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Knapsack

The Knapsack Problem

Instance:
A set of n objects, each of which has a positive integer value v,
and a positive integer weight w;. A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and
they have maximal total value
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|ldea

A simple question:  Should we include the last object into selection?

Let OPT(n,WW) denote the maximal value of a selection of objects out
of {1, ..., n} such that the total weight of the selection doesn't
exceed W

More general, OPT(i,U) denote the maximal value of a selection of
objects outof {1, ..., 1} such that the total weight of the selection
doesn’t exceed U

Then
OPT(n,W) =max{ OPT(n -1, W), OPT(n -1, W-w,) + v}
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Algorithm (First Try)
Knapsack(n,W)
set Vl1:=Knapsack(n-1,w)

set V2:=Knapsack(n-1,w-w,)
output max(v1l,v2+y, )

Is it good enough?

Example
Let the values be 1,3,4,2, the weights 1,1,3,2,

Recursion tree

and W=5
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Another Idea: Memoization

Let us store values OPT(i,U) as we find them
We need to store (and compute) at most nx W numbers

We'll do it in a regular way:

Instead of recursion, we will compute those values starting from
smaller ones, and fill up a table
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Algorithm (Second Try)

Knapsack(n,W)
array M[0..n,0..w]
set M[O,w]:=0 for each w=0,1,...,W
for 1=1 to n do
for w=0 to w do
set M[i,w]:= max{mM[i-1,w],M[1-1,w-w,]+V;}
endfor
endfor
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Example
Example
Let the values be 1,3,4,2, the weights 1,1,3,2, and W=5
| 0 1 2 3 4 5
0 0 0 0 0 0
0 1 1 1 1 1
0 3 4 4 4 4
0 3 4 4 7 8
0 3 4 5 7 8

M[iw] = max{ M[i -1, W], M[i = 1w - w] + v;}
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Shortest Path

Suppose that every arc e of adigraph G has length
(or cost, or weight, or ...) len(e)
But now we allow negative lengths (weights)

Then we can naturally define the length of a directed path in G,
and the distance between any two nodes

The s-t-Shortest Path Problem
Instance:

Digraph G with lengths of arcs, and nodes s,t
Objective:

Find a shortest path between s and t
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Shortest Path: Difficulties

Negative Cycles.

O

Greediness fails
2

b
6
O——O

Adding constant weight to all arcs fails
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Shortest Path: Observations

Assumption
There are no negative cycles

Lemma

If graph G has no negative cycles, then there is a shortest path from
s to t thatis simple (i.e. does not repeat nodes), and hence has at
most n—1 arcs

Proof

If a shortest path P from s to t repeats a node v, then it also
include a cycle C starting and ending at v.

The weight of the cycle is non-negative, therefore removing the cycle
makes the path shorter (no longer).

QED
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Shortest Path: Dynamic Programming

We will be looking for a shortest path with increasing number of arcs

Let OPT(i,v) denote the minimum weight of a path from v to t using
at most 1 arcs

Shortest v-t path canuse i—1 arcs. Then OPT(i,v) = OPT(i—1,v)
Oritcan use i arcs and the firstarcis vw. Then
OPT(i,v) = len(vw) + OPT(i - 1,w)

OPT (i,v) = min{OPT (i—1,v), mi‘r/l{OPT(i —1,w)+len(vw)}}



Algorithms — Dynamic Programming 6-12

Shortest Path: Algorithm

Shortest-Path(G,s,t)
set n:=|V| /*number of nodes in G
array M[O0..n-1,V]
set M[0,t]:=0 and M[0O,v] :=« for each vev-{t}
for 1=1 to n-1 do
for vev do
set M[1,v]:=min{M[1-1,v] ,mingeyv{M[1-1,w]+Ten(vw)}}
endfor
endfor
return M[n-1,s]
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N A W OO = O

t a b C d e
0 o0 o0 o0 o0 o0
0 -3 o0 3 4 2
0 -3 0 3 3 0
0 -4 -2 3 3 0
0 | -6 3 2 0
0 | -6 3 0 0

M[i,v] = min{ M[i = 1, v], min y < \{ M[i = 1, w] + len(vw) }}
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Shortest Path: Soundness and Running Time

Theorem

The ShortestPath algorithm correctly computes the minimum cost of
an s-t path in any graph that has no negative cycles, and runs in
O( n3) time

Proof.

Soundness follows by induction from the recurrent relation for the optimal
value.

DIY.
Running time:
We fill up a table with n” entries. Each of them requires O(n) time
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Shortest Path: Soundness and Running Time

8-15

Theorem
The ShortestPath algorithm can be implemented in O(mn) time

A big improvement for sparse graphs

Proof.
Consider the computation of the array entry M]i,v]:
M[i,v] = min{ M[i-1, v], miny, ¢ v{M[ =1, w] + len(vw) }}

We need only compute the minimum over all nodes w for which v has
anedgeto w

Let n, denote the number of such edges
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Shortest Path: Running Time Improvements

It takes O( n,,) to compute the array entry M]i,v].

It needs to be computed for every node v and foreach i, 1<i<n.

Thus the bound for running time is

O[n vaj = 0(nm)

veV

Indeed, n,, isthe outdegree of v, and we have the result by the
Handshaking Lemma.
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Shortest Path: Space Improvements

The straightforward implementation requires storing a table with

n2 entries

It can be reduced to O(n)

Instead of recording MJi,v] for each i, we use and update a single value
M[v] for each node v, the length of the shortest path from v to t
found so far

Thus we use the following recurrent relation:
M[v] = min{ M[v], min, o v{ M[ w] + len(vw) }}
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Shortest Path: Space Improvements (cntd)

Lemma

Throughout the algorithm M]v] is the length of some path from v to t,
and after i rounds of updates the value M|v] is no larger than the
length of the shortest from v to t using at most | edges
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Shortest Path: Finding Shortest Path

In the standard version we only need to keep record on how the optimum
IS achieved

Consider the space saving version.

For each node v store the first node on its path to the destination t
Denote it by first(v)

Update it every time M|v] is updated

Let P be the pointer graph P = (V, {(v, first(v)): ve V})
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Shortest Path: Finding Shortest Path

Lemma

If the pointer graph P contains a cycle C, then this cycle must have
negative cost.

Proof
If w=first(v) atany time, then M[v] > M[w] + len(vw)
Let vi,v5,...,v; be the nodes along the cycle C, and (v;,v;) the
last arc to be added
Consider the values right before this arc is added
We have M[v;1=>M[v, ]+len(v,v;;;) for i=1,..,k-1 and
Mv; 1> M[vy]+len(vivy)
k-1

0> Zlen(viviH) +len(vivy)
i=1

Adding up all the inequalities we get
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Shortest Path: Finding Shortest Path (cntd)

Lemma

Suppose G has no negative cycles, and let P be the pointer graph
after termination of the algorithm. For each node v, the pathin P
from v to t is ashortest v-tpathin G.

Proof
Observe that P is a tree.
Since the algorithm terminates we have M|v] = M[w] + len(vw), where
w = first(v).
As M[t] =0, the length of the path traced out by the pointer graph is
exactly M[v], which is the shortest path distance.

QED
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Shortest Path: Finding Negative Cycles

Two questions:
- how to decide if there is a negative cycle?
- how to find one?

Lemma
It suffices to find negative cycles C such that t can be reached from C
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Shortest Path: Finding Negative Cycles

Proof

Let G be a graph

The augmented graph,
A(G), is obtained by
adding a new node and

connecting every node
in G with the new node ¥

As is easily seen, G contains

a negative cycle if and only if A(G) contains a negative cycle C such
that t is reachable from C

QED
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Shortest Path: Finding Negative Cycles (cntd)

Extend OPT(i,v) to i>n

If the graph G does not contain negative cycles then
OPT(i,v) = OPT(n-1,v) forallnodes v and all i>n

Indeed, it follows from the observation that every shortest path contains
at most n-1 arcs.

Lemma
There is no negative cycle with a path to t if and only if
OPT(n,v) = OPT(n-1,v)

Proof

If there is no negative cycle, then OPT(n,v) = OPT(n-1,v) for all
nodes v by the observation above
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Shortest Path: Finding Negative Cycles (cntd)

Proof (cntd)
Suppose OPT(n,v) = OPT(n-1,v) for all nodes v.
Therefore
OPT(n,v) = min{ OPT(n-1,v), min, o v{ OPT(n-1,w) + len(vw) }}

= min{ OPT(n,v), miny, ¢ v{ OPT(n,w) + len(vw) }}
= OPT(n +1,v)

However, if a negative cycle from which t is reachable exists, then

lim OPT (i,v) = —co

[ —>00

QED
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Shortest Path: Finding Negative Cycles (cntd)

Let v be a node such that OPT(n,v) # OPT(n - 1,v).
A path P from v to t of weight OPT(n,v) must use exactly n arcs

Any simple path can have at most n-1 arcs, therefore P contains a
cycle C

Lemma

If G has n nodes and OPT(n,v) # OPT(n-1,v), thena path P of
weight OPT(n,v) contains a cycle C, and C is negative.

Proof
Every path from v to t using less than n arcs has greater weight.
Let w be a node that occurs in P more than once.
Let C be the cycle between the two occurrences of w
Deleting C we get a shorter path of greater weight, thus C is negative



