Improper Integrals.

The concept of Riemann integrals as developed in previous chapter
requires that the range of integration is finite and the integrand
remains bounded on that domain. if either (or both) of these
assumptions is not satisfied it is necessary to attach a new
interpretation to the integral

Definition 3.1. In case the integrand f becomes infinite in the
intervala<x <b,

Thatis f has points of infinite discontinuity (singular points) in [a, b]
or the limits of integration a or b (or both becomes infinite, the

symbol f: fdx is called an improper(or infinite or generalised ) integral.

Thus,

fooﬂ J-oo dx fl dx foo dx
1 52’ -0 1+x2" Y0 x(1-x) ' J-1x(1-x)
are examples of improper integrals.

The integrals which are not improper are called proper integral , thus
folsi%dx is a proper integral.

Integration of Unbounded Function with finite limits of
integration.

Definition 3.2. Let a function f be defined in a interval [a, b]

everywhere except possible at finite number of points.
(i) Convergence at left —end. Let a be the only points of infinite
discontinuity of f so that according to assumption made in the

last section, the integral

[} fdx exists V2,0<A<b-a.



The improper integral f: fdx is defined as the
. b
Jlim J ., fdx so that,
b . b
J, fdx = Lim J, o fdx .
If this Limit exists and is finite, the improper integral f:fdx is said

to converge at (a) if otherwise, it is called divergent.

Note.Foranyc ,a<c<b
b b
J; fdx = [ fdx + [ fdx.
Then,
[ fdx and [’ fdx

converges and diverges together and fcb fdx is proper.

(ii) Convergence at right-end. Let b be the only point of infinite
discontinuity the improper integral is then defined by the relation
b BT b—u
fafdx—!LlLr(rJlJrfa fdx O<u<b-—a.
If the limit exists, the improper integral is said to be convergent at b. Otherwise

is called divergent.

Note : For the same reason as above,

fcb fdx and ff fdx converges and diverges together Vc,a < c < b.
(iii) Convergence at both the end points. If the end points a and
b are the only points of infinite discontinuity of f, then for any
pointc,a <c<b,
[[fdx=[fdx+ [ fdx

If both the integrals are convergent as by case (i) and (ii),then



fffdx is convergent , otherwise it is divergent. The improper integral
is also defined as:
b T b—u
J, fdx = Lim Jouq fax.
u—-0+

The improper integral exists if the limit exists.
(iv) Convergence at Interior points. If an interior point ¢,
a < ¢ < b, is the only point of infinite discontinuity of f, we get

[} fdx=[fdx+ [ fdx (1)

the improper integral f; fdx exists of the both integral on R.H.S of

(1) are exists.

Example 3.1. Examine the convergence of:

0 Co ) = (i) =

Vi—x 6 2x—x2"

(i) 0 is the point of infinite discontinuity of integrand [0, 1].
Thus,

1dx 1dx
Oﬁ_ﬂmf/lﬁ’ 0<lA<1
. 1
= [lim (——1) = 0
-0+ \1

Thus the proper integral is divergent.

(il) Home Assignment.

Home Assignment



Comparison Tests for Convergence At ‘a’ of f: fdx .

Theorem 3.1. A necessary and sufficient condition for the
convergence of the improper integral ff fdx at ‘a’ where f is positive in

[a, b]. This is , 3 a psoitive number M, independent of 1, such that
b
Jo o fdx <M, 0<i<b-a.
Proof. We know that the improper integral ff fdx converges at‘a’ if for O
0<i<b-a, [, fdxtends to finite limit as 1 - 0*.
Since fis positive in [a + 4, b], the positive function of/l,ffﬂfdx is

monotonic incereasing as A, decreases and will therefore tend to a finite limit iff

it is bounded above, This is, 3 a positive number M independent of 4, such that

b
Jo fdx <M, 0<A<b-—a.

a

Hence the theorem is proved.

Note. If no such number M exists, the monotonic increasing function

fb+/1fdx is not bounded above and therefore tend to +was A - 0%, and

a

hence the improper integral fffdx diverges to +o.

Comparison Test.

Theorem 3.2: If f and g are two positive functions and ‘a’ is only

singular point of fand g on [a. b], such that
f(x) < g(x), for all x € [a, b]

(i) f; fdx converges, if f; gdx converges .



(i) ff gdx diverges, if f: fdx converges .

Proof. Since f and g are two positive functions on [a, b] and ‘a’ is only
singular point of f and g. Therefore f and g are bound in [a + A, b], for all
0<A<b-—a.

Also Since, f(x)< g(x),for all x € [a,b], implies
ffmfdx < ffﬂgdx (i)

(1) Suppose f;’ gdx be convergent, so that 3m > 0, such that for all

LO<A<b-—a,
b
Jo o fdx <m.
From (i) we have

b
J, ., fdx <m, forall 2,0<A<b—a.
Hence f;’fdx is convergent.

(2) Now suppose f;’fdx is divergent then the positive function

ffmfdxis not bounded above.

Therefore from (i) it follows that the positive function ffﬂgdx is not
bounded above.
Hence ffﬂgdx is divergent. This completes the Theorem.

Comparison Test (limit form).
Theorem 3.3. If f and g are two positive functions [a, b] and ‘a’ is

the only singular point of fand g in [a, b], such that

lim L2 =

x—at g(x)

where '’ is a non - zero finite number.



Then, the two integrals f;’fdx and f: gdx converges and diverges
together at ‘a’
Proof. Evidently,1 > 0. Let ¢ be positive number suchthat1 —¢ > 0.

Since, lim £ = 1,

x—at g(x)
Therefore there existsanbdof J]a, c[,a < c < b, such that for all

X€Ela,c|

ol <

or (I-—8e)gx)<flx)<U+eg) .

This implies that

(l-8gkx) <f(x) (2)

and
fO) < (U+e)gx) (3)
vV x €]a,c|

If fffdx converges, then from (i)
f:g(x)dx also converges at a .
If ff fdx diverges, then from (ii)
ff fdx divergesata .

If in the above Theorem, Lim == IO 0 and fab gdx converges, then

x-at gx)



fffdx converges and if

LimZ® 5 o and f: gdx diverges, then, f; fdx also diverges.

x-at gkx)

Useful Comparison Integral.

Theorem 3.4. The improper integral f(f Converges if and only

dx
(x-a)"
ifn < 1.
Proof. It is proper integral if n < 0and improper for all other values
of n, 'a’ being only singular point of the integrand.

Now forn=1

fb dx —'lhn,fb dx
a@-a)t 50+ Jatd(x-ayn

= lim [(b—a) -n+1 A—n+1]

A-0t —n+1

[(b—a)™, ifn<1

-n+1

00 ifn>1.
Also forn =1
%_l){)@f s = /_Llirggr[log(b —a) — logA] = oo.

Thus, [, (xfz)n converges forn < 1.

Note. A similar result holds for convergence of f (b_ ; at b.
Example 3.2. Test the convergence of

0 = (ii) Jy* —=Edx

1

Solution. Letf(x) = —




1

V@A=x)(1+x+x2)

1 1
- 1
(1+x+x2)2 (1-x)2

Clearly, —~ _ is a bounded function.
(1+x+x2)2

Let M be its upper bound, then,

1 1 M
T <

(1+x+x2)2 . (1-x)

T T, X € [1,0].
2 2

(1-x)

. 1 d
Also since [ ——

. 1
Is convergentas n = -< 1.
(1-x)2 2

1 .
Therefore, = Is convergent.

Vi—x®
(i) Forp <1,itisaproperintegral for p > 1,itis an improper integral

0 being the point of infinite discontinuity

Now sinx _ 1 (sinx)

xP xP~1\ x

sinx

The function % is bounded and — <1.

sinx 1
xP xP—1

Therefore,

Also fO”/Z% converges only if p—1 <1 orp < 2.

sinx
xP

Therefore by comparison test |2 dx converges for p < 2 and
0

diverges for p > 2.

Note. If lirggr[(x —a)"f (x)] exists and is non- zero finite, then, the
xX—

integral f; fdx convergs iffn < 1.

Example 3.3. Find the values of m and n for which the following

integrals converges.



(i) [, e™™ x™dx .
(ii) [, (log~ y™dx .
Solution (i) Let k be positive number greater than 1,
Then, e ™x™ < kx", vV x €[0,1] and m;
Also fol x™ = f;% converges for-n < 1,
thatis, n >-1only.
Thus, fole‘mx x"dx converges only forn >-1 and vm.
(iii) Let(x) = (log i)m converges at x= 0 and
foé(log i)m dx is proper integral if m < 0.Also'0” is the only singular
point if m > 0.

For m > 0,

1
Take g(x) =— 0 <p <1, so that
oo O P Lym
xlggl’f g(x) xlirggx (log x)

= 0, for 0 < p< 1.

1
Therefore, [2(log i)m dx converges for all m.
Convergence at x=1

ff(logi)m is proper integral for m > 0 and ‘1’ is singular point , if m<
2

0.
F 0, tak = ! that 1im | 25| = 1
orm < 0, aeg(x)—m , SO tha iml—1 = 1.

Since ffgdx converges for -m < 1 thatis form > —1.
2



Thus, fol(log% )™dx converges for > —1 .

Hence fol(logi )™dx converges for 0 > m > —1.

Example 3.4. Show that (1) 1194y is convergent.
0 Vx

(2) ff l;/jxdx is divergent.

Solution. (1) Since £ s negative on [0, 1].

Vx
Therefore we take f(x) = —%
__logx™Y _log1/x
N
‘0’ is the only singular point.
Let
g =5 , n=;<I
x4
We have
1
imf2 = limelogl =0
x-0 g(x) x—0 x

Since folg(x)dx converges.

1logx
— d

Therefore, folf(x)dx converges implies that | 7 converges.
(2) Let f(x) = f%m

Here x=1 is only singular point.

Take g((x) = i, then

x—1

imI% = iy S

x—-1 g(x) x—-1 logx

10



. x2-x2
= i
x—1 logx
1 1
= lim 7
x—1 *

3 1 1
= lim -x2 — -xz2
x—>1 2

3 1
=-—-=1(#0
- —>=1(=0)

Thus, fffdx and flzgdx behave same.
Since ffgdx is divergent.

Hence ff fdx is divergent.

sin™x

Example 3.5. Show that fof(

sin™x
xTL

Sinxym
Eym,

)dx existsiff n<m+1

xn

Solution. Let f(x)

1
xn—m

Hereas x- o+, f(x)->0if n—m < 0,andf(x)»oifn—m > 0.
Thus it is proper integral if n < m and improper if n > m.
‘0’ being the only point of infinite discontinuity.

When m > n,

Let g(x) = ==, sothat
fcl—t%g(x) il_r)r&( ) L.
Also, [zgdx =[?——dx converges, Iff n-m < 1.

Thatis, n< m+1.
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Therefore |2 (Sinmx) dx also convergesiff n<m+1.

xn

Example 3.6. (Beta Function). Show that folxm‘l(l —x)" tdx

exists iff m,n are both positive.

Proof. It is a properintegral form>1,n>1,0 and 1 are the only

points of infinite discontinuity; 0 when m < 1 and 1.

When n < 1, we have

1
[ xm (1= Ndx = [N (L - %) e + [ 2™ - x)
2

convergence at ‘0’ , when m < 1.

Let f(x) = x™ (1 —-x)"?
(1_x)n—1
xl—m
1
Take gx) = e
Then Lim@ =1.
x—0 g(x)

Since fO%gdx converges if and only if, 1-m < 1 or m> 0.
Thus, fO%xm‘l(l —x)"1dx converges for m > 0.
Convergence at x=1 ,

When n< 1,

Let f(x)= x™11-x)"1

(1_x)m—1

x1l-n

Take g(x) = x1 then

1-n’
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LimE®2 = 1.
x—1 g(x)

Also, [ gdx = [y ———dx converges if and only if 1-n < 1 orn > 0.

3 (1=

Thus, ff x™ (1 —x)""1dx convergesifn > 0.
2

Hence folxm‘l(l — x)"'dx convergesifm >0,n>0.
Example 3.7. For what values of m and n is the integral
fol x™ (1 —x)"tlogx dx convergent.

Solution . The integrand is negative in [0, 1], therefore we shall test

for the convergence of
fol —x™ (1 — x)" ogxdx
= fol x™ (1 —x) logidx
Since 0 and 1 are only possible singular points of integrand. We have
1 _ _ 1
Jo x™ M@ = x)" log —dx
1
= [2xm (1 -0t logidx + ff x™ 11— )" ! logidx .
2

Convergence at 0.

It is proper integral for m-1 > 0 and improper for m <1.'0’ being the

only point of infinite discontinuity.

Then, for m £ 1

Let f(x) = xm‘l(l—x)”‘llogi



1

= (1-x)""tlog =

Take g(x) = xip

. f(x) , _ _ 1
Also lim — = lim xP*™1(1-x)""1log -~
! xi0+ g(x) xi0+ ( ) g x

= 0

If p+m-1> or m>1-p.

1
-1
Also fozx—p dx converges for 1- p > 0.

Thus

1
Jexmt A=)t logidx converges form > 1 —p > 0.
converges at x=1

For n<o0,
Let f(x) = xm‘l(l-x)”‘llogi

m-1 1
X log—
9%

(1_x)—n+1

Take g(x) = .

(1-x4 "

Therefore ffg(x) converges for g-1< 0.

. _ x™liogt
Also IimfI® = —x
x—-1_9(x) x-1_(1-x)1=n-4

where | is infinite if 1-n-g<1.

Thatisif n>-g > -1.

Thus, [i fdx converges if n > —1.
2

14
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Hence the given integral is convergent when m > 0, n >-1.

Example 3.8. Show that [?log sinxdx converges and also evaluate it.
Solution. Let f(x) = log sinx , then f is negative in [0,r1/2] .
Therefore we consider —f instead of f.

Clearly ‘0’ is only point of infinite discontinuity.
Let g(x) = xim , m<1,
Then,

im 222 = lim —x™logsinx =0, m < 1
x—0+ g(x) x>0+

T
. -1
Since  [z—.dx converges for m< 1, thus
n
JZlog sinxdx converges.

Let I = [2logsinxdx .
We know that, sin2x = 2sinxcosx.
Therefore, logsin2x = log2 + logsinx + logcosx.

This implies that
J¢log sin2xdx = [?log2dx + |2 log sinxdx + [2 log cosxdx

x n
= -log2 +I+[2log cosxdx

Put 2x = t.

In the Ist integral and x = g— y in the last integral, therefoe we get

1 1 . _ T 0 . _
Efo log sintdt = ~ log2 + I + fg logsiny(—dy)

= ~log2 + 1+ [2log sinxdx .
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%foglog sinxdx + fgn log sinxdx = glogZ + 2I.
This implies %[I+f0§logsin (y+§) dy] = §l0g2+21.
Thus, i I+ fOTZ_t log cosxdx] = glogZ + 21
= %[1+1] =Zlog2 +2I
= %logZ + 21
hhhhh LI = g log2 + 2I

This Implies that 1= —Zlog2.

Hence [?logsinxdx = [2logcosxdx = —%logZ.
Exercises.
1d
(1))} 2 dx (2) 12 dx

(3) )75 d
(4)f3x +1 (5)f0n_d

x2 sinx

1x logx
@fmy

Answer (1) divergent (2) convergent for n >-1 (3) convergent (4)

divergent

(5) divergent (6) convergent forn > -1
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General Test for Convergence. (Integrand May Change Sign).

We now discuss a general test for convergence of an improper
integral (finite limits of integration, but discontinuous integrand)
which holds whether or not integrand keeps the same sign.

Theorem 3.5 (Cauchy’s Tests).
The improper integral fffdx converges at a iff to every €> 0,

there corresponds 0 > 0, such that

a+u

[ pax|< e 0
< <u,; < 0.

Proof. The improper integral ff fdx issaid to be exists .

b : .
When , #lirggr fawfdx exists finitely.

Let  F(u) = ffw fdx .
So F(u) is a function of p .

According to Cauchy’s Criterion for finite limits F(u) tends to a finite
limit as y—0 . If and only if to every € > 0, there corresponds 6>0,

such that for all possible u,, u,< 9 ;

|F(uy) — up)l <€

. b b
That is, [l fdx =[], fdx| <€
or [ fdx| .

Absolute Convergence.

Definition 3.3 . The improper integral fffdx is said to be absolutely
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convergent if fflfldx is convergent .

Theorem 3.6. Every absolutely convergent integral is convergent .
That is, [7 fdx existif [ Ifldx exist.

Proof. Since fflfldx exist.

Therefore by Cauchy’s test, to every € >0 70 >0, such that

a+u
fawf'f'dxl <eg, o<p;<u,< o
(4)
. + +
Since [0 pax| < 572 flax (5)
+ +
and [0 flax] = |21 Flax] .

Therefore  (4) and (5) gives

fa+“2fdx|< g, v €>0, 0<p,<u,<o.

a+py

Thus , f:fdx is convergent.

Alternative Method 3.6.

Since f<|f| impliesthat |f|-f > 0.

Also, |fl=f <2]|f] (6)

Thus, |f|—f is a non- negative function on [a,b] and satisfying (6).

Also b2|f|dx is convergent. Therefore by (1) and comparison test,
a

we get
[J(f = 1fDdx is convergent .

This gives that [, {(f — |f]) + |f]} dx is convergent .
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Hence f;’fdx is convergent .

Example 3.9. Show that fols% dx , p>0 converges absolutely for
p<lI.

xp 7

Solution. Let f(x) = p>0;

‘0’ is the only point of infinite discontinuity and f does not keeps the

same signin [0, 1].

|sin%| 1
IfGIl= 5= <5
11
Also, fO x_de converges forp < 1.
1 |sint . .
Thus Jy —*| dx converges if and only if p > 0.
1 sinl
Hence fo x—p" dx is absolutely convergentifandonlyif p <1 .

Infinite range of integration.

We shall now consider the convergence of improper integral of bounded
integrable function with infinite range of integration (aor b both
infinite).

Definition 3.4. (Convergence at o).

The symbol [~ fdx, x> a (7)
is defined as limit of fffdx when X — oo, so that
[ fdx = lim [ fdx (8)

If the limit exists and is finite then the improper integral (8) is said to

be divergent.



Note. For a,>a, ) fdx = [ fdx+][ fdx

which implies that the integrals [~ fdx and f::fdx are either both

convergent or both divergent.

Exercises.
. o xdx . o dx
O (i) [7%

(iii) faoo sinxdx .

Solution. (i) For X > 0, we have

fX xdx — l X 2xdx
0 1+x2 270 1+x2
= ;llog(1+x)]7
=3 [log(1 +x?)]
Clearly , ,f‘l?ofoxff;z = o
Hence [~ ff;z is divergent.

Solution (iii) We have
fj sinxdx = (—cosx)i X >a
= coSa— cosX

Clearly, )l(im (cosa — cosX) exists finitely but not uniquely.
Thus, lim [ sinxdx does not exit .
X—oo " a

Hence [ sinxdx diverges.
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Convergence at —oo.
[ fdx,  x <b (9)
is defined by equation
L fdx, = um [ fdx (10)

If the limit exists and is finite the integral (9) converges otherwise it

diverges.
Convergence at both ends.
JZ fdx v x (11)

Is understood to mean

[S fdx + [ fdx (12)
where c is any real number .
If both integrals in (12) converges according to definition (I) and (II),
then, the integral f_i)fdx also converges, otherwise it diverges.
Exercises.

Examine for convergence the integrals

o o dx 0 2x2%dx
(D], sinxdx (1)J_, T2 (1) J, xt—1
(I)f s (V)f) x3e™" dx

Solution :-(I) try yourself (limit does not exist)

. 0 dx . X dx
Solution:-(1II) f_oonZ = jim Jy 1+x2
Yo—0

— i -1, X
= }l(g{)lo(tan x)y

Yo—
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= lim (tan™'X — tan™1Y)

Y->—o

IR

+

NS

= .
Thus the integral converges and is equal to n .
o 2x2dx _ . Xq o
(III) fz m = )l(l_?)’ﬁlofz 2x° dx
= i 1y _tgn-12 + L1pg%Xt 4+ 1
= )l(t_{(r)lo[tan X —tan 2+2l0gX+1 + 2log3]

=2 _tan"12 +>log3.
2 2

Thus the integral converges.

(V) [ = =2[ =

(x2+1)2 (x2+41)2

. X dx
=2 ;l(ll?o 2 fO (x2+1)2

X

= lim[tan™"x + —;
X—o00 1+x

1.
By Putting x =tan#é

=n/2
(V) [["x*e™ dx = ¥, converges.

Comparison test for convergence at oo,

Theorem 3.7. A necessary and sufficient condition for the
convergence of faoofdx,wherefis positive in [a, 00), that there exists

a positive number M, independent of X, such that

[Ffdx <M, vX z a.
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Proof. The integral fffdx is said to be convergent if fjfdx tends to a finite
limit as X—oo. Since f is positivein [a, X], V X =a and f‘ffdx is
monotonic increasing function on X i.e. f:fdx increases as X increases.
Also since f;fdx <M, for some m>0and VX>a.
That is, f; fdx is bounded above.
Therefore, lim fffdx exist finitely.
Conversely, suppose faoo fdx is convergent, then lim ff fdx exists finitely.
Therefore, M > O, suchthatv X = a

[, fdx < M
as fffdx increases as X increases.
Hence the theorem is proved completely.
Comparison Test 1.
Theorem 3.8. If f and g are positive and f(x) < g(x), for all x € [a, b].
Then, (I faoo fdx converges if faoo gdx converges.

(1I1) faoo gdx diverges if faoofdx diverges.

Proof. Suppose fa°° gdx converges.
Therefore 3 M> 0 such that v X =a,

ffgdx <M.

This gives f; fdx <M
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Hence faoo fdx converges .
(I1) Suppose faoo fdx diverges then 3 X;, such that
[P fdx > M, ¥ M>0
This implies that fflgdx >M, ¥y M>0
This gives [~ gdx diverges.
Note. Since f and g are bounded in [a, X].
Therefore, f(x) < g(x).

This implies that fffdx < ffgdx V X >a.

Comparison Test -11I.

Theorem 3.9. If f and g are positive functions in [a, X] and

imI2 =1 (=0),

X—00 g(X)

then two integrals converges or diverges together.

Also if lim% =0and ["gdx converges, then [~ fdx converges and if

X—-o g

lim L2

e - ® and [ gdx diverges, then [~ fdx also diverges.

Proof. Evidently /> 0 choose >0, suchthat [ — ¢ > 0

Since lim@ =/
X—00 g(x)

Therefore Ve >0,3 k> 0 such that

f&) _ l| <E&g whenever |x| > k.

gx)
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That is l—e<% < l+¢ Ve >0 withx >k
(l—8gx) < f(x) (13)
(14)

fo) <(l+ &gx)
forx > kand v e > 0.

Clearly [—¢ >0, by choosing € so small.
Therefore by comparison test and (13) and (14) we get

J.” g(x)dx diverges if [~ fdx converges.

Again
m £
Hm 0
implies that f(x) < gx), Vx >k

Therefore if famfdx is divergent, then fa°° gdx is convergent and if
J.” gdx is convergent then [” fdx is convergent.

. f(x)
lim —
X—00 g(x)

Also if,

This implies [@ - M, vV x>k
g(x)

Therefore f(x) >Mg(x), V x>k

Hence if [~ gdx is divergent, then [~ fdx is divergent.

Useful Comparison Integral.

Theorem 3.10. Show that the improper integral famfdx =fa°°xindx, a>0
where c is a positive constant, converges if and only if n > 1.

Proof. We have



o ¢ clog% , n=1
Jo Zdx 1 [ 1 1
o el PR | B
oo , ifn<1
X c
lim | —dx = c . .
X—>oofa x™ {W if n>1 }

Thus, fawxindx converges if and only if n>1.

From this useful integral and comparison test, the improper integral

famfdx converges if there exists a positive number n > 1 such that
fx) < ;"—n for some M > 0 and for some allx > a.

Also if, lim x™f(x) exists and is non- zero, then integral fawfdx
X—00

converges if and only ifn > 1.

Exercises.
(Df; = (I ;==
(III) [ e dx
(V)] 25 dx (V)[ x" e~*dx
(VD) [y "2 dx
Solution :- (I) Take ~ f(x) = —5— and

9(x) = =
Then ,éamf,ﬁiii = 1(#0)
Thus f fdx = fl xr+1 converges.
(II) Let flx) = XX

Jx5+1

26



= L
Take glx = =
Then lim% = 1 (+0)
X—00
o x2dx .
Thus fO ﬁ d|VergeS.
x

(IV) Let f(x) =2&

x2

Take g(x) = x% ’

3

. x2l 1
Then 1im=22 = |im2Z

2 =
X—-00 X X—00 x2

Limz(il) =0

X—00 xZ

. d .
Since [°% is convergent.
x2

Therefore [°“%dx is convergent.
(V) Let f(x) = x"e™*dx
Take g(x) = x2.

Then, limx?.x"e™ = Ilim(n+2)!e™ =0 and

X—>00 X—>00
co 1 .
J; Zdx s convergent.
Therefore flwx"e‘xdx is convergent.
(IIT) Let f(x) = [ e dx.

Clearly 0 is not point of infinite discontinuity, we may write



foooe‘xzdx = fole‘xzdx + floo e dx =L+1, .

Clearly 1, is proper and I, is improper integral.

We test for I, =["e™

We have e~ > x2
1 1

e"‘2 < x_2

2 1

This implies that ™ < —
Again , flmxizdx is convergent.
Therefore, [”e *'dx is convergent.

Hence foooe‘xzdx is convergent.

Vx €ER

Vx € R

Vx € R.

P2
(VI) waSlZZxdxis convergent because sin?x < 1, Vx€

Exercises.

(1) [gpiiim an [,

(1+x4)3 xloglogx

-1

Solution (I). Let f(x) = 29X (wy5)

(1+x4)1/3

Take g(x)

I
Wikl =

x—00 g(x)

Since foooildx is divergent.

x3

Therefore f0°°fdx is divergent.
(II) Put logx = t, we get

f _toat
2 xloglogx 2 logt

, then limI% = n/2 .

(1) J;°C -

R.

sinhx

—).

28



_ (% dx
- fz logx

1
logx

Let  f(x) =

Take g(x) = xim , then

m

= lim — by takingm =1

x—oo logx x—oo log

Therefore lim—=— =limx = .

x—oo logx X—00

. ©odx . . © dx . .
Since [, — s divergent, so that J, oox 1S also divergent.

Hence fz - is divergent.

xloglog

(D) fx) = (-—

smhx

Clearly 0 is not point of infinite discontinuity, because

lim f(x) = 2 (By L Hospital’s rule)
x—0t 6

We have f(x) = (1——r):

sinhx/ x

1 1

x2  xsinhx

Il
RNlH
I
R IR
—

D
A
® N
|
X
—_

=1 _1[27*
T x2 x [1—e‘2x]'
Take gx) = xi ,then

imZ2 = (20)

x—00 g(x)

Thus, [~ fdx is convergent.
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Note. lim f&@ limx — -

X—00 g(x) X—00 X2  x1-e—2%

1 1 2e7% ]

=lim [1 — _zx] .

X—00

We have limxe™ = lim =

X—00 x—o0 eX

=lim ix = 0.

X—00 e

Therefore  lim [1 — m_x] 1-—= =1(#0).

X—00 -2 1-0
Example 3.10. (Gamma Function).
The integral f0°° x™ e *dx is convergent if and only if m>0.
Solution. Let f(x) = x™le™™
If m< 1, the'0" infinite discontinuity.

So we must examine the convergence of above improper integral at
both 0 and 0.

® _m-1_,-x — (1, m-1_,-x ® _m-1,-x
Jo X" te™dx =[jx™ e Fdx + [ x™ e ¥dx

Convergence at 0 form < 1:

1

Let g(x) o
Then, imZ2 = lim e* =1 (+0).
" x50+ 9() x—0+

Therefore f01 x™~te~*dx converges if and only if m > 0.
Converges at oo.

Let g(x) = =, so that
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. fx) .
lim=— = lim x™*/e*
x—00 g(X) X—00 /
= [lim (mzl)! = 0.
X—00 e

. o 1 .
Since [ —dx is convergent.
Thus, [ x™ e *dx is convergent v m.

Hence f1°° x™ e *dx is convergent if and only if m > 0 and is denoted
by < m).
Thus, I(m) = foooxm_l e *dx , m>0.

Thus I(0), I'(-1), etc. are not exists .

dx

Example 3.11. Examine for the convergence of f3°°x2+x_2 and
- L m L :
G(x) = = then il_)rgg(x) = llezoo s
= lim——

dx

x2+x-2

Thus, [, is convergent.

Again let us decompose the integrand into partial fraction.

1 1
We have X2+x-2  3(x-1)  3(x+2)
. . 0o 1 00 1 .
It is obvious [, oo dx  and S5 o x  areboth divergent..
Thus, [F=%— = ["—Z—dx + ["—%_ isnot correct
I J3 x24x-2 3 3(x-1) 3 3(x+42) )

Now we evaluate above improper integral.

We have [°—5=— = lim [/ 5=

x2+x-2 x—00 "3 x2+x-2
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7 x dx
_il—t& [f3 3(x— 1) 3 3(x+2)]

= lim E{log(x —-1) —log(x + 2}§]
= lim 2| 10g ()|

-t 20 ()] -0 )

= tim:[1og [5550)
[

=1/3log 5/2 .

General test for convergence at o (Integrand may change sign).

Theorem 3.11. (Cauchy’s Test).

The integral f;fdx converges at o if and only if to every >0, 3 X,,

such that
|2 fdx| < € v XX > X .
Proof. The improper integrand [~ fdx exists if lim [ fdx exists finitely

Let F(X) = faoo fdx, afunction of X.

According to Cauchy'’s criterion for finite limits, F(x) tends to a finite

limits as x - « if to a finite e > 0 3X,, such that v X, X, > X,
|F(X)) —F(X)l < €

Thatis  |f;”fdx| <e.
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Example 3.12. Show that fom“%dx is convergent .
Solution. Since lim%¥ = 1.
x->0 X

Therefore ‘0’ is not infinite discontinuity, we may put

J-oo sinx dx — J-Ol si;lx dx"‘floo sinx dx

0 x X

We now test for the convergence of flw% dx as fol I dx is proper

X

integral. For anye >0,

Let x,,x, be two numbers both greater than % )

Xy Sinx cosx X COSX
Now [%gy = [~ _ ey
X1 x x 1x1 X1 x2
X3 sinx cosx cosx Xy COSX
so that, [[**dx| < Lol oy | g |
X1 x X1 Xy X1 x2
1 1 Xp dx
< —+—+4
X1 X2 X1 x2
€
=2.- =€.
2

Therefore, by Cauchy’s test the improper integral fw“%dx is

0

convergent.

Absolute Convergence.

Definition 3.4. The improper integral fawfdx is said to be absolutely

convergent if fa°°|f| dx is convergent.
Theorem 3.12.
Absolute convergences of fa°° fdx implies convergence of famfdx

i.e., faoofdx exists if faoolfl dx exist.



Proof. Suppose fa°°|f| dx exists, then by Cauchy’s Test, ve > 0, 3

X, ,such that

x2
fxl |f|dX| < € /4 xl/ x2/> xO'

We have |f;12fdx| < f;lzlfldx < € X1, X9, > Xg -

Thus by Cauchy’s test faoo fdx converges.

S

Example 3.13. Show that [~ i';x dx converges absolutely if p > 1

X

|sinx| 1
< = >
" S S Vx=>1,

sinx

xP

Solution. We have

and flmxipdx converges forp > 1.

sinx
xP

Thus, [~

dx converges forp > 1.

Therefore, flmsj% dx converges absolutely for p > 1.

Integrand as a product of functions (convergent at ‘o0’).
A test for absolutely convergence.

Theorem 3.13. If a function ¢ is bounded in [a,«] and integrable in

[a,x], Vx = a.

Also if [ fdx is absolutely convergent at oo, then [~ fodx is also

absolutely convergent at oo.

Proof. Since f is bounded in [a, »), therefore 3 k > 0, such that
lo(x)] < k, V x € [a, ) (15)

Again since |f|is positive in [a, »),and fa°°|f|dx is convergent.
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Therefore we can find m, such that
[fldx <m, ¥V x > a (16)
Using (1) we have

Ifel = If]lel
< Klfl, V x € [a, ).
Therefore, [“Ifoldx < K] |fldx

< km vV x

\%
Q

Thus, f;lﬂpldx < km V x > a.
Therefore, ["|feldx is convergent.

Hence f;ﬂpdx is absolutely convergent.

Test for convergence.

Theorem (Abel’s Test) 3.14. If ¢ is bounded and monotonic in [a, «)

and [ fdx is convergent at oo, then, [ fodx is convergent at co.

Proof. Since ¢ is monotonic in [a, ©),then is integrable in [a,x],
V X =a.

Also since f is integrable in [a,x] , we have by 2" mean value theorem
fol fodx = @(X))f; fdx +@(X,)],)* fdx (17)
for a < X; <Y <X,.
Let € > 0 be arbitrary.

Since ¢ is bounded in [a,») , a positive number k exists, such that
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lp(x)] < k, V X=>a.

In particular,

lp(x)l = K, lp(x2)l= K, (18)

Again since famfdx is convergent, therefore their exists X,, such that

[Prax| < =V Xy, X>X, (19)
Since, X, Y<X,.

Therefore, |[7 fdx| < — and

|fy"2fdx| <= (20)

Thus from (17), (18),(19), and (20), we deduce that 3 X,, such that
for all ,X,, X,>X,and e >0

X X
|2 fodx| < loGDI|fy fax| + lo@2)l | fdx| < k=+k= = ¢.
Hence [ fodx is convergent.

Theorem Drichlet’s Test 2.15. If ¢ is bounded and monotonic in

[a,0) and tends to 0 as x » o and | fdx is bound for X > a,

then [ fedx convergent at co.

Proof. Since ¢ is bounded and integrable in [a,x] . Also since f is

integrable in [a, x], therefore by second mean value theorem:
[; fodx= @(x,)[, fdx + @(x)[)* fdx (21)
for a < X, <Y< X,.
Again, since [’ fdx is bound when X > a, therefore 3 k, such that

|f;fdx| <k VX=a.
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Therefore,

2 fax| = |f) fdx - f fdx|

<|J fdx| +|[; fax|
< 2k, for X, = a.

Similarly,

| [ fdx| < 2k, for X, 2 a.
Let € > 0be arbitrary.
Since ¢ - 0 as - o, there exists a positive X,, such that

()l <=, lp(Xp)l <= where X,2 X, 2 X, .
Let the numbers X, X, in (21) be =X,, so that from (17), (18), (19) &
(20), we get

|f;12fcpdx| < iZk +i2k
=€ V X,=2X=X,.

Hence by Cauchy’s test fa°° fdx is convergent at co.

Example 3.14.The improper integral flwsj%dx is divergent for p>0.
1

Solution. Take @(x) = —

> . p>0and

f(x) = sinx.
Then ¢(x) is monotonic decreasing and tends to 0 as x — oo.
Also, [ fdx| = |[; sinx dx|

=|cos1 — cosx|
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< |cosl|+]|cosx|
< 141 =2, vX=>1.
Thus, |f1xsinxdx| <2 VvVX=2.

Therefore [ sinx dx is bounded.

Hence by Drichlet’s test [~ sinx— = Smxdxls convergent p > 0.
1 xP 1

00 sinx

Also, we know that [ —-dx is absolutely convergent if and only if p > 1

Thus, foo Sl— dx is conditional convergent for 0 < p<1 .

Conditionally Convergent.

An improper integral [.” fdx is conditionally convergent at oo if [ fdx is
convergent at oo, but fa°°|f|dxis not convergent .That is the improper

integral is said to be conditionally convergent if it is convergent but not

absolutely.

Example 3.15. Show that [~ % dx is convergent, but not absolutely.
Solution. We have f°°smx f“mx dx + f°°smx

Now , fols% dx is proper integral.

sinx

To examine the convergence of f —— dx at oo, we see that

|f1Xsinxdx| = |cos1l — cosX| <|cosl|+ |cosX| <2 , so that

|f1X sinxdx| is bounded above for all X > 1.

Also, 1/x is a monotonic decreasing function tending to 0 as x — oo.



sinx

Therefore by Dirchlet’s test f0°°7 dx is convergent.

Hence ["= dx is convergent.

To show that [~ S dx is not absolutely convergent, we proceed as

X

follows:

J'OTLTL'

Now, Vxe€ [(r—Dm, rr]

sinx rI |sinx|
dx = Y1 d

r=1Jor-1)n

frn |sinx| dx > frn |sinx|

(r-um  x (r-Um rr

Putting, x=(0r-1n+y

frn |sinx| _ fn |sin(r—-1)m+yl|dy
(r-Dr rr 0 T
== [T sinyd = 2
or ©0 yay re
nr |sinx| n T |sinx| 2
= ’ > n_ =
Hence [ —dx g4 2 X

2 . . .
But Z?ﬂ; is a divergent series.

Therefore, lim [ gy > limZ?ﬂ%.
n—

0 X - n—oo

This implies that lim fonn@dx is infinite.

n—-oo

Now, lett be a real number, there exists positive integer n, such that

nt <t< (n+Dm.

We have, [7528gy > rmlsinad gy,
0 X 0 X

Let t - o, so that n - m, thus we see that

ft |sinx|

— 0O ,
0 dx

39



|sinx|

This implies f

dx does not converge.

sinx

This example show that f —-dx, 0 <p <1, is convergent but not

absolutely .

Example 3.16. Show thatf o —dx is conditionally convergent.

Solution. Let ¢(x) = Togx , f(x) = cosx .
|f2Xcosxdx| = |sinX — sin2|<Z|sinX| + |sin2| £ 2, so that
fZX cosx dx is bounded forall X=> 2
Also, p(x) = — |s monotonic decreasing function tending to 0 as x - co.
Hence by Dirichlet’s test f ﬂdx is convergent.

For absolute convergence consider

3 5T
—|C05x| _|COSX|
I= 0 |Losx = |2 — + fsz ——dx-----
fZ logx fz logx dx fSTTL' logx dx
(2n+1)11:| |
cosx
+f(2n 11 d oo
Therefore,
, | | 3”| | (2n+1)11:| |
I= cosx d Zleosxl gy . 2 1O dx+ ...
f fZ logx f—(zngl)n logx
2 |cosx|
— fn
5 logx
(2n+1)1rI | 2| |
_ n cosx cosx dx
1f(2n E9)3 logx fg logx
Now,
(2n+1)w | | 1 2r+im
cosx
s _ r 2
f(zn 1 logx ~ log@r+1)m/2 f@ cosxdx

40
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= m |Sin [(Zr +1) g] — sin [(Zr -1 g”

_ _l2Gvr|
log[(zr;l)n]
= 2
log(zr-lz-l)n' '
Therefore, I 2> Y&, —m — 7o
r = r= ll g(zr-lz-l)n g logx

|cosx|

w 1 . 2
But Zrzz_logx is divergent and f§ o

dx is proper integral.

Icosxl cosx

Hence I= f —dx is divergent and so fz dx is conditionally
convergent.
Example 3.17. Using [~ I g =§, show that

oosinzxd _m

fO 22 X = E .

Solution. To compute it let us integrate by parts, therefore

o sin?x __ —Sin?x; oo 0 sin2x
Jy —dx =[——1, + [, ——dx

Hence [ s g =y de= .

Example 3.18.The function f is defined on [0, o [by f(x) = (-1)*1,
for n—1 < x<n ne N, show that the integral [~ f(x)dx does not

converge.

Solution. Consider
2n 1 2
Jy f@dx = [/(=1)%x+ [[(=Ddx +

+ [(=1)%dx + - [0 (—1)*"dx
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=1—1+1-1+1-Tunu+1—1.
and
L fde = flde+ [(-Ddx 4o e [T (-1 dx
=1—1+1uuu—14+1 =1

lim foznf(x)dx =0

and lim f02n+1f(x)dx = 1.
n—oo

Hence the integral does not exist and therefore it is not convergent.

Example 3.19. Test the convergence of

(1) == un f, —— .

1+x*cos?x 1+x*cos2x

Solution. The integral is positive for positive value of x but the tests
obtained for the convergence of positive integrands so far, are not

applicable. In order to show the integral convergent we proceed as

follows:
. nm xdx
Consider fO Toxteosiy '
Therefore fmr xdx o n rT xdx
0 1+x%cos2x  “T=VJr-1)m14x%cos2x

Now, V x € [(r — D)m, rm].

We have
x > (r-Dm
1+x*cos?x 1+r4cos?x
rT xdx T (r—=1)mdx
- > —_—
Therefore f(r—l)n’ 1+x4cos?x f(r—l)Tt 1+x%cos?x

Putting x = (r—1)m +y, we see that



frn (r-Dmdx T

J- (r—-1)mdy
(r-1m 1+x%cos2x 0

1+r4mtcos2{(r-1)m+y)}

n  (r—-1mndy
0 1+r4m4cos?y

= 2(r-1)rlf0g &

1+r4mcos?y

- 2(r-1nfi—sectaes

1++tany+r4m?
_2(r-1m tan‘l( tany ) g _ (r-1n?
T Vitrint Vi+r4ng’ 10 T Vitrtnt
n rm xdx n (-Dm?
Therefore, =LJr-1)m 14+x%cos2x r=1\14r4g% *
Hence lim [M™—2% _ > |imyr, 0T
oo Y0 1+x%cos?x  pooo STEIV14rEnE
But n_ DT o o divergent series (~ n 3)
=l e 9 r=1;) -

Therefore [~ ——

——— s divergent.
1+x%cos2x g

am [

_ax try yourself
1+x%*cos2x yy

Inequalities.

Definition 3.5. If q;,a,,a;, ... ... a, are n real numbers, then their

Arithmetic mean is defined as

A _ ait+az+--an
n

a;
= Z"L’lzl ;l .

If the above numbers are positive then, their Geometric mean is
defined by
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G = (a4, a,,as, ... .. a,)n
and the recipocial of the arithmetic mean of the recipocials of a;,a,, as, ... ... ap

is defined to be the harmonic mean

H= ————— where H is the Harmonic Mean.
aitat s

Arithmetic Mean - Geometric mean Inequality.

Theorem 3.16. Let a,a,,a5, ... ... a, be n positive numbers. If A denotes
their Arithmetic mean and G denotes their Geometric mean, then 4 >

G . Equality sign holds if and only if a,=a,=as;=.....=a, .
Proof. Forn =1, there is nothing to proveas A=a, =G.

Forn =2, we have to show that

ai+as 1/2
- 4 >
. > (ajay)'*.

We know that  (Va;-vVay)? = 0
a1+a2_2'\/a1\/a_2 20

ait+as 1
Therefore, —— 2 (a,a,)z .

Thus result holds for n=2 and the equality holds if and only if a, = a, .

Now we used induction onn. Forn =4 = 2° , we have

a, +a a,+a
1 2 3 4
+
aitazt+asztay aitazt+asz+ta, 2 2

22 4 2

1 1
(a1a2)2+(azay)?

> - (By previous case).




1
1 1 —
2 [((a1az)2(aza,)? ]
1
Thus, (M) > (a,a,a5a4)* .

4

2

Thus result holds forn=4 i.e., 2"
Suppose result holds for n = m that is, for 2™.

Let n be a positive integer not of the form 2™,

We choose k suitable, such that 2" >n.

Thus 2" >n is a positive integer.

a, ta,ta ,+ .. .+a

Let K - : (22)
n
ad a,, =a,,=...=a, =K (23)
Consider the product (a,.a,.a, .. a,.a,, a,,..a,)whichhas2™ form.

Since the inequality is supposed to be true for all positive integral

powers of 2, we have

o a,+a,+.. +a +a 6 + +a,
(a1 a,...a, am) <
2 m
2
(a,+a,+... +a )+(a, , +. +a2m) ,m
(a1 a,...a, am)s }
2 2m

With equality iff a;,=a,=a3=.....=qa, .
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(alaz. an)szn <K
= (a,a,...a,)<K"
L

= (al a, an)” <K

1
or (al.az...an);sa1+a2+”' 5

n

with equality iff ;= a,=a;=.....=q,, .

Combing this result with the earlier one, we come to the conclusion

that if a,a,,a;, ... .. a, are n positive numbers, then

Corollary. If a,,a,,as;, ......., a, are n positive real numbers, then
G = H.

Proof. We know that for any positive integer n,

P 1 . .
% 2 (a1a,a3 .......ay)n wherea; >0V i, 1<i<n.
1 1 1
Thus result holds for —,—, ... ... —.
a; ap an
Therefore
1.1 . 1 1
o > (a1a,03 e e A7
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1 1 1 1)
1 1 = 1 < T T -
ate ey, a, a, a, a,
H<G

Equality holds if and only if a; =a,=.=a, .

Corollary. Since A4 > Gand G = H, thus

A>G>H.
. . ai+ar+---a n
This gives =——" 2 T 5——— T -
ai ap an

1
Therefore, Y, aq; ?zla—i > n?.

Theorem Cauchy Schwarz Inequality 3.17.

If a;,a,,a;, .......,a, and by, by, bs, ... ...., by,are real numbers, then
- n 2 2 n 2 2
Z a, b, = (Zi=1 a; ))2 (Zi=1 a; )2 .
i=1

Proof. Let 1 be a real number, then

(a,2+b,)* >0 with equality iff a 2+b,_ =0 for i=12.3,..N.

This implies a,“A*+2ab 4 +b’ >0 for i=1,23,..

Adding fori=1, 2, 3... , weget

S 8, 2" +2(3 ab)i+ > bhiz0

i=1 i=1 i=1

i.e., f(1)=AA*+2BA+C =0 for every real 2
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where A=Y a’ B=Y ab, and C=53b’
Now obviously A>o.

If A=0, then there is nothing to prove because both sides of the

proposed inequality reduce to zero.

So, let A>o0.
We claim that f(1)=>o0 for every A ,implies B”<AC .

If this is not true, then B8°>aAc |,

2

f(iLAEi +2B(iW+C=_BZ—+AC<0.
LA ) A LA ) A

Thus, for 4= i, f(1)<0 which contradicts the fact that

A

f(4) > 0 for every real A.
Hence our supposition that B?> AC is wrong.

Therefore B?<AC must be true.

{Z aibi} ( az.Mznb, \

i=1 i=1

or  ISLiabl < (@S b
Hence we have Cauchy’s - Schwarz Inequality, with equality iff

a,A+b, =0for i=123,...N
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Convex Function.

Let y = f(x) be well defined in some interval and let x; # x, .Say x; <

x, be the abscissa the graph of y = f(x) so that the point P and Q are

[x1, f(x)] and [x,, f(x,)] respectively.

Y
<
\\\\T—’//E&ZN&D
yE FG)
X, + X,
X, £ X,
@) X

If the graph of f(x) between P and Q lies below the cord PQ,then the
function is said to be convex downwards or simply convex. The
equation of the straight line through PQ is said to be convex

downwards or simply convex.

The equation of the straight line PQ is

y=fGr) _ fO)=fGx1)

X—X1 Xo2—X1

Thatis  y= f(x) + —=[f(x) — fF(x)].

xX2—X1
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. . + . .
Since the point xlz—xz lies between x;and x,and  the curve is convex,

the y coordinate of the curve must be less than the y coordinate of the

cord i.e., we must have

X1t X, Q) + f(xz)
P < T

Thus, f (xlzﬂ) < w for convex function f.

Theorem 3.16. Prove that if fis convex function, then

p(EtEt ey O )

n n
Proof. For n = 1, there is nothing to prove.
We will first prove the result for all positive integer m = 2™ by using
induction on n.

f(x1)+f(x2)
— -

<

For n=1, then result holds, because f (x2+x1)

2
For a convex function, suppose result holds for 2k,
That is

X1+x2+ Xk f)+f () +f (x,k)
( 2k ) = 2k

(24)

We will show that result holds for2¥*1, we have

x1+x2+~~-x2k x1+2k+~~-x2k+1
Xitxot X ptX, okt X K+ < f oK - 2K
2k - 2

f (x1 +x, + ---xzk) +f (x1+2k + ---x2k+1)

< 2k 2k

2

because result holds 2 terms.

This implies that
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PO fGetfl)  Fx )+ F G )

f(x1+x22-ll;'1x2k+1) < 2k oK by ( 24) .

2

Therefore

(x1+x2+---x2k+1) < f(x1)+f(x2)+"'f(x2k+1)
2k+1 - 2_2]{

_ Q) + f(xy) + o f(Xpk1)

2k+1

Thus result holds for 2k+1 .

Hence by principal of Mathematical induction result holds for all

integers of the form 2" , n > 1.

Now, let n be any positive integer. Choose positive integer m, such that

2™ >n
Let T — K (25)
Xn1 = Xpyz = 0 = Xgm = K (26)
fCx) +f(x) + 4 f(xn) = K4 (27)

We have

2m

f(x1+xz+--~xn+---xzm) < FCx)+f(x)+ -+ (xp)+f (xng)+f(x,m)

2m
This implies that

f(nK+(2m—n)K) < K1+@2M-n)f (k)

2m 2m

K1+2™f(K)-nf(K)

flx) < B2

2Mf(K) < Ky + 2™ f(K) — nf (K)
0 < K, —nf(K)

This implies nf(K) < K, or f(K) < %
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Therefore,f(—xﬁx:r'—"x") < [/ ()t 4/0m) g5 a1 0, not of the form 2™.

n

Hence f(x—ﬁxz;'"x") < LDt Cm) g a) g >

- > 1, if f is convex.
Proposition . Suppose f is defined in [a,b] and f"(x) exists, f"(x) =0

in this interval. Then f is convex .

Proof. Let t; # t,, say t; < t, i.e., any two points in [a,b] = I , so that

t1+t2
t; <

<t,.

Then, f(e) = £ (*5%)+ (*52) £ (452) +5(*5) £

where t,; < C, < tl;’tz
- _ 2
Also, f(t;) = f£(222) + () ¢ (222) + 2 (*£2) £7(Cy)
where 22<C, <t .

Adding these two equations, we get

f(t) + f(t) = 2f (t1+t2) +E  whereE = (tz tl) [F7(c)+f7(C]= 0.
Therefore, f(t,) + f(t,) = 2f (““2)

This implies that f(t1+t2) < [+

2

Therefore f is convex.

Proposition. If fis convex and f" exist in [a,b], then f"" > 0in[a,b] .
Proof. Let h > 0

Take x—h=x;, x+h=x, .

Since f is convex.
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Therefore  f (—x2+x1) < )tGa)

2 2

This implies that

x—h+x+h fx—h)+f(x+h)
fET) < B

fx—h)+f (x+h)
< . -~ -
fx) < . :

This gives fx—h)+f(x+h)—2f(x)=0 (28)
Since f"(x) exists, we have

L fO— W)+ Gt )~ 2f () _
m =

h—-0 h2

f"(x).

Therefore by (28) ,we have f"'(x) = 0.

In the year 1906 Jenson obtained some considerable extensions of the
AM-GM inequality. These extensions were based on the theory of

convex functions, founded by Jenson himself.
Theorem Jensen’s Inequality 3.18.

Suppose f is convex and f"(x) exists finitely in [a, b] and x;,x,, ....x,
are n-points in this interval. Further let a,,a,, ....a,, be n positive

numbers. Then

f (a1x1+a2x2+~--anxn) < a1f(x1)+af(x2)+anf(xn)

aj+az+-an - aj+az+-an

Proof. Since fis convex and f"(x) exists finitely in [a, b],
therefore f""(x) = 0.

Let ,8 _agxp+axxateanXny _ Yieiaix;
aitaz+--an Yiiai
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This implies that >, a;x;, —BX“,a; = (29)

By Taylors theorem on f(x) defined in [a,b], we have

f@) = FB) + (= BF (B) + 2= (¢

where B <C; <x; foralli=123,....,n.
Multiplying both sides by a;, we get

a; f(x;) = a;f(B) + (a;x; — a;B)f'(B) + al(x;—,_ﬁ)z () fori=123,..n
Since al(xé—l_ﬁ)z f(c;) = 0.
Therefore, a; f(xi) = a;f(B) + (aix; — a;B)f'(B).

By adding, we get

i=1a f) =2 fB) Xinar + Qini(aix; —aif)f'(B)).
By (29) coefficient f'(x) is zero.

Therefore nafx) = fBXMa;.

This implies that f(B) < Z=14/&)

2?1511
This ai Yiq @i Yieq @i f(xp) . . .
is gives f T < ST which is required Inequality.
i=1%i i=1 %i

Deduction from Jensen’s Inequality.
Consider the function
f(x) = —log x, x> 0.
Then f"(x) =xi2>0, x>0 .
Therefore f is convex function for all positive x.

Let ¢,t,, ..., t, be positive numbers and a4, a,, ....a, be positive

numbers. Then by Jensen’s Inequality
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f (a1t1+a2t2+---antn) < a1f(t1)+axf(t2)+anf(tn)
ai+az+--an - ai+az+--an

This implies that

—lng [a1t1+a2t2+-~antn] < —laqlogti+azlogta+--+anlog ty]
aitaz+--an ait+az+---an
This implies
1
aqtitagty+--ant r——
log x [ 122 B "] > log(t,®1.t,%2 ... t, % )ar+az+an
g a1+a2+...an - g( 1 2 n )

1
ajtitazty+-anty

This implies that PR—— > (t;%1.t,% ....t,%n)a1+taz+an (30)
Seta, =a, =--a, =1,50 we get from (30)
“ee 1
e (G [
AM = G.M.

Holder’s Inequality and Minkowski’s Inequality 3.19.

If1<p< ooand Z+i=1and a;,b;, j=1,23,...,n arereal numbers, then
P q

laby] < (Zhala ") (halb ) (a)
Proof. For the proof, we first prove Lemma.

Lemma. If 1< p< o and g be such that%+%= 1, then for any non-

negative real numbers a and b, we have

Proof of lemma. If b = 0, then there is nothing to prove.

Let then b > 0, then for t € R.

Let f(t)=$+(%)t—t% .



Then ') = %[1 — t%_l]

1
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sothatfor t< 1, f'(t) <0 and fort>1,f'(t) > 0.

Also f'(t)=0.

1

1
This implies t=1 and f"(t) = %[5 ta_l]

That is

f"() >0,

, 1
= —t P =— ort=1
rq rq /
for t=1.

f(t) has minimum value att = 1.

Thus f(t) = f(1), V t€ R this implies that $+%t—t5 >0.

Letting t = ha ,we get

1

(o) =
b

1 1 . q
b —+4+=-=1.Implies that=+ 1 = .
( ecausep+q mplies tha p+ q)



57

Therefore, ab < LA (31)
q 14
This completes the lemma.

Proof of the theorem.
Leta = (Z?=1|aj|p)5

B = (Zn.|p]")" (32)

If eithera = 0 or B = 0, then both sides of the Inequality (a) are
zero.

Letthen a# 0, B # o0 forj =123, ...n

|
B

P q
() () <25 (G

Taking summation on both sides, we get

1 p
SXjmalail” 13 |p)?
ela Iyl = ap[ra 12

Letting a= % and b= , then from (31), we have

This implies that

1 aP

n B1 :
"ilai| |bj| < ap [p.ap + i'ﬁ] by (32) gives

Feala| |by| < aB (§+$) = af

= (Zralag )P (Eralpy] )
This completes the Holder’s Inequality.
Minkowski’s Inequality 3.20.

If aj,bj, j= 1,2,3,...,narereal numbers, and1 <p <00, 1 <q < o0,

such that + 5 =1, then

b=



(Erala + 7)< (Erala )P +(Ekalb])?
Proof. Let Y = Y (|la|+|b])"

-1
= Za(lgyl + 15D (Il + 155])

= Z?=1|aj| (|aj| + |bj|)p + Z?=1|bj| (|aj| + |bj|)P
1 o) 1
= (Z}Ll'ajlp)p' (Z?=1(|aj| + |bj|) - Cl)q +

= (p-1a\a
+ @) (2 (] + 1))

By Holder’s Inequality
= (oY + (b Y ) v (33)

as (p—1)g=p
Thus

1 1 1
(Zpealay + b ) <vr=v""s
: 1 !
= v s (el + @l )

1 1
—Ya.Y7 by (33).

Therefore

1 1 1
Cala + b7 < (Tl +(Z5alb]")"
This completes the proof.
Holder’s Inequality from Jensen’s Inequality 3.21.
Consider a function f(x) = x99, x>0, q>1,then
f'x)=ql@q—1Dx972>0.
Therefore f is convex functions.

Let ay,a,,...,a, and By, B,, ... B, be all positive , then by Jensen’s Inequality



f (a1.31+0»’2,32+“'an.3n) < arf(Br)+azf(B2)++anf(Bn)

a1taz+-+an a1taz+-+an

This implies that f[zj L ’ﬁf] < (“Jf(ﬁj)) .

]1] ]1]

[ 27=1“jﬁj]q < @b’

n . - n .
j=1j Y1 aj

1
?=1 a;Bj < [Z ( “131 )]
DY TR 1%

1
B < X (Z?ﬂ “j) . 251 “jﬁjq
This implies that

Thus

/p 11

Set aj = ajp, and ajﬁjq = b]q ,SO that

Therefore  a;; = a;? <£>q

b
_p
=a; b = a;b;

Therefore Z}l=1 afj,Bj = Z;'l=1 ajbj < (Z;'l=1 ajp)p(zz';l qu)q

wheref+1=1
p q

which is Holder’s Inequality .

Problem. If a, b, c,are positive and a + b + ¢ = 1, then prove that

(__ 1) (-— 1) (—— 1) > 8, when does equality hold.

59
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Solution. We have

B-1)-) (o) - et

_ b+c c+a a+b

a b ¢
2vbc. 2vac. 2\/ab
- abc
8abc x+y
= > |/
abc (as 2 = VY

Thus (2— 1) (%— 1) G— 1) > 8 and equality holds if and only if
a=b=c.

But then (i —1)® =8 implis

1
(G-1) =2
1
a = -,
3
Thus equality holds if and only if a=b=c.

Problem. Prove that the volume of the maximum rectangular

parallelepiped which can be inscribed in the ellipsoid

2 2 2

X y z . ) 8abc
—+ —+ —=11is given by

a’ b? ¢’ 3\/5.

Solution. Let the semi edges of the rectangular box be x, y, z then its

volume is 8xyz.Thus, V= 8xyz .

We have to maximize V subject to the condition that



We have

1 X y2 VA
X y ;2\s 2T 2t o
AR a b c _4
2 2 2 -
a b c 3
1
X y z° ) 1
TR S
Thus a- b" c 3
2
x.y.z\)® 1
or Y < —
a.b .c 3
1
X.y .z g(i S
or a.b .c (27 )
or - abc
Xyz< ——.
3.3

8 abc

Hence the required maximum volume is given by 7
343
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Functions of several variables.

We already know about the functions of a single independent variable
and their related concepts with regard to their limits, continuity,
differentiability etc. In this unit we will be discussing the functions of
several variables and their characteristic properties.

Definitions 4.1.

Consider the set of n independent variables x,, x, .x,,... x, and one

dependent variable u, then the equation u=1f(x,,x,... . x,) denotes the

functional relation and is known as a function of several variables. In this

case x,, x, ,x,,... x, aren arbitrary assigned variables, the corresponding

values of the dependent variable u is determined by the function relation.
The function represented above is an explicit function but where several
variables are concerned it is rarely possible to obtain an equation
expressing one of the variables explicitly in terms of the others. Thus most
of the functions of more than one variable are implicit functions, that is to

say we are given a functional relation ¢(x,,x,... . x,)=0 connecting the

n variables, it is not in general possible to solve this equation to find an
explicit function which expresses one of these variable say x, in terms of

the other n-1 variables.

Limits and Continuity of functions of two or more variables.
Let u=f(x, y) be a function of two independent variables x and y
which is defined in some domainp cr?. Let (a,b)eD.

We say limit f(x,y) exists as (x,y)— (a,b) and is equal to | and we write

lim f(xy)=1.

(x,y)=(a,b)
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If givens> 0 , howsoever small we can find a positive numbers , such that

|f(x,y)—l|< & when ever |x—|| <s, |y—||<5

We should note that (x,y)can tend to (a,b) in @ny manner i.e., along

any path and the value of f(x, y) is independent of the path choosen

joining the point (x,y) to the point (a,b).

Example 4.1. Let

—— as (x,y)#(0,0), find |jm f(x,y).

(x,y)>(a, b)

Solution. We approach the origin (0, 0) along the path y=mx.

Then, y >0 as x— Oand we have along this path
lim  fOoy)=1im f(x,mx)
(x,y ) (0,0) x— 0
. 2x(mx )
:|Im 2 2 2
x>0 X +M X
2m 2 . _
= lim > = — which depends on m and is therefore
x>0 1+m 1+m

different  values of m.

Hence we conclude that |j;; f(x.y) does not exist.

(x,y)>(a, b)

Example 4.2. Let

2
Xy .
f(x,y)= ——— as (x,y)#(0,0), find |jm f(x,y).
x4y

(x,y)>(a, b)

Solution. We approach the origin (0, 0) along the path y-m

Then y -0 as x—> 0Oand we have along this path
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lim )= lim f(x,mxz)

(x,y )= (0,0) x> 0

m
= lim o= . which depends on m and is therefore different values of m.

Hence we conclude that |j;; f(x.y) does not exist.

(x.y)>(a, b)

Example 4.3. Let f(x,y)= fxy —as (x,y)#(0,0), find |jm f(x,y).

X +Yy (x,y)>(a. b)

Solution. We approach the origin (0, 0) along the path y-vm .
Then y >0 as x— Oand we have along this path

lim  f00y) = fim f(x,Vmc)

(x,y )= (0,0) x— 0

. 2x(mx )
= Ilm 2 2 2
x>0 X+ m X
2x’m 2m . . .
= lim = . which depends on m and is therefore different values of m.

voo X (@+m?) 1+4m

Hence we conclude that |j;; f(x.y) does not exist.

(x.y)=>(a b)

Example 4.4. Let f(x,y)= % as (x,y)#(0,0), find |im f(x,y).

x“+y (x,y)>(a,b)

Solution. We approach the origin (0, 0) along the pathy-mx .



Then y >0 as x— Oand we have along this path

lim f(oy)=]im f(x.mx)

(x,y )> (0,0) x— 0
) 2 x(mx )
=lim —V———
x>0 /X" 4+m° X
. 2x°m . 2 xm
=lim ———~=lim —=0_

x> 0 x2(1+m2) x— 0 1+m
This shows that |j;;3 f(x.y) exists and is equal to 0. We now show
(x,y)=>(ab)

that lim f(x,y)=0 by showing that

(x.y ) (a)
[f(x,y)-0|<e& for [x-0[<5 and |y-0|<s

i.e., we show that |f(x,y)|< ¢ for |x|<s and |y|< 5, we have
(x=y) 20 for x,y real

or x“+yi-2xy =0

= 2xy§x2+y2
= 2xy2§1
X°+y
2Xy 2 2
= < X“+y
X2+y2
Hence |1 (x,y)|= el = [Jxioy?[= Jxiey’ )
X2+y2
We choose |x|-—==s, |yl--==s.
R~

Now, by equation (i),we have
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|f(x,y)—0| < AxP4yto< i+£ =\/s—2= €.

2 2

Thus, |f(x,y)—0|<s for |x—0|<5:iand |y—0|<5:L

V2 Vo

Therefore, |im f(x.y)=o.

(x,y)=>(ab)

Definition 4.2. The limit  |im 1im f(x.vy): lim lim f(x.y) are

X— a y—>b y—>b

known as repeated limits whereas the limit .

The |im f(x.y) is known as the simultaneous limit or a double limit.
(x.y ) (ab)

Example 4.5. Show that for the following functions the two repeated

limits exist at (0, 0) and are unequal but simultaneous limit or double

limit does not exists.

() f(x,y)= 4 (x,y)=(0,0).

(ii) Fooy)= Y (y)+ (0,0).

Solution. (i) We have

( ]
X—Yy
lim lim f(x.y)= lim Jhm L
x>0 yoo =0 lys0 X+Y |
| J
( ]
X—Yy
= lim J| |L
o | X4y
| J



Again,

lim

x— 0

lim

y—>0

Hence

X— a y—>b

(
X—Yy
f(x,y)= lim J lim L
y>o | X—> 0 X+y|
| J
( )
X—Yy
= lim J| |L
y=> 0 X+Yy
| J
- lim (-1)= -1,

y— 0

lim lim f(x.y)# [im lim f(x.y).

y—>b X— a

Hence, the two repeated limits exist but are not equal.

To see that the simultaneous limit exists or not we approach the origin

along the path y=mx . Then y >0 as x— 0 and we have along this path

f(x.y) = lim

x—> 0

lim

(x,y ) (0,0)
=lim

x—> 0

= lim

f(x,mx)

X — mx

X + mx

1-m 1-m

1+m 1+m

which depends on m and is therefore

Hence the simultaneous limit does not exist.

(ii)

This is left to the student as an exercise.

Continuity of functions of two or more variables.

different

values

67

of

Let u=f(x, y) be a function of two independent variables x and y which
is defined in some domainbp cr*. Let (a,b)eD.

m.
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A function f(x,y) is said tobe continuiou s ata point (a,b) if givenes> 0 , howsoever
small we can find a positive numbers , such that
[f(x,y)-f(a,b)|< & for [x-a|<s ., |y-b|<s

In other words the function (x,y) is said to be continuiou s ata point (a,b)eD if

lim f(x.y)=f(a,b). The function f(x,y) is said to be continuiou s in D if it is

(x.y ) (ab)

continuous at all points of D.

Example 4.6. Discuss the continuity of the function

f(x,y)_xyi%yzy)as (x,y)# (0, 0)
=0 as (x,y)=(0,0)

Solution. We show the function f(x,y) is continuiou s at a point (0,0)
by showing that

lim f(x,y)=1f(0,0)=0.

(x.y)=(ab)

In fact we show that

|f(x,y)—f(0,0)|< g for |x—0|<5 , |y—0|<6

or  [f(xy)-f(0.0)|=]f(x.y)|<e for [x|<s . |y]|<s
2_ 2
We have |f(x,y)|: |Xy()2(2_):2) - |Xy|zx zy
‘ +y ‘ x“+y
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Thus, |f(x,y)|§|x||y|.
We choose s=./¢ .

|f(x,y)|s|x||y|<\/:\/;=g
for |x|< 5:\/; and |y|< 5:\/;.

Therefore
|f(x,y)—f(0,0)|< e for |x—0|<5=\/;, |y—0|<c'>“=\/;.

This shows that  |j;; f(x.y)=f(0,0)=0.

(x.y)>(0.0)
Hence the function f(x,y) is continuiou s ata point (0,0) .
Example 4.7. Discuss the continuity of the function
f(y)= ———— (x.y)=(0, 0)

4 4 2
X +y —x"y
(x.y)=(0.0)

o

Solution. Here (0,0)=0.

To see whether |j;; f(x.y) exists or not, we approach the origin

(x.y)-(0,0)

along 5] path y=mx , then y 50 as x>0 and we have along this path

lim fy)=lim f(x,mx)

(x,y)->(0,0) x— 0

=lim

4 44 4 2
x>0 X +M X —X m

which depends on m and is therefore different values of

m.
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Therefore, |i;m f(x.y) does not exist.

(x.y)=(0.0)
Hence the function f(x,y) is discontinuous at the origin.

Example 4.8. Discuss the continuity of the following function at the origin

f(x,y)= x sin {%J + ysin [%} ; (x,y)=(0,0)

=0 : (x,y)=(0,0)

Solution. To see whether |j;; f(x.y) exists or not, we approach the

(x.y)=(0,0)

origin anng da path y=mx , theén y 50 as x— 0and we have along this path

lim  f0y)=]im f(x,me)
x— 0

(x.y )= (0,0)

:|!£rl X sin (ij + m xsin (%}

=0.

Therefore |j;m f(x.y) exists as (x,y)- (0,0) and is equal to zero.

(x,y )= (0,0)

Now
|f(X|Y)—f(0,O)|=|f(x,y)—0|:|f(x,y)|:xgin%+y5in§
= x [+ [y ]
We choose  [x|<s=-5 and |y|<o-2.

2 2
Therefore the function f(x,y) is continuous at the origin.
Partial differential of function of two or more variables.

Let u=f(x,y) be a function of two independent variables x and y

which is defined in some domainb < r?, then partial derivative of
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f(x,y) with respect x at a point (a,b) where (a,b)ep which is denoted

by Z—f(a,b) or f (a,b) is defined as

of . 0 b) - flab
— (a,b) or f (a,b)=|im (a+h.b)- f(ab)
ox h—0 h

Similarly the partial derivative of t(x,y) with respect y at a point

(a,b) Where (a,b)ep which is denoted by Z—f(a,b) or f (a,b) is defined
y

as

of flfa,b+k)- f(a,b
— (a,b) or f (a,b)=|im (a.b+k) ( )
ay k—> 0 k

More generally if f(x,.x,,...x, ) is a function of n independent

variables. Then the partial derivative of f with respectx, i=1,2,3,.. n

at the point (x,.x,,...x,) is defined by

of . .
—(a,,a,.a,, a,)or f (a,,a,,a,,...a,) and is defined as
X, '
] f(a,,a,+... a,+h... a )- f(a,a,,a,, a,)
lim "
h— 0
for i=1,2 n.
) = () (0,0
. X, y) = x,y)= (0,
Example 4.9. A function X -y
=0 (x.y)=(0,0)

Show that first order partial derivative of f(x,y) at apoint (0,0) exists but

the function f(x,y) is discontinu ious at a point (0,0) .



Solution. We have

o = |lim

h—0 h

1(00) ] f(0+h,0)- f(0,0)

lim

h—>0 h

lim

lim h=0.

h—> 0

Similarly

Hence, the first order partial derivative exist at (0,0) and are both
equal to zero.

To see whether |j;m f(x.y) exists or not we approach the origin

(x.y)->(0,0)

anng the curve y=x—mx >, then y—> 0 as x—> 0,and we have along this curve

lim fx.¥) = lim f(x, mx —mx?*)
(x,y)-(0,0) x— 0

X3+ (x—mx2)3

lim T e )
o1+ (1-mx?) 2
=lim—————— = —
x> 0 m m

which depends on m and is therefore

different  values

of

72

m.
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Therefore, |im f(x.y) does not exist and hence the function f(x,y) is

(x.y)=(0,0)

discontinuous at the origin.

Total differentiation.

Let u=1(x,y) be a function of two independent variables x and y, then

ou ou
du = —dx + —dy
oX oy
. of of
1.e., df = —dx + —dy
00X oy
of of ) )
where — and ——are continuous functions of x an y.
ox oy

Proof. We haveu=1(x,y).

Let x and y receive simultaneous increments sx and sy respectively.

Let the corresponding increments of u be su ,then we have
u+su=Ff(x+5x,y+3y)

Su=f(x+5x,y+ay)-f(x,y)
=[f(x+ax,y+ay)-f(x,y+oy)]+[f(x,y+sy)-1(x,y)] (i)

Thus we have expressed su as a sum of two differences in which for
the first difference y remains constant at the value y+ sy and x varies
from x to x+ sx. In the second difference x remains constant at the

value x and y varies from y to y+ sy .
By Mean value theorem, we have

f(x+dx,y+dy)-f(x,y)=0 Ff (x+6,6x,y+03y) where 0 <0,<1



and

f(x,y+sy)-f(x,y)=06,f (x,y+6,0y) where 0 <0,<1

Using this in equation (i), we get
su= 6, f (x+60,6x,y+8y)+ s, f (x ,y+6,5y)

Since f,_and f, are continuous functions of x and y in the domain

considered.
lim f(x+0,0x,y+8y)=f (x,y)
(6x, 8y )> (0,0)

and lim f(x,y+6,0y)=f (x,y) .

(6x, 8y )» (0,0)

Hence, we have

f(x+0,0x,y+8y)= f (x,y)+e, where & —0 as (5x,5y)—> (0,0)

and fo(x,y+0,0y)=f (x,y)+e, where &, > 0 as (ox,dy)—> (0,0)

Using this equation in (ii), we get

of = du= ox[f + &, ]+ c’)“y[fy+52]
of of
= OX — + 0y — +0X &, + Iy ¢,
ox oy

where &, >0, ¢, 0 as (ox,8y)— (0,0).

The principle part in the increment is called the total differential of u

with respect to x and y and is denoted by du. Hence, we have

of of )
du= — dx + — oy (i)
oX oy
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. . 0 0
If in particular, we take u=x, then =--1, ““ -0 and so a -sx. Also
oX oy

du = dx, Since u=X. Hence dx = sx . Similarly we can have 4 - sy by

putting u=y. Hence (ii) becomes

of of
du = — dx + — dy
OX oy
of of
or df = — dx + — dy
oX oy

Remark. If u = 1(x,y) is a function of two variables in x and y and

these variables are functions of a variable t, then

andif x=¢(t,s) and y =4(t,s) , then

du ou  0Ox ou oy
ds ox 0s oy 0s '

of of

Mean Value Theorem. If +(x,y), —, — are all continuous
ox oy

functions in a circular domain D of Centre (a,b) and radius large

enough for the point (a+h,b+k) to be within D, then

f(a+h,b+k)=f(a,b)+hf (a+6h,b+ok)+kf (a+0h,b+6k) where 0 < 6 <1.
Proof. Consider a function g(t)= F(a+th ,b+tk) where 0 <t <1.
Then g¢(t) is a continuous function in the closed interval [0, 1] and

differential in the open interval (0, 1), therefore by Lagrange’s Mean
Value Theorem, we have



g(1)-g(0)= (1-0)g'(0) where 0 < t<1.

or g(1)= g()+ g'(0) where 0 < t<1.
But, g(1)= F(a+h,b+k)
Thus Fla+h,b+k)=F(a,b)+g'(0) where 0 < t<1 (i)
Now g(t)= F(a+th,b+tk)=F(x,y)
Xx=a+th
where
y =a+tk
d d
Thus H o hoad Dok
dt dt
Therefore

=h f (a+th,b+tk )+k f (a+th,b+tk)

Using this in eq. (i), we get

Fa+h,b+k)=F(a,b)+hf (a+0h,b+ok)+k f (a+6h,b+6k)where 0<6<1.

Theorem 4.1. If u=1(x,y) then a = o dx + a—udy

oX ay
holds no matter what the independent variables be. In other words

aou au
du = — dx + —dy
ox oy

holds regardless of whether X, y are independent or dependent

variables.
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Proof. Let u-=1(x,y) be a function of two variables x and y. If x, y are

independent variables, then we have already proved that

au au
du = — dx + —dy .
oX oy

Now suppose X, y are dependent variables, say
x=¢(r,s) y=9¢ (r,s)

u=f(x,y)=f(s(r.s) o(r s))

Then
=f(r,s)
u ou . .
du = — dr + —ds where r, s are independen t var iables .
or 0s
We show
ou ou ou 0s
— dx + —dy = —dr + —ds
oX oy or 0s
Now ,
ou ou oX ou oy
—_— = — . — + — . —
or oX or oy or
ou ou oX ou oy
and —_— = —. — +— .
os OX os oy Os

Substituting the values, we get

ou ou ou ox ou o
—dr + —ds = { —. —+ — Y pdr + (

ou oX ou oy
or os oX aor oy 'ar oX Js oy .as

}ds
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ou OX oX ou [0 0o
= —(— dr + — .ds} + — D oar o+ —yds}
ox (or s oy (or s
ou
= — dx +— dy
OX y
oX ox
because dx = — dr + —ds
aor Js
0 o
and dy = L d dr + —yds
or os
ou au
Thus du= — dx + —dy
OX oy

and the theorem is completely proved.
Differentiability of functions of two variables.

Let u=f(x,y) be a function of two variables in x and y which is defined

in some domain bcRr?®.
Let (a.b)e D, then

of of
f(a+ h,b+k)= f(a,b)+h—(a,b)+k—(a,b)+/h®+k* ¢(h, k)
OX oy

where ¢ (h,k )= (0,0)as (h,k)— (0.0).

Example 4.10. Discuss the continuity and differentiability of the function

=0 as x=y=0 at the origin .

Solution. We first show that the function ¢ (x,y) is continuous at(o,0).



We approach the origin along a path y- mx , then

y >0 as x— 0 and we have along this

path
lim fO0y)=Jim f(x.mx)
(x,y )= (0,0) X— 0
i X mx
~1m
x>0 xw/1+m2
. mx
= lim =0 .

This shows that lim f(x.y) a (x,y)- (0,0) exists along the path

(x,y)-(0,0)

y=mx and is equal to 0.

We now show that |j;; f(x.y)=f (0.0)=0.

(x,y)-(0.0)

We have
|f(x,y)—f(0,0)|—|f(x,y)—0|
= | f(x.y)
= 0
X" +y
Now (x-y) =0 for x,y real

or x“+y -2xy =0

= x2+y222xy
2 2
X" +y

= = Xy

2

2 2

X" +y
= Xy <
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We choose s-+v2: for |x|<s=+v2e and |y| < s=+2e

Now from eq. (i), we have

X +Yy

| f(x.y)|= } ek

2

Hence|f(x,y)—f(0,0)|<g for |x—0|<g=\/;g and |y—0|<g=\/;g

We now show that t(x,y) is not differentiable at (0,0). f(x,y) will be

differentiable at (0,0) if

f(0+h,0+k)= f(0,0)+ hi(o,o)mi(o,o)+,/hz+k2 #(h,k)

oX oy
where ¢ (h,k )—> (0,0)as (h,k)— (0.0)
or f(h,k)= f(0,0)+ hZ—f(o,o)+kZ—f(o,o)+,/hz+k2 ¢(h,k) (i)
X y
where ¢ (h,k )> (0,0)as (h,k)— (0.0)
Now
of . f(0+h,0)- f(0,0)
ox (o,o)_|!£n0 h
. f(h,0)- f(0,0)
= lim "
s 0-0
“limem e

Similarly



of f(0,0+k )- f(0,0)
——(0,0) = |im
ay h— 0 k
] f(0,k)- f(0,0)
= lim )
h—0
i 0-0 .
= lim -
h— 0 k

Hence from eq. (ii), f(x,y) will be differentiable at (0, 0) if

— —0+h.0+k.0+~h*+k® g(h,k)=+h?+k® ¢(h,k)
h® +k

where 4(h,k)>o0as (h,k) > (0,0) and hence ¢(h.k)= hk

Here we shall approach the origin along the path
k=mh then k— 0as h -0, we get

lim ¢(h.k)=]im ¢(h.mh)

(h.k )- (0,0)

h mh

_I!Eno h2+k2

m

2
1+m

which depends on m and is different for different values of m. Hence
lim ¢(h.x) does not exist and as such f(x,y) is not differentiable at
(h,k)-> (0,0)

(0, 0).

Second and higher order partial derivatives.

Let u=f(x,y) be a function of two variables in x and y which is defined
in some domain b c R’ then
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f(a,b+k)—f(a,b)}

k

f(a+h ,b)—f(a,b)}
h

o°f o' f
In general "
oxoy  0yox
of fla+h,b)-f(a,b
We have —(a,b)=Im ( )- f( ):fx(a,b)
OX h— 0 h
of f(a,b+k)-f(a,b
—(a,b) = lim ( )= 1 ) =f, (a,b)
8y k— 0 k
o't of f,(a+h,b)-f (a,b)
Now =— f (a.b)=lim — ’
oxoy oX b0 h
1 f(a+h,b+k)-f(a+h,b)
= lim — {lim -
h—>0 h k—> 0 k k—>0
1
=lim lim —{f(a+h,b+k)-f(a+h,b)- f(a,b+k)+ f(a,b) }
h—>0 k-0 hk
o°f A® f(h,k
Thus f,= I LY
axay h—=0 k-0 hk
where A* f(h,k)= f(a+h,b+k)— f(a+h,b)- f(a,b+k)+ f(a,b) .
. o't  of f (a,b+k)-f (a,b
Similarly - — f (a,b)=lim 5 )-t.(ab)
oy OX oy h->o k
1 f(a+h,b+k)-f(a,b+k) .
= lim — {lim - lim
h~>[]k k— 0 h k—>0
1
=lm lim —{f(a+h ,b+k)-f(a,b+k)- f(a+h ,b)+ f(a,b) }
k>0 h—>0 hk
o°f A? f(h,k
Thus fo= = lim lim a flhk)

ayax k>0 h->0 hk



Since, in general

o A f(hk) o AT f(h k)
lim lm ——— # Ilm Im ———.
h->0 k-0 hk k>0 h->0 hk

Therefore in general = f

Example 4.11. Let 'UV)T T e s @ oy

Show that =t at (0,0).

Xy

Solution. We have for (x,y)= (0, 0).

0 6|—x3y—xy3—|
iU R e
ox ox| x"+y" |
_ (x2+y2)(3x2y7y3)7(x3y7xy3)2x
(x*+y?)
3 3
and LR et

oy ay|L x2+y2 ]

(x2+y2)(x3 —3xy2)— (x3y—xy3)2y

(X2+y2)2
f(0+h,0)-f(0,0
Also f.(0,0)= lim (0+h.0)-f(0,0)
h— 0 h
= lim —— =
h—> 0 h
f(0,0+k )-f(0,0
and f,(0,0)= lim (0.0+k )-r(0.0)
k— 0 k
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Therefore t _ (0,0)= ify(o,o): lim

OX h— 0 h
h3
— 0 s
2
= lim h = lim — =1.
h—0 h hoop?
0 f.(0,0+k)-f (0,0
Also f,,(0,0)= —f,(0,0)= lim 1 )- £,(0.0)
6y k— 0 k
k3
- — 0 s
2 —
= lim k = lim = -1
h— 0 k hoo kB
Hence f,(0,0)= f (0,0).

Sufficient conditions for the equality of  ad 1 .

We now give two theorems which we show that under what conditions

f, and f_are equal at a certain point which are known as sufficient

Xy

conditions for equality of _ and f .

xy

Theorem 4.2 (Young’s Theorem).
If 1, and f, existin the neighborhood of the point (a, b) and f, and f,
are differentiable at the point (a, b), then

# f at(a,b).

Xy yXx

Proof. We shall prove this result by taking equal increment h for both

x and y and calculate a*+ in two different ways

where aA*f=f(a+h,b+h)- f(a+h,b)- f(a,b+h)+ f(a,b) (= h=k)



Now, consider the function H(x)= f(x ,b+h)— f(x,b)
Then H(a+h)= f(a+h,b+h)- f(a+h,b) SO that

H(a+h)-H(a)= f(a+h,b+h)- f(a+h,b)-f(a,b+h)-f(a,b)

Thus A°f = H(a+h)-H(a) .

Since  exists in the neighborhood of the point (a, b); we apply

Lagrange’s mean value theorem to H(x) in the interval (a, a +h), we

get
A®f = H(a+h)-H(a)=hH'(a+6h) where 0 < 6 <1
= h{ f (a+0h,b+h)-f (a+6h,b) } (i)

Since 1 is differentiable at (a,b), then
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f(a+oh,b+h)=1f (a,b)+oh f  +hf +460°+h® & where £ -0 as h—0

and f.(a+oh,b)=1f (a,b)+6h f  +6h ¢, where &, > 0 as h —>

Hence

f.(a+6h,b+h)-f (a+oh,b)=h f

:hfyx+hg where s:\/92+1 g, -0¢,

and & > 0as h—> 0.

2
+h[40 +1 ¢, -0¢,]

Using this in eq. (i), we get

A f=h"[f +e] where & —> 0as h—0.

and therefore

0
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2

fim A Zf = f at (a,b) (i)

h>0 | X

We now consider the function
K(y)= f(a+h,y)- f(a.y)

then Kb+h)= f(a+h,b+h)- f(a ,b+h) , SO that

K(b+h)-K()= f(a+h,b+h)- f(a ,b+h)-f(a+h,b)+ f(a,b)

=A"f

By the same procedure as done earlier, we get

2

lim - zf =f  at (a,b) (iii )

h—0 h

From eqgs. (ii) and (iii), we get

This proves the Theorem.
Theorem 4.3 (Schwartz Theorem).

If +, and f, and ¢, all exist in the neighborhood of the point (a, b) and

X

t,. iIs continuous at the point (a, b). Then ¢  also exists and

f = f at(a,b).

Xy yX

Proof. We have

AT f(h,k)
f.  =Ilm lm —————
xy h>0 k-0 hk
o A f(hk)
and f = lim Im ————.

yx k>0 h->0 hk
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where A* f(h,k)= f(a+h,b+k)—- f(a+h,b)- f(a,b+k)+ f(a,b)
Now, consider the function
H(a)=f(a,b+k)= f(a.b)
Then H(a+h)= f(a+h,b+k)- f(a+h,b) SO that
H(a+h)-H(a)=f(a+h,b+k)- f(a+h,b)-f(a,b+k)+f(a,b)
= A" f(h,k).
Thus A*f(h,k) = H(a+h)-H(a) .

Since f, exists in the neighborhood of the point (a, b); we apply

Lagrange’s mean value theorem to H(x) in the interval (a, a +h), we
get

2

A®f(h,k)= H(a+h)-H (a)=hH'(a+6h) where 0 < 6 < 1
= h{ f (a+0h,b+k)-f (a+6h,b) } (i)

Since t,, exists in the neighborhood of the point (a, b); we apply

Lagrange’s mean value theorem again to the R.H.S of eq.(i) and get

2

A f(hk)=n{kf (a+0,h,b+6,k)}

where 0<6,<1 & 0<6,<1 (i)

Since t  is continuous at (a,b), then

m f (a+é0,hb+o,k)="f (a,b)

(hk)>(0.0)
and hence f, (a+6,hb+6,k)=1f (a,b)+s where -0 as (h,k)> (00).

Using this in eq. (ii), we get



A* f(h,k)=hk[f +¢] where & —>0as (h,k)—> (0,0).
A® f(h,k
or #: f o +e where & —> 0as (h,k)— (0,0).
hk

We first take limits when k - 0 and then when h — 0,we get

A" f(hk)
lim lim = .
h>0 k-0 hk y
o AT f(h,k)
But f = lim lim
* hs0 k-0 hk
and thus f =+t a (a,b) .

This proves the result.
Change of variables.

Let u=f(x,y) be a function of two variables in x and y, then

ou ou
du = — dx + —dy
oX oy
[ ou ou |
du=d(du )=d| —dx + — dy
{ax oy J

L ox ) OX oy oy
ou 2 ou 2u ou ou
= — (dx )* + dy dx + —d ‘x+ dx dy + — (dy)" +—d’y
oX oy OX oX ox oy oy oy
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o'u J'u J'u
d’u = — (dx)* + 2
2

ou au
dx dy + —d *x+ —z(dy)2+—dzy
X ox oy X oy oy

Now, if x and y are independent variables, then dx, dy are constants

so that d°x= 0 and d?y=0,s0 that

2 2 2

0 0 0
d2u=—L:(dx)2+2 udxdy+—l:(dy)2.
oX ox oy oy
o’ o’ - .
Example 4.12. Prove that “— . °_ s invariant for change of
ox oy

rectangular axes.

Solution. Let the axes turn through an angle « ,then

/ I .
X=X cos @ —Yy sin «a

I . /
y=xsin a+y cos a

where (x,y) are the co-ordinates of a point with respect to XOY and

(x',y’") are the co-ordinates of a point with respect to x ‘or '.

Thus, we have

2 2

ou o'u ou a%u ou
du = 2(dx)2+2 dx dy +—d2x+—2(dy)2+—d2y (i)
ox ox dy X oy oy
a%u ou o’u
d?u = (dx')2+2 dx "dy ' + (dy/)2 (ii)
/2 / / /2
X ox oy oy

x",y' are independent variables so that d’x'=0 and d’y'=0.

Now x =x'cos & —y'sina

89
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I . /
y=Xx sina+y cos a

= dx =dx/c05a—dy'sina
= dy:dx'sina+dylc05a
and d?x=0,d’y=0.

Putting these values in eq.(i), we get

2

a"u 2 2°u
d’u = Z(dX/COSa—dy/Sina)-FZ (dX/COSa—dy/Sina)(dX/Sina+dy/COSa)
OX OX 0y
2
+ 2(dx'sin a+dy'005a)
oy
262u . o%u ) a%u /\2 . 2azu . o°u 2
= | Cos  ——+2¢0s asin a +sin " a — (dx ) +| sin > — 2¢0s asin a +C0s " «a
ox oxoy oy ox oxoy

+de/dy/

where B is the coefficient of dx 'ay ' .

Now comparing eq. 9ii) and (iii), we get

2 2 2
o'u ,0"u . o'u o o'u /\2
;= | Cos” ——+2co0s asin a +sin * « (dx )
/

2 (iv)
ox ox OXoy oy
o°u o’u o°u o"u ?
= | sin®—— - 2co0s asin « +cos’ a (dy') (V)
12 2 :
oy oX oxoy ay

Adding eq’s (iv) and (v), we have
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ox ay ox oy
o° o%u . . ;
Thus <2, 2% is invariant for the change of rectangular axes.
2 2
ox oy

Maxima and Minima of function of two or more variables.

Let u=f(x,y) be a function of two variables in x and y which is defined

in some domain b cRr?.
Let (a,b)e D.

If t(x,y)< f(a,b) for all points (x,y) belonging to a neighborhood of
the point (a.n), then t (x,y) is said to have a relative or local
maximum at (a.b) and if f(x,y)> f(a,b) for all points (x,y) belonging
to a neighborhood of the point (a,b), then t (x,y) is said to have a

relative or local minimum at (a.n) .

At a stationary point i.e., at an extreme point, we have

of of
—=0 and — =0
oy OX
o f 2 0% f
and d°f = —(dx)" +2 dx dy + (dy )’
ox oxaoy oy
. . of of
At a stationary point —=0-—
oX oyx
[o%f o't 1
|62 ox0 o]
X X0y
Now d%f = [dx dy ]| I} I
o7 1 o%f |
| - L)
| Ox0y oy |
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If (a,b) is a stationary point of (x,y) then t (x,y) will have a relative
minima at (a.b) if a*f is positive i.e., d*f > 0.

i.e., d*1 is a positive definite quadratic form, which is possible if

2
i 0% f o' f % f
> 0 and - ol > 0.
ox oy oxoy

Now, f (x,y) will have a relative maxima at (a.0) if d’f is negative

i.e., d’f <o which is possible if

0
ax’

2

2t o't o’f 0% f

< 0 and - ol > 0
ox oy oxoy

Example 4.13. Find the maxima and minima of the function
Z :x2+3y2—6y.
Solution. At a stationary point

oz 0Z
—=2x=0 and —=6y-6=0 = y=1.

ox oy
Thus x=0 and y= 1.
o’z 0%z 0%z
Now —=2, -0 and —=6.
oxX oxoy oy

2
a%f a’f %t
- -2.6-0=12 >0 .

Thus - —
ox oy oxoy

Hence z -x*+3y’ -6y has a minima at the point (0, 1).

Restricted Maxima and Minima.

Lagrange’s method of undetermined multipliers for maxima and minima.
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Let u=f(x,,x,,...,x,) be a function of n variables which are connected

with m equations of the form

fo(x,,x, X, )=0
f,(x,,x,,...,%x,)=0 (I)
fm(xl Xo Xn):0

The problem is to find the stationary values of u=1+(x .x,,. .., x, )

subject to m given conditions.

Lagrange’s method of undetermined multipliers consists of the

following

Fx,.x,,  x,)=Ff(x, . %x,,....x )+Ad f,+2,f,+.. ..+, f

m m

where 4., 4,, ...4, are multipliers.

The stationary point of f may be found by determining the stationary
points of F.

At a stationary point of F, we have

oF oF oF

OX ’6x_"” oX

1 2 n

which gives
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[ of of, of, of |
‘ + A, +4, + A4, =0
‘axl X, X, ox,
| of of, of, of
‘ + 4, + 4, + .+ A4, =0
ox, ox, 0X, ox,
(1)

|
|
|
} of of, of, f.

+ 4, + 4, + o+ A, =0
[8xn ox ox ox,

(II) are n equations out of which we shall find the value of m

multipliers 4, 4,, .. .2, are put these values in the remaining
(n-m) equations of the system (II). These (n-m) equations
will be free of 1's. These (n-m) equations taken together with

m equations of the system (I) or in all n-m+m=n equations,

which are sufficient to determine the values of x .x,.. .., x,

which will give rise to the stationary values of f.

Example 4.14. Find the volume of the greatest rectangular

parallelopiped that can be inscribed in the ellipsoid

Solution. Let x, y, z be the half of the sides of a required

parallelepiped that can be inscribed in an ellipsoid * + Y+ 1.

a b c
Then the volume of parallelepiped is

V =2X.2y.2z2=8xyz .

We have to find the maximum value v = sxz subject to the condition



We consider the function

XZ yZ ZZ
— +—+—-1

2 2 2
b

F(x,y,z) = 8xyz + 4
a c

|

At a stationary point of F, we have

oF
—=8yz +
OX

2XA

S, =

oF
—=8xz +

ay

2yA

b2

oF
—=8xy +
0z

274

P

Multiplying eq. (i) by x, eq. (ii) by y and eq
the result, we get

XZ yZ ZZ
24 xyz +2 4 — t ot =0
a b c
= 24 xyz +24(1) =0
or A = -12 xyz

Putting this value of 2 in eq. (i), we get

2x—12 xyz

8yz =

2
a

X

=

95

(iii )

. (iii) by z and then adding



Similarly y =— and z =

tol-

8abc

33

Hence Volume (V) = 8xyz =

We show this volume is maximum by showing &%

. a b c
e,  ot<o a [_,_,_] .
3 3 3

At a stationary point of (x,y,z)- [ilﬁ] .
3 3 3

ot azf(dx)z 2 azfdxol o 42
Zax2 Zc’?xay g z@x
21 2
= Y —(dx)" +23 8zdx dy
a
= 2/12 (d—xwz+162dedy
La) V3
= 2/12 (d—xr+£2cdxdy
La) 3
dx 16
= 2(12 xyz ) (—W +—=> ¢ dx dy
21%) R
= ——=abc y (d—xv+£z c dx dy
V3 La) 3
We have zz—le
a

or z—de=0

is negative.
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and therefore at {ili] ,we get
3 /3 /3
a
2y \/zg dx = 0
a
or %Zd:xzo = Zd:)(: 0 (i)
Eq.(ii) gives [z d—x} =0 {- (Ta)=a’-12Ya }
a
dx ’ dx dy B
= Z( a} +23 L 0
¢ dxdy o d_x ’
o 22 abc - Z( a j
abc dx ’
= Z cdxdy = —Tz {:}
Putting this in eq.(i), we get
4 8abc (dx w 16 abc oae - (dx Y
k a) 243 T la)

8abc dx 8abc dx 16 abc dx
(8] (s)-pa ()

a 3 a JE a
i.e., d’f<o and therefore, maximum volume is given by Sabe
:NA)
Jacobians.
Let r .F,, ... F, denote n differential functions of (n+ p) variables

uu,, o.ou i xx,. ... x,, then the functional determinant



oF, oF, oF,
aul 6u2 aun
] oF, oF, oF,
ou, ou, ou,
oF, oF, oF,
ou, ou, ou

is called the Jacobian of the n functions with respect to n variables

u,,u,, ... u, and is denoted by
J _ a( Fl’FZ’ Fn)
) a(ul L'IZ‘ un)
. o(x,y)
Example 4.15. let x-u+v, y=u-v, then find J =
a(u,v)
- o x,

Solution. We have ;- 2Y)

o(u,v)

o

1 1
_ ou ov _ = -2

o | o

ou ov
Example 4.16. Let x = u-+v y=uv, then find J = (x.y)

a(u,v)
- 0 ,

Solution. We have ;- 2tY)

o(u,v)

o

1 1
_ ou ov _ = u-v
ay oy v v




o x,
Example 4.17.let x =rcos@, y=rsing, then find J = (x.y)
a(u,v)
- P )
Solution. We have ;- 2(x%)
a(u,v)
oX OX
ou ov cos 6 —rsin @
B ay oy |sin o rcos @
ou ov

= r(cos * 0 +sin 29) =Tr.

Example 4.18. Prove thatif f@)=0, f'(x)= ! —, then show that

1+ x
F()+ f(y)= f|—2
1-xy
. X+y
Solution. Let u = f(x)+ f(y) and =
1-xy
Y £'(y)
J_a(X,Y) _|ou ov ~
a(u’v) 6_y 6_y 2 2
ou ov 1+y 1+ x
1-xy)° 1-xy)

1 1
1+ x° 1+ y2
- = 0.
1+y2 1+ x°
@-x) @-x)

Thus J = 0.
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Therefore, there is a fundamental relation between u and v say u=¢(v)



100

ie., F(x)+ f(y) = (p[“y}

1-xy

Put y=0, we get

But f(0)=0
Therefore f(x) = o(x) V¥ x.
or f =0

and hence  f(x)+ f(y)- f(“y}
1-xy

Theorem 4.4. If u ,u,, ... v, are n differentiable functions of the

1 2

independent variables «x,.x,,... x, and there exists an identical

differentiable functional relation f(u,,u,, ... u,)=0which does not involve

x's explicitly then, the Jacobian J - ZEFI'FZ"" ’F”; provided , as a

Uy, U,, ..., U,

function of u's has no stationary values in the domain considered.
Proof. We have o(u,,u,, ... u )= 0.

Therefore dp-0 which implies that

0
—du, + ——du, + + ——du =0 (i)
ou, ou, ou,
au ou ou
But du,= — dx,+——du,+ .. .+ ——du, =0
O0X, 0X, oX,
au, au, ou
du, = X, + du, + + du, =0
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ou, au, au,
du = dx, + du,+ .. .+

ox, o0X 0X !

2

Hence from eq. (i), we get

0 ou ou ou 0 ou ou ou
A =~ dx, +—du,+ .. .+ ——du, + 22 Zodx, +—=du,+ .. .+ —=du,
ou, | ox, X, oX, ou, { ox, oXx, ox,
dep [ ou, ou, ou,
—_— dx, +——du,+ .. .+ ——du =0
ou, | ox, ox, X,
Op ou, Op Ou, 0p Ou, 0p Ou,
or — T + | — + + — X, +
ou, ox, ou, 0ox, ou, ox, ou, 0x,
Op 0u, 0p OU,
e —_— x =0
ou, ox, ou,  ox,
Since dx,, dx,,.. . ,dx, are arbitrary differentials of independent variables,

it follows from eq. (ii) that

Op OuU, dp Ou,

+ ...+ — =
ou, 0x, ou, ox,
dp 0u, dp Ou,
7 + .. == _
ou, ox, ou, ox,

op ou, dp Ou,
-7 + . I

o (iii)
ou, ox, ou, ox,
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Since » has no stationary values in the domain considered, therefore

0 0 0

Lo, Lo, ..., Poo.

ou, ou, ou,

. . 0 0 0 .
Eliminating =2, 22 . 22 from the systems of equations (iii), we get
ou, adu, ou,
ou, au, au,
ox, ox, o X,
ou, au, ou,
ox, ox, - ox,
=0
ou, ou, ou,
ox, oX, o ox,
ou, ou, ou,
0x, ox, o oxX,
ou, ou, ou,
0X, 0X, o OX,
or =0
ou, au, ou,
0X, X, - ox,
o(u,,u u
I e-’ J _ ( 1 2 n ) — 0




