Dynamic Programming

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms — Dynamic Programming

Knapsack

The Knapsack Problem

Instance:
A set of n objects, each of which has a positive integer value v,
and a positive integer weight w;. A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and
they have maximal total value

6-2

Algorithms — Dynamic Programming

|ldea

A simple question: Should we include the last object into selection?

Let OPT(n,WW) denote the maximal value of a selection of objects out
of {1, ..., n} such that the total weight of the selection doesn't
exceed W

More general, OPT(i,U) denote the maximal value of a selection of
objects outof {1, ..., 1} such that the total weight of the selection
doesn’t exceed U

Then
OPT(n,W) =max{ OPT(n -1, W), OPT(n -1, W-w,) + v}

6-3

Algorithms — Dynamic Programming

Algorithm (First Try)
Knapsack(n,W)
set Vl1:=Knapsack(n-1,w)

set V2:=Knapsack(n-1,w-w,)
output max(v1l,v2+y,)

Is it good enough?

Example
Let the values be 1,3,4,2, the weights 1,1,3,2,

Recursion tree

and W=5

6-4

Algorithms — Dynamic Programming

Another Idea: Memoization

Let us store values OPT(i,U) as we find them
We need to store (and compute) at most nx W numbers

We'll do it in a regular way:

Instead of recursion, we will compute those values starting from
smaller ones, and fill up a table

6-5

Algorithms — Dynamic Programming

Algorithm (Second Try)

Knapsack(n,W)
array M[0..n,0..w]
set M[O,w]:=0 for each w=0,1,...,W
for 1=1 to n do
for w=0 to w do
set M[i,w]:= max{mM[i-1,w],M[1-1,w-w,]+V;}
endfor
endfor

6-6

Algorithms — Dynamic Programming

Example
Example
Let the values be 1,3,4,2, the weights 1,1,3,2, and W=5
| 0 1 2 3 4 5
0 0 0 0 0 0
0 1 1 1 1 1
0 3 4 4 4 4
0 3 4 4 7 8
0 3 4 5 7 8

M[iw] = max{ M[i -1, W], M[i = 1w - w] + v;}

6-7

Algorithms — Dynamic Programming

Shortest Path

Suppose that every arc e of adigraph G has length
(or cost, or weight, or ...) len(e)
But now we allow negative lengths (weights)

Then we can naturally define the length of a directed path in G,
and the distance between any two nodes

The s-t-Shortest Path Problem
Instance:

Digraph G with lengths of arcs, and nodes s,t
Objective:

Find a shortest path between s and t

6-8

Algorithms — Dynamic Programming

Shortest Path: Difficulties

Negative Cycles.

O

Greediness fails
2

b
6
O——O

Adding constant weight to all arcs fails

Algorithms — Dynamic Programming 6-10

Shortest Path: Observations

Assumption
There are no negative cycles

Lemma

If graph G has no negative cycles, then there is a shortest path from
s to t thatis simple (i.e. does not repeat nodes), and hence has at
most n—1 arcs

Proof

If a shortest path P from s to t repeats a node v, then it also
include a cycle C starting and ending at v.

The weight of the cycle is non-negative, therefore removing the cycle
makes the path shorter (no longer).

QED

Algorithms — Dynamic Programming 6-11

Shortest Path: Dynamic Programming

We will be looking for a shortest path with increasing number of arcs

Let OPT(i,v) denote the minimum weight of a path from v to t using
at most 1 arcs

Shortest v-t path canuse i—1 arcs. Then OPT(i,v) = OPT(i—1,v)
Oritcan use i arcs and the firstarcis vw. Then
OPT(i,v) = len(vw) + OPT(i - 1,w)

OPT (i,v) = min{OPT (i—1,v), mi‘r/l{OPT(i —1,w)+len(vw)}}

Algorithms — Dynamic Programming 6-12

Shortest Path: Algorithm

Shortest-Path(G,s,t)
set n:=|V| /*number of nodes in G
array M[O0..n-1,V]
set M[0,t]:=0 and M[0O,v] :=« for each vev-{t}
for 1=1 to n-1 do
for vev do
set M[1,v]:=min{M[1-1,v] ,mingeyv{M[1-1,w]+Ten(vw)}}
endfor
endfor
return M[n-1,s]

Algorithms — Dynamic Programming

N A W OO = O

t a b C d e
0 o0 o0 o0 o0 o0
0 -3 o0 3 4 2
0 -3 0 3 3 0
0 -4 -2 3 3 0
0 | -6 3 2 0
0 | -6 3 0 0

M[i,v] = min{ M[i = 1, v], min y < \{ M[i = 1, w] + len(vw) }}

Algorithms — Dynamic Programming II 8-14

Shortest Path: Soundness and Running Time

Theorem

The ShortestPath algorithm correctly computes the minimum cost of
an s-t path in any graph that has no negative cycles, and runs in
O(n3) time

Proof.

Soundness follows by induction from the recurrent relation for the optimal
value.

DIY.
Running time:
We fill up a table with n” entries. Each of them requires O(n) time

Algorithms — Dynamic Programming II

Shortest Path: Soundness and Running Time

8-15

Theorem
The ShortestPath algorithm can be implemented in O(mn) time

A big improvement for sparse graphs

Proof.
Consider the computation of the array entry M]i,v]:
M[i,v] = min{ M[i-1, v], miny, ¢ v{M[=1, w] + len(vw) }}

We need only compute the minimum over all nodes w for which v has
anedgeto w

Let n, denote the number of such edges

Algorithms — Dynamic Programming II

Shortest Path: Running Time Improvements

It takes O(n,,) to compute the array entry M]i,v].

It needs to be computed for every node v and foreach i, 1<i<n.

Thus the bound for running time is

O[n vaj = 0(nm)

veV

Indeed, n,, isthe outdegree of v, and we have the result by the
Handshaking Lemma.

8-16

QED

Algorithms — Dynamic Programming II 8-17

Shortest Path: Space Improvements

The straightforward implementation requires storing a table with

n2 entries

It can be reduced to O(n)

Instead of recording MJi,v] for each i, we use and update a single value
M[v] for each node v, the length of the shortest path from v to t
found so far

Thus we use the following recurrent relation:
M[v] = min{ M[v], min, o v{ M[w] + len(vw) }}

Algorithms — Dynamic Programming II 8-18

Shortest Path: Space Improvements (cntd)

Lemma

Throughout the algorithm M]v] is the length of some path from v to t,
and after i rounds of updates the value M|v] is no larger than the
length of the shortest from v to t using at most | edges

Algorithms — Dynamic Programming II 8-19

Shortest Path: Finding Shortest Path

In the standard version we only need to keep record on how the optimum
IS achieved

Consider the space saving version.

For each node v store the first node on its path to the destination t
Denote it by first(v)

Update it every time M|v] is updated

Let P be the pointer graph P = (V, {(v, first(v)): ve V})

Algorithms — Dynamic Programming II

Shortest Path: Finding Shortest Path

Lemma

If the pointer graph P contains a cycle C, then this cycle must have
negative cost.

Proof
If w=first(v) atany time, then M[v] > M[w] + len(vw)
Let vi,v5,...,v; be the nodes along the cycle C, and (v;,v;) the
last arc to be added
Consider the values right before this arc is added
We have M[v;1=>M[v,]+len(v,v;;;) for i=1,..,k-1 and
Mv; 1> M[vy]+len(vivy)
k-1

0> Zlen(viviH) +len(vivy)
i=1

Adding up all the inequalities we get

8-20

Algorithms — Dynamic Programming II 8-21

Shortest Path: Finding Shortest Path (cntd)

Lemma

Suppose G has no negative cycles, and let P be the pointer graph
after termination of the algorithm. For each node v, the pathin P
from v to t is ashortest v-tpathin G.

Proof
Observe that P is a tree.
Since the algorithm terminates we have M|v] = M[w] + len(vw), where
w = first(v).
As M[t] =0, the length of the path traced out by the pointer graph is
exactly M[v], which is the shortest path distance.

QED

Algorithms — Dynamic Programming II 8-22

Shortest Path: Finding Negative Cycles

Two questions:
- how to decide if there is a negative cycle?
- how to find one?

Lemma
It suffices to find negative cycles C such that t can be reached from C

Algorithms — Dynamic Programming II 8-23

Shortest Path: Finding Negative Cycles

Proof

Let G be a graph

The augmented graph,
A(G), is obtained by
adding a new node and

connecting every node
in G with the new node ¥

As is easily seen, G contains

a negative cycle if and only if A(G) contains a negative cycle C such
that t is reachable from C

QED

Algorithms — Dynamic Programming II 8-24

Shortest Path: Finding Negative Cycles (cntd)

Extend OPT(i,v) to i>n

If the graph G does not contain negative cycles then
OPT(i,v) = OPT(n-1,v) forallnodes v and all i>n

Indeed, it follows from the observation that every shortest path contains
at most n-1 arcs.

Lemma
There is no negative cycle with a path to t if and only if
OPT(n,v) = OPT(n-1,v)

Proof

If there is no negative cycle, then OPT(n,v) = OPT(n-1,v) for all
nodes v by the observation above

Algorithms — Dynamic Programming II 8-25

Shortest Path: Finding Negative Cycles (cntd)

Proof (cntd)
Suppose OPT(n,v) = OPT(n-1,v) for all nodes v.
Therefore
OPT(n,v) = min{ OPT(n-1,v), min, o v{ OPT(n-1,w) + len(vw) }}

= min{ OPT(n,v), miny, ¢ v{ OPT(n,w) + len(vw) }}
= OPT(n +1,v)

However, if a negative cycle from which t is reachable exists, then

lim OPT (i,v) = —co

[—>00

QED

Algorithms — Dynamic Programming II 8-26

Shortest Path: Finding Negative Cycles (cntd)

Let v be a node such that OPT(n,v) # OPT(n - 1,v).
A path P from v to t of weight OPT(n,v) must use exactly n arcs

Any simple path can have at most n-1 arcs, therefore P contains a
cycle C

Lemma

If G has n nodes and OPT(n,v) # OPT(n-1,v), thena path P of
weight OPT(n,v) contains a cycle C, and C is negative.

Proof
Every path from v to t using less than n arcs has greater weight.
Let w be a node that occurs in P more than once.
Let C be the cycle between the two occurrences of w
Deleting C we get a shorter path of greater weight, thus C is negative

