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Knapsack

The Knapsack Problem

Instance:

A set of  n objects, each of which has a positive integer value                              

and a positive integer  weight        .   A weight limit  W.

Objective:

Select objects so that their total weight does not exceed  W, and 

they have maximal total value
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Idea

A simple question:    Should we include the last object into selection?

Let  OPT(n,W)   denote the maximal value of a selection of objects  out 

of  {1, …, n}  such that the total weight of the selection doesn’t 

exceed  W

More general, OPT(i,U)   denote the maximal value of a selection of 

objects  out of  {1, …, i}  such that the total weight of the selection 

doesn’t exceed  U

Then

OPT(n,W) = max{ OPT(n – 1, W),  OPT(n – 1, W – ) +     }
nw nv
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Algorithm (First Try)

Knapsack(n,W)

set V1:=Knapsack(n-1,W)

set V2:=Knapsack(n-1,W- )

output max(V1,V2+  )

Is it good enough?

Example

Let  the values be  1,3,4,2,   the weights  1,1,3,2,    and  W = 5

Recursion tree
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Another Idea:  Memoization 

Let us store values   OPT(i,U)  as we find them

We need to store (and compute) at most   n × W  numbers

We’ll do it in a regular way:

Instead of recursion, we will compute those values starting from 

smaller ones,  and fill up a table
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Algorithm (Second Try)

Knapsack(n,W)

array  M[0..n,0..W]

set M[0,w]:=0 for each w=0,1,...,W

for i=1 to n do

for w=0 to W do

set M[i,w]:= max{M[i–1,w],M[i-1,w– ]+  }

endfor

endfor

iviw
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Example

Example

Let  the values be  1,3,4,2,   the weights  1,1,3,2,    and  W = 5

M[i,w] = max{ M[ i – 1, w], M[ i – 1,w – ] +     }

i
w

0 0 0 0 0 0

0 1 1 1 1 1

0

0

3 4 4 4 4
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Shortest Path

Suppose that every arc  e  of a digraph  G  has length 

(or cost, or weight, or …)  len(e)

But now we allow negative lengths (weights)

Then we can naturally define the length of a directed path in  G,

and the distance between any two nodes

The s-t-Shortest Path Problem

Instance:

Digraph  G  with lengths of arcs,  and nodes  s,t

Objective:

Find a shortest path between  s  and  t
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Shortest Path:  Difficulties

Negative Cycles.

Greediness fails

Adding constant weight to all arcs fails
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Shortest Path: Observations

Assumption

There are no negative cycles

Lemma

If graph  G  has no negative cycles, then there is a shortest path from  
s  to  t  that is simple (i.e. does not repeat nodes), and hence has at 
most  n – 1  arcs

Proof

If a shortest path  P  from  s  to  t  repeats a node  v,  then it also 
include a cycle  C  starting and ending at  v.

The weight of the cycle is non-negative, therefore removing the cycle 
makes the path shorter  (no longer).

QED
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Shortest Path: Dynamic Programming

We will be looking for a shortest path with increasing  number of arcs

Let  OPT(i,v)  denote the minimum weight of a path from  v  to  t  using 
at most  i  arcs

Shortest   v – t  path can use  i – 1  arcs.  Then  OPT(i,v) = OPT(i – 1,v)

Or it can use  i  arcs and the first arc is  vw.  Then  

OPT(i,v) = len(vw) + OPT(i – 1,w)
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Shortest Path:  Algorithm

Shortest-Path(G,s,t)

set n:=|V|            /*number of nodes in G

array  M[0..n-1,V]

set M[0,t]:=0 and M[0,v]:=∞ for each v∈V-{t}

for i=1 to n-1 do

for v∈V do

set M[i,v]:=min{M[i-1,v],min   {M[i-1,w]+len(vw)}}

endfor

endfor

return M[n-1,s]

w∈V
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Example

M[i,v] = min{ M[i – 1, v], min { M[ i – 1, w] + len(vw) }}

t a b c d e
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Shortest Path:  Soundness and Running Time

Proof.

Soundness follows by induction from the recurrent relation for the optimal 

value.

DIY.

Running time:  

We fill up a table with        entries.  Each of them requires  O(n)  time

Theorem

The ShortestPath algorithm correctly computes the minimum cost of 

an  s-t path in any graph that has no negative cycles, and runs in   

O(     )  time3
n

2
n
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Shortest Path:  Soundness and Running Time

A big improvement for sparse graphs

Proof.

Consider the computation of the array entry  M[i,v]:

M[i,v] = min{ M[i – 1, v], min { M[ i – 1, w] + len(vw) }}

We need only compute the minimum over all nodes  w  for which  v  has 

an edge to  w

Let         denote the number of such edges

Theorem

The ShortestPath algorithm can be implemented in  O(mn)  time

w ∈ V

vn
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Shortest Path:  Running Time Improvements 

It takes  O(      )  to compute the array entry  M[i,v]. 

It needs to be computed for every node  v  and for each  i,  1 ≤ i ≤ n. 

Thus the bound for running time is

Indeed,        is the outdegree of  v,  and we have the result by the 

Handshaking Lemma.

QED
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Shortest Path:  Space Improvements 

The straightforward implementation requires storing a table with       

entries

It can be reduced to  O(n)

Instead of recording  M[i,v]  for each  i,  we use and update a single value  

M[v]  for each node  v,  the length of the shortest path from  v  to  t  

found so far 

Thus we use the following recurrent relation:

M[v] = min{ M[v], min { M[ w] + len(vw) }}w ∈ V

2
n
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Shortest Path:  Space Improvements (cntd)

Lemma

Throughout the algorithm  M[v]  is the length of some path from  v  to  t,  

and after  i  rounds of updates the value  M[v]  is no larger than the 

length of the shortest from  v  to  t  using at most  i  edges
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Shortest Path:  Finding Shortest Path

In the standard version we only need to keep record on how the optimum 

is achieved

Consider the space saving version.

For each node  v  store the first node on its path to the destination  t

Denote it by  first(v)

Update it every time  M[v]  is updated

Let  P  be the pointer graph P = (V, {(v, first(v)): v∈V})
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Shortest Path:  Finding Shortest Path

Lemma

If the pointer graph  P  contains a cycle  C,  then this cycle must have 

negative cost.

Proof

If  w = first(v)  at any time, then  M[v] ≥ M[w] + len(vw)

Let                       be the nodes along the cycle  C,  and               the 

last arc to be added

Consider the values right before this arc is added

We have                                                          for  i = 1,…, k – 1  and

Adding up all the inequalities we get 
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Shortest Path:  Finding Shortest Path (cntd)

Lemma

Suppose  G  has no negative cycles, and  let  P  be the pointer graph 

after termination of the algorithm.  For each node  v,  the path in  P  

from  v  to  t  is a shortest  v-t path in  G.

Proof

Observe that  P  is a tree.

Since the algorithm terminates we have   M[v] = M[w] + len(vw),  where 

w = first(v).

As  M[t] = 0,  the length of the path traced out by the pointer graph is 

exactly  M[v],  which is the shortest path distance.

QED
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Shortest Path:  Finding Negative Cycles

Two questions:

- how to decide if there is a negative cycle?

- how to find one?

Lemma

It suffices to find negative cycles  C  such that  t  can be reached from  C

t

<0

<0
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Shortest Path:  Finding Negative Cycles

Proof

Let  G  be a graph

The augmented graph,

A(G),  is obtained by

adding a new node and

connecting every node

in  G  with the new node

As is easily seen,  G  contains

a negative cycle if and only if  A(G)  contains a negative cycle  C  such 

that  t  is reachable from  C

QED

t
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Shortest Path:  Finding Negative Cycles  (cntd)

Extend  OPT(i,v)  to  i ≥ n

If the graph  G  does not contain negative cycles then                     

OPT(i,v) = OPT(n – 1,v)  for all nodes  v  and all  i ≥ n

Indeed, it follows from the observation that every shortest path contains 

at most  n – 1  arcs.

Lemma

There is no negative cycle with a path to  t  if and only if  

OPT(n,v) = OPT(n – 1,v)

Proof

If there is no negative cycle, then OPT(n,v) = OPT(n – 1,v)   for all 

nodes  v  by the observation above
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Shortest Path:  Finding Negative Cycles  (cntd)

Proof (cntd)

Suppose  OPT(n,v) = OPT(n – 1,v)  for all nodes  v.

Therefore

OPT(n,v) = min{ OPT(n – 1,v),  min          { OPT(n – 1,w) + len(vw) }}

= min{ OPT(n,v),  min          { OPT(n,w) + len(vw) }}

= OPT(n + 1,v) 

= ….

However, if a negative cycle from which  t  is reachable exists, then

QED
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Shortest Path:  Finding Negative Cycles  (cntd)

Let  v  be a node such that  OPT(n,v) ≠ OPT(n – 1,v).

A path  P  from  v  to  t  of weight  OPT(n,v)  must use exactly  n  arcs

Any simple path can have at most  n – 1  arcs, therefore  P  contains a 

cycle  C

Lemma

If  G  has  n  nodes and  OPT(n,v) ≠ OPT(n – 1,v),  then a path  P  of 

weight  OPT(n,v)  contains a cycle  C,  and  C  is negative.

Proof

Every path from  v  to  t  using less than  n  arcs has greater weight.

Let  w  be a node that occurs in  P  more than once.

Let  C  be the cycle between the two occurrences of  w

Deleting  C  we get a shorter path of greater weight, thus  C  is negative


