
SAR Journal. Volume 2, Issue 4, Pages 181-185, ISSN 2619-9955, DOI: 10.18421/SAR24-06, December 2019.

SAR Journal – Volume 2 / Number 4 / 2019. 181

One Solution of Component Based

Development in NodeJS for Modularization

of gRPC Services and Rapid Prototyping

Mihailo Vasiljević
1
, Aleksandar Manasijević

1
, Aleksandar Kupusinac

1
,

Ćamil Sukić
2
, Dragan Ivetić

1

1
Faculty of Technical Sciences University of Novi Sad, Novi Sad, Serbia

2
Department for Computer Sciences, University of Novi Pazar, Novi Pazar, Serbia

Abstract – Developing software system as a

composition of components that are independently

created, provided and installed can significantly

improve the value of software solution. In this paper

we offer one possible solution for creating gRPC

services, using NodeJS, as independent modules,

components. We showed all main structures and

sketched all main components.

Keywords – grpc services, microservices, independent

modules, modularization, nodejs.

1. Introduction

 Trying to tame complexity of the software is

something that engineers have been attempting to

achieve since its beginning. In the modern software

architectures there is a trend of using microservices

to fight against monolithic structure of software.

Microservices are characterized by organization

around business capability, automated deployment,

intelligence in the endpoints and decentralized

control of languages and data. [1] The idea of

developing software as a composition of independent

parts is in the roots of component-based software

engineering. This paper is describing how combining

those two, in the foundations very similar, ideas can

DOI: 10.18421/SAR24-06
https://dx.doi.org/10.18421/SAR24-06

Corresponding author: Mihailo Vasiljević,
Faculty of Technical Sciences University of Novi Sad
Email: mihailov@uns.ac.rs

Received: 05 November 2019.
Revised: 11 December 2019.
Accepted: 18 December 2019.
Published: 30 December 2019.

© 2019 Mihailo Vasiljević et al; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0
License.

The article is published with Open Access at
www.sarjournal.com

lead to developing loosely coupled software systems

with high focus on reusability, scalability, and

extendability regarding the parts of the system or of

the system as a whole.

2. The method

Node.js is a free server environment (open-source)

written in JavaScript. It can be run on various

platforms (Windows, Linux, Unix, Mac OS X, etc.).

Node.js provides many libraries that can be used in

order to develop web applications more easily. [2][6]

Using gRPC, it is easier to create distributed

applications and services. This is because the client

application can directly call methods on a server

application that is on a different machine as if it was

a local object. The main idea while using gRPC is

defining a service with methods that can be called

remotely with specific parameters and their returned

type. So, gRPC server implements this interface and

it is used for handling client calls (calling previously

specified methods). On the client side, there are

same methods (stubs) provided as on the server. One

of benefits of using gRPC is that it is not important

what environments you are using on server side and

what environments you are using on client side.

You can for instance create gRPC server that runs

Java code, and client app that is written in Go, Ruby

etc. [3]

Figure 1. Ilustration of gPRC concepte

SAR Journal. Volume 2, Issue 4, Pages 181-185, ISSN 2619-9955, DOI: 10.18421/SAR24-06, December 2019.

182 SAR Journal – Volume 2 / Number 4 / 2019.

Component-based development concept is very

common concept in software development. It is very

widely used. The main thing of this concept is

reusability of previously created (already existing)

components and adding new ones in the existing

architecture. Simple object accesses protocol

(SOAP), ActiveX and remote method invocation

(RMI), which are ones of the well-known

architectures of component-based development. One

of the most important and one of the major

advantages of developing software applications using

component-based development concept is reusability.

There are few more advantages when using this

concept like upgradability, interoperability, less

complexity, reliability, improved quality, cost

effective, efficiency etc. [4],[5].

Object Oriented Methodology is an approach

where data and functions are integrated. Data is

stored in objects which can be replaced, modified

and reused, and therefore, software is a collection of

this objects that are representing model from real life.

Class in Obejct Oriented Methodology is a group of

objects that share a structure and that have similar

operations. This concept is very different from the

concept of structural programming because we can

get higher productivity, lower maintenance cost and

get better software quality [8],[9].

3. The result (Separation of concerns for gRPC

services in NodeJS)

3.1. Platform package diagram

The application itself has an extremely simple

package structure, since it is only a foundation on top

of which other applications should be built. The

structure can be seen in Figure 2. In the center of the

structure is a platform package that uses shared

functionalities accumulated in common package.

Since every operation of the platform should provide

executions inside transactions, in order if something

happened to be easily reverted, the transaction

package provides command pattern implementation.

gRPC Server startup is done in index.js file that can

be found inside the app package. Since one complete

component-based system needs some user interface

in order to provide interaction with its platform there

is platformClient component.

Figure 2. Package diagram of Nodejs gRPC CBD

platform

The methods offered by this service correspond

to those of the platform. This makes it possible to

add gRPC services without restarting the gRPC

server. In this way, each service can take care of its

own dependencies, and fully develop as a true

separate component.

3.2. Common package UML diagram

 Common package contains all functionalities that

should be shared between other packages. The main

focus is on abstract service class. UML diagram of

common package can be seen in Figure 3.

Figure 3. Common package UML diagram

SAR Journal. Volume 2, Issue 4, Pages 181-185, ISSN 2619-9955, DOI: 10.18421/SAR24-06, December 2019.

SAR Journal – Volume 2 / Number 4 / 2019. 183

Since JavaScript does not provide a mechanism

of defining abstract classes, the regular class is used

for defining service abstraction (referred to as

''abstract service'' in further reading), using the well-

established convention that all abstract methods that

are not implemented should throw an appropriate

exception.

gRPC server expects two parameters for his

addService() method, and those two are:

1. gRPC service object

2. Object that contains methods gRPC service

provides

In order to be compatible with this gRPC server

request, abstract service provides two methods for

retrieving those two objects from the concrete

service. The model is simple, service has a unique

name, a property which key is provided unique name

and value gRPC service object, and operations object

which is populated by concrete service's methods.

Abstract service provides helper methods to classes

that inherit it to populate or remove methods from

operations object. One more method is provided.

That is the one for building service. In essence, in

that operation, methods of concrete service should

populate adequate operations object. Build service

method is abstract by its implementation so, as it was

already mentioned, it should be overridden in classes

that inherit abstract service.

This abstract service is in the main focus since it

provides necessary and sufficient amount of

operations for declaring gRPC service.

Figure 4. Platform package UML diagram

There is also GrpcApi class which is singleton

and should be used for making instance of an actual

app object. It contains gRPC server object, host name

and port on which app will listen for requests. All the

setup is done in setup() method, and app itself can be

started using start() method. The intention is to

completely isolate and localize the process of

creating an application object.

 Platform protocol buffer is represented as data

type on this UML diagram.

3.3. Platform package UML diagram

UML diagram is represented in Figure 4.

Concrete services can be made by inheriting

abstract service. They are only obligated to provide

the methods defined in service protocol buffer, and

as we earlier mentioned, the method for building

service. In order to band together concrete service's

methods with the operations object in abstract

service, provided methods of super class can be used.

In order to tie up everything, a well-known

pattern for simple inversion of control had been used.

Firstly the method of extending gRPC server

object used is delegation. Appropriate wrapper

around gRPC server had been created. The wrapper

itself reference factory method for creating an object

in charge of dynamically requiring concrete services.

The list of services should be provided to the factory

method itself in the form of an array of services'

relative paths. After service is loaded it is kept in

memory for further usage. Consumption of service

means using provided abstract service methods for

object building and retrieval.

The developed platform relies heavily on a

modular development system built into NodeJS

itself. The code is grouped into packages, so-called

npm modules and distributes via node package

manager (npm). Some bare minimum that the

platform of this kind should provide is the ability to

install and uninstall services, their activation and

deactivation, the ability to list active or installed

services, as well as listing methods that a service

provides to other services connected to the platform.

The existence of such a platform is not the standard

for NodeJS projects, so there are already such,

mostly in-house solutions, which are either tied to a

specific project or extremely complicated for rapid

prototype development. For this reason, the platform

in question offers a core set of operations with the

main focus on extremely small learning curve, rapid

adoption into existing projects and even faster

SAR Journal. Volume 2, Issue 4, Pages 181-185, ISSN 2619-9955, DOI: 10.18421/SAR24-06, December 2019.

184 SAR Journal – Volume 2 / Number 4 / 2019.

implementation on new projects. It is recommended

for use on small projects or prototypes [7].

The platform itself is an npm module, so it is

distributed in the same way as its parts. It is in the

form of a library, so it is independent of specific

projects. It offers the necessary minimum of

operations previously described.

The main object is PlatformService which is also

refered as context. As can be seen in the UML

diagram of Figure 4, the context itself, within its

state, stores information about the services to be

loaded and the service objects that are loaded.

Installation/uninstallation and activation/deactivation

operations are performed asynchronously since they

can take a long time if the dependency graph of the

module being installed is large.

The operations for listing all available modules,

listing all active modules, supplying a service object,

and listing all methods of a service are not

implemented asynchronously since they are not time

consuming. In case they would need to be executed

asynchronously as well, since functional

programming was used for their implementation,

switching to non-blocking mode would be as simple

as direct use of javascript key words async/await.

It is important for the platform to remember the

activated modules between the two starts. This is

implemented like the inversion of control specified in

section C. After each activation and deactivation, the

corresponding file containing the array of active

components is updated by adding or removing the

component from the array of active components.

Given the main idea that pervades the entire

platform, which is its simplicity, the use of more

complex storage mechanisms is not necessary, thus it

is avoided.

Figure 5. Component model diagram of gRPC

modular architecture

As the component model is not strict, the

components are not required to implement any

interface. The platform can be used and customized

for the prototype of an application based on the

components with a potential 100% reusability

without modification.

Combining the elements described above can

affect the flexibility and scalability of gRPC NodeJS

applications. A solution that integrates a component-

based development platform and offers a separation

of gRPC concepts implies that gRPC services are

written as separate components, npm modules,

registered and activated on the platform, and as such

available for use, as shown in Figure 5.

Integration of a component-based development

platform involves the formation of a gRPC service in

the manner described in segments B and C, whereby

the methods offered by this service correspond to

those of the platform. This makes it possible to add

gRPC services without restarting the gRPC server. In

this way, each service can take care of its own

dependencies, and fully develop as a true separate

component.

 3.4. Project structure

Organization is the key concept for speed and, in

the end, quality of software development. Typical

project structure for one NodeJS and gRPC project

can be the one shown in Figure 6.

Figure 6. Example of a horizontal gRPC project structure

This project structure is usually acceptable for

smaller projects, but the extension of the project and

the constant addition of new files can lead to clutter

in which it is difficult to navigate. Even though the

solution proposed can easily be applied using this

SAR Journal. Volume 2, Issue 4, Pages 181-185, ISSN 2619-9955, DOI: 10.18421/SAR24-06, December 2019.

SAR Journal – Volume 2 / Number 4 / 2019. 185

kind of project structure, in the original

implementation, and having in mind component-

based development, project structure is used, and it

is called vertical, or feature-based project structure

shown in Figure 7.

As it had been shown earlier, extracting features

in separate modules can easily be done by using the

recommended project structure, or they can be easily

linked as submodules from version control systems

without making a significant impact on future

development process. One more advantage could be

that code generators can more easily create new

features.

Figure 7. Example of a vertical, feature-based gRPC

project structure

4. Conclusion

 The architecture of gRPC NodeJS applications

can significantly affect the development process.

Quality architectures are easier to understand, new

members become more involved in the project, since

they can focus on getting to know the individual

feature they need to work on, rather than the whole

project. Separating the responsibilities of the concepts

used, results in easier extendibility, scalability and

overall flexibility of the solution. The ability to

quickly form an application prototype has an

extremely positive impact on agile development. A

simple library that does not require a steep learning

curve can have a positive impact on the formation of

rapid prototypes and, subsequently, an extremely

simple mapping to more serious industry-standard

solutions.

Acknowledgements

This work was partially supported by the Ministry of

Education, Science and Technological Development of the

Republic of Serbia within the projects: ON 174026, III

42004 and TR 32044.

References

[1]. Martin Folwer, “Microservices”. Retrieved from:

https://martinfowler.com/articles/microservices.html.

[Accessed: 22 August 2019].

[2]. Tutorials Point, “Node.js - Introduction,

Tutorialspoint”. Retrieved from:

http://www.tutorialspoint.com/nodejs/nodejs_quick_g

uide.htm [Accessed: 05 September 2019].

[3]. Google, “Documentation”. Retrieved from:

https://grpc.io/docs/guides/ [Accessed: 05 Sep 2019].

[4]. Qureshi, M. R. J., & Hussain, S. A. (2008). A

reusable software component-based development

process model. Advances in engineering

software, 39(2), 88-94.

doi: 10.1016/j.advengsoft.2007.01.021.

[5]. Foukalas, F., Ntarladimas, Y., Glentis, A., &

Boufidis, Z. (2005, June). Protocol reconfiguration

using component-based design. In IFIP International

Conference on Distributed Applications and

Interoperable Systems (pp. 148-156). Springer,

Berlin, Heidelberg. doi: 10.1007/11498094_14.

[6]. Nandaa, A. (2018). Beginning API Development with

Node. js: Build highly scalable, developer-friendly

APIs for the modern web with JavaScript and Node.

js. Packt Publishing Ltd.

[7]. Andrew Mead, Learning Node.js Development,

Birmingham, UK, 2018, 978-1-78839-554-0.

[8]. Raihan Taher, Hands-On Object-Oriented

Programming with C#, Birmingham, UK, 2019, 978-

1-78829-622-9

[9]. HKSAR Audit Commission. (2013). Office of the

Government Chief Information Officer. Audit Report

Chapter, 8, 28.

