, r, and l routing choices respectively. 

S* 
= t* + b* + r* + l* 

but 

S 2: t* + r* + l* 

In the worst case in the optimal solution l* = 0, and r* = 0. Hence the perfor-

mance ratio, p, is 

s t* 
P = S* 

= 

t* + b* 
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Since l* = 0 and r* = 0, in the solution S* 

Hence, the performance ratio 

t* = b* 

1 
p=-

2 

Therefore, the following theorem is concluded. 

Theorem 13 The performance ratio of ALGO-MTM is 

1 
p=-2 

ALGO-MTM shows a better performance compared to the previous known 

result by eliminating the � factor. This is achieved by directly routing the nets 

rather than obtaining a solution from a topological solution. 
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CHAPTER IV 

CONCLUSIONS 

In this thesis, we presented an algorithm for solving the TRMPS Problem 

optimally. Our algorithm runs in O(kn2 ) time, where k is the number of tracks in 

over-the-cell area of a cell row, and n is the number of nets. This algorithm can be 

effectively utilized for over the cell routing in standard cell layouts. Our algorithm 

can also be extended, to solve the TRMPS problem in the presence of pre-routed 

and a chosen subset of nets, as well as for zero dogleg planar channel routing i.e., 

in the presence of crossing nets. By using our approach, we have improved the 

performance ratio of the existing best known approximation algorithm, for over 

the cell routing in MTM standard cell layouts, to 0.5. 

In this thesis, we solved the TRMPS problem when the nets are not allowed 

to bend. However, by allowing bends more nets may be routed in over-the-cell 

area. A variant of the TRMPS problem, in which b or less number of bends are 

allowed for each net, is still an open problem. 
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