
A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems

Emanuel Todorov and Weiwei Li

Abstract—This paper presents an iterative Linear-
Quadratic-Gaussian (ILQG) method for nonlinear stochastic
systems subject to control constraint. Such local iterative
methods have only been applied to deterministic unconstrained
problems in the past. We derive a linear control law by
minimizing a novel quadratic approximation to the optimal
cost-to-go function. The performance of the algorithm is
illustrated in a limited-torque pendulum problem, as well as
a complex biomechanical control problem involving an arm
model with 10 state dimensions and 6 muscle actuators.
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I. INTRODUCTION

Optimal control theory has received a lot of attention in
the last 50 years, and has found numerous applications in
both science and engineering. Despite many theoretical and
algorithmic advances, however, solving complex optimal
control problems in practice remains a challenge [14].
When the control problem of interest does not fall in one

of the few classes of analytically tractable problems, one
has to resort to general-purpose approximation methods.
Most existing approximation methods attempt to design
a control law that is global (i.e. applicable to all states
of the controlled plant), and are based on the Hamilton-
Jacobi-Bellman equations and the idea of dynamic program-
ming. For continous systems, the only numerical methods
guaranteed to converge to the globally-optimal solution
[13] involve discretizations of the state and control spaces,
and run into the curse of dimensionaly. Generalizations
to continuous high-dimensional spaces typically involve
function approximations whose properties are not yet well
understood [15].
An alternative to global optimization is provided by local

methods, that only find sub-optimal solutions but do so
efficiently without running into the curse of dimensional-
ity. What these methods have in common is the idea of
constructing a non-parametric discrete-time representation
of the open-loop control sequence, and improving it it-
eratively by using only local information. Such methods
are typically related to Pontryagin’s Maximum Principle –
which provides a necessary condition that optimal state-
control trajectories for deterministic systems must satisfy.
Trajectories consistent with the Maximum Principle can
be found by solving a set of ODEs under boundary-value
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conditions, or by using gradient descent in the space of
open-loop control sequences [2].
An ideal blend of the advantages of local and global

methods is provided by Differential Dynamic Program-
ming (DDP) [4]. This method is local, in the sense that
it maintains a representation of a single trajectory and
improves it locally, but the improvement itself is based on
dynamic programming – within a "tube" around the current
trajectory. DDP was recently applied to the hard problem
of robot locomotion, with remarkable success [9]. DDP
is known to have second-order convergence [10][11], and
numerically appears to be more efficient [12] than (efficient
implementations of) Netwon’s method [8]. We have also
compared the performance of DDP to other local methods,
and found it to be generally superior [6].
Recently, we have developed a new method (iterative

linear-quadratic regulator design, or ILQR) which is closely
related to DDP but turns out to be significantly more
efficient: by a factor of 10 on reasonably complex con-
trol problems [7]. We use iterative linearizations of the
nonlinear dynamics around the current trajectory, adapt
the well-developed linear-quadratic methodology to derive
Riccati-like equtations, and then improve the trajectory.
The increased efficiency seems to be due to the fact that,
unlike DDP, we do not use second-order approximations
to the systems dynamics; building such approximations is
computationally expensive and potentially inaccurate, and
(on our numerical tests) appears unnecessary.
The goal of the present paper is to continue to develop

iterative linear-quadratic methods: we preserve the computa-
tional efficiency of our recent ILQR method, while avoiding
a number of important limitations of existing methods.

A. What is new here

Our newILQG has the following advantages over existing
methods based on local quadratic approximations (such as
DDP and ILQR):
• Local methods are presently restricted to deterministic
systems. Indeed, quadratic approximations to the op-
timal cost-to-go function are "blind" to additive noise
and its potential influence on the optimal control law.
However, in many problems of interest the noise is
control-dependent (i.e. multiplicative in the control
signal), and such noise is easily captured by quadartic
approximations as we show below. We are particu-
larly interested in multiplicative noise, because it is a



fundamental characteristics of neural control systems
[3][5][6].

• Local methods are presently restricted to unconstrained
problems. Generally speaking, constraints make the
optimal cost-to-go function non-quadratic; but since
we are approximating that function anyway we might
as well take into account the effects of (control) con-
straints to the extent possible. We are very interested
in efficient methods that handle control constraints
because such constraints are always present in bio-
mechanics (muscle actviations, which are the control
signals being sent by the brain, are always non-negative
and are also limited from above). Our new ILQG
method does that – by modifying the linear feedback
gain matrix whenever an element of the open-loop
control sequence lies on the constraint boundary.

• Quadartic approximation methods are based on Riccati
equations: define a quadratic optimization problem that
the optimal controls satisfy at time step t, solve it
analytically, and obtain a formula for the optimal cost-
to-go function at time step t-1. Optimizing a quadratic
is only possible when the Hessian is positive-definite.
This is of course true in the classic LQG setting, but
when LQG methods are used to approximate gen-
eral nonlinear dynamics with non-quadartic costs, the
Hessian can (and in practice does) have zero and even
negative eigenvalues. The traditional remedy is to "fix"
the Hessian, using a Levenberg-Marquardt method, or
an adaptive shift scheme [12], or simply replace it with
the identity matrix (which yields the steepest descent
method). The problem is that after fixing the Hessian,
the optimization at time step t is not performed exactly
– in contrast to what the Riccati equations assume.
Instead of making an ivalid assumption, our method
uses the actual "fixed" Hessian to approximate the
optimal cost-to-go function.

II. DEFINITIONS
Consider the nonlinear dynamical system described by

the stochastic differential equation

dx = f (x,u) dt+ F (x,u) dω

with state x ∈ Rn, control u ∈ Rm, and standard
Brownian motion noise ω ∈ Rp. Let c (t,x,u) ≥ 0 be
an instantaneous cost rate, h (x (T )) ≥ 0 a final cost, T a
specified final time, and u = π (t,x) a deterministic control
law. Define the cost-to-go function vπ (t,x) as the total cost
expected to accumulate if the system is initialized in state
x at time t, and controlled until time T according to the
control law π:

vπ (t,x) , E
"
h (x (T )) +

Z T

t

c (τ ,x (τ) ,π (τ ,x (τ))) dτ

#
The expectation is taken over the instantiations of the
stochastic process ω. The admissible control signals may
be constrained: u (t) ∈ U . While the present formulation

assumes full observability, the method developed below
should be extendable to situations where the system state
is only observable through delayed and noisy sensors.
Our objective is to control the system optimally, i.e. to

find the control law π∗ that minimizes vπ (0,x0). Note that
the optimal control law π∗ (t,x) is defined globally and
does not depend on a specific initial state. The reason we
emphasize the dependence on x0 is because here we will
construct locally-optimal control laws: we will approximate
π∗ in the vicinity of the trajectory x∗ (t) that results from
applying π∗ to the deterministic system ẋ = f (x,u). Since
x∗ depends on x0, so does our approximation to π∗.
The approximation will be constructed iteratively. Each

iteration i will begin with an open-loop control se-
quence u(i) (t) and the corresponding ”zero-noise” tra-
jectory x(i) (t), obtained by applying u(i) (t) to the de-
terministic dynamics ẋ = f (x,u) with x(i) (0) = x0.
By discretizing time, linearizing the system dynamics and
quadratizing the cost functions around x(i),u(i), we will ob-
tain a discrete-time linear dynamical system with quadratic
cost. We will then adapt the well-developed methodology
for solving linear-quadratic optimal control problems, and
use it to design a control law π(i) (t,x) which achieves
better performance than u(i) (t) on the linearized system.
Applying π(i) while enforcing the control constraints will
yield the pair u(i+1), x(i+1) for the next iteration. This re-
sults in a second-order method, which in practice converges
very rapidly.
When we linearize the original system around x,u, the

dynamics we obtain no longer describes the state and
control variables. Instead it describes the state and control
deviations δx ≡ x−x, δu ≡ u−u. Written in terms of these
deviations, the modified Linear-Quadratic-Gaussian (LQG)
approximation to our original optimal control problem be-
comes

δxk+1 = Akδxk +Bkδuk + Ck (δuk) ξk (1)
Ck (δuk) , [c1,k + C1,kδuk · · · cp,k + Cp,kδuk]

costk = qk + δxTkqk +
1

2
δxTkQkδxk

+δuTkrk +
1

2
δuTkRkδuk

where δx1 = 0, ξk ∼ N(0; Ip) , the last time step is
K, and the final cost qK + δxTKqK +

1
2δx

T
KQKδxK does

not depend on the control signal (which is undefined at
k = K). The quantities that define this modified LQG
problem are Ak, Bk, ci,k, Ci,k, qk,qk, Qk, rk, Rk,K. We
will specify later how these quantities are computed, given
x,u and the definition of the continuous-time problem.
The ith column of the matrix Ck (δuk) is ci + Ciδuk.

Thus the noise covariance is

Cov [Ck (δuk) ξk] =
pP
i=1
(ci,k + Ci,kδuk) (ci,k + Ci,kδuk)

T

Note that we are using a simplified noise model, where
F (x,u) is only linearized with respect to δu. This is



sufficient to capture noise that is multiplicative in the control
signal (which is what we are mainly interested in). Also,
the approximation to the cost function does not include
δuδx cross terms – since most physically meaningful cost
functions include separate state and control terms. It is
straightforward (although tedious) to remove the above
limitations and repeat the derivation that follows.
While the general methodology we will adapt to solve (1)

is well-developed, there are several features of our problem
that require special treatment: (i) the noise is control-
dependent and the cost includes extra terms; (ii) since the
LQG cost is only an approximation to the true cost, it does
not have to be positive semi-definite; (iii) the unconstrained
LQG problem is supposed to approximate a constrained
nonlinear problem – and so the control constraints should
be respected as much as possible even if that appears
suboptimal from the LQG point of view. Because of (ii) and
(iii), we will not always be able to find the optimal control
law for (1) but only a control law which is better than the
default δuk = 0. This involves two computations that run
in parallel backwards in time: (i) computing the cost-to-go
function given the control law in the future; (ii) computing
the control law given the cost-to-go function now.

III. COMPUTING THE COST-TO-GO FUNCTION

The control law we will design is linear, in the form
δu = πk (δx) = lk+Lkδx. This restriction is necessary in
order to apply the LQG methodology. Suppose this control
law is already defined for time steps k · · ·K − 1. Then the
cost-to-go function vk (δx) is also defined – as the cost
expected to accumulate if system (1) is initialized in state
δx at time step k, and controlled according to π for the
remaining time steps.
We will show by induction (backwards in time) that if the

control law is linear, the corresponding cost-to-go function
remains in the quadratic form

vk (δx) = sk + δxTsk +
1
2δx

TSkδx

for all k. At the last time step this holds, because the final
cost is a quadratic that does not depend on the control
signal. Now suppose that v is in the above form for time
steps k + 1 · · ·K. Using the shortcut π in place of the
control signal lk+Lkδx that our control law generates, the
Bellman equation for the cost-to-go function is

vk (δx) = immediate cost + E [vk+1 (next state)]
= qk + δxT

¡
qk +

1
2Qkδx

¢
+ πT

¡
rk +

1
2Rkπ

¢
+E [vk+1 (Akδx+Bkπ + noisek)]

Evaluating the expectation term E [·] above yields

sk+1 + (Akδx+Bkπ)
T
sk+1 +

1
2 (Akδx+Bkπ)

T Sk+1 (Akδx+Bkπ) +

1
2 trace

³Pp
i=1 (ci,k + Ci,kπ) (ci,k + Ci,kπ)

T Sk+1

´

Using the fact that trace (UV ) = trace (V U), the
1
2 trace (·) term above becomes

1
2π

T
¡P

i C
T
i,kSk+1Ci,k

¢
π+

πT
¡P

i C
T
i,kSk+1ci,k

¢
+ 1

2

¡P
i c
T
i,kSk+1ci,k

¢
Combining the results and grouping terms, the cost-to-go
function is

vk (δx) = qk + sk+1 +
1
2

P
i c
T
i Sk+1ci (2)

+δxT
¡
qk +ATksk+1

¢
+1
2δx

T
¡
Qk +ATkSk+1Ak

¢
δx

+πT (g +Gδx) + 1
2π

THπ

The shortcuts g, G,H appearing on the last line of (2) are
defined at each time step as

g , rk +BT
k sk+1+

P
i C

T
i,kSk+1ci,k (3)

G , BT
kSk+1Ak

H , Rk +BT
kSk+1Bk +

P
i C

T
i,kSk+1Ci,k

At this point one may notice that the expression for
vk (δx) is a quadratic function of π, and set the control
signal to the value of π which makes the gradient vanish:
δuk = −H−1gk −H−1Gδx. But we will not assume this
specific form of the control law here, because H may have
negative eigenvalues (in which case the above δu is not
a minimum), and also because some control constraints
may be violated. Instead we will defer the computation
of the control law to the next section. All we assume for
now is that the control law computed later will be in the
general form δu = lk + Lkδx. With this assumption we
can complete the computation of the cost-to-go function.
Replacing π with lk + Lkδx, and noting that the square
matrix Sk is symmetric, the π-dependent expression in the
second line of (2) becomes

l
T

kg +
1
2 l

T

kHlk + δxT
¡
GTlk + LTkg + LTkHlk

¢
+1
2δx

T
¡
LTkHLk + LTkG+GTLk

¢
δx

We now see that the cost-to-go function remains quadratic
in δx, which completes the induction proof. The parameters
of the quadratic form vk (δx) are initialized with SK =
QK , sK = qK , sK = qK . Recalling definition (3), the
backward recursion for S, s, s is

Sk = Qk +ATkSk+1Ak + LTkHLk + LTkG+GTLk (4)
sk = qk +ATksk+1 + LTkHlk + LTkg +GTlk

sk = qk + sk+1 +
1
2

P
i c
T
i,kSk+1ci,k +

1
2 l

T

kHlk + l
T

kg

Since δx1 = 0, the total expected cost resulting from the
control law (l, L) is just s1.
Note that if we are not concerned with negative eigen-

values of H or violations of control constraints, and set
lk = −H−1g, Lk = −H−1G as mentioned above, a



number of terms cancel and (4) reduces to

Sk = Qk +ATkSk+1Ak −GTH−1G

sk = qk +ATksk+1 −GTH−1g

sk = qk + sk+1 +
1
2

P
i c
T
i,kSk+1ci,k − 1

2g
TH−1g

If we further remove the control-dependent noise (by setting
Ci,k = 0) and the linear terms in the cost function (by
setting qk = rk = 0), we see that g = lk = sk = 0 and the
first line of (4) reduces to the familiar LQR discrete-time
Riccati equation

Sk = Qk +ATkSk+1Ak

−ATkSk+1Bk

¡
Rk +BT

kSk+1Bk

¢−1
BT
kSk+1Ak

Thus our method provides a generalization: it can be
reduced to the familiar methods, but has the added flexibility
of keeping the quadratic cost-to-go calculation consistent
regardless of how the linear feedback control law is com-
puted.

IV. COMPUTING THE CONTROL LAW
As we saw in (2), the cost-to-go function vk (δx) depends

on the control δuk = πk (δx) through the term

a (δu,δx) = δuT (g +Gδx) + 1
2δu

THδu (5)

where we have suppressed the time index k. Ideally we
would choose the δu that minimizes a for every δx, subject
to whatever control constraints are present. However, this
is not always possible within the family of linear control
laws δu = l+Lδx that we are considering. Since the goal
of the LQG stage is to approximate the optimal controller
for the nonlinear system in the vicinity of x, we will give
preference to linear control laws that are optimal/feasible
for small δx, even if that (unavoidably) makes them sub-
optimal/infeasible for larger δx. In particular we need to
make sure that for δx = 0, the new open-loop control
δu = l performs no worse than the current open-loop
control δu = 0. Since a (0,δx) = 0, this holds if a (l,0) =
lTg+1

2 l
THl ≤ 0. The latter is always achievable by setting

l = −�g for a small enough � ≥ 0.

A. First-order methods
The gradient ∇δua (δu,δx) evaluated at δu = 0 is g +

Gδx. Therefore, we can make an improvement along the
gradient of a by setting δu =−� (g +Gδx). If we are only
interested in open-loop control, we can use δu =−�g. If the
new control signal (for the nonlinear system) u−�g violates
the constraints, we have to reduce � until the constraints
are satisfied. Note that u is by definition a feasible control
signal, so unless it lies on the constraint boundary (and g
points inside the feasible set) we can find an � > 0 for
which u− �g is also feasible.
This method is related to policy gradient, but is more

efficient – because the improvement at time k takes into
account improvements at future times. If we wish to obtain
a pure policy gradient method with respect to the open-loop

control sequence, we have to: (i) compute the cost-to-go for
the control law δu1 = · · · = δuK−1 = 0; (ii) make the
improvement δuk=− �gk for all k in a separate pass.

B. Second-order methods
If the symmetric matrix H in (5) is positive semi-

definite1 we can compute the unconstrained optimal control
law δu = −H−1 (g +Gδx), and deal with the control
constraints as described below. But when H has negative
eigenvalues, there exist δu’s that make a (and therefore v)
arbitrarily negative. Note that the cost-to-go function for
the nonlinear problem is always non-negative, but since we
are using an approximation to the true cost we may (and
in practice do) encounter situations where a does not have
a minimum. In that case the gradient ∇δua = g + Gδx
is still correct, and so the true cost-to-go decreases in the
direction −H−1 (g +Gδx) for any positive definite matrix
H. We want H to resemble H , because H still contains
correct second-order information.
One possibility is to set H = (H + (�− λmin (H)) I)

where λmin (H) is the minimum eigenvalue ofH and � > 0.
This is related to the Levenberg-Marquardt trick, and has the
potentially undesirable effect of increasing all eigenvalues
ofH and not just those that are negative. Another possibility
is to compute the eigenvalue decomposition [V,D] =
eig (H), replace all elements of the diagonal matrix D
that are smaller than � with � (obtaining a new diagonal
matrix D), and then set H = VDV T. The eigenvalue
decomposition is not a significant slowdown, because we
have to perform a matrix inversion anyway and we can do
so by H−1 = VD−1V T. It is not yet clear which of the
two methods works better in practice. Note that we may
also want to use H instead of H when the eigenvalues are
positive but very small – because in that caseH−1 can cause
very large δu’s that will push the original system outside
the range of validity of our LQG approximation.

C. Constrained second-order methods
The problem here is to find the linear control law δu =

l+Lδx minimizing (5) subject to constraints δu+ u ∈ U ,
assuming that H has already been replaced with a positive
definite H (see above). Given that δx is unconstrained, the
only general way to enforce the constraints U is to set
L = 0. In practice we do not want to be that conservative,
since we are looking for an approximation to the nonlinear
problem that is valid around δx = 0. Either way we can
ignore the Lδx term in the constraint satisfaction phase,
and come back to the computation of L after the open-loop
component l has been determined.
The unconstrained minimum of δuTg + 1

2δu
THδu is

δu∗ = −H−1g. If it satisfies δu∗ + u ∈ U we are done.
Otherwise we have two options. The more efficient but
less accurate method is to backtrack once, i.e. to find the
maximal � ∈ [0; 1] such that �δu∗ + u ∈ U . This is
1Whenever H is singular, the notation H−1 will denote the Moore-

Penrose pseudoinverse.



appropriate in the early phase of the iterative algorithm
when x is still far away from x∗; in that phase it makes
more sense to quickly improve the control law rather than
refine the solution to an LQG problem that is an inaccurate
approximation to the original problem. But in the final phase
of the iterative algorithm we want to obtain the best control
law possible for the given LQG problem. In that phase
we use quadratic programming. When the constraint set is
specified by a collection of linear inequalities, and given
that H is positive definite, the active set algorithm (which
is a greedy quadratic programming method) can be used to
quickly find the global constrained minimum.
Once the open-loop component l is determined, we have

to compute the feedback gain matrix L. If l+u is inside U ,
small changes Lδx will not cause constraint violations and
so we can use the optimal L = −H−1G. But if l+ u lies
on the constraint boundary ∂U , we have to modify L so
that Lδx can only cause changes along the boundary. This
is not only because we want to avoid constraint violations.
The fact that l+ u is on ∂U means that the unconstrained
minimum δu∗ is actually outside U , and so a change Lδx
orthogonal to the boundary ∂U cannot produce a better
feasible control. Modifying L is straightforward in the
typical case when the range of each element of u is specified
independently. In that case we simply set to 0 the rows
of −H−1G corresponding to elements of l + u that have
reached their limits.

V. SUMMARY OF THE ALGORITHM

Choose a time discretization k = 1 · · ·K, with step size
∆t = T/ (K − 1) and t = (k − 1)∆t. Initialize the open-
loop controls u1 · · ·uK−1 to 0, or use problem-dependent
initialization when available. Apply the following iterative
algorithm until convergence:
1) Apply u to the deterministic nonlinear dynamics
ẋ = f (x,u) to obtain the corresponding zero-noise
trajectory x. This could be done by Euler integration

xk+1 = xk +∆t f (xk,uk)

or by defining a continuous u (t) via interpolation,
applying a continuous-time integrator such as Runge-
Kutta, and discretizing the resulting x (t).

2) At each (xk,uk) compute the linearized dynamics
and quadratized costs

Ak = I +∆t ∂f/∂x; Bk = ∆t ∂f/∂u;

ci,k =
√
∆t F [i]; Ci,k =

√
∆t ∂F [i]/∂u

qk = ∆t c; qk = ∆t ∂c/∂x; rk = ∆t ∂c/∂u;

Qk = ∆t ∂2c/∂x∂x; Rk = ∆t ∂
2c/∂u∂u

where F [i] denotes the ith column of the matrix F . At
the final time step k = K, rK and RK are undefined
and qK = h; qK = ∂h/∂x; QK = ∂2h/∂x∂x.
The

√
∆t term appears because the covariance of

Brownian motion grows linearly with time. Defining

the deviations δxk ≡ xk−xk and δuk≡ uk−uk, the
nonlinear system is approximated as given by (1).

3) In a backward pass through time, compute a linear
control law δuk = lk + Lkδxk and the correspond-
ing cost-to-go function vk (δx) = sk + δxTsk +
1
2δx

TSkδx. The cost-to-go parameters are initialized
as sK = qK , SK = QK , sK = qK , and computed
recursively according to (4) and (3). At each step,
replace H with a positive-definite H using one of the
methods described above, and set

lk = −H−1g; Lk = −H−1G

If lk + uk violates the control constraints U , modify
lk and Lk as described above.

4) Apply the control law δuk = lk + Lkδxk to the
deterministic system δxk+1 = Akδxk + Bkδuk in
a forward pass, starting from δx1 = 0 and computing
along the way the new open-loop controls euk =
uk + δuk. If necessary, enforce euk ∈ U . If the
sequences u and eu are sufficiently close, end the
iteration. Otherwise set u = eu and go to step 1. To
implement line search, use δuk = αlk+Lkδxk in the
forward pass, where α is the line search parameter.
Convergence is guaranteed if we use backtracking
linesearch: start with α = 1, and decrease it by a
factor of nα < 1 until the expected cost of the new
open-loop control law becomes smaller than the old
one.

VI. OPTIMAL CONTROL PROBLEMS TO BE STUDIED
We have thus far tested the method on two problems, both

of which have nonlinear dynamics, non-quadratic costs,
control constraints, and (for one of the problems only)
multiplicative noise.

A. An inverted pendulum
We use the popular inverted pendulum problem, with a

limit on the torque that the motor can generate, and also
a quadratic cost on the torque. Thus the optimal solutions
are not always in the form of bang-bang control (which is
the case when the control cost is absent) but exhibit both
torque saturation and continuous transitions between torque
limits. The dynamics are

ẋ1 = x2

ẋ2 = u− 4 sinx1
where the state variables are x1 = θ, x2 = θ̇. The goal is
to make the pendulum swing up (corresponding to a 180
deg angle) and also make it stop – at the final time T . The
control objective is to find the control u(t) that minimizes
the performance index

J0 = (1 + cosx1(T ))
2
+ 0.1 x2 (T )

2
+ 0.01

Z T

0

u (t)
2
dt

We use a time step of 10 msec, T = 4sec, and the maximum
control / torque that can be generated is |u| ≤ 2.



B. A model of the human arm
The second model we study is rather complex – see

[7] for details. We model the nonlinear dynamics of a 2-
link arm moving in the horizontal plane, with shoulder and
elbow joints (Fig 1).The inverse dynamics is

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ ,

where θ ∈ R2 is the joint angle vector (shoulder: θ1, elbow:
θ2), M(θ) ∈ R2×2 is a positive definite symmetric inertia
matrix, C(θ, θ̇) ∈ R2 is a vector centripetal and Coriolis
forces, B ∈ R2×2 is the joint friction matrix, and τ ∈ R2

is the joint torque that the muscles generate. We have

M =

µ
a1 + 2a2cosθ2 a3 + a2cosθ2
a3 + a2cosθ2 a3

¶
C =

Ã
−θ̇2(2θ̇1 + θ̇2)

θ̇1
2

!
a2sinθ2

B =

µ
b11 b12
b21 b22

¶
a1 = I1 + I2 +m2l

2
1

a2 = m2l1s2

a3 = I2

where b11 = b22 = 0.05, b12 = b21 = 0.025, mi is the mass
(1.4kg, 1kg), li is the length of link i (30cm, 33cm), si is
the distance from the joint center to the center of the mass
for link i (11cm, 16cm), and Ii is the moment of inertia
(0.025kgm2, 0.045kgm2).
We can compute the forward dynamics as

θ̈ =M(θ)−1(τ − C(θ, θ̇)− Bθ̇)

and write the system in state space form

ẋ = F (x) +G(x)u

where the state variables and joint torque are given by

x = (θ1 θ2 θ̇1 θ̇2)
T , τ = (τ1 τ2)

T .

There are a large number of muscles that act on the arm
in the horizontal plane (see Fig 1A). But since we have
only 2 degrees of freedom, these muscles can be organized
into 6 actuator groups: elbow flexors (1), elbow extensors
(2), shoulder flexors (3), shoulder extensors (4), biarticulate
flexors (5), and biarticulate extensors (6). The joint torques
produced by a muscle are a function of its moment arms,
length-velocity-tension curve (illustrated in Fig 1B), and
activation dynamics.
Moment arms are roughly constant for extensor muscles,

but vary considerably with joint angle for flexor muscles.
For each flexor group, this variation is modelled with a
function of the form a+b cos(c θ), where the constants have
been adjusted to match experimental data.We will denote
the 2 by 6 matrix of muscle moment arms with M(θ).
The tension T (l, v, a) produced by a muscle obviously

depends on the muscle activation a, but also varies sub-
stantially with the length l and velocity v of that muscle.

m.5 Biceps short

m.1 Biceps long,�
        Brachialis,�
        Brachioradialis

m.3 Deltoid anterior,�
        Coracobrachialis,�
        Pect. major clav.

m.2 Triceps lateral,�
        Anconeus

m.6 Triceps long

m.4 Deltoid posterior

θ2

θ1

a

b

Fig. 1. A) A schematic illustration of the joint coordinate system and the
muscle groups acting on the human arm in the horizontal plane. The felxors
have variable moment arms, while extensor moment arms are roughly
constant. B) The length-velocity-tension function for mammalian muscles
(at maximal activation).

Our model (see Fig 1B) is based on the publicly available
Virtual Muscle model [1]. The model parameters can be
found in [7].
Muscle activation a is not equal to instantaneous neural

input u, but is generated by passing u through a filter
that describes calcium dynamics. This is reasonably well
modelled with a first order nonlinear filter of the form
ȧ = (u − a)/t(u, a), where t = tdeact + u(tact − tdeact)
when u > a, and t = tdeact otherwise. The input-dependent
activation dynamics tact = 30msec is faster than the
constant deactivation dynamics tdeact = 60msec.
To summarize, adding muscles to the dynamical system

results in 6 new state variables, with dynamics

ȧ = (u− a)/t(u, a)

The joint torque vector generated by the muscles is given
by

τ =M(θ) T (a, l(θ), v(θ, θ̇))

The task we study is a reaching task, where the arm has
to start at some initial position and move to a target in a



Fig. 2. Pixel intensity corresponds to the value of the optimal control
signal at each state (shown for two points in time). White is u = 2, black
is u = −2. The solution is obtained by discertizing the HJB equation.

specified time interval. It also has to stop at the target, and
do all that with minimal energy consumption. There are
good reasons to believe that such costs are indeed relevant
to the neural control of movement [5]. The cost function is
defined as

J0 = ke (θ(T ))− e∗k2 + 0.001
°°°ė³θ(T ), θ̇(T )´°°°2

+
1

2

Z T

0

ruTu dt

where r = 0.0001, and e (θ) is the transformation from
joint coordinates to end-point coordinates (where the target
e∗ is defined).

VII. NUMERICAL RESULTS
Since the pendulum has a two-dimensional state space,

we can discretize it with a dense grid and solve the time-
varying Hamilton-Jacobi-Bellman PDE numerically. We
used a 100x100 grid, and 400 time step (4 sec interval, 10
msec time step). The PDE solution for the optimal control
is shown in Fig 2, at two points in time. The backup is
based on the discrete-time version of the HJB equation:

V (t−∆,x) = V (t,x) +

∆minu

n
c (x,u) + f (x,u)

T
Vx (t,x)

o
where the minimization w.r.t. u can be performed analyti-
cally since the control cost is quadratic and the dynamics
is linear in u. Constrained optimization of u is easily
performed since u is scalar.
Figure 3 shows the optimal trajectories of the pendulum,

according to the HJB solution, in gray. The best solutions
found by our method with 3 restarts (with constant intial
control sequences u (t) = 0, 1,−1 ) are shown in black.
Note the close correspondence. In the only case where we
saw a mistatch, running the algorithm with additional initial
coniditions found a better local minimum (dotted line) that
agrees with the HJB solution.
Surprisingly, the cost obtained by the ILQG method was

actually better than that of the HJB method (Fig 4). This
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Fig. 3. Gray: optimal HJB trajectories. Black: optimal ILQG trajectories.
The cross marks the target (note that the horizontal axis is circular). The
different plots correspond to different initial conditions. The dotted line in
b is a better local minimum found by ILQG with additional restarts. In
f and i the pendulum passes through the upright target position multiple
times. The slight undershoot is due to the control penalty.
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Fig. 4. Cost ratio of the ILQG and HJB methods, for each initial condition.
The dotted line corresponds to the better local minimum we found using
additional restarts of ILQG.

is theoretically impossible, but occurs in practice because
PDE solutions can be very unstable numerically. In fact, we
had to use smoothing at each time step, with a Gaussian
kernel of 1 grid point, to obtain a solution at all. We
also attempted to solve numerically the HJB equation for
a stochastic pendulum – which involves an extra term
dependent on the Hessian of the optimal cost-to-go. In
that case, however, the amount of smoothing needed to
obtain solutions was so much that the resulting control
laws were meaningless. It is possible that Markov Chain
approximation methods [13] would yield a more accurate
solution than direct discretization of the HJB PDE.
To test for the presence of multiple local minima, we

initialized the ILQG algorithm with 20 random control
sequences – which generated the initial trajectories shown
in Fig 5. The circle marks the initial state. Note that the
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Fig. 5. Left: initial trajectories correspoding to random control sequences.
Right: same trajectories after ILQG optimization. All solutions converge
to one of two near-symmetric trajectories.
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Fig. 6. End-point trajectories for the stochastic arm model, under open-
loop and closed-loop ILQG control.

ILQG method always converges to one of two minima,
which are essentially symmetric (although one is a slightly
better solution than the other). It is encouraging that we do
not find a very large family of local minima.
Finally, we applied the ILQG method to the human arm

model described above. Note that this model is stochastic:
we include multiplicative noise in the muscle activations,
with standard deviation equal to 20% of the control signal.
Fig 6 shows the hand trajectories (in Cartesian space)
resulting from open-loop and closed-loop control. Closed-
loop control is based on the time-varying feedback gain
matrix L generated by the ILQG method. As the endpoint
distribution ellipses show, this feedback control scheme
substantially reduces the effects of the noise. A detailed
comparison of this model to the behavior of human subjects
will be presented elsewhere.
Another encouraging result is that in terms of CPU time,

the complex arm model does not require much more com-
putation than the pendulum. On average, ILQG converged
in 10 sec on the pendulum task (with 400 time steps);
convergence on the arm reaching task in the absence of
noise took 12 sec (with 50 time steps), and 16 seconds when
multiplicative noise was included. It should also be noted
that the pendulum dynamics was linearized analytically,
while in the case of the arm model we had to use a
centered finite difference approximation (which requires
20 evaluations of the arm dynamics). Thus, unlike global

methods, ILQG does not appear to suffer from the curse of
dimensionality.

VIII. DISCUSSION
Here we developed a new local method for optimal

control of stochastic nonlinear systems subject to control
constraints, and applied it to two test problems – a simple
pendulum and a high-dimensional biomechancial model of
the human arm. In the inverted pendulum porblem we
demonstrated numerically that the ILQG solutions are close
to the global minimum. We plan to implement a more stable
global method, using Markov Chain approximations [13],
which will hopefully allow us to extend the comparisons to
the stochastic case. Additional work is needed to ascertain
the properties of the algorithm in more complex problems,
where we cannot use global methods for validation. One
possibility that we are considering is to take the solution
of the ILQG method, apply a stochastic policy gradient
algorithm to it (which can be very inefficient, but in the
limit of large sample size avoids approximation errors), and
see if the ILQG solution is a minimum of gradient descent
in the space of feedback control laws. We expect to be able
to include such results in the final version of the paper.
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