
Dynamic Programming

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Dynamic Programming 6-2

Knapsack

The Knapsack Problem

Instance:

A set of n objects, each of which has a positive integer value

and a positive integer weight . A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and

they have maximal total value

iv

iw

Algorithms – Dynamic Programming 6-3

Idea

A simple question: Should we include the last object into selection?

Let OPT(n,W) denote the maximal value of a selection of objects out

of {1, …, n} such that the total weight of the selection doesn’t

exceed W

More general, OPT(i,U) denote the maximal value of a selection of

objects out of {1, …, i} such that the total weight of the selection

doesn’t exceed U

Then

OPT(n,W) = max{ OPT(n – 1, W), OPT(n – 1, W –) + }
nw nv

Algorithms – Dynamic Programming 6-4

Algorithm (First Try)

Knapsack(n,W)

set V1:=Knapsack(n-1,W)

set V2:=Knapsack(n-1,W-)

output max(V1,V2+)

Is it good enough?

Example

Let the values be 1,3,4,2, the weights 1,1,3,2, and W = 5

Recursion tree

nw

nv

Algorithms – Dynamic Programming 6-5

Another Idea: Memoization

Let us store values OPT(i,U) as we find them

We need to store (and compute) at most n × W numbers

We’ll do it in a regular way:

Instead of recursion, we will compute those values starting from

smaller ones, and fill up a table

Algorithms – Dynamic Programming 6-6

Algorithm (Second Try)

Knapsack(n,W)

array M[0..n,0..W]

set M[0,w]:=0 for each w=0,1,...,W

for i=1 to n do

for w=0 to W do

set M[i,w]:= max{M[i–1,w],M[i-1,w–]+ }

endfor

endfor

iviw

Algorithms – Dynamic Programming 6-7

Example

Example

Let the values be 1,3,4,2, the weights 1,1,3,2, and W = 5

M[i,w] = max{ M[i – 1, w], M[i – 1,w –] + }

i
w

0 0 0 0 0 0

0 1 1 1 1 1

0

0

3 4 4 4 4

3 4 4 7 8

3 4 5 7 8

iviw

0 1 2 3 4 5

0

1

2

3

4 0

Algorithms – Dynamic Programming 6-8

Shortest Path

Suppose that every arc e of a digraph G has length

(or cost, or weight, or …) len(e)

But now we allow negative lengths (weights)

Then we can naturally define the length of a directed path in G,

and the distance between any two nodes

The s-t-Shortest Path Problem

Instance:

Digraph G with lengths of arcs, and nodes s,t

Objective:

Find a shortest path between s and t

Algorithms – Dynamic Programming 6-9

Shortest Path: Difficulties

Negative Cycles.

Greediness fails

Adding constant weight to all arcs fails

s t

<0

s t

ba

1

2

3

-6

Algorithms – Dynamic Programming 6-10

Shortest Path: Observations

Assumption

There are no negative cycles

Lemma

If graph G has no negative cycles, then there is a shortest path from
s to t that is simple (i.e. does not repeat nodes), and hence has at
most n – 1 arcs

Proof

If a shortest path P from s to t repeats a node v, then it also
include a cycle C starting and ending at v.

The weight of the cycle is non-negative, therefore removing the cycle
makes the path shorter (no longer).

QED

Algorithms – Dynamic Programming 6-11

Shortest Path: Dynamic Programming

We will be looking for a shortest path with increasing number of arcs

Let OPT(i,v) denote the minimum weight of a path from v to t using
at most i arcs

Shortest v – t path can use i – 1 arcs. Then OPT(i,v) = OPT(i – 1,v)

Or it can use i arcs and the first arc is vw. Then

OPT(i,v) = len(vw) + OPT(i – 1,w)

v t

w

)}}(),1({min),,1(min{),(vwlenwiOPTviOPTviOPT
Vw

+−−=
∈

Algorithms – Dynamic Programming 6-12

Shortest Path: Algorithm

Shortest-Path(G,s,t)

set n:=|V| /*number of nodes in G

array M[0..n-1,V]

set M[0,t]:=0 and M[0,v]:=∞ for each v∈V-{t}

for i=1 to n-1 do

for v∈V do

set M[i,v]:=min{M[i-1,v],min {M[i-1,w]+len(vw)}}

endfor

endfor

return M[n-1,s]

w∈V

Algorithms – Dynamic Programming 6-13

Example

M[i,v] = min{ M[i – 1, v], min { M[i – 1, w] + len(vw) }}

t a b c d e

0 -3 ∞ 3 4 2

0 -3 0 3 3 0

0

0

0

-4 -2 3 3 0

-6 -2 3 2 0

-6 -2 3 0 0

0 ∞ ∞ ∞ ∞ ∞

a

b

c

d

e

t

-4

8

-1

6
-3

-2

-3

2

4

3

w ∈ V

0

1

2

3

4

5

Algorithms – Dynamic Programming II 8-14

Shortest Path: Soundness and Running Time

Proof.

Soundness follows by induction from the recurrent relation for the optimal

value.

DIY.

Running time:

We fill up a table with entries. Each of them requires O(n) time

Theorem

The ShortestPath algorithm correctly computes the minimum cost of

an s-t path in any graph that has no negative cycles, and runs in

O() time3
n

2
n

Algorithms – Dynamic Programming II 8-15

Shortest Path: Soundness and Running Time

A big improvement for sparse graphs

Proof.

Consider the computation of the array entry M[i,v]:

M[i,v] = min{ M[i – 1, v], min { M[i – 1, w] + len(vw) }}

We need only compute the minimum over all nodes w for which v has

an edge to w

Let denote the number of such edges

Theorem

The ShortestPath algorithm can be implemented in O(mn) time

w ∈ V

vn

Algorithms – Dynamic Programming II 8-16

Shortest Path: Running Time Improvements

It takes O() to compute the array entry M[i,v].

It needs to be computed for every node v and for each i, 1 ≤ i ≤ n.

Thus the bound for running time is

Indeed, is the outdegree of v, and we have the result by the

Handshaking Lemma.

QED

vn

)(nmOnnO

Vv

v =













∑
∈

vn

Algorithms – Dynamic Programming II 8-17

Shortest Path: Space Improvements

The straightforward implementation requires storing a table with

entries

It can be reduced to O(n)

Instead of recording M[i,v] for each i, we use and update a single value

M[v] for each node v, the length of the shortest path from v to t

found so far

Thus we use the following recurrent relation:

M[v] = min{ M[v], min { M[w] + len(vw) }}w ∈ V

2
n

Algorithms – Dynamic Programming II 8-18

Shortest Path: Space Improvements (cntd)

Lemma

Throughout the algorithm M[v] is the length of some path from v to t,

and after i rounds of updates the value M[v] is no larger than the

length of the shortest from v to t using at most i edges

Algorithms – Dynamic Programming II 8-19

Shortest Path: Finding Shortest Path

In the standard version we only need to keep record on how the optimum

is achieved

Consider the space saving version.

For each node v store the first node on its path to the destination t

Denote it by first(v)

Update it every time M[v] is updated

Let P be the pointer graph P = (V, {(v, first(v)): v∈V})

Algorithms – Dynamic Programming II 8-20

Shortest Path: Finding Shortest Path

Lemma

If the pointer graph P contains a cycle C, then this cycle must have

negative cost.

Proof

If w = first(v) at any time, then M[v] ≥ M[w] + len(vw)

Let be the nodes along the cycle C, and the

last arc to be added

Consider the values right before this arc is added

We have for i = 1,…, k – 1 and

Adding up all the inequalities we get

kvvv ,,, 21 K),(1vvk

)(][][11 ++ +≥ iiii vvlenvMvM

)(][][11 vvlenvMvM kk +>

∑
−

=

+ +>

1

1

11)()(0
k

i

kii vvlenvvlen

Algorithms – Dynamic Programming II 8-21

Shortest Path: Finding Shortest Path (cntd)

Lemma

Suppose G has no negative cycles, and let P be the pointer graph

after termination of the algorithm. For each node v, the path in P

from v to t is a shortest v-t path in G.

Proof

Observe that P is a tree.

Since the algorithm terminates we have M[v] = M[w] + len(vw), where

w = first(v).

As M[t] = 0, the length of the path traced out by the pointer graph is

exactly M[v], which is the shortest path distance.

QED

Algorithms – Dynamic Programming II 8-22

Shortest Path: Finding Negative Cycles

Two questions:

- how to decide if there is a negative cycle?

- how to find one?

Lemma

It suffices to find negative cycles C such that t can be reached from C

t

<0

<0

Algorithms – Dynamic Programming II 8-23

Shortest Path: Finding Negative Cycles

Proof

Let G be a graph

The augmented graph,

A(G), is obtained by

adding a new node and

connecting every node

in G with the new node

As is easily seen, G contains

a negative cycle if and only if A(G) contains a negative cycle C such

that t is reachable from C

QED

t

Algorithms – Dynamic Programming II 8-24

Shortest Path: Finding Negative Cycles (cntd)

Extend OPT(i,v) to i ≥ n

If the graph G does not contain negative cycles then

OPT(i,v) = OPT(n – 1,v) for all nodes v and all i ≥ n

Indeed, it follows from the observation that every shortest path contains

at most n – 1 arcs.

Lemma

There is no negative cycle with a path to t if and only if

OPT(n,v) = OPT(n – 1,v)

Proof

If there is no negative cycle, then OPT(n,v) = OPT(n – 1,v) for all

nodes v by the observation above

Algorithms – Dynamic Programming II 8-25

Shortest Path: Finding Negative Cycles (cntd)

Proof (cntd)

Suppose OPT(n,v) = OPT(n – 1,v) for all nodes v.

Therefore

OPT(n,v) = min{ OPT(n – 1,v), min { OPT(n – 1,w) + len(vw) }}

= min{ OPT(n,v), min { OPT(n,w) + len(vw) }}

= OPT(n + 1,v)

= ….

However, if a negative cycle from which t is reachable exists, then

QED

w ∈ V

w ∈ V

−∞=

∞→

),(lim viOPT
i

Algorithms – Dynamic Programming II 8-26

Shortest Path: Finding Negative Cycles (cntd)

Let v be a node such that OPT(n,v) ≠ OPT(n – 1,v).

A path P from v to t of weight OPT(n,v) must use exactly n arcs

Any simple path can have at most n – 1 arcs, therefore P contains a

cycle C

Lemma

If G has n nodes and OPT(n,v) ≠ OPT(n – 1,v), then a path P of

weight OPT(n,v) contains a cycle C, and C is negative.

Proof

Every path from v to t using less than n arcs has greater weight.

Let w be a node that occurs in P more than once.

Let C be the cycle between the two occurrences of w

Deleting C we get a shorter path of greater weight, thus C is negative

