Dynamic Programming

Knapsack

The Knapsack Problem

Instance:

A set of n objects, each of which has a positive integer value v_i and a positive integer weight w_i . A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and they have maximal total value

Idea

A simple question: Should we include the last object into selection?

Let OPT(n,W) denote the maximal value of a selection of objects out of {1, ..., n} such that the total weight of the selection doesn't exceed W

More general, OPT(i,U) denote the maximal value of a selection of objects out of {1, ..., i} such that the total weight of the selection doesn't exceed U

Then

$$OPT(n,W) = max\{ OPT(n-1, W), OPT(n-1, W-w_n) + v_n \}$$

Algorithm (First Try)

```
Knapsack(n,W)

set V1:=Knapsack(n-1,W)

set V2:=Knapsack(n-1,W-w_n)

output max(V1,V2+v_n)
```

Is it good enough?

Example

Let the values be 1,3,4,2, the weights 1,1,3,2, and W = 5

Recursion tree

Another Idea: Memoization

Let us store values OPT(i,U) as we find them

We need to store (and compute) at most $n \times W$ numbers

We'll do it in a regular way:

Instead of recursion, we will compute those values starting from smaller ones, and fill up a table

Algorithm (Second Try)

```
Knapsack(n,W)
array M[0..n,0..w]
set M[0,w]:=0 for each w=0,1,...,w
for i=1 to n do
    for w=0 to W do
        set M[i,w]:= \max\{M[i-1,w],M[i-1,w-w_i]+v_i\}
    endfor
endfor
```

Example

Example

Let the values be 1,3,4,2, the weights 1,1,3,2, and W = 5

i w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	1	1	1	1
2	0	3	4	4	4	4
3	0	3	4	4	7	8
4	0	3	4	5	7	8

 $M[i,w] = max\{ M[i-1, w], M[i-1,w-w_i] + v_i \}$

Shortest Path

Suppose that every arc e of a digraph G has length (or cost, or weight, or ...) len(e)
But now we allow negative lengths (weights)

Then we can naturally define the length of a directed path in G, and the distance between any two nodes

The s-t-Shortest Path Problem

Instance:

Digraph G with lengths of arcs, and nodes s,t

Objective:

Find a shortest path between s and t

Adding constant weight to all arcs fails

Shortest Path: Observations

Assumption

There are no negative cycles

Lemma

If graph G has no negative cycles, then there is a shortest path from s to t that is simple (i.e. does not repeat nodes), and hence has at most n-1 arcs

Proof

If a shortest path P from s to t repeats a node v, then it also include a cycle C starting and ending at v.

The weight of the cycle is non-negative, therefore removing the cycle makes the path shorter (no longer).

Shortest Path: Dynamic Programming

We will be looking for a shortest path with increasing number of arcs

Let OPT(i,v) denote the minimum weight of a path from v to t using at most i arcs

Shortest v - t path can use i - 1 arcs. Then OPT(i,v) = OPT(i - 1,v)Or it can use i arcs and the first arc is vw. Then OPT(i,v) = len(vw) + OPT(i - 1,w)

$$OPT(i, v) = \min\{OPT(i-1, v), \min_{w \in V} \{OPT(i-1, w) + len(vw)\}\}$$

Shortest Path: Algorithm

Example

t	a	b	c	d	e
0	8	8	8	8	8
0	-3	8	3	4	2
0	-3	0	3	3	0
0	-4	-2	3	3	0
0	-6	-2	3	2	0
0	-6	-2	3	0	0

 $M[i,v] = min\{ M[i-1, v], min_{w \in V} M[i-1, w] + len(vw) \}$

0

2

3

4

5

Shortest Path: Soundness and Running Time

Theorem

The ShortestPath algorithm correctly computes the minimum cost of an s-t path in any graph that has no negative cycles, and runs in $O(n^3)$ time

Proof.

Soundness follows by induction from the recurrent relation for the optimal value.

DIY.

Running time:

We fill up a table with n^2 entries. Each of them requires O(n) time

Shortest Path: Soundness and Running Time

Theorem

The ShortestPath algorithm can be implemented in O(mn) time

A big improvement for sparse graphs

Proof.

Consider the computation of the array entry M[i,v]:

$$M[i,v] = min\{ M[i-1, v], min_{w \in V} \{ M[i-1, w] + len(vw) \} \}$$

We need only compute the minimum over all nodes w for which v has an edge to w

Let n_{v} denote the number of such edges

Shortest Path: Running Time Improvements

It takes $O(n_v)$ to compute the array entry M[i,v]. It needs to be computed for every node v and for each i, $1 \le i \le n$. Thus the bound for running time is

$$O\left(n\sum_{v\in V}n_v\right) = O(nm)$$

Indeed, n_v is the outdegree of v, and we have the result by the Handshaking Lemma.

QED

Shortest Path: Space Improvements

The straightforward implementation requires storing a table with n^2 entries

It can be reduced to O(n)

Instead of recording M[i,v] for each i, we use and update a single value M[v] for each node v, the length of the shortest path from v to t found so far

Thus we use the following recurrent relation:

$$M[v] = min\{ M[v], min_{w \in V} \{ M[w] + len(vw) \} \}$$

Shortest Path: Space Improvements (cntd)

Lemma

Throughout the algorithm M[v] is the length of some path from v to t, and after i rounds of updates the value M[v] is no larger than the length of the shortest from v to t using at most i edges

Shortest Path: Finding Shortest Path

In the standard version we only need to keep record on how the optimum is achieved

Consider the space saving version.

For each node v store the first node on its path to the destination t

Denote it by first(v)

Update it every time M[v] is updated

Let P be the pointer graph $P = (V, \{(v, first(v)): v \in V\})$

Shortest Path: Finding Shortest Path

Lemma

If the pointer graph P contains a cycle C, then this cycle must have negative cost.

Proof

If w = first(v) at any time, then $M[v] \ge M[w] + len(vw)$

Let $v_1, v_2, ..., v_k$ be the nodes along the cycle C, and (v_k, v_1) the last arc to be added

Consider the values right before this arc is added

We have $M[v_i] \ge M[v_{i+1}] + len(v_i v_{i+1})$ for i = 1,..., k-1 and $M[v_k] > M[v_1] + len(v_k v_1)$

Adding up all the inequalities we get $0 > \sum_{i=1}^{k-1} len(v_i v_{i+1}) + len(v_k v_1)$

Shortest Path: Finding Shortest Path (cntd)

Lemma

Suppose G has no negative cycles, and let P be the pointer graph after termination of the algorithm. For each node v, the path in P from v to t is a shortest v-t path in G.

Proof

Observe that P is a tree.

Since the algorithm terminates we have M[v] = M[w] + len(vw), where w = first(v).

As M[t] = 0, the length of the path traced out by the pointer graph is exactly M[v], which is the shortest path distance.

QED

Shortest Path: Finding Negative Cycles

Two questions:

- how to decide if there is a negative cycle?
- how to find one?

Lemma

It suffices to find negative cycles C such that t can be reached from C

Shortest Path: Finding Negative Cycles

Proof

Let G be a graph
The augmented graph,
A(G), is obtained by
adding a new node and
connecting every node
in G with the new node

As is easily seen, G contains a negative cycle if and only if A(G) contains a negative cycle C such that t is reachable from C

Shortest Path: Finding Negative Cycles (cntd)

Extend OPT(i,v) to $i \ge n$

If the graph G does not contain negative cycles then OPT(i,v) = OPT(n-1,v) for all nodes v and all $i \ge n$

Indeed, it follows from the observation that every shortest path contains at most n-1 arcs.

Lemma

There is no negative cycle with a path to t if and only if OPT(n,v) = OPT(n-1,v)

Proof

If there is no negative cycle, then OPT(n,v) = OPT(n-1,v) for all nodes v by the observation above

Shortest Path: Finding Negative Cycles (cntd)

 $i \rightarrow \infty$

```
Proof (cntd)
Suppose OPT(n,v) = OPT(n-1,v) for all nodes v.
Therefore
OPT(n,v) = \min\{ OPT(n-1,v), \min_{w \in V} \{ OPT(n-1,w) + len(vw) \} \}
= \min\{ OPT(n,v), \min_{w \in V} \{ OPT(n,w) + len(vw) \} \}
= OPT(n+1,v)
= ....
However, if a negative cycle from which t is reachable exists, then IIM OPT(i,v) = -\infty
```

Shortest Path: Finding Negative Cycles (cntd)

Let v be a node such that $OPT(n,v) \neq OPT(n-1,v)$.

A path P from v to t of weight OPT(n,v) must use exactly n arcs

Any simple path can have at most $\,n-1\,$ arcs, therefore $\,P\,$ contains a cycle $\,C\,$

Lemma

If G has n nodes and $OPT(n,v) \neq OPT(n-1,v)$, then a path P of weight OPT(n,v) contains a cycle C, and C is negative.

Proof

Every path from v to t using less than n arcs has greater weight.

Let w be a node that occurs in P more than once.

Let C be the cycle between the two occurrences of w

Deleting C we get a shorter path of greater weight, thus C is negative