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Abstract. In this paper we review a number of approaches to reducing, or 
removing, the problem of shift variance in the discrete wavelet transform 
(DWT). We describe a generalization of the critically sampled DWT and the 
fully sampled algorithme à trous that provides approximate shift-invariance with 
an acceptable level of redundancy. The proposed over complete DWT 
(OCDWT) is critically sub-sampled to a given level of the decomposition, below 
which it is then fully sampled. The efficacy of the proposed algorithm is 
illustrated in an edge detection context and directly compared to a number of 
other shift-invariant transforms in terms of complexity and redundancy. 

1 Introduction 

The wavelet transform (WT) has been shown to be an invaluable tool in signal 
processing applications such as data compression and fast computations [8]. However, 
the most commonly used implementation of the WT: the critically sampled DWT [5], 
is shift variant and so is unsuitable for many signal analysis applications [6]. 
Therefore, to enable applications such as edge detection and texture analysis a number 
of redundant transforms have been proposed that are, at least approximately, shift-
invariant [4,6,11,13]. In this paper we shall present an overview of some of these shift-
invariant transforms and introduce a previously overlooked generalisation of the 
Mallat [5] and à trous [8] algorithms that provides a trade-off between the sparsity of 
the representation and shift-invariance. The proposed wavelet transform, which we 
shall refer to as the over complete discrete wavelet transform (OCDWT), is critically 
sub-sampled to a given level of the decomposition, below which it is then fully 
sampled. We shall demonstrate the efficacy of the OCDWT in an edge detection 
context and show that a sub-band can be made approximately shift-invariant provided 
that the next highest level of the decomposition was fully sampled. 

In this paper, we shall refer to the WT in its broadest sense, that is, as a 
mathematical tool for multi-resolution analysis. However, to delineate the available 
implementations of the WT we shall distinguish [3]: The continuous wavelet transform 
(CWT) as a wavelet transform with a (suitably sampled) continuous-time mother 
wavelet, a continuous dilation (scale) parameter, and a discrete translation parameter; 
The discrete wavelet transform (DWT) as a wavelet transform with a discrete-time 
mother wavelet, (non-zero) integer dilation parameter, and a discrete translation 
parameter. To further distinguish different implementations of the DWT, we shall 
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reserve the use of the acronym DWT to refer to an (bi-) orthogonal WT. That is, a 
critically sampled DWT with a discrete-time mother wavelet applied at dyadic scales. 
We shall then refer to redundant (non-orthogonal) varieties of the DWT by pre-
pending a suffix that highlights the type of redundancy introduced. 

1.1 Shift-invariance and the DWT 

The DWT is attractive primarily because the Mallat algorithm is a computationally 
efficient implementation of the WT and, depending on the mother wavelets used it is 
an (bi-) orthogonal transform. In particular, the DWT provides a sparse time-frequency 
representation of the original signal (the wavelet coefficients) that has the same 
number of samples as the original signal. Whilst an (bi-) orthogonal transform has 
been shown to be important for applications such as data compression and fast 
calculations, such importance has not been shown for multi-resolution analysis [7].  

The most significant potential problem with the DWT is that it is a shift variant 
(i.e., not shift-invariant) transform [4,6,11,13,14]. Shift variance results from the use 
of critical sub-sampling (down-sampling) in the DWT. In this way, every second 
wavelet coefficient at each decomposition level is discarded. This is done both to 
reduce the amount of data that has to be analysed and to enforce the implicit time-
frequency uncertainty of the analysis (as the analysis becomes more certain about the 
frequency components of the signal it becomes less certain about where they occur in 
time). This critical sub-sampling however, results in wavelet coefficients that are 
highly dependent on their location in the sub-sampling lattice. This can lead to small 
shifts in the input waveform causing large changes in the wavelet coefficients, large 
variations in the distribution of energy at different scales, and possibly large changes 
in reconstructed waveforms. 

Another way of describing this phenomenon is to consider the frequency response 
of the mother wavelets.  As no realisable wavelet filter (i.e., with compact support) can 
have an ideal “brick-wall” frequency response, i.e., the attenuation in the stop band 
will always be finite, aliasing will be introduced. That is, when the WT sub-bands, 
which nominally have half the bandwidth of the original signal, are sub-sampled by a 
factor of two, the Nyquist criteria is strictly violated and frequency components above 
(or below) the cut-off frequency of the filter will be aliased into the wrong sub-band 
(see [10], Chapter 4). 

It should be noted that the aliasing introduced by the DWT cancels out when the 
inverse DWT (IDWT) is performed using all of the wavelet coefficients, that is, when 
the original signal is reconstructed. This makes a DWT followed by an IDWT shift 
invariant only when all of the wavelet coefficients are used to perform the IDWT, as 
soon as coefficients are not included in the IDWT, or they are quantised, the aliasing 
no longer cancels out and the output is no longer shift-invariant. 

1.2 Shift-invariant Wavelet Transforms  

There are a number of possible solutions to the shift variance problem, which we 
describe in more detail below. All of the techniques attempt to eliminate or minimise 
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the amount of aliasing that occurs by a combination of relaxing the critical sub-
sampling criteria and/or by reducing the transition bandwidth of the mother wavelets.  

The simplest way of making the DWT shift-invariant is not to perform any sub-
sampling at all. This is most commonly referred to as the algorithme à trous [8]. 
Because there is no sub-sampling of data the mother wavelet has to be dilated (by 
inserting zeros) at each level of the transform. Obviously, the à trous algorithm is 
shift-invariant and it can be used with any of the mother wavelets conventionally used 
with the DWT. However, the à trous algorithm requires additional computation and 
memory and it is only strictly shift-invariant under circular convolution (periodic 
boundary extension). 

Another WT, that performs no sub-sampling, is the continuous wavelet transform 
(CWT) [3,8]. In the CWT the mother wavelet is a continuous function, such as a 
Mexican hat wavelet (second derivative of a Gaussian). An advantage of the CWT is 
that it can be applied at any scale directly, without the iterations required by the DWT. 
In addition, there is no need (and in fact it often does not exist) to perform the inverse 
transform, i.e., the multi-resolution analysis is performed on the wavelet coefficients 
directly. This means that for a small number of analysis scales the CWT may be more 
computationally efficient than the DWT.  

A WT that achieves approximate shift-invariance by limiting the sub-band sub-
sampling is the power shiftable discrete wavelet transform (PSDWT) [13]. By 
designing the mother wavelet in the frequency domain to minimise sub-band aliasing 
and only sub-sampling at the second level of the transform and below the PSDWT 
meets a specified criteria of power shiftable. Power shiftability is defined so that 
although the wavelet coefficients in each sub-band may vary as the input signal shifts, 
the power in each sub-band remains constant. This definition of shift-invariant is 
suitable for applications such as texture analysis, but may not be strict enough for 
applications such as edge detection. 

A more complex way of minimising shift variance is to build two wavelet 
decomposition trees (with alternate phase sub-sampling), one for a mother wavelet 
with even symmetry and the other for the same mother wavelet, but with odd 
symmetry. In this way, the dual tree complex wavelet transform (DTCWT) [4] 
measures both the real (even) and the imaginary (odd) components of the input signal 
(hence the name complex wavelet transform). The DTCWT is again approximately 
shift-invariant, and offers both magnitude and phase information. However, as two 
decompositions have to be performed computation and memory requirements are 
twice that of the Mallat DWT.  

An alternative decomposition methodology which is not, strictly speaking, a WT 
(though it is related, see [3], Section 8.3.5) is the Laplacian pyramid (LP) [2]. The 
input signal is initially smoothed with a Gaussian filter and then down-sampled by a 
factor of two. This approximation signal is then up-sampled using nearest neighbour 
interpolation and then subtracted from the original signal. This difference signal 
(which is at the same resolution as the original signal) then defines the detail 
information lost during the smoothing, down-sampling, and up-sampling process. This 
process can be iterated a number of times to produce a sub-sampled low pass signal 
and a number of error signals equal to the number of levels of iteration. The original 
signal can be reconstructed by iteratively interpolating the low-pass signal and then 
adding the difference (detail) signal. The reason this transform is called the Laplacian 
pyramid is that the error signals, which are effectively a difference of Gaussian signals 
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(with the second Gaussian having half the bandwidth of the first) are indistinguishable 
from the second derivative, or Laplacian, of a Gaussian [9]. 

An additional method for obtaining a sub-sampled shift-invariant transform is via 
wavelet transform modulus maxima [8, Section 6.2, and 6]. A fully sampled dyadic 
WT, utilising a mother wavelet that estimates the first or second derivative of the 
signal (i.e., with a mother wavelet with one or two vanishing moments) is applied to 
estimate the multi-resolution gradient of the signal. This dyadic WT has the same 
properties as the CWT and so is shift-invariant. In addition, if the WT coefficients can 
be adaptively sub-sampled to keep only the coefficients that are locally maximum or 
locally minimum (the modulus maxima) at each scale, this sub-sampled representation 
is also shift-invariant. However, exact reconstruction from the wavelet modulus 
maxima, using a pseudo inverse transform, is not possible (the signal can only be 
recovered with a mean squared error of around 10-2 [8]) and so it may not be suitable 
for applications that require perfect reconstruction. 

2 The Over-complete DWT 

It has been shown that the à trous and Mallat algorithms are both special cases of the 
same filter bank structure [12]. Therefore, in principle it is possible to combine both 
algorithms in the same decomposition and gain the benefits of both approaches. That 
is, the computational efficiency and sparse representation inherent in the critically 
sampled Mallat algorithm and the shift-invariance inherent in the fully sampled à trous 
algorithm. The approach presented in this paper is to apply the Mallat algorithm to the 
first M levels of an L-level decomposition and then apply the à trous algorithm to the 
remaining (L – M) levels. The proposed OCDWT algorithm can be viewed as an initial 
down-sampling of the signal prior to a fully sampled à trous decomposition. 
Alternatively, it be seen as a generalisation of the DWT, that produces the 
conventional DWT when M = L and produces the fully sampled à trous algorithm 
when M = 0. 

Suppose that the scaling functions and wavelets ϕφϕφ ˆand ,ˆ,,  are designed with the 

filters h, g, ĥ, and ĝ respectively. Now let [ ] ( ) ( )dtnttfna −= ∫
∞

∞−

φ0
 be the (length N) 

discrete samples formed from a local averaging of the continuous signal f(t) in the 
neighbourhood of t = n. For a filter h[n] we denote hj[n] as the filter obtained by 
inserting 2j – 1 zeros between each sample (tap) of h[n], where j is the scale 
parameter, ( )Ζ∈j . This process of up-sampling dilates the mother wavelet, the 

Fourier transform of hj[n] being H(2jω) [8,10]. We also denote time reversal as, 
[ ] [ ]nxnx jj −=  and zero insertion as, 
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The following convolution formulas are iterated to compute the dyadic OCDWT. 
For any j ≥ 0, M ≥ 0, 

32

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



 

 [ ] [ ]
[ ]



 <

∗
∗

=
−

+ otherwise.

2
1

Mj

nha

nha
na

Mjj

j
j

 and (2) 

 

 [ ] [ ]
[ ]


 <

∗
∗

=
−

+ otherwise.

2
1

Mj

nga

nga
nd

Mjj

j

j
 (3) 

 
The inverse OCDWT is computed by iterating, 
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As an example, Fig. 1 illustrates an OCDWT analysis filter bank consisting of a 

single level of the Mallat algorithm and two levels of the à trous algorithm (L = 3, M 
= 1), while Fig. 2 shows the (inverse) OCDWT synthesis filter bank used to 
reconstruct the original signal in this case.  
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Fig. 1. Forward three level OCDWT, one level critically sampled (L = 3, M = 1). 
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Fig. 2. Inverse three level OCDWT, one level critically sampled (L = 3, M = 1). 

2.1 Computational Complexity 

The computational complexity of an implementation of the WT is of particular 
interest in computer vision as the amount of data is large (say > 1 Mbytes) and the WT 
has to be applied both along the rows and down the columns of the image. Table 1 
illustrates the memory requirements (in bytes, assuming 8 bit data) and computational 
complexity (as number of multiplications required) for a series of WT algorithms 
(forward transform only). In Table 1, N is number of samples in the one dimensional 
input signal; Kg and Kh are the number of non-zero coefficients in the high pass and 
low pass analysis filters respectively; L is the number of levels (scales) in the wavelet 
analysis; and M is the number of levels of the OCDWT that are critically sampled. It 
should be noted that the complexity will be doubled if we either want to perform the 
inverse transform to reconstruct a signal or perform a separable decomposition on two 
dimensional image data. 

Table 1: Memory and complexity (number of multiplications) of various wavelet 
transform algorithms. 

Decomposition Memory Complexity 
DWT N 2(Kg + Kh)N 
A TROUS (L+1)N L(Kg + Kh)N 
OCDWT N + (L - M)N/2M 2(Kg + Kh)N + (L - M)(Kg + Kh)N/2(M – 1) 
CWT LN L Kh N 
DTCWT 2N 4(Kg + Kh)N 
LP 2N 2Kh N 

As already mentioned in Section 1.2, one way to reduce the shift variance 
properties of a sub-sampled WT is to reducing the amount of sub-band aliasing. This is 
most simply done by increasing the number of vanishing moments of the mother 
wavelet used. However, this increases the support length of the wavelet filters, which 
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has a direct effect on computational complexity. Therefore, a combination of 
increasing filter length and reduced sub-sampling has to be used. It should also be 
noted that the computations quoted in Table 1 could be further reduced if advantage is 
taken of any symmetry properties of the wavelets or if any of the multiplications can 
be replaced with bit shifts.  

Fig. 3 shows the computational complexity and storage requirements for a number 
of wavelet transform algorithms. These results are all based on a six level 
decomposition, three levels being critically sampled for the OCDWT (M = 3), and the 
use of the 2nd order bi-orthogonal splines [3,8] for the DWT, à trous, and the OCDWT 
(length 3 and 5), second derivative of Gaussian filter (length 21) for the CWT [3], and 
a binomial filter (length 5) for the LP [2]. The DTCWT is not shown in Fig. 3, 
however it requires twice the computation and storage of the Mallat DWT.  

10
0

10
2

10
4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Data Length (N)

N
um

. M
ul

tip
lic

at
io

ns

10
0

10
2

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Data Length (N)

S
to

ra
ge

 (
B

yt
es

)

DWT
A TROUS
OCDWT
CWT
LP

DWT
A TROUS
OCDWT
CWT
LP

 

Fig. 3. Computation and storage requirements for a number of WT algorithms. 

Fig. 3 illustrates the trade-offs that are possible between computation and storage 
requirements between the various WT algorithms. For example, the most 
computationally efficient algorithm is not the most memory efficient. It also shows 
that, because of the long filter required, the CWT is the most computationally complex 
algorithm and requires approximately the same amount of storage as the fully sampled 
à trous algorithm. However, the à trous algorithm is less computationally demanding 
than the CWT and is therefore often preferred [12]. The LP requires the least number 
of multiplications as there is only one (low-pass) filter applied, the (high-pass) 
difference signal being generated using subtraction only. It is clear that both in terms 
of computation and storage the OCDWT will always fall somewhere between the à 
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trous and Mallat DWT algorithms. However, dependent upon the application, and 
input signal, the level of sub-sampling can be adjusted and traded-off against the 
required level of shift-invariance.  

2.2 Application to Edge Detection 

Points of sharp variations in intensity (edges) are often the most visually important 
features in an image [9]. The WT is a suitable tool for multiscale edge detection as it 
estimates the multiscale nth order derivatives of a signal using mother wavelets with n 
vanishing moments [6]. In this section we briefly investigate the application of the 
OCDWT to multiscale edge detection. For illustration purposes we choose to detect 
edges as the zero crossings in the second derivative of the signal [9] rather than, the 
often preferred, maxima of the first derivative [6]. 

In order to evaluate the shift-invariance properties of a number of WT algorithms a 
one-dimensional input signal with a single discontinuity (step edge) was generated. 
This signal then became the columns of an image, with the location of the 
discontinuity being shifted by one sample along subsequent columns of the image. In 
this way a 16 pixel wide image, with a single linear edge was produced, as shown in 
Fig. 4. Various, 4-level, wavelet decompositions were then performed on the columns 
of the test image and reconstructions were generated using only coefficients from the 
level 4 low-pass (approximation, A4) and level 4 high-pass (detail, D4) sub-bands. 
Note, a 4-level dyadic transform was chosen as the sub-sampling lattice repeats every 
16 samples. All results were generated using the same filters as used in Section 2.1, 
with the exception of the DTCWT which used length 13 and 19, near symmetrical 
filters. Finally the mean absolute error (MAE) was measured between the 
reconstructed signals at shift zero (column 1) and shifts 1 to 15 (columns 2 to 16). 
MAE was measured on the reconstructed signal, rather than the actual wavelet 
coefficients so as to normalise for different filter gains and sampling resolutions of the 
various WT algorithms.  

Table 2. Shift-invariance properties of various WT algorithms. 

WT Algorithm Shift-invariance properties MAE A4 MAE D4 
CWT Yes (circular convolution) 0.00 0.00 

A TROUS Yes (circular convolution) 0.00 0.00 
OCDWT (M=1) Approximate 0.06  0.14  

LP Approximate 0.20 0.24 
OCDWT (M=2) Approximate 0.24 0.64 

DTCWT Approximate 1.03 0.95 
OCDWT (M=3) Approximate 1.28 3.62 

DWT No (on sub-sampling lattice only) 6.81 8.06 
 

Table 2 illustrates the shift-invariance properties of various WT algorithms. Results 
are presented in decreasing order of the degree of shift-invariance and they clearly 
show that the DWT is extremely shift variant. This result is also clearly illustrated in 
Fig. 4 as the location of the edge (zero crossing in the D4 reconstruction) varies 
unpredictably as the location of the discontinuity (edge) shifts. The OCDWT edge 
reconstruction was generated with two levels of critical sampling (M = 2) and is 
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comparable to that of he LP for similar complexity and storage. Table 2 also shows 
that the MAE observed in the detail sub-bands are, in general, greater than that in the 
approximation sub-bands. This is due to the fact that the detail sub-bands have aliasing 
present from both from the lower (A4) and higher frequency sub-bands (D3). 

 

Fig. 4. Level 4 detail reconstructions of a number of WT algorithms. 

An additional advantage of the OCDWT is that it calculates a super-set of 
coefficients calculated by the DWT. Therefore, it is directly applicable where both the 
DWT and shift-invariance are required, e.g., as a visual model for guiding the 
quantisation of DWT coefficients in image compression. The shift-invariance provided 
by the OCDWT increases the reliability of detection of the smooth, edge, and textured 
regions so that spatially varying quantisation can be applied directly in the wavelet 
domain [1]. It may also suitable for extracting the primal sketch of an image [9], which 
is commonly only meaningfully extracted from the larger scale edges, i.e., higher 
levels of WT, and so the lower levels can be critically sampled as it is not required that 
they are shift-invariant. 
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3 Conclusions 

In this paper we have presented an overview of a generalisation of the Mallat and à 
trous discrete wavelet transform (DWT) algorithms, which we have termed the over 
complete discrete wavelet transform (OCDWT). The OCDWT achieves various levels 
of shift-invariance by controlling the amount of sub-sampling that is applied at each 
level of the transform. In this way, specific levels of the wavelet decomposition can be 
made approximately shift-invariant by ensuring that the level below is fully sampled 
(all lower sub-bands can be critically sub-sampled). The efficacy of the OCDWT has 
been demonstrated in an edge detection context and has been shown to be at least as 
shift-invariant as other WT algorithms with comparable computational complexity and 
redundancy.  
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