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Preface

This problem book grew out of a “freshman physics” mechanics course taught at Harvard
University during the past decade and a half. Most of the problems are from exams or problem
sets, although I have added others to round out the distribution of topics. Some of the problems
are standard ones, but many are off the beaten path. In the end, there is a finite number of prin-
ciples in introductory mechanics, so the problems inevitably start looking familiar after a while.
Two topics from the course that aren’t included in this book are relativity and damped/driven
oscillatory motion. Perhaps these will appear in a future edition, along with other topics such as
fluids and precessional angular momentum.

This book will be helpful to both high-school students and college students taking courses in
introductory physics (just mechanics, not electricity and magnetism). Calculus is used through-
out the book, although it turns out that only a sixth of the problems actually require it. This
subset of problems is listed in Appendix D. If you haven’t studied calculus yet, just steer clear of
those problems, and you can view this book as an algebra-based one. The problems are gener-
ally on the level of the one-star or two-star problems in my Introduction to Classical Mechanics
textbook,1 which covers a number of more advanced topics such as Lagrangians, normal modes,
gyroscopic motion, etc. I will occasionally refer you to that book if you are interested in delving
further into various topics.

It is important to note that this book should not be thought of as a textbook. Although
there is an introduction to each chapter where the basics are presented, this introduction is brief.
It is no substitute for the text in a chapter in a standard introductory textbook. This book is
therefore designed to be used in tandem with a normal textbook. You can think of this book as
supplementing a textbook by providing a stockpile of additional problems. Or you can think of
a textbook as supplementing this book by providing additional background.

In most chapters the first few problems are foundational ones. These problems cover basic
results and theorems that you can use when solving other problems. When a basic result is stated
in the introduction to each chapter, you will generally be referred to a foundational problem for
the proof. The book is self contained, in that we derive everything we need. It’s just that many
of the derivations are shifted to the problems.

A set of multiple-choice questions precedes the problems in each chapter. These questions
are usually conceptual ones that you can do in your head. In the rare case where they require a
calculation, it is a very minor one. The book contains about 150 multiple-choice questions, in
addition to nearly 250 free-response problems.

Depending on how you use this book, it can be an invaluable resource — or a complete waste
of time. So here is some critical advice on using the solutions to the problems: If you are having
trouble solving a problem, it is imperative that you don’t look at the solution too soon. Brood
over it for a while. If you do finally look at the solution, don’t just read it through. Instead, cover
it up with a piece of paper and read one line at a time until you get a hint to get started. Then
set the book aside and work out the problem for real. Repeat this process as necessary. Actively
solving the problem is the only way it will sink in. This piece of advice on how to use this book
is so important that I’m going to repeat it and display it prominently in a box:

1Introduction to Classical Mechanics, With Problems and Solutions, David Morin, Cambridge University Press,
2008. This will be referred to as “Morin (2008).”
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If you need to look at the solution to a problem to get a hint (after having thought about it
for a while), cover it up with a piece of paper and read one line at a time until you can get
started. Then set the book aside and work things out for real. You will learn a great deal this
way. If you instead read a solution straight through without having first solved the problem,
you will learn very little.

The only scenario in which you should ever read a solution straight through is where you’ve
already solved the problem. However, even in this case you should be careful. If I’ve given an
alternative solution, then you should again just read one line at a time until you can get started
and solve it that way too.

To belabor the point, it is quite astonishing how unhelpful it is to simply read a solution
instead of solving a problem. You’d think it would do some good, but in fact it is completely
ineffective in raising your understanding to the next level. Of course, a careful reading of the
introductions is necessary to get the basics down. But once that is accomplished, it’s time to start
solving problems. If Level 1 is understanding the basic concepts, and Level 2 is being able to
apply those concepts, then you can read and read until the cows come home, and you’ll never
get past Level 1.

A few informational odds and ends: We’ll use the standard mks (meter-kilogram-second)
system of units in this book. Concerning notation, a dot above a letter, such as ẋ, denotes a time
derivative. A boldface letter, such as v, denotes a vector. Chapter 13 consists of appendices:
Appendix A gives a review of vectors, Appendix B covers Taylor series, Appendix C is an aside
on the scientific method, and Appendix D lists the problems that require calculus. There are 364
figures in the book, which coincidentally is the total number of gifts given during the 12 days of
Christmas, and which ironically is one gift for every day of the year except Christmas!

It was the fall semester of 2000 when I first taught the course on which this book is based, so
it would be an understatement to say that I have benefitted over the years from the input of many
people, including roughly 1,000 students. I would particularly like to thank Carey Witkov for
carefully reading through the entire book and offering many valuable suggestions. Other friends
and colleagues whose input I am grateful for are (with my memory being skewed toward more
recent years): Jacob Barandes, Allen Crockett, Howard Georgi, Doug Goodale, Theresa Morin
Hall, Rob Hart, Paul Horowitz, Randy Kelley, Andrew Milewski, Prahar Mitra, Joon Pahk, Dave
Patterson, Joe Peidle, Courtney Peterson, Daniel Rosenberg, Wolfgang Rueckner, Alexia Schulz,
Nils Sorensen, Joe Swingle, Corri Taylor, and Rebecca Taylor.

Despite careful editing, there is zero probability that this book is error free. If anything looks
amiss, please check the webpage www.people.fas.harvard.edu/ ˜ djmorin/book.html for a list of
typos, updates, additional material, etc. And please let me know if you discover something that
isn’t already posted. Suggestions are always welcome. Happy problem solving!

David Morin
Cambridge, MA



Chapter 1

Problem-solving strategies

TO THE READER: This book is available as both a paperback and an eBook. I have made a
few chapters available on the web, but it is possible (based on past experience) that a pirated
version of the complete book will eventually appear on file-sharing sites. In the event that you
are reading such a version, I have a request:

If you don’t find this book useful (in which case you probably would have returned it, if you
had bought it), or if you do find it useful but aren’t able to afford it, then no worries; carry on.
However, if you do find it useful and are able to afford the Kindle eBook1 (priced somewhere
between $7 and $10), then please consider purchasing it (available on Amazon). I chose to
self-publish this book so that I could keep the cost low. The resulting price of around $10, which
is very inexpensive for a 350-page physics book, is less than a movie and a bag of popcorn,
with the added bonus that the book lasts for more than two hours and has zero calories (if used
properly!).

– David Morin

1.1 Basic strategies

In view of the fact that this is a problem book, it makes sense to start off by arming you with
some strategies for solving problems. This is the subject of the present chapter. We’ll begin with
a few strategies that are discussed somewhat in depth, and then we’ll provide a long list of 30-ish
strategies. You obviously shouldn’t try to memorize all of them. Just remember that the list is
there, and refer back to it every now and then.

1.1.1 Solving problems symbolically

If you are solving a problem where the given quantities are specified numerically, it is highly
advantageous to immediately change the numbers to letters and then solve the problem in terms
of the letters. After you obtain a symbolic answer in terms of these letters, you can plug in
the actual numerical values to obtain a numerical answer. There are many advantages to using
letters:

• It is quicker. It’s much easier to multiply a g by an ℓ by writing them down on a piece
of paper next to each other, than it is to multiply their numerical values on a calculator.
If solving a problem involves five or ten such operations, the time would add up if you
performed all the operations on a calculator.

• You are less likely to make a mistake. It’s very easy to mistype an 8 for a 9 in a calculator,
but you’re probably not going to miswrite a q for an a on a piece of paper. But even if you

1If you don’t already have the Kindle reading app for your computer, you can download it free from Amazon.
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2 CHAPTER 1. PROBLEM-SOLVING STRATEGIES

do, you’ll quickly realize that it should be an a. You certainly won’t just give up on the
problem and deem it unsolvable because no one gave you the value of q!

• You can do the problem once and for all. If someone comes along and says, oops, the
value of ℓ is actually 2.4 m instead of 2.3 m, then you won’t have to do the whole problem
again. You can simply plug the new value of ℓ into your symbolic answer.

• You can see the general dependence of your answer on the various given quantities. For
example, you can see that it grows with quantities a and b, decreases with c, and doesn’t
depend on d. There is much more information contained in a symbolic answer than in a
numerical one. And besides, symbolic answers nearly always look nice and pretty.

• You can check units and special cases. These checks go hand-in-hand with the previous
“general dependence” advantage. We’ll discuss these very important checks below.

Two caveats to all this: First, occasionally there are times when things get messy when work-
ing with letters. For example, solving a system of three equations in three unknowns might be
rather cumbersome unless you plug in the actual numbers. But in the vast majority of problems,
it is highly advantageous to work entirely with letters. Second, if you solve a problem that was
posed with letters instead of numbers, it’s always a good idea to pick some values for the various
parameters to see what kinds of numbers pop out, just to get a general sense of the size of things.

1.1.2 Checking units/dimensions
The words dimensions and units are often used interchangeably, but there is technically a dif-
ference: dimensions refer to the general qualities of mass, length, time, etc., whereas units refer
to the specific way we quantify these qualities. For example, in the standard meters-kilogram-
second (mks) system of units we use in this book, the meter is the unit associated with the
dimension of length, the joule is the unit associated with the dimension of energy, and so on.
However, we’ll often be sloppy and ignore the difference between units and dimensions.

The consideration of units offers two main benefits:

• Considering the units of the relevant quantities before you start solving a problem can tell
you roughly what the answer has to look like, up to numerical factors. This practice is
called dimensional analysis.

• Checking units at the end of a calculation (which is something you should always do) can
tell you if your answer has a chance at being correct. It won’t tell you that your answer
is definitely correct, but it might tell you that your answer is definitely incorrect. For
example, if your goal in a problem is to find a length, and if you end up with a mass, then
you know that it’s time to look back over your work.

In the mks system of units, the three fundamental mechanical units are the meter (m), kilo-
gram (kg), and second (s). All other units in mechanics, for example the joule (J) or the newton
(N), can be built up from these fundamental three. If you want to work with dimensions instead
of units, then you can write everything in terms of length (L), mass (M), and time (T). The
difference is only cosmetic.

As an example of the above two benefits of considering units, consider a pendulum consisting
of a mass m hanging from a massless string with length ℓ; see Fig. 1.1. Assume that the pendulumθ

l

m

Figure 1.1

swings back and forth with an angular amplitude θ0 that is small; that is, the string doesn’t deviate
far from vertical. What is the period, call it T0, of this oscillatory motion? (The period is the
time of a full back-and-forth cycle.)

With regard to the first of the above benefits, what can we say about the period T0, by looking
only at units and not doing any calculations? Well, we must first make a list of all the quantities
the period can possibly depend on. The mass m (with units of kg), the length ℓ (with units of
m), and the angular amplitude θ0 (which is unitless) are given, but additionally there might be
dependence on g (the acceleration due to gravity, with units of m/s2), If you think for a little
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while, you’ll come to the conclusion that there really isn’t anything else the period can depend
on (assuming that we ignore air resistance).

So the question becomes: How does T0 depend on m, ℓ, θ0, and g? Or equivalently: How
can we produce a quantity with units of seconds from four quantities with units of kg, m, 1,
and m/s2? (The 1 signifies no units.) We quickly see that the answer can’t involve the mass m,
because there would be no way to get rid of the units of kg. We then see that if we want to end
up with units of seconds, the answer must be proportional to

√
ℓ/g, because this gets rid of the

meters and leaves one power of seconds in the numerator. Therefore, by looking only at the units
involved, we have shown that T0 ∝

√
ℓ/g. 2

This is all we can say by considering units. For all we know, there is a numerical factor out
front, and also an arbitrary function of θ0 (which won’t mess up the units, because θ0 is unitless).
The correct answer happens to be T0 = 2π

√
ℓ/g, but there is no way to know this without solving

the problem for real.3 However, even though we haven’t produced an exact result, there is still a
great deal of information contained in our T0 ∝

√
ℓ/g statement. For example, we see that the

period is independent of m; a small mass and a large mass swing back and forth at the same rate.
We also see that if we quadruple the length of the string, then the period gets doubled. And if we
place the same pendulum on the moon, where the g factor is 1/6 of that on the earth, the period
increases by a factor of

√
6 ≈ 2.4; the pendulum swings back and forth more slowly. Not bad

for doing nothing other than considering units!
While this is all quite interesting, the second of the above two benefits (checking the units

of an answer) is actually the one you will get the most mileage out of when solving problems,
mainly because you should make use of it every time you solve a problem. It only takes a second.
In the present example with the pendulum, let’s say that you solved the problem correctly and
ended up with T0 = 2π

√
ℓ/g. You should then immediately check the units, which do indeed

correctly come out to be seconds. If you had made a mistake in your solution, such as flipping
the square root upside down (so that you instead had

√
g/ℓ ), then your units check would yield

the incorrect units of s−1. You would then know to go back and check over your work.
Throughout this book, we often won’t bother to explicitly write down the units check if the

check is a simple one (as with the above pendulum). But you should of course always do the
check in your head. In more complicated cases where it actually takes a little algebra to show
that the units work out, we’ll write things out explicitly.

1.1.3 Checking limiting/special cases

As with units, the consideration of limiting cases (or perhaps we should more generally say
special cases) offers two main benefits. First, it can help you get started on a problem. If you
are having trouble figuring out how a given system behaves, then you can imagine making, for
example, a certain length become very large or very small, and then you can see what happens
to the behavior. Having convinced yourself that the length actually affects the system in extreme
cases (or perhaps you will discover that the length doesn’t affect things at all), it will then be
easier to understand how it affects the system in general. This will then make it easier to write
down the relevant quantitative equations (conservation laws, F = ma equations, etc.), which will
allow you to fully solve the problem. In short, modifying the various parameters and seeing the
effects on the system can lead to an enormous amount of information.

Second, as with checking units, checking limiting cases (or special cases) is something you
should always do at the end of a calculation. As with units, checking limiting cases won’t tell
you that your answer is definitely correct, but it might tell you that your answer is definitely

2In this setup it was easy to determine the correct combination of the given parameters. But in more complicated
setups, you might find it simpler to write down a general product of the given dimensionful quantities raised to arbitrary
powers, and then solve a system of equations to determine these powers. An example of this method is given in the
solution to Problem 1.4.

3This T0 = 2π
√
ℓ/g result holds in the approximation where the amplitude θ0 is small. For a general value of

θ0, the period actually does involve a function of θ0. This function can’t be written in closed form, but it starts off as
1 + θ2

0/16 + · · · . It takes a lot of work to show this, though. See Exercise 4.23 in Introduction to Classical Mechanics,
With Problems and Solutions, David Morin, Cambridge University Press, 2008; henceforth referred to as “Morin (2008).”
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incorrect. Your intuition about limiting cases is generally much better than your intuition about
generic values of the parameters. You should use this to your advantage.

As an example, consider the trigonometric formula for tan(θ/2). The formula can be written
in many different ways. Let’s say that you’re trying to derive it, but you keep making mistakes
and getting different answers. However, let’s assume that you’re pretty sure it takes the form of
tan(θ/2) = A(1±cos θ)/ sin θ, where A is a numerical coefficient. Can you determine the correct
form of the answer by checking special cases? Indeed you can, because you know what tan(θ/2)
equals for a few special values of θ:

• θ = 0: We know that tan(0/2) = 0, so this immediately rules out the (1 + cos θ)/ sin θ
form, because this isn’t zero when θ = 0; it actually goes to infinity at θ = 0. The answer
must therefore take the form of A(1 − cos θ)/ sin θ. (This appears to be 0/0 when θ = 0,
but it does indeed go to zero, as you can check by using the Taylor series for sin θ and
cos θ; see the subsection on Taylor series below.)

• θ = 90◦: We know that tan(90◦/2) = 1, which quickly gives A = 1. So the correct answer
must be tan(θ/2) = (1 − cos θ)/ sin θ.

• θ = 180◦: If you want to feel better about this result, you can note that it gives the correct
answer for another special value of θ; it correctly goes to infinity when θ = 180◦.

Of course, none of what we’ve done here demonstrates that (1 − cos θ)/ sin θ is actually the
correct answer. But checking the above special cases does two things: it rules out some incorrect
answers, and it makes us feel better about the correct answer.

A type of approximation that often comes up involves expressions of the form ab/(a + b),
that is, a product over a sum. For example, the equivalent mass in Problem 4.5 turns out to be

M =
4m1m2

m1 + m2
. (1.1)

What does M look like in the limit where m1 is much smaller than m2? In this limit we can
ignore the m1 in the denominator, but we can’t ignore it in the numerator. So we obtain M ≈
4m1m2/(0 + m2) = 4m1. Why can we can ignore one of the m1’s but not the other? We can
ignore the m1 in the denominator because it appears there as an additive term. If m1 is small, then
erasing it essentially doesn’t change the value of the denominator. However, in the numerator
m1 appears as a multiplicative term. Even if m1 is small, its value certainly affects the value of
the numerator. Decreasing m1 by a factor of 10 would decrease the numerator by the same factor
of 10. So we certainly can’t just erase it. (That would change the units of M anyway.)

Alternatively, you can obtain the M ≈ 4m1 result in the limit of small m1 by applying a
Taylor series (discussed below) to M . But this would be overkill. It’s much easier to just erase
the m1 in the denominator. In any case, if you’re ever unsure about which terms you should keep
and which terms you can ignore, just plug some very small numbers (or very large numbers,
depending on what limit you’re dealing with) into a calculator to see how the expression depends
on the various parameters.

It should be noted that there is no need to wait until the end of a solution to check limiting
cases (or units, too). Whenever you arrive at an intermediate result that lends itself to checking
limiting cases, you should check them. If you find that something is amiss, this will prevent you
from wasting time carrying onward with incorrect results.

1.1.4 Taylor series
A tool that often comes up when checking limiting cases is the Taylor series. A Taylor series
expresses a function f (x) as a series expansion in x (that is, a sum of terms involving different
powers of x). Perhaps the most well-known Taylor series is the one for the function f (x) = ex :

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (1.2)
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A number of other Taylor series are listed near the beginning of Appendix B (Section 13.2).
The rest of Appendix B contains a discussion of Taylor series and various issues that arise when
using them. If you’ve never seen Taylor series before, you should take a moment and read the
appendix. For the present purposes, we’ll just take the above expression for ex as given and see
where it leads us.4

As an example of the utility of Taylor series, consider a beach ball that is dropped from rest.
It can be shown that if air drag is taken into account, and if the drag force is proportional to
the velocity (so that it takes the form Fd = −bv, where b is the drag coefficient), then the ball’s
velocity (with upward taken as positive) as a function of time equals

v(t) = −mg

b

(
1 − e−bt/m

)
. (1.3)

This is a somewhat complicated expression, so you might be a little doubtful of its validity. Let’s
therefore look at some limiting cases. If these limiting cases yield expected results, then we can
feel more confident that the expression is actually correct.

If t is very small (more precisely, if bt/m ≪ 1; see the discussion in Section 13.2.3), then
we can use the Taylor series in Eq. (1.2) to make an approximation to v(t), to leading order in t.
(The leading-order term is the smallest power of t with a nonzero coefficient.) To first order in
x, Eq. (1.2) gives ex ≈ 1 + x. If we let x be −bt/m, then we see that Eq. (1.3) can be written as

v(t) ≈ −mg

b

(
1 −

(
1 − bt

m

))
≈ −gt . (1.4)

This answer makes sense, because the drag force is negligible at the start (because v, and hence
bv, is very small), so we essentially have a freely falling body with acceleration g downward.
And v(t) = −gt is the standard expression in that case (see the introduction to Chapter 2). This
successful check of a limiting case makes us have a little more faith that Eq. (1.3) is actually
correct.

If we mistakenly had, say, −2mg/b as the coefficient in Eq. (1.3), then we would have ob-
tained v(t) ≈ −2gt in the small-t limit, which is incorrect. So we would know that we needed to
go back and check over our work. Although it isn’t obvious that an extra factor of 2 in Eq. (1.3) is
incorrect, it is obvious that it is incorrect in the limiting v(t) ≈ −2gt result. As mentioned above,
your intuition about limiting cases is generally much better than your intuition about generic
values of the parameters.

We can also consider the limit of large t (or rather, large bt/m). In this limit, e−bt/m is
essentially zero, so the v(t) in Eq. (1.3) becomes (there’s no need for a Taylor series in this case)

v(t) ≈ −mg

b
. (1.5)

This is the “terminal velocity” that the ball approaches as time goes on. Its value makes sense,
because it is the velocity for which the total force (gravitational plus air drag), −mg − bv, equals
zero. And zero force means constant velocity. Mathematically, the velocity never quite reaches
the value of −mg/b, but it gets extremely close as t becomes large.

Whenever you derive approximate answers as we just did, you gain something and you lose
something. You lose some truth, of course, because your new answer is an approximation and
therefore technically not correct (although the error becomes arbitrarily small in the appropri-
ate limit). But you gain some aesthetics. Your new answer is invariably much cleaner (often
involving only one term), and that makes it a lot easier to see what’s going on.

In the above beach-ball example, we checked limiting cases of an answer that was correct.
This whole process is more useful (and a bit more fun) when you check limiting cases of an
answer that is incorrect (as in the case of the erroneous coefficient of −2mg/b we mentioned

4Calculus is required if you want to derive a Taylor series. However, if you just want to use a Taylor series (which is
what we will do in this book), then algebra is all you need. So although some Taylor-series manipulations might look a
bit scary, there’s nothing more than algebra involved.
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above). When this happens, you gain the unequivocal information that your answer is wrong
(assuming that your incorrect answer doesn’t just happen to give the correct result in a certain
limit, by pure luck). However, rather than leading you into despair, this information is something
you should be quite happy about, considering that the alternative is to carry on in a state of
blissful ignorance. Once you know that your answer is wrong, you can go back through your
work and figure out where the error is (perhaps by checking limiting cases at various intermediate
stages to narrow down where the error could be). Personally, if there’s any way I’d like to
discover that my answer is garbage, this is it. So you shouldn’t check limiting cases (and units)
because you’re being told to, but rather because you want to.

1.2 List of strategies
This section contains a list of all the problem-solving strategies I can think of. The list is long,
so there is certainly no need to memorize it. It would be a step backward if you spent your time
worrying about covering all of the strategies, when you should instead be thinking about actually
solving a problem. The best way to use this list is to read through it now, and then occasionally
refer back to it, especially if you get stuck.

You will inevitably apply many of the strategies without even trying to. But others in the
list might seem like meaningless gibberish for now; we’re not applying them to any problems
here, so there isn’t much context. However, if you refer back to the list when solving problems,
a given strategy will mean much more if it helps you solve a problem.

Different people think differently, of course. Some strategies might work for you, while
others might not. In the end, there’s no overall magic bullet for solving all problems. It just
comes down to practice and doing lots of problems. But the strategies listed below should help
make the practice more efficient. We’ve divided them into five categories: (1) Getting started,
(2) Solving the problem, (3) Troubleshooting, (4) Finishing up, and (5) Looking ahead.

1.2.1 Getting started
The following nine strategies will help you get started on a problem. They don’t require too
much thinking; they’re standard mechanical things that you can do on auto-pilot.

1. Read the problem slowly and carefully

There’s no better way to waste time than to read a problem quickly in an effort to save time. If
you miss a piece of the given information, you’ll end up just spinning your wheels, trying to
solve an unsolvable problem.

There is famous statement about the existence of known knowns (things that we know we
know), known unknowns (things that we know we don’t know), and unknown unknowns (things
that we don’t know we don’t know). Leaving firmly aside who made the statement and why,
you might wonder about the fourth permutation: the unknown knowns. What might those be?
Well, one thing that certainly falls into this category is the information you miss when you read
a problem too quickly. The information is certainly known, but you just don’t know that you
know it!

2. Identify the things you know, and the things you are trying to find

Identifying the known quantities enables you to see what you have to work with. And identi-
fying the unknown quantities enables you to see what you’re aiming for, which gives you some
guidance in thinking about what physical principles you should consider (Strategy 10 below). Of
course, as mentioned in Strategy 1, identifying the things you know requires reading the problem
carefully!

The “knowns and unknowns” reference in Strategy 1 is relevant here too. We mentioned
there that you want to avoid unknown knowns. You also want to avoid unknown unknowns.
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These are things you’re going to need to find, but you don’t know yet that you need to look for
them. It’s much easier, of course, to reach a destination if you know what that destination is. So
do your best to make sure you know what all of the unknowns are. Basically, try to make sure
everything is known – even if it’s (an) unknown!

3. Draw a picture

Draw a nice big picture, one where you can label everything clearly. Make a note of which quan-
tities you know, and which quantities you’re trying to find. Although a small set of mechanics
problems involve doing only some math, the vast majority involve a setup that you really need
to visualize in order to get anywhere. A picture makes things much more concrete.

4. Draw free-body diagrams

A special kind of picture is a free-body diagram. This is a picture where you draw all of the
external forces acting on a given object. As with a general picture, make a note of the known and
unknown quantities. Free-body diagrams are absolutely critical when solving problems involv-
ing forces. More precisely, they are necessary, and nearly sufficient. That is, many problems are
impossible if you don’t draw the free-body diagrams, and trivial if you do. Often the only thing
that remains to be done after drawing the diagrams is to solve some F = ma equations by doing
some math. The physics is all contained in the diagrams. See the introduction to Chapter 4 for
further discussion of free-body diagrams.

5. Strip the problem down to its basics

Some problems are posed as idealized “toy model” problems, for example a point mass colliding
with a uniform stick with negligible thickness. Other problems deal with more realistic setups
that you might encounter in the real world, for example two skaters colliding and grabbing on to
each other. When dealing with the latter type, the first thing you should do is strip the problem
down to its basics. If possible, reduce the problem to point masses, sticks, massless strings, etc.
Many real-life problems that look different at first glance end up being the same when reduced
to the underlying toy model. So when you solve the toy-model version, you’re actually solving
a more general problem, which is a good thing.

Of course, you need to be careful that your toy model mimics the original setup correctly.
For example, simplifying an object to a point mass works fine if you’re using forces, but not
necessarily if you’re using torques. Your goal is to simplify the setup as much as possible without
changing the physics. It takes some thought not to go too far, but this thought process is helpful
in solving the problem. It helps you decide which aspects of the problem are important, and
which aspects are irrelevant. This in turn helps you decide which physical principles you need
to use (Strategy 10 below). Along these lines, if the original real-life setup is one for which you
have some physical intuition, remember to use it when you start dealing with the toy model!

6. Choose wisely your coordinate system or reference frame

There are always only a couple of reasonable coordinate systems and reference frames to choose
from, but a particular choice may greatly simplify things. For example, when dealing with an
inclined plane, choosing tilted axes (parallel and perpendicular to the plane) is often helpful. And
when dealing with circular motion, it is of course usually best to work with polar coordinates.
And when two (or more) objects are moving with respect to each other, it is often helpful to
analyze the setup in a new reference frame (the CM frame, or perhaps a frame moving along
with one of the objects).

Part of choosing a coordinate system involves choosing the positive directions for the co-
ordinate axes. This is completely your choice, but you must remember that once you pick a
convention, you must stick with it. It’s fine to let downward be positive for a falling object; just
don’t forget later on in your solution that you’ve made that choice.
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7. Identify the initial and final states of the system

This is especially important in problems involving conservation principles (conservation of en-
ergy, momentum, angular momentum). In many cases, you can ignore the specifics of what
happens during a process and simply equate the initial and final values of a particular quantity.

Another class of problems is “initial condition” problems. If you’ve calculated a general
expression for, say, an object’s position involving some unknown parameters, you can determine
the values of these parameters by invoking the initial conditions (usually the initial position and
velocity).

8. Identify the constraints

Is an object constrained to lie on a plane? Or travel in a circle? Or move with constant velocity?
Is the system static? In the end, a constraint means that you have one fewer unknown than you
otherwise might have thought. For example, if an object lies on a plane inclined at angle θ,
then its coordinates are related by y = x tan θ. So if you choose x as your unknown, then y is
determined.

9. Convert numbers to letters, so that you can solve things symbolically

This strategy is extremely helpful and very simple to apply. It is discussed in depth in Sec-
tion 1.1.1 above, where its many benefits are noted.

1.2.2 Solving the problem

Having taken the above mechanical steps, it’s now time to start thinking. There’s no sure-fire
way to guarantee that you’ll solve every problem you encounter, but the following five strategies
will certainly help.

10. Identify the physical principles involved

Think about what physical principle(s) will allow you to solve the problem. The most funda-
mental principles in mechanics are F = ma and τ = Iα (or more accurately F = dp/dt and
τ = dL/dt), and conservation of E, p, and L. A given problem can invariably be solved in multi-
ple ways. For example, since conservation of energy can be derived from F = ma, any problem
that can be solved with conservation of energy can also be solved with F = ma, although the
latter solution may be more cumbersome.

In addition to the overarching fundamental principles listed above, there are many other
physical principles/facts that you may need to use. For example, the radial acceleration is v2/r
(Eq. (3.7)); vy = 0 at the highest point in projectile motion; the energy of an object that is both
translating and rotating consists of two terms (Eq. (7.8)); Hooke’s law for a spring is F = −kx
(Eq. (10.1)); Newton’s law of gravitation is an inverse-square law (Eq. (11.1)); and so on.

11. Convert physical statements into mathematical equations

Having identified the relevant physical principles, you must now convert them into mathematical
equations. For example, having noted that the horizontal speed in projectile motion is constant,
you need to write down x = (v0 cos θ)t, or something equivalent. Or having decided that you
will use F = ma to solve a problem, you need to explicitly write down the Fx (and maybe Fy and
Fz ) equations, which may involve breaking vectors into their components. Or having decided to
use conservation of energy, you need to determine what kinds of energy are involved, and then
equate the initial total energy with the final total energy.
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12. Think initially in terms of physical statements, rather than equations

It is important to first think about the physical principles, and then think about how you can
express them with equations. Don’t just write down a bunch of equations and look for ways to
plug things into them. The initial goal when attacking a problem isn’t to write down the correct
equation; rather, it’s to say the correct thing in words. If you proceed by blindly writing down
all the equations you can think of that seem somewhat relevant, you might end up just going
around in circles. You wouldn’t try to get to a certain destination by randomly walking around
with the hope that you’ll eventually stumble upon it. And that strategy doesn’t work any better
in problem solving!

13. Make sure you have as many facts/equations as unknowns

If you are trying to solve for three unknowns and you have only two equations/facts, then there’s
no way you’re going to be successful. Along the same lines, if you’ve identified an unknown but
haven’t incorporated it into any of your equations/facts, then there’s no way you’re going to be
able to solve for it. If you can’t think of which additional physical principle to apply to generate
the necessary equation, it’s helpful to run through all of the given information and think about
the implications of each bit.

14. Be organized

Sometimes you can see right away exactly how to solve a problem, in which case you can fly
right through it, without much need for organization. But unless you’re positive that the solution
will be quick, it is critical to be organized about the other strategies in this list, by explicitly
writing things out. For example, you should write out the knowns and unknowns, as opposed to
just thinking them. And likewise for the physical principles involved, etc. There’s no need to
write a book, but some brief notes will do wonders in organizing your thoughts.

1.2.3 Troubleshooting
In many cases the preceding strategies are sufficient for solving a problem. But if you get stuck,
the following thirteen strategies should be helpful.

The following three strategies are bread-and-butter ones.

15. Reduce the problem to an intermediate one

Equivalently, work backwards. Say to yourself, “I’d be able to get the answer to the problem if
I somehow knew the quantity A. And I’d be able to get A if I somehow knew B.” And so on.
Eventually you’ll hit a quantity that you can figure out from the given information. For example,
you can find the distance x traveled by a projectile if you somehow know the time t (because
x = (v0 cos θ)t). So the problem reduces to finding t. And you can find t by (among other ways)
noting that at the top of the projectile motion (after time t/2), the y component of the velocity is
zero, so v0 sin θ − g(t/2) = 0.

As an analogy, if you can’t remember how to get to a certain destination, you’re still in luck
if you remember that it’s just north of a park, which you remember is a few blocks down a
certain street from a statue, which you remember is around the corner from a school, which you
remember how to get to.

16. Exaggerate/change the parameters to understand their influence

This is basically the same as checking limiting cases of your final answer (Strategy 28 below,
discussed in detail in Section 1.1.3). However, there is no need to wait until you obtain your final
answer (or even an intermediate result) to take advantage of this extremely useful strategy. Your
intuition about extreme cases is much better than your intuition about normal scenarios, so you
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should use it. Once you see that a certain parameter influences the result, you can hone in on
how exactly this influence comes about. This can then lead you to the relevant physical principle
(Strategy 10).

17. Think about how the various quantities (known or unknown) are related

The task of Strategy 10 is to identify the relevant physical principles. This will yield relations
among the various quantities. If you’ve missed some of the principles, it might be possible
to figure out what they are by thinking about how the various quantities relate. For example,
consider a mass on the end of a spring, and let’s say you pull the mass a distance d away from
its equilibrium position and then let go. It is intuitively clear that the larger d is, the larger
the mass’s speed v will be when it passes through the equilibrium position during the resulting
oscillatory motion. If your goal is to find v, the preceding qualitative statement might help lead
you to the useful physical principle of energy conservation, which will then allow you to write
down a quantitative mathematical equation.

The following three strategies are quick checks.

18. Check that you have incorporated all of the given information

Part of the task of Strategy 2 is to identify everything that you know. When immersed in a
problem, it’s easy to forget some of this information, and this will likely make the problem
unsolvable. So double check that for every given piece of information, you’ve either incorporated
it or declared it to be irrelevant.

19. Check your math

Check over your algebra, of course. It’s good to do at least a cursory check after each step. If
you eventually hit a roadblock, go back and do a more careful check through all the steps.

20. Check the signs in all equations

In some sense this is just a subcase of the preceding strategy of checking your math. But often
when people check through algebra, they fixate on the numerical values of the various terms and
neglect the signs. So if you’re stuck, just do a quick check where you ignore the numerical values
and look only at the signs, just to make sure that at least those are correct. This check should be
very quick. Pay special attention to the initial equation that you wrote down. A common mistake
is to have an incorrect sign right from the start (for example, having the wrong sign in a vector
component), which won’t show up as an algebra mistake.

The following three strategies involve building on other knowledge.

21. Think of similar problems you know how to do

Try to reduce the problem (all, or part of it) to a previously solved problem. There are only
so many types of problems in introductory mechanics, so odds are that if you’ve done a good
number of problems, they should start looking familiar. How is the present problem similar to
an old one, and how is it different?

You might wonder whether someone becomes an expert problem solver by being brilliant,
or by solving a zillion problems, which has the effect of making any new problem look vaguely
familiar. Elite athletes, chess players, debaters, comedians, etc., rely on recognizing familiar
situations that they know how to react to. You can argue about what percentage of their strat-
egy/action is based on this reaction. But you can’t argue with the fact that a huge arsenal of
familiar situations, built up from endless hours of practice, is a necessary condition for elite
status in pretty much anything.
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22. Think of a real-life setup that behaves the same way

This strategy in is the same spirit as the preceding one. We continually gather physical intuition
from everyday life, so in a sense we’re always practicing physics without even knowing it. For
example, if you need to push a large object, say, a car, then you know that you should lean
forward with your feet behind you, as opposed to pushing with your body upright. We have
much more physical intuition about Newtonian mechanics than we do about other subfields of
physics (electricity and magnetism, relativity, quantum mechanics), so you should use it to your
advantage when solving mechanics problems!

Of course, there are times when your intuition might lead you astray, sometimes due to the
fact that certain observations dominate others. For example, based on observations of skidding
and general braking in a car or on a bike, you might think that friction always slows things
down. It’s easy to forget that when you accelerate from rest (often a more gentle acceleration
than braking), friction is what speeds you up. You won’t go anywhere if you’re on ice!

23. Solve a simpler problem

If you can’t get anywhere, if never hurts to solve a simpler version of the problem, to get a feel
for what’s going on. A particular example of this (which appears more often in math than in
physics) is a problem that involves a large number or a general number N . In such problems,
you definitely want to try solving things for the case of N = 1, 2, 3. Once you see what’s going
on for small numbers, it’s much easier to generalize to an arbitrary number N .

The following four strategies involve helping your brain get going.

24. Explain (or imagine explaining) the solution to someone else

This strategy might seem a little silly, but it’s really just a way of forcing yourself to organize
your thoughts and proceed slowly. I assume I’m not the only person who has checked over an
incorrect solution multiple times in my head, only to make the same mistake each time. It’s very
easy to repeatedly slide over a mistake or faulty assumption in the confines of one’s own head.
This can often be remedied by explaining your solution to someone else. And in most cases, you
will see the mistake even before the other person says anything. But in the event that there’s no
one else around to lend an ear, a little talking to yourself never hurt.

25. Imagine your teacher explaining the solution

This strategy might also seem a little silly, but it does help sometimes, due to the fact that you’re
a human and not a machine. When floundering with a problem, it’s easy to lose confidence and
give up, even if you don’t consciously know that you’re giving up. If you imagine your teacher
(or another student you look up to) explaining the solution, then since you expect them to be able
to solve the problem with confidence, you just might end up solving it yourself. Occasionally
it’s better to ditch the “I think I can” mantra for “I know someone else can.” Hey, if it gets the
job done. . .

26. When you can’t think of anything to do, just do something!

If all else fails, just start trying some random things. It can’t hurt. You might hit something
that gets you on track. A reasonable analogy is the unrealistic scenario in which you’re lost in
the woods with an infinite supply of food, and with zero chance that anyone else is going to
help you. It doesn’t do any good to just sit there. If you can’t think of a reason to head in any
particular direction, you should just head in some direction. Maybe you’ll hit a stream that heads
somewhere. Of course, after the fact, you’ll probably see why you should have known the stream
was there in the first place (a gulley between two hills, the dripping wet moose that walked past
you, etc.). But that’s knowledge you can use the next time you get stuck.
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27. Set the problem aside and go for a walk

If nothing is working and you’re truly at an impasse, take a break from the problem. It’s easy
to get stuck in a rut in your thinking, where you keep making the same mistakes and your mind
keeps heading from a correct thought to an incorrect or unhelpful one. If you take a break and
let your mind wander a little, it might semi-randomly jump to a helpful thought.

1.2.4 Finishing up

Assuming you’ve produced an answer to a problem, the following three strategies are ones you
should always apply, as double checks on your answer.

28. Check limits and special cases

This strategy is immensely helpful. It is discussed in depth in Section 1.1.3, where its many
benefits are explained.

29. Check units

This strategy is also very helpful and is discussed in depth in Section 1.1.2.

30. Check the rough size of numerical values

If your final answer involves actual numbers, be sure to check that they make sense. You can
do this by checking that the rough “order of magnitude” (the nearest power of 10) is plausible.
It’s quite possible that you dropped a factor of 10 somewhere in the calculation. Or maybe
you dropped one of the parameters when going from one line of the math to the next (although
checking units is often a safeguard against this, too).

1.2.5 Looking ahead

After solving a problem, you can use the following four strategies to build upon what you’ve
done and better prepare yourself for future problems.

31. Review the solution

After you’re finished with a problem, go back and carefully review the entire solution. First think
about the big-picture idea(s). Then think not only about what each step was, but also why you
performed it. That is, how did each step logically follow from the previous one, as opposed to
just being a random step? This review is extremely helpful in making the solution sink in, and it
usually takes only a minute or two. You get a lot of bang for your buck, timewise.

Even if the solution did sink in first time around, there is another benefit to a careful review.
It’s often not enough just to know something; you also need to know that you know it. That way,
you can confidently apply it to a future problem. If a certain tool is in your arsenal but you don’t
know that it’s there, it doesn’t help you much. (Think of all the memories that reside in your
brain but that you’ll never ever think of again, because you don’t know that you have them.) A
careful review of something will let you know that you know it.

32. Analyze where/why you went wrong

This strategy is actually relevant while you are solving the problem. As mentioned in the preface,
it is critical that you never just read a solution straight through, unless you’ve already solved the
problem. Just read enough to get a hint to get started. If you do need to read a little bit to get
a hint, then before you use the hint to move on with the problem, think about your previous
train of thought. Where exactly did you get stuck? What would you have needed to realize to
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get unstuck? How will you modify your thinking in the future so that you don’t hit the same
roadblock?

In short, it doesn’t hurt to obsess a little about where you went wrong and what you can
do better. If you get schooled on the basketball court with a crossover dribble that leads to the
game-winning layup, you’re probably going to obsess for a while about what to do differently
next time. That’s a good thing. And it works the same way with problem solving. And for that
matter, anything else you’re trying to get good at.

33. Think of another approach

Just because you solved a problem once, that doesn’t mean you can’t solve it again. There are
often many ways to solve a given problem, and you can learn a lot by working through another
solution. Furthermore, most of what you learn actually comes from the things you do wrong, so
if you happened to have breezed through your first solution, you might not have learned much.
But if you work through a second solution and have to struggle here and there, you’ll significantly
increase what you take away.

34. Think of a variation or extension

Try to make up a similar problem. You could vary the parameters, of course. But if you’ve solved
the problem symbolically instead of with numbers (as you should always do!), then you’ve actu-
ally already solved the problem for any values of the parameters. So there’s nothing new there.
So what can you change? Perhaps add new forces and/or objects, or change the shape of an ob-
ject, or allow something that was fixed to be moveable, or change the direction of the motion, or
relax some of the given information and see what the most general motion is, or generalize from
1-D to 2-D, etc. Thinking about variations will not only solidify the problem you just solved, but
also make you much more prepared for new problems that come your way.

As mentioned at the start of this section, the above list of strategies is long, so you certainly
shouldn’t try to memorize it. Just refer back to it now and then.

1.3 How to use this book
The preface contained some advice on the proper use of the solutions in this book. We’ll repeat
some of that advice here and also give a few more pointers for using this book.

• Read the introduction to each chapter, to become familiar with the material.

• Solve the foundational problems in a given chapter first, to make sure that you have all the
tools you will need. These problems are the first few in each chapter.

• Solve lots of problems.

• Don’t look at the solution to a problem too soon. If you do need to look at it, don’t just
read it straight through. Read it line by line until you get a hint to get going again. (Have
a piece of paper handy, to cover up the rest of the solution.) Then set it aside and solve the
problem on your own. Repeat as necessary.

• When solving the multiple-choice questions, be sure to fully commit to an answer before
checking to see if it’s correct. Don’t just make a reasonable guess and then cross your
fingers. Think hard until you’re sure of your answer. If it turns out to be wrong, then solve
the question again, without looking at the explanation in the solution.

The most important piece of advice is the fourth bullet point above, which also appeared in the
boxed paragraph in the preface. But it’s so important that one more appearance, now in bold,
can’t hurt:
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Unless you have already completely solved a given problem,

Don’t just read through the solution!

If you read through a solution without first solving the problem, you will gain essentially nothing
from it.

1.4 Multiple-choice questions

As mentioned above: In the multiple-choice questions, be sure to fully commit to an answer
before checking to see if it is correct.

1.1. If the task of a given problem is to find a certain length, which of the following quantities
could be the answer? (The ℓ, v, a, t, and m in this and the following two questions are
given quantities with the dimensions of length, velocity, acceleration, time, and mass.)

(a) at (b) mvt (c)
√

aℓ (d) v/t (e) v2/a

1.2. If the task of a given problem is to find a certain time, which of the following quantities
could be the answer?

(a) a/t (b) mv/ℓ (c) v2/a (d)
√
ℓ/a (e)

√
v/a

1.3. If the task of a given problem is to find a certain force (with units kg m/s2), which of the
following quantities could be the answer?

(a) mv2 (b) mat (c) mv/t (d) mv/ℓ (e) v2/ℓ

1.4. One mile per hour equals how many meters per second? (There are 1609 meters in a mile.)

(a) 0.04 (b) 0.45 (c) 1 (d) 2.2 (e) 27

In the following seven questions, don’t solve things from scratch. Just use dimensional analysis.

1.5. A block rests on an inclined plane with coefficient of friction µ (which is dimensionless).
Let θmax be the largest angle of inclination for which the block doesn’t slide down. Which
of the following is true?

(a) θmax is larger on the moon than on the earth.

(b) θmax is larger on the earth than on the moon.

(c) θmax is the same on the earth and the moon.

1.6. A mass m oscillates back and forth on a spring with spring constant k (with units kg/s2).
If the amplitude (the maximum displacement) is A, which of the following quantities is
the maximum speed the mass achieves as it passes through the equilibrium point?

(a)
k A
m

(b)
k A2

m
(c)

√
k A
m

(d)

√
k A2

m
(e)

√
mk A2

1.7. A bucket of water with mass density ρ (with units kg/m3) has a small hole in it, at a depth
h below the surface. Assuming that the viscosity of the water is negligible, which of the
following quantities is the speed of the water as it exits the hole?

(a)
√

2gh (b)
√

2ρgh (c)
√

2g/h (d)
√

2h/g (e)
√

2gh/ρ

1.8. The increase in pressure ∆P (force per area) as you descend in a lake depends on your
depth h, the density of water ρ, and g. Which of the following quantities is ∆P?

(a) ρg/h (b) ρgh (c) ρ2gh (d) ρg2h (e) ρgh3
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1.9. The drag force Fd on a sphere moving slowly through a viscous fluid depends on the
viscosity of the fluid η (with units kg/(m s)), the radius R, and the speed v. Which of the
following quantities is Fd?

(a) 6πηR/v (b) 6πη/Rv (c) 6πηRv (d) 6πηR2v (e) 6πηR2v2

1.10. The drag force Fd on a sphere moving quickly through a nonviscous fluid depends on the
density of the fluid ρ, the radius R, and the speed v. Which of the following quantities is
Fd proportional to?

(a) ρv (b) ρRv (c) ρRv2 (d) ρR2v (e) ρR2v2

1.11. The Schwarzschild radius RS of a black hole depends on its mass m, the speed of light c,
and the gravitation constant G (with units m3/(kg s2)). Which of the following quantities
is RS?

(a)
2G
mc2 (b)

2Gm
c2 (c)

2Gm
c3 (d)

2c2

Gm
(e)

2c3

Gm

In the remaining questions, don’t solve things from scratch. Just check special cases.

1.12. The plane in Fig. 1.2 is inclined at an angle θ, and two vectors are drawn. One vector

θ

A

B

C D

Figure 1.2

is perpendicular to the plane, and its horizontal and vertical components are shown. The
other vector is horizontal, and its components parallel and perpendicular to the plane are
shown. Which of the following angles equal(s) θ? (Circle all that apply.)

(a) A (b) B (c) C (d) D

1.13. Two massless strings support a mass m as shown in Fig. 1.3. Which of the following

θθ
T T

Figure 1.3

quantities is the tension (that is, force) T in each string?

(a)
mg

2
(b)

mg sin θ
2

(c)
mg cos θ

2
(d)

mg

2 sin θ
(e)

mg

2 cos θ

1.14. A block slides down a plane inclined at angle θ. What should the coefficient of kinetic
friction µ be so that the block slides with constant velocity?

(a) 1 (b) sin θ (c) cos θ (d) tan θ (e) cot θ

1.15. Consider the “endcap” of the sphere shown in Fig. 1.4, obtained by slicing the sphere with

R

θ

Figure 1.4

a vertical plane perpendicular to the plane of the paper. Which of the following expressions
is the volume of the cap?

(a) πR3
(
4/3 − (2/3) sin θ

)
(b) πR3

(
(2/3) sin θ

)
(c) πR3

(
2/3 − (2/3) cos θ + sin θ

)
(d) πR3

(
2/3 + (1/3) cos3 θ − cos θ

)
1.16. Consider the line described by ax + by + c = 0. Which of the following expressions is the

distance from this line to the point (x0, y0)?

(a)
bx0 + ay0 + c
√

a2 + b2
(b)

ax0 + by0 + c
√

a2 + b2
(c)

ax0 + by0√
a2 + b2

(d)
ax0 + by0 + c
√

a2 + b2 + c2

1.17. A person throws a ball with a given speed v (at the optimal angle for the following task)
toward a wall of height h. Which of the following quantities is the maximum distance the
person can stand from the wall and still be able to throw the ball over the wall?

(a)
gh2

v2 (b)
v2

g
(c)

v4

g2h
(d)

√
v2h
g

(e)
v2

g

√
1 − 2gh

v2 (f)
v2/g

1 + 2gh/v2
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1.5 Problems
1.1. Furlongs per fortnight squared

Convert g = 9.8 m/s2 into furlongs/fortnight2. A fortnight is two weeks, a furlong is 220
yards, and there are 1.09 yards in a meter.

1.2. Miles per gallon

The efficiency of a car is commonly rated in miles per gallon, the dimensions of which are
length per volume, or equivalently inverse area. What is the value of this area for a car that
gets 30 miles per gallon? What exactly is the physical interpretation of this area? Note:
There are 3785 milliliters (cubic centimeters) in a gallon, and 1609 meters in a mile.

1.3. Painting a funnel

Consider the curve y = 1/x, from x = 1 to x = ∞. Rotate this curve around the x axis to
create a funnel-like surface of revolution, as shown in Fig. 1.5. By slicing up the funnel

x

y

Figure 1.5

into disks with radii r = 1/x and thickness dx (and hence volume (πr2) dx) stacked side
by side, we see that the volume of the funnel is

V =
∫ ∞

1

π

x2 dx = −π
x

�����
∞

1
= π, (1.6)

which is finite. The surface area, however, involves the circumferential area of the disks,
which is (2πr) dx multiplied by a

√
1 + y′2 factor accounting for the tilt of the area. The

surface area of the funnel is therefore

A =
∫ ∞

1

2π
√

1 + y′2

x
dx >

∫ ∞

1

2π
x

dx, (1.7)

which is infinite. (The square root factor is irrelevant for the present purposes.) Since the
volume is finite but the area is infinite, it appears that you can fill up the funnel with paint
but you can’t paint it. However, we then have a problem, because filling up the funnel with
paint implies that you can certainly paint the inside surface. But the inside surface is the
same as the outside surface, because the funnel has no thickness. So we should be able to
paint the outside surface too. What’s going on here? Can you paint the funnel or not?

1.4. Planck scales

Three fundamental physical constants are Planck’s constant, ~ = 1.05 · 10−34 kg m2/s; the
gravitational constant, G = 6.67·10−11 m3/(kg s2); and the speed of light, c = 3.0·108 m/s.
These constants can be combined to yield quantities with dimensions of length, time, and
mass (known as the Planck length, etc.). Find these three combinations and the associated
numerical values.

1.5. Capillary rise

If the bottom end of a narrow tube is placed in a cup of water, the surface tension of the
water causes the water to rise up in the tube. The height h of the column of water depends
on the surface tension γ (with dimensions of force per length), the radius of the tube r , the
mass density of the water ρ, and g. Is it possible to determine from dimensional analysis
alone how h depends on these four quantities? Is it possible if we invoke the fact that h
is proportional to γ? (This is believable; doubling the surface tension γ should double the
height, because the surface tension is what is holding up the column of water.)

1.6. Fluid flow

Poiseuille’s equation gives the flow rate Q (volume per time) of a fluid in a pipe, in the case
where viscous drag is important. How does Q depend on the following four quantities:
the pressure difference ∆P (force per area) between the ends of the pipe, the radius R
and length L of the pipe, and the viscosity η (with units of kg/(m s)) of the fluid? To



1.6. MULTIPLE-CHOICE ANSWERS 17

answer this, you will need to invoke the fact that Q is inversely proportional to L. (This
is believable; doubling the length of the pipe will double the effect of friction between the
fluid and the walls, and thereby halve the flow rate.)

1.7. 1-D collision

If a mass M moving with velocity V collides head-on elastically with a mass m that is
initially at rest, it can be shown (see Problem 6.3) that the final velocities are given by

VM =
(M − m)V

M + m
and vm =

2MV
M + m

. (1.8)

Check the M = m, M ≪ m, and M ≫ m limits of these expressions.

1.8. Atwood’s machine

Consider the Atwood’s machine in Fig. 1.6, consisting of three masses and two frictionless

m1

m2 m3

Figure 1.6

pulleys. It can be shown that the acceleration of m2, with upward taken to be positive, is
given by (just accept this)

a2 = −g
4m2m3 + m1(m2 − 3m3)
4m2m3 + m1(m2 + m3)

. (1.9)

Find a2 for the following special cases:

(a) m1 = 2m2 = 2m3

(b) m2 much larger than both m1 and m3

(c) m2 much smaller than both m1 and m3

(d) m1 ≫ m2 = m3

(e) m1 = m2 = m3

1.9. Dropped ball

In Section 1.1.4, we looked at limiting cases of the velocity, given in Eq. (1.3), of a beach
ball dropped from rest. Let’s now look at the height of the ball. If the ball is dropped from
rest at height h, and if the drag force from the air takes the form Fd = −bv, then it can be
shown that the ball’s height as a function of time equals

y(t) = h − mg

b

(
t − m

b

(
1 − e−bt/m

))
. (1.10)

Find an approximate expression for y(t) in the limit where t is very small (or more pre-
cisely, in the limit where bt/m ≪ 1).

1.6 Multiple-choice answers
1.1. e This is the only choice with dimensions of length.

1.2. d This is the only choice with dimensions of time.

1.3. c This is the only choice with units of kg m/s2.

1.4. b There are 60 · 60 = 3600 seconds in an hour, so one mile per hour equals

1
mile
hour

=
1609 meters
3600 seconds

= 0.447 m/s. (1.11)

A common automobile speed of, say, 60 mph is therefore about 27 m/s. The inverse rela-
tion, going from m/s to mph, is 1 m/s = 2.24 mph.
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Remark: We see that a meter per second is larger than a mile per hour, by a factor of slightly more
than 2. This factor of about 2.2 is easy to remember, because it happens to be essentially the same
as the conversion factor between kilograms and pounds: 1 kg weighs 2.2 pounds. (Note that since a
kilogram is a unit of mass, and a pound is a unit of weight, we used the word “weighs” here, instead
of “equals.”)

1.5. c The only things that θmax can possibly depend on are the mass m of the block, the
relevant acceleration due to gravity g, and the coefficient of friction µ. But θmax is dimen-
sionless, and there is no way to form a dimensionless quantity involving g or m. So θmax
can depend only on µ (which is dimensionless). Therefore, since θmax can’t depend on g,
it is the same on the earth and the moon.

1.6. d This is the only choice with units of m/s. The answer must involve the ratio k/m, to
get rid of the kg units. And it must involve

√
k in the numerator to produce the desired

single power of seconds in the denominator. Choice (d) additionally produces the desired
single power of meters in the numerator. If you want to solve the problem for real, you can
quickly use conservation of energy (discussed in Chapter 5) to say that mv2/2 = k A2/2.

1.7. a This is the only choice with units of m/s. Note that the answer can’t involve ρ, because
there would then be no way to get rid of the units of kg.

Remarks: This speed of
√

2gh is the same as the speed of a dropped ball after it has fallen a height
h, assuming that air drag can be neglected. (This speed can’t depend on the mass m of the ball for
the same dimensional reason.) If air drag is included, then this introduces a new parameter which
involves units of kg, so now the speed of the ball can (and does) depend on m. A metal ball falls
faster than a styrofoam ball.

There is one issue we’ve glossed over. The size of the hole introduces another length scale ℓ (which
you can take to be the radius or diameter or whatever). This means that there are now an infinite
number of possible answers. Any expression of the form

√
2ghn+1/ℓn has the correct units. How-

ever, assuming that the viscosity is negligible, it can be shown that the size of the hole doesn’t matter.
That is, n = 0. At any rate, choice (a) is certainly the only correct choice among the given options.

1.8. b Let’s be a little more systematic here than in the previous few questions. Since the
units of force are kg m/s2, the units of pressure (force per area) are kg/(m s2). So the units
of the various quantities are:

∆P :
kg

m s2 , h : m, ρ :
kg
m3 , g :

m
s2 . (1.12)

Our goal is to create ∆P from the other three quantities. By looking at the powers of kg
and s in ∆P, we quickly see that the answer must be proportional to ρg. This then means
that we need one power of h, to produce the correct power of m.

1.9. c The units of the various quantities are:

Fd :
kg m

s2 , η :
kg
m s

, R : m, v :
m
s
. (1.13)

Our goal is to create Fd from the other three quantities, and we quickly see that the simple
product ηRv gets the job done. A detailed calculation is required to generate the numerical
coefficient of 6π.

1.10. e The units of the various quantities are:

Fd :
kg m

s2 , ρ :
kg
m3 , R : m, v :

m
s
. (1.14)

Our goal is to create Fd from the other three quantities. By looking at the powers of kg
and s in Fd, we see that we need one power of ρ and two powers of v. This then implies
that we need two powers of R, to produce the correct power of m. The actual numerical
coefficient in Fd depends on the specifics of the surface of the sphere (how rough it is).
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1.11. b The units of the various quantities are:

RS : m, m : kg, c :
m
s
, G :

m3

kg s2 . (1.15)

Our goal is to create the Schwarzschild radius RS from the other three quantities. Since RS
doesn’t involve units of kg, we see that the answer must involve the product Gm (raised to
some power). And since RS also doesn’t involve units of seconds, the answer must involve
the quotient G/c2 (raised to some power). We quickly see that Gm/c2 makes the units of
meters work out correctly. The factor of 2 requires a detailed calculation.

Remark: The Schwarzschild radius of an object is the radius with the property that if you shrink
the object down to that radius (keeping the mass the same), it will be a black hole. That is, not
even light can escape from it. The RS for the sun is about 3 km, and the RS for the earth is about
1 cm. These objects are (of course) not black holes, because RS is smaller than the radius of the
object. However, note that RS is proportional to m, which in turn is proportional to the cube of
the radius r of the object, for a given density ρ. This means that for any given ρ, if r is increased,
m grows faster than r . So eventually RS will become as large as r , and the object will be a black
hole. Since m = (4πr3/3)ρ, you can quickly show that the critical radius at which this occurs is
rcrit =

√
3c2/8πGρ. If ρ = 1000 kg/m3 (the density of water), then rcrit ≈ 4 · 1011 m, which is

about three times the radius of the earth’s orbit.

1.12. A,C You can figure out the angles by doing some geometry, but it’s much easier to just
check the special case where θ is very small or very close to 90◦. Fig. 1.7 shows the case

θ

θ

θ

Figure 1.7

where θ is small. In setups like this, every angle is either θ or 90◦− θ (or 90◦). So all of
the small angles in the figure must be θ, as shown.

Remark: Even if you want to work out the geometry to determine the angles, it would be silly to
pass up the quick and easy double check of small or large θ. Of course, once you get used to doing
this quick check, you’ll realize that there’s not much need to work through the geometry in the first
place. A corollary of this is that you should never draw anything close to a 45-45-90 triangle (as we
purposely did in the statement of this question), because in that case you can’t tell which are the big
angles and which are the small angles!

1.13. e Intuitively, the tension must go to infinity when θ → 90◦, that is, when the strings
approach being horizontal. Imagine pulling the top ends of the strings outward, to try to
make the strings horizontal. This will take a large (infinite) force, because the mass will
always sag a little in the middle. If the strings were exactly horizontal, then they would
have no vertical force component to balance the mg weight. Choice (e) is the only one that
goes to infinity in the θ → 90◦ limit.

Some additional reasoning: (a) is incorrect because T should depend on θ, (b) is incorrect
because T shouldn’t be zero when θ = 0, (c) is incorrect because T shouldn’t be zero when
θ = 90◦, and (d) is incorrect because T shouldn’t be infinite when θ = 0.

1.14. d The coefficient of friction must be very small in the θ → 0 limit, otherwise the block
won’t move. And it must be very large in the θ → π/2 limit, otherwise the block will keep
accelerating. The µ = tan θ choice is the only one that satisfies these conditions.

1.15. d The volume must be zero when θ = 0; this rules out (a). And it must be (2/3)πR3

when θ = π/2 (half of the whole sphere); this rules out (c). And it must be (4/3)πR3 when
θ = π (the whole sphere); this rules out (b). So the answer must be (d).

1.16. b For a horizontal line (with a = 0), the distance can’t depend on x0; this rules out (a).
The answer must depend on c, because c affects the position (the height) of the line; this
rules out (c). Furthermore, in the c → ∞ limit, the distance should go to infinity. But
choice (d) approaches 1. So the answer must be (b).

Another bit of reasoning: if the point (x0, y0) lies on the line, that is, if ax0 + by0 + c = 0,
then the distance is zero. This implies that the correct answer must be (b) or (d).
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Alternatively, you can eliminate all of the wrong answers by explicitly using the fact that
in the case of a horizontal line (with a = 0, so the line is given by y = −c/b), the distance
is y0 − (−c/b).

1.17. e All of the possible answers have the correct units, so we’ll have to figure things out by
looking at special cases. Let’s look at each choice in turn:

Choice (a) is incorrect, because the answer shouldn’t be zero for h = 0. Also, it shouldn’t
grow with g. And furthermore it shouldn’t be infinite for v → 0.

Choice (b) is incorrect, because the answer should depend on h.

Choice (c) is incorrect, because the answer shouldn’t be infinite for h = 0.

Choice (d) is incorrect, because the answer shouldn’t be zero for h = 0.

Choice (e) can’t be ruled out, and it happens to be the correct answer.

Choice (f) is incorrect, because there should be no possible distance when h → ∞ (you
can’t throw the ball over an infinitely high wall). But this answer gives zero in this limit.
This reasoning actually gets rid of all the answers except the correct one in one fell swoop.
There are certainly cases for which there is no distance from which it is possible to throw
the ball over the wall (for example, if h or g is very large, or v is very small). So any
expression that gives a real result for all values of the parameters cannot be correct. Choice
(e) is the only one that correctly gives an imaginary (and hence nonphysical) result in
certain cases.

1.7 Problem solutions
1.1. Furlongs per fortnight squared

The systematic way of doing the conversion is to trade certain units for certain other units,
by multiplying by 1 in the appropriate form. We want to trade meters for furlongs, and
seconds for fortnights. This can be done as follows:

g = 9.8
m
s2

(
1.09 yard

1 m
· 1 furlong

220 yard

) (
60 s

1 min
· 60 min

1 hr
· 24 hr

1 day
· 14 day

1 fortnight

)2

= 7.1 · 1010 furlongs
fortnight2

. (1.16)

All we’ve done here is multiply by 1 six times, so we haven’t changed the value. The
right-hand side still equals g; it’s just that it’s now expressed in different units. You can
see that the m, yard, s, min, hr, and day units all cancel (don’t forget that the second set of
fractions is squared), so we’re left with only furlongs and fortnights (squared), as desired.

Remarks: This numerical result of 7.1 · 1010 is very large. The reason for this is the following. The
g = 9.8 m/s2 expression tells us that after one second, a falling body will be traveling at a speed of
9.8 m/s. So the question we want to ask is “If a body has been falling for one fortnight, what will its
speed be, as expressed in furlongs per fortnight?” (We’ll ignore the fact that a body certainly can’t
freefall for two weeks on the earth!) The numerical answer to this question is large for two reasons,
consistent with the fact that the fortnight is squared in the expression for g. First, a fortnight is a
long time, so the body will be moving very fast after falling for all this time. Second, because the
body is moving so fast, it will (if it were to continue to travel with that speed) travel a very large
distance after another lengthy time of one fortnight. And this distance is the numerical value of the
speed when expressed in furlongs per fortnight. A competing effect is that since a furlong is larger
than a meter by a factor of 220, the numerical result in Eq. (1.16) is decreased by this factor. But
this effect is washed out by the squared larger affect of the lengthy fortnight.

There are many conversions that you can just do in your head. If someone asks you to convert
1 minute into seconds, you know that the answer is simply 60 seconds. There is no need to mul-
tiply 1 min by (60 s)/(1 min) to cancel the minutes and be left with only seconds. But for more
complicated conversions, you can systematically multiply by 1 in the appropriate form.
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Note the word “appropriate” in the previous sentence. You can’t just blindly multiply by 1; you
need to think about which units you’re trying to cancel out. If you unwisely multiply 1 min by
(1 min)/(60 s), which still equals 1, then you will end up with (1 min)2/(60 s). This does indeed
equal 1 minute, but it isn’t very informative. No one will know what you’re talking about if you say
to take a (5 min2)/(60 s) break!

1.2. Miles per gallon

30 miles per gallon equals

30 miles
1 gallon

=
30 · 1609 m
3785 cm3 =

30 · 1609 m
3785 (10−2 m)3 =

1
7.84 · 10−8 m2 . (1.17)

This tiny area of 7.84 · 10−8 m2 corresponds to a square with side length 2.8 · 10−4 m,
or about 0.3 millimeters. For comparison, a common diameter for the pencil lead in a
mechanical pencil is 0.5 or 0.7 millimeters.

What does this area actually have to do with a car that gets 30 miles per gallon? Note that
Eq. (1.17) can alternatively be written as

(7.84 · 10−8 m2)(30 miles) = 1 gallon. (1.18)

What this says is that if we have a narrow tube of gasoline running parallel to the road,
with a cross-sectional area of 7.84 · 10−8 m2, and if our car gobbles up the gasoline in the
tube as it travels along, then it will gobble up one gallon every 30 miles, which is exactly
what it needs to operate. This interpretation of the area gives you an intuitive sense of how
much gasoline you’re using; think of a long pencil lead running parallel to the road. If
you instead want to think in terms of a small unit of volume, you can work with drops. In
medicine, the unit of one “drop” equals 1/20 of a milliliter. You can show that you burn
about one drop of gasoline for every two feet you travel (assuming 30 miles per gallon).

1.3. Painting a funnel

It is true that the volume of the funnel is finite, and that you can fill it up with paint. It is
also true that the surface area is infinite, but you actually can paint it.

The apparent paradox arises from essentially comparing apples and oranges. In our case
we are comparing volumes (which are three dimensional) with areas (which are two di-
mensional). When someone says that the funnel can’t be painted, he is saying that it would
take an infinite volume of paint to cover it. But the fact that the surface area is infinite does
not imply that it takes an infinite volume of paint to cover it. To be sure, if we try to paint
the funnel with a given fixed thickness of paint, then we would indeed need an infinite
volume of paint. But in this case, if we look at very large values of x where the funnel
has negligible thickness, we would essentially have a tube of paint with a fixed radius,
extending to x = ∞, with the funnel taking up a negligible volume at the center of the
tube. This tube certainly has an infinite volume.

But what if we paint the funnel with a decreasing thickness of paint, as x gets larger?
For example, if we make the thickness be proportional to 1/x, then the volume of paint is
proportional to

∫ ∞
1 (1/x)(1/x) dx, which is finite. (The first 1/x factor here comes from

the 2πr factor in the area, and the second 1/x factor comes from the thickness of the paint.
We have ignored the

√
1 + y′2 factor, which goes to 1 for large x.) In this manner, we

can indeed paint the funnel. To sum up, you buy paint by the gallon, not by the square
meter. And a gallon of paint can cover an infinite area, as long as you make the thickness
go to zero fast enough. The moral of this problem, therefore, is to not mix up things with
different units!

1.4. Planck scales

First solution: Since only G and ~ involve units of kilograms (one in the numerator and
one in the denominator), it’s fairly easy to see what the three desired combinations are. For
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example, the Planck length and time must involve the product ~G, because this eliminates
the kilograms. You should check that the expressions below in Eq. (1.20) all have the
correct units (the subscript P is for Planck). Using the numerical values,

~ = 1.05 · 10−34 kg m2

s
,

G = 6.67 · 10−11 m3

kg s2 ,

c = 3.0 · 108 m
s
, (1.19)

we obtain the three Planck scales:

Length : ℓP =

√
~G
c3 = 1.6 · 10−35 m,

Time : tP =

√
~G
c5 = 5.4 · 10−44 s,

Mass : mP =

√
~c
G
= 2.2 · 10−8 kg. (1.20)

Another such quantity is the Planck energy:

Energy : EP =

√
~c5

G
= 2.0 · 109 J. (1.21)

Second solution: If you want to be more systematic, you can write down a general expres-
sion of the form ~αGβcγ and then solve for the values of the three exponents that make
the overall units be correct. For example, if we want to find the Planck length, then we
need the overall units to be meters, so we want(

kg m2

s

)α (
m3

kg s2

)β (m
s

)γ
= m. (1.22)

Equating separately the powers of kg, m, and s on the two sides of the equation gives a
system of three equations in three unknowns:

kg : α − β = 0,
m : 2α + 3β + γ = 1,
s : −α − 2β − γ = 0. (1.23)

The first equation gives α = β. The third equation then gives γ = −3α. And the second
equation then gives α = 1/2. So β = 1/2 and γ = −3/2. This agrees with the result for the
Planck length in Eq. (1.20). The Plank time and mass proceed similarly. However, even
though this method will always get the job done, it was certainly quicker in this problem
to just fiddle around with the units by noting, for example, that the Planck length and time
must involve the product ~G.

Remark: The physical significance of all these scales is that they are the scales at which the quantum
effects of gravity can no longer be ignored. Said in another way, they are the scales at which the
four known forces in nature (gravitational, electromagnetic, weak, strong) all become roughly equal.
This equality should be contrasted with the fact that at, say, atomic length scales, the electrical force
between two protons is vastly larger (about 1036 times larger) than the gravitational force.

To get a sense of how small the planck length is, the size of an atomic nucleus is on the order of a
femtometer (10−15 m). The Planck length is therefore 1020 times smaller. So the Planck length is to
the nuclear size as the nuclear size is to 100 km. And to get a sense of how large the Planck energy
EP is, the energies presently probed at the CERN collider are only on the order of 10−15EP.
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1.5. Capillary rise

Since the units of force are kg m/s2, the units of surface tension (force per length) are
kg/s2. So the units of the various quantities are:

h : m, γ :
kg
s2 , r : m, ρ :

kg
m3 , g :

m
s2 . (1.24)

Our goal is to create h from the other four quantities. We need to get rid of the units of kg
and s, and we quickly see that the combination γ/ρg accomplishes this. It leaves us with
m2 in the numerator. But now we have a problem, because although simply dividing by r
will give us the desired units of meters, there are many other possibilities that work too. In
fact, any expression of the form (γ/ρg)n/r2n−1 has units of meters. The issue here is that
we have four unknowns (the powers of each of γ, r , ρ, and g), but only three equations
(the facts that the overall powers of kg, m, and s must be 0, 1, and 0, respectively). So the
system is under-determined; we can’t uniquely solve for the four unknowns.

However, if we use the additional fourth piece of information that the power of γ is 1, then
this tells us that the value of n in the above general expression is 1. So we can now say
that

h ∝ γ

ρgr
. (1.25)

The actual result has a numerical factor of 2 in the numerator, but it takes a little more
effort to show that. Additionally, h depends on the contact angle θ between the water and
the tube, at the top of the meniscus; this brings in a factor of cos θ (so the correct result is
h = 2γ cos θ/ρgr). But θ is a dimensionless quantity, so we can’t say anything about it by
using dimensional analysis.

1.6. Fluid flow

Since the units of force are kg m/s2, the units of pressure (force per area) are kg/(m s2).
So the units of the various quantities are:

Q :
m3

s
, ∆P :

kg
m s2 , R : m, L : m, η :

kg
m s

. (1.26)

Our goal is to create Q from the other four quantities, with the condition that there is one
power of L in the denominator. As in Problem 1.5, we can’t solve for four unknowns (the
powers of ∆P, R, L, and η) with only three pieces of information (the required powers of
kg, m, and s). This fact about L is the necessary fourth piece of information.

To produce the units of Q, we need to get rid of the kg and have one power of s in the
denominator. We quickly see that the quotient ∆P/η accomplishes this. This expression
has no m’s, but we need an m3 in the numerator of Q. Since we are told that there is one
power of L in the denominator, we must have four powers of R in the numerator. So the
desired expression is

Q ∝ ∆PR4

ηL
. (1.27)

The actual result has a numerical factor of π/8 out front, but it requires a detailed calcula-
tion to show that.

Remark: The R4 dependence in Q is stronger than the R2 dependence you might expect by simply
considering the fact that the cross-sectional area of the pipe is proportional to R2. What happens is
that the wider the pipe, the faster the average speed of the fluid (for a given ∆P). So we have a faster
fluid flowing through a wider pipe. The fourth power of R isn’t obvious, though.

This fourth power implies that if the pipe’s radius is decreased to, say, 0.8 of what it was, then the
flow rate (with ∆P held constant) is decreased to (0.8)4 ≈ 0.41 of what it was. In other words,
a 20% reduction in radius produces a nearly 60% reduction in flow rate, which is more than you
might naively expect. This fact is highly relevant, for example, when dealing with plaque buildup in
arteries.
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1.7. 1-D collision

The given expressions are

VM =
(M − m)V

M + m
and vm =

2MV
M + m

. (1.28)

If M = m (for example, two identical billiard balls) then we have

VM = 0 and vm = V. (1.29)

The mass that was initially moving ends up at rest, and the the mass that was initially at
rest ends up moving with whatever velocity the other mass had. This result is familiar to
pool players; barring any effects of spin, the cue ball ends up at rest in a head-on collision.

If M ≪ m (for example, a marble bouncing off a bowling ball) then we can ignore the
M’s in the expressions in Eq. (1.28). (More precisely, we can ignore the additive M’s; see
the discussion following Eq. (1.1).) This yields

VM ≈
0 − m
0 + m

V = −V and vm ≈
2M

0 + m
V ≈ 0. (1.30)

In this case, M is basically a ball bouncing backward off a unmoveable brick wall.

If M ≫ m (for example, a bowling ball colliding with a marble) then we can ignore the
m’s in the expressions in Eq. (1.28). This yields

VM ≈
M − 0
M + 0

V = V and vm ≈
2M

M + 0
V = 2V. (1.31)

In this case the bowling ball M plows forward with the same velocity V , as expected. But
interestingly the marble m picks up twice this velocity.

Remark: This result of 2V for the speed of m in the M ≫ m limit isn’t so obvious in the given lab
frame, but it’s fairly easy to understand if you imagine riding along with M . In the reference frame
where M is at rest, m comes flying in with speed V and then bounces off with essentially the same
speed V (because M is a brick wall in the M ≫ m limit). So the final relative speed of M and m is
V . But we must now shift back to the lab frame and remember that M is still plowing forward with
speed V (its speed hardly changes during the collision). This means that m is moving forward with
speed V relative to M , which itself is moving forward with speed V relative to the lab frame. So
m is moving with speed V + V = 2V relative to the lab frame, as desired. In terms of energy (the
subject of Chapter 5), the transfer of energy from the large object to the small object occurs via the
energy stored in the elasticity of the balls as they deform during the collision.

The fact that you can use a large object moving with speed V to make a small object move faster
than V is the basic principle behind a whip. Initially the thick heavy part of the whip is moving with
a given speed, and eventually the thin light part at the end moves with a much larger speed. A whip
is a continuous object, whereas the above problem involved two discrete balls, but see Problem 6.14
for a discussion of how to transition from the discrete case to the continuous case.

Whip-like motions are ubiquitous in sports. Examples include throwing a baseball, throwing a
frisbeeTM, shooting a hockey puck, and kicking a football. In all cases, you start by moving a
large object, and you end up with a small object that is moving much faster. There’s a reason for
the “Put your body into it” mantra. A baseball pitch starts with a relatively slow motion of the
body/torso/shoulder and ends with a much faster motion of the forearm/hand/fingers. The transfer
of energy occurs via the energy stored in the elasticity of tendons and ligaments. Incidentally, the
fastest you can make any part of your body move (relative to your center of mass) is your fingers
when throwing something.

1.8. Atwood’s machine

The given expression for a2 is

a2 = −g
4m2m3 + m1(m2 − 3m3)
4m2m3 + m1(m2 + m3)

. (1.32)
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(a) If m1 = 2m2 = 2m3 ≡ 2m, then a2 becomes

a2 = −g
4m2 + (2m)(m − 3m)
4m2 + (2m)(m + m)

= 0. (1.33)

In this case, m2 and m3 balance m1.

(b) If m2 is very large, then we can ignore the m1m3 terms in Eq. (1.32). This gives

a2 ≈ −g
4m2m3 + m1(m2 − 0)
4m2m3 + m1(m2 − 0)

= −g. (1.34)

In this case, m2 is simply in freefall.

(c) If m2 is very small, then we can ignore the m2 terms in Eq. (1.32). This gives

a2 ≈ −g
0 + m1(0 − 3m3)
0 + m1(0 + m3)

= 3g. (1.35)

In this case, m2 accelerates upward at 3g. To understand this factor of 3, you can
convince yourself that if m1 and m3 both freefall a distance ℓ, then m2 must rise up
a distance 3ℓ. This then implies that the acceleration of m2 is 3 times the freefall
acceleration g of m1 and m3. You may want to wait to do this until we discuss
Atwood’s machines (in particular, the topic of conservation of string) in Chapter 4.

(d) If m1 ≫ m2 = m3 ≡ m, then we can ignore the m2m3 terms in Eq. (1.32). This gives

a2 ≈ −g
0 + m1(m − 3m)
0 + m1(m + m)

= g. (1.36)

In this case, m1 is in freefall, so m2 and m3 accelerate upward at g.

(e) If m1 = m2 = m3 ≡ m, then Eq. (1.32) gives

a2 = −g
4m2 + m(m − 3m)
4m2 + m(m + m)

= −g
3
. (1.37)

In this case, a2 is correctly negative, but the factor of 1/3 isn’t obvious; we would
have to solve the problem for real to derive that.

1.9. Dropped ball

As with the beach ball’s velocity v(t) given in Eq. (1.3), the position y(t) in Eq. (1.10) is
a somewhat complicated expression, so it’s hard to feel too confident about its validity by
just looking at it. But if we can verify that it gives the correct answer in a particular limit,
then we’ll feel much better about it.

In the limit of small bt/m, we can use the Taylor series e−x ≈ 1 − x + x2/2 to produce an
approximate expression for y(t), to leading order in t. We obtain (as you can verify, being
careful with all the minus signs!)

y(t) = h − mg

b

t − m
b
*,1 − *,1 − bt

m
+

1
2

(
bt
m

)2

− · · · +-+-


≈ h − gt2

2
. (1.38)

This answer is expected, because we essentially have a freely falling body at the start (v
is small, so there is hardly any drag force), which implies that the distance fallen is the
standard gt2/2. (This is covered in Chapter 2, so just take it on faith for now. But the
gt2/2 term probably looks familiar to you anyway.) Note that in obtaining the leading-
order term (the smallest power of t with a nonzero coefficient) in y(t), we needed to go to
second order in the Taylor series for e−x , whereas we needed to go only to first order in
obtaining the expression for v(t) in Eq. (1.4).
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Remark: We can also look at the limit of large bt/m. In this case, e−bt/m is essentially zero, so the
y(t) in Eq. (1.10) becomes (there’s no need for a Taylor series in this case)

y(t) ≈ h − mgt
b
+

m2g

b2 . (1.39)

Apparently, after a long time, m2g/b2 is the distance that our ball lags behind another ball that
started out already at the terminal velocity −mg/b, because that ball has y(t) = h − (mg/b)t. (The
terminal velocity is in fact −mg/b; see the discussion in Section 1.1.4.) You can verify that the
quantity m2g/b2 does indeed have dimensions of length, using the fact that the original expression
for the drag force, Fd = −bv, tells us that b has units of N/(m/s), or equivalently kg/s. This m2g/b2

result is by no means obvious, so our check of the large bt/m limit doesn’t do anything to make us
feel better about the original expression in Eq. (1.10). But that’s fine; when checking limiting cases,
the result is either that we feel better about our answer, or we get an interesting result that we didn’t
expect.



Chapter 2

Kinematics in 1-D

As mentioned in the preface, this book should not be thought of as a textbook. The introduction
to each chapter is brief and is therefore no substitute for an actual textbook. You will most likely
want to have a textbook on hand when reading the introductions.

2.1 Introduction

In this chapter and the next, we won’t be concerned with the forces that cause an object to move
in the particular way it is moving. We will simply take the motion as given, and our goal will be
to relate positions, velocities, and accelerations as functions of time. Our objects can be treated
like point particles; we will not be concerned with what they are actually made of. This is the
study of kinematics. In Chapter 4 we will move on to dynamics, where we will deal with mass,
force, energy, momentum, etc.

Velocity and acceleration

In one dimension, the average velocity and acceleration over a time interval ∆t are given by

vavg =
∆x
∆t

and aavg =
∆v

∆t
. (2.1)

The instantaneous velocity and acceleration at a particular time t are obtained by letting the inter-
val ∆t become infinitesimally small. In this case we write the “∆” as a “d,” and the instantaneous
v and a are given by

v =
dx
dt

and a =
dv
dt

. (2.2)

In calculus terms, v is the derivative of x, and a is the derivative of v. Equivalently, v is the
slope of the x vs. t curve, and a is the slope of the v vs. t curve. In the case of the velocity v,
you can see how this slope arises by taking the limit of v = ∆x/∆t, as ∆t becomes very small;
see Fig. 2.1. The smaller ∆t is, the better the slope ∆x/∆t approximates the actual slope of the

x

t

P

∆x

∆t

actual slope
at point P

Figure 2.1

tangent line at the given point P.
In 2-D and 3-D, the velocity and acceleration are vectors. That is, we have a separate pair of

equations of the form in Eq. (2.2) for each dimension; the x components are given by vx = dx/dt
and ax = dvx/dt, and likewise for the y and z components. The velocity and acceleration are
also vectors in 1-D, although in 1-D a vector can be viewed simply as a number (which may
be positive or negative). In any dimension, the speed is the magnitude of the velocity, which
means the absolute value of v in 1-D and the length of the vector v in 2-D and 3-D. So the speed
is a positive number by definition. The units of velocity and speed are m/s, and the units of
acceleration are m/s2.

27
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Displacement as an area

If an object moves with constant velocity v, then the displacement ∆x during a time ∆t is ∆x =
v∆t. In other words, the displacement is the area of the region (which is just a rectangle) under
the v vs. t “curve” in Fig. 2.2. Note that the displacement (which is ∆x by definition), can be

t

v

v

∆t

area = ∆ x

Figure 2.2

positive or negative. The distance traveled, on the other hand, is defined to be a positive number.
In the case where the displacement is negative, the v vs. t line in Fig. 2.2 lies below the t axis, so
the (signed) area is negative.

If the velocity varies with time, as shown in Fig. 2.3, then we can divide time into a large

t

v
v(t)

∆t

Figure 2.3

number of short intervals, with the velocity being essentially constant over each interval. The
displacement during each interval is essentially the area of each of the narrow rectangles shown.
In the limit of a very large number of very short intervals, adding up the areas of all the thin
rectangles gives exactly the total area under the curve; the areas of the tiny triangular regions at
the tops of the rectangles become negligible in this limit. So the general result is:

• The displacement (that is, the change in x) equals the area under the v vs. t curve.

Said in a more mathematical way, the displacement equals the time integral of the velocity. This
statement is equivalent (by the fundamental theorem of calculus) to the fact that v is the time
derivative of x.

All of the relations that hold between x and v also hold between v and a. In particular, the
change in v equals the area under the a vs. t curve. And conversely, a is the time derivative of v.
This is summarized in the following diagram:

     slope
(derivative)

    area
(integral)

    area
(integral)

     slope
(derivative)

x v a

Motion with constant acceleration

For motion with constant acceleration a, we have

a(t) = a,

v(t) = v0 + at,

x(t) = x0 + v0t +
1
2

at2, (2.3)

where x0 and v0 are the initial position and velocity at t = 0. The above expressions for v(t) and
x(t) are correct, because v(t) is indeed the derivative of x(t), and a(t) is indeed the derivative of
v(t). If you want to derive the expression for x(t) in a graphical manner, see Problem 2.1.

The above expressions are technically all you need for any setup involving constant accel-
eration, but one additional formula might make things easier now and then. If an object has a
displacement d with constant acceleration a, then the initial and final velocities satisfy

v2
f − v2

i = 2ad. (2.4)

See Problem 2.2 for a proof. If you know three out of the four quantities vf , vi, a, and d, then this
formula quickly gives the fourth. In the special case where the object starts at rest (so vi = 0),
we have the simple result, vf =

√
2ad.

Falling bodies

Perhaps the most common example of constant acceleration is an object falling under the in-
fluence of only gravity (that is, we’ll ignore air resistance) near the surface of the earth. The
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constant nature of the gravitational acceleration was famously demonstrated by Galileo. (He
mainly rolled balls down ramps instead of dropping them, but it’s the same idea.) If we take the
positive y axis to point upward, then the acceleration due to gravity is −g, where g = 9.8 m/s2.
After every second, the velocity becomes more negative by 9.8 m/s; that is, the downward speed
increases by 9.8 m/s. If we substitute −g for a in Eq. (2.3) and replace x with y, the expressions
become

a(t) = −g,
v(t) = v0 − gt,

y(t) = y0 + v0t − 1
2
gt2, (2.5)

For an object dropped from rest at a point we choose to label as y = 0, Eq. (2.5) gives y(t) =
−gt2/2.

In some cases it is advantageous to choose the positive y axis to point downward, in which
case the acceleration due to gravity is g (with no minus sign). In any case, it is always a good idea
to take g to be the positive quantity 9.8 m/s2, and then throw in a minus sign by hand if needed,
because working with quantities with minus signs embedded in them can lead to confusion.

The expressions in Eq. (2.5) hold only in the approximation where we neglect air resistance.
This is generally a good approximation, as long as the falling object isn’t too light or moving too
quickly. Throughout this book, we will ignore air resistance unless stated otherwise.

2.2 Multiple-choice questions
2.1. If an object has negative velocity and negative acceleration, is it slowing down or speeding

up?

(a) slowing down

(b) speeding up

2.2. The first figure below shows the a vs. t plot for a certain setup. The second figure shows
the v vs. t plot for a different setup. The third figure shows the x vs. t plot for a yet another
setup. Which of the twelve labeled points correspond(s) to zero acceleration? Circle all
that apply. (To repeat, the three setups have nothing to do with each other. That is, the v

plot is not the velocity curve associated with the position in the x plot. etc.)

A

B
C

D

t

a

E

F
G

H

t

v

I

J
K

L

t

x

2.3. If the acceleration as a function of time is given by a(t) = At, and if x = v = 0 at t = 0,
what is x(t)?

(a)
At2

2
(b)

At2

6
(c) At3 (d)

At3

2
(e)

At3

6

2.4. Under what condition is the average velocity (which is defined to be the total displacement
divided by the time) equal to the average of the initial and final velocities, (vi + vf )/2?

(a) The acceleration must be constant.

(b) It is true for other motions besides constant acceleration, but not for all possible
motions.

(c) It is true for all possible motions.
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2.5. Two cars, with initial speeds of 2v and v, lock their brakes and skid to a stop. Assume
that the deceleration while skidding is independent of the speed. The ratio of the distances
traveled is

(a) 1 (b) 2 (c) 4 (d) 8 (e) 16

2.6. You start from rest and accelerate with a given constant acceleration for a given distance.
If you repeat the process with twice the acceleration, then the time required to travel the
same distance

(a) remains the same

(b) is doubled

(c) is halved

(d) increases by a factor of
√

2

(e) decreases by a factor of
√

2

2.7. A car travels with constant speed v0 on a highway. At the instant it passes a stationary
police motorcycle, the motorcycle accelerates with constant acceleration and gives chase.
What is the speed of the motorcycle when it catches up to the car (in an adjacent lane on
the highway)? Hint: Draw the v vs. t plots on top of each other.

(a) v0 (b) 3v0/2 (c) 2v0 (d) 3v0 (e) 4v0

2.8. You start from rest and accelerate to a given final speed v0 after a time T . Your acceleration
need not be constant, but assume that it is always positive or zero. If d is the total distance
you travel, then the range of possible d values is

(a) d = v0T/2

(b) 0 < d < v0T/2

(c) v0T/2 < d < v0T

(d) 0 < d < v0T

(e) 0 < d < ∞

2.9. You are driving a car that has a maximum acceleration of a. The magnitude of the maxi-
mum deceleration is also a. What is the maximum distance that you can travel in time T ,
assuming that you begin and end at rest?

(a) 2aT2 (b) aT2 (c) aT2/2 (d) aT2/4 (e) aT2/8

2.10. A golf club strikes a ball and sends it sailing through the air. Which of the following
choices best describes the sizes of the position, speed, and acceleration of the ball at a
moment in the middle of the strike? (“Medium” means a non-tiny and non-huge quantity,
on an everyday scale.)

(a) x is tiny, v is medium, a is medium

(b) x is tiny, v is medium, a is huge

(c) x is tiny, v is huge, a is huge

(d) x is medium, v is medium, a is medium

(e) x is medium, v is medium, a is huge

2.11. Which of the following answers is the best estimate for the time it takes an object dropped
from rest to fall a vertical mile (about 1600 m)? Ignore air resistance, as usual.

(a) 5 s (b) 10 s (c) 20 s (d) 1 min (e) 5 min



2.3. PROBLEMS 31

2.12. You throw a ball upward. After half of the time to the highest point, the ball has covered

(a) half the distance to the top
(b) more than half the distance
(c) less than half the distance
(d) It depends on how fast you throw the ball.

2.13. A ball is dropped, and then another ball is dropped from the same spot one second later. As
time goes on while the balls are falling, the distance between them (ignoring air resistance,
as usual)

(a) decreases
(b) remains the same
(c) increases and approaches a limiting value
(d) increases steadily

2.14. You throw a ball straight upward with initial speed v0. How long does it take to return to
your hand?

(a) v2
0/2g (b) v2

0/g (c) v0/2g (d) v0/g (e) 2v0/g

2.15. Ball 1 has mass m and is fired directly upward with speed v. Ball 2 has mass 2m and is
fired directly upward with speed 2v. The ratio of the maximum height of Ball 2 to the
maximum height of Ball 1 is

(a) 1 (b)
√

2 (c) 2 (d) 4 (e) 8

2.3 Problems
The first three problems are foundational problems.

2.1. Area under the curve

At t = 0 an object starts with position x0 and velocity v0 and moves with constant accel-
eration a. Derive the x(t) = x0 + v0t + at2/2 result by finding the area under the v vs. t
curve (without using calculus).

2.2. A kinematic relation

Use the relations in Eq. (2.3) to show that if an object moves through a displacement d
with constant acceleration a, then the initial and final velocities satisfy v2

f − v2
i = 2ad.

2.3. Maximum height

If you throw a ball straight upward with initial speed v0, it reaches a maximum height of
v2

0/2g. How many derivations of this result can you think of?

2.4. Average speeds

(a) If you ride a bike up a hill at 10 mph, and then down the hill at 20 mph, what is your
average speed?

(b) If you go on a bike ride and ride for half the time at 10 mph, and half the time at 20
mph, what is your average speed?

2.5. Colliding trains

Two trains, A and B, travel in the same direction on the same set of tracks. A starts at rest
at position d, and B starts with velocity v0 at the origin. A accelerates with acceleration a,
and B decelerates with acceleration −a. What is the maximum value of v0 (in terms of d
and a) for which the trains don’t collide? Make a rough sketch of x vs. t for both trains in
the case where they barely collide.
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2.6. Ratio of distances

Two cars, A and B, start at the same position with the same speed v0. Car A travels at
constant speed, and car B decelerates with constant acceleration −a. At the instant when
B reaches a speed of zero, what is the ratio of the distances traveled by A and B? Draw a
reasonably accurate plot of x vs. t for both cars.

You should find that your answer for the ratio of the distances is a nice simple number,
independent of any of the given quantities. Give an argument that explains why this is the
case.

2.7. How far apart?

An object starts from rest at the origin at time t = −T and accelerates with constant
acceleration a. A second object starts from rest at the origin at time t = 0 and accelerates
with the same a. How far apart are they at time t? Explain the meaning of the two terms
in your answer, first in words, and then also with regard to the v vs. t plots.

2.8. Ratio of odd numbers

An object is dropped from rest. Show that the distances fallen during the first second, the
second second, the third second, etc., are in the ratio of 1 : 3 : 5 : 7 . . ..

2.9. Dropped and thrown balls

A ball is dropped from rest at height h. Directly below on the ground, a second ball is
simultaneously thrown upward with speed v0. If the two balls collide at the moment the
second ball is instantaneously at rest, what is the height of the collision? What is the
relative speed of the balls when they collide? Draw the v vs. t plots for both balls.

2.10. Hitting at the same time

A ball is dropped from rest at height h. Another ball is simultaneously thrown downward
with speed v from height 2h. What should v be so that the two balls hit the ground at the
same time?

2.11. Two dropped balls

A ball is dropped from rest at height 4h. After it has fallen a distance d, a second ball is
dropped from rest at height h. What should d be (in terms of h) so that the balls hit the
ground at the same time?

2.4 Multiple-choice answers

2.1. b The object is speeding up. That is, the magnitude of the velocity is increasing. This is
true because the negative acceleration means that the change in velocity is negative. And
we are told that the velocity is negative to start with. So it might go from, say, −20 m/s to
−21 m/s a moment later. It is therefore speeding up.

Remarks: If we had said that the object had negative velocity and positive acceleration, then it would
be slowing down. Basically, if the sign of the acceleration is the same as (or the opposite of) the sign
of the velocity, then the object is speeding up (or slowing down).

A comment on terminology: The word “decelerate” means to slow down. The word “accelerate”
means in a colloquial sense to speed up, but as a physics term it means (in 1-D) to either speed up or
slow down, because acceleration can be positive or negative. More generally, in 2-D or 3-D it means
to change the velocity in any general manner (magnitude and/or direction).

2.2. B,E,H,K Point B is where a equals zero in the first figure. Points E and H are where the
slope (the derivative) of the v vs. t plot is zero; and the slope of v is a. Point K is where
the slope of the x vs. t plot is maximum. In other words, it is where v is maximum. But
the slope of a function is zero at a maximum, so the slope of v (which is a) is zero at K .
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Remark: In calculus terms, K is an inflection point of the x vs. t curve. It is a point where the
slope is maximum. Equivalently, the derivative of the slope is zero. Equivalently again, the second
derivative is zero. In the present case, the tangent line goes from lying below the x vs. t curve to
lying above it; the slope goes from increasing to decreasing as it passes through its maximum value.

2.3. e Since the second derivative of x(t) equals a(t), we must find a function whose second
derivative is At. Choice (e) is satisfies this requirement; the first derivative equals At2/2,
and then the second derivative equals At, as desired. The standard At2/2 result is valid
only for a constant acceleration a. Note that all of the choices satisfy x = v = 0 at t = 0.

Remark: If we add on a constant C to x(t), so that we now have At3/6 + C, then the x = 0 initial
condition isn’t satisfied, even though a(t) is still equal to At. Similarly, if we add on a linear term Bt,
then the v = 0 initial condition isn’t satisfied, even though a(t) is again still equal to At. If we add on
quadratic term Dt2, then although the x = v = 0 initial conditions are satisfied, the second derivative
is now not equal to At. Likewise for any power of t that is 4 or higher. So not only is the At3/6
choice the only correct answer among the five given choices, it is the only correct answer, period.
Formally, the integral of a (which is v) must take the form of At2/2 + B, where B is a constant of
integration. And the integral of v (which is x) must then take the form of At3/6 + Bt + C, where C
is a constant of integration. The initial conditions x = v = 0 then quickly tell us that C = B = 0.

2.4. b The statement is at least true in the case of constant acceleration, as seen by looking at
the v vs. t plot in Fig. 2.4(a). The area under the v vs. t curve is the distance traveled, and
the area of the trapezoid (which corresponds to constant acceleration) is the same as the
area of the rectangle (which corresponds to constant velocity (vi + vf )/2). Equivalently,
the areas of the triangles above and below the (vi + vf )/2 line are equal. If you want to
work things out algebraically, the displacement is

d = vit +
1
2

at2 =
1
2

(2vi + at)t =
1
2

(
vi + (vi + at)

)
t =

1
2

(vi + vf )t . (2.6)

The average velocity d/t is therefore equal to (vi + vf )/2, as desired.

The statement is certainly not true in all cases; a counterexample is shown in Fig. 2.4(b).
The distance traveled (the area under the curve) is essentially zero, so the average velocity
is essentially zero and hence not equal to (vi + vf )/2.

However, the statement can be true for motions without constant acceleration, as long as
the area under the v vs. t curve is the same as the area of the rectangle associated with
velocity (vi + vf )/2, as shown in Fig. 2.4(c). For the curve shown, this requirement is the
same as saying that the areas of the two shaded regions are equal.

t

v

vi

(vi+vf)/2

vf

t

v

vi

vf

t

v

vi

(vi+vf)/2

vf

(a) (b) (c)

Figure 2.4

2.5. c The final speed is zero in each case, so the v2
f − v2

i = 2ad relation in Eq. (2.4) gives
0 − v2

i = 2(−a)d, where a is the magnitude of the (negative) acceleration. So d = v2
i /2a.

Since this is proportional to v2
i , the car with twice the initial speed has four times the

stopping distance.

Alternatively, the distance traveled is d = vit − at2/2, where again a is the magnitude of
the acceleration. Since the car ends up at rest, the v(t) = vi− at expression for the velocity
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tells us that v = 0 when t = vi/a. So

d = vi

(
vi

a

)
− 1

2
a

(
vi

a

)2
=

v2
i

2a
, (2.7)

in agreement with the relation obtained via Eq. (2.4).

Alternatively again, we could imagine reversing time and accelerating the cars from rest.
Using the fact that one time is twice the other (since t = vi/a), the relation d = at2/2
immediately tells us that twice the time implies four times the distance.

Alternatively yet again, the factor of 4 quickly follows from the v vs. t plot shown in
Fig. 2.5. The area under the diagonal line is the distance traveled, and the area of the large

t
t 2t

v

v

2v

Figure 2.5

triangle is four times the area of the small lower-left triangle, because all four of the small
triangles have the same area.

Remark: When traveling in a car, the safe distance (according to many sources) to keep between
your car and the car in front of you is dictated by the “three-second rule” (in good weather). That is,
your car should pass, say, a given tree at least three seconds after the car in front of you passes it. This
rule involves time, but it immediately implies that the minimum following distance is proportional to
your speed. It therefore can’t strictly be correct, because we found above that the stopping distance
is proportional to the square of your speed. This square behavior means that the three-second rule
is inadequate for sufficiently high speeds. There are of course many other factors involved (reaction
time, the nature of the road hazard, the friction between the tires and the ground, etc.), so the exact
formula is probably too complicated to be of much use. But if you take a few minutes to observe
some cars and make some rough estimates of how drivers out there are behaving, you’ll find that
many of them are following at astonishingly unsafe distances, by any measure.

2.6. e The distance traveled is given by d = at2/2, so t =
√

2d/a. Therefore, if a is doubled
then t decreases by a factor of

√
2.

Remark: Since v = at for constant acceleration, the speeds in the two given scenarios (label them
S1 and S2) differ by a factor of 2 at any given time. So if at all times the speed in S2 is twice the
speed in S1, shouldn’t the time simply be halved, instead of decreased by the factor of

√
2 that we

just found? No, because although the S1 distance is only d/2 when the S2 distance reaches the final
value of d, it takes S1 less time to travel the remaining d/2 distance, because its speed increases
as time goes on. This is shown in Fig. 2.6. The area under each v vs. t curve equals the distance
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2at
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at2

S1

S2

Figure 2.6

traveled. Compared with S1, S2’s final speed is
√

2 times larger, but its time is 1/
√

2 times smaller.
So the areas of the two triangles are the same.

2.7. c The area under a v vs. t curve is the distance traveled. The car’s curve is the horizontal
line shown in Fig. 2.7, and the motorcycle’s curve is the tilted line. The two vehicles will

t

v

2v0

v0

Figure 2.7

have traveled the same distance when the area of the car’s rectangle equals the area of the
motorcycle’s triangle. This occurs when the triangle has twice the height of the rectangle,
as shown. (The area of a triangle is half the base times the height.) So the final speed of
the motorcycle is 2v0. Note that this result is independent of the motorcycle’s (constant)
acceleration. If the acceleration is small, then the process will take a long time, but the
speed of the motorcycle when it catches up to the car will still be 2v0.

Alternatively, the position of the car at time t is v0t, and the position of the motorcycle is
at2/2. These two positions are equal when v0t = at2/2 =⇒ at = 2v0. But the motorcycle’s
speed is at, which therefore equals 2v0 when the motorcycle catches up to the car.

2.8. d A distance of essentially zero can be obtained by sitting at rest for nearly all of the time
T , and then suddenly accelerating with a huge acceleration to speed v0. Approximately
zero distance is traveled during this acceleration phase. This is true because Eq. (2.4) gives
d = v2

0/2a, where v0 is a given quantity and a is huge.

Conversely, a distance of essentially v0T can be obtained by suddenly accelerating with a
huge acceleration to speed v0, and then coasting along at speed v0 for nearly all of the time
T .
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These two cases are shown in the v vs. t plots in Fig. 2.8. The area under the curve (which
is the distance traveled) for the left curve is approximately zero, and the area under the
right curve is approximately the area of the whole rectangle, which is v0T . This is the
maximum possible distance, because an area larger than the v0T rectangle would require
that the v vs. t plot extend higher than v0, which would then require a negative acceleration
(contrary to the stated assumption) to bring the final speed back down to v0.

t
T T

v

v0

t

v

v0

Figure 2.8

2.9. d The maximum distance is obtained by having acceleration a for a time T/2 and then
deceleration −a for a time T/2. The v vs. t plot is shown in Fig. 2.9. The distance traveled

TT/2

a(T/2)

t

v

Figure 2.9

during the first T/2 is a(T/2)2/2 = aT2/8. Likewise for the second T/2, because the two
triangles have the same area, and the area under a v vs. t curve is the distance traveled. So
the total distance is aT2/4.

Alternatively, we see from the triangular plot that the average speed is half of the maxi-
mum v, which gives vavg = (aT/2)/2 = aT/4. So the total distance traveled is vavgT =
(aT/4)T = aT2/4.

Note that the triangle in Fig. 2.9 does indeed yield the maximum area under the curve
(that is, the maximum distance traveled) subject to the given conditions, because (1) the
triangle is indeed a possible v vs. t plot, and (2) velocities above the triangle aren’t allowed,
because the given maximum a implies that it would either be impossible to accelerate from
zero initial speed to such a v, or impossible to decelerate to zero final speed from such a v.

2.10. b The distance x is certainly tiny, because the ball is still in contact with the club during
the (quick) strike. The speed v is medium, because it is somewhere between the initial
speed of zero and the final speed (on the order of 100 mph); it would be exactly half the
final speed if the acceleration during the strike were constant. The acceleration is huge,
because (assuming constant acceleration to get a rough idea) it is given by v/t, where v is
medium and t is tiny (the strike is very quick).

Remark: In short, the ball experiences a very large a for a very small t. The largeness and smallness
of these quantities cancel each other and yield a medium result for the velocity v = at (again,
assuming constant a). But in the position x = at2/2, the two factors of t win out over the one factor
of a, and the result is tiny. These results (tiny x, medium v, and huge a) are consistent with Eq. (2.4),
which for the present scenario says that v2 = 2ax.

2.11. c From d = at2/2 we obtain (using g = 10 m/s2)

1600 m =
1
2

(10 m/s2)t2 =⇒ t2 = 320 s2 =⇒ t ≈ 18 s. (2.8)

So 20 s is the best answer. The speed at this time is gt ≈ 10 · 20 = 200 m/s, which is
about 450 mph (see Multiple-Choice Question 1.4). In reality, air resistance is important,
and a terminal velocity is reached. For a skydiver in a spread-eagle position, the terminal
velocity is around 50 m/s.

2.12. b Let the time to the top be t. Since the ball decelerates on its way up, it moves faster in
the first t/2 time span than in the second t/2. So it covers more than half the distance in
the first t/2.
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Remark: If you want to find the exact ratio of the distances traveled in the two t/2 time spans, it
is easiest to imagine dropping the ball instead of firing it upward; the answer is the same. In the
upper t/2 of the motion, the ball falls g(t/2)2/2, whereas in the total time t the ball falls gt2/2. The
ratio of these distances is 1 to 4, so the distance in the upper t/2 is 1/4 of the total, which means
that the distance in the lower t/2 is 3/4 of the total. The ratio of the distances traveled in the two t/2
time spans is therefore 3 to 1. This also quickly follows from drawing a v vs. t plot like the one in
Fig. 2.5.

2.13. d If T is the time between the dropping of each ball (which is one second here), then the
first ball has a speed of gT when the second ball is dropped. At a time t later than this, the
speeds of the two balls are g(t +T ) and gt. So the difference in speeds is always gT . That
is, the second ball always sees the first ball pulling away with a relative speed of gT . The
separation therefore increases steadily at a rate gT .

This result ignores air resistance. In reality, the objects will reach the same terminal ve-
locity (barring any influence of the first ball on the second), so the distance between them
will approach a constant value. The real-life answer is therefore choice (c).

2.14. e The velocity as a function of time is given by v(t) = v0 − gt. Since the velocity
is instantaneously zero at the highest point, the time to reach the top is t = v0/g. The
downward motion takes the same time as the upward motion (although it wouldn’t if we
included air resistance), so the total time is 2v0/g. Note that choices (a) and (b) don’t have
the correct units; choice (a) is the maximum height.

2.15. d From general kinematics (see Problem 2.3), or from conservation of energy (the sub-
ject of Chapter 5), or from dimensional analysis, the maximum height is proportional to
v2/g (it equals v2/2g). The v2 dependence implies that the desired ratio is 22 = 4. The
difference in the masses is irrelevant.

2.5 Problem solutions
Although this was mentioned many times in the preface and in Chapter 1, it is worth belaboring
the point: Don’t look at the solution to a problem (or a multiple-choice question) too soon. If
you do need to look at it, read it line by line until you get a hint to get going again. If you read
through a solution without first solving the problem, you will gain essentially nothing from it!

2.1. Area under the curve

The v vs. t curve, which is simply a tilted line in the case of constant acceleration, is
shown in Fig. 2.10. The slope of the line equals the acceleration a, which implies that

v

t

at

v0

Figure 2.10

the height of the triangular region is at, as shown. The area under the v vs. t curve is the
distance traveled. This area consists of the rectangle with area t · v0 and the triangle with
area (1/2) · t · at. So the total area is v0t + at2/2. To find the present position x(t), we
must add the initial position, x0, to the distance traveled. The present position is therefore
x(t) = x0 + v0t + at2/2, as desired.

2.2. A kinematic relation

First solution: Our strategy will be to eliminate t from the equations in Eq. (2.3) by
solving for t in the second equation and plugging the result into the third. This gives

x = x0 + v0

(
v − v0

a

)
+

1
2

a
(
v − v0

a

)2

= x0 +
1
a

(v0v − v2
0 ) +

1
a
*,v

2

2
− vv0 +

v2
0

2
+-

= x0 +
1

2a
(v2 − v2

0 ). (2.9)
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Hence 2a(x − x0) = v2 − v2
0 . But x − x0 is the displacement d. Changing the notation,

v → vf and v0 → vi, gives the desired result, 2ad = v2
f − v2

i . A quick corollary is that if d
and a have the same (or opposite) sign, then vf is larger (or smaller) than vi. You should
convince yourself that this makes sense intuitively.

Second solution: A quicker derivation is the following. The displacement equals the
average velocity times the time, by definition. The time is t = (v − v0)/a, and the average
velocity is vavg = (v + v0)/2, where this second expression relies on the fact that the
acceleration is constant. (The first expression does too, because otherwise we wouldn’t
have a unique a in the denominator.) So we have

d = vavgt =
(
v + v0

2

) (
v − v0

a

)
=

v2 − v2
0

2a
. (2.10)

Multiplying by 2a gives the desired result.

2.3. Maximum height

The solutions I can think of are listed below. Most of them use the fact that the time to
reach the maximum height is t = v0/g, which follows from the velocity v(t) = v0 − gt
being zero at the top of the motion. The fact that the acceleration is constant also plays a
critical role in all of the solutions.

1. Since the acceleration is constant, the average speed during the upward motion equals
the average of the initial and final speeds. So vavg = (v0 + 0)/2 = v0/2. The distance
equals the average speed times the time, so d = vavgt = (v0/2)(v0/g) = v2

0/2g.

2. Using the standard expression for the distance traveled, d = v0t − gt2/2, we have

d = v0

(
v0

g

)
− g

2

(
v0

g

)2

=
v2

0

2g
. (2.11)

3. If we imagine reversing time (or just looking at the downward motion, which takes
the same time), then the ball starts at rest and accelerates downward at g. So we can
use the simpler expression d = gt2/2, which quickly gives d = g(v0/g)2/2 = v2

0/2g.

4. The kinematic relation v2
f −v2

i = 2ad from Eq. (2.4) gives 02−v2
0 = 2(−g)d =⇒ d =

v2
0/2g. We have been careful with the signs here; if we define positive d as upward,

then the acceleration is negative.

5. The first three of the above solutions have graphical interpretations (although perhaps
these shouldn’t count as separate solutions). The v vs. t plots associated with these
three solutions are shown in Fig. 2.11. The area under each curve, which is the
distance traveled, equals v2

0/2g.
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Figure 2.11

6. We can also use conservation of energy to solve this problem. Even though we
won’t discuss energy until Chapter 5, the solution is quick enough to state here. The
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initial kinetic energy mv2
0/2 gets completely converted into the gravitational potential

energy mgd at the top of the motion (because the ball is instantaneously at rest at the
top). So mv2

0/2 = mgd =⇒ d = v2
0/2g.

2.4. Average speeds

(a) Let the length of the hill be ℓ, and define v ≡ 10 mph. Then the time up the hill is
ℓ/v, and the time down is ℓ/2v. Your average speed is therefore

vavg =
dtotal

ttotal
=

2ℓ
ℓ/v + ℓ/2v

=
2

3/2v
=

4v
3
= 13.3 mph. (2.12)

(b) Let 2t be the total time of the ride, and again define v ≡ 10 mph. Then during the
first half of the ride, you travel a distance vt. And during the second half, you travel
a distance (2v)t. Your average speed is therefore

vavg =
dtotal

ttotal
=

vt + 2vt
2t

=
3v
2
= 15 mph. (2.13)

Remark: This result of 15 mph is simply the average of the two speeds, because you spend
the same amount of time traveling at each speed. This is not the case in the scenario in part
(a), because you spend longer (twice as long) traveling uphill at the slower speed. So that
speed matters more when taking the average. In the extreme case where the two speeds differ
greatly (in a multiplicative sense), the average speed in the scenario in part (a) is very close
to twice the smaller speed (because the downhill time can be approximated as zero), whereas
the average speed in the scenario in part (b) always equals the average of the two speeds. For
example, if the two speeds are 1 and 100 (ignoring the units), then the answers to parts (a) and
(b) are, respectively,

v
(a)
avg =

2ℓ
ℓ/1 + ℓ/100

=
200
101
= 1.98,

v
(b)
avg =

1 · t + 100 · t
2t

=
101

2
= 50.5. (2.14)

2.5. Colliding trains

The positions of the two trains are given by

xA = d +
1
2

at2 and xB = v0t − 1
2

at2. (2.15)

These are equal when

d +
1
2

at2 = v0t − 1
2

at2 =⇒ at2 − v0t + d = 0

=⇒ t =
v0 ±

√
v2

0 − 4ad

2a
. (2.16)

The trains do collide if there is a real solution for t, that is, if v2
0 > 4ad =⇒ v0 > 2

√
ad.

The relevant solution is the “−” root. The “+” root corresponds to the case where the trains
“pass through” each other and then meet up again a second time.

The trains don’t collide if the roots are imaginary, that is, if v0 < 2
√

ad. So the maximum
value of v0 that avoids a collision is 2

√
ad. In the cutoff case where v0 = 2

√
ad, the trains

barely touch, so it’s semantics as to whether you call that a “collision.”

Note that
√

ad correctly has the units of velocity. And in the limit of large a or d, the
cutoff speed 2

√
ad is large, which makes intuitive sense.

A sketch of the x vs. t curves for the v0 = 2
√

ad case is shown in Fig. 2.12. If v0 is smaller

d

x

t

x
A 

= d + at2/2

x
B 

= v
0 
t − at2/2

v
0 /2a

Figure 2.12 than 2
√

ad, then the bottom curve stays lower (because its initial slope at the origin is v0),
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so the curves don’t intersect. If v0 is larger than 2
√

ad, then the bottom curve extends
higher, so the curves intersect twice.

Remarks: As an exercise, you can show that the location where the trains barely collide in the
v0 = 2

√
ad case is x = 3d/2. And the maximum value of xB is 2d. If B has normal friction brakes,

then it will of course simply stop at this maximum value and not move backward as shown in the
figure. But in the hypothetical case of a jet engine with reverse thrust, B would head backward as
the curve indicates.

In the a → 0 limit, B moves with essentially constant speed v0 toward A, which is essentially at rest,
initially a distance d away. So the time is simply t = d/v0. As an exercise, you can apply a Taylor
series to Eq. (2.16) to produce this t = d/v0 result. A Taylor series is required because if you simply
set a = 0 in Eq. (2.16), you will obtain the unhelpful result of t = 0/0.

2.6. Ratio of distances

The positions of the two cars are given by

xA = v0t and xB = v0t − 1
2

at2. (2.17)

B’s velocity is v0 − at, and this equals zero when t = v0/a. The positions at this time are

xA = v0

(
v0

a

)
=

v2
0

a
and xB = v0

(
v0

a

)
− 1

2
a

(
v0

a

)2
=

v2
0

2a
. (2.18)

The desired ratio is therefore xA/xB = 2. The plots are shown in Fig. 2.13. Both distances

x

t

x
A 

= v
0 
t

v
0 
/a

x
B 

= v
0 
t - at2/2

Figure 2.13

are proportional to v2
0/a, so large v0 implies large distances, and large a implies small

distances. These make intuitive sense.

The only quantities that the ratio of the distances can depend on are v0 and a. But the ratio
of two distances is a dimensionless quantity, and there is no non-trivial combination of
v0 and a that gives a dimensionless result. Therefore, the ratio must simply be a number,
independent of both v0 and a.

Note that it is easy to see from a v vs. t graph why the ratio is 2. The area under A’s
velocity curve (the rectangle) in Fig. 2.14 is twice the area under B’s velocity curve (the

v

t

v
B 

= v
0 

 − at

v
A 

= v
0

v
0 
/a

Figure 2.14

triangle). And these areas are the distances traveled.

2.7. How far apart?

At time t, the first object has been moving for a time t+T , so its position is x1 = a(t+T )2/2.
The second object has been moving for a time t, so its position is x2 = at2/2. The
difference is

x1 − x2 = aTt +
1
2

aT2. (2.19)

The second term here is the distance the first object has already traveled when the second
object starts moving. The first term is the relative speed, aT , times the time. The relative
speed is always aT because this is the speed the first object has when the second object
starts moving. And from that time onward, both speeds increase at the same rate (namely
a), so the objects always have the same relative speed. In summary, from the second
object’s point of view, the first object has a head start of aT2/2 and then steadily pulls
away with relative speed aT .

The v vs. t plots are shown in Fig. 2.15. The area under a v vs. t curve is the distance

t
t

v

T

v1= a(t+T )

v2= aT

aT

Figure 2.15

traveled, so the difference in the distances is the area of the shaded region. The trian-
gular region on the left has an area equal to half the base times the height, which gives
T (aT )/2 = aT2/2. And the parallelogram region has an area equal to the horizontal width
times the height, which gives t(aT ) = aTt. These terms agree with Eq. (2.19).
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2.8. Ratio of odd numbers

This general result doesn’t depend on the 1-second value of the time interval, so let’s
replace 1 second with a general time t. The total distances fallen after times of 0, t, 2t, 3t,
4t, etc., are

0,
1
2
gt2,

1
2
g(2t)2,

1
2
g(3t)2,

1
2
g(4t)2, etc. (2.20)

The distances fallen during each interval of time t are the differences between the above
distances, which yield

1
2
gt2, 3 · 1

2
gt2, 5 · 1

2
gt2, 7 · 1

2
gt2, etc. (2.21)

These are in the desired ratio of 1 : 3 : 5 : 7 . . .. Algebraically, the difference between
(nt)2 and

(
(n + 1)t

)2 equals (2n + 1)t2, and the 2n + 1 factor here generates the odd
numbers.

Geometrically, the v vs. t plot is shown in Fig. 2.16. The area under the curve (a tilted line

v

t 2t 3t 4t

Figure 2.16

in this case) is the distance traveled, and by looking at the number of (identical) triangles
in each interval of time t, we quickly see that the ratio of the distances traveled in each
interval is 1 : 3 : 5 : 7 . . ..

2.9. Dropped and thrown balls

The positions of the two balls are given by

y1(t) = h − 1
2
gt2 and y2(t) = v0t − 1

2
gt2. (2.22)

These are equal (that is, the balls collide) when h = v0t =⇒ t = h/v0. The height of the
collision is then found from either of the y expressions to be yc = h− gh2/2v2

0 . This holds
in any case, but we are given the further information that the second ball is instantaneously
at rest when the collision occurs. Its speed is v0−gt, so the collision must occur at t = v0/g.
Equating this with the above t = h/v0 result tells us that v0 must be given by v2

0 = gh.
Plugging this into yc = h − gh2/2v2

0 gives yc = h/2.

The two velocities are given by v1(t) = −gt, and v2(t) = v0−gt. The difference of these is
v0. This holds for all time, not just at the moment when the balls collide. This is due to the
fact that both balls are affected by gravity in exactly the same way, so the initial relative
speed (which is v0) equals the relative speed at any other time. This is evident from the v

vs. t plots in Fig. 2.17. The upper line is v0 above the lower line for all values of t.

v

t

v
2 = v

0 − gtv
0 

v
0/g 

v
1 = 

 
− gt

Figure 2.17

2.10. Hitting at the same time

The time it takes the first ball to hit the ground is given by

gt2
1

2
= h =⇒ t1 =

√
2h
g
. (2.23)

The time it takes the second ball to hit the ground is given by vt2 + gt2
2/2 = 2h. We could

solve this quadratic equation for t2 and then set the result equal to t1. But a much quicker
strategy is to note that since we want t2 to equal t1, we can just substitute t1 for t2 in the
quadratic equation. This gives

v

√
2h
g
+
g

2

(
2h
g

)
= 2h =⇒ v

√
2h
g
= h =⇒ v =

√
gh
2
. (2.24)

In the limit of small g, the process will take a long time, so it makes sense that v should
be small. Note that without doing any calculations, the consideration of units tells us that
the answer must be proportional to

√
gh.
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Remark: The intuitive interpretation of the above solution is the following. If the second ball were
dropped from rest, it would be at height h when the first ball hits the ground at time

√
2h/g (after

similarly falling a distance h). The second ball therefore needs to be given an initial downward
speed v that causes it to travel an extra distance of h during this time. But this is just what the middle
equation in Eq. (2.24) says.

2.11. Two dropped balls

The total time it takes the first ball to fall a height 4h is given by gt2/2 = 4h =⇒ t =
2
√

2h/g. This time may be divided into the time it takes to fall a distance d (which is√
2d/g), plus the remaining time it takes to hit the ground, which we are told is the same

as the time it takes the second ball to fall a height h (which is
√

2h/g). Therefore,

2

√
2h
g
=

√
2d
g
+

√
2h
g
=⇒ 2

√
h =
√

d +
√

h =⇒ d = h. (2.25)

Remark: Graphically, the process is shown in the v vs. t plot in Fig. 2.18(a). The area of the large

h

4h total

d = h
t

v

(a)

> h

4h total

d < h
t

v

(b)

second ball
released

second ball
released

Figure 2.18

triangle is the distance 4h the first ball falls. The right small triangle is the distance h the second
ball falls, and the left small triangle is the distance d the first ball falls by the time the second ball is
released. If, on the other hand, the second ball is released too soon, after the first ball has traveled
a distance d that is less than h, then we have the situation shown in Fig. 2.18(b). The second ball
travels a distance that is larger than h (assuming it can fall into a hole in the ground) by the time the
first ball travels 4h and hits the ground. In other words (assuming there is no hole), the second ball
hits the ground first. Conversely, if the second ball is released too late, then it travels a distance that
is smaller than h by the time the first ball hits the ground. This problem basically boils down to the
fact that freefall distances fallen are proportional to t2 (or equivalently, to the areas of triangles), so
twice the time means four times the distance.



Chapter 3

Kinematics in 2-D (and 3-D)

3.1 Introduction
In this chapter, as in the previous chapter, we won’t be concerned with the actual forces that
cause an object to move the way it is moving. We will simply take the motion as given, and
our goal will be to relate positions, velocities, and accelerations as functions of time. However,
since we are now dealing with more general motion in two and three dimensions, we will give
one brief mention of forces:

Motion in more than one dimension

Newton’s second law (for objects with constant mass) is F = ma, where a ≡ dv/dt. This law
(which is the topic of Chapter 4) is a vector equation. (See Appendix A in Section 13.1 for a
review of vectors.) So it really stands for three different equations: Fx = max , Fy = may , and
Fz = maz . In many cases, these three equations are “decoupled,” that is, the x equation has
nothing to do with what is going on in the y and z equations, etc. In such cases, we simply have
three copies of 1-D motion (or two copies if we’re dealing with only two dimensions). So we
just need to solve for the three independent motions along the three coordinate axes.

Projectile motion

The classic example of independent motions along different axes is projectile motion. Projectile
motion is the combination of two separate linear motions. The horizontal motion doesn’t affect
the vertical motion, and vice versa. Since there is no acceleration in the horizontal direction
(ignoring air resistance), the projectile moves with constant velocity in the x direction. And
since there is an acceleration of −g in the vertical direction, we can simply copy the results from
the previous chapter (in particular, Eq. (2.3) with ay = −g) for the motion in the y direction.
We therefore see that if the initial position is (X,Y ) and the initial velocity is (Vx ,Vy ), then the
acceleration components

ax = 0 and ay = −g (3.1)

lead to velocity components

vx (t) = Vx and vy (t) = Vy − gt (3.2)

and position components

x(t) = X + Vx t and y(t) = Y + Vy t − 1
2
gt2. (3.3)

Projectile motion is completely described by these equations for the velocity and position com-
ponents.

42
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Standard projectile results

The initial velocity V of a projectile is often described in terms of the initial speed v0 (we’ll use a
lowercase v here, since it looks a little nicer) and the launch angle θ with respect to the horizontal.
From Fig. 3.1, the initial velocity components are then Vx = v0 cos θ and Vy = v0 sin θ, so the

v0 cosθ

θ

v0 

v0 sinθ

Figure 3.1

velocity components in Eq. (3.2) become

vx (t) = v0 cos θ and vy (t) = v0 sin θ − gt, (3.4)

and the positions in Eq. (3.3) become (assuming that the projectile is fired from the origin, so
that (X,Y ) = (0,0))

x(t) = (v0 cos θ)t and y(t) = (v0 sin θ)t − 1
2
gt2. (3.5)

A few results that follow from these expressions are that the time to the maximum height, the
maximum height attained, and the total horizontal distance traveled are given by (see Prob-
lem 3.1)

ttop =
v0 sin θ

g
, ymax =

v2
0 sin2 θ

2g
, xmax =

2v2
0 sin θ cos θ

g
=

v2
0 sin 2θ
g

. (3.6)

The last of these results holds only if the ground is level (more precisely, if the projectile returns
to the height from which it was fired). As usual, we are ignoring air resistance.

Motion along a plane

If an object slides down a frictionless plane inclined at angle θ, the acceleration down the plane is
g sin θ, because the component of g (the downward acceleration due to gravity) that points along
the plane is g sin θ; see Fig. 3.2. (There is no acceleration perpendicular to the plane because

θ

θ
g

g cos θ

g sin θ

g sin θ

Figure 3.2

the normal force from the plane cancels the component of the gravitational force perpendicular
to the plane. We’ll discuss forces in Chapter 4.) Even though the motion appears to take place
in 2-D, we really just have a (tilted) 1-D setup. We effectively have “freefall” motion along the
tilted axis, with the acceleration due to gravity being g sin θ instead of g. If θ = 0, then the g sin θ
acceleration along the plane equals 0, and if θ = 90◦ it equals g (downward), as expected.

More generally, if a projectile flies through the air above an inclined plane, the object’s accel-
eration (which is the downward-pointing vector g) can be viewed as the sum of its components
along any choice of axes, in particular the g sin θ acceleration along the plane and the g cos θ
acceleration perpendicular to the plane. This way of looking at the downward g vector can be
very helpful when solving projectile problems involving inclined planes. See Section 13.1.5 in
Appendix A for further discussion of vector components.

Circular motion

Another type of 2-D motion is circular motion. If an object is moving in a circle of radius r with
speed v at a given instant, then the (inward) radial component of the acceleration vector a equals
(see Problem 3.2(a))

ar =
v2

r
. (3.7)

This radially inward acceleration is called the centripetal acceleration. If additionally the object
is speeding up or slowing down as it moves around the circle, then there is also a tangential
component of a given by (see Problem 3.2(b))

at =
dv
dt

. (3.8)

This tangential component is the more intuitive of the two components of the acceleration; it
comes from the change in the speed v, just as in the simple case of 1-D motion. The ar component
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is the less intuitive one; it comes from the change in the direction of v. Remember that the
acceleration a ≡ dv/dt involves the rate of change of the entire vector v, not just the magnitude
v ≡ |v|. A vector can change because its magnitude changes or because its direction changes (or
both). The former change is associated with at, while the latter is associated with ar.

It is sometimes convenient to work with the angular frequency ω (also often called the an-
gular speed or angular velocity), which is defined to be the rate at which the angle θ around the
circle (measured in radians) is swept out. That is, ω ≡ dθ/dt. If we multiply both sides of this
equation by the radius r , we obtain rω = d(rθ)/dt. But rθ is simply the distance s traveled along
the circle,1 so the right-hand side of this equation is ds/dt, which is just the tangential speed v.
Hence rω = v =⇒ ω = v/r . In terms of ω, the radial acceleration can be written as

ar =
v2

r
=

(rω)2

r
= ω2r. (3.9)

Similarly, we can define the angular acceleration as α ≡ dω/dt ≡ d2θ/dt2. If we multiply
through by r , we obtain rα = d(rω)/dt. But from the preceding paragraph, rω is the tangential
speed v. Therefore, rα = dv/dt. And since the right-hand side of this equation is just the
tangential acceleration, we have

at = rα. (3.10)

We can summarize most of the results in the previous two paragraphs by saying that the
“linear” quantities (distance s, speed v, tangential acceleration at) are related to the angular
quantities (angle θ, angular speed ω, angular acceleration α) by a factor of r:

s = rθ, v = rω, at = rα. (3.11)

However, the radial acceleration ar doesn’t fit into this pattern.

3.2 Multiple-choice questions
3.1. A bullet is fired horizontally from a gun, and another bullet is simultaneously dropped from

the same height. Which bullet hits the ground first? (Ignore air resistance, the curvature
of the earth, etc.)

(a) the fired bullet

(b) the dropped bullet

(c) They hit the ground at the same time.

3.2. A projectile is fired at an angle θ with respect to level ground. Is there a point in the motion
where the velocity is perpendicular to the acceleration?

Yes No

3.3. A projectile is fired at an angle θ with respect to level ground. Does there exist a θ such
that the maximum height attained equals the total horizontal distance traveled?

Yes No

3.4. Is the following reasoning correct? If the launch angle θ of a projectile is increased (while
keeping v0 the same), then the initial vy velocity component increases, so the time in the
air increases, so the total horizontal distance traveled increases.

Yes No

1This is true by the definition of a radian. If you take a piece of string with a length of one radius and lay it out along
the circumference of a circle, then it subtends an angle of one radian, by definition. So each radian of angle is worth
one radius of distance. The total distance s along the circumference is therefore obtained by multiplying the number of
radians (that is, the number of “radiuses”) by the length of the radius.
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3.5. A ball is thrown at an angle θ with speed v0. A second ball is simultaneously thrown
straight upward from the point on the ground directly below the top of the first ball’s
parabolic motion. How fast should this second ball be thrown if you want it to collide with
the first ball?

(a) v0/2 (b) v0/
√

2 (c) v0 (d) v0 cos θ (e) v0 sin θ

3.6. A wall has height h and is a distance ℓ away. You wish to throw a ball over the wall with a
trajectory such that the ball barely clears the wall at the top of its parabolic motion. What
initial speed is required? (Don’t solve this from scratch, just check special cases. See
Problem 3.10 for a quantitative solution.)

(a)
√

2gh

(b)
√

4gh

(c)
√
gℓ2/2h

(d)
√

2gh + gℓ2/2h

(e)
√

4gh + gℓ2/2h

3.7. Two balls are thrown with the same speed v0 from the top of a cliff. The angles of their
initial velocities are θ above and below the horizontal, as shown in Fig. 3.3. How much far-

θ

θ

Figure 3.3

ther along the ground does the top ball hit than the bottom ball? Hint: The two trajectories
have a part in common. No calculations necessary!

(a) 2v2
0/g

(b) 2v2
0 sin θ/g

(c) 2v2
0 cos θ/g

(d) 2v2
0 sin θ cos θ/g

(e) 2v2
0 sin2 θ cos2 θ/g

3.8. A racecar travels in a horizontal circle at constant speed around a circular banked track. A
side view is shown in Fig. 3.4. (The triangle is a cross-sectional slice of the track; the car

θ

(side view)

velocity into
   the page

Figure 3.4

is heading into the page at the instant shown.) The direction of the racecar’s acceleration
is

(a) horizontal rightward

(b) horizontal leftward

(c) downward along the plane

(d) upward perpendicular to the plane

(e) The acceleration is zero.

3.9. Which one of the following statements is not true for uniform (constant speed) circular
motion?

(a) v is perpendicular to r.

(b) v is perpendicular to a.

(c) v has magnitude Rω and points in the r direction.

(d) a has magnitude v2/R and points in the negative r direction.

(e) a has magnitude ω2R and points in the negative r direction.

3.10. A car travels around a horizontal circular track, not at constant speed. The acceleration
vectors at five different points are shown in Fig. 3.5 (the four nonzero vectors have equal (top view)

a = 0

(a)

(b)

(c)(d)

(e)

Figure 3.5length). At which of these points is the car’s speed the largest?
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3.11. A bead is given an initial velocity and then circles indefinitely around a frictionless vertical
hoop. Only one of the vectors in Fig. 3.6 is a possible acceleration vector at the given point.

(a)

(b)

(c)

(d)

(e)

(side view)

Figure 3.6

Which one?

3.12. A pendulum is released from rest at an angle of 45◦ with respect to the vertical, as shown
below. Which vector shows the direction of the initial acceleration?

45

(a) (b) (c) (d) (e)

a = 0

a
a

a

a

(side view)

3.13. A pendulum swings back and forth between the two horizontal positions shown in Fig. 3.7.

(side view)

Figure 3.7

The acceleration is vertical (g downward) at the highest points, and is also vertical (up-
ward) at the lowest point.

(a) There is at least one additional point where the acceleration is vertical.

(b) There is at least one point where the acceleration is horizontal.

(c) There is at least one point where the acceleration is zero.

(d) None of the above

3.3 Problems
The first three problems are foundational problems.

3.1. A few projectile results

On level ground, a projectile is fired at angle θ with speed v0. Derive the expressions
in Eq. (3.6). That is, find (a) the time to the maximum height, (b) the maximum height
attained, and (c) the total horizontal distance traveled.

3.2. Radial and tangential accelerations

(a) If an object moves in a circle at constant speed v (uniform circular motion), show
that the acceleration points radially inward with magnitude ar = v2/r . Do this by
drawing the position and velocity vectors at two nearby times and then making use
of similar triangles.

(b) If the object speeds up or slows down as it moves around in the circle, then the
acceleration also has a tangential component. Show that this component is given by
at = dv/dt.

3.3. Radial and tangential accelerations, again

A particle moves in a circle, not necessarily at constant speed. Its coordinates are given
by (x, y) = (R cos θ,R sin θ), where θ ≡ θ(t) is an arbitrary function of t. Take two time
derivatives of these coordinates to find the acceleration vector, and then explain why the
result is consistent with the ar and at magnitudes derived in Problem 3.2.

3.4. Movie replica

(a) A movie director wants to shoot a certain scene by building a detailed replica of the
actual setup. The replica is 1/100 the size of the real thing. In the scene, a person
jumps from rest from a tall building (into a net, so it has a happy ending). If the
director films a tiny doll being dropped from the replica building, by what factor
should the film be sped up or slowed down when played back, so that the falling
person looks realistic to someone watching the movie? (Assume that the motion is
essentially vertical.)
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(b) The director now wants to have a little toy car zoom toward a cliff in the replica (with
the same scale factor of 1/100) and then sail over the edge down to the ground below
(don’t worry, the story has the driver bail out in time). Assume that the goal is to
have the movie viewer think that the car is traveling at 50 mph before it goes over
the cliff. As in part (a), by what factor should the film be sped up or slowed down
when played back? What should the speed of the toy car be as it approaches the cliff
in the replica?

3.5. Doubling gravity

A ball is thrown with speed v at an angle θ with respect to the horizontal ground. At the
highest point in the motion, the strength of gravity is somehow magically doubled. What
is the total horizontal distance traveled by the ball?

3.6. Ratio of heights

From the standard d = gt2/2 expression for freefall from rest, we see that if the falling time
is doubled, the falling distance is quadrupled. Use this fact to find the ratio of the height of
the top of projectile motion (point A in Fig. 3.8) to the height where the projectile would

A

B

Figure 3.8

be if gravity were turned off (point B in the figure). Two suggestive distances are drawn.

3.7. Hitting horizontally

A ball is thrown with speed v0 at an angle θ with respect to the horizontal. It is thrown
from a point that is a distance ℓ from the base of a cliff that has a height also equal to ℓ.
What should θ and v0 be so that the ball hits the corner of the cliff moving horizontally, as
shown in Fig. 3.9?

l

l

θ

v0

Figure 3.9

3.8. Projectile and tube

A projectile is fired horizontally with speed v0 from the top of a cliff of height h. It
immediately enters a fixed tube with length x, as shown in Fig. 3.10. There is friction
between the projectile and the tube, the effect of which is to make the projectile decelerate
with constant acceleration −a (a is a positive quantity here). After the projectile leaves the
tube, it undergoes normal projectile motion down to the ground.

v0

h

l 

x

Figure 3.10

(a) What is the total horizontal distance (call it ℓ) that the projectile travels, measured
from the base of the cliff? Give your answer in terms of x, h, v0, g, and a.

(b) What value of x yields the maximum value of ℓ?

3.9. Car in the mud

A wheel is stuck in the mud, spinning in place. The radius is R, and the points on the
rim are moving with speed v. Bits of the mud depart from the wheel at various random
locations. In particular, some bits become unstuck from the rim in the upper left quadrant,
as shown in Fig. 3.11. What should θ be so that the mud reaches the maximum possible

v

R

θ

Figure 3.11
height (above the ground) as it flies through the air? What is this maximum height? You
may assume v2 > gR.
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3.10. Clearing a wall

(a) You wish to throw a ball to a friend who is a distance 2ℓ away, and you want the ball
to just barely clear a wall of height h that is located halfway to your friend, as shown
in Fig. 3.12. At what angle θ should you throw the ball?

l l

h

θ

Figure 3.12

(b) What initial speed v0 is required? What value of h (in terms of ℓ) yields the minimum
v0? What is the value of θ in this minimum case?

3.11. Bounce throw

A person throws a ball with speed v0 at a 45◦ angle and hits a given target. How much
quicker does the ball get to the target if the person instead throws the ball with the same
speed v0 but at the angle that makes the trajectory consist of two identical bumps, as shown
in Fig. 3.13? (Assume unrealistically that there is no loss in speed at the bounce.)Figure 3.13

3.12. Maximum bounce

A ball is dropped from rest at height h. At height y, it bounces elastically (that is, without
losing any speed) off a board. The board is inclined at the angle (which happens to be 45◦)
that makes the ball bounce off horizontally. In terms of h, what should y be so that the ball
hits the ground as far off to the side as possible? What is the horizontal distance in this
optimal case?

3.13. Falling along a right triangle

In the vertical right triangle shown in Fig. 3.14, a particle falls from A to B either along

A

B

b

a

C

(side view)

Figure 3.14

the hypotenuse, or along the two legs (lengths a and b) via point C. There is no friction
anywhere.

(a) What is the time (call it tH) if the particle travels along the hypotenuse?

(b) What is the time (call it tL) if the particle travels along the legs? Assume that at
point C there is an infinitesimal curved arc that allows the direction of the particle’s
motion to change from vertical to horizontal without any change in speed.

(c) Verify that tH = tL when a = 0.

(d) How do tH and tL compare in the limit b ≪ a?

(e) Excluding the a = 0 case, what triangle shape yields tH = tL?

3.14. Throwing to a cliff

A ball is thrown at an angle θ up to the top of a cliff of height L, from a point a distance L
from the base, as shown in Fig. 3.15.

θ

L

v

L

0

Figure 3.15

(a) As a function of θ, what initial speed causes the ball to land right at the edge of the
cliff?

(b) There are two special values of θ for which you can check your result. Check these.

3.15. Throwing from a cliff

A ball is thrown with speed v at angle θ (with respect to horizontal) from the top of a
cliff of height h. How far from the base of the cliff does the ball land? (The ground is
horizontal below the cliff.)

3.16. Throwing on stairs

A ball is thrown horizontally with speed v from the floor at the top of some stairs. The
width and height of each step are both equal to ℓ.

(a) What should v be so that the ball barely clears the corner of the step that is N steps
down? Fig. 3.16 shows the case where N = 4.

N = 4

l

l

v

d

Figure 3.16 (b) How far along the next step (the distance d in the figure) does the ball hit?
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(c) What is d in the limit N → ∞?

(d) Find the components of the ball’s velocity when it grazes the corner, and then explain
why their ratio is consistent with your answer to part (c).

3.17. Bullet and sphere

A bullet is fired horizontally with speed v0 from the top of a fixed sphere with radius R, as
shown in Fig. 3.17. What is the minimum value of v0 for which the bullet doesn’t touch

v0

R

Figure 3.17

the sphere after it is fired? (Hint: Find y as a function of x for the projectile motion, and
also find y as a function of x for the sphere near the top where x is small; you’ll need to
make a Taylor-series approximation. Then compare your two results.) For the v0 you just
found, where does the bullet hit the ground?

3.18. Throwing on an inclined plane

You throw a ball from a plane inclined at angle θ. The initial velocity is perpendicular to
the plane, as shown in Fig. 3.18. Consider the point P on the trajectory that is farthest

θ

P
v0

Figure 3.18

from the plane. For what angle θ does P have the same height as the starting point? (For
the case shown in the figure, P is higher.) Answer this in two steps:

(a) Give a continuity argument that explains why such a θ should in fact exist.

(b) Find θ. In getting a handle on where (and when) P is, it is helpful to use a tilted
coordinate system and to isolate what is happening in the direction perpendicular to
the plane.

3.19. Ball landing on a block

A block is fired up along a frictionless plane inclined at angle β, and a ball is simultane-
ously thrown upward at angle θ (both β and θ are measured with respect to the horizontal).
The objects start at the same location, as shown in Fig. 3.19. What should θ be in terms of

Figure 3.19

β if you want the ball to land on the block at the instant the block reaches its maximum
height on the plane? (An implicit equation is fine.) What is θ if β equals 45◦? (You might
think that we’ve forgotten to give you information about the initial speeds, but it turns out
that you don’t need these to solve the problem.)

3.20. g’s in a washer

A typical front-loading washing machine might have a radius of 0.3 m and a spin cycle
of 1000 revolutions per minute. What is the acceleration of a point on the surface of the
drum at this spin rate? How many g’s is this equivalent to?

3.21. Acceleration after one revolution

A car starts from rest on a circular track with radius R and then accelerates with constant
tangential acceleration at. At the moment the car has completed one revolution, what
angle does the total acceleration vector make with the radial direction? You should find
that your answer doesn’t depend on at or R. Explain why you don’t have to actually solve
the problem to know this.

3.22. Equal acceleration components

An object moves in a circular path of radius R. At t = 0, it has speed v0. From this point
on, the magnitudes of the radial and tangential accelerations are arranged to be equal at all
times.

(a) As functions of time, find the speed and the distance traveled.

(b) If the tangential acceleration is positive (that is, if the object is speeding up), there is
special value for t. What is it, and why is it special?
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3.23. Horizontal acceleration

A bead is at rest at the top of a fixed frictionless hoop of radius R that lies in a vertical
plane. The bead is given an infinitesimal push so that it slides down and around the hoop.
Find all the points on the hoop where the bead’s acceleration is horizontal. (We haven’t
covered conservation of energy yet, but use the fact that the bead’s speed after it has fallen
through a height h is given by v =

√
2gh.)

3.4 Multiple-choice answers
3.1. c This setup is perhaps the most direct example of the independence of horizontal and

vertical motions, under the influence of only gravity. The horizontal motion doesn’t affect
the vertical motion, and vice versa. The gravitational force causes both objects to have
the same acceleration g downward, so their heights are both given by h − gt2/2. The fired
bullet might travel a mile before it hits the ground, but will still take a time of t =

√
2h/g,

just like the dropped ball.

3.2. Yes At the highest point in the projectile motion, the velocity is sideways, and the
acceleration is (always) downward.

Remark: Since a (which is g = −gŷ) is perpendicular to v at the top of the motion, the component
of a in the direction of v is zero. But this component is what causes a change in the speed (this is
just the at = dv/dt statement). So dv/dt = 0 at the top of the motion. This makes sense because on
the way up, the speed decreases (from a tilted v0 to a horizontal v0 cos θ); a has a component in the
negative v direction. And on the way down, the speed increases (from a horizontal v0 cos θ to a tilted
v0); a has a component in the positive v direction. So at the top of the motion, the speed must be
neither increasing nor decreasing. That is, dv/dt = 0. On the other hand, the vertical vy component
of the velocity steadily decreases (at a rate of −g) during the entire flight, from v0 sin θ to −v0 sin θ.

3.3. Yes If θ is very small, then the projectile barely climbs above the ground, so the total
horizontal distance traveled is much larger than the maximum height. In the other extreme
where θ is close to 90◦, the projectile goes nearly straight up and down, so the maximum
height is much larger than the total horizontal distance. By continuity, there must exist an
intermediate angle for which the maximum height equals the total horizontal distance. As
an exercise, you can show that this angle is given by tan θ = 4 =⇒ θ ≈ 76◦.

3.4. No The reasoning is not valid for all θ. For all θ, the reasoning is correct up until the
last “so.” The time t in the air does indeed increase as θ increases (it equals 2v0 sin θ/g).
However, an additional consequence of increasing θ is that the vx velocity component
(which equals v0 cos θ) decreases. The total horizontal distance equals vx t, so there are
competing effects: increasing t vs. decreasing vx . If we invoke the standard result that the
maximum distance is obtained when θ = 45◦ (see the solution to Problem 3.1), we see that
for θ < 45◦, the increase in t wins and the distance increases; but for θ > 45◦, the decrease
in vx wins and the distance decreases.

3.5. e The vertical velocity component of the first ball is v0 sin θ. If the second ball is thrown
with this speed, then it will always have the same height as a function of time as the first
ball. The balls will therefore collide when the first ball’s horizontal position coincides
with the second ball’s (at the top of the parabolic motion).

Remark: The initial location of the second ball on the ground is actually irrelevant. As long as it
is thrown simultaneously with speed v0 sin θ, it can be thrown from any point below the parabolic
motion of the first ball, and the balls will still always have the same heights at any moment. They
will therefore collide when the first ball’s horizontal position coincides with the second ball’s. If the
collision occurs during the second half of the parabolic motion, the balls will be on their way down.

3.6. d The answer certainly depends on ℓ, because the speed must be very large if ℓ is very
large. So choices (a) and (b) are ruled out. Alternatively, these two choices can be ruled
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out by noting that in the h → 0 limit, you must throw the ball infinitely fast. This is true
because you must throw the ball at a very small angle; so if the speed weren’t large, the
initial vertical velocity would be very small, which means that the top of the parabolic
motion would occur too soon.

In the ℓ → 0 limit, you are throwing the ball straight up. And the initial speed in this
case is the standard v =

√
2gh. (This can be derived in many ways, for example by using

Eq. (2.4).) So the answer must be (d).

3.7. d When the top ball returns to the initial height (the height of the cliff), its velocity
(both magnitude and direction) will be the same as the initial velocity of the bottom ball
(speed v0 at an angle θ below the horizontal). So the trajectory from that point onward
will look exactly the same as the entire trajectory of the bottom ball. So the difference in
the trajectories is just the symmetric parabola that lies above the initial height. And from
Eq. (3.6) we know that the horizontal distance traveled in this part is 2v2

0 sin θ cos θ/g.

Remark: The first three choices can be eliminated by checking limiting cases. The answer must be
zero in both the θ = 0 case (the trajectories are the same) and the θ = 90◦ case (both balls travel
vertically and hence have the same horizontal distance of zero). So the answer must be (d) or (e).
But it takes the above reasoning to show that (d) is correct.

3.8. b The acceleration has magnitude v2/r and points toward the center of the circular
motion. Since the car is traveling in a horizontal circle, the radial direction is to the left.
So the acceleration is horizontal leftward.

Remark: As long as we are told that the racecar is undergoing uniform (constant speed) circular
motion, there is no need to know anything about the various forces acting on the car (which happen
to be gravity, normal, and friction; we’ll discuss forces in Chapter 4). The acceleration for uniform
circular motion, no matter what the cause of the motion, points radially inward with magnitude v2/r ,
period.

3.9. c The velocity v points in the tangential, not radial, direction. The other four statements
are all true.

Remark: If you want to consider non-uniform (that is, changing speed) circular motion, then only
statement (a) is always true. The acceleration can now have a tangential component, which ruins
(b), (d), and (e). And statement (c) is still incorrect.

3.10. c The radial component of the acceleration has magnitude ar = v2/r . So the largest
speed v corresponds to the a with the largest (inward) radial component, which is choice
(c).

Remark: Note that the tangential component of the acceleration, which is at = dv/dt, has nothing to
do with the instantaneous value of v, which is what we’re concerned with in this question. A large
at component (as in choices (a), (b), and (d)) does not imply a large v. On the other hand, a zero ar
component (as in choices (a) and (e)) implies a zero v.

3.11. d The acceleration is the vector sum of the radially inward ar = v2/r component and the
tangentially downward at = g sin θ component, where θ = 0 corresponds to the top of the
hoop. (This is just the component of g that points in the tangential direction.) Only choice
(d) satisfies both of these properties. Choice (e) is the trickiest. The acceleration can’t be
horizontal there, because both ar and at have downward components. There is a point in
each lower quadrant where the acceleration is horizontal, because in the bottom half of the
circle, ar has an upward component which can cancel the downward component of at at
two particular points.

Remark: Since the radial ar = v2/r component always points radially inward, the acceleration vector
in any arbitrary circular motion can never have a radially outward component. This immediately
rules out choices (a) and (c). The borderline case occurs when ar = 0, that is, when a points
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tangentially. In this case v = 0, so the bead is instantaneously at rest. But any nonzero speed at all
will cause an inward ar component.

3.12. d The tangential component of the acceleration is at = g sin 45◦. And the radial compo-
nent is ar = v2/r = 0, since v = 0 at the start. No matter where the pendulum is released
from rest, the initial acceleration is always tangential (or zero, if it is “released” when
hanging vertically), because ar = 0 when v = 0.

3.13. b Since the acceleration is negative vertical at the highest points and positive vertical
at the lowest point, by continuity it must have zero vertical component somewhere in
between. That is, it must be horizontal somewhere in between.

The acceleration is never vertical (except at the highest and lowest points), because the ar
and at vectors either both have rightward components, or both have leftward components,
which means that the x component of the total acceleration vector a is nonzero. This is
consistent (if we invoke F = ma) with the fact that the tension in the tilted string has a
nonzero horizontal component (except at the highest points where the tension is zero and
the lowest point where the string is vertical).

3.5 Problem solutions
3.1. A few projectile results

(a) The components of the velocity and position are given in Eqs. (3.4) and (3.5). At
the highest point in the motion, vy equals zero because the projectile is instanta-
neously moving horizontally. So Eq. (3.4) gives the time to the highest point as
ttop = v0 sin θ/g.

(b) First solution: Plugging ttop into Eq. (3.5) gives the maximum height as

ymax = v0 sin θ
(
v0 sin θ

g

)
− 1

2
g

(
v0 sin θ

g

)2

=
v2

0 sin2 θ

2g
. (3.12)

This is just the v2
0/2g result from Problem 2.3, with v0 replaced with the vertical

component of the velocity, v0 sin θ.

Second solution: We can imagine reversing time (or equivalently, looking at the
second half of the motion), in which case the motion is equivalent to (at least as
far as the y motion is concerned) an object dropped from rest. We know that the
time it takes to reach the ground is ttop = v0 sin θ/g, so the distance is gt2

top/2 =
g(v0 sin θ/g)2/2 = v2

0 sin2 θ/(2g), in agreement with Eq. (3.12).

(c) First solution: Because the ground is level, the up and down parts of the motion
are symmetrical, so the total time t in the air is twice the time to the top, that is,
t = 2ttop = 2v0 sin θ/g. From Eq. (3.5) the total horizontal distance traveled is then

xmax = v0 cos θ
(

2v0 sin θ
g

)
=

2v2
0 sin θ cos θ

g
. (3.13)

Second solution: The total time in the air can be determined by finding the value of
t for which y(t) = 0. From Eq. (3.5), we quickly obtain t = 2v0 sin θ/g, as we found
in the first solution. (A second value of t that makes y = 0 in Eq. (3.5) is t = 0, of
course, because the projectile is on the ground at the start.) Note that if the ground
isn’t level, then the up and down parts of the motion are not symmetrical. So this
alternative method of finding the total time (by finding the time for which y takes on
a particular value) must be used.
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Remark: If we use the double-angle formula sin 2θ = 2 sin θ cos θ, the expression for xmax
in Eq. (3.13) can alternatively be written as xmax = v2

0 sin 2θ/g. Since sin 2θ achieves its
maximum value when 2θ = 90◦, this form makes it immediately clear that for a given speed
v0, the maximum horizontal distance is achieved when θ = 45◦. This maximum distance is
v2

0/g. Note that consideration of units tells us that the maximum distance must be proportional
to v2

0/g. But a calculation is necessary to show that the multiplicative factor is 1.

The v2
0 sin 2θ/g form of xmax makes it clear (although it is also clear from the 2v2

0 sin θ cos θ/g
form) that the distance is symmetric on either side of 45◦. That is, 46◦ yields the same distance
as 44◦, and 80◦ yields the same distance as 10◦, etc.

3.2. Radial and tangential accelerations

(a) The position and velocity vectors at two nearby times are shown in Fig. 3.20. Their

r1

r2

v1

v2

Figure 3.20

differences, ∆r ≡ r2 − r1 and ∆v ≡ v2 − v1, are shown in Fig. 3.21. (See Figs. 13.9
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∆v

2
θ

θ

Figure 3.21

and 13.10 in Appendix A for a comment on this ∆v.) The angle between the v’s is
the same as the angle between the r’s, because each v makes a right angle with the
corresponding r. Therefore, the triangles in Fig. 3.21 are similar, and we have

|∆v|
v
=
|∆r|

r
, (3.14)

where v ≡ |v| and r ≡ |r|. Our goal is to obtain an expression for a ≡ |a| ≡ |∆v/∆t |.
The ∆t here suggests that we should divide Eq. (3.14) through by ∆t. This gives
(using v ≡ |v| ≡ |∆r/∆t |)

1
v

�����∆v
∆t

����� = 1
r

�����∆r
∆t

����� =⇒ |a|
v
=
|v|
r
=⇒ a =

v2

r
, (3.15)

as desired. We have assumed that ∆t is infinitesimal here, which allows us to convert
the above quotients into derivatives.
The direction of the acceleration vector a is radially inward, because a ≡ dv/dt has
the same direction as dv (or ∆v), which points radially inward (leftward) in Fig. 3.21
(in the limit where θ is very small).

Remark: The a = v2/r result involves the square of v. That is, v matters twice in a. The
physical reason for this is the following. The first effect is that the larger v is, the larger the
∆v is for a given angle θ in Fig. 3.21 (because the triangle is larger). The second effect is that
the larger v is, the faster the object moves around in the circle, so the larger the angle θ is (and
hence the larger the ∆v is) for a given time ∆t. Basically, if v increases, then the v triangle in
Fig. 3.21 gets both taller and wider. Each of these effects is proportional to v, so for a given
time ∆t the change in velocity ∆v is proportional to v2, as we wanted to show.

(b) If the speed isn’t constant, then the radial component ar still equals v2/r , because
the velocity triangle in Fig. 3.21 becomes the triangle shown in Fig. 3.22 (for the

v1

v

∆v = v2-v1

2

θ

length 
 = v2-v1

Figure 3.22

case where the speed increases, so that v2 is longer than v1). The lower part of this
triangle is exactly the same as the triangle in Fig. 3.21 (or at least it would be, if
we had drawn v1 with the same length). So all of the preceding reasoning carries
through, leading again to ar = v2/r . The v here could technically be either v1 or v2.
But in the ∆t → 0 limit, the angle θ goes to zero, and both v1 and v2 are equal to the
instantaneous speed v.
To obtain the tangential component at, we can use the upper part of the triangle in
Fig. 3.22. This is a right triangle in the ∆t → 0 limit, and it tells us that at (which is
the vertical component in Fig. 3.22) is

at =
v2 − v1

∆t
≡ ∆v
∆t
−→ dv

dt
, (3.16)

as desired.
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Remark: A word about the placement of absolute value signs (“| |”): The tangential com-
ponent of a is at = dv/dt ≡ d |v|/dt, while the complete vector a is a ≡ dv/dt, which has
magnitude a = |a| = |dv|/dt (which equals a =

√
a2

r + a2
t ). The placement of the abso-

lute value signs is critical, because d |v|, which is the change in the magnitude of the velocity
vector, is not equal to |dv|, which is the magnitude of the change in the velocity vector. The
former is associated with the left leg of the right triangle in Fig. 3.22, while the latter is asso-
ciated with the hypotenuse. The disparity between d |v| and |dv| is most obvious in the case
of uniform circular motion, where we have d |v| = 0 and |dv| , 0; the speed is constant, but
the velocity is not. (The one exception to the d |v| , |dv| statement occurs when the speed is
instantaneously zero, so that ar = 0. Since the acceleration is only tangential in this case, we
have d |v| = |dv|.)

3.3. Radial and tangential accelerations, again

When taking the time derivatives, we must be careful to use the chain rule and the prod-
uct rule. Starting with (x, y) = R(cos θ,sin θ), the velocity is found by taking one time
derivative:

( ẋ, ẏ) = R(−θ̇ sin θ, θ̇ cos θ), (3.17)

where the θ̇’s come from the chain rule, because θ is a function of t. Another time deriva-
tive (using the chain rule again, along with the product rule) yields the acceleration:

( ẍ, ÿ) = R(−θ̈ sin θ − θ̇2 cos θ, θ̈ cos θ − θ̇2 sin θ). (3.18)

If we group the θ̈ terms together, and likewise the θ̇2 terms, we find

( ẍ, ÿ) = Rθ̈(− sin θ, cos θ) + Rθ̇2(− cos θ, − sin θ). (3.19)

The first vector here is the tangential acceleration vector, because the magnitude is Rθ̈ ≡
Rα = at, where we have used the fact that (− sin θ,cos θ) is a unit vector. And this vector
(− sin θ,cos θ) points in the tangential direction, as shown in Fig. 3.23.

cos θ

cos θ

θ

θ

sin θ

sin θ

(-sin θ, cos θ)

(-cos θ, -sin θ)

Figure 3.23

The second vector in Eq. (3.19) is the radial acceleration vector, because the magnitude is
Rθ̇2 ≡ Rω2 = R(v/R)2 = v2/R = ar, where we have used the fact that (− cos θ,− sin θ) is
a unit vector. And this vector (− cos θ,− sin θ) points radially inward.

Units: The units of all of the components in Eq. (3.19) are all correctly m/s2, because both θ̈ and θ̇2

have units of 1/s2. If you forgot to use the chain rule and omitted the θ̇’s, the units wouldn’t work
out.

Limits: If θ̈ = 0 (uniform circular motion), then the first vector in Eq. (3.19) is zero, so the accelera-
tion is only radial; this is correct. And if θ̇ = 0 (the object is instantaneously at rest), then the second
vector in Eq. (3.19) is zero, so the acceleration is only tangential; this is also correct.

3.4. Movie replica

(a) If the movie were played back at normal speed, the person would appear to fall
unnaturally fast. To see why, let’s say that the doll falls for 1 s in the replica, which
means that it falls a distance of 4.9 m (from d = gt2/2, and we’re neglecting air
resistance, as usual). Since the scale factor is 100, someone watching the movie
would think that the person falls 490 m in 1 s. This would look very strange, because
it is far too large a distance; an object should fall only 4.9 m in 1 s. An object would
fall 490 m in 1 s on a planet that has g = 980 m/s2, but not on the earth.
How long does it take something to fall 490 m on the earth? From d = gt2/2, we
obtain t = 10 s. So the answer to this problem is that the movie should be slowed
down by a factor of 10 when played back, so that the movie watcher sees a 490 m
fall take the correct time of 10 s.

Remark: The factor of 10 here arises because it is the square root of the scale factor, 100.
Mathematically, the 10 comes from the fact that the units of g involve s2, which leads to the
t2 in the expression d = gt2/2. A factor of 10 in the time then leads to the desired factor of
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102 = 100 in the distance. But more intuitively, the factor of 10 arises in the following way.
If we don’t scale the time at all, then as we saw above, we basically end up on a planet with
g = 980 m/s2. If we then slow down the movie by a factor of 10, this decreases g by a factor
of 102, because it causes the falling object to take 10 times as long to fall a given distance,
at which point it is going only 1/10 as fast. So the factor of 10 matters twice. The rate of
change ∆v/∆t of the velocity (that is, the acceleration) is therefore only (1/10)/10 = 1/100
of the g = 980 m/s2 value that it would have been, so we end up with the desired g value of
9.8 m/s2.

(b) The vertical motion must satisfy the same conditions as in part (a), because it is
unaffected by the horizontal motion. So we again need to slow down the playback
by a factor of 10.
We want the speed of the car to appear to be 50 mph. This means that if the movie
weren’t slowed down by the required factor of 10, then the car’s speed in the movie
would appear to be 500 mph. Due to the scale factor of 100, this would then require
the speed in the replica to be 5 mph. So 5 mph is the desired answer.
Said in an equivalent way, starting from the replica: A speed of 5 mph in the replica
translates to a speed of 500 mph in an unmodified movie, due to the scale factor of
100. But then slowing down the movie by a factor of 10 brings the apparent speed
down to the desired 50 mph.

3.5. Doubling gravity

The horizontal distance traveled during the upward part of the motion is half the total dis-
tance of normal projectile motion. Therefore, from Eq. (3.6) the distance traveled during
the upward motion is (v2

0/g) sin θ cos θ. We must now find the horizontal distance trav-
eled during the downward motion. Since the horizontal velocity is constant throughout the
entire motion, we just need to get a handle on the time of the downward part.

The time of the upward part is given by h = gt2
u/2, where h is the maximum height, be-

cause we can imagine running time backwards, in which case the ball is dropped from
rest, as far as the vertical motion is concerned. (The height h equals (v2

0/2g) sin2 θ from
Eq. (3.6), but we won’t need to use this.) The time of the downward part is given by
h = (2g)t2

d/2, because gravity is doubled. Therefore td = tu/
√

2. So the horizontal dis-
tance traveled during the downward motion is 1/

√
2 times the horizontal distance traveled

during the upward motion. The total distance is therefore

d =
v2

0 sin θ cos θ
g

(
1 +

1
√

2

)
. (3.20)

3.6. Ratio of heights

The given gt2/2 expression holds for an object dropped from rest. But it is also a valid
expression for the distance fallen relative to where the object would be if gravity were
turned off. Mathematically, this is true because in Eq. (3.3), Y + Vy t is the height of the
object in the absence of gravity, and gt2/2 is what is subtracted from this.

The two vertical distances we drew in Fig. 3.8 are the distances fallen relative to the zero-
gravity line of motion (the dotted line). Since the time of the entire projectile motion is
twice the time to the top, the ratio of these two vertical distances is 22 = 4 (hence the
d and 4d labels in Fig. 3.24). This figure contains two similar right triangles, with one

d

B

A

4d

h

Figure 3.24

being twice the size of the other. Comparing the vertical legs of each triangle tells us that
4d/(h + d) = 2. This yields h = d, which means that point A has half the height of point
B. The answer to the problem is therefore 1/2.

3.7. Hitting horizontally

If t is the time of flight, then we have three unknowns: t, v0, and θ. And we have three
facts:
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• The vertical speed is zero at the top, so v0 sin θ − gt = 0 =⇒ t = v0 sin θ/g.

• The horizontal distance is ℓ, so (v0 cos θ)t = ℓ.

• The vertical distance is ℓ, so (v0 sin θ)t − gt2/2 = ℓ.

Plugging the value of t from the first fact into the other two gives

v2
0 sin θ cos θ

g
= ℓ and

v2
0 sin2 θ

2g
= ℓ. (3.21)

Dividing the second of these equations by the first gives

sin θ
2 cos θ

= 1 =⇒ tan θ = 2 =⇒ θ ≈ 63.4◦. (3.22)

(What we’ve done here is basically find the firing angle of a projectile that makes the
maximum height be half of the total range.) This value of θ corresponds to a 1-2-

√
5 right

triangle, which yields sin θ = 2/
√

5. The second of the equations in Eq. (3.21) (the first
would work just as well) then gives

v2
0

2g

(
2
√

5

)2

= ℓ =⇒ v0 =

√
5gℓ
2

. (3.23)

3.8. Projectile and tube

(a) From the standard v2
f = v2

i + 2ad formula, the speed of the projectile when it exits
the tube is v =

√
v2

0 − 2ax. You can also obtain this by using v = v0 − at, where t
is found by solving v0t − at2/2 = x. This quadratic equation has two solutions, of
course. You want the “−” root. (What is the meaning of the “+” root?)
Since the projectile motion has zero initial vy , the time to reach the ground is given
by gt2/2 = h =⇒ t =

√
2h/g. The horizontal distance traveled in the air is vt, but

we must add on the length of the tube to get the total distance ℓ. So we have

ℓ = x + vt = x +
√
v2

0 − 2ax

√
2h
g
. (3.24)

(b) Looking at the two terms in Eq. (3.24), we see that we have competing effects of
x. Increasing x increases ℓ by having the projectile motion start farther to the right.
But increasing x also decreases the projectile motion’s initial speed and hence its
horizontal distance. Maximizing the ℓ in Eq. (3.24) by taking the derivative with
respect to x gives

0 =
dℓ
dx
= 1 +

1
2

−2a√
v2

0 − 2ax

√
2h
g

=⇒
√
v2

0 − 2ax = a

√
2h
g

=⇒ x =
v2

0

2a
− ah

g
. (3.25)

Both terms here correctly have dimensions of length. This result for the optimal
value of x is smaller than v2

0/2a, as it should be, because otherwise the projectile
would reach zero speed inside the tube (since v =

√
v2

0 − 2ax) and never make it out.
However, we aren’t quite done, because there are two cases to consider. To see why,
note that if a = v0

√
g/2h, then the x in Eq. (3.25) equals zero. So Eq. (3.25) is
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applicable only if a ≤ v0
√
g/2h. If a ≥ v0

√
g/2h, then Eq. (3.25) yields a negative

value of x, which isn’t physical. The optimal x in the a ≥ v0
√
g/2h case is therefore

simply x = 0. Physically, if a is large then any nonzero value of x will hurt ℓ (by
slowing down the initial projectile speed) more than it will help (by adding on the
“head start” distance of x). Mathematically, in this case the extremum of ℓ occurs
at the boundary of the allowed values of x (namely, x = 0), as opposed to at a local
maximum; a zero derivative therefore isn’t relevant.

Limits: If a → 0 then Eq. (3.25) gives x → ∞, which is correct. We can make the tube be
very long, and the projectile will keep sliding along; the projectile motion at the end is largely
irrelevant. We also see that the optimal x increases with v0 and g, and decreases with a and h.
You should convince yourself that these all make sense.

3.9. Car in the mud

At the instant the mud leaves the wheel, it is at height R + R sin θ above the ground. It
then rises an extra height of h = (v cos θ)2/2g during its projectile motion. This is true
because the initial vy is v cos θ (because the initial velocity makes an angle of 90◦ − θ with
respect to the horizontal), so the time to the highest point is (v cos θ)/g; plugging this into
h = (v cos θ)t − (1/2)gt2 gives h = (v cos θ)2/2g. The total height above the ground at
the highest point is therefore

H = R + R sin θ +
v2 cos2 θ

2g
. (3.26)

Maximizing this by taking the derivative with respect to θ gives

R cos θ − v2

g
sin θ cos θ = 0. (3.27)

Since cos θ is a factor of this equation, we see that there are two solutions. One is cos θ =
0 =⇒ θ = π/2, which corresponds to the top of the wheel. This is the maximum height if
v2 < gR, because in this case the best the mud can do is stay in contact with the wheel the
whole time. (After learning about forces in Chapter 4, you can show that if v2 < gR then
the normal force between the wheel and the mud is always nonzero, so the mud will never
fly off the wheel.) But we are assuming v2 > gR, so we want the other solution,

sin θ =
gR
v2 . (3.28)

Note that gR/v2 is less than 1 if v2 > gR, so such a θ does indeed exist. (For v2 = gR we
correctly obtain θ = π/2.) Plugging Eq. (3.28) into Eq. (3.26) gives a maximum height of

Hmax = R + R sin θ +
v2

2g
(1 − sin2 θ)

= R + R
(
gR
v2

)
+

v2

2g
*,1 −

(
gR
v2

)2+-
= R +

gR2

2v2 +
v2

2g
. (3.29)

All three terms here correctly have dimensions of length. This result is valid if v2 ≥ gR.
If v2 ≤ gR, then the maximum height (at the top of the wheel) is 2R.

Limits: If v is large (more precisely, if v2 ≫ gR), then Eq. (3.29) gives Hmax ≈ R + v2/2g. From
Eq. (3.28) the mud leaves the wheel at θ ≈ 0 (the side point) and travels vertically an extra height
of v2/2g, which is the standard height achieved in vertical projectile motion. If v2 ≈ gR, then
Eq. (3.29) gives Hmax ≈ 2R. The mud barely leaves the wheel at the top, so the maximum height is
simply 2R. It doesn’t make sense to take the small-v limit (more precisely, v2 ≪ gR) of Eq. (3.29),
because this result assumes v2 > gR.
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3.10. Clearing a wall

(a) The unknowns in this problem are v0 and θ. Problem 3.1(b) gives the maximum
height of a projectile, so we want

h =
v2

0 sin2 θ

2g
. (3.30)

And Problem 3.1(c) gives the range of a projectile, so we want

2ℓ =
2v2

0 sin θ cos θ
g

. (3.31)

Dividing Eq. (3.30) by Eq. (3.31) gives

h
ℓ
=

sin θ
2 cos θ

=⇒ tan θ =
2h
ℓ
. (3.32)

This means that you should pretend that the wall is twice as tall as it is, and then aim
for the top of that imaginary wall.

Limits: If h → 0 then θ → 0. And if h → ∞ then θ → 90◦. Both of these limits make sense.

(b) First solution: If tan θ = 2h/ℓ, then drawing a right triangle with legs of length ℓ
and 2h tells us that sin θ = 2h/

√
4h2 + ℓ2. So Eq. (3.30) gives

h =
v2

0

2g
· 4h2

4h2 + ℓ2 =⇒ v2
0 = g

(
4h2 + ℓ2

2h

)
. (3.33)

(Eq. (3.31) would give the same result.) We want to minimize this function of h.
Setting the derivative equal to zero gives (ignoring the denominator of the derivative,
since we’re setting the result equal to zero)

0 = 2h(8h) − (4h2 + ℓ2) · 2 =⇒ 0 = 4h2 − ℓ2 =⇒ h =
ℓ

2
. (3.34)

If h takes on this value, then Eq. (3.32) gives tan θ = 2(ℓ/2)/ℓ = 1 =⇒ θ = 45◦.
You should convince yourself why this result is consistent with the familiar fact that
θ = 45◦ gives the maximum range of a projectile.

Limits: The v0 in Eq. (3.33) correctly goes to infinity as h → ∞. It also goes to infinity as
h → 0. This makes sense because h ≈ 0 corresponds to a nearly horizontal “line drive.” If
the speed weren’t large, then the ball would quickly hit the ground (since the initial vy would
be very small). Note that since v0 → ∞ for both h → ∞ and h → 0, a continuity argument
implies that v0 achieves a minimum for some intermediate value of h. But it takes a little work
to show that this h equals ℓ/2.

Second solution: A somewhat quicker way of obtaining v0 (without first obtaining
θ in Eq. (3.32)) is the following. Let t be the time to the top of the motion. Then
the horizontal component of v0 is ℓ/t, and the vertical component is gt (because vy
is zero at the top). From the second half of the motion, we also know that gt2/2 =
h =⇒ t2 = 2h/g. So

v2
0 = v2

x + v
2
y =

ℓ2

t2 + g
2t2 =

ℓ2

2h/g
+ g2 2h

g
= g

(
ℓ2 + 4h2

2h

)
, (3.35)

in agreement with Eq. (3.33).
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3.11. Bounce throw

From Eq. (3.6) we know that the total horizontal distance traveled for a 45◦ throw is v2
0/g.

(As always, we are ignoring air resistance, which is actually a pretty lousy approximation
for thrown balls.) For the bounce throw, each of the two bumps has a horizontal span of
v2

0/2g. The throwing speed is still v0, so we want the sin 2θ factor in Eq. (3.6) to be 1/2.
Hence 2θ = 30◦ =⇒ θ = 15◦. The (constant) horizontal component of the velocity is
therefore v0 cos 15◦ for the entire duration of the bounce throw, as opposed to v0 cos 45◦

for the original throw. Since the time of flight is inversely proportional to the horizontal
speed, the total time for the bounce throw is (v0 cos 45◦)/(v0 cos 15◦) ≈ 0.73 as long as
the total time for the original throw.

Remarks: Since cos 15◦ = cos(45◦ − 30◦), you can use the trig sum formula for cosine to show that
the exact answer to this problem is 2/(

√
3 + 1), which can be written as

√
3 − 1.

In real life, air resistance makes the trajectory be nonparabolic, and there is also an abrupt decrease
in speed at the bounce, due to friction with the ground. But it is still possible for a bounce throw
to take less time than the no-bounce throw. This is particularly relevant in baseball games. If a
player is making a long throw from the outfield (or even from third base to first base if the player
is off balance and the throwing speed is low), then a bounce throw is desirable. The advantage of
throwing in a more direct line can outweigh the disadvantage of the loss in speed at the bounce. But
the second bump in the throw needs to be relatively small.

3.12. Maximum bounce

The time it takes the ball to fall the distance h − y to the board is given by gt2/2 =
h − y =⇒ t =

√
2(h − y)/g. The speed at this time is v = gt =

√
2g(h − y). (This is

just the standard vf =
√

2ad result that follows from Eq. (2.4) when vi = 0.) Since the
collision is elastic, this is also the horizontal speed vx right after the bounce.

The time to fall the remaining distance y to the ground after the horizontal bounce is given
by gt2/2 = y =⇒ t =

√
2y/g. The horizontal distance traveled is then

d = vx t =
√

2g(h − y)

√
2y
g
= 2

√
y(h − y). (3.36)

Our goal is therefore to maximize the function hy− y2. Setting the derivative equal to zero
gives 0 = h − 2y =⇒ y = h/2. So the board should be at the halfway point. The desired
horizontal distance is then d = 2

√
(h/2)(h − h/2) = h.

Limits: The distance d in Eq. (3.36) goes to zero for both y = 0 and y = h. These limits make sense.
In the first case, the board is on the ground, so there is no time after the collision for the ball to travel
any horizontal distance. In the second case, the board is located right where the ball is released, so
the horizontal speed after the “collision” is zero, and the ball falls straight down.

3.13. Falling along a right triangle

(a) If θ is the inclination angle of the hypotenuse, then the component of the gravitational
acceleration along the hypotenuse is g sin θ, where sin θ = b/

√
a2 + b2. Using d =

at2/2 (this a is the acceleration, not the length of the lower leg!), the time to travel
along the hypotenuse is given by

√
a2 + b2 =

1
2

(
g

b
√

a2 + b2

)
t2
H =⇒ tH =

√
2(a2 + b2)

gb
. (3.37)

Limits: If a → ∞ or b→ ∞ or b→ 0, then tH → ∞, which makes sense.

(b) The time to fall to C is given by gt2
1/2 = b =⇒ t1 =

√
2b/g. The speed at C is then

gt1 =
√

2gb. The particle then travels along the bottom leg of the triangle at this
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constant speed, which takes a time of t2 = a/
√

2gb. The total time is therefore

tL = t1 + t2 =

√
2b
g
+

a√
2gb

. (3.38)

Limits: Again, if a → ∞ or b→ ∞ or b→ 0, then tL → ∞.

(c) If a = 0 then both tH and tL reduce to
√

2b/g.

(d) If b ≪ a then tH ≈
√

2a/
√
gb (the b2 term in Eq. (3.37) is negligible), and tL ≈

a/
√

2gb (the first term in Eq. (3.38) is negligible). So in this limit we have

tH ≈ 2tL. (3.39)

This makes sense for the following reason. In the journey along the legs, the particle
is moving at the maximum speed of

√
2gb for essentially the entire time. But in

the journey along the hypotenuse, the particle has the same maximum speed (as you
can show with kinematics; this also follows quickly from conservation of energy,
discussed in Chapter 5), and the average speed is half of the maximum speed, because
the acceleration is constant.

(e) Setting the tH in Eq. (3.37) equal to the tL in Eq. (3.38) gives√
2(a2 + b2)

gb
=

√
2b
g
+

a√
2gb

=⇒ 2
√

a2 + b2 = 2b + a

=⇒ 4(a2 + b2) = 4b2 + 4ba + a2 =⇒ 3a2 = 4ba

=⇒ a =
4b
3
. (3.40)

So the two times are equal if we have a 3-4-5 right triangle, with the bottom leg being
the longer one.

Remarks: Without doing any calculations, the following continuity argument demonstrates
that there must exist a triangle shape for which tH equals tL. We found in part (d) that tH > tL
(by a factor of 2) when b ≪ a. But tH < tL when a ≪ b. This can be seen by noting
that tH = tL when a = 0 and that a appears only at second order in the expression for tH
in Eq. (3.37), but at first order in the expression for tL in Eq. (3.38). When a is small, the
second-order a2 term is much smaller than the first-order a term, making tH smaller than tL.
The preceding tH > tL and tH < tL inequalities imply, by continuity, that there must exist
some relation between a and b for which the two times are equal.
Note that since the times are equal in both the 3-4-5 case and the a = 0 case, the ratio R ≡
tH/tL must achieve an extremum (it’s a minimum) somewhere in between. As an exercise,
you can show that this occurs when a = b/2. The associated minimum is R = 2/

√
5 ≈ 0.89.

The plot of R vs. x ≡ a/b is shown in Fig. 3.25. In terms of x, you can show that R(x) =

0 1 2 3 4 5 6

0.5

1.0

1.5

2.0

x

R

Figure 3.25

2
√

1 + x2/(2+ x). The value x ≡ a/b = 0 corresponds to a tall thin triangle (with R = 1), and
x ≡ a/b = ∞ corresponds to a wide squat triangle (with R = 2). You should think physically
about the competing effects that make tH larger than tL (that is, R > 1) in some (most) cases,
but smaller in others.

3.14. Throwing to a cliff

(a) If t is the time to hit the edge of the cliff, then the standard expressions for the
horizontal and vertical positions yield

L = (v0 cos θ)t,

L = (v0 sin θ)t − gt2

2
. (3.41)
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Solving for t in the first equation and plugging the result into the second equation
gives

L = v0 sin θ
(

L
v0 cos θ

)
− g

2

(
L

v0 cos θ

)2

= L tan θ − gL2

2v2
0 cos2 θ

. (3.42)

Solving for v0 yields

v0 =

√
gL

2 cos θ(sin θ − cos θ)
. (3.43)

(b) If θ → 90◦ then cos θ → 0, so v0 → ∞. This makes sense, because the ball is
essentially thrown straight up. The horizontal component of the velocity is very
small, so the ball needs to spend a very long time in the air. It must therefore have a
very large initial speed.
If θ → 45◦ then sin θ → cos θ, so v0 → ∞. This also makes sense, because the ball
is aimed right at the corner of the cliff, so if it isn’t thrown infinitely fast, it will have
time to fall down relative to the “zero-gravity” straight-line path and hence hit below
the corner.

Remark: Since the speed v0 goes to infinity for both θ → 45◦ and θ → 90◦, by continuity it
must achieve a minimum value for some angle in between. As an exercise, you can show that
v0 is minimum when θ = 3π/8 = 67.5◦, which happens to be exactly halfway between 45◦

and 90◦.

3.15. Throwing from a cliff

With y = 0 taken to correspond to the base of the cliff, the height of the ball as a function
of time is y(t) = h + (v sin θ)t − gt2/2. The ball hits the ground when this equals zero,
which gives

g

2
t2 − (v sin θ)t − h = 0 =⇒ t =

v sin θ +
√
v2 sin2 θ + 2gh

g
, (3.44)

where we have chosen the “+” root because t must be positive. (The “−” root corresponds
to the negative time at which the parabolic motion would hit y = 0 if it were extended
backward through the cliff.) The desired horizontal position at this time is

x = (v cos θ)t =
v cos θ

g

(
v sin θ +

√
v2 sin2 θ + 2gh

)
. (3.45)

Limits: If θ = π/2 then x = 0, of course, because the ball is thrown straight up. If θ = 0 then
x = v

√
2h/g. This is correct because the ball is fired horizontally, so the time to fall the height h is

the standard
√

2h/g. And since the horizontal speed is always v, the horizontal distance is v
√

2h/g.

If h = 0 then x = (2v2/g) sin θ cos θ, which is the standard projectile range on flat ground. If h → ∞
then we can ignore the v2 sin2 θ under the square root, and we end up with

x ≈ v2 sin θ cos θ
g

+ (v cos θ)

√
2h
g
. (3.46)

The first term here is the horizontal distance traveled by the time the ball reaches the highest point
in its motion. The second term is the horizontal distance traveled during the time it takes to fall a
height h from the highest point (because

√
2h/g is the time it takes to fall a height h).

However, the reason why Eq. (3.46) isn’t exact is that after falling a distance h from the highest point,
the ball hasn’t quite reached the ground, because there is still an extra distance to fall, corresponding
to the initial gain in height from the top of the cliff to the highest point. From Eq. (3.6) this height
is (v2/2g) sin2 θ. But the ball is traveling so fast (assuming h is large) during this last stage of
the motion that it takes a negligible time to fall through the last (v2/2g) sin2 θ interval and hit the
ground. The speed is essentially gt = g

√
2h/g =

√
2gh at this point, so the additional time is
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approximately (v2/2g) sin2 θ/
√

2gh. You can show by using a Taylor series that the next term in
the approximation to the time in Eq. (3.44) would yield this tiny additional time. (You will want
to factor the 2gh out of the square root, to put it in the standard

√
1 + ϵ form.) Further corrections

from additional terms in the Taylor series correspond to the fact that the speed isn’t constant during
this final tiny time.

3.16. Throwing on stairs

(a) When the ball reaches the corner of the N th step, it has traveled a distance of Nℓ both
sideways and downward. So if t is the time in the air, then looking at the horizontal
distance gives vt = Nℓ, and looking at the vertical distance gives gt2/2 = Nℓ.
Solving for t in the first of these equations and plugging the result into the second
yields

g

2

(
Nℓ
v

)2

= Nℓ =⇒ v =

√
Nℓg

2
. (3.47)

Limits: Big N , ℓ, or g implies big v, as expected.

(b) As we noted above, the time needed to fall the distance Nℓ to the corner of the N th
step is given by

1
2
gt2

N = Nℓ =⇒ tN =

√
2Nℓ
g

. (3.48)

Likewise, the total time needed to fall to the (N +1)st step is tN+1 =
√

2(N + 1)ℓ/g.
The difference in these times is the time of flight from the N th corner to the (N +1)st
step. So the horizontal distance along the (N+1)st step is (using the result for v from
part (a))

d = v(tN+1 − tN ) =

√
Nℓg

2
*.,
√

2(N + 1)ℓ
g

−
√

2Nℓ
g

+/-
= ℓ

( √
N (N + 1) − N

)
. (3.49)

(c) We need to apply the Taylor series
√

1 + ϵ ≈ 1 + ϵ/2 to the above result for d. If we
take out a factor of

√
N2 from the square root, it will take the requisite

√
1 + ϵ form.

We then have

d = Nℓ *,
√

1 +
1
N
− 1+- ≈ Nℓ

((
1 +

1
2N

)
− 1

)
=
ℓ

2
. (3.50)

(d) The x component of the velocity is (always) vx = v =
√

Nℓg/2. The y component
of the velocity at the corner of the N th step is vy = gtN = g

√
2Nℓ/g =

√
2Nℓg.

The ratio of these components is vy/vx = 2.
This is consistent with the result in part (c), because for large N , the ball is moving
very fast when it grazes the corner, so it travels essentially in a straight line in going
to the next step; there’s basically no time to accelerate and have the trajectory bend.
From part (c), we know that the ball goes down a distance ℓ, and sideways a distance
ℓ/2. These distances imply (in the straight-line-trajectory approximation) that the
ratio of the velocity components is vy/vx = ℓ/(ℓ/2) = 2, in agreement with the ratio
obtained directly from the components calculated at the corner.

Units: Note that this ratio of 2 is independent of ℓ, g, and N . It can’t depend on g due to the
seconds in g’s units. And then it can’t depend on ℓ due to the meters in ℓ’s units. The argument
that eliminates N is a little tricker, but it is short: The ratio of the velocity components can’t
depend on N , because we could simply turn each step into many little ones. N therefore
increases, but the velocity components are the same; the ball has no clue that we subdivided
the steps, so the velocity components can’t change.
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3.17. Bullet and sphere

First solution: If we take the origin to be the center of the sphere, then the projectile
motion is given by

x(t) = v0t and y(t) = R − 1
2
gt2. (3.51)

Plugging the t from the first equation into the second gives

y = R − gx2

2v2
0

. (3.52)

If a point on the sphere (which is a 2-D circle for our purposes) is a distance x to the right
of the center, then by the Pythagorean theorem it is a distance

√
R2 − x2 above the center.

So the y coordinate is y =
√

R2 − x2. Taking the R2 out of the square root and using√
1 + ϵ ≈ 1 + ϵ/2 gives the approximate expression for y as a function of (small) x:

y = R

√
1 − x2

R2 ≈ R
(
1 − x2

2R2

)
= R − x2

2R
. (3.53)

Comparing Eqs. (3.52) and (3.53), we see that the projectile motion matches up with the
circle (at least for small x) if

g

2v2
0

=
1

2R
=⇒ v0 =

√
gR. (3.54)

If v0 takes on this value, you can quickly show that the y value in Eq. (3.52) satisfies
x2 + y2 ≥ R2. That is, the projectile motion always lies outside the circle, which is
intuitively reasonable. So the bullet does indeed avoid touching the sphere if v0 =

√
gR.

The bullet hits the ground when y = −R (because we defined the origin to be the center
of the sphere). Using the expression for y in Eq. (3.52) with v2

0 = gR, we find the desired
distance along the ground to be

R − x2

2R
= −R =⇒ xg = 2R. (3.55)

Units: Note that considerations of units tells us that xg must be proportional to R. In general it
depends on v0, but we’ve specifically chosen v0 to equal

√
gR; and xg can’t depend on g, due to the

seconds in g. But it takes a calculation to show that there is a factor of 2 out front.

Limits: Large R or large g implies large v0, which makes sense. Large R implies large xg, which
also makes sense.

Second solution: A quicker way of finding v0 is to use the fact that the radial acceleration
is given by a = v2/r , where r is the radius of the circle that the parabolic trajectory
instantaneous matches up with. But the acceleration of the bullet is also of course just
g, because it is undergoing freefall projectile motion (assuming that it isn’t touching the
sphere). So if we want the radius of the instantaneous circle to be R, then we need

v2
0

R
= g =⇒ v0 =

√
gR. (3.56)

3.18. Throwing on an inclined plane

(a) If θ is very small (so that the plane is nearly horizontal), then the point P is essentially
at the top of the ball’s parabolic motion. So P is certainly higher than the starting
point.
In the other extreme where θ is close to 90◦ (so that the plane is nearly vertical),
the ball starts out moving essentially horizontally. So all later points in the motion
(including P) are lower than the starting point.
Therefore, by continuity there must exist a θ between 0 and 90◦ for which P has the
same height as the starting point.
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(b) We’ll calculate the special value of θ by finding the time at which the ball returns to
the starting height, and also the time at which the ball is at point P farthest from the
plane. We’ll then set these two times equal to each other.
The ball is thrown at an angle of 90◦ − θ with respect to horizontal, so the vertical
component of the initial velocity is v0 cos θ (as opposed to the usual v0 sin θ). The
time to the top of the parabolic motion is therefore v0 cos θ/g. The time to fall back
down to the initial height is twice this, or 2v0 cos θ/g.
The time to reach the point P farthest from the plane can be found in the following
quick manner, by using tilted axes. The acceleration components parallel and per-
pendicular to the plane are g sin θ and g cos θ, respectively. We aren’t concerned with
the first of these; the motions in the two tilted directions are independent, and we are
concerned only with the motion perpendicular to the plane. The g cos θ acceleration
perpendicular to the plane tells us that the time to reach P equals v0/g cos θ. This
is true because the velocity component perpendicular to the plane at the start is just
v0, while the velocity component perpendicular to the plane at P is zero (by defini-
tion, since P is the farthest point from the plane). Basically, someone living in the
tilted-axis world would think that the acceleration due to gravity is g cos θ “down-
ward” toward the plane, while there is also an additional mysterious force causing an
acceleration of g sin θ “rightward.”
The time to return to the initial height is the same as the time to reach P if

2v0 cos θ
g

=
v0

g cos θ
=⇒ cos2 θ =

1
2
=⇒ θ = 45◦. (3.57)

The corresponding trajectory is sketched in Fig. 3.26. You can show that P is a

θ

P

v0

Figure 3.26

distance v2
0/
√

2g from the plane in this case.

3.19. Ball landing on a block

First solution: Let the initial speed of the block be u, and let the initial speed of the ball
be v. Our strategy will be to (1) equate the times when the ball hits the plane and when
the block reaches its maximum height, and then (2) equate the distances along the plane
at this time.

Since the slope of the plane is tan β, the ball hits the plane when its coordinates satisfy
y/x = tan β. Using y = (v sin θ)t − gt2/2 and x = (v cos θ)t, this becomes

(v sin θ)t − gt2/2
(v cos θ)t

= tan β =⇒ thit =
2v cos θ

g
(tan θ − tan β). (3.58)

The block reaches its maximum height at tmax = u/(g sin β), because the acceleration
downward along the plane is g sin β, so this is the time when the speed is zero. Equating
tmax with thit gives

u
g sin β

=
2v cos θ

g
(tan θ − tan β) =⇒ u = 2v sin β cos θ(tan θ − tan β). (3.59)

Now let’s demand that the distances along the plane are equal at this time. The ball’s
distance along the plane is x/ cos β = (v cos θ)t/ cos β. And the block’s distance is
ut − (g sin β)t2/2, because it undergoes motion with constant acceleration g sin θ pointing
down the plane. Equating these distances, canceling a factor of t, and using t = u/(g sin β)
from above, we obtain

v cos θ
cos β

= u − 1
2

(g sin β)
u

g sin β
=⇒ v cos θ =

u cos β
2

. (3.60)

This makes sense; the constant horizontal speed of the ball (the left-hand side) correctly
equals the average horizontal speed of the block (the right-hand side); the block starts with
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ux = u cos θ and ends up with ux = 0. Plugging the u from Eq. (3.59) into Eq. (3.60) gives

v cos θ = v sin β cos θ(tan θ − tan β) · cos β
=⇒ 1 = sin β cos β(tan θ − tan β)

=⇒ tan θ = tan β +
1

sin β cos β
. (3.61)

This is the desired implicit equation that gives θ in terms of β. If β = 45◦ we have

tan θ = 1 +
1

1
√

2
· 1
√

2

= 3 =⇒ θ ≈ 71.6◦. (3.62)

Limits: If β → 90◦ then Eq. (3.61) gives θ → 90◦; this makes sense because θ must be at least as
large as β. If β → 0 then θ → 90◦; this makes sense because for a given u, the process takes a very
long time in the β → 0 limit (because the block hardly slows down on the plane). So the ball must
spend a very long time in the air. It must therefore be thrown very fast, which means that θ must be
very close to 90◦ so that the horizontal speed is essentially equal to the given speed u.

Second solution: In this solution, we’ll work with axes parallel and perpendicular to the
plane. The objects have the same acceleration along the plane, namely −g sin β. There-
fore, if their initial velocity components along the plane are equal, then these velocity
components will always be equal. And since the objects start at the same place, equal ve-
locity components implies equal positions along the plane. That is, the ball will always be
“above” the block (in the tilted reference frame), which implies that the ball will land on
the block. Since the angle between the ball’s firing angle and the plane is θ − β, equating
the initial velocity components along the plane gives

u = v cos(θ − β). (3.63)

This condition guarantees that the ball will land on the block, but let’s now also demand
that the landing happens when the block reaches its maximum height on the plane. As in
the first solution, the time for the block to reach its maximum height (where it is instanta-
neously at rest) is tmax = u/(g sin β), because g sin β is the (magnitude of the) acceleration
along the plane.

We claim that the time for the ball to return to the plane is thit = 2 · v sin(θ − β)/g cos β.
(You can verify by using the sum formula for sine that this agrees with Eq. (3.58).) This
is true because v sin(θ − β) is the initial velocity perpendicular to the plane, and g cos β
is the (magnitude of the) acceleration perpendicular to the plane. We effectively live in
a tilted world where gravity has strength g′ = g cos β in the “upward” (tilted) direction,
so the time to the “top” of the motion is the standard vy′/g

′, where vy′ = v sin(θ − β) is
the initial “upward” velocity. The total time is twice this; hence the above expression for
thit. There is also a mysterious “sideways” acceleration g sin β along the plane in our tilted
world, but this doesn’t come into play when calculating the time to return to the plane.

We want tmax and thit to be equal:

tmax = thit =⇒
u

g sin β
=

2v sin(θ − β)
g cos β

. (3.64)

Substituting the u from Eq. (3.63) into Eq. (3.64) gives

v cos(θ − β)
g sin β

=
2v sin(θ − β)

g cos β
=⇒ 1 = 2 tan(θ − β) tan β. (3.65)

You can use the sum formula for tan to verify that this leads to the same value of tan θ we
found in Eq. (3.61).
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3.20. g’s in a washer

1000 revolutions per minute equals 16.7 revolutions per second. A point on the surface
of the drum moves a distance of 2πr = 2π(0.3 m) = 1.88 m during one revolution, so the
speed of such a point is v = (1.88 m)(16.7 s−1) ≈ 31.4 m/s. The radial acceleration is
therefore ar = v2/r = (31.4 m/s)2/(0.3 m) = 3300 m/s2. Since one g is about 10 m/s2,
this acceleration is equivalent to about 330 g’s. That’s huge!

Remark: Since 31.4 m/s equals about 70 miles per hour, the results in this problem carry over to the
spinning wheels on a car moving at a good highway clip. Note that it is irrelevant that the center of
the wheel is moving down the road, as opposed to remaining stationary like the washing machine.
In the reference frame moving along with the car, the wheel is simply spinning in place, so we have
the same setup as with the washing machine. Adding on the constant velocity of the car to transform
to the reference frame of the ground doesn’t affect the acceleration of a point on the rim, because the
derivative of a constant velocity is zero.

3.21. Acceleration after one revolution

The tangential acceleration is always at, and the radial acceleration is v2/R. So our goal
is to find the value of v after one revolution. The time it takes to complete one revolution
is given by att2/2 = 2πR =⇒ t =

√
4πR/at. The speed after one revolution is therefore

v = att =
√

4πRat. (This also follows from the standard v =
√

2ad kinematic result.)
The radial acceleration is then ar = v2/R = 4πat, which is more than 12 times at (a
surprisingly large factor). The angle that the acceleration vector a makes with the radial
direction is given by tan θ = at/ar = at/(4πat) = 1/4π. This angle is about 4.5◦, which
means that a points only slightly away from the radial direction.

The angle doesn’t depend on at or R, because an angle is a dimensionless quantity, and it
is impossible to form a dimensionless quantity from at (which has units of m/s2) and R
(which has units of m).

Remark: The angle θ that a makes with the radial direction starts off at 90◦ (when v = 0 =⇒ ar = 0)
and approaches zero after a long time (when v → ∞ =⇒ ar → ∞). From the above reasoning, you
can show that the general result for θ is tan θ = R/2d, where d is the distance traveled around the
circle. The angle that a makes with the radial direction therefore equals, for example, 45◦ when the
car has traveled a distance d = R/2, which corresponds to 28.6◦ around the circle (half of a radian).

3.22. Equal acceleration components

(a) The acceleration components are ar = v2/R and at = dv/dt. We are told that
|dv/dt | = v2/R. Let’s assume for now that dv/dt is positive (so that the object is
speeding up), in which case we can ignore the absolute value operation. Separating
variables in dv/dt = v2/R and integrating gives

∫ v

v0

dv′

v′2
=

∫ t

0

dt ′

R
=⇒ −1

v

�����
v

v0

=
t
R

=⇒ 1
v0
− 1
v
=

t
R
=⇒ v(t) =

1
1
v0
− t

R

. (3.66)

If dv/dt were negative (so that the object were slowing down), then |dv/dt | would
be equal to −dv/dt. The negative sign would carry through the above calculation,
and we would end up with v(t) = 1/(1/v0 + t/R).

The distance (arclength) traveled, s, equals the integral of v. That is, s =
∫
v dt.
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Assuming that dv/dt is positive, this gives

s(t) =
∫ t

0

dt
1
v0
− t

R

= −R ln
(

1
v0
− t

R

) �����
t

0

= −R
[
ln

(
1
v0
− t

R

)
− ln

(
1
v0

)]
= −R ln

(
1/v0 − t/R

1/v0

)
= −R ln

(
1 − v0t

R

)
. (3.67)

If dv/dt is negative, the distance comes out to be s(t) = R ln(1 + v0t/R).

Limits: Using the Taylor approximation ln(1 − ϵ ) ≈ −ϵ , we find that if t is small then s(t) for
the dv/dt > 0 case behaves like s(t) ≈ −R(−v0t/R) = v0t. This is correct, because the object
hasn’t had any time to change its speed. The s(t) for the dv/dt < 0 case also correctly reduces
to v0t.

(b) In the case where dv/dt is positive, the special value of t is T = R/v0. At this time,
both the v in Eq. (3.66) and the s in Eq. (3.67) go to infinity. After this time, the
stated motion is impossible.
In the case where dv/dt is negative, v goes to zero as t → ∞. But it goes to zero
slowly enough so that the distance s diverges (slowly, like a log) as t → ∞.

Limits: Small v0 implies large T , and large R also implies large T . These make intuitive sense.

3.23. Horizontal acceleration

Let θ be the angular position below the horizontal. Then the height fallen is R + R sin θ,
which gives a speed of v =

√
2gh =

√
2gR(1 + sin θ). The radial acceleration is then ar =

v2/R = 2g(1 + sin θ). The tangential acceleration comes from the tangential component
of gravity, so it is simply at = g cos θ. The total acceleration is horizontal if the vertical
components of ar and at cancel, as shown in Fig. 3.27.2 These two vertical components

θ

θ

cancel at

ar

Figure 3.27

are ar sin θ upward and at cos θ downward. So we want

ar sin θ = at cos θ
=⇒ 2g(1 + sin θ) · sin θ = g cos θ · cos θ

=⇒ 2 sin θ + 2 sin2 θ = cos2 θ

=⇒ 2 sin θ + 2 sin2 θ = 1 − sin2 θ

=⇒ 3 sin2 θ + 2 sin θ − 1 = 0
=⇒ (3 sin θ − 1)(sin θ + 1) = 0

=⇒ sin θ =
1
3
, (3.68)

which gives θ ≈ 19.5◦ or θ ≈ 160.5◦. The positions corresponding to these two angles are
shown in Fig. 3.28. 19.5

Figure 3.28

There is also another root of the above quadratic equation, namely sin θ = −1 =⇒ θ =
−90◦. This corresponds to the top of the hoop, where ar = at = 0. So the acceleration
does indeed have a zero vertical component there. But it’s semantics as to whether or not
the zero vector is “horizontal.”

You can also solve this problem by considering the forces on the bead; see Problem 5.22.

2A common mistake is to say that the vertical component of ar should cancel the downward acceleration g due to
gravity. This isn’t correct, because part of the gravitational force (the radial component) is already “included” in the
radial acceleration. So you’d be double counting this component of gravity.



Chapter 4

F=ma

4.1 Introduction

Newton’s laws

In the preceding two chapters, we dealt with kinematics. We took the motions of objects as given
and then looked at positions, velocities, and accelerations as functions of time. We weren’t
concerned with the forces that caused the objects’ motions. We will now deal with dynamics,
where the goal is to understand why objects move the way they do. This chapter and the following
ones will therefore be concerned with force, mass, energy, momentum, etc.

The motion of any object is governed by Newton’s three laws:

• First Law: “A body moves with constant velocity (which may be zero) unless acted on by
a force.”

If you think hard about this law, it seems a bit circular because we haven’t defined what
a force is. But if you think harder, there is in fact some content there. See Section 3.1 in
Morin (2008) for a discussion of this.

• Second Law: “The rate of change of the momentum of a body equals the force acting on
the body.”

In cases where the mass of the body doesn’t change (we’ll deal with the more general case
in Chapter 6), this law becomes

F = ma. (4.1)

This is a vector equation, so it is really three equations, namely Fx = max , Fy = may , and
Fz = maz .

• Third Law: “Given two bodies A and B, if A exerts a force on B, then B exerts an equal
and opposite force on A.”

As we’ll see in Chapter 6, this law basically postulates conservation of momentum. There
is a great deal of physical content in this law; it says that things don’t happen in isolation
by magic. Instead, if an object feels a force, then there must be another object somewhere
feeling the opposite force.

The second law, F = ma, is the one we’ll get the most mileage out of. The unit of force
is called a newton (N), and from F = ma we see that 1 N = 1 kg m/s2. A few types of forces
(gravitational, tension, normal, friction, and spring) come up again and again, so let’s take a look
at each of these in turn.

68
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Gravity

The gravitational force on an object near the surface of the earth is proportional to the mass of
the object. More precisely, the force is mg downward, where g = 9.8 m/s2. This mg force is a
special case of the more general gravitational force we will encounter in Chapter 11. Substituting
mg for the force F in Newton’s second law quickly gives mg = ma =⇒ a = g. That is, all
objects fall with the same acceleration (in the absence of air resistance).

Tension

If you pull on a rope, the rope pulls back on you with the same force, by Newton’s third law. The
magnitude of this force is called the tension in the rope. As far as the direction of the tension
goes, the question, “At a given interior point in the rope, which way does the tension point?”
can’t be answered. What we can say is that the tension at the given point pulls leftward on the
point just to its right, and pulls rightward on the point just to its left. Equivalently, the tension
pulls leftward on someone holding the right end of the rope, and it pulls rightward on someone
holding the left end of the rope.

Normal force

Whereas a tension arises from a material resisting being stretched, a normal force arises from a
material resisting being compressed. If you push leftward on the right face of a wooden block,
then the normal force from the block pushes rightward on your hand. And similarly, the leftward
force from your hand is itself a normal force pushing on the block. In the case where you push
inward on the ends of an object shaped like a rod, people sometimes say that there is a “negative
tension” in the rod, instead of calling it a normal force at the ends. But whatever name you want
to use, the rod pushes back on you at the ends. If instead of a rigid rod we have a flexible rope,
then the rope can support a tension, but not a normal force.

Friction

The friction force between two objects is extremely complicated on a microscopic scale. But
fortunately we don’t need to understand what is going on at that level to get a rough handle on
friction forces. To a good approximation under most circumstances, we can say the following
things about kinetic friction (where two objects are moving with respect to each other) and static
friction (where two objects are at rest with respect to each other).

• Kinetic friction: If there is slipping between two objects, then to a good approximation
under non-extreme conditions, the friction force is proportional to the normal force be-
tween the objects, with the constant of proportionality (called the coefficient of kinetic
friction) labeled as µk:

Fk = µk N. (4.2)

The friction force is independent of the contact area and relative speed. The direction of
the friction force on a given object is opposite to the direction of the velocity of that object
relative to the other object.

• Static friction: If there is no slipping between two objects, then to a good approximation
under non-extreme conditions, the maximum value of the friction force is proportional
to the normal force between the objects, with the constant of proportionality (called the
coefficient of static friction) labeled as µs:

Fs ≤ µs N. (4.3)

As in the kinetic case, the friction force is independent of the contact area. Note well the
equality in Eq. (4.2) and the inequality in Eq. (4.3). Equation (4.3) gives only an upper
limit on the static friction force. If you push on an object with a force that is smaller
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than µsN , then the static friction force is exactly equal and opposite to your force, and
the object stays at rest.1 But if you increase your force so that it exceeds µs N , then the
maximum friction force isn’t enough to keep the object at rest. So it will move, and the
friction force will abruptly drop to the kinetic value of µk N . (It turns out that µk is always
less than or equal to µs; see Problem 4.1 for an explanation why.)

The expressions in Eqs. (4.2) and (4.3) will of course break down under extreme conditions
(large normal force, high relative speed, pointy shapes). But they work fairly well under normal
conditions. Note that the coefficients of kinetic and static friction, µk and µs, are properties of
both surfaces together. A single surface doesn’t have a coefficient of friction. What matters is
how two surfaces interact.

Spring force

To a good approximation for small displacements, the restoring force from a spring is propor-
tional to the stretching distance. That is, F = −kx, where k is the spring constant. A large value
of k means a stiff spring; a small value means a weak spring. The reason why the F = −kx
relation is a good approximation for small displacements in virtually any system is explained in
Problem 10.1.

If x is positive then the force F is negative; and if x is negative then F is positive. So F = −kx
does indeed describe a restoring force, where the spring always tries to bring x back to zero. The
F = −k x relation, known as Hooke’s law, breaks down if x is too large, but we’ll assume that it
holds for the setups we’re concerned with.

The tension and normal forces discussed above are actually just special cases of spring forces.
If you stand on a floor, the floor acts like a very stiff spring. The matter in the floor compresses a
tiny amount, exactly the amount that makes the upward “spring” force (which we call a normal
force in this case) be equal to your weight.

We’ll always assume that our springs are massless. Massive springs can get very complicated
because the force (the tension) will in general vary throughout the spring. In a massless spring,
the force is the same everywhere in it. This follows from the reasoning in Problem 4.3(a).

Centripetal force

The centripetal force is the force that keeps an object moving in a circle. Since we know from
Eq. (3.7) that the acceleration for uniform (constant speed) circular motion points radially inward
with magnitude a = v2/r , the centripetal force likewise points radially inward with magnitude
F = ma = mv2/r . This force might be due to the tension in a string, or the friction force acting
on a car’s tires as it rounds a corner, etc. Since v = rω, we can also write F as mrω2.

The term “centripetal” isn’t the same type of term as the above “gravity,” “tension,” etc.
descriptors, because the latter terms describe the type of force, whereas “centripetal” simply
describes the direction of the force (radially inward). The word “centripetal” is therefore more
like the words “eastward” or “downward,” etc. For example, we might say, “The downward force
is due to gravity,” or “The centripetal force is due to the tension in a string.” The centripetal
force is not a magical special new kind of force. It is simply one of the standard forces (or a
combination of them) that points radially inward, and whose magnitude we know always equals
mv2/r .

Free-body diagrams

The “F” in Newton’s second law in Eq. (4.1) is the total force on an object, so it is important to
determine what all the various forces are. The best way to do this is to draw a picture. The picture
of an object that shows all of the forces acting on it is called a free-body diagram. More precisely,

1The friction force certainly can’t be equal to µsN in this case, because if you push rightward with a very small
force, then the leftward (incorrect) µsN friction force would cause there to be a nonzero net force, which would hurl the
object leftward back toward you!
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a free-body diagram shows all of the external forces (that is, forces due to other objects) acting
on a given object. There are undoubtedly also internal forces acting within the object; each atom
might be pushing or pulling on the atom next to it. But these internal forces cancel in pairs (by
Newton’s third law), so they don’t produce any acceleration of the object. Only external forces
can do that. (We’ll assume we have a rigid object, so that the distance between any two given
points remains fixed.)

In simple cases (for example, ones involving only one force), you can get away with not
drawing a free-body diagram. But in more complicated cases (for example, ones involving forces
pointing in various directions), a diagram is absolutely critical. A problem is often hopeless
without a diagram, but trivial with one.

The length of a force vector is technically a measure of the magnitude of the force. But when
drawing a free-body diagram, the main point is just to indicate all the forces that exist. In general
we don’t yet know the relative sizes, so it’s fine to give all the vectors the same length (unless it’s
obvious that a certain force is larger than another). Also, the exact location of each force vector
isn’t critical (at least in this chapter), although the most sensible thing to do is to draw the vector
near the place where the force acts. However, when we discuss torque in Chapter 7, the location
of the force will be important.

Note that due to Newton’s third law, for every force vector that appears in the free-body
diagram for one object, there is an opposite force vector that appears in the free-body diagram
for another object. An example involving two blocks on a table is shown in Fig. 4.1. If a person
applies a force F to the left block, then the two free-body diagrams are shown (assume there
is no friction from the table). Note that the force pushing the right block rightward is only the
normal force between the blocks, and not the applied force F. True, the N force wouldn’t exist
without the F force, but the right block feels only the N force; it doesn’t care about the original
cause of N .

F F N
N

N1 N2

m1gm1

m2 gm2

table

(picture of setup) (free-body diagrams)

Figure 4.1

If we happened to be concerned also with the free-body diagram for the person applying the
force F, then we would draw a force F acting leftward, along with a downward mg gravitational
force and an upward normal force from the ground (and also probably a rightward friction force
from the ground). Likewise, the free-body diagram for the table would involve gravity and the
N1 and N2 normal forces pointing downward, along with upward normal forces from the ground
at the bases of the legs. But if we’re concerned only with the blocks, then all of this other
information is irrelevant.

If the direction of the acceleration of an object is known, it is often helpful to draw the
acceleration vector in the free-body diagram. But you should be careful to draw this vector
with a dotted line or something similar, so that you don’t mistake it for a force. Remember that
although F equals ma, the quantity ma is not a force; see the last section of this introduction.

Atwood’s machines

The name Atwood’s machine is the term used for any system of pulleys, strings, and masses.
Although a subset of these systems is certainly very useful in everyday life (a “block and tackle”
enables you to lift heavy objects; see Problem 4.4), the main reason for all the Atwood’s prob-
lems in this chapter is simply that they’re good practice for drawing free-body diagrams and
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applying F = ma. An additional ingredient in solving any Atwood’s problem is the so-called
“conservation of string” relation. This is the condition that the length of any given string doesn’t
change. This constrains the motion of the various masses and pulleys. A few useful Atwood’s
facts that come up again and again are derived in Problem 4.3. In this chapter we will assume
that all strings and pulleys are massless.

The four forces

Having discussed many of the forces we see in everyday life, we should make at least a brief
mention of where all these forces actually come from. There are four known fundamental forces
in nature:

• Gravitational: Any two masses attract each other gravitationally. We are quite familiar
with the gravitational force due to the earth. The gravitational force between everyday-
sized objects is too small to observe without sensitive equipment. But on the planetary
scale and larger, the gravitational force dominates the other three forces.

• Electromagnetic: The single word “electromagnetic” is indeed the proper word to use
here, because the electric and magnetic forces are two aspects of the same underlying
force. (In some sense, the magnetic force can be viewed as a result of combining the
electric force with special relativity.) Virtually all everyday forces have their origin in the
electric force. For example, a tension in a string is due to the electric forces holding the
molecules together in the string.

• Weak: The weak force is responsible for various nuclear processes; it isn’t too important
in everyday life.

• Strong: The strong force is responsible for holding the protons and neutrons together in
a nucleus. Without the strong force, matter as we know it wouldn’t exist. But taking the
existence of matter for granted, the strong force doesn’t show up much in everyday life.

ma is not a force!

Newton’s second law is “F equals ma,” which says that ma equals a force. Does this imply that
ma is a force? Absolutely not. What the law says is this: Write down the sum of all the forces on
an object, and also write down the mass times the acceleration of the object. The law then says
that these two quantities have the same value. This is what a physical law does; it says to take
two things that aren’t obviously related, and then demand that they are equal. In a simple freefall
setup, the F = ma equation is mg = ma, which tells us that a equals g. But just because a = g,
this doesn’t mean that the two side of mg = ma represent the same type of thing. The left side
is a force, the right side is a mass times an acceleration. So when drawing a free-body diagram,
you should not include ma as one of the forces. If you do, you will end up double counting
things. However, as mentioned above, it is often helpful to indicate the acceleration of the object
in the free-body diagram. Just be careful to distinguish this from the forces by drawing it with a
dotted line.

4.2 Multiple-choice questions

4.1. Two people pull on opposite ends of a rope, each with a force F. The tension in the rope
is

(a) F/2 (b) F (c) 2F
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4.2. You accelerate the two blocks in Fig. 4.2 by pushing on the bottom block with a force
M

m

F

Figure 4.2

F. The top block moves along with the bottom block. What force directly causes the top
block to accelerate?

(a) the normal force between the blocks

(b) the friction force between the blocks

(c) the gravitational force on the top block

(d) the force you apply to the bottom block

4.3. Three boxes are pushed with a force F across a frictionless table, as shown in Fig. 4.3. Let

F
m 2m

3m

Figure 4.3N1 be the normal force between the left two boxes, and let N2 be the normal force between
the right two boxes. Then

(a) F = N1 = N2

(b) F + N1 = N2

(c) F > N1 = N2

(d) F < N1 < N2

(e) F > N1 > N2

4.4. Two blocks with masses 2 kg and 1 kg lie on a frictionless table. A force of 3 N is applied
as shown in Fig. 4.4. What is the normal force between the blocks?

3 N
2 kg

1 kg

Figure 4.4(a) 0 (b) 0.5 N (c) 1 N (d) 2 N (e) 3 N

4.5. In the system shown in Fig. 4.5, the ground is frictionless, the blocks have mass m and
T

m 2m

Figure 4.5

2m, and the string connecting them is massless. If you accelerate the system to the right,
as shown, the tension is the same everywhere throughout the string connecting the masses
because

(a) the string is massless

(b) the ground is frictionless

(c) the ratio of the masses is 2 to 1

(d) the acceleration of the system is nonzero

(e) The tension is the same throughout any string; no conditions are necessary.

4.6. You are in a plane accelerating down a runway during takeoff, and you are holding a
pendulum (say, a shoe hanging from a shoelace). The string of the pendulum

(a) hangs straight downward

(b) hangs downward and forward, because the net force on the pendulum must be zero

(c) hangs downward and forward, because the net force must be nonzero

(d) hangs downward and backward, because the net force must be zero

(e) hangs downward and backward, because the net force must be nonzero

4.7. When you stand at rest on a floor, you exert a downward normal force on the floor. Does
this force cause the earth to accelerate in the downward direction?

(a) Yes, but the earth is very massive, so you don’t notice the motion.

(b) Yes, but you accelerate along with the earth, so you don’t notice the motion.

(c) No, because the normal force isn’t a real force.

(d) No, because you are also pulling on the earth gravitationally.

(e) No, because there is also friction at your feet.
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4.8. If you stand at rest on a bench, the bench exerts a normal force on you, equal and opposite
to your weight. Which force is related to this normal force by Newton’s third law?

(a) the gravitational force from the earth on you

(b) the gravitational force from you on the earth

(c) the normal force from you on the bench

(d) none of the above

4.9. The driver of a car steps on the gas, and the car accelerates with acceleration a. When
writing down the horizontal F = ma equation for the car, the “F” acting on the car is

(a) the normal force between the tires and the ground

(b) the friction force between the tires and the ground

(c) the force between the driver’s foot and the pedal

(d) the energy obtained by burning the gasoline

(e) the backward friction force that balances the forward ma force

4.10. The static friction force between a car’s tires and the ground can do all of the following
except

(a) speed the car up

(b) slow the car down

(c) change the car’s direction

(d) It can do all of the above things.

4.11. A car is traveling forward along a road. The driver wants to arrange for the car’s accelera-
tion to point diagonally backward and leftward. The driver should

(a) turn right and accelerate

(b) turn right and brake

(c) turn left and accelerate

(d) turn left and brake

4.12. A block is at rest on a plane inclined at angle θ. The forces on it are the gravitational,
normal, and friction forces, as shown in Fig. 4.6. These are not drawn to scale. Which of

F Nf

mg θ

Figure 4.6

the following statements is always true, for any θ?

(a) mg ≤ N and mg ≤ Ff

(b) mg ≥ N and mg ≥ Ff

(c) Ff = N

(d) Ff + N = mg

(e) Ff > N if µs > 1
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4.13. A block sits on a plane, and there is friction between the block and the plane. The plane is
accelerated to the right. If the block remains at the same position on the plane, which of
the following pictures might show the free-body diagram for the block? (All of the vectors
shown are forces.)

f

N
F

mg

ma

θ

N

mg

θ

ma

mg

θ

f

N

F

f
F

mg

θ θ

(zero force)

(a)

(d) (e)

(b) (c)

4.14. A block with mass m sits on a frictionless plane inclined at angle θ, as shown in Fig. 4.7.
θ

a

m

Figure 4.7

If the plane is accelerated to the right with the proper acceleration that causes the block
to remain at the same position with respect to the plane, what is the normal force between
the block and the plane?

(a) mg (b) mg sin θ (c) mg/ sin θ (d) mg cos θ (e) mg/ cos θ

4.15. A bead is arranged to move with constant speed around a hoop that lies in a vertical plane.
The magnitude of the net force on the bead is

(a) largest at the bottom

(b) largest at the top

(c) largest at the side points

(d) the same at all points

4.16. A toy race car travels through a loop-the-loop (a circle in a vertical plane) on a track.
Assuming that the speed at the top of the loop is above the threshold to remain in contact
with the track, the car’s acceleration at the top is

(a) downward and larger than g

(b) downward and smaller than g

(c) zero

(d) upward and smaller than g

(e) upward and larger than g
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4.17. A plane in a holding pattern is flying in a horizontal circle at constant speed. Which of the
following free-body diagrams best illustrates the various forces acting on the plane at the
instant shown? (See Problem 4.20 for a quantitative treatment of this setup.)

(a) (b)

(d) (e)

(c)

4.18. A mass hangs from a spring and oscillates vertically. The top end of the spring is attached
to the top of a box, and the box is placed on a scale, as shown in Fig. 4.8. The reading on

scale

Figure 4.8

the scale is largest when the mass is

(a) at its maximum height

(b) at its minimum height

(c) at the midpoint of its motion

(d) All points give the same reading.

4.19. A spring with spring constant k hangs vertically from a ceiling, initially at its relaxed
length. You attach a mass m to the end and bring it down to a position that is 3mg/k below
the initial position. You then let go. What is the upward acceleration of the mass right
after you let go?

(a) 0 (b) g (c) 2g (d) 3g (e) 4g

4.20. Two springs both have spring constant k and relaxed length zero. They are each stretched
to a length ℓ and then attached to two masses and a wall, as shown in Fig. 4.9. The masses

m m

kk

l l

Figure 4.9 are simultaneously released. Immediately afterward, the magnitudes of the accelerations
of the left and right masses are, respectively,

(a) 2kℓ/m and kℓ/m

(b) kℓ/m and 2kℓ/m

(c) kℓ/m and kℓ/m

(d) 0 and 2kℓ/m

(e) 0 and kℓ/m

4.21. A mass 2m suspended from a given spring causes it to stretch relative to its relaxed length.
The mass and the spring are then each cut into two identical pieces and connected as shown
in Fig. 4.10. Is the bottom of the lower mass higher than, lower than, or at the same height

not drawn 

to scale

2m

m

m

Figure 4.10

as the bottom of the original mass? (This one takes a little thought.)

(a) higher

(b) lower

(c) same height
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4.22. What is the conservation-of-string relation for the Atwood’s machine shown in Fig. 4.11?

a1 a2

a3

Figure 4.11

All of the accelerations are defined to be positive upward.

(a) a3 = −2(a1 + a2)

(b) a3 = −(a1 + a2)

(c) a3 = −(a1 + a2)/2

(d) a3 = −(a1 + a2)/4

(e) a3 = −2a2

4.23. What is the conservation-of-string relation for the Atwood’s machine shown in Fig. 4.12?

a1 a2

a3

Figure 4.12

All of the accelerations are defined to be positive upward.

(a) a3 = −a1 − a2

(b) a3 = −2a1 − 2a2

(c) a3 = −4a2

(d) 2a3 = −a1 − a2

(e) 4a3 = −a1 − a2

4.24. What is the conservation-of-string relation for the Atwood’s machine shown in Fig. 4.13?

a1 a2 a3

Figure 4.13

All of the accelerations are defined to be positive upward.

(a) a1 = a3

(b) a1 = −a3

(c) a2 = −(a1 + a3)/2

(d) a2 = −(a1 + a3)

(e) a2 = −2(a1 + a3)

4.3 Problems

The first five problems are foundational problems.

4.1. Coefficients of friction

Explain why the coefficient of static friction, µs, must always be at least as large as the
coefficient of kinetic friction, µk.

4.2. Cutting a spring in half

A spring has spring constant k. If it is cut in half, what is the spring constant of each of
the resulting shorter springs?

4.3. Useful Atwood’s facts

In the Atwood’s machine shown in Fig. 4.14(a), the pulleys and strings are massless (as we
will assume in all of the Atwood’s problems in this chapter). Explain why (a) the tension
is the same throughout the long string, as indicated, (b) the tension in the bottom string is
twice the tension in the long string, as indicated, and (c) the acceleration of the right mass
is negative twice the acceleration of the left mass.

Also, in Fig. 4.14(b), explain why (d) the acceleration of the left mass equals negative the
average of the accelerations of the right two masses.
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T
T T

2T

(a) (b)

Figure 4.14

4.4. Block and tackle

(a) What force on the rope must be exerted by the person in Fig. 4.15(a) in order to hold
up the block, or equivalently to move it upward at constant speed? The rope wraps
twice around the top of the top pulley and the bottom of the bottom pulley. (Assume
that the segment of rope attached to the center of the top pulley is essentially vertical.)

(b) Now consider the case where the person (with mass m) stands on the block, as shown
in Fig. 4.15(b). What force is now required?

M

M

m

(a) (b)

Figure 4.15

4.5. Equivalent mass

In Fig. 4.16 you support the pulley system, with your hand at rest. If you have your eyes
m1 m2

Figure 4.16 closed and think that you are instead supporting a single mass M at rest, what is M in
terms of m1 and m2? Is M simply equal to m1 + m2?

The following eight problems involve Atwood’s machines. This large number of Atwood’s prob-
lems shouldn’t be taken to imply that they’re terribly important in physics (they’re not). Rather,
they are included here because they provide good practice with F = ma.

4.6. Atwood’s 1

Consider the Atwood’s machine shown in Fig. 4.17. The masses are held at rest and then

m

m M

1

2

Figure 4.17
released. In terms of m1 and m2, what should M be so that m1 doesn’t move? What
relation must hold between m1 and m2 so that such an M exists?
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4.7. Atwood’s 2

Consider the Atwood’s machine shown in Fig. 4.18. Masses of m and 2m lie on a friction-
less table, connected by a string that passes around a pulley. The pulley is connected to
another mass of 2m that hangs down over another pulley, as shown. Find the accelerations
of all three masses.

(top view) (side view)

m

2m

2m

Figure 4.18

4.8. Atwood’s 3

Consider the Atwood’s machine shown in Fig. 4.19, with masses m, m, and 2m. Find the
acceleration of the mass 2m.

4.9. Atwood’s 4

In the Atwood’s machine shown in Fig. 4.20, both masses are m. Find their accelerations.

4.10. Atwood’s 5

Consider the triple Atwood’s machine shown in Fig. 4.21. What is the acceleration of the
rightmost mass? Note: The math isn’t as bad as it might seem at first. You should take
advantage of the fact that many of your F = ma equations look very similar.

m

m 2m

Figure 4.19

m

m

Figure 4.20

4m

2m

m 2m

Figure 4.21

4.11. Atwood’s 6

Consider the Atwood’s machine shown in Fig. 4.22. The middle mass is glued to the long
string. Find the accelerations of all three masses, and also the tension everywhere in the
long string.

4.12. Atwood’s 7

In the Atwood’s machine shown in Fig. 4.23, both masses are m. Find their accelerations.

4.13. Atwood’s 8

In the Atwood’s machine shown in Fig. 4.24, both masses are m. The two strings that
touch the center of the left pulley are both attached to its axle. Find the accelerations of
the masses.



80 CHAPTER 4. F=MA

m m

m

Figure 4.22

m

m

Figure 4.23

m

m

Figure 4.24

4.14. No relative motion

All of the surfaces in the setup in Fig. 4.25 are frictionless. You push on the large block

a

M

m1

m2

(side view)

Figure 4.25

and give it an acceleration a. For what value of a is there no relative motion among the
masses?

4.15. Slipping blocks

A block with mass m sits on top of a block with mass 2m which sits on a table. The
coefficients of friction (both static and kinetic) between all surfaces are µs = µk = 1. A
string is connected to each mass and wraps halfway around a pulley, as shown in Fig. 4.26.
You pull on the pulley with a force of 6mg.

(a) Explain why the bottom block must slip with respect to the table. Hint: Assume that
it doesn’t slip, and show that this leads to a contradiction.

(b) Explain why the top block must slip with respect to the bottom block. (Same hint.)
(c) What is the acceleration of your hand?

m

2m

F = 6mg
µ=1

Figure 4.26

4.16. Block and wedge

A block with mass M rests on a wedge with mass m and angle θ, which lies on a table,
as shown in Fig. 4.27. All surfaces are frictionless. The block is constrained to move

M

m
θ

Figure 4.27

vertically by means of a wall on its left side. What is the acceleration of the wedge?

4.17. Up and down a plane

A block with mass m is projected up along the surface of a plane inclined at angle θ. The
initial speed is v0, and the coefficients of both static and kinetic friction are equal to 1. The
block reaches a highest point and then slides back down to the starting point.

(a) Show that in order for the block to in fact slide back down (instead of remaining at
rest at the highest point), θ must be greater than 45◦.

(b) Assuming that θ > 45◦, find the times of the up and down motions.
(c) Assuming that θ > 45◦, is the total up and down time longer or shorter than the total

time it would take (with the same initial v0) if the plane were frictionless? Or does
the answer to this question depend on what θ is? (The solution to this gets a little
messy.)
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4.18. Rope in a tube

A rope is free to slide frictionlessly inside a circular tube that lies flat on a horizontal table.
In part (a) of Fig. 4.28, the rope moves at constant speed. In part (b) of the figure, the rope
is at rest, and you pull on its right end to give it a tangential acceleration. What is the
direction of the net force on the rope in each case?

(top views)

v(a)

pull rope

at rest

(b)

Figure 4.28

4.19. Circling bucket

You hold the handle of a bucket of water and swing it around in a vertical circle, keeping
your arm straight. If you swing it around fast enough, the water will stay inside the bucket,
even at the highest point where the bucket is upside down. What, roughly, does “fast
enough” here mean? (You can specify the maximum time of each revolution.) Make
whatever reasonable assumptions you want to make for the various parameters involved.
You can work in the approximation where the speed of the bucket is roughly constant
throughout the motion.

4.20. Banking an airplane

A plane in a holding patter flies at speed v in a horizontal circle of radius R. At what angle
should the plane be banked so that you don’t feel like you are getting flung to the side in
your seat? At this angle, what is your apparent weight (that is, what is the normal force
from the seat)?

4.21. Breaking and turning

You are driving along a horizontal straight road that has a coefficient of static friction µ
with your tires. If you step on the brakes, what is your maximum possible deceleration?
What is it if you are instead traveling with speed v around a bend with radius of curvature
R?

4.22. Circle of rope

A circular loop of rope with radius R and mass density λ (kg/m) lies on a frictionless table
and rotates around its center, with all points moving at speed v. What is the tension in the
rope? Hint: Consider the net force on a small piece of rope that subtends an angle dθ.

4.23. Cutting the string

A mass m is connected to the end of a massless string of length ℓ. The top end of the string
is attached to a ceiling that is a distance ℓ above the floor. Initial conditions have been set
up so that the mass swings around in a horizontal circle, with the string always making
an angle θ with respect to the vertical, as shown in Fig. 4.29. If the string is cut, what

θ
l

l

m

Figure 4.29
horizontal distance does the mass cover between the time the string is cut and the time the
mass hits the floor?



82 CHAPTER 4. F=MA

4.24. Circling around a cone

A mass m is attached by a massless string of length ℓ to the tip of a frictionless cone,
as shown in Fig. 4.30. The half-angle at the vertex of the cone is θ. If the mass movesθ

l

m

v

Figure 4.30

around in a horizontal circle at speed v on the cone, find (a) the tension in the string, (b)
the normal force from the cone, and (c) the maximum speed v for which the mass stays in
contact with the cone.

4.25. Penny in a dryer

Consider a clothes dryer with radius R, which spins with angular frequency ω. (In other
words, consider a cylinder that spins with angular frequency ω around its axis, which is
oriented horizontally.) A small object, such as a penny, is in the dryer. The penny rotates
along with the dryer and gets carried upward, but eventually loses contact with the dryer
and sails through the air (as clothes do in a dryer), eventually coming in contact with the
dryer again. Assume for simplicity that the coefficient of friction is very large, so that the
penny doesn’t slip with respect to the dryer as long as the normal force is nonzero.

Let’s assume that you want the trajectory of the penny to look like the one shown in
Fig. 4.31, starting and ending at diametrically opposite points. In order for this to happen,

ω

(side view)

R

Figure 4.31

where must the penny lose contact with the dryer? (Give the angle θ with respect to the
vertical.) What must ω be, in terms of g and R?

4.4 Multiple-choice answers

4.1. b The tension is simply F. A common error is to double F (because there are two people
pulling) and say that the tension is 2F. This is incorrect, because every piece of the rope
pulls on the piece to its right with a force F, and also on the piece to its left with a force
F. This common value is the tension.

Remark: If you try to change the setup by replacing one person with a wall, then the wall still pulls
on the rope with a force F (assuming that the other person still does), so the setup hasn’t actually
changed at all. If you instead remove one person (say, the left one) and replace her with nothing, then
the setup has certainly changed. The remaining (right) person will accelerate the rope rightward, and
the tension will vary over the length (assuming that the rope has mass). Points closer to the left end
don’t have as much mass to their left that they need to accelerate, so the tension is smaller there.

4.2. b Friction is the horizontal force that acts on the top block.

Remark: The friction force wouldn’t exist without the normal force between the blocks, which in
turn wouldn’t exist without the gravitational force on the top block. But these forces are vertical
and therefore can’t directly cause the horizontal acceleration of the top block. Likewise, the friction
force wouldn’t exist if you weren’t pushing on the bottom block. But your force isn’t what directly
causes the acceleration of the top block; if the surfaces are greased down, then you can push on the
bottom block all you want, and the top block won’t move.

4.3. e The three boxes all have the same acceleration; call it a. Then the force F equals
F = (6m)a because this is the force that accelerates all three boxes, which have a total
mass of 6m. Similarly, N1 = (5m)a because N1 is the force that accelerates the right
two boxes. And N2 = (3m)a because N2 is the force that accelerates only the right box.
Therefore, F > N1 > N2. As a double check, the net force on the middle block is
N1 − N2 = 5ma − 3ma = 2ma, which is correctly (2m)a.

4.4. c The acceleration of the system is a = F/m = (3 N)/(3 kg) = 1 m/s2. The normal
force N on the 1 kg block is what causes this block to accelerate at 1 m/s2, so N must be
given by N = ma = (1 kg)(1 m/s2) = 1 N.

4.5. a The massless nature of the string implies that the tension is the same everywhere
throughout it, because if the tension varied along the length, then there would exist a
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massless piece that had a net force acting on it, yielding infinite acceleration. Conversely,
if the string had mass, then the tension would have to vary along it, so that there would be a
net force on each little massive piece, to cause the acceleration (assuming the acceleration
is nonzero). So none of the other answers can be the reason why the tension is the same
everywhere along the string.

4.6. e The pendulum is accelerating forward (as is everything else in the plane), so there
must be a forward net force on it. If the pendulum hangs downward and backward, then
the tension force on the pendulum’s mass is upward and forward. The upward component
cancels the gravitational force (the weight), and the forward (uncanceled) component is
what causes the forward acceleration.

Remark: If the pendulum’s mass is m, then from the above reasoning, the vertical component of
the tension is mg, and the horizontal component is ma (where a is the acceleration of the plane and
everything in it). So if the string makes an angle θ with the vertical, then tan θ = ma/mg =⇒ a =
g tan θ. You can use this relation to deduce your acceleration from a measurement of the angle θ.
Going in the other direction, a typical plane might have a takeoff acceleration of around 2.5 m/s2, in
which case we can deduce what θ is: tan θ = a/g ≈ 1/4 =⇒ θ ≈ 15◦. For comparison, a typical car
might be able to go from 0 to 60 mph (27 m/s) in 7 seconds, which implies an acceleration of about
4 m/s2 and an angle of θ = 22◦.

A more extreme case is a fighter jet taking off from an aircraft carrier. With the help of a catapult,
the acceleration can be as large as 3g ≈ 30 m/s. A pendulum in the jet would therefore hang at an
angle of tan−1(3) ≈ 72◦, which is more horizontal than vertical. In the accelerating reference frame
of the jet (accelerating frames are the subject of Chapter 12, so we’re getting ahead of ourselves
here), the direction of the hanging pendulum defines “downward.” So the pilot effectively lives in a
world where gravity points diagonally downward and backward at an angle of 72◦ with respect to
the vertical. The direction of the jet’s forward motion along the runway is therefore nearly opposite
to this “downward” direction (as opposed to being roughly perpendicular to downward in the case of
a passenger airplane). The jet pilot will therefore have the sensation that he is flying upward, even
though he is actually moving horizontally along the runway. A possible dangerous consequence of
this sensation is that if it is nighttime and there are minimal visual cues, the pilot may mistakenly try
to correct this “error” by turning downward, causing the jet to crash into the ocean.

4.7. d The normal force from you on the earth is equal and opposite to the gravitational
force from you on the earth. (Yes, you pull on the earth, just as it pulls on you.) So the net
force on the earth is zero, and it therefore doesn’t accelerate.

Remark: Similarly, you also don’t accelerate, because the normal force from the earth on you is
equal and opposite to the gravitational force from the earth on you. So the net force on you is zero.
This wouldn’t be the case if instead of standing at rest, you jump upward. You are now accelerating
upward (while your feet are in contact with the ground). And consistent with this, the upward normal
force from the earth on you is larger than the downward gravitational force from the earth on you.
So the net force on you is upward. In contrast, after you leave the ground the normal force drops to
zero, so the downward gravitational force is all there is, and you accelerate downward.

4.8. c Newton’s third law says that the forces that two bodies exert on each other are equal
in magnitude and opposite in direction. The given force is the (upward) normal force from
the bench on you. The two objects here are the bench and you, so the force that is related
by the third law must be the (downward) normal force from you on the bench. Similarly,
choices (a) and (b) are a third-law pair.

Remark: The earth isn’t relevant at all in the third-law statement concerning you and the bench. Of
course, the gravitational force from the earth on you (that is, your weight) is related to the given
normal force from the bench on you, but this relation does not involve the third law. It involves the
second law. More precisely, the second law says that since you are at rest (and hence not accel-
erating), the total force on you must be zero. So the downward force from the earth on you (your
weight) must be equal and opposite to the upward normal force from the bench on you. Note that
since three objects (earth, you, bench) were mentioned in the preceding statement, there is no way
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that it can be a third-law statement, because such a statement must involve only two objects. Just
because two forces are equal and opposite, this doesn’t mean they are related by the third law.

4.9. b The friction force is the horizontal force that makes the car accelerate; you won’t
go anywhere on ice. The other choices are incorrect because: (a) the normal force is
vertical, (c) the force applied to the pedal is an internal force within the car, and only
external forces appear in F = ma (and besides, the force on the pedal is far smaller than
the friction between the tires and the ground), (d) energy isn’t a force, and (e) the friction
force doesn’t point backward, and ma isn’t a force! (See the discussion on page 72.)

4.10. d When you step on the gas, the friction force speeds you up (if you are on ice, you
won’t go anywhere). When you hit the brakes, the friction force slows you down (if you
are on ice, you won’t slow down). And when you turn the steering wheel, the friction
force is the centripetal force that causes you to move in the arc of a circle as you change
your direction (if you are on ice, your direction won’t change).

Remark: Note that unless you are skidding (which rarely happens in everyday driving), the friction
force between the tires and the ground is static and not kinetic. The point on a tire that is instanta-
neously in contact with the ground is instantaneously at rest. (The path traced out by a point on a
rolling wheel is known as a cycloid, and the speed of the point is zero where it touches the ground.)
If this weren’t the case (that is, if we were perpetually skidding in our cars), then we would need to
buy new tires every week, and we would be listening constantly to the sound of screeching tires.

4.11. d Braking will yield a backward component of the acceleration, and turning left will
yield a leftward component. This leftward component is the centripetal acceleration for
the circular arc (at least locally) that the car is now traveling in.

Remark: Depending on what you do with the gas pedal, brake, and steering wheel, the total ac-
celeration vector (or equivalently, the total force vector) can point in any horizontal direction. The
acceleration can have a forward or backward component, depending on whether you are stepping on
the gas or the brake. And it can have a component to either side if the car is turning. The relative
size of these components is arbitrary, so the total acceleration vector can point in any horizontal
direction.

4.12. b The total acceleration (and hence total force) is zero. In Fig. 4.32 we have broken the
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mg force into its components parallel are perpendicular to the plane, and we have drawn
the forces to scale. Zero net force perpendicular to the plane gives N = mg cos θ, which
implies mg ≥ N . And zero net force along the plane gives Ff = mg sin θ, which implies
mg ≥ Ff . The θ → 0 limit gives a counterexample to choices (a), (c), and (e), because
Ff → 0 when θ → 0. Choice (d) would be almost true if we were talking about vectors
(the correct statement would be Ff + N + mg = 0). But we’re dealing with magnitudes
here, so choice (d) is equivalent to sin θ + cos θ = 1, which isn’t true.

4.13. c The gravitational force exists, as does the normal force (to keep the block from falling
though the plane). The friction force might or might not exist (and it might point in either
direction). So the correct answer must be (a), (b), or (c). But ma isn’t a force, so we’re
left with choice (c) as the only possibility. If you want to draw the acceleration vector in a
free-body diagram, you must draw it differently (say, with a dotted line) to signify that it
isn’t a force!

Remark: Since we are assuming that the block remains at the same position on the plane, it has a
nonzero ax but a zero ay . Given ax , the (positive) horizontal component of N plus the (positive or
negative or zero) horizontal component of Ff must equal max . (Ff will point down along the plane
if ax is larger than a certain value; as an exercise, you can determine this value.) And zero ay means
that the upward components of N and Ff must balance the downward mg force.
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4.14. e Since the plane is frictionless, the only forces acting on the block are gravity and
the normal force, as shown in Fig. 4.33. Since the block’s acceleration is horizontal, the
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vertical component of the normal force must equal mg, to yield zero net vertical force.
The right triangle then implies that N = mg/ cos θ.

Limits: If θ = 0 then N = mg. This makes sense, because the plane is horizontal and the normal
force simply needs to balance the weight mg. If θ → 90◦ then N → ∞. This makes sense, because
a needs to be huge to keep the block from falling.

Remark: Consider instead the case where there is friction between the block and the plane, and
where the entire system is static. Then the normal force takes on the standard value of N = mg cos θ.
This is most easily derived from the fact that there is no acceleration perpendicular to the plane,
which then implies that N is equal to the component of gravity perpendicular to the plane; see
Fig. 4.34. This should be contrasted with the original setup, where mg was equal to a component N
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(the vertical component) of N . In any case, the normal force doesn’t just magically turn out to be
mg cos θ or mg/ cos θ or whatever. It (or any other force) is determined by applying F = ma.

4.15. d The magnitude of the radial acceleration is v2/R, which is the same at all points
because v is constant. And the tangential acceleration is always zero because again v is
constant. So the net force always points radially inward with constant magnitude mv2/R.
The vertical orientation of the hoop is irrelevant in this question, given that the speed is
constant. The answer would be the same if the hoop were horizontal.

Remark: Be careful not to confuse the total force on the bead with the normal force from the hoop.
The normal force does depend on the position of the bead. It is largest at the bottom of the hoop,
because there the radial F = ma equation (with inward taken to be positive for both N and a) is

Nbot − mg =
mv2

R
=⇒ Nbot =

mv2

R
+ mg. (4.4)

At the top of the hoop, the radial F = ma equation (with inward again taken to be positive for both
N and a) is

Ntop + mg =
mv2

R
=⇒ Ntop =

mv2

R
− mg. (4.5)

If this is negative (if v is small), it just means that the normal force actually points radially outward
(that is, upward).

4.16. a In the threshold case where the car barely doesn’t stay in contact with the track at the
top, the normal force N is zero, so the car is in freefall (while moving sideways). The
downward acceleration is therefore g. If the speed is above the threshold value, then N is
nonzero. The total downward force, F = mg + N , is therefore larger than the mg due to
gravity. The downward acceleration, which is F/m = g + N/m, is therefore larger than g.

Remark: It isn’t necessary to mention the v2/R expression for the centripetal acceleration in this
problem. But if you want to write down the radial F = ma equation at the top of the loop, you can
show as an exercise that the minimum speed required to barely maintain contact with the track at the
top of the loop (that is, to make N ≥ 0) is v =

√
gR.

4.17. c Gravity acts downward. The force from the air must have an upward component to
balance gravity (because there is zero vertical acceleration), and also a radially inward
component to provide the nonzero centripetal acceleration. So the net force from the air
points in a diagonal direction, upward and leftward. The gravitational and air forces are
the only two forces, so the correct answer is (c).

Remark: Choices (d) and (e) are incorrect because although they have the correct gravitational and
air forces, they have an incorrect additional horizontal force. Remember that ma = mv2/r is not
a force (see the discussion on page 72), so (d) can’t be correct. Choice (e) would be correct if we
were working in an accelerating frame and using fictitious forces. But we won’t touch accelerating
frames until Chapter 12.
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4.18. b At the bottom of the motion, the upward force from the spring on the mass is maximum
(because the spring is stretched maximally there), which means that the downward force
from the spring on the box is maximum (because the spring exerts equal and opposite
forces at its ends). This in turn means that the upward force from the scale on the box is
maximum (because the net force on the box is always zero, because it isn’t accelerating).
And this force is the reading on the scale.

4.19. c The forces on the mass are the spring force, which is k ∆y = k (3mg/k) = 3mg

upward, and the gravitational force, which is mg downward. The net force is therefore
2mg upward, so the acceleration is 2g upward.

4.20. e The left mass feels forces from both springs, so it feels equal and opposite forces of kℓ.
Its acceleration is therefore zero. The right mass feels only the one force of kℓ from the
right spring (directed leftward). Its acceleration is therefore kℓ/m leftward. The amount
that the left spring is stretched is completely irrelevant as far as the right mass goes. Also,
as far as the left mass goes, it is irrelevant that the far ends of the springs are attached to
different things (the immovable wall and the movable right mass), at least right at the start.

4.21. a Let the stretching, relative to the equilibrium position, of the spring in the original
scenario be 2ℓ. Then the given information tells us that half of the spring stretches by ℓ
when its tension is 2mg (because the whole spring stretches by 2ℓ when its tension is 2mg,
and the tension is the same throughout). Therefore, the top half of the spring in the second
scenario is stretched by ℓ, because it is holding up a total mass of 2m below it (this mass
is split into two pieces, but that is irrelevant as far as the top spring is concerned). But the
bottom half of the spring is stretched by only ℓ/2, because it is holding up only a mass m
below it (and x ∝ F by Hooke’s law). The total stretch is therefore ℓ + ℓ/2 = 3ℓ/2. This
is less than 2ℓ, so the desired answer is “higher.”

Remark: This answer of “higher” can be made a little more believable by looking at some limiting
cases. Consider a more general version of the second scenario, where we still cut the spring into
equal pieces, but we now allow for the two masses to be unequal (although they must still add up to
the original mass). Let the top and bottom masses be labeled mt and mb, and let the original mass be
M . In the limit where mt = 0 and mb = M , we simply have the original setup, so the answer is “same
height.” In the limit where mt = M and mb = 0, we have a mass M hanging from a shorter spring.
But a shorter spring has a larger spring constant (see Problem 4.2), which means that it stretches
less. So the answer is “higher.” Therefore, since the mt = M/2 and mb = M/2 case presented in
the problem lies between the preceding two cases with answers of “same height” and “higher,” it is
reasonable to expect that the answer to the original problem is “higher.” You can also make a similar
argument by splitting the original mass into two equal pieces, but now allowing the spring to be cut
into unequal pieces.

4.22. b (a1 + a2)/2 is the acceleration of the bottom pulley, because the average height of
the bottom two masses always stays the same distance below the bottom pulley. And the
acceleration of the bottom pulley equals the acceleration of the middle pulley, which in
turn equals −a3/2. This is true because if the middle pulley goes up by d, then 2d of
string disappears above it, which must therefore appear above m3; so m3 goes down by
2d. Putting all this together yields a3 = −(a1 + a2). See the solution to Problem 4.3 for
more discussion of these concepts.

4.23. b If the left mass goes up by y1, there is 2y1 less string in the segments above it. Like-
wise, if the middle mass goes up by y2, there is 2y2 less string in the segments above it.
All of this missing string must appear above the right mass, which therefore goes down by
2y1 + 2y2. So y3 = −2y1 − 2y2. Taking two time derivatives gives choice (b).

4.24. d If the left mass goes up by y1, then 2y1 worth of string disappears from the left region.
Similarly, if the right mass goes up by y3, then 2y3 worth of string disappears from the
right region. This 2y1 + 2y3 worth of string must appear in the middle region. It gets
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divided evenly between the two segments there, so the middle mass goes down by y1 + y3.
Hence y2 = −(y1 + y3). Taking two time derivatives gives choice (d).

4.5 Problem solutions
4.1. Coefficients of friction

Assume, in search of a contradiction, that µk is larger than µs. Imagine pushing a block
that rests on a surface. If the applied force is smaller than µs N (such as the force indicated
by the point A on the scale in Fig. 4.35), then nothing happens. The static friction exactly
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cancels the applied force, and the block just sits there.

However, if the applied force lies between µs N and µk N (such as the force indicated
by the point B), then we have problem. On one hand, the applied force exceeds µs N
(which is the maximum static friction force, by definition), so the block should move.
But on the other hand, the applied force is smaller than the kinetic friction force, µk N ,
so the block shouldn’t move. Basically, as soon as the block moves even the slightest
infinitesimal amount (at which point the kinetic friction force becomes the relevant force),
it will decelerate and stop because the kinetic friction force wins out over the applied
force. So it actually never moves at all, even for the applied force represented by point B.
This means, by the definition of µs, that µsN is actually located higher than point B. The
above contradiction (where the block both does move and doesn’t move) will arise unless
µs N ≥ µk N . So we conclude that it must be the case that µs ≥ µk. There then exists no
point B below µk N and above µsN .

In the real world, µs is rarely larger than twice µk. In some cases the two are essentially
equal, with µs being a hair larger.

4.2. Cutting a spring in half

Take the half-spring and stretch it a distance x. Our goal is to find the force F that it exerts
on something attached to an end; the spring constant is then given by k1/2 = F/x (ignoring
the minus sign in Hooke’s law; we’ll just deal with the magnitude). Imagine taking two
half-springs that are each stretched by x, lying along the same line, and attaching the
right end of one to the left end of the other. We are now back to our original spring with
spring constant k. And it is stretched by a distance 2x, so the force it exerts is k (2x).
But this is also the force F that each of the half-springs exerts, because we didn’t change
anything about these springs when we attached them together. So the desired value of k1/2
is k1/2 = F/x = k (2x)/x = 2k.

Remark: The same type of reasoning shows (as you can verify) that if we have a spring and then
cut off a piece with a length that is a factor f times the original (so f = 1/2 in the above case),
then the spring constant of the new piece is 1/ f times the spring constant of the original. Actually,
the reasoning works only in the case of rational numbers f . (It works with f of the form f = 1/N ,
where N is an integer. And you can show with similar reasoning that it also works with f of the form
f = N , which corresponds to attaching N springs together in a line. Combining these two results
yields all of the rational numbers.) But any real number is arbitrarily close to a rational number, so
the result is true for any factor f .

Basically, a shorter spring is a stiffer spring, because for a given total amount of stretching, a cen-
timeter of a shorter spring must stretch more than a centimeter of a longer spring. So the tension
in the former centimeter (which is the same as the tension throughout the entire shorter spring) is
larger than the tension in the latter centimeter.

4.3. Useful Atwood’s facts

(a) Assume, in search of a contradiction, that the tension varies throughout the string.
Then there exists a segment of the string for which the tension is different at the two
ends. This means that there is a nonzero net force on the segment. But the string
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is massless, so the acceleration of this segment must be infinite. Since this can’t be
the case, the tension must in fact be the same throughout the string. In short, any
massless object must always have zero net force acting on it. (Ignoring photons and
such!)

Remark: If there is friction between a string and a pulley, and if the pulley has a nonzero
moment of inertia (a topic covered in Chapter 7), then the tension in the string will vary, even
if the string is massless. But the statement, “Any massless object must always have zero net
force acting on it,” still holds; there is now a nonzero friction force from the pulley acting on
a segment of the string touching it. So the net force on the segment is still zero.

(b) The reasoning here is similar to the reasoning in part (a). Since the left pulley is
massless, the net force on it must be zero. If we draw a free-body diagram as shown
in Fig. 4.36, then we see that two T’s protrude from the top of the box. So the
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downward tension from the bottom string must be 2T , to make the net force be zero.
(By the same reasoning, the tension in the short string above the right pulley is also
2T .) We’ll use this result many times in the Atwood’s problems in this chapter.

Remark: In the above free-body diagram, the top string does indeed get counted twice, as far
as the forces go. In a modified scenario where we have two people pulling upward on the ends
of the string, each with a force T , as shown in Fig. 4.37, their total upward force is of course
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2T . And the pulley can’t tell the difference between this scenario and the original one.

(c) Imagine that the left mass (and hence left pulley) goes up by a distance d. Then
a length d of string disappears from each of the two segments above the pulley,
as shown in Fig. 4.38. So a total length 2d of string disappears from these two
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segments. This string has to go somewhere, so it appears above the right mass. The
right mass therefore goes down by 2d, as shown. So the downward displacement
of the right mass is always twice the upward displacement of the left mass. Taking
two derivatives of this relation tells us that downward acceleration of the right mass
is always twice the upward acceleration of the left mass. (Equivalently, the general
relation d = at2/2 holds, so the ratio of the accelerations must be the same as the
ratio of the displacements.) This is the so-called “conservation of string” statement
for this setup.
The same reasoning applies if the left mass instead goes down. In any case, the
sign of the right mass’s acceleration is the negative of the sign of the left mass’s
acceleration.

Remarks: When thinking about conservation-of-string statements, it is often helpful to imag-
ine cutting out pieces of string in some parts of the setup and then splicing them into other
parts. This isn’t what actually happens, of course; the string just slides around like a snake.
But if you take a photo at two different times during the motion, the splicing photo will look
the same as the actual photo. In short, while it is often hard to visualize what is happening as
the string moves, it is generally much easier to imagine the string as having moved.
Conservation of string by itself doesn’t determine the motion of the masses. We still need to
apply F = ma to find out how the masses actually move. If you grab the masses and move
them around in an arbitrary manner while always making sure that the strings stay taut, then the
conservation-of-string condition will be satisfied. But the motion will undoubtedly not be the
same as the motion where the masses are acted on by only gravity. There is an infinite number
of possible motions consistent with conservation of string, but only one of these motions is
also consistent with all of the F = ma equations. And conversely, the F = ma equations alone
don’t determine the motion; the conservation-of-string relation is required. If the strings aren’t
present, the motion will certainly be different; all the masses will be in freefall!

(d) The average height of the right two masses always remains a constant distance below
the right pulley (because the right string keeps the same length). So yp = (y2 +

y3)/2 + C. Taking two derivatives of this relation gives ap = (a2 + a3)/2. But
the downward (or upward) acceleration of the right pulley (which we just showed
equals the average of the accelerations of the right two masses) equals the upward
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(or downward) acceleration of the left mass (because the left string keeps the same
length), as desired.
A few of the Atwood’s-machine problems in this chapter contain some unusual
conservation-of-string relations, but they all involve the types of reasoning in parts
(c) and (d) of this problem.

4.4. Block and tackle

(a) Let T be the tension in the long rope (the tension is the same throughout the rope,
from the reasoning in Problem 4.3(a)). Since the bottom pulley is massless, the
reasoning in Problem 4.3(b) tells us that the tension in the short rope attached to the
block is 4T (there would now be four T’s protruding from the top of the dashed box
in Fig. 4.36). We want this 4T tension to balance the Mg weight of the block, so the
person must pull on the rope with a force T = Mg/4. (The angle of the rope to the
person doesn’t matter.)

(b) The free-body diagram for the bottom part of the setup is shown in Fig. 4.39. Five
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tensions protrude from the top of the dashed box, and the two weights Mg and mg

protrude from the bottom. The net force must be zero if the setup is at rest (or moving
with constant speed), so the tension must equal T = (M +m)g/5. This is the desired
downward force exerted by the person on the rope.

Limits: In the case where M = 0 (so the person is standing on a massless platform), he must
pull down on the rope with a force equal to one fifth his weight, if he is to hoist himself up.
In this case, his mg weight is balanced by an upward mg/5 tension force from the rope he is
holding, plus an upward 4mg/5 normal force from the platform (which basically comes from
the 4mg/5 tension in the short rope attached to the platform).

4.5. Equivalent mass

With the various parameters defined as in Fig. 4.40, the two F = ma equations are (with
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upward taken as positive for the left mass, and downward positive for the right)

T − m1g = m1a and m2g − T = m2a. (4.6)

We have used the fact that since your hand (and hence the pulley) is held at constant height,
the accelerations of the masses are equal in magnitude and opposite in direction. We can
solve for T by multiplying the first equation by m2, the second by m1, and then subtracting
them. This eliminates the acceleration a, and we obtain T = 2m1m2g/(m1 + m2). The
upward force you apply equals the tension 2T in the upper string; see Problem 4.3(b) for
the explanation of the 2T . This force of 2T equals the weight Mg of a single mass M if

M =
4m1m2

m1 + m2
. (4.7)

This result is not equal to the sum of the masses, m1 + m2. In the special case where the
masses are equal (m1 = m2 ≡ m), the equivalent mass does simply equal 2m. But in
general, M isn’t equal to the sum.

Limits: In the limit where m1 is very small, we can ignore the m1 in the denominator of Eq. (4.7)
(but not in the numerator; see the discussion in Section 1.1.3), which yields M ≈ 4m1. So the
combination of a marble and a bowling ball looks basically like four marbles (this limit makes it
clear that M can’t be equal to m1 + m2 in general). This can be seen fairly intuitively: the bowling
ball is essentially in freefall downward, so the marble accelerates upward at g. The tension T must
therefore be equal to 2m1g to make the net upward force on the marble be m1g. The tension 2T in
the upper string is then 2(2m1g), which yields M = 4m1.

If we want to solve for a in Eq. (4.6), we can simply add the equations. The result is

a = g
m2 − m1
m2 + m1

. (4.8)
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This acceleration makes sense, because a net force of m2g − m1g pulls down on the right side, and
this force accelerates the total mass of m1 + m2. Various limits check correctly: if m2 = m1 then
a = 0; if m2 ≫ m1 then a ≈ g; and if m2 ≪ m1 then a ≈ −g (in Fig. 4.40 we defined positive a to
be upward for m1).

4.6. Atwood’s 1

If m1 is at rest, the tension in the string supporting it must be m1g. From the reasoning in
Problem 4.3(b), the tension in the lower string is then m1g/2. The F = ma equations for
the two lower masses are therefore (with upward taken to be positive for m2 and downward
positive for M)

m2 :
m1g

2
− m2g = m2a,

M : Mg − m1g

2
= Ma. (4.9)

We have used the fact that the accelerations of m2 and M have the same magnitude, be-
cause the bottom pulley doesn’t move if m1 is at rest. Equating the two resulting expres-
sions for a from the above two equations gives

m1g

2m2
− g = g − m1g

2M
=⇒ m1

m2
− 4 = −m1

M

=⇒ M =
m1m2

4m2 − m1
. (4.10)

In order for a physical M to exist, we need the denominator of M to be positive. So we
need m2 > m1/4.

Alternatively, you can solve this problem by solving for m2 in Eq. (4.7) in the solution to
Problem 4.5 and then relabeling the masses appropriately.

Remark: If m2 is smaller than m1/4, then even an infinitely large M won’t keep m1 from falling.
The reason for this is that the best-case scenario is where M is so large that it is essentially in freefall.
So m2 gets yanked upward with acceleration g, which means that the tension in the string pulling
on it is 2m2g (so that the net upward force is 2m2g − m2g = m2g). The tension in the upper string
is then 4m2g. (We’ve basically just repeated the reasoning for the small-m1 limit discussed in the
solution to Problem 4.5.) This is the largest the tension can be, so if 4m2g is smaller than m1g (that
is, if m2 is smaller than m1/4), then m1 will fall downward. Note that if m2 → ∞ (with m2 finite),
then Eq. (4.10) says that M = m1/4, which is consistent with the preceding reasoning. You can
show, as you might intuitively expect, that the smallest sum of m2 and M that supports a given m1
is achieved when m2 and M are both equal to m1/2.

4.7. Atwood’s 2

From the reasoning in Problem 4.3(b), the tensions in the two strings are T and 2T , as
shown in Fig. 4.41. The F = ma equations are therefore

T = ma1,

T = (2m)a2,

(2m)g − 2T = (2m)a3. (4.11)

We have three equations but four unknowns here: a1, a2, a3, and T . So we need one
more equation – the conservation-of-string relation. The average position of the left two
masses remains the same distance behind the left pulley, which moves the same distance
as the right pulley, and hence right mass. So the conservation-of-string relation is a3 =

(a1 + a2)/2. This is the same reasoning as in Problem 4.3(d).

The first two of the above F = ma equations quickly give a1 = 2a2. Plugging this into the
conservation-of-string relation gives a3 = 3a2/2. The second two F = ma equations are
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then

T = (2m)a2,

(2m)g − 2T = (2m)(3a2/2). (4.12)

The second equation plus twice the first gives 2mg = 7ma2 =⇒ a2 = 2g/7. We then have
a1 = 2a2 = 4g/7, and a3 = 3a2/2 = 3g/7. As a check, a3 is indeed the average of a1 and
a2. Additionally, the tension is T = ma1 = 4mg/7.

Remark: When solving any problem, especially an Atwood’s problem, it is important to (1) identify
all of the unknowns and (2) make sure that you have as many equations as unknowns, as we did
above.

4.8. Atwood’s 3

If T is the tension in the lowest string, then from Problem 4.3(b) the tensions in the other
strings are shown in Fig. 4.42. Let all of the accelerations be defined with upward being

m

m 2m

T
T

T

T T

a1

a2 a3

ap

2T
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positive. Then the three F = ma equations are

T − mg = ma1,

T − mg = ma2,

T − (2m)g = (2m)a3. (4.13)

The first two of these equations quickly give a1 = a2.

Now for the conservation-of-string statement. Let ap be the acceleration of the upper right
pulley (which is the same as the acceleration of the lower right pulley). The average height
of the two right masses always remains the same distance below this pulley. Therefore
ap = (a2 + a3)/2. But we also have a1 = −2ap, because if the pulley goes up a distance
d, then a length d of string disappears from both segments above the pulley, so 2d of
string appears above the left mass. This means that it goes down by 2d; hence a1 = −2ap.
(We’ve just redone Problem 4.3(c) and (d) here.) Combining this with the ap = (a2+a3)/2
relation gives

a1 = −2
( a2 + a3

2

)
=⇒ a1 + a2 + a3 = 0. (4.14)

Since we know from above that a1 = a2, we obtain a3 = −2a2. The last two of the above
F = ma equations are then

T − mg = ma2,

T − (2m)g = (2m)(−2a2). (4.15)

Taking the difference of these equations yields mg = 5ma2, so a2 = g/5. (And this is also
a1.) The desired acceleration of the mass 2m is then a3 = −2a2 = −2g/5. This is negative,
so the mass 2m goes downward, which makes sense. (If all three masses are equal to m,
you can quickly show that T = mg and all three accelerations are zero. Increasing the right
mass to 2m therefore makes it go downward.)
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4.9. Atwood’s 4

Let T be the tension in the string connected to the right mass. Then from the reasoning in
Problem 4.3(b), the tensions in the other strings are 2T and 4T , as shown in Fig. 4.43.

m

T TT

4T

2T2T

ma

4a

Figure 4.43

The conservation-of-string relation tells us that the accelerations are a and 4a, as shown.
This is true because if the bottom pulley goes up by d, then the middle pulley goes up by
2d, from the reasoning in Problem 4.3(c). From the same reasoning, the right mass then
goes down by 4d. So the ratio of the distances moved is 4. Taking two time derivatives of
this relation tells us that the (magnitudes of the) accelerations are in the same ratio. The
F = ma equations are therefore

4T − mg = ma,

mg − T = m(4a). (4.16)

The first equation plus four times the second gives 3mg = 17ma =⇒ a = 3g/17. This is
the upward acceleration of the left mass. The downward acceleration of the right mass is
then 4a = 12g/17.

Remark: Consider the more general case where we have a “tower” of n movable pulleys extending
down to the left (so the given problem has n = 2). If we define N ≡ 2n , then as an exercise you can
show that the upward acceleration of the left mass and the downward acceleration of the right mass
are

aleft = g
N − 1
N2 + 1

and aright = g
N2 − N
N2 + 1

. (4.17)

These expressions correctly reproduce the above results when n = 2 =⇒ N = 4. If N → ∞, we
have aleft → 0 and aright → g. You can think physically about what is going on here; in some sense
the system behaves like a lever, where forces and distances are magnified. The above expressions
for the a’s are also valid when n = 0 =⇒ N = 1, in which case both accelerations are zero; we just
have two masses hanging over the fixed pulley connected to the ceiling.

4.10. Atwood’s 5

Let T be the tension in the bottom string. Then from the reasoning in Problem 4.3(b), the
tensions in the other strings are 2T and 4T , as shown in Fig. 4.44. If all of the accelerations
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are defined with upward being positive, the four F = ma equations are

4T − 4mg = 4ma1,

2T − 2mg = 2ma2,

T − mg = ma3,

T − 2mg = 2ma4. (4.18)

The first three of these equations quickly give a1 = a2 = a3.

We must now determine the conservation-of-string relation. Let am and ab be the ac-
celerations of the middle and bottom pulleys (with upward being positive). The average
position of the bottom two masses stays the same distance below the bottom pulley, so
ab = (a3 + a4)/2. Similarly, am = (a2 + ab)/2. Substituting the value of ab from the first
of these relations into the second, and using the fact that a1 = −am, we have

a1 = −
(

a2 + (a3 + a4)/2
2

)
. (4.19)

Using a1 = a2 = a3, this becomes

a3 = −
(

a3 + (a3 + a4)/2
2

)
=⇒ a4 = −7a3. (4.20)

The last two of the F = ma equations in Eq. (4.18) are then

T − ma = ma3,

T − 2mg = 2m(−7a3). (4.21)
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Subtracting these equations eliminates T , and we find a3 = g/15. The acceleration of the
rightmost mass is then a4 = −7a3 = −7g/15. This is negative, so this mass goes down.
The other three masses all move upward with acceleration g/15.

4.11. Atwood’s 6

The important thing to note in this problem is that the tension in the long string is different
above and below the middle mass. The standard fact that we ordinarily use (that the
tension is the same everywhere throughout a massless string; see Problem 4.3(a)) holds
only if the string is massless. If there is a mass attached to the string, then the tensions on
either side of the mass will be different (unless the mass is in freefall, as we see from the
second F = ma equation below). Let these tensions be T1 and T2, as shown in Fig. 4.45.

m m

m

T1 T1

T2 T2

Figure 4.45

If we label the accelerations as a1, a2, and a3 from left to right (with upward defined to be
positive for all), then the F = ma equations are

T1 − mg = ma1,

T1 − T2 − mg = ma2,

2T2 − mg = ma3. (4.22)

Conservation of string quickly gives a2 = −a1. And it also gives a3 = −a1/2, from the
reasoning in Problem 4.3(c). The above F = ma equations then become

T1 − mg = ma1,

T1 − T2 − mg = m(−a1),
2T2 − mg = m(−a1/2). (4.23)

We now have three equations in three unknowns (T1, T2, and a1). Solving these by your
method of choice gives a1 = 2g/9. Hence a2 = −2g/9 and a3 = −g/9. The tensions turn
out to be T1 = 11mg/9 and T2 = 4mg/9.

4.12. Atwood’s 7

Let the tension in the upper left part of the string in Fig. 4.46 be T . Then the two other
m

T
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upper parts also have tension T , as shown. Because the left pulley is massless, the net force
on it must be zero, so the string below it must have tension 2T . This then implies the other
2T shown. Finally, the tension in the bottom string is 4T because the net force on the bot-
tom pulley must be zero. Note that the tension in the long string is allowed to change from
T to 2T at the mass, because the “massless string” reasoning in Problem 4.3(a) doesn’t
hold here.

With the accelerations defined as shown in the figure, the F = ma equations for the bottom
and top masses are

mg − 4T = mab,

mg + 2T − T = mat. (4.24)

We must now determine the conservation-of-string relation. From the reasoning in Prob-
lem 4.3(c), the acceleration of the top mass is twice the acceleration of the left pulley (with
the opposite sign).

Additionally, if the left pulley goes up by d, then an extra length d of string appears below
the dotted line in Fig. 4.46. This is true because d disappears from each of the two parts of
the string above the left pulley, but d must also be inserted right below the pulley. So a net
length d is left over, and this appears below the dotted line. It gets divided evenly between
the two parts of the string touching the bottom pulley, so the bottom pulley (and hence
the bottom mass) goes down by d/2. So the acceleration of the bottom mass is half the
acceleration of the left pulley (with the opposite sign). But from the previous paragraph,
the acceleration of the left pulley is half the acceleration of the top mass (with the opposite
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sign). Putting this all together gives ab = −(−at/2)/2, or at = 4ab. The above F = ma
equations therefore become

mg − 4T = mab,

mg + 2T − T = m(4ab). (4.25)

The first equation plus four times the second gives 5mg = 17mab =⇒ ab = 5g/17. And
then at = 4ab = 20g/17. It is perfectly fine that at > g. In the limit where the top mass is
zero, the bottom mass is in freefall, so we have ab = g and at = 4g.

4.13. Atwood’s 8

Let T be the tension in the string connected to the right mass. Then from Problem 4.3(b),
zero net force on the right pulley tells us that the tension in the other long string is 2T , as
shown in Fig. 4.47. And then again from Problem 4.3(b), zero net force on the left pulley
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tells us that the tension in the bottom short string is 4T .

Let a be the upward acceleration of the left mass. We claim that the conservation-of-
string relation says that the downward acceleration of the right mass is 4a. This is true for
the following reason. If the left pulley (and hence left mass) moves up by a distance d,
then a length d of string disappears from each of the two segments of string above it that
touch it tangentially. Likewise, if the right pulley moves down by a distance d (and it does
indeed move the same distance as the left pulley, because the centers of the two pulleys are
connected by a string), then a length d of string disappears from each of the two segments
of string below it (assuming for a moment that the right mass doesn’t move). A total of 4d
of string has therefore disappeared (temporarily) from the long string touching the right
mass. This 4d must end up being inserted above the right mass. So this mass goes down
by 4d, which is four times the distance the left mass goes up, hence the accelerations of
a and 4a shown in the figure. The F = ma equations for the left and right masses are
therefore

4T − mg = ma,

mg − T = m(4a). (4.26)

The first equation plus four times the second gives 3mg = 17mg =⇒ a = 3g/17. This is
the upward acceleration of the left mass. The downward acceleration of the right mass is
then 4a = 12g/17. These accelerations happen to be the same as the ones in Problem 4.9.

4.14. No relative motion

First note that by the following continuity argument, there must exist a value of a for which
there is no relative motion among the masses. If a is zero, then m2 falls and m1 moves to
the right. On the other hand, if a is very large, then intuitively m1 will drift backward with
respect to M , and m2 will rise (remember that there is no friction anywhere). So for some
intermediate value of a, there will be no relative motion.

Now let’s find the desired value of a. If there is no relative motion among the masses, then
m2 stays at the same height, which means that the net vertical force on it must be zero.
The tension in the string connecting m1 to m2 must therefore be T = m2g. The horizontal
F = ma equation on m1 is then T = m1a =⇒ m2g = m1a =⇒ a = (m2/m1)g. This is the
acceleration of the system, and hence the desired acceleration of M .

Limits: a is small if m2 is small (more precisely, if m2 ≪ m1) and large if m2 is large (m2 ≫ m1).
These results make intuitive sense.
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4.15. Slipping blocks

(a) The free-body diagrams are shown in Fig. 4.48. The normal forces N1 (between
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the blocks) and N2 (between the bottom block and the table) are quickly found to
be N1 = mg and N2 = 3mg. And the tension in the string is T = 3mg, because
twice this must equal the applied 6mg force (because the net force on the massless
pulley must be zero). The friction forces F1 (between the blocks) and F2 (between
the bottom block and the table) are as yet unknown.
Assume that the bottom block doesn’t slip with respect to the table. The maximum
possible leftward static friction force from the table acting on the bottom block is
µs N2 = 3mg. This can cancel out the rightward tension T = 3mg acting on the
block. However, there also the friction force F1 between the blocks. (This is the
kinetic friction force µk N1 = mg, because you can quickly show that if the bottom
block is at rest, then the top block must slip with respect to the bottom block.) This
friction force acts rightward on the bottom block, which means that the net rightward
force on the bottom block is nonzero. It will therefore slip with respect to the table.
Hence our initial non-slipping assumption was incorrect.

(b) Assume that the top block doesn’t slip with respect to the bottom block (which we
know must be moving, from part (a)). Then the two blocks can be treated like a
single block with mass 3m. The leftward kinetic friction force from the table is F2 =

µk N2 = 3mg. The net force on the effective 3m block is therefore 6mg−3mg = 3mg

rightward, so the acceleration is a = g rightward. The horizontal F = ma equation
for the top block is then

T − F1 = ma =⇒ 3mg − F1 = mg =⇒ F1 = 2mg. (4.27)

But this friction force isn’t possible, because it exceeds the maximum possible static
friction force between the blocks, which is µsN1 = mg. This contradiction implies
that our initial non-slipping assumption must have been incorrect. The blocks there-
fore slip with respect to each other.

Remark: If the coefficient of static friction between the blocks were instead made sufficiently
large (µs ≥ 2), then the blocks would in fact move as one effective mass 3m. The static friction
force 2mg between the blocks would act backward on m and forward on 2m, and both blocks
would have acceleration g. If the friction force were then suddenly decreased to the kinetic
value of µk N1 = mg relevant to the stated problem, m would accelerate faster than g (because
there isn’t as much friction holding it back), and 2m would accelerate slower than g (because
there isn’t as much friction pushing it forward). This is consistent with the accelerations we
will find below in part (c).

(c) Since we know that all surfaces slip with respect to each other, the friction forces
are all kinetic friction forces. Their values are therefore F1 = µk N1 = mg and
F2 = µk N2 = 3mg. The F = ma equations for the two blocks are then

m : T − F1 = ma1 =⇒ 3mg − mg = ma1

=⇒ a1 = 2g,
2m : T + F1 − F2 = (2m)a2 =⇒ 3mg + mg − 3mg = 2ma2

=⇒ a2 = g/2. (4.28)

By conservation of string, the average position of the two blocks stays the same
distance behind the pulley, and hence also behind your hand. So

ahand =
a1 + a2

2
=

2g + g/2
2

=
5g
4
. (4.29)
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4.16. Block and wedge

Let N be the normal force between the block and the wedge. Then the vertical F = ma
equation for the block (with downward taken to be positive) is

Mg − N cos θ = MaM . (4.30)

And the horizontal F = ma equation for the wedge (with rightward taken to be positive)
is

N sin θ = mam . (4.31)

We have two equations but three unknowns (N , aM , am), so we need one more equation.
This equation is the constraint that the block remains on the wedge at all times. At a later
time, let the positions of the block and wedge be indicated by the dotted lines in Fig. 4.49.M

m
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θ
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The block has moved downward a distance yM , and the wedge has moved rightward a
distance xm . From the triangle that these lengths form (the shaded triangle in the figure),
we see that yM = xm tan θ. Taking two time derivatives of this relation gives the desired
third equation,

aM = am tan θ. (4.32)

There are various ways to solve the preceding three equations. If we multiply the first
by sin θ and the second by cos θ, and then add them, the N terms cancel. If we then use
aM = am tan θ to eliminate aM , we obtain

Mg sin θ = MaM sin θ + mam cos θ
= M (am tan θ) sin θ + mam cos θ. (4.33)

Solving for am gives

am =
Mg sin θ cos θ

M sin2 θ + m cos2 θ
. (4.34)

Limits: There are many limits we can check. You should verify that all of the following results make
sense.

• If θ → 0 or θ → 90◦, then am → 0.

• If M ≪ m then am ≈ 0.

• If M ≫ m then am ≈ g/ tan θ =⇒ g ≈ am tan θ. This is simply Eq. (4.32) with aM = g,
because the block is essentially in freefall.

• If M = m, then am = g sin θ cos θ, which achieves a maximum when θ = 45◦. And since the
constraining force on the left side of the block equals N sin θ, which in turn equals mam from
Eq. (4.31), we see that θ = 45◦ necessitates the maximum force by the constraining wall (for
the special case where M = m).

You can check that various limits for aM (given in Eq. (4.32)) also work out correctly.

4.17. Up and down a plane

(a) When the block stops (at least instantaneously) at its highest point, the forces along
the plane are the mg sin θ gravity component downward, and the static friction force
Ff upward. We know that Ff ≤ µs N = 1 · mg cos θ. The block will accelerate
downward if the gravitational force mg sin θ is larger than the maximum possible
friction force mg cos θ. So the block will slide back down if

mg sin θ > mg cos θ =⇒ tan θ > 1 =⇒ θ > 45◦. (4.35)

(b) On the way up the plane, both the gravity component and friction point down the
plane, so the force along the plane is mg sin θ + µkmg cos θ downward. Therefore,
since µk = 1, the acceleration during the upward motion points down the plane and
has magnitude

au = g(sin θ + cos θ). (4.36)
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The total time for the upward motion is then

tu =
v0

au
=

v0

g(sin θ + cos θ)
. (4.37)

To find the time td for the downward motion, we need to find the maximum distance d
up the plane that the block reaches. From standard kinematics we have d = v2

0/2au.
(This can be obtained from either v2

f − v2
i = 2ad, or d = v0t − at2/2 with t =

v0/a.) During the downward motion, the friction force points up the plane, so the net
acceleration points down the plane and has magnitude

ad = g(sin θ − cos θ). (4.38)

Using the value of d we just found, the relation d = adt2
d/2 for the downward motion

gives

v2
0

2au
=

adt2
d

2
=⇒ td =

v0√
auad

=
v0

g
√

(sin θ + cos θ)(sin θ − cos θ)
. (4.39)

(c) The total time with friction is

TF = tu + td =
v0

au
+

v0√
auad

, (4.40)

where au and ad are given in Eqs. (4.36) and (4.38). Without friction, the acceleration
along the plane is simply g sin θ downward for both directions of motion, so the total
time with no friction is

Tno F =
2v0

g sin θ
. (4.41)

(Equivalently, just erase the cos θ terms in TF, since those terms came from the fric-
tion.) If we let s ≡ sin θ, c ≡ cos θ, and x ≡ cot θ ≡ c/s, then TF will be larger than
Tno F if

1
s + c

+
1

√
(s + c)(s − c)

>
2
s
=⇒ 1

1 + x
+

1
√

1 − x2
> 2

=⇒ 1
√

1 − x2
> 2 − 1

1 + x
=⇒ 1

1 − x2 >
(1 + 2x)2

(1 + x)2

=⇒ 1
1 − x

>
(1 + 2x)2

(1 + x)
. (4.42)

Cross multiplying and simplifying yields

4x3 − 2x > 0 =⇒ x >
1
√

2
. (4.43)

(There is technically also a range of negative solutions to this equation, but x is
defined to be a positive number.) However, we also need x < 1 for Eq. (4.42) to
hold. (If x > 1 then our cross multiplication switches the order of the inequality.) So
TF > Tno F if 1 > cot θ > 1/

√
2, or equivalently if 1 < tan θ <

√
2 =⇒ 45◦ < θ <

54.7◦. (Of course, we already knew that θ > 45◦ from part (a).) To summarize:

• If 45◦ < θ < 54.7◦, then TF > Tno F. That is, the process takes longer with
friction.
• If 54.7◦ ≤ θ, then Tno F ≥ TF. That is, the process takes longer without friction.

The first of these results is clear in the limiting case where θ is only slightly larger
than 45◦, because the block will take a very long time to slide back down the plane,
since ad ≈ 0. In the other extreme where θ → 90◦, we have TF = Tno F because the
friction force vanishes on the vertical plane.
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Plots of TF and Tno F for θ values between 45◦ and 90◦ are shown in Fig. 4.50. Note
that TF achieves a local minimum. You can show numerically that this minimum oc-
curs at θ = 1.34 radians, which is about 77◦. It isn’t obvious that there should exist a
local minimum. But what happens is that below 77◦, TF is larger than the minimum
value because the slowness of the downward motion dominates other competing ef-
fects. And above 77◦, TF is larger because the larger distance up the plane dominates
other competing effects (this isn’t terribly obvious).
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4.18. Rope in a tube

(a) First solution: Each little piece of the rope with tiny mass m has a radially inward
acceleration v2/R, so it feels a radially inward force of mv2/R (applied by the outer
surface of the tube). The sideways components of these forces cancel in pairs in
Fig. 4.28(a), so we are left with a net downward force (in the plane of the page).

Second solution: The center of mass (a topic in Chapter 6) of the rope is located
somewhere on the y axis at the given instant. It happens to be at radius 2R/π, but that
isn’t important here. The relevant fact is that the CM travels in a circle. And since
Fnet = maCM (see Chapter 6), we can simply imagine a point mass moving around
in a circle. So the acceleration is radially inward (that is, downward in Fig. 4.28(a))
at the given instant.

(b) First solution: Each little piece of the rope has a tangential acceleration a (but no
radial acceleration since v is instantaneously zero), so it feels a tangential force of
ma. The vertical (in the plane of the page) components of these forces cancel in
pairs, so we are left with a net rightward force in Fig. 4.28(b).

Remark: Since the rope is being pulled downward, where does this rightward force come
from? It comes from the inner surface of the tube, with the important fact being that the force
from the right part of the inner circle in Fig. 4.28(b) is larger than the force from the left part.
This can be traced to the fact that the tension in the rope is larger closer to the right end that is
being pulled; the tension approaches zero at the left end.

Second solution: The CM is initially located on the y axis, and it is accelerated to
the right at the given instant (because it will end up moving in a circle once the rope
gains some speed). Since Fnet = maCM, the net force is therefore rightward.
If you pull on the rope with a nonzero force while it has a nonzero v, then the total
force vector will have both downward and rightward components.

4.19. Circling bucket

Consider a little volume of the water, with mass m. Assuming that the water stays inside
the bucket, then at the top of the motion the forces on the mass m are both the downward
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gravitational force mg and the downward normal force N from the other water in the
bucket. So the radial F = ma equation is

mg + N =
mv2

R
. (4.44)

(If you want, you can alternatively consider a little rock at the bottom of an empty bucket;
that’s effectively the same setup.) If v is large, then N is large. The cutoff case where the
water barely stays in the bucket occurs when N = 0. The minimum v is therefore given by

mg =
mv2

R
=⇒ vmin =

√
gR. (4.45)

If we take R to be, say, 1 m, then this gives vmin ≈ 3 m/s. The time for each revolution is
then 2πR/vmin ≈ 2 s. If you swing your arm around with this period of revolution, you’ll
probably discover that the minimum speed is a lot slower that you would have guessed.

Remark: The main idea behind this problem is that although at the top of the motion the water is
certainly accelerating downward under the influence of gravity, if you accelerate the bucket down-
ward fast enough, then the bucket will maintain contact with the water. So the requirement is that
at the top of the motion,2 you must give the bucket a centripetal (downward) acceleration of at least
g. That is, v2/R ≥ g, in agreement with Eq. (4.45). If the centripetal acceleration of the bucket is
larger than g, then the bucket will need to push downward on the water to keep the water moving
along with the bucket. That is, the normal force N will be positive. If the centripetal acceleration of
the bucket is smaller than g, then the water will accelerate downward faster than the bucket. That is,
the water will leave the bucket.

It isn’t necessary to use circular motion to keep the water in the bucket; linear motion works too.
If you turn a glass of water upside down and immediately accelerate it straight downward with an
acceleration greater than or equal to g, the water will stay in the glass. Of course, you will soon run
out of room and smash the glass into the floor! The nice thing about circular motion is that it can go
on indefinitely. That’s why centrifuges involve circular motion and not linear motion.

4.20. Banking an airplane

First solution: If you do feel like you are getting flung to the side in your seat, then you
will need to counter this tendency with some kind of force parallel to the seat, perhaps
friction from the seat or a normal force by pushing on the wall, etc. If you don’t feel like
you are getting flung to the side in your seat, then you could just as well be asleep on a
frictionless seat, and you would remain at rest on the seat. So the goal of this problem is
to determine the banking angle that is consistent with the only forces acting on you being
the gravitational force and the normal force from the seat (that is, no friction), as shown in
Fig. 4.51.
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Let the banking angle be θ. The vertical component of the normal force must be Ny = mg,
to make the net vertical force be zero. This implies that the horizontal component is
Nx = mg tan θ. The horizontal F = ma equation for the circular motion of radius R is
then

Nx =
mv2

R
=⇒ mg tan θ =

mv2

R
=⇒ tan θ =

v2

gR
. (4.46)

Your apparent weight is simply the normal force, because this is the force with which a
scale on the seat would have to push up on you. So your weight is

N =
√

N2
x + N2

y = m

√(
v2

R

)2

+ g2. (4.47)

Limits: If R is very large or v is very small (more precisely, if v2 ≪ gR), then θ ≈ 0 and N ≈ mg.
(Of course, v can’t be too small, or the plane won’t stay up!) These limits make sense, because

2As an exercise, you can show that if the water stays inside the bucket at the highest point, then it will stay inside at
all other points too, as you would intuitively expect.
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for all you know, you are essentially moving in a straight line. If R is very small or v is very large
(more precisely, if v2 ≫ gR), then θ ≈ 90◦ and N ≈ mv2/R, which makes sense because gravity is
inconsequential in this case.

Second solution: Let’s use tilted axes parallel and perpendicular to the seat. If we break
the forces and the acceleration into components along these tilted axis, then we see that the
force component parallel to the seat is mg sin θ, and the acceleration component parallel
to the seat is (v2/R) cos θ, as shown in Fig. 4.52. So the F = ma equation for the motion

N

a = v2/R

mg

mg sinθθ

θ

θ

(v2/R) cosθ

Figure 4.52

parallel to the seat is

F = ma =⇒ mg sin θ =
mv2

R
cos θ =⇒ tan θ =

v2

gR
, (4.48)

in agreement with the result in Eq. (4.46). The F = ma equation for the motion perpen-
dicular to the seat gives us the normal force N :

N − mg cos θ =
mv2

R
sin θ =⇒ N = mg cos θ +

mv2

R
sin θ. (4.49)

You can verify that the sin θ and cos θ values implied by the tan θ = v2/gR relation in
Eq. (4.48) make this expression for N reduce to the one we found above in Eq. (4.47).

4.21. Breaking and turning

If you brake on a straight road, your acceleration vector points along the road. The friction
force satisfies Ff = ma. (We’ll just deal with magnitudes here, so both Ff and a are
positive quantities.) But Ff ≤ µN = µ(mg). Therefore,

ma = Ff ≤ µmg =⇒ a ≤ µg. (4.50)

So your maximum possible deceleration is µg. It makes sense that this should be zero if
µ is zero.

If you brake while traveling around a bend, your acceleration vector does not point along
the road. It has a tangential component at pointing along the road (this is the deceleration
we are concerned with) and also a radial component ar = v2/R pointing perpendicular to
the road. These components are shown in Fig. 4.53. The total acceleration vector (andar

at

v

a

Figure 4.53

hence also the total friction force vector) points backward and radially inward. Since
Ff = ma, we still have Ff = ma, where a is the magnitude of the a vector, which is now
a =

√
a2

t + a2
r . So the Ff ≤ µN restriction on Ff takes the form

m
√

a2
t + a2

r = Ff ≤ µmg =⇒
√

a2
t + (v2/R)2 ≤ µg

=⇒ at ≤
√

(µg)2 − (v2/R)2. (4.51)

Limits: This result correctly reduces to at ≤ µg when R = ∞, that is, when the road is straight. It
also reduces to at ≤ µg when v is very small (more precisely, v ≪

√
µgR), because in this case

the radial acceleration is negligible; you are effectively traveling on a straight road. If v =
√
µgR,

then Eq. (4.51) tells us that at must be zero. In this case the maximum friction force µN = µmg is
barely large enough to provide the mv2/R = m(µgR)/R = µmg force required to keep you going in
a circle. Any additional acceleration caused by braking will necessitate a friction force larger than
the µN limit.

4.22. Circle of rope

The forces on a small piece of rope subtending an angle dθ are the tensions at its ends.
In Fig. 4.54 these tensions point slightly downward; they make an angle of dθ/2 with

T

R

dθ

T sin (dθ/2)

(top view)

Figure 4.54
respect to the horizontal. (This is true because each of the long radial sides of the pie
piece in the figure makes an angle of dθ/2 with respect to the vertical, and the tensions
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are perpendicular to these sides.) If T is the tension throughout the rope, then from the
figure the net force on the small piece is F = 2 · T sin(dθ/2). This force points downward
(radially inward). Using the approximation sin x ≈ x for small x, we see that the net force
is F ≈ T dθ. This force is what causes the centripetal acceleration of the small piece. The
length of the piece is R dθ, so its mass is λR dθ. The radial F = ma equation is therefore

F =
mv2

R
=⇒ T dθ =

(λR dθ)v2

R
=⇒ T = λv2. (4.52)

Remarks: Note that this result of λv2 is independent of R. This means that if we have an arbitrarily
shaped rope (that is, the local radius of curvature may vary), and if the rope is moving along itself
(so if the rope were featureless, you couldn’t tell that it was actually moving) at constant speed, then
the tension equals λv2 everywhere.

If the rope is stretchable, it will stretch under the tension as it spins around. You should convince
yourself that the tension’s independence of R implies that if two circles (made of the same material)
with different radii have the same v, then the stretching will cause their radii to increase by the same
factor.

This λv2 result comes up often in physics. In addition to being the answer to the present problem,
λv2 is the tension in a rope with density λ if the speed of a traveling wave is v (this is a standard re-
sult that can be found in a textbook on waves). And λv2 is also the tension needed if you have a heap
of rope and you grab one end and pull with speed v to straighten it out (see Multiple-Choice Ques-
tion 6.18). All three of these results appear in a gloriously unified way in the intriguing phenomenon
of the “chain fountain.”3

4.23. Cutting the string

We must first find the speed of the circular motion. The free-body diagram is shown in
Fig. 4.55, where we have included the acceleration for convenience. The vertical F = ma

Tx

TyT

a = v2/r

mg

θ

Figure 4.55

equation tells us that Ty = mg, because the net vertical force must be zero. The horizontal
component of the tension is therefore Tx = Ty tan θ = mg tan θ. So the horizontal F = ma
equation is (using the fact that the radius of the circular motion is r = ℓ sin θ)

Tx =
mv2

r
=⇒ mg tan θ =

mv2

ℓ sin θ
=⇒ v =

√
gℓ sin θ tan θ. (4.53)

After the string is cut, we simply have a projectile problem in which the initial velocity is
horizontal (tangential to the circle when the string is cut). The distance down to the floor
is d = ℓ − ℓ cos θ, so the time to fall to the floor is given by

1
2
gt2 = ℓ − ℓ cos θ =⇒ t =

√
2ℓ(1 − cos θ)

g
. (4.54)

The horizontal distance traveled is therefore

x = vt =
√
gℓ sin θ tan θ

√
2ℓ(1 − cos θ)

g

= ℓ
√

2 sin θ tan θ(1 − cos θ) . (4.55)

Limits: If θ ≈ 0 then x ≈ 0 (because both v → 0 and t → 0). And if θ → 90◦ then x → ∞ (because
v → ∞). These limits make intuitive sense.

Units: Note that x doesn’t depend on g. Intuitively, if g is large, then for a given θ the speed v is
large (it is proportional to

√
g). But the falling time t is short (it is proportional to 1/

√
g). These two

effects exactly cancel. The independence of g also follows from dimensional analysis. The distance
x must be some function of ℓ, θ, g, and m. But there can’t be any dependence on g, which has units
of m/s2, because there would be no way to eliminate the seconds from the units to obtain a pure
length. (Likewise for the kilograms in the mass m.)

3See “Understanding the chain fountain” (by The Royal Society) at http://www.youtube.com/watch?v=-eEi7fO0 O0.
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4.24. Circling around a cone

(a) The free-body diagram is shown in Fig. 4.56. The net force produces the horizontal
N

T

a = v2
/r

mg

θ

θ

mg cos θ

a cos θ

mg sin θ

a sin θ
θ

Figure 4.56

centripetal acceleration of a = v2/r , where r = ℓ sin θ. Let’s work with axes parallel
and perpendicular to the cone. Horizontal and vertical axes would work fine too, but
things would be a little messier because the tension T and the normal force N would
each appear in both of the F = ma equations, so we would have to solve a system of
equations.
The F = ma equation along the cone is (using a = v2/ℓ sin θ)

T − mg cos θ = m
(

v2

ℓ sin θ

)
sin θ =⇒ T = mg cos θ +

mv2

ℓ
. (4.56)

Limits: If θ → 0 then T → mg + mv2/ℓ. We will find below that if contact with the cone is
to be maintained, then v must be essentially zero in this case. So we simply have T → mg,
which makes sense because the mass is hanging straight down. If θ → π/2 then T → mv2/ℓ,
which makes sense because the mass is moving in a circle on a horizontal table.

(b) The F = ma equation perpendicular to the cone is

mg sin θ − N = m
(

v2

ℓ sin θ

)
cos θ =⇒ N = mg sin θ − mv2

ℓ tan θ
. (4.57)

Limits: If θ → 0 then N → 0 − mv2/ℓ tan θ. Again, we will find below that v must be
essentially zero in this case, so we have N → 0, which makes sense because the cone is
vertical. If θ → π/2 then N → mg, which makes sense because, as above, the mass is moving
in a circle on a horizontal table.

(c) The mass stays in contact with the cone if N ≥ 0. Using Eq. (4.57), this implies that

mg sin θ ≥ mv2

ℓ tan θ
=⇒ v ≤

√
gℓ sin θ tan θ ≡ vmax. (4.58)

If v equals vmax then the mass is barely in contact with the cone. If the cone were
removed in this case, the mass would maintain the same circular motion.

Limits: If θ → 0 then vmax → 0. And if θ → π/2 then vmax → ∞. These limits make intuitive
sense.

4.25. Penny in a dryer

The penny loses contact with the dryer when the normal force N becomes zero. If θ is
measured with respect to the vertical, then the radially inward component of the gravita-
tional force is mg cos θ. The radial F = ma equation is therefore N + mg cos θ = mv2/R,
which implies that the N = 0 condition is

mg cos θ =
mv2

R
=⇒ v2 = gR cos θ. (4.59)

This equation tells us how v and θ are related at the point where the penny loses contact.
(If v >

√
gR, then there is no solution for θ, so the penny never loses contact.) To solve

for θ and v (and hence ω = v/R) individually, we must produce a second equation that
relates v and θ. This equation comes from the projectile motion and the condition that the
landing point is diametrically opposite.

When the penny loses contact with the dryer, the initial position (relative to the center
of the dryer) for the projectile motion is (R sin θ,R cos θ); remember that θ is measured
with respect to the vertical. The initial angle of the velocity is θ upward to the left, as
you can check. Therefore, since the initial speed is v, the initial velocity components are
xx = −v cos θ and vy = v sin θ. The coordinates of the projectile motion are then

x(t) = R sin θ − (v cos θ)t,

y(t) = R cos θ + (v sin θ)t − gt2/2. (4.60)
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If the penny lands at the diametrically opposite point, then the final position is the negative
of the initial position. So the final time must satisfy

R sin θ − (v cos θ)t = −R sin θ =⇒ (v cos θ)t = 2R sin θ, (4.61)
R cos θ + (v sin θ)t − gt2/2 = −R cos θ =⇒ gt2/2 − (v sin θ)t = 2R cos θ.

Solving for t in the first of these equations and plugging the result into the second gives

g

2

(
2R sin θ
v cos θ

)2

− v sin θ
(

2R sin θ
v cos θ

)
= 2R cos θ

=⇒ gR sin2 θ

v2 cos2 θ
=

sin2 θ

cos θ
+ cos θ

=⇒ gR sin2 θ

v2 cos2 θ
=

1
cos θ

=⇒ v2 =
gR sin2 θ

cos θ
. (4.62)

This is the desired second equation that relates v and θ. Equating this expression for
v2 (which guarantees a diametrically opposite landing point) with the one in Eq. (4.59)
(which gives the point where the penny loses contact) yields

gR sin2 θ

cos θ
= gR cos θ =⇒ tan2 θ = 1 =⇒ θ = 45◦. (4.63)

(And θ = −45◦, works too, if the dryer is spinning the other way. Equivalently, the
corresponding value of t is negative.) There must be a reason why the angle comes out so
nice, but it eludes me.

With this value of θ, Eq. (4.59) gives

v =

√
gR
√

2
=⇒ ω =

v

R
=

√
g
√

2R
. (4.64)

Limits: ω grows with g, as expected. The decrease with R isn’t as obvious, but it does follow from
dimensional analysis.

Remarks: The relation in Eq. (4.62) describes many different types of trajectories. If v is large, then
the corresponding θ is close to 90◦. In this case we have a very tall projectile path that generally lies
outside the dryer, so it isn’t physical. If v is small, then θ is close to 0. In this case the penny just
drops from the top of the dryer down to the bottom; the trajectory lies completely inside the dryer.
The cutoff between these two cases (that is, the case where the penny barely stays inside), turns out
to be the θ = 45◦ case that solves the problem (by also satisfying Eq. (4.59)). You are encouraged
to think about why this is true.

As an exercise, you can also produce the second equation relating v and θ (Eq. (4.62), derived
from the projectile motion) by using axes that are tilted along the diameter and perpendicular to it.
The magnitudes of the accelerations in these directions are g cos θ and g sin θ, respectively, and the
penny hits the diameter a distance 2R down along it. The math is fairly clean due to the fact that the
initial velocity is perpendicular to the diameter. So the solution turns out to be a bit quicker than the
one we used above. Problem 3.18(b) involved similar reasoning with the axis perpendicular to the
diameter/plane.



Chapter 5

Energy

5.1 Introduction
Work by a constant force

In one dimension, if a constant force F is directed parallel to the line of motion of an object, we
define the work done by the force on the object to be the force times the displacement:

W = F∆x. (5.1)

Work is a signed quantity, so if the force points opposite to the direction of motion (so that F
and ∆x have opposite signs), then W is negative. The units of work are

[W ] = [F][∆x] =
kg m

s2 ·m = kg m2

s2 . (5.2)

This combination of units is called a joule (J). Why do we define the work as F∆x and not, say,
F3(∆x)2 or something else? The reason is that the F∆x combination of force and displacement
happens to appear in a very useful relation, namely the “work-energy” theorem below.

In the more general case where the force (still assumed to be constant) does not point along
the line of motion, as shown in Fig. 5.1, the work is defined to be

F cosθ

F

∆x

∆x

θ

∆x cosθ

F

θ

(a)

(b)

Figure 5.1

W = F∆x cos θ, (5.3)

where θ is the angle between the force F and the displacement ∆x (we’ll use ∆x to denote
a general displacement in space, in any direction). You can write W as (F cos θ) ∆x, which
corresponds to the entire displacement times the component of the force along the displacement;
see Fig. 5.1(a). Or you can write W as F (∆x cos θ), which corresponds the entire force times
the component of the displacement along the force; see Fig. 5.1(b). If you are familiar with the
“dot product” (see Section 13.1.6 in Appendix A for the definition of the dot product), you can
write W as W = F · ∆x (which tells us that work is a scalar obtained from two vectors), but we
won’t need to use that form in this book.

Note that our physics definition of work isn’t the same as the colloquial definition. If you
hold up a heavy object and keep it at rest (or even move it horizontally at constant speed, so
that your upward force is perpendicular to the horizontal displacement), then you are doing zero
work by our physics definition, whereas you are certainly doing nonzero work in a colloquial
sense.

Work by a nonconstant force

What is the work done by a nonconstant force? (We’ll work in just one dimension here.) In the
simple case of a constant force, the work done is given in Eq. (5.1) as F∆x, which equals the
area of the region (which is just a rectangle) under the F vs. x “curve” in Fig. 5.2. If the force is

x

F

F

∆x

area = W

Figure 5.2
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instead nonconstant, that is, if it varies with position as in Fig. 5.3, then we can divide the x axis

x

F
F(x)

∆x

Figure 5.3

into a large number of short intervals, with the force being essentially constant over each one.
The work done in each interval is essentially the area of each of the narrow rectangles shown.
In the limit of a very large number of very short intervals, adding up all the areas of all the thin
rectangles gives exactly the total area under the curve. So the general result is: The work done
is the area under the F vs. x curve. That is, the work is the integral of the force:

W =
∫

F dx. (5.4)

The task of Problem 5.1 is to calculate the work done between two given points, x1 and x2, by a
Hooke’s-law spring.

In higher dimensions, Eq. (5.4) becomes W =
∫

F∆x cos θ. If you want, you can write this
in terms of the dot product as W =

∫
F · dx. But however you want to write it, you’re simply

adding up the work done over a large number of tiny intervals.

Work-energy theorem

Define the kinetic energy of a particle as K ≡ mv2/2. Then the work-energy theorem states:

• Work-energy theorem: The work done on a particle equals the change in kinetic energy of
the particle. That is,

W = ∆K. (5.5)

See Problem 5.2 for a proof. From F = ma, we know that if the force points in the same direction
as the velocity of the particle, then the speed increases, so the kinetic energy increases. That is,
∆K is positive. This is consistent with the fact that the work W is positive if the force points in
the same direction as the velocity. Conversely, if the force points opposite to the velocity of the
particle, then the speed decreases, so the kinetic energy decreases. This is consistent with the
fact that the work is negative.

Work-energy theorem (general)

The above statement of the work-energy theorem actually is valid only in the special case where
the object has no internal structure, that is, where it is a rigid featureless object. If the object does
have internal structure (for example, subparts that can move or springs that can be compressed,
etc.), then the general form of the work-energy theorem states that the work done equals the
change in the total energy of the object. This energy comes in the form of not only the kinetic
energy K of the object as a whole, but also the energy Eint of the internal constituents (this can
include both kinetic and potential energies; see below for the definition of potential energy). So
the general form of the work-energy theorem can be stated as

W = ∆Etotal = ∆K + ∆Eint. (5.6)

∆Eint includes heat, because heat is a measure of the kinetic energy of molecules vibrating on a
microscopic scale.

If an object is deformable, we need to be careful about how we define work. The work is
F∆x (we’ll deal with 1-D here, for simplicity), but if different parts of the object move different
amounts, which displacement should we pick as ∆x? The correct choice for ∆x is the displace-
ment of the point in the object where the force is applied. For contact forces (like pushing or
pulling, as opposed to long-range forces like gravity) that don’t involve any slipping, we can
equivalently say that ∆x is the displacement of the thing that is applying the force. If you walk
up some stairs, then the stairs do no work on you, because they aren’t moving.

When applying Eq. (5.6), the first thing you need to do is define what your system is, because
your choice of system determines which forces are external (which in turn determines the work
done) and which changes in energy are internal. Multiple-Choice Question 5.2 and Problem 5.5
discuss this issue.
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Conservative forces

A conservative force can be defined in two equivalent ways:

1. A force is conservative if it does zero total work on an object during a round trip.

2. A force is conservative if the work done between two given points is independent of the
path taken.

You can quickly verify that gravitational and spring forces are conservative, but kinetic friction is
not. Kinetic friction always does negative work, because the force always points opposite to the
velocity, which means that there can’t exist the necessary cancelation of positive and negative
contributions to make the total work be zero during a round trip.

The above two definitions are equivalent for the following reason. Let’s start with the second
definition. From this definition, the work done by a conservative force in going from A to B in
Fig. 5.4 is the same along the two paths. Label these works as W . Then the work done in going

1

2

A

B

Figure 5.4

from point B to point A along path 2 is −W , because the dx in the W =
∫

F · dx integral changes
sign. Therefore the total work done in the round trip from A to B along path 1, and then from B
to A along path 2, equals W + (−W ) = 0, which is consistent with the first definition.

Potential energy

We define the change in the potential energy (associated with a given force) of an object to be
the negative of the work done by the force on the object:

∆U ≡ −W. (5.7)

(Sometimes the letter V is used instead of U.) For a falling mass, gravity does positive work,
so ∆U is negative, which makes intuitive sense; the object loses gravitational potential energy.
Potential energy is defined only for conservative forces, because if a force isn’t conservative,
then the work is path dependent, so the ∆U between two points isn’t well defined. The potential
energies associated with two common conservative forces, gravitational and spring, are derived
in Problem 5.3.

Note that the definition in Eq. (5.7) deals only with the change in U. It makes no sense to ask
what U is for an object at a given point; it makes sense only to ask what U is for an object at a
given point, relative to a given reference point. Only changes in U matter. If one person measures
the gravitational U with respect to the floor, and another person measures it with respect to the
ceiling, they will have different results for U at any given point. But they will always calculate
the same difference between any two given points.

If we combine Eqs. (5.4) and (5.7), we see that ∆U is the negative integral of F. That is,
U (x) − U (x0) = −

∫ x

x0
F dx. The fundamental theorem of calculus then tells us that F is the

negative derivative of U:

F (x) = −dU
dx

. (5.8)

The general result in 3-D is that F is the negative gradient of U, that is, F = −∇U. But we’ll
stick to one dimension here. Eq. (5.8) gives another explanation of why adding a constant to the
potential energy doesn’t change the system: Since the derivative of a constant is zero, an additive
constant doesn’t affect the force. So a particle will move in exactly the same way.

Conservation of energy

If we use ∆U ≡ −W (which is just a definition) to replace W with −∆U in the work-energy
theorem, W = ∆K (which is an actual theorem with content), we obtain

−∆U = ∆K =⇒ ∆(U + K ) = 0. (5.9)

This tells us that the quantity U + K is constant (that is, conserved) throughout the motion. We
call this quantity the total energy: E ≡ U + K . In general, U can come from various different
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forces – gravity, spring, electrical, and so on. Note that conservation of energy gives the velocity
of an object (in 1-D) as

U + K = E =⇒ U (x) +
mv2

2
= E =⇒ v(x) = ±

√
2(E −U (x))

m
. (5.10)

Conservation of energy lends itself to an easy graphical visualization. Fig. 5.5 shows an

x
a cb

U

E1

E2

E3

E4

Figure 5.5

example of a potential-energy function, U (x), relative to a chosen reference point. Various
different choices of the total energy E are shown. (While U (x) is determined by the given setup,
the total energy E is determined by the initial speed and position of the object, which you are free
to choose.) From Eq. (5.10), the object can’t exist at values of x for which U (x) < E, because
v would be imaginary. So, for example, if the energy in Fig. 5.5 is E1, then the object will sit at
rest at x = b. If the energy is E2, then the object will oscillate back and forth between x = a and
x = c. If the energy is E3, then the object will oscillate in either of two wells (whichever one you
put it in at the start). And if the energy is E4, then the object will oscillate (with a nontrivially
varying speed) in one large well.

When using conservation of energy to solve a simple problem (say you want to find the speed
of a ball dropped from rest), you can usually get by with saying something like, “the loss in
potential energy shows up as kinetic energy,” which will allow you to write down mgh = mv2/2.
But in more complicated problems, you are strongly advised to be systematic by writing down an
Einitial = Efinal equation and then dealing with the various terms. For example, if a setup involves
an object under the influence of gravity and a spring, then you should immediately write down:

Ki +Ugrav
i +Uspring

i = Kf +Ugrav
f +Uspring

f . (5.11)

You can then gradually get a handle on what each term is and then solve for whatever unknown
you’re trying to solve for. See, for example, Problem 5.9.

Since conservation of energy follows from the work-energy theorem,1 which in turn follows
from F = ma (see Problem 5.2), any problem that you can solve with conservation of energy you
can also solve with F = ma. However, in many cases a conservation-of-energy approach makes
for a much quicker solution, because the F = ma solution would probably involve redoing the
derivation of the work-energy theorem in Problem 5.2. This task has already been done once and
for all if you use conservation of energy.

Along the same lines (and consistent with Footnote 1), if someone solves a problem by
using conservation of energy, and another person uses the work-energy theorem, then they’re
essentially doing they same thing. A potential-energy term in the former solution will show up
as a work term in the latter. See, for example, Problem 5.5.

Conservation of energy is one of the fundamental tools in physics. Two other conservation
laws that permeate classical mechanics are conservation of momentum (discussed in Chapter 6)
and conservation of angular momentum (discussed in Chapter 8).

Heat

The total energy of an isolated system is always conserved. In standard mechanics, the energy
can take three basic forms: potential energy, kinetic energy on a macroscopic scale, and kinetic
energy on a microscopic scale. The first two of these are commonly called “mechanical energy”
(examples include the k x2/2 potential energy of a spring and the mv2/2 kinetic energy of an
object), while the latter is called “thermal energy” or “heat.”

Heat is just the sum of the mv2/2 kinetic energies of the tiny molecules moving around
inside an object. But the reason we split the total kinetic energy into a macroscopic piece and a
microscopic piece is that it is generally easy to write down all the mv2/2 terms for the former,
but hopeless for the latter. However, it is often easy to get a handle on the total heat energy

1Instead of using the word “follows” here, it might be more accurate to say, “Since conservation of energy is equiva-
lent to the work-energy theorem.” The only thing separating these two results is the ∆U ≡ −W definition, which doesn’t
really have any content, being just a definition.
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in a system. In problems in this book, the way that heat arises is from kinetic friction. More
precisely, the heat generated equals the magnitude of the work done by kinetic friction.

(An aside, which isn’t important for this book: The phrase “work done by kinetic friction”
is riddled with subtleties; the exact nature of the friction force needs to be specified before we
can determine how much work is done on any given object. See Problem 5.6 in Morin (2008)
for a discussion of this. However, for the purpose of calculating the total heat generated by
kinetic friction (without caring how it is divided between the objects), it is valid to say that the
work equals the kinetic friction force times the distance that one object moves with respect to
the other.)

When energy is “lost” to heat, people often say colloquially that energy isn’t conserved.
What they really mean is that the mechanical energy isn’t conserved. The total energy, including
heat, is always conserved. No energy is actually lost; it’s just that some of it might change from a
macroscopic form to a microscopic from and hence not show up in the overall motion of objects
in the system.

Lest you think that there is no way that tiny molecules moving around inside an object can
have a substantial amount of energy, remember that there are a lot of them, and that they can
be moving very fast, even though you can’t see the motion. It turns out that if you increase the
temperature of a liter of water from just above freezing to just below boiling, then the energy you
need to add is the same as the gravitational potential energy of a 1.5-ton car raised 30 meters,
or equivalently the gravitational potential energy of the liter of water raised 40 kilometers, or
equivalently the mechanical kinetic energy of the liter of water projected with a speed of 900 m/s!
You can verify these claims by using the facts that the amount of energy required to raise one
gram of water by one Celsius degree is one calorie, and that there are 4.2 joules in a calorie,

Power

Power is the rate at which work is done. If a force F in 1-D acts on an object for a small
time dt, during which the object has a displacement dx, then the small amount of work done is
dW = F dx. So the rate at which work is done (that is, the power) equals

P ≡ dW
dt
=

F dx
dt
= F

dx
dt
= Fv. (5.12)

In other words, power equals force times velocity. These are all signed quantities, so if the
force and velocity have opposite signs, then the power is negative. More generally, in higher
dimensions the dW = F · dx relation leads to P = F · v, by the same reasoning. Since the unit of
work is the joule, the units of power are joules/second, which are called a watt (W).

5.2 Multiple-choice questions
5.1. Which of the following forces can never, under any circumstances, do work? (Be careful!)

(a) gravity

(b) static friction

(c) kinetic friction

(d) tension

(e) normal force

(f) None of the above; they all can do work.

5.2. If you are driving down a road and you step on the gas, the car accelerates due to the static
friction force between the ground and the tires. The car’s speed increases, so its kinetic
energy increases. Does the static friction force do any work?

Yes No
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5.3. An escalator moves downward at constant speed. You walk up the escalator at this same
speed, so that you remain at rest with respect to the earth. Are you doing any work?

Yes No

5.4. Fill in the blanks: If you walk up some stairs at constant speed, the net work done on your
entire body (during some specific time interval) is , and the net work done on just
your head is .

(a) negative, zero

(b) zero, zero

(c) zero, positive

(d) positive, zero

(e) positive, positive

5.5. A spring hangs from a ceiling. It is initially compressed by some distance. A mass is
attached to the bottom end and then released from rest. Consider the lowest point in the
mass’s motion as it bounces up and down. At this point, the spring’s potential energy is

its initial potential energy.

(a) equal to

(b) larger than

(c) smaller than

(d) The relative size cannot be determined from the given information.

5.6. A block with mass m initially has speed v0 down a plane inclined at an angle θ. The block
is attached to a spring with spring constant k, initially at its relaxed length; see Fig. 5.6.

k v

µ

θ

m

0

Figure 5.6

The coefficient of kinetic friction with the plane is µ.

True or false: A method for calculating the position where the block reaches its lowest
point on the plane is to find the position where the net force on the block is zero.

T F

5.7. A block with mass m starts from rest and slides down a plane inclined at an angle θ. The
coefficient of kinetic friction is µ. Which expression correctly yields the block’s speed v

after it has traveled a distance d down along the plane, assuming that it does indeed start
sliding down? (d is a distance here, so it is a positive quantity.)

(a) mgd sin θ + µmgd cos θ =
mv2

2

(b) mgd sin θ − µmgd cos θ =
mv2

2

(c) −mgd sin θ + µmgd cos θ =
mv2

2

(d) mgd cos θ + µmgd sin θ =
mv2

2

(e) mgd cos θ − µmgd sin θ =
mv2

2

5.8. A cart with massless wheels contains sand. The cart starts at rest and then rolls (without
any energy loss to friction) down into a valley and then up a hill on the other side. Let
the initial height be h1, and let the final height attained on the other side be h2. If the cart
leaks sand along the way, how does h2 compare with h1?

(a) h2 < h1 (b) h2 = h1 (c) h2 > h1
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5.3 Problems
The first six problems are foundational problems.

5.1. Work done by a spring

If the force from a spring is given by Hooke’s-law, F (x) = −k x, calculate the work done
by the spring in going from x1 to x2.

5.2. Work-energy theorem

Show that the acceleration a of an object can be written as a = v dv/dx. Then combine
this with F = ma to prove the work-energy theorem: the work done on an object (with no
internal structure) equals the change in its kinetic energy.

5.3. Gravitational and spring U ’s

(a) Find the gravitational potential energy of a mass m as a function of y (with upward
taken to be positive), measured relative to a given point chosen as y = 0.

(b) Find the spring potential energy (for a spring with spring constant k) as a function of
x, measured relative to the equilibrium point where x = 0.

5.4. Work in different frames

An object with mass m is initially at rest, and then a force is applied to it that causes it to
undergo a constant rightward acceleration a for a time t.

(a) Calculate the work done on the object, and also the change in kinetic energy. Verify
that W = ∆K .

(b) Repeat the same tasks, but now by working in the reference frame moving to the
left with constant speed v. (Equivalently, let the object start with speed v instead of
starting at rest.)

5.5. Raising a book

Assume that you lift a book up a height h at constant speed (so there is no change in kinetic
energy). The general work-energy theorem, Eq. (5.6), takes a different form depending on
what you pick as your system, because your choice of system determines which forces are
external (and thereby do work), and which changes in energy are internal. Write down
Eq. (5.6) in the cases where your system is:

(a) the book

(b) the book plus the earth

(c) the book plus the earth plus you

Verify that the three different equations actually say the same thing.

5.6. Hanging spring

A massless spring with spring constant k hangs vertically from a ceiling, initially at its
relaxed length. A mass m is then attached to the bottom and released.

(a) Calculate the total potential energy U (gravitational and spring) of the system, as a
function of the height y (which is negative), relative to the initial position.

(b) Find y0, the point at which the potential energy is minimum. Make a rough plot of
V (y).

(c) Rewrite the potential energy as a function of z ≡ y − y0. Explain why your result
shows that a hanging spring can be considered to be a spring in a world without
gravity, provided that the new equilibrium point, y0, is now called the “relaxed”
length of the spring.
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5.7. A greener world?

In an effort to make the world a greener place by reducing the burning of fossil fuels, con-
sider the following alternative method of producing energy. This brilliant method applies
the principle of hydroelectric power to normal solid matter. The plan is to blow up the
sides of mountains and convert the loss in potential energy of the falling rock/dirt/etc. into
electric power.

Your task is to find (very roughly) the volume of rock that needs to be converted daily
to satisfy the entire world’s need for power. You will need to look up the values of var-
ious things, such as the world’s daily energy consumption. Assume that some ingenious
method has been devised to capture all of the energy of the falling rock, and assume that
on average the rock falls a height of one kilometer.

5.8. Hoisting up

A platform has a rope attached to it which extends vertically upward, over a pulley, and
then back down. You stand on the platform. The combined mass of you and the platform
is m.

(a) Some friends standing on the ground grab the other end of the rope and hoist you up
a height h at constant speed. What is the tension in the rope? How much work do
your friends do?

(b) Consider instead the scenario where you grab the other end of the rope and hoist
yourself up a height h at constant speed. What is the tension in the rope? How much
work do you do?

5.9. Hanging block

A block with mass m is attached to a ceiling by a spring with spring constant k and relaxed
length ℓ. Initially, the spring is compressed to a length of ℓ/2. If the block is released, at
what distance below the ceiling will the block be brought to rest (instantaneously, at the
lowest point) by the spring?

5.10. Rising on a spring

A spring with spring constant k and relaxed length ℓ stands vertically on the ground, with
its bottom end attached to the ground. A mass m is attached to the top and then lowered
down to the ground, so that the spring is compressed to zero length. The mass is then
released from rest and accelerates vertically upward. What is the maximum height above
the ground it reaches? You may assume that k > mg/ℓ, so that the mass does indeed rise
up off the ground. Note that at all times, the mass remains attached to the spring, and the
spring remains attached to the ground.

5.11. Jumping onto mattresses

(a) You jump out of a window (with zero initial speed) and do a belly flop onto a mat-
tress. Assume that the mattress can be treated like a spring with spring constant k. If
you fall a distance h before hitting the mattress, what is the maximum compression
distance of the mattress? What is the maximum force it applies to you? For simplic-
ity, ignore the change in gravitational potential energy during the compression.

(b) Answer the same questions, but now with N identical mattresses stacked on top of
each other. Assume that the height fallen before hitting the top mattress is still h.
(You will need to use the generalization of the result from Problem 4.2.)

5.12. Bungee jumping 1

A bungee-jump cord has length ℓ and is initially folded back on itself, as shown in Fig. 5.7.

l/2

Figure 5.7
The jumper has mass m. After she jumps (or rather, falls) off the platform, she is in freefall
for a height ℓ. After that, the spring becomes stretched. Assume that it acts like an ideal
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spring with a particular spring constant. (This applies only during the stretching motion,
of course; the cord can’t support compression like a normal spring.) It is observed that the
lowest point the jumper reaches is a distance 2ℓ below the platform.

(a) What is the spring constant?

(b) What is the jumper’s acceleration at the lowest point?

(c) At what position (specify the distance below the platform) is the jumper’s speed
maximum? What is this speed?

5.13. Bungee jumping 2

Consider again the setup in Fig. 5.7, with a bungee-jump cord of length ℓ. Assume that
the spring constant takes on a particular value k.

(a) What is the lowest point the jumper achieves?

(b) What is the tension in the cord at the lowest point?

(c) If the jumper cuts the cord in half and uses one of the halves for the jump, what is
the tension at the lowest point? (You will need to use the result from Problem 4.2.)

The following five problems have a common theme.

5.14. Mass on a spring

A block with mass m is located at position x = 0 on a horizontal table. A spring with
spring constant k and relaxed length zero is connected to it and has its other end anchored
at position x = ℓ, as shown in Fig. 5.8. The coefficient of friction (both static and kinetic)
between the block and the table depends on position according to µ = Ax, where A is a
constant. Assume that the block is small enough so that it touches the table at essentially
only one value of x.

k

m

µ=Ax

x=0 x=l

Figure 5.8

(a) The block is released from rest at x = 0. Where does it come to rest for the first
time? What is the condition on A for which the stopping point is to the right of the
x = ℓ anchor point? (Assume that the block can somehow pass through the anchor.)

(b) If the stopping point is to the right of the anchor, what is the condition on A for which
the block starts moving leftward after it instantaneously comes to rest? In the cutoff
case where it barely starts moving again, where is this (first) stopping point?

5.15. Falling with a spring

Consider the system shown in Fig. 5.9, with two equal masses m and a spring with spring

m

m

k

µk =1/4

Figure 5.9

constant k. The coefficient of kinetic friction between the left mass and the table is µ =
1/4, and the pulley is frictionless. The system is held with the spring at its relaxed length
and then released.

(a) How far does the spring stretch before the masses come to rest?

(b) What is the minimum value of the coefficient of static friction for which the system
remains at rest once it has stopped?
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(c) If the string is then cut, what is the maximal compression of the spring during the
resulting motion?

Note: In parts (a) and (c), you can give the left mass a tiny kick to get it going if the
coefficient of static friction happens to be large enough to make this necessary.

5.16. Bead, spring, and rail

Fig. 5.10 shows a setup involving a spring and two angled rails. Assume that the setup is
m

k

θ

frictionless rail

friction, µ

bead

Figure 5.10

located in deep space, so that you can ignore gravity in this problem. A bead with mass
m is constrained to move along one of the rails; this rail has friction, and the coefficient
of kinetic friction with the bead is µ. The bead is connected to a spring, the other end of
which is constrained to move along a frictionless rail. The spring is always perpendicular
to this rail (this is a consequence of the facts that the spring is massless and the rail is
frictionless). The relaxed length of the spring is zero.

The bead starts out at the vertex of the rails (with the spring unstretched at its relaxed
length of zero) and is given a kick so that its initial speed is v0 (so the figure shows a
general later time).

(a) Draw the free-body diagram for the bead at a general later time. If x is the distance
the bead has traveled along the rail, what are all the forces in terms of x?

(b) How far does the bead travel along the rail before it comes to rest?

(c) Under what condition does the bead start moving again, back toward the vertex?
(Assume that the coefficient of static friction is also µ.)

(d) Assuming that the bead does indeed start moving again, what is its speed when it
arrives back at the vertex?

5.17. Ring on a pole

A spring with spring constant k and relaxed length zero has one end attached to a wall and
the other end attached to a ring with mass m. The ring is pulled to the side and is slipped
over a vertical pole that is fixed at a distance ℓ from the wall, as shown in Fig. 5.11. The

k

pole

l m

µ

Figure 5.11

coefficient of friction (both static and kinetic) between the ring and the pole is µ. The ring
is held with the spring horizontal and is then released.

(a) Draw the free-body diagram for the ring at a general later time. What is the normal
force between the ring and the pole?

(b) How far down the pole does the ring fall before bouncing back up?

(c) What is the cutoff value of µ, below which the ring does indeed:

i. fall when it is released?
ii. bounce back up at the bottom of its motion?

5.18. Block on a plane

A block with mass m lies on a plane inclined at angle θ. The coefficient of friction (both
kinetic and static) between the block and the plane is µ = 1. A massless spring with spring
constant k is placed on the plane, with its lower end held fixed. The block is attached to the
top end of the spring (see Fig. 5.12) and then moved down until the spring is compressed

k

θ

µ=1

m

Figure 5.12

a distance ℓ relative to its relaxed length. The block is then released.

(a) For what value of ℓ does the block rise back up exactly to its original position (where
the spring is uncompressed)?

(b) What is the condition on θ for which the block then starts to slide back down?

(c) Assuming that the block does indeed slide back down, how far down the plane does
it go?

(d) What is the condition on θ for which the block then starts to move back up?
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5.19. Tangential acceleration

A bead is initially at rest at the top of a fixed frictionless hoop with radius R that lies in
a vertical plane. The bead is then given an infinitesimal push so that it slides down and
around the hoop.

(a) What is the speed of the bead after it has fallen through an angle θ (measured relative
to the vertical)?

(b) Take the time derivative of your result (don’t forget to use the chain rule) to verify
that the tangential acceleration dv/dt equals the tangential component of gravity,
namely g sin θ.

5.20. Comparing the tensions

A pendulum with mass m and length ℓ swings back and forth between the two horizontal
positions shown on the left in Fig. 5.13. Let the tension in the string as a function of θ be
T1(θ). The mass is then stopped at an angle θ and held in place with a horizontal rope, as
shown on the right in Fig. 5.13. Let the tension in the string (the pendulum’s string, not
the rope) as a function of θ be T2(θ).

(a) Find T1(θ) and T2(θ). For what θ is T1(θ) = T2(θ)?

(b) Explain with a continuity argument why you can say (without doing any calculations)
that there must indeed exist an angle θ for which T1(θ) = T2(θ).

θ

m

l
θ

m

l

rope

(before) (after)

(side views)

Figure 5.13

5.21. Semicircular tube

A frictionless tube is bent into the shape of a semicircle with radius R. The semicircle is
tilted so that its diameter makes a fixed angle θ with respect to the vertical, as shown in
Fig. 5.14. A small mass is released from rest at the top of the tube and slides down through
it. When the mass leaves the tube, it undergoes projectile motion. Let d be the distance
traveled in the projectile motion, up to the time when the mass returns to the height it had
when it left the tube. What should θ be so that d is as large as possible?

θ

d

R

(side view)

Figure 5.14
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5.22. Horizontal force

A bead is constrained to move on a fixed frictionless vertical hoop with radius R. The bead
starts at rest at the top and is given an infinitesimal kick. When the bead is at an angle θ
below the horizontal, what is the normal force that the hoop applies to the bead? For what
θ is the total force on the bead horizontal?

5.23. Maximum vertical normal force

A bead is constrained to move on a fixed frictionless vertical hoop with radius R. The
bead is initially at rest at the top. It is then given a kick so that it suddenly acquires a
speed v0; see Fig. 5.15. It then travels around the hoop indefinitely. Let Ny be the vertical

v
0

(side view)

Figure 5.15

component of the bead’s normal force on the hoop. (Note that we are talking about the
force from the bead on the hoop, and not the hoop on the bead.) Let θ be the angle of the
bead’s position with respect to the vertical.

(a) What is Ny?

(b) For what θ does Ny achieve its maximum (upward) value? In answering this, you
can assume that v0 is relatively small. Relatively large v0 is handled in part (c).

(c) There is a certain value of v0 above which Ny achieves its maximum value at the top
of the hoop. What is this value of v0?

5.24. Falling stick on a table

A massless stick with length ℓ stands at rest vertically on a table, and a mass m is attached
to its top end, as shown in Fig. 5.16. The coefficient of static friction between the stick

m

l

µ

θ

Figure 5.16

and the table is µ. The mass is given an infinitesimal kick, and the stick-plus-mass system
starts to fall over. At what angle (measured between the stick and the vertical) does the
stick start to slip on the table? (Careful, the answer depends on whether µ is larger or
smaller than a particular value.)

5.25. Bead, spring, and hoop

A massless spring with spring constant k and relaxed length zero has one end attached
to a given point on fixed frictionless horizontal hoop of radius R, while the other end is
attached to a bead with mass m that is constrained to lie on the hoop. The spring is initially
stretched across a diameter, with the bead at rest. The bead is then given an infinitesimal
kick, and it gets pulled around the hoop by the spring, as shown in Fig. 5.17.

(a) What is the normal force in the horizontal plane of the hoop (in other words, ignore
gravity in this problem) that the hoop exerts on the bead at the moment the bead has
gone a quarter of the way around the circle?

(b) Is there a point in the motion where the normal force (in the plane of the hoop) is
zero? A simple yes or no, with proper reasoning, is sufficient; you don’t have to
solve for the normal force as a general function of the angle to answer this question.

m

k

R

(start)

(top view)

(later)

Figure 5.17
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5.26. Bead, spring, hoop, and pole

A bead with mass m is free to slide on a fixed frictionless vertical hoop with radius R. A
pole is located along the vertical diameter. A spring with spring constant k and relaxed
length zero has one end attached to the mass, while the other end is free to slide without
friction along the vertical pole. The bead is initially at rest at the top of the hoop and
is given an infinitesimal kick. The situation at a later time is shown in Fig. 5.18. You

m

R

θ

k

(side view)

Figure 5.18

can assume that the spring is always horizontal (this is a consequence of the facts that the
spring is massless and the pole is frictionless).

Assume that before constructing this setup, you determine the value of k by noting that if
you hold one end of the spring and let the bead on the other end hang at rest below, the
length of the spring is R. This quickly tells you that k = mg/R. Given this value of k, at
what angle θ (measured with respect to the vertical) is the normal force from the hoop on
the bead equal to zero?

5.27. Entering freefall

Ball A of mass m is connected to one end of a massless stick with length ℓ, the other end
of which is connected to a pivot. The stick is held vertically above the pivot and is then
given an infinitesimal kick; see Fig. 5.19. It swings down, and at the bottom of its motionstick

pivot

string
l

l

m

A

B

m

Figure 5.19

it collides elastically with ball B, also of mass m, which hangs from a string with length ℓ
and which is initially at rest. Ball B picks up whatever speed ball A had and then swings
upward in circular motion.

(a) At what point does ball B leave its circular motion and enter freefall projectile mo-
tion?

(b) How high does ball B go in the resulting projectile motion?

5.4 Multiple-choice answers

5.1. f They all can do work. Gravity certainly does work on a falling object. Static friction
does work on a book lying on a table if you accelerate the table sideways. Kinetic friction
does work in this same setup if you accelerate the table so quickly that the book slips with
respect to it. Tension does work if you pull on a block with a piece of rope. And a normal
force does work if you push on a book with your hand.

Remark: Note that in all of these cases, the force has a nonzero component in the direction of
the motion, so the product F∆x cos θ is nonzero. This would not be the case for the normal force
if we had a block sliding down a stationary inclined plane, because the normal force would be
perpendicular to the motion. If, on the other had, the plane were moving sideways, then the normal
force would do nonzero work on the block, because the force would have a nonzero component in
the direction of the motion (which now isn’t perpendicular to the plane).

5.2. No The thing applying the force (the ground) doesn’t move, so it doesn’t do any work.

Remark: Since no work is done, the general work-energy theorem, Eq. (5.6), says that the total
energy of the car doesn’t change. But we know that the kinetic energy increases, so what’s going on?
The car apparently must lose some other form of energy so that the total energy remains constant.
And indeed, the car burns gasoline, so the potential energy of the gasoline decreases.

As a more concrete analogy, consider the setup shown in Fig. 5.20. A box has a spring inside it that
is compressed against a stationary protrusion from a wall. The box is released, and the spring pushes
it to the right. The wall doesn’t move, so it doesn’t do any work on the box-plus-spring system. The
total energy of the box-plus-spring system must therefore remain constant. And indeed, the gain in
kinetic energy of the box is exactly canceled by the loss in potential energy of the spring. If the box
is opaque so that you can’t see inside, you can still conclude that there must be something inside that
loses energy.
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v
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Figure 5.20

If you instead want to consider the box alone to be your system (instead of the box-plus-spring) then
the external force acting on the box itself comes from the right end of the spring. This end does
move, so it does do nonzero work on the box. This is consistent with the work-energy theorem,
because the energy of the box increases; this energy consists solely of kinetic energy.

5.3. Yes You do work. Your feet apply a normal force on the steps, and your feet are moving.
So there is a nonzero force-times-distance product.

Remark: The work that you do on the escalator is positive; your feet move downward as they apply
a downward force on the escalator. Conversely, the escalator does negative work on you; it moves
downward as it applies an upward force on your feet. Since negative work is done on you, the general
work-energy theorem says that your total energy decreases. Your kinetic energy doesn’t change (it
is always zero; or essentially constant, if we include the roughly constant motion of your legs), nor
does your gravitational potential energy change (because you remain at the same height). But your
internal chemical potential energy decreases as you use up the dinner you ate the night before.

5.4. a Since you are moving upward, gravity does negative work on your body. The only
other force acting on your body as a whole is the force from the stairs, but since the stairs
aren’t moving, they do no work on you. So the net work comes from only gravity and is
therefore negative.

Now consider your head. Gravity again does negative work. The other force acting on
your head is the upward force from your neck (equal and opposite to the weight of your
head, since your head isn’t accelerating). This force does do work, because your neck is
moving upward. So the net work on your head is zero.

Remark: These results are consistent with the general work-energy theorem, Eq. (5.6). In the case of
your head (which we’re assuming is basically a point mass with no internal structure), the zero work
is consistent with the zero change in kinetic energy. In the case of your whole body, the negative
work is consistent with the fact that your internal energy decreases (your muscles use up chemical
potential energy).

5.5. b The total energy, which comes in three forms (kinetic, gravitational U , and spring U),
is conserved. There is no net change in the kinetic energy, because it starts and ends at
zero (since the mass is instantaneously at rest at the lowest point). Therefore, since the
gravitational potential energy decreases, the spring potential energy must increase. What
happens is that the spring’s U initially decreases as the spring becomes uncompressed, but
then U increases and ends up larger than its initial value. So we conclude that the spring
ends up stretched by a larger distance than it was initially compressed; this makes intuitive
sense.

Alternatively: No net work is done on the mass, because ∆K = 0. Since gravity does
positive work, the spring must do negative net work. From Eq. (5.7), the potential energy
of the spring therefore increases.

5.6. F The block is instantaneously at rest at the lowest point. The block does not come to
rest when the net force on it is zero. It comes to rest when the total work done on it equals
−mv2

0/2. This follows from the work-energy theorem, because the kinetic energy goes
from mv2

0/2 to 0 since the speed goes from v0 to 0.
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Remark: If you instead want to find the place where the block’s speed is maximum, then you do
want to set the net force equal to zero (so that a = dv/dt = 0). But you don’t want to do this for
the present goal of finding the lowest point. At the lowest point (or rather, a split second before the
lowest point is reached, so that we’re still dealing with kinetic friction) the force on block is not zero.
The force points up the plane; we know this because the block is decelerating to zero speed.

Depending on the coefficient of static friction, note that once the block instantaneously stops at the
lowest point, the static friction force might be large enough to keep the block from bouncing back
up, in which case the total force is zero. But there is an infinite number of points where this is the
case, so demanding that the total force (including static friction) is zero certainly won’t help you
find the (unique) lowest point, as this question asks.

5.7. b The component of the gravitational force pointing down along the plane has magnitude
mg sin θ. The block is moving down the plane, so gravity does positive work; this work
is (mg sin θ)d. The kinetic friction force points up along the plane with magnitude µN =
µ(mg cos θ). The associated work is negative and equals −(µmg cos θ)d. The total work
is therefore mgd sin θ − µmgd cos θ. Since the block starts at rest, the change in kinetic
energy is mv2/2 − 0. The work-energy theorem therefore gives choice (b).

Alternatively: If you want to think in terms of energy instead of work, then the mgd sin θ
loss in potential energy shows up as mv2/2 kinetic energy plus µmgd cos θ heat (which
is the magnitude of the work done by friction). This yields the same equation, just rear-
ranged.

5.8. b If the cart doesn’t leak any sand, then it effectively acts like a point object, so conser-
vation of energy tells us that the initial and final potential energies must be equal, because
the initial and final kinetic energies are equal (they are both zero). So h2 must equal h1.

Now let’s take into account the leaked sand. The leaked sand doesn’t affect the speed of
the cart, because it isn’t propelled forward or backward. It just leaks out, so the cart applies
no force to the sand, and hence by Newton’s third law the sand applies no force to the cart.
The cart therefore moves exactly the same way it would move if the sand weren’t leaking.
So it reaches the same height as it would in the non-leaking case, namely h2 = h1.

Remark: Be careful about incorrectly applying conservation of energy. You might say that since
the sand comes to rest on the ground somewhere down in the valley, it ends up with less potential
energy than it started with; so the cart itself must end up with more potential energy (to conserve
the total energy of the system), which means that it must end up at a higher position. This reasoning
is incorrect because it doesn’t take into account all of the energy in the system. The leaked sand
has kinetic anergy when it leaves the cart, and this kinetic energy eventually ends up as heat when
the sand comes to rest on the ground. The energy is still there, it just takes a different form. But
nothing that happens after the sand leaves the cart can affect the cart, of course. If the ground were
frictionless and the leaked sand simply slid along the ground, then it would always remain right
below the cart. At the end of the process, we would have at height h2 = h1 both the empty cart and
a pile of sand right below it.

If you want to make your head hurt, you can consider the more difficult setup where the cart has
massive wheels, which we will assume never slip on the ground. This setup requires material from
Chapter 7, so you’ll need to wait until then to think about it. As a hint, the answer is not h2 = h1.

5.5 Problem solutions

5.1. Work done by a spring

With F (x) = −k x, Eq. (5.4) gives the work done by the spring, in going from x1 to x2, as

W =
∫ x2

x1

F dx =
∫ x2

x1

(−k x) dx = −1
2

kx2
�����
x2

x1

=
1
2

k x2
1 −

1
2

k x2
2. (5.13)
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This is positive if x2
1 > x2

2, that is, if |x1 | > |x2 |. This makes sense, because if the spring
pulls a mass from a larger position x1 to a smaller position x2, then both the force and the
displacement are negative, so the work is positive.

Remark: If a mass is attached to the end of the spring, and if you grab the mass and move it at
constant speed, then your force exactly cancels the spring force, so your force equals +k x. The
work you do is therefore exactly opposite to the work the spring does. So Wyou = kx2

2/2 − k x2
1/2.

The sign of this makes sense; if you bring the mass from a smaller position x1 to a larger position
x2, then both your force and the displacement are positive, so your work is positive.

5.2. Work-energy theorem

If we write a as dv/dt and then multiply by 1 in the form of dx/dx, we obtain

a =
dv
dt
=

dx
dt

dv
dx
= v

dv
dx

, (5.14)

as desired. It is indeed legal to perform these operations with infinitesimal quantities. If
you feel uneasy about this, you can work with finite quantities like ∆x, etc. (for which the
manipulations are certainly legal) and then at the end take the limit where all quantities
become infinitesimally small.

Plugging a = v dv/dx into F = ma, and then multiplying by dx and integrating from x1
(and the corresponding v1) to x2 (and the corresponding v2), gives

F = mv
dv
dx
=⇒

∫ x2

x1

F dx =
∫ v2

v1

mv dv. (5.15)

The integral on the left-hand side is the work done, by definition. So we have

W =
mv2

2

�����
v2

v1

=
mv2

2

2
−

mv2
1

2
, (5.16)

which is the change in kinetic energy, as desired.

5.3. Gravitational and spring U ’s

(a) The work done by gravity in moving a mass through a displacement y is

Wg =

∫ y

0
F dy =

∫ y

0
(−mg) dy = −mgy. (5.17)

The negative sign arises because the gravitational force points downward. If y is
positive, then the work done by gravity is negative, because the displacement points
upward while the force points downward.
Since ∆U is defined to be −W , the gravitational potential energy relative to y = 0 is

U (y) = mgy. (5.18)

This result is valid for both positive and negative y. The higher the object is, the
more gravitational potential energy it has, which makes sense because it takes effort
to lift up a mass.

(b) From Problem 5.1, the work done by a spring in going from x1 to x2 equals k x2
1/2−

k x2
2/2. If we pick x1 to be zero and relabel x2 as x, then the work is W = −kx2/2.

Since ∆U is defined to be −W , the spring potential energy relative to the equilibrium
point at x = 0 is

U (x) =
1
2

kx2. (5.19)

This is positive for any nonzero value of x, which makes sense because it takes effort
to stretch or compress a spring.
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5.4. Work in different frames

(a) The work is W = Fd, where the force is F = ma and the distance traveled is
d = at2/2. So the work is

W = Fd = (ma)
(

1
2

at2
)
=

1
2

m(at)2. (5.20)

Since the object starts at rest, the change in kinetic energy is simply the final kinetic
energy, which is mv2

f /2. But the final speed vf is just vf = at, so the change in kinetic
energy is m(at)2/2. This equals the work W , as it should.

(b) From standard 1-D kinematics, the distance traveled in the reference frame where
the object starts with speed v is d = vt + at2/2. The force F is still ma, so the work
done in this frame is

W = Fd = (ma)
(
vt +

1
2

at2
)
= mavt +

1
2

ma2t2. (5.21)

The change in kinetic energy is

∆K =
1
2

mv2
f −

1
2

mv2
i =

1
2

m(v + at)2 − 1
2

mv2 (5.22)

=
1
2

m(v2 + 2vat + a2t2) − 1
2

mv2 = mavt +
1
2

ma2t2,

which agrees with the work W , as it should.

Remark: Note that W and ∆K in this frame are larger than W and ∆K in the original frame.
So W and ∆K depend on the choice of frame. But given a particular frame, the work-energy
theorem tells us that whatever the value of W is, the value of ∆K will be the same.

5.5. Raising a book

(a) System = book: Both you and gravity provide external forces. There is no change
in the kinetic energy of the book, and also no change in internal energy. So the right-
hand side of the general work-energy theorem, W = ∆K + ∆Eint, equals zero. The
work you do is +mgh, and the work gravity does is −mgh, so Eq. (5.6) becomes

Wyou +Wgrav = 0 =⇒ mgh + (−mgh) = 0. (5.23)

(b) System = book + earth: Now you are the only external force. The gravitational
force between the earth and the book is an internal force which is associated with an
internal potential energy. (You can think of the book and the earth as being connected
by a constant-force “gravitational spring” that is being stretched.) This potential
energy ∆Uearth/book is the usual mgh. This is the change in the internal energy, ∆Eint.
The general work-energy theorem therefore says

Wyou = ∆Uearth/book =⇒ mgh = mgh. (5.24)

(c) System = book + earth + you: There is now no external force, so no work is done
on the system. The internal energy of the system changes because the earth-book
gravitational potential energy increases (by mgh, as in part (b)), and also because
your potential energy decreases. In order to lift the book, you have to burn some
calories from the breakfast you ate. So the general work-energy theorem says

0 = ∆Uyou + ∆Uearth/book =⇒ 0 = −mgh + mgh. (5.25)

Actually, the human body isn’t 100% efficient, so what really happens is that your
potential energy decreases by more than mgh, but heat is produced. The sum of
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these two changes in energy (the decrease in your potential energy plus the increase
in heat) equals −mgh. In other words, including an amount η of energy in the form
of heat, the general work-energy theorem says

0 =
[
∆Uyou + Heat

]
+ ∆Uearth/book =⇒ 0 =

[
(−mgh − η) + η

]
+ mgh. (5.26)

Equations (5.23) through (5.26) are all consistent with each other, as they must be.
These equations are simply different ways of describing the same setup, based on
what we choose to call our system. A term that shows up as work in one equation
might show up as a potential energy in another. Basically, when a W term on the
left-hand side turns into a ∆U term on the right-hand side as we go from Eq. (5.23)
to Eq. (5.25), it picks up a minus sign.

Remark: If you drop a ball, why does it speed up as it falls? Is it because gravity does work on
it (which means that it gains kinetic energy, by the work-energy theorem)? Or is it because it
loses potential energy (which means that it gains kinetic energy, by conservation of energy)?

Both of these reasons are valid. They both give the correct result for the speed v after falling
a height h. The difference in their language stems from the difference in what is chosen as the
system. In the first reason, the system is the ball, and gravity is an external force acting on it.
In the second reason, the system is the ball plus the earth. There is no external force on this
system, so the general work-energy theorem says that ∆Eint doesn’t change. That is, energy is
conserved. This energy takes the form of kinetic energy of the ball plus gravitational potential
energy associated with the earth-ball interaction.

Although both reasons are correct, be sure not to combine them and say that the ball speeds
up because gravity does work on it, and also that it speeds up some more because it loses
potential energy. This double counts the effect of gravity, of course. Equivalently, it uses two
different (and hence inconsistent) definitions of the system.

5.6. Hanging spring

(a) The sum of the gravitational and spring potential energies is

U (y) = mgy +
1
2

ky2. (5.27)

Remember that y is negative, so the first of these terms is negative and the second is
positive.

(b) The minimum occurs at the value of y for which

dU
dy
= 0 =⇒ mg + ky = 0 =⇒ y0 = −

mg

k
. (5.28)

The value of the potential energy at this point is U (y0) = −m2g2/2k. We also know
that U (y) = 0 at both y = 0 and y = −2mg/k. Since U (y) is quadratic function (that
is, a parabola), and since we know three points that it passes through, the plot must
look like the one shown in Fig. 5.21.

mg

m2g2____

2k
-

___

k
-

U(y)

y

Figure 5.21

Remark: Since the initial kinetic energy is zero (the mass is released from rest), the total en-
ergy of the system is zero. So the line representing the (constant) energy in Fig 5.21 coincides
with the y axis. This immediately tells us that the motion bounces back and forth between
y = −2mg/k and y = 0. (These are the places where U (y) = E, so that the kinetic energy is
zero; the mass is instantaneously at rest at the extremes of the motion.) So y = −2mg/k is the
lowest point in the motion.

(c) To rewrite the potential energy as a function of z ≡ y − y0, we can substitute y =

z + y0 = z − mg/k into U (y). This gives
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U (z) = mg
(
z − mg

k

)
+

1
2

k
(
z − mg

k

)2

=

(
mgz − m2g2

k

)
+

(
1
2

kz2 − mgz +
1
2

m2g2

k

)
=

1
2

kz2 − m2g2

2k
. (5.29)

What we’ve done here is pick a new coordinate system that has its origin at the
point y = −mg/k where U (y) in minimum (z is indeed zero when y = −mg/k). In
terms of z, U (z) is a simple kz2/2 quadratic function, plus an additive constant. But
this constant is irrelevant, because only differences in the potential energy matter.
(Equivalently F (z) = −dU/dz, so an additive constant doesn’t affect the force.) We
can therefore take the potential energy to be simply U (z) = kz2/2.
The important thing to now note is that there is no mention of gravity in U (z); the
constant g doesn’t appear. This is why can can consider our hanging spring to be
a spring in a world without gravity, with the “relaxed” length corresponding to the
equilibrium point at z = 0 (that is, y = y0). The underlying reason for this is that the
spring force is linear in y. So the first mg/k that the spring stretches (after we attach
the mass) gives an upward force of k (mg/k) = mg which cancels out gravity, and
the remaining part of the stretching gives the net force we’re concerned with.

5.7. A greener world?

The total power used by the entire world is about 1.5 · 1013 J/s, or equivalently about
1.3 · 1018 J/day. Let’s assume that the rock is granite with a density of about 2500 kg/m3.
Then if one cubic meter falls one kilometer, the potential energy lost is

mgh = (2500 kg)(10 m/s2)(1000 m) = 2.5 · 107 J. (5.30)

The number of these cubic meters needed to yield the 1.3 · 1018 J each day is therefore
about (1.3 · 1018 J)/(2.5 · 107 J) ≈ 5 · 1010. Since one cubic kilometer equals 109 cubic
meters, the required volume is about 50 km3. This is equivalent to a cube of side length
3.7 km. That’s a lot of rock. Each day. This method of energy production is therefore
impractical (in addition to being colossally stupid). At any rate, there is no great urgency
in conjuring up new methods of producing energy when we can simply be laying down
carpets of solar panels. (New batteries, yes. But new methods, no.)

5.8. Hoisting up

(a) Since you are being hoisted up at constant speed, the tension in the rope is mg. Your
friends apply this force to the rope and move the rope through a distance h, so the
work they do is mgh. This equals your gain in potential energy, as expected.

(b) The tension in the rope is now only mg/2, because there are two parts of the rope
pulling up on you and the platform; there is the end attached to the platform, and also
the end you are holding (see Problem 4.4 for more discussion of this). So you apply
a force of mg/2 to the rope. But we now seem to have a paradox, because if the work
you do is (mg/2)h (since h is again the distance you move), then this doesn’t equal
your mgh gain in potential energy. We seem to have magically created an energy of
mgh/2.
The resolution to this paradox is that you actually do mgh work because you apply
your force of mg/2 over a distance of 2h instead of h. This is true because the
relevant distance is the distance your hand moves relative to you (because that is the
only distance the muscles in your arms care about). And your hands will pass over a
length 2h of the rope by the time you and the platform move up a height h (because
relative to the ground, you move up by h and the rope moves down by h).

Remark: If you are doubtful that it is the relative distance that matters, imagine that you have
your eyes closed. Then for all you know (since you are moving at constant speed), you might
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be standing at rest on the ground while pulling a rope downward with a force that is arranged
(by whatever means) to be mg/2. If a length 2h of rope passes through your hands, then you
certainly do (mg/2)(2h) = mgh work in this case.

5.9. Hanging block

The initial and final kinetic energies are the same (they both equal zero), so conservation
of energy tells us that the sum of the spring and gravitational potential energies must be
the same at the start and the end. Let y be the vertical position of the block with respect
to the unstretched position of the spring. (So the block starts at y = ℓ/2 and ends up at a
negative value of y.) Conservation of energy gives

U i
s +U i

g + K i = U f
s +U f

g + K f

=⇒ 1
2

k
(
ℓ

2

)2

+ mg

(
ℓ

2

)
+ 0 =

1
2

ky2 + mgy + 0

=⇒ 1
2

ky2 + mgy −
(

kℓ2

8
+

mgℓ

2

)
= 0. (5.31)

You can solve this equation by using the quadratic formula, or you can just factor it by
noting that y = ℓ/2 must be a solution, because the initial position certainly satisfies
conservation of energy with the initial position. We obtain

k
2

(
y − ℓ

2

) (
y +

(
2mg

k
+
ℓ

2

))
= 0. (5.32)

(Alternatively, in Eq. (5.31) you can put the quadratic terms on the left and the linear terms
on the right, and then y − ℓ/2 will appear as a common factor.) We are concerned with the
y = −2mg/k − ℓ/2 root. This value of y is the position relative to the end of the relaxed
spring, which itself is a distance ℓ below the ceiling. So the desired distance below the
ceiling is

d =
2mg

k
+

3ℓ
2
. (5.33)

If the block instead started with the spring compressed all the way up to the ceiling, you
can show that the 3ℓ/2 here would be replaced by 2ℓ.

Remark: The above y = −2mg/k − ℓ/2 root makes sense, because the equilibrium position of the
hanging block is y = −mg/k, since this is where the spring and gravitational forces balance. And
the initial position of y = ℓ/2 (which is the top of the resulting oscillatory motion) is mg/k + ℓ/2
above the y = −mg/k point. So the position at the bottom of the oscillatory motion will be a distance
mg/k + ℓ/2 below the y = −mg/k point, which yields y = −2mg/k − ℓ/2. (The motion is indeed
symmetric around the y = −mg/k point, due to the result from Problem 5.6.)

5.10. Rising on a spring

Let y0 be the maximum displacement that the mass reaches above the relaxed length ℓ of
the spring. (So negative y means below the relaxed length ℓ.) The maximum height above
the ground is then ℓ + y0. The speed is zero at the maximum height, so both the initial and
final kinetic energies are zero. Conservation of energy therefore tells us that the initial and
final potential energies are equal:

1
2

kℓ2 + mg(0) =
1
2

ky2
0 + mg(ℓ + y0)

=⇒ 1
2

k (ℓ2 − y2
0 ) = mg(ℓ + y0). (5.34)

We have measured the gravitational U with respect to the ground. We can choose any
origin (it doesn’t have to be the relaxed position of the spring), because only differences
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in U matter. We have grouped the terms as shown in Eq. (5.34) because if we divide both
sides by ℓ + y0, we can avoid solving a quadratic equation. This gives

1
2

k (ℓ − y0) = mg =⇒ y0 = ℓ −
2mg

k
. (5.35)

The maximum height above the ground is therefore

h = ℓ + y0 = 2ℓ − 2mg

k
. (5.36)

Another solution to the above quadratic equation is y0 = −ℓ, because we divided through
by ℓ + y0. But this is simply the initial position, which we know must be a solution.

Limits: If k is large (more precisely, if k ≫ mg/ℓ), then h ≈ 2ℓ. This makes sense because gravity
is inconsequential, so we just have an oscillation between y = −ℓ and y = ℓ.

If k = mg/ℓ, then h = 0. This makes sense because the net force (kℓ upward plus mg downward) is
zero at the start, so the mass doesn’t move. If k < mg/ℓ, the mass likewise just sits on the ground.
The results for y0 and h in Eqs. (5.35) and (5.36) aren’t valid when k < mg/ℓ because the ky2

0/2
term in the energy is invalid if y0 < −ℓ; the spring can’t be compressed more than ℓ.

If k = 2mg/ℓ, then h = ℓ. This makes sense because in this case the equilibrium point (where the
net force −ky − mg equals zero, which gives y = −mg/k) is located at y = −ℓ/2. And since the
oscillation starts a distance ℓ/2 below this point, it must also extend a distance ℓ/2 above it, that is,
to the point y = 0 =⇒ h = ℓ.

Remark: How high does the mass go if it isn’t attached to the end of the spring? If the mass doesn’t
reach a height h = ℓ, it doesn’t matter whether it is attached or not. But if it goes higher than h = ℓ,
the spring simply remains at its relaxed length, and the mass sails up freely in the air. The only
change to Eq. (5.34) is that the ky2

0/2 final energy of the spring is now absent. So the maximum y

value is y0 = kℓ2/2mg − ℓ. The maximum height above the ground is then h = ℓ + y0 = kℓ2/2mg.
This is valid only if h > ℓ, that is, if k > 2mg/ℓ. We see that h grows with k and ℓ, and decreases
with m and g, as expected.

5.11. Jumping onto mattresses

(a) From conservation of energy, your mgh loss in gravitational energy is converted
into kinetic energy right before you hit the mattress. This kinetic energy is then
converted into kd2/2 spring potential energy at the point of maximum compression,
because your speed is instantaneously zero at that point. (As stated in the problem,
we are ignoring the addition mgd loss in gravitational potential energy during the
compression.) So the maximum compression is given by

1
2

kd2 = mgh =⇒ d =

√
2mgh

k
. (5.37)

The upward spring force is kd, so the maximum force, which occurs at the maximum
compression, is

F = kd = k

√
2mgh

k
=

√
2mghk . (5.38)

Limits: The maximum compression increases with m, g, and h. And it decreases with k. These
all make sense. The maximum force increases with all four parameters. The increase with k
isn’t completely obvious, but the main point is that the maximum compression decreases only
like 1/

√
k. So the maximum force, which is k times this distance, increases like

√
k.

(b) From the solution to Problem 4.2, we know that the spring constant of N springs
(each with spring constant k) stacked in a line is k/N . Basically, a longer spring is
a weaker spring. So in the present case of N mattresses, we simply need to take the
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above results for one mattress and replace every k with k/N . From Eqs. (5.37) and
(5.38), the maximum compression and maximum force are therefore

dN =

√
2mghN

k
and FN =

√
2mghk

N
. (5.39)

Note that the maximum compression is larger by a factor of
√

N , while the maxi-
mum force is smaller by a factor of 1/

√
N . This latter fact means that the landing

is more gentle in the case of N mattresses. Of course, if N is very large, then the
compression distance will be large, so it won’t be a good approximation to neglect
the change in gravitational potential energy during the compression.

5.12. Bungee jumping 1

(a) The jumper is at rest at both the top and bottom of the motion, so all of the mg(2ℓ)
loss in gravitational potential energy goes into the potential energy of the spring
stretched a distance ℓ. Therefore,

mg(2ℓ) =
1
2

kℓ2 =⇒ k =
4mg

ℓ
. (5.40)

Limits: Large m or g means large k, as expected. Small ℓ also means large k, because the
spring force, which ranges from zero to kℓ, needs to be on the order of mg to slow the jumper
down.

(b) At the lowest point in the motion, the spring pulls up with a force Fs = kℓ =
(4mg/ℓ)ℓ = 4mg. And gravity pulls down with a force Fg = mg. The net force
is therefore 3mg upward, which implies an acceleration of 3g upward.

(c) The speed is maximum when a = dv/dt = 0. So we want the total force to be zero.
This means that the upward spring force must balance the downward gravitational
force. If x is the distance the bungee cord is stretched (so x is defined to be a positive
quantity), then we want

kx = mg =⇒
(

4mg

ℓ

)
x = mg =⇒ x =

ℓ

4
. (5.41)

This value of x corresponds to a distance ℓ + ℓ/4 = 5ℓ/4 below the platform. Above
this point, the downward gravitational force wins, and the speed increases. Below
this point, the upward spring force wins, and the speed decreases.

From conservation of energy, the loss in gravitational U goes into spring U plus
kinetic energy. So the speed at the point 5ℓ/4 below the platform is given by

mg
5ℓ
4
=

1
2

k
(
ℓ

4

)2

+
1
2

mv2

=⇒ 5mgℓ

4
=

1
2

(
4mg

ℓ

) (
ℓ

4

)2

+
1
2

mv2

=⇒ 5mgℓ

4
=

mgℓ

8
+

1
2

mv2 =⇒ v =
3
2

√
gℓ. (5.42)

For comparison, the speed right when the cord starts stretching (at a distance ℓ below
the platform) is just the speed after a distance ℓ in freefall, which is given by mv2/2 =
mgℓ =⇒ v =

√
2gℓ = (1.414)

√
gℓ. The maximum speed of (1.5)

√
gℓ is 6% larger

than this.
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5.13. Bungee jumping 2

(a) Let x be the distance that the spring is stretched at the lowest point (so x is defined to
be a positive number). Then the jumper falls a total distance of ℓ + x. The mg(ℓ + x)
loss in gravitational potential energy must show up as k x2/2 potential energy in the
spring, because there is no kinetic energy at the start or at the lowest point (where
the velocity is instantaneously zero). So we have mg(ℓ + x) = k x2/2. Solving this
quadratic equation for x gives

1
2

kx2 − mgx − mgℓ = 0 =⇒ x =
mg +

√
m2g2 + 2mgℓk

k
. (5.43)

We have chosen the “+” sign in the quadratic formula because we have defined x
to be positive. The “−” root is negative and corresponds to the highest point in the
oscillation that would arise if the cord were an actual spring that could be compressed
on the way back up.

Limits: x correctly goes to zero as k → ∞, and correctly goes to infinity as k → 0. If ℓ ≈ 0
then x ≈ 2mg/k. You should think about why this makes sense.

(b) Using the result for x in Eq. (5.43), the tension T in the cord at the lowest point is

T = k x = mg +

√
m2g2 + 2mgℓk . (5.44)

(c) If the cord is half as long, then from Problem 4.2 we know that the spring constant
is twice as large. So the new parameters are given by ℓ′ = ℓ/2 and k ′ = 2k. But
this means that the new product ℓ′k ′ in Eq. (5.44) is the same as the old product ℓk.
So the tension at the lowest point is the same. (Consistent with this, the value of x
in Eq. (5.43) is now half as large.) By the same reasoning (see the generalization in
the solution to Problem 4.2.), the tension at the lowest point is the same if the cord is
one third as long. Or any other factor. The tension at the lowest point is independent
of the length of the cord.

Remark: The stress on your body at the lowest point is proportional to the tension T in the
cord. To see why, consider a few cases: If T = 0 then you are in freefall, because gravity is
the only force acting on you. So there is no stress. If T = mg then you aren’t accelerating,
so each part of your upside-down body (the cord is attached to your ankles) must support the
part below it. This is similar to the case where you are standing on the platform before you
jump, when each part of your body must support the part above it (compression now, instead
of tension). This is the standard “everyday” stress on your body. If T = 2mg then the net
force on you is mg upward, so you are accelerating upward with acceleration g. The tension
between different parts of your body is now twice what it was in the T = mg case. Basically,
if you close your eyes in the T = 2mg case, then for all you know, you are at rest in a world
where gravity is twice as strong. In general, therefore, the stress on your body is proportional
to the tension T in the cord. (So the stress isn’t proportional to your acceleration, although for
large accelerations this distinction isn’t important.)

Since the tension T at the lowest point is the same for all lengths of the cord, the stress on
your body is also the same for all lengths. And since the stress is what might cause injury if
it is too large, we see that changing the length of the cord doesn’t make the jump any more
jarring or more gentle at the bottom.2 (Of course, if the cord is too long, then the ground below
becomes relevant, in which case things are most certainly not gentle!). Since you are upside
down, your eyeballs are especially susceptible to injury. In fact, in any situation involving a

2In a slightly different setup, this fact is well known to rock climbers. If a climber (leading, not top-roping) is a height
ℓ above the last piece of protection (which you can think of as a place where the rope is tied to the wall), and if he falls,
then he will fall a distance 2ℓ before the rope starts to slow him down. A climbing rope is stretchy, so it acts like a spring,
and you can show that we obtain the same result that the tension at the lowest point is independent of ℓ. So although a
long fall might be scarier, it isn’t any harder on your body.



5.5. PROBLEM SOLUTIONS 127

large acceleration, the eyeballs are the thing to worry about, for any orientation of your body.3
From Eq. (5.44), the ratio of T to the mg normal force you experience while standing on the
platform equals

T
mg
= 1 +

√
1 +

2ℓk
mg

. (5.45)

For a given value of ℓ, this ratio increases with k (imagine making the cord out of a stiffer
material), as expected. Note that the ratio is greater than or equal to 2 in all cases. For a given
value of ℓ, if we make k very small, then the ratio is essentially equal to 2. In this case, you
fall a very large distance, and the tension at the bottom is essentially equal to 2mg, giving you
an acceleration of g upward. Basically, in this limit you undergo a large oscillation up and
down, with your acceleration ranging from +g at the bottom to −g at the top.

5.14. Mass on a spring

(a) The work done by friction in moving to position x is

Wf =

∫ x

0
Ff dx = −

∫ x

0
µN dx = −

∫ x

0
(Ax)mg dx = −mgAx2

2
. (5.46)

The heat lost to friction equals the absolute value of this. We want to find the value
of x where the block stops. Since the kinetic energy is zero at the start and the end,
conservation of energy tells us that (using the fact that at position x, the spring is
stretched by |ℓ − x |)

U i
spring = U f

spring + Heat =⇒ kℓ2

2
=

k (ℓ − x)2

2
+

mgAx2

2

=⇒ k
2

(
2ℓx − x2

)
=

mgAx2

2
=⇒ 2ℓ − x =

mgAx
k

=⇒ x =
2ℓ

1 +
mgA

k

. (5.47)

This stopping value of x is larger than ℓ if

mgA
k

< 1 =⇒ A <
k

mg
. (5.48)

Alternatively, we can think in terms of the work-energy theorem. In the second
equation on the first line in Eq. (5.47), if we put all three terms on the left-hand side,
the result is just the statement that the total work done on the block by the spring and
friction equals zero (which is the change in kinetic energy).

Units: A has dimensions of inverse length (to make µ = Ax dimensionless), and k has dimen-
sions of force per length, so mgA/k is dimensionless, which means that the x in Eq. (5.47)
correctly has units of length.
Limits: Large m, g, or A implies small x; friction dominates the spring. Large k implies x =
2ℓ; friction is irrelevant, so we have a simple spring bouncing back and forth symmetrically
around the anchor.

(b) If the block is instantaneously at rest at position x, where x > ℓ, then the spring
force is directed to the left with magnitude k (x − ℓ). And the static friction force
is directed to the right with a maximum magnitude of µN = (Ax)mg. (You should

3The record for the largest acceleration experienced (voluntarily) by a human is held by Colonel John Paul Stapp
(1910-1999). In the 1950’s, he performed numerous potentially fatal experiments involving accelerations as large as
45g. These left him with permanent vision problems. Due to his first-hand experience with extreme accelerations, he
was a strong proponent of the use of seatbelts in cars. Modern-day seatbelt laws are owed largely to his efforts. If there
was ever anyone to trust on the subject of safety mechanisms for large accelerations, it was John Stapp!
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convince yourself that in order to have any chance of moving again, the block must
be to the right of the anchor.) The block starts moving again if

k (x − ℓ) > (Ax)mg =⇒ x >
ℓ

1 − mgA
k

. (5.49)

Using the x value we found in Eq. (5.47) (which is the stopping distance in all cases),
this inequality becomes

2ℓ

1 +
mgA

k

>
ℓ

1 − mgA
k

=⇒ 1 >
3mgA

k
=⇒ A <

k
3mg

, (5.50)

which is correctly a stricter bound than the one we found in part (a). Plugging A =
k/3mg into the expression for x in Eq. (5.47) yields a stopping position of x = 3ℓ/2.
This result is independent of k, m, and g. So for any values of these parameters, the
block will start moving again, provided that it goes beyond the x = 3ℓ/2 mark. Said
in a different way, if x > 3ℓ/2 then Eq. (5.47) tells us that A < k/3mg, in which case
Eq. (5.50) tells us that the block will start moving again.

Limits: The A in the A < k/3mg result is correctly on the “less than” side of the inequality, be-
cause the block will certainly start moving again in the frictionless case with A = 0. Likewise,
it will start moving again if k is large or mg is small.

5.15. Falling with a spring

(a) From the work-energy theorem, the masses stop when the total work done on them is
zero, because their speed is zero at both the start and the end. Gravity does positive
work, while the spring and friction do negative work. If x is the stretching distance,
then setting the total work equal to zero gives

mgx − 1
2

k x2 − µkmgx = 0. (5.51)

Equivalently, we can write this as

mgx =
1
2

k x2 + µkmgx, (5.52)

which is the statement that the loss in gravitational potential energy shows up as
spring potential energy plus heat from friction. Solving either of the above equations
for x gives the stopping distance x0 as

x0 =
2mg

k
(1 − µk) =

2mg

k
(1 − 1/4) =

3mg

2k
. (5.53)

Another solution is x = 0, of course, because that corresponds to the initial location.

(b) If the masses are at rest at x0 = 3mg/2k, then the forces (which must sum to zero)
on the left mass are shown in Fig. 5.22. The tension in the string is mg since it is

m
kx0

T = mg

Ff     µsmg

Figure 5.22 supporting the right mass. We have drawn the static friction force pointing rightward,
because we are concerned with the case where the mass is about to slip and head
leftward. Setting the total force equal to zero, and using the fact that Ff ≤ µs N ,
gives

k x0 = mg + Ff =⇒ k
(

3mg

2k

)
≤ mg + µsmg

=⇒ 3
2
≤ 1 + µs =⇒ µs ≥

1
2
. (5.54)
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If this condition isn’t satisfied, that is, if µs is smaller than 1/2, then it will be impos-
sible to make the net force zero, so the block will head leftward.

Remark: As in Problem 5.14, the block’s stopping point is the point where the total work done
equals zero, whereas the cutoff case to start moving again involves the point where the total
force equals zero.

(c) We now have only the left mass. It ends up stopping a second time when the total
new work done on it is zero. Let d be the ending compression distance (so d is a
positive quantity). The total work done on the mass by the spring and friction is

W =
(

1
2

k x2
0 −

1
2

kd2
)
− µkmg(x0 + d). (5.55)

Equivalently, the loss in potential energy of the spring ends up as heat from friction
(plus kinetic energy in the general case where W isn’t zero). Setting the work W
equal to zero gives (using the x0 in Eq. (5.53))

0 =
1
2

k (x0 + d)(x0 − d) − µkmg(x0 + d)

=⇒ 0 =
1
2

k (x0 − d) − µkmg

=⇒ d = x0 −
2µkmg

k
=

2mg

k
(1 − µk) − 2µkmg

k

=
2mg

k
(1 − 2µk) =

mg

k
, (5.56)

where we have used µk = 1/4. If we instead had µk = 1/2, then the mass would
make it exactly back to the starting position at d = 0. Note that parts (a) and (c) of
this problem involved energy (or work), whereas part (b) involved force.

Remark: d = −x0 is also a solution to the first equation in Eq. (5.56), because we divided by
x0 + d. But this solution simply corresponds to the left mass’s location when the string is cut.
If we hadn’t realized that x0 + d is a common factor in the above equation, we would have had
to use the quadratic formula to solve the quadratic equation in Eq. (5.55).

5.16. Bead, spring, and rail

(a) The spring, normal, and friction forces are shown in Fig. 5.23. (When the bead is

θ

θ

N

Ff

Fs

v

Figure 5.23

moving back toward the vertex, the friction force points in the other direction.) With
x being the distance traveled along the rail, the spring is stretched by a distance
x sin θ, so the spring force is

Fs = k (x sin θ). (5.57)

The component of this force that is perpendicular to the rail is Fs cos θ = kx sin θ cos θ.
Since the bead isn’t accelerating perpendicular to the rail, the normal force must be

N = Fs cos θ = k x sin θ cos θ. (5.58)

The friction force is then

Ff = µN = µkx sin θ cos θ. (5.59)

(b) The component of the spring force along the rail points back toward the vertex with
magnitude Fs sin θ = k x sin2 θ. When the bead reaches its farthest point along the
rail, it is instantaneously at rest. So the work-energy theorem gives

Wspring +Wfriction = Kf − Ki

=⇒
∫ x

0
(−kx sin2 θ) dx +

∫ x

0
(−µkx sin θ cos θ) dx = 0 − 1

2
mv2

0

=⇒ −1
2

k x2(sin2 θ + µ sin θ cos θ) = −1
2

mv2
0 . (5.60)
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The distance traveled by the bead when it comes to rest is therefore

xmax =

√
mv2

0

k (sin2 θ + µ sin θ cos θ)
. (5.61)

Alternatively, we can find xmax by saying that the initial mv2
0/2 kinetic energy ends

up in the form of (1/2)k (x sin θ)2 potential energy in the spring (because the spring
is stretched by x sin θ), plus the |Wf | = (1/2)kx2 sin θ cos θ heat due to friction. This
gives Eq. (5.60) without the minus signs.

Limits: xmax is large if m or v0 is large, or if k or θ is small. And xmax decreases with µ.
These limits make sense.

(c) The bead accelerates from rest back toward the vertex if the spring force compo-
nent along the rail is larger than the maximum opposing static friction force. So it
accelerates if

k xmax sin2 θ > µk xmax sin θ cos θ =⇒ tan θ > µ. (5.62)

Note that this result is independent of x. So if the bead accelerates in one place, then
it accelerates in any other. Therefore, if tan θ > µ (so that the bead starts moving
again), then the bead will make it all the way back to the vertex.

Remark: This tan θ > µ result is the same as the standard result for a block resting on an
inclined plane. The block will accelerate from rest and slide down the plane if tan θ > µ.
The result in this problem is the same because the spring force in this problem takes the place
of the gravitational force in the inclined-plane problem (imagine flipping Fig. 5.23 upside
down). Eq. (5.62) can be written alternatively as Fs sin θ > µFs cos θ, which takes the place
of the standard mg sin θ > µmg cos θ equation for the inclined plane. The fact that Fs varies
with x is irrelevant; it cancels just as the mg cancels.
Limits: In Eq. (5.62), large µ implies that θ needs to be essentially equal to 90◦, if the bead
is to start moving again. And small µ means that even if θ is fairly small, the bead will start
moving again. These results make sense.

(d) We’ll use the work-energy theorem again, as we did in part (b), but now for the trip
back to the vertex. W = ∆K gives (note that the dx in the integrals is now negative
and that the friction force points in the positive x direction)

Wspring +Wfriction = Kf − Ki

=⇒
∫ 0

xmax

(−k x sin2 θ) dx +
∫ 0

xmax

(µkx sin θ cos θ) dx =
1
2

mv2
f − 0

=⇒ 1
2

kx2
max(sin2 θ − µ sin θ cos θ) =

1
2

mv2
f . (5.63)

Again, you could alternatively say that the initial (1/2)k (x sin θ)2 potential energy
in the spring ends up as mv2

f /2 kinetic energy plus the |Wf | = (1/2)k x2 sin θ cos θ
heat due to friction.
Plugging the value of xmax from Eq. (5.61) into Eq. (5.63) gives the final speed as

v2
f =

k
m

*,
mv2

0

k (sin2 θ + µ sin θ cos θ)
+- (sin2 θ − µ sin θ cos θ)

=⇒ vf = v0

√
sin θ − µ cos θ
sin θ + µ cos θ

. (5.64)

Limits: If µ = 0, then vf = v0; the friction force is zero, so no energy is lost to heat. And if
θ = 90◦, then vf = v0, because the friction force is again zero since the normal force is zero.
If tan θ → µ, then vf → 0, because the bead’s acceleration is very small on the way back to
the vertex, so it hardly ever gets going, even though it does indeed make it back to the vertex.
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5.17. Ring on a pole

(a) If s is the length of the spring at a general later time, then the spring force is ks
(because the relaxed length is zero). So the free-body diagram is shown in Fig. 5.24.

l

z

ks

s

N
mg

v

θ

Ff = µN

Figure 5.24

The four forces are the spring, normal, friction, and gravity. The friction force points
opposite to the velocity; we’ve drawn the figure for a downward velocity.
There is no acceleration in the horizontal direction, so the normal force must balance
the horizontal component of the spring force:

N = (ks) cos θ = k (s cos θ) = kℓ. (5.65)

We see that the normal force is independent of the ring’s height on the pole. This is
a consequence of the spring’s relaxed length being zero.

(b) Let z be the distance fallen (so z is defined to be a positive quantity). The velocity at
the start and at the bottom of the motion is zero, so conservation of energy tells us that
the loss in gravitational potential energy goes into the gain in spring potential energy
plus heat from friction, which is the magnitude of the work done by the (constant)
friction force, namely (µN )z. So we have (using s2 − ℓ2 = z2, and N = kℓ)

mgz =
(

1
2

ks2 − 1
2

kℓ2
)
+ (µN )z

=⇒ mgz =
1
2

kz2 + µkℓz =⇒ z =
2mg

k
− 2µℓ. (5.66)

(Another solution is z = 0, of course, because that is the initial position.) If you want
think in terms of work instead of conservation of energy, note that the first equation
on the second line of Eq. (5.66) can be written as

mgz + (−µN )z +
∫ z

0
(−kz′) dz′ = 0. (5.67)

(We have put a prime on the integration variable, so that we don’t confuse it with the
limit of integration.) This is the statement that the net work done is zero, as it should
be, because the kinetic energy is zero at the start and finish. Gravity does positive
work, while friction and the spring do negative work. Only the vertical component
of the spring force matters, and it equals (ks) sin θ = k (s sin θ) = kz upward. We are
taking z to be positive downward, hence the minus signs in the friction and spring
forces in Eq. (5.67).

Limits: In Eq. (5.66), large m or g implies large z. And large k, µ, or ℓ implies small z. But if
the values of these parameters exceed certain values, then z simply stays at zero.

(c) i. The ring will initially fall if the downward gravitational force is larger than the
maximum upward static friction force. So we need

mg > µN =⇒ mg > µ(kℓ) =⇒ µ <
mg

kℓ
. (5.68)

So mg/kℓ is the desired cutoff value of µ. This is consistent with Eq. (5.66); if
µ = mg/kℓ, then z = 0.

Limits: If m or g is large, then µ can be large. If k or ℓ is large, then µ must be small.
ii. The ring will rise back up at the bottom of its motion if the upward spring force

is larger than the sum of the downward gravitational force and the maximum
static friction force (friction now points downward). So we need (using the
value of z we found in Eq. (5.66))

kz > mg + µN =⇒ k
(

2mg

k
− 2µℓ

)
> mg + µkℓ

=⇒ mg > 3µkℓ =⇒ µ <
mg

3kℓ
. (5.69)
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So mg/3kℓ is the desired cutoff value of µ. It makes sense that this is smaller
than the above mg/kℓ cutoff for initially falling, because if µ is only slightly
smaller than mg/kℓ, then the ring will fall only a tiny bit. So it certainly won’t
rise back up, because the upward spring force is negligible in this case.

5.18. Block on a plane

(a) If the spring ends up uncompressed, then there is no spring potential energy at the
end. And since there is no kinetic energy at the start or end, conservation of energy
tells us that the initial spring potential energy kℓ2/2 gets converted into gravitational
potential energy (which equals mgh = mgℓ sin θ) plus heat, which is the magnitude
of the work done by kinetic friction (which equals Ffℓ = (µN )ℓ = (mg cos θ)ℓ,
where we have used µ = 1). So we have

1
2

kℓ2 = mgℓ sin θ + mgℓ cos θ =⇒ ℓ =
2mg

k
(sin θ + cos θ). (5.70)

(Another solution is ℓ = 0, of course.) Note that if we write the above conservation-
of-energy equation as kℓ2/2−mgℓ sin θ −mgℓ cos θ = 0, this is simply the W = ∆K
statement, because it says that Wspring +Wgravity +Wfriction = 0.

Limits: If k → 0 then ℓ → ∞; the spring needs to be compressed a huge distance to overcome
the gravitational force and start rising back up. If θ = 90◦ then ℓ = 2mg/k; the block just
bounces vertically (and frictionlessly) up and down around the equilibrium point where the
spring is compressed by mg/k. If θ = 0 then again we have ℓ = 2mg/k. This limit isn’t quite
as intuitive, although we do know that the answer must be the same as in the θ = 90◦ case,
because in both cases the spring is working against a force of mg (the friction force equals mg

in the θ = 0 case since µ = 1).

(b) At the moment when the spring is uncompressed, the only forces (along the plane) on
the block are friction and gravity. The block will slide back down if the gravitational
force downward is larger than the maximal static friction force upward (which is
µN), So the block will slide down if

mg sin θ > µmg cos θ =⇒ tan θ > µ =⇒ tan θ > 1 =⇒ θ > 45◦. (5.71)

(c) This is similar to part (a). There is no spring potential energy at the start, and no
kinetic energy at the start or end. So conservation of energy tells us that the loss in
gravitational potential energy goes into spring potential energy plus heat. Therefore,
if x is the resulting compression distance (so x is defined to be a positive quantity),
we have

mgx sin θ =
1
2

k x2 + mgx cos θ =⇒ x =
2mg

k
(sin θ − cos θ). (5.72)

(Again, another solution is x = 0.) Note that since we are assuming θ > 45◦,
this value of x is positive, as it should be. As in part (a), if we write the above
conservation-of-energy equation with all the terms on the left-hand side, the result is
the statement that the total work done on the block is zero.

Limits: If θ = 45◦ then x = 0, consistent with Eq. (5.71). And if θ = 90◦ then x = 2mg/k,
consistent with the remark in part (a).

(d) We need the upward spring force to be larger than the sum of the downward gravita-
tional force and the maximum static friction force (friction now points downward).
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Using the value of x from Eq. (5.72), this translates to (with µ = 1)

kx > mg sin θ + µmg cos θ

=⇒ k
(

2mg

k
(sin θ − cos θ)

)
> mg(sin θ + cos θ)

=⇒ 2 sin θ − 2 cos θ > sin θ + cos θ
=⇒ sin θ > 3 cos θ
=⇒ tan θ > 3, (5.73)

which gives θ > 71.6◦.

5.19. Tangential acceleration

(a) At an angle θ with respect to the vertical, the height above the center of the hoop is
R cos θ. So the height fallen from the top is h = R− R cos θ. Conservation of energy
therefore gives

1
2

mv2 = mgh =⇒ 1
2

mv2 = mgR(1 − cos θ)

=⇒ v =
√

2gR(1 − cos θ). (5.74)

(b) Copious use of the chain rule gives (remembering to go all the way to the final
dθ/dt ≡ θ̇ derivative)

dv
dt
=

√
2gR · 1

2
· 1
√

1 − cos θ
· sin θ · θ̇ . (5.75)

But the tangential speed v can be written as v = Rθ̇, so

θ̇ =
v

R
=

√
2gR(1 − cos θ)

R
. (5.76)

Substituting this value of θ̇ into Eq. (5.75) gives

dv
dt
=

√
2gR · 1

2
· 1
√

1 − cos θ
· sin θ ·

√
2gR(1 − cos θ)

R
= g sin θ, (5.77)

as desired.

5.20. Comparing the tensions

(a) At the angle θ shown in the left diagram in Fig. 5.13, the mass is a distance ℓ cos θ
below the top of the pendulum motion. So conservation of energy gives

mg(ℓ cos θ) =
1
2

mv2 =⇒ v2 = 2gℓ cos θ. (5.78)

The radial forces are the tension inward and the g cos θ component of gravity out-
ward. So the radial F = ma equation at angle θ is

T1 − mg cos θ =
mv2

ℓ
. (5.79)

Using the above value of v2, this becomes

T1 − mg cos θ =
m(2gℓ cos θ)

ℓ
=⇒ T1(θ) = 3mg cos θ. (5.80)

Note that this is independent of the radius ℓ.
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After the pendulum is stopped, the net force is zero, so the vertical component of T2
must be T2,y = mg. Therefore, since the string is tilted at angle θ, we have

T2(θ) =
T2,y

cos θ
=

mg

cos θ
. (5.81)

Equating T1(θ) and T2(θ) yields

3mg cos θ =
mg

cos θ
=⇒ cos θ =

1
√

3
=⇒ θ ≈ 54.7◦. (5.82)

Limits: If θ = 0 (the bottom of the pendulum motion), then T1 = 3mg, which is plausible; the
tension certainly needs to be larger than mg, to cancel out gravity and provide a net upward
centripetal force. If θ = π/2 (the top of the pendulum motion), then T1 = 0, which is correct;
the mass is momentarily at rest (which means that the centripetal acceleration is zero), and the
string is horizontal (which means that it isn’t supporting any of the weight).
If θ = 0, then T2 = mg, which is correct; the mass simply hangs straight down. If θ → π/2,
then T2 → ∞, which is also correct; the vertical component of the tension of the nearly
horizontal string needs to be mg, so the tension must be huge.

Remark: The above T1 = 3mg result nearly cost five people their lives when they attempted
a pendulum swing off the Skyway Bridge in Tampa in 1997. Their combined weight was
about 900 lbs, and the steel cable they used was rated at 1400 lbs. This was plenty strong to
support their mg weight if they were simply hanging at rest, but not strong enough to provide
the necessary 3mg tension at the bottom point in the circular motion. The cable broke, and
they hit the water at nearly 70 mph. Fortunately no one died, but it was close; two people had
broken necks. In planning the jump, they apparently thought that the circular motion’s effect
on the tension was either nonexistent, or at most minor. But it isn’t minor; it’s a factor of 3
(or equivalently an additive difference of 2mg). Knowledge of physics is critical in certain
endeavors!

(b) At θ = 0, T1 is larger than T2, because an extra upward force is needed in the first
case to provide the necessary centripetal acceleration. But at θ = π/2, T1 is smaller
than T2, because as we saw in the above limits, T1 = 0 and T2 → ∞. So somewhere
in between θ = 0 and θ = π/2, T1 must be equal to T2.

5.21. Semicircular tube

The net height fallen by the time the mass leaves the tube is 2R cos θ. So conservation of
energy gives the initial speed of the projectile motion as

1
2

mv2
0 = mg(2R cos θ) =⇒ v2

0 = 4gR cos θ. (5.83)

The given angle θ is also the launch angle of the projectile motion, as you can verify. So
from Problem 3.1, the range of the projectile motion is d = (2v2

0/g) sin θ cos θ. Using the
above value of v2

0 , this becomes

d =
2(4gR cos θ) sin θ cos θ

g
= 8R cos2 θ sin θ. (5.84)

Maximizing this be setting the derivative equal to zero gives

−2 cos θ sin θ · sin θ + cos2 θ · cos θ = 0 =⇒ cos θ(−2 sin2 θ + cos2 θ) = 0

=⇒ tan θ =
1
√

2
, (5.85)

which gives θ ≈ 35.3◦. (The other solution, cos θ = 0 =⇒ θ = 90◦, yields zero distance;
the projectile motion is vertical.) Substituting this value of θ into Eq. (5.84) gives the
maximum distance d as (16/3

√
3)R, which is slightly larger than 3R.
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5.22. Horizontal force

We’ll first need to find the speed when the bead is at an angle θ below the horizontal. The
height fallen from the top is R + R sin θ, so conservation of energy gives

1
2

mv2 = mg(R + R sin θ) =⇒ v =
√

2gR(1 + sin θ). (5.86)

The radial F = ma equation (with inward taken to be positive) at an angle θ below the
horizontal is then

N − mg sin θ =
mv2

R
=⇒ N − mg sin θ =

m
(
2gR(1 + sin θ)

)
R

=⇒ N = mg(2 + 3 sin θ). (5.87)

Limits: As a check on this, when θ = −90◦ (which corresponds to the top of the hoop) we have
N = −mg. This is correct, because the normal force initially points upward (outward) to cancel the
weight mg, and we have taken positive N to point inward.

The total force on the bead is horizontal when the vertical component of the normal force
(which is N sin θ) cancels the downward weight mg. So we want

N sin θ = mg =⇒ mg(2 + 3 sin θ) sin θ = mg

=⇒ 3 sin2 θ + 2 sin θ − 1 = 0 =⇒ (3 sin θ − 1)(sin θ + 1) = 0
=⇒ sin θ = 1/3 =⇒ θ ≈ 19.5◦. (5.88)

The mirror-image point on the other side of the hoop, with θ = 160.5◦, is also a solution
because it likewise has sin θ = 1/3.

The other root of the quadratic equation in Eq. (5.88), namely sin θ = −1 =⇒ θ = −90◦,
corresponds to the top of the hoop, where the total force is zero. It’s semantics as to
whether the zero vector is horizontal. (It has zero vertical component, if you take that as
your definition of horizontal.)

Remark: Since a net horizontal force implies a horizontal acceleration, this problem could alter-
natively have been phrased as, “For what θ is the acceleration of the bead horizontal?” This was
Problem 3.23, and the answer to that problem is the same, as it should be.

5.23. Maximum vertical normal force

(a) We’ll use conservation of energy to find the speed of the bead when it is at an angle
θ with respect to the vertical. We’ll then use this speed to find the normal force.
If we choose y = 0 to be located at the center of the hoop, then the bead’s height as
as function of θ is R cos θ. So conservation of energy from the start to a general later
position gives

1
2

mv2
0 + mgR =

1
2

mv2 + mg(R cos θ)

=⇒ v2 = v2
0 + 2gR(1 − cos θ). (5.89)

Let N be the normal force from the hoop on the bead (the opposite of what the prob-
lem asks for), with inward defined to be positive. The radially inward component
of the gravitational force is mg cos θ, so the radial F = ma equation for the bead is
(using the above result for v2)

N + mg cos θ =
mv2

R

=⇒ N + mg cos θ =
mv2

0

R
+ 2mg(1 − cos θ)

=⇒ N =
mv2

0

R
+ 2mg − 3mg cos θ. (5.90)
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By Newton’s third law, this is also the normal force from the bead on the hoop (which
is the force we are asked about), with outward defined to be positive. The desired
vertical component is then

Ny = N cos θ = *,
mv2

0

R
+ 2mg − 3mg cos θ+- cos θ. (5.91)

(b) Taking the derivative of Ny to maximize it yields

0 =
dNy

dθ
= −

mv2
0

R
sin θ − 2mg sin θ + 6mg sin θ cos θ

=⇒ cos θ =
1
3
+

v2
0

6gR
. (5.92)

This is valid only if v2
0 ≤ 4gR (see part (c)); this is what we meant in the statement

of the problem by saying that v0 was “relatively small.” Assuming v2
0 ≤ 4gR, you

can show that the second derivative of Ny is negative at the value of θ given by
Eq. (5.92), which means that we have a local maximum of Ny . So this is the angle at
which the bead is pushing upward on the hoop with the maximum force. If you plug
this value of cos θ back into Eq. (5.91), you will find that the maximum value of Ny

is (mg/3)(1+ v2
0/2gR)2. If the hoop is resting on a table, and if this maximum value

of Ny exceeds the weight of the hoop, then the hoop will briefly rise up off the table.
Another solution to Eq. (5.92) is sin θ = 0 =⇒ θ = 0. But if v2

0 ≤ 4gR, you can
show that the second derivative of Ny is positive at θ = 0, which means that we have
a local minimum. This is consistent with the plots shown below in part (c).

(c) If v2
0/6gR = 2/3, or equivalently if v2

0 = 4gR, then Eq. (5.92) gives cos θ = 1 =⇒
θ = 0, which corresponds to the top of the hoop. If v2

0 > 4gR, then the derivative
of Ny is zero for a value of cos θ that is larger than 1. This isn’t possible, so the
maximum value of Ny must occur at the boundary of the legal region, that is, at
cos θ = 1 =⇒ θ = 0. (This coincides with the other solution to Eq. (5.92), namely
sin θ = 0 =⇒ θ = 0, which is now a local maximum.) So the desired special value
of v0 is

√
4gR = 2

√
gR.

Limits: The plots in Fig. 5.25 show the Ny in Eq. (5.91) (in units of mg) as a function of θ for
−π ≤ θ ≤ π, that is, for all points on the hoop. We can consider some special cases:

• If v0 = 0, then the bead is at rest at θ = 0, so it pushes down on the hoop with a force
with magnitude mg; that is, Ny = −mg, in agreement with Eq. (5.91). From Eq. (5.92)
the maximum Ny occurs at cos θ = 1/3 =⇒ θ = ±70.5◦ = ±1.23 radians, which is
consistent with the locations of the peaks in the first plot in Fig. 5.25. You can show
from scratch that Ny = −5mg at θ = ±π (that is, at the bottom of the hoop), which is
also consistent with the plot.

• If v0 =
√
gR, then from Problem 4.19 we know that Ny = 0 at θ = 0; the second plot in

Fig. 5.25 confirms this. From Eq. (5.92) the maximum Ny occurs at cos θ = 1/2 =⇒ θ =

±60◦ = ±π/3 = ±1.05 radians, which is consistent with the plot.

• If v0 = 2
√
gR, then as we saw above, Eq. (5.92) tells us that the maximum Ny occurs

at θ = 0, which is consistent with the third plot in Fig. 5.25. Additionally, you can show
from scratch that the Ny = 3mg value at θ = 0 in the plot is correct. This plot is the
transition between the curve being concave up or concave down at θ = 0.

• For larger values of v0, the result for cos θ in Eq. (5.92) isn’t valid. The maximum is
always at θ = 0. The bump in the plot of Ny becomes somewhat more pointed at the
top, as shown in the fourth plot in Fig. 5.25. For very large values of v0, the plot of Ny

approaches a simple cosine curve, because the v2
0 term dominates in Eq. (5.91).
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5.24. Falling stick on a table

When the stick has fallen through an angle θ, the height of the mass is ℓ cos θ. So from
conservation of energy, the mass’s velocity v as a function of θ is

1
2

mv2 = mg(ℓ − ℓ cos θ) =⇒ v2 = 2gℓ(1 − cos θ). (5.93)

The radial acceleration of the mass is then

ar =
v2

ℓ
= 2g(1 − cos θ). (5.94)

We will also need to know the tangential acceleration (assuming that no slipping has oc-
curred). Breaking up the gravitational force into its radial and tangential components gives
the tangential acceleration of the mass as

at = g sin θ. (5.95)

Our task is to find the friction force Ff and the normal force N from the table (assuming
no slipping), and then impose the Ff ≤ µN condition. Ff and N can be found by writing
down the horizontal and vertical F = ma equations for the mass. (The radial and tangential
equations would also work, but they would be messier since Ff and N would each appear
in both equations.) Using the acceleration components shown in Fig. 5.26, the two F = ma

m

θ

θ

θ

Ff

ar

at

N

mg

Figure 5.26

equations are

Fx = max

=⇒ Ff = mat cos θ − mar sin θ
= mg

[
sin θ cos θ − 2(1 − cos θ) sin θ

]
= mg sin θ(3 cos θ − 2), (5.96)
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and

Fy = may

=⇒ mg − N = mat sin θ + mar cos θ

=⇒ N = mg
[
1 − sin2 θ − 2(1 − cos θ) cos θ

]
= mg

[
1 − (1 − cos2 θ) − 2(1 − cos θ) cos θ

]
= mg cos θ(3 cos θ − 2). (5.97)

The condition Ff ≤ µN therefore becomes

mg sin θ(3 cos θ − 2) ≤ µmg cos θ(3 cos θ − 2). (5.98)

Assuming that cos θ > 2/3 (that is, θ < 48.2◦), we can divide both sides of Eq. (5.98) by
3 cos θ − 2, which yields

tan θ ≤ µ. (5.99)

This is a necessary condition for no slipping. However, it isn’t sufficient, because if cos θ <
2/3 (that is, θ > 48.2◦) then Eq. (5.97) gives a negative normal force N . But the normal
force can’t be negative; what happens is that the stick comes up off the table. So the
Ff ≤ µN condition has no chance of being true. The stick will therefore slip if θ > 48.2◦,
no matter how large µ is. But it will slip sooner if µ is small enough, at the angle given by
tan θ = µ. Since cos−1(2/3) = tan−1(

√
5/2), we can summarize our results by saying that

the stick slips at the angle θs, where θs is given by

θs = tan−1(µ) if µ ≤
√

5/2,

θs = tan−1(
√

5/2) = 48.2◦ if µ ≥
√

5/2. (5.100)

Remark: A quicker way to obtain the above tan θ ≤ µ result (although you still need to recognize
the cos θ > 2/3 condition) is to apply τ = Iα around the point mass. (Torque is the subject of
Chapter 7.) Since the moment of inertia I is zero for a point mass relative to itself, and since the
stick is massless, the torque τ on the stick-plus-mass system must be zero. This means that the total
force from the table must point along the stick. Hence Ff/N = tan θ. So the Ff ≤ µN condition
becomes N tan θ ≤ µN =⇒ tan θ ≤ µ. But again, you must still realize that the stick will necessarily
slip at any angle larger than the specific angle (which is 48.2◦) where the normal force becomes zero.

5.25. Bead, spring, and hoop

(a) When the bead has traveled a quarter of the way around the circle, the length of the
spring has decreased from 2R to

√
2R. So conservation of energy gives

1
2

k (2R)2 =
1
2

k (
√

2R)2 +
1
2

mv2 =⇒ 2kR2 = mv2. (5.101)

After a quarter circle, the radial component of the spring force Fs is Fs cos 45◦. The
radial F = ma equation is therefore

N + Fs cos 45◦ =
mv2

R
, (5.102)

with inward taken to be positive. The spring force is Fs = k (
√

2R) at this point, so
Eq. (5.102) becomes (using Eq. (5.101))

N +
(
k
√

2R
) 1
√

2
=

2kR2

R
=⇒ N = kR. (5.103)

Since N is positive here, the normal force points inward.
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(b) At the start, when the bead is barely moving, the normal force points radially out-
ward (to balance the spring force to yield essentially zero acceleration). And we just
found in part (a) that after a quarter circle, the normal force points radially inward.
Therefore, by continuity, we must have N = 0 somewhere in between. So the answer
is “yes.” (Actually, even without solving part (a), we know that after a semicircle the
spring force will be zero, so the normal force will certainly have to point radially
inward to provide the necessary centripetal force.)

Remark: As an exercise, you can show that as a general function of θ (measured relative
to the start), the normal force is N = kR(1 − 3 cos θ). If θ = 0 this yields N = −k (2R),
which is correct; N points outward, equal and opposite to the spring force. If θ = 90◦ it
yields N = kR, in agreement with the result in part (a). And if θ = 180◦ it yields N = 4kR,
which you can verify from scratch. We see that the special value of N = 0 is achieved when
cos θ = 1/3 =⇒ θ = 70.5◦.

5.26. Bead, spring, hoop, and pole

If the bead hangs at rest, the upward kR force from the spring equals the downward mg

force from gravity. So k is indeed equal to mg/R, as claimed.

With N defined to be positive outward, the free-body diagram for the bead is shown in
Fig. 5.27. The spring is stretched a distance x = R sin θ, so the spring force is kx = mg

R

N
Fs

θ

Figure 5.27

k (R sin θ). The radial component of this force is obtained by multiplying by sin θ, as you
can verify. The radial F = ma equation is therefore

mg cos θ + k (R sin θ) sin θ − N =
mv2

R

=⇒ N = mg cos θ + kR sin2 θ − mv2

R
. (5.104)

We can use conservation of energy to find v. The loss in gravitation potential energy shows
up as spring potential energy plus kinetic energy. The height fallen is R − R cos θ, so we
have

mg(R − R cos θ) =
1
2

k (R sin θ)2 +
1
2

mv2

=⇒ mv2 = 2mgR(1 − cos θ) − kR2 sin2 θ. (5.105)

Remark: If you invoke kR = mg, and if you make a plot of this expression for v2 as a function of
θ, you will see that it is always positive (or zero, at θ = 0), as it must be, if the stated motion is
possible. However, if kR were larger than mg, then v2 would be negative for (at least) small values
of θ, as you can show by using the Taylor series for sin θ and cos θ. Since v2 of course can’t be
negative, this means that the bead simply remains at θ = 0; the backward tangential component of
the spring force is larger than the forward tangential component of gravity. You can explicitly check
this fact by writing out these two force components.

Plugging the value of mv2 from Eq. (5.105) into Eq. (5.104), and invoking kR = mg, gives

N = mg cos θ + kR sin2 θ − [
2mg(1 − cos θ) − kR sin2 θ

]
= 3mg cos θ − 2mg + 2kR sin2 θ

= mg(3 cos θ − 2 + 2 sin2 θ). (5.106)

To find where N is zero, we can replace sin2 θ with 1 − cos2 θ:

0 = 3 cos θ − 2 + 2(1 − cos2 θ) =⇒ 3 cos θ − 2 cos2 θ = 0
=⇒ cos θ(3 − 2 cos θ) = 0. (5.107)

Therefore cos θ = 0, which means that θ = 90◦. (The other solution, cos θ = 3/2, isn’t
physical.) So the desired point is halfway down the circle, where the spring is horizontal.
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Remark: As a double check, you can solve the problem from scratch, under the assumption that
θ = 90◦. The gravitational potential energy lost is mgR, while the potential energy gained in the
spring is kR2/2 = mgR/2 (using kR = mg). The difference in these is the kinetic energy, so
mv2/2 = mgR/2, which gives v2 = gR. The necessary centripetal force is therefore mv2/R = mg.
But this is exactly the value of the spring force kR (since kR = mg). There is therefore no need for
a normal force from the hoop.

5.27. Entering freefall

(a) Since energy is conserved in the collision (because we are told that ball B picks
up whatever speed ball A had), we can just use conservation of energy between the
starting point at the top of the circle and an arbitrary later point when ball B is at an
angle θ with respect to the vertical. The net height fallen between these two points
is R − R cos θ. Since the loss in gravitational potential energy shows up as kinetic
energy, the speed of B at an arbitrary later point is given by

1
2

mv2 = mg(R − R cos θ) =⇒ v =
√

2gR(1 − cos θ). (5.108)

At a point in the upper half of the circle, the radially inward component of the grav-
itational force is mg cos θ. So if T is the tension in the string (while it is still taut),
the radial F = ma equation is T + mg cos θ = mv2/R.
We are concerned with the point where the ball enters projectile motion, which is
where the string goes limp, that is, where the tension becomes zero. So the radial
F = ma equation with T = 0 becomes (using the v we found above)

mg cos θ =
mv2

R
=⇒ mg cos θ =

m
(
2gR(1 − cos θ)

)
R

=⇒ cos θ = 2 − 2 cos θ =⇒ cos θ =
2
3
=⇒ θ ≈ 48.2◦. (5.109)

Remark: This result is exactly the same as the result for the standard problem: A mass is
initially at rest at the top of a frictionless sphere. It is given a tiny kick and slides off. At
what point does it lose contact with the sphere? The answer to this new problem is the same
because the F = ma equation is mg cos θ − N = mv2/R (the normal force points outward,
hence the minus sign), and we are concerned with the point where N = 0, so we again end up
with the mg cos θ = mv2/R condition. And since the conservation-of-energy statement is the
same, we arrive at the same value of θ.

(b) First solution: From Eq. (5.108) the speed of the ball when cos θ = 2/3 is v =√
2gR(1 − 2/3) =

√
2gR/3. At this point the velocity of the ball makes an angle θ

with respect to the horizontal, because the string makes an angle θ with respect to
the vertical.
We must now solve the following problem: A projectile is fired at speed v =

√
2gR/3

at an angle of θ with respect to the horizontal, where cos θ = 2/3. How high does it
go?
The height of the projectile motion is determined solely by the vy component of the
velocity at launch. Conservation of energy (or a standard kinematic argument) gives
the maximum height as mgy = mv2

y/2 =⇒ y = v2
y/2g. But vy = v sin θ, where

sin θ =
√

1 − cos2 θ =
√

1 − (2/3)2 =
√

5/3. Therefore,

vy = v sin θ =

√
2gR

3
·
√

5
3
=⇒ y =

v2
y

2g
=

5R
27

. (5.110)

Adding this to the height (relative to the center of the circle) at the start of the pro-
jectile motion, which is R cos θ = 2R/3, we see that the total maximum height of the
projectile motion, relative to the center of the circle, is (2/3 + 5/27)R = 23R/27.
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Second solution: At the top of the projectile motion, the vertical component of the
velocity is zero. So conservation of energy tells us that the loss in potential energy
from the top of the circle down to the top of the projectile motion goes entirely into
the kinetic energy of the horizontal motion. The vx during the projectile motion has
the constant value of vx = v cos θ =

√
2gR/3 · (2/3). So if ∆h is the net height

fallen, we have

mg ∆h =
1
2

mv2
x =⇒ mg ∆h =

1
2

m
(

8gR
27

)
=⇒ ∆h =

4R
27

. (5.111)

This agrees with the above result, because 4R/27 below the top implies 23R/27
above the center.



Chapter 6

Momentum

6.1 Introduction
Momentum

The momentum of a mass m moving with velocity v is defined to be

p = mv. (6.1)

Because velocity is a vector, momentum is also a vector. The momentum is what appears in
Newton’s second law, F = dp/dt. In the common case where m is constant, this law reduces to
F = m dv/dt =⇒ F = ma.

Impulse

Consider the time integral of the force, which we shall define as the impulse J:

J ≡
∫

F dt (impulse). (6.2)

This is just a definition, so there’s no content here. But if we invoke Newton’s second law, then
we can produce some content. If we multiply both sides of F = dp/dt by dt and then integrate,
we obtain

∫
F dt = ∆p. The left-hand side of this relation is just the impulse. We therefore see

that the impulse J associated with a time interval ∆t equals the total change in momentum ∆p
during that time:

J = ∆p. (6.3)

The impulse J ≡
∫

F dt is the area under the force vs. time curve (technically three different
areas for the three different directions in 3-D). So an extended gradual force and a hard quick
strike will impart the same momentum to an object if they have the same area under the force vs.
time curve.

The above definition of impulse closely parallels the definition of work: W =
∫

F dx, or
more generally W =

∫
F · dx. The time integral of the force equals the change in momentum (by

Newton’s second law), while the space integral of the force equals the change in kinetic energy
(by the work-energy theorem, which can be traced to Newton’s second law).

Conservation of momentum

Consider an isolated system of two particles, labeled 1 and 2. If Fi j represents the force on
particle i due to particle j, then Newton’s third law tells us that F12 = −F21. But F = dp/dt, so
we have

dp1

dt
= −dp2

dt
=⇒ d(p1 + p2)

dt
= 0 =⇒ p1 + p2 = Constant. (6.4)

142
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In other words, the total momentum is conserved. This derivation wasn’t much of a derivation,
being only one line. We can therefore view Newton’s third law as basically postulating conser-
vation of momentum for two particles. If we have an isolated system of many particles, you can
show that the forces cancel in pairs (by Newton’s third law), so again the total momentum is
conserved; see Problem 6.1.

If the system isn’t isolated and there are external forces, then we can break up the force on
the ith particle into external and internal forces: dpi/dt = Fext

i + Fint
i . Summing over all the

particles gives

d
( ∑

pi
)

dt
=

∑
Fext
i +

∑
Fint
i =⇒ dptotal

dt
= Fext

total + 0, (6.5)

where we have used Newton’s third law to say that the sum of the internal forces is zero since
they cancel in pairs. We can therefore omit the “ext” superscript in this result, because the total
force on a system of particles is the same as the total external force.

Collisions

Consider a collision between two particles. Assuming that there are no external forces, we know
from Eq. (6.4) that the total momentum of the particles is conserved. Since momentum is a
vector, this means that each component is conserved separately. So in N dimensions, we can
write down N independent statements that must be true. Note that we don’t have to worry about
the messy specifics of what goes on during the collision. The momentum of an isolated system
is conserved, period.

Is the total energy of the particles conserved? The answer to this question is technically yes,
because energy is always conserved. However some of the energy may be “lost” to heat, in
which case it doesn’t show up in the form of mv2/2 terms for the macroscopic particles in the
system.1 As mentioned in the discussion of heat on page 108, it is common in such a situation
to say that energy isn’t conserved, even though it is of course conserved when heat is taken into
account. If no heat is created, then we call the collision elastic. If heat is created, so that energy
“isn’t” conserved, then we call the collision inelastic. In the first case, the sum of the mv2/2
terms for the macroscopic particles in the system is the same before and after the collision. In
the second case, it isn’t. The degree to which it isn’t depends on how inelastic the collision is.
(The maximally inelastic case occurs when the particles stick together.) So in summary, in an
isolated collision,

1. Momentum is always conserved.

2. Mechanical energy (by which we mean the mv2/2 energies of the macroscopic particles
involved; that is, excluding heat) is conserved only if the collision is elastic (by definition).

A helpful fact that is valid for 1-D elastic collisions is:

• In a 1-D elastic collision, the final relative velocity between the two particles equals the
negative of the initial relative velocity.

That is, if one particle initially sees the other coming toward it with speed v, then after the
collision, it sees the other moving away from it with the same speed v; see Problem 6.2 for a
proof. This linear relation among the various velocities often simplifies calculations, because it
can be used (in tandem with the linear conservation-of-p relation) as a substitute for the more
complicated conservation-of-E relation, which is quadratic in the velocities.

1Imagine a ball of clay that is thrown at a wall and sticks to it. The “lost” energy shows up in mv2/2 terms for the
individual random motions of the microscopic molecules in the clay, not in the mv2/2 term for the motion of the ball as
a whole, because that v is now zero.
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Center of mass

The location of the center of mass, or CM, of two objects lying along the x axis is defined to be

xCM =
m1x1 + m2x2

m1 + m2
. (6.6)

This location has the property that the distances to the two masses are inversely proportional to
the masses; see Problem 6.4. If one mass is ten times the other, then the CM is ten times closer to
the larger mass. The analogous expressions hold for yCM and zCM in the general 3-D case. The
definition generalizes to any number of particles; the vector location of the CM of many masses
is

rCM =

∑
miri
M

, (6.7)

where M ≡ ∑
mi is the total mass of the system. Basically, rCM is the weighted average of the

various positions, with each position being weighted by the associated mass. In the case of a
continuous distribution of mass, we have

rCM =

∫
r dm

M
. (6.8)

When calculating the location of the CM of an object, a useful fact that simplifies things is that a
given subpart of the object can be replaced with a point mass (with the same mass as the subpart)
located at the CM of the subpart. See Problem 6.5 for a proof.

Center of mass, v and a

By taking time derivatives of Eq. (6.7), the velocity and acceleration of the CM are

vCM =

∑
mivi
M

and aCM =

∑
miai
M

. (6.9)

The first of these equations can be rewritten as
∑

mivi = MvCM, or equivalently,

ptotal = MvCM. (6.10)

So the total momentum of a system is the same as if all the mass is lumped together and moves
along with the velocity of the CM.

The second of the equations in Eq. (6.9) can be rewritten as
∑

miai = MaCM. But since
F = ma, the left-hand side is just the sum of the forces on all of the masses. So we have

Ftotal = MaCM. (6.11)

In other words, the CM moves just as if all of the force were applied to a mass M located at
the CM. As we mentioned above, all of the internal forces cancel in pairs, so we can write Ftotal
alternatively as Fexternal. Therefore, a corollary is that if there are no external forces, the CM
moves with constant velocity, independent of how the various particles in the system may be
moving with respect to each other, and independent of any complicated internal forces.

Collisions in the CM frame

When viewed in the CM frame (the frame that travels along with the CM), collisions are par-
ticularly simple. In a 1-D elastic collision, the masses head toward the (stationary) CM, and
then after the collision they simply reverse direction and head out with the same speeds they
originally had. This scenario satisfies conservation of momentum (the total momentum is zero
both before and after the collision),2 and it also satisfies conservation of energy (the speeds don’t

2The total momentum is always zero in the CM frame, because we saw in Eq. (6.10) that ptotal = MvCM. And the
velocity vCM of the CM is zero in the CM frame, because the CM isn’t moving in that frame, by definition.
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change, so neither do the mv2/2 kinetic energies). Since everything that needs to be conserved
is in fact conserved, this scenario must be what happens.

In the more general case of a 2-D (or 3-D) elastic collision in the CM frame, the particles must
still end up moving in opposite directions, with the same speeds they originally had, otherwise
we wouldn’t have conservation of both p and E; see Problem 6.6. But there is now freedom to
choose the orientation of the line of the final velocities; see Fig. 6.1. This line can make any

v1

v1

v2

v2

θ

θ

Figure 6.1

angle with respect to the original line, and both momentum and energy will still be conserved.
To determine the direction (which can be specified by one angle in 2-D or two angles in 3-D),
we need to be given more information about how exactly the particles collide.

In the case of inelastic collisions in the CM frame, the only modification to the above re-
sults is that both speeds are scaled down by the same factor (this will keep the total momentum
at zero). The size of this factor depends on how inelastic the collision is. If the collision is
completely inelastic (so that the particles stick together), then the factor is zero.

If you want to solve a collision (let’s assume it’s elastic) by utilizing the CM frame, there are
three steps to perform:

1. Assuming that the setup was given in the lab frame, you need to switch to the CM frame.
This involves finding the velocity of the CM and then subtracting this velocity from the
lab-frame velocities to obtain the CM-frame velocities.

2. Find the final velocities in the CM frame. In a 1-D elastic collision, this step is trivial; the
velocities simply reverse. In a 2-D elastic collision, the final line containing the velocities
may be different from the initial line. Additional information needs to be given in order to
determine the direction of the line.

3. Assuming that the problem asks for the final velocities in the lab frame, you need switch
back to the lab frame. This involves adding on the CM velocity to the velocities you found
in the CM frame.

Variable mass

Since the momentum p equals mv (we’ll work in just one dimension here), Newton’s second law
can be written as

F =
dp
dt
=

d(mv)
dt

= m
dv
dt
+

dm
dt

v = ma +
dm
dt

v. (6.12)

If the mass m of an object is constant, this reduces to F = ma. But if the mass changes, then
we need to keep the (dm/dt)v term. In the general case, the momentum can change because the
velocity changes, or because the mass changes,3 or both. For setups involving changing mass, it
is important to label clearly the system that you are applying F = dp/dt to, because the F and p
here must apply to the same system.

6.2 Multiple-choice questions

6.1. A ping-pong ball and a bowling ball have the same momentum. Which one has the larger
kinetic energy?

(a) the ping-pong ball

(b) the bowling ball

(c) They have the same kinetic energy.

3Imagine pushing a bucket at constant speed v, with someone dropping sand into it. You need to apply a force,
and this force equals (dm/dt )v. This force doesn’t speed up the sand that is already in the bucket, but rather it gives
momentum to the new sand by suddenly bringing it up to speed v.
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6.2. You are stuck in outer space and want to propel yourself as fast as possible in a certain di-
rection by throwing an object in the opposite direction. You note that every object you’ve
ever thrown in your life has had the same kinetic energy. Assuming that this trend contin-
ues, you should

(a) throw a small object with a large speed
(b) throw a large object with a small speed
(c) It doesn’t matter.

6.3. How should you build a car in order to reduce the likelihood of injury in a head-on crash?

(a) Make the front bumper be rigid.
(b) Make the front of the car crumple when large forces are applied.
(c) Make the front of the car crumple easily when small forces are applied.
(d) Make the front of the car be rigid, so that it does not crumple at all.
(e) Install a set of springs in the front of the car, so that it bounces backward after the

collision.

6.4. An apple falls from a tree. Which of the following does not explain why the apple speeds
up as it falls?

(a) The momentum of the earth-apple system is conserved.
(b) There is a downward gravitational force acting on the apple.
(c) Gravity does positive work on the apple as it falls.
(d) The apple loses potential energy as it falls.

6.5. Two people stand on opposite ends of a long sled on frictionless ice. The sled is oriented in
the east-west direction, and everything is initially at rest. The western person then throws
a ball eastward toward the eastern person, who catches it. The sled

(a) moves eastward, and then ends up at rest
(b) moves eastward, and then ends up moving westward
(c) moves westward, and then ends up at rest
(d) moves westward, and then ends up moving eastward
(e) does not move at all

6.6. On a frictionless table, a mass m moving at speed v collides with another mass m initially
at rest. The masses stick together. How much energy is converted to heat?

(a) 0 (b)
1
4

mv2 (c)
1
3

mv2 (d)
1
2

mv2 (e) mv2

6.7. Two masses move toward each other as shown in Fig. 6.2. They collide and stick together.

vv

m m

θ θ

Figure 6.2
How much energy is converted to heat?

(a) mv2

(b) mv2 sin θ
(c) mv2 sin2 θ

(d) mv2 cos θ
(e) mv2 cos2 θ

6.8. N balls with mass m lie at rest in a line on a frictionless table, with a small separation
between adjacent balls. The first ball is given a kick and acquires a speed v. It collides and
sticks to the second ball, and the resulting blob collides and sticks to the third ball, and so
on. What is the final speed of the resulting blob of mass Nm?

(a) 0 (b) v/N (c) v/
√

N (d) v (e) Nv
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6.9. A very light ping-pong ball bounces elastically head-on off a very heavy bowling ball
that is initially at rest. The fraction of the ping-pong ball’s initial kinetic energy that is
transferred to the bowling ball is approximately

(a) 0 (b) 1/4 (c) 1/2 (d) 3/4 (e) 1

6.10. A small marble with mass m moves with speed v toward a large block with mass M (as-
sume M ≫ m), which sits at rest on a frictionless table. In Scenario A the marble sticks to
the block. In Scenario B the marble bounces elastically off the block and heads backward.
The ratio of the block’s resulting kinetic energy in Scenario B to that in Scenario A is
approximately

(a) 1/4 (b) 1/2 (c) 1 (d) 2 (e) 4

6.11. A ball of clay is thrown at a wall and sticks to it. Virtually all of its momentum ends up in

(a) the ball

(b) the earth

(c) heat

(d) sound

(e) It doesn’t end up anywhere, because momentum isn’t conserved.

6.12. A ball of clay is thrown at a wall and sticks to it. Virtually all of its kinetic energy ends up
in

(a) kinetic energy of the ball

(b) kinetic energy of the earth

(c) heat

(d) sound

(e) It doesn’t end up anywhere, because energy isn’t conserved.

6.13. In a one-dimensional elastic collision, Ball 1 collides with Ball 2, which is initially at rest.
Can the masses be chosen so that the final speed of Ball 2 is larger than the initial speed
of Ball 1?

Yes No

6.14. A mass m moves with a given speed and collides (not necessarily head-on) elastically with
another mass m that is initially at rest, as shown in Fig. 6.3. Which of the figures shows a

m m

Figure 6.3possible outcome for the two velocities? (The velocities are drawn to scale.)

(a) (b) (c) (d) (e)

6.15. A paddle hits a ping-pong ball. The paddle moves with speed v to the right, and the ping-
pong ball moves with speed 3v to the left. The collision is elastic. What is the resulting
speed of the ping-pong ball? (Assume that the paddle is much more massive than the
ping-pong ball.)

(a) 2v (b) 3v (c) 4v (d) 5v (e) 6v
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6.16. Let y be the height (above the base) of the center of mass of a hollow cone (like an ice
cream cone) with total height H , as shown in Fig. 6.4. Then

H

Figure 6.4

(a) y = H

(b) H/2 < y < H

(c) y = H/2

(d) 0 < y < H/2

(e) y = 0

6.17. A mass 2m moves rightward with speed v toward a mass m that is at rest. What is the
speed of the mass 2m in the CM frame?

(a) 0 (b) v/3 (c) v/2 (d) 2v/3 (e) v

6.18. A heap of rope with mass density λ (per unit length) lies on a table. You grab one end and
pull horizontally with constant speed v, as shown in Fig. 6.5. (Assume that the rope has

vheap

Figure 6.5 no friction with itself in the heap.) The force that you must apply to maintain the constant
speed v is

(a) 0

(b) λv

(c) λv2

(d) λℓg, where ℓ is the length that you have pulled straight

(e) λv4/gℓ

6.19. With your hand at a fixed position, you hold onto one end of a heap of rope with mass m
and then let the heap fall, as shown in Fig. 6.6. The rope has no friction with itself in the

heap

Figure 6.6

heap. Eventually the heap runs out and you are left holding a vertical piece of rope with
mass m. Is there any time during this process when the upward force you exert with your
hand exceeds mg?

Yes No

6.20. A dustpan is accelerated with acceleration a across a frictionless floor, and it gathers up
dust as it moves, as shown in Fig. 6.7. The mass of the dustpan itself is M , and the linear
mass density of the dust on the floor is λ. If the dustpan starts empty at x = 0, then the
force that must be applied to it later on when it is moving with speed v at position x is

(a) Ma

(b) Ma + λv2

(c) (M + λx)a

(d) λv2

(e) (M + λx)a + λv2

M

a

λ

dustdustpan

Figure 6.7
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6.3 Problems
The first six problems are foundational problems.

6.1. Conservation of momentum

In an isolated system of many particles, show that the total momentum is conserved, by
showing that the forces cancel in pairs (by Newton’s third law).

6.2. Same relative speed

Show that in a 1-D elastic collision, the final relative velocity between the two masses
equals the negative of the initial relative velocity.

Note: Although this can be shown very easily by working in the CM frame, demonstrate
it here by working in the lab frame and using conservation of energy and momentum.
One way to do this is to solve for the final two velocities in terms of the initial ones. But
that gets very messy. A sneakier way is to put the terms associated with each particle on
different sides of the conservation of E and p equations, and then divide the E equation by
the p equation.

6.3. 1-D collision

In a 1-D elastic collision, a mass M moving with velocity V collides with a mass m that is
initially at rest. Show that the resulting velocities are

VM =
(M − m)V

M + m
and vm =

2MV
M + m

. (6.13)

6.4. Distances to the CM

Show that the location of the center of mass, given in Eq. (6.6), has the property that the
distances to the two masses are inversely proportional to the masses.

6.5. Equivalent subparts

Show that the location of the CM of the object in Fig. 6.8 can be found by replacing the
S1 S2

Figure 6.8

two subparts S1 and S2 with point masses (with the same masses as the subparts) located
at the CM’s of the subparts.

6.6. Collision in the CM frame

Consider an elastic collision (in any dimension), as viewed in the CM frame. Show that
after the collision, the particles must move in opposite directions, with the same speeds
they originally had.

6.7. Hemispherical-shell CM

Find the location of the CM of a hollow hemispherical shell with radius R and uniform
surface mass distribution.

6.8. Atwood’s machine

In Problem 4.5 we considered the Atwood’s machine shown in Fig. 6.9. In the solution to

m

a

T

a

1 m2

Figure 6.9

that problem, we found that the accelerations of the masses and the tension in the upper
rope are given by

a = g
m2 − m1

m2 + m1
and T = g

4m1m2

m2 + m1
.

Let’s assume m2 > m1 so that a is positive.

(a) After each mass has moved a distance d, find the potential and kinetic energies, and
verify that energy is conserved. Assume that the masses start at rest.
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(b) After a time t, verify that Ptotal = Ftotalt (which is a consequence of integrating
F = dP/dt when F is constant). Be careful to include all the external forces acting
on the system.

6.9. Rising and colliding

A vertical spring is compressed a distance d relative to its relaxed length. A mass m is
attached to the top end and held at rest. Another mass m is suspended a distance d/2 above
it, as shown in Fig. 6.10. The spring is released. The bottom mass rises up, smashes and

m

m

d/2

d/2

Figure 6.10

sticks to the upper mass, and the resulting blob continues to rise up. What must the spring
constant k be, so that the blob reaches its maximum height at the dotted line shown (where
the spring is at its relaxed length)?

6.10. Maximum compression

A block with mass m slides with speed v along a frictionless table toward a stationary block
that also has mass m. A massless spring with spring constant k is attached to the second
block, as shown in Fig. 6.11. What is the maximum distance the spring gets compressed?

m

v

m

k

Figure 6.11 Hint: How do the blocks’ speeds compare at maximal compression?

6.11. Collision and a spring

A spring with spring constant k is attached to a stationary mass 2m, as shown in Fig. 6.12.
k

m

v

2m

µ µ

Figure 6.12

A mass m travels to the right and sticks to the left end of the spring and compresses the
spring. The coefficient of friction (both static and kinetic) between the masses and the
ground is µ. Let v be the speed of m right before it hits the spring.

(a) What is the largest value of v for which the mass 2m never moves? (Don’t forget that
m feels the friction too.) Assume that the spring is sufficiently long so that m doesn’t
collide with 2m.

(b) Assume that v takes on this largest value. The spring will compress and then expand
back out and push m to the left. What will m’s speed be by the time the spring
expands back to its relaxed length? (Again, don’t forget that m feels the friction.)

6.12. Colliding balls

A stream of N clay balls with mass m move with speed v in a line across a frictionless
table. The spacing between them is ℓ. An additional ball with mass m sits at rest in front
of them, as shown in Fig. 6.13. The front moving ball collides with the stationary ball and
sticks to it and forms a blob of mass 2m. Then the second ball collides with the blob and
forms a blob of mass 3m. And so on. How much time elapses between the instant shown
below (when all the balls are separated by ℓ) and the last collision? Solve this by working
in (a) the lab frame, and then (b) the frame in which the N balls are initially at rest (this
is the quicker way). Note: As with any problem involving a general number N , it is often
helpful to first work things out for small values of N .

m m m m m m m

v v v v v v stationary

...

Figure 6.13

6.13. Block and balls

A block with large mass M moves with initial speed V0 across frictionless ice. It encoun-
ters a long row of stationary balls, each with small mass m, and it collides elastically with
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each ball, one after the other; see Fig. 6.14.4

(a) If at a later time the block is moving with speed v right before it collides with a given
ball, what is the block’s speed right after the collision? Assume m ≪ M , and give
your answer to leading order in m. Hint: To save yourself some algebra, find the
speed of the ball after the collision by working in the frame of the block.

(b) If the balls are essentially continuously distributed, with the row having mass density
λ (kg/m), what is the decrease in the block’s speed (in terms of v) during a small
interval of time dt? Give your answer to leading order in dt.

(c) Find v(t), assuming that t = 0 corresponds to the time right before the first collision,
when the block has speed V0.

m

M ....

V0

Figure 6.14

6.14. Maximum final speed

The result of Problem 6.3 was that in a 1-D elastic collision, if a mass M moving with
velocity V collides with a stationary mass m, the resulting velocities are

VM =
(M − m)V

M + m
and vm =

2MV
M + m

. (6.14)

(a) Given M and m, imagine putting a stationary mass (call it x) between M and m. If
your goal is to have m pick up as large a speed as possible, what should x be in terms
of M and m? Assume that both collisions are elastic.

(b) If you instead put two stationary masses, x and y, between M and m, what should
they be so that m picks up as large a speed as possible? What about a general number
of masses, say 10? In answering these questions, there is no need to do any calcula-
tions; your result from part (a) is all you need. A proof by contradiction is your best
bet. (You are also encouraged to think about where the initial energy and momentum
end up, in the M ≫ m limit with a very large number of optimally-chosen masses in
between.)

6.15. Throwing a block in pieces

(a) You sit on a crate at rest on frictionless ice. The combined mass of you and the crate
is m. You hold a block also of mass m and then throw it horizontally so that the
relative speed between you and it is v0. What is your resulting speed?

(b) Now assume that you cut the block in half and throw one half, and then wait a mo-
ment and throw the other half. What is your resulting speed? Assume that whenever
you throw something, the relative speed between you and it is v0.

(c) What is your resulting speed if you divide the block in thirds and throw the pieces
successively? Or fourths? A pattern should emerge. In general, if you divide the
block into n pieces, your resulting speed will take the form of f (n)v0. What is the
function f (n)?

4Assume that when each ball bounces off the block, it (the ball) magically passes through the other balls as it moves
forward; so you don’t have to worry about it bouncing back off the next ball and hitting the block. Equivalently, assume
that the balls are displaced slightly from one another in the transverse direction.
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(d) What is f (100)? If you have Mathematica or something similar handy, make a plot
of f (n) vs. n, for n from 1 to 100. (Take v0 to be 1.) Make a guess for the limit of
f (n) as n → ∞.

(e) The n → ∞ limit is identical to rocket motion, because it involves a continuous
ejection of mass. So we actually already know the final speed in this case, from
Problem 6.22 below. What is the speed? How much does it differ from the speed in
the n = 100 case?

6.16. A collision in two frames

Consider the following one-dimensional collision. A mass 4m moves to the right, and a
mass m moves to the left, both with speed v. They collide elastically. Find their final
lab-frame velocities. Solve this by working in (a) the lab frame, and (b) the CM frame.

6.17. 45-degree deflections

A ball with mass m moves in the positive x direction with speed v, as shown in Fig. 6.15.
It collides elastically with two other balls (also with mass m) which are situated so that
they both move at equal speeds at equal angles of 45◦ with respect to the x axis after the
collision. What are the final speeds of all three balls?

v

45

45

Figure 6.15

6.18. Northward deflection 1

A mass 2m moves to the east, and a mass m moves to the west, both with speed v0. If they
collide elastically, but not head-on, and if it is observed that the mass 2m ends up moving
northward (that is, perpendicular to the original direction of motion), what is its speed?

6.19. Northward deflection 2

A mass m moving to the east with speed v0 collides elastically, but not head-on, with a
mass 2m at rest. If it is observed that the mass m ends up moving northward (that is,
perpendicular to the original direction of motion), what angle does the resulting velocity
of the mass 2m make with the east-west direction? Solve this by working in (a) the lab
frame, and (b) the CM frame.

6.20. Equal energies

A mass m moving with speed v0 collides elastically with a stationary mass 2m, as shown
in Fig. 6.16. Assuming that the final energies of the masses turn out to be equal, find the
two final speeds, v1 and v2. Also, find the two angles of deflection, θ1 and θ2. Hint: The
best way to solve for angles is usually to square equations (in appropriate form) and use
the fact that sin2 θ + cos2 θ = 1.

6.21. Equal speeds

A mass m moving with speed v0 collides elastically with a stationary mass 2m, as shown
in Fig. 6.17. Assuming that the final speeds of the masses turn out to be equal, find this
speed, and also find the two angles of deflection, θ1 and θ2. (Same hint as in the preceding
problem.)
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6.22. Rocket motion

A rocket ejects mass backward with a constant speed u relative to the rocket.5 If the initial
mass of the rocket is M , what is the rocket’s speed at a later time when the mass is m?
Hint: Consider a short interval of time, and determine the increase in speed after a small
amount of mass has been ejected. This will yield a differential equation relating dv and
dm, which you can then integrate.

6.23. Hovering board

(a) A hose shoots a stream of water vertically upward. The water leaves the hose at
speed v0 and at a mass rate R (kg/s). A horizontal board with mass m is placed a
very small distance above the hose and then released. What should m be so that the
board hovers at this height? Assume that when the water crashes into the board, it
bounces off essentially sideways.

(b) If you break the board in half, so that its mass is now m/2, how high above the hose
should it be located if you want it to hover in place?

(c) In part (a), what should m be if the stream of water is replaced by a stream of marbles
that bounce off the board elastically (that is, they bounce off downward with the same
speed v0)?6

6.24. Falling heap

A rope with total length L and mass density λ (kg/m) is held in a heap, and you grab an end
that protrudes a tiny bit out of the top. The heap is then released, and it falls downward.
As a function of time, what is the force that your hand must apply to the top end of the
rope, to keep it motionless? Assume that the rope has no friction with itself, so that the
remaining part of the heap is always in freefall. The setup at a general later time is shown
in Fig. 6.18.

heap

Figure 6.18

5To emphasize, u is the speed relative to the rocket. It wouldn’t make sense to say “relative to the ground,” because
the rocket’s engine shoots out the matter relative to itself, and the engine has no way of knowing how fast the rocket is
moving with respect to the ground.

6Even though the marbles are discrete objects, assume that they have an essentially continuous mass rate equal to R.
Also, assume that the downward-moving marbles that have bounced off the board somehow magically pass through the
upward-moving ones without colliding.
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6.25. Bucket and chain

A massless bucket is initially at rest next to one end of a chain that lies in a straight line
on the floor, as shown in Fig. 6.19. The chain has uniform mass density λ (kg/m). You

bucket
chain

F(t)

a

Figure 6.19

push on the bucket (so that it gathers up the chain) with the force F (t) that gives the bucket
(plus whatever chain is inside) a constant acceleration a at all times. There is no friction
between the bucket and the floor.

(a) What is F (t)?

(b) How much work do you do up to time t?

(c) How much energy is lost to heat up to time t? That is, by how much does the work
you do exceed the kinetic energy of the system?

6.4 Multiple-choice answers
6.1. a The kinetic energy can be written as mv2/2 = (mv)v/2 = pv/2. Since the p’s are

equal, the object with the larger v has the larger energy. And equal p’s imply that the
ping-pong ball has the larger v because its mass is smaller. So in general we want to throw
a small object with a large speed.

Alternatively, the kinetic energy can be written as mv2/2 = (mv)2/2m = p2/2m. So if the
p’s are equal, the object with the smaller m (the ping-pong ball) has the larger energy.

Alternatively again, just pick some numbers: the combination of m = 1 and v = 10 yields
the same momentum as the combination of m = 10 and v = 1, and the former has a larger
energy mv2/2.

Remark: Another way of seeing why the ping-pong ball has the larger energy is the following.
Imagine both objects being decelerated with the same constant force F. Since |∆p| = Ft, the objects
will take the same time to stop if they start with the same momentum. However, since the smaller
object is moving faster at any given time, it travels for a larger distance x by the time it stops. But
the work-energy theorem tells us that |∆K | = Fx. So the object with the larger x (which is the
smaller object) must have started off with a larger kinetic energy. In short, the same impulse

∫
F dt

is imparted on both objects, but more work
∫

F dx is done on the smaller object.

6.2. b This question is basically the opposite of the previous one, where the momentum was
assumed to be the same. In the present setup, conservation of momentum tells us that we
want to give the object as much momentum as possible, so that you will have as much
momentum as possible in the opposite direction. The kinetic energy mv2/2 is assumed to
be given. Since this energy can be written as (mv)v/2 = pv/2, a small v means a large p.
And a small v in turn means a large m (since mv2/2 is given). So we want to throw a large
object with a small speed.

Alternatively, the energy can be written as p2/2m. So if the energies are the same, the
object with the larger m has the larger p.

Alternatively again, just pick some numbers: the combination of m = 1 and v = 10 yields
the same energy as the combination of m = 100 and v = 1, and the latter has a larger
momentum p = mv.

Remark: Is the assumption of every thrown object having the same kinetic energy a reasonable one?
Certainly not in all cases. If a baseball pitcher throws a ball with 1/4 the mass of a baseball, he
definitely isn’t going to be able to throw it twice as fast. The limiting factor in this case is arm speed.

But what about large objects, for which a limiting arm speed isn’t an issue? Ignoring myriad real-life
complications, it’s reasonable to make the approximation that you apply the same force on any large
object, assuming that your hand is moving relatively slowly and that you are pushing as hard as you
can. You apply this same force for the same distance, assuming that your throwing motion looks
roughly the same for any large object. The work (force times distance) that you do is therefore the
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same for all objects, which means that the resulting kinetic energy is the same. So the assumption
of equal kinetic energies stated in the question is reasonable in this case.

Note that this reasoning doesn’t work with momentum, because you will accelerate a smaller (but
still large) object more quickly, which means that you will spend less time applying a force to it,
which in turn means that the impulse you apply will be smaller. Hence a smaller object will have
less momentum than a larger object, even though their energies are the same.

6.3. b The work done on you, which is
∫

F dx, equals the change in your kinetic energy.
Since you end up at rest, this integral (which is the area under the F vs. x curve) takes
on the given value mv2

0/2 (in magnitude), independent of the specifics of the collision. To
reduce injury, the goal is to have the force F be spread out evenly over the largest possible
range of x, instead of being spiked at a small interval of x, because a large force will cause
injury. Choice (b) correctly spreads out the force over the largest distance.

The other options are inferior because: Choice (a) involves only the front bumper (which
is a small fraction of the total possible crumpling distance), so it is hardly different from
a completely rigid car, (c) leads to a spike at the end of the collision, (d) leads to a spike
at the beginning, and (e) actually causes the whole process to be repeated, because after
you stop, the springs throw you backward. So you’re even more likely to get injured. (If
the spread-out force was on the threshold of seriously injuring you, making it last twice
as long can’t be good.) Additionally, the spring force isn’t uniform, so it somewhat spikes
halfway through the process.

Remark: You can also answer this question by working with momentum instead of energy. The
impulse imparted on you, which is

∫
F dt, equals the change in your momentum, which is mv0

(in magnitude). However, things are a little trickier now because while the collision has a specific
maximum possible distance, it doesn’t have a maximum possible time. The time could be long if
you suddenly decelerate to a small speed and then continue to move forward for a while with this
small speed. But this sudden deceleration will injure you. So the question reduces to: If you want
the maximum value of F (t) to be as small as possible, what should the function F (t) look like if an
object takes a given distance to go from a given speed v0 to speed zero? The answer is that you want
F (t) to be a constant function. As an exercise, you can think about why.

6.4. a Although momentum is indeed conserved, it doesn’t explain why the apple speeds up.
There are many different possible motions consistent with momentum conservation. The
other three choices do in fact explain the acceleration. In choice (b), the force directly
causes the acceleration. And in choices (c) and (d), the work and the loss in potential
energy both imply an increase in kinetic energy, which means an increase in speed.

6.5. c By conservation of momentum, the sled moves westward while the ball moves east-
ward in the air. Also by conservation of momentum, the whole system must be at rest at
the end of the process, because nothing is moving with respect to anything else, and the
total momentum must be zero, as it was at the start.

6.6. b The initial kinetic energy is mv2/2. Since the masses stick together to form a blob of
mass 2m, conservation of momentum gives the final speed as mv = (2m)vf =⇒ vf = v/2.
So the final kinetic energy is (2m)(v/2)2/2 = mv2/4. Therefore, mv2/2−mv2/4 = mv2/4
energy is converted to heat.

Alternatively, in the CM frame the masses head toward each other, each with speed v/2.
The total kinetic energy of both masses in the CM frame is therefore 2 · m(v/2)2/2 =
mv2/4. But all of this energy must end up as heat, because the resulting blob is at rest in
the CM frame. And the heat is independent of the frame.

6.7. e The kinetic energy can be written as mv2/2 = m(v2
x + v2

y )/2. In the given setup,
the vx components of the two velocities are brought to zero by the collision, while the vy
components are unchanged (by conservation of momentum). So the loss in kinetic energy
is 2 · mv2

x/2 = 2m(v cos θ)2/2 = mv2 cos2 θ.
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Limits: The θ → 90◦ limit quickly eliminates choices (a), (b), and (c), because the energy loss is
zero in this case, since the masses collide (or “touch” would be a better word) with zero relative
velocity.

6.8. b Momentum is conserved throughout the entire process. The initial momentum is mv,
and the final momentum is (Nm)vf . Setting these equal gives vf = v/N .

Remark: It is incorrect to use conservation of energy in this setup. That would give mv2/2 =
(Nm)v2

f /2 =⇒ vf = v/
√

N , which is incorrect (it is too large) because energy is lost to heat in each
of the (completely inelastic) collisions.

6.9. a The ping-pong ball has nearly the same speed afterward as before, because the bowling
ball is much more massive and essentially acts like a brick wall. So the ping-pong ball’s
kinetic energy remains essentially the same. Therefore, approximately none of the energy
goes into the bowling ball.

Remarks: If you want to solve this problem quantitatively, you can use the results from Problem 6.3.
In the notation of that problem, the small ping-pong ball has mass M , and the large bowling ball has
mass m. Using the final speed of m given in Eq. (6.13), the final kinetic energy of the bowling ball
is (1/2)m

[
2MV/(M + m)

]2. This goes to zero in the m ≫ M limit, because there is an extra power
of m in the denominator.

This zero-energy result is a general result that holds whenever a small object collides (elastically or
inelastically) with a stationary large object. The large object picks up essentially zero energy, even
though it picks up nonzero momentum. In the present case of an elastic collision, if the ping-pong
ball’s initial momentum is p, then its final momentum is essentially −p. The change is −2p, so
the bowling ball’s final momentum is 2p. Consistent with this, its energy, which can be written as
(2p)2/2m, is essentially zero since m is very large. If the collision is instead completely inelastic
and the ping-pong ball sticks to the bowling ball, then the bowling ball’s final momentum is just p,
and the same result of zero energy still holds.

The word ”stationary” in the first sentence of the preceding paragraph is important. If a small object
collides with a moving large object, some energy will be transferred between the two objects. This
is true because (among other reasons) if the large object is moving, the speed of the small object will
be different after the collision. This is most easily seen by utilizing the CM frame.

6.10. e In the M ≫ m limit, the block’s final momentum equals mv in scenario A, because the
marble’s momentum goes from mv to zero. But the block’s final momentum equals 2mv in
scenario B, because the marble’s momentum goes from +mv to −mv. The block therefore
has twice the speed in B as in A. Since the kinetic energy mv2/2 is proportional to v2,
the desired ratio is 22 = 4. Note that the preceding multiple-choice question (where this
question was basically answered in the remark given there) tells us that the two energies
of the block will be small, whatever they are.

6.11. b Momentum is conserved in the ball-earth system during the collision (or ball-wall-
earth system, if you don’t want to define the wall as part of the earth). The ball and the
earth have the same final speed, so the earth has virtually all of the momentum because its
mass is so much larger. Choices (c) and (d) can’t be correct, because heat and sound don’t
have units of momentum.

6.12. c As we saw in Multiple-Choice Question 6.9, the large object (the earth here) picks up
essentially no energy. And the clay ball doesn’t have any energy in the end, because it is
at rest. But energy is always conserved, so it has to go somewhere. It goes into heat – the
kinetic energy of the random motion of the molecules, mostly in the clay, but some in the
wall. There is certainly also some energy in sound, since you will undoubtedly hear the
splat on the wall. But this energy is much smaller than the heat energy.

6.13. Yes For example, if m1 ≫ m2 then the final speed of Ball 2 is twice the initial speed
of Ball 1. This is true because the relative speed of the balls is unchanged by the elastic
collision; see Problem 6.2. So if v is the initial rightward speed of Ball 1, then after the
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collision, Ball 2 must be moving rightward with speed v relative to Ball 1. But Ball 1 is still
plowing forward with speed v relative to the ground, because it is essentially unaffected
by the collision. So the speed of Ball 2 relative to the ground is v + v = 2v.

6.14. e Choices (a) and (b) have zero total px , so they don’t satisfy conservation of px . Choice
(c) doesn’t satisfy conservation of E, because the final energy is larger than the initial
energy, due to the large velocity of the right mass. Choice (d) doesn’t satisfy conservation
of py (it has a nonzero final value); it also doesn’t satisfy conservation of E (the final E is
twice the initial). The correct answer must be (e), which does indeed satisfy conservation
of px , py , and E (at least to the accuracy of how well the vectors are drawn).

Remark: The velocities in choice (e) appear to be orthogonal. And indeed, it can be shown that if
the masses are equal and if one of them is initially at rest, then if the collision is elastic, the final
velocities are always orthogonal, no matter how the masses glance off each other. See the example
in Section 5.7.2 of Morin (2008) for a proof of this fact.

6.15. d This problem is most easily solved by working in the reference frame of the paddle.
In this frame the (heavy) paddle is at rest and the ball comes in with speed v + 3v = 4v
leftward. So the ball must go out with the same speed 4v (now rightward), because the
paddle essentially doesn’t move. This is the final speed of the ball with respect to the
paddle. But in the frame of the ground, the paddle is still moving to the right with speed
v. So the speed of the ball with respect to the ground is v + 4v = 5v.

6.16. d If the cone is sliced into horizontal rings, the lower rings have larger radii and are
therefore more massive. Each ring can effectively be replaced by a point mass at its center,
so the cone is equivalent to a series of point masses (lying along the axis) that are larger
the lower they are. The CM is therefore less than halfway to the top.

6.17. b The speed of the CM is
(
(2m)v + 0

)
/3m = 2v/3, so the speed of the mass 2m relative

to the CM is v − 2v/3 = v/3.

Remark: More generally, if 2m is replaced by Nm, where N is a numerical factor, the answer
becomes v/(N + 1). This correctly goes to zero in the N → ∞ limit (the CM coincides with the
mass Nm as it moves along). And it correctly goes to v in the N → 0 limit (the CM is located at the
stationary mass m).

6.18. c Your force is what adds momentum to the system, according to ∆p = F ∆t, or F =
dp/dt in derivative form. The new momentum shows up in the new mass that gets moving
as it leaves the stationary heap and joins the moving straight part of the rope. If a new
mass dm gets moving in a small time dt, the new momentum is dp = (dm)v = (λ dx)v.
Therefore F = dp/dt = λv dx/dt = λv2.

Equivalently, we can use Eq. (6.12). The ma term is zero because the rope isn’t accelerat-
ing. So we have F = (dm/dt)v = (λ dx/dt)v = λv2.

Remarks: Note that you can rule out the other answers: (a) is incorrect because the force must be
nonzero since the momentum of the rope is increasing. (b) has the wrong units. And (d) and (e)
depend on g, but the problem doesn’t involve vertical forces.

We should emphasize that the new momentum comes from the new mass that gets moving, and not
from any increase in speed of the straight part. Imagine painting a dot on the straight part of the
rope, and consider the part of the rope that lies between the dot and your hand. This part always
moves with the same speed v, and its length (and hence mass) doesn’t change, so its momentum is
constant. The total force on this part must therefore be zero. And indeed, the rightward force from
your hand is canceled by the leftward tension from the part of the rope just to the left of the dot. If
we instead look at the rope to the left of the dot (which includes the heap plus a straight part), then
the only horizontal force acting on it is the tension from the part of the rope just to the right of the
dot. This force is what produces the new momentum of the rope, as sections from the stationary
heap join the moving part.
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6.19. Yes In addition to balancing the weight of the straight part of the rope that hangs at rest,
you must also provide the force needed to change the momentum of the pieces of rope as
they make the transition from the moving heap to the stationary straight part. (From the
reasoning in the preceding question, this force happens to be λv2, where λ is the mass
density. But the exact value isn’t critical here. All we need to know is that the force isn’t
zero.) So at least right before the rope is straightened out (when the weight of the stationary
hanging part is nearly mg), your force will need to exceed mg. See Problem 6.24 for a
quantitative treatment.

6.20. e The mass of the dustpan plus dust inside at a later time is M + λx, so the momentum
is p = (M + λx) ẋ. The necessary force is therefore (using the product rule)

F =
dp
dt
= (M + λx) ẍ + λ ẋ2 ≡ (M + λx)a + λv2. (6.15)

Physically, the first term in this result is the force needed to accelerate the dustpan plus the
dust already inside it (this term depends on a, and not on v), while the second term is the
force needed to get the new bits of dust moving (this term depends on v, and not on a).
The applied force F makes the momentum of the system increase, and these are the two
ways it increases.

6.5 Problem solutions
6.1. Conservation of momentum

The case of two particles was treated in Eq. (6.4). Consider now the case of three particles.
If Fi j represents the force on particle i due to particle j, then the rate of change of the total
momentum of the system equals

d(p1 + p2 + p3)
dt

=
dp1

dt
+

dp2

dt
+

dp3

dt
= F1 + F2 + F3

=
(
��F12 +ZZF13

)
+

(
��F21 +��ZZF23

)
+

(ZZF31 +��ZZF32
)

= 0. (6.16)

We have used the fact that Newton’s third law, Fi j = −F j i , tells us that the forces cancel
in pairs, as indicated. This reasoning clearly extends to a general number N of particles.
For every term Fi j in the generalization of the third line above, there will also be a term
F j i . And the sum of these two terms is zero, by Newton’s third law.

6.2. Same relative speed

Energy is conserved because we are assuming that the collision is elastic. With the notation
shown in Fig. 6.20 (where some of the v’s may be negative), the conservation of E and p
equations are

1
2

m1v
2
1 +

1
2

m2v
2
2 =

1
2

m1v
′2
1 +

1
2

m2v
′2
2 ,

m1v1 + m2v2 = m1v
′
1 + m2v

′
2. (6.17)
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If we put all the “1” terms on the left and all the “2” terms on the right, these two equations
become

m1(v2
1 − v′21 ) = m2(v′22 − v2

2 ),
m1(v1 − v′1) = m2(v′2 − v2). (6.18)

Dividing the first equation by the second gives

v1 + v
′
1 = v′2 + v2 =⇒ v′1 − v′2 = −(v1 − v2), (6.19)

which is the desired result that the final relative velocity between the two masses equals
the negative of the initial relative velocity.

Remarks: In the CM frame, this result is clear. The masses simply head out with the same speeds
they came in, because this satisfies conservation of both p (which is zero since we’re dealing with the
CM frame) and E. Therefore, because both velocities simply change sign, Eq. (6.19) is certainly true.
And since this result holds in one frame, it holds in all others, because it involves only differences
in velocities. Differences are frame independent, because both velocities shift by the same amount
when going from one frame to another.

The linear equation in Eq. (6.19) can be combined with the linear conservation-of-p equation in
Eq. (6.17) to solve for the final velocities, v′1 and v′2. There will be only one solution to this system
of linear equations. So you might wonder how we ended up with only one solution for v′1 and
v′2, given that we started with a quadratic equation in Eq. (6.17). Quadratic equations should have
two solutions. The explanation is that we lost the other solution when we divided the equations in
Eq. (6.18). Another solution is clearly v′1 = v1 and v′2 = v2, because that makes all the terms in
Eq. (6.18) be zero (in which case we divided by zero). This solution is simply the one involving the
initial conditions, which are what we would end up with if the masses missed each other. The initial
conditions certainly satisfy conservation of E and p with the initial conditions. A fine tautology,
indeed.

6.3. 1-D collision

First solution: This solution involves some brute force; the other two solutions below
will be shorter. Let’s switch notation and have V ′ and v′ be the final velocities. Since m is
initially at rest, the conservation of E and p equations are

1
2

MV 2 =
1
2

MV ′2 +
1
2

mv′2 and MV = MV ′ + mv′. (6.20)

Solving for v′ in the p equation and substituting the result into the E equation (and then
multiplying through by m/M) gives

1
2

MV 2 =
1
2

MV ′2 +
1
2

m
(

M (V − V ′)
m

)2

=⇒ 0 = (M + m)V ′2 − 2MVV ′ + (M − m)V 2. (6.21)

This quadratic equation for V ′ can be solved with the quadratic formula, or you can just
note that it factors nicely:

0 =
(
(M + m)V ′ − (M − m)V

) (
V ′ − V

)
. (6.22)

In retrospect, we know that in problems like this, V ′ = V and v′ = v must always be a solu-
tion, because the initial conditions certainly satisfy conservation of E and p with the initial
conditions. So that tells us that (V − V ′) must be a factor of the above quadratic equation.
However, we are concerned with the other (nontrivial) solution, V ′ = (M −m)V/(M +m).
Plugging this into the conservation-of-p equation then gives v′ = 2MV/(M + m), as de-
sired.

Limits: If M ≪ m, the final velocities of M and m are −V and 0; M essentially bounces backward
off a brick wall. If M = m, the final velocities are 0 and V ; m picks up whatever velocity M had,
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and M ends up at rest (an outcome familiar to pool players). If M ≫ m, the final velocities are V
and 2V ; M plows forward with the same velocity, as expected, and m picks up twice this velocity
(not obvious in the lab frame, but consistent with the relative-speed result from Problem 6.2). These
limits were the subject of Problem 1.7.

Second solution: Instead of using both of the E and p conservation equations, we can
use the p equation along with the relative-velocity relation from Problem 6.2, which says
that the final relative velocity equals the negative of the initial relative velocity. That is,
v′ − V ′ = −(0 − V ). So v′ = V + V ′. Substituting this into the conservation-of-p equation
in Eq. (6.20) gives

MV = MV ′ + m(V + V ′) =⇒ V ′ =
(M − m)V
(M + m)

. (6.23)

We then have v′ = V + V ′ = 2MV/(M + m), as desired. This solution was quicker than
the first one above, because it involved two linear equations instead of one linear and one
quadratic.

Third solution: We can also solve this problem by working in the CM frame, following
the strategy outlined on page 145.

1. Switch to the CM frame: The CM moves with velocity MV/(M +m) with respect to
the lab frame. So the velocities of M and m with respect to the CM are, respectively,
V − MV/(M + m) = mV/(M + m), and 0 − MV/(M + m).

2. Do the collision in the CM frame: In the CM frame, the velocities simply reverse
themselves during the collision (see the discussion at the start of the “Collisions in
the CM frame” section on page 144). So the final velocities of M and m in the CM
frame are −mV/(M + m) and MV/(M + m).

3. Switch back to the lab frame: To get back to the original lab frame, we must add
on the velocity of the CM, namely MV/(M + m), to each of the velocities in the
CM frame. The final velocities of M and m in the lab frame are therefore V ′ =
(M − m)V/(M + m) and v′ = 2MV/(M + m), as desired.

6.4. Distances to the CM

Assume without loss of generality that x2 > x1. Then the distance from the CM to x1 is

d1 = xCM − x1 =
m1x1 + m2x2

m1 + m2
− x1 =

m2(x2 − x1)
m1 + m2

. (6.24)

And the distance from the CM to x2 is

d2 = x2 − xCM = x2 −
m1x1 + m2x2

m1 + m2
=

m1(x2 − x1)
m1 + m2

. (6.25)

Therefore, d1/d2 = m2/m1, as desired. If one mass is ten times the other, then the CM is
ten times closer to the larger mass. That is, it is located 1/11 of the way from the larger
mass to the smaller one.

6.5. Equivalent subparts

The location of the CM of the entire object is given by Eq. (6.8), where the integral runs
over the whole object. We can break the integral up into two integrals over the subparts S1
and S2. To demonstrate the desired result, we will judiciously multiply each integral by 1,
in the form of a mass divided by itself. This gives

rCM =
1
M

∫
r dm =

1
M

∫
S1

r dm +
1
M

∫
S2

r dm

=
1
M
· m1

∫
S1

r dm

m1
+

1
M
· m2

∫
S2

r dm

m2

=
1
M

(
m1rCM,1 + m2rCM,2

)
, (6.26)
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where we have obtained the last line by using Eq. (6.8) for each subpart. By comparing
this result with the CM for a discrete system (see Eq. (6.7)), we see that the given object
can be treated like two point masses m1 and m2 located at the CM’s of the two subparts.
By repeated application of this result, we can subdivide the given object into an arbitrary
number of subparts.

6.6. Collision in the CM frame

In the CM frame, the initial momentum (and hence the final momentum) is zero; see
Footnote 2. The final momenta of the two particles must therefore be equal and opposite.
Hence the particles must move in opposite directions.

The final speeds are the same as the initial speeds, for the following reason. Since the
momenta are equal (and opposite), we know that the speeds are inversely proportional to
the masses, as they are initially. So the final speeds must be in the same ratio as the initial
speeds. This means that the only way they can possibly differ from the initial speeds is
if they are both scaled up or scaled down by the same factor. But since kinetic energy is
proportional to v2, any such scaling would have the effect of scaling the total final kinetic
energy up or down by the square of this factor, causing energy to not be conserved. The
scaling (or lack thereof) factor must therefore simply be 1. That is, the final speeds must
be the same as the initial speeds.

Remarks: All of the above reasoning is valid in any dimension. But 2-D and 3-D, the orientation of
the line containing the final velocities requires additional information about how exactly the particles
collide.

Note that conservation of p and E are both required in the reasoning. Conservation of p alone would
allow for a scaling of the speeds (which is what happens in an inelastic collision). And conservation
of E alone would allow for increasing one speed and decreasing the other, in such a way that the
total kinetic energy stays the same. Additionally, the particles could head off in arbitrary directions.

6.7. Hemispherical-shell CM

First note that the x coordinate of the CM in Fig. 6.21 is zero, by symmetry. Let the
R sinθ

R dθ

R cosθ

θ dθ

Figure 6.21

surface mass density be σ (kg/m2). Consider a circular strip located at angle θ above the
horizontal, subtending an angle dθ, as shown. The radius of this circle is R cos θ and the
width of the strip is R dθ, so the mass of the strip is

dm = σ(area) = σ(length)(width)

= σ(2πR cos θ)(R dθ) = 2πR2σ cos θ dθ. (6.27)

All points on the strip have a y value of R sin θ (at least in the limit where dθ is infinites-
imal), so the CM of the strip is located at the point (0,R sin θ). From Problem 6.5, we
can replace the circular strip with a point mass at (0,R sin θ), with a mass given by the
above dm. The hemisphere is therefore equivalent to a string of point masses located on
the y axis. The total mass of the hemisphere is σ(area) = σ(2πR2), so Eq. (6.8) gives the
height of the CM as

yCM =
1
M

∫
y dm =

1
2πR2σ

∫ π/2

0
(R sin θ)(2πR2σ cos θ dθ)

= R
∫ π/2

0
sin θ cos θ dθ = R

sin2 θ

2

�����
π/2

0
=

R
2
. (6.28)

Remarks: The fact that the answer comes out to be so simple implies that there is probably a quicker
way to figure it out. And indeed, consider slicing the hemisphere into circular strips with equal
heights dy (instead of equal angular spans dθ, although technically we never said anything about
equal dθ’s when doing the above integral). We claim that all of these strips have the same mass,
which means that we effectively have equal masses evenly distributed on the y axis, which implies
that the CM is located halfway up at y = R/2. The equality of the strips’ masses follows from the
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facts that the radius of each strip is R cos θ, while the width (the slant height along the surface of the
hemisphere) equals dy/ cos θ, as you can verify. These factors of cos θ cancel when calculating the
area, so all strips spanning the same height dy have the same area, and hence the same mass.

As an exercise, you can find the height of the CM for a solid hemisphere, which involves slicing
the hemisphere into disks instead of circular strips. By modifying the reasoning in the preceding
paragraph, you should convince yourself that the height of the CM must be less than R/2. See the
remark in the solution to Problem 7.12 for further discussion of the difference between 2-D and 3-D
objects.

6.8. Atwood’s machine

(a) The speed of each mass after it has moved a distance d is v =
√

2ad. (This kinematic
result can be derived in many ways. For example, the time it takes an object with
acceleration a to move a distance d is given by d = at2/2 =⇒ t =

√
2d/a. The

speed at this time is then v = at =
√

2ad.) The total kinetic energy of the masses is
therefore

K =
1
2

m1v
2 +

1
2

m2v
2 =

1
2

(m1 + m2)(2ad)

=
1
2

(m1 + m2)
(
2 · gm2 − m1

m2 + m1
· d

)
= (m2 − m1)gd. (6.29)

The potential energy of the masses (relative to their initial positions) is

U = m1gy1 + m2gy2 = m1gd + m2g(−d) = (m1 − m2)gd. (6.30)

Therefore, K +U = 0, so energy is indeed conserved.

(b) After a time t, the total momentum of the masses is (with upward taken to be positive)

Ptotal = m1v1 + m2v2 = m1at + m2(−at) = (m1 − m2)at

= (m1 − m2)
(
g

m2 − m1

m2 + m1

)
t = −gt

(m2 − m1)2

m2 + m1
. (6.31)

Let the system be defined to be the two masses and the pulley. The external forces
acting on the system are the two weights and the tension T in the upper string. The
tension in the string connecting the masses is an internal force, so we can ignore it.
(If you instead define the system to be just the two masses, then the upward tensions
T/2 acting on each mass are now relevant external forces, while the upper string is
irrelevant. So the total force is the same.) The total external force is therefore

Ftotal = −m1g − m2g + T = −(m1 + m2)g + g
4m1m2

m1 + m2

= g
−(m1 + m2)2 + 4m1m2

m1 + m2
= −g (m2 − m1)2

m2 + m1
. (6.32)

Comparing this with Eq. (6.31), we see that Ptotal is indeed equal to Ftotalt, as desired.

6.9. Rising and colliding

Conservation of energy gives the kinetic energy of the bottom mass right before the colli-
sion as (taking zero height for the gravitational U to be at that start)

K i +U i
s +U i

g = K f +U f
s +U f

g

=⇒ 0 +
1
2

kd2 + 0 =
1
2

mv2 +
1
2

k
(

d
2

)2

+ mg
d
2

=⇒ 3
8

kd2 − mg
d
2
=

1
2

mv2. (6.33)
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During the collision, half of this kinetic energy is lost to heat, because conservation of
momentum gives the speed of the resulting mass 2m as v/2, so the resulting kinetic energy
is (1/2)(2m)(v/2)2 = mv2/4. Therefore, from Eq. (6.33) the kinetic energy of the mass
2m right after the collision is 3kd2/16 − mgd/4. Applying conservation of energy from
this moment (which we will now take to be at zero height for the gravitational U) up to
the moment when the mass 2m reaches its maximum height at the relaxed length of the
spring, we obtain (using the fact that there is no kinetic energy or spring potential energy
at the end)

K i +U i
s +U i

g = K f +U f
s +U f

g

=⇒
(

3
16

kd2 − mg
d
4

)
+

1
2

k
(

d
2

)2

+ 0 = 0 + 0 + (2m)g
d
2

=⇒ 5
16

kd2 =
5mgd

4

=⇒ k =
4mg

d
. (6.34)

Remark: The following continuity argument shows that there must exist a value of k that makes the
masses stop at the relaxed length of the spring. If k is small, then the masses won’t make it back up
to the dotted line. (If k is smaller than mg/d, then the bottom mass will actually fall when released.)
And if k is very large, then we can essentially ignore gravity, so we can imagine that the setup lies
on a horizontal table, in which case the mass 2m certainly travels beyond the relaxed position of the
spring. The spring force must reverse direction if the mass is to slow down and stop.

6.10. Maximum compression

First solution: At maximum compression the speeds of the blocks are equal; that is, the
relative speed is zero. This is true because if the relative speed weren’t zero, then the
distance between the blocks would either be decreasing to a smaller value, or increasing
from a smaller value, contradicting the assumption of maximum compression. Let the
common speed be u. Then conservation of momentum gives

mv = (2m)u =⇒ u =
v

2
. (6.35)

And if the maximum compression is x, then conservation of energy gives

1
2

mv2 =
1
2

(2m)u2 +
1
2

k x2. (6.36)

Substituting u = v/2 into this equation gives the maximum compression as

1
2

mv2 =
1
2

(2m)
(
v

2

)2
+

1
2

kx2 =⇒ 1
4

mv2 =
1
2

k x2 =⇒ x = v

√
m
2k

. (6.37)

At maximum compression, we see that half of the initial kinetic energy mv2/2 remains
kinetic energy, and half ends up as potential energy of the spring.

Limits: x increases with m and decreases with k, as expected.

Remarks: After the spring stretches back to its relaxed length and loses contact with the left block,
what do the motions of the blocks look like? You can show by writing down the initial/final conser-
vation of E and p equations (in which the spring doesn’t come into play, because it is uncompressed
initially and finally) that the left block ends up at rest and the right block moves at speed v. So the
velocities of the blocks are simply interchanged from their initial values. In retrospect, this must
be what happens, because this scenario certainly satisfies conservation of E and p with the initial
motion.

The above collision involving two blocks and a spring is a good model for a completely elastic
collision between two balls. If a rubber ball collides with another one, they will both compress and
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then uncompress during the collision, just like the spring. The ball that was initially moving will
now be at rest (in 1-D).

In a completely inelastic collision where the balls stick together, the energy that goes into the
spring eventually ends up as heat (which is the internal kinetic energy of the random motion of
the molecules in the balls). You can model the collision roughly as having the spring vibrate back
and forth, with an amplitude that gradually decreases (eventually reaching zero, with the balls being
at rest with respect to each other) due to some kind of friction force. This friction generates the heat.

Second solution: Consider the collision in the CM frame. In this frame the blocks move
toward each other with equal speeds of v/2. At maximum compression the blocks are both
instantaneously at rest, so all of the initial kinetic energy must end up as potential energy
of the spring. That is,

2 · 1
2

m
(
v

2

)2
=

1
2

kx2 =⇒ x = v

√
m
2k

, (6.38)

in agreement with the first solution.

6.11. Collision and a spring

(a) Let x be the compression distance of the spring when m comes to rest. This is
the maximum compression (assuming that 2m doesn’t move), so this is the moment
when the spring exerts the maximum force on the 2m block. If the 2m block is to
remain at rest at all times, then we need k x to be less than or equal to the maximum
friction force on 2m, which is µ(2mg). So kx ≤ 2µmg =⇒ x ≤ 2µmg/k. This is
the condition on x. We must now convert it to the desired condition on v.
We can relate x and v by conservation of energy. The m block ends up instanta-
neously at rest, so the initial kinetic energy mv2/2 goes into the spring’s potential
energy kx2/2 plus heat, which equals the magnitude of the work done by friction,
Wf = Ff x = (µmg)x. So we have

mv2

2
=

kx2

2
+ (µmg)x. (6.39)

Equivalently, if we multiply this equation through by −1, it is the statement that the
change in kinetic energy of the m block (which is negative) equals the total work
done by the spring and friction (both of which are negative).
There is no need to solve the quadratic equation in Eq. (6.39). Instead, we can simply
take the x ≤ 2µmg/k condition from above and plug it into Eq. (6.39). This gives
the desired condition on v:

mv2

2
≤ k

2

(
2µmg

k

)2

+ (µmg)
(

2µmg

k

)
=⇒ mv2

2
≤ 4µ2m2g2

k
=⇒ v ≤

√
8µ2mg2

k
. (6.40)

You can check that this result has the correct units.

Limits: If µ = 0 then the maximum v equals 0; that is, the 2m mass always slips, which is
correct. Large µ, m, or g implies large v. These all make sense, although the m case requires
a little thought because there are partially canceling effects; you can see the various effects of
m in the first line of Eq. (6.40). And large k implies small v; the mass m stops very quickly,
so the spring force would be very large if v weren’t very small.

(b) If v takes on the value we just found, then the maximum compression is x = 2µmg/k.
When m bounces back, the spring’s potential energy goes into kinetic energy plus
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heat due to friction. So if u is the speed at the point when the spring reaches its
relaxed length, we have

kx2

2
=

mu2

2
+ (µmg)x

=⇒ k
2

(
2µmg

k

)2

=
mu2

2
+ (µmg)

(
2µmg

k

)
, (6.41)

which gives u = 0. So m barely makes it back to the position where it first came in
contact with the spring.

Remark: If the mass of the right block is larger than 2m, and if m comes in with the speed that
yields the maximum compression without the right block moving, then as m bounces back, its
speed as it passes through the relaxed length of the spring will be positive. Conversely, if the
mass of the right block is smaller than 2m, then in the analogous scenario, m won’t reach the
relaxed length of the spring as it bounces back. These results quickly follow by replacing the
two µ(2m)g terms in Eq. (6.41) with the more general µ(nm)g term, where n is a numerical
factor.

6.12. Colliding balls

(a) It takes the first moving ball a time of ℓ/v to reach the stationary ball and produce
the blob of mass 2m. After this collision, conservation of momentum gives the speed
of the 2m blob as

mv + 0 = (2m)vf =⇒ vf = v/2. (6.42)

How long does it take the second moving ball (which is moving at speed v) to catch
up with the 2m blob (which is moving at speed v/2)? It must close the gap of ℓ
between them at a relative speed of v − v/2 = v/2, so the time is ℓ/(v/2) = 2ℓ/v.
After it collides, conservation of momentum gives the speed of the resulting 3m blob
as

mv + 2m(v/2) = (3m)vf =⇒ vf = 2v/3. (6.43)

How long does it take the third moving ball (which is moving at speed v) to catch
up with the 3m blob (which is moving at speed 2v/3)? It must close the gap of ℓ
between them at a relative speed of v − 2v/3 = v/3, so the time is ℓ/(v/3) = 3ℓ/v.
From conservation of momentum, you can show that the speed of the resulting 4m
blob is 3v/4.
Continuing in this manner, it takes the fourth moving ball a time of 4ℓ/v to catch up
with the blob in front of it, and the speed of the resulting 5m blob is 4v/5.
In general, the blob of mass nm moves at speed (n − 1)v/n. (In short, this is because
it has mass nm and a total momentum of (n − 1)mv from the n − 1 balls that were
originally moving.) And it takes the nth moving ball a time of nℓ/v to catch up with
the nm blob, because the relative speed is v − (n − 1)v/n = v/n. The total time for
the entire process is therefore

ℓ

v

(
1 + 2 + 3 + · · · + (N − 1) + N

)
=
ℓ

v

(
N (N + 1)

2

)
, (6.44)

where we have used the formula for the sum of the first N integers.

Limits: If N = 1, the time equals ℓ/v, as expected. For large N , the time goes like N2, which
isn’t intuitively obvious.
Remark: As an exercise, you can calculate the total distance the blob moves, between the
first and last collisions. The quick way to do this is to subtract Nℓ from the total distance the
leftmost ball moves (which is just v times the total time we found above). But you should
verify that you obtain the same result by adding up the distances the blob moves between
successive collisions.
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(b) In the frame in which the N balls are initially at rest, one ball moves toward N
stationary balls that lie in a line. From the instant indicated in Fig. 6.13, it takes a
time of ℓ/v for the moving ball to reach the first stationary ball. After this collision,
conservation of momentum gives the speed of the 2m blob as v/2. This blob therefore
takes a time of ℓ/(v/2) = 2ℓ/v to reach the second stationary ball.
After this collision, conservation of momentum gives the speed of the 3m blob as
v/3. (This follows from (2m)(v/2) + 0 = (3m)vf , or from simply noting that the
total momentum is still just the mv from the initially moving ball, but the mass is
now 3m.) This blob therefore takes a time of ℓ/(v/3) = 3ℓ/v to reach the third
stationary ball.
Continuing in this manner, we see that after the collision with the (n−1)th stationary
ball, the speed of the nm blob is v/n, and the time to reach the nth stationary ball is
nℓ/v. The result holds for all n from 1 to N , so the total time is

ℓ

v

(
1 + 2 + 3 + · · · + (N − 1) + N

)
=
ℓ

v

(
N (N + 1)

2

)
, (6.45)

in agreement with the result in part (a).

6.13. Block and balls

(a) In the frame of the heavy block, the light ball comes in at speed v and bounces out
at (essentially) speed v. The final relative speed is therefore v. But the relative speed
doesn’t depend on the frame, so it is also v in the original lab frame. And since the
block keeps moving forward at (essentially) speed v, the final speed of the ball after
the collision must be 2v in the lab frame. Conservation of momentum in the lab
frame then gives the final speed v′ of the block as

Mv + 0 = Mv′ + m(2v) =⇒ v′ = v − 2mv

M
. (6.46)

The block’s speed therefore decreases by 2mv/M . You can also find v′ by making a
Taylor-series approximation to the VM in Eq. (6.13).

(b) In a small time dt, the block effectively hits a “ball” (which is actually more like a
little tube) with mass dm = λ dx, where dx = v dt is the distance the block travels in
time dt. So dm = λv dt. Using this as the m in part (a), we see that the change in the
block’s speed is

dv = −2(dm)v
M

= −2(λv dt)v
M

= −2λv2 dt
M

. (6.47)

Remark: Note the v2 dependence here. One power of v comes from the fact that if we make
v larger, then a given ball bounces off with a larger speed, which means that it has a larger
increase in momentum, which in turn means that the block has a larger decrease in momentum,
and hence speed. The other power of v comes from the fact that the faster the block moves,
the more balls it hits in a given time. This v2 dependence is a general feature of drag forces
where the actual motion of mass (shoving things out of the way) is the dominant effect. Even
if the balls stuck to the block, we would still obtain the v2 factor; we just wouldn’t have the
factor of 2 in Eq. (6.47).

(c) Equation (6.47) is a differential equation involving v and t. Separating variables and
integrating yields (we won’t bother putting primes on the integration variables)∫ v

V0

dv
v2 = −

∫ t

0

2λ dt
M

=⇒ −1
v

�����
v

V0

= −2λt
M

=⇒ −1
v
+

1
V0
= −2λt

M
=⇒ v(t) =

1
1
V0
+

2λt
M

. (6.48)
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Limits: If λ → 0 or M → ∞ then v(t) → V0, as expected. If t → 0 then v → V0, which is
correct. And if t → ∞ then v → M/2λt, which correctly goes to zero and which interestingly
is independent of V0. The total distance traveled by the block equals

∫
v dt, which diverges

like ln(t) as t → ∞.

6.14. Maximum final speed

(a) Using the second of the equations given in Eq. (6.14), the collision between M and x
gives x a speed of vx = 2MV/(M + x). We then need to use this speed as the initial
speed for the collision between x and m. This yields a speed of m equal to

vm =
2xvx
x + m

=

(
2x

x + m

) (
2MV
M + x

)
. (6.49)

Our goal is to maximize this, which means that we want to maximize the function
f (x) = x/(x + m)(x + M). Setting the derivative equal to zero (and ignoring the
denominator of the result) gives

0 = (x + m)(x + M)(1) − x(2x + m + M)

=⇒ 0 = mM − x2 =⇒ x =
√

Mm, (6.50)

which correctly has units of mass. We see that the optimal value of x is the geometric
mean of the original masses, which is about as nice a result as we could hope for. The
three masses therefore form a geometric progression. From Eq. (6.49) the maximum
final speed of m equals 4MV/(

√
m +
√

M)2.

Limits: If m = M then x = m = M . This makes sense, because with three equal masses, M
and x end up at rest. So m has all of the energy. And we can’t do any better than that, by
conservation of energy.

(b) With two masses inserted between M and m, we claim that the largest speed of m is
obtained if the four masses form a geometric progression, that is, if the ratio of any
two successive masses is the same. In other words, the masses should take the form
of M , M2/3m1/3, M1/3m2/3, m, with the common ratio here being (m/M)1/3. This
claim can be proved by contradiction, as follows.
Assume that in the optimal case, the first three masses, M , x, and y, do not form
a geometric progression. If this is the case, then from part (a), we can increase the
speed of y (which would then increase the speed of m) by making x be the geometric
mean of M and y. This contradicts our initial assumption of optimal-ness, so it must
be the case that M , x, and y form a geometric progression. Likewise, x, y, and m
must form a geometric progression, because otherwise we could increase the speed
of m by making y be the geometric mean of x and m. Since these two progressions
have the x/y ratio as overlap, all four masses must form a geometric progression, as
we wanted to show. The values of x and y are therefore M2/3m1/3 and M1/3m2/3.
If we have a general number of masses, say 10, then they must all form a geometric
progression. This follows from the fact that if this weren’t the case, then we could
take a group of three of the masses that aren’t in geometric progression and increase
the speed of the third mass by making the middle one be the geometric mean of
the other two. This would then increase the speeds of all the masses to the right of
this group, in particular the last one, m. This means that we didn’t actually have
the optimal scenario in the first place. In short, any sequence that isn’t in geometric
progression can be improved, so the only possibility for optimal-ness is the sequence
where the masses are all in geometric progression.

Remark: It turns out that if M ≫ m, and if there is a very large number of masses between
M and m (all in geometric progression), then essentially all of the kinetic energy ends up in
m (so the other masses have essentially none), but essentially none of the momentum ends up
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in m (so the other masses have essentially all of it). In the more general case where M isn’t
much greater than m, the former of these statements is still true, but the latter isn’t.
The basic reason for these divisions of the energy and momentum is that the final speeds of
all the masses except the last one are small, but not too small. More precisely, on one hand
the speeds are small enough so that when their squares are multiplied by the masses to obtain
the kinetic energy, the smallness of the squares wins out over the fact that there is a large
number of masses. So the energy ends up being essentially zero, which means that m must
have essentially all of the energy. But on the other hand the speeds are large enough so that
when their first powers are multiplied by the masses to obtain the momentum, the result isn’t
zero. And in fact it equals the initial momentum.
If you want to verify the above claims rigorously, the calculations get a bit messy. But the
basic strategy is the following. Let the ratio of the masses be r , where r is very close to 1.
Then up to a factor of M , the masses are 1, r , r2, r3, etc. You can use the expressions for the
velocities given in Eq. (6.14) to show that the final speeds of all the masses except the last one
are (up to a factor of V )

1 − r
1 + r

,

(
2

1 + r

)
1 − r
1 + r

,

(
2

1 + r

)2 1 − r
1 + r

,

(
2

1 + r

)3 1 − r
1 + r

, · · · . (6.51)

And the final speed of the last mass is
(
2/(1 + r)

)N−1 if there are N masses. You can then
explicitly calculate all the energies and momenta and verify the above claims. In some of the
calculations it will be advantageous to set r ≡ 1 − ϵ , where ϵ is very small. If you (quite
reasonably) don’t want to go through all the algebra, you are encouraged to at least check that
things work out numerically. For example, if m/M = 10−4 and N = 104 (which implies that
r = (10−4)1/9999 = 0.99908), then you will find that the last mass has essentially all (99.8%,
don’t forget to square the v) of the kinetic energy and essentially none (1%) of the momentum.
One thing that is quick enough to do here is to verify that the above claims are at least consis-
tent. That is, we can show that if M ≫ m and if all of the initial energy goes into m, then m
has (essentially) no momentum. This can be done as follows. Let the ratio of the masses be
M/m = R ≫ 1. Then given the assumption of equal energies, the final speed of m must be√

R times the initial speed of M (because the kinetic energy is proportional to mv2). The final
momentum of m is then mv = (M/R)(

√
R V ) = MV/

√
R, which goes to zero for large R.

6.15. Throwing a block in pieces

Let’s first solve the general case where you throw a mass m1, and where the mass of you
plus the cart plus any other mass you are holding is m2. Let the final speeds with respect
to the ground be v1 and v2, as shown in Fig. 6.22.

m1 m2

v1 v2

Figure 6.22
The initial momentum is zero, so conservation of momentum gives m2v2 −m1v1 = 0. And
we are told that the final relative speed is v1+v2 = v0. Solving this system of two equations
and two unknowns (v1 and v2) quickly gives your final speed as v2 = m1v0/(m1 + m2).
Additionally, the speed of m1 is v1 = m2v0/(m1+m2), although we won’t need this. These
two speeds correctly add up to v0 and are inversely proportional to the masses.

In words: your final speed v2 equals v0 times the mass of the piece you threw, divided by
the total mass of you plus what you threw. We can write this as

vyou ≡ v2 = v0
mthrow

Mtotal
. (6.52)

This correctly equals zero when mthrow = 0 and correctly equals v0 when mthrow = Mtotal;
if an ant “throws” a rock with speed v0, the ant is really just propelling itself backward
with speed v0. Eq. (6.52) allows us to quickly solve the various parts of this problem.

(a) In this case we have mthrow = m, and Mtotal = 2m, so your final speed is v0/2.
(b) The first stage involves mthrow = m/2 and Mtotal = 2m. So you gain a speed of

v0/4. The second stage involves mthrow = m/2 and Mtotal = 3m/2. So you gain
an additional speed of v0/3, relative to how fast you were going after the first throw.
(The speeds do indeed simply add, because we can apply conservation of momentum
in a new inertial frame moving at your speed of v0/4 after the first throw.) Your final
speed is therefore v0(1/4 + 1/3) = 7v0/12 ≈ (0.583)v0.
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(c) Let r ≡ mthrow/Mtotal. If the block is divided in thirds, the first stage has r = 1/6,
the second has r = 1/5, and the third has 1/4. So your final speed is v0(1/6 +
1/5 + 1/4) = 37v0/60 ≈ (0.617)v0. Similarly, for fourths we obtain a final speed of
v0(1/8 + 1/7 + 1/6 + 1/5) ≈ (0.635)v0. In general, for n pieces we end up with the
sum from 1/2n to 1/(n + 1), so

f (n) =
2n∑
n+1

1
k
. (6.53)

(d) The plot of f (n) for n from 1 to 100 is shown in Fig. 6.23. f (100) equals 0.69065,
and f (n) appears to be approaching a number just a hair above that.

n

f (n)
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0.55

0.60
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0.70

Figure 6.23

(e) For a continuous stream of particles, we have rocket motion. The initial mass is 2m
and the final mass is m, so from Problem 6.22 the final speed is

vfinal = v0 ln
(

minitial

mfinal

)
= (ln 2)v0 ≈ (0.693)v0. (6.54)

This is very close to the n = 100 result. The difference is only (0.69315)v0 −
(0.69065)v0 = (0.0025)v0.

6.16. A collision in two frames

(a) First solution: Let the final velocities of 4m and m be v4 and v1, respectively, with
rightward taken to be positive. Conservation of momentum gives

(4m)v + m(−v) = (4m)v4 + mv1 =⇒ 3v = 4v4 + v1. (6.55)

And conservation of energy gives

1
2

(4m)v2 +
1
2

mv2 =
1
2

(4m)v2
4 +

1
2

mv2
1 =⇒ 5v2 = 4v2

4 + v
2
1 . (6.56)

Solving for v1 in Eq. (6.55) and plugging the result into Eq. (6.56) gives

5v2 = 4v2
4 + (3v − 4v4)2 =⇒ 0 = 20v2

4 − 24vv4 + 4v2

=⇒ 0 = 4(5v4 − v)(v4 − v) =⇒ v4 =
v

5
. (6.57)

(Another solution is v4 = v, of course, because that is the initial velocity of 4m.)
Equation (6.55) then gives v1 = 3v − 4v4 = 11v/5. Both velocities are positive, so
both masses move to the right.
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Second solution: We can solve this problem by combining Eq. (6.55) with the
relative-velocity statement from Problem 6.2, instead of with Eq. (6.56). This way,
we won’t need to deal with a quadratic equation. Eq. (6.19) gives

v1 − v4 = −
(
(−v) − v) =⇒ v1 − v4 = 2v. (6.58)

Plugging the v1 from this equation into Eq. (6.55) gives

3v = 4v4 + (2v + v4) =⇒ v4 =
v

5
. (6.59)

And then v1 = 2v + v4 = 11v/5.

(b) The CM frame’s velocity with respect to the lab frame is given by vCM = [(4m)v +
m(−v)]/5m = 3v/5. Our strategy will be to switch to the CM frame, then do the
collision in the CM frame (which will be trivial), and then switch back to the lab
frame.

• Switch to the CM frame: The initial velocities of the two masses in the CM
frame are v − vCM = 2v/5 and −v − vCM = −8v/5, as shown:

4m m

2v/5 8v/5
(before)

• Do the collision in the CM frame: The masses simply reverse their velocities
(because this satisfies conservation of p and E). So after the collision, the ve-
locities are −2v/5 and 8v/5, as shown:

4m m

2v/5 8v/5

(after)

• Switch back to the lab frame: To get back to the lab frame, we must add vCM to
the CM-frame velocities. So the final velocities in the lab frame are

v4 = −
2v
5
+ vCM = −

2v
5
+

3v
5
=

v

5
,

v1 =
8v
5
+ vCM =

8v
5
+

3v
5
=

11v
5

. (6.60)

6.17. 45-degree deflections

Let the final velocities be labeled as in Fig. 6.24. In drawing v1 horizontal, we have already
v1

v2

v2

45

45

Figure 6.24

used conservation of py (the initial py was zero). Conservation of px gives

mv = mv1 + 2 · mv2 cos 45◦ =⇒ v = v1 +
√

2v2. (6.61)

Conservation of E gives

1
2

mv2 =
1
2

mv2
1 + 2 · 1

2
mv2

2 =⇒ v2 = v2
1 + 2v2

2 . (6.62)

Plugging the v1 from the px equation into the E equation gives

v2 = (v −
√

2v2)2 + 2v2
2 =⇒ 0 = −2

√
2vv2 + 4v2

2 =⇒ v2 =
v
√

2
. (6.63)

(Technically, another solution is v2 = 0, but this corresponds to the balls missing each
other. This is simply the initial value of v2, which of course is guaranteed to be a solution
to the conservation equations.) We then find v1 to be v1 = v −

√
2v2 = 0. So the ball that

was initially moving ends up at rest.

Remark: We’ve noted on various occasions that a ball will end up at rest if it collides elastically
head-on with an identical ball; the second ball absorbs all of the energy and momentum of the first
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ball. The result of this problem therefore tells us that the right two balls look effectively like a single
ball with mass m, as far as the left ball is concerned. That is, the right two balls absorb all of the
energy and momentum of the left ball. As an exercise, you can show that if the right two balls scatter
at equal angles of θ instead of 45◦, and if they each have a mass of m/(2 cos2 θ), then the left ball
will end up at rest. This mass correctly equals m/2 when θ = 0, and∞ when θ → 90◦.

6.18. Northward deflection 1

Let the northward direction point along the y axis, as shown in Fig. 6.25. Let u be the

v0 v0

v0

u

2u

2m m

Figure 6.25

desired final velocity of the mass 2m in the y direction. Then conservation of py (which
is initially zero) quickly gives the final y velocity of the mass m as −2u. Also, if vx is the
final x velocity of m, then conservation of px gives

2mv0 + m(−v0) = 2m(0) + mvx =⇒ vx = v0, (6.64)

as shown in the figure. We now have only one unknown, u, so we can use conservation of
E to solve for u:

1
2

(2m)v2
0 +

1
2

mv2
0 =

1
2

(2m)u2 +
1
2

m
[
(2u)2 + v2

0
]

=⇒ 2v2
0 + v

2
0 = 2u2 + 4u2 + v2

0 =⇒ u =
v0√

3
. (6.65)

This is the final northward speed of the mass 2m.

Remark: We can also solve this problem by working in the CM frame. We’ll just sketch the solution
here, by stating some facts you can justify. The velocity of the CM is v0/3 eastward. So the velocities
of the 2m and m masses in the CM frame are 2v0/3 eastward and 4v0/3 westward. The speeds are
the same after the collision, although the directions change (but they are still antiparallel). The 2m
mass’s velocity in the CM frame must have a westward component of v0/3, so that it has no east-west
component when we transform back to the original frame by adding on the eastward v0/3 velocity
of the CM. So the velocity of 2m in the CM frame must look like the vector shown in Fig. 6.26, with

2v0/3

v0/3
2m

v0/ 3

Figure 6.26

magnitude 2v0/3 and westward component v0/3. The vertical component, which is the northward
velocity in both the CM frame and the original frame, is therefore v0/

√
3. Additionally, since the

final velocity of m in the CM frame is antiparallel to the vector in Fig. 6.26 and has twice the length,
you can quickly show that the final eastward component of the velocity of m in the original frame
equals v0, consistent with Eq. (6.64).

6.19. Northward deflection 2

(a) Lab frame: Let the final northward speed of m be u, as shown in Fig. 6.27. Conser-
vation of py (which is initially zero) quickly tells us that the final southward speed
of 2m is u/2. And conservation of px (which is initially mv0) quickly tells us that the
final eastward speed of 2m is v0/2, as shown in the figure.

u

u/2
θ

v0 v0 /2

m

m

2m

2m

Figure 6.27
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We now have only one unknown, u, so we can use conservation of E to solve for u:

1
2

mv2
0 =

1
2

mu2 +
1
2

(2m)
((
v0

2

)2
+

(u
2

)2
)

=⇒ v2
0 = u2 +

v2
0

2
+

u2

2
=⇒ u =

v0√
3
. (6.66)

The desired angle is therefore

tan θ =
u/2
v0/2

=
1
√

3
=⇒ θ = 30◦. (6.67)

Additionally, the 30-60-90 triangle tells us that the final speed of 2m is v0/
√

3. So
the two masses end up with the same speeds.

(b) CM frame: The CM moves with velocity vCM = mv0/(m + 2m) = v0/3. So the
velocities of m and 2m in the CM frame are, respectively, v0 − vCM = 2v0/3 and
0 − vCM = −v0/3. The situation is shown in Fig. 6.28.

2v0/3 v0/3

2mm

Figure 6.28
In the CM frame, the speeds of the masses are unchanged by the elastic collision, and
the velocities come off in antiparallel directions. The direction of m’s final velocity
must be such that when we add the vector vCM back on, to get back to the lab frame,
the result is a vertical (northward) velocity for m. So the final velocity of m in the
CM frame must have a westward component of v0/3, as shown in Fig. 6.29. From

φ

φ
2v0/3

2v0/3

v0/3

v0/3

vCM = v0/3

vCM = v0/3

2mm

Figure 6.29

the right triangle shown, we see that the angle ϕ is given by sin ϕ = 1/2 =⇒ ϕ = 30◦.
The final velocity of 2m in the lab frame is obtained by adding vCM to the diagonally
downward vector with length v0/3 in Fig. 6.29. The resulting lab-frame velocity of
2m is shown in Fig. 6.30. This shape is a rhombus, so the final lab-frame velocity

v0/3

v0/3

vCM = v0/3

30
v2m

lab

Figure 6.30

of 2m bisects the 60◦ angle between the initial and final velocities of 2m in the CM
frame. The desired angle with respect to the horizontal is therefore 30◦.
Additionally, the 30◦ angles in the rhombus tell us that the length of the long diagonal
is
√

3 times the length of a side. So the final speed of 2m in the lab frame is v0/
√

3.

6.20. Equal energies

Since the final energies are equal, they must each be half of the initial energy. So we
quickly obtain

1
2

mv2
1 =

1
2

(
1
2

mv2
0

)
=⇒ v1 =

v0√
2
,

1
2

(2m)v2
2 =

1
2

(
1
2

mv2
0

)
=⇒ v2 =

v0

2
. (6.68)

Conservation of px and py will allow us to solve for the angles θ1 and θ2. Conservation of
px gives

mv0 = m · v0√
2
· cos θ1 + 2m · v0

2
· cos θ2 =⇒ 1 =

1
√

2
cos θ1 + cos θ2. (6.69)

And conservation of py gives

0 = m · v0√
2
· sin θ1 − 2m · v0

2
· sin θ2 =⇒ 0 =

1
√

2
sin θ1 − sin θ2. (6.70)

Putting the θ1 terms on the left-hand sides of the previous two equations, squaring and
adding, and using sin2 θ + cos2 θ = 1, gives

1 −
√

2 cos θ1 +
1
2
= 1 =⇒ cos θ1 =

1

2
√

2
=⇒ θ1 ≈ 69.3◦. (6.71)
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Plugging cos θ1 = 1/(2
√

2 ) into Eq. (6.69) then gives cos θ2 = 3/4 =⇒ θ2 ≈ 41.4◦. Note
that the sum of the two angles isn’t 90◦, as it would be if the masses where equal.

Remark: If a marble collides with a stationary bowling ball, then no matter what the angle of de-
flection is, the marble will end up with essentially all of the energy, which means that the energies
certainly can’t be equal. Similarly, if a bowling ball collides with a stationary marble, then the
bowling ball will end up with essentially all of the energy. So if we replace the 2m in this prob-
lem with a general mass Nm, then N must lie within a certain range in order for it to be possible
for the two masses to end up with equal energies. As an exercise, you can show that this range is
3 − 2

√
2 ≤ N ≤ 3 + 2

√
2, that is, 0.17 ≤ N ≤ 5.8. In the N = 0.17 case, the collision is head-on,

and the mass m continues moving forward. In the N = 5.8 case, the collision is head-on, and the
mass m bounces directly backward.

6.21. Equal speeds

Conservation of energy gives the common final speed as

1
2

mv2
0 =

1
2

mv2 +
1
2

(2m)v2 =⇒ v =
v0√

3
. (6.72)

Conservation of px and py will allow us to solve for the angles θ1 and θ2. Conservation of
px gives

mv0 = m · v0√
3
· cos θ1 + 2m · v0√

3
· cos θ2 =⇒

√
3 = cos θ1 + 2 cos θ2. (6.73)

And conservation of py gives

0 = m · v0√
3
· sin θ1 − 2m · v0√

3
· sin θ2 =⇒ 0 = sin θ1 − 2 sin θ2. (6.74)

Putting the θ1 terms on the left-hand sides of the previous two equations, squaring and
adding, and using sin2 θ + cos2 θ = 1, gives

3 − 2
√

3 cos θ1 + 1 = 4 =⇒ cos θ1 = 0 =⇒ θ1 = 90◦. (6.75)

Plugging cos θ1 = 0 into Eq. (6.73) then gives cos θ2 =
√

3/2 =⇒ θ2 = 30◦. Note that the
sum of the two angles isn’t 90◦, as it would be if the masses where equal.

Remark: As in Problem 6.20, if we replace the 2m in this problem with a general mass Nm, then
N must lie within a certain range in order for it to be possible for the two masses to end up with
equal speeds. As an exercise, you can show that this range is 0 < N ≤ 3 (the 0 means that the
stationary ball can be made arbitrarily small). In the N = 3 case, the collision is head-on, and the
mass m bounces directly backward. The N ≈ 0 case is a little tricker. A head-on collision will give
the tiny stationary mass Nm a speed of 2v0 (as you can show). And a completely glancing collision,
where m doesn’t quite touch the tiny mass, will give it no speed at all. So by continuity there must
be a particular glancing collision that causes the tiny mass Nm to come off at a specific intermediate
angle with speed v0 (which is the final speed of m, which just plows through with essentially the
same speed). As an exercise, you can show that the N = 0 modification of the above solution leads
to θ2 equaling the nice angle of 60◦. Alternatively, there is a quick way to derive this 60◦ result by
working in the CM frame.

6.22. Rocket motion

Since the given u is a speed, it is defined to be positive. This means that the velocity of
the particles ejected at a given instant is obtained by subtracting u from the velocity of the
rocket at that instant. The rocket’s initial mass is M , and m is the (decreasing) mass at a
general later time. The rate of change of the rocket’s mass is dm/dt, which is negative. So
mass is ejected at a rate |dm/dt | = −dm/dt, which is positive. In other words, during a
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small time dt, a negative mass dm gets added to the rocket (so the rocket’s mass decreases),
and a positive mass −dm gets shot out the back.7

Consider a moment when the rocket has mass m and velocity v (with respect to the
ground). Then at a time dt later (see Fig. 6.31), the rocket has mass m + dm and ve-v

m

v + dv

m + dm

− dm

v − u

Figure 6.31

locity v + dv, while the exhaust has mass −dm and velocity v − u (which may be positive
or negative, depending on the relative size of v and u).8 There are no external forces, so
the total momenta at these two times must be equal. Therefore,

mv = (m + dm)(v + dv) + (−dm)(v − u). (6.76)

Ignoring the second-order term dm dv, this simplifies to m dv = −u dm.

Remark: This relation is actually much easier to see in the inertial reference frame that coincides
with the rocket’s frame at the start of the dt time interval. In this frame the rocket is initially at rest,
and then the ejected mass picks up a momentum of u dm (which is negative) while the rocket picks
up a momentum of m dv. (Technically these two quantities should be (u− dv) dm and (m + dm) dv,
but the corrections are of second order, and they cancel anyway). These momenta must be equal and
opposite, hence m dv = −u dm.

Dividing the m dv = −u dm equation by m and integrating from t1 to t2 gives∫ v2

v1

dv = −
∫ m2

m1

u
dm
m

=⇒ v2 − v1 = u ln
m1

m2
. (6.77)

For the case where the initial mass m1 is M and the initial speed v1 is 0, we obtain

v = u ln
(

M
m

)
. (6.78)

Remarks: Note that we didn’t assume anything about the ejection rate dm/dt in this derivation.
There is no need for it to be constant; it can change in any way it wants. The only thing that matters
(assuming that M and u are given) is the final mass m. In the special case where dm/dt is constant
(call it −η, where η is positive), we have m(t) = M − ηt, so v(t) = u ln[M/(M − ηt)].

The log in the result in Eq. (6.78) is not very encouraging. If the mass of the metal in the rocket is
m, and if the mass of the fuel is 9m, then the final speed after all the fuel has been used up is only
u ln 10 ≈ (2.3)u. If the mass of the fuel is increased by a factor of 11 up to 99m while holding the
mass m of the metal constant (which is probably not even structurally possible),9 then the final speed
only doubles to u ln 100 = 2(u ln 10) ≈ (4.6)u. So the factor of 11 in the fuel gives only a factor of
2 in the speed. How, then, do you make a rocket go significantly faster?

For concreteness, let’s assume that it is impossible to build a structurally sound container that can
hold fuel of more than, say, 19 times its mass. It would then seem like the limit for the speed of a
rocket is u ln 20. The strategy for beating this limit is to simply put a little rocket on top of another
one. The final speed of the little rocket is the sum of the u ln 20 limits for each rocket, which gives
2u ln 20. This is the same as having one rocket with a fuel-to-container mass ratio of 202 − 1 = 399,
which is huge. The point of using these “stages” is that if you jettison the container of the big rocket
after its fuel is used up, then the little rocket doesn’t have to keep accelerating it.

7If you wanted, you could define dm to be positive, and then subtract it from the rocket’s mass, and have dm get
shot out the back. However, you would then have to be careful to switch the order of the mi limits of integration in
Eq. (6.77) below.

8Technically the exhaust’s velocity is (v + dv) − u, because we are told that the resulting speed relative to the rocket
is u. But the distinction is irrelevant in the dt → 0 limit, because the dv would lead to a second-order term dm dv in
Eq. (6.76) below. This term would be proportional to dt2 and hence negligible in comparison with the first-order terms
proportional to dt .

9The space shuttle’s external fuel tank, just by itself, has a fuel-to-container mass ratio of only about 20.
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6.23. Hovering board

(a) The magnitude of the upward force on the board due to the water equals (by Newton’s
third law) the magnitude of the downward force on the water due to the board. And
Newton’s second law, F = dp/dt, tells us that this force equals the rate of change of
momentum of the water. The water is initially moving upward at speed v0 and is then
brought to rest (at least vertically). So the magnitude of the change in momentum
of a little drop of water with mass dm is |dp| = (dm)v0. The magnitude of the rate
of change of momentum is therefore (with dt being the small time that it takes the
small dm to crash into the board)

dp
dt
=

(dm)v0

dt
=

dm
dt

v0 = Rv0. (6.79)

This is the downward force on the water, and hence also the upward force on the
board. The board will hover in place if this force equals mg, so we want m = Rv0/g.
The units of R are kg/s, so the units of m are correct. And m correctly grows with R
and v0, and decreases with g.

(b) Since the mass (and hence weight) of the board is half of what it was in part (a), we
want the force from the water to also be half. So we want the dp/dt of the water to
be half of what it was. The water still hits the board at the same mass rate R (because
if it didn’t, mass would be piling up or magically appearing at some intermediate
height). But it is going slower because it loses speed as it rises. (What happens is
that although the water is moving slower higher up, its stream is wider, so the same
amount of water crosses a given plane as at a lower height.) From the expression
for dp/dt in Eq. (6.79), we want the speed to be v0/2. At what height is the speed
reduced to v0/2? This can quickly be answered by using conservation of energy:

1
2

mv2
0 = mgh +

1
2

m
(
v0

2

)2
=⇒ h =

3v2
0

8g
. (6.80)

This height is 3/4 of the maximum height of v2
0/2g that the water would reach if the

board weren’t present. The height h correctly grows with v0 and decreases with g.
Alternatively, you can also obtain h by using standard constant-acceleration kine-
matics. The time is given by v0 − gt = v0/2 =⇒ t = v0/2g. Plugging this into
h = v0t − gt2/2 gives h = 3v2

0/8g.
(c) The rate of change of momentum is now doubled, because each marble of mass dm

goes from having momentum (dm)v0 upward to (dm)v0 downward. Therefore, the
magnitude of dp is 2(dm)v0. The solution proceeds in exactly the same way as in
part (a), except with an extra factor of 2, so we obtain a mass of m = 2Rv0/g.

6.24. Falling heap

First solution: At time t, the distance the heap has fallen is gt2/2, because we are assum-
ing that it is always in freefall. Therefore, the length left in the heap is L−gt2/2. The heap
is moving with speed gt, so its momentum is p = λ(L − gt2/2)(−gt), with upward taken
to be positive. This is the momentum of the entire rope, because only the heap is moving.

The net force on the entire rope is Fhand − λLg. (The entire weight is (λL)g, and gravity
doesn’t care that part of the rope is moving and part of it isn’t.) So F = dp/dt gives

Fhand − λLg =
d
dt

(
−λLgt +

1
2
λg2t3

)
= −λLg +

3
2
λg2t2

=⇒ Fhand =
3
2
λg2t2. (6.81)

This result holds until the rope straightens out when gt2/2 = L =⇒ t =
√

2L/g. Just
before this time, Eq. (6.81) gives Fhand = 3λLg. And just after, Fhand simply equals the
weight λLg of the stationary hanging rope. So Fhand drops abruptly from 3λLg to λLg.
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Second solution: Fhand is responsible for holding up the straight part of the rope, which
weighs λ(gt2/2)g, and also for stopping the atoms that join the straight part. In a small
time dt, a mass of dm = λ dx = λ(v dt) joins the straight part. This mass initially has
momentum with magnitude (λv dt)v downward, and then it comes to rest. So the change
in momentum is dp = +λv2 dt (it increases from a negative quantity to zero). Hence,
dp/dt = λv2 = λ(gt)2. This much additional force must be supplied by your hand, so the
total force you apply is

Fhand = λ

(
gt2

2

)
g + λ(gt)2 =

3
2
λg2t2. (6.82)

6.25. Bucket and chain

(a) Since the acceleration a is constant, the position and speed of the bucket are x =
at2/2 and v = at. The mass of the chain that has been gathered up is m = λx, so the
momentum of the bucket (which is massless) plus whatever chain is inside is

p = mv = (λx)v = λ
(

at2

2

)
(at) =

1
2
λa2t3. (6.83)

The force that you apply is what causes the change in this momentum, so

F =
dp
dt
=

d
dt

(
1
2
λa2t3

)
=

3
2
λa2t2. (6.84)

(You should verify that this answer is consistent with the answer to Multiple-Choice
Question 6.20.) This force can also be written as F = 3λv2/2. Since λ has units of
kg/m, F correctly has units of kg m/s2.

Remark: It would be incorrect to use F = ma to say that F = (λ · at2/2)a = λa2t2/2,
which equals λv2/2. This answer is too small by a factor of 3. The error is that your force
is responsible for doing two things: It accelerates the mass that is already in the bucket (this
yields ma), and it also gives momentum to the new bits of chain that are suddenly brought
from speed 0 to speed v. Mathematically,

F =
dp
dt
=

d(mv)
dt

= m
dv
dt
+

dm
dt

v. (6.85)

The first term here is simply ma, which we just showed equals λv2/2. The second term is(
d(λx)/dt

)
v = λ(dx/dt)v = λv2. The sum of these two terms gives the correct result of

3λv2/2. Note that the second term is twice as large as the first term; the force needed to get
the new bits of mass moving is twice as large as the force needed to accelerate the mass that
is already in the bucket.

(b) The work that you do up to time t is (we won’t bother putting a prime on the integra-
tion variable)

W =
∫

F dx =
∫ t

0
Fv dt =

∫ t

0

(
3
2
λa2t2

)
(at) dt

=
3
2
λa3

∫ t

0
t3 dt =

3
8
λa3t4. (6.86)

Since λ has units of kg/m, you can quickly verify that F correctly has units of
kg m2/s2.

(c) The kinetic energy of the chain inside the bucket at time t is

K =
1
2

mv2 =
1
2

(
λ

at2

2

)
(at)2 =

1
4
λa3t4. (6.87)

This is λa3t4/8 less than the 3λa3t4/8 work you do (which is the energy that you
put into the system). So this difference of λa3t4/8, which is 1/3 of the work you do,
is what is lost to heat.



Chapter 7

Torque

7.1 Introduction
Basics of rotations

Consider a rigid planar object rotating around the origin, as shown in Fig. 7.1. More generally,
ω

pivot

Figure 7.1

we can have a rigid 3-D object rotating around a fixed axis perpendicular to the page. All points
in the object move in circles centered on the axis. A cross-sectional slice made with a plane
parallel to the page will simply yield a planar object like the one shown in Fig. 7.1. Since the
object is rigid, all points have the same the angular velocity ω at any given instant.

If θ is the angle through which the object has rotated, then the angular velocity is ω = dθ/dt.
And the angular acceleration is α = dω/dt = d2θ/dt2. In the special case where α is constant,
we can integrate it twice to obtain θ(t):

θ(t) = θ0 + ω0t +
αt2

2
, (7.1)

where the constants of integration θ0 and ω0 are the initial angle and initial angular velocity,
respectively. If we multiply Eq. (7.1) by the radius r of the circular motion of a given point, and
if we use the relations s = rθ (where s is the arclength), v = rω (where v is the velocity), and
a = rα (where a is the tangential acceleration), we obtain

s(t) = s0 + v0t +
at2

2
, (7.2)

which is the standard “linear” relation for the case of constant acceleration.

Moment of inertia

If an object consists of many masses mi , whose distances from the fixed axis of rotation are ri ,
then the moment of inertia, I, of the object is defined as

I =
∑

mir2
i . (7.3)

I depends on the location of the axis of rotation (or the point of rotation, for planar objects),
and also on the distribution of mass. The question “What is I for an object with mass M?”
is meaningless. We must specify where the axis of rotation is chosen and how the mass is
distributed. The I of an object does not depend on the angular velocity ω. Even if an object is
sitting at rest, it still has an I relative to any particular chosen axis.

In the case of an object with a continuous mass distribution, the sum in Eq. (7.3) is replaced
by an integral:

I =
∫

r2 dm, (7.4)

where r is the distance from each little piece dm to the axis of rotation. The moments of inertia

177
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of some common objects (with uniform mass distribution) are:

1. Stick (around center): ML2/12

2. Stick (around end): ML2/3

3. Ring (around center): M R2

4. Ring (around diameter): M R2/2

5. Disk (around center): M R2/2

6. Disk (around diameter): M R2/4

7. Spherical shell (around diameter): 2M R2/3

8. Solid sphere (around diameter): 2M R2/5

The phrase “around center” (or end) is shorthand for “around an axis that passes through the
center and is perpendicular to the object.” Note that all of the above I’s take the general form of
a numerical factor times a mass times a length squared. So when calculating any of these I’s, it’s
just a question of what the numerical factor is. See, for example, Problems 7.11 and 7.12.

The moment of inertia appears in two fundamental relations in rotational dynamics. One
relation involves the kinetic energy, the other involves the torque. We will discuss these below.

Two theorems

A very useful theorem involving moments of inertia is the parallel-axis theorem. Consider the
moment of inertia, IP , of an object (not necessarily planar) around a given axis through the point
P in Fig. 7.2. Consider also the moment of inertia, ICM, around a parallel axis through the center

CM

P

d

axis axis

Figure 7.2

of mass. Then the parallel-axis theorem states that IP is related to ICM by (see Problem 7.1 for a
proof)

IP = ICM + Md2 (parallel-axis theorem), (7.5)

where M is the mass of the object and d is the distance between the two axes. (This distance is
equal to the distance between P and the CM only if the two axes are perpendicular to the line
joining P and the CM.) This result is valid only if the CM is used on the right-hand side. If you
want to compare the I’s around two parallel axes, neither of which passes through the CM, then
they do not in general differ by Md2, where d is the separation. To compare them, you must
compare them each to ICM via Eq. (7.5). Note that Eq. (7.5) implies that ICM is smaller than any
other IP, since Md2 is always a positive quantity.

Another theorem is the perpendicular-axis theorem. This theorem isn’t as widely applicable
as the parallel-axis theorem, because it holds only for planar objects. But for the pancake object
in the x-y plane shown in Fig. 7.3, the perpendicular-axis theorem states that the moments of

x

y

Figure 7.3

inertia around the three coordinate axes are related by (see Problem 7.2 for a proof)

Iz = Ix + Iy (perpendicular-axis theorem). (7.6)

Remember that this applies only to planar objects.

Kinetic energy

For an object that is rotating with angular velocity ω around a fixed axis, the kinetic energy K is
given by (see Problem 7.3 for a derivation)

K =
1
2

Iω2. (7.7)

This relation is the analog of the K = mv2/2 relation in linear dynamics; I takes the place of m,
and ω takes the place of v. For an object with mass M that is both translating and rotating, as
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shown in Fig. 7.4, the kinetic energy is given by (see Problem 7.4 for a derivation)
ω

VCM

CM

Figure 7.4

K =
1
2

MV 2
CM +

1
2

ICMω
2, (7.8)

where VCM is the speed of the center of mass, and ICM is the moment of inertia around the center
of mass. In words: K equals the sum of the energy of the entire object treated like a point mass M
traveling at VCM, plus the rotational energy relative to the CM (imagine that you are riding along
with the CM as the object is spinning around you). The way that the translational and rotational
energies combine in Eq. (7.8) is about as nice a result as we could hope for. It certainly reduces
properly in the special cases where the object is only translating or only rotating. But note well
that Eq. (7.8) isn’t valid if the CM is replaced by any other point.

Torque

If a force F acts on an object, then the torque (denoted by τ) on the object, relative to a given
origin, is defined via the “cross product” (see Section 13.1.7 in Appendix A for the definition of
the cross product) as

τ ≡ r × F, (7.9)

where r is the vector from the origin to the point where the force F is applied. If different forces
are applied at different locations, then the total torque is the sum of all of the individual torques:
τ =

∑
ri × Fi . The same origin must be chosen for all of the individual torques.

When drawing a free-body diagram for the purpose of calculating torques for the τ = Iα re-
lation that we will discuss below, it is critical (due to the appearance of r in the above expression
for τ) that you draw the forces at the correct locations where they act on an object. In contrast,
it doesn’t matter where the forces act if you are using only F = ma.

Torque is a vector, being the cross product of two other vectors. However, we will invariably
deal only with situations where both the position r and the force F lie in the plane of the page,
in which case the torque τ points perpendicular to the page and has magnitude rF sin θ, where
θ is the angle between r and F. Since τ is always perpendicular to the page in this case, we can
ignore the fact that it is actually a vector and deal simply with its magnitude, rF sin θ. You can
think of this magnitude in either of two ways, depending on which quantity you want to group
with the sin θ (see Fig. 7.5):

F

r

F sinθ

r sinθ

θ

θ

Figure 7.5

τ = r (F sin θ) = (radius)(tangential force), or
τ = F (r sin θ) = (force)(lever arm). (7.10)

That is, the torque equals the entire distance r times the tangential component of the force (the
radial component of the force won’t cause an object to rotate). And it also equals the entire force
times the “lever arm.” The lever arm is the component of the r vector that is perpendicular to
F. To geometrically construct it, draw a line pointing along F (extending in both directions) and
look at the closest approach to the origin.

Many setups involve the torque due to the gravitational force. A very useful fact is:

• When finding the gravitational torque on an object with mass m, the object can be treated
like a point mass m located at the CM.

See Problem 7.5 for a proof. Note that this result holds only for the torque. As far as the moment
of inertia goes, the object cannot be treated like a point mass at the CM; it matters how the mass
is distributed.

The τ = Iα relation

The most important thing about the torque τ on an object is that it is proportional to the angular
acceleration α of the object, with the constant of proportionality being equal to the moment of
inertia, I:

τ = Iα. (7.11)
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See Problem 7.6 for a proof. This relation is the bread-and-butter relation for rotational dynam-
ics. It is the rotational analog of F = ma; τ takes the place of F, I takes the place of m, and
α takes the place of a. If you apply a force to an object, you give it a linear acceleration that is
inversely proportional to the mass. Likewise, if you apply a torque to an object, you give it an
angular acceleration that is inversely proportional to the moment of inertia.

Equation (7.11) is valid if the choice of origin is (1) a fixed point (or more generally a point
moving with constant velocity), or (2) the CM of the object, or (3) a third possibility which
rarely comes up. (See Section 8.4.3 in Morin (2008) for a discussion of the third condition.) If
you forget about this restriction, it probably won’t end up mattering, because it’s unlikely that
you would pick a point as your origin that isn’t a fixed point or the CM. Those are the natural
choices. But keep the restriction in mind. The same origin must be chosen for both τ and I, of
course.

7.2 Multiple-choice questions
7.1. A solid cylinder has mass M , length L, and radius R, as shown in Fig. 7.6. What is the

L

axis

2R

Figure 7.6

moment of inertia around an axis that passes through the CM and is perpendicular to the
symmetry axis? (Don’t solve this from scratch; just check limiting cases of the shape.)

(a)
ML2

12
+

M R2

2

(b)
ML2

12
+

M R2

4

(c)
ML2

3
+

M R2

2

(d)
ML2

3
+

M R2

4

7.2. All three objects shown below have the same total mass m, and they all have the same
vertical span. The dots in the first object are point masses. The square and the circle are
made from wires (that is, they are not solid planar objects). Which object(s) has/have the
largest moment of inertia around an axis that passes through the CM and is perpendicular
to the page?

(1) (2) (3)

wires bent into

these shapes

massless rod

axis

7.3. What is the kinetic energy of a stick rotating around an axis located at one of the ends and
perpendicular to the stick?

(a) 1
2 Iendω

2

(b) 1
2 ICMω

2

(c) 1
2 ICMω

2 + 1
2 mv2

CM

(d) Both (a) and (c)

(e) None of the above
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7.4. A ball rolls down into a valley, as shown in Fig. 7.7. The left side of the valley has

friction frictionless

Figure 7.7

friction, and the ball rolls without slipping there. But the right side is frictionless. The ball
is released from rest at height h on the left side. Which of the following is correct?

(a) Because of friction, energy is not conserved, so the ball reaches a height less than h
on the right side.

(b) By conservation of energy the ball reaches a height less than h on the right side.

(c) By conservation of energy the ball reaches the same height h on the right side.

(d) The rolling of the ball causes it to reach a height greater than h on the right side.

7.5. You give a quick push on three identical sticks at the locations shown below. Your force
is constant, and it acts over the same small distance ∆x in each case. Which stick has the
largest resulting CM velocity?

F

F

F

A B C

(a) A (b) B (c) C (d) They all have the same CM velocity.

7.6. A ball lies on a rug, and the rug is accelerated to the right, as shown in Fig. 7.8. Assume pull

rug

ball

Figure 7.8

that there is at least some friction between the ball and the rug. Let the ball’s acceleration
a be defined positive rightward, and let its angular acceleration α be defined positive
clockwise. Then

(a) a is positive, and α is positive

(b) a is positive, and α is negative

(c) a is negative, and α is positive

(d) a is negative, and α is negative

(e) a is zero, and α is negative

7.7. If all of the following wheels are simultaneously released from rest at the same height on
an inclined plane, and if none of the wheels slip, which one will reach the bottom first?
Assume that darker regions indicate higher densities.

(a) (b) (c) (d)

7.8. A ball rolls without slipping down a plane inclined at angle θ. The friction force from the
plane on the ball

(a) makes ω increase, and makes aCM be larger than g sin θ

(b) makes ω increase, and makes aCM be smaller than g sin θ

(c) makes ω decrease, and makes aCM be larger than g sin θ

(d) makes ω decrease, and makes aCM be smaller than g sin θ
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7.9. Consider a ball that rolls down a plane (which has friction) without slipping. And consider
a block that slides down a different plane, which is frictionless. Both planes are inclined
at the same angle. The acceleration of the CM of the ball is smaller than the acceleration
of the block because (circle all that apply)

(a) the component of g pointing down the plane is smaller in the case of the ball

(b) the ball has one contact point with its plane, whereas the block has a whole surface
of contact points with its plane

(c) there is a friction force on the ball pointing up the plane

(d) energy is contained in the rotational motion of the ball

7.10. Imagine that you are holding a 20-pound weight in a “curling” position, with your upper
arm vertical and your forearm horizontal. The main muscle holding your forearm in place
is your biceps muscle. By looking at your arm and considering torques around your elbow
joint, which of the following is your best guess for the tension in your biceps?

(a) 2 lbs (b) 10 lbs (c) 20 lbs (d) 40 lbs (e) 200 lbs

7.11. If you apply a force to the pedals of your bike and accelerate, the wheels have an angular
acceleration. Consider the rim of the back wheel. The things that apply a torque to this
rim are

(a) the ground

(b) the spokes

(c) both (a) and (b)

(d) neither (a) nor (b)

7.12. A stick has its bottom end attached to a wall by a pivot and is held up by a massless string
attached to its other end. Which of the following scenarios has the smallest tension in the
string?

(a) (b) (c) (d) (e)

st
ic

k

str
ing

nearly 
vertical

7.13. The objects shown below are released from rest, all from the same initial angle. They are
all pivoted on the ground, and the CM’s are all the same distance d from the pivot. The
total mass of each object is the same (although this assumption isn’t necessary). Dotted
lines denote massless sticks. Which object falls the fastest?

(a) (b) (c) (d) (e)
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7.14. The left end of a massless stick with length ℓ is placed on the corner of a table, as shown
in Fig. 7.9. A point mass m is attached to the center of the stick, which is initially held m

l

Figure 7.9

horizontal. It is then released. Immediately afterward, what normal force does the table
exert on the stick?

(a) 0 (b) mg/6 (c) mg/2 (d) mg (e) 2mg

7.15. You pull on a roll of toilet paper with a given force F and observe the angular acceleration
α. A few days later when the radius is half of what it was, you pull with the same force F.
(For simplicity, ignore the hollow tube; assume that the toilet paper goes all the way down
to zero radius.) The ratio of the new α to the old α is

(a) 1 (b) 2 (c) 4 (d) 8 (e) 16

7.3 Problems

The first eight problems are foundational problems.

7.1. Parallel-axis theorem

Prove the parallel-axis theorem, stated in Eq. (7.5). Feel free to deal only with the special
case where the object is planar and the axes are perpendicular to this plane. The reasoning
in this case has all the ingredients of the general proof. Hint: Write the coordinates of a
general point in the object as the sum of the coordinates of the CM plus the coordinates
relative to the CM.

7.2. Perpendicular-axis theorem

Prove the perpendicular-axis theorem, stated in Eq. (7.6).

7.3. Rotational kinetic energy

For an object that is rotating with angular velocity ω around a fixed axis, show that the
kinetic energy is given by Eq. (7.7). Hint: Divide the object into a large number of tiny
masses mi , and find the kinetic energy of each mass in terms of ω.

7.4. Translation plus rotation

For an object that is both translating and rotating, show that the kinetic energy is given
by Eq. (7.8). Hint: Write the velocity of a general point in the object as the sum of the
velocity of the CM plus the velocity relative to the CM. Also, it will be helpful to use the
dot product (see Section 13.1.6 in Appendix A) to write v2 as v · v.

7.5. Gravitational torque

Show that when finding the gravitational torque on an object with mass m, the object can
be treated like a point mass m located at the CM.

7.6. The τ = Iα relation

Derive the τ = Iα relation. There are various ways to do this, one of which is the follow-
ing. Imagine applying a force to an object pivoted at the origin; see Fig. 7.10. If the force

F

ds

φ

θ

Figure 7.10

is applied over a tangential displacement ds, you can calculate the work done and then
equate it with the change in the kinetic energy, dK = d(Iω2/2) = Iω dω. This should
give you τ = Iα.

7.7. Force along a massless stick

A massless stick is attached by pivots to objects at its two ends. Explain why the force
that the stick applies to each object is always directed along the stick.
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7.8. Non-slipping condition

(a) A wheel with radius R rolls without slipping on the ground. Let the distance it
moves be d, and let the angle through which it rolls be θ. Show that the non-slipping
condition is d = Rθ (or equivalently v = Rω, or equivalently a = Rα).

(b) Consider now the case where a horizontal board rolls on top of a wheel, which rolls
on the ground, as shown in Fig. 7.11. If there is no slipping anywhere, show that the

Figure 7.11

board moves twice as far as the wheel.

7.9. I for a square

Find the moment of inertia of a solid square (mass M , side L) around the axis through the
center and perpendicular to the plane of the square. Do this by making use of a scaling
argument, along with the parallel-axis theorem. You will need to find the quantities A, B,
and C in the following equations, where an object represents the moment of inertia around
the given dot. These are three equations and three unknowns, so the unknowns can be
determined.

=

=

= +

+

+A

L

L

B

C

2

7.10. Another I for a square

(a) Find the moment of inertia of a solid square (mass M , side L) around an axis con-
necting the midpoints of two opposite sides. Do this by slicing the square into thin
strips and integrating over the strips.

(b) Same task, but now let the axis connect two opposite corners.

(c) Explain why your answers to parts (a) and (b) must agree.

7.11. I for a disk

Find the moment of inertia of a solid disk with mass m and radius R, around the axis that
passes through the center and is perpendicular to the plane of the disk.

7.12. I for a spherical shell

Find the moment of inertia of a hollow spherical shell with mass m and radius R, around
a diameter.

7.13. Bending

The wooden beams beneath the floors in houses are often “2 by 8’s” (inches). These are
oriented with the “8” direction vertical. This orientation makes sense because intuitively
the beams would sag much more if the “2” direction were vertical. Why exactly would
they sag more? More precisely, how does the sagging depend on the height of the beam?

To answer this, consider the model of a beam shown in Fig. 7.12. We have drawn two
beams, one with twice the height of the other. Imagine breaking each beam into two halves
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that are pivoted on a short rod. The two halves are connected by many short springs (the
thin lines shown) at their relaxed length. When each beam is bent (due to the application
of an external torque), the springs in the top half compress, and the springs in the bottom
half stretch, as shown in the right half of the figure. This is basically what happens on a
cellular level; the cells in the wood act like little springs.

Here is the question you need to answer: Consider the torque (relative to the pivot) on
one half of the beam with height 2h due to the springs in the beam. For the same angle
of deflection, how much larger is this torque than the analogous torque on one half of the
beam with height h? Hint: Consider a given small section of springs in the taller beam, and
compare the torque due to these springs with the torque due to the corresponding section
(which is half as large) in the shorter beam. No calculations needed! Just determine how
the relevant quantities scale with length.

2h

h pivotrod

Figure 7.12

7.14. Initial angular acceleration

A uniform disk with mass m and radius R lies in a vertical plane and is pivoted at its center.
A stick with length ℓ and uniform mass density λ (kg/m) is glued tangentially at its top end
to the disk, as shown in Fig. 7.13, so that it forms a rigid object with the disk. If the system

R

l

m

λ

pivot

(side view)

Figure 7.13

is held with the stick vertical and then released, what is the initial angular acceleration of
the system? Given m, R, and λ, for what ℓ is this angular acceleration maximum?

7.15. Atwood’s with a massive pulley

Two masses, m and 2m, hang over a pulley with mass m and radius R (and I = mR2/2),
as shown in Fig. 7.14. Assuming that the (massless) string doesn’t slip on the pulley, find

m

m

2m

Figure 7.14

the accelerations of the masses.

7.16. Equivalent mass

In Fig. 7.15(a) two masses m1 and m2 hang over a pulley with mass m, radius R, and
moment of inertia I = βmR2, where β is a numerical factor. The (massless) string doesn’t
slip on the pulley. The two masses will accelerate at exactly the same rate as they will in
the system in Fig. 7.15(b) (with two massless pulleys and a frictionless table), provided
that the value of m′ is chosen correctly. What is this value?

7.17. Braking on a bike

Let the distance between the centers of the front and back wheels of a bicycle be 2L, and
assume for simplicity that the CM of the bike plus rider is located halfway between the
wheels, at a height L above the ground. The coefficient of kinetic friction between the
wheels and the ground is µ. If the brakes are applied hard enough so that skidding occurs
in all of the following situations (with both wheels always remaining in contact with the
ground), what is the deceleration of the bike if

(a) the brakes are applied to both wheels?
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m1 m2

m

m1 m2

m’

(a) (b)

Figure 7.15

(b) the brake is applied only to the back wheel?

(c) the brake is applied only to the front wheel?

7.18. Pulley below a stick

A stick with mass m and length ℓ is pivoted at a point ℓ/4 from an end, as shown in
Fig. 7.16. A massless string hangs from each end and wraps around the underside of a

m

m

3l/4l/4

pivot

Figure 7.16

massless pulley with diameter ℓ. A mass m hangs from the pulley. If the stick is held
horizontal and then released, what is the initial acceleration of the mass m?

7.19. Falling stick 1

A stick with mass m, length ℓ, and uniform mass density is initially held horizontal with its
left end attached to a pivot. It is then released. Immediately after, what is the acceleration
of the right end?

7.20. Falling stick 2

A stick with mass m, length ℓ, and uniform mass density initially stands vertically with
its bottom end attached to a pivot. It is given an infinitesimal push, and it swings down
around the pivot. At the instant the stick is horizontal (after a quarter turn), what is the
force (specify the horizontal and vertical components) that the pivot applies to the stick?

7.21. Sticks on a table

(a) A uniform stick with mass m and length ℓ has its bottom end pivoted on a table, as
shown in Fig. 7.17. It is held at rest at an angle θ with respect to the horizontal and
then released. What is its angular acceleration right after it is released?

(b) Answer the same question, but now let the bottom end not be pivoted on the table.
Instead, let the table be frictionless, with the bottom end of the stick free to slide on
it.

pivot

(a)

θ

m

l

frictionless

(b)

θ

m

l

Figure 7.17
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7.22. Hoop on a plane

A hoop (that is, a wheel with all of its mass on the rim) is given an initial speed up a plane
inclined at angle θ. The initial linear speed is v0, and the initial angular speed is zero. The
coefficient of kinetic friction between the hoop and the plane is µ = 1/2. How much time
passes before the hoop starts to roll without slipping? For what θ is this time minimum?

7.23. Cylinder and board

A uniform solid cylinder with mass m and radius R lies on top of a long board that also
has mass m, as shown in Fig. 7.18. There is sufficient friction between them to prevent m

m

µk

R

board

table

Figure 7.18

slipping. The coefficient of kinetic friction between the table and the board is µk. The
initial velocity of both objects is v0, which means that the cylinder is initially at rest with
respect to the board.

(a) What is the acceleration of the board?

(b) What is the speed of the cylinder when the board finally comes to rest?

7.24. Another cylinder and board

A uniform solid cylinder with mass m and radius R lies on top of a long board which also
has mass m, as shown in Fig. 7.19. The board is free to slide frictionlessly on a table, but

no friction

v

m

m
0

µ

Figure 7.19

there is kinetic friction between the cylinder and the board, with the coefficient of kinetic
friction equal to µ. If the board is initially at rest, and if the cylinder is given an initial
speed v0 to the right, but without any initial rotation, what is the speed of the cylinder (with
respect to the ground) when it finally rolls without slipping on the board?

7.25. Rolling down a plane

A wheel with mass m, radius R, and moment of inertia βmR2 (where β is a numerical fac-
tor) rolls without slipping down a plane inclined at angle θ. What is the linear acceleration
of the wheel?

7.26. Pulling a cylinder on a board

A board with mass m lies on a frictionless plane inclined at angle θ. A uniform solid
cylinder with mass m and radius R lies on top of the board. A string that is attached to the
cylinder and wrapped around it is pulled with a tension T parallel to the plane, as shown
in Fig. 7.20. There is sufficient friction between the cylinder (or string) and the board so

T

m

m

θ

Figure 7.20

that the cylinder rolls on the board without slipping.

(a) Draw the free-body diagram for the board. Likewise for the cylinder. Be sure to
include the forces in all directions.

(b) Given T , write down all of the equations necessary to solve for the various accelera-
tions. (Don’t worry about actually solving the equations.) How many equations and
unknowns are there?

(c) What should T be so that the board has zero acceleration? What is the acceleration
of the cylinder in this case? You do need to solve some equations here, but they’re
not so bad.

7.27. Cylinder on board on plane

A uniform solid cylinder with mass m and radius R lies on a board also with mass m,
which lies on a plane inclined at angle θ, as shown in Fig. 7.21. The coefficient of kinetic

θ

m

µ = (1/2) tanθ

m

Figure 7.21

friction between the board and the plane is µ = (1/2) tan θ. Assume that there is sufficient
friction between the cylinder and the board so that the cylinder doesn’t slip with respect to
the board. Draw the free-body diagrams for the board and the cylinder. What is the linear
acceleration of the cylinder?
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7.28. Two cylinders on a plane

Two uniform solid cylinders are placed on a plane inclined at angle θ. Both cylinders have
mass m, but one radius is twice the other. A massless string connects the axle of the large
cylinder to the rim of the small one, as shown in Fig. 7.22. The cylinders are released from

m

m

R

2R

θ

Figure 7.22

rest.

(a) Assuming that the cylinders roll without slipping down the plane, what are their
accelerations?

(b) If the coefficient of static friction between both cylinders and the plane is µ = 1,
what is the largest angle θ for which no slipping occurs between either cylinder and
the plane?

7.29. Wheel and board

A uniform wheel with mass m and radius R lies on top of a board with mass M (you
can assume M > m), which lies on a frictionless plane inclined at angle θ, as shown in
Fig. 7.23. A massless string wraps around a massless pulley and has its ends tied to the

M

m

θ

Figure 7.23

board and the wheel’s axle. Assume that the wheel rolls without slipping on the board,
and assume that the two string segments shown are parallel to the plane. What is the
acceleration of the board?

7.30. Cylinder and stick

A uniform solid cylinder with mass m and radius R and a uniform stick with mass m and
length 2R are situated on a plane inclined at angle θ, with the stick perpendicular to the
plane, as shown in Fig. 7.24. The cylinder rolls without slipping on the plane, and the stick

R

2R

pivot

string

θ

Figure 7.24

is connected to the plane by a pivot. A massless string connects the top of the stick to the
“top” of the cylinder, as shown. If the objects are held in this position and then released,
what is the acceleration of the center of the cylinder immediately afterward?

7.31. Infinite set of disks

An infinite number of disks are cut out from a flat sheet of metal (so they all have the same
mass density per unit area), and they are situated in a horizontal line with their centers
at the same height, as shown in Fig. 7.25 (side view). They are free to spin around their
(fixed) centers. There is no friction between any of the disks; equivalently, assume that
they are separated by infinitesimal distances. The largest disk has radius R, and the radius
of each successive disk is 1/3 of the radius of the disk to its left.

A stick, whose mass m is the same as the mass of the largest disk, is placed on top of the
disks (touching them all) and is released. It is possible to show (you can just accept this)
that the above factor of 1/3 implies that the stick makes an angle of 30◦ with the horizontal.
Assuming that the stick doesn’t slip with respect to any of the disks, what is its diagonally
downward acceleration, during the time when it is still in contact with all the disks? You
will need to use the sum of an infinite geometric series, which is 1+b+b2+ · · · = 1/(1−b).

7.32. Rolling off a sphere

(a) A small ball with mass m and radius r is initially at rest on the top of a large fixed
sphere with radius R. The ball’s moment of inertia around its center is I = βmr2,
where β is a numerical factor. The ball is given an infinitesimal kick and rolls down
the sphere, as shown in Fig. 7.26. Assume that the coefficient of static friction, µ, is

R
θ

fixed sphere

(start)
(later)

Figure 7.26

essentially infinite, which implies that the ball doesn’t slip with respect to the sphere,
for essentially all of the time that it is in contact with the sphere. At what angle θ with
respect to the vertical does the ball lose contact with the sphere? (You can assume
that r is much smaller than R, to avoid a few complications, although the answer
actually comes out the same in any case.)
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R/3

Infinite number of disks 
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pivoted at centers

m

(side view)

Figure 7.25

(b) Now assume that µ takes on a normal finite value. At what angle θ does the ball start
to slip? It suffices to generate an equation that θ must satisfy. You need not solve for
θ, but you should check the µ→ 0 and µ→ ∞ limits.

7.33. Yo-yo

If you drop a yo-yo from rest, while holding on to the end of the string, it will accelerate
downward, reach a maximum speed, and then slow down. Eventually it will reach its
lowest point when the string is completely unwound. (A yo-yo consists of two disks
connected by an axle, with a string wrapped many times around the axle.)

(a) Explain qualitatively why the speed reaches its maximum value at an intermediate
point, instead of at the bottom, as it would for a dropped ball. Hint: As the string
unwinds, the radius of the wound-up spiral of string in the yo-yo becomes smaller.

(b) Now work things out quantitatively. Assume for simplicity that the (massless) string
is wound in a single-layer spiral (like a movie reel) and that the spiral starts with the
radius R of the yo-yo. What is the radius of the spiral when the yo-yo achieves its
maximum speed? Hints: Let the string have a tiny thickness ϵ when viewed from
the side. At any time, the area (in a cross-sectional side view) of the string that is
“missing” from the spiral must equal the area of the string that is hanging down to
the yo-yo. You can assume that the spiral is essentially circular at all times. Let the
yo-yo have mass m, and assume that its moment of inertia is mR2/2.

7.4 Multiple-choice answers

7.1. b In the R = 0 limit, we have a stick of length L with the axis at the center, so I =
ML2/12. In the L = 0 limit, we have a flat disk with the axis along a diameter, so
I = M R2/4 (from the list of I’s on page 178). The answer must therefore be (b).

Remark: If you want to solve the problem from scratch, you can slice the cylinder into disks and
then use the parallel-axis theorem to find the I of each disk relative to the given axis (in terms of the
position y of a disk). You can then integrate over all the disks.

7.2. 1 and 3 If r is half of the vertical span, then the first and third objects have I = mr2,
because all parts of the objects are a distance r from the axis. But the second object has
I < mr2, because all points (except the corners) are less than r from the axis.
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7.3. d Choice (a) is valid by Eq. (7.7). And choice (c) is valid by Eq. (7.8), which tells us
how the kinetic energy breaks up for an object that is rotating around its CM while the CM
is translating. The fact that one of the stick’s ends happens to be at rest in the given setup
is irrelevant in the application of Eq. (7.8).

Remark: Both of Eqs. (7.7) and (7.8) are relevant here, but which one you use depends on how
you want to view the object. The equality of choices (a) and (c) is basically the statement that the
parallel-axis theorem is valid. To see why, let d be half the length of the stick. Then the speed
of the CM is ωd, because it is rotating around the (fixed) end with angular speed ω. Choice (c)
can therefore be written as ICMω

2/2 + m(ωd)2/2. (And yes, the same ω appears in both terms
here. The stick makes a given number of revolutions per second, independent of which point you
consider it to be rotating around.) Equating this with choice (a) and canceling a factor ofω2/2 yields
Iend = ICM + md2, which is the parallel-axis theorem, as desired. If you consider a general object
(rotating around a given axis) instead of a stick, this reasoning actually provides a much quicker
proof of the parallel-axis theorem than the one given in Problem 7.1, as you can verify.

7.4. b The static friction force does no work in the left side of the valley, because the thing
applying the force (the ground) isn’t moving. So energy is conserved. At the highest point
on the right side, the ball is still rotating. This is true because it was rolling at the bottom,
and there is no friction on the right side, and hence no torque to slow down the rotation.
So at the highest point on the right side, there is energy contained in the rotation. The
potential energy must therefore be less than at the start. In other words, the ball doesn’t go
as high.

7.5. c All of the sticks have the same total energy E, because you do the same work F∆x.
From Eq. (7.8) the energy is E = mv2

CM/2+ICMω
2/2. For the first two sticks,ω is nonzero,

so some of the energy is “wasted” in rotational motion. Since ω = 0 for the third stick,
vCM acquires its largest possible value.

Remark: We can ask a similar question, but now with the force acting for the same small time ∆t
for all three sticks, instead of the same small distance ∆x. In this new setup, you apply the same
impulse, F∆t. So all three sticks have the same final momentum. But the momentum of an object is
determined solely by the motion of the CM and not by whatever motion may be taking place relative
to the CM; see Eq. (6.10). So all three sticks end up with the same vCM.

However, we now have a puzzle in the same-∆t case. The first two sticks have additional energy
associated with rotation, so from Eq. (7.8) they must have more total energy than the third stick,
since all the vCM’s are the same. How is this possible if you push on all three sticks for the same
time? As we saw above in the solution to the original question, the energy equals the work you do,
F∆x. So in the present scenario it must be the case that although you push on the sticks for the
same time ∆t, you apparently push on the first two sticks for a longer distance ∆x (with ∆x being
the longest for the first stick, because it will rotate the fastest since it experiences the largest torque).
And indeed, as you push on the first stick, the end “recoils” as it rotates away from you. So your
hand moves a longer distance ∆x, even though the centers of all three sticks move the same amount.

7.6. b The friction force on the ball at its bottom point is directed rightward. This causes a
rightward (positive) acceleration and a counterclockwise (negative) angular acceleration.

7.7. c The mass is more concentrated in the center in choice (c). So when I is written in the
form of βmr2, where β is a numerical coefficient, the β for choice (c) is the smallest. This
means that when potential energy is converted into kinetic energy as the wheel rolls down
the plane, less energy goes into rotational energy (the second term in Eq. (7.8), which
involves ICM) and more energy goes into translational energy (the first term in Eq. (7.8),
which involves vCM). The CM speed for (c) is therefore largest, so it reaches the bottom
first.

Remark: The complete ordering, from fastest to slowest, is (c), (a), (b), (d). Equivalently, this is the
ordering of the I’s, from smallest to largest. This is true because the mass in (a) is generally farther
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away from the center than in (c). And likewise farther in (b) than in (a). And farther in (d) than in
(b).

Note that the actual mass of each wheel doesn’t matter; only the distribution (which determines β)
matters. This is true for basically the same reason that the speed of a falling object is independent
of its mass (ignoring air drag). The mass m appears in every term in the conservation-of-energy
statement (always to the first power), so it cancels out. Equivalently, the speed can’t depend on m,
due to dimensional analysis; there is no other quantity involving units of kg in the setup, to cancel
the kg’s. (I isn’t an independent quantity, since it can be written as I = βmr2.)

If you want to quantitatively solve for the speed of a particular wheel (given β) after it rolls a
distance d down the plane (inclined at angle θ), you can quickly find it by applying conservation of
energy along with the non-slipping condition, vCM = Rω (see Problem 7.8). You can check your
answer by noting that it must reduce to the free-fall result of

√
2gd when θ = 90◦ and β = 0. See

Problem 7.25.

7.8. b The angular speed ω increases as the ball rolls down the plane and picks up speed.
(The linear speed increases too, of course. It is related to ω by v = Rω.) The friction force
produces the torque (around the CM) that makes ω increase, so the friction force must
point up the plane. It therefore causes aCM to be smaller than g sin θ (the component of g
pointing down the plane).

Note that the friction force is the only force that can produce a torque around the CM.
Gravity can’t do the job, because it effectively acts at the CM and therefore has zero lever
arm relative to the CM. The normal force from the plane also has zero lever arm.

Remark: The friction force Ff is responsible for doing two things. It is the force that produces the
torque that increases ω, and it is also the force that makes the ball accelerate slower than g sin θ. The
entire friction force Ff appears in each of these effects. It is not the case that the force gets divided
into two pieces, where one piece produces the torque and the other piece works against gravity. The
entire friction force Ff appears on both the torque and force equations that you would write down if
you wanted to solve things quantitatively. You might think that you are “double counting” the force
this way, but you aren’t.

7.9. c,d The friction force in choice (c) works against the mg sin θ gravitational force pulling
the ball down the plane, making the acceleration of the ball be smaller than the g sin θ
acceleration of the block. In choice (d), the energy contained in the rotational motion
of the ball implies (by conservation of energy and Eq. (7.8)) that there is less energy
contained in the translational motion, which means that vCM is smaller than it would be
if the ball were sliding down a frictionless plane (in which case it would have the same
g sin θ acceleration as the block). Choice (a) is incorrect, because the planes are inclined
at the same angle. The statement in choice (b) is true but isn’t relevant to the acceleration
of the objects.

7.10. e Your forearm is pivoted at your elbow, and since your forearm is at rest, the torques
on it relative to your elbow must cancel. The torques come from the 20-lb weight which
has your whole forearm as its lever arm, and from your biceps muscle which has a much
smaller lever arm since your biceps attaches to your forearm fairly close to your elbow.
As a rough guess, this lever arm might be 1/10 of your whole forearm. (There is also the
torque from the weight of your arm, but this is small in comparison.) Since the torques
must balance, the products of the forces and lever arms must be the same. This means that
the biceps force must be 10 times the 20-lb weight. That is, it must be 200 lbs. The next
largest choice, 40 lbs, would imply a lever arm that is half of your forearm, but it certainly
isn’t that large.

Remark: The lever arms of the muscles in our bodies are generally much smaller than the lengths of
the bones they attach to, which means (due to the torque reasoning above) that the internal forces in
our bodies are generally much larger than the external forces we apply or feel. For example, when
standing on your toes, the tension in your calf muscles is much larger than your weight. And when
standing up from a squat, the tension in your quad muscles is much larger than your weight.
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You might wonder why humans didn’t evolve in a way that gave us larger lever arms, so that we
could apply larger forces. If we did evolve that way, we wouldn’t have thin limbs, but instead would
be rather “blobby” (imagine your biceps muscle attaching to the middle of your forearm). But looks
aside, the reason for small lever arms is undoubtedly one of speed. With small lever arms, a slight
movement in a muscle causes a large movement in the end of the bone that the muscle is attached
to. So small lever arms mean that we can move our feet and hands quickly. (But they can’t be too
small, otherwise the required forces would be prohibitive.) This is good for running and throwing,
which in turn is good for eating (and avoiding being eaten).

7.11. c There is certainly a friction force from the ground. This force points forward and
is what accelerates the bike via F = ma. However, this force produces a torque in the
direction that corresponds to the wheel moving backward. So there must be another torque
on the rim, and the only other things that touch the rim are the spokes. So the spokes must
apply a (slightly larger) torque that corresponds to the wheel moving forward. This torque
wins, and the bike moves forward.

Remark: A radial force can’t apply a torque, because the lever arm around the center of the wheel
is zero. So if you look at the back wheel of a bicycle, you will see that the spokes aren’t radial; they
have a slight tangential component. This might not be obvious from looking at how they attach to
the rim, but it is clear when looking at how they attach to the hub. The non-radial connection to
the hub allows the hub (which is connected to the chain, pedals, and you) to apply a torque to the
spokes. In contrast, the front-wheel spokes can be radial, because that wheel just goes along for the
ride. The force that provides the necessary “forward” torque on the front wheel is a small backward
friction force from the ground.

7.12. c The torque from the string (relative to the pivot) is the same in all five cases, because it
must balance the gravitational torque on the stick (which is the same in all five cases), so
that the stick remains at rest. The torque from the string equals the product of the tension
and the lever arm. So the smallest tension is associated with the largest lever arm. The
lever arm of a force is defined to be the distance from the pivot to the line drawn through
the force (so we just need to extend the string in the present setup). The lever arm is largest
in choice (c), because it equals the length of the stick in this case, and there is no way for
it to be any larger than that. So the tension is smallest in (c).

7.13. d Gravity effectively acts at the CM, as far as the torque is concerned. So all of the
objects experience the same torque around the pivot. Therefore, τ = Iα tells us that
the object with the smallest I around the pivot will have the largest α. The parallel-axis
theorem says that Ipivot = ICM +md2. Since m and d are the same for all of the objects, we
want the object with the smallest ICM. This is choice (d) because ICM ≈ 0 for a (nearly)
point mass.

Remark: Assuming that the cross sticks in (b) and (e) have length d, and that the disk in (c) has
radius d/4, you can show as an exercise that the ordered list of the I’s, from smallest to largest, is
(d), (c), (b), (e), (a).

7.14. a Relative to the center of the massless stick where the point mass is, the moment of
inertia I of the stick (plus point mass) is zero. So τ = Iα (around the center) implies that
τ = 0. (A nonzero τ with a zero I would lead to an infinite α.) A zero torque then implies
that the force from the table is zero. (It then follows that the mass is in freefall; the stick
effectively doesn’t exist).

7.15. d In the τ = Iα equation, τnew is half of τold because the force is the same but the lever
arm (the radius) has been cut in half. How has I changed? The I of a cylinder is mR2/2.
And mnew = mold/4 because the cross-sectional area (and hence volume, and hence mass)
of the cylinder has been decreased by a factor of (Rnew/Rold)2 = 1/4, because the area is
proportional to R2. So mR2 has decreased by a factor of (1/4)(1/2)2 = 1/16. Therefore,

αnew =
τnew

Inew
=

τold/2
Iold/16

= 8
τold

Iold
= 8αold. (7.12)
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Remark: We can also answer this question by using dimensional analysis. What does α (with units
of 1/s2) depend on? The various parameters that describe the setup are the force F (units kg m/s2),
the radius R (units m), the mass density ρ (units kg/m3), and the length ℓ (units m) of the cylinder. As
mentioned in, for example, Problem 1.5, the four parameters here imply that we need an additional
fact. This fact is that α must be proportional to 1/ℓ, because making the cylinder twice as long will
double the moment of inertia, all other things being equal. You can then quickly show that the only
way to obtain the desired units of α is to have α ∝ F/ρℓR3. The R3 in the denominator yields the
factor of 23 = 8 in choice (d).

7.5 Problem solutions

7.1. Parallel-axis theorem

As suggested, let’s consider the special case where the object is planar and the axes are
perpendicular to this plane. In Fig. 7.27, P is the origin of the coordinate system, and the

P

d

r
r'

CM

dm

RCM

Figure 7.27

position of the CM of the object is RCM = (xCM, yCM). Let r′ = (x ′, y′) be the position of
a general point in the object relative to the CM. Then the position r = (x, y) of this point
relative to the origin is

r = r′ + RCM =⇒ (x, y) =
(
x ′ + xCM, y

′ + yCM
)
. (7.13)

The moment of inertia around the axis passing through P and perpendicular to the page is
then

IP =
∫

r2 dm =
∫

(x2 + y2) dm =
∫ [

(x ′ + xCM)2 + (y′ + yCM)2
]

dm

=

∫
(x ′2 + y′2) dm + 2xCM

∫
x ′ dm + 2yCM

∫
y′ dm + (x2

CM + y2
CM)

∫
dm

=

∫
r ′2 dm + 0 + 0 + R2

CM M

= ICM + Md2, (7.14)

as desired. The two zeros in the third line appear due to the definition of the CM. In short,
Eq. (6.8) tells us that

(∫
x ′ dm

)
/M is the x coordinate of the position of the CM, calculated

with respect to the CM (because x ′ is measured with respect to the CM), which is zero by
definition.

Remarks: The above derivation makes it clear why the parallel-axis theorem holds only if the CM
is used on the right-hand side of Eq. (7.5). If we had picked a general point instead of the CM, then
the two zeros in Eq. (7.14) wouldn’t appear. Instead we would have integrals associated with the
position of the CM relative to the point we had chosen, which would mean that at least one of the
two integrals would be nonzero.

In the more general case of a non-planar object, the proof is nearly the same. Let us again orient
our coordinate system so that the rotation axes are perpendicular to the page. Then Fig. 7.27 is still
relevant, with the only exception being that the CM might not lie in the plane of the page. But this
doesn’t matter. If we define RCM to be the cylindrical-coordinate position of the CM relative to
the axis through P, and if we likewise define r′ to be the position of a general point in the object
relative to the axis through the CM, then the position r of this point relative to the axis through P is
r = r′ + RCM. So all of the steps in the above proof are still valid; the z coordinates of the points
never come into play.

7.2. Perpendicular-axis theorem

In Fig. 7.3 the z axis points out of the page. The moment of inertia around the z axis is

Iz =
∫

r2 dm =
∫

(x2 + y2) dm =
∫

x2 dm +
∫

y2 dm. (7.15)
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Since x is the distance from the y axis (because the object lies in the x-y plane; this is
where the planar assumption comes in), the

∫
x2 dm integral is just Iy (not Ix !). Likewise,

the
∫
y2 dm integral is Ix . So we have Iz = Iy + Ix , as desired.

7.3. Rotational kinetic energy

If we divide the object into many little masses mi , the kinetic energy of each mass is
miv

2
i /2. But since the object is undergoing pure rotation, the speed of each mass is given

by vi = riω, where ri is the distance from the axis. The total kinetic energy of all the
masses (in other words, the kinetic energy of the entire object) is therefore

K =
∑ 1

2
miv

2
i =

∑ 1
2

mi (riω)2 =
1
2

(∑
mir2

i

)
ω2 =

1
2

Iω2, (7.16)

as desired. The critical part of this derivation is the fact that although the masses in general
have different speeds vi , they all have the same angular speed ω. This is why we could
take ω outside the above sum.

In the continuum limit, the sum
∑

mir2
i is replaced by

∫
r2 dm. Equivalently, you can just

use integrals throughout the above derivation, starting with K = (1/2)
∫
v2 dm.

7.4. Translation plus rotation

In Fig. 7.28 let the position of the CM of the object (we haven’t drawn the object) relativer
r'

CM

dm

RCM

Figure 7.28

to an arbitrary fixed origin be RCM, and let the position of a general point in the object
relative to the CM be r′. (The figure is planar since we’re drawing it on the page, but
this restriction isn’t necessary. This derivation holds for a general 3-D object.) Then the
position of a general point relative to the origin is r = RCM + r′. So the velocity of the
point is v = VCM + v′. The total kinetic energy of the object is therefore

K =
∫

1
2
v2 dm =

1
2

∫
v · v dm =

1
2

∫
(VCM + v′) · (VCM + v′) dm

=

∫
1
2

V 2
CM dm +

∫
VCM · v′ dm +

∫
1
2
v′2 dm, (7.17)

where we have used the fact that the square of the length of a vector a can be written as
a2 = a · a. Let’s look at each of the three terms in the above result. The first term equals

1
2

V 2
CM

∫
dm =

1
2

MV 2
CM, (7.18)

which is the first term in Eq. (7.8).

The second term equals VCM ·
∫

v′ dm. But
∫

v′ dm is the total momentum of the object
in the CM frame, which is zero. Equivalently,

∫
v′ dm = (d/dt)

∫
r′ dm = 0, because∫

r′ dm is the position of the CM of the object as measured with respect to the CM, which
is zero (and hence constant).

The third term equals∫
1
2

(r ′ω)2 dm =
1
2

(∫
r ′2 dm

)
ω2 =

1
2

ICMω
2, (7.19)

which is the second term in Eq. (7.8). We have used the fact that v′ = r ′ω, because if you
are riding along on the CM, you see the object simply rotating with angular velocity ω
around the CM.

The proof here was very similar to the proof in Problem 7.1. In both cases the cross term(s)
were zero due to the definition of the CM.
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7.5. Gravitational torque

We’ll divide the object into many little masses dm and then integrate the gravitational
torque over all the masses. The gravitational force on a mass dm is dF = dm g, where the
vector g points downward with magnitude g. The total gravitational torque on the object
is therefore

τ =

∫
dτ =

∫
r × dF =

∫
r × (dm g)

=

(∫
r dm

)
× g =

(
mRCM

) × g

= RCM × (mg), (7.20)

which is the gravitational torque on a point mass m located at the CM, as desired. The
fifth of the above equalities follows from the fact that the location of the CM is defined to
be RCM = (

∫
r dm)/m; see Eq. (6.8).

Remark: Although we just showed that an object can be treated like a point mass at the CM when
calculating the gravitational torque, it cannot be treated like a point mass when calculating the
moment of inertia I. The actual distribution of mass matters in I.

7.6. The τ = Iα relation

For the setup given in the problem, the small amount of work done on the object by the
applied force over the small tangential displacement ds is dW = F ds cos θ. But ds = r dϕ,
where ϕ is the angle of rotation. So the work done is

dW = F (r dϕ) cos θ = (F cos θ)(r) dϕ

= (tangential force)(radius) dϕ

= τ dϕ. (7.21)

Basically, work is force times distance, but if we take a factor of length out of the distance
and put it with the force, then we see that work also equals torque times angle.

The change in the kinetic energy of the object is

dK = d
(

1
2

Iω2
)
= Iω dω. (7.22)

Equating this with the work done gives

dW = dK =⇒ τ dϕ = Iω dω =⇒ τ��dϕ = I�
�dϕ
dt

dω

=⇒ τ = I
dω
dt
=⇒ τ = Iα, (7.23)

as desired. It was indeed legal to cancel the dϕ’s here and put the dω over the dt. If you
want, you can imagine working with finite quantities, ∆ϕ, ∆ω, ∆t, for which these manip-
ulations are certainly legal, and then taking the infinitesimal limits of these quantities. See
Section 8.4 in Morin (2008) for another proof of τ = Iα.

7.7. Force along a massless stick

Consider the torque on the stick around one of its ends; call this end A. If the stick is
massless, then the torque on it (around any point) must be zero, because otherwise there
would be infinite angular acceleration. The only forces on the massless stick are the forces
at the two pivots, because there is no gravitational force. The pivot at end A produces zero
torque around A. The pivot at the other end B must therefore also produce zero torque
around A. This implies that the force at B must point radially long the stick, as we wanted
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to show. The same reasoning works with A and B interchanged. Note that this reasoning
holds whether the system is static or moving.

Remarks: If the stick is instead massive, then there is now (1) in general a gravitational torque
and (2) a nonzero moment of inertia, which means that the total torque need not be zero. Each of
these facts allows for there to be a nonzero torque due to the force at end B. So the force doesn’t
necessarily point along the stick.

Note that the above conclusion for a massless stick relies on the stick being connected to the objects
at its ends by pivots. If we instead have a pivot at one end and a rigid clamp at the other, then the
conclusion doesn’t hold. The force at the ends can have a component that is transverse to the stick.
You can see this by imagining trying to twist the left object in Fig. 7.29. There will be an upward

pivot
clamp

twist

Figure 7.29

transverse force on the right object at the pivot, and also a downward transverse force on the left
object at the clamp.

In addition to massless sticks, a completely flexible stationary string (massive or massless) is another
type of object for which the force at an end is always directed along the object. There can be no
transverse force at an end, because if there is, the string will simply bend until the force does point
along it. You can demonstrate this by painting a dot on the string near the end and looking at the
torque on the little piece between the dot and the end, relative to the dot. However, there is actually
no need for this reasoning, because the definition of a “completely flexible” string is one that can’t
apply a transverse force anywhere.

7.8. Non-slipping condition

(a) In Fig. 7.30 consider a point A on the rim of the wheel that is an angle θ from the
θ

R
Rθ

A

B

C d

Figure 7.30

present contact point C on the ground. Point A will eventually hit the ground at the
point B shown. The distance along the rim of the wheel from C to A is Rθ (that’s
how an angle θ measured in radians is defined). And the distance along the ground
from C to B is the distance d the wheel travels. But the non-slipping condition is the
statement that the rim distance from C to A equals the ground distance from C to B.
Hence Rθ = d, as desired. Taking the first time derivative of d = Rθ gives v = Rω,
and then taking another derivative gives a = Rα.1

Remark: If you want to be more rigorous about the statement that “the rim distance from C to
A equals the ground distance from C to B,” you can imagine the wheel spinning in place, with
the ground moving by to the left. If there is no slipping, then in a short interval of time, the
ground must move to the left by exactly the same distance that the bottom points on the rim
(in the region near the contact point) move to the left. This is true because locally we simply
have two flat surfaces, and the non-slipping condition implies that the two surfaces must move
the same distance. When all the little distances are added up, the end result is that the rim
distance from C to A equals the ground distance from C to B.

(b) Perhaps the easiest way to show this is to imagine (as in the above remark) the wheel
spinning in place. In this reference frame, the ground moves to the left and the
board moves to the right. Since there is no slipping, they both move a distance Rθ
if the wheel rotates by an angle θ. If we now shift back to the reference frame of
the ground, the wheel moves to the right by Rθ, and the board (which moves to the
right by Rθ more than the wheel) moves to the right by Rθ + Rθ = 2Rθ. So the
board does indeed move twice as far as the wheel. The various relations between the
linear quantities of the board and the angular quantities of the wheel are db = 2Rθ,
vb = 2Rω, and ab = 2Rα.

Remark: Another way of understanding this result is to note that at a given instant, the wheel
can be considered to be rotating around the contact point on the ground, because this point is
instantaneously at rest. In particular, both the top point on the wheel and the center instan-
taneously move along arcs of circles around the contact point. Therefore, since the top point

1The a = Rα relation is actually only a necessary, but not sufficient, condition for not slipping. This can be seen by
noting that v = Rω +C yields a = Rα but involves slipping. However, this technicality won’t concern us, because the
true statement, “If there is no slipping, then a must equal Rα,” is the one we will make use of.
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on the wheel is twice as far from the contact point as the center is, the top point (and hence
also the board, since there is no slipping) moves twice as far as the center, for a given angle of
rotation.

7.9. I for a square

In the first equation, we have A = 4, because the big square can be constructed by putting
four of the little squares together (with their dots at a common point). And moments of
inertia simply add.

To find B, we’ll use a scaling argument. Consider a small piece of the little square, and
look at the corresponding piece of the big square. The latter piece has four times the mass
(because it has 22 = 4 times the area), and it is twice as far from the center. The expression
for the moment of inertia, I =

∫
r2 dm, therefore picks up a factor of 22 · 4 = 16 when

comparing I2L to IL . So B = 16.

To find C, we can use the parallel-axis theorem. The axes (the dots) are L/
√

2 away from
each other, so C = M (L/

√
2)2 = ML2/2.

We now have three equations and three unknowns (represented by the figures). The first
two equations give IL,corner = 4IL,center. Plugging this into the third equation then yields

IL,center =
ML2

6
. (7.24)

Remarks: You should convince yourself why the perpendicular-axis theorem says that this result is
correctly twice the ML2/12 result for a uniform stick around its center.

Note that at least one of the three given equations (the third one) needs to have an additive constant
in it. If all of the equations involved only multiplicative factors (like the first two), then we would
be able to determine the unknowns only up to an overall scaling factor.

7.10. Another I for a square

(a) As suggested, we’ll slice the square into thin strips, as shown in Fig. 7.31(a). Let the
L

L

(a)

(b)

Figure 7.31

mass of each strip be dm. The moment of inertia of each strip around its center is
(dm)L2/12, so the moment of inertia of the whole square is

I =
∫

1
12

(dm)L2 =
L2

12

∫
dm =

1
12

ML2. (7.25)

The square has the same factor of 1/12 in I that a strip has, because the extension of
the square in the vertical direction is irrelevant. I depends only on the distance from
the axis of rotation, not on the position along it.

(b) Let’s now slice the square into the strips shown in Fig. 7.31(b). Let y be the height
above the bottom corner. We’ll find the moment of inertia of just the bottom half,
and then we’ll double the result. In terms of y, the length of a strip in the bottom half
is 2y, so the area of the strip is (2y) dy. The mass is then dm = (2y dy)σ, where
σ = M/L2 is the mass density (per unit area). The moment of inertia of a strip is
therefore

dI =
1
12

(dm)(2y)2 =
1
12

(2yσ dy)(2y)2 =
2
3
σy3 dy. (7.26)

Integrating this from y = 0 to y = L/
√

2 to find the moment of inertia of the bottom
half of the square gives

Ihalf =

∫ L/
√

2

0

2
3
σy3 dy =

σ

6
y4

�����
L/
√

2

0
=
σL4

24
=

(M/L2)L4

24
=

ML2

24
. (7.27)

Doubling this to get the I for the whole square gives I = ML2/12.
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(c) The answers to parts (a) and (b) are the same, and the following reasoning involving
the perpendicular-axis theorem explains why they must be equal. In Fig. 7.32(a),
the I’s for the two axes shown are equal, by symmetry. Since the sum of these I’s
equals the I for the axis pointing perpendicular to the page (by the perpendicular-
axis theorem), these two I’s must each be half of that I. The same reasoning holds
for the case shown in Fig. 7.32(b). Therefore, the results in parts (a) and (b) must
both be equal to half of the I for the axis pointing perpendicular to the page (which
apparently equals ML2/6, in agreement with the result in Problem 7.9).

(a) (b) (c)

Figure 7.32

Remark: Note that the above perpendicular-axis-theorem reasoning, applied to the axes shown
in Fig. 7.32(c), tells us that any axis through the center of the square (and lying in the plane of
the square) has an I equal to ML2/12.

7.11. I for a disk

A little patch of the disk spanning dr in the radial direction and dθ in the tangential direc-
tion is essentially a little rectangle with sides dr and r dθ. So the area is dr (r dθ), which
means that the mass is dm = σr dr dθ, where σ = m/(πR2) is the mass density (per unit
area). The moment of inertia of the whole disk is therefore

I =
∫

r2 dm =
∫ 2π

0

∫ R

0
r2σr dr dθ =

(
σ

∫ 2π

0
dθ

) (∫ R

0
r3 dr

)
= 2πσ

R4

4
=

(σπR2)R2

2
=

mR2

2
. (7.28)

Remark: You can save the (trivial) step of integrating over θ by considering the disk to be made
up of many concentric rings. Every point in a ring is the same distance from the center, so the
moment of inertia of a ring with mass dm equals (dm)r2. The mass of a thin ring with thickness
dr is dm = σ(2πr dr), so the moment of inertia is σ(2πr dr)r2. Integrating over all the rings gives
I =

∫ R

0 σ(2πr dr)r2 = σπR4/2 = mR2/2, as above. Although slicing up the disk into rings doesn’t
save much (if any) time in this setup, it is often helpful to slice up an object into sub-pieces whose I
is already known.

7.12. I for a spherical shell

Let’s slice the shell into horizontal ring-like strips, as shown in Fig. 7.33. In terms of
R sinθ

R dθ

R cosθ

θ dθ

Figure 7.33

the angle θ shown, a strip has radius r = R cos θ and width R dθ, as indicated. The
area is therefore 2π(R cos θ)R dθ, so the mass of the strip is (2πR2 cos θ dθ)σ, where
σ = m/(4πR2) is the mass density (per unit area). Using∫

cos3 θ =

∫
cos θ(1 − sin2 θ) = sin θ − sin3 θ

3
(7.29)

(or you can just look up the integral in a table or plug it into a computer), and integrating
over the rings from −π/2 to π/2, we find the moment of inertia of the shell to be

I =
∫

r2 dm =
∫ π

0
(R cos θ)2(2πσR2 cos θ dθ) = 2πσR4

∫ π/2

−π/2
cos3 θ dθ

= 2πσR4 · 4
3
=

2
3

(4πR2σ)R2 =
2
3

mR2. (7.30)



7.5. PROBLEM SOLUTIONS 199

As an exercise, you can calculate the I for a solid sphere by building up the solid sphere
from spherical shells and integrating over the shells. Alternatively, you can build up the
solid sphere from flat disks. In ether case, the result is I = (2/5)mR2. This is smaller than
the (2/3)mR2 result for the hollow shell, because the mass in the solid sphere is generally
closer to the axis.

Remark: Note that in the above calculation, we (correctly) used the “slant height” R dθ as the width
of a strip. You might instead be tempted to use the vertical height dy of the strip as the width. After
all, if you performed the suggested exercise of finding the I for a solid sphere by integrating over
flat disks, then you would use the height dy as the thickness of a disk. So why did we use the slant
height R dθ for the width of a strip in the case of the hollow shell? Imagine that you are a tiny bug
on the strip. Then locally it looks like a flat strip with width R dθ. This is how far you would need
to walk to get from one edge of the strip to the other.

As an analogy, consider the curve shown in Fig. 7.34. If we want to find the length of the curve, then

slant 

distance

dx

Figure 7.34

we need to add up all the slanted lengths along the curve. (Simply adding up all the dx components
of the lengths would always just give the same total horizontal span of the curve, so it can’t be
correct.) On the other hand, if we want to find the area under the curve, then we need to add up the
areas of many infinitesimally thin rectangles. And to calculate these areas, we do want to use the
simple horizontal span dx (and not the slanted length) as the width of the rectangle.

In short, the slant of the curve leads to two effects. First, the area under a section of the curve isn’t
exactly equal to the area of the thin rectangle, due to the existence of the tiny triangle on top of the
rectangle. However, the area of this triangle is negligible compared with the area of the rectangle (in
the limit where dx becomes small). Second, the slanted length of a section of the curve isn’t equal
to the horizontal span dx of the section. This difference is important. If, for example, a piece of the
curve is slanted at, say, a 45◦ angle, then the piece is

√
2 times as long as the horizontal span dx.

This factor cannot be ignored. Similar reasoning applies in the above case of the hollow and solid
spheres, when dealing with the area of a strip and the volume of a disk; things are just kicked up
by one dimension compared with the present example involving the length and area of the curve in
Fig. 7.34.

7.13. Bending

As suggested, consider a given small section of the taller beam, along with the correspond-
ing section of the shorter beam; see Fig. 7.35. The taller section is twice as tall, so it has

Figure 7.35

twice as many springs applying a force. Additionally, each spring in the taller section is
stretched (or compressed) twice as far as the corresponding spring in the shorter section,
because it is twice as far from the pivot.2 Furthermore, the springs in the taller section are
twice as far from the pivot, so each spring provides twice as much torque relative to the
pivot, for a given amount of stretching.

Therefore, the corresponding section of the taller beam has twice as many springs, each of
which provides twice as much force with twice the lever arm. The corresponding section
of the taller beam therefore provides 23 = 8 times as much torque as the section of the
shorter beam. Since this result holds for all corresponding sections, and since the beams
are built up from all of the subsections, the same factor of 8 holds for the complete beams.

We conclude that for a given angle of bending, the external torque on the taller beam (due
to, for example, upward forces on the ends) needs to be eight times as large as the external
torque on the shorter beam. Equivalently, for a given external torque, the bending angle
in the taller beam is 1/8 the bending angle in the shorter beam. This is true because with
1/8 the angle, each spring is stretched 1/8 of what it was in the above case (the stretching
distance is proportional to the bending angle). So in the present case with 1/8 the angle,
the corresponding section of the taller beam has (still) twice as many springs, each of
which now provides (1/8) · 2 = 1/4 as much force with (still) twice the lever arm. So the
torque from the taller section is 2 · (1/4) · 2 = 1 times the torque from the corresponding

2Since we are assuming that the bending angle is the same in the two beams, you can draw some similar triangles to
demonstrate the factor of 2 in the stretching. Each spring itself in the taller beam isn’t twice as long as the corresponding
spring in the shorter beam, but the stretching distance is.
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shorter section. These identical torques from the springs will therefore be balanced by
identical external torques.

Remark: With regard to the amount of sagging in a real beam, you should convince yourself that 1/8
the bending angle implies 1/8 the sag in the middle, at least for small bending angles. This requires
a little thought, because a real beam is slightly bent along its entire length, not just in the middle as
we assumed in our model. But we can imagine any location along the beam to consist of our little
springs and pivot. So the 1/8 factor is relevant at all corresponding locations along the two beams.

7.14. Initial angular acceleration

We’ll apply τ = Iα around the center of the disk. The torque relative to the center of the
disk is due only to the stick, so the initial torque is τ = (mg)R = (λℓ)gR. The center
of the stick is a distance

√
(ℓ/2)2 + R2 from the center of the disk, so the parallel-axis

theorem gives the total moment of inertia of the system around the center of the disk as

I = Idisk + Istick

=
1
2

mR2 +

 1
12

(λℓ)ℓ2 + (λℓ) *,
(
ℓ

2

)2

+ R2+-


=
1
2

mR2 +
1
3
λℓ3 + λℓR2.

(7.31)

The initial angular acceleration is then found from τ = Iα to be

α =
τ

I
=

λℓgR
mR2/2 + λℓ3/3 + λℓR2 . (7.32)

This equals zero if ℓ = 0 (there is no stick), and it also equals zero if ℓ → ∞ (the huge
I of the stick dominates). So it must reach a maximum for some intermediate value of ℓ.
Taking the derivative with respect to ℓ and setting the result equal to zero (and ignoring
the overall factor of λgR, and also ignoring the denominator of the result because we are
setting the derivative equal to zero) gives

0 =
(

1
2

mR2 +
1
3
λℓ3 + λℓR2

)
(1) − ℓ(λℓ2 + λR2)

=
1
2

mR2 − 2
3
λℓ3 =⇒ ℓ =

(
3mR2

4λ

)1/3

. (7.33)

Since the units of λ are kg/m, this result correctly has units of meters.

Limits: You can verify that both the α in Eq. (7.32) and the ℓ in Eq. (7.33) have the correct behavior
when the various parameters become very large or very small. For example, if R → ∞ then α → 0,
because the moments of inertia of both the disk and the stick are so large. And if R → 0 then we
again have α → 0, because the lever arm of the stick’s torque is so small.

7.15. Atwood’s with a massive pulley

The main point here is that the tension in the string is different on either side of the pulley.
Different tensions are required if there is to be a nonzero net torque on the pulley, which
there must be because the (massive) pulley accelerates angularly as the masses accelerate
linearly.3 Let the two tensions be T1 and T2, as shown in Fig. 7.36. (The tension varies

m

m

2m

a a

T1 T2

α

Figure 7.36

continuously as the string wraps around the pulley, but we care only about the tensions
where the string leaves the pulley. These are the external forces causing the torques.)
With the sign conventions shown, the various force and torque equations are (using the
non-slipping condition, α = a/R)

3The pulleys in the Atwood’s problems in Chapter 4 were massless. Or more precisely, they had zero moment of
inertia. This implied that the tensions were the same on either side (otherwise there would be infinite angular accelera-
tion).
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• F = ma on m: T1 − mg = ma.

• F = ma on 2m: (2m)g − T2 = (2m)a.

• τ = Iα on pulley: T2R − T1R = (mR2/2)(a/R) =⇒ T2 − T1 = ma/2.

Our unknowns are T1, T2, and a. Solving for T1 and T2 in the first two equations and
plugging the results into the third equation gives

(2mg − 2ma) − (mg + ma) =
1
2

ma =⇒ mg =
7
2

ma =⇒ a =
2g
7
. (7.34)

This is the acceleration of both masses; m goes up and 2m goes down.

Remark: If the pulley were massless, then a would be larger, of course. The only modification is
that we would need to erase the ma/2 term in Eq. (7.34), because that term can be traced to the
moment of inertia. So we would end up with a = g/3. This acceleration makes sense, because a net
force of 2mg − mg pulls down on the right side, and this force accelerates the total mass of m + 2m.

7.16. Equivalent mass

As in Problem 7.15, the tension in the string is different on either side of the pulley in the
first setup. Let the tensions be T1 and T2, as shown in Fig. 7.37. Using the non-slipping m

a a

T1 T2

α

m1 m2

Figure 7.37

condition, α = a/R, the τ = Iα equation for the pulley is

T2R − T1R = (βmR2)α =⇒ T2R − T1R = (βmR2)(a/R)
=⇒ T2 − T1 = (βm)a. (7.35)

Now consider the second of the given setups. If the accelerations of the masses m1 and
m2 are to be the same as they are in the first setup, then we must have the same tensions
T1 and T2 as in the first setup, because the gravitational forces are the same in both setups.
The F = ma equation for the block with mass m′ is then

T2 − T1 = m′a. (7.36)

Comparing this with Eq. (7.35), we see that m′ = βm. Equivalently, since I = βmR2, we
have m′ = I/R2.

Limits: If β = 0 (that is, if all of the pulley’s mass is at its center), then the equivalent mass m′ equals
zero. This makes sense, because the pulley is effectively massless (more precisely, it is moment-of-
inertia-less), so it provides no resistance to the acceleration of the hanging masses.

If β = 1 (that is, if all of the pulley’s mass is on its rim), then m′ = m. This makes sense, because
we can equivalently collapse all of the mass to one point on the rim, in which case the T2 − T1 net
tension needs to accelerate a single mass, just as it does in the second setup.

If β = 1/2 (that is, if we have a uniform pulley), then m′ = m/2. If we let m1 = m and m2 = 2m
as in Problem 7.15, then in the second setup with the m′ mass, we have a total mass of mtot =

m + 2m + m/2 = 7m/2. A net gravitation force of Fnet = 2mg − mg = mg pulls down on the right
side, so the acceleration of the system is a = Fnet/mtot = mg/(7m/2) = 2g/7, in agreement with the
result in Eq. (7.34).

7.17. Braking on a bike

(a) Let the normal forces on the back and front wheels be N1 and N2, respectively. Then
if both wheels are skidding, the friction forces on them are µN1 and µN2. If the bike
is moving to the right, the various forces on it are shown in the free-body diagram
in Fig. 7.38(a). The total friction force is µ(N1 + N2) leftward. But N1 + N2 = mg

because the net force in the vertical direction must be zero (since we’re assuming
that both wheels stay on the ground). So the friction force has magnitude Ff = µmg.
From F = ma, the deceleration of the bike is therefore

a =
Ff

m
=
µmg

m
= µg. (7.37)
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Remark: We didn’t need to determine the individual normal forces N1 and N2 to solve this
problem. But if you want to figure out what they are, you can consider the total torque around
the CM. Since there is no rotation around the CM (because both wheels stay on the ground),
the total torque around the CM must be zero. The mg force produces zero torque around
the CM. Of the other four forces in Fig. 7.38(a), three produce clockwise torques, and one

N1 N2

CM

L

L L

µN1 µN2

(a)

mg

N1 N2

µN1

(b)

mg

N1 N2

µN2

(c)

mg

(bike is moving rightward)

frontback

Figure 7.38

produces a counterclockwise torque. Balancing these torques gives

N1L + µN1L + µN2L = N2L =⇒ N1(1 + µ) = N2(1 − µ). (7.38)

We also know that N1 + N2 = mg. So we have a system of two equations and two unknowns.
Solving for N1 and N2 gives

N1 =
1 − µ

2
mg and N2 =

1 + µ
2

mg. (7.39)

But again, we didn’t need to know these values to answer the given question.

(b) If only the back wheel is skidding and the front wheel is rotating freely, the free-
body diagram is shown in Fig. 7.38(b). There is no friction force on the front wheel
(assuming it is massless; see the last remark below), so the total friction force is just
µN1. We therefore do need to determine N1 in this case. Demanding that the total
torque around the CM is zero gives

N1L + µN1L = N2L =⇒ N1(1 + µ) = N2. (7.40)

Combining this with N1 + N2 = mg gives N1 = mg/(2 + µ). The deceleration is
therefore

a =
Ff

m
=
µN1

m
=

µg

2 + µ
. (7.41)

(c) If only the front wheel is skidding and the back wheel is rotating freely, the free-body
diagram is shown in Fig. 7.38(c). There is no friction force on the back wheel, so the
total friction force is µN2. Demanding that the total torque around the CM is zero
gives

N1L + µN2L = N2L =⇒ N1 = N2(1 − µ). (7.42)

Combining this with N1 + N2 = mg gives N2 = mg/(2 − µ). The deceleration is
therefore

a =
Ff

m
=
µN2

m
=

µg

2 − µ . (7.43)

Limits: In parts (a) and (c), we must have µ ≤ 1, otherwise the N1’s in Eqs. (7.39) and (7.42)
would need to be negative (which they can’t be) if the back wheel is to remain in contact with
the ground. In the limiting case where µ = 1, the deceleration in Eq. (7.43) in part (c) is g,
which is the same as in Eq. (7.37) in part (a) when µ = 1. This equality is due to the fact
that if µ = 1 then N1 = 0 in parts (a) and (c), which means that the back wheel is just barely
touching the ground, so it doesn’t matter if the back brake is applied in addition to the front
brake.
In part (b), nothing special happens when µ = 1; the normal forces are N1 = mg/3 and
N2 = 2mg/3, and the deceleration in Eq. (7.41) is g/3. There is no upper bound on µ as there
is in parts (a) and (c); the back wheel will always stay on the ground in part (b). In the µ→ ∞
limit, Eq. (7.41) gives a ≈ g, which isn’t so obvious.
If 0 < µ < 1, the deceleration in part (a) is larger than in (c), which is larger than in (b). If
µ = 0, the deceleration in all three cases is zero, of course.

Remarks: In all three scenarios, the normal force N2 on the front wheel is larger than the
normal force N1 on the back wheel (or equal if µ = 0). This is due to the fact that the torques
from the friction forces always get added to the torque from N1, and the sum of these must
be canceled by the torque from N2. It makes intuitive sense that the bike should want to tip
forward, necessitating a larger normal force on the front wheel.
Note that the bottom point on a skidding wheel isn’t a legal point to use as the origin for
calculating torques, because this point is accelerating (see the discussion on page 180). This
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is why we chose the CM as our origin. Technically we could have chosen a fixed point on the
ground, but that would make things more complicated because the rate of change of the bike’s
angular momentum around such a point is not zero, due to the deceleration of the CM. After
covering angular momentum in Chapter 8, you are encouraged to work things out by using
such an origin. The easiest point on the ground to pick as the origin is the point directly below
the instantaneous location of the CM.
The reasoning in this problem applies to cars too, of course. But for cars, the height of the
CM is less than half the distance between the wheels. And the CM is also closer to the front,
due to the (heavy) engine in the front. The parameters are therefore modified, but the general
reasoning is the same.
If you want to make as long a skid mark as possible on a bike, which brake should you use, and
how should you shift your weight? The answer is that you should shift your weight forward as
much as possible and use only the back brake. (In theory, shifting your weight backward and
using only the front brake will also work, but then you can’t reach the brake with your hand!)
If you lean forward enough, you can make the normal force on the back wheel be very small,
which means that the friction force will be small. So your acceleration a will be small, and
you will skid a large distance (although the skid mark will be very light).
Here’s a picky point: Since the wheels of a bike have nonzero mass, the above results in
parts (b) and (c) aren’t quite correct. The non-skidding wheel rolls without slipping on the
ground, so it has a nonzero angular deceleration as the bike decelerates. There must therefore
be a torque on it, and the only force that can cause this torque is the (static) friction force
from the ground. You can quickly show that this friction force must point forward. This
partially cancels the (larger) backward friction force on the skidding wheel (which itself will
be slightly modified), making the deceleration be slightly smaller than what we calculated
above. Basically, a rolling massive wheel wants to keep rolling. But in the limit of massless
wheels, the above results are correct.

7.18. Pulley below a stick

We have three unknowns: the acceleration a of the mass, the angular acceleration α of the
stick, and the tension T in the long string. (The tension in the string hanging down to the
mass m is 2T , because the net force on the massless pulley must be zero.) Let us define
positive a to be downward and positive α to be clockwise. We need three equations to
solve for our three unknowns.

• The first equation is the τ = Iα equation for the stick, relative to the pivot. We
will need the moment of inertia of the stick around the pivot. The parallel-axis the-
orem gives the I of a stick around a point ℓ/4 from the CM as mℓ2/12 + m(ℓ/4)2 =

7mℓ2/48. The torque on the stick comes from the tensions acting at the ends and
from gravity effectively acting at the CM. So the τ = Iα equation for the stick is

T · 3ℓ
4
− T · ℓ

4
+ mg · ℓ

4
=

(
7mℓ2

48

)
α =⇒ T =

7mℓα
24

− mg

2
. (7.44)

• The F = ma equation for the mass m is

mg − 2T = ma. (7.45)

• Our third equation is the conservation-of-string relation. We claim that this takes the
form of a = ℓα/4. The reasoning is as follows. Imagine temporarily holding the
pulley in place and rotating the stick through a small clockwise angle θ. Then the
right end of the stick goes down by (3ℓ/4)θ, and the left end goes up by (ℓ/4)θ. This
means that an effective length of (3ℓ/4)θ − (ℓ/4)θ = ℓθ/2 string disappears from
above the pulley. This length has to go somewhere, so it ends up below the pulley.
It gets divided evenly on either side of the pulley, so if we now allow the pulley to
move, the pulley (and hence also the mass m) goes down by a distance d = (ℓθ/2)/2.
Taking two time derivatives of this relation yields a = ℓα/4, as claimed.
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Plugging ℓα = 4a into Eq. (7.44) gives T = 7ma/6 − mg/2. Substituting this T into
Eq. (7.45) then gives

mg −
(

7ma
3
− mg

)
= ma =⇒ a =

3g
5
. (7.46)

7.19. Falling stick 1

First solution: Let’s apply τ = Iα around the pivot (the left end). The torque is due to
gravity acting at the CM. Since I = mℓ2/3 for a stick around an end, we have

τ = Iα =⇒ mg

(
ℓ

2

)
=

(
mℓ2

3

)
α =⇒ α =

3g
2ℓ

. (7.47)

The right end moves along the arc of a circle of radius ℓ centered at the left end, so the
acceleration of the right end is aend = ℓα = 3g/2.

Remark: It might seem odd that the acceleration is larger than g. But it is certainly possible for
the acceleration of a point in a falling extended object to exceed g. For example, in the limit where
all of the mass is concentrated at the center of a pivoted horizontal stick, the center simply freefalls
(briefly) with acceleration g, which means that the far end accelerates downward at 2g. Since the
acceleration of the end of our original uniform stick exceeds g, there must be a tangential force
acting within the stick. If we paint a dot on the stick near the right end, then the part of the stick
to the left of the dot must apply a downward force on the part of the stick to the right of the dot.
Otherwise the downward acceleration of the right part would be at most g.

Second solution: Let’s now apply τ = Iα around the center of the stick. Right after the
stick is released, there is an upward force Fp from the pivot. This force must exist, because
we know that the stick angularly accelerates, and Fp is the only force that can produce a
torque around the center (because gravity effectively acts at the center). Since I = mℓ2/12
for a stick around its center, we have

τ = Iα =⇒ Fp

(
ℓ

2

)
=

(
mℓ2

12

)
α =⇒ Fp =

mℓα
6

. (7.48)

We have two unknowns here (F and α), so we need another equation. This is the vertical
F = ma equation. With downward taken to be positive, we have

F = ma =⇒ mg − Fp = maCM. (7.49)

However, with the introduction of aCM we now have three unknowns, so we still need
another equation. This is the equation that relates aCM and α. Since the CM moves along
the arc of a circle of radius ℓ/2 centered at the left end, we have

aCM =
ℓ

2
α =⇒ α =

2aCM

ℓ
. (7.50)

Plugging this expression for α into Eq. (7.48) gives Fp = maCM/3. And then plugging
this expression for Fp into Eq. (7.49) gives mg = (4/3)maCM =⇒ aCM = 3g/4. Hence
aend = 2aCM = 3g/2, in agreement with the first solution. And we also find that Fp equals
mg/4.

Remark: The first solution was simpler because choosing our origin to be the left end meant that we
never needed to deal with the Fp force from the pivot. So there was never any need for the vertical
F = ma equation. The single τ = Iα equation sufficed.
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7.20. Falling stick 2

During the first quarter turn, the CM of the stick falls a distance ℓ/2. The loss in potential
energy shows up as kinetic energy of the stick’s rotation around the pivot. So conservation
of energy gives the resulting angular velocity as (using I = mℓ2/3)

mg
ℓ

2
=

1
2

(
mℓ2

3

)
ω2 =⇒ ω =

√
3g
ℓ
. (7.51)

The CM moves along a circle with radius ℓ/2, so its speed is v = ω(ℓ/2) =
√

3gℓ/2.

The horizontal component Fx of the force from the pivot accounts for the centripetal ac-
celeration of the CM as it moves in its circle of radius ℓ/2. Therefore,

Fx =
mv2

r
=

m(3gℓ/4)
ℓ/2

=
3mg

2
. (7.52)

This force points in the direction from the CM to the pivot.

The find the vertical component Fy of the force from the pivot, we can use a combination
of two torque equations – around the pivot and around the center; these will involve two
different I’s. In the former case, only gravity provides a torque; and in the latter case, only
Fy provides a torque. τ = Iα around the pivot gives

mg
ℓ

2
=

(
mℓ2

3

)
α, (7.53)

because gravity effectively acts at the CM. And τ = Iα around the CM gives

Fy
ℓ

2
=

(
mℓ2

12

)
α. (7.54)

Dividing the second of these equations by the first yields

Fy

mg
=

1
4
=⇒ Fy =

mg

4
. (7.55)

The direction of this force is upward. It has 1/6 the magnitude of Fx .

Remark: Another way to find Fy is the following. Equation (7.53) gives α = 3g/2ℓ, so the accel-
eration of the CM is ay = α(ℓ/2) = 3g/4. The vertical Fy = may equation for the stick (with
downward taken to be positive) is then

mg − Fy = m
(

3g
4

)
=⇒ Fy =

mg

4
. (7.56)

Note that these ay = 3g/4 and Fy = mg/4 values are the same as the ones we found in the second
solution to Problem 7.19. The reason for this is that in both cases the sticks are horizontal, and ay
and Fy aren’t affected by whatever downward speed the stick may have (whereas Fx is).

7.21. Sticks on a table

(a) We’ll apply τ = Iα around the pivot, so that we won’t have to worry about the messy
force acting at with pivot (which has both vertical and horizontal components). The
moment of inertia of a stick around an end is mℓ2/3. And the torque in Fig. 7.39(a)
comes from gravity with a lever arm of (ℓ/2) cos θ, so τ = Iα gives

mg
ℓ

2
cos θ =

(
mℓ2

3

)
α =⇒ α =

3g cos θ
2ℓ

. (7.57)

If θ = 90◦ then α = 0, which is correct. If θ = 0 then α = 3g/2ℓ, in agreement with
Eq. (7.47) in the solution to Problem 7.19.



206 CHAPTER 7. TORQUE

(a)

θ

l

mg

(b)

θ

l

N
mg ay

α α

Figure 7.39

(b) We now can’t apply τ = Iα around the bottom end of the stick, because it is accel-
erating. So let’s use the center of the stick as our origin. (The CM is a legal point
to use as the origin for τ = Iα, even if it is accelerating.) The moment of inertia of
a stick around its center is mℓ2/12. And the torque in Fig. 7.39(b) comes only from
the normal force from the table (because there is no friction force). So τ = Iα gives

N
ℓ

2
cos θ =

(
mℓ2

12

)
α =⇒ N =

mℓα
6 cos θ

. (7.58)

We have one equation and two unknowns (N and α), so need another equation. This
is the vertical F = ma equation. The CM of the stick moves vertically because there
is no friction. So if ay is the acceleration of the CM, then the vertical F = ma
equation for the stick (with downward taken to be positive) is

mg − N = may . (7.59)

However, we have introduced a new unknown, ay , so we now have two equations
and three unknowns. We therefore still need one more equation. This is the relation
between α and ay , which can be found as follows.
If the stick were pivoted at the bottom end, and if it rotated through a small angle dθ,
then the CM would travel in a tiny arc with length (ℓ/2) dθ. The vertical component
of this displacement would be dy = (ℓ/2) dθ · cos θ (with downward positive). The
actual motion with the stick not pivoted is a combination of the preceding motion
plus a shift to the left, to keep the CM moving in a vertical line. But this leftward
shift doesn’t affect the vertical displacement, so the CM still falls a distance dy =
(ℓ/2) dθ · cos θ. Dividing both sides of this relation by dt gives vy = (ℓ/2)ω cos θ.
Taking the time derivative and using the fact that θ̇ = 0 at the start (so that we
don’t need to worry about the derivative of the cos θ term) gives the desired relation
between α and ay ,

ay =
ℓ

2
α cos θ. (7.60)

Plugging this ay into Eq. (7.59), and also using the N from Eq. (7.58), we obtain

mg − mℓα
6 cos θ

=
mℓα

2
cos θ =⇒ α =

g

ℓ
· 1

cos θ
2
+

1
6 cos θ

. (7.61)

For comparison with the result in part (a), we can rewrite this as

α =

3g cos θ
2ℓ

1
4
+

3
4

cos2 θ

. (7.62)

Remark: The denominator of this result is always less than or equal to 1, so this α is always
greater than or equal to the α in part (a). For θ → 0 (horizontal sticks) both α’s are equal to
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3g/2ℓ; the bottom end of the stick in part (b) hardly wants to move, so it’s essentially the same
system as in part (a). For θ → 90◦ (vertical sticks) both α’s approach zero, but the α in part
(b) is four times the α in part (a). It is believable that the α in part (b) is larger, because if we
have a nonuniform stick in the limit where all of its mass is located at a point mass at the CM,
then the CM in part (b) simply freefalls (while the bottom end of the stick gets kicked out to
the left), whereas the CM in part (a) very slowly moves away from the (nearly) vertical initial
position with a tangential acceleration of g cos θ ≈ 0.

7.22. Hoop on a plane

The situation at a general later time, when the hoop is still slipping, is shown in Fig. 7.40.

θ

α

v

a

mg sin θ

Ff = µmg cos θ

Figure 7.40

The kinetic friction force is Ff = µN = µmg cos θ. (We’ll work with a general µ and then
set µ = 1/2 at the end.) We have chosen the positive direction for v and a to point up
the plane, which means that a will be negative. The component of the gravitational force
down the plane is mg sin θ. So F = ma along the plane gives

−mg sin θ − µmg cos θ = ma =⇒ a = −g sin θ − µg cos θ. (7.63)

The torque on the hoop relative to the center, with clockwise taken to be positive, is τ =
Ff R. So τ = Iα gives (with I = mR2, since all the mass is on the rim)

Ff R = Iα =⇒ (µmg cos θ)R = (mR2)α =⇒ α =
µg cos θ

R
. (7.64)

When the hoop finally starts to roll without slipping, we have vf = Rωf . But vf = v0 + at
and ωf = 0 + αt. So vf = Rωf becomes

v0 − (g sin θ + µg cos θ)t = R
(
µg cos θ

R

)
t

=⇒ v0 = g(sin θ + 2µ cos θ)t . (7.65)

With µ = 1/2, we see that the hoop starts to roll without slipping when

t =
v0

g(sin θ + cos θ)
. (7.66)

This is minimum when sin θ+cos θ is maximum. Setting the derivative equal to zero gives
cos θ − sin θ = 0 =⇒ tan θ = 1 =⇒ θ = 45◦. The minimum t is tmin = v0/(

√
2g).

Limits: If θ = 90◦ then Eq. (7.66) gives t = v0/g. This makes sense because there is no friction
force from the vertical plane, so ω is always zero. The vf = Rωf condition is therefore met only at
the top of the vertical motion where vf = 0, which happens when t = v0/g. If θ = 0 then we again
have t = v0/g (or more generally v0/(2µg)). This answer isn’t obvious, but at least it is correctly
larger than tmin.

For a general value of µ, you can show that the minimum t occurs at tan θ = 1/(2µ), with the
associated tmin being v0/(g

√
1 + 4µ2 ). It makes sense that µ is in the denominator of tan θ, because

if µ is very large, we want the plane to be essentially horizontal so that the friction force is large; the
hoop will then quickly roll without slipping. And if µ is very small, then the hoop will take a long
time to get rolling appreciably, so our best hope is to make v become small as quickly as possible.
This is obtained by throwing the hoop essentially straight up.

7.23. Cylinder and board

(a) The horizontal forces in the free-body diagrams for the cylinder and the board are
shown in Fig. 7.41. Let the static friction force from the cylinder on the board be Fs

m

Fs

Fs

ac

ab

m

R

Fk = µkN

α

Figure 7.41

(it is indeed static friction, because there is no slipping), with rightward taken to be
positive (which will turn out to be the direction it does point). Then by Newton’s third
law the static friction force from the board on the cylinder is Fs pointing leftward.
The kinetic friction force from the table on the board is Fk = µk N = µk(2mg). Since
the board is moving rightward, we know that this force points leftward. With the sign
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conventions for the accelerations indicated in the diagram (the a’s will be negative),
the various statements we can make are:

F = ma on board : Fs − Fk = mab =⇒ Fs − 2µkmg = mab,

F = ma on cylinder : −Fs = mac,

τ = Iα on cylinder : FsR =
(

mR2

2

)
α,

no slipping : ac = ab + Rα. (7.67)

The last of these equations comes from the fact that the acceleration of the cylinder
(with respect to the table) equals its acceleration with respect to the board plus the
acceleration of the board with respect to the table. The former equals Rα (due to the
non-slipping condition), while the latter is by definition ab.
We have four equations and four unknowns: Fs,ab,ac,α. (Remember that although
we know that Fk = µk N , we don’t know what Fs is without doing some calculations.
The Fs ≤ µs N relation gives only an upper bound on Fs.) There are various ways to
solve for the unknowns. One way is: Plugging the α from the 4th equation into the
3rd yields Fs = m(ac − ab)/2. Adding this to the 2nd equation gives ab = 3ac. The
sum of the first two equations yields −2µkg = ab+ac. Combining this with ab = 3ac
gives

ac = −
µkg

2
and ab = −

3µkg

2
. (7.68)

So −3µkg/2 is the desired acceleration of the board. Both of the accelerations nega-
tive, as expected. Note that the speeds of the two objects are irrelevant in finding the
accelerations (assuming there is no slipping between the cylinder and the board).

Remark: From the second equation in Eq. (7.67), the static friction force equals Fs = −mac =

µkmg/2. If there is no slipping, the Fs ≤ µs N condition tells us that µkmg/2 ≤ µs(mg) =⇒
µs ≥ µk/2. This condition on µs is therefore what we meant by the “sufficient friction” phrase
in the statement of the problem.

(b) We found above that the acceleration of the cylinder is 1/3 of the acceleration of the
board. So by the time the board slows down by a speed of v0 and stops, the cylinder
will have slowed down by only v0/3. Its final speed is therefore v0 − v0/3 = 2v0/3.
Ignoring any dissipative effects, the cylinder will roll at this speed indefinitely on
the stationary board. Note that this 2v0/3 result is independent of the coefficient of
kinetic friction µk between the table and the board. If µ is small, the process will
take a long time, but in this case all of the accelerations are small, and the final speed
of the cylinder will still be 2v0/3.

7.24. Another cylinder and board

The situation at a general later time, when the cylinder is still slipping, is shown in
Fig. 7.42. The kinetic friction force is Ff = µN = µmg (forward on the board, back-

v
b

vc

Ff  = µmg

ω

Ff  = µmg

Figure 7.42

ward on the cylinder), so the accelerations of the two objects are ac = −µg and ab = µg.
The speeds are therefore given by vc = v0 − µgt and vb = µgt.

The torque on the cylinder, with clockwise taken to be positive, is τ = Ff R. So τ = Iα
gives

Ffr = Iα =⇒ (µmg)R =
(

mR2

2

)
α =⇒ α =

2µg
R

. (7.69)

Since the initial angular velocity of the cylinder is zero, the angular velocity at a later time
t is therefore ω = αt = 2µgt/R.

When the cylinder finally rolls without slipping on the board, we have vc = vb + Rω. This
is true because the velocity of the (non-slipping) cylinder with respect to the board is Rω,
due to the forward rotation. Adding this to the velocity vb of the board with respect to the
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ground gives the velocity of the cylinder with respect to the ground as vc = vb+Rω. Using
the various quantities we found above, this condition becomes

v0 − µgt = µgt + R
(

2µgt
R

)
=⇒ v0 = 4µgt =⇒ t =

v0

4µg
. (7.70)

The velocity of the cylinder with respect to the ground at this time is

vc = v0 − µgt = v0 − µg
(
v0

4µg

)
=

3v0

4
. (7.71)

Additionally, the velocity of the board is vb = µgt = v0/4, so the relative velocity is v0/2.
You can quickly verify that this correctly equals Rω. These velocities will be maintained
indefinitely, because there is no friction anywhere once the slipping ends (assuming an
idealized setup).

As in Problem 7.23, the final speeds are independent of the coefficient of kinetic friction
µ. If µ is small, the process will take a long time, but in this case all of the accelerations
are small, and the final speed of the cylinder will still be 3v0/4.

7.25. Rolling down a plane

First solution: Let the (static) friction force Ff be defined with the positive direction
pointing up the plane (which is in fact the direction it points), as shown in Fig. 7.43. Then

θ

Ff

a

α

mg sin θ

Figure 7.43

the F = ma equation along the plane, the τ = Iα equation around the center of the wheel,
and the non-slipping condition are

F = ma =⇒ mg sin θ − Ff = ma,

τ = Iα =⇒ Ff R = (βmR2)α,
No slipping =⇒ a = Rα. (7.72)

The last two equations give Ff = βma. Plugging this into the first equation gives

mg sin θ − βma = ma =⇒ a =
g sin θ
1 + β

. (7.73)

Note that this is independent of both R and m.

Limits: If β = 0 (all the mass is at the center) then we simply have a = g sin θ. So the wheel behaves
just like a frictionless sliding block. This makes sense, because in this case the friction force must
be zero (as with a frictionless sliding block), because otherwise the nonzero torque would produce
an infinite angular acceleration since I = 0. If β = 1/2 (a uniform cylinder) then a = (2/3)g sin θ.
If β = 1 (all the mass is on the rim) then a = (1/2)g sin θ. If β → ∞,4 then a → 0. This makes
sense; I is very large, so α (and hence a) must be very small.

Remark: Since β ≥ 0, the acceleration a = g sin θ/(1+ β) is always less than or equal to the g sin θ
result for a block sliding down a frictionless plane. The physical reason for this is that there is a
nonzero friction force pointing up the plane (unless β = 0), which decreases the net force down
the plane. This friction force must be present, because otherwise there would be nothing to provide
the torque to get the wheel rolling. Alternatively, as you will see in the second solution below, a
is smaller than g sin θ because kinetic energy is “wasted” in the rotational motion. This makes the
kinetic energy associated with the CM motion be smaller than it would be with no rotation (that is,
if the wheel just slid down a frictionless plane).

Second solution: We’ll use conservation of energy to determine the speed v of the center
of the wheel after it has moved a distance d down the plane. And then we’ll find a by using
the standard constant-acceleration kinematic relation, v =

√
2ad. Even though our setup

4A very large β can be obtained by adding on long massive spokes protruding from the wheel and having them pass
through a deep groove in the plane. Alternatively, we can have a spool with a very small inner radius roll down a thin
plane with only its inner “axle” rolling on the plane.
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involves rotation, the center of the wheel undergoes simple linear motion with constant
acceleration, so the v =

√
2ad relation is perfectly valid.

If the wheel moves a distance d down the plane, the loss in potential energy is mgd sin θ.
This shows up as kinetic energy, which equals mv2/2+ Iω2/2 from Eq. (7.8), because the
wheel is both translating and rotating. The non-slipping condition is v = Rω =⇒ ω = v/R.
Conservation of energy therefore gives

mgd sin θ =
1
2

mv2 +
1
2

Iω2

=
1
2

mv2 +
1
2

(
βmR2

) (
v

R

)2

=
1 + β

2
mv2. (7.74)

The speed as a function of distance is therefore

v =

√
2gd sin θ
(1 + β)

=

√
2 · g sin θ

1 + β
· d. (7.75)

We have written v this way because the v =
√

2ad relation allows us to quickly read off
the acceleration as a = g sin θ/(1 + β), in agreement with the first solution.

7.26. Pulling a cylinder on a board

(a) The free-body diagrams for the board and the cylinder are shown in Fig. 7.44. We
have arbitrarily picked diagonally upward to be the positive direction for the friction
force from the cylinder on the board. If it comes out negative, that just means it
actually points downward. (We’ll eventually be demanding that it equals mg sin θ in
part (c).) By Newton’s third law, the friction force from the board on the cylinder
points in the opposite direction, diagonally downward. Since there is no net force
on either object perpendicular to the plane, the second diagram quickly gives N2 =

mg cos θ. And then the first diagram gives N1 = 2mg sin θ. But these normal forces
are irrelevant for the present purposes.

mg

mg

Ff

Ff

N1

T

N2

N2

Board: Cylinder:

ac

ab

α

Figure 7.44

(b) Let’s take the linear accelerations to be positive down the plane, and the angular
acceleration to be positive clockwise. Then the various equations are:

• F = ma for the board, along the plane:

mg sin θ − Ff = mab. (7.76)

• F = ma for the cylinder, along the plane:

T + mg sin θ + Ff = mac. (7.77)
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• τ = Iα for the cylinder, around the center:

(T − Ff )R =
(

mR2

2

)
α. (7.78)

• Non-slipping condition between the cylinder and the board:

ac = ab + Rα, (7.79)

because Rα is the acceleration of the cylinder with respect to the board, which
itself is accelerating at ab.

Given T , we have four equation and four unknowns: ab, ac, α, and Ff . (Or six and
six, if you count the two normal forces and the two F = ma equations perpendicular
to the plane.)

(c) If ab = 0, the first of the above equations above tells us that Ff = mg sin θ. And the
fourth equation says that ac = Rα =⇒ α = ac/R. The second and third equations
then become

T + mg sin θ + mg sin θ = mac =⇒ T + 2mg sin θ = mac,

(T − mg sin θ)R =
(

mR2

2

) ( ac

R

)
=⇒ T − mg sin θ =

1
2

mac. (7.80)

Subtracting these equations quickly gives ac = 6g sin θ. And then either of the
equations gives T = 4mg sin θ. If T is smaller (or larger) than this, then the board
accelerates down (or up) the plane.

7.27. Cylinder on board on plane

Let F1 be the kinetic friction force between the board and the plane, and let F2 be the
static friction force between the board and the cylinder. Define the normal forces N1 and
N2 similarly. Then the free-body diagrams for the board and the cylinder are shown in
Fig. 7.45. The normal forces are N1 = 2mg cos θ and N2 = mg cos θ, because neither
object has any acceleration perpendicular to the plane. The kinetic friction force F1 is
therefore

F1 = µN1 =

(
1
2

tan θ
)

(2mg cos θ) = mg sin θ. (7.81)
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Figure 7.45

We have four unknowns: ab, ac, α, and F2. (F2 is a static friction force, so we can’t say
that it equals µN2.) We can write down four equations:
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• F = ma for the board, along the plane:

mg sin θ − F1 + F2 = mab

=⇒ mg sin θ − mg sin θ + F2 = mab =⇒ F2 = mab. (7.82)

• F = ma for the cylinder, along the plane:

mg sin θ − F2 = mac. (7.83)

• τ = Iα for the cylinder, around the center:

F2R =
(

mR2

2

)
α =⇒ F2 =

1
2

mRα. (7.84)

• Non-slipping condition between the cylinder and the board:

ac = ab + Rα. (7.85)

This is just the statement that the cylinder’s motion comes from the motion of the
board plus the rolling motion of the cylinder with respect to the board.

The first and third of the above equations give Rα = 2ab. Plugging this into the fourth
equation gives ac = 3ab. Using this in the 2nd equation, along with the F2 from the 1st,
gives

mg sin θ − mab = m(3ab) =⇒ ab =
g sin θ

4
. (7.86)

The acceleration of the cylinder is therefore ac = 3ab = (3/4)g sin θ.

Remark: If the board isn’t present (so that we just have a cylinder rolling without slipping down a
plane), then Eq. (7.73) in the solution to Problem 7.25 tells us (with β = 1/2) that the cylinder has
acceleration a = (2/3)g sin θ. It makes sense that the above result of (3/4)g sin θ is larger, because
in our original setup the board itself is accelerating down the plane, and this allows the cylinder to
accelerate faster linearly (but not angularly, as you can show). This is consistent with the limit where
there is no friction between the board and the plane, in which case the linear acceleration of both the
board and the cylinder is g sin θ, while the angular acceleration of the cylinder is zero.

7.28. Two cylinders on a plane

(a) Looking at forces along the plane, each cylinder feels the tension in the string, a
friction force from the plane, and the mg sin θ component of gravity, as shown in
Fig. 7.46.

mg sin θ

2a

α

α

a

F1

F2

T

T

mg sin θ

Figure 7.46

Let’s first find the relation between the accelerations of the cylinders. Because of
the string, the center of the large cylinder has the same linear acceleration as the
“top” point on the rim of the small cylinder. But this top point moves with twice
the acceleration of the center of the small cylinder, because for the small cylinder
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we have atop = acenter + αR, but acenter = αR since there is no slipping, therefore
atop = 2acenter. (This was basically just a repeat of the reasoning in Problem 7.8(b).)
So the accelerations of the cylinders are 2a and a, as shown in the figure. Note that
the angular acceleration α of the large cylinder is 2a/2R = a/R, which is the same
as for the small cylinder.
We can write down four F = ma and τ = Iα equations.

• F = ma for the small cylinder, along the plane:

mg sin θ − F1 − T = ma. (7.87)

• F = ma for the large cylinder, along the plane:

T + mg sin θ − F2 = m(2a). (7.88)

• τ = Iα for the small cylinder, around the center (using α = a/R):

F1R − T R =
(

mR2

2

) ( a
R

)
=⇒ F1 − T =

ma
2
. (7.89)

• τ = Iα for the large cylinder, around the center (using α = 2a/2R):

F2(2R) =
(

m(2R)2

2

) ( a
R

)
=⇒ F2 = ma. (7.90)

We have four equations and four unknowns: F1, F2, T , a. The sum of the first and
third equations is mg sin θ − 2T = 3ma/2. And the sum of the second and fourth
equations is T + mg sin θ = 3ma. We now have two equations and two unknowns.
These can be quickly solved to yield T = (1/5)mg sin θ and a = (2/5)g sin θ. So the
accelerations of the small and large cylinders are, respectively,

a =
2g sin θ

5
and 2a =

4g sin θ
5

. (7.91)

Remark: From Problem 7.25, the acceleration of a single uniform cylinder (with I = mR2/2)
rolling without slipping down a plane is (2/3)g sin θ. The first of the accelerations we just
found is correctly smaller than this, and the second is correctly larger. The string slows down
the smaller cylinder and speeds up the larger cylinder, relative to the common (2/3)g sin θ
acceleration they would have if the string weren’t present.

(b) Using the values of a and T we found above, Eqs. (7.89) and (7.90) tell us that the
friction forces are both equal to F1 = F2 = (2/5)mg sin θ. Since the necessary static
friction forces, the coefficients of static friction, and the normal forces are the same
for both cylinders, the cylinders will slip at the same angle. In order not to slip, we
need the friction force F to be less than or equal to µN . That is,

F ≤ µN =⇒ 2
5

mg sin θ ≤ (1)(mg cos θ) =⇒ tan θ ≤ 5
2
. (7.92)

This cutoff angle is about 68.2◦.

7.29. Wheel and board

First solution: Since we are assuming M > m, the board will move down the plane, and
the wheel will move up the plane. So the wheel will rotate counterclockwise. The free-
body diagrams for the board and the wheel are shown in Fig. 7.47 (we have drawn only
the forces parallel to the plane). Each object feels the tension in the string, the friction
force between the objects, and the component of gravity down the plane. With the positive
directions for the friction forces defined as shown, we will find that Ff is positive.

Let a be the acceleration of the board down the plane. Then by conservation of string, a
is also the acceleration of the wheel up the plane. Let α be the angular acceleration of the
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T
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Figure 7.47

wheel, with counterclockwise positive. Then α = 2a/R. The factor of 2 comes from the
fact that if the board moves down the plane by a distance d and the wheel moves up by d,
then the wheel moves a distance of 2d with respect to the board. The angle through which
the wheel rolls is therefore given by Rθ = 2d. Taking two time derivatives of this relation
gives Rα = 2a.

The various force and torque equations are

• F = ma for the board, along the plane:

Mg sin θ − T − Ff = Ma. (7.93)

• F = ma for the wheel, along the plane:

T − Ff − mg sin θ = ma. (7.94)

• τ = Iα for the wheel (using α = 2a/R):

Ff R = Iα =⇒ Ff R =
(

mR2

2

) (
2a
R

)
=⇒ Ff = ma. (7.95)

Our unknowns are T , Ff , and a. Adding the first two of the above equations eliminates T .
Using Ff = ma in the result gives

Mg sin θ − mg sin θ − 2(ma) = Ma + ma

=⇒ a =
(

M − m
M + 3m

)
g sin θ. (7.96)

Limits: If M ≫ m then a ≈ g sin θ. This is correct, because the board slides essentially unhindered
down the plane. If m ≫ M , then even though we assumed M > m in the above solution, all of
the reasoning is actually still valid (it’s just that some of the parameters are negative, given our sign
conventions). So we obtain a ≈ −(1/3)g sin θ. The negative sign means that the board accelerates
up the plane, and hence the wheel accelerates down the plane, at (1/3)g sin θ. This result isn’t so
obvious. A single solid cylinder rolling down a plane without slipping accelerates at (2/3)g sin θ;
see Eq. (7.73) with β = 1/2. The present result is smaller, because the movement of the board up the
plane means that the wheel has to rotate more quickly, for a given linear acceleration. The friction
force (which points up the plane, and which produces the torque) is therefore larger, and hence the
acceleration down the plane is smaller, compared with the setup involving only a cylinder and no
board.

Second solution: We can also solve this problem by applying conservation of energy.
(This is true for many of the problems in this chapter, even though we haven’t always
included that solution.) If the board moves down the plane by a distance d and the wheel
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moves up by d, then the potential energy decreases by (M − m)gd sin θ. Let v be the
common speed of the board and the wheel, and let ω be the angular speed of the wheel,
which is given by ω = 2v/R from the above reasoning concerning α. Then conservation
of energy gives

(M − m)gd sin θ =
1
2

Mv2 +
1
2

mv2 +
1
2

Iω2

=
1
2

Mv2 +
1
2

mv2 +
1
2

(
mR2

2

) (
2v
R

)2

=
1
2

(M + 3m)v2

=⇒ v =

√
2(M − m)gd sin θ

M + 3m
. (7.97)

But the general kinematic result for constant acceleration is v =
√

2ad, which immedi-
ately yields the a given in Eq. (7.96).

7.30. Cylinder and stick

In Fig. 7.48, there are five unknowns: Ff , T , αc, αs, and ac. So we need five equations:

θ

F
f

αs

αc

ac

T
T

R

R

mg sin θ

mg sin θ

Figure 7.48

• τ = Iα for the cylinder, relative to the center:

Ff R + T R =
(

mR2

2

)
αc. (7.98)

• τ = Iα for the stick, relative to the pivot:

(mg sin θ)R − T (2R) =
(

m(2R)2

3

)
αs. (7.99)

• F = ma for the cylinder, along the plane:

mg sin θ + T − Ff = mac. (7.100)

• Non-slipping condition for the cylinder:

ac = Rαc. (7.101)

• Conservation-of-string equation:
αc = αs. (7.102)

This can be seen from the following reasoning. Because of the string, the linear
accelerations of the top of the stick and the “top” of the cylinder must be equal. The
first of these is (2R)αs. The second is ac + Rαc, because this is the acceleration of
the center of the cylinder plus the acceleration of the rim relative to the center. But
ac = Rαc from Eq. (7.101), so we end up with 2Rαc for the acceleration of the “top”
of the cylinder. Hence (2R)αs = 2Rαc =⇒ αs = αc. The intuitive reason for this
is that the cylinder rotates around its bottom point (which is instantaneously at rest),
just as the stick does.

From Eqs. (7.101) and (7.102), both α’s are equal to ac/R. So we are now down to three
unknowns (Ff , T , ac) and three equations (the torque and force equations). These equations
become, respectively,

Ff + T =
1
2

mac,

mg sin θ − 2T =
4
3

mac,

mg sin θ + T − Ff = mac. (7.103)
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Adding these three equations conveniently eliminates both T and Ff , and we obtain

2mg sin θ =
17
6

mac =⇒ ac =
12g sin θ

17
. (7.104)

Note that we never needed to use the F = ma equation for the stick. That would serve
only to yield the force at the pivot.

Remarks: We assumed in the above solution that the sting stays taut. This is indeed the case, because
if you solve for T you will find that it is positive; it equals (1/34)mg sin θ. The physical reason why
T is positive is that if the string weren’t present, then the top of the stick would have a larger linear
acceleration than the “top” of the cylinder ((3/2)g sin θ vs. (4/3)g sin θ, as you can show). The
tension in the string slows down the former and speeds up the latter, until they are equal. If the stick
were instead placed above the cylinder on the plane, then the string would go limp.

For a slight variation on the above solution, we can make use of the τ = Iα equation for the cylinder
relative to the contact point on the plane. This gives T (2R) + (mg sin θ)R = (3mR2/2)αc, where
we have used the parallel-axis theorem to obtain this moment of inertia. (We do indeed want to use
the same αc here, because the angle through which an object rotates is independent of the chosen
origin.) Hence 2T +mg sin θ = 3mac/2. Adding this equation to the middle equation in Eq. (7.103)
(which was the τ = Iα equation for the stick) quickly yields ac = (12/17)g sin θ. Note that the
friction force Ff never appeared in this reasoning.

7.31. Infinite set of disks

Let Fi be the friction force between the stick and the ith disk, with i = 1 corresponding to
the leftmost disk. Let a be the acceleration of the stick. Then the non-slipping condition
says that the angular acceleration of the ith disk is αi = a/ri . So τ = Iα applied to the ith
disk gives

τi = Iiαi =⇒ Firi =
(

1
2

mir2
i

) (
a
ri

)
=⇒ Fi =

1
2

mia. (7.105)

Since the mass of each disk is proportional to its area, which in turn is proportional to its
radius squared, the mi are given by m1 = m, m2 = m/9, m3 = m/81, etc.

The F = ma equation for the stick, along its direction of motion, is (using Fi = mia/2 in
the second line below)

mg sin 30◦ − (F1 + F2 + · · · ) = ma

=⇒ 1
2

mg = ma
(
1 +

1
2

[
1 +

1
9
+

1
81
+ · · ·

])
=⇒ g

2
= a

(
1 +

1
2

[
1

1 − 1/9

])
=⇒ g

2
= a

(
25
16

)
=⇒ a =

8g
25

. (7.106)

Remark: This acceleration is independent of R (and also m); this follows from dimensional analysis,
as you can verify, because the given parameters are g, R, and m. So as long as the mass of the stick
equals the mass of the leftmost disk, and as long as the radii of the disks decrease by successive
factors of 1/3, the system can be built to any size and the acceleration of the stick will always be
8g/25.

7.32. Rolling off a sphere

(a) We first need to find the speed v of the ball as a function of θ. The kinetic energy of
the ball comes from both the CM motion and the rotational motion. When the ball
is at an angle θ, its height has decreased by R − R cos θ. So conservation of energy
gives

mgR(1 − cos θ) =
1
2

mv2 +
1
2

(βmr2)ω2. (7.107)
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The non-slipping condition is v = rω, so we obtain

mgR(1 − cos θ) =
1
2

mv2 +
1
2
βmv2 =⇒ v =

√
2gR

1 + β
(1 − cos θ). (7.108)

The ball leaves the sphere when the normal force becomes zero. The normal force is
determined from the radial F = ma equation. The radially inward component of the
gravitational force is mg cos θ, so with inward taken to be positive, the radial F = ma
equation is

mg cos θ − N =
mv2

R
=⇒ mg cos θ − N =

2mg

1 + β
(1 − cos θ)

=⇒ N =
mg

1 + β

(
(3 + β) cos θ − 2

)
. (7.109)

The ball leaves the sphere when N = 0, that is, when

cos θ =
2

3 + β
. (7.110)

Limits: If β = 0 (which is equivalent to a sliding mass, because there is no rotational energy
in this case), then cos θ = 2/3 =⇒ θ ≈ 48.2◦, which is a result that may look familiar to you.
If β = 2/5 (a uniform sphere), then cos θ = 10/17 =⇒ θ ≈ 54.0◦. The larger the β, the larger
the angle, because the speed v of the CM is smaller for a given θ (because the rotational energy
is larger), which in turn means that we need a larger θ if we want mg cos θ = mv2/R (which is
the condition in Eq. (7.109) that makes N = 0). If β → ∞ (this would require the ball to have
massive extensions that could somehow pass freely through the fixed sphere), then θ → 90◦.
The CM speed v (and hence also mv2/R) is always very small in this case, because essentially
all of the energy is contained in the rotational motion. The coefficient of friction needs to be
huge in this case, to prevent slipping when θ gets close to 90◦.

(b) The ball slips when the required friction force Ff exceeds the upper limit µN . We
already found N above, so we must now find Ff . The tangential F = ma equation
and the τ = Iα equation around the center of the ball are

F = ma : mg sin θ − Ff = ma (7.111)
τ = Iα : Ffr = Iα =⇒ Ffr = (βmr2)(a/r) =⇒ Ff = βma.

Plugging this Ff into the F = ma equation gives

mg sin θ − βma = ma =⇒ a =
g sin θ
1 + β

=⇒ Ff = mg
β sin θ
1 + β

. (7.112)

Recalling the N in Eq. (7.109), the Ff ≤ µN condition becomes

mg
β sin θ
1 + β

≤ µ
mg

1 + β

(
(3 + β) cos θ − 2

)
=⇒ β sin θ ≤ µ

(
(3 + β) cos θ − 2

)
. (7.113)

This is the desired equation that θ must satisfy if the ball is to remain rolling without
slipping.

Limits: If µ = 0, then we have sin θ ≤ 0 (assuming β , 0), so the ball starts to slip right away
at θ = 0, which makes sense. If µ→ ∞, then the inequality in Eq. (7.113) will be satisfied as
long as (3+ β) cos θ − 2 is positive, that is, as long as cos θ > 2/(3+ β). So θ must be smaller
than this cutoff angle if there is to be no slipping, in agreement with the result in part (a).

Remark: It turns out that the r ≪ R condition actually isn’t necessary; the above results for
θ are valid for any r and R. Without the r ≪ R assumption, the center of the ball now moves
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in a circle of radius R + r , so the R in the conservation-of-energy statement in Eq. (7.107)
must be replaced with R + r . But the same is true for the R in the radial F = ma equation in
Eq. (7.109). So the (R + r)’s cancel, just as the R’s did, and we end up with the same result
for N as a function of θ in Eq. (7.109).
Note that the v = rω and a = rα relations are still true for any r and R. At any instant, the
ball may be considered to be rotating around the instantaneous point of contact on the sphere,
so the curvature of the sphere doesn’t matter; the surface might as well be flat.

7.33. Yo-yo

(a) As the yo-yo falls, the loss in potential energy shows up as the gain in kinetic energy.
The kinetic energy comes partly from translational motion and partly from rotational
motion. As the radius of the string’s spiral becomes smaller, the yo-yo must rotate a
larger number of times to generate a given vertical displacement. (You can consider
the spiral, which is essentially a circle at any given time, to be rolling on the vertical
flat “surface” formed by the straight part of the string. So the standard v = rω
relation applies.) Therefore, as time goes on, a larger fraction of the kinetic energy
is contained in the rotational motion. Equivalently, a smaller fraction is contained in
the translational motion. After a certain point, this “smaller fraction” effect wins out
over the fact that the total kinetic energy is increasing, and the translational kinetic
energy starts to decrease. That is, the linear speed starts to decrease.
It is easy to see why this slowdown must happen sooner or later, by looking at a
limit. In the limit where the spiral is infinitesimally small (although an actual yo-yo
has a nonzero lower bound on the spiral’s radius, namely the radius of the axle),
the yo-yo basically just spins in place. A non-infinitesimal translation speed would
imply a huge rotational speed, corresponding to a far larger kinetic energy than what
is available from the given loss in potential energy. In this limit, all of the energy is
contained in rotational motion, and none is contained in translational motion.

(b) Let r be the radius of the string’s spiral at a general later time. Then the cross-
sectional area of the string that has been unwound is πR2 − πr2. If the length of the
hanging string is ℓ, and if the thickness of the string is ϵ , then the cross-sectional
area of the hanging string is ℓϵ . Since the unwound string is the same as the hanging
string, their areas must be equal. So the relation between ℓ and r is ℓ = π(R2−r2)/ϵ .
Conservation of energy tells us that

mgℓ =
1
2

mv2 +
1
2

Iω2. (7.114)

But ω is related to v by ω = v/r , because as mentioned in part (a), the spiral’s radius
is the radius of the “axle” on which the yo-yo spins at any given moment. Letting
I = βmR2 for generality (β = 1/2 for our yo-yo), and using the ℓ we found above,
the conservation-of-energy statement becomes

mg
π(R2 − r2)

ϵ
=

1
2

mv2 +
1
2

(βmR2)
(
v

r

)2

=⇒ v2 =
2πg
ϵ

R2 − r2

1 + βR2/r2 . (7.115)

This expression gives v in terms of r . At the start when r = R, we have v = 0, as
expected. And in the r → 0 limit, we also have v → 0, consistent with the reasoning
in part (a). Therefore, v must achieve a maximum somewhere between r = R and
r = 0. Taking the derivative of v2 with respect to r and setting the result equal to
zero gives

0 =
(
1 +

βR2

r2

)
(−2r) − (R2 − r2) βR2 (−2)

r3

=⇒ 0 = r4 + 2βR2r2 − βR4. (7.116)
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This is a quadratic equation in r2. Using the quadratic formula (and choosing the
positive root since r2 must be positive), and then taking the square root to obtain r ,
yields

r = R

√
−β +

√
β2 + β. (7.117)

This is the radius for which v is maximum. For the given case where β = 1/2, we
find r ≈ (0.605)R. If the axle of the yo-yo is very thin (so that the string’s spiral
essentially winds all the way down to zero radius), then when r ≈ (0.605)R, the
remaining string in the yo-yo constitutes a fraction πr2/πR2 = (0.605)2 = 0.366 of
the total length of string. So the yo-yo is about 63% unwound.

Remarks: In the limit where β is very small, the r in Eq. (7.117) is also very small; it behaves
like r ≈ β1/4R, because the last of the three β’s in Eq. (7.117) dominates. This makes sense;
the yo-yo has hardly any rotational inertia, so it behaves basically like a dropped ball, and
the maximum speed is achieved when the string is essentially completely unwound. In the
limit where β is very large (see below for what this physically corresponds to), we can use the√

1 + ϵ ≈ 1 + ϵ/2 Taylor series to approximate r as

r = R
√
−β + β

√
1 + 1/β ≈ R

√
−β + β (1 + 1/(2β)

)
=

R
√

2
. (7.118)

When r takes on this value, the area of the remaining spiral of string is π(R/
√

2)2 = πR2/2.
This is half of the area of the initial spiral, so we see that the maximum speed of the yo-yo
is achieved when the string is halfway unwound. In the event that the yo-yo has an axle of
nonzero size, the above r = R/

√
2 result still holds (because nowhere did we use the value of

the inner radius of the spiral), but in this case this value of r corresponds to more than half of
the total length of string being unwound.
If the winding of the string has some depth in the direction along the axis of the axle (so that
the winding isn’t a single “layer” like a movie reel), then the only modification to the above
reasoning is that we effectively have a smaller value of the thickness ϵ . But this doesn’t affect
the functional dependence of v on r in Eq. (7.115). So the result for r in Eq. (7.117) still holds,
along with the subsequent remarks.
If the initial spiral doesn’t extend all the way out to the rim of the yo-yo, we can still make
use of the above results. If we keep the letter R as representing the initial radius of the spiral,
then the radius of the yo-yo is something larger; call it nR, where n is a number greater than 1.
The moment of inertia of the yo-yo is now I = βm(nR)2 = (n2 β)mR2. So the only change in
the above calculations is that we need to replace β with β′ ≡ n2 β. If n is large (that is, if the
initial spiral of string is small compared with the yo-yo), then we are in the “large β′” regime
discussed above, so the maximum speed is achieved when the spiral’s radius has gone down
by a factor of 1/

√
2.



Chapter 8

Angular momentum

8.1 Introduction
Angular momentum

If a point mass has momentum p = mv, then the angular momentum (denoted by L) of the mass,
relative to a given origin, is defined via the cross product (see Section 13.1.7 in Appendix A for
the definition of the cross product) as

L = r × p, (8.1)

where r is the vector from the origin to the mass. If a system consists of a number of masses
with various momenta, then the total angular momentum of the system is the sum of all of the
individual angular momenta: L =

∑
ri × pi . The same origin must be chosen for all of the

individual angular momenta. In the case of a continuous object, we have L =
∫

r × dp =∫
r × v dm.

Angular momentum is a vector, being the cross product of two other vectors. However, as
with the torque in Chapter 7, we will invariably deal only with situations where both the position
r and the momentum p lie in the plane of the page, in which case the angular momentum L
points perpendicular to the page and has magnitude rp sin θ, where θ is the angle between r
and p. Since L is always perpendicular to the page in this case, we can ignore the fact that it is
actually a vector and deal simply with its magnitude, rp sin θ. You can think of this magnitude in
either of two ways, depending on which quantity you want to group with the sin θ (see Fig. 8.1):

p

r

p sinθ

r sinθ

θ

θ

Figure 8.1

L = r (p sin θ) = (radius)(tangential momentum), or
L = p(r sin θ) = (momentum)(impact parameter). (8.2)

That is, the angular momentum equals the entire distance r times the tangential component of the
momentum (the radial component of the momentum doesn’t have anything to do with angular
motion). And it also equals the entire momentum times the “impact parameter.” The impact
parameter is the component of the r vector that is perpendicular to p. To geometrically construct
it, draw a line pointing along p (extending in both directions) and look at the closest approach to
the origin.

In the case of a rigid pancake object rotating around a fixed axis perpendicular to the page, as
in Fig. 8.2, the speed of any point in the object is given by v = rω. So the total angular momen-

ω

axis

Figure 8.2

tum points perpendicular to the page and has magnitude (using the fact that v is perpendicular to
r)

L =
�����
∫

r × dp
����� =

�����
∫

r × v dm
����� =

∫
rv dm

=

∫
r (rω) dm = ω

∫
r2dm. (8.3)

220



8.1. INTRODUCTION 221

But the integral
∫

r2dm is the moment of inertia I, so we have

L = Iω. (8.4)

This L = Iω relation is the rotational analog of the p = mv relation in linear dynamics; L takes
the place of p, I takes the place of m, and ω takes the place of v. The relation holds even if the
object extends into and out of the page, provided that we are concerned only with the component
of L perpendicular to the page.

Translation plus rotation

Consider an object with mass M that is both translating and rotating, as shown in Fig. 8.3. The

ω

VCM

CM

RCM

Figure 8.3

angular velocity is ω, and the velocity of the CM is VCM. The position of the CM at the instant
shown, with respect to the origin, is RCM. Then the total angular momentum of this object,
relative to the origin, is given by (see Problem 8.1 for a proof)

L = MRCM×VCM + Laround CM. (8.5)

In words: the total angular momentum is the sum of the angular momentum of the entire object
treated like a point mass M located at the CM and traveling at VCM, plus the angular momentum
relative to the CM (imagine that you are riding along with the CM as the object spins around
you). As with the energy in Eq. (7.8), the way that the two pieces of the angular momentum
combine in Eq. (8.5) is about as nice a result as we could hope for. But note well that this result
isn’t valid if the CM is replaced by any other point.

For the object shown in Fig. 8.3, the two terms on the right-hand side of Eq. (8.5) point in
opposite directions (the first points into the page, the second points out of the page), so we need
to subtract their magnitudes when finding the magnitude of the total L.

The τ = dL/dt relation

Angular momentum is a very useful concept in physics because (among other reasons) it is
related to torque. In particular, the net external torque on an object (defined in Eq. (7.9) as
τ ≡ r × F) equals the rate of change of the angular momentum:

τ =
dL
dt

. (8.6)

See Problem 8.2 for a proof. This relation is the rotational analog of F = dp/dt; τ takes the place
of F, and L takes the place of p. If you apply a force to an object, you change its momentum;
likewise, if you apply a torque to an object, you change its angular momentum. As with the
τ = Iα relation in Eq. (7.11), Eq. (8.6) is valid if the choice of origin is (1) a fixed point (or
more generally a point moving with constant velocity), or (2) the CM of the object, or (3) a third
possibility which rarely comes up. The same origin must be chosen for both τ and L, of course.

If the special case where a rigid object is rotating around a fixed axis, we have L = Iω, so
τ = dL/dt reduces to

τ = I
dω
dt
=⇒ τ = Iα. (8.7)

More generally (but still with a fixed rotation axis), if the object deforms so that its I changes,
we have τ = d(Iω)/dt; both I andω can change here. In cases where the direction of L changes,
things get more complicated (gyroscopic motion, precession, nutation, etc.). See Chapter 9 in
Morin (2008) if you are interested in these effects. In this chapter we’ll be concerned only with
fixed axes of rotation, so the full vector nature of L won’t be important.

Conservation of angular momentum

If there is zero net external torque on a system, then Eq. (8.6) tells us that dL/dt = 0. That is,
the angular momentum L doesn’t change with time; L is conserved. (This exactly mirrors the
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fact that F = dp/dt tells us that if there is zero net external force on a system, then the linear
momentum p is conserved.) Note that it is possible to have zero net external torque, relative to
a given origin, even if there is nonzero net external force. Such is the case in Fig. 8.4, because

originforce

stick

Figure 8.4

the applied force has no lever arm relative to the given origin. In this setup, the stick will rotate
counterclockwise, and the CM will move in a clockwise sense around the origin. The two terms
on the right-hand side of Eq. (8.5) are therefore oppositely pointing vectors (into and out of the
page, respectively). This is consistent with the fact that the total L relative to the given origin
must be zero (assuming that the stick starts with zero L), because zero torque is applied.

In an isolated system, such as a collision between two objects, there are no external forces,
and hence no external torques. So both p and L are conserved. Additionally, the energy E is
conserved if the collision is elastic. Most of the problems in this chapter are collision problems.

Angular impulse

Consider the time integral of the torque, which we shall define as the angular impulse Jθ :

Jθ ≡
∫

τ dt (angular impulse). (8.8)

As with the (linear) impulse in Eq. (6.2), this is just a definition. But if we invoke the τ = dL/dt
relation, then we can produce some content. If we multiply both sides by dt and then integrate,
we obtain

∫
τ dt = ∆L. The left-hand side of this relation is just the angular impulse. So we see

that the angular impulse Jθ associated with a time interval ∆t equals the total change in angular
momentum ∆L during that time:

Jθ = ∆L. (8.9)

Since we’ll be concerned only with planar setups where the vector nature of L isn’t important, it
will suffice to write Jθ = ∆L.

A special case that arises often is where the torque τ is applied at a constant lever arm r . An
example of this is a quick strike, one that is quick enough so that the object doesn’t have time to
move appreciably during the time the force is applied (see Problem 8.22 for another example).
In this case we have1

∆L =
∫

τ dt =
∫

Fr dt = r
∫

F dt = r∆p =⇒ ∆L = r∆p, (8.10)

where the constant nature of the lever arm r allowed us to pull it outside the integral. This
∆L = r∆p relation is very useful, because even if the force F (t) is a complicated function of
time and we don’t know what ∆L and ∆p are, we still know that they are related by a factor of r
(if r is constant).

Since the ∆L = r∆p relation can be traced back to τ = dL/dt, the choice of origin must be a
fixed point or the CM of the object (ignoring the rare third possibility). The same origin must be
chosen for both the lever arm r and the angular momentum L, of course.

8.2 Multiple-choice questions
8.1. A disk spins as shown in Fig. 8.5, with its CM at rest. The angular momentum of this disk,

P

ω

Figure 8.5
relative to the point P shown, is (circle all that apply)

(a) zero, because the CM is at rest

(b) zero, because for every point with velocity v, there is a point with velocity −v
(c) nonzero, because the first term in Eq. (8.5) is zero, and the second term is nonzero

(d) nonzero, because points moving downward are farther from P than points moving
upward

1We aren’t worrying about signs here. So you can take Eq. (8.10) to be a statement about the magnitudes of ∆L and
∆p. You can then put in the signs by hand, based on your sign conventions.
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8.2. Which of the following objects has the largest clockwise angular momentum relative to
the point P shown? The arrows signify the CM velocity and angular velocity, and the
corresponding arrows have the same magnitudes in all of the figures.

P

(a)

P

(b)

P

(c)

P

(d)

P

(e)

8.3. The CM of a uniform stick moves to the right, while the stick rotates clockwise with a
nonzero positive angular velocity, as shown in Fig. 8.6. Assuming that the relative size

ω

v

A

B

C

Figure 8.6

of v and ω has been chosen properly, which of the three points shown can have zero total
angular momentum around it?

(a) A (b) B (c) C (d) It is impossible for any of the points.

8.4. A stick with length ℓ has both translational and rotational motion, as shown in Fig. 8.7.

v
l

ω

A

B

Figure 8.7

Both v and ω are positive in the directions shown. Taking clockwise angular momentum
L to be positive, which one of the following statements is true?

(a) The L around point B is positive, but the L around point A can be positive or negative,
depending on the (positive) values of v and ω.

(b) The L around point B is negative, but the L around point A can be positive or nega-
tive, depending on the (positive) values of v and ω.

(c) The L around point A is positive, but the L around point B can be positive or negative,
depending on the (positive) values of v and ω.

(d) The L around point A is negative, but the L around point B can be positive or nega-
tive, depending on the (positive) values of v and ω.

8.5. A wheel with I = mR2/2 rolls without slipping on a table, as shown in Fig. 8.8. Its angular

contact point

ω

Figure 8.8

speed is ω. What is the angular momentum of the wheel relative to a dot on the table that
coincides with the contact point at a certain instant?

(a) 0 (b)
1
2

mR2ω (c) mR2ω (d)
3
2

mR2ω (e) 2mR2ω

8.6. A springboard diver undergoes a forward rotation with her body and extended arms in a
straight line, forming what we will model crudely as a uniform stick. She then “tucks” by
touching her fingers to her toes, the effect of which is to fold her body-plus-arms in half.
The ratio of her new angular speed to her old angular speed is

(a) 1/2 (b) 1 (c) 2 (d) 4 (e) 8

8.7. A motorcyclist makes a jump over a long row of cars. Right after he leaves the takeoff
ramp, he notes that his motorcycle is angled slightly upward and has zero angular ve-
locity. If this tilt is maintained, it will cause a problem on the landing ramp, because
the motorcycle should be pointed slightly downward there. The best way for the rider to
correct this problem in the air is to

(a) lean forward (b) lean backward (c) hit the gas (d) hit the brakes
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8.8. A frisbeeTM is moving rightward and spinning counterclockwise. You catch it between
your thumb and forefinger, as shown in Fig. 8.9. Assume that after the catch, the frisbee

(top view)

ω

v

point of
contact

Figure 8.9

“sticks” to your hand, so that the only possible final motion is a rotation around the point
of contact with your hand. Depending on the values of v and ω, which of the following
rotations might be possible? (Circle all that apply.)

(a) clockwise

(b) counterclockwise

(c) no rotation

8.9. On a frictionless horizontal table, a uniform stick is pivoted at its middle, and a ball collides
elastically with one end, as shown in Fig. 8.10. During the collision, what are all the

pivot

(top view)

Figure 8.10

quantities that are conserved in the stick-plus-ball system?

(a) L around the pivot

(b) L around the pivot, E

(c) L around the pivot, p, E

(d) L around the point of collision, E

(e) L around the point of collision, p, E

8.10. (Note: You should answer Multiple-Choice Question 8.11 along with this one before
checking your answers.) A mass slides on a frictionless horizontal table. A string con-
nected to the mass passes through a small hole in the table, and someone below the table
holds the other end. The mass circles around the hole. Assume that it was given an initial
speed v0; see Fig. 8.11. The person below the table then gradually pulls the string down-

v0

hole

(top view)

Figure 8.11

ward, causing the mass to gradually spiral inward. Let E be the kinetic energy of the mass,
and let L be the angular momentum of the mass relative to the center of the hole. During
this process,

(a) E is conserved, so the speed remains constant

(b) L is conserved, so the speed increases

(c) neither E nor L is conserved

8.11. A mass slides on a frictionless horizontal surface. A string connects it to a pole, and it
circles around the pole. Assume that it was given an initial speed v0; see Fig. 8.12. The

v0

pole

(top view)

Figure 8.12

radius of the pole is small but nonzero, so as the string wraps around the pole, the mass
gradually spirals inward. Let E be the kinetic energy of the mass, and let L be the angular
momentum of the mass relative to the center of the pole. During this process,

(a) E is conserved, so the speed remains constant

(b) L is conserved, so the speed increases

(c) neither E nor L is conserved

8.3 Problems
The first two problems are foundational problems.

8.1. Translation plus rotation

For the object shown in Fig. 8.3, show that the angular momentum, relative to the origin,
is given by Eq. (8.5).
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8.2. The τ = dL/dt relation

Take the time derivative of L ≡ r × p and show that the result equals r × F, which is by
definition the torque τ.

8.3. Spinning with dumbbells

A person stands on a stool that is free to rotate. He holds his arms outstretched horizontally,
with a 5 kg dumbbell in each hand. He is made to spin with initial angular speed ωi. If
he then draws his hands inward and holds the dumbbells close to his body, what is his
new angular speed? Assume that his body can be modeled as a uniform cylinder with
mass 70 kg and radius 0.15 m, and assume that each arm is about 1 m long; ignore the
mass of the arms. A rough answer will suffice, since we’ve already made all sorts of crude
approximations.

8.4. Spiraling in

(a) (Note: You should answer Multiple-Choice Questions 8.10 and 8.11 before solving
this problem.) Consider the setup in Multiple-Choice Question 8.10. If during a
small time dt the radius of the mass’s “circular” motion changes by dr (which is
negative), show that conservation of angular momentum (that is, a constant value of
rv) implies that the work done by the tension equals the increase in kinetic energy.
(The spiraling is very gradual, so you can assume that the tension is given by the
mv2/r expression for circular motion.)

(b) Consider the setup in Multiple-Choice Question 8.11. If at a given instant the radius
of the mass’s “circular” motion is decreasing at a rate ṙ (which is negative), show
that conservation of energy (that is, a constant value of v) implies that the torque
equals the rate of change of angular momentum. (Again assume that the tension is
given by mv2/r .)

8.5. Spinning coins

Two identical uniform coins each have clockwise angular velocity ω. They are initially
separated by an infinitesimal distance, as shown in Fig. 8.13. They are then bought to-

ωω

Figure 8.13
gether and immediately stick to each other. What is the resulting angular velocity of the
system?

Most of the following problems involve sticks, because sticks are easy to visualize. But the
principles involved are quite general; if we had chosen other shapes, the only modifications
would be the moment of inertia and possibly an impact parameter.

8.6. Equal velocities

A ball with mass m travels with speed v perpendicular to a uniform stick with mass m
and length ℓ, which is initially lying at rest on a frictionless table. Where along the stick
should the ball collide elastically with it, so that the ball and the center of the stick move
with equal velocities after the collision?

8.7. No final rotation

On a frictionless table, a uniform stick with mass m and length ℓ rotates around its center,
which is initially at rest but not attached to a pivot. The stick then collides elastically with
a mass m, as shown in Fig. 8.14. At what point along the stick should the collision occur

l

m

m

(top view)

Figure 8.14

so that the stick has only translational (that is, no rotational) motion afterward?

8.8. Stick and pivot

A uniform stick with mass m and length ℓ has one end attached to a pivot, and it swings
around on a frictionless table with angular speed ω0. A ball also with mass m is placed on
the table a distance d from the pivot, and the stick collides elastically with it, as shown in
Fig. 8.15.

l

d

m

m

(top view)

pivot

ω0

Figure 8.15
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(a) What is the resulting speed of the ball?

(b) What value of d maximizes this speed? (Note: You can take a derivative if you want,
or you can think about what the stick must end up doing in this case.)

8.9. Stick hitting a ball

A uniform stick with mass m and length ℓ slides with speed v0 across a frictionless table,
in the direction perpendicular to its length. One end of the stick collides elastically with
a ball that also has mass m and that is initially at rest. What is the resulting speed of the
ball?

8.10. Collision with a fixed object

A uniform stick with mass m and length ℓ slides with speed v0 across a frictionless table,
in the direction perpendicular to its length. One end of the stick collides elastically with
a fixed object, as shown in Fig. 8.16. What is the speed of the other end right after the

v0

(top view)

Figure 8.16

collision?

8.11. Sticking to a stick

A uniform stick with mass m and length ℓ lies at rest on a frictionless table. A ball with
the same mass m moves with speed v0 perpendicular to the stick. It collides completely
inelastically with the stick and sticks to it, at a distance x from the center, as shown in
Fig. 8.17.

x

(top view)

v

m

m

l

0

Figure 8.17
(a) What is the resulting angular velocity of the system?

(b) For what value of x is the angular velocity maximum?

(c) For what value of x does the far end of the stick (the top end in the figure) not move
immediately after the collision?

8.12. Collision with a tilted stick

On a frictionless table, a massless stick with length ℓ lies at rest at a 45◦ angle with respect
to the x axis. A mass m is attached to its lower-right end, as shown in Fig. 8.18. Another

m

m

l

v

(top view)

45

Figure 8.18
mass m moves with speed v in the x direction and collides with the stick and sticks to it at
its upper-left end, forming a dumbbell.

(a) What is the resulting angular velocity of the dumbbell?

(b) How much energy, if any, is lost to heat in this process?

(c) What is the velocity (give both components) of the lower-right mass immediately
after the collision?

8.13. Right-angled collision

A uniform stick with mass m and length ℓ is initially at rest along the y axis on a frictionless
table, as shown in Fig. 8.19. An identical stick, oriented in the x direction and traveling

v

m,l

m,l

(at rest)

Figure 8.19
with speed v in the x direction, sticks to one of the ends of the first stick, forming a rigid
right-angled object. What is the angular speed of the resulting motion? How much energy
is lost to heat in the collision?

8.14. Stick on a table

A massless stick lies on a table, with a length a hanging over the edge and a length b on the
table, as shown in Fig. 8.20. A ball with mass m lies on the stick at its right end. Another

m
a b

m
v0

Figure 8.20

ball with mass m is dropped above the left end and hits the end with speed v0. Assuming
that all interactions in the setup are elastic, what are the velocities of the two balls right
after the collision?
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8.15. Bouncing dumbbell

A dumbbell (consisting of two point masses m/2 at the ends of a massless stick with length
ℓ) bounces elastically off a frictionless floor. Immediately before the bounce, the dumbbell
makes an angle θ with the horizontal, it is not rotating, and the center is moving directly
downward with speed v0, as shown in Fig. 8.21.

v0

θ

Figure 8.21
What is the velocity of the center immediately after the bounce? Verify that your answer
is reasonable in the θ = 90◦ and θ → 0 limits. Note: You can ignore gravity, because the
bounce takes essentially zero time. Also, the dumbbell will keep bouncing off the floor
indefinitely as time goes on, but we’re concerned only with the first bounce.

8.16. Colliding with a wall

On a frictionless floor, a uniform stick with mass m and length ℓ moves with speed v0
(without rotating) in the direction perpendicular to a wall. It makes an angle θ with the
direction of the wall, as shown in Fig. 8.22. If the stick collides elastically with the wall,

(top view)

θ

m l

v0

Figure 8.22

what should θ be so that the speed of the CM after the collision is zero?

8.17. Stick hitting a pole

A uniform stick with mass m and length ℓ moves (without rotating) across a frictionless
table with velocity v0 perpendicular to its length, as shown in Fig. 8.23. It collides elasti-

center

(top view)

pole

v0

m,l

x

Figure 8.23

cally with a fixed vertical pole. The point of impact is a distance x from the center of the
stick.

(a) What should x be so that after the collision, the speed of the stick’s CM is zero?

(b) Assume that x takes on the value you found in part (a). After the stick makes a half-
rotation, it will collide elastically with the pole again, this time on the left side of the
pole. Assuming that the pole has negligible thickness, what does the resulting motion
of the stick look like? (It is possible to answer this without doing any calculations,
but explain your reasoning clearly. It is also possible to answer this without solving
part (a).)

8.18. Striking objects

(a) A dumbbell consists of two identical masses at the ends of a massless stick. You give
one of the masses a quick strike in the direction perpendicular to the stick. Show that
right after the strike, the other mass is instantaneously at rest. Hint: Use Eq. (8.10).

(b) You now strike a uniform massive stick (like a pencil) at one of its ends, with the
strike again being perpendicular to the stick. If the CM picks up a speed v0, what is
the velocity of the end you don’t hit (right after the strike)? Does it move forward (in
the same direction as the CM) or backward?

8.19. Center of percussion

You loosely hold one end of a uniform stick of length ℓ, which is then struck with a
hammer. Where should this strike occur so that the end you are holding doesn’t move
(immediately after the strike)? In other words, where should the strike occur so that you
don’t feel a “sting” in your hand? This point is called the center of percussion.

8.20. Dumbbell and pole

A dumbbell consists of two masses m at the ends of a massless stick with length ℓ ≡ 2r . It
lies on a frictionless table, next to a fixed vertical pole that is a distance x from the center
of the dumbbell, as shown in Fig. 8.24. The pole and the dumbbell are initially separated

center

(top view)
pole

v0

m

x
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m

Figure 8.24

by an infinitesimal distance.

The mass closer to the pole is given a swift strike (perpendicular to the dumbbell) and
immediately picks up a speed v0. (The other mass remains instantaneously at rest; see
Problem 8.18(a).) The dumbbell then immediately collides elastically with the pole and
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bounces off to the right. What should x be so that after the collision the dumbbell has no
rotational motion?

8.21. One full revolution

A uniform stick with mass m and length ℓ lies on a frictionless table. It is struck with a
quick blow (directed perpendicular to the stick) at a distance x from the center. A dot is
painted on the table a distance d from the initial center of the stick, as shown in Fig. 8.25.

l
m

x

d

(top view)

strike

dot

Figure 8.25

What should x be (in terms of ℓ and d) so that the stick makes one complete revolution by
the time the center reaches the dot? What is the minimum value of d (in terms of ℓ) for
which such an x exists?

8.22. Sliding to rolling

A uniform ball initially slides, without rotating, on the ground. Friction with the ground
eventually causes the ball to roll without slipping. If the initial linear speed is v0, what is
the final linear speed?

8.23. Tipping a block

A square block with mass m and side length ℓ sits at rest on a table, with its bottom right
corner attached to the table by a pivot, as shown in Fig. 8.26. A ball, also with mass m,pivot

v

m

lm

Figure 8.26

moves horizontally to the right with speed v and collides with the block and sticks to it at
its upper left corner. The moment of inertia of the block around its center is mℓ2/6.

(a) Immediately after the collision, what is the angular speed of the resulting block-plus-
ball system around the pivot?

(b) What is the cutoff value of v, above which the block tips over, that is, above which
the initial right-hand side of the block lands on the table?

8.4 Multiple-choice answers

8.1. c,d Choice (a) is incorrect because it implies only that the linear momentum is zero (via
Eq. (6.10)). Equivalently, it implies only that the first term in Eq. (8.5) is zero. Choice (b)
is incorrect because it likewise implies only that the linear momentum p is zero. Choice
(c) is correct. And choice (d) is correct because L = r × p has a factor of r in it. So
the farther a mass is from the origin, the larger its L will be (all other aspects of the cross
product being equal). This implies that the clockwise L from the downward-moving points
on the right side of the disk is larger in magnitude than the counterclockwise L from the
upward-moving points on the left side. (The upward-moving points do indeed move in a
counterclockwise sense relative to P.)

8.2. c The total L is the sum of the L of the object treated like a point mass at the CM, plus
the L around the CM; see Eq. (8.5). The latter of these has the same clockwise magnitude
in all five choices. The former is largest in choice (c), because the object has the largest
“impact parameter” in a clockwise sense. (The arrows seem to “add up” in choice (e)
because they point in the same direction. But this alignment is meaningless, because we
could have drawn the rotational arrow anywhere along the circumference of the circle.)

8.3. a The total L is the sum of the L around the CM, plus the L of the object treated like
a point mass at the CM. The former of these has a clockwise sense relative to A (and any
other point, for that matter). The latter has a counterclockwise sense relative to A (but zero
relative to B, and clockwise relative to C). So it is possible for these two contributions to
cancel around point A if v and ω are related properly (ω = 6v/ℓ, as you can show).

8.4. c The total L is the sum of the L around the CM, plus the L of the object treated like
a point mass at the CM. Both of these contributions to L are always positive for point A
(assuming v and ω are positive), so the answer must be (c).
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Remark: The extra information about point B in choice (c) is also true. In the limit where v is
small and ω is large, the L around point B is positive (the second term in Eq. (8.5) dominates with a
clockwise sense). But in the limit where v is large and ω is small, the L around point B is negative
(the first term in Eq. (8.5) dominates with a counterclockwise sense).

8.5. d The total angular momentum relative to the dot is given by Eq. (8.5). The non-slipping
condition tells us that the speed of the CM is VCM = Rω, so Eq. (8.5) gives the magnitude
of L as

L = mRVCM + Iω = mR(Rω) +
(

mR2

2

)
ω =

3
2

mR2ω. (8.11)

Alternatively, the parallel-axis theorem quickly gives the moment of inertia of the wheel
around a point on the rim as Irim = Icenter + mR2 = 3mR2/2. And since the point on the
wheel that is in contact with the ground is instantaneously at rest, we can consider the
wheel to be (instantaneously) undergoing simple rotation around a fixed pivot. The simple
L = Iω relation then suffices, and we obtain L = Irimω = 3mR2ω/2, as above.

Remark: The ω in this second solution is indeed the same as in the first solution where ω was
defined to be the angular speed around the CM, because the angular speed ω is independent of the
choice of origin. A line painted on the wheel will rotate through the same angle dθ during a time dt,
independent of what point you consider the wheel to be rotating around. You could be riding along
on the CM, or you could be standing at the contact point. In contrast with this, ω is different if you
view things in a rotating reference frame. For example, in the frame rotating along with the wheel,
ω is zero. But we’ll never use rotating frames when talking about angular momentum. At most, our
reference frames will be translating.

8.6. d The moment of inertia of a stick around its center is I = mℓ2/12. The ℓ2 dependence
implies that if we cut ℓ in half (while keeping m the same), I decreases by a factor of 4.
But since angular momentum, which is given by L = Iω, is conserved during the dive, the
product Iω remains constant. So if I decreases by a factor of 4, then ω must increase by a
factor of 4.

8.7. d The wheels are spinning quickly in the forward direction at takeoff, so they have
substantial angular momentum. If the brakes are applied, then some of this angular mo-
mentum is transferred to the main body of the bike, because the total angular momentum
of the system is conserved. The bike will therefore rotate forward somewhat, as desired.

Remark: Conversely, if the rider hits the gas, then the back wheel will rotate faster in the forward
direction, which means that the body of the bike will rotate backward somewhat. This is relevant if
for some reason the bike is tilting too far forward during the jump.

The leaning backward option in choice (b) will also make the bike tilt forward slightly. However,
this choice is inferior for two reasons. First, it will put the rider in an untenable position for the
landing. And second, the effect is very small due to the fact that the forward tilting angle θ of the
bike is proportional (a small fraction of) the backward tilting angle of the rider. In contrast, hitting
the brakes changes the angular velocity ω of the body of the bike, which means that the forward
rotation occurs for as long as the bike is in the air. This effect therefore extends over time (and hence
can be made arbitrarily large, in the limit of a hypothetically arbitrarily large time in the air), as
opposed to being a one-time bounded effect, as is the case with leaning backward.

Of course, if the rotation of the tires is decreased too much by hitting the brakes, then there will be
a problem during the landing, because the v = ωr non-slipping condition won’t be satisfied (even
approximately). Skidding will therefore occur, making it difficult to keep the bike upright. However,
this effect can be mitigated by hitting the gas right before the landing.

8.8. a,b,c All of the choices are possible. This question is basically asking what the total
initial angular momentum around the point of contact can be – clockwise, counterclock-
wise, or zero. (The point of contact can’t apply any torque around itself, so L is conserved
around this point.) The total L of a translating and rotating object is given by Eq. (8.5).
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In the present setup, the two terms in Eq. (8.5) are associated with, respectively, clock-
wise and counterclockwise angular momentum. So depending on which term has a larger
magnitude (or they may be equal), we can obtain any of the three choices.

Remark: A related question is: Given a rightward v and a counterclockwise ω, where on the rim
should you catch the frisbee, if you want it to be motionless afterward? That is, around which point is
the total L equal to zero? You need to grab the frisbee at a specific point in the lower-right quadrant,
because the CM needs to move in a clockwise sense around your hand if there is to be any chance
of L being zero. (If you’re allowed to move your hand and grab the trailing edge, then a point in the
upper-left quadrant can also yield L = 0.) If we demand that the two terms in Eq. (8.5) have equal
magnitudes (and opposite directions), we find that the impact parameter b of the center of the frisbee
is given by mvb = ICMω =⇒ b = ICMω/mv. However, if ω is too large or v is too small, then this b
is larger than the radius R of the frisbee, in which case the solution isn’t physical, which means that
there is no actual solution for b. This can be traced to the fact that you can control the size of the
first term in Eq. (8.5) by adjusting b, whereas the second term takes on a given fixed value.

Assuming b < R, catching a frisbee (or a football, or anything spinning) at or near this special point
makes it much less likely that the frisbee will roll off your hand. If circumstances dictate that you
must instead catch the frisbee in the upper right-hand quadrant (where the two parts of L are both
counterclockwise, so they add), the probability of dropping the frisbee is much higher. There is
much less room for error in exactly when you clamp down your fingers and firmly grab on to the
frisbee.

8.9. b There is an external force at the pivot on the stick-plus-ball system, so p isn’t con-
served (the earth will gain momentum). But this force doesn’t ruin conservation of L
around the pivot, because the lever arm of the force is zero, so there is no torque. E is
conserved by definition, since we’re assuming the collision is elastic. Furthermore, choice
(d) isn’t correct, because the force from the pivot does provide a torque around the point
of collision, since the lever arm is now nonzero.

8.10. b The angular momentum relative to the center of the hole is conserved because the
force from the string is always radial; it always points directly toward the center of the
hole. So the torque is zero, and choice (b) is correct.

Since the angular momentum mvr is constant, and since the radius r decreases as the mass
spirals in, the speed v must increase. The energy mv2/2 must therefore also increase. So
choice (a) is incorrect.

Remark: Since the energy increases, work must be done on the mass. And indeed, because of the
slight motion of the mass in the radial direction as it spirals in, there is a component of the velocity
that points in the same direction as the radial tension in the string. So a nonzero amount of work
is done on the mass. Equivalently, the person below the table does work by applying a force and
moving her hand downward along the direction of the string. See Problem 8.4 for a quantitative
treatment of this setup.

8.11. a Energy is conserved because the force from the string is always orthogonal to the
mass’s velocity, so no work is done on the mass. This orthogonality follows from the fact
that in contrast with the setup in the previous question, the mass is always instantaneously
moving in a circle for which the string points along the radius; the center of the circle is
the string’s instantaneous point of contact with the pole. Alternatively, you can see that no
work is done by noting that the pole doesn’t move, so it can’t do any work. (And there’s
nothing else in this setup, like the person in the previous question, that can do any work.)
So choice (a) is correct.

Since the energy mv2/2 is constant, the speed v is also constant. This means that the
angular momentum mvr (relative to the center of the pole) must decrease, because the
radius r decreases as the mass spirals in. So choice (b) is incorrect.

Remark: Since the angular momentum decreases, there must be a nonzero torque. And indeed,
because of the nonzero radius of the pole, the tension in the string isn’t radial; it has a tiny lever arm
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(the radius of the pole) relative to the center of the pole. See Problem 8.4 for a quantitative treatment
of this setup.

If you want to get rid of the torque by making the radius of the pole be zero, then the mass will
simply travel indefinitely in a circle instead of spiraling in. So both energy and angular momentum
will be conserved.

8.5 Problem solutions
8.1. Translation plus rotation

In Fig. 8.27 let the position of the CM of the object (we haven’t drawn the object) relative r
r'

CM

dm

RCM

Figure 8.27

to an arbitrary fixed origin be RCM, and let the position of a general point in the object
relative to the CM be r′. (The figure is planar since we’re drawing it on the page, but
this restriction isn’t necessary. This derivation holds for a general 3-D object.) Then the
position of a general point relative to the origin is r = RCM + r′. So the velocity of the
point is v = VCM + v′. The total angular momentum of the object, relative to the origin, is
therefore (see below for the explanations of the zeros in the fifth line)

L =
∫

r × dp

=

∫
r × v dm

=

∫
(RCM + r′) × (VCM + v′) dm

=

∫
RCM × VCM dm +

∫
RCM × v′ dm +

∫
r′ × VCM dm +

∫
r′ × v′ dm

= MRCM × VCM + 0 + 0 + L′, (8.12)

where L′ is the angular momentum relative to the CM, which we denoted by Laround CM in
Eq. (8.5).

The first zero in the fifth line above occurs because
∫

RCM × v′ dm = RCM ×
∫

v′ dm, and∫
v′ dm is the total momentum as measured in the CM frame. But the total momentum in

any frame is the total mass times the velocity of the CM with respect to that frame (see
Eq. (6.10)), and the velocity of the CM is zero in the CM frame, by definition. The second
zero occurs because

∫
r′ × VCM dm =

( ∫
r′ dm

) × VCM, and
∫

r′ dm is the total mass
times the position of the CM in the CM frame, which is zero by definition.

Remark: The proof here was very similar to the proofs in Problems 7.1 and 7.4. As in those prob-
lems, the present result holds only if the CM is used on the right-hand side, because otherwise the
cross terms in Eq. (8.12) won’t be zero.

8.2. The τ = dL/dt relation

The time derivative of L is

dL
dt
=

d(r × p)
dt

=

(
dr
dt
× p

)
+

(
r × dp

dt

)
= (v × mv) + (r × F)
= 0 + τ, (8.13)

where v×v = 0 because the cross product of a vector with itself is zero. Note that we used
the standard product rule when taking the derivative of the cross product. This is indeed
legal, as you should check, because the cross product is built up from standard products;
see Eq. (13.14).
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8.3. Spinning with dumbbells

Since there are no external torques on the system, the angular momentum is conserved:

Ifωf = Iiωi =⇒
ωf

ωi
=

Ii

If
. (8.14)

We must therefore find Ii and If . The moment of inertia of a solid cylinder is mR2/2, so
the total initial moment of inertia is

Ii =
1
2

(70 kg)(0.15 m)2 + 2 · (5 kg)(1 m)2

= (0.79 + 10) kg m2 ≈ 11 kg m2. (8.15)

Assuming that the dumbbells end up at a radius of 0.15 m, the total final moment of inertia
is

If =
1
2

(70 kg)(0.15 m)2 + 2 · (5 kg)(0.15 m)2

= (0.79 + 0.23) kg m2 ≈ 1 kg m2. (8.16)

Since Ii is about 11 times If , Eq. (8.14) tells us that ωf is about 11 times ωi.

Remarks: This ωf/ωi ≈ 10 result is probably larger than you would have guessed. If you actually
try to perform the experiment, your large final ω will most likely cause you to fall over, or at least
look rather silly trying not to (unless you made your initial ω extremely small).

Note that the dumbbells’ contribution to Ii in Eq. (8.15) completely dominates the cylinder’s (the
body’s) contribution. This demonstrates how important the r2 factor is in the moment of inertia.
Even though the combined dumbbells have only 1/7 the mass of the body, the initial I of the dumb-
bells is about 13 times the I of the body.

If you want to solve the problem symbolically, it is perhaps easiest to work with ratios. If r1 equals
the ratio of the combined dumbbell mass to the cylinder mass (so r1 = 1/7 here), and if r2 equals
the ratio of the arm length to cylinder radius (so r2 = 1/0.15 = 6.67 here), then you can show that
ωf/ωi = (1/2 + r1r2

2 )/(1/2 + r1) ≈ 10.7.

If you simply drop the dumbbells from your outstretched arms instead of drawing them in, will
you speed up? Since your final I will be roughly the same size as the If in Eq. (8.16) (because
the dumbbells’ contribution to If is reasonably small), you might think that the answer is “yes.”
However, the answer is “no.” You will continue to rotate at the same angular speed (assuming you
don’t throw the dumbbells backward or forward relative to your hands). The difference between
this setup and the original one is that if you just drop the dumbbells, they will keep their angular
momentum (until it is transferred to the earth via the ground, a wall, or whatever else you end
up smashing), whereas if you draw them inward to your body, their angular momentum will be
(mostly) transferred to your body; the dumbbells apply a forward torque on your hands. This torque
isn’t terrible obvious intuitively. It certainly follows from conservation of momentum via the above
reasoning, but you can also think about it in terms of the Coriolis force in the rotating reference
frame (see, for example, Problem 12.6).

8.4. Spiraling in

(a) Since L = mvr is constant, the differential of rv equals zero. Using the product rule,
this gives

r dv + v dr = 0 =⇒ dv = −v dr
r

. (8.17)

(dv is positive and dr is negative here.) The increase in kinetic energy is then

d
(

mv2

2

)
= mv dv = mv

(
−v dr

r

)
= −mv2

r
dr = −T dr, (8.18)

where T = mv2/r is the magnitude of the tension force. But −T dr is the (positive)
work done by the radially inward tension, as the mass moves radially inward by dr
(which is negative). So the change in kinetic energy correctly equals the work done
by the tension.
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(b) The angular momentum is L = mvr , with clockwise taken to be positive in Fig. 8.12.
Since v is constant, the rate of change of L is simply L̇ = mvṙ; this is negative
because ṙ is negative. What is ṙ? If we let the small radius of the pole be a, then as
the string wraps around the pole, the rate of increase of the length of string touching
the pole is d(aθ)/dt = aω. But ω is the angular frequency of the (essentially)
circular motion, which is given by ω = v/r . So the rate of change of the length of
the straight part of the string is −aω (which is negative). That is, ṙ = −aω. We
therefore have

L̇ = mvṙ = mv(−aω) = −mva
v

r
= −mv2

r
a = −Ta, (8.19)

where T = mv2/r is the magnitude of the tension force. But −Ta is the (nega-
tive) torque produced by the tension acting at a lever arm of a (see the solution to
Multiple-Choice Question 8.11). So the (negative) rate of change of angular momen-
tum correctly equals the (negative) torque.

8.5. Spinning coins

The center of mass of the system is initially at rest, so it is always at rest. The resulting
motion of the system is therefore solely a rotation around the contact point; call this point
P. We can find the resulting angular velocity by using conservation of angular momentum.
(Energy isn’t conserved, because the sticking process is inelastic.) The initial angular
momentum of each coin around P is given by Eq. (8.5). The first term in this equation is
zero, so the initial L of each coin around P is simply ICMω = (mR2/2)ω. There are two
coins, so the total initial L around P is mR2ω.

After the coins stick to each other, each coin is rotating around the point P on its rim. The
parallel-axis theorem gives the moment of inertia of each coin around P as ICM + mR2 =

mR2/2+mR2 = 3mR2/2. There are two coins, so the total final moment of inertia around
P is 3mR2. Conservation of L around point P therefore gives

(mR2)ω = (3mR2)ωf =⇒ ωf =
ω

3
. (8.20)

The direction of the spinning is clockwise, because both coins were initially spinning
clockwise. If the coins were initially spinning in opposite directions with the same angular
speed ω, then the total initial L would be zero, so the final ωf would be zero.

Remark: Note that ωf doesn’t depend on the mass m or the radius R of the coins. (This follows
from dimensional analysis.) However, ωf does depend on the moment of inertia. We assumed that
the coins are uniform, so I = mR2/2. If we instead have rings of mass, with I = mR2, then you
can show that the final angular velocity is ω/2. More generally, we can let the moment of inertia
be βmR2, where β is a numerical factor. You can show in this case that ωf = βω/(1 + β). You
should check that this makes intuitive sense in the β → 0 and β → ∞ limits. (The β → ∞ case
would require the coins having massive radial extensions that somehow don’t run into each other as
the coins spin.)

8.6. Equal velocities

We’ll need to apply conservation of all three of p, E, and L. These are all conserved
because the collision is elastic and there are no external forces. Let d be the distance from
the collision point to the center of the stick. Let the ball’s initial speed be v0; it will cancel
out of the equations. The unknowns in Fig. 8.28 are v, ω, and d. Conservation of p gives

v0

v

v

d

ω

Figure 8.28

mv0 = mv + mv =⇒ v =
v0

2
. (8.21)

Conservation of E gives (remembering that the stick’s energy comes from a combination
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of the CM motion and the rotational motion around the CM; see Eq. (7.8))

1
2

mv2
0 =

1
2

mv2 +

[
1
2

mv2 +
1
2

ICMω
2
]

=⇒ 1
2

mv2
0 =

1
2

m
(
v0

2

)2
+

[
1
2

m
(
v0

2

)2
+

1
2

(
1
12

mℓ2
)
ω2

]
=⇒ 1

4
mv2

0 =
1
24

mℓ2ω2 =⇒ ω =
√

6
v0

ℓ
. (8.22)

Conservation of L, around a fixed dot on the table coinciding with the initial center of the
stick, gives (remembering that the stick’s angular momentum comes from a combination
of the CM motion and the rotational motion around the CM; see Eq. (8.5))

mv0d = mvd +
[
0 + ICMω

]
=⇒ mv0d = m

(
v0

2

)
d +

(
1
12

mℓ2
) (√

6
v0

ℓ

)
=⇒ 1

2
mv0d =

√
6

12
mv0ℓ =⇒ d =

ℓ
√

6
≈ (0.41)ℓ. (8.23)

The zero in the first line above comes from the fact that the CM of the stick is moving
directly away from our chosen origin. This result of (0.41)ℓ is about 80% of the ℓ/2
distance from the center of the stick to the end.

Remark: In applying conservation of L, any other fixed point will work too. For example, we
can pick a fixed dot on the table that coincides with the point of collision. The conservation-of-L
statement is then

0 = 0 +
[ − mvd + ICMω

]
, (8.24)

where the minus sign comes from the fact that the CM of the stick moves in a counterclockwise
sense around our chosen origin. Since v = v0/2, Eq. (8.24) is equivalent to the equation in the first
line of Eq. (8.23).

8.7. No final rotation

In Fig. 8.29, we have three unknowns: v1, v2, and d (ω will cancel out of the equations).
And we have three equations: conservation of p, E, and L. Conservation of p gives

0 = mv2 − mv1 =⇒ v1 = v2 ≡ v. (8.25)

l

m

d

ω

m

v1

v2

Figure 8.29

Conservation of E gives (using v1 = v2 ≡ v)

1
2

Iω2 =
1
2

mv2 +

(
1
2

mv2 + 0
)
=⇒ 1

2

(
mℓ2

12

)
ω2 = mv2 =⇒ v =

ℓω

2
√

6
. (8.26)
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The zero in this equation comes from the fact that the stick isn’t rotating, so the second
term in Eq. (7.8) is zero. Finally, conservation of L, relative to a dot on the table at the
initial location of the center of the stick, gives

Iω = (0 + 0) + mvd =⇒
(

mℓ2

12

)
ω = mvd =⇒ v =

ℓ2ω

12d
. (8.27)

The zeros in this equation come from the facts that (1) the stick isn’t rotating and (2) its
CM is moving directly away from our chosen origin, so both terms in Eq. (8.5) are zero.
Equating the v in Eq. (8.26) with the v in Eq. (8.27) yields

ℓω

2
√

6
=
ℓ2ω

12d
=⇒ d =

ℓ
√

6
≈ (0.41)ℓ. (8.28)

This result of (0.41)ℓ is about 80% of the ℓ/2 distance from the center of the stick to the
end. You should convince yourself why the answer to this problem is the same as the
answer to Problem 8.6.

8.8. Stick and pivot

(a) In Fig. 8.30, we have two unknowns: the final v and ω. And we have two equations:
conservation of E and conservation of L (around the pivot). Energy is conserved
because the collision is elastic. Linear momentum is not conserved, because there is
an external force at the pivot. Angular momentum relative to the pivot is conserved
because the external force at the pivot produces no torque around it.

l

d

m

m

ω

v

l

d

m

m

ω0

Figure 8.30

Conservation of energy gives

1
2

Iω2
0 =

1
2

Iω2 +
1
2

mv2 =⇒ I (ω2
0 − ω2) = mv2. (8.29)

Conservation of angular momentum relative to the pivot gives

Iω0 = Iω + mvd =⇒ I (ω0 − ω) = mvd. (8.30)

We could solve for ω in Eq. (8.30) and plug the result into Eq. (8.29), and then solve
for v. But an easier method, which avoids a quadratic equation, is to divide Eq. (8.29)
by Eq. (8.30). This yields ω0 + ω = v/d, and so ω = v/d − ω0. Plugging this into
Eq. (8.30) gives (using I = mℓ2/3 around the pivot at the end of the stick)

I
[
ω0 − (v/d − ω0)

]
= mvd =⇒ 2Iω0 = v(md + I/d)

=⇒ v =
2Iω0

md + I/d
=

2(mℓ2/3)ω0

md + (mℓ2/3)/d
=

2ℓ2ω0

3d + ℓ2/d
. (8.31)

Limits: As expected, v goes to zero for d → 0 and also for d → ∞, which would require
attaching a massless extension to the stick. Also, if ℓ → ∞ then v → 2ω0d. You should think
about how this relates to the M ≫ m case in Problem 1.7.
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Remarks: A second solution to Eqs. (8.29) and (8.30) is ω = ω0 and v = 0. We dropped this
solution when we divided one equation by the other. However, this solution corresponds to the
initial conditions, which certainly satisfy conservation of E and L with the initial conditions.
If you chose to take the route of solving a quadratic equation, the realization that ω = ω0 must
be a solution would allow you to easily factor the equation.
The above ω0 + ω = v/d result can be written as ω0d = v − ωd. In words, this equation says
that the relative speed of the ball and the contact point on the stick right before the collision
(when the gap is decreasing) equals the relative speed right after the collision (when the gap
is increasing). This is a general result for elastic collisions. We know from the introduction to
Chapter 6 that in an elastic collision (in any dimension) between point particles, the magnitude
of the relative velocity is the same before and after the collision. But more generally, in an
elastic collision between extended objects that may be rotating, the magnitude of the relative
velocity of the contact points on the objects is the same before and after, provided that we are
talking only about the relative velocity along the line of the (equal and opposite) force that
the objects exert on each other. Additionally, the motion needs to be effectively planar. You
can think about how this more general result follows from conservation of energy and angular
momentum.

(b) First solution: Maximizing v is equivalent to minimizing the denominator in the
result for v in Eq. (8.31). Setting the derivative of 3d + ℓ2/d with respect to d equal
to zero gives

0 = 3 − ℓ2

d2 =⇒ d =
ℓ
√

3
≈ (0.58)ℓ. (8.32)

Second solution: The maximum v (which corresponds to the maximum kinetic en-
ergy of the ball) occurs when the final kinetic energy of the stick is minimum. In
other words, when ω = 0. In this case, the conservation of E and L equations be-
come

E :
1
2

Iω2
0 =

1
2

mv2 =⇒ v =

√
I
m
ω0,

L : Iω0 = mvd. (8.33)

Plugging the v from the first of these equations into the second gives

Iω0 = m *,
√

I
m
ω0+- d =⇒ d =

√
I
m
=

√
mℓ2/3

m
=

ℓ
√

3
. (8.34)

You are encouraged to let I = βmℓ2 and then consider the various limits and special
cases for β.

8.9. Stick hitting a ball

Let the various final speeds be ω, v, and u, with their positive directions indicated in
Fig. 8.31. Momentum, energy, and angular momentum are all conserved. Conservation of
momentum gives

mv0 = mv + mu =⇒ v = v0 − u. (8.35)

Conservation of energy gives (using Eq. (7.8) for the final energy of the stick)

1
2

mv2
0 =

(
1
2

mv2 +
1
2

mℓ2

12
ω2

)
+

1
2

mu2 =⇒ v2
0 = v2 +

ℓ2ω2

12
+ u2. (8.36)

Conservation of angular momentum, relative to a dot on the table anywhere along the line
of the stick’s CM motion, gives (using Eq. (8.5) for the stick)

0 =
(
0 +

mℓ2

12
ω

)
− m

ℓ

2
u =⇒ ω =

6u
ℓ
. (8.37)
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l
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ω
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(top view)

Figure 8.31

Plugging the v and ω from the p and L equations into the E equation gives

v2
0 = (v0 − u)2 +

ℓ2

12

(
6u
ℓ

)2

+ u2 =⇒ 2v0u = 5u2 =⇒ u =
2v0

5
. (8.38)

This is the desired final speed of the ball. Technically, u = 0 is also a solution. But that is
simply the initial speed, which we already know satisfies the conservation equations, by
definition.

Remark: The final speed of the stick’s CM is v = v0 − u = 3v0/5. So the stick moves faster than the
ball. You can show that if the distribution of the stick’s mass were such that its moment of inertia
were mℓ2/8 (which could be obtained by taking an appropriate amount of mass near the center of a
uniform stick and moving it out toward the ends), then the ball and the stick’s CM would move with
the same speed.

8.10. Collision with a fixed object

Let the final linear speed of the stick’s CM be v, and let the final angular speed be ω (with
counterclockwise positive). The momentum of the stick isn’t conserved, because there is
an external force from the fixed object. But energy is conserved because we are told that
the collision is elastic. And angular momentum around the corner of the fixed object is
conserved, because the external force at the corner produces no torque around that point.

Conservation of energy gives (using Eq. (7.8))

1
2

mv2
0 + 0 =

1
2

mv2 +
1
2

(
mℓ2

12

)
ω2 =⇒ v2

0 = v2 +
ℓ2ω2

12
. (8.39)

And conservation of angular momentum around the corner gives (using Eq. (8.5))

mv0
ℓ

2
+ 0 = mv

ℓ

2
+

mℓ2

12
ω =⇒ v0 = v +

ℓω

6
. (8.40)

We have two equations and two unknowns (v and ω). Plugging the v from Eq. (8.40) into
Eq. (8.39) gives

v2
0 =

(
v0 −

ℓω

6

)2

+
ℓ2ω2

12

=⇒ 0 = −v0ℓω

3
+
ℓ2ω2

36
+
ℓ2ω2

12
=⇒ ω =

3v0

ℓ
. (8.41)

And then v = v0 − ℓω/6 = v0/2.

The final velocity of the bottom end of the stick (right after the collision) is the sum of
the translational velocity of the CM plus the rotational velocity around the CM (associated
with a circle of radius ℓ/2). So

vend = v + ω

(
ℓ

2

)
=

v0

2
+

(
3v0

ℓ

) (
ℓ

2

)
= 2v0. (8.42)
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Remarks: The final velocity of the top end of the stick is v − ω(ℓ/2) = −v0, because the rotational
motion is now subtracted from the translational motion. As a double check, the average of the final
velocities of the two ends, namely 2v0 and −v0, equals v0/2 which is correctly the final velocity of
the center of the stick. Note that since the final velocity of the top end is −v0, we see that the velocity
of the point of contact on the stick simply reverses sign during the collision. This is consistent with
the relative-speed theorem mentioned in the remarks in the solution to Problem 8.8.

8.11. Sticking to a stick

(a) Energy isn’t conserved, because the collision is inelastic. And linear momentum
won’t be relevant in finding the angular velocity ω (at least for our choice of origin).
So we need only consider angular momentum. We’ll apply conservation of L around
a dot painted on the table at the location of the CM of the entire system, at the
moment when the ball hits the stick. Since the ball and the stick have equal mass,
this dot is x/2 from the center of the stick.

Relative to the dot on the table, the initial L is mv0(x/2), with counterclockwise
taken to be positive. To find an expression for the final L, we need to calculate
the moment of inertia of the entire system around the CM. Using the parallel-axis
theorem for the stick, we have

Istick + Iball =

[
mℓ2

12
+ m

( x
2

)2
]
+ m

( x
2

)2
=

mℓ2

12
+

mx2

2
. (8.43)

Conservation of angular momentum around the dot therefore gives

mv0

( x
2

)
= 0 +

(
mℓ2

12
+

mx2

2

)
ω =⇒ ω =

v0x
ℓ2/6 + x2 . (8.44)

The zero in this equation comes from the fact that the CM of the system moves
directly away from our chosen origin, so the first term in Eq. (8.5) is zero. If we had
chosen another point as the origin, such as the center of the stick, then we would
have needed to use conservation of momentum to find the speed of the CM of the
system, which is just v0/2 since the total mass is 2m. The solution in this case would
involve mvx0/2 being added to both sides of Eq. (8.44).

Limits: The above ω goes to zero for both x = 0 and x = ∞; these results make sense. (In
the latter case, we would need to attach a massless extension to the stick.) By a continuity
argument, it follows that ω must achieve a maximum at some intermediate value of x; see part
(b).

(b) To maximize ω, we need to set the derivative of the expression in Eq. (8.44) equal to
zero. Ignoring the denominator of the derivative, since we’re setting the result equal
to zero, we find(

x2 +
ℓ2

6

)
· 1 − x · 2x = 0 =⇒ x2 =

ℓ2

6
=⇒ x =

ℓ
√

6
≈ (0.41)ℓ. (8.45)

This result of (0.41)ℓ is about 80% of the ℓ/2 distance from the center of the stick to
the end.

(c) The velocity of the top end equals the CM velocity minus the backward rotational
velocity. Conservation of linear momentum tells us that

mv0 = (2m)vCM =⇒ vCM = v0/2. (8.46)
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The top end of the stick is a distance r = ℓ/2 + x/2 from the CM, so we want

0 = vCM − rω

=⇒ 0 =
v0

2
−

(
ℓ

2
+

x
2

)
ω

=⇒ v0

2
=

(
ℓ

2
+

x
2

) (
v0x

ℓ2/6 + x2

)
=⇒ ℓ2/6 + x2 = (ℓ + x)x

=⇒ x = ℓ/6 . (8.47)

Remark: This result implies that the collision is located a distance ℓ/2 + x = 2ℓ/3 from the
top end. This location is the same as the “center of percussion” relevant to a quick strike (see
Problem 8.19). The reason these two results are the same is that the stick doesn’t care that the
ball sticks to it. The stick simply feels some forces (positive or negative) from the ball, and
the center-of-percussion result in Problem 8.19 doesn’t depend on the sign of the force.

8.12. Collision with a tilted stick

(a) There are no external forces, so p and L are conserved. E might or might not be;
we’ll find out eventually. Conservation of p quickly gives the speed of the dumbbell’s
CM as v/2, although we won’t need this to find ω.
The CM is halfway between the masses, which means ℓ/2 from each. The moment
of inertia of the resulting dumbbell is therefore I = 2 · m(ℓ/2)2 = mℓ2/2. So conser-
vation of L around the point on the table that coincides with the CM at the moment
of the collision gives (using the fact that the moving mass has an “impact parameter”
of ℓ/(2

√
2 ))

mv

(
ℓ

2
√

2

)
= 0 +

(
mℓ2

2

)
ω =⇒ ω =

v
√

2 ℓ
, (8.48)

where the zero here comes from the fact that the CM is moving directly away from
the origin, so the first term in Eq. (8.5) is zero.

(b) The energy of the dumbbell is partly translational and partly rotational. So the energy
lost to heat (if any) is

Ei − Ef =
1
2

mv2 −
(

1
2

(2m)v2
CM +

1
2

Iω2
)

=
1
2

mv2 − *,1
2

(2m)
(
v

2

)2
+

1
2

(
mℓ2

2

) (
v
√

2 ℓ

)2+-
= mv2

(
1
2
− 1

4
− 1

8

)
=

1
8

mv2. (8.49)

This is nonzero, so some energy is indeed lost to heat.

(c) The velocity of the lower-right mass is the sum of the CM velocity plus the ro-
tational velocity relative to the CM. The former is v/2 to the right. The latter is
ωr = (v/

√
2 ℓ)(ℓ/2) = v/(2

√
2 ) down and to the left at a 45◦ angle (since the rota-

tion is clockwise). The sum of these two vectors is shown in Fig. 8.32. The desired

v/4

v/4

v/2

v/2 2net 
velocity

Figure 8.32

velocity is therefore (vx ,vy ) = (v/4,−v/4). Equivalently, it points down to the right
at 45◦, with magnitude v/(2

√
2 ).

Remark: The velocity we just found points along the stick, that is, directly away from the
upper-left mass. There is a good reason for this. If we break up the initial velocity of the upper-
left mass into components parallel and perpendicular to the stick, we can consider this mass to
equivalently be two separate masses, each with mass m, with one moving perpendicular to the
stick with speed v/

√
2, and the other moving along the direction of the stick with speed v/

√
2.
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The former doesn’t (initially) make the lower-right mass move (you can convince yourself of
this by applying conservation of L around the upper-left end of the stick). But the latter gives
the lower-right mass an impulse along the direction of the stick. This is why the velocity of
the lower-right mass initially points along the stick.
This reasoning also tells us why the energy loss is mv2/8. If we consider the same two
hypothetical masses, the former leads to no energy loss, but the latter does. The stick is
irrelevant as far as the energy loss from this latter hypothetical mass goes; this mass effectively
just hits the lower-right mass and sticks to it. You can quickly use conservation of momentum
to show that if a moving mass collides and sticks to an identical stationary one, then half of
the initial energy is lost to heat. So the energy loss is (1/2)

(
m(v/

√
2 )2/2

)
= mv2/8.

8.13. Right-angled collision

The CM of each stick is located a distance ℓ/(2
√

2 ) from the CM of the entire system, as
shown in Fig. 8.33. The parallel-axis theorem therefore gives the moment of inertia of the

2 2

l/2 l/2

___l

P

CM

Figure 8.33

resulting rigid object, relative to the total CM, as

ICM = 2 *,mℓ2

12
+ m

(
ℓ

2
√

2

)2+- = 5mℓ2

12
. (8.50)

Conservation of angular momentum, around a dot on the table at the location of the total
CM when the collision occurs (let’s call this point P), gives

mv

(
ℓ

4

)
= 0 +

(
5mℓ2

12

)
ω =⇒ ω =

3v
5ℓ

, (8.51)

where we have used the fact that the “impact parameter” of the left stick relative to point
P is ℓ/4. The zero in Eq. (8.51) comes from the fact that the CM of the system moves
directly away from point P, so the first term in Eq. (8.5) is zero.

To find the energy lost to heat, we first need to find the speed of the CM of the system.
Conservation of linear momentum gives this speed as mv = (2m)vCM =⇒ vCM = v/2.
The initial and final kinetic energies are then Ki = mv2/2 and (using Eq. (7.8))

Kf =
1
2

(2m)v2
CM +

1
2

ICMω
2

=
1
2

(2m)
(
v

2

)2
+

1
2

(
5mℓ2

12

) (
3v
5ℓ

)2

=
13mv2

40
. (8.52)

The loss in energy is therefore Ki − Kf = (1/2 − 13/40)mv2 = 7mv2/40.

8.14. Stick on a table

Energy is conserved during the process, because we are told that all interactions (balls
with stick, and stick with table) are elastic. Additionally, the angular momentum of the
system relative to the corner of the table is conserved, because the external force from the
corner provides no torque around it. (During the collision, the table applies a force to the
stick only at the corner.)

Let v1 and v2 be the velocities of the two balls right after the collision, with the positive
directions chosen as shown in Fig. 8.34. If v1 comes out to be negative, that means the left

m
a b

m
v1

v2

Figure 8.34

ball moves upward right after the collision. With counterclockwise taken to be positive,
conservation of angular momentum relative to the corner of the table gives

mv0a = mv1a + mv2b =⇒ v1 = v0 − (b/a)v2. (8.53)

And conservation of energy gives

1
2

mv2
0 =

1
2

mv2
1 +

1
2

mv2
2 =⇒ v2

0 = v2
1 + v

2
2 . (8.54)
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Plugging the v1 from Eq. (8.53) into Eq. (8.54) gives

v2
0 =

(
v0 − (b/a)v2

)2
+ v2

2 =⇒ 0 = −2v0v2(b/a) + v2
2 (b2/a2 + 1)

=⇒ v2 = v0
2ab

a2 + b2 . (8.55)

Either of Eq. (8.53) or Eq. (8.54) then gives

v1 = v0
a2 − b2

a2 + b2 . (8.56)

Limits: If b→ 0 (more precisely, if b ≪ a) then v1 ≈ v0 and v2 ≈ 0. So the left ball keeps heading
downward at speed v0, and the right ball doesn’t move. This makes sense intuitively.

If a → 0 (more precisely, if a ≪ b) then v1 ≈ −v0 and v2 ≈ 0. So the left ball bounces upward
(due to the minus sign in v1) with the same speed v0 that it originally had, and the right ball doesn’t
move. This also makes sense intuitively; the left ball is essentially just bouncing off the table.

If a = b then v1 = 0 and v2 = v0. So the left ball ends up at rest (instantaneously), and the right
ball moves upward with speed v0. It is believable, although not obvious, that a = b leads to these
velocities. However, by a continuity argument, it is obvious that there must be some relation between
a and b that leads to the final speed of the left ball being zero, because v1 is positive (downward) if
b ≪ a, and it is negative (upward) if a ≪ b, so it must be zero for some intermediate value.

By conservation of energy, v1 can’t be any larger than v0, of course. So the a = b case yields the
maximum possible speed of the right mass. (You can also deduce this from Eq. (8.55).) If the masses
of the balls aren’t equal, then the maximum possible speed of the right ball can quickly be found
by using conservation of energy and letting the final speed of the left ball be zero; the right ball’s
final kinetic energy equals the left ball’s initial kinetic energy. This method of finding the maximum
speed of the right ball is much cleaner than finding the right ball’s final speed and then taking the
derivative to maximize it.

Remarks: Note that v0, v1, and v2 are in the ratio of a2 + b2 to a2 − b2 to 2ab. These expressions
are a standard way of generating Pythagorean triples. And the three velocities do indeed form a
Pythagorean triple, in view of Eq. (8.54).

As an exercise, you can show that if you want both balls to bounce upward with the same speed,
then a must be equal to (

√
2− 1)b ≈ (0.41)b. Equivalently, 1/

√
2 ≈ 71% of the stick must be lying

on the table. Again, by a continuity argument, it follows that equal upward speeds must be obtained
for some value of a between a = b (where the left mass doesn’t bounce up at all) and a = 0 (where
the right mass doesn’t bounce up at all).

8.15. Bouncing dumbbell

First solution: We’ll apply conservation of angular momentum around the contact point
on the floor. Angular momentum is indeed conserved around this point, because the nor-
mal force from the floor has zero lever arm. For convenience, let r ≡ ℓ/2. Also, we
might as well work with a general moment of inertia I = βmr2 around the center of the
dumbbell. In the case at hand, I = 2(m/2)r2, so β = 1. (A uniform stick would have
I = m(2r)2/12 =⇒ β = 1/3.) The post-bounce picture is shown in Fig. 8.35.

v
r

r
ω

θ

Figure 8.35
With counterclockwise L taken to be positive, and with the positive directions of the final
v and ω as indicated in the figure, conservation of L around the contact point gives (using
Eq. (8.5))

Li = Lf =⇒ mv0r cos θ + 0 = −mvr cos θ + (βmr2)ω
=⇒ (v0 + v) cos θ = βrω. (8.57)

Since the collision is elastic, we can also apply conservation of energy, which gives (using
Eq. (7.8))

Ei = Ef =⇒ 1
2

mv2
0 + 0 =

1
2

mv2 +
1
2

(βmr2)ω2

=⇒ v2
0 − v2 = βr2ω2. (8.58)
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The previous two equations involve two unknowns, v and ω. The easiest way to solve
them is to divide Eq. (8.58) by Eq. (8.57). This gives (v0 − v)/ cos θ = rω. Equating this
value of rω with the one from Eq. (8.57) gives

v0 − v
cos θ

=
(v0 + v) cos θ

β

=⇒ v0

(
1

cos θ
− cos θ

β

)
= v

(
1

cos θ
+

cos θ
β

)
=⇒ v = v0

(
β − cos2 θ

β + cos2 θ

)
=⇒ v = v0

(
1 − cos2 θ

1 + cos2 θ

)
, (8.59)

where we have used the fact that β = 1 for our dumbbell.

Second solution: Instead of applying conservation of L around the contact point, we can
use the ∆L = l∆p relation from Eq. (8.10), with the dumbbell’s CM taken to be the origin.
(We’re using l for the lever arm here, because we’ve already used r for half the length
of the dumbbell.) Eq. (8.10) is applicable to a quick strike during which the lever arm is
essentially constant, as it is here. In our setup, the lever arm (relative to the CM) of the
normal force is l = r cos θ. The initial and final angular momenta relative to the CM are
Li = 0 and Lf = Iω, so we have ∆L = Iω. Also, ∆p = mv − (−mv0) = m(v + v0).
Therefore,

∆L = l∆p =⇒ (βmr2)ω = (r cos θ) · m(v0 + v)
=⇒ βrω = (v0 + v) cos θ, (8.60)

in agreement with the conservation-of-L statement in Eq. (8.57). This can be combined
with the conservation-of-E statement in Eq. (8.58), as above.

Limits: If θ = 90◦ (the dumbbell is vertical), then Eq. (8.59) gives v = v0. This makes sense; the
dumbbell simply bounces back up with the same speed it initially had (and there is no rotation); the
dumbbell may as well be a point mass in this case. If θ → 0 (the dumbbell is horizontal),2 then
Eq. (8.59) gives v = 0. What happens in this case is that the bouncing end heads upward with speed
v0, while the free end continues (at least briefly) to move downward with speed v0. The CM moves
with the average of the two velocities, which is zero.

In the θ → 0 case, the reason why the two resulting speeds are both v0 is the following. When
the dumbbell is horizontal (during the collision), the two masses behave like free particles. The
stick effectively isn’t there, for the following reason. Consider one of the masses. The stick can’t
apply a transverse force on this mass, because if it did, then by Newton’s third law there would
be a nonzero torque on the massless stick relative to the other mass, resulting in infinite angular
acceleration. Therefore, since the stick effectively isn’t there (during the collision), the right mass
bounces up with speed v0, and the left mass continues downward with speed v0. See Problem 8.18(a)
for another way to show that the stick effectively doesn’t exist.

You should check that the expression for v in the third line of Eq. (8.59) behaves correctly in the
β → 0 and β → ∞ limits. (Remember that we defined positive v to be upward.) The β → ∞ case
would require attaching extensions to the stick (with the extensions somehow being able to pass
through the floor), and then attaching the masses to the ends of these extensions.

8.16. Colliding with a wall

First solution: We’ve already done all of the work needed for this problem in Prob-
lem 8.15, because we solved that problem for a general moment of inertia, I = βmr2

(where r = ℓ/2). A uniform stick has I = m(2r)2/12, so β = 1/3. The third line of

2Imagine that the right mass of the dumbbell hits near the left edge of a table, so that we don’t have to worry about
the left mass immediately running into the table.
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Eq. (8.59) then tells us that the final speed v of the CM is zero when cos θ = 1/
√

3, which
means that θ ≈ 54.7◦.

Second solution: If you want to solve the problem from scratch by invoking the fact that
the final speed of the CM is zero, then conservation of L around the contact point gives
(using Eq. (8.5) with counterclockwise L taken to be positive)

Li = Lf =⇒ mv0
ℓ

2
cos θ + 0 = 0 +

mℓ2

12
ω =⇒ ω =

6v0 cos θ
ℓ

. (8.61)

There is only translational energy before the collision, and only angular energy after, so
conservation of energy gives (using the value of ω we just found)

1
2

mv2
0 =

1
2

Iω2 =⇒ 1
2

mv2
0 =

1
2

(
mℓ2

12

) (
6v0 cos θ

ℓ

)2

=⇒ 1 =
36
12

cos2 θ =⇒ cos θ =
1
√

3
. (8.62)

Third solution: Instead of applying conservation of L around the contact point, we can
use the ∆L = l∆p relation from Eq. (8.10), with the stick’s CM taken to be the origin.
We’ll take the positive linear and angular directions to be leftward and counterclockwise
(so that the force and torque provided by the wall are both positive). If the CM ends up at
rest, then using l = (ℓ/2) cos θ, the ∆L = l ∆p relation gives

Lf − Li = l (pf − pi) =⇒ I (ω − 0) =
(
ℓ

2
cos θ

)
· m(

0 − (−v0)
)

=⇒ mℓ2

12
ω =

ℓ

2
cos θ · mv0 =⇒ ω =

6v0 cos θ
ℓ

, (8.63)

in agreement with the conservation-of-L statement in Eq. (8.61). This can be combined
with the conservation-of-E statement in Eq. (8.62), as in the second solution.

Remarks: In the post-collision motion of the stick, after it rotates through an angle of 2θ (with the
CM at rest), the bottom end of the stick will collide with the wall. The resulting motion will then be
a simple translation to the left with the original speed v0, with no rotation (essentially the opposite
of the initial motion); see Fig. 8.36. You can demonstrate this by performing the calculation for the
second collision with the wall, similar to the one above for the first collision. Or you can simply
note that if you consider the instant when the stick is parallel to the wall, and then look at the time-
reversed motion, the stick will end up reversing the motion we analyzed above, and therefore head
off to the left with speed v0 and no rotation (the time reversal of the given initial motion).

(right before 

first collision)

(right after 

first collision)

(right before 

second collision)

(right after 

second collision)

θ θ

θ θ

ω

ω

v0

v0

Figure 8.36

A continuity argument makes it clear why there must exist an angle θ for which the final speed of
the CM is zero. If θ = 90◦, then the CM (and the whole stick) simply bounces backwards. And if
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θ → 0, then it is fairly intuitive that the CM will keep moving forward (until the other end of the
stick hits the wall a split second later). So for some value of θ in between, the CM must end up
at rest. Note that if the CM is at rest a moment after the first collision, then it must remain at rest
until the second collision, because the net linear momentum of the stick (which equals mvCM) can’t
change from zero to nonzero without the presence of an external force.

8.17. Stick hitting a pole

(a) We’ll use conservation of angular momentum relative to the pole (the external force
from the pole produces zero torque around the pole), and also conservation of energy
(the collision is elastic). Conservation of energy gives

1
2

mv2
0 + 0 = 0 +

1
2

(
1
12

mℓ2
)
ω2 =⇒ ω =

√
12

v0

ℓ
, (8.64)

where the first zero comes from the fact that the stick is initially not rotating, and the
second zero comes from the fact that the final CM speed is zero.
Conservation of angular momentum relative to the pole (with counterclockwise taken
to be positive) gives

mv0x + 0 = 0 +
(

1
12

mℓ2
)
ω =⇒ x =

ℓ2ω

12v0
, (8.65)

where the zeros arise for the same reasons as above. Substituting theω from Eq. (8.64)
into the x in Eq. (8.65) gives

x =
ℓ2(
√

12 v0/ℓ)
12v0

=
ℓ
√

12
≈ (0.29)ℓ. (8.66)

This is larger than ℓ/4, so the collision point is closer to the end of the stick than to
the center.

Remark: It is easy to see by continuity why there must exist a value of x that makes the final
CM speed zero. If x = 0, then the stick bounces backward. But if x = ℓ/2 (which corresponds
to the stick’s end), then intuitively we expect that the stick will keep moving forward (while
rotating). So for some value of x in between, the CM must be at rest.

(b) First solution: When the stick makes a half rotation and collides with the pole again,
it will simply head off to the left with speed v0, with no rotation. That is, the final
state is exactly the same as the initial state. This obviously satisfies conservation of
E and L with the initial conditions, so it must be what happens. (The other solution
to the quadratic conservation equations is the rotational motion that we found in part
(a).)

Second solution: The second collision is exactly the mirror image of the collision
that would arise if we ran time backward through the first collision. And the latter
scenario simply leads to the stick heading rightward with speed v0 and no rotation
(the time reversal of the initial state).

Third solution: If you actually want to apply conservation of E and L to the second
collision, then withω0 =

√
12 v0/ℓ being theω we found in part (a), the conservation

equations are

E :
1
2

Iω2
0 =

1
2

mv2
f +

1
2

Iω2
f ,

L : Iω0 = mvf x + Iωf , (8.67)

where x = ℓ/
√

12. There are various ways to solve for the unknowns ωf and vf here.
One way is to simply solve for vf in the second equation and plug the result into the



8.5. PROBLEM SOLUTIONS 245

first. This yields ωf = ω0 or ωf = 0, as you can show. The former of these must of
course be a solution, because it corresponds to the initial conditions. The latter is the
nontrivial solution we are concerned with. With ωf = 0, the E equation then gives
vf = ω0

√
I/m = (

√
12 v0/ℓ)(ℓ/

√
12) = v0.

8.18. Striking objects

(a) First solution: Let the masses each be m, and let the stick have length 2r . Then the
moment of inertia of the dumbbell around its center is 2 · mr2. So for a quick strike
on one of the masses, Eq. (8.10) gives (with our origin chosen to be the center of the
stick)

∆L = r∆p =⇒ (2mr2)ω = r · (2m)vCM =⇒ ω =
vCM

r
. (8.68)

The motion of the end that isn’t struck is the forward CM motion minus the backward
rotational motion. So the speed of that end is

vCM − ωr = vCM −
vCM

r
r = 0, (8.69)

as desired.

Second solution: We can apply conservation of angular momentum around the fixed
point P in space that coincides (initially) with the mass that you strike. Since the
initial angular momentum is zero, and since you apply no torque around P, the final
angular momentum is also zero. This implies that the other mass can’t move (right
after the strike), because if it did, it would contribute a nonzero angular momentum
around P, and there is nothing else that can cancel this L; the stick is massless, and
the mass you strike moves directly away from P (right after the strike).
The above reasoning applies only to the transverse (perpendicular to the stick) mo-
tion of the other mass. So to be complete, we should technically also say that there
can be no motion in the longitudinal direction (along the stick), because the impulse
you apply is perpendicular to the stick, so the longitudinal momentum must be zero.
Another (very similar) way to show that the other mass has no transverse motion
(right after the strike) is the following. As mentioned near the end of the solution to
Problem 8.15, the stick can’t apply a transverse force on the other mass, because if
it did, then by Newton’s third law the mass would apply a force on the stick. There
would then be a finite torque on the massless stick relative to the mass you strike,
resulting in infinite angular acceleration.

(b) Let the total mass of the stick be m, and again let the length be 2r . Then the moment
of inertia around the center is m(2r)2/12 = mr2/3. For a quick strike at one of the
ends, Eq. (8.10) gives (with our origin again chosen to be the center of the stick)

∆L = r∆p =⇒
(

mr2

3

)
ω = r · mvCM =⇒ ω =

3vCM

r
≡ 3v0

r
. (8.70)

The motion of the end that isn’t struck is the forward CM motion minus the backward
rotational motion. So the velocity of that end is

vCM − ωr = v0 −
3v0

r
r = −2v0. (8.71)

This is negative, which means that this end moves backwards.
For the end that you hit, the motion is obtained by adding the forward rotational
motion to the CM motion. So the velocity of this end is vCM + ωr = v0 + (3v0/r)r =
4v0. The average of the velocities of the ends (which are −2v0 and 4v0) is correctly
equal to the velocity v0 of the center of the stick.
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Remarks: As an exercise, you can also derive the above ω = 3v0/r result by applying con-
servation of angular momentum around the fixed point in space that coincides (initially) with
the end that you strike. The initial (and hence final) L is zero. There are two canceling con-
tributions to the final L, one from the translational motion, and the other from the rotational
motion.
If you flick the end of a pencil with your finger, the pencil as a whole quickly moves forward in
the direction of the strike. This happens fast enough to make it difficult to determine if the non-
struck end actually moves backward, as specified in Eq. (8.71). But you can unequivocally
settle this issue by placing an object on the back side of the non-struck end, very close to it.
The object will move if and only if this end initially moves backward and hits the object.

8.19. Center of percussion

First note that a continuity argument quickly shows that such a strike point must exist. If
you strike the middle of the stick, then the entire stick will of course simply move forward.
But if you strike the far end of the stick, then from Problem 8.18(b) we know that the near
end will move backward. Therefore, somewhere in between there must exist a strike point
for which the near end doesn’t move.

We’ll use the ∆L = x∆p result from Eq. (8.10), with the CM of the stick chosen as the
origin. So ∆L is measured with respect to the CM, and x is the distance from the strike to
the CM; see Fig. 8.37. Both L and p start at zero, so ∆L = x∆p tells us that the resultingv

x

ω

strike

l/2

Figure 8.37

values of L and p are related by

L = xp =⇒
(

1
12

mℓ2
)
ω = x(mv) =⇒ ω =

12xv
ℓ2 . (8.72)

Due to the resulting rotation with angular speed ω, the end that you are holding will
initially move backward with speed (ℓ/2)ω with respect to the CM. We want this motion
to be canceled by the forward speed v of the CM. The end that you are holding will then
be (initially) at rest. Using the ω from above, this condition yields(

ℓ

2

)
ω = v =⇒ ℓ

2

(
12xv
ℓ2

)
= v =⇒ x =

ℓ

6
. (8.73)

This is the distance from the center, so the strike should occur ℓ/2+ ℓ/6 = 2ℓ/3 from your
hand.

Remark: As an exercise, you can also solve this problem by applying ∆L = r∆p with your hand
chosen as the origin. The solution is fairly quick, due to the fact that (at least initially) the end
that you are holding is assumed to be at rest, which means that the stick can be considered to be
(instantaneously) rotating around your hand.

As another exercise, you can consider the more general case of an object with mass m and arbitrary
moment of inertia ICM around the CM. If you are holding the object at a distance d from the CM,
you can show that the center of percussion is located a distance x = ICM/md from the CM, on
the opposite side. In the above case of a uniform stick held at an end, this correctly gives x =
(mℓ2/12)/(m · ℓ/2) = ℓ/6.

The center of percussion corresponds roughly to the “sweet spot” on a baseball bat when hitting a
ball. However, there are a number of real-life complications at play, so the correspondence generally
isn’t exact.

8.20. Dumbbell and pole

First note that there does indeed exist a value of x that leads to no rotational motion of
the dumbbell, due to the following continuity argument. If x is equal to r , then the pole is
right next to the top mass. So this mass simply bounces off the pole and heads rightward
with speed v0. And since the bottom mass doesn’t move right away, this means that the
dumbbell rotates clockwise. On the other hand, if x equals zero (so the pole is right next
to the center of the stick), then the dumbbell rotates counterclockwise, because it does so
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right after the swift strike to the top mass, and the collision with the pole doesn’t change
the angular momentum around the CM; so ω stays the same. Therefore, by continuity,
there must exist a value of x between 0 and r for which the stick doesn’t rotate after the
collision with the pole. Now let’s be quantitative.

The dumbbell’s energy is conserved during the collision with the pole, because we are told
that the collision is elastic. Also, the dumbbell’s angular momentum around the pole is
conserved, because the force provided by the pole provides no torque around it. But the
dumbbell’s linear momentum is not conserved, because the pole applies a force.

The initial energy is Ei = mv2
0/2, because only one mass is moving. The final energy

comes only from the CM motion of the dumbbell, because it isn’t rotating. So Ef =

(2m)v2
CM/2. Conservation of E therefore gives

1
2

mv2
0 =

1
2

(2m)v2
CM =⇒ vCM =

v0√
2
. (8.74)

We’ll now apply conservation of angular momentum relative to the pole. The initial L
comes from the moving mass, which is a distance r − x from the pole. So Li = mv0(r − x),
in a counterclockwise sense. The final L comes only from the CM motion of the dumbbell,
because there is no rotation. The CM is a distance x from the pole, so Lf = (2m)vCM x, and
this also has a counterclockwise sense. Conservation of L therefore gives

mv0(r − x) = (2m)vCM x. (8.75)

Using vCM = v0/
√

2 from above, this becomes

v0(r − x) =
√

2v0x =⇒ x =
r

√
2 + 1

= r (
√

2 − 1) ≈ (0.41)r. (8.76)

Since half the length of the stick was defined to be r , we see that the pole is slightly closer
to the dumbbell’s center than to its end.

Remarks: Another way of obtaining the result in Eq. (8.75) is to use Eq. (8.10). The pole applies a
quick strike to the dumbbell, so Eq. (8.10) is applicable during this collision. Let’s pick our origin to
be a dot on the table that coincides with the dumbbell’s CM. Then with clockwise L and rightward
v taken to be positive, ∆L = x∆p gives

Lf − Li = x(pf − pi) =⇒ 0 − (−mv0r) = x
(
2mvCM − (−mv0)

)
, (8.77)

where the zero here comes from the fact that the CM of the (nonrotating) dumbbell is moving directly
away from our chosen origin. This equation is equivalent to Eq. (8.75).

8.21. One full revolution

Let the final linear and angular speeds be v and ω. Since the lever arm x is constant during
the quick strike, we can use the ∆L = x∆p relation from Eq. (8.10), with the sticks’s CM
taken to be the origin. And since the stick starts at rest, the change in angular momentum
∆L is just Iω, and the change in linear momentum ∆p is just mv. ∆L = x∆p therefore
gives

mℓ2

12
ω = x(mv) =⇒ ω

v
=

12x
ℓ2 (8.78)

Another expression for ω/v is obtained from the given information that the stick makes
one complete revolution by the time the center reaches the dot. This implies that if t is the
time to reach the dot, then ωt = 2π. And we also know that vt = d from the linear motion.
Dividing these equations yields ω/v = 2π/d. Equating our two expressions for ω/v gives

12x
ℓ2 =

2π
d
=⇒ x =

πℓ2

6d
. (8.79)
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Since x can be no larger than ℓ/2, the minimum value of d is given by

πℓ2

6d
≤ ℓ

2
=⇒ π

3
ℓ ≤ d. (8.80)

So the minimum d is about (1.05)ℓ, and in this case you should strike the stick at an end.
Smaller values of d would require attaching a massless extension to the stick, which would
allow x to be larger than ℓ/2. A very long massless extension would allow you to make
the stick essentially spin in place.

Limits: : If d → ∞, then the expression for x in Eq. (8.79) correctly goes to zero. You want the stick
to have a very small ω (which means that you must give it a very small angular impulse), because
the time to reach the dot will be large.

8.22. Sliding to rolling

The key point in this problem is that the friction force Ff from the ground does two things.
It decreases the ball’s v via F = ma, and it also increases the ball’s ω via τ = Iα. The
changes ∆v and ∆ω are therefore related. To see exactly how they are related, note that the
lever arm (relative to the center of the ball) of the friction force is always the same (namely,
the radius R of the ball). We can therefore use the ∆L = R∆p result from Eq. (8.10) to say
that I∆ω = Rm∆v. This equation relates the magnitudes of ∆v and ∆ω. But since we know
that v is decreasing and ω is increasing (given the sign conventions shown in Fig. 8.38),

v

ω

Ff

Figure 8.38

the actual relation between the signed quantities takes the form of (using I = 2mR2/5 for
a solid sphere)

I∆ω = −Rm∆v =⇒
(

2
5

mR2
)
∆ω = −Rm∆v

=⇒ ∆ω = − 5
2R
∆v. (8.81)

When the ball eventually rolls without slipping, the final vf and ωf values are related by
the non-slipping condition,

vf = Rωf =⇒ ωf =
vf

R
. (8.82)

What happens physically is the following. At the start, the initial linear and angular veloc-
ities are vi = v0 and ωi = 0. So at the start, vi is too large compared with ωi, as far as the
non-slipping v = Rω condition goes, so the ball is slipping. As time goes on, v decreases
and ω increases (with the changes related by Eq. (8.81)) until finally the v = Rω condition
is satisfied. At that time, the friction force suddenly drops to zero, and the ball then rolls
indefinitely with the constant values of vf and ωf .

Let’s be quantitative about the preceding paragraph. The changes in the linear and angular
velocities are given by

∆v = vf − vi = vf − v0

∆ω = ωf − ωi = ωf − 0 =
vf

R
. (8.83)

Plugging these expressions into Eq. (8.81) gives

vf

R
= − 5

2R
(vf − v0) =⇒ 7vf

2
=

5v0

2
=⇒ vf =

5v0

7
. (8.84)

Remarks: In deriving this result, note that nowhere did we say anything about the exact nature of
the friction force. The force could be large (in which case the slipping ends quickly) or small (in
which case the slipping lasts for a long time), or it could even vary with position. But in any case the
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final velocity will still be 5v0/7. This is true because the relation between ∆ω and ∆v in Eq. (8.81)
follows from Eq. (8.10), which makes no mention of the exact nature of the force.

If you let the moment of inertia of the ball take the general form of I = βmR2 (so β = 2/5 in the
case of a solid ball), then as an exercise you can show that vf = v0/(1 + β). This correctly gives
vf = 5v0/7 when β = 2/5. And it also correctly gives vf = v0 when β = 0 (when all the mass is at
the center of the ball); the angular acceleration is infinite for a split second, and the ball immediately
rolls without slipping.

An another exercise, you can calculate the final speed in the case where the ball is initially only
rotating with angular speed ω0, and not translating. (Answer: vf = 2Rω0/7, with the 2/7 more
generally being β/(1 + β).)

In our original setup, if you calculate the total final kinetic energy (translational plus rotational), you
will find that it is less than the initial kinetic energy (all translational). This is expected, because
some energy is lost to heat as the ball slips with respect to the ground; friction does work. However,
when calculating this work as a force times a distance, the relevant distance is not the distance the
ball moves. Rather, it is the distance moved by the contact point on the ball relative to the ground.
The rotation of the ball makes this distance be smaller than the horizontal distance traveled by the
ball. You can work everything out quantitatively, but it gets a bit messy.

8.23. Tipping a block

(a) We can use the parallel-axis theorem to calculate the moment of inertia of the block
around the pivot:

Iblock = ICM + md2 =
mℓ2

6
+ m

(
ℓ
√

2

)2

=
2mℓ2

3
. (8.85)

The moment of inertia of the ball (when it is at the corner) around the pivot is
m(
√

2ℓ)2 = 2mℓ2. The total moment of inertia of the system around the pivot is
therefore I = 2mℓ2/3 + 2mℓ2 = 8mℓ2/3.
During the collision, the angular momentum around the pivot is conserved, because
the external force at the pivot produces no torque around it. Since the initial angular
momentum is mvℓ (the ball has an impact parameter of ℓ), conservation of L gives

mvℓ =

(
8mℓ2

3

)
ω =⇒ ω =

3v
8ℓ

. (8.86)

(b) We’ll now use conservation of energy to determine whether the CM of the system
rises up to where it is directly over the pivot. This will give the cutoff value of v.
Any value of v larger than this will result in the block falling over to the right.
Since the block and the ball have the same mass, the CM of the system is located
halfway between the ball and the center of the block. So it is located (3/4)(

√
2ℓ)

from the pivot. The CM therefore needs to rise from its starting height of 3ℓ/4 to its
height of (3/4)(

√
2ℓ) when it is directly over the pivot. The initial kinetic energy of

the system (right after the collision) is Iω2/2. The block will tip over if this kinetic
energy is greater than or equal to the necessary increase in potential energy, that is,
if

1
2

Iω2 ≥ (2m)g ∆h

=⇒ 1
2

(
8mℓ2

3

) (
3v
8ℓ

)2

≥ (2m)g
(

3
4

√
2ℓ − 3

4
ℓ

)
=⇒ 3

16
mv2 ≥ 3

(√
2 − 1

)
2

mgℓ

=⇒ v ≥
√

8
(√

2 − 1
)
gℓ, (8.87)
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which is about (1.8)
√
gℓ. For comparison, this is slightly larger than the

√
2gℓ ≈

(1.4)
√
gℓ speed attained by an object dropped a height ℓ from rest.

Note that because energy is lost in the (completely) inelastic collision, the relevant
initial kinetic energy in the above conservation-of-E statement for the rising up of
the block is the 3mv2/16 energy right after the collision, not the mv2/2 energy right
before it.



Chapter 9

Statics

9.1 Introduction
Zero force and torque

In this chapter we will deal with objects that are at rest, or static. If an object is at rest, then it
has zero linear acceleration and zero angular acceleration. So the net force and net torque must
both be zero: ∑

F = 0 and
∑

τ = 0. (9.1)

The converse isn’t true, of course. That is, if the net force and torque are both zero (which
means that the object is in equilibrium, by definition), then the object need not be static. It can
be moving with constant linear velocity and/or constant angular velocity. But we will deal only
with static objects here. So this entire chapter can be summarized by saying that if an object
is static, then the net force and net torque must both be zero. However, a few things should be
noted:

Planar setups

We will invariably deal with planar situations, as opposed to general 3-D ones. Therefore, since
both the position r and the force F will lie in the plane of the page, the torque τ = r × F will
always point perpendicular to the page. So if the plane of the page is the x-y plane, then we
are interested only in τz ; the full vector nature of τ isn’t important. Similarly, we are interested
only in the force components Fx and Fy lying in the plane of the page. So there are only three
equations, instead of the six in theory, that we need to write down when applying the equations
in Eq. (9.1) to a given object (or more generally a given subsystem).

Choosing subsystems

Statics problems often involve making choices, and these choices often make solving problems
a little less straightforward than the simplicity of Eq. (9.1) might suggest. If a system consists
of various objects, then you need to decide which subsystem (a single object, or a combination
of objects) you should apply Eq. (9.1) to. You will often need to apply it to a few different
subsystems to obtain a sufficient amount of information to solve for whatever you’re trying to
solve for (often the various forces). Remember that Eq. (9.1) involves only the external forces
(and torques) acting on a subsystem. So if a particular force appears as an internal force in a
subsystem you’ve chosen, then there’s no way you’re going to be able to solve for it by using
that subsystem. You will need to pick a different subsystem for which the desired force appears
as an external force.

Many different sets of subsystems will get the job done by giving you enough information
to solve for your unknowns; there isn’t a single “right” way to pick the subsystems. However,
some sets might make the calculations easier than others, although at the start it usually isn’t
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obvious which ones these are. When solving a problem, it’s best just to keep an eye on what
you’re trying to solve for, and to try to pick subsystems accordingly. If you get stuck, you can
always just apply Eq. (9.1) to every possible subsystem. This will inevitably lead to the correct
answer, even if there might have been a quicker way to go about things. If you write down every
possible force and torque equation, there will be a good deal of redundancy in the equations,
assuming that there is more than one object in the system.

Choosing an origin

In addition to choosing subsystems, another choice that you will need to make for each subsys-
tem is the choice of origin around which the torque is calculated. You can pick different origins
for different subsystems. It is often a good idea to choose your origin as the point at which the
most forces act, because these forces will then provide zero torque around that origin (because
the lever arm is zero), so there will be fewer unknowns in the τz = 0 equation.

You might be worried that even if you have demanded that the torque is zero around one
particular choice of origin, it might not be zero around another choice. The following fact dispels
this worry:

• Given an object for which
∑

F = 0, then if
∑
τ = 0 around one choice of origin, then∑

τ = 0 around any other choice of origin.

This means that you are free to pick the most convenient point as your origin. This fact is proved
in Problem 9.1, although it is intuitively clear in the case of static objects: If an object is static,
which implies that it isn’t angularly accelerating around a given origin, then it isn’t angularly
accelerating around any other choice of origin either. Said in another way, a static object is static
in a given frame no matter how you look at it.

9.2 Multiple-choice questions

9.1. You hold a book at rest against a vertical wall by applying a force upward at an angle, as
shown in Fig. 9.1. The static friction force from the wall on the book

F

Figure 9.1
(a) points upward

(b) points downward

(c) is zero

(d) The direction cannot be determined from the given information.

9.2. One end of a stick with mass m and length ℓ is pivoted on a wall, and the other end rests
on a frictionless floor, as shown in Fig. 9.2. Let FL and FR be the vertical forces on the left

frictionless

pivot

FL

FR

θ

Figure 9.2

and right ends of the stick, respectively. Then

(a) FL > FR

(b) FL < FR

(c) FL = FR = mg/2

(d) FL = FR = mg

(e) FL = FR = mg cos θ

9.3. A ladder leans against a wall at a 60◦ angle, as shown in Fig. 9.3. The floor is frictionless,

(side view)

frictionless

µ

60

Figure 9.3

but there is friction with the wall. Assume that the coefficient of friction is large (say,
µ = 10). Is it possible for this setup to be static?

Yes No
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9.4. A uniform stick with mass m rests on two supports at its ends, as shown in Fig. 9.4. The

Figure 9.4

forces exerted by the supports on the stick are equal because (circle all that apply)

(a) the total upward force from the supports must be mg

(b) the torques around the center of the stick must cancel

(c) the setup has left-right symmetry

9.5. Two uniform sticks with masses M and m are connected to each other and to a wall by
pivots, as shown in Fig. 9.5. The left ends of both sticks are higher than their common

m

M

Figure 9.5

right end. The vertical component of the force from the wall (acting via the pivot) on the
left end of the bottom stick

(a) points upward

(b) points downward

(c) is zero

(d) More information about how m and M are related is required.

9.3 Problems

The first problem is a foundational problem.

9.1. Any choice of origin

Prove the following statement: Given an object for which
∑

F = 0, then if
∑
τ = 0 around

one choice of origin, then
∑
τ = 0 around any other choice of origin.

9.2. Not moving a block

A block with mass m rests on a horizontal table. The coefficient of static friction between
the block and the table is µ. You push down on the block with a spring (with spring
constant k) that is inclined at an angle θ, as shown in Fig. 9.6. What is the maximum

m

k

θ

µ

Figure 9.6

distance you can compress the spring without having the block move?

9.3. Stick in a well

A uniform stick with mass m is placed in a frictionless well. The angle the stick makes
with the horizontal is θ, as shown in Fig. 9.7. What are the forces the well exerts on the

m

θ

Figure 9.7

stick at its two ends?

9.4. Stick on a corner

A stick with mass m and length ℓ leans against a frictionless wall, with a quarter of its
length hanging over a corner, as shown in Fig. 9.8. It makes an angle θ with the horizontal.

ml

θ

1/4 of the
length

Figure 9.8

Assuming that there is sufficient friction at the corner to keep the stick at rest, what is the
total force that the corner exerts on the stick?

9.5. Two sticks and a wall

Two sticks are connected with pivots to each other and to a wall, as shown in Fig. 9.9.

θ

l

Figure 9.9

The top stick is horizontal and has length ℓ, and the angle between the sticks is θ. Both
sticks have the same linear mass density λ (kg/m). Find the force (give the horizontal and
vertical components) that the lower sticks applies to the upper one.
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9.6. Supporting a square

Three sticks with mass m form three sides of a square, as shown in Fig. 9.10. They are

m

m

m

string

Figure 9.10

connected with pivots to each other and to a wall. The midpoints of the top and right sticks
are connected by a massless string. What is the tension in the string?

9.7. Corner on a plane 1

Two sticks, each with mass m and length ℓ, are rigidly connected to form a right angle.
The bottom end of the object is pivoted on a plane inclined at a 45◦ angle, and the top end
rests on the plane, as shown in Fig. 9.11. Assume that the plane is frictionless. What is the
force on the object at its top end? At the pivot?

m,l

m,l

45

Figure 9.11

m,l nl

m,l

45

Figure 9.12

9.8. Corner on a plane 2

In the previous problem, the force from the plane on the left (top) stick has a rightward
component. Since the setup is static, the right stick must therefore apply an equal and
opposite leftward force on the left stick at the corner. By Newton’s third law, the left stick
must therefore apply a rightward force on the right stick at the corner. However, this then
seems to imply that there is a nonzero clockwise torque on the right stick around the pivot
at its bottom end. But the torque must be zero since the setup is static. What’s going on
here? How can a nonzero force acting on the right stick at the corner produce zero torque
around the pivot?

Hint: Zoom in on the rigid corner, and imagine that it can be modeled as a pivot plus a tiny
massless stick inclined at 45◦, as shown in Fig. 9.12. Let this tiny stick be connected (with
pivots) to each of the original sticks at a distance nℓ from the corner, where n is a small
numerical factor. Find the force exerted by the tiny stick on each of the original sticks, and
also the force that the pivot at the corner applies to each stick.

9.9. Leaning ladder

A ladder leans against a vertical wall, making an angle θ with the horizontal, as shown in
Fig. 9.13. The coefficient of static friction between the ladder and both the floor and the

θ

l

m

µ

µ

Figure 9.13

wall is µ. What is the minimum value of θ (in terms of µ) for which it is possible for the
ladder not to fall? Hint: You can assume that in the cutoff case where the ladder is about to
fall, the friction forces take on their maximum allowed values (which is what you would
intuitively expect), assuming that µ ≤ 1.

9.10. Stick on a cylinder

In Fig. 9.14 a stick with mass m rests on a cylinder also with mass m. The stick is inclinedpivot

doesn't touch

doesn't touch

m

m

45

(side view)

Figure 9.14

at a 45◦ angle. The stick’s bottom end is connected to the ground by a pivot, and the
top end is infinitesimally close to the wall, but doesn’t touch it. Similarly, the cylinder is
infinitesimally close to the ground, but doesn’t touch it. What is the minimum coefficient
of friction between the stick and the cylinder that allows the system to be static? (Assume
that there is sufficient friction between the cylinder and the wall.)
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9.11. Stick on a disk

A stick with mass m and length 2R is pivoted at one end on a vertical wall. It is held
horizontal, and a disk with mass m and radius R is placed beneath it, in contact with both
it and the wall, as shown in Fig. 9.15. The coefficient of friction between the disk and the

mµs

µw

m

R

Figure 9.15

wall is µw, and the coefficient of friction between the disk and the stick is µs. If the objects
are released, what are the minimum values of µw and µs for which the system doesn’t fall?

9.12. Cylinder on a stick

A massless stick with length
√

2ℓ is situated at a 45◦ angle in a box whose base has
length ℓ, as shown in Fig. 9.16. A cylinder with mass m rests on the stick, and its radius

l

m

45

Figure 9.16

is chosen so that the top of the cylinder is at the same height as the top of the stick.
There is no friction anywhere in the setup. Find the force (give the horizontal and vertical
components) that the box exerts on the stick at its lower end.

9.4 Multiple-choice answers

9.1. d If the vertical component of your force is smaller than mg, then the friction force must
point upward, to make the net vertical force be zero. On the other hand, if the vertical
component of your force is larger than mg, then the friction force must point downward.

Remark: If you push on the book too gently, then it will fall, of course, because the maximum
upward static friction force (which is µN) won’t be large enough, when combined with your upward
Fy force, to balance the downward mg force. As an exercise, you can calculate the minimum F in
terms of the angle θ that your force makes with the horizontal (along with m, g, and µ).

If you push on the book too hard, then it might rise up, if the maximum downward static friction
force isn’t large enough, when combined with the downward mg force, to balance your upward Fy
force. However, if θ is small enough (more precisely, if tan θ ≤ µ), then the book won’t rise up,
no matter how hard you push. You will see how this scenario arises if you calculate the maximum
F that allows the book to remain rest. Physically, what’s going on is that the harder you push, the
larger the normal force is, so the larger the maximum friction force is. If θ is small enough, then this
effect wins out over the fact that you are also increasing the vertical component Fy of your force.

9.2. c The vertical forces must add up to mg. And they must be equal so that there is no
torque around the CM. (They are the only forces providing torques, because there is no
horizontal force from the wall, because there is no horizontal force from the frictionless
floor.) So both of the vertical forces must equal mg/2.

9.3. No Since the floor is frictionless, it can’t provide a horizontal force. The (horizontal)
normal force from the wall must therefore be zero if the system is static. But Ff ≤ µN
then says that the friction force from the wall must also be zero. So the wall can’t apply
a vertical force either. The normal force from the floor (which must be mg) is therefore
the only force from the floor and wall. This force produces a nonzero torque around the
center of the ladder, which means the system can’t be static. Note that the specific angle
of 60◦ is irrelevant.

Remark: If you release the ladder from rest, what happens is that it rotates clockwise, with the
bottom end sliding leftward and the top end sliding downward. There is a nonzero normal force
from the wall in this nonstatic scenario, and this normal force is what causes the CM to accelerate
leftward. Due to this nonzero normal force, there is now also a nonzero kinetic friction force from
the wall.

9.4. b,c Choice (a) is a true statement, but it deals only with the sum of the two forces, and
not with their individual values.

Choice (b) is a valid reason, although technically it should be supplemented with the stan-
dard fact that the CM of a uniform stick is located at the center, which means that the
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gravitational force produces no torque around the center. Note that this torque argument
tells us only that the forces are equal, and not what their common value is. We would need
to use the force statement in choice (a) if we wanted to say that both forces are equal to
mg/2.

Choice (c) is a valid reason because if you claimed that, say, the right force is larger than
the left force, then imagine flipping the setup over (reversing right and left). You would
then logically have to claim two different things: You would have to claim that the left
force is now larger (because that’s the same support that you previously said produced
the larger force). But you would also have to claim that the right force is larger, because
we have exactly the same setup as before (due to the symmetry), so you must make the
same statement that you originally made, namely, that the right force is larger. You would
therefore necessarily have to contradict yourself. The only way to escape this contradiction
is to say (correctly) that the two forces are equal.

9.5. d More information is required, because in the M ≫ m limit the wall pushes down on
the left end of the bottom stick, whereas in the m ≫ M limit the wall pushes up on the left
end of the bottom stick. We can justify these claims in the following way.

In general, the simplest way to determine which direction a force points is to imagine
removing the force and then thinking about which way the system will move. In the
present setup, let’s replace the pivot at the left end of the bottom stick with a bead that
is free to slide up and down a frictionless pole. So the left end is still constrained in
the x direction, but now not the y direction. In the M ≫ m limit, it is intuitively clear
that the top stick will simply swing down, in which case the left end of the bottom stick
must rise up. Returning to our original scenario with the pivot, we see that the pivot
must therefore provide a downward force on the left end of the bottom stick to keep it
motionless. Conversely, in the m ≫ M limit, it is intuitively clear that left end of the
bottom stick will swing down. In the original scenario with the pivot, the pivot must
therefore provide an upward force on the left end of the bottom stick to keep it motionless.

9.5 Problem solutions
9.1. Any choice of origin

Even though we will generally deal only with planar setups, where the full vector nature
of τ isn’t important, it is easiest to prove the given statement by working in full generality
with vectors.

Assume that
∑
τ = 0 around a given point, which we will call the origin. If a force Fi is

applied at position ri , then the torque is τi = ri ×Fi . So if there are N forces, the
∑
τ = 0

assumption can be written as

0 =
∑

τorigin = (r1 × F1) + (r2 × F2) + · · · + (rN × FN ). (9.2)

Now consider the torque around a different point P located at position rP (relative to the
above origin). Relative to P, each force Fi is applied at position ri − rP ; see Fig. 9.17. So

ri
ri - r

P

r
P

P

Figure 9.17

the total torque relative to P equals∑
τP = (r1 − rP ) × F1 + (r2 − rP ) × F2 + · · · + (rN − rP ) × FN

= (r1 × F1) + (r2 × F2) + · · · + (rN × FN )
− rP × (F1 + F2 + · · · + FN )

=
∑

τorigin − rP ×
(∑

F
)

= 0 − 0, (9.3)

because
∑
τorigin and

∑
F are both zero, by assumption. More generally, we just showed

that if
∑

F = 0 then
∑
τP =

∑
τorigin, even if the common value isn’t zero.
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9.2. Not moving a block

The free-body diagram is shown in Fig. 9.18. In the cutoff case where the block barely

θ

Ff = µN
N

mg kx

Figure 9.18

doesn’t move, the friction force takes on its maximum possible value, which is Ff = µN .
Setting the net force equal to zero in the cutoff case gives∑

Fx = 0 =⇒ k x cos θ − µN = 0,∑
Fy = 0 =⇒ N − k x sin θ − mg = 0. (9.4)

Solving for N in the second equation and substituting the result into the first equation gives
the maximal compression as

kx cos θ − µ(k x sin θ + mg) = 0 =⇒ x =
µmg

k (cos θ − µ sin θ)
. (9.5)

Remark: If cos θ − µ sin θ = 0, or equivalently if tan θ = 1/µ, then our result for x is infinite. This
means that you can compress the spring an infinite amount (assuming it’s a long spring), and the
block won’t move. (Likewise if tan θ > 1/µ.) In other words, you can apply an arbitrarily large
force. The reason for this is that no matter how large the spring force is, the upper bound on the
friction force (which is µN = µ(kx sin θ + mg) > µkx sin θ) is always larger than the horizontal
component of the spring force (which is kx cos θ). But if tan θ < 1/µ, then the expression in Eq. (9.5)
gives the maximum compression for which the block doesn’t move.

Limits: If θ = 0, then Eq. (9.5) gives x = µmg/k, which implies k x = µmg. This makes sense; the
rightward spring force equals the maximum possible leftward friction force. If θ = 90◦, then we are
automatically in the tan θ > 1/µ regime, so the block will stay at rest for any value of x. This makes
sense, because you aren’t pushing sideways at all.

9.3. Stick in a well

The various forces are shown in Fig. 9.19. The three non-gravitational forces are all normal

mg
θ

A

A

B

Figure 9.19

forces because the well is frictionless. We can quickly say that the vertical force B at the
left end of the stick is

B = mg, (9.6)

because the net vertical force on the stick must be zero. And the two A’s are indeed equal
as shown, because the net horizontal force must be zero. A can be found by (among other
ways) balancing the torques around the left end. If the stick has length ℓ, then the lever
arm of the mg force is (ℓ/2) cos θ, and the lever arm of the upper A force is ℓ sin θ, so we
have

mg

(
ℓ

2
cos θ

)
= A(ℓ sin θ) =⇒ A =

mg

2 tan θ
. (9.7)

Remark: The total force on the left end of the stick has magnitude
√

A2 + B2 and makes an angle
of tan α = B/A = 2 tan θ with the horizontal. This value of α implies that the total force does not
point along the stick; the slope of the force is twice the tan θ slope of the stick. The line of the force
therefore passes through the point P that lies above the center of the stick, with twice the height;
see Fig. 9.20. In retrospect, this must be the case, because the lines of both the stick’s weight and

mg

θ

P

mg

2 tan θ

_____

Figure 9.20

the force on the right end pass through P, which means that they provide no torque around P. The
line of the total force on the left end must therefore also pass through P so that it provides no torque
around P, because the setup is static.

We have basically just proved the following general result: If a static object has three forces acting
on it, then these three forces must be concurrent (that is, they must intersect at a common point).
This is true because otherwise one force would cause a torque around the intersection of the lines
of the other two forces. (Technically, the three forces could also be parallel. But then they may be
considered to be concurrent at the“point” at infinity.)
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9.4. Stick on a corner

The various forces are shown in Fig. 9.21. As in Problem 9.3, we can quickly say that the

θ

A

A

B
mg

Figure 9.21

vertical force B at the corner is
B = mg, (9.8)

because the net vertical force on the stick must be zero. And the two A’s are indeed equal
as shown, because the net horizontal force must be zero. A can be found by (among
other ways) balancing the torques around the corner. The lever arm of the mg force is
(ℓ/4) cos θ, and the lever arm of the upper A force is (3ℓ/4) sin θ, so we have

mg

(
ℓ

4
cos θ

)
= A

(
3ℓ
4

sin θ
)
=⇒ A =

mg

3 tan θ
. (9.9)

As you can see, this problem is very similar to Problem 9.3.

Remark: The total force from the corner, which has components A and B, is shown in Fig. 9.22.
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Note that the 3 tan θ slope of this force is three times the tan θ slope of the stick. The line of the force
therefore passes through the point P shown (defined by the intersection of the lines of the other two
forces). This has to be the case, due to the “concurrent forces” result we proved in the remark in the
solution to Problem 9.3.

9.5. Two sticks and a wall

The free-body diagrams for the top stick and bottom stick, respectively, are shown in
Fig. 9.23. In the second diagram, we have used the fact that the length of the bottom stick
is ℓ/ cos θ.

θ

l

l tanθ

F1

N1 Fx
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Figure 9.23

Note that we can’t assume that the force between the sticks points along either stick (be-
cause why along one stick and not the other?). So we have labeled the magnitudes of the
two components as Fx and Fy in the first diagram. By Newton’s third law, the correspond-
ing components point in the opposite directions in the second diagram. There are various
ways to find Fx and Fy . Here is one:

• Balancing torques on the upper stick around the left end gives

λℓg
ℓ

2
= Fyℓ =⇒ Fy =

λℓg

2
. (9.10)

• Balancing horizontal forces on the upper stick gives N1 = Fx . So the goal is to find
N1.

• Let’s balance torques on the entire system around the bottom end of the bottom stick.
Fx and Fy are internal forces, so they don’t come into play. The only forces that
provide nonzero torques around the bottom end of the bottom stick are N1 and the
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weights of the two sticks. The mass of the bottom stick is λ(ℓ/ cos θ), so balancing
the counterclockwise and clockwise torques on the entire system gives

N1(ℓ tan θ) = λℓg
ℓ

2
+
λℓg

cos θ
ℓ

2

=⇒ N1 =
λℓg

2

(
1 +

1
cos θ

)
1

tan θ

=⇒ Fx = N1 =
λℓg

2

(
1

tan θ
+

1
sin θ

)
. (9.11)

Having found Fy above, we alternatively could have found Fx by balancing torques
on the bottom stick around the bottom end. The resulting equation would be basically
the same as the first line of Eq. (9.11), as you can check.

Limits: If θ → 0 then Fx → ∞, which makes intuitive sense. If θ → π/2 then Fx → λℓg/2, which
isn’t so obvious (there are competing effects: the bottom stick is very long and massive, but it is
barely tilted). This value of Fx equals the Fy we found in Eq. (9.10) (which is the Fy for any value
of θ). So in the θ → π/2 limit, the total force that the bottom stick exerts on the top stick points up
and to the right at a 45◦ angle, which is rather interesting.

9.6. Supporting a square

Consider the torque on the entire system, relative to the upper pivot on the wall. The
relevant external forces are shown in Fig. 9.24. (The tension in the string is an internal

l

mg

mg

N

mg
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force, so it doesn’t matter here. And the various other forces from the pivots on the wall
provide no torque around the upper pivot.) Let the length of each stick be ℓ (it will cancel
out). Then balancing the torques on the entire system around the upper pivot on the wall
gives

2 · mg(ℓ/2) + mgℓ = Nℓ =⇒ N = 2mg. (9.12)

The sum of the horizontal forces on the bottom stick must be zero, so the vertical stick
must exert a leftward force of 2mg on the bottom stick, to cancel the rightward N from the
wall. By Newton’s third law, the bottom stick therefore exerts a rightward force of 2mg

on the vertical stick. Now look at torques on the vertical stick, relative to the pivot at its
top end. The relevant forces are shown in Fig. 9.25, where T is the tension in the string.

T

2mg

Figure 9.25

Balancing the torques gives

(T cos 45◦)(ℓ/2) = (2mg)ℓ =⇒ T = 4
√

2 mg. (9.13)

Remark: If more generally the string is attached to the sticks at points that are a distance nℓ from the
upper right corner of the square (n = 1/2 in the above setup), then it quickly follows that the tension
in the string equals T = 2

√
2 mg/n. So T is inversely proportional to n. If the string is located very

close to the corner, then the tension must be very large.

9.7. Corner on a plane 1

The various forces on the object are shown in Fig. 9.26. Since the plane is frictionless,

mg

mg

l

45

F1

F2

F3

Figure 9.26

we know that the force at the upper end is just a normal force perpendicular to the plane.
However, we don’t yet know the direction of the force at the pivot, so we have labeled the
components as F2 and F3.

Let’s look at torques on the entire object around the pivot. The only nonzero torques come
from F1 and the gravitational force mg on the horizontal stick. The lever arm for F1 is the√

2ℓ distance along the plane, and the lever arm for the mg force is a horizontal ℓ/2. So
balancing the two torques gives

F1 ·
√

2ℓ = mg · ℓ
2
=⇒ F1 =

mg

2
√

2
. (9.14)
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If we now look at the horizontal forces on the entire object, we see that the x component
of F1, which is (mg/2

√
2) sin 45◦, must balance F2. Hence

F2 =
mg

4
. (9.15)

Finally, if we consider the vertical forces on the entire object, we see that the y component
of F1, which is (mg/2

√
2) cos 45◦, plus F3 must balance the total weight 2mg. Hence

mg

4
+ F3 = 2mg =⇒ F3 =

7mg

4
. (9.16)

The force from the pivot therefore points upward and leftward with a slope of F3/F2 = 7.

Remark: We can also work with a general angle θ for the plane’s inclination, instead of 45◦. If we let
the horizontal stick have a given length ℓ (which means that the vertical stick has length ℓ tan θ), and
if both masses are still m, then you can show, among other things, that F2 equals (mg/2) cos θ sin θ.
This achieves a maximum when θ = 45◦. Intuitively, F2 should go to zero for both θ → 0 and
θ → 90◦. It should therefore achieve a maximum at some intermediate angle, which happens to be
45◦.

9.8. Corner on a plane 2

Fig. 9.27 shows a closeup view of the corner. Let F be the force that the tiny massless

nl
A

F

B

Figure 9.27

stick applies to the top stick, with the positive direction taken to be as shown. This force
must point along the direction of the tiny massless stick; see Problem 7.7. We will find
that F is positive, which means that the tiny stick is under compression. In other words,
if it weren’t there, the 90◦ angle at the corner would decrease if you held the sticks and
then let them go; the left end of the top stick would slide down the plane, not up. You can
check that this motion causes the height of the CM of the entire system to decrease. So
the motion is consistent with conservation of energy.

Let A and B be the components of the force that the bottom stick applies to the top stick
at the pivot, with the positive directions taken to be as shown in Fig. 9.27. We will find
below that both A and B are positive, so these components do indeed point in the directions
shown. (Technically we’ll find that B is positive only if n < 1/3. But we’re assuming n
is small.) The forces on the right stick due to the tiny stick and the pivot are equal and
opposite to the above F, A, and B forces.

Let’s look at the torque on the top stick around the pivot at the corner. The total torque
comes from three forces: (1) the vertical component of the force from the plane at the left
end (which from Problem 9.7 equals mg/4) acting at a lever arm of ℓ, (2) the weight mg of
the top stick acting at a lever arm of ℓ/2, and (3) the vertical component F/

√
2 of the tiny

stick’s force, acting at a lever arm of nℓ. The second of these torques is counterclockwise,
and the other two are clockwise, so setting the total torque equal to zero gives

mg

4
· ℓ − mg · ℓ

2
+

F
√

2
· nℓ = 0 =⇒ F =

mg

2
√

2 n
. (9.17)

If n is very small (which it is, since our model represents the forces acting in the interior
of the sticks at the corner), then F is very large. This is a general result for rigid objects
that contain thin parts. In order to remain rigid, there is an inevitable need for internal
torques, to keep the different parts of the system from rotating with respect to each other.
And since the lever arms associated with the internal torques are very small if the object
is thin, the internal forces must be very large.

Now let’s find the A and B components of the force from the pivot on the top stick. Look-
ing at the horizontal forces on the top stick tells us that the leftward F/

√
2 component

of the force from the tiny stick (which from Eq. (9.17) equals mg/4n) must balance the
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rightward sum of A and the horizontal component of the force from the plane at the left
end (which from Problem 9.7 equals mg/4). So we have

mg

4n
= A +

mg

4
=⇒ A =

mg

4n
− mg

4
. (9.18)

Looking at the vertical forces on the top stick tells us that the upward F/
√

2 component
of the force from the tiny stick (which equals mg/4n) plus the vertical component of the
force from the plane at the left end (which equals mg/4) must balance the downward sum
of B and the weight mg. So we have

mg

4n
+

mg

4
= B + mg =⇒ B =

mg

4n
− 3mg

4
. (9.19)

We’ve found all of the desired forces, so let’s now check that the torque on the right stick,
relative to the pivot at its bottom end, equals zero. Fig. 9.28 shows the relevant forces. The
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torque comes only from A (which acts at a lever arm of ℓ) and the horizontal component
of F, which is mg/4n (which acts at a lever arm of ℓ − nℓ). (The force from the bottom
pivot, the gravitational force, and the upward B force don’t produce any torque around the
bottom pivot.) The total clockwise torque is therefore

F
√

2
(ℓ − nℓ) − Aℓ =

mg

4n
(ℓ − nℓ) −

(mg

4n
− mg

4

)
ℓ = 0, (9.20)

as desired. Using the results from Problem 9.7 for the F2 and F3 forces at the pivot, you
can also quickly verify that the net vertical and horizontal forces on the right stick are zero.

Remark: The point of all this is that since a rigid structure necessarily has a nonzero thickness,
the internal forces don’t all act at a single point. This makes it possible for a nonzero net force
to produce a zero net torque. This is accomplished by having two (or more) large forces acting at
slightly different lever arms. The ratio of the lever arms is the inverse of the ratio of the forces; hence
the zero torque. Multiplicatively, the forces are nearly equal (as are the lever arms); the ratio is very
close to 1. But additively, the forces differ by the given nonzero net force.

9.9. Leaning ladder

Let N be the normal force from the floor. Then the friction force from the floor is µN ,
because we are assuming that it takes on the maximum possible value in the cutoff case.
Balancing horizontal forces on the ladder then quickly gives the normal force from the
wall as µN . The friction force from the wall is therefore µ(µN ), because again we are
assuming that it takes on the maximum possible value. All of the forces are shown in
Fig. 9.29.
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Consider torques around the center of the ladder. The lever arms of the four force com-
ponents at the two ends are all either (ℓ/2) cos θ or (ℓ/2) sin θ. Three of the torques are
clockwise, and one is counterclockwise. Demanding that the total torque be zero, and
canceling the common factor of ℓ/2, gives the cutoff condition on θ as

µ2N cos θ + µN sin θ − N cos θ + µN sin θ = 0 =⇒ 2µ sin θ = cos θ(1 − µ2)

=⇒ tan θ =
1 − µ2

2µ
. (9.21)

This is the desired minimum value of θ. Note that we never needed to use the fact that
there is zero net force in the vertical direction. This condition just serves to tell us what N
is:

mg = N + µ2N =⇒ N =
mg

1 + µ2 . (9.22)

However, if we had balanced torques around, say, the top or bottom end of the ladder, then
we would have needed to use this equation, as you can check.
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Limits: If µ → 0 then Eq. (9.21) tells us that θ → 90◦, which makes sense; the ladder needs to be
nearly vertical. And if µ → 1 then θ → 0; all of the force components at the ends of the ladder are
equal to mg/2 in this case.

Remark: Let’s show that in the cutoff case where the ladder is about to fall, the friction forces do
indeed take on their maximum allowed values (assuming µ ≤ 1), as we claimed in the statement
of the problem. If we don’t assume that they take on their maximum possible values, then we can
label the above µN friction force from the floor more generally as F1 (which is the same as the
normal force from the wall), and we can label the µ2N friction force from the wall as F2. The torque
equation in Eq. (9.21) then takes the form of

F2 cos θ + F1 sin θ − N cos θ + F1 sin θ = 0. (9.23)

Since both F1 and F2 appear with positive coefficients, the left-hand side will be increased if we
replace them with their upper limits. (Or it will remain the same, if F1 and F2 are already at their
maximum values.) Therefore,

µ2N cos θ + µN sin θ − N cos θ + µN sin θ ≥ 0. (9.24)

This inequality carries through in the steps in Eq. (9.21), so the condition on θ becomes tan θ ≥
(1 − µ2)/2µ. In other words, the ladder cannot stay up if tan θ < (1 − µ2)/2µ. But we showed in
Eq. (9.21) that it can stay up if tan θ = (1 − µ2)/2µ. And this scenario entails both friction forces
taking on their maximum allowed values.

Note that if µ ≥ 1, the tan θ ≥ (1 − µ2)/2µ condition tells us that the ladder will stay up for any
angle θ. If µ > 1, the friction forces will not take on their maximum allowed values, because if they
did, then Eq. (9.21) would imply that θ would have to be negative.

9.10. Stick on a cylinder

The free-body diagrams for the stick and the cylinder are shown in Fig. 9.30. All of the
forces are drawn, but the following solution won’t require finding fg, ng, or nw. We will
find F and N (and also fw) and then invoke the F ≤ µN condition. The torque and force
equations we will use are:
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• If the radius of the cylinder is R, then balancing the torques on the cylinder around
the center gives

fwR = FR =⇒ fw = F. (9.25)

• If the stick has length ℓ, then balancing the torques on the stick around the pivot gives

N · ℓ
2
= mg · ℓ

2
cos 45◦ =⇒ N =

mg
√

2
. (9.26)

• Balancing the vertical forces on the cylinder gives (using the above results for fw
and N):

fw + F sin 45◦ = mg + N cos 45◦ =⇒ F
(
1 + 1/

√
2
)
= mg(1 + 1/2)

=⇒ F =
3mg

2 +
√

2
. (9.27)
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Having found F and N , we can now invoke the F ≤ µN condition. This gives

3mg

2 +
√

2
≤ µ

mg
√

2
=⇒ µ ≥ 3

√
2 + 1

= 3
(√

2 − 1
) ≈ 1.24. (9.28)

Remark: As an exercise, you can show that the minimum coefficient of friction between the cylinder
and the wall is 3(2

√
2 − 1)/7 ≈ 0.78. (This requires finding nw.) So we can get by with a smaller

coefficient of friction with the wall than with the stick.

9.11. Stick on a disk

The free-body diagrams are shown in Fig. 9.31. Let’s first determine how F1 is related
to N1 and then invoke the F1 ≤ µw N1 condition. Balancing torques on the disk around
the center gives F1R = F2R =⇒ F1 = F2. Balancing horizontal forces on the disk gives
N1 = F2. Combining these relations gives N1 = F1. So the F1 ≤ µw N1 condition becomes

F1 ≤ µwF1 =⇒ µw ≥ 1. (9.29)

Note that this result has nothing to do with the exact nature of the stick. It could have a
different length (as long as it is at least the radius of the disk), be nonuniform, etc.
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Now let’s determine how F2 is related to N2 and then invoke the F2 ≤ µs N2 condition.
Balancing torques on the stick around the pivot gives N2 = mg. Balancing vertical forces
on the disk gives F1 = N2 + mg =⇒ F1 = 2mg. (Basically, F1 is the vertical force
supporting the whole system. There is no vertical force at the pivot even though we drew
one in the figure to be general, because otherwise there would be a nonzero torque on the
stick around its center.) But F1 = F2 from above, so we have F2 = 2mg. The F2 ≤ µsN2
condition therefore becomes

2mg ≤ µs(mg) =⇒ µs ≥ 2. (9.30)

We see that we need a larger coefficient of friction with the stick than with the wall. The
entire set of forces in this problem is N1 = F1 = F2 = 2mg and N2 = mg. But the actual
values weren’t necessary for the µw ≥ 1 result.

9.12. Cylinder on a stick

The free-body diagrams for the stick and the cylinder are shown in Fig. 9.32.

There are many ways to go about obtaining Fx and Fy . Here is one:

• Balancing vertical forces on the cylinder-plus-stick system gives Fy = mg.

• Balancing vertical forces on the cylinder gives

B cos 45◦ = mg =⇒ B =
√

2mg. (9.31)
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• Balancing torques on the massless stick around its bottom end gives

B · ℓ
√

2
= Aℓ =⇒ A =

B
√

2
= mg. (9.32)

• Balancing horizontal forces on the stick gives

A = B sin 45◦ + Fx =⇒ mg =
√

2mg · 1
√

2
+ Fx =⇒ Fx = 0. (9.33)

The force from the box on the stick at its lower end is therefore purely vertical, with
magnitude mg. This means that if the box had a hole in its side, as shown in Fig. 9.33, the

45

Figure 9.33

system would still be in equilibrium. (But it turns out it wouldn’t be stable; that is, a small
displacement would turn into a larger one.)

If you also want to find the force C from the right wall, then balancing horizontal forces
on the cylinder gives

C = B sin 45◦ =
√

2mg · 1
√

2
= mg. (9.34)

Remark: Let’s change the size of the cylinder so that its contact point with the stick is a fraction f
of the way from the bottom of the stick to the top, as shown in Fig. 9.34. (So f = 1/2 in the original

45

f (      )2 l

Figure 9.34

problem.) As an exercise, you can show that the horizontal component of the force that the box
exerts on the stick at its lower end is Fx = mg(2 f − 1). This correctly equals zero when f = 1/2.

If f > 1/2 (as in Fig. 9.34) then Fx is positive, which means that the box pushes to the left on the
stick (we defined positive Fx to point leftward in Fig. 9.32). Equivalently, the stick wants to slide to
the right through the wall of the box. But it can’t, so the setup is static.

If f < 1/2 (so we have a small cylinder down closer to the bottom of the box) then Fx is negative,
that is, the force on the stick is directed to the right. But the force can’t be directed to the right,
because we are assuming that there is no friction anywhere in the setup. The stick wants to slide to
the left, away from the right wall, and since there is nothing to keep it from doing so, it slides to the
left and the cylinder falls. The setup can’t be static.



Chapter 10

Oscillations

10.1 Introduction
Hooke’s law

Consider a force that depends on position according to

F (x) = −k x. (10.1)

A force of this form (proportional to −x) is said to obey Hooke’s law. The force is negative if x is
positive, and positive if x is negative. So it is a restoring force; it is always directed back toward
the equilibrium point (the origin). Since F = −dU/dx, the associated Hooke’s-law potential
energy is

U (x) =
1
2

k x2. (10.2)

Plots of F (x) and U (x) are shown in Fig. 10.1. Hooke’s-law forces are extremely important be-
x

F

F = − kx

x

U U =     kx2_1

2

Figure 10.1

cause they are ubiquitous in nature, due to the fact that near an equilibrium point (which is where
systems generally hang out), any potential-energy function looks essentially like a parabola; see
Problem 10.1. So we can always approximate U (x) as k x2/2 for some value of k (although
this approximation will, of course, break down for sufficiently large x). We’ll often use a spring
(see page 70) as an example of a Hooke’s-law force, but there are countless other examples –
pendulums, objects floating in water, electrical circuits, etc.

Simple harmonic motion

If we have a Hooke’s-law force, F = −k x, then Newton’s second law becomes

F = ma =⇒ −k x = ma =⇒ mẍ = −k x. (10.3)

What is the solution, x(t), to this equation? There are many ways to solve it, but the easiest
way is to just note that we want to find a function whose second derivative is proportional to the
negative of itself. And we know that sines and cosines have this property. So let’s try a solution
of the form,

x(t) = A cos(ωt + ϕ). (10.4)

Plugging this into mẍ = −k x gives

m
( − ω2 A cos(ωt + ϕ)

)
= −k A cos(ωt + ϕ) =⇒ ω =

√
k
m
, (10.5)

where we have canceled the common factor of A cos(ωt + ϕ). We see that the expression for
x(t) in Eq. (10.4) is a solution to F = ma, provided that ω =

√
k/m. A and ϕ can take on

arbitrary values, and the solution is still valid. The sinusoidal motion in Eq. (10.4) is called
simple harmonic motion. The quantity ω is a very important one:

265
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• ω is the angular frequency of the oscillatory motion. The argument ωt + ϕ of the cosine
in Eq. (10.4) is an angle measured in radians (not degrees), and ω is the rate at which this
angle increases. (So you could also call ω the “angular speed” or “angular velocity.” But
“angular frequency” is more common.)

You can quickly verify that x(t + 2π/ω) = x(t), which means that the motion repeats itself after
every time interval of

T =
2π
ω
= 2π

√
m
k
. (10.6)

The time T is the period of the oscillation. The frequency of the oscillation, in cycles per second
(that is, in “hertz”) is

ν =
1
T
=
ω

2π
=

1
2π

√
k
m
. (10.7)

We see that ω is larger than ν by a factor of 2π. This is due to the fact that there are 2π radians
in each cycle. Note: The term “frequency,” instead of the full “angular frequency,” is often used
when referring to ω. So the word “frequency” is somewhat ambiguous in practice. But as long
as you write down the symbol ω or ν, it will be clear what you’re referring to.

Initial conditions

Aside from the time t, there are three parameters in the expression for x(t) in Eq. (10.4), namely
A, ω, and ϕ. The angular frequency ω is determined by k and m via Eq. (10.5), and these are in
turn determined by the setup; someone has to give you a particular spring and a particular mass.
In contrast, the values of A and ϕ are not determined by k and m; that is, they are not determined
by the setup. The x(t) in Eq. (10.4) is a solution to Eq. (10.3) for any arbitrary values of A and ϕ.
If we want to determine what the actual values of these two parameters are, we must specify two
initial conditions, most commonly the initial position x0 and the initial velocity v0 at time t = 0.
Differentiating Eq. (10.4), we see that the velocity is given by v(t) = dx/dt = −ωA sin(ωt + ϕ).
Letting t = 0 in this expression for v(t) and also in the expression for x(t) in Eq. (10.4), we find
that the initial conditions at t = 0, namely x0 = x(0) and v0 = v(0), can be written as

x0 = A cos ϕ and v0 = −ωA sin ϕ. (10.8)

These two equations can be solved for A and ϕ (see Problem 10.2). These two parameters are:

• A is the amplitude of the motion. It is the largest value that x(t) achieves; x(t) bounces
back and forth between A and −A.

• ϕ is the phase of the motion. It dictates where in the cycle of motion the mass is at t = 0.
A larger value of ϕ means that the mass is further along in the cycle at t = 0. The phase
ϕ depends on the choice of origin for time. If we pick a different instant when we set our
clock equal to zero, we obtain a different value of ϕ for the same motion.

Other forms of x(t)

Equation (10.4) is one way to write the solution to Eq. (10.3). But there are others, for example,

x(t) = B sin(ωt + ψ) or x(t) = C cosωt + D sinωt . (10.9)

These satisfy Eq. (10.3), provided that we again have ω =
√

k/m. If x(t) is written in the
C cosωt +D sinωt form, it isn’t obvious what the amplitude of the motion is. But you can show
in Problem 10.3 that the amplitude is

√
C2 + D2.

Note that no matter which form of x(t) we use, there are always two free parameters (A and
ϕ; or B and ψ; or C and D). These two parameters are determined by the two initial conditions.
The two parameters in one expression are related to the two in another. For example, using
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the trig sum formula for sine, and comparing the two expressions in Eq. (10.9), we see that
C = B sinψ and D = B cosψ.

The C cosωt + D sinωt form of x(t) is the most amenable to the application of initial
conditions. The x(0) = x0 condition quickly gives C = x0. And using v(t) = dx/dt =
−ωC sinωt + ωD cosωt, the v(0) = v0 condition quickly gives ωD = v0 =⇒ D = v0/ω.
Depending on the setup and goal of a given problem, a particular form of x(t) might make
things easier than the other forms.

We know that sines and cosines are solutions to the F = ma equation in Eq. (10.3). The fact
that a sine plus a cosine (the second form given in Eq. (10.9)) is again a solution is due to the
linearity of the F = ma equation; x appears only to the first power (the number of derivatives
doesn’t matter). This linearity implies that any linear combination of two solutions is again a
solution, as you can show in Problem 10.4.

Energy

Consider the standard system of a mass on a spring oscillating back and forth with amplitude
A and angular frequency ω. The energy will slosh back and forth between being only potential
(at the points of maximal stretch or compression, where the mass is instantaneously at rest) and
being only kinetic (when the mass passes through the equilibrium point, where the spring is
neither stretched nor compressed). Assuming that we have an ideal system with no damping
forces, energy should be conserved. To determine what the constant value of the energy is, we
can conveniently look at the x = ±A points, where the energy is all potential; the energy is
therefore k A2/2. And indeed, you can show in Problem 10.5 that the equation

k x2

2
+

mv2

2
=

k A2

2
(10.10)

is satisfied for all values of t. That is, the sum of the potential and kinetic energies takes on the
constant value of k A2/2.

Generality

As mentioned above, Hooke’s law is ubiquitous in nature because near an equilibrium point,
any potential-energy function looks basically like a parabola. A spring is one example. Another
common example is a pendulum. You can show in Problem 10.7 that the equation for the angle
θ (measured relative to the vertical) of a point-mass pendulum with length ℓ is θ̈ = −(g/ℓ)θ,
assuming that the amplitude of the oscillations is small. Having derived this equation, there is
no need to waste any time solving it, because it takes exactly the same form as Eq. (10.3), if we
rewrite that equation as ẍ = −(k/m)x. The only difference is that k/m is replaced by g/ℓ (and x
is replaced by θ). Therefore, since the ẍ = −(k/m)x equation has a solution of the form given in
Eq. (10.4), with the condition that ω must be equal to

√
k/m, we conclude that the θ̈ = −(g/ℓ)θ

equation must also have a solution of the form in Eq. (10.4), but with ω now equal to
√
g/ℓ.

In general, if you solve a problem that involves some variable z (by using F = ma, τ = Iα,
a conservation statement, or whatever), and if at the end of the day you arrive at an equation of
the form,

z̈ = −(something)z, (10.11)

then you can simply write down the answer with no further work: you know that z(t) undergoes
oscillatory motion given by Eq. (10.4), with an angular frequency ω equal to

ω =
√

something. (10.12)
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10.2 Multiple-choice questions
10.1. The expression for the angle of an oscillating pendulum (with a small amplitude) is θ(t) =

θ0 cos(ωt + ϕ).

True or false: The angular velocity θ̇ ≡ dθ/dt is equal to the angular velocity ω.

T F

10.2. The position of a particle is given by x(t) = x0 cos(ωt + π/6), where x0 = 6 m and
ω = 2 s−1. The maximum speed the particle achieves is

(a) 3 m/s (b) 6 m/s (c) 12 m/s (d) 24 m/s (e) 36 m/s

10.3. If you plot the functions cosωt and cos(ωt + π/4), the cos(ωt + π/4) curve will be shifted
relative to the cosωt curve. Which way is it shifted?

(a) rightward (b) leftward

10.4. Which of the pendulums shown below has the largest frequency of small oscillations?
The objects all have the same mass, and the CM’s are all the same distance from the
support. The (massless) rods are glued to each object to form rigid systems. The result
from Problem 10.8 will come in handy (but don’t look at the remark in the solution).

solid sphere hollow sphere point mass

(massless rods)

A B C

(a) A (b) B (c) C (d) They all have the same frequency.

10.3 Problems
The first eight problems are foundational problems.

10.1. Quadratic potential near a minimum

Use a Taylor series to show that near a local minimum, any (well-behaved) function, in par-
ticular the potential energy U (x), looks essentially like a quadratic function (a parabola).

10.2. Initial conditions

Solve the equations in Eq. (10.8) for A and ϕ.

10.3. Amplitude

Show that the amplitude of the motion given by x(t) = C cosωt+D sinωt equals
√

C2 + D2.
You can do this by taking the derivative of x(t) to find the maximum.

10.4. Linearity

Homogeneous linear differential equations have the property that the sum, or any linear
combination, of two solutions is again a solution. (“Homogeneous” means that there is a
zero on one side of the equation.) Consider, for example, the second-order linear differen-
tial equation (although the property holds for any order),

Aẍ + Bẋ + Cx = 0. (10.13)
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Show that if x1(t) and x2(t) are solutions, then the sum x1(t) + x2(t) is also a solution.
Show that this property does not hold for the nonlinear differential equation, Aẍ + Bẋ2 +

Cx = 0.

10.5. Conservation of energy

Using the form of x(t) given in Eq. (10.4) (along with the derivative, v(t) = −ωA sin(ωt +
ϕ)), show that the total energy (kinetic plus potential) of simple harmonic motion takes on
the constant value of k A2/2.

10.6. Circular motion and simple harmonic motion

(a) In the x-y plane, a particle moves in a circular path with radius A, centered at the
origin, as shown in Fig. 10.2. The angular velocity ω is constant, so the angle with

x

ar

v

y

A

ωt

Figure 10.2

respect to the x axis is given by ωt (or technically ωt + ϕ, but the phase won’t be im-
portant here). Using what you know about circular motion, determine the projections
onto the x axis of the position r, velocity v, and acceleration a vectors.

(b) Show that the three projections you found are equal, respectively, to the x(t), v(t),
and a(t) functions for a particle undergoing simple harmonic motion, with position
given by x(t) = A cosωt. In other words, show that the projection of uniform cir-
cular motion onto a diameter is simple harmonic motion. (Imagine shining a light
downward and looking at the shadow of the particle on the x axis.)

10.7. Simple pendulum

Consider the simple pendulum shown in Fig. 10.3. (The word “simple” refers to the fact

m

l
θ

Figure 10.3

that the mass is a point mass, as opposed to an extended mass in the “physical” pendulum
in Problem 10.8.) The mass hangs on a massless string and swings back and forth in a
vertical plane. Let ℓ be the length of the string, and let θ(t) be the angle the string makes
with the vertical. Show that θ satisfies θ̈ = −(g/ℓ)θ, assuming that θ is small enough so
that the sin θ ≈ θ small-angle approximation is a good one.

10.8. Physical pendulum

Consider an extended pendulum whose CM is a distance ℓ from the pivot, as shown in
Fig. 10.4. The pendulum’s mass is m, and its moment of inertia around the pivot is Ip.

l

CM

pivot

Figure 10.4

Find the frequency of small oscillations, under the same small-angle approximation as in
Problem 10.7.

10.9. Adding on some mass

A mass m is attached to a spring with spring constant k and oscillates on a horizontal
table with amplitude A. At an instant when the spring is stretched by A/2, a second mass
m is dropped vertically onto the original mass and immediately sticks to it. What is the
amplitude of the resulting motion?

10.10. Oscillating in phase

The system in Fig. 10.5 lies on a frictionless horizontal table. Both masses are m, and the

m

(top view)

m

knk

Figure 10.5

two spring constants are nk (where n is a numerical factor) and k. The springs have the
same relaxed length. Assuming that it is possible to set up initial conditions so that the
masses oscillate back and forth with the two springs always having equal lengths at any
given instant, what is n?

10.11. Two masses and a spring

In Fig. 10.6, masses M and m are connected by a spring with spring constant k and relaxed M mk

Figure 10.6

length ℓ. The system lies on a frictionless table. The masses are pulled apart so that the
spring is stretched a distance d relative to equilibrium, and then the masses are simulta-
neously released from rest. Find the position of m as a function of time (let x = 0 be its
equilibrium position). Hint: What is the CM of the system doing?



270 CHAPTER 10. OSCILLATIONS

10.12. Hanging on springs

Two identical horizontal springs with spring constant k and relaxed length zero are con-
nected to each other and to two walls a distance 2ℓ apart, as shown in Fig. 10.7. A mass
m is then attached to the midpoint and is slowly lowered down to its equilibrium position,
where it sits at rest. At this equilibrium position, the mass is a distance z0 below the initial
line of the springs, as shown (so z0 is defined to be a positive number).

(a) What is z0?

(b) If the mass is given a kick in the vertical direction, what is the frequency of the
resulting oscillations?

k k

l l

l l

m

z0

Figure 10.7

10.13. Cylinder and spring

A uniform solid cylinder with mass m and radius R is connected at its highest point to a
spring (at its relaxed length) with spring constant k, as shown in Fig. 10.8. If the cylinderm

k

Figure 10.8

rolls without slipping on the ground, what is the frequency of small oscillations? Careful,
the top of the cylinder moves more than the center!

10.14. Wheel on a board

A uniform wheel is free to roll without slipping on a board, which in turn is free to slide
on a frictionless table. A spring with spring constant k connects the axle of the wheel to
a nail stuck in the board, as shown in Fig. 10.9. Both the wheel and the board have mass

m

m

k
nail

Figure 10.9

m, and the nail is massless. The wheel is moved away from the equilibrium position, and
then the system is released from rest. What is the frequency of the oscillatory motion?

10.15. Board on a cylinder

The axle of a uniform cylinder with mass m and radius R is connected to a spring with
spring constant k, as shown in Fig. 10.10. A horizontal board with mass m rests on top of
the cylinder, and the board also rests on top of a frictionless support near its left end.

(a) The system is displaced from equilibrium. If there is no slipping between the cylinder
and the board, or between the cylinder and the ground, what is the frequency of the
oscillatory motion?

(b) If the amplitude of the oscillation of the center of the cylinder is A, what is the
maximum value of the friction force between the cylinder and the board?

frictionless
m

m

k

Figure 10.10
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10.16. Oscillating disk

A uniform disk with mass m and radius R lies on a frictionless horizontal table and is free
to rotate about a pivot at its center. A spring with spring constant k and relaxed length zero
has one end attached to a point on the rim of the disk and the other end bolted down on
the table at a distance R from the rim, as shown in Fig. 10.11. If the disk is initially in the

m

R

R

k

bolted
down

pivot

(top view)

Figure 10.11

equilibrium position shown and is then given a tiny angular kick, what is the frequency of
small oscillations?

10.17. Maximum frequency 1

A coin with radius R is pivoted at a point that is a distance d from its center. The coin is
free to swing back and forth in the vertical plane defined by the plane of the coin. What
value of d yields the largest frequency of small oscillations?

10.18. Maximum frequency 2

A uniform stick with mass m and length ℓ lies on a frictionless horizontal surface (so you
can ignore gravity in this problem). It is pivoted at a point a distance x from its center. A
spring (at its relaxed length) with spring constant k is attached to the far end of the stick,
perpendicular to the stick, as shown in Fig. 10.12. If the stick is given a tiny kick, what

k

x
(top view)

pivot

Figure 10.12

value of x yields the largest frequency of small oscillations?

10.19. Oscillating board

A uniform board with mass M and length L is pivoted at its center, as shown in Fig. 10.13.
Its right end is connected to a spring with spring constant k. The relaxed length is such
that the system is in equilibrium when the board is horizontal. The board is given a tiny
vertical kick at one of its ends. Throughout this problem, assume that all oscillations are
small, and make suitable approximations (cos θ ≈ 1, sin θ ≈ θ, where θ is the angle the
board makes with the horizontal).

(a) What is the frequency of the resulting small oscillations?

(b) Assume that the (small) angular amplitude is θ0. A small block with mass m ≪ M is
placed on top of the board near the center, as shown in the right diagram in Fig. 10.13.
Assume that the top of the board is frictionless, so that the block is free to slide back
and forth. And assume that m is so small that the presence of the block doesn’t
affect the motion of the board. If initial conditions have been set up so that the block
oscillates back and forth between the points with horizontal coordinates x = ±x0
(with the pivot at x = 0), what is x0? Hint: What is the F = ma equation for the
block?

(c) Describe what the collective motion of the block and the board looks like by drawing
four pictures: when the board is (1) tilted upward the most, then (2) horizontal, then
(3) tilted downward the most, then (4) horizontal again.

k

M, L

part (a) part (b)
(side views)

m

Figure 10.13



272 CHAPTER 10. OSCILLATIONS

10.4 Multiple-choice answers

10.1. F The derivative dθ/dt is equal to −ωθ0 sin(ωt + ϕ), which is an oscillating function of
time with a maximum value of ωθ0 and a minimum value of −ωθ0. dθ/dt is an “angular
velocity” in the sense that it is the rate of change of the angle θ(t) that the pendulum makes
with the vertical.

In contrast, the parameter ω is a fixed quantity. It is an “angular velocity” in the sense that
it is the rate of change of the angle ωt + ϕ (the argument of the cosine function). This
angle increases without bound as time goes on (or at least keeps running from 0 to 2π, if
you want to strip off irrelevant integral multiples of 2π), as opposed to just bouncing back
and forth between the small angles θ0 and −θ0, as the angle θ(t) does.

10.2. c The velocity is v(t) = −ωx0 sin(ωt + π/6). The maximum value of the sine term is
1 (the phase doesn’t matter here), so the maximum magnitude of the velocity (that is, the
maximum speed) is ωx0, which equals (2 s−1)(6 m) = 12 m/s

10.3. b The two curves are shown in Fig. 10.14, and we see that the cos(ωt + π/4) curve
t

cos ωt

cos (ωt + π/4)

Figure 10.14

is shifted leftward relative to the cosωt curve. The reason for this is that since π/4 is
a positive phase, cos(ωt + π/4) reaches a given value before cosωt does. For example,
cosωt is maximum when ωt = 0 (that is, when t = 0), whereas cos(ωt+π/4) is maximum
when ωt = −π/4 (that is, when t takes on the negative value of t = −π/4ω).

Remark: We say that the cos(ωt + π/4) curve is ahead of the cosωt curve, because the former
reaches a given value before the latter. If you look at Fig. 10.14, however, you might think that the
cos(ωt + π/4) curve is behind the cosωt curve, considering that it is shifted slightly leftward. But
this spatial appearance isn’t important. The leftward shift means that cos(ωt + π/4) reaches a given
value first, so it is ahead. If we had instead posed the question with the function cos(ωt − π/4), then
the negative phase would mean that this curve is shifted to the right and hence behind the cosωt
curve.

10.4. c For a given displacement angle, all three objects experience the same torque from
gravity relative to the pivot on the ceiling, because gravity effectively acts at the CM. But
Problem 10.8 tells us that the frequency of small oscillations equals ω =

√
mgℓ/I, where

ℓ is the common distance from the pivot to the CM, and I is the moment of inertia relative
to the pivot. So the question reduces to which object has the smallest I. From the parallel-
axis theorem, the I relative to the pivot is given by I = mℓ2 + ICM. Since the two spheres
have a nonzero ICM, the point mass has the smallest I and hence the largest ω. The hollow
sphere has the largest ICM, and hence the smallest ω, because its mass is farthest from the
CM.

10.5 Problem solutions
10.1. Quadratic potential near a minimum

Let the local minimum occur at x0, and expand U (x) in a Taylor series around this point.
(See Appendix B for a review of Taylor series.) With a prime denoting differentiation, we
have

U (x) = U (x0) +U ′(x0)(x − x0) +
U ′′(x0)

2!
(x − x0)2 +

U ′′′(x0)
3!

(x − x0)3 + · · · . (10.14)

This is valid for any value of x0. But in the case where x0 corresponds to a minimum, we
can use the fact that U ′(x0) = 0 to eliminate the second term. Additionally, the first term,
U (x0) is a constant, so it is irrelevant. (Only differences in energy matter. Equivalently,
the force is given by F = −dU/dx, and the derivative of a constant is zero.) Furthermore,
the fourth term (along with all higher-order terms) is very small compared with the third
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term because it has an extra power of (x − x0), and we are assuming that this quantity is
very small (because we are assuming that x is very close to x0). We are therefore left with
only the second term:1

U (x) ≈ 1
2

U ′′(x0)(x − x0)2. (10.15)

This is the desired quadratic form of U (x) near the local minimum. The U ′′(x0) term is a
constant, so the x dependence comes solely from the (x− x0)2 term. In short, any arbitrary
(well-behaved) function looks like a parabola in the vicinity of a minimum.

If we define y by y ≡ x − x0 (in other words, if we shift our origin so that it is located at
x0), then the potential energy can be written as

U (y) =
1
2

U ′′(0)y2 =⇒ U (y) ≡ 1
2

ky2, (10.16)

where k ≡ U ′′(0). This U (y) looks just like the U (x) in Eq. (10.2), so we see that near
a stable equilibrium point,2 everything looks like a Hooke’s-law spring. And the effective
spring constant is simply the second derivative of the potential energy, evaluated at the
equilibrium point. From Eq. (10.5) the frequency of small oscillations is therefore

ω =

√
U ′′(0)

m
. (10.17)

10.2. Initial conditions

We can solve for ϕ by dividing the second of the given equations by the first. The result is

tan ϕ = − v0

ωx0
. (10.18)

And we can solve for A by dividing the second of the given equations by ω, and then
squaring both equations and adding them. The identity sin2 ϕ + cos2 ϕ = 1 allows us to
eliminate ϕ, and the result for A is

A =

√
x2

0 +
v2

0

ω2 . (10.19)

Technically there should be a “±” in front of the square root, but the usual convention is
to take A as a positive quantity.

There is an ambiguity in the above result for ϕ, because there are two distinct angles (dif-
fering by π) that have their tangent equal to −v0/ωx0. The correct angle can be determined
by looking at the sign of either x0 or v0. If, for example, x0 is positive, then the first of
the equations in Eq. (10.8) tells us that cos ϕ is positive, which means that ϕ must lie in
the first or fourth quadrants. Only one of the two possible angles specified by Eq. (10.18)
satisfies this condition.

10.3. Amplitude

First solution: Setting the derivative of C cosωt + D sinωt equal to zero gives

0 =
dx
dt
= −ωC sinωt + ωD cosωt =⇒ tanωt0 =

D
C
. (10.20)

This tells us the time t0 at which x(t) is maximum (or minimum). The angle ωt0 that
satisfies tanωt0 = D/C is shown in Fig. 10.15. We have drawn the triangle with C and

C

ωt0

D
C

 2+
D
2

Figure 10.15

1Even if U ′′′(x0) is much larger than U ′′(x0), we can always make (x − x0) small enough so that the third-order
term is negligible. The one exception is the case where U ′′(x0) is exactly equal to zero. But even in this case the
ω =

√
U ′′(0)/m result given below in Eq. (10.17) is still valid.

2“Stable” means that k ≡U ′′(0) is positive, so that we have a rightside-up parabola, instead of an upside-down one.
More physically, if an object is given a small displacement away from a stable equilibrium point, it always feels a force
directed back toward that point. In contrast, although the force at an unstable equilibrium point is likewise zero (that’s
the definition of “equilibrium”), a small displacement yields a force directed away from that point.
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D positive, but they need not be. From this figure we can quickly read off the values of
cosωt0 and sinωt0. Plugging these values into x(t0) = C cosωt0 + D sinωt0 gives the
maximum value of x(t) as

xmax = x(t0) = C · C
√

C2 + D2
+ D · D

√
C2 + D2

=
√

C2 + D2. (10.21)

This xmax is the amplitude, because the motion bounces back and forth between xmax and
−xmax. (The minimum of x(t) is obtained from the triangle whose legs are −C and −D,
instead of the C and D in Fig. 10.15. This triangle also satisfies tanωt0 = D/C.)

Second solution: If x(t) is written in the A cos(ωt + ϕ) form, we know that the amplitude
is simply A. Using the trig sum formula for cosine, we can rewrite A cos(ωt + ϕ) as

x(t) = A cosωt cos ϕ − A sinωt sin ϕ. (10.22)

Comparing this with the x(t) = C cosωt + D sinωt expression, we see that the C and D
parameters in one expression for x(t) are related to the A and ϕ parameters in the other by

C = A cos ϕ and D = −A sin ϕ. (10.23)

We then quickly have

C2 + D2 = A2(cos2 ϕ + sin2 ϕ) = A2. (10.24)

So the amplitude, which we know is A, is also
√

C2 + D2.

10.4. Linearity

If x1(t) and x2(t) are solutions to the given linear equation, then

Aẍ1 + Bẋ1 + Cx1 = 0, and
Aẍ2 + Bẋ2 + Cx2 = 0. (10.25)

If we add these two equations, and switch from the dot notation to the d/dt notation, then
we have (using the fact that the sum of the derivatives is the derivative of the sum)

A
d2(x1 + x2)

dt2 + B
d(x1 + x2)

dt
+ C(x1 + x2) = 0. (10.26)

But this is just the statement that x1 + x2 is a solution to our differential equation, as we
wanted to show. This technique clearly works for any linear combination of x1 and x2, not
just their sum. Note that the right-hand side of the equation needs to be zero, otherwise
we wouldn’t end up with the same term on the right-hand side when we add the equations.
Hence the “homogeneous” qualifier in the statement of the problem.

Now consider the nonlinear equation,

Aẍ + Bẋ2 + Cx = 0. (10.27)

If x1 and x2 are solutions to this equation, and if we add the differential equations applied
to each of them, we obtain

A
d2(x1 + x2)

dt2 + B

(

dx1

dt

)2

+

(
dx2

dt

)2 + C(x1 + x2) = 0. (10.28)

This is not the statement that x1+x2 is a solution, which is instead the (incorrect) statement
that

A
d2(x1 + x2)

dt2 + B
(

d(x1 + x2)
dt

)2

+ C(x1 + x2) = 0. (10.29)
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The preceding two equations differ by the cross term in the middle term in Eq. (10.29),
namely 2B(dx1/dt)(dx2/dt). In general this term is nonzero, so Eq. (10.29) isn’t valid,
and we conclude that x1 + x2 isn’t a solution. No matter what the order of the differential
equation is, we see that these cross terms will arise if and only if the equation isn’t linear.

Remark: This property of homogeneous linear differential equations – that the sum of two solutions
is again a solution – is extremely useful. It means that we can build up solutions from other solutions.
Systems that are governed by linear equations are much easier to deal with than systems that are
governed by nonlinear equations. In the latter type of system, the various solutions aren’t related in
an obvious way. Each one sits in isolation, in a sense. General Relativity is an example of a theory
that is governed by nonlinear equations, and solutions are indeed very hard to come by.

10.5. Conservation of energy

Plugging the x(t) and v(t) functions into the energy gives

E =
1
2

k x2 +
1
2

mv2

=
1
2

k
(
A cos(ωt + ϕ)

)2
+

1
2

m
( − ωA sin(ωt + ϕ)

)2

=
1
2

A2
(
k cos2(ωt + ϕ) + mω2 sin2(ωt + ϕ)

)
=

1
2

k A2
(

cos2(ωt + ϕ) + sin2(ωt + ϕ)
)

(using ω2 ≡ k/m)

=
1
2

k A2, (10.30)

where we have used the identity sin2 θ + cos2 θ = 1.

10.6. Circular motion and simple harmonic motion

(a) The r vector has length A and makes an angle of ωt with respect to the x axis. So
the projection of r onto the x axis (that is, the x coordinate of r) is

rx (t) = A cosωt. (10.31)

The length of the v vector is the speed of the particle, which equals Aω from the
standard v = rω result for circular motion. Since v is perpendicular to r, you can
show that v makes an angle of π/2 − ωt with respect to the negative x axis at the
position shown in Fig. 10.2.3 So the projection of v onto the x axis is

vx (t) = −(Aω) cos(π/2 − ωt) = −Aω sinωt, (10.32)

where the minus sign comes from the fact that v points partially leftward at the given
position.
From the standard a = v2/r result for circular motion, the length of the a vector is
v2/A = (Aω)2/A = Aω2. Since a points radially inward (opposite to r), its projection
onto the x axis is obtained by multiplying by − cosωt, which gives

ax (t) = −Aω2 cosωt. (10.33)

(b) If the position of a particle undergoing simple harmonic motion is given by x(t) =
A cosωt, then taking the derivative of x(t) gives the velocity as v(t) = −Aω sinωt,
and taking another derivative gives the acceleration as a(t) = −Aω2 cosωt. These
results equal the projections we found in part (a), as desired. We therefore see that the
physical interpretation of the angle ωt in the x(t) = A cosωt expression for simple

3You can work out the geometry, or in the spirit of Multiple-Choice Question 1.12, you know that the angle is either
ωt or π/2 −ωt , and you can determine the correct choice by taking a limit, for example, ωt → 0.
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harmonic motion is the angle of a particle running around in a circle with the same
angular frequency ω.

Remarks: There was nothing special about the x axis, of course, so the projection onto any
diameter yields simple harmonic motion. Depending on when we start our clock, there will
in general be a phase in the angle, ωt + ϕ. But the ϕ just goes along for the ride in the above
calculations and doesn’t affect the equalities we found.
Once we demonstrated above that the projection of the circular-motion position r equals the
simple-harmonic position x(t) = Aω cosωt, there was actually no need to demonstrate the
same thing for the velocity and acceleration, because if the x coordinates of the circular and
simple harmonic motions match up for all time, then all derivatives of these common x values
(in particular, v and a) will necessarily also match up for all time. But it didn’t hurt to check
anyway.
It is intuitively believable that the projection of uniform circular motion yields simple har-
monic motion, because in simple harmonic motion the particle spends more time in a given,
say, centimeter near the extremes of the oscillation than it does in a given centimeter near the
origin, because it is going slower near the extremes. This agrees with the projection of circular
motion, because the particle is moving nearly vertically on the right and left sides of the circle,
so it hangs out longer in a given horizontal span than it does when it is moving horizontally as
it crosses the y axis (which corresponds to crossing the origin in simple harmonic motion).

10.7. Simple pendulum

The tangential component of the gravitational force on the mass is −mg sin θ, with the
negative sign indicating that the force always points back to the equilibrium position at
θ = 0, where the string is vertical. Since the tangential acceleration can be written as
a = ℓα ≡ ℓθ̈, the F = ma equation in the tangential direction is

F = ma =⇒ −mg sin θ = m(ℓθ̈). (10.34)

The tension in the string combines with the radial component of gravity to produce the
centripetal acceleration, but the radial F = ma equation serves only to tell us the tension,
which we won’t need here.

Eq. (10.34) isn’t solvable in closed form. But for small oscillations, we can use the sin θ ≈
θ approximation to write

−mgθ ≈ mℓθ̈ =⇒ θ̈ = −(g/ℓ)θ, (10.35)

as desired. As stated on page 267, the pendulum therefore undergoes simple harmonic
motion with a frequency of ω =

√
g/ℓ. The true motion is arbitrarily close to this, for

sufficiently small amplitudes.

Remarks: For general (not necessarily small) values of the amplitude, the actual frequency is smaller
than the idealized small-amplitude result of ω =

√
g/ℓ. Equivalently, the period T = 2π/ω is larger

than 2π
√
ℓ/g. However, the difference is generally negligible. For example, even if the amplitude

is 20◦, it can be shown numerically that the period is larger than 2π
√
ℓ/g by less than 1%. If the

amplitude is 45◦, the discrepancy is still only about 4%. But if the amplitude is 90◦, the discrepancy
grows to 18%.

The negative sign in Eq. (10.34) is critical. Without it, the force would be a repulsive force instead
of a restoring one. And the solution to Eq. (10.35) would be a growing or decaying exponential (you
can quickly verify that Ae±αt is a solution, where α =

√
g/ℓ ) instead of an oscillatory trig function.

10.8. Physical pendulum

We were able to solve the simple pendulum in the preceding problem by using only the
tangential F = ma equation. In the present case of an extended pendulum, we’ll need
to use τ = Iα relative to the pivot. By using the torque relative to the pivot, we will be
able to ignore the force acting at the pivot, which generally points in a messy direction
(not along the line from the pivot to the CM). In the case of the simple pendulum, the
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force pointed nicely along the string, which made the solution easy, in that the tangential
F = ma equation sufficed.

Let θ be defined as shown in Fig. 10.16. Relative to the pivot, the lever arm of the grav-
l

θ
CM

pivot

Figure 10.16

itational force (which effectively acts at the CM) is ℓ sin θ. So the gravitational torque
is −mg(ℓ sin θ), where the minus sign indicates that the torque always acts to bring the
pendulum back to vertical. The τ = Iα equation, relative to the pivot, is then (using
sin θ ≈ θ)

τ = Iα =⇒ −mgℓ sin θ = Ipθ̈ =⇒ θ̈ = −
(

mgℓ

Ip

)
θ. (10.36)

From Eqs. (10.11) and (10.12), the frequency of small oscillations is therefore

ω =

√
mgℓ

Ip
. (10.37)

Remark: In the special case where the extended pendulum is actually a point mass, Ip is simply mℓ2,
so Eq. (10.37) gives ω =

√
g/ℓ, as it should. For a given length ℓ from the pivot to the CM, a point

mass has the largest frequency of any possible shape, because the parallel-axis theorem tells us that
Ip = ICM + mℓ2, which means that Ip is always greater than or equal to mℓ2 (with equality holding
in the case of a point mass for which ICM = 0). So the

√
mgℓ/Ip result in Eq. (10.37) is always less

than or equal to
√
g/ℓ.

10.9. Adding on some mass

First solution: The total energy of the system is k A2/2, because that is the potential
energy when the spring is stretched maximally. Right before the second mass is added on,
conservation of energy for the initial oscillatory motion gives the speed of the oscillating
mass as

1
2

k A2 =
1
2

k
(

A
2

)2

+
1
2

mv2 =⇒ 3
8

k A2 =
1
2

mv2 =⇒ v =

√
3k
4m

A. (10.38)

When the second mass is added on, conservation of momentum gives the speed of the
resulting mass 2m as v/2. (We can’t use conservation of mechanical energy during the
inelastic collision, because some of the energy is converted into heat.)

Having found the speed of the mass 2m right after the collision, we can use conservation
of energy for the resulting oscillatory motion to determine the new amplitude B:

1
2

kB2 =
1
2

k
(

A
2

)2

+
1
2

(2m) *,1
2

√
3k
4m

A+-
2

=⇒ 1
2

kB2 =
1
8

k A2 +
3
16

k A2 =⇒ B =

√
5
8

A. (10.39)

Second solution: We can also solve this problem by treating it as an “initial conditions”
problem. The new oscillatory motion starts with position x0 = A/2 and speed v0 =

(A/2)
√

3k/4m (from the first solution above). If we write the position in the form of
x(t) = C cosωt + D sinωt, then the discussion on page 267 tells us that C = x0 and
D = v0/ω. But the ω of the new motion is ω =

√
k/2m because the mass is now 2m. So

D =
v0

ω
=

(A/2)
√

3k/4m
√

k/2m
=

√
3
8

A. (10.40)

With C = x0 = A/2 and D =
√

3/8 A, Problem 10.3 gives the amplitude B of the new
motion as

B =
√

C2 + D2 = A

√
1
4
+

3
8
=

√
5
8

A, (10.41)

in agreement with the first solution.
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10.10. Oscillating in phase

At a given instant, let the springs each be stretched by x (or compressed, if x is negative).
Then relative to the equilibrium positions, the positions of the left and right masses are x
and 2x, respectively. The forces from the springs have magnitudes (nk)x and kx, so the
two F = ma equations are (paying attention to the signs)

left mass : −nk x + k x = mẍ =⇒ ẍ = − (n − 1)k
m

x,

right mass : −k x = m(2ẍ) =⇒ ẍ = − k
2m

x. (10.42)

(Note that whereas the force on the left mass is due to both springs, the force on the right
mass is due only to the right spring, because the right mass touches only the right spring.)
Since the springs always have equal lengths, the masses must have the same frequency of
oscillation. So the coefficients of the x’s in the above two equations must be equal. Hence

(n − 1)k
m

=
k

2m
=⇒ n − 1 =

1
2
=⇒ n =

3
2
. (10.43)

Remark: This factor of 3/2 makes sense, because it makes the net force on the left mass be
−(3/2)kx + k x = −(1/2)k x, which is half as large as the −k x force on the right mass. This factor
of 1/2 is correct, because the left mass moves half as far as the right mass, which means that its
acceleration is half as large (given that it has the same frequency).

10.11. Two masses and a spring

The CM is initially at rest, so it is always at rest because there are no external forces. We’ll
present three solutions.

First solution: In this solution we’ll use F = ma. To do this, we’ll need to calculate
how the stretching distance of the spring is related to the displacements of the masses.
The distances that the masses move are inversely proportional to their masses, because
otherwise the CM would move. So if the spring stretches a distance z (or compresses, if z
is negative), then mass m moves a distance Mz/(M + m) to the right, and mass M moves
a distance mz/(M + m) to the left. These two distances correctly add up to z and are in
the correct ratio.

Let’s work in terms of the displacement x of mass m. If m moves by x = Mz/(M + m),
then the spring stretches by z = (M + m)x/M . This means that the spring force acting on
m is −kz = −k (M + m)x/M . The F = ma equation for m is therefore

− k (M + m)
M

x = mẍ =⇒ ẍ = − k (M + m)
Mm

x. (10.44)

The frequency of the oscillatory motion is then

ω =

√
k (M + m)

Mm
. (10.45)

This ω is symmetric in m and M , so we would have obtained the same result (as we know
we must) if we had instead looked at the mass M; you can quickly verify this.

The spring is initially stretched by d, so the initial position of m (relative to its equilibrium
position) is Md/(M + m). This is the amplitude of m’s motion. And m is initially at rest,
so if we write the position with a cosine then we don’t need a phase. The desired position
of m as a function of time is therefore

x(t) =
Md

M + m
cosωt, (10.46)

where ω is given above. The position of M is similar, except with an overall minus sign
and an m instead of an M in the numerator of the amplitude.



10.5. PROBLEM SOLUTIONS 279

Limits: If M ≫ m then Eq. (10.46) gives x(t) ≈ d cosωt, with ω ≈
√

k/m from Eq. (10.45).
This makes sense, because M is effectively a brick wall. If m ≫ M then we have x(t) ≈ 0, with
ω ≈

√
k/M . This makes sense because m is now effectively a brick wall and hence barely moves,

but whatever tiny motion it undergoes has frequency
√

k/M , because that is the frequency of M’s
motion on the other end of the spring.

Second solution: The idea of this solution is to note that since the CM is at rest, we can
imagine bolting down the spring at the location of the CM. This won’t affect the system,
because this point on the spring doesn’t move anyway. We then effectively have two
masses each connected by shortened springs to a wall located at the CM.

Let the original spring have a relaxed length of ℓ. Then the effective shortened spring that
is connected to m has a relaxed length of Mℓ/(M+m), because the distances to the CM are
inversely proportional to the masses (as we noted in the first solution). Since this is a factor
M/(M + m) shorter than the original spring, Problem 4.2 tells us that the spring constant
of this shortened spring is larger by a factor (M +m)/M , that is, keff = (M +m)k/M . The
frequency of m’s motion is therefore

ω =

√
keff

m
=

√
k (M + m)

Mm
, (10.47)

in agreement with Eq. (10.45). The solution proceeds as above.

Third solution: In this solution we’ll use conservation of energy. The initial potential
energy of the spring, kd2/2, shows up at a later time as potential energy kz2/2 (where z
is the stretching distance) plus kinetic energy. From the first solution, we know how the
positions, and hence velocities, of the two masses relate to ż. So conservation of energy
gives

1
2

kd2 =
1
2

kz2 +
1
2

m
(

Mż
M + m

)2

+
1
2

M
( mż

M + m

)2

=
1
2

kz2 +
1
2

(
mM2 + Mm2

(M + m)2

)
ż2

=
1
2

kz2 +
1
2

(
mM

M + m

)
ż2. (10.48)

But this is simply the conservation-of-energy equation associated with one particle with
mass Mm/(M + m) on the end of a spring with spring constant k. Therefore,

ω =

√
k

Mm
M+m

=

√
k (M + m)

Mm
. (10.49)

This is the frequency of the oscillation of the variable z (the stretching distance), so it is
also the frequency of the oscillation of each mass. The solution proceeds as above.

If you want to be a little more formal with Eq. (10.48), you can take the time derivative of
that equation to obtain

0 =
1
2

k · 2zż +
1
2

Mm
M + m

· 2ż z̈ =⇒ z̈ = − k (M + m)
Mm

z, (10.50)

which tells us that the frequency is given by Eq. (10.49).

Remark: The quantity meff ≡ Mm/(M + m) is known as the reduced mass of the system. As
we saw above, in many respects we can pretend that our system consists of a single mass meff
attached to the given spring (with the other end held fixed). This reduced mass comes up often in
systems involving two masses. For example, the earth-sun system (a rotational system involving
gravity) behaves in many respects like a mass meff orbiting around a fixed point. If one mass is



280 CHAPTER 10. OSCILLATIONS

much larger than the other, then meff is essentially equal to the smaller of the masses, because
Mm/(M +m) ≈ Mm/(M + 0) ≈ m in the case where M ≫ m. (To a good approximation, the earth
orbits around a fixed sun.) But if the masses are equal, then meff = m/2.

10.12. Hanging on springs

(a) If θ is the angle that the springs make with the horizontal, then each spring has length
ℓ/ cos θ. So each spring exerts a force of kℓ/ cos θ (remember that the relaxed length
is zero). The upward component of this force is (kℓ/ cos θ) sin θ = kℓ tan θ. But
ℓ tan θ equals z0. So the total upward force from the two springs is 2kz0. This simple
2kz0 form tells us that we effectively have two zero-length springs hanging verti-
cally.4 In equilibrium, the upward force from the springs must balance the weight of
the mass, so mg = 2kz0 =⇒ z0 = mg/2k. Note that this doesn’t depend on ℓ.

(b) If the mass is given a vertical kick, let y be the displacement from equilibrium, with
upward taken to be positive. The upward force from the spring is then 2k (z0 − y).
The 2kz0 part of this will always cancel the weight mg. So the net upward force
as a function of y is F = −2ky. The F = ma equation that governs the motion is
therefore −2ky = m ÿ, so the frequency of the oscillations is ω =

√
2k/m.

Remark: The reason for this simple ω =
√

2k/m result is that, as we noted above, our tilted
springs behave effectively like a single vertical spring with spring constant 2k; and then from
Problem 5.6 we know that this hanging spring behaves like a spring with relaxed length z0
(which doesn’t affect the frequency) in a world with no gravity.

10.13. Cylinder and spring

From Problem 7.8(b), we know that if the center of the cylinder moves a distance x, then
the point at the top moves a distance 2x. So the spring force is Fs = −k (2x). If positive
directions are defined as shown in Fig. 10.17, then the F = ma equation for the cylinder is

m

Ff

Fs = -2kx

a

ω

Figure 10.17

Ff + (−2kx) = ma, (10.51)

where a ≡ ẍ. With clockwise torque taken to be positive, the τ = Iα equation around the
center of the cylinder is (using the non-slipping condition α = a/R)

−Ff R + (−2kx)R =
(

mR2

2

) ( a
R

)
=⇒ −Ff − 2k x =

1
2

ma. (10.52)

Adding this to the above F = ma equation eliminates the friction force Ff , and we obtain

−4k x =
3
2

mẍ =⇒ ẍ = − 8k
3m

x. (10.53)

The frequency of small oscillations is therefore ω =
√

8k/3m.

Remark: This frequency of ω =
√

8k/3m is larger than the frequency of
√

k/m for a mass on the
end of a spring. There are two reasons for this. First, for a given displacement x of the center of the
cylinder, the spring stretches by 2x. So the spring force is larger than it is for a mass on a spring
stretched by x; we effectively have a stronger spring. Second, the friction force Ff always points in
the same direction as the spring force; as an exercise, you can show that Ff always equals Fs/3. So
the net force is increased compared with the case where the ground is frictionless.

As an exercise, you can show that if the spring were attached to the center of the cylinder, the
frequency would be

√
2k/3m, which is smaller than the frequency of

√
k/m for a mass on the end

of a spring. This is due to the fact that the friction force always points opposite to the spring force,
as you can verify.

4This is a general property of a tilted spring with relaxed length zero. The spring is equivalent to two zero-length
sub-springs, with the same spring constant, lying along the horizontal and vertical projections of the original spring.
(The above reasoning works the same way for the horizontal component.) In the present case, the horizontal sub-springs
cancel, and we are left with two vertical sub-springs.
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In view of the previous two paragraphs, a continuity argument dictates that there must exist an
attachment point for which the friction force is always zero (which is the cutoff case between always
pointing in the same direction as the spring force and always pointing opposite to it). You can show
that this point is located at a height of 3R/2 above the ground, or equivalently halfway between the
center and the top.5 Also by continuity, there must be an attachment point for which the frequency
equals

√
k/m (because attaching at the top yields a higher frequency, and attaching at the center

yields a lower frequency). You can show that this point is located at a height of
√

3/2 R above the
ground, or equivalently about (0.22)R above the center.

10.14. Wheel on a board

Let x be the amount the spring is stretched (or compressed, if x is negative). Then the
free-body diagrams for the horizontal forces (spring and friction) on the board and the
wheel are shown in Fig. 10.18. We have chosen positive Ff on each object to point in the
directions indicated, although Ff will be negative half the time.

m

m

kxnail kx

Ff

Ff

Figure 10.18

Note that the net forces on the board and the wheel are always equal and opposite. There-
fore, since the masses of the objects are the same, their accelerations must always be equal
and opposite. And since both objects start at rest, this implies that the velocities are always
equal and opposite. And likewise for the positions relative to equilibrium. So if the spring
stretches by x, the wheel must move x/2 to the right and the board must move x/2 to the
left.

The F = ma equation for the wheel (with rightward taken to be positive) is

F = ma =⇒ Ff − k x = m
( ẍ

2

)
. (10.54)

The F = ma equation for the board is simply the negative of this equation. With clockwise
taken to be positive, the τ = Iα equation for the wheel, around its center, is

τ = Iα =⇒ −Ff R =
(

mR2

2

)
α. (10.55)

The final equation we need is the non-slipping condition. This is ẍ = Rα, which is most
easily seen by working in the reference frame of the board. If the cylinder moves rightward
by a distance x with respect to the board (which is how we defined x), it does so by rolling
through an angle θ, where x = Rθ. Taking two derivatives of this relation gives ẍ = Rα.
We now have three equations and three unknowns: Ff , ẍ, and α.

Using ẍ = Rα in the τ = Iα equation in Eq. (10.55), we obtain

−Ff R =
(

mR2

2

)
ẍ
R
=⇒ Ff = −

mẍ
2
. (10.56)

Plugging this into the F = ma equation in Eq. (10.54) gives

−mẍ
2
− k x =

mẍ
2
=⇒ ẍ = − k

m
x =⇒ ω =

√
k
m
. (10.57)

5This is also the center of percussion for the cylinder, relative to the bottom point (see Problem 8.19 for the definition
of the center of percussion). You should think about why this is the case.
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Remark: If we instead had two point masses m on the ends of the spring (or equivalently, if the
wheel were replaced by a mass sliding without friction on the board), the F = ma equation for each
mass would be −k x = m( ẍ/2) =⇒ ẍ = −(2k/m)x. So the frequency would be ω =

√
2k/m, which

is larger than the above result of ω =
√

k/m for the original setup. (Since the midpoint of the spring
doesn’t move in our new setup, each mass is effectively on the end of a half-length spring with
twice the spring constant; see Problem 4.2. Hence the 2k term in the frequency.) The frequency in
the original setup with the rolling wheel is smaller because the friction always acts in the direction
opposite to the spring force (because the spring force is −kx, while the friction force is Ff = kx/2
by substituting the ẍ from Eq. (10.57) into Eq. (10.56)). So the net force on each object is reduced.

10.15. Board on a cylinder

(a) First solution: Let x be the position of the center of the cylinder relative to equi-
librium, with rightward taken to be positive. The free-body diagrams (for just the
horizontal forces) for the board and the cylinder are shown in Fig. 10.19. We’ve

f

F

kx

F

ac

ab

α

Figure 10.19

arbitrarily chosen the positive directions for the friction forces F and f as shown.
If they come out to be negative (and half the time they are in fact negative), then
they simply point in the other direction. The directions of F in the two diagrams
must be opposite, though, by Newton’s third law. We’ll take positive ab and ac to be
rightward, and positive α to be clockwise, as shown.
From Problem 7.8(a), the non-slipping condition between the cylinder and the ground
is ac = Rα. And from Problem 7.8(b), the non-slipping condition between the cylin-
der and the board is ab = 2ac. So the various force and torque equations are:

• F = ma for the cylinder:
F + f − kx = mac. (10.58)

• τ = Iα for the cylinder (using Rα = ac):

FR − f R =
(

mR2

2

)
α =⇒ F − f =

mac

2
. (10.59)

• F = ma for the board (using ab = 2ac):

−F = mab =⇒ −F = 2mac. (10.60)

We have three equations in three unknowns (F, f , and ac, where ac ≡ ẍ). Adding
the first two equations to eliminate f , and then plugging F = −2mac into the result
gives

2(−2mac) − k x =
3mac

2
=⇒ −kx =

11
2

mac

=⇒ ẍ = −
(

2k
11m

)
x. (10.61)

The frequency of the oscillatory motion is therefore ω =
√

2k/11m.

Remark: This frequency is smaller than
√

k/m. This makes sense, because
√

k/m would be
the frequency if the board didn’t exist and if the cylinder were instead a block sliding on the
ground. In our actual setup, both of the friction forces F and f point opposite to the spring
force at all times (as you can verify), and this effectively reduces the spring constant, making
the frequency be smaller than it would be if we just had a sliding block.

Second solution: We can also find ω by using conservation of energy. Again let
x be the position of the center of the cylinder relative to equilibrium. Then from
the non-slipping condition between the cylinder and the board (which says that the
board’s acceleration is always twice the cylinder’s), the position of the board is 2x.
Using Eq. (7.8) for the energy of the cylinder, the total energy of the system is

E =
[

1
2

mẋ2 +
1
2

(
1
2

mR2
)
θ̇2
]
+

1
2

m(2ẋ)2 +
1
2

kx2. (10.62)
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The non-slipping condition between the cylinder and the ground, Rα = ac, can
alternatively be written in terms of velocities as Rθ̇ = ẋ. Using this to eliminate θ̇ in
favor of ẋ, the energy can be rewritten as

E =
1
2

(
11m

2

)
ẋ2 +

1
2

k x2. (10.63)

But this is simply the energy of a mass 11m/2 on a spring with spring constant k.
And we know that the frequency of such a system isω =

√
k/(11m/2) =

√
2k/11m,

in agreement with the first solution.

If you want to be a little more systematic, you can take the derivative of Eq. (10.63)
to obtain (using the fact that E is constant)

0 =
(

11m
2

)
ẋ ẍ + k x ẋ =⇒ ẍ = −

(
2k

11m

)
x, (10.64)

which reproduces Eq. (10.61).

(b) If the amplitude is A, then x(t) takes the form of x = A cosωt (or technically
A cos(ωt + ϕ), but the phase won’t matter here). The acceleration of the cylinder
is then ac = ẍ = −ω2 A cosωt. From Eq. (10.60), the friction force F between the
cylinder and the board is

F = −2mac = 2mω2 A cosωt

= 2m
(

2k
11m

)
A cosωt =

4k A
11

cosωt . (10.65)

The maximum value of F is therefore 4k A/11. This grows with k and A, which
makes sense. And the units of k A are correctly the units of force, because the spring
force takes the form of −k x (k times a distance).

10.16. Oscillating disk

Let θ be the angular displacement of the disk. For small θ, the length of the spring is
still essentially equal to the radius R. There are two consequences of this. First, the squat
triangle in Fig. 10.20 with base 2R is essentially isosceles. This implies that the angle on

RR

θθ
lever 
arm

spring

Figure 10.20

the right is equal to the angle on the left (which we defined to be θ), as shown. Second, the
spring force has magnitude essentially equal to F = kR (remember that the relaxed length
is zero).

By looking at the thin right triangle with hypotenuse 2R in Fig. 10.20, the lever arm of
the spring force, relative to the center of the disk, is ℓ = (2R) sin θ ≈ 2Rθ, where we have
used the sin θ ≈ θ small-angle approximation. The effect of the torque from the spring
is to decrease θ if θ is positive, so the torque is τ = −Fℓ = −(kR)(2Rθ). The τ = Iα
equation around the center of the disk is therefore

−(kR)(2Rθ) =
(

mR2

2

)
θ̈ =⇒ θ̈ = −4k

m
θ =⇒ ω = 2

√
k
m
. (10.66)

Another way to determine the torque is to note that the spring makes an angle of 2θ
with respect to the radial, because the spring and the radial each make angles of θ with
respect to the horizontal, but in opposite directions. So the tangential spring force is
Fθ = −(kR) sin 2θ ≈ −(kR)(2θ), which gives a torque of τ = FθR = −(kR · 2θ)R,
as above.
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10.17. Maximum frequency 1

The parallel-axis theorem gives the moment of inertia of the coin around the pivot in
Fig. 10.21 as I = ICM + md2 = mR2/2 + md2. The gravitational force mg has a lever armd

θ

Figure 10.21

of d sin θ relative to the pivot, so the τ = Iα equation is

−mgd sin θ = (mR2/2 + md2)θ̈ =⇒ θ̈ = −
(

gd
R2/2 + d2

)
θ, (10.67)

where we have used the small-angle approximation, sin θ ≈ θ. The frequency of small
oscillations is therefore

ω =

√
gd

R2/2 + d2 . (10.68)

(We’ve just rederived Eq. (10.37) here.) We want to maximize ω as a function of d.
Maximizing ω is equivalent to maximizing ω2, so setting the derivative of d/(R2/2 + d2)
equal to zero gives (ignoring the denominator of the derivative)

(R2/2 + d2)(1) − d(2d) = 0 =⇒ R2/2 = d2 =⇒ d = R/
√

2. (10.69)

We therefore want the pivot to be at a radius of about (0.71)R.

Remarks: With d = R/
√

2, the frequency ω in Eq. (10.68) is ω = (1/21/4)
√
g/R ≈ (0.84)

√
g/R.

This is correctly larger than the frequency at the two extreme values of d, namely ω = 0 at d = 0,
and ω =

√
2g/3R ≈ (0.82)

√
g/R at d = R. If we furthermore want to allow a massless extension

to be attached to the coin, then we can take the d → ∞ limit, in which case ω → 0.

If you want to work with a general moment of inertia ICM, you can show that the maximum fre-
quency is obtained when the distance d from the pivot to the CM is d =

√
ICM/m. This correctly

reduces to d = R/
√

2 in the above case of the coin with ICM = mR2/2. Note that any pivot point
on a circle (in the plane of the page) of a given radius d around the CM yields the same frequency,
even if the object isn’t a nice symmetric coin. The direction from the CM to the pivot doesn’t matter,
because it doesn’t matter in the parallel-axis theorem; only the distance d is important.

10.18. Maximum frequency 2

If θ is small, then we can use the sin θ ≈ θ approximation in Fig. 10.22 to say that the

k

x

l/2

θ

pivot

Figure 10.22

spring is stretched (or compressed, if θ is negative) by essentially (ℓ/2 + x)θ. So the
spring provides a force of F = −k (ℓ/2+ x)θ. This force produces a torque with respect to
the pivot. For small θ, the lever arm of the force is essentially equal to d = ℓ/2 + x, so the
torque (with counterclockwise taken to be positive, since that’s how we’ve defined θ) is

τ = Fd =
(
−k

(
ℓ

2
+ x

)
θ

) (
ℓ

2
+ x

)
= −k

(
ℓ

2
+ x

)2

θ. (10.70)

Using the parallel-axis theorem, the moment of inertia of the stick relative to the pivot is
I = ICM + mx2 = mℓ2/12 + mx2. So τ = Iα gives

−k
(
ℓ

2
+ x

)2

θ =

(
mℓ2

12
+ mx2

)
θ̈ . (10.71)

Solving for θ̈, we can read off the oscillation frequency as the square root of the (negative
of the) coefficient of the θ term. So we have

ω =

√
k
m

√
(ℓ/2 + x)2

ℓ2/12 + x2 . (10.72)
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Maximizing this (or equivalently maximizing ω2) by setting the derivative equal to zero
gives

0 =
(
ℓ2

12
+ x2

)
· 2

(
ℓ

2
+ x

)
−

(
ℓ

2
+ x

)2

· 2x

=⇒
(
ℓ

2
+ x

)
x =

ℓ2

12
+ x2 =⇒ x =

ℓ

6
. (10.73)

This value of x means that the pivot is a third of the way along the stick. With x = ℓ/6, the
ω in Eq. (10.72) turns out to be

√
4k/m, compared with

√
3k/m when x = 0 and again√

3k/m when x = ℓ/2.

Limits: In the x → −ℓ/2 limit (the above reasoning is still valid if x is negative), we have ω → 0.
This makes sense because the pivot is right where the spring is attached, so the spring force has no
lever arm, which means the torque is zero. In the x → ∞ limit (which involves a long massless
extension attached to the stick), we have ω →

√
k/m. This makes sense because the stick simply

oscillates back and forth without rotating, so it’s effectively just a point mass m.

10.19. Oscillating board

(a) Let y be the height of the top end of the spring, relative to equilibrium. Then y =

(L/2) sin θ ≈ (L/2)θ, where θ is the angle of the board. The spring force is therefore
−ky = −k (L/2)θ. The lever arm of this force relative to the pivot is essentially L/2,
so the τ = Iα equation for the board, with counterclockwise taken to be positive, is

−
(
k · L

2
θ

)
L
2
=

(
1
12

ML2
)
θ̈ =⇒ θ̈ = −3k

M
θ =⇒ ω =

√
3k
M

. (10.74)

We see that ω grows with k and decreases with M . This behavior makes sense.

(b) If the angular amplitude is θ0, then θ(t) takes the form,

θ(t) = θ0 cosωt, (10.75)

where ω =
√

3k/M . (A possible additional phase ϕ of the cosine is irrelevant for
the present purposes.) The forces on the block are the downward gravitational force
and the slightly tilted normal force N from the board. N is essentially equal to
mg because the block is only negligibly accelerating, since we are assuming that
θ0 is very small. The horizontal component of N is therefore Nx = −N sin θ ≈
−(mg) sin θ ≈ −mgθ. The horizontal F = ma equation for the block is then

−mgθ = mẍ =⇒ ẍ ≈ −gθ. (10.76)

Using the θ(t) from Eq. (10.75), we can write this as

ẍ = −gθ0 cosωt. (10.77)

To solve this equation for x(t), we can just integrate twice. This gives

x(t) =
gθ0

ω2 cosωt =
Mgθ0

3k
cosωt, (10.78)

where we have used the ω from Eq. (10.74). The amplitude is therefore

x0 =
Mgθ0

3k
. (10.79)

Remark: Technically, the most general solution to Eq. (10.77) has an At + B added on to the
solution we found in Eq. (10.78). This doesn’t mess up the equality in Eq. (10.77), because
the second derivative of At + B is zero. But since we are told that initial conditions have been
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set up so that the block oscillates back and forth symmetrically around the pivot, both A and
B must be zero. For general initial conditions, A isn’t zero if the initial velocity (that is, the
velocity when the board is tilted maximally) isn’t zero, so the block heads off to infinity.

Limits: The amplitude x0 grows with M (which is the mass of the board; the mass m of
the block doesn’t appear) and decreases with k; these behaviors make sense, because M and
k influence the frequency of the oscillation. For example, if the frequency is large (which
arises if M is small and/or k is large), then the block doesn’t have much time to move, so
the amplitude must be small. The amplitude also grows with g and θ0, which makes sense,
because these influence the force at a given point in the oscillation. If the force is large, then
the block can be instantaneously at rest at a large position x0 and still be dragged back to the
origin in time (that is, after a quarter of the given period).

(c) Comparing the x(t) in Eq. (10.78) with the θ(t) in Eq. (10.75), we see that they are
both proportional to (positive) cosωt. So they are in phase. This means that when
θ is maximum (when the board is tilted upward the most), x is also maximum (the
block is farthest to the right). Likewise, x is minimum when θ is minimum. And x
is zero when θ is zero; that is, the block is right over the pivot whenever the board is
horizontal. The pictures are shown in Fig. 10.23.

(1) (2)

(4)(3)

Figure 10.23



Chapter 11

Gravity

11.1 Introduction
Universal law of gravitation

Newton’s universal law of gravitation, which is the basis for everything we will do in this chap-
ter, gives the magnitude of the (attractive) gravitational force between two point masses m1 and
m2, separated by a distance r , as

F =
Gm1m2

r2 . (11.1)

Newton first wrote down this law in 1687. The important ingredients in the law are that the
force is proportional to the product of the masses and inversely proportional to the square of the
separation. The gravitational constant G depends on the system of units used. In our standard
mks system, the value is

G = 6.674 · 10−11 m3

kg s2 . (11.2)

In 1798, Henry Cavendish measured G to the impressive accuracy of one percent. His very
delicate experiment involved determining the force between two everyday-sized objects with
known masses. (The earth couldn’t be used as one of the masses because its mass wasn’t known
until Cavendish did his experiment.) The smallness of G means that the force between two
everyday-sized masses is barely noticeable, so Cavendish needed to take great pains to isolate
the tiny force he was trying to measure. See Section 5.4.2 in Morin (2008) for a discussion of
the experiment.

Relation between G and g

It turns out that Eq. (11.1) holds for spheres as well as point masses. That is, from the outside, a
sphere can be treated like a point mass at the center, as far as the gravitational force is concerned
(more on this below). So for a point mass m located near the surface of the earth, Eq. (11.1)
gives the force between the mass and the earth as F = GmME/R2

E. However, we already know
what this force is; it is the standard F = mg gravitational force, where g = 9.8 m/s2. Equating
these two expressions for the force tells us that

g =
GME

R2
E

. (11.3)

And indeed, if we plug in the values of the various constants, we obtain

g =
GME

R2
E

=
(6.67 · 10−11 m3/kg s2)(5.97 · 1024 kg)

(6.37 · 106 m)2 = 9.81 m/s2, (11.4)

as expected.

287
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Equation (11.3) isn’t exact, in that the actual value of g varies over the surface of the earth,
from about 9.78 at the equator to about 9.83 at the poles. It depends in a fairly complicated way
on the nonspherical shape of the earth, which bulges at the equator due to the rotation of the
earth (which itself causes a slight centrifugal-force correction to the effective value of g for a
dropped ball; see Multiple-Choice Question 12.4). Additionally, there are local variations due
to variations in the mass density of the earth’s crust. Measuring these small variations with
a gravimeter (which has a remarkable sensitivity) can indicate what substances (oil, minerals,
etc.) might be lurking deep in the ground.

Note that the relation in Eq. (11.3) by itself isn’t enough to determine G. That is, Cavendish
could not have determined the value of G by simply measuring the acceleration of a dropped ball.
Equation (11.3) determines only the product GME. (More precisely, it determines GME/R2

E,
but the value of RE was known reasonably accurately in Cavendish’s time.) And for all we
know, the value of G might be 10 times larger than what we thought, with ME being 10 times
smaller. Maybe the interior of the earth is made of styrofoam (not likely!). But once Cavendish
determined G via an experiment with two known masses, he could then determine the value of
ME. This is why his experiment was known as “weighing the earth” (or rather, “massing the
earth”). It is fascinating how the behavior of a few lead balls in a tabletop experiment can tell
us what the mass of the earth is. The average density of the earth turns out to be about 5.5 times
the density of water. So we conclude that the earth is certainly not made of styrofoam. Iron is a
much better bet. Cavendish’s tabletop experiment therefore tells us something about the earth’s
core, which we have no hope of investigating by direct access.

Potential energy

We know from Eqs. (5.4) and (5.7) that the potential energy associated with a force is U (r) =
−

∫
F dr . (The radial direction is all that matters here.) Consider the potential energy U of a

mass m located a distance r from a mass M . We can arbitrarily choose the reference point where
we define U to be zero, but it is customary to take this reference point to be at infinity. So with
U = 0 at r = ∞, the value of U at any other distance r from the given mass M is

U (r) = −
∫ r

∞
F dr ′ = −

∫ r

∞

(
−GmM

r ′2

)
dr ′ = −GmM

r ′
�����
r

∞
= −GmM

r
. (11.5)

We have used the fact that the gravitational force is attractive, which means that it points in the
direction of decreasing r; hence the minus sign in F. We have put primes on the integration
variable so that it isn’t confused with the specific value of r that is the limit of integration.
We see that the potential energy is negative. However, this negative nature isn’t important;
only differences in potential energy matter. Someone could add, say, 13 joules to the energy
everywhere, and it would describe the same system. All that matters is that the potential energy
decreases as we move in toward the mass M .

As mentioned in Chapter 5, a potential energy can be defined only if a force is conservative.
The F = −GmM/r2 force is indeed conservative, because when calculating the work done
between two given points, only the starting and ending values of r matter; the path taken is
irrelevant. (You can consider any path to consist of radial and tangential displacements, and no
work is done along the tangential ones.) The particular 1/r2 nature of the (radial) force isn’t
important here. Any other function of r would still yield a conservative force.

Force from a sphere

The nice thing about the inverse-square law in Eq. (11.1) is that it leads to the following two
facts:

• Outside a uniform hollow spherical shell with total mass m, the shell can be treated like a
point mass m at the center, as far as the gravitational force is concerned.

• Inside a uniform hollow spherical shell with total mass m, the shell produces zero gravita-
tional force; the shell effectively doesn’t exist.
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The first of these facts requires a bit of a calculation to demonstrate; see Problem 11.1. The
second fact can be proved in a much simpler way; see Problem 11.2. Note that the shell needs to
be spherical; the above facts don’t apply to a cubical shell, for example.

If we have a solid sphere instead of a hollow shell, we can still make use of the above facts,
because we can treat the solid sphere as the superposition of many thin hollow shells. We quickly
conclude that if we are located at radius r inside a solid sphere of radius R, then the ball of mass
inside radius r looks like a point mass at the center (with the same mass as the ball of radius
r), while the mass between r and R effectively doesn’t exist. This result holds even if the mass
density isn’t uniform throughout the sphere, provided that it depends only on radius (so that each
thin hollow shell is uniform).

Kepler’s laws

The motion of the planets around the sun is completely governed by the universal law of grav-
itation, Eq. (11.1) (assuming we neglect effects of general relativity). This law can be used to
derive three other laws, knows as Kepler’s laws:

1. The planets move in elliptical orbits, with the sun at one focus.

2. A planet sweeps out equal areas in equal times; see Fig. 11.1.

moving slower here

moving faster here

equal areas

sun

Figure 11.1

3. The square of the period of revolution, T , is proportional to the cube of the semimajor
axis, a, of the elliptical orbit. More precisely:

T2 =
4π2a3

GMsun
. (11.6)

If we look at the historical order in which things developed, Kepler wrote down these laws
in the early 1600’s, about 75 years before Newton wrote down Eq. (11.1). Kepler arrived at his
laws empirically (that is, by looking at observational data), which is quite a remarkable feat. But
Newton showed that they are all consequences of a single universal law.

Kepler’s second law can be derived quickly by showing that it is equivalent to the statement
of conservation of angular momentum; see Problem 11.5. In contrast, the first and third laws
require a lengthy calculation to derive (see Section 7.4 in Morin (2008)), although the third can
be easily demonstrated in the special case of a circular orbit; see Problem 11.6.

Technically, Kepler’s three laws hold only in the approximation where the sun is much more
massive than the planets. Since this is a good approximation, we won’t worry about the minor
corrections to the laws.

11.2 Multiple-choice questions
11.1. In the setup shown in Fig. 11.2, the two outside masses are glued in place. The center mass

M Mm

Figure 11.2

is initially located at the midway point. If it is displaced slightly to the right, the resulting
net force on it is

(a) rightward (b) leftward (c) zero

11.2. Two planets have the same mass density, but one has twice the radius of the other. What
is the ratio of the acceleration due to gravity on the larger planet to that on the smaller
planet?

(a) 1/4 (b) 1/2 (c) 1 (d) 2 (e) 4

11.3. Two planets have the same mass density, but one has twice the radius of the other. What
is the ratio of the potential energy (relative to infinity) of a mass m on the surface of the
larger planet to that on the surface of the smaller planet?

(a) 1/4 (b) 1/2 (c) 1 (d) 2 (e) 4
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11.4. Two identical planets have radius R and uniform mass density ρ. Their centers are a
distance d apart. If all distances (both R and d) are scaled up by a factor of 2, while ρ
is held constant, what is the ratio of the force between the planets in the new setup to the
force in the original setup?

(a) 1/4 (b) 1 (c) 4 (d) 16 (e) 64

11.5. A mass m is located off-center in the interior of a uniform ring with mass M , as shown in
Fig. 11.3. What is the direction of the gravitational force on m due to the ring? (You may

m

M

Figure 11.3

want to look at the reasoning in Problem 11.2 first.)

(a) leftward

(b) rightward

(c) upward

(d) downward

(e) The force is zero inside the ring.

11.6. The two sticks shown in Fig. 11.4 have the same linear mass density λ, and they subtend

P

λ

λ

Figure 11.4

the same angle from a given point P, as indicated. Their distances from P are ℓ and 2ℓ.
Which stick creates a larger force on a mass at P? (This question is in the same spirit as
the preceding one.)

(a) the top stick

(b) the bottom stick

(c) They produce equal forces at P.

(d) The relative size of the forces depends on ℓ.

11.7. A mass m is located very close to a very large (essentially infinite) flat sheet with surface
mass density σ. Another mass m is located very close to a hollow spherical shell with
radius R and the same surface mass density σ. What is the ratio of the gravitational force
on the first m to the gravitational force on the second m? You can use the result from
Problem 11.8 that the force from an infinite sheet is F = 2πGσm.

(a) 1/4 (b) 1/2 (c) 1 (d) 2 (e) 4

11.8. Let FA and UA be, respectively, the magnitudes of the gravitational force on, and the
potential energy of, a mass M due to the two masses m shown in Setup A in Fig. 11.5.

(Setup A)

(Setup B)

m m

m

m

M

M

Figure 11.5

Likewise for FB and UB in Setup B. If all of the m’s are the same distance from the M’s,
then

(a) FA = FB and UA = UB

(b) FA = FB and UA < UB

(c) FA < FB and UA = UB

(d) FA < FB and UA < UB

(e) FA > FB and UA < UB

11.9. Relative to infinity, the gravitational potential energy of an object at the center of a hollow
spherical shell is

(a) zero

(b) less than zero, but larger than the potential energy at the surface of the shell

(c) equal to the potential energy at the surface

(d) less than the potential energy at the surface, but greater than negative infinity

(e) negative infinity
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11.3 Problems

The first nine problems are foundational problems.

11.1. Force from a spherical shell

A uniform hollow spherical shell has mass M and radius R. Find the force on a mass m
at radius r due to the shell, both inside and outside. Do this by calculating the potential
energy due to the shell, and then taking the derivative to obtain the force. Hint: Slice the
shell into the rings shown in Fig. 11.6, and then integrate over the rings. You will need to

R

r

θ
P

Figure 11.6

use the law of cosines.

Note: The reason for finding the force via the potential energy is that the potential energy
is a scalar quantity, whereas the force is a vector. If we tried to directly calculate the force,
we would have to worry about forces pointing in all sorts of different directions. With the
potential energy, we just need to add up some numbers.

11.2. Zero force inside a spherical shell

Show that the gravitational force inside a uniform hollow spherical shell is zero by showing
that the pieces of mass at the ends of the thin cones in Fig. 11.7 give canceling forces on a

P

Figure 11.7

given mass at point P.

11.3. Force inside a solid sphere

What is the gravitational force on a mass m located at radius r inside a planet with radius
R, mass M , and uniform mass density?

11.4. Low-orbit and escape velocities

(a) What is the speed of a low-orbit satellite circling around a planet with mass M and
radius R, just above the surface?

(b) What is the escape velocity (or rather, escape speed) from the surface of a planet with
mass M and radius R? That is, what minimum initial speed is required for a mass to
end up infinitely far away from the planet (and thus refute the “What goes up must
come down” claim)?

11.5. Kepler’s 2nd law

Show that Kepler’s second law (which says that a planet sweeps out equal areas in equal
times) is equivalent to the statement of conservation of angular momentum.

11.6. Kepler’s 3rd law for circles

For a circular orbit, use F = ma to derive Kepler’s third law, Eq. (11.6), from scratch.

11.7. Force from a line

A mass m is placed a distance ℓ away from an infinite straight line with mass density λ
(kg/m). Show that the force on the mass is F = 2Gλm/ℓ. Hint: If you use an angle as
your variable, then you’ll have to do some geometry, but the resulting integral should be
easy. If you use the distance along the line as your variable, then a tan θ trig substitution
should simplify things.

11.8. Force from a plane

A mass m is placed a distance ℓ away from an infinite plane with mass density σ (kg/m2).
Show that the force on the mass is F = 2πGσm. Hint: Imagine building up the plane
from an infinite number of adjacent rods, and then integrate over these rods, using the
result from Problem 11.7.
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11.9. Two expressions for potential energy

From Eq. (11.5) we know that the gravitational potential energy is given by U (r) =
−GmM/r . However, we also know that near the surface of the earth the potential en-
ergy is given by U (h) = mgh. Verify that these two expressions are consistent, assuming
that h is much smaller than the radius R of the earth. You will need to make a Taylor-series
approximation.

11.10. Attracting particles

Two particles with masses m and M are initially at rest, a very large (essentially infinite)
distance apart. They are attracted to each other due to gravity. What is their relative speed
when they are a distance r apart?

11.11. Sphere and stick

A uniform sphere with mass m and radius R is placed a distance 2R from a uniform stick
with mass m and length 2R, as shown in Fig. 11.8. The objects are attracted to each
other due to gravity. If they are released from rest, what are their speeds right before they
collide?

2R2RR
MM

Figure 11.8

11.12. Dismantling a planet

Consider a spherical planet with mass M and radius R, with uniform mass density. Assume
that the planet is made up of little grains of sand. How much energy is required to take all
of the grains and move them out to infinity, all very far away from each other? Hint: How
much energy is required to take the grains of sand in a very thin outer shell of the sphere
and move them out to infinity? You can then repeat this process by removing a thin outer
shell from successively smaller spheres, until you are left with nothing.

11.13. Planet with variable density

(a) A spherical planet has mass M and radius R. If its density depends on the radial
position according to ρ(r) = b/r , what is b in terms of M and R?

(b) What is the difference between the potential energy of a mass m located on the sur-
face of the planet, and the potential energy of a mass m located at the center?

11.14. Descending in a mine shaft

(a) Assuming that the density of the earth is constant (call it ρ), find an expression for
the gravitational force on a mass m, as a function of the radial position r inside the
earth. You should find that the (magnitude of the) gravitational force decreases as
you descend in a mine shaft.

(b) However, the density of the earth is not constant, and in fact the gravitational force
increases as you descend in a mine shaft. It turns out that the general condition under
which this is true for a planet is ρc < Aρavg, for a certain value of A. Here ρavg is the
average density of the planet, and ρc is the density of the crust at the surface. Find
A. (Assume that the density is spherically symmetric, that is, independent of r .)
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11.15. Orbiting objects

(a) A planet with mass M is orbited by a satellite with negligible mass. The radius of
the orbit is R. What is the angular frequency of the motion?

(b) Two planets, both with mass M/2, orbit around their CM. They both travel in a
circle (the same circle), and they are always a distance R apart. What is the angular
frequency of the motion?

(c) Your answers to the above two questions should be the same. This might make you
think that if two planets orbit around their CM, with each one moving in a circle
(two different circles in general now), and with the separation always being R, then
the angular frequency of the motion depends on the masses only through their sum.
Show that this is indeed the case.

11.16. Grabbing a mass

Two equal masses m are a distance ℓ apart and interact via gravity. They are given the
proper tangential speed v0 so that they both travel in a circle of radius ℓ/2 around their
CM.

(a) What is v0?

(b) If one of the masses is grabbed and held at rest, what is the closest distance the other
mass comes to it? Hints: What is the direction of the velocity at closest approach?
What quantities are conserved?

11.17. Orbiting satellite

(a) A satellite with mass m is in a circular orbit with radius R around a planet with mass
M , which is assumed to be fixed in place. What is the total energy of the satellite
(in terms of G, m, M , and R)? As usual, take the gravitational potential energy to be
zero at infinity.

(b) Assume now that the satellite has been given a kick so that its orbit looks like the
one shown in Fig. 11.9, where the closest and farthest approaches to M are R and m

M

R nR

Figure 11.9

nR, where n is a given numerical factor. What is the total energy of the satellite (in
terms of n, G, m, M , and R)? Check the n → 1, n → ∞, and n → 0 limits.

11.18. Projectile in a planet

(a) Consider a planet with radius R and uniform mass density ρ. In terms of G, R, and ρ,
what is the speed of an object in a circular orbit just above the surface of the planet?

(b) Consider the gravitational potential energy of a mass m at radius r inside the planet.
Calculate the potential energy for r < R, relative to the center of the planet (not
relative to infinity).

(c) An object is projected tangentially at the surface of the planet with a speed equal
to half of the speed you found in part (a). Under normal circumstances, the object
will simply hit the ground. But assume that someone has calculated the unhindered
trajectory of the object and has (hypothetically!) dug a tunnel into the planet along
the predicted path, so that the object travels through this tunnel instead of hitting the
ground. What is the smallest value of the radius r that the object achieves?

11.19. Oscillating stick in a planet 1

Consider the following highly unrealistic setup. A rigid stick with mass m and length ℓ
is located in the interior of a planet with mass M and radius R. The center of the stick is
located at the midpoint of the chord on which it lies (but the stick need not be as long as
the entire chord). The center of the stick is a distance h from the center of the planet, as
shown in Fig. 11.10.

M,R

m,l
h

Figure 11.10
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(a) What is the gravitational force from the planet on a small piece of the stick with mass
dm located at radius r? Assume that the planet has uniform density.

(b) Assume that somehow the stick is able to move freely within the planet (you can
pretend that a thin “sheet” of the planet has been hollowed out). The stick is released
from rest. Show that it undergoes simple harmonic motion, and find the frequency.

11.20. Oscillating stick in a planet 2

A narrow tube is drilled from one point to a diametrically opposite point through a planet
with mass M and radius R. A thin stick with length 2R and linear mass density λ (kg/m)
is placed in the tube, with one end a distance x above the surface of the planet, as shown
in Fig. 11.11. Assume that there is no friction between the stick and the tube, and assume

xx

Figure 11.11

that the planet has uniform density. The stick is released.

(a) As a function of x, find an exact expression for the net gravitational force on the
stick.

(b) For small x (more precisely, for x ≪ R), find an approximate expression for the
force on the stick, to first order in x. (If you got stuck in part (a), it’s possible to
solve this part on its own.)

(c) Find the frequency of small oscillations of the stick.

11.21. Asteroid slab

(a) Consider a spherical planet with radius R and uniform volume mass density ρ. A thin
tube is drilled along a diameter, as shown in Fig. 11.12(a). If an object is dropped
from rest into the tube, what is the frequency of its oscillatory motion?

(b) Consider now an asteroid in the shape of a slab with thickness D, with the same
uniform volume mass density ρ as the sphere in part (a). Assume that the two di-
mensions perpendicular to the thickness D are essentially infinite (much larger than
D). A thin tube is drilled along the “D” direction, as shown in Fig. 11.12(b). If
an object is dropped from rest into the tube, what is the frequency of its oscillatory
motion? Hint: You’ll want to use the result from Problem 11.8 that the force on a
mass m due to a thin sheet with infinite extent and uniform surface mass density σ
(kg/m2) equals 2πσGm, which is independent of the distance from the sheet.

(c) You will find that the frequencies in parts (a) and (b) aren’t equal. Give a qualitative
physical argument why the larger frequency is in fact larger.

D
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11.4 Multiple-choice answers
11.1. a Since the gravitational force falls off with r , and since m is now closer to the right M ,

the attractive rightward force from the right M is larger than the attractive leftward force
from the left M . The net force is therefore rightward.

11.2. d The gravitational force has magnitude F = GMm/R2. (Equivalently, g is given by
GM/R2.) And a planet’s mass M is proportional to its volume (for a given density), which
is proportional to R3. So F ∝ R3/R2 = R. Doubling the radius of a planet therefore means
doubling the force on a given object with mass m at the surface. So the acceleration is
doubled.

Remark: A fact that you may be familiar with is that the acceleration due to gravity on the moon
is about 1/6 that on the earth. If the densities were the same, then from the above reasoning, this
would imply that the radius of the moon is 1/6 the radius of the earth. But in fact the moon’s average
density is only about 3/5 the earth’s (apparently green cheese is less dense than iron!). This means
(as you can show) that the ratio of moon to earth radii is a factor of 5/3 larger than the equal-density
result of 1/6. So the moon’s radius is 5/18 ≈ 0.28 of the earth’s radius. The actual radii of about
1740 km and 6370 km yield a ratio of 0.27, which agrees with 0.28, at least to the accuracy of the
numbers we used here.

11.3. e The gravitational potential energy is U = −GMm/R. And a planet’s mass M is
proportional to its volume, which is proportional to R3. So U ∝ R3/R = R2. Doubling the
radius of a planet therefore means quadrupling the potential energy of a given object with
mass m on the surface.

Remark: Using the numbers given in the solution to the preceding question, you can show that
the ratio of the potential energies of a mass on the surface of the earth vs. on the moon is roughly
(5/3)/(0.27)2 ≈ 23.

11.4. d If the radius of a planet is doubled, then the volume 4πR3/3 increases by a factor of
23 = 8. And since the density ρ is held constant, the mass also increases by a factor of 8.
The gravitational force is Gm1m2/r2, which equals Gm2/d2 here. Since m increases by
a factor of 8, and d increases by a factor of 2, the force therefore increases by a factor of
82/22 = 16.

11.5. b This is a lower-dimensional analog of Problem 11.2. (And Multiple-Choice Ques-
tion 11.1 is an even lower dimensional analog!) In the spirit of Problem 11.2, draw two
lines through the mass m (with a very small angle between them), and look at the forces
from the two short arcs they define on the ring. Let the distances a and b be as shown in
Fig. 11.13.

ma

b

M

Figure 11.13

The arc on the left is longer by a factor a/b, so there is a/b more mass there (instead
of a2/b2 as in Problem 11.2, because we’re dealing with lengths here instead of areas).
But the force from a small bit of mass in the left arc is smaller by a factor 1/(a/b)2

than the force from an equal bit in the right arc, due to the inverse-square nature of the
gravitational force. The force from the whole left arc is therefore smaller by a factor
(a/b)/(a/b)2 = b/a than the force from the whole right arc. So the net force has a
rightward component. This reasoning holds for any such corresponding arcs, with one arc
to the right of P and the other to the left. The net force is therefore directed to the right.
(The vertical components of the forces cancel by symmetry.)

11.6. a Consider two corresponding pieces of the sticks subtending the same infinitesimal
angle. These pieces are essentially point masses. There is twice as much mass in the
larger piece (in the bottom stick), but it is twice as far from P. The dm/r2 factor in the
Gm(dm)/r2 force law is therefore 2/22 = 1/2 times as large for the bottom stick as for the
top stick. This holds for all corresponding pieces, so the top stick creates twice as large a
force as the bottom stick.
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Remark: What if we had 2-D objects like disks instead of 1-D sticks? (Imagine that the two hori-
zontal lines in Fig. 11.4 represent the cross sections of two disks.) In this case we want to consider
corresponding patches of the disks that are defined by the same infinitesimally thin cone. There is
now four times as much mass in the larger patch, because areas are proportional to lengths squared.
This factor of 4 cancels the factor of 4 from the r2 in the denominator of the force law, so the forces
at P from the two patches are equal. (This is the same reasoning as in Problem 11.2.) The answer
in the 2-D case is therefore (c). Note that the 2-D objects don’t have to be disks; they can be any
similar shapes defined by the same cone-like surface emanating from P, and the forces will still be
equal. And the ratio of the distances need not be 2 to 1. And the objects need not be horizontal, as
long as they are parallel.

11.7. b The mass of the spherical shell is (4πR2)σ, so the force from it is

Fshell =
G(4πR2σ)m

R2 = 4πGσm. (11.7)

And since we know that the force from the sheet is Fsheet = 2πGσm, the desired ratio of
Fsheet to Fshell is 1/2.

Remark: Another way of deriving this factor of 1/2 is the following. (This method also gives a slick
way of deriving the Fsheet = 2πGσm result in Problem 11.8.) Consider a mass m that is very close
to a hollow spherical shell. For example, pretend that the earth is a hollow shell, and place a mass
m a meter above the surface. Consider the disk on the earth’s surface consisting of all points within,
say, a kilometer of the mass m. Any distance that is very large compared with a meter (so that the
disk looks effectively like an infinite sheet, from m’s point of view) but very small compared with
the radius of the earth (so that the disk is essentially flat) will do.

The earth’s (hypothetical) hollow shell may be divided into the disk plus the remaining part, which
is a shell with a hole in it. The force from the entire shell can therefore be written as

Fshell = Fdisk + Frem, (11.8)

where “rem” stands for “remaining.” What are the relative sizes of Fdisk and Frem? We claim that
they are equal. This can be seen in the following way. Take the mass m and move it to the other side
of the disk, as shown in Fig. 11.14. The mass m is now inside a complete spherical shell, and we

m m

disk

new position 
of m

remaining
part

Figure 11.14

know that the force inside a spherical shell is zero. So F′disk (the new force from the disk) and Frem
must be equal and opposite:

F′disk = −Frem. (11.9)

Now, the only difference between this new setup and the original one where the mass was outside
the shell is that the force from the (essentially flat) disk has changed sign, that is,

F′disk = −Fdisk . (11.10)

(The mass m is still in essentially the same location relative to the remaining part, so Frem hasn’t
changed.) The preceding two equations imply that in the original setup where the mass is outside
the shell, the Fdisk and Frem forces must be equal:

Fdisk = Frem. (11.11)

Eq. (11.8) then tells us that Fshell = 2Fdisk. But Fdisk is essentially the same as the force from an
infinite sheet, so we have Fshell = 2Fsheet =⇒ Fsheet = (1/2)Fshell, as desired. Additionally, since
we showed above that Fshell = 4πGσm, we see that we have reproduced the Fsheet = 2πGσm result
in Problem 11.8.

11.8. c FA = 0 because the forces from the two m’s cancel. And FB > 0 because the forces
from both m’s point rightward. So the answer must be either (c) or (d). The potential
energy is the same in both setups, because potential energies are scalars (and not vectors
like forces) which simply add, without any worry about directions of components. So it
doesn’t matter where the m’s are in relation to M , as long as they are the same distance
from M . The answer is therefore (c).
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11.9. c The force inside a spherical shell is zero, so all points inside and on the surface have
the same potential energy, because U = −

∫
F dr (no work is done when moving an object

around inside the shell), or equivalently because F = −dU/dr (the derivative of a constant
is zero).

Remark: If we replace the hollow spherical shell with a solid sphere, then there is now a nonzero
force inside (directed radially inward), which means that the potential energy decreases as we march
in from the surface to the center. The total decrease is finite (you just need to integrate the force in
Problem 11.3), so the answer for a solid sphere is (d). The potential energy at the center turns out to
be 3/2 times the (negative) value at the surface, as you can show.

11.5 Problem solutions
11.1. Force from a spherical shell

As suggested in the hint, we’ll slice the shell into rings as indicated in Fig. 11.6. The
distance ℓ from an arbitrary point P to the ring is a function of R, r , and θ. It can be found
as follows. In Fig. 11.15, segment AB has length R sin θ, and segment BP has length

R

R

R

R

l

r

θ

θ

θ

θcos cos

sin

−

A

B
P

Figure 11.15

r − R cos θ. So the length ℓ in right triangle ABP is

ℓ =

√
(R sin θ)2 + (r − R cos θ)2 =

√
R2 + r2 − 2r R cos θ, (11.12)

where we have used sin2 θ + cos2 θ = 1. What we’ve done here is just prove the law of
cosines.

The area of a ring lying between θ and θ + dθ on the shell is the width (which is R dθ)
times the circumference (which is 2πR sin θ). In terms of the mass density of the shell,
σ = M/(4πR2), the potential energy of a mass m at point P due to a thin ring is therefore
−Gm

(
σ(R dθ)(2πR sin θ)

)
/ℓ. This is true because the gravitational potential energy,

U (ℓ) = −Gm1m2

ℓ
, (11.13)

is a scalar quantity, so the contributions from the little mass pieces simply add. Every piece
of the ring is the same distance from P, and this distance is all that matters; the direction
from P is irrelevant (unlike it would be with the force). Using the ℓ from Eq. (11.12), and
integrating over the entire shell, the total potential energy of a mass m at P is

U (r) = −
∫ π

0

2πσGR2m sin θ dθ
√

R2 + r2 − 2r R cos θ

= −2πσGRm
r

√
R2 + r2 − 2r R cos θ

�����
π

0
. (11.14)

The sin θ in the numerator is what makes this integral nice and doable. The θ = 0 lower
limit of the integral involves the quantity

√
(R − r)2. A square root is defined to be a

positive quantity, so this equals either R − r or r − R, depending on which radius is larger.
So we must consider two cases:

• If r > R (that is, if m is outside the shell), then we have

U (r) = −2πσGRm
r

(
(r + R) − (r − R)

)
= −G(4πR2σ)m

r
= −GMm

r
, (11.15)

which is simply the potential energy due to a point mass M located at the center
of the shell. In other words, a uniform spherical shell with mass M can be treated
like point mass M at the center, as far as the potential energy of an external mass is
concerned.
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• If r < R (that is, if m is inside the shell), then we have

U (r) = −2πσGRm
r

(
(r + R) − (R − r)

)
= −G(4πR2σ)m

R
= −GMm

R
, (11.16)

which is independent of r . So the potential energy inside the shell is constant.

Having found U (r), we can obtain F (r) by taking the negative of the derivative of U (r).
This gives

F (r) = −GMm
r2 if r > R,

F (r) = 0 if r < R. (11.17)

The minus sign in the first of these forces indicates radially inward.

Remark: A solid sphere may be considered to be built up from many concentric spherical shells.
This implies that if m is outside a given solid sphere, then the force on m is −GMm/r2, where M
is the total mass of the sphere. So from the outside, a sphere looks like a point mass. This result
holds even if the shells have different mass densities (but each shell must have uniform density, that
is, the density can be a function of only r). Note that the gravitational force between two spheres is
the same as if they were both replaced by point masses. This follows from two applications of our
“point mass” result.

Inside a hollow spherical shell, the force is zero, so it’s just like the shell doesn’t exist. This implies
that at a point at radius r inside a solid sphere with radius R, only the mass that lies inside radius
r is relevant (and this mass looks like a point mass, from the previous paragraph). This is true
because we can build up the solid sphere from many thin shells, and all of the shells between r and
R effectively don’t exist. See Problem 11.3.

11.2. Zero force inside a spherical shell

In Fig. 11.16 let a be the distance from P to piece A, and let b be the distance from P
A'

A B

B'

P

Figure 11.16

to piece B. Draw the “perpendicular” bases of the cones, and call them A′ and B′. The
ratio of the areas of A′ and B′ is a2/b2, because areas are proportional to lengths squared.
The key point to now note is that the angle between the planes of A and A′ is the same as
the angle between the planes of B and B′. This is true because the chord between A and
B meets the circle at equal angles at its ends. This equality of the angles implies that the
ratio of the areas (and hence masses) of A and B is also a2/b2.

However, the gravitational force decreases like 1/r2, and this effect exactly cancels the
a2/b2 ratio of the masses; A is larger, but it is farther away. Therefore, the forces on a
given mass m at P due to A and B (which can be treated like point masses, because the
cones are assumed to be thin) are equal in magnitude; and opposite in direction, of course.
If you want to write things out explicitly, the force due to A is

GmMA

a2 =
Gm(MB · a2/b2)

a2 =
GmMB

b2 , (11.18)

which is the force due to B. If we draw enough cones to cover the whole shell, then the
contributions to the force from little pieces over the whole shell will cancel in pairs, so we
are left with zero force at P. This holds for any point P inside the shell.

11.3. Force inside a solid sphere

The force at radius r inside a planet is effectively due only to the mass that lies inside
radius r (call it Mr ). This is true because Problem 11.2 tells us that the gravitational force
inside a uniform hollow spherical shell is zero, and because the mass outside radius r
may be considered to be built up from many concentric spherical shells. We can find the
mass Mr by noting that since mass is proportional to volume (because the mass density
is uniform here), and since volume is proportional to radius cubed, we have Mr/M =
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r3/R3 =⇒ Mr = (r3/R3)M . The desired force is therefore (including the minus sign to
indicate that the force is attractive)

F (r) = −GMrm
r2 = −G(r3 M/R3)m

r2 = −GMmr
R3 . (11.19)

This equals zero at the center of the planet, as it must, by symmetry. If you want to
write F (r) in terms of the mass density ρ, then substituting 4πR3ρ/3 for M gives F (r) =
−4πGρmr/3.

Remark: F (r) is a Hooke’s-law force, because it is proportional to −r . The motion of an object
hypothetically moving radially in the interior of a planet (inside a narrow tube) is therefore simple
harmonic motion. (This holds even for motion along a non-radial chord.) Problems 11.19–11.21 are
related to this fact.

11.4. Low-orbit and escape velocities

(a) Let the mass of the satellite be m. Since the radius of the satellite’s circular orbit
is essentially equal to the planet’s radius R, the gravitational force on the satellite is
GMm/R2. This force must account for the centripetal acceleration v2/R, so we have

F = ma =⇒ GMm
R2 =

mv2

R
=⇒ v =

√
GM

R
. (11.20)

Using g = GM/R2 from Eq. (11.3), this can also be written as v =
√
gR.

Remark: The v in Eq. (11.20) implies that the angular frequency of the orbital motion is
ω = v/R =

√
GM/R3. If we assume that the density ρ is uniform, then M is proportional to

the volume, which is proportional to R3. Hence ω is independent of R. That is, the orbit time
around a small spherical asteroid is the same as the orbit time around a large planet (assuming
the same density). The satellite’s speed is much larger in the latter case; it is proportional to
R.

(b) This is a task for conservation of energy (as opposed to F = ma in part (a)). The
object starts off with kinetic energy mv2/2 and potential energy −GMm/R. And
it ends up with essentially zero kinetic energy very far away (because the escape
velocity corresponds to the case where the object barely makes it to infinity) and
zero potential energy (because −GMm/r = 0 when r = ∞). Conservation of energy
therefore gives

Ki +Ui = Kf +Uf

=⇒ mv2

2
+

(
−GMm

R

)
= 0 + 0

=⇒ v =

√
2GM

R
=

√
2gR. (11.21)

Remark: The escape velocity in part (b) is
√

2 times the low-orbit speed in part (a). Equiva-
lently, since K = mv2/2, it takes twice as much energy to send an object to infinity as it does
to send it into a low orbit. (However, this assumes unrealistically that the object is abruptly
given a large initial speed and then allowed to move freely.) The rough numerical values of
the two speeds for the case of the earth are

vorbit =
√
gR ≈

√
(10 m/s2)(6.4 · 106 m) = 8,000 m/s = 8 km/s, (11.22)

vescape =
√

2gR ≈
√

2(10 m/s2)(6.4 · 106 m) = 11,300 m/s = 11.3 km/s.

For comparison, the speed of sound is about 340 m/s, and some high-powered rifles have a
muzzle velocity of about 1000 m/s. The International Space Station orbits at about 250 miles
above the surface of the earth (as did the Space Shuttle). Since this distance is small compared
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with the 4000-mile radius of the earth, the orbit radius r is only slightly larger than R, so the
speed is only slightly smaller than the low-orbit speed of

√
GM/R = 8 km/s. It is indeed

slightly smaller, because all of the R’s in Eq. (11.20) get replaced with r’s. Note that we
cannot simply replace R with r in the

√
gR expression for the speed, because g = GM/R2

has the earth’s radius R built into it.

11.5. Kepler’s 2nd law

During a short period of time, the region swept out by the radius vector to the planet is
essentially a very thin triangle, as shown in Fig. 11.17. (The slight curvature of the base is

r

r dθ

dθ

Figure 11.17

irrelevant if the triangle is very thin.) The small area dA of this triangle is dA = r (r dθ)/2,
because r dθ is the length of the base, and r is essentially equal to the altitude. Dividing
both sides of this equation by dt, we have (using L = mrvtan = mr (r θ̇) = mr2θ̇)

dA
dt
=

r2θ̇

2
=

L
2m

. (11.23)

So a constant dA/dt (as claimed by Kepler’s 2nd law) is equivalent to a constant L (that is,
to conservation of angular momentum). And the angular momentum is indeed conserved,
because the gravitational force always points toward the mass M , so it can never apply a
torque around M .

11.6. Kepler’s 3rd law for circles

If a mass m orbits in a circle of radius r around a fixed mass M , the radial F = ma equation
is (using v = rω)

F = ma =⇒ GmM
r2 =

mv2

r
=⇒ GmM

r2 = mrω2. (11.24)

Since the angular frequency ω and the period T are related by ω = 2π/T , we can rewrite
Eq. (11.24) as

GM
r3 = ω

2 =⇒ GM
r3 =

(
2π
T

)2

=⇒ T2 =
4π2r3

GM
. (11.25)

This agrees with Eq. (11.6), because the semimajor axis a of a circle is simply the radius
r .

11.7. Force from a line

In Fig. 11.18, the distance from the mass m to a little piece of the line is r = ℓ/ cos θ.
In the magnified view, we therefore have the length (ℓ/ cos θ) dθ as shown, because that
segment spans an angle dθ of a circle with radius ℓ/ cos θ centered at the mass m.

dθ dθ
θ

θ

m

l

dx dxx

l

r = l/cos θ

l/cos θ

cos θ

____

Figure 11.18

The length dx and mass dM of the little piece on the line are therefore

dx =
1

cos θ

(
ℓ dθ
cos θ

)
=⇒ dM = λ dx =

λℓ dθ
cos2 θ

. (11.26)
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The expression for dx could alternatively be derived in a much quicker manner by taking
the differential of the relation x = ℓ tan θ.

The horizontal components of the forces from all the little dM’s in the line cancel in pairs,
so we need only worry about the vertical components. This brings in a factor of cos θ. The
magnitude of the (downward) vertical force due to a given dM is then

dF =
Gm(dM)

r2 cos θ =
Gm

(
λℓ dθ
cos2 θ

)
(

ℓ

cos θ

)2 cos θ =
Gλm
ℓ

cos θ dθ. (11.27)

The total downward force on m therefore has magnitude

F =
∫ π/2

−π/2

Gλm
ℓ

cos θ dθ =
Gλm
ℓ

sin θ
�����
π/2

−π/2
=

2Gλm
ℓ

. (11.28)

Remarks: How much work does it take to drag the mass m to a position far away from the line? In
terms of a general distance y from the line, the upward force that we must apply to m is F (y) =
2Gλm/y. Work is force times distance, so we need to calculate the integral

∫ ∞
ℓ

F (y) dy. But
F (y) ∝ 1/y, so this integral diverges (like a log). The work required is therefore infinite. This
should be contrasted with the finite amount of work, GmM/ℓ, in the case where the line is replaced
by a point mass M .

If you want to solve this problem by working in terms of the position x along the line instead of
the angle θ, then the distance from the mass m to a little piece of the line is r =

√
ℓ2 + x2 (with

x = 0 being at the foot of the perpendicular from m). And the little piece has mass dM = λ dx. The
differential force in Eq. (11.27) is then

dF =
Gm(dM)

r2 cos θ =
Gm(λ dx)
ℓ2 + x2 · ℓ

√
ℓ2 + x2

. (11.29)

To integrate this from x = −∞ to x = ∞, you can either look up the integral, plug it into a computer,
or use the suggested x = ℓ tan θ trig substitution.

11.8. Force from a plane

In Fig. 11.19, the horizontal line represents the plane, which extends into and out of the
θ

dx

m

plane

r
l

rod (into and
out of page)

Figure 11.19

page (and also to the left and right). The short segment represents a rod extending into
and out of the page, with small width dx. From Problem 11.7, the gravitational force from
the rod on the mass m is 2Gλm/r , where the effective linear mass density of the rod is
λ = σ dx. This relation follows from the fact that the amount of mass in a length L of
the rod (into and out of the page) can be written as both λL (by definition) and σL dx,
because L dx is the area of the rod. Hence λ = σ dx.

The horizontal component of the force from the rod on m cancels with the horizontal
component of the force from the rod located symmetrically on the left side of m. So we
care only about the vertical component (as expected). This brings in a factor of cos θ. And
since x = ℓ tan θ, we have dx = ℓ dθ/ cos2 θ. (Or you can use the geometrical reasoning
in the solution to Problem 11.7.) The total vertical force at m is therefore

F =
∫ ∞

−∞

2G(σ dx)m
r

cos θ

=

∫ π/2

−π/2

2Gσm(ℓ dθ/ cos2 θ)
ℓ/ cos θ

cos θ

= 2Gσm
∫ π/2

−π/2
dθ

= 2πGσm, (11.30)



302 CHAPTER 11. GRAVITY

as desired. Note that this is independent of ℓ (more on this below).

Remarks: As an exercise, you can also find the force from the plane by considering the plane to be
built up from an infinite set of concentric rings, and integrating over the rings. You will first need to
show that the force on a mass m located a distance ℓ from the center of a ring (along the axis of the
ring) with linear mass density λ and radius r is 2πGmλℓr/(ℓ2 + r2)3/2.

Note the following r dependence of the force due to objects with different dimensions. From New-
ton’s universal law of gravitation, the force from a zero-dimensional point mass is proportional to
1/r2. From Problem 11.7, the force from an infinite one-dimensional line is proportional to 1/r .
And from the present problem, the force from an infinite two-dimensional plane is proportional to
1/r0 (that is, it is independent of r).

Is there a quick intuitive way of seeing why the force from a plane is independent of the distance
from the plane? Indeed there is. Consider the two planes in Fig. 11.20, and imagine drawing a thin

m

Figure 11.20

cone emanating from m. This cone defines a small patch on each plane. If a and b are the distances
from m to the patches, then the areas of the patches are proportional to a2 and b2. These factors
exactly cancel the effect of the r2 in the denominator of the Gm1m2/r2 force law (the patches are
small enough to be treated like point masses). The two patches therefore produce equal forces on m.
And since both planes can be covered by corresponding patches, the forces from the two planes are
equal, as we wanted to show. (This reasoning is the same as the reasoning we gave in the remark in
the solution to Multiple-Choice Question 11.6.) Physically, if you move farther away from a plane,
the force on you from any given bit of mass in the plane is smaller. But there is now a larger area of
the plane pulling you generally toward the plane. For example, in Fig. 11.21 the little piece of the

m

m

Figure 11.21

plane shown applies a larger downward force on the top m than on the bottom m, because the angle
to the bottom m is so shallow (and the distances aren’t drastically different, at least for the little piece
shown).

11.9. Two expressions for potential energy

From Eq. (11.5), the difference between the potential energy at height h above the ground
(that is, at radius R + h) and the potential energy at the ground (that is, as radius R) is

U (R + h) −U (R) = −GMm
R + h

−
(
−GMm

R

)
, (11.31)

where M is the mass of the earth. This is the exact expression for the difference, but
let’s generate an approximate expression, valid in the h ≪ R limit. We have (using the
1/(1 + ϵ ) ≈ 1 − ϵ approximation)

U (R + h) −U (R) = GMm
(

1
R
− 1

R + h

)
=

GMm
R

(
1 − 1

1 + h/R

)
≈ GMm

R

(
1 −

(
1 − h

R

))
= m

(
GM
R2

)
h = mgh, (11.32)

where we have used the g = GM/R2 relation from Eq. (11.3).

Remark: We see that U (h) = mgh is simply an approximation to the exact difference given in
Eq. (11.31). Physically, the essence of the approximation is that if h is small compared with R, then
the gravitational force is essentially constant over the interval between R and R+h. This then implies
that the work done by the gravitational force over this interval can be obtained by simply multiplying
the force mg by the distance h, as opposed to actually evaluating the integral W =

∫
F dr . Of course,

we’ve basically gone in circles here. In Eq. (11.5) we integrated the gravitational force to obtain the
potential energy, and then in Eq. (11.32) we effectively differentiated the potential energy (by taking
the difference between two nearby values) to get back to the force (the GMm/R2 part of the result).

11.10. Attracting particles

First solution: Energy and momentum are both conserved during the motion. The initial
values of E and p are both zero, so they are zero at all times. If v and V are the two
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speeds at a later time (with the velocities directed toward each other), then conservation of
momentum tells us that the individual momenta must be equal and opposite at all times:

mv = MV. (11.33)

And conservation of energy gives

1
2

mv2 +
1
2

MV 2 − GMm
r
= 0. (11.34)

That is, the loss in potential energy shows up as kinetic energy. Using Eq. (11.33) to write
v in terms of V , we obtain

1
2

m
(

MV
m

)2

+
1
2

MV 2 =
GMm

r

=⇒
(

M
m
+ 1

)
V 2 =

2Gm
r

=⇒ V = m

√
2G

(M + m)r
. (11.35)

The speed of m is then v = (M/m)V = M
√

2G/(M + m)r . The relative speed of the two
masses when they are a distance r apart is therefore

v + V = (M + m)

√
2G

(M + m)r
=

√
2G(M + m)

r
. (11.36)

Remark: Interestingly, this result depends only on the total mass M + m, and not on each mass
separately. So if we have a given total mass, then no matter how we split it up into two masses, they
will always have the same relative speed at a given separation. If one mass is much larger than the
other, then it remains essentially at rest, so the relative speed comes solely from the motion of the
smaller mass. If the masses are equal, then they each have half the speed of the smaller mass in the
preceding case.

Second solution: Let’s work in terms of the desired relative speed, call it u. Eq. (11.33)
tells us that the speeds of the two masses are inversely proportional to the masses. (Equiv-
alently, the given frame in which the masses are initially at rest is the CM frame, because
the CM is initially, and hence always, at rest in this frame. And we know that in the CM
frame the speeds of the masses are inversely proportional to the masses; this makes the
total momentum be zero, as it must be in the CM frame.) You can then show that the
individual speeds in the CM frame are

vCM =
Mu

M + m
and VCM =

mu
M + m

. (11.37)

These speeds are inversely proportional to the masses and correctly add up to u. The
conservation-of-energy statement in the CM frame (the lab frame) is therefore

0 =
1
2

m
(

Mu
M + m

)2

+
1
2

M
( mu

M + m

)2
− GMm

r

=⇒ 0 =
1
2

(
Mm

M + m

)
u2 − GMm

r

=⇒ u =

√
2G(M + m)

r
, (11.38)

in agreement with the first solution. This solution was actually the same as the first one,
with the only difference being that we chose to work from the start with the relative speed
u.
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Remark: The equation in the second line above indicates that when computing the kinetic energy in
the CM frame, we can pretend that we just have one particle with mass Mm/(M + m) moving with
the relative speed u of the actual two particles. This mass Mm/(M + m) is called the reduced mass
of the system. It comes up often in systems involving two masses. See, for example, Problem 10.11.

11.11. Sphere and stick

We will use conservation of energy. The sphere looks like a point mass from the outside,
so we need to find the potential energy of a system consisting of a point mass m and a stick
with mass m and length 2R, initially a distance 3R away (with the far end a distance 5R
away). The potential energy (due to the interaction with the point mass) of a little piece of
the stick with mass dm = λ dr (where the density λ equals m/2R) is −Gm dm/r , where r
runs from 3R to 5R. The total initial potential energy is therefore

Ui = −
∫ 5R

3R

Gm(λ dr)
r

= −Gm
( m

2R

)
ln r

�����
5R

3R

= −Gm2

2R

[
ln(5R) − ln(3R)

]
= −Gm2

2R
ln

(
5
3

)
. (11.39)

At the end of the process, right before the stick and the sphere collide, the stick extends
from r = R to r = 3R. So to obtain the final potential energy Uf , the only modification
we need to make in Eq. (11.39) is to replace ln(5/3) with ln(3/1). The change in potential
energy is therefore

Uf −Ui = −
Gm2

2R

[
ln

(
3
1

)
− ln

(
5
3

)]
= −Gm2

2R
ln

(
9
5

)
. (11.40)

This loss in potential energy shows up as kinetic energy. Since the masses are equal,
conservation of momentum tells us that the final speeds are equal. So conservation of
energy gives

2 · mv2

2
=

Gm2

2R
ln

(
9
5

)
=⇒ v =

√
Gm
2R

ln
(

9
5

)
. (11.41)

11.12. Dismantling a planet

Consider the planet at an intermediate stage of the dismantling, when it has radius r . What
is the potential energy (due to the interaction with the rest of the planet) of a thin shell
with thickness dr at the surface? The mass of the rest of the planet (which can be treated
like a point mass) is mr = (4πr3/3)ρ, 1 and the mass of the thin shell is dm = (4πr2 dr)ρ,
where ρ = M/(4πR3/3). The potential energy of the shell, due to the gravitational force
from the rest of the planet, is therefore

dU = −Gmr dm
r

= −G(4πr3ρ/3)(4πr2ρ dr)
r

= −16Gπ2ρ2r4 dr
3

. (11.42)

In order to move the shell out to infinity (with all of its bits of mass far away from each
other), we must give it an energy of |dU |. 2 To successively remove shells of smaller and
smaller radius r (from the initial radius R down to zero), we need to add up |dU | for all
of the thin shells that make up the whole sphere. That is, we need to integrate |dU | from
r = 0 to r = R. The total energy required (that is, the total work we must do) to dismantle
the planet is therefore

E =
∫
|dU | = 16Gπ2ρ2

3

∫ R

0
r4 dr =

16Gπ2ρ2

3
R5

5
. (11.43)

1Technically the radius here should be r − dr , but this correction is negligible in the dr → 0 limit.
2There is no need to worry about the internal potential energy of the thin shell (due to the gravitational interaction

between different bits of the shell), because this energy is of order (dm)2, which is a second-order small quantity and
therefore negligible compared with the first-order small quantity dU ∝ dm.
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We can eliminate ρ in favor of the total mass M by using ρ = M/(4πR3/3). This yields

E =
16Gπ2

3

(
3M

4πR3

)2 R5

5
=

3
5

GM2

R
. (11.44)

From dimensional analysis, we know that the answer must be proportional to GM2/R,
because that is the only way to produce an energy from the given quantities M and R
(along with G). But we need to do a calculation to show that the factor out front is 3/5.

Remark: This is a picky point, but we’ll address it anyway. You might say that since the removal of
the shells starts at radius R and ends at radius zero, the limits of the integral in Eq. (11.43) should
be reversed. But that can’t be correct, because it would yield a negative result for E. The reason for
this sign error is that we tacitly assumed that dr was a positive quantity in Eq. (11.42). If you want
to treat dr as a negative quantity (which would automatically be the case if r runs from R down to
zero), then the minus sign in Eq. (11.42) should be removed from dU (so that dU is still a negative
quantity), in which case a minus sign should be added to the |dU | in Eq. (11.43) (so that |dU | is
still a positive quantity). With the integration limits in Eq. (11.43) reversed, the final result for E
will then correctly be positive. At every intermediate stage in a calculation, it’s always good to do a
quick check and make sure that at least the sign is correct.

11.13. Planet with variable density

(a) If we slice the planet into concentric shells with thickness dr , the mass of each shell
is dM = (4πr2 dr)ρ. Since ρ = b/r , this equals 4πbr dr . The mass of the entire
planet is obtained by integrating dM from r = 0 to r = R, so

M =
∫

dM = 4πb
∫ R

0
r dr = 2πbR2 =⇒ b =

M
2πR2 . (11.45)

The units of b are correct, because they make ρ = b/r correctly have units of mass
per length-cubed (that is, mass per volume).

(b) First solution: We’ll find the force on a mass m at radius r inside the planet, and
then integrate this force to find the difference in potential energy. The gravitational
force at radius r is determined by the mass mr inside radius r , which is given by the
same type of integral as in part (a):

mr = 4πb
∫ r

0
r ′ dr ′ = 2πbr2 = 2π

(
M

2πR2

)
r2 = M

r2

R2 . (11.46)

Note that if the density ρ were instead constant, then mr would be proportional to
volume, that is, to r3. But the given density ρ = b/r falls off with r , so mr doesn’t
grow as quickly with r; the dependence in this case happens to be r2.
Using the mr from Eq. (11.46), the inward gravitational force on a mass m at radius
r is

F (r) =
Gmrm

r2 =
G(Mr2/R2)m

r2 =
GMm

R2 . (11.47)

This is independent of r , so the magnitude of the radially inward force is the same
everywhere inside the planet. ρ(r) ∝ 1/r is the special form of the density that
creates this nice result. Since the force is independent of r , the potential energy
difference ∆U, which in general is

∫
F dr , is simply the force times the distance

here. Hence

∆U = FR =
(

GMm
R2

)
R =

GMm
R

, (11.48)

with the energy at the surface being larger than the energy at the center. This result
looks similar to the standard expression for the gravitational potential energy due to
a point mass or a sphere. So we see that it takes GMm/R energy to bring the mass m
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from the center to the surface, and then another GMm/R to bring it from the surface
out to infinity.

Second solution: In this solution we’ll find the potential energy of a mass m at the
center of the planet, relative to infinity. And then we’ll subtract off the potential
energy at the surface, relative to infinity.
The potential energy U of a mass m at the center of the planet equals to the sum of
the dU’s at the center due to all the thin concentric spherical shells that make up the
planet. Now, the dU at the center of a thin shell equals the dU at the surface, because
there is no gravitational force inside the shell and hence no change in potential energy
inside. And the dU at the surface of a shell of radius r is simply −G(dM)m/r , where
dM is the mass of the shell. As in part (a), this dM equals 4πbr dr . So the dU at the
center of a shell is −G(4πbr dr)m/r = −4πGmb dr . Note that this is independent
of r . Integrating dU over all of the thin shells gives the total U at the center of the
planet as (using the b from part (a))

Ucenter = −
∫ R

0
4πGmb dr = −4πGmbR

= −4πGm
(

M
2πR2

)
R = −2GMm

R
. (11.49)

But the U at the surface of the planet is the standard Usurface = −GMm/R. So we see
that Usurface is GMm/R larger than Ucenter, in agreement with the first solution.

11.14. Descending in a mine shaft

(a) (This part of the problem is just Problem 11.3 again.) We know that the gravitational
force inside a hollow spherical shell is zero. So all of the mass of the earth outside
radius r , which can be thought of as built up from shells, produces zero force on a
mass m at radius r . Only the mass inside radius r matters, and it can be treated like
a point mass at the center. This mass is Mr = (4πr3/3)ρ, so the radially inward
gravitational force on m has magnitude

F =
GMrm

r2 =
G(4πr3ρ/3)m

r2 =
4πGρmr

3
. (11.50)

This decreases as r decreases, so the gravitational force decreases as you descend in
a mine shaft in a planet with uniform mass density.

(b) We want to find the condition under which the force F = GMrm/r2 increases as r
decreases, or equivalently, decreases as r increases. So we want to find the condition
under which

d
dr

(
GMrm

r2

)
< 0 =⇒ d

dr

(
Mr

r2

)
< 0

=⇒ r2 dMr

dr
− Mr (2r) < 0, (11.51)

where we have ignored the denominator of the derivative quotient rule, because we’re
only comparing the result with zero. Since the mine shaft is located within the crust
of the earth, we have dMr/dr = 4πR2ρc, where R is the radius of the earth. This
is true because if we travel outward a distance r , an additional shell with volume
(4πR2) dr is now located inside our radial position. Technically, the R here should
be replaced with our radial position r , but r is essentially equal to R since we’re close
to the surface of the earth. Any correction would involve a multiplicative factor that
is essentially equal to 1.
The mass Mr is essentially the mass of the entire earth, so it equals (4πR3/3)ρavg.
Again, the issue of whether we use the entire radius of the earth R, or a slightly
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smaller r , is irrelevant. So Eq. (11.51) becomes (letting the other factors of r there
also be equal to R)

R2(4πR2ρc) −
(

4
3
πR3ρavg

)
(2R) < 0 =⇒ ρc <

2
3
ρavg. (11.52)

So the desired value of A is 2/3.

Remark: It makes sense that depending on the ratio of the two densities ρc and ρavg, it is
possible for the force to either increase or decrease as you descend in a mine shaft. This
can be seen by looking at two extreme cases. In the limit where the planet consists of a thin
massive shell surrounding a styrofoam interior (so that ρc ≫ ρavg), the gravitational force
decreases to zero by the time you descend all the way to the inner surface of the shell. So
the force definitely decreases as you descend. The decreasing mass Mr in F = GMrm/r2 is
where all of the change in F comes from in this limit.
In the opposite limit where the planet consists of a styrofoam shell surrounding a massive
interior (so that ρc ≪ ρavg), the force definitely increases as you descend, because you are
getting closer to the massive solid sphere (which behaves like a point mass at the center). The
decreasing amount of styrofoam inside your radius r is inconsequential, so the decreasing r in
F = GMrm/r2 is where all of the change in F comes from in this limit.

11.15. Orbiting objects

(a) Let the mass of the satellite be m. The gravitational force on the satellite is respon-
sible for its centripetal acceleration, so the radial F = ma equation is (writing the
centripetal acceleration v2/R as Rω2)

GMm
R2 = mRω2 =⇒ ω =

√
GM
R3 . (11.53)

Since G has units of m3/(kg s2), the units of ω are correctly s−1.
(b) The gravitational force on each planet is G(M/2)2/R2, and both planets move in the

circle of radius R/2 shown in Fig. 11.22. So the radial F = ma equation for one of
R M

2

__M

2

__

Figure 11.22

the masses is
G(M/2)2

R2 =

(
M
2

) (
R
2

)
ω2 =⇒ ω =

√
GM
R3 , (11.54)

which is the same result as in part (a). Note that the full R (the distance between
the planets) appears in the gravitational force, whereas R/2 (the radius of the circle)
appears in the centripetal acceleration.

(c) Label the planets as A and B, and let them have masses a and b, where a + b is
constrained to be a given mass M . The distances from A and B to the CM are,
respectively, bR/(a + b) and aR/(a + b). These two distances correctly add up to R
and are inversely proportional to the masses. Planet A therefore moves in a circle of
radius bR/(a + b), as shown in Fig. 11.23. So the radial F = ma equation for A is

A B
CM

a+b

____bR

a+b

____aR

Figure 11.23

(the equation for B would give the same result)

Gab
R2 = a

(
bR

a + b

)
ω2 =⇒ ω =

√
G(a + b)

R3 =

√
GM
R3 , (11.55)

as desired. The masses a and b cancel, and only the sum a + b = M remains.

11.16. Grabbing a mass

(a) Each mass travels in a circle of radius ℓ/2, so the centripetal acceleration is v2
0/(ℓ/2).

The gravitational force on each mass due to the other mass is Gm2/ℓ2. So the F = ma
equation for each mass is

Gm2

ℓ2 =
mv2

0

ℓ/2
=⇒ v0 =

√
Gm
2ℓ

. (11.56)
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(b) After one mass is grabbed, the other mass will orbit around it in a noncircular orbit.
During this motion, both the energy and the angular momentum of the orbiting mass
are conserved. (The gravitational force from the other mass produces no torque
around itself.) Also, the velocity is tangential at closest approach, because if it had a
radial component, this would contradict the fact that the mass is at closest approach.
(The mass would either be getting closer, or it would have been closer a moment
earlier.)
Let the distance at closest approach be r , and let v be the speed there. Then conser-
vation of angular momentum (around the grabbed mass) gives

ℓv0 = rv =⇒ v =
ℓ

r
v0. (11.57)

Conservation of energy then gives

1
2

mv2
0 −

Gm2

ℓ
=

1
2

mv2 − Gm2

r

=⇒ 1
2
v2

0 −
Gm
ℓ
=

1
2

(
ℓ

r
v0

)2

− Gm
r

=⇒ Gm
(

1
r
− 1
ℓ

)
=

1
2
v2

0

(
ℓ2

r2 − 1
)

=⇒ 2Gm
(
ℓ − r
ℓr

)
= v2

0

(
ℓ2 − r2

r2

)
=⇒ 2Gmr

ℓ(ℓ + r)
= v2

0 . (11.58)

But we know from part (a) that v0 =
√

Gm/2ℓ. So we have

2Gmr
ℓ(ℓ + r)

=
Gm
2ℓ

=⇒ 4r = ℓ + r =⇒ r =
ℓ

3
. (11.59)

Remark: It makes sense that this distance of closest approach is smaller than ℓ, because you
can quickly show that the orbiting mass would need a speed of

√
Gm/ℓ to orbit in a circle of

radius ℓ around the grabbed mass. Since the initial speed of v0 =
√

Gm/2ℓ is smaller than this,
the orbiting mass will fall somewhat inward toward the grabbed mass and therefore achieve a
separation smaller than ℓ.

11.17. Orbiting satellite

(a) The potential energy at radius R is

U = −GMm
R

. (11.60)

The radial F = ma equation is GMm/R2 = mv2/R, which gives v2 = GM/R. So
the kinetic energy is

K =
mv2

2
=

GMm
2R

. (11.61)

The total energy is therefore

E = K +U = −GMm
2R

. (11.62)

This is negative, which means that work would have to be done on the object to move
it far from the planet, out to infinity.
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(b) Let the speeds at the leftmost and rightmost points in the orbit in Fig. 11.9 be v1
(the speed right after the kick) and vn . The velocities are tangential at these points.
Both energy and angular momentum are conserved throughout the motion. (The
gravitational force from the planet produces no torque around itself.) Conservation
of angular momentum gives

mv1R = mvn (nR) =⇒ vn =
v1

n
. (11.63)

Conservation of energy then gives

mv2
1

2
− GMm

R
=

mv2
n

2
− GMm

nR

=⇒
v2

1

2
− GM

R
=

1
2

(
v1

n

)2
− GM

nR

=⇒ 1
2
v2

1

(
1 − 1

n2

)
=

GM
R

(
1 − 1

n

)
=⇒ 1

2
v2

1

(
1 +

1
n

)
=

GM
R

=⇒
mv2

1

2
=

n
n + 1

GMm
R

. (11.64)

The total energy is therefore

E =
mv2

1

2
− GMm

R
=

n
n + 1

GMm
R
− GMm

R
= − GMm

(n + 1)R
. (11.65)

Limits: If n → 1 then E → −GMm/2R, in agreement with the result in part (a). Note,
interestingly, that setting n = 1 too soon in the conservation-of-energy statement would just
give the trivial statement that 0 = 0. We need to wait to take the n → 1 limit if we want to
obtain something useful.
If n → ∞ then E → 0. This makes sense because the satellite is moving very slowly when
it is at the very large radius of nR (because vn = v1/n), so at this distant point we have
K +U = 0 + 0.
If n → 0 then E → −GMm/R. This corresponds to the satellite being dropped essentially
radially inward to the planet, starting from radius R. This is true because the kinetic energy
K is essentially zero at the start, since the last line of Eq. (11.64) tells us that v1 → 0 when
n → 0. (So the required kick is an opposing one that essentially stops the mass, at least briefly.)
The initial energy therefore comes only from the initial potential energy of −GMm/R. The
satellite just “bounces” in and out in a very thin elliptical orbit.

11.18. Projectile in a planet

(a) The mass of the planet is M = (4πR3/3)ρ, so the F = ma equation for the circular
motion is

G(4πR3ρ/3)m
R2 =

mv2
circ

R
=⇒ vcirc =

√
4πGρR2

3
. (11.66)

The units of G are m3/(kg s2), and the units of ρ are kg/m3. So v correctly has units
of m/s. This problem is just Problem 11.4(a) in terms of ρ instead of M .

(b) Only the mass that is inside radius r (call it Mr ) contributes to the force at r . So we
have

F (r) = −GMrm
r2 = −G(4πr3ρ/3)m

r2 = −4πGρmr
3

, (11.67)

where the minus sign indicates radially inward. The potential energy, relative to the
center, is the negative of the integral of F (r). So

U (r) = −
∫ r

0

−4πGρmr ′

3
dr ′ =

2πGρmr2

3
. (11.68)
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This is correctly positive; the potential energy at radius r is larger than the potential
energy at the center. You can check that the units of U are correctly kg m2/s2.

(c) We’ll apply conservation of energy and angular momentum between the initial point
on the surface and the point with the minimum value of r . Using the form of the
potential energy in Eq. (11.68), conservation of energy gives

Ui + Ki = Uf + Kf

=⇒ 2πGρmR2

3
+

mv2
i

2
=

2πGρmr2

3
+

mv2
f

2
. (11.69)

Angular momentum around the center of the planet is conserved because the grav-
itational force provides no torque around the center. At the minimum value of r in
the motion, the velocity is tangential because any radial motion would contradict the
fact that r is the minimum radius. So conservation of angular momentum gives

mRvi = mrvf =⇒ vf =
R
r
vi. (11.70)

Plugging this value of vf into Eq. (11.69) and rearranging yields

2πGρ

3
(R2 − r2) =

v2
i

2

(
R2

r2 − 1
)

=⇒ 2πGρr2

3
=

v2
i

2
. (11.71)

This relation gives the minimum radius r in terms of a general (tangential) initial
speed vi. We will now invoke the given information that vi = (1/2)vcirc, which yields
v2

i = (1/4)v2
circ. Using the value of vcirc from part (a), Eq. (11.71) becomes

2πGρr2

3
=

1
2
· 1

4
4πGρR2

3

=⇒ r2 =
R2

4
=⇒ r =

R
2
. (11.72)

Remark: If we more generally have vi = nvcirc instead of vi = (1/2)vcirc, where n is a
numerical factor less than 1, then the 1/4 in the first line of Eq. (11.72) becomes n2, which
means that the minimum value of r is r = nR. If n = 1 then we just have the original circular
orbit at the surface of the planet. And if n ≈ 0 then the object starts at rest and falls in to the
center of the planet (and then pops back out, in a very thin elliptical orbit).

11.19. Oscillating stick in a planet 1

(a) (This part of the problem is just Problem 11.3 again.) The force at radius r inside
the planet is due to the mass inside radius r . Since mass is proportional to volume,
this mass is Mr = M (r3/R3). The radially inward force on a mass dm at radius r
therefore has magnitude

Fr =
GMr dm

r2 =
G(Mr3/R3) dm

r2 =
GM dm r

R3 . (11.73)

(b) Fr points radially, so if we add up the forces on all the little dm’s that make up the
stick, the sum of the components parallel to the stick is zero (they cancel in pairs).
We therefore need only look at the components perpendicular to the stick. If x is the
displacement of the stick relative to the center of the planet (so the initial value of x
is h), then the perpendicular component brings in a factor of x/r . The perpendicular
force therefore has magnitude

GM dm r
R3 · x

r
=

GM dm x
R3 . (11.74)
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This is independent of the position along the stick, so when we integrate over the
whole stick, the dm simply turns into m. The total force on the stick is therefore

Fx = −
GMmx

R3 , (11.75)

where the minus sign indicates that the force is pulling the stick toward the center of
the planet. The Fx = max equation for the stick is then

−GMmx
R3 = mẍ =⇒ ẍ = −

(
GM
R3

)
x. (11.76)

This is a simple-harmonic-oscillator equation, and the frequency is ω =
√

GM/R3.
Since G has units of m3/(kg s2), the units of ω are correctly s−1.

Remarks: Since g = GM/R2 from Eq. (11.3), this frequency can alternatively be written as
ω =

√
g/R, which is as nice a result as we could have hoped for. In terms of the (uniform)

density ρ of the planet, the mass is M = (4πR3/3)ρ, so ω =
√

GM/R3 can also be written as
ω =

√
4πGρ/3, which is independent of R. This makes sense; the force isn’t affected if we

increase the size of the planet by adding on shells, because a shell produces zero force in its
interior.
The frequency of ω =

√
GM/R3 shows up in many different setups involving planets. It is

the frequency of a low-orbit satellite; see Problem 11.4(a). And related to this, it is also the
maximum frequency of a planet’s rotation before it flies apart. It is also the frequency of the
oscillations of a mass dropped through a diametrical tube in a planet; see Problem 11.21(a).
This must be the case, because the result of this problem is independent of the length of the
stick. So we could make the stick be very short, in which case we would essentially have a
point mass falling through a tube.
The preceding result for a mass dropped through a tube actually holds more generally. Even
if the tube lies along an arbitrary chord instead of a diameter, the frequency is still ω =√

GM/R3 =
√
g/R. You can demonstrate this as an exercise; the calculation is very similar

to the one in this problem. The period of the oscillation is 2π/ω = 2π
√

R/g, which you
can show equals about 5000 seconds in the case of the earth, or about 84 minutes (assuming,
incorrectly, that the earth has uniform density). In other words, if you drop something through
a straight frictionless tube from one point on the earth to any other point, the time to reach
that point will always be 42 minutes, whether it is on the other side of the earth, or only a
mile away, or even just at the other end of a (perfectly frictionless!) table, provided that the
perpendicular bisector of the table points exactly toward the center of the earth.

11.20. Oscillating stick in a planet 2

(a) The part of the stick marked as A (the part within radius R − x) in Fig. 11.24 expe-

A B C

xx

Figure 11.24

riences zero net force, by symmetry. The unbalanced force comes from parts B and
C. Let’s find these forces.
Force on C: The gravitational force on a mass m that lies outside the planet is simply
−GMm/r2, where the minus sign indicates radially inward. So the force on a little
piece of the stick with mass dm = λ dr is −GM (λ dr)/r2. Integrating this from R to
R + x gives the force on C as

FC = −
∫ R+x

R

GMλ dr
r2 =

GMλ

r

�����
R+x

R

= GMλ

(
1

R + x
− 1

R

)
= − GMλx

R(R + x)
. (11.77)

Force on B: From Problem 11.3, the force on a mass m at radius r inside the planet
is −GMmr/R3. Replacing m with dm = λ dr and integrating from R − x to x gives
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the force on B as

FB = −
∫ R

R−x

GMλr dr
R3 = −GMλ

R3

r2

2

�����
R

R−x

= −GMλ

2R3

(
R2 − (R − x)2) = −GMλ

2R3 (2Rx − x2). (11.78)

The total force on the stick is

FB + FC = −
GMλ

2R3 (2Rx − x2) − GMλx
R(R + x)

. (11.79)

(b) If x ≪ R, then in FB in Eq. (11.78) we can ignore the x2 compared with the 2Rx.
And in FC in Eq. (11.77) we can ignore the x compared with the R in the denomina-
tor. So we have

FB + FC ≈ −
GMλx

R2 − GMλx
R2 = −GM

R2 (λ · 2x). (11.80)

This makes sense, because the gravitational force on a mass m near the surface of
the planet is GMm/R2. (If the mass is slightly inside or outside the planet, the force
is slightly different from this, but the correction is negligible if x is small.) And the
mass of the B+C part of the stick is m = λ(2x), which can be treated like a point
mass if x is small.

(c) The radial F = ma equation for the stick is

F = msticka =⇒ −GM (λ · 2x)
R2 = (λ · 2R) ẍ =⇒ ẍ = −GM

R3 x, (11.81)

where we have used the fact that the total mass of the stick is mstick = λ(2R).
Eq. (11.81) is a simple-harmonic-oscillator equation, and the frequency of small os-
cillations is ω =

√
GM/R3. This is the same as the frequency in Problem 11.19.

Remarks: As in Problem 11.19, the frequency can be written as as ω =
√

4πGρ/3, which is
independent of R. The reason for this independence in the present setup is that the F = ma
equation for the stick is mB+C g = msticka, and both g (as you can check) and mstick grow
linearly with R, so these effects cancel.

As an exercise, you can show more generally that
√

GM/R3 is the frequency of small oscil-
lations in the analogous setup where the tube lies along an arbitrary chord through the earth,
not necessarily a diameter.

11.21. Asteroid slab

(a) From Problem 11.3, the force on a mass m at radius r inside the planet, when written
in terms of the density ρ, is −4πGρmr/3. This force is directed radially inward, so
the radial F = ma equation yields simple harmonic motion:

−4πGρm
3

r = mr̈ =⇒ r̈ = −4πGρ

3
r =⇒ ω =

√
4πGρ

3
. (11.82)

This frequency is the same as the frequency we found in the preceding two problems.

Remark: The frequency is independent of the radius of the sphere. Equivalently, it is indepen-
dent of the radius r0 where the object is released, because the mass outside r0 is effectively not
present (since a hollow shell produces zero force inside), so we effectively just have a smaller
sphere with radius r0.

(b) Consider a thin sheet (that is, a thin sub-slab of the given slab) with area A and tiny
thickness ϵ . The volume of this sheet is Aϵ , so the mass is ρ(Aϵ ), by the definition
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of ρ. But the mass is also Aσ, by the definition of σ. Equating these two expressions
for the mass gives the mass per unit area of the thin sheet as σ = ρϵ .
Consider the force on a mass m located outside (or on the surface of) a wide slab with
thickness ℓ. We can think of this slab as built up from many thin sheets. And since
Problem 11.8 tells us that the force from a sheet is independent of the distance from
it, we can imagine squashing the slab down to a thin sheet. The slab has thickness
ℓ, so the reasoning in the previous paragraph tells us that the mass per unit area is
ρℓ, which then implies that the surface mass density σ of the squashed sheet is ρℓ.
From Problem 11.8, the force due to this sheet is therefore 2π(ρℓ)Gm. And this is
also the force due to the slab with thickness ℓ.
When the object is located a distance x from the center plane of the slab, the forces
from the two sub-slabs on either side of it (with thicknesses D/2 + x and D/2 − x)
point in opposite directions. So the net force on the object is

−2πρ
(

D
2
+ x

)
Gm + 2πρ

(
D
2
− x

)
Gm = −(4πρGm)x. (11.83)

The F = ma equation in the x direction then yields simple harmonic motion:

−(4πGmρ)x = mẍ =⇒ ẍ = −(4πGρ)x =⇒ ω =
√

4πGρ. (11.84)

Remark: This frequency is independent of the thickness of the slab. Equivalently, it is inde-
pendent of the x0 where the object is released, because the mass outside the initial |x0 | value
is effectively not present (since the two outer slabs in Fig. 11.25 produce equal and opposite

2x

x
m

D

Produce opposite
forces on m

Figure 11.25

forces on the mass m), so we effectively just have a thinner slab with thickness 2x0. This
logic actually provides another way of obtaining the force in Eq. (11.83). Since we effectively
have only the middle slab with thickness 2x in Fig. 11.25 (which is equivalent to a sheet with
σ = ρ · 2x), Problem 11.8 gives the force as −2π(ρ · 2x)Gm = −4πρGmx.

(c) The frequency in the slab is larger than the frequency in the sphere, by a factor
of
√

3. The physical reason for this is that for a given displacement, the restoring
force is larger in the case of the slab, because more matter is pulling the object back
toward equilibrium. In more detail: we know that in the case of a sphere, only the
mass inside radius r matters. Similarly, in the case of a slab, only the mass inside
the range from −x to x matters. Therefore, since there is more mass in a slab with
thickness 2x than in a sphere with diameter 2x, the restoring force from the slab is
larger.



Chapter 12

Fictitious forces

12.1 Introduction

The concept of fictitious forces

Newton’s second law, F = ma, holds only in inertial frames. It does not hold in accelerating
frames. Is there a way to modify F = ma so that it holds in an accelerating frame, for example, a
merry-go-round or an accelerating train? (Here a is the acceleration with respect to the acceler-
ating frame.) The answer is “Yes,” provided that we introduce some new fictitious forces in the
accelerating frame.

It turns out that there are four different types of fictitious forces. They are called the trans-
lational, centrifugal, Coriolis, and azimuthal forces. When these are added on to whatever real
forces exist (gravity, friction, normal, etc., which are the same in any (nonrelativistic) frame,
inertial or not), then the F = ma equation becomes valid in the accelerating frame. We won’t
go through the derivation of the fictitious forces, but see Section 10.1 in Morin (2008) if you are
interested; the derivation is a bit involved. We’ll simply state the result here.

To specify an accelerating frame, we must state two things: (1) the position of the origin,
R(t), with respect to a given inertial frame, and (2) the angular velocity ω(t) with respect to the
given inertial frame.1 It can then be shown that the acceleration a in the accelerating frame is
given by

ma = Freal − m
d2R
dt2 − mω × (ω × r) − 2mω × v − m

dω
dt
× r

≡ Freal + Ftranslational + Fcentrifugal + FCoriolis + Fazimuthal. (12.1)

Note that the minus signs are included in the definitions of the fictitious forces. There are two
types of quantities in Eq. (12.1). The quantities r, v ≡ dr/dt, and a ≡ d2r/dt2 are all measured
internally with respect to the accelerating frame. In contrast, the quantities R and ω are prop-
erties of the accelerating frame as a whole. Someone living in the frame would need to be told
what R and ω are.

The whole point of all this is that if you are in an accelerating frame, and if you add up all
the terms on the right-hand side of Eq. (12.1) to obtain the total force (real plus fictitious), then
you can divide by m to obtain the acceleration a, just as you would do with F = ma in an inertial
frame.

1The angular velocity vector ω is defined to be the vector whose magnitude equals the angular speed ω and whose
direction is along the axis of rotation, with the orientation determined by the right-hand rule: if you curl your fingers in
the direction of the rotation, your thumb will point in the direction of ω.

314
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The various fictitious forces

Let’s look at each of the four fictitious forces in turn.

• Ftranslational = −md2R/dt2

This fictitious force is intuitive. If you are standing on a train that is accelerating rightward
with acceleration dR2/dt2 (see Fig. 12.1), then you feel like you are getting flung leftward Ftrans = -md 2R/dt2

d 2R/dt2

Figure 12.1

(consistent with the minus sign in the definition of the translational force). If you don’t
brace yourself, you will indeed move leftward with respect to the train. Of course, from
the perspective of someone on the ground, if the floor of the train is frictionless then you
will simply remain at rest while the train accelerates rightward. The magnitude of the
translational force can be written more concisely as

Ftranslational = maframe, (12.2)

where aframe ≡ d2R/dt2 is the acceleration of the origin of the accelerating frame (which
is the acceleration of all points in the frame in the case of a non-rotating object like a train).

• Fcentrifugal = −mω × (ω × r)

This fictitious force is also intuitive. Consider the case of the rotating carousel in Fig. 12.2, m rr

ω

ωωωω

Fcent =

- ( )

(top view)

Figure 12.2

where the counterclockwise nature of ω implies that the ω vector points out of the page.
At the location marked by the dot, ω × r points upward in the plane of the page, with
magnitude ωr . Hence ω × (ω × r) points leftward with magnitude ω2r , which means that
Fcentrifugal points rightward, due to the minus sign in the definition. In other words, the
centrifugal force points radially outward with magnitude

Fcentrifugal = mω2r. (12.3)

The outward direction makes sense; you feel like you are getting flung outward. And the
magnitude also makes sense; see Problem 12.2.

There is rarely any need to use the full definition of Fcentrifugal with the two cross products.
The mω2r form is usually quite sufficient. And indeed, it is always sufficient, even in 3-D
cases (such as the rotating earth), if r is taken to be the distance from the axis of rotation.2
The centrifugal force always points away from the axis.

• FCoriolis = −2mω × v

This fictitious force is less intuitive, because it involves the velocity v in the accelerating
frame. Rounding a corner in a car (in which the centrifugal force can be quite appreciable)
is a common experience, whereas moving appreciably with respect to the car (so that v
and the Coriolis force are appreciable) isn’t so common. However, if you happen to have
access to a carousel and spend some time walking around on it at a decent clip, the Coriolis
force will become more intuitive.

In the case where v is perpendicular to ω (as it is when walking on a carousel), the mag-
nitude of the Coriolis force is

FCoriolis = 2mωv. (12.4)

The direction is determined by the right-hand rule in the cross product ω × v; the result
will always be perpendicular to v. Depending on the direction of rotation of the carousel
(that is, whether ω points vertically upward or downward), the force always points to your
right, no matter which way you walk; or it always points to your left, no matter which way
you walk. See Fig. 12.3 for the case where ω points out of the page and Fcor always points

2m v

ω

ωωFcor 

v
Fcor

v

v

Fcor

Fcor

= -

(top view)

Figure 12.3

to your right.

2In the 3-D case, the r vector from a given origin to a particular point may have a component along the axis of
rotation. This component is irrelevant in the centrifugal force; it is correctly eliminated when taking the cross product
ω × r.
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• Fazimuthal = −m(dω/dt) × r

Although this force looks a little complicated since it involves dω/dt, it is actually fairly
intuitive, at least in a common special case. The vector ω can change in two basic ways. It
can change because its length changes (that is, the speed of rotation changes), or because
its direction changes (that is, the axis of rotation changes), or both. The latter of these
cases gets a bit complicated, so let’s deal only with the former (which is more common
anyway), where the rotation simply either speeds up or slows down. In this case, this
azimuthal force is quite intuitive. It’s really no different from the translational force. If
you are standing on a carousel and the rate of rotation increases, then you feel like you
are getting flung backwards tangentially. If you’re enclosed in a box and can’t see outside,
then (ignoring the centrifugal force) it’s just like you’re on a train that accelerates in the
tangential direction; you get flung backwards in the accelerating frame. The magnitude of
the azimuthal force is

Ftangential = mω̇r = mθ̈r = matangential, (12.5)

in agreement with the form of the translational force.

A frequent error involving fictitious forces is to mix up which frame you’re solving a problem
in, and to solve it partially in one frame (say, a rotating frame where a centrifugal force exists) and
partially in another (say, an inertial frame where a centrifugal force doesn’t exist). So be careful
to pick one frame and stay there. If you want to solve the problem again by picking another
frame and staying in that one, then by all means do so. But keep the calculations separate.

Remember that fictitious forces have nothing whatsoever to do with inertial frames. Equiv-
alently, they are all zero in any inertial frame. So if you ever find yourself using the word
“centrifugal” when solving a problem in a nonrotating frame, you know that something is amiss.

12.2 Multiple-choice questions

12.1. It is possible to experience “zero gravity” on board an airplane if the plane travels up and
down with the appropriate v(t) along a path that looks roughly like the one shown below.
Which region of the path causes the passengers to experience a feeling of “weightless-
ness”?

(a) A: where the path is approximately a straight line with negative slope

(b) B: the bottom part of the dips

(c) C: where the path is approximately a straight line with positive slope

(d) D: the top part of the bumps

(e) E: the entire path

(side view)

A

B

C

D

E
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12.2. A pendulum hangs from the ceiling of an elevator. Which of the following scenarios yields
the largest frequency of oscillations?

(a) The elevator accelerates upward at 5 m/s2.

(b) The elevator accelerates downward at 5 m/s2.

(c) The elevator moves upward at constant speed 5 m/s.

(d) The elevator moves downward at constant speed 5 m/s.

12.3. You are riding on a subway train and having trouble standing because the train is bouncing
around. If x is the position of the train, then a nonzero value of which of the following
quantities is the most relevant to your difficulty in standing? (We’ll deal with just one
dimension here, although it’s often the train’s sideways motion that makes it difficult to
stand.)

(a) x (b) ẋ (c) ẍ (d)
...
x

12.4. You stand on a scale at the equator and record the reading. If the earth then hypothetically
stopped spinning but (doubly hypothetically) kept its same shape, the reading on the scale
would

(a) increase (b) decrease (c) remain the same

12.5. You are holding a two-minute hourglass that happens to have one minute of sand in each
half. You would like to move all of the sand from one half to the other in less than one
minute. Which fictitious force can you most easily use to your advantage?

(a) translational

(b) centrifugal

(c) Coriolis

(d) azimuthal

(e) There is no possible way to move all of the sand from one half to the other in less
than one minute.

12.6. A race car is driving around a circular track. Consider the following statement: “F = ma
tells us that the centrifugal force of mω2r causes the centripetal acceleration of ω2r .” This
statement is true in

(a) the ground frame

(b) the car frame

(c) both frames

(d) neither frame

12.7. A race car is driving around a circular track. Fill in the blanks: In the ground frame the
force(s) cause(s) an acceleration equal to , whereas in the car frame

the force(s) cause(s) an acceleration equal to .

(a) friction and centrifugal, ω2r , friction and centrifugal, 0

(b) friction and centrifugal, ω2r , centrifugal, ω2r

(c) friction, ω2r , friction and centrifugal, 0

(d) friction, 0, friction and centrifugal, ω2r

(e) friction, ω2r , centrifugal, 0

12.8. A mass on the end of a string is given the proper initial velocity so that it swings around in
a horizontal circle. Which of the following diagrams correctly indicates the forces acting
on the mass in the reference frame rotating along with the pendulum? (The forces are not
drawn to scale.)
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(a)

(d) (e)

(b) (c)

12.9. You drive with constant speed along a road that begins straight and then becomes part of
a circle, as shown in Fig. 12.4. When you enter the circular part,

(top view)

Figure 12.4

(a) you don’t feel anything different as time goes on

(b) you initially don’t feel anything different, but then you gradually feel like you are
getting pulled more and more toward the right side of the car

(c) you abruptly feel like you are getting pulled, by a constant amount, toward the right
side of the car

(d) you abruptly feel like you are getting pulled, by an amount that increases with time,
toward the right side of the car

12.10. A carousel sits on the bed of a truck. The truck accelerates to the right with acceleration
a, and the carousel rotates with constant angular speed ω, as shown below. An object is
at rest with respect to the carousel at one of the points shown. Assuming that a and ω are
related in a well-chosen way, at which of the five points can the sum of the fictitious forces
(in the frame of the carousel) on the object be zero?

a
ω

truck

a

e b

c

d

(top view)

12.11. A futuristic space station might take the form of a large cylinder that rotates around its
axis. In the rotating frame, the centrifugal force at locations on the inner surface of the
cylinder will feel like an artificial gravity force. If the cylinder has a radius of 50 m, what
should the period of revolution be if the goal is to mimic earth’s gravity, g ≈ 10 m/s2?

(a) 0.07 s (b) 2.2 s (c) 5 s (d) 14 s (e) 31 s
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12.12. A person walks inward along a radial line painted on a rotating carousel. In the rotating
frame, the Coriolis force points in the

(a) inward radial direction

(b) outward radial direction

(c) forward tangential direction

(d) backward tangential direction

(e) There is no Coriolis force.

12.13. A skater spins around with her arms outstretched. She then draws her arms in, which
causes her angular speed to increase. At a given instant, her rotating frame coincides with
a frame S rotating with constant speed. In frame S, which fictitious force produces the
torque that causes her to angularly accelerate out of S?

(a) translational (b) centrifugal (c) Coriolis (d) azimuthal

12.14. You are walking around in an arbitrary manner on a large rotating platform. At a given
instant, under which of the following conditions is the Coriolis force on you much smaller
than the centrifugal force (in magnitude)?

(a) The angular velocity of the platform is small.

(b) You are at a small radius on the platform.

(c) The radial component of your velocity (with respect to the platform) is small.

(d) The tangential component of your velocity (with respect to the platform) is small.

(e) Your speed with respect to the platform is small compared with the speed of the
platform (at your location) with respect to the inertial frame of the ground.

12.3 Problems
12.1. Only one force

For each of the four fictitious forces (translational, centrifugal, Coriolis, azimuthal) give a
scenario in which at a given instant, only that one fictitious force is nonzero.

12.2. Standing on a carousel

A person stands at rest with respect to a carousel, a distance r from the center. The carousel
rotates with angular speed ω. Write down the horizontal F = ma equations in both the
ground frame and the carousel frame, and compare the two equations.

12.3. Circular pendulum

Consider a “circular pendulum” with mass m and length ℓ, as shown in Fig. 12.5. The mass

θ

l

m

Figure 12.5

swings around in a horizontal circle with the (massless) string always making an angle θ
with the vertical. Find mass’s angular speed ω by drawing the free-body diagram for the
mass and writing down the F = ma equations in the vertical and horizontal directions. Do
this in (a) the lab frame, and (b) the rotating frame of the pendulum.

12.4. Circling stick

A uniform stick with mass m and length ℓ is attached by a pivot to a ceiling. Initial
conditions have been set up so that the stick rotates around the vertical axis, making a
constant angle θ with respect to the vertical, as shown in Fig. 12.6. Find the angular speed

m

ω

l

θ

Figure 12.6
ω by considering the setup in the reference frame that rotates along with the stick (at
frequency ω) around the vertical axis.
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12.5. Swirling down a drain

Is the swirling of water as it goes down a drain caused by the Coriolis force arising from
the earth’s rotation? Said in another way, does the water swirl in different directions in the
northern and southern hemispheres? A rough order-of-magnitude calculation should give
you the answer.

12.6. Walking radially on a carousel

(a) A radial line is painted on a carousel that rotates with constant angular frequency
ω. If you walk inward along this radial line with constant speed v, a tangential
friction force must act on you at your feet (in addition to a radial friction force).
By considering which fictitious force this tangential friction force opposes, find the
value of the friction force.

(b) Calculate the rate of change of your angular momentum, as measured with respect
to the ground frame. Show that this dL/dt is exactly accounted for by the torque due
to the friction force you found in part (a).

12.7. Walking tangentially on a carousel

A carousel rotates counterclockwise with constant angular frequency ω with respect to
the ground. A person runs clockwise in a circle of radius r (centered at the center of
the carousel) with speed ωr with respect to the ground; see Fig. 12.7. (So the person’s

ω

v = rω

r

Figure 12.7

speed with respect to the carousel is 2ωr .) Find the required friction force by drawing the
free-body diagram (for the horizontal forces) for the person and writing down the radial
F = ma statement. Do this in (a) the ground frame, and (b) the carousel frame.

12.8. Bead on a rod

Here is a problem that is much easier to solve in a rotating frame than in the lab frame:
A frictionless rod is pivoted at one end and rotates around in a horizontal plane with a
constant angular frequency ω. A bead on the rod starts out at rest with respect to the rod,
at a distance r0 from the pivot.

(a) At a general later time, draw the free-body diagram on the bead, in the rotating frame
of the rod.

(b) What is r (t)? Hint: Write down the radial F = ma equation, and then guess an
exponential solution of the form r (t) = Aeαt . You can solve for α and then apply
the initial conditions.

(c) What is the horizontal normal force from the rod on the bead, as a function of time?

12.4 Multiple-choice answers

12.1. d By “weightlessless” we mean that the total force (both real and fictitious) on you in the
accelerating reference frame of the plane is zero, just as it would be if you were floating in
deep space. The gravitational force always points downward, so if the total force on you
is to be zero in the frame of the plane, then we need a fictitious force pointing upward.
This force is the translational force. It points upward with magnitude mg if the plane
accelerates downward with acceleration g, due to the minus sign in Ftrans = −md2R/dt2.
Choice D is the only part of the path for which it is possible for the acceleration to point
exactly downward. (In A and C, any nonzero acceleration will point along the diagonal
straight line. And in B, the acceleration will necessarily have an upward v2/R component
at the bottom of the dip.)

Remark: We can also answer this question by working in the inertial reference frame of the ground
and not mentioning anything about fictitious forces. Imagine shooting a projectile through the air,
and imagine enclosing the projectile in a box and moving the box along with the projectile, so that



12.4. MULTIPLE-CHOICE ANSWERS 321

the projectile always stays in the middle of the box (and hence doesn’t touch it). Due to air resistance,
it will take some effort to move the box along the idealized parabolic trajectory with an acceleration
of exactly g downward. But inside the box, the projectile won’t feel any air resistance, so it will
take the idealized parabolic trajectory. This is just the scenario we want: You are the projectile, and
the plane is the box. You will float freely inside the plane, with no need for any normal force to
keep you in the plane. This is exactly what it would feel like if you were floating in the middle of a
(non-accelerating) box in deep space.

12.2. a Since the elevator is accelerating upward in choice (a), there is a translational fictitious
force directed downward. This gets added to the downward gravitational force mg, making
the total downward force larger. The pendulum therefore effectively lives in a world where
geff = g + 5 m/s2 ≈ 15 m/s2. Since the pendulum’s frequency is proportional to

√
geff/ℓ

by dimensional analysis, and since geff is largest for choice (a), this choice has the largest
frequency.

Remarks: Choices (c) and (d) have the same frequency as in the case of a stationary elevator. The
constant speed doesn’t change the frequency; only the acceleration matters. Choice (b) has the
smallest frequency among the given options. In the special case where the elevator accelerates
downward at g ≈ 10 m/s2, the frequency is zero. This makes sense because the elevator is in
freefall, so the pendulum just floats at rest (if it was initially at rest) with respect to the elevator.
If the elevator accelerates downward faster than g, then the pendulum will experience a net force
upward in the accelerating frame, so the pendulum string will go limp as the mass “falls” upward
and hits the ceiling.

12.3. d The position x certainly doesn’t matter; the train could be in New York or it could
be in Boston, and the ride would feel the same (local idiosyncracies aside). Nor does
the velocity ẋ matter; if you are enclosed in a windowless train, then ẋ can take on any
constant value, and you will never be able to tell what that value is.

In contrast, the acceleration ẍ is noticeable. You will have to brace yourself, or perhaps
lean, to avoid falling over. A constant ẍ means that due to the translational fictitious force,
you effectively live in a world in which gravity points downward at an angle; we encoun-
tered this earlier in Multiple-Choice Question 4.6. (This is all consistent with Einstein’s
“principle of equivalence” in General Relativity, which states that locally you can’t tell the
difference between acceleration and gravity.) However, if ẍ is constant then this effective
gravitational force is also constant. So as long as you initially brace yourself properly, you
can continue doing the same thing as time goes on, and you will have a peaceful ride. In
short, the acceleration ẍ is noticeable, but not annoying (assuming that it isn’t too large).

The third derivative
...
x is what gets you. If

...
x is nonzero, then the effective gravitational

force in your reference frame is changing, so you have to keep changing how you brace
yourself. And if this change is unpredictable (which means that some higher derivatives
are nonzero, so technically those derivatives are the ones that get you), then you will have
trouble standing; imagine suddenly slamming on the brakes. The third derivative

...
x is

called the “jerk,” an appropriate name considering that the train is getting jerked around.

12.4. a In the case of the spinning earth, let’s look at things in the rotating frame of the earth.
The forces on you are the inward gravitational, outward centrifugal, and outward normal
from the scale; this normal force is what the scale reads. You aren’t accelerating in the
rotating frame of the earth, because you are standing at rest on the scale. So the total force
on you must be zero. In terms of the magnitudes of the three forces, we therefore have

−Fgrav + Fcent + FN = 0 =⇒ FN = Fgrav − Fcent. (12.6)

We see that the normal force (that is, the reading on the scale) is smaller than the gravi-
tational force. But the gravitational force is what the normal force from the scale equals
in the case where the earth isn’t spinning, because then the Fcent term doesn’t exist in
Eq. (12.6). Putting it all together, we have Fno spin

N = Fgrav > Fspin
N . So the answer is (a).
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Note that our assumption that the earth keeps the same shape (which it actually wouldn’t
do) allows us to say that Fgrav is the same in both scenarios.

Alternatively, we can answer this question by working in a background inertial frame,
without making any reference to fictitious forces. In the case of the spinning earth, you
are accelerating, because you are traveling around in a circle as the earth rotates with
respect to the given inertial frame. The F = ma equation for your circular motion is

Fgrav − FN =
mv2

R
. (12.7)

This tells us that Fgrav is larger than FN (which is the reading on the scale). But Fgrav is
what the scale would read if the earth stopped spinning. So the answer is (a).

Remark: The difference in the readings of the scales in the two scenarios is Fcent = mRω2 (or
mv2/R, which is the same thing). The ratio of this difference to mg is Rω2/g, which you can show
is about 0.3%. This is a small but measurable correction. For more discussion of this, see page 463
in Morin (2008).

12.5. b If you swing your arm around in a circular windmill motion, holding the hourglass
such that it points along the direction of your arm, then in the rotating frame of your arm,
the centrifugal force will push the sand from the inside half to the outside half. (For fast
motion, the centrifugal force dominates the gravitational force.) Try it. It’s easy to cut the
time in half. Just be sure to hold the hourglass tightly, lest there be an additional and less
desirable effect of the centrifugal force!

Remarks: Let’s make a rough estimate of the size of the effect. If you make one revolution of your
arm per second, then ω = 2π s−1. If your arm is a meter long, then ω2r = (2π)2 m/s2 ≈ 40 m/s2 ≈
4g. This means that at the bottom of the circular path, the hourglass feels a centrifugal force of
mω2r = 4mg downward. When this is added to the downward gravitational force, the hourglass
effectively lives in a world where geff = 5g. By similar reasoning, geff = 3g (upward) at the top
of the circular path. These numbers imply that even though we can’t assume that the sand’s flow
rate should be strictly proportional to geff , it is certainly reasonable to expect that the rate should be
significantly larger than in the normal “g” case where the hourglass just sits on a table.

You can also make the sand flow faster by using the translational force. If you accelerate the hour-
glass upward, then the downward translational force makes geff be larger than g. So the sand will
flow faster. However, since you’re holding the hourglass, you can obviously accelerate it upward for
only so long. The overall effect will therefore be small. The important advantage of the centrifugal
force is that because the motion is circular instead of linear, you can continue it indefinitely.

12.6. d Since the word “centrifugal” is involved, we can’t be talking about the ground frame,
because there are no fictitious forces in an inertial frame. So the answer must be (b) or
(d). And similarly, since the acceleration ω2r is involved, we can’t be talking about the
car frame, because there is no acceleration in the car frame (the car is at rest in its frame,
by definition). So the answer must be (a) or (d). The correct answer is therefore (d).

Remark: In short, the given statement mixes apples and oranges. In the ground frame there is no
centrifugal force, but there is a nonzero acceleration; whereas in the car frame there is a centrifugal
force, but there is zero acceleration.

12.7. c This question is similar to the preceding one. In the ground frame the only (horizontal)
force is the friction between the tires and the ground, and the acceleration is v2/r = ω2r .
In the accelerating frame of the car there is also the centrifugal force (in addition to the
friction force; a real force is present in every frame), and the acceleration is zero because
the car is at rest in the car frame.
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12.8. e The forces are tension, gravity, and centrifugal, with the centrifugal force pointing
outward.

Remark: The net force (both horizontal and vertical) must be zero in the rotating frame, because the
mass is at rest in that frame. Choice (e) is the only one for which the forces have any possibility of
adding up to zero. If we drew the forces to scale, then assuming that the tension force stays as it is,
the gravitational force would have to be a hair shorter, so that it balances the vertical component of
the tension. And the centrifugal force would have to be cut roughly in half, so that it balances the
horizontal component of the tension.

12.9. c There is no acceleration on the straight part of the road. Your acceleration on the
circular part takes on the constant value of v2/r . So assuming that you remain at rest
with respect to the car, you feel a horizontal force (perhaps friction from your seat) that
starts at zero and then abruptly jumps to the constant value of mv2/r . Equivalently, in the
reference frame of the car, you suddenly feel a centrifugal force with the constant value
of mω2r = mv2/r pointing outward (rightward). This is balanced by the friction force,
assuming that you remain at rest in the car.

Remark: Note that even though the circular arc joins smoothly (with no kink; the slope is continuous)
with the straight part of the road, the acceleration does indeed have a discontinuity. This is due
to the fact that the acceleration is related to the curvature of the road, which involves the second
derivative of the path, as opposed to the first derivative. And the second derivative in our setup has
a discontinuity. (For another example, imagine joining the negative y axis with the right half of the
parabola y = ax2. The derivative jumps abruptly from zero to 2a.) In actual roads that you drive
on, a sudden jerking motion is avoided by having the curvature change gradually. The desired shape
happens to be a so-called “Cornu spiral.” Entrance and exit ramps on highways take this general
shape.

12.10. b The two fictitious forces are the translational and centrifugal. The translational force
points to the left, because the truck is accelerating to the right. So we need the centrifugal
force to point to the right, if the two forces are to cancel. The centrifugal force always
points radially outward, so we need radially outward to be the same as rightward. This is
the case at point (b).

Remark: What this means physically is that if you are holding onto the carousel as you rotate around,
and if you release your grip when you are at point (b), then you won’t accelerate away from this point
(at least briefly). To see how this works when viewed in the reference frame of the ground, consider
for simplicity (although this assumption isn’t necessary) the case where the truck starts accelerating
from rest (but is accelerating). Then after you release your grip, you travel in a straight line, upward
in the given figure. If the truck weren’t accelerating, a dot painted on the carousel at point (b) would
curve to the left as it rotates around in a circle. But since the truck is accelerating, the whole carousel,
including the dot, accelerates to the right. This keeps the dot from curving left, and it stays right
below you (if a is chosen to be ω2r), at least briefly. In other words, you don’t accelerate away from
the dot.

12.11. d The centrifugal force is ω2r , so we want

ω2r = g =⇒ ω2 =
g

r
=

10 m/s2

50 m
=⇒ ω = 0.45 s−1. (12.8)

The period is then T = 2π/ω = 14 s.

Remark: This result of 14 s is longer (that is, the cylinder is spinning slower) than most people might
guess. (However, the speed of a point on the cylinder is ωr ≈ 22 m/s ≈ 50 mph, which is reasonably
brisk). Even if the radius were only 10 m, the period would be about 6 s, which is still fairly large.
And a radius of 1 m (which is far too small for a space station, of course) would require a period of
2 s. Given that your arm is about a meter long, this last case implies (as you can verify) that if you
want to spin a bucket of water in a vertical circle at roughly constant speed (with your rotating arm
being the radius), and if you want the water to stay inside the bucket even at the top of the circle
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where the bucket is upside down, then the period of the motion should be no more than 2 s, which
again is probably a longer period than you’d think. See Problem 4.19.

12.12. c If the carousel lies in the plane of the page and rotates counterclockwise, then ω points
out of the page, by the right-hand rule. Since v points radially inward, the Coriolis force
Fcor = −2mω × v points in the forward tangential direction, as you can check with the
right-hand rule (don’t forget the minus sign). If the carousel instead rotates clockwise,
then the Coriolis force points in the opposite direction in space, compared with what we
found above (since ω now points into the page). But since the rotation is now opposite
too, the force still points in the forward tangential direction. So the “forward tangential”
result is independent of the direction of rotation.

Remarks: In the carousel frame there is also a radially outward centrifugal force, of course. So the
total fictitious force (Coriolis plus centrifugal) points in a diagonal direction between tangentially
forward and radially outward. The exact angle depends on the ratio of 2mωv to mω2r .

The above “forward tangential” result implies that if you stand on a rotating carousel and aim a ball
at the center and throw it, it will drift away from the target in the forward tangential direction. This
outcome is quite obvious when observed in the inertial reference frame of the ground: When you
throw the ball, it has a nonzero tangential velocity (the same tangential velocity that you have), in
addition to the radial velocity you give it. So it certainly won’t end up at the center. It takes the same
path taken by a ball thrown diagonally (radially inward and tangentially forward) by a stationary
observer on the ground.

12.13. c For the radially inward motion of the arms, you can quickly check that the Coriolis
force, −2mω × v, points in the forward tangential direction (as in the preceding question).
This force produces the desired torque.

Remark: The correct answer (c) can also be obtained by eliminating the other choices. The transla-
tional force is zero because the frame S is only rotating, the azimuthal force is zero because S has
constant ω, and the centrifugal force points radially so it can’t provide a torque.

If you want to work instead with the angularly accelerating frame S′ of the skater, then the net
torque must be zero (because the skater remains in S′, by definition). This zero net torque comes
about because the Coriolis torque is exactly canceled by the azimuthal torque. As an exercise, you
can verify that this works out quantitatively for a point mass by setting the derivative of the (constant)
angular momentum mr2ω (as measured in the lab frame) equal to zero.

12.14. e The Coriolis force has magnitude 2mωv, and the centrifugal force has magnitude
mω2r . The former is much smaller than the latter if

2mωv ≪ mω2r =⇒ v ≪ ωr
2
. (12.9)

But ωr is simply the (tangential) speed of the platform at your location, due to the plat-
form’s rotation. This factor of 2 isn’t critical since we’re just making a rough statement.
So the answer is (e).

Remark: Note that none of the other answers can possibly be correct, because they all involve saying
that a dimensionful quantity is large or small. Such a statement is meaningless. Is a meter large or
small? It is large on an atomic scale, but small on a planetary scale. It makes sense only to say either
(1) that a dimensionless number is large or small, where it is understood that we mean in comparison
with the number 1, or (2) that one dimensionful quantity is large or small compared with another
quantity with the same dimensions. This is the type of statement in choice (e). These two types of
statements are actually equivalent, because in (2) we’re really just saying that the ratio of the two
quantities is large or small compared with 1.
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12.5 Problem solutions

12.1. Only one force

Translational: A linearly accelerating frame has no ω or dω/dt, so only the translational
force is nonzero. For the remaining three cases, we’ll assume that the frame has no overall
linear acceleration, so that the translational force is always zero.

Centrifugal: If you stand at rest at a nonzero r on a carousel rotating with constant ω,
then your velocity v is zero (which makes the Coriolis force zero), and dω/dt is zero
(which makes the azimuthal force zero).

Coriolis: If you walk with nonzero velocity v through the origin of a rotating carousel,
then since r = 0, both the centrifugal and azimuthal forces are zero.

Azimuthal: If you stand at rest at a nonzero r on a carousel that has nonzero angular
acceleration (so dω/dt , 0) but instantaneously has zero angular velocity, then your
velocity v is zero (which makes the Coriolis force zero), and ω is zero (which makes the
centrifugal force zero).

Remark: Which of the above scenarios can go on for an extended period of time? The translational
and centrifugal scenarios certainly can, because you’re simply standing at rest in a frame that has
constant d2R/dt2 or ω. But the Coriolis scenario works only at one instant (when you pass through
the origin where r = 0), because v ≡ dr/dt must be nonzero, so a split second later you will have
a nonzero r, which makes the centrifugal force nonzero. Similarly, the azimuthal scenario works
only at one instant (when ω = 0), because dω/dt must be nonzero, so a split second later ω will be
nonzero, which makes the centrifugal force nonzero.

12.2. Standing on a carousel

In the ground frame, the only horizontal force on the person is the friction force at her
feet. The person is traveling in a circle, so her acceleration is the standard v2/r inward
centripetal acceleration. The F = ma equation in the ground frame is therefore

Ffriction =
mv2

r
. (12.10)

The friction force points radially inward.

In the rotating carousel frame, the centrifugal force has magnitude mrω2 from Eq. (12.3),
and it points radially outward. The person is at rest, so there is zero acceleration. The
friction force is the same as it is in the ground frame, so the F = ma equation in the
carousel frame is (with radially inward taken to be positive)

Ffriction − Fcent = 0 =⇒ Ffriction − mrω2 = 0. (12.11)

This is the same equation as in Eq. (12.10), because the mv2/r term there can be written
as mrω2, since v = ωr . The only difference in the two F = ma equations is that one term
has been moved from the right-hand side to the left-hand side.

Remark: Although the two F = ma equations differ trivially in a mathematical sense, they differ
significantly in a physical sense: In the ground frame, the friction force produces the centripetal
acceleration. In the rotating frame, the friction force balances the centrifugal force, in order to
produce zero acceleration. To repeat: in the ground frame there is no fictitious force but a nonzero
acceleration, whereas in the carousel frame there is a fictitious force but no acceleration.
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12.3. Circular pendulum

(a) The free-body diagram in the lab frame is shown in Fig. 12.8(a). The mass moves in
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θ
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mrω2

T
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(b)

a

Figure 12.8

a circle in this frame, and there are two forces acting on it: tension and gravity. The
two F = ma equations are (taking leftward to be positive for the x equation)

Fx = max =⇒ T sin θ =
mv2

r
= mrω2 = m(ℓ sin θ)ω2,

Fy = may =⇒ T cos θ − mg = 0 =⇒ T =
mg

cos θ
, (12.12)

where we have used the fact that the radius of the circular motion is ℓ sin θ. Plugging
the T from the Fy equation into the Fx equation gives( mg

cos θ

)
sin θ = m(ℓ sin θ)ω2 =⇒ ω =

√
g

ℓ cos θ
. (12.13)

(b) The free-body diagram in the rotating frame is shown in Fig. 12.8(b). The mass is at
rest in this frame, so there is no acceleration. In addition to the tension and gravity
forces, we now have the centrifugal force. The sum of the forces must be zero, so the
two F = ma equations are (again taking leftward to be positive for the x equation,
although this doesn’t matter, since we’re setting the force equal to zero)

Fx = max =⇒ T sin θ − mrω2 = 0 =⇒ T sin θ = m(ℓ sin θ)ω2,

Fy = may =⇒ T cos θ − mg = 0 =⇒ T =
mg

cos θ
. (12.14)

These are exactly the same equations as in Eq. (12.12), so we obtain the same result
for ω. The only difference in the initial statements of the Fx = max equations in the
two frames is that the acceleration term in the lab frame turns into a fictitious force
term in the accelerating frame and appears on the other side of the equation.

12.4. Circling stick

In the rotating frame of the stick, the stick is at rest, so this problem reduces to a statics
problem. We could try to solve it by using

∑
F = 0, but things would get complicated

because we would have to figure out the nontrivial force applied by the pivot. (A common
error is to assume that this force points along the stick; it doesn’t.) But if we use

∑
τ = 0,

with the pivot chosen as the origin, then we don’t need to know the force from the pivot.

In order for the net torque around the pivot to vanish, the torque from gravity must be
canceled by the torque from the centrifugal force. Gravity effectively acts at the CM, which
means that it has a lever arm of (ℓ/2) sin θ; see Fig. 12.9. So the clockwise gravitational

z

mg

θ

(dm)ω2r

Figure 12.9

torque is

τgrav = mg
ℓ

2
sin θ. (12.15)

To find the torque from the centrifugal force, consider a small piece of the stick with mass
dm, a distance z from the pivot, as shown. This piece is a distance r = z sin θ from the axis
of rotation. The mass dm can be written as λ dz, where λ = m/ℓ is the linear mass density.
So the centrifugal force on the piece is (dm)ω2r = (λ dz)ω2(z sin θ). The associated lever
arm is z cos θ, so the counterclockwise torque due to the centrifugal force on the piece is

dτcent = (λ dz)ω2(z sin θ) · (z cos θ) = (λω2 sin θ cos θ)z2 dz. (12.16)

Integrating this over the whole stick gives the total counterclockwise centrifugal torque as

τcent = (λω2 sin θ cos θ)
∫ ℓ

0
z2 dz = λω2 sin θ cos θ

ℓ3

3
= mω2 sin θ cos θ

ℓ2

3
, (12.17)
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where we have used λℓ = m. Equating τcent with τgrav gives

mω2 sin θ cos θ
ℓ2

3
= mg

ℓ

2
sin θ =⇒ ω =

√
3g

2ℓ cos θ
. (12.18)

Limits: If θ → 90◦, then ω → ∞, which makes sense. If θ ≈ 0, then ω ≈
√

3g/2ℓ. This isn’t
obvious, although we do know from considerations of units that the answer must be proportional to√
g/ℓ. But it takes a calculation to show that the constant of proportionality is

√
3/2.

Remarks: The frequency in Eq. (12.18) is larger by a factor of
√

3/2 ≈ 1.22 than the frequency we
obtained in Eq. (12.13) in Problem 12.3 for the case where the stick is replaced by a massless string
and a point mass. It makes sense that the present frequency is larger, because we can consider the
stick to be built up from many point masses. If all of these point masses were connected to the pivot
by massless strings, then from Problem 12.3 we know that the masses closer to the pivot would have
larger ω’s, because ω ∝ 1/

√
ℓ. However, the actual stick is a rigid object, so all of the masses are

constrained to lie on a line and rotate with the same ω. The end effect is that the higher masses
drag the lower ones along a little faster than they would have otherwise moved, and the frequency
ends up being

√
3/2 larger than the frequency with which a point mass at the end of the stick would

naturally move.

If you want to solve this rotating-stick problem by working in the lab frame, you will need to use
τ = dL/dt. And furthermore you will need to take into account the full vector nature of the angular
momentum. This makes things more involved than the planar problems we dealt with in Chapter 8.
For a discussion of this more general class of angular momentum problems, see Chapter 9 in Morin
(2008), and Section 9.4.2 in particular.

12.5. Swirling down a drain

No, the swirling isn’t caused by the Coriolis force. The Coriolis effect is tiny and is washed
out by the motion arising from the inevitable initial speeds of different parts of the water.
To see this, let’s figure out the size of the Coriolis effect. We’re just trying to get a rough
idea, so we’ll drop all factors of order 1.

Ignoring a trig factor of order 1 that depends on the location on the earth, the Coriolis
force is 2mωv. So the acceleration is a = 2ωv. The Coriolis force is perpendicular to
the velocity, so the force will cause a sideways deflection. A typical sideways deflection
distance is

d ≈ (1/2)at2 ≈ ωvt2 = ω(vt)t ≈ ω(ℓ)t, (12.19)

where ℓ is the distance traveled. You can show that the earth’s angular speed ω is about
7.3 · 10−5 s−1. We’ll take ℓ ≈ 0.1 m and t ≈ 10 s, which seem like reasonable values; a
water molecule might take 10 seconds to approach the drain in a sink that is 20 cm wide.
Eq. (12.19) then gives a deflection distance on the order of 10−4 m = 0.1 mm, which is far
smaller than the size of the drain. Even the tiniest initial velocities (caused by convection
currents, etc.) will wash out this effect. A minuscule sideways speed of 10−5 m/s will give
the same deflection of 10−4 m over the time of 10 s.

The swirling that you see must therefore be caused by the initial velocities, combined with
conservation of angular momentum. If you manage to get the initial velocities very close
to zero, then you might see a tiny Coriolis vortex. But this is definitely not responsible for
the swirling you see day to day.

Remarks: The Coriolis effect does cause hurricanes to swirl because (1) the speeds involved are
larger, so the Coriolis acceleration is larger, and (2) the time scale is longer (on the order of a day), so
there is more time for the force to act. In the northern hemisphere, the Coriolis force causes an initial
rightward deflection of a stream of air when viewed from above (as you can check with −2mω × v),
which causes a low pressure system on the left side of the stream, which the stream then ends up
circling around. The direction of the hurricane’s spinning is therefore opposite to what you might
naively expect from considering the orientation of the Coriolis deflection. That is, hurricanes rotate
counterclockwise (when viewed from above) in the northern hemisphere, whereas the Coriolis force
causes objects to rotate in clockwise arcs of circles. A hurricane as a whole undergoes the standard



328 CHAPTER 12. FICTITIOUS FORCES

rightward deflection in the northern hemisphere. So it generally bends through a west-then-north-
then-east path.

Another example of an observable effect of the Coriolis force at the surface of the earth is Foucault’s
pendulum: the plane of a swinging pendulum will gradually precess as time goes on. The exact
rate of precession depends on the latitude position on the earth, but at the poles the plane of the
pendulum makes one complete revolution per day. This is clear if you view things from an outside
inertial frame looking down on the earth; if a swinging pendulum is suspended over the north pole,
then the earth rotates beneath the pendulum while the plane of the pendulum remains fixed. An earth
observer therefore sees the plane of the pendulum rotate in the opposite direction.

If you want to explain this phenomenon by working in the earth’s rotating frame, the relevant force
is the Coriolis force. As mentioned in the paragraph following Eq. (12.4), the Coriolis force always
points in the same direction (which is rightward at the north pole) relative to the velocity. During
each half oscillation from apex to apex, the pendulum gets deflected slightly to the right. The overall
effect is shown (in exaggerated form) in Fig. 12.10.3 If the pendulum starts at A, it will eventuallyA

B

(top view)

Figure 12.10

end up at B, and so on. (It does not simply run back and forth along a single slightly bent curve;
that would involve getting deflected to the left, relative to the velocity, half the time.) The effect is
too small to observe during each half oscillation, but it adds up over the course of a day. We see
that there is a gradual clockwise (when viewed from above) precession of the pendulum’s plane,
when viewed in the earth’s frame. This is consistent with the fact that in the external inertial frame,
the earth rotates counterclockwise beneath the pendulum. Foucault’s pendulum provides a low-tech
way of demonstrating that the earth does indeed rotate.

12.6. Walking radially on a carousel

(a) We’ll take the carousel to be spinning counterclockwise, in which case the angular
velocity vector ω points out of the page, by the right-hand rule. The forces in the
rotating frame are shown in Fig. 12.11. The net force on you must be zero, because

v

FcentFfric

Ffric

Fcor

ω

Figure 12.11

there is no acceleration in the rotating frame (your motion is in a straight line at
constant speed). The centrifugal force points radially outward. This necessitates an
equal and opposite radially inward friction force, but we are concerned only with the
tangential force in this problem.

The Coriolis force, −2mω × v, points in the positive tangential direction, as you
can check with the right-hand rule. This necessitates an equal and opposite friction
force pointing in the negative tangential direction. So the tangential friction force
has magnitude Ff = | − 2mω × v| = 2mωv.

(b) Your angular momentum in the ground frame is L = mvr = m(ωr)r = mr2ω. Its
rate of change is therefore (using ṙ = −v since your motion is radially inward, and
using the fact that ω is assumed to be constant)

dL
dt
=

d(mr2ω)
dt

= 2mrṙω = 2mr (−v)ω = (−2mωv)r = (−Ff )r. (12.20)

And −Ffr is the torque due to the tangential friction force we found in part (a). The
minus sign is present because the friction force points in the backward tangential
direction, so its effect is to decrease your angular momentum. Intuitively, your radius
is decreasing while ω is held constant, so L must decrease. Formally, τ = r × Ff
points into the page, while positive L was defined to point out of the page, in the
direction of ω. So L is decreasing.

3This figure shows the path of a pendulum released from rest relative to the earth. If the pendulum is instead released
from rest relative to the inertial frame (so that the motion is exactly planar in the inertial frame, as we discussed above),
then the pendulum will have a tiny initial tangential velocity in the earth’s frame, because the earth is rotating beneath
the pendulum in the inertial frame. This means that the path in Fig. 12.10 will now have very thin loops at the apexes of
the motion instead of the cusps shown. But the overall precession will be the same.
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12.7. Walking tangentially on a carousel

(a) The free-body diagram in the lab frame is shown in Fig. 12.12(a). The only horizon-
ω
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Ffric

v' = 2rω

Ffric Fcent

Fcor

(a)

(b)

Figure 12.12

tal force is the friction force, so the radial F = ma equation for the circular motion
with speed ωr is

F = ma =⇒ Ff =
mv2

r
=⇒ Ff = mrω2. (12.21)

The rotation of the carousel is irrelevant in this calculation.

(b) The free-body diagram in the carousel frame is shown in Fig. 12.12(b). We now
have the centrifugal and Coriolis fictitious forces, in addition to the friction force.
Fcent points radially outward with the usual magnitude of mrω2. Fcor points radially
inward, as you can check with the right-hand rule, because ω points out of the page
and v points downward at the point shown. The person’s speed in the rotating frame
is ωr +ωr = 2ωr , so Fcor has magnitude Fcor = 2mωv = 2mω(2ωr) = 4mrω2. The
radial F = ma equation for the circular motion with speed 2ωr is therefore

Fcor + Ff − Fcent =
mv2

r
=⇒ 4mrω2 + Ff − mrω2 =

m(2ωr)2

r
=⇒ Ff = mrω2. (12.22)

This agrees with the result in part (a), as it must. The friction force has the same
value in any frame.

12.8. Bead on a rod

(a) Fig. 12.13 shows the forces acting on the bead in the rotating frame. The centrifugal
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FN

pivot

Figure 12.13

force, mrω2, is always present. The Coriolis force, 2mωv, will be nonzero when
v , 0 (in other words, at all times after the initial instant). The bead will be moving
radially outward, so you can check with the right-hand rule that the Coriolis force
points in the backward tangential direction. There must also be a normal force to
balance the Coriolis force, because there is no acceleration in the tangential direction
in the frame of the rod, since the bead is constrained to be on the rod. There are also
gravitational and normal forces perpendicular to the plane of the page, but those
aren’t important in this problem.

(b) The radial F = ma equation is

Fcent = ma =⇒ mrω2 = mr̈ . (12.23)

If we guess a solution of the form r (t) = Aeαt , we obtain

m
(
Aeαt

)
ω2 = m

(
α2 Aeαt

)
=⇒ ω2 = α2 =⇒ α = ±ω. (12.24)

We have therefore found two solutions. The most general solution is an arbitrary
linear combination of these:

r (t) = Aeωt + Be−ωt , (12.25)

where A and B are determined by the initial conditions, which are r (0) = r0 and
ṙ (0) = 0. The r (0) = r0 condition yields

Ae0 + Be0 = r0 =⇒ A + B = r0. (12.26)

Taking the derivative of r gives ṙ = ωAeωt − ωBe−ωt , so the ṙ (0) = 0 condition
yields

ωAe0 − ωBe0 = 0 =⇒ A = B. (12.27)
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Eq. (12.26) then gives A = B = r0/2. So our solution for r (t) is

r (t) =
r0

2

(
eωt + e−ωt

)
. (12.28)

Remark: As a double check, this r (t) does indeed satisfy r (0) = r0 and ṙ (0) = 0. For large t,
the e−ωt term is negligible, so we have r (t) ≈ (r0/2)eωt . That is, r (t) grows exponentially.
For small (but nonzero) t, we can use the Taylor series ex ≈ 1 + x + x2/2 to write

r (t) ≈ r0
2

((
1 + ωt +

ω2t2

2

)
+

(
1 − ωt +

ω2t2

2

))
= r0 +

1
2

r0ω
2t2. (12.29)

This makes sense because right at the start, the centrifugal force points outward with magni-
tude mr0ω

2. The radial acceleration (which is essentially constant over a small time interval t)
is therefore a = r0ω

2. So the distance traveled in time t is at2/2 = (r0ω
2)t2/2, in agreement

with Eq. (12.29).

(c) The normal force is equal and opposite to the Coriolis force, which has magnitude
2mωv. Since v ≡ ṙ = (r0/2)ω(eωt − e−ωt ), we have

Fnormal = 2mωv = 2mω · r0ω

2
(eωt − e−ωt ) = mr0ω

2(eωt − e−ωt ). (12.30)

For large t, the e−ωt term is negligible, so the normal force (and the Coriolis force) is
essentially equal to mr0ω

2eωt . This is twice as large as the centrifugal force, mrω2,
because r (t) ≈ (r0/2)eωt for large t.



Chapter 13

Appendices

13.1 Appendix A: Vectors

13.1.1 Basics
Although it is possible to define a vector in a more precise way, the definition that will suffice
for our purposes is that a vector is a mathematical object that has both a magnitude (that is, a
length) and a direction. For example, Fig. 13.1 shows a vector that points upward and rightward

Figure 13.1
with a length of about 3 cm. In general, a vector can point in an arbitrary direction in 3-D space,
but we’ll deal mainly with 2-D vectors in the plane of the page. Vectors also exist in 1-D, but
in contrast with 2-D and 3-D where a vector can point in an infinite number of directions, a
vector in 1-D can point in only two directions – to the right or to the left, if we’re dealing with a
horizontal line. So the direction of a 1-D vector can be specified by simply writing a positive or
negative sign.

A vector in any dimension is completely determined by its magnitude and direction. This
means that all of the vectors in Fig. 13.2 are actually the same vector. It doesn’t matter where

Figure 13.2

the tail and the tip of a given vector are, as long as the segment joining them has a given length
and points in a given direction.

We’ll denote vectors with boldface letters, such as r or v, etc. And we’ll denote the magnitude
(length) with an italic latter, such as r or v, etc. The length is also sometimes denoted with
absolute value bars around the vector, so |r| means the same thing as r . The length is a scalar,
that is, just a number (with units).

It is important to distinguish between a vector and its magnitude. The magnitude is only one
piece of the complete information contained in the entire vector (with the other piece being the
direction). The classic example of this distinction is the velocity v of an object versus the speed
v. By “velocity” we mean the complete vector, and by “speed” we mean just the magnitude.
A statement such as “My velocity is 10 m/s” uses incorrect terminology, whereas statements
such as “My speed is 10 m/s” and “My velocity is 10 m/s in the northwest direction” use correct
terminology.

Examples of vectors that come up in this book are: position r, velocity v, acceleration a,
momentum p, force F, angular momentum L, and angular velocity ω. Examples of scalars are:
length ℓ, speed v, energy E, mass m, and angular speed ω.

13.1.2 Cartesian coordinates
If you want to do anything quantitative with vectors, it is usually necessary to use a coordinate
system to describe them. There are many different kinds of coordinate systems you can choose
from, the most common being Cartesian, polar, cylindrical, and spherical. Additionally, you
have the freedom to choose the orientation of your coordinate axes.

The simplest and most common type of coordinate system is a Cartesian one, which in 3-D
space involves the three mutually perpendicular x, y, and z axes. The Cartesian components of

331
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a vector a are written as (ax ,ay ,az ). To understand what this notation means, we can write a in
terms of the basis vectors x̂, ŷ, ẑ. These basis vectors are unit vectors (that is, they have length
1) pointing along the three coordinate axes. In terms of the basis vectors, we have

a = (ax ,ay ,az ) = ax x̂ + ay ŷ + az ẑ. (13.1)

So (ax ,ay ,az ) is just shorthand for ax x̂ + ay ŷ + az ẑ. We’ll discuss the addition of vectors in
Section 13.1.4 below, but in short, the a = ax x̂ + ay ŷ + az ẑ relation says that if you march a
distance ax in the x direction, then ay in the y direction, and then az in the z direction, you will
end up at the tip of the a vector.

The word “component” can be used in two slightly different ways. If you ask someone for
the x component of a vector a, the answer might be ax (which is a number; see Fig. 13.3(a)), or

ax
ax

a a

x

ayay

y y

x x

y

(a) (b)

Figure 13.3

the answer might be ax x̂ (which is a vector; see Fig. 13.3(b)). The difference is just semantics.
Either answer is acceptable, provided that it is used in the appropriate way, depending on whether
it is a number or a vector. For example, if a person says, “A vector is the sum of its components,”
then she is clearly thinking of the components as vectors and making the correct statement that
a = ax x̂ + ay ŷ + az ẑ, as opposed to the incorrect statement that a = ax + ay + az . This latter
equation certainly can’t be correct, because it equates a vector with a nonvector. Additionally,
the magnitude isn’t even correct.

The length of a vector a whose Cartesian coordinates are (ax ,ay ,az ) is

a ≡ |a| =
√

a2
x + a2

y + a2
z . (13.2)

This follows from two applications of the Pythagorean theorem in Fig. 13.4, first with the right
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triangle in the x-y plane, and then with the vertical right triangle extending upward from the x-y
plane to the point (ax ,ay ,az ).

It should be emphasized that a vector has a meaning independent of any coordinate system
(type, choice of origin, orientation of axes). Components are used to describe a vector, but a
vector is what it is, independent of how we choose to describe it. The vector a we drew in
Fig. 13.1 has length 3 cm and points up to the right. But we don’t even need to give these bits of
information to describe it. All we need to do is draw it on the page, as we did in Fig. 13.1. That
arrow is the vector a, period.

However, the fact of the matter is that using components makes it much easier to deal with
vectors. It would be a pain to have to keep drawing vectors whenever you needed to do something
with them, such as adding them (see below). And if your drawing skills are shaky, then you
might not trust the answer you obtain, anyway. Components provide a reliable and rigorous way
of describing vectors. If the task of a given problem is to find a certain vector, then in practice
the most common ways of stating the answer are to give the Cartesian coordinates or to give the
magnitude and direction.

Remark: Here is a somewhat subtle point, concerning the distinction between points and vectors. If some-
one gives you the triplet of numbers (ax ,ay ,az ), is this a point in space, or is it a vector? Well, it could
be either, so you would need to be told which it is. The main difference between a point (ax ,ay ,az ) and a
vector (ax ,ay ,az ) is that whereas a vector doesn’t depend on the choice of origin, a point very much does.
The coordinates of the point (ax ,ay ,az ) are measured with respect to a given origin, so if you don’t know
where that origin is, then you don’t know where the point (ax ,ay ,az ) is. In contrast, the components of
the vector (ax ,ay ,az ) give the position of the head with respect to the tail, so it doesn’t matter where the
origin is. In Fig. 13.4 we actually used (ax ,ay ,az ) to mean both a point and a vector.

Given two points in space, the position of one with respect to the other is a vector, because the relative
position doesn’t depend on the choice of origin. If you are given the coordinates of a particular house, then
you also need to be given the origin that these coordinates are measured with respect to. But if you walk
from one house to another (in which case your displacement will be described by a vector), then you’re
going to take the same walk independent of the location of the point that someone arbitrarily decides to call
the origin.
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13.1.3 Polar coordinates

Consider a point in 2-D space (and yes, we’re talking about a point here, not a vector). We
can use Cartesian coordinates to describe the location of this point relative to a given origin, as
we did above. But we can also use polar coordinates. The polar coordinates of a point are the
distance r from the origin and the angle θ relative to the horizontal axis, as shown in Fig. 13.5.

x = r cos θ

y = r sin θ

x

r

θ

y

Figure 13.5

By looking at the right triangle in the figure, the Cartesian coordinates (x, y) of the point can be
obtained from the polar coordinates (r, θ) by

x = r cos θ and y = r sin θ. (13.3)

Equivalently, the polar coordinates (r, θ) can be obtained from the Cartesian coordinates (x, y)
by

r =
√

x2 + y2 and θ = arctan(y/x). (13.4)

The second expression here doesn’t quite determine θ, due to the tan(θ + π) = tan θ ambiguity.
But the correct angle can be determined by the sign of x (or y); this narrows down the quadrant
the angle is in. In 3-D, the generalization of polar coordinates is spherical coordinates, which
involve an additional angle associated with circling around a sphere (the longitudinal angle on
the earth).

Let’s now look at what form a vector (as opposed to a point) takes when written in polar
coordinates.1 Things aren’t as simple as they are in Cartesian coordinates, because while the
Cartesian basis vectors x̂, ŷ, ẑ don’t depend on position, the polar basis vectors r̂ and θ̂ do. At
a given point, the unit vector r̂ is defined to point in the radial direction, and the unit vector θ̂ is
defined to point in the counterclockwise tangential direction. These directions depend on where
the point is located in the plane, as shown at points P1 and P2 in Fig. 13.6. The polar basis
vectors r̂ and θ̂ are undefined at the origin, because the radial and tangential directions aren’t
uniquely defined there.
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θθ
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Figure 13.6

To be clear, the r̂ vector pointing up and to the right at point P1 in Fig. 13.6 is the same
as a similar vector pointing up and to the right, no matter where we place it in the plane (as in
Fig. 13.2). However, this r̂ vector has nothing to do with what we define to be the r̂ vector at, say,
point P2, where r̂ points up and to the left. Although we use the same symbols r̂ and θ̂ for the

1The rest of this subsection on polar coordinates isn’t important for this book; the r̂ and θ̂ basis vectors don’t appear
anywhere except in this appendix. But it is natural to include the following discussion, given that we’ve introduced polar
coordinates. In more advanced topics in physics, this discussion is highly relevant.
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basis vectors at any point, this doesn’t mean that the basis vectors at different points are actually
the same vectors.

So what does a vector look like in when written in polar coordinates? Consider the vector A
shown above in Fig. 13.6. This vector is the same vector, no matter where we place it in the plane
(as in Fig. 13.2). In Cartesian coordinates, let’s say A is given by (0.7)x̂ + (2.3)ŷ (just a rough
estimate, by comparing A with the unit basis vectors). This expression describes A in Cartesian
coordinates, no matter where we draw A. But in polar coordinates, the description depends on
what basis vectors we use. That is, it depends on where we put A (more precisely, where we put
the tail of A). At point P1, A happens to be (2.1)r̂ + (1.2)θ̂, whereas at point P2, A happens to
be (0.4)r̂ − (2.4)θ̂. These are two different expressions for the same vector. Note that all of the
above expressions for A have the same length (at least up to rounding errors), as they must. The
length happens to be about 2.4.

Polar (or spherical) coordinates are very useful when describing vectors in setups that possess
circular (or spherical) symmetry. For example, the full vector form of the gravitational force on
a mass m due to a mass M located at the origin is

F = −GMm
r2 r̂, (13.5)

as shown in Fig. 13.7. Here we are using the r̂ basis vector at the most reasonable point to pick,

F

x

y

rθθ

M

m

Figure 13.7

which is the location of the mass m. (The only other special point in the plane is the origin,
where M is. But as mentioned above, the polar basis vectors are undefined there.) The above
polar expression for F is much cleaner than the Cartesian expression,

F = − GMm
x2 + y2

*, x√
x2 + y2

x̂ +
y√

x2 + y2
ŷ+- . (13.6)

This is indeed the same force as in Eq. (13.5), because when r̂ is written in terms of Cartesian
coordinates, it equals the vector in parentheses in Eq. (13.6). This is true because this vector has
length 1, and it is proportional to the vector (x, y) which points in the r̂ direction by definition.

The gravitational force F is an example of a vector field. In a vector field, every point in
space has a vector associated with it. Another example of a vector field is wind velocity; every
point is space has associated with it the local velocity of the wind. (In contrast, in a scalar field,
every point has a number (with units) associated it. An example is the temperature.) When
describing a vector field, it is understood that when writing a vector at a given point in terms
of basis vectors, you are using the basis vectors at that point, although this specification isn’t
necessary in Cartesian coordinates because the basis vectors are the same everywhere.

Remark: If someone working with polar coordinates gives you the pair of numbers (ar ,aθ ), what does it
represent? As with Cartesian coordinates, the expression (ar ,aθ ) is ambiguous. It could mean a point in
the plane, as in Fig. 13.5, with ar = r and aθ = θ (in which case you would need to be told where the origin
is). Or it could mean the components of the vector ar r̂ + aθ θ̂ (in which case you would need to be told
what basis vectors r̂ and θ̂ to use). In practice, most people would assume that (ar ,aθ ) represents a point
in the plane. Note that technically the ambiguity is removed if you pay attention to units/dimensions. In the
case where (ar ,aθ ) represents a point in the plane, ar has dimensions of length and aθ is a dimensionless
angle. But in the case where (ar ,aθ ) represents a vector, ar and aθ must have the same dimensions. This
is true because the dimensions of r̂ and θ̂ are the same; they are both dimensionless unit vectors, just as x̂
and ŷ are. In an expression such as xx̂, the units of meters are in the x, not the x̂.

13.1.4 Adding and subtracting vectors

What is the sum of two vectors, for example, the two vectors a and b shown in Fig. 13.8(a)? To
add two vectors, we put them “tail-to-head,” as shown in Fig. 13.8(b). It doesn’t matter which
vector you start with; you can add them in either order and you will obtain the same result, as
shown with the parallelogram in the figure. In other words, vector addition is commutative. In
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the top triangle, the vector from the tail of a to the head of b is the desired sum; you can think
of this as a + b. In the bottom triangle, the vector from the tail of b to the head of a is also the
desired sum; you can think of this as b + a.

a a

a + b

a

a

b b

b

-b

a - b

a - b

(a)

a

b

(d)(b) (c)

Figure 13.8

The tail-to-head procedure makes intuitive sense: If you go for a walk and end up with a
displacement of a, and from there you go for another walk and end up with a displacement of
b (relative to where you began your second walk), then your total displacement is given by the
a + b vector in Fig. 13.8(b).

If you want to subtract two vectors, this operation is the same as adding on the negative of
one of the vectors. That is, a − b = a + (−b). (The negative of a vector is the vector that has
the same magnitude but points in the opposite direction.) If we consider the same vectors a
and b as in Fig. 13.8(a), the difference a − b is shown in Fig. 13.8(c); we have added −b to a.
Equivalently, a − b is the vector from the tip of b to the tip of a (with the tails of the vectors
coinciding), because a − b is the vector that you need to add to b to obtain a. This equality
b + (a − b) = a is shown in Fig. 13.8(d).

If you want to use the method in Fig. 13.8(d) to calculate the difference between two vectors,
you must remember to put the tails of the two vectors at the same point. A common error is to
draw the (incorrect) difference vector as the vector that connects the tips of two given vectors
whose tails don’t coincide. Consider, for example, a particle traveling around a circle at constant
speed. The velocity vectors at two different times are shown in Fig. 13.9; they have the same

v1

v2

Figure 13.9

length but different directions. The difference v2 − v1 between these vectors is not the vector
shown in Fig. 13.10(a), obtained by simply connecting the tips of the vectors as they appear on

v1

v1v2

v2

v2-v1
not v2-v1!

(correct)(incorrect!)

(a) (b)

Figure 13.10

the page in Fig. 13.9. The correct difference, obtained by having the tails of v1 and v2 coincide,
is shown in Fig. 13.10(b). Of course, you can also obtain this difference by adding −v1 to v2, as
you can check.

If you want to multiply a vector by a scalar n (a number), you just need to multiply the
length by n and keep the direction the same. In the special case where n is an integer, this is the
same as lining up n copies of the vector. For example, since 3b = b + b + b, the vector 3b is
shown in Fig. 13.11. If you want to multiply a vector by another vector, there are two possible

b

b

3b

b

Figure 13.11

ways to do this, involving the dot product and the cross product. These are discussed below in
Sections 13.1.6 and 13.1.7.

As mentioned earlier, although it is possible in theory to manipulate vectors by doing nothing
other than drawing them (which has been our strategy thus far in this subsection), it is usually
necessary to make use of coordinates if we want to be quantitative. If we are adding two vectors,
we simply need to add the corresponding Cartesian components. For simplicity let’s work in
2-D, where a vector is described by two Cartesian components (ax ,ay ). In the addition example
in Fig. 13.8(b), let’s say that the two vectors are a = (2,3) and b = (1,−2). Then the sum is

a + b = (2,3) + (1,−2) = (2 + 1, 3 − 2) = (3,1), (13.7)

as shown in Fig. 13.12 (we’ve scaled up the size of the figure, relative to Fig. 13.8). It is clear

a

b

3

x

y

3
1

1

-2

2

a + b

Figure 13.12
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from this figure that the x component of the sum equals the sum of the x components of the two
individual vectors. Likewise for the y components. A common mistake when adding vectors is
to forget that they are vectors and simply add the magnitudes. Remember that vectors aren’t just
numbers, and that you always need to first break vectors into their Cartesian components, and
then you can add the corresponding components. To subtract two vectors, you simply need to
subtract the components.

13.1.5 Using components

What is the vertical component of the vector a shown in Fig. 13.13? Is it the vertical vector ay
θ

a

ax

a1

a2

ay

θ
a

(a) (b)

Figure 13.13

in Fig. 13.13(a) with length a cos θ, or is it the vertical vector a2 in Fig. 13.13(b) with length
a/ cos θ? The correct choice is the first one, ay . When breaking a given vector into components,
the vector is always the hypotenuse of the triangle representing the components. The axes of our
coordinate systems are always orthogonal, so the components must always be orthogonal, which
isn’t the case in Fig. 13.13(b). A vector is the sum of its components, and while it is certainly
true that a = a2+a1 in Fig. 13.13(b), just as it is true that a = ay +ax in Fig. 13.13(a), the former
of these decompositions isn’t helpful in general (because a1 has a vertical component, whereas
ax does not).

When solving a problem, choosing your coordinate system wisely can make the problem
much easier to solve. Cartesian and polar coordinates are the most common options. But addi-
tionally, if you are using Cartesian coordinates, you might find that one orientation of your axes
makes things easier than another. For example, in setups involving objects on inclined planes,
you can pick your axes to be horizontal and vertical, or you can pick them to be parallel and
perpendicular to the plane. It often isn’t obvious which is the better set of axes, so you might
need to try both. When using the latter set, you will need to break the gravitational acceleration
g (or equivalently, the gravitational force mg) into components parallel and perpendicular to the
plane. These components have lengths g sin θ and g cos θ, as shown in Fig. 13.14. (You cang sinθ

g

g cosθ

θ

θ

Figure 13.14

do the geometry to determine which angles in the figure are equal to θ, or you can just use the
limiting-case reasoning in Multiple-Choice Question 1.12.) The rectangle formed by the compo-
nents is shown in Fig. 13.15. It’s personal preference which of the two right triangles you draw

g sinθ

g sinθ

g

g cosθ

g cosθ

θ

θ

θ

Figure 13.15

to find the components.

The downward mg force is a vector, and a vector is the sum of its components. So the sum
of the mg sin θ force along the plane and the mg cos θ force perpendicular to the plane equals
the original mg force. (There is also a normal force from the plane acting on the object, but that
won’t concern us here.) In other words, the object on the plane behaves in exactly the same way
whether it is acted on by the single gravitational force or by two people pulling along the plane
and perpendicular to the plane with forces of mg sin θ and mg cos θ. The sum of the magnitudes
of these two forces doesn’t equal the magnitude of the original mg force (the sum is larger), but
that is irrelevant. All that matters is that the sum of the two component vectors equals the original
mg vector. When solving problems, it is often helpful to forget all about the original force vector
and instead consider it to be two separate forces generated by two people pulling/pushing along
the directions of the components.

Many equations in physics are vector equations. An example is F = ma. Another example
is a conservation-of-momentum equation of the form pinitial = pfinal. Since these are vector
equations, they don’t say simply that the magnitudes are the same on both sides; they say that
the complete vectors (including the directions) are the same. Equivalently, they say that the
corresponding components on each side are equal. In other words, a vector equation is really
three equations, one for each component. So F = ma says the same thing as the combination of
the three Fx = max , Fy = may , and Fz = maz equations. (If you’re dealing with a 2-D system in
the x-y plane, then you really have only two equations, because Fz = maz is the trivial statement
that 0 = 0.) Therefore, when dealing with vectors, you will invariably need to break them up
into components and deal with these components separately.
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13.1.6 Dot product

As mentioned in Section 13.1.4, there are two possible ways to multiply two vectors together: the
dot product and the cross product. These products don’t come up too often in this book, but since
they do appear, we’ll provide a brief review of them. The dot product shows up in the definition
of work, and the cross product shows up in the definitions of torque, angular momentum, and
fictitious forces.

Consider two vectors whose Cartesian components are given by

a = (ax ,ay ,az ) and b = (bx ,by ,bz ). (13.8)

The dot product, or scalar product, between these vectors is defined as

a · b ≡ axbx + ayby + azbz . (13.9)

The dot product takes two vectors and produces a scalar, which is just a number (with units).
You can quickly use Eq. (13.9) to show that the dot product is commutative (that is, a · b = b · a)
and distributive (that is, (a+b) · c = a · c+b · c). Note that the dot product of a vector with itself
is a · a = a2

x + a2
y + a2

z , which is just its length squared. So a · a = |a|2 ≡ a2.
Taking the sum of the products of the corresponding components of two vectors, as we did

in Eq. (13.9), might seem like a silly and arbitrary thing to do. Why don’t we instead look at,
say, the sum of the cubes of the products of the corresponding components? The reason is that
the dot product as we’ve defined it has many nice properties, the most useful of which is that it
can be written as

a · b = |a| |b| cos θ ≡ ab cos θ, (13.10)

where θ is the angle between the two vectors. We can demonstrate this as follows. Consider the
dot product of the vector c ≡ a + b with itself, which is simply the square of the length of c.
Using the distributive and commutative properties, we have

c2 = (a + b) · (a + b) = a · a + 2a · b + b · b
= a2 + 2a · b + b2. (13.11)

But from the law of cosines applied to the triangle in Fig. 13.16, we have
θγ

a

c
b

Figure 13.16c2 = a2 + b2 − 2ab cos γ = a2 + b2 + 2ab cos θ, (13.12)

because γ = π − θ. Equating the two results for c2 in Eqs. (13.11) and (13.12) yields a · b =
ab cos θ, as desired. The angle between two vectors is therefore given by

cos θ =
a · b
|a| |b| . (13.13)

A nice corollary of this result is that if the dot product of two vectors is zero, then cos θ = 0,
which means that the vectors are perpendicular. If someone gives you the vectors (1,−2,3)
and (4,5,2), it is by no means obvious visually that they are perpendicular. But we know from
Eq. (13.13) that they indeed are.

The dot product a · b can be written as either a(b cos θ) or b(a cos θ). So a · b equals the
length of a times the component of b along a. Or vice versa, depending on which length you
want to group with the cos θ factor. If we rotate our coordinate system, the dot product of two
vectors remains the same, because from Eq. (13.10) it depends only on their lengths and the
angle between them; and these are unaffected by the rotation. In other words, the dot product
is a scalar. (The technical definition of a scalar is something that is invariant under a rotation
of the coordinate system.) This certainly isn’t obvious from looking at the original definition in
Eq. (13.9), because the coordinates get all messed up during the rotation.
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13.1.7 Cross product
The cross product, or vector product, between two vectors is defined via a determinant as

a × b ≡
�������

x̂ ŷ ẑ
ax ay az

bx by bz

�������
= x̂(aybz − azby ) + ŷ(azbx − axbz ) + ẑ(axby − aybx ). (13.14)

The cross product takes two vectors and produces another vector. As with the dot product,
you can show that the cross product is distributive. However, it is anti-commutative (that is,
a × b = −b × a), which is evident from Eq. (13.14); interchanging two rows of a determinant
negates its value. This implies that the cross product of any vector with itself is zero.

As with the dot product, the reason why we study this particular combination of components
is that it has many nice properties, the most useful of which are that the direction of a × b is
perpendicular to both a and b (in the orientation determined by the right-hand rule; see below)
and that the magnitude is

|a × b| = |a| |b| sin θ ≡ ab sin θ. (13.15)

We’ll derive this relation below, but let’s first show that a × b is indeed perpendicular to both a
and b. We’ll do this by making use of the fact that if the dot product of two vectors is zero, then
the vectors are perpendicular. We have

a · (a × b) = ax (aybz − azby ) + ay (azbx − axbz ) + az (axby − aybx ) = 0, (13.16)

as desired; you can check that all of the terms cancel in pairs. And likewise for b · (a × b). So
a × b is perpendicular to both a and b.

However, there is still an ambiguity in the direction of a× b, because although we know that
a × b points along the direction perpendicular to the plane spanned by a and b, there are two
possible directions along this line. Assuming that our coordinate system has been chosen to be
“right-handed” (which means that if you point the fingers of your right hand in the direction of x̂
and then swing them to ŷ, your thumb points along ẑ), then the direction of a × b is determined
by the right-hand rule. That is, if you point the fingers of your right hand in the direction of a
and then swing them to b (through the angle that is less than 180◦), then your thumb points along
a × b. This is consistent with the fact that Eq. (13.14) gives (1,0,0) × (0,1,0) = (0,0,1), which
is the statement that x̂ × ŷ = ẑ.

Let’s now demonstrate the result in Eq. (13.15), which is equivalent to |a × b|2 = a2b2(1 −
cos2 θ), which in turn is equivalent to |a × b|2 = a2b2 − (a · b)2. Written in terms of the
components, this last equation is

(aybz − azby )2 + (azbx − axbz )2 + (axby − aybx )2 = (a2
x + a2

y + a2
z )(b2

x + b2
y + b2

z )

− (axbx + ayby + azbz )2. (13.17)

If you stare at this long enough, you’ll see that it’s true. The three different types of terms agree
on both sides. For example, both sides have an a2

yb2
z term, a −2aybyazbz term, and no a2

xb2
x

term.
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13.2 Appendix B: Taylor series

13.2.1 Basics
Taylor series are extremely useful for checking limiting cases, in particular in situations where a
given parameter is small. A Taylor series expresses a given function of x as a series expansion
in powers of x. The general form of a Taylor series is (the primes here denote differentiation)

f (x0 + x) = f (x0) + f ′(x0)x +
f ′′(x0)

2!
x2 +

f ′′′(x0)
3!

x3 + · · · . (13.18)

This equality can be verified by taking successive derivatives of both sides of the equation and
then setting x = 0. For example, taking the first derivative and then setting x = 0 gives f ′(x0)
on the left. And this operation also gives f ′(x0) on the right, because the first term is a constant
and gives zero when differentiated, the second term gives f ′(x0), and all of the rest of the terms
give zero once we set x = 0 because they all contain at least one power of x. Likewise, if we
take the second derivative of each side and then set x = 0, we obtain f ′′(x0) on both sides. And
so on for all derivatives. Therefore, since the two functions on each side of Eq. (13.18) are equal
at x = 0 and also have their nth derivatives equal at x = 0 for all n, they must in fact be the same
function (assuming that they’re nicely behaved functions, as we generally assume in physics).

Some specific Taylor series that often come up are listed below. They are all expanded around
x = 0; that is, x0 = 0 in Eq. (13.18). We use these series countless times throughout this book
when checking how expressions behave in the limit of some small quantity. The series are all
derivable via Eq. (13.18), but sometimes there are quicker ways of obtaining them. For example,
Eq. (13.20) is most easily obtained by taking the derivative of Eq. (13.19), which itself is simply
the sum of a geometric series.

1
1 + x

= 1 − x + x2 − x3 + · · · (13.19)

1
(1 + x)2 = 1 − 2x + 3x2 − 4x3 + · · · (13.20)

ln(1 + x) = x − x2

2
+

x3

3
− · · · (13.21)

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (13.22)

cos x = 1 − x2

2!
+

x4

4!
− · · · (13.23)

sin x = x − x3

3!
+

x5

5!
− · · · (13.24)

√
1 + x = 1 +

x
2
− x2

8
+ · · · (13.25)

1
√

1 + x
= 1 − x

2
+

3x2

8
+ · · · (13.26)

(1 + x)n = 1 + nx +
(
n
2

)
x2 +

(
n
3

)
x3 + · · · (13.27)

These series might look a little scary, but in most situations there is no need to include
terms beyond the first-order term in x. For example,

√
1 + x ≈ 1 + x/2 is usually a good

enough approximation. The smaller x is, the better the approximation is, because any term in the
expansion is smaller than the preceding term by a factor of order x. Note that you can quickly
verify that the

√
1 + x ≈ 1 + x/2 expression is valid to first order in x, by squaring both sides to

obtain 1+ x ≈ 1+ x + x2/4. Similar reasoning at second order shows that −x2/8 is correctly the
next term in the expansion.

As mentioned in Footnote 4 in Chapter 1, we won’t worry about taking derivatives to rigor-
ously derive all of the above Taylor series. We’ll just take them as given, which means that if
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you haven’t studied calculus yet, that’s no excuse for not using Taylor series! Instead of deriving
them, let’s just check that they’re believable. This can easily be done with a calculator. For ex-
ample, consider what ex looks like if x is a very small number, say, x = 0.0001. Your calculator
(or a computer, if your want more digits) will tell you that

e0.0001 = 1.0001000050001666 . . . (13.28)

This can be written more informatively as

e0.0001 = 1.0
+ 0.0001
+ 0.000000005
+ 0.0000000000001666 . . .

= 1 + (0.0001) +
(0.0001)2

2!
+

(0.0001)3

3!
+ · · · . (13.29)

This last line agrees with the form of the Taylor series for ex in Eq. (13.22). If you made x
smaller (say, 0.000001), then the same pattern would form, but just with more zeros between the
numbers than in Eq. (13.28). If you kept more digits in Eq. (13.28), you could verify the x4/4!
and x5/5!, etc., terms in the ex Taylor series. But things aren’t quite as obvious for these terms,
because we don’t have all the nice zeros as we do in the first 12 digits of Eq. (13.28).

Note that the left-hand sides of all of the Taylor series listed above involve only 1’s and
x’s. So how do we make an approximation to an expression of the form, say,

√
N + x? We

could of course use the general Taylor-series expression in Eq. (13.18) and generate the series
from scratch by taking derivatives. But we can save ourselves some time by making use of the
similar-looking series in Eq. (13.25). We can turn the N into a 1 by factoring out an N from the
square root, which gives

√
N
√

1 + x/N . Having generated a 1, we can now apply Eq. (13.25),
with the only modification being that the small quantity x that appears in that equation is replaced
by the small quantity x/N . This gives (to first order in x)

√
N + x =

√
N

√
1 +

x
N
≈
√

N
(
1 +

1
2

x
N

)
=
√

N +
x

2
√

N
. (13.30)

Again, you can quickly verify that this expression is valid to first order in x by squaring both
sides. If N = 100 and x = 1, then this approximation gives

√
101 ≈ 10 + 1/20 = 10.05, which

is very close to the actual value of
√

101 = 10.0499 . . ..

13.2.2 How many terms to keep?
When making a Taylor-series approximation, how do you know how many terms in the series
to keep? For example, if the exact answer to a given problem takes the form of ex − 1, then
the Taylor series ex ≈ 1 + x tells us that our answer is approximately equal to x. You can
check this by picking a small value for x (say, 0.01) and plugging it in your calculator. This
approximate form makes the dependence on x (for small x) much more transparent than the
original expression ex − 1 does.

But what if our exact answer had instead been ex − 1 − x? The Taylor series ex ≈ 1 + x
would then yield an approximate answer of zero. And indeed, the answer is approximately zero.
However, when making approximations, it is generally understood that we are looking for the
leading-order term in the answer (that is, the smallest power of x with a nonzero coefficient). If
our approximate answer comes out to be zero, then that means we need to go (at least) one term
further in the Taylor series, which means ex ≈ 1+ x + x2/2 in the present case. Our approximate
answer is then x2/2. (You should check this by letting x = 0.01.) Similarly, if the exact answer
had instead been ex − 1 − x − x2/2, then we would need to go out to the term of order x3 in the
Taylor series for ex .

Be sure to be consistent in the powers of x that you deal with. If the exact answer is, say,
ex −1− x− x2/3, and if you use the Taylor series ex ≈ 1+ x, then you will obtain an approximate
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answer of −x2/3. This is incorrect, because it is inconsistent to pay attention to the −x2/3 term
in the exact answer while ignoring the corresponding x2/2 term in the Taylor series for ex .
Including both terms gives the correct approximate answer as x2/6.

So what is the answer to the above question: How do you know how many terms in the series
to keep? Well, the answer is that before you do the calculation, there’s really no way of knowing
how many terms to keep. The optimal strategy is probably to just hope for the best and start by
keeping only the term of order x. This will often be sufficient. But if you end up with a result of
zero, then you can go to order x2, and so on. Of course, you could play it safe and always keep
terms up to, say, fourth order. But that is invariably a poor strategy, because you will probably
never need to go out that far in a series.

13.2.3 Dimensionless quantities
Note that whenever you use a Taylor series from the above list to make an approximation in a
physics problem, the parameter x must be dimensionless. If it weren’t dimensionless, then the
terms with the various powers of x in the series would all have different units, and it makes no
sense to add terms with different units.

As an example of an expansion involving a properly dimensionless quantity, consider the
approximation made in going from Eq. (1.3) to Eq. (1.4) in the beach-ball example in Chapter 1.
In this setup, the small dimensionless quantity x is the bt/m term that appears in the exponent
in Eq. (1.3). This quantity is indeed dimensionless, because from the original expression for the
drag force, Fd = −bv, we see that b has units of N/(m/s), or equivalently kg/s. Hence bt/m is
dimensionless.

We can restate the above dimensionless requirement in a more physical way. Consider the
question, “What is the velocity v(t) in Eq. (1.3), in the limit of small t?” This question is
meaningless, because t has dimensions. Is a year a large or small time? How about a hundredth
of a second? There is no way to answer this without knowing what situation we’re dealing with.
A year is short on the time scale of galactic evolution, but a hundredth of a second is long on
the time scale of a nuclear process. It makes sense only to look at the limit of a large or small
dimensionless quantity. And by “large or small,” we mean compared with the number 1.

Equivalently, in the beach-ball example the quantity m/b has dimensions of time, so the value
of m/b is a time that is inherent to the system. It therefore does make sense to look at the limit
where t ≪ m/b (that is, bt/m ≪ 1), because we are comparing two things, namely t and m/b,
that have the same dimensions. We will sometimes be sloppy and say things like, “In the limit
of small t.” But you know that we really mean, “In the limit of a small dimensionless quantity
that has a t in the numerator,” or, “In the limit where t is much smaller than a certain quantity
that has dimensions of time.”

After you make an approximation, how do you know if it is a “good” one? Well, just as
it makes no sense to ask if a dimensionful quantity is large or small without comparing it to
another quantity with the same dimensions, it makes no sense to ask if an approximation is
“good” or ”bad” without stating what accuracy you want. In the beach-ball example, let’s say
that we’re looking at a value of t for which bt/m = 1/100. In Eq. (1.4) we kept the bt/m
term in the Taylor series for e−bt/m , and this directly led to our answer of −gt. We ignored
the (bt/m)2/2 term in the Taylor series. This is smaller than the bt/m term that we kept, by a
factor of (bt/m)/2 = 1/200. So the error is roughly half a percent. (The corrections from the
higher-order terms will be even smaller.) If this is enough accuracy for whatever purpose you
have in mind, then the approximation is a good one. If not, then it’s a bad one, and you need to
add more terms in the series until you get your desired accuracy.
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13.3 Appendix C: Limiting cases, scientific method
In Section 1.1.3 we discussed the strategy of checking limiting (or special) cases after solving a
problem. It turns out that checking limiting cases is directly analogous to the scientific method
(the procedure of testing hypotheses against experiments, and then modifying the hypotheses if
needed). To see how this analogy comes about, recall that the point of checking limiting cases
is that although it is often difficult to determine how a system behaves in general, your intuition
usually gives you a very good idea of how a system behaves in certain limiting cases. Of course,
it is quite possible that your intuition can lead you astray. But for the purposes of the present
discussion, we’ll assume that your intuition is always correct.

Once you’ve solved a problem and obtained an answer, checking a limiting case leads to two
possible results:

1. Your answer (which you are hoping is correct) doesn’t agree with what your intuition says
(which we are assuming is correct). In this case you conclude that your answer must be
incorrect.

2. Your answer does agree with what your intuition says. In this case all you can conclude is
that your answer might be correct. Note well that checking a limiting case can never tell
you that your answer is definitely correct.

The above two cases are exactly analogous to what happens in real life with the scientific
method. In the real world, everything comes down to experiment. If you have a theory or
hypothesis that you think is correct, then you need to check that its predictions are consistent
with experiments. The specific experiments you do are the analog of the special cases you check
after solving a problem. That is, when checking special cases, you check your answer to a
problem (what you hope is true) against your intuition about a special case (what you know is
true). And when using the scientific method, you check your theory (what you hope is true)
against the result of an experiment (what you know is true). This is summarized in the following
table.

Physics class Science
What you hope is true Answer to problem Theory
What you know is true Intuition about special cases Result of experiment

In the real world, if your theory isn’t consistent with the experiments, then you need to go
back and fix it, just as you would need to go back and fix your answer to a physics problem if it
weren’t consistent with the special cases. Your theory might need minor tweaks, or it might be
total garbage and need a complete overhaul. If, on the other hand, your theory is consistent with
the experiments, then although this is nice, the only thing it actually tells you is that your theory
might be correct. And considering the way things usually turn out, the odds are that it actually
isn’t correct, but rather the limiting case of a more correct theory.

For example, Newtonian physics (which is what this book is about) is consistent with any
“everyday” type of experiment that you might do. But that doesn’t mean that Newtonian physics
is correct. In fact, Newtonian physics is certainly not correct. It’s a perfectly good theory for
everyday scenarios, but it breaks down when things get very small (when quantum mechanics
takes over) or very fast (when relativity takes over). Newtonian physics is simply a limiting
theory of these more correct theories. And we use the term “more correct” here, because these
theories (quantum mechanics and relativity) aren’t correct either. They’re both just limiting
theories of a more correct theory (quantum field theory), which in turn is a limiting theory of
something else. And so on and so forth. Turtles, turtles, all the way down – or at least much
farther than we can presently see.

Every time you do an experiment, you don’t actually prove anything. Instead, what you do is
narrow down the possibilities of what might be true, by ruling out incorrect theories. And that’s
all you can do. You can solve a physics problem for your class, of course, but no one has solved
the problem of the universe yet. So the only thing we can do is perform experiments and narrow
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things down. Imagine a multiple-choice question that has a million possible answers to choose
from. And imagine that there is no possibility of directly deducing which answer is correct.
Then all we can do is start chipping away and eliminating answers by looking at special cases.
It’s a slow and daunting process, but it’s the only process we have.

The collective endeavor of science is therefore to squeeze down the set of possible theories
until there’s only one left. We have a long way to go, of course! At any stage in the process, the
theories that are still on the table are the ones we haven’t been able to disprove. So that’s how
science works. You can’t actually prove anything, so you learn to settle for the things you can’t
disprove.

Consider, when seeking gestalts,
The theories that science exalts.
It’s not that they’re known
To be written in stone.
It’s just that we can’t say they’re false.
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13.4 Appendix D: Problems requiring calculus
The problems listed below require calculus. “1 M” means “Chapter 1 Multiple Choice,” and
“1 P” means “Chapter 1 Problems,” etc. This list represents less than a sixth of the total number
of about 400 questions/problems. So if you haven’t studied calculus yet, this book can still be
very useful. The chapter introductions also occasionally use calculus, but this won’t prevent you
from using the given results. We aren’t counting Taylor series as a calculus topic, because as
mentioned in Footnote 4 in Chapter 1, the application of Taylor series in this book involves only
algebra.

1 M: none
1 P: none (3 appears to require calculus, but it doesn’t actually)
2 M: 3
2 P: none
3 M: none
3 P: 2, 3, 8, 9, 10, 12, 22
4 M: none
4 P: none
5 M: none
5 P: 1, 2, 3, 6, 14, 16, 19, 21, 23
6 M: 18, 20
6 P: 7, 13, 14, 22, 23, 24, 25 (also, 5 can be solved with sums or integrals)
7 M: none
7 P: 6, 10, 11, 12, 14, 22, 33 (1, 2, 3, 4, 5 can be solved with sums or integrals)
8 M: none
8 P: 2, 4, 11 (1 can be solved with sums or integrals)
9 M: none
9 P: none
10 M: 1, 2
10 P: 3, 4, 6, 17, 18, 19
11 M: none
11 P: 1, 5, 7, 8, 11, 12, 13, 14, 18, 20
12 M: none
12 P: 4, 6, 8


	Table of contents
	Preface
	Chapter 1: Problem-solving strategies
	Chapter 2: Kinematics in 1-D
	Chapter 3: Kinematics in 2-D (and 3-D)
	Chapter 4: F=ma
	Chapter 5: Energy
	Chapter 6: Momentum
	Chapter 7: Torque
	Chapter 8: Angular momentum
	Chapter 9: Statics
	Chapter 10: Oscillations
	Chapter 11: Gravity
	Chapter 12: Fictitious forces
	Chapter 13: Appendices

		2017-03-10T02:04:43+0000
	Preflight Ticket Signature




