
Master Thesis

Multi-lingual Transfer in Automatic

Summarization

Omendra Kumar Manhar

Master Thesis DKE-20-07

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Data Science and Knowledge Engineering

of the Maastricht University

Thesis Committee:

Dr. Jan Niehues
Dr. Jerry Spanakis

Dr. Laura Astola (Accenture B.V. (external))

Maastricht University
Faculty of Science and Engineering

Department of Data Science and Knowledge Engineering

January 26, 2020

Acknowledgements

This thesis was done in partial fulfilment of Masters program in Artificial In-
telligence. This was an external internship conducted with Accenture, Heerlen.
I would like to thank my supervisors Dr. Jan Niehues and Dr. Laura Astola
(Accenture) for their constant guidance and allowing me to work and learn in
a productive environment.

I would like to add that I was provided with resources and constant feedback
from the aforementioned supervisors.

Accenture, Heerlen has a team which works in Data Science related projects,
they always had positive and constructive feedback for me. I was given a lot
of freedom in terms of selection of the thesis. Accenture also provided a very
friendly and approachable work environment for me to explore solutions and
estimate their feasibility under different environments.

1

Abstract

Automatic summarization is one of the most researched fields in Natural Lan-
guage Processing domain. State-of-the-art summarization[20][24] models are ca-
pable of generating readable and meaningful summaries to match how a human
would summarize a text. However, these models have been trained on English
Dataset to generate English summaries. Currently with the rise of availability
of data in multiple languages, there is room for the automatic summarization
models to expands from singular language to generate readable meaningful sum-
maries in multiple languages simultaneously.

This research investigates various approaches to achieve multilingual auto-
matic summarization models, while having only an English-to-English summa-
rization training set. First, a cascaded approach is employed to serially process
a text using multiple summarization and translation models. Each of these
models architecture is based on transformer models[33]. Webhose dataset has
been used to evaluate the performances of the summarization approaches in
this research. It should be noted that this research is the first scientific work to
evaluate summarization models on this datatset. Cascaded approach were eval-
uated on webhose corpus with an average ROUGE(R1) score of 9.70. Second,
a multitask learning model is designed to train a machine translation model to
perform summarization and translation at the same time. In order learn the rep-
resentation of both tasks, input and output sequences are tagged with symbols
to represent summarization, translation and languages. However, the results
from multitask models generated summaries containing phrases from multiple
languages, hence evaluating considerably lower at ROUGE(R1) score of 2.54.
The multitask model suffers from a bias towards the training set due to only
having summarization training set containing English to English summaries.

Contents

1 Introduction 3

2 Basics/ Related work 5
2.1 Automatic Summarization . 5

2.1.1 Extraction based summarization 5
2.1.2 Abstraction based summarization 6

2.2 Text processing . 6
2.3 Recurrent Neural Networks (RNNs) 7
2.4 Encoder-Decoder architecture . 8
2.5 Attention mechanism . 8
2.6 Transformers . 10
2.7 State-of-the-art summarization model 13

3 Dataset 16
3.1 CNN/DailyMail . 16
3.2 Webhose . 17
3.3 News commentary . 18

4 Approaches 20
4.1 Preprocessing . 20
4.2 Summarization and translation model 20
4.3 Cascaded approach . 21
4.4 Multitask Learning . 22
4.5 Multitask learning, multiple languages 24
4.6 Multitask Learning with tagged outputs 25

5 Evaluation Methods 26
5.1 Summarization . 26

5.1.1 Summaries generated in non-English Languages 26
5.2 Translation . 27

6 Experiments and Observations 28
6.1 Summarization and translation model (News Commentary, CN-

N/DailyMail) . 28

1

6.2 Cascaded approach . 29
6.3 Multitask Learning with only English inputs 31
6.4 Multitask Learning Model, multiple languages 31
6.5 Multitask learning model with tagged output 32
6.6 Overview of multitask learning approaches 33
6.7 Training observations and parameters 34

7 Summary 36

2

Chapter 1

Introduction

Recent developments in the Natural Language Processing and Machine Trans-
lation have given rise to many venues of exploration in terms of language under-
standing and modeling. However, up until now majority of the text generation
models are based on English language. This is mainly due to the readily avail-
able free datasets across various providers, it is much easier to find datasets in
English compared to other languages. However, through various web scraping
tools, it is possible to find text datasets in other languages.

With the exponential rise of data availability in all sorts of domains in differ-
ent languages, the tools and methods available in big data and summarization
are proving to be useful in order to get insight into huge chunks of text with-
out actually having to go through all of it manually. This research focuses on
using these models to evaluate whether it is possible to achieve comparatively
good results (in automatic summarization) when the training dataset is not
in English. It should be noted that the dataset for summarization is only in
English, however in order to make the model learn the translation task in as
well, a dataset containing parallel corpus for different languages (specifically in
German and English) has been has also been used. One of the main objectives
of this research is also to implement machine learning models to learn the ba-
sic representation of translation and summarization related tasks independently
and also simultaneously.

Following research question were formed during the initial phase of planning:

• Is it possible to build a cascaded system of various translation and summa-
rization models to work serially and achieve multilingual summarization?

• Can a machine translation model be trained to perform summarization
and translation in a multi-task learning method?

• Is it possible for multitask learning model to summarize non English texts
to non English summaries?

• How much knowledge is transferred and lost during the simultaneous ap-
plication of these transduction models on text?

3

The recent popularity of modern text transduction models[33] has presented
a multitude of opportunities to quantitatively answer such questions. The per-
formance of text transduction models are evident when it comes to translation
or summary generation (strictly in English), however there hasn’t been a lot
of attention towards generating summaries in different languages. Given that
there exists a whole chunk of knowledge resources in multiple languages, it is a
very important issue that should be explored further in detail using the state-
of-the-art text transduction model. Also to discover whether there can be just
an efficient of summarization when the input text is not in English(original
language of the training source).

4

Chapter 2

Basics/ Related work

2.1 Automatic Summarization

Automatic summarization[16] is the process of summarizing text using natural
language processing tools into smaller chunks of text while preserving the initial
information and meaning that was conveyed in the original content. For any
text summarization model, the end goal is to generate summaries as if they were
written by a human. The closer it is to a manual summary the higher it will
be evaluated as an auto generated summary. In automatic summarization there
are various ways of generating summaries for a given text, generally there are
two approaches of designing automatic summarization models.

2.1.1 Extraction based summarization

In this type of summarization the summary is generated by picking sentences,
phrases or words from the original text and combining them together. In this
method the original sentences are not modified in any way, rather they are
selected based on their importance to the entire text. The main objective in
extraction based summaries is selecting content that should remain in the fi-
nal output summary. This elimination of redundant information and selection
of most important content is done by weighing different parts of the sentences
against other, and there are many techniques available to perform those com-
putations on the sentences[9]. This approach is about learning the importance
of the respective sentences and how they relate to each other.

The primary steps in extraction based summarization can be defined as
below [6]:

• Apply a text cleaning technique if desired before splitting the original text
into sentences.

• After extracting sentences, they can be processed to remove stop words
(stop words in Natural Language Processing refers to the set of words
which occur too often in a sentence)

5

• Tokenize the sentences received from above step, to finally have a collection
of words from the text

• Calculate the weighing frequency of each words in the list from above [21]

• From the word weights above, weights of each sentence can be calculated
by simply adding the weights of the words. Sentences with higher weights
will be selected to stay in the summary

2.1.2 Abstraction based summarization

Unlike extraction based summarization, this method is about understanding the
content of the text and then creating the summary using new sentences. This
method generates it’s own sentences to represent the content of the original
text much like how a human would summarize the text. Since the sentences are
generated to condense the information provided in the original text by somewhat
paraphrasing the sentences, this complexity makes this approach much more
challenging than the aforementioned Extraction based approach.

In this research, the summarization models built are based on abstraction
based approach. There have been multitude of scientific works in terms of
summarizing texts in a singular language, e.g. generating an English summary
from English text using state of the art text generation models[5]. However this
research examines various methods to generate summaries in multiple languages,
specifically in English, German and Dutch from an original text which could be
in either of these three aforementioned languages. It should be noted that the
summarization training dataset is strictly in English. It is important to evaluate
the knowledge transfer of the learned summarization and translation methods.

2.2 Text processing

As in any machine translation and natural language processing method, pre-
processing is an imperative aspect to how the training model behaves and per-
forms upon evaluation phase. In traditional word embedding methods such as
Word2Vec[17] models, the texts are processed in word level and they are mod-
elled using skip-gram model or continuous bag-of-words model. Each word has
a unique vector representation mapped to itself. Since, these models are de-
pendent on words and their availability in the training set, they disregard the
internal structures of the words and their formations, for example, the relation-
ship between the words ”run”, ”runs” and ”running”. So, when the embedding
model encounters an unseen word which was not present in the original training
set, it usually throws an exception or substitutes it with a default token for an
unknown word. Additionally, storing every word as a unique token is an ex-
pensive process, especially if the training dataset consists of corpus in multiple
languages.

In order to employ an efficient tokenization method to handle unseen words, a
subword model[13] is used. Subword model tokenize the sequences by splitting

6

words into unique subwords. One such method is called Byte pair encoding
(BPE) [28]. Byte Pair Encoding is a form of data compression in which the
most common pair of consecutive bytes of data is replaced with a byte that
does not occur within that data [28]. This way of text representation steers
the dependence from word level for tokenization of sentences to unique tokens
present in the dataset. BPE model construction generally done by following
steps:

• Prepare a text corpus to train the BPE model on

• Define a vocabulary size (Nvoacb size)for the model to evaluate the number
of subwords

• Split all words into characters while noting the frequency of the word they
belonged to

• Create a new subword by considering high frequency sequence of charac-
ters from the previous step

• Repeat this process until the number of subwords generated reachesNvocab size

Tokenizer model such as BPE learns the internal structures of the words.
It is language independent model by design since it depends on subword units.
It learns based on the unique tokens and bytes present within the training set.
The vocabulary size is already defined before the training of the model starts,
the vocabulary size determines the token sizes when encoding the sentences as
tokens, meaning that a higher vocabulary size allows for more individual tokens
to be stored in the vocabulary based on their individual frequencies.

2.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks[18] are neural networks which are modeled to utilize
sequential information. These networks are designed to produce outputs sequen-
tially so that the output is dependent on the previous computations made on the
sequence, it is an improvement over a typical neural network which considers
all inputs to be independent of each other. This property enforces a depen-
dency over the past computations which can be considered as a memory for the
network, or an ability to look back in the past steps.

However RNNs can only look a few steps in the past. They suffer from
vanishing gradient problem and they fail to perform accurate translation due to
lack of available memory needed to be able to accurately perform neural ma-
chine translation tasks for longer sentences [10]. In order to generate automatic
summaries from long texts, it becomes important that the machine translation
and summarization architectures employs a memory technique to consider the
entire sequence while generating outputs .Their long term dependency problem
is somewhat addressed by a modified form of recurrent neural network called
Long Short Term Memory models (LSTMs)[11].

7

However, despite its minor improvement over traditional RNNs, LSTMs still
fail to keep the context for a word that is too far away from the current word,
because the probability of keeping it decreases exponentially with distance. Ad-
ditionally due to their sequential nature do not allow for parallelization to speed
up training processes which presents an obstacle for training over larger datasets.

Transformer models were designed to overcome the problems faced when
using Recurrent Neural Networks (RNNs), Transformer models address them by
using feed forward networks with attention models. It does not need to process
sentences in order (beginning to end), which allows for more parallelization to
speed up the training process and modeling, meaning faster translation. The
attention mechanisms are there to mathematically represent the importance of
tokens, in order to preserve the context when generating output sequences. The
principle behind this is that every word could provide meaning and context in
a sentence. In this research these models are leveraged to build translation and
summarization models together and combine them to perform evaluations on a
multi-lingual dataset.

2.4 Encoder-Decoder architecture

Encoder - Decoder architecture[3] in machine translation containing separate
encoder and decoder stacks consisting of recurrent neural networks. Figure 2.1
represents an overview of an encoder-decoder architecture. This model is de-
veloped to first process an input entirely or serially at the encoder stack and
encode it into some form of an internal representation of the input. Once en-
coding of the input sequences is done, the decoder networks uses it to generate
texts using the learned representation through learning over a training set. Se-
quence2Sequence[31] models use recurrent neural networks as encoders and de-
coders to perform various machine translation tasks. The encoding an decoding
mechanism can be modified to further enhance the performance of the model,
for example replacing RNNs with convolutional neural networks [7].

=-

Figure 2.1: A simple encoder - decoder architecture

2.5 Attention mechanism

One of the issues with the encoder-decoder architecture briefly described in sec-
tion 2.4 is that for every input sequence, no matter what the size it works by

8

compressing them all into a vector of fixed size. This can be potentially prob-
lematic when the size of the neural network and the size of the input sequences
are not suitable (smaller neural network for longer input sequences), information
could be lost while processing longer sentences.

Attention models[2] addresses this issue by letting the model learn a vector
representation for each input word. So, the model learns representations effi-
ciently by moving away from fixed length vector representation. This leads the
model to learn which part of the sentence should be attended and allows the
decoder to attend to different parts of the input sequence. An attention matrix
consisting of mapping of input and output words is created by using the learned
representation/context vectors.

Figure 2.2 shows the attention mechanism model. Here encoder generates
h1, h2, h3..hn from input sequence x1, x2, x3, ..xT . Here a is an alignment model
which is essentially a feed forwards network. Alignment model scores represent
the encoded input(h1, h2, h3..hT) relation with the decoder’s output(s) [2].

The representation vector is calculated as the weighted sum of the encoded
input sequence (h1, h2, h3..hn) (refer equation 2.1).

ci =

Tx∑
j=1

αijhi (2.1)

where

αij =
exp(eij)∑Tx

k=1 exp(eik)
(2.2)

and the alignment scores eij are applied with a softmax function for normaliza-
tion purposes.

eij = a(si−1, hj) (2.3)

Figure 2.2: Attention mechanism ([Bahdanau et al., 2014])

9

2.6 Transformers

Recently in the field of machine translation and text reduction a neural network
architecture called Transformer models are gaining popularity due to their signif-
icant advantages over the sequential neural network architectures. Transformer
models are attention based models which are widely popular in Natural Lan-
guage Processing field for machine translation and text generation tasks. They
are designed similarly to sequence-to-sequence models, as in they are provided
with a sequence and are trained to generate another sequence which could be
either a translated text or generated summary. The transformer models shows
that it is possible to move away from using recurrent neural networks within the
encoder and decoder stacks by using attention mechanisms instead. This makes
room for parallelization during translation and training processes, making these
models to be considerably more efficient and capable than the RNNs / LSTMs
[30].

Like most sequence transduction models, transformers also follow suit with
having an encoder-decode type architecture. Figure 2.4 represents the trans-
former architecture . The transformer models consist of N = 6 stacked identical
layers of encoders and decoders [33]. The input text sequences to the encoders
are turned into vector representations by using an embedding algorithm. How-
ever, since transformer models do not process inputs sequentially, there needs to
be a way to contextualize the order of the words in sequences. This is solved by
adding Positional Encoding to the input embeddings at the bottom of encoder
and decoders each, so it is imperative for positional encoding to have the same
size as the input embeddings, so they can be added before to being supplied to
the encoder/decoder stack.

PE(pos,2i) = sin(pos/100002i/dmodel) (2.4)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.5)

Equation 2.4 and 2.5 show the constant created to represent the position
specific values. Here pos refers to the position and i refers to the position along
the embedding vector dimension.

Input = Embedding(seq,dmodel) + PositionalEncoding(seq,dmodel) (2.6)

Equation 2.6 shows how the input at the bottom of the encoding component
looks like before it is passed on to the first encoder layer. Each encoder layer
consists of two sub-layers called self attention layer and position wise feed-
forward layer.

Attention layers are designed to encode the words based on all the other
words in a particular sequence. Figure 2.3 demonstrates the structure of the at-
tention layer. K, Q and V are Key, Query and Value vectors respectively. They
are calculated by packing the input embeddings into a matrix and multiplying

10

them by the weight matrices that have been trained so far, e.g. Q = X ∗WQ.
One the Key, Value and Query Vectors have been calculated, equation 2.8 can
be used to calculate attention. This is also termed as ”scaled dot product at-
tention. The input contains keys and queries each of dimension dk and values
of dimension dv. Afterwards a softmax function is applied to the values. An-
other approach to compute attention apart from scaled dot product attention,
is additive attention. In this mechanism, the attention is calculated through
a feed forward layer with a hidden layer [2]. However ”scaled dot product at-
tention” is more efficient and faster in practice, since it can be implemented
using optimized matrix multiplication techniques. Using multi-head attention
it is possible to compute different sets of query, values and keys for the same
original embedding. Attention is computed on each of these sets separately and
concatenated together and multiplied with another learned matrix Z to reduce
these embedding to a single embedding (Equation 2.7). Each of these new em-
bedding sets represent a head of the self attention model, which is why this is
called multi-head attention [33].

MultiHead(Q,K, V) = concatenate(h1, h2,) ∗ Z (2.7)

Attention(Q,K, V) = softmax(QKT /
√
dk)V (2.8)

Figure 2.3: Self Attention Layer ([Vaswani et al., 2017])

11

Figure 2.4: Transformer Model Architecture ([Vaswani et al., 2017])

Additionally, Apart from self-attention model, each of the encoder and de-
coder layers consist of a fully connected feed forwards neural network which
contains two linear layers with a ReLU activation between them. It is applied
in each position independently and identically [33].

FFN(x) = max(0, x ∗W1 + b1) ∗W2 + b2 (2.9)

Here in equation 2.9, x represents a set of embeddings. As consistent
throughout the transformer architecture the dimensionality of input and output
is the same dmodel(= 512) while the inner layer dimensionality is dffn(= 2048)
[33].

Layer Normalization[1] is applied to normalize the input, across each of the
two sublayers. In this model it is done by residuals (see equation 2.10).

SubLayer(x) = LayerNormalization(x+ SubLayer(x)) (2.10)

Decoder layers in transformers are identical to encoders but with some mod-
ification to the self attention layer. Additionally, decoders also have a third
layer which executes multi-head attention over the overall output from the en-
coder. The self attention layers in decoders are modified to prevent the decoder
from having access to words that come after the word its attempting to predict

12

at a position. This is done by masking the embeddings for all those words by
multiplying them by 0, making sure that the prediction only depends on the
words that already came before it. Similar to the encoder stack mechanism,
each sublayers in decoder stack are also followed by layer normalization [33].

Finally, from the decoder stack a vector is produced, which are should now
be converted back to words to generate sentences. This is done by employing
a linear and a softmax layer at the top of the decoder stack. This linear layer
is a fully connected neural networks that takes the output vectors and projects
them into a larger vector called logit vectors. These logit vectors have the
dimensionality of the vocabulary size from the initial training set, hence each
cell indicating score for that unique token. A softmax function is applied at
the end to convert all of these scores into probabilities and the ones with the
highest are chosen and mapped with the corresponding tokens for each time
step to eventually form a sentence over the time steps. The final result can be
decoded into words using the subword algorithm (byte pair encoding) that was
applied during the input training set preparation.

2.7 State-of-the-art summarization model

[Nallapati et al., 2016] used encoder-decoder architecture with recurrent neural
networks employed with attention mechanism to achieve state-of-the-art text
summarization results on two different datasets (CNN/Dailymail [4] and Giga-
word). They proposed various models within the encoder-decoder architecture
to address specific issues within the abstractive summarization models such as
improving the efficiency by reducing the size of softmax layer in the decoder and
hence making it more feasible computationally speaking. They also modified the
encoder to be able to capture keywords in a document which is the main theme
of the document. The proposed models were shown to bring improvement over
the traditional architectures[20].

[See et al., 2017] presented a model to overcome the issues faced when sum-
marizing text through sequence to sequence models. The shortcomings were
that sometimes the factual information from the original texts were not being
accurately replicated in the resulting summaries, and they are prone to repeat-
ing themselves. Their model consists of hybrid-pointer generator network that
points to certain words to be replicated in the resulting summary, thereby re-
taining the factual information. While the generator network makes sure that
novel words are generated during the summary generation. In order to prevent
repetition they kept track of the what has been already summarized by employ-
ing a coverage mechanism. This is to lower the probability of already generated
content to be repeated [27].

13

Figure 2.5: Pointer-Generator Network ([See et al., 2017])

The model was applied to the CNN/DailyMail dataset (see chapter 3), and
was able to achieve ROUGE(R1) score of 39.53.

[Paulus et al., 2017] presented an intra-attention neural network model that
was designed to attend over the input and output sequences individually, and
employed a training mechanism to utilize traditional word prediction learning
with reinforcement learning. Their main goal was to produce a more readable
summary than the traditional word prediction learning method does (they tend
to exhibit bias towards ground truth). Their model consists of an encoder based
on a bi-directional LSTM while using an LSTM as a decoder. The encoder’s
job is to calculate hidden state he from input embedding xi, while the decoder
computes hidden states hd from an output embedding yi, the embeddings are
taken from an embedding matrix Wembedding [24]. They tested their model on
two datasets (New York Times and CNN/DailyMail), they were able to achieve
a ROUGE(R1)score of 41.16.

Figure 2.6: Encoder-Decoder with attention ([Paulus et al., 2017])

14

[Gehrmann et al., 2018] proposed a model to address the issue with most
summarization models which are regarding selecting the important key-points
within the original text. They showed an improvement in evaluation score by
designing a content selector to choose which information of the source must be
part of the summary as well, hence restricting the summary content in terms of
sentences[8].

Unlike the other works mentioned above, [Liu et al., 2018] approached ab-
straction based summarization using a Generative Adversarial Network model[25].
They employed a generator model which generates an abstraction based sum-
mary from an original text which is evaluated and rated by a discriminator
model based on how close it is from the expected output. Over time this model
was able to achieve competitive results over the CNN/DailyMail dataset[15].
They were able to achieve ROUGE(R1) scores of 39.91.

15

Chapter 3

Dataset

Obtaining an appropriate dataset for training a machine learning model is one
of the most important parts of the model building process. The performance of
the model hugely depends on the size, type and the variance in the dataset. One
of the first objectives for this research were to acquire freely available datasets
containing original texts and their manual summaries. The training and testing
dataset mustn’t be auto generated text but manual texts from real-life resources
such as news websites, reviews, etc. This particular requirement suits perfectly
for databases that store news articles and their titles. There were three sets of
databases used for the experiments and evaluations performed within the scope
of this research.

Dataset Languages Format Articles

News Commentary English, German, Dutch .tsv 57906
CNN/DailyMail English .txt 311971

Webhose.io English, Dutch, German .json 575330

Table 3.1: Dataset available

3.1 CNN/DailyMail

CNN/DailyMail [27][4][32] dataset is one of the popular resources available for
training text summarization models. It consists of news articles with almost
each article content accompanied with tagged headlines. These headlines are
put together and serve as a consolidated summary of the corresponding original
news article. There are various ways to extract this dataset, however this dataset
was obtained directly by extracting the dataset using the resource links that was
provided in the work done by [See et al., 2017]. dataset, extracted using a simple
extraction tool, it contains text files which are named accordingly for the use.
Each line contains one article, with the text content under the tag summ-content
and the corresponding summary is under s tags. A simple reading of the file

16

line by line while separating the tags can easily create a training set.
This entire dataset is in a singular language (English to English), however

it serves as a great training set for the examining the multi-lingual transfer in
summarization models, once the models have learned the summarization task
separately. The extracted dataset is split into 287226 training examples, 13,368
validation examples and 11490 test examples. There are on average of 781 words
per article with 56 words per summary.

3.2 Webhose

Webhose.io[34] is one of the providers of web content such as blogs, reviews
and news articles in a readable data format such as ”json”, specifically catered
towards data science and data mining techniques. It provides a multitude of free
to use text datasets in different languages (English, Russian, Dutch, German),
which are generally scraped from news articles. They can be used as a testing set
for text transduction model. It does not contain parallel corpus, which makes
it harder for it to serve as training set for a translation model. However they
can be used to evaluate summaries, as every article contains a title and also a
description. These articles in different languages are used as a testing dataset for
the models that have been implemented for this research. The articles provided
are an individual ”json” file per article, with clearly defined labels and values.
Using the downloaded compressed file, all the json files are extracted and loaded
using python data loaders. For each article, the only information that was of
pertinence to this research were ”text”(body of the article), ”headline” and
”highlights”. Rest of the information such as ”authors”, ”date” and url can
be discarded. This was done by individually processing all the ”json” files (see
table 3.2 for more details) and sorting the ”headlines”, ”highlights” and ”text”
out to be dumped into a consolidated ”testing” dataset.

Language Examples Source Tokens(Average) Target Tokens(Average)

German 398840 292 9
Dutch 116193 176 8

English 60297 429 10

Table 3.2: Webhose Dataset details

This dataset is not used for training either of the translation or summariza-
tion model, it is used for testing the automatic summaries generated by the
different approaches employed. Comes with independent news articles in Ger-
man, Dutch and English with titles and summaries, making it a novel dataset to
achieve machine translation and summarization performance evaluation. The
details regarding each of the corpus for English, German, and Dutch can be
found in table 3.2.

17

{

"title": "Frank Witzel erhält Deutschen Buchpreis 2015 - Rhein-Neckar-Zeitung Regionalnachrichten - Rhein Neckar Zeitung",

"text": "Artikel Frank Witzel erhält Deutschen Buchpreis 2015 Frankfurt/Main (dpa) - Für einen Roman über die alte

Bundesrepublik hat Frank Witzel den Deutschen Buchpreis 2015 erhalten. Das Buch mit dem Titel Die

Erfindung der Roten Armee Fraktion durch einen manisch-depressiven Teenager im Sommer 1969 wurde in Frankfurt

als beste literarische Neuerscheinung des Jahres im deutschsprachigen Raum ausgezeichnet. Der Autor schildert darin in

einer Vielzahl von Episoden und Fragmenten die Nachkriegszeit aus der Sicht eines 13-Jährigen im Wiesbadener

Ortsteil Biebrich. Der Deutsche Buchpreis, 2005 erstmals vergeben, gilt als wichtigste Auszeichnung der Branche. 12.10.2015,

19:16 Uhr Frankfurt/Main (dpa) - Für einen Roman über die alte Bundesrepublik hat Frank Witzel

den Deutschen Buchpreis 2015 erhalten. Das Buch mit dem Titel Die Erfindung der Roten Armee

Fraktion durch einen manisch-depressiven Teenager im Sommer 1969 wurde in Frankfurt als beste literarische Neuerscheinung

des Jahres im deutschsprachigen Raum ausgezeichnet. Der Autor schildert darin in einer Vielzahl von Episoden

und Fragmenten die Nachkriegszeit aus der Sicht eines 13-Jährigen im Wiesbadener Ortsteil Biebrich. Der Deutsche

Buchpreis, 2005 erstmals vergeben, gilt als wichtigste Auszeichnung der Branche. weitere Meldungen"

}

Figure 3.1: Webhose Data Sample

Figure 3.1 shows a part of the dataset for German language, in each of the
json file the title and text are pertinent keys to this research. This format is
consistent across all corpus in different languages. One of the notable things
about this dataset for all three languages, is that they do not have highlightText
and highlightTitle, making it essentially a title and text based corpus. It is also
to be noted that there are articles which describe either a metadata such as
date, newspaper name or just a phrase to describe the nature of the article (for
example: breaking news). It was not possible to manually check how many of
those json files exhibit such titles, however figure 3.2 demonstrates one such
example.

{

"title": "+++ BILD Breaking News +++ - home",

"text": ’Istanbul { Türkische Kampfflugzeuge haben an der Grenze zu Syrien ein ausländisches Luftfahrzeug abgeschossen.

Bisher sei nicht bekannt, zu welchem Land das im türkischen Luftraum abgeschossene Objekt gehört habe, erklärte der türkische

Generalstab auf seiner Internetseite. Aus der Mitteilung ging nicht hervor, ob es sich um ein

Flugzeug, einen Hubschrauber oder eine Drohne handelte Trotz dreifacher Warnung habe das Luftfahrzeug seinen Kurs fortgesetzt

und sei deshalb entsprechend der Einsatzregeln der türkischen Streitkräfte abgeschossen worden, erklärte der Generalstab.

In den vergangenen Wochen waren russische Kampfjets bei Einsätzen über Syrien mehrmals in den türkischen Luftraum eingedrungen.

Ankara warnte Moskau daraufhin, bei einer Wiederholung werde das Feuer eröffnet. Am Donnerstag war eine Delegation

des russischen Militärs zu Gesprächen mit türkischen Offizieren in Ankara eingetroffen. Die türkische Luftwaffe hatte

in den vergangenen Jahren ein syrisches Kampfflugzeug, einen Hubschrauber und eine Drohne abgeschossen. Mehr gleich bei BILD.de

Teilen Twittern Teilen auf Google+ Teilen auf Tumblr Teilen auf Pinterest per Mail versenden Artikel melden’

}

Figure 3.2: Sample JSON title, with very little information [34]

3.3 News commentary

News Commentary [22] dataset provides parallel corpus containing news arti-
cles in various languages such as English, Dutch and German. Each article
consists of a text body and a corresponding headline, each line has a corre-
sponding translation to the other available languages. This makes this dataset
capable of serving as training set for both translation and summarization. They
are provided by WMT[35] for machine translation modeling. They are simply
downloaded from the resource and processed line by line using a trivial text
file reader object. The original text and their corresponding translations are
stored in list objects, which is used as x and y components of the training set.
This corpus contains parallel articles and headlines, however it was not used

18

as summarization training set, because its size and format suits more towards
translation model rather than a summarization model(which needs a much big-
ger dataset to start learning to generate meaningful sentences).

Language Examples Average Tokens

German 52020 23
Dutch 57906 25

English 57906 22

Table 3.3: News Commentary Dataset

19

Chapter 4

Approaches

4.1 Preprocessing

SentencePiece model is trained while using the ”byte-pair-encoding” subword
algorithm for tokenization by passing the option for model type as bpe. This
tokenization model’s independence from any particular language makes it a
fitting candidate to be the tokenizing algorithm for the models implemented
due to their multi-linguistic purpose. The training input used for this model is
simply the text file from the summarization training set. The model is trained
using the vocabulary size of 32000. This model is used later to encode the inputs
and outputs into an embedding before passing on to the encoder and decoder
side. The tokens are converted into individual ids to construct a training set
for neural networks, the ids generated as outputs by the neural network can be
converted back to tokens and sentences by referring to a vocabulary object.

Sentence = This is a good test

Tokens(Sentence, vocab size, 32000) =

[’This’,’a’,’good’,’test’]

Tokens(Sentence, vocab size, 12000) =

[’Th’,’is’,’a’,’g’,’ood’,’test’]

Figure 4.1: SentencePiece BPE Tokenization

4.2 Summarization and translation model

The transformer model described in 2.6 have proven to be state-of-the-art mod-
els for machine translation and automatic summarization tasks. This research
aimed to utilize these properties to evaluate performances over dataset with
multiple languages (English, German and Dutch). The architecture that was
used for implementing transformers has been explained in section 2.6. Encoder

20

and Decoder architecture has been implemented by using the pytorch modules
which is available for ”python” development, it is also available in tensorflow,
however due to compatibility issues it ”pytorch” was later preferred. Each of
the stacks are supplied with 6 layers of encoder and decoders each, the model
parameters were borrowed from the default parameters described in 2.6. During
training the transformer encoder stack needs an embedded input. It’s done by
first tokenizing all the training sentences, followed by splitting the training set
into batches. The training cycle works in batches, due to the uneven length
of sentences across the corpus, a padding is applied to append a pad index at
the trailing end of sentences to make all the length in the batch consistent.
However, on a larger dataset the padding can also take a long time just dur-
ing pre-propcessing phase, which is why the sentences are sorted by length and
then padded to optimize training intervals. The batches are shuffled around
after sorting to even the training iterations over an epoch. There were total of
14633 batches of 30 examples each across translation and summarization dataset
combined. The decoder stack’s final output at the end is processed further with
beam search[28] decoder to extract most likely sentences that from the overall
output based on the probabilities.

4.3 Cascaded approach

The primary objective of this research was to evaluate a trained summarization
model’s performance over a multi-lingual dataset to generate summaries specif-
ically in other languages than English. Since the summarization training set is
already and English to English mapping, it was established as a baseline to in-
vestigate the knowledge transfer across languages(English, German and Dutch)
during automated summary generation.

In order to achieve such results one of the approaches implemented was a
cascaded approach to multi-lingual summaries. It is a simple linear approach to
automatic summarization in multiple languages through various summarization
and translation models that were trained individually. It aims to streamline
multiple text transduction models (transformers) together. These individual
models are stacked together to process an input sentence to translate, summarize
and then translate back in that order shown in 4.2. The original texts are
passed through a series of transformer models (translation and summarization)
to generate summary in a non-English language at the end of all transformer
stack.

21

Figure 4.2: Cascaded Approach Architecture

4.4 Multitask Learning

Cascaded approach discussed in the previous section makes use of multiple mod-
els to generate summaries. Although it is a simple approach, it leaves room for
discussion for the approach where multilingual summaries can be generated
using a single model instead of multiple models working together. Another ar-
gument why a single multipurpose model is needed is that training multiple
models takes more time and is computationally expensive. Additionally, each
text transduction process consumes time independently. In order to address this
efficiently, a case is made for proposing a multitask learning model, which can
generate multi-lingual summaries.

Multi-task learning is a training method in which a machine learning model
is trained to perform for multiple tasks at the same time. This method tries to
exploit the similarities of the different tasks that are being solved at the same
time [19]. Multitask learning approach works because when training for more
than one task, a model can learn a more generalized representation of the tasks
and there is a lower risk of over-fitting.

Pertinent to automatic summarization in multiple languages, a modified
transformer model was implemented to accommodate the multi-tasking proper-
ties within the architecture of the model. The intuition behind this approach
was that it should be possible to exploit the performance of transformer models
in translation and summarization tasks by training the transformer model to
do both tasks at the same time. The model was expected to learn a rather
efficient representation of both tasks while also learning the patterns in the in-
put sequence. However, the model needs a context to generate the appropriate
text according to the input instructions (whether translating or summarizing).
Inspired by the model proposed by [Johnson et al., 2017], this was solved by
encoding a special set of tokens which define the task in progress (translation
or summarization)[12]. The idea behind this approach is to encode the tasks
within the input sequences as prefix user defined symbols. This is accomplished
by modifying the way transformer model’s input embeddings are processed at
each time step.

22

Input Sequence X = [x_1, x_2, ..., x_N]

Task Enc(X1) = [SUMM, EN, EN, x_1, ..., x_N]

Figure 4.3: Multitask task encoding

Figure 4.3 shows how the training set examples are modified before train-
ing. This process modifies the input embedding supplied to the encoder stack
in transformers, and the encoder outputs are now affected by the information
(encoded tasks symbols), forcing the model to learn the pattern between the
user defined task symbols and the expected output.

In the first iteration of the multitask learning model, the source sequences
in training set are tagged with encoded instructions such as [SUMM, TRAN, ...
] while the target sequences are left unchanged. The model’s training set has
been selected and filtered, so that the input sequences X are only in English
language rather than extending across all three languages (English, German and
Dutch) in the overall training dataset. This implied the first language token in
all the encoded task sequences will be EN (English). It should be noted that the
source sequences are always in English. The motivation behind this iteration of
multitask learning model was to investigate the performance of the multitask
model and if they differ due to the diversity of language domains in the training
set.

Over the training period, the model is expected to learn the relation be-
tween the expected text and the encoded tasks. To whether to translate and
summarize at any given time. This technique is implemented to make use of
the fact that the training set for summarization, has been in English exclusively,
so if a model can learn to do both separately it should be possible to force the
model to do translation and summarization at the same time. In order to inves-
tigate the transfer of summarization representation across multiple languages,
the initial format of the encoding can be manipulated to mix the instruction
values together. Figure 4.4 shows an example of an encoded task which is asking
the model to take a text in German(DE) and generated a summary(SUMM) of
that text in German(DE). The test dataset constructed from webhose is used
to evaluate the model’s performance in multi-lingual automatic summarization.

Task Enc(X) = [SUMM, DE, DE, x_1, x_2, x_N]

Figure 4.4: Encoded tasks to generate German summary of a German text

The training set for this task is a combination of summarization training set
and the translation dataset where each input sequence from the training set is
supplied to pre-processing component (shown in figure 4.5), which converts the
sequences to their corresponding embedding however, they are prefixed by the

23

encoded task symbols to indicate the desired output (translation or summariza-
tion).

Figure 4.5: Multitask Learning Model

4.5 Multitask learning, multiple languages

The model presented in the previous section only has only trained on English
inputs, however in order to make the model more efficient at summarizing non-
English texts into either of the three languages(English, Dutch, and German)
there is a need for model to also train on non English source input sequences.
This is expected in order to force the model to learn the relationship between
language symbols and summaries. Augmenting the model proposed in section
4.4, the complexity of the multitask learning is increased by extending the train-
ing set across multiple languages. Meaning, the input sequences can contain all
three language tags (EN, DE, and NL). However, it should be noted that the
only summarization data available is exclusively in English. This model is ex-
pected to learn the representation multilingual summarization due to availability
of all languages within the input tags.

Source (X_1) = [SUMM, EN, EN, X_1]

Source (X_2) = [TRAN, EN, DE, X_2]

Source (X_2) = [TRAN, DE, EN, X_2]

Target (Y) = [Y]

Figure 4.6: Multitask learning Model, multiple input languages

The transformer model predicts next word based strictly on the words it has
already predicted or seen so far, it should be possible to augment the set of con-
sidered words for prediction with the encoded task tokens. SUMM and TRAN
are the token for summarization and translation tasks respectively. Similarly,
the tokens for the input and output text’s languages are also encoded within the
sequence. For a translation training example X, which lets say is an input for
translating an English text to German, the corresponding task can be encoded

24

with X as [TRAN EN DE X]. These special tokens are assigned as user-defined
symbols within the SentencePiece model.

4.6 Multitask Learning with tagged outputs

Section 4.5 discusses the modification of input embedding to force the model
to learn the relation between the encoded task symbols and the text itself to
generate corresponding outputs. For the next iteration of the multitask learning,
this research aims to investigate the effect on the summaries generated through
the modification on the decoder side. In the previous section, the model is
provided with a context at the encoder side regarding the task through encoded
task symbols. However, this model also aims to force the decoder to consider the
task symbols separately during text generation along with the output from the
encoder side. Transformer models generate texts by predicting words based on
the already predicted words at each time step. While predicting a word every
time step it is imperative that decoder mustn’t lose context of the encoded
tasks. The encoded tasks shown in figure 4.4 are inserted within each time step
of decoder to force the model to learn the tasks based on instructions that came
through the original input sequence. On the decoder side, the prediction is now
forced to be dependent exclusively on the words that has been already predicted
and the task symbols.

Source (X_1) = [SUMM, EN, EN, X_1]

Source (X_2) = [TRAN, EN, DE, X_2]

Target (Y) = [SUMM EN EN Y] \\ tagged

Figure 4.7: Multitask learning with, tagged target sequences

Figure 4.7 shows how the input and output sequences are modified to force
the decoder to predict words based on the tasks assigned.

For, time step = t, Predict([SUMM, EN, EN, x_1, x_2,])

Figure 4.8: Multitask task encoding

The motivation behind implementing variations models described from sec-
tion 4.5 to 4.6, was to evaluate the performances of the multi-task learning
method based on the language domain in the training set and how the tagging
affects the generated text’s quality. Additionally also identifying the effects of
tagging input and target sequences and whether that helps in contextualizing
the text better for the summarization model during text generation.

25

Chapter 5

Evaluation Methods

5.1 Summarization

An ideal evaluation scenario for a computer generated summary, a human in-
put would be required to properly attest the integrity of new sentences formed
and analyze whether the underlying meaning and information from the original
content is preserved in the summary. However, in case where the summariza-
tion models are working on large datasets, it is not feasible to employ required
amount of human resources, additionally for the sake of consistency in evalua-
tion metrics, a more mathematical approach is suitable for quantitative analysis.
One of such approaches is called ROUGE or Recall-Oriented Understudy for
Gisting Evaluation[14]. It is one of the popular methods to evaluate and score
the quality of automatic summarization in the field natural language processing.
It provides scores by counting the longest overlapping sequences, words and n-
grams between the summaries generated by the machine learning models and
the expected summary provided beforehand. There are software packages avail-
able in different development platforms. In this research, the ROUGE scores are
calculated by utilising the PyRouge[26] package which is available as a Python
module.

5.1.1 Summaries generated in non-English Languages

Testing set (webhose) used for the cascaded and multi-task model only provides
non parallel corpus in multiple languages. In order to evaluate the quality of
summary, the summaries are generated in the original languages, for example:
German summary for a German text while having never trained the model
specifically for German to German summarization. The output and reference is
scored using the simple ROUGE algorithm.

26

5.2 Translation

Evaluating machine translation results through human resources is both time-
consuming and expensive. In order to evaluate the quality of the machine trans-
lated text, one of the popular algorithms in natural language processing is called
BLEU or Bilingual Evaluation Understudy [23]. The underlying theme behind
this technique is that the closer the translation is to the one provided by hu-
mans, the better score this algorithm returns. It is a popular technique due to
its simplicity, effectiveness, correlation with human evaluation and the fact that
its language independent.

The approach works by comparing the candidate translation generated by
a translation model to a target translation candidate. It works by comparing
matching n-grams between the target translation sequence and the generated
sequence. This comparison doesn’t consider the order of the words.

27

Chapter 6

Experiments and
Observations

6.1 Summarization and translation model (News
Commentary, CNN/DailyMail)

The transformer model[33] were designed from scratch using the python devel-
opment tools and inbuilt modules. These models were trained on both News
Commentary and CNN/DailyMail datasets for translation and summarization
related tasks respectively. The corpus was split into testing and training sets
separately to establish a measurement metric for the performances of combined
models for translation and summarization tasks.

According to the results (see table 6.1), summarization models scored higher
when evaluated on corpus containing multiple-sentences based summaries(CNN/DailyMail,
while scoring comparatively lower on News Commentary corpus which has titles
instead of summaries.

Training Dataset Testing Dataset ROUGE (R1) Score

CNN/DailyMail CNN/DailyMail 24.01
CNN/DailyMail Webhose 11.03
CNN/DailyMail News Commentary 7.33

Table 6.1: Summarization model

28

Figure 6.1: Summarization sample

The translation model was trained on News Commentary dataset, as it pro-
vides a range of parallel corpus in multiple languages. The quality of the trans-
lation generated by the transformer models were evaluated by using BLEU[23]
scores (see section 5). Table 6.2 details the evaluation results after training for
3.5 days on a GPU accelerated unit for each pair of languages.

Dataset Languages BLEU Score

News Commentary English, German 29.13
News Commentary German, English 28.71
News Commentary English, Dutch 31.11
News Commentary Dutch, English 31.23

Table 6.2: Translation model

6.2 Cascaded approach

First a summarization model is trained to summarize English texts into En-
glish summaries using the summarization dataset available (CNN/DailyMail)
[4]. This serves as the central component in this approaches’ architecture as
shown in figure 4.2. Since the summarization model can only summarize En-
glish sentences, it is facilitated by various translation models. These translation
model first, translate text from German or Dutch to English (making it com-
patible for the summarization model). The generated summary (English text)
is followed by another translation model to eventually generate a summary in
German or Dutch. It is worth noting that all the implemented models are
transformer models as explained in section 2.6.

Webhose provides independently non parallel news article dataset in English,
German and Dutch languages. That is used to first translate the text to English,
and then summarize and translate it back to the original language. The overall
output can be compared against the original expected summary and evaluated
using methods that were described in chapter 5. It has been observed as showed
in figure 3.2 that sometimes the ground truth titles or summaries are just meta-

29

Dataset Languages ROUGE(R1) Score

Webhose German 9.80
Webhose Dutch 9.62

Table 6.3: Cascaded approach scores

data about the text rather than actually having a meaningful content, or just
noisy data. Additionally, since the text is passed through multiple models, the
sentences seem to lose on quality over the period due to the noise added from
particular models. It hurts the quality of the output at the end because the final
output text ends up containing words which are not pertinent to the original
text. It can be seen that despite, the low scores the ROUGE(R1) scores for
multi-lingual summarization is similar to whats been described in section 6.1.
The low scores can be reasoned with the lack of available common n-grams when
the reference summaries (in this case titles) are just a small sentence consisting
of very few words.

The overall streamlined system generates summaries in two languages, En-
glish and German or Dutch. The ROUGE(R1) scores are calculated by refer-
ring to the original title in the original language. For example, to examine the
multi-lingual knowledge transfer for German language, according to the dataset
available in this research, the German text content is first translated into En-
glish and then it’s summarized which is followed by another step of translation
to German again. After this series of steps is complete the result is a summary
generated in German, hence it is comparable to the original titles which were
in German for evaluation. Table 6.3 show the various ROUGE scores achieved
using the cascaded approach. Each individual models took up to 3 days while
being executed on a GPU accelerated machine.

Figure 6.2: Cascaded approach results

Figure 6.2 shows a summarization generated through a cascaded model for an
original German text. Even though the output summary does contain pertinent
words or phrases, in its entirety the summary is not making a semantic sense.
These type of results are observed sporadically throughout the testing set.

30

6.3 Multitask Learning with only English inputs

This is the model discussed in section 4.4 where the training set data only
contains input sequences in English, and the target sequence could extend across
multiple languages (explained in section 4.4). It was observed that, this method
does only produce results in German/Dutch, as instructed and expected from
the input sequences. Despite the summaries generated are not of the highest
quality, it still contains the phrases and words from the expected summaries
(see figure 6.3 and 6.4). This resulted in an evaluation score of ROUGE(R1) =
2.54.

Figure 6.3: Multitask model sample results, only English input sequences

Figure 6.4: Multitask model sample results, only English input sequences

6.4 Multitask Learning Model, multiple languages

When the model was trained without the encoded tags ([SUMM, EN, DE,
TRAN]) in the target output sequences, the training progress and learning curve
was similar to the other multi-task learning models. However, the results as an
example shown in the figure 6.5 show that the results seem to contain words
from multiple languages in the same sentence. It can be postulated that due to
the training set extending across multiple languages domain, the model when
instructed to generated summaries in another language, it attempts to combine
both learned tasks [translation and summarization], however not producing the
results in one language as instructed from the input sequence. So as expected
from the sample outputs, the ROUGE(R1) scores obtained on German dataset
was 1.14.

31

Figure 6.5: Multitask model sample results, untagged outputs

6.5 Multitask learning model with tagged out-
put

As detailed in section 4.6, the multi-task learning was implemented by modify-
ing the encoder-decoder input embedding mechanism to consider the encoded
task sequences within the input during text generation. After training the mul-
titask model, it turns out that when the encoded sequences are manipulated to
simultaneously perform the summarization and translation, the model ends up
producing non-conclusive outputs, performing very poorly. However, during the
training phase of the model, the learning curve seems to progress as expected
however the results do not show good results, as shown in figure 6.6. While
the output texts can be seen to have repeated the encoded symbols to what
it was trained on(”English” to ”English” summarization) instead of generating
the text. The outputs seemed to contain words from multiple languages as well,
resulting in an average ROUGE(R1) score of 1.01 across on German dataset.

Figure 6.6: Multitask model sample results

It can also be observed that the multitask learning model suffers from ex-
posure bias. It has only learned to summarize when instructions are ”SUMM
EN EN”. So even though the input sequence starts from ”SUMM DE DE”, the
summary generated repeats ”EN” after the tags that were originally provided.

In order to investigate the above observations, multiple variations of train-
ing set were trained with the model. However, in every iteration the model
performs well when the training set only deals with either translation (one way)

32

or summarization, but not both at the same time. Figure 6.7 shows the result
of the multi-task model while trained only for summarization. Similar, results
can be seen for translation as well.

Figure 6.7: Multitask model sample results, English summary

6.6 Overview of multitask learning approaches

As it can be observed from the results discussion in section 6.3 to 6.5, the
multitask learning performs relatively better when the training input domain is
constrained within a singular language (English in this research’s case). While in
the later iterations with tagging the output sequences on the decoder side didn’t
seem to make a lot of difference in terms of evaluation scores (see table 6.4).
The next iteration containing multiple language (English, German and, Dutch)
was evaluated at lower ROUGE(R1) scores than the previous model(singular
language inputs). These lower scores are mainly due to the fact that the output
generated sequences contained words from multiple languages, and were not
following the expected language domain according to the encoded sequences
(”EN”, ”DE”, or ”NL”). The next iteration of the model containing multiple
languages and tagged output sequences, performed similarly at lower scores (re-
fer table 6.4). The summaries generated contained repeated words and phrases
while also containing mixed words from different languages, resulting in a lower
evaluation scores.

Multitask Learning Approach ROUGE(R1) Score
English inputs only 2.54

Inputs with multiple languages 1.14
English input only with tagged output 2.21

Tagged output sequences, multiple languages 1.01

Table 6.4: Multitask Learning model evaluation over webhose

The multitask learning model works well, and produces more consistent texts
as long as the training input sequences do not extend to multiple languages,
once the training domain extends across other languages the texts generated
start containing repeating phrases and mixed words from multiple languages.

33

6.7 Training observations and parameters

Each of the models (translation and summarization) are based on the trans-
former models. The starting training parameters were defined based on the
availability of resources and the state-of-the-art translation and summarization
model[33] (see more at table 6.5). Encoder and Decoder sides contain six layers
each, while every layer containing 2 sublayers which are followed by dropout[29],
produce an output of dimensionality 512. The dropout is applied for regular-
ization[29]. Each self attention layer is equipped with 8 parallel heads, which
computes the attention values in parallel.

Parameters Values
Encoder Layers 6
Decoder Layers 6

Batch Size 1500
α 0.0001

Training steps 50000
Dropout 0.1

Attention Heads 8
dmodel 512

Table 6.5: Model parameters

Training the multitask learning model took the highest amount of time due
to it’s bigger in comparison dataset (since it contains combination of both sum-
marization and translation dataset).

Figure 6.8: Multitask and Summarization Model: Training Time

Default starting values for learning rate(α) is set to 0.00001 for all the mod-
els, the learning curve over the training steps for summarization and multitask
model can be seen in figure 6.9.

34

Figure 6.9: Multitask and Summarization Model: Learning Curve

Figure 6.10: Multitask and Summarization Model: Accuracy

It can be seen that clearly the multitask learning model reaches higher ac-
curacy scores and higher learning rates over the training steps. While they are
similar architectures, they do differ in the size of the dataset which also factors
in towards the difference in learning curve.

35

Chapter 7

Summary

This research explored various approaches to achieve automatic summarization
across multiple languages. While drawing inspiration from state-of-the-art sum-
marization and translation models [33][20][12]. Based on the findings and pro-
posed models an encoder-decoder architecture was employed using transformer
models[33]. The translation and summarization training set were drawn from
News Commentary and CNN/DailyMail [4][22]. The testing dataset, however,
was fetched from webhose[34]. Webhose was preferred because it provided freely
available formatted dataset in multiple languages (English, Dutch and German).

Summarization model individually was evaluated at ROUGE(R1) score of
24.01 on CNN/DailyMail dataset. However, when tested on webhose dataset,
they performed worse at ROUGE(R1) score of 11.03. The poor result was
inspected, the reason behind the lower evaluation score is due to the fact that
webhose contains a plenty of titles with no pertinent content or just metadata
about the article (indicated before in figure 3.2). It was not feasible to go
through the entire corpus for checking the titles manually. Absence of longer
summary also hurts the model’s score due to the training set containing much
more detailed summaries.

Translation model was trained on News Commentary dataset, as it was the
only dataset available which provided parallel corpus in the languages pertinent
to this research. Translation model was evaluated at an average BLEU score of
30.04 across English, German and Dutch languages.

First, a cascaded approach is proposed to achieve multilingual automatic
summarization through the means of combining the aforementioned summa-
rization and translation models. It was observed that it is possible to generate
multi-lingual summaries through the means of processing texts through various
models serially, the end result can be evaluated by referencing the expected
output. However, due to multiple phases of text transduction, a noise is added
to the text after each step, which factors in at the end when evaluating the
quality of the summary using methods such as ROUGE(R1) scores, which were
evaluated at 9.70 in average for all three languages. It should also be noted that
the quality of the summaries/titles available in webhose corpus detriments the

36

results as well.
Subsequently a multitask learning model was proposed to investigate whether

a model can learn summarization and translation tasks separately, and whether
it can generated readable summaries while only having being trained on English-
to-English summaries, English-to-German translation and German to English
translation. The underlying idea behind the approach was inspired from the
proposed mode by [Johnson et al., 2017]. The model learned summarization
and translation at the same times, while the input sequences were encoded with
special symbols to indicate the current task (translation or summarization).
The training of multitask model took the longest due to much bigger size of the
dataset. When evaluated, it was observed that the outputs were not generating
readable summaries, and generated tokens and phrases were getting repeated.
Multiple variations (described in section 4.4 to 4.6) of multi-task model were
trained to investigate the challenges and the nature of text generated. When
the input and target sequences are encoded with the tasks, the model seems to
suffer from exposure bias, because during generation it relies on generated en-
coded task symbols. The generated summaries appeared to contain words and
phrases from multiple languages within the same output. Results were slightly
better for models which were trained with a singular language data (input se-
quences only in English). This generated slightly better results than the other
iterations of the multitask learning model, it was more consistent to stay within
the desired language domain and contained some pertinent phrases and words.

37

Bibliography

[1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normal-
ization”. In: ArXiv abs/1607.06450 (2016).

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. cite arxiv:1409.0473Comment:
Accepted at ICLR 2015 as oral presentation. 2014. url: http://arxiv.
org/abs/1409.0473.

[3] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724–
1734. url: http://www.aclweb.org/anthology/D14-1179.

[4] CNN/DailyMail. url: https://github.com/JafferWilson/Process-
Data-of-CNN-DailyMail.

[5] Dipanjan Das and André F. T. Martins. A Survey on Automatic Text
Summarization. 2007.

[6] Extraction Based Summarization. url: https://blog.floydhub.com/
gentle-introduction-to-text-summarization-in-machine-learning/.

[7] Jonas Gehring et al. “Convolutional Sequence to Sequence Learning”. In:
Proceedings of the 34th International Conference on Machine Learning.
Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. International Convention Centre, Sydney, Australia:
PMLR, 2017, pp. 1243–1252. url: http://proceedings.mlr.press/
v70/gehring17a.html.

[8] Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. “Bottom-Up
Abstractive Summarization”. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 4098–4109. doi: 10.
18653/v1/D18-1443. url: https://www.aclweb.org/anthology/D18-
1443.

38

[9] Makoto Hirohata et al. “Sentence extraction-based presentation summa-
rization techniques and evaluation metrics”. In: Acoustics, Speech, and
Signal Processing, 1988. ICASSP-88., 1988 International Conference on
1 (Jan. 2005). doi: 10.1109/ICASSP.2005.1415301.

[10] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions”. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr. 1998),
pp. 107–116. doi: 10.1142/S0218488598000094.

[11] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[12] Melvin Johnson et al. “Google’s Multilingual Neural Machine Translation
System: Enabling Zero-Shot Translation”. In: Transactions of the Associ-
ation for Computational Linguistics 5 (2017), pp. 339–351. doi: 10.1162/
tacl_a_00065. url: https://www.aclweb.org/anthology/Q17-1024.

[13] C. -. Lee et al. “Word recognition using whole word and subword models”.
In: International Conference on Acoustics, Speech, and Signal Processing,
1989, 683–686 vol.1. doi: 10.1109/ICASSP.1989.266519.

[14] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of sum-
maries”. In: Proc. ACL workshop on Text Summarization Branches Out.
2004, p. 10. url: http://research.microsoft.com/~cyl/download/
papers/WAS2004.pdf.

[15] Linqing Liu et al. “Generative Adversarial Network for Abstractive Text
Summarization”. In: (Nov. 2017).

[16] I Mani. Automatic Summarization. John Benjamins Publishing Company,
2001.

[17] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and their Compositionality”. In: Advances in Neural Information Pro-
cessing Systems 26. Ed. by C. J. C. Burges et al. Curran Associates, Inc.,
2013, pp. 3111–3119. url: http : / / papers . nips . cc / paper / 5021 -

distributed-representations-of-words-and-phrases-and-their-

compositionality.pdf.

[18] Tomas Mikolov et al. “Recurrent neural network based language model.”
In: INTERSPEECH. Ed. by Takao Kobayashi, Keikichi Hirose, and Satoshi
Nakamura. ISCA, 2010, pp. 1045–1048. url: http://dblp.uni-trier.
de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10.

[19] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, Lukasz
Kaiser. “Multi-task Sequence to Sequence Learning”. In: (2015).

[20] Ramesh Nallapati et al. “Abstractive Text Summarization using Sequence-
to-sequence RNNs and Beyond”. In: Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning. Berlin, Ger-
many: Association for Computational Linguistics, Aug. 2016, pp. 280–
290. doi: 10.18653/v1/K16-1028. url: https://www.aclweb.org/
anthology/K16-1028.

39

[21] Joel Larocca Neto et al. Document Clustering and Text Summarization.
2000.

[22] News Commentary Dataset. url: https://www.statmt.org/wmt19/.

[23] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Ma-
chine Translation”. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. Philadelphia, Pennsylvania,
USA: Association for Computational Linguistics, July 2002, pp. 311–318.
doi: 10.3115/1073083.1073135. url: https://www.aclweb.org/

anthology/P02-1040.

[24] Romain Paulus, Caiming Xiong, and Richard Socher. “A Deep Reinforced
Model for Abstractive Summarization”. In: International Conference on
Learning Representations. 2018. url: https://openreview.net/forum?
id=HkAClQgA-.

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Repre-
sentation Learning with Deep Convolutional Generative Adversarial Net-
works. cite arxiv:1511.06434Comment: Under review as a conference paper
at ICLR 2016. 2015. url: http://arxiv.org/abs/1511.06434.

[26] ROGUE Package. url: https://github.com/bheinzerling/pyrouge.

[27] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The
Point: Summarization with Pointer-Generator Networks”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Vancouver, Canada: Association for Com-
putational Linguistics, July 2017, pp. 1073–1083. doi: 10.18653/v1/P17-
1099. url: https://www.aclweb.org/anthology/P17-1099.

[28] Yusuke Shibata et al. “Byte Pair Encoding: A Text Compression Scheme
That Accelerates Pattern Matching”. In: (Sept. 1999).

[29] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15
(2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.
html.

[30] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM Neural
Networks for Language Modeling”. In: INTERSPEECH. 2012.

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence
Learning with Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 27. 2014.

[32] Tensorflow CNN Daily Mail. url: https : / / www . tensorflow . org /

datasets/catalog/cnn_dailymail.

[33] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et al. Curran Asso-
ciates, Inc., 2017, pp. 5998–6008. url: http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

[34] Webhose. url: http://webhose.io.

40

[35] WMT. url: https://www.statmt.org/.

41

