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In the framework of the Samara-Valencia solution for heat transfer in grinding, two nontabulated integrals involving Macdonald’s
function of zeroth order are calculated.

1. Introduction

Grinding is a machining process that consists in the material
removal from a workpiece by an abrasive wheel that rotates
at a high speed over its surface [1] (see Figure 1). This
kind of machining is very common in industry, so any
improvement represents a significant reduction in produc-
tion costs. In grinding, almost all the energy is converted
into heat which is concentrated in the contact zone between
the wheel and the workpiece [2]. Thermal damage occurs
when temperature surpasses the phase transformation of
the surface material. For over 50 years, we can find an
extensive literature about thermal damage in grinding [3–9].
Usually, in order to prevent thermal damage, liquid coolant
is injected onto the workpiece surface, so power generation
by friction is reduced and cooling by convection occurs
[10].

Traditionally, most of the studies of dry grinding temper-
ature are based on Jaeger’s model [11, 12], where a heat source
of constant strength sliding over the surface of a half-plane is
considered. DesRuisseaux and Zerkle [13] extended Jaeger’s
model to include the effect of surface cooling. Andrews et al.
[14] investigate the well posedness of mathematical models
for heat transfer in dry grinding. More recently, the Samara-
Valencia solution [15] has been proposed. As in [16], this
solution is assumed to be two-dimensional; see Figure 1. The
differential equation that governs the heat transfer is the
convective heat equation. Also, the heat flux profile entering

the workpiece and the action of the coolant are considered
in the boundary condition. In [15], this two-dimensional
boundary-value problem is transformed into an integral
equation that is useful for the numerical evaluation of the
heat transfer in intermittent wet grinding [17]. However, in
the case of dry grinding, this integral equation can be reduced
to a two-dimensional integral [18]. The latter is called 𝑇

(0)

theorem.
This paper is written from the point of view in which

an engineering problem provides a new mathematical result.
In fact, this point of view is very classical. For instance,
Euler was the first one to give a proof (although not rig-
orous) of the equality of mixed partial derivatives, when
he was working in hydrodynamics [19]. Another example is
the engineering problem of measuring the coastline, which
initiates the study of fractals in mathematics [20]. In the
framework of grinding, comparing Jaeger’s solution with
the Samara-Valencia one, a new representation of the Dirac
delta [21] and two new nontabulated integrals [22] have
been obtained recently. The scope of this paper is just to
provide another two nontabulated integrals by using 𝑇

(0)

theorem.
This paper is organized as follows. Section 2 describes

the Samara-Valencia solution and the 𝑇(0) theorem. Section 3
derives from 𝑇

(0) theorem two integrals involving Macdon-
ald’s function of zeroth order that seem not to be found in the
usual literature [23–25].
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Figure 1: Two-dimensional modelling of flat grinding.

2. Samara-Valencia Solution

Figure 1 shows the setup assumed in the Samara-Valencia
grinding model. The differential equation that governs the
heat transfer is

𝜕𝑇 (𝑡, 𝑥, 𝑦)

𝜕𝑡
= 𝑘(

𝜕
2
𝑇 (𝑡, 𝑥, 𝑦)

𝜕𝑥2
+
𝜕
2
𝑇 (𝑡, 𝑥, 𝑦)

𝜕𝑦2
)

− V𝑑
𝜕𝑇 (𝑡, 𝑥, 𝑦)

𝜕𝑥
,

(1)

where 𝑇(𝑡, 𝑥, 𝑦) is the rise temperature of the workpiece with
respect to the room temperature, 𝑘 the thermal diffusivity,
and V𝑑 the workpiece velocity with respect to the grinding
wheel. According to Figure 1, the Cartesian coordinates 𝑥 and
𝑦 are referred to as the grinding wheel. The initial condition
is

𝑇 (0, 𝑥, 𝑦) = 0, (2)

and the boundary condition is

𝑘0

𝜕𝑇 (𝑡, 𝑥, 0)

𝜕𝑦
= 𝑏 (𝑡, 𝑥) 𝑇 (𝑡, 𝑥, 0) + 𝑑 (𝑡, 𝑥) , (3)

where 𝑘0 is the thermal conductivity of the workpiece, 𝑏(𝑡, 𝑥)
is the heat transfer coefficient over the surface of the work-
piece, and 𝑑(𝑡, 𝑥) is the heat flux entering the workpiece. Also
−∞ < 𝑥 < ∞ and 𝑡, 𝑦 ≥ 0. Physically speaking, 𝑏(𝑡, 𝑥) takes
into account the convection that occurs over the workpiece
surface due to the wheel and the lubricant fluid (in wet
grinding); meanwhile 𝑑(𝑡, 𝑥) takes into account the heat that
the wheel generates by friction over the workpiece surface.
However, experiments suggest that the convective action of
the wheel can be neglected, because, in dry grinding, Jaeger’s
model (where 𝑏(𝑡, 𝑥) is zero) is used to fit the temperature
field inside the workpiece, considering a triangular heat flux
profile for 𝑑(𝑡, 𝑥) [26]. In any case, the heat transfer in
grinding is a complex process, so the set of (1)–(3) provides
just a model, that is, an approximation to reality.

According to [15], the solution of the boundary-value
problem (1)–(3) can be expressed as

𝑇 (𝑡, 𝑥, 𝑦) = 𝑇
(0)
(𝑡, 𝑥, 𝑦) + 𝑇

(1)
(𝑡, 𝑥, 𝑦) , (4)

where we have defined

𝑇
(0)
(𝑡, 𝑥, 𝑦)

=
−1

4𝜋𝑘0

∫

𝑡

0

exp(
−𝑦
2

4𝑘𝑠
)
𝑑𝑠

𝑠

× ∫

∞

−∞

𝑑 (𝑡 − 𝑠, 𝑥
󸀠
) exp(−

(𝑥
󸀠
− 𝑥 − V𝑑𝑠)

2

4𝑘𝑠
)𝑑𝑥
󸀠
,

(5)

𝑇
(1)
(𝑡, 𝑥, 𝑦)

=
1

4𝜋
∫

𝑡

0

exp(
−𝑦
2

4𝑘𝑠
)
𝑑𝑠

𝑠
∫

∞

−∞

(
𝑦

2𝑘𝑠
−

𝑏 (𝑡 − 𝑠, 𝑥
󸀠
)

𝑘0

)

× 𝑇 (𝑡 − 𝑠, 𝑥
󸀠
, 0) exp(−

(𝑥
󸀠
− 𝑥 − V𝑑𝑠)

2

4𝑘𝑠
)𝑑𝑥
󸀠
.

(6)

As aforementioned, in dry grinding, we may assume that
the heat transfer coefficient is zero:

𝑏 (𝑡, 𝑥) = 0, (7)

so (6) is reduced to

𝑇
(1)
(𝑡, 𝑥, 𝑦)

=
𝑦

8𝜋𝑘
∫

𝑡

0

exp(
−𝑦
2

4𝑘𝑠
)
𝑑𝑠

𝑠2

× ∫

∞

−∞

𝑇 (𝑡 − 𝑠, 𝑥
󸀠
, 0) exp(−

(𝑥
󸀠
− 𝑥 − V𝑑𝑠)

2

4𝑘𝑠
)𝑑𝑥
󸀠
.

(8)

Moreover, according to [18], we have

𝑇 (𝑡, 𝑥, 𝑦) = 2𝑇
(0)
(𝑡, 𝑥, 𝑦) ; (9)

thus, taking into account (5), we obtain the temperature field
in terms of a two-dimensional integral:

𝑇 (𝑡, 𝑥, 𝑦)

=
−1

2𝜋𝑘0

∫

𝑡

0

exp(
−𝑦
2

4𝑘𝑠
)
𝑑𝑠

𝑠

× ∫

∞

−∞

𝑑 (𝑡 − 𝑠, 𝑥
󸀠
) exp(−

(𝑥
󸀠
− 𝑥 − V𝑑𝑠)

2

4𝑘𝑠
)𝑑𝑥
󸀠
.

(10)

The result given in (10) is called 𝑇(0) theorem.
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3. Calculation of New Integrals from
𝑇
(0) Theorem

According to (4) and (9), we have

𝑇
(0)
(𝑡, 𝑥, 𝑦) = 𝑇

(1)
(𝑡, 𝑥, 𝑦) . (11)

Defining the function

𝑚(𝑡, 𝑥, 𝑦) =
1

𝑡
exp(−

(𝑥 + V𝑑𝑡)
2
+ 𝑦
2

4𝑘𝑡
) (12)

and taking into account expressions (5) and (8) for 𝑇(0) and
𝑇
(1), we may rewrite (11) as

𝑇
(0)
(𝑡, 𝑥, 𝑦)

=
−1

4𝜋𝑘0

∫

𝑡

0

𝑑𝑠∫

∞

−∞

𝑑 (𝑡 − 𝑠, 𝑥
󸀠
)𝑚 (𝑠, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑥

󸀠

=
−1

4𝜋
∫

𝑡

0

𝑑𝑠∫

∞

−∞

𝑇 (𝑡 − 𝑠, 𝑥
󸀠
)
𝜕

𝜕𝑦
𝑚 (𝑠, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑥

󸀠
.

(13)

Using (9) and exchanging the integration order, we have

𝑇
(0)
(𝑡, 𝑥, 𝑦)

=
−1

4𝜋𝑘0

∫

∞

−∞

𝑑𝑥
󸀠
∫

𝑡

0

𝑑 (𝑡 − 𝑠, 𝑥
󸀠
)𝑚 (𝑠, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑠

=
−1

2𝜋
∫

∞

−∞

𝑑𝑥
󸀠
∫

𝑡

0

𝑇
(0)
(𝑡 − 𝑠, 𝑥

󸀠
, 0)

𝜕

𝜕𝑦
𝑚 (𝑠, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑠.

(14)

Applying the Laplace transform in (14),

𝑓 (𝜏) = L [𝑓 (𝑡)] = ∫

∞

0

𝑒
−𝜏𝑡
𝑓 (𝑡) 𝑑𝑡, (15)

and taking into account the convolution theorem for this
integral transform [24, Eq. 17.12.5]

L [𝑓 (𝑡)]L [𝑔 (𝑡)] = L [∫

𝑡

0

𝑓 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑠] , (16)

(14) becomes

𝑇̃
(0)
(𝑡, 𝑥, 𝑦)

=
−1

4𝜋𝑘0

∫

∞

−∞

𝑑 (𝜏, 𝑥
󸀠
) 𝑚̃ (𝜏, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑥

󸀠

=
−1

2𝜋
∫

∞

−∞

𝑇̃
(0)
(𝜏, 𝑥
󸀠
, 0)

𝜕

𝜕𝑦
𝑚̃ (𝜏, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑥

󸀠
.

(17)

Performing the Fourier transform in (17)

𝑓 (𝑤) = F [𝑓 (𝑥)] =
1

2𝜋
∫

∞

−∞

𝑒
𝑖𝑤𝑥

𝑓 (𝑥) 𝑑𝑥 (18)

and taking into account the convolution theorem for this
integral transform [27, Eq. 33.9]

F [𝑓 (𝑥)]F [𝑔 (𝑥)] = F [
1

2𝜋
∫

∞

−∞

𝑓 (𝑥
󸀠
) 𝑔 (𝑥 − 𝑥

󸀠
) 𝑑𝑥
󸀠
] ,

(19)

we may rewrite (17) as

̂̃
𝑇

(0)

(𝜏, 𝑤, 𝑦) =
−1

2𝑘0

̂̃
𝑑 (𝜏, 𝑤) ̂̃𝑚 (𝜏, 𝑤, 𝑦) (20)

= −
̂̃
𝑇

(0)

(𝜏, 𝑤, 𝑦)
𝜕

𝜕𝑦

̂̃𝑚 (𝜏, 𝑤, 𝑦) . (21)

Taking 𝑦 = 0 in (20) and substituting the result in (21),
we arrive at

̂̃𝑚 (𝜏, 𝑤, 𝑦) = −̂̃𝑚 (𝜏, 𝑤, 0)
𝜕

𝜕𝑦

̂̃𝑚 (𝜏, 𝑤, 𝑦) . (22)

Solving the previous ODE (22), we get

̂̃𝑚 (𝜏, 𝑤, 𝑦) = ̂̃𝑚 (𝜏, 𝑤, 0) exp(−
𝑦

̂̃𝑚 (𝜏, 𝑤, 0)

) , 𝑦 ≥ 0,

(23)

where, according to Figure 1 𝑦 ≥ 0. Later on, we will refer to
(23) as the “master equation.”

3.1. First Integral. First, let us perform the Laplace transform
of the𝑚(𝑡, 𝑥, 𝑦) function, defined in (12),

𝑚̃ (𝜏, 𝑥, 𝑦) = ∫

∞

0

𝑒
−𝜏𝑡
𝑚(𝑡, 𝑥, 𝑦) 𝑑𝑡

= ∫

∞

0

𝑒
−𝜏𝑡

𝑡
exp(−

(𝑥 + V𝑑𝑡)
2
+ 𝑦
2

4𝑘𝑡
)𝑑𝑡

= exp (−
𝑥V𝑑
2𝑘

)

⋅ ∫

∞

0

exp(−
𝑥
2
+ 𝑦
2

4𝑘𝑡
− (

V2𝑑
4𝑘

+ 𝜏) 𝑡)
𝑑𝑡

𝑡
.

(24)

Performing the change of variables 4𝑘𝑠 = (V2𝑑 + 4𝑘𝜏)𝑡

results in

𝑚̃ (𝜏, 𝑥, 𝑦) = exp (−
𝑥V𝑑
2𝑘

)

⋅ ∫

∞

0

exp(−
(𝑥
2
+ 𝑦
2
) (V2𝑑 + 4𝑘𝜏)
16𝑘2𝑠

− 𝑠)
𝑑𝑠

𝑠
.

(25)

Knowing that an integral representation of Macdonald’s
function of zeroth order is [28, Eq. 5.10.25]

𝐾0 (𝑧) =
1

2
∫

∞

0

exp(− 𝑧
2

4𝜎
− 𝜎)

𝑑𝜎

𝜎
,

󵄨󵄨󵄨󵄨arg 𝑧
󵄨󵄨󵄨󵄨 <

𝜋

4
, (26)
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we express (25) as

𝑚̃ (𝜏, 𝑥, 𝑦) = 2 exp(−
𝑥V𝑑
2𝑘

)𝐾0(

√(𝑥2 + 𝑦2) (V2
𝑑
+ 4𝑘𝜏)

2𝑘
) .

(27)

Thus

𝑚̃ (𝜏, 𝑥, 0) = 2 exp (−
𝑥V𝑑
2𝑘

)𝐾0(|𝑥|

√V2
𝑑
+ 4𝑘𝜏

2𝑘
) . (28)

On the one hand, applying the Fourier transform to (28),
we have

̂̃𝑚 (𝜏, 𝑤, 0) =
1

2𝜋
∫

∞

−∞

𝑚̃ (𝜏, 𝑥, 0) 𝑒
𝑖𝑤𝑥

𝑑𝑥

=
1

𝜋
∫

∞

−∞

exp (−𝛼𝑥)𝐾0 (𝛽 |𝑥|) 𝑑𝑥,
(29)

where we have set

𝛼 =
V𝑑
2𝑘

− 𝑖𝑤, (30)

𝛽 =

√V2
𝑑
+ 4𝑘𝜏

2𝑘
.

(31)

We may split (29) into two summands

̂̃𝑚 (𝜏, 𝑤, 0) =
1

𝜋
∫

0

−∞

exp (−𝛼𝑥)𝐾0 (−𝛽𝑥) 𝑑𝑥

+
1

𝜋
∫

∞

0

exp (−𝛼𝑥)𝐾0 (𝛽𝑥) 𝑑𝑥.
(32)

Changing 𝑥 by −𝑥 in (32), we rewrite (29) as follows:

̂̃𝑚 (𝜏, 𝑤, 0) =
2

𝜋
∫

∞

0

cosh (𝛼𝑥)𝐾0 (𝛽𝑥) 𝑑𝑥

=
1

√𝛽2 − 𝛼2
, 𝛽 > |𝛼| ,

(33)

where we have applied the result given in Appendix (A.17).
On the other hand, applying the Fourier transform to (27)

and taking into account the definitions of 𝛼 and 𝛽 (30)-(31),
we have

̂̃𝑚 (𝜏, 𝑤, 𝑦) =
1

2𝜋
∫

∞

−∞

𝑚̃ (𝜏, 𝑥, 𝑦) 𝑒
𝑖𝑤𝑥

𝑑𝑥

=
1

𝜋
∫

∞

−∞

exp (−𝛼𝑥)𝐾0 (𝛽√𝑥2 + 𝑦2)𝑑𝑥

=
2

𝜋
∫

∞

0

cosh (𝛼𝑥)𝐾0 (𝛽√𝑥2 + 𝑦2)𝑑𝑥.

(34)

Inserting now (33) and (34) into the “master equation”
(23), we arrive at

∫

∞

0

cosh (𝛼𝑥)𝐾0 (𝛽√𝑥2 + 𝑦2)𝑑𝑥

=

𝜋 exp(− 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
√𝛽2 − 𝛼2)

2√𝛽2 − 𝛼2
𝛽 > |𝛼| , 𝑦 ∈ R,

(35)

where we have extended the values of 𝑦, from 𝑦 ≥ 0 to
𝑦 ∈ R, by taking |𝑦| in the right hand side of (35). As far
as the author’s knowledge, (35) is not given in the literature.
The equation most similar to (35) we have found in the the
literature is [24, Eq. 6.677.5]

∫

∞

0

cos (𝛼𝑥)𝐾0 (𝛽√𝑥2 + 𝑦2)𝑑𝑥 =
𝜋 exp(−𝑦√𝛽2 + 𝛼2)

2√𝛽2 + 𝛼2

Re 𝛽 > 0, Re 𝑦 > 0, 𝛼 > 0.

(36)

See that, taking 𝛼 = 0 and 𝛽 = 1 in (35), we have

∫

∞

0

𝐾0 (
√𝑥2 + 𝑦2)𝑑𝑥 =

𝜋

2
𝑒
−|𝑦|

, 𝑦 ∈ R. (37)

Surprisingly, (37) is not reported in the usual literature.

3.2. Second Integral. Performing in the inverse Fourier trans-
form in (22) by using the convolution theorem for Fourier
transforms (19), we obtain

𝑚̃ (𝜏, 𝑤, 𝑦) =
−1

2𝜋
∫

∞

−∞

𝑚̃ (𝜏, 𝑥
󸀠
, 0)

𝜕

𝜕𝑦
𝑚̃ (𝜏, 𝑥 − 𝑥

󸀠
, 𝑦) 𝑑𝑥

󸀠
.

(38)

According to the definition of 𝛽 (31), we rewrite (27) as

𝑚̃ (𝜏, 𝑤, 𝑦) = 2 exp (−
𝑥V𝑑
2𝑘

)𝐾0 (𝛽
√𝑥2 + 𝑦2) ; (39)

thus,

𝑚̃ (𝜏, 𝑤, 0) = 2𝐾0 (𝛽 |𝑥|) , (40)

𝜕

𝜕𝑦
𝑚̃ (𝜏, 𝑥, 𝑦) = −2𝑦𝛽 exp(−

𝑥V𝑑
2𝑘

)

𝐾1 (𝛽√𝑥
2 + 𝑦2)

√𝑥2 + 𝑦2
.

(41)

Substituting (39)-(40) into (38), we have

𝐾0 (𝛽
√𝑥2 + 𝑦2)

=
𝑦𝛽

𝜋
∫

∞

−∞

𝐾0 (𝛽
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨
)

𝐾1 (𝛽
√(𝑥 − 𝑥󸀠)

2
+ 𝑦2)

√(𝑥 − 𝑥󸀠)
2
+ 𝑦2

𝑑𝑥
󸀠
.

(42)
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Taking 𝜉 = 𝛽𝑥, 𝜐 = 𝛽𝑦 and performing the change of
variables 𝜉󸀠 = 𝛽𝑥

󸀠, we arrive at

𝐾0 (
√𝜉2 + 𝜐2) =

𝜐

𝜋
∫

∞

−∞

𝐾0 (
󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠󵄨󵄨󵄨󵄨󵄨
)

𝐾1 (
√(𝜉 − 𝜉󸀠)

2
+ 𝜐2)

√(𝜉 − 𝜉󸀠)
2
+ 𝜐2

𝑑𝜉
󸀠
.

(43)

The integral given in (43) has been already calculated by
using a complex integration contour [22]. However, we can
get another new integral, integrating in (43) with respect to
the 𝜐 variable between 0 and∞, obtaining

∫

∞

0

𝐾0 (
√𝜉2 + 𝜐2)𝑑𝜐 =

1

𝜋
∫

∞

−∞

𝐾0 (
󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜉
󸀠

× ∫

∞

0

𝜐

𝐾1 (
√(𝜉 − 𝜉󸀠)

2
+ 𝜐2)

√(𝜉 − 𝜉󸀠)
2
+ 𝜐2

𝑑𝜐.

(44)

Taking into account (37) and (41), it turns out that

𝜋

2
𝑒
−|𝜉|

=
1

𝜋
∫

∞

−∞

𝐾0 (
󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝐾0 (

√(𝜉 − 𝜉󸀠)
2
+ 𝜐2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

0

𝑑𝜉
󸀠
.

(45)

Since [28, Eq. 5.16.5]

lim
𝑥→∞

𝐾0 (𝑥) = lim
𝑥→∞

√
𝜋

2𝑥
𝑒
−𝑥

= 0, (46)

we obtain the following integral:

∫

∞

−∞

𝐾0 (
󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝐾0 (

󵄨󵄨󵄨󵄨󵄨
𝜉 − 𝜉
󸀠󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜉
󸀠
=
𝜋
2

2
𝑒
−|𝜉|

. (47)

As in (35), (47) seems not to be found in the usual
literature. Notice that taking 𝜉 = 0 in (47) we recover the
following integral given in the literature [24, Eq. 6.511.13]:

∫

∞

0

𝐾
2

0 (𝜉
󸀠
) 𝑑𝜉
󸀠
=
𝜋
2

4
. (48)

Appendix

Auxiliary Integral

Let us calculate

𝐼 = ∫

∞

0

cosh (𝛼𝑥)𝐾0 (𝛽𝑥) 𝑑𝑥, (A.1)

splitting (A.1) into two summands

𝐼 =
𝐼𝛼 + 𝐼−𝛼

2
, (A.2)

where we have set

𝐼±𝛼 = ∫

∞

0

𝑒
±𝛼𝑥

𝐾0 (𝛽𝑥) 𝑑𝑥. (A.3)

Despite the fact that we can calculate (A.3) by using [29,
Eq. 4.13.5]

∫

∞

0

𝑒
−𝑡 cosh 𝑎

𝐾0 (𝑡) 𝑑𝑡 =
𝑎

sinh 𝑎
, Re (cosh 𝑎) > −1,

(A.4)

yielding the result

𝐼𝛼 =
1

√𝛼2 − 𝛽2
cosh−1 (∓𝛼

𝛽
) , Re(−𝛼

𝛽
) > −1, (A.5)

here we provide the following derivation, because it leads to
(A.14), which is more convenient for our purpose. Indeed, let
us substitute in (A.3) the following integral representation of
Macdonald’s function of zeroth order [28, Eq. 5.10.23]:

𝐾0 (𝑧) = ∫

∞

0

exp (−𝑧 cosh 𝑡) 𝑑𝑡, Re 𝑧 > 0, (A.6)

in (A.3) and let us exchange also the integration order,
obtaining

𝐼𝛼 = ∫

∞

0

𝑑𝑡∫

∞

0

exp (− (𝛽 cosh 𝑡 ∓ 𝛼) 𝑥) 𝑑𝑥

= − ∫

∞

0

exp (− (𝛽 cosh 𝑡 ∓ 𝛼) 𝑥)
𝛽 cosh 𝑡 ∓ 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

0

𝑑𝑡.

(A.7)

Notice that if

𝛽 cosh 𝑡 ∓ 𝛼 > 0, (A.8)

then the inner integral of (A.7) converges. Since 1 ≤ cosh 𝑡 <
∞, ∀𝑡 ∈ (0,∞), then (A.8) becomes

𝛽 >
±𝛼

cosh 𝑡
> ±𝛼. (A.9)

Therefore,

𝐼±𝛼 = ∫

∞

0

𝑑𝑡

𝛽 cosh 𝑡 ∓ 𝛼
, 𝛽 > |𝛼| . (A.10)

We can calculate (A.10), performing the change of vari-
ables 𝑧 = tanh 𝑡/2, so

cosh 𝑡 = 1 + 𝑧
2

1 − 𝑧2
,

𝑑𝑧 =
1 − 𝑧
2

2
𝑑𝑡.

(A.11)

Thus,

𝐼±𝛼 =
2

𝛽 ∓ 𝛼
∫

1

0

𝑑𝑧

1 + ((𝛽 ± 𝛼) / (𝛽 ∓ 𝛼)) 𝑧2

=
2

√𝛽2 − 𝛼2
tan−1(√

𝛽 ± 𝛼

𝛽 ∓ 𝛼
) .

(A.12)
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Remember that 𝛽 > |𝛼|, so the radicals in (A.12) are
positive. Applying (A.12) to (A.10) and taking into account
the identity [24, Eq. 1.628.2]

2tan−1𝑥 = cos−1 (1 − 𝑥
2

1 + 𝑥2
) , 𝑥 ≥ 0, (A.13)

we have

𝐼±𝛼 =
1

√𝛽2 − 𝛼2
cos−1 (∓𝛼

𝛽
) , 𝛽 > |𝛼| . (A.14)

Since [24, Eq. 1.623.1]

sin−1𝑥 + cos−1𝑥 = 𝜋

2
, (A.15)

we may express (A.14) as

𝐼𝛼 =
𝜋/2 + sin−1 (𝛼/𝛽)

√𝛽2 − 𝛼2
,

𝐼−𝛼 =
cos−1 (𝛼/𝛽)

√𝛽2 − 𝛼2
.

(A.16)

Finally, substituting (A.16) in (A.2) and taking into
account again (A.15), we obtain

∫

∞

0

cosh (𝛼𝑥)𝐾0 (𝛽𝑥) 𝑑𝑥 =
𝜋

2√𝛽2 − 𝛼2
, 𝛽 > |𝛼| .

(A.17)
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