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This paper is concerned with preconditioning the stiffness matrix resulting from finite ele-
ment discretizations of Maxwell’s equations in the high frequency regime. The moving PML
sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite
difference grid, is generalized to an unstructured mesh with finite elements. The method
dramatically reduces the number of GMRES iterations necessary for convergence, resulting
in an almost linear complexity solver. Numerical examples including electromagnetic
cloaking simulations are presented to demonstrate the efficiency of the proposed method.
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1. Introduction

High frequency wave propagation and diffraction in heterogeneous media is a problem of great interest, especially in the
field of electromagnetics. The modeling of complex metamaterials and coated scattering objects for high frequencies is in
high demand in the electromagnetics community. Solving the forward problem of electromagnetic radiation is also a key
part in the inversion methods of biomedical and radar imaging. As a result, fast and accurate numerical solutions to Max-
well’s equations have become a top priority.

In the frequency domain, the most widely-used numerical technique for solving the heterogeneous medium problem of
Maxwell’s equations is the finite element method [14,16]. The reasons for its popularity are clear: it allows the modeling of
structures with complex geometry quite naturally, and the stiffness matrix resulting from discretization is sparse, allowing
the use of direct solvers such as the multifrontal method. Despite these advantages, however, solving Maxwell’s equations in
the high frequency regime remains a very difficult task for a few reasons. First, to retain a certain level of accuracy in the
solution, each wavelength must be resolved with a reasonable number of elements. In fact, the pollution effect [2] forces
the number of elements per wavelength to be increased if the same level of accuracy is desired at a higher frequency. If
the domain is K wavelengths wide in each dimension, the number of degrees of freedom N is at least of order O(Kd), where
the dimension is d = 2, 3; for high frequencies, this number becomes extremely large. Second, the oscillatory nature of the
dyadic Green’s function for Maxwell’s equations causes the stiffness matrix to be highly indefinite and ill-conditioned.
. All rights reserved.
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Direct methods work well in 2D (with complexity O(N3/2)) but become too expensive for 3D problems (with complexity
O(N2)). As a result, iterative methods appear as the common choice in 3D. There has been extensive work done on the pre-
conditioning and iterative solution of time-harmonic wave equations; the majority of the literature is focused on finite dif-
ference methods for the Helmholtz equation, which can be reviewed in [10]. For most iterative methods, the number of
iterations necessary for convergence increases significantly with the wavenumber. For example, a preconditioner that has
garnered much attention recently is the shifted Laplacian [3,11]. The main goal of the method is to ‘‘shift’’ the eigenvalues
of the Helmholtz operator away from the origin and into the positive half of the complex plane; in doing so, the condition
number is improved and the problem becomes less indefinite. For i ¼

ffiffiffiffiffiffiffi
�1
p

and wavenumber j, discretizing the complex-
perturbed operator D + (1 + ib)j2 for b > 0 and applying the inverse approximately can act as an effective preconditioner.
The inversion can be achieved by either multigrid or incomplete LU decomposition; a comparison of the two methods is done
in [12]. Unfortunately, convergence of the iterative solver still deteriorates as frequency increases.

Domain decomposition methods for the Helmholtz equation have also been developed by several research groups, follow-
ing the early work of [15]. In these methods, for example in [5,7,13], the number of subdomains typically remains constant in
order to maintain an iteration number that is essentially independent of the frequency. On the other hand, it has been ob-
served in [5] that when the number of subdomains is increased, the convergence behavior of the iterative method deterio-
rates. As a result, these methods are mostly suitable for medium frequency problems in order to ensure that the solution of
the subdomain problems remains manageable.

Recently, a new family of preconditioners for time-harmonic wave equations, called the sweeping preconditioners, was
introduced in [8,9]. Developed for Cartesian finite difference grids of the Helmholtz equation, the initial step is to order
the degrees of freedom layer by layer, starting from an absorbing side. The algorithm then continues by constructing a block
LDLt factorization, with each block corresponding to the degrees of freedom in a single layer. The main observation is that the
inverse of each Schur complement block of the LDLt factorization is the Green’s function of the Dirichlet half-space problem,
restricted to a line. As a result, it can be represented efficiently using the hierarchical matrix algebra [8] or by truncating the
half-space problem further by moving the perfectly matched layer [9]. The approximate inverse of the LDLt decomposition
can be applied with O(N) complexity in 2D and O(N log N) complexity in 3D. As a preconditioner, the number of GMRES iter-
ations necessary for convergence is drastically lower compared to other preconditioning techniques, and is essentially inde-
pendent of frequency.

The main contribution of this paper is two-fold: first, to generalize the sweeping preconditioner to Maxwell’s equations,
and second, to present the preconditioner for unstructured finite element meshes. Because the perfectly matched layer
(PML) is ubiquitous in computational electromagnetics and is easy to work with in the finite element setting, we choose
to adapt the moving-PML method in [9]. We will show that the preconditioner setup time scales as O(N) in 2D and O(N4/

3) in 3D, while the application time for each iteration is O(N) in 2D and O(N log N) in 3D. In addition, we will give evidence
that the rate of convergence of the Krylov iterative solver behaves just as it did in the Helmholtz case; that is, essentially
independent of wavenumber and mesh size.

The rest of the paper is as follows: in Section 2, we review the standard Galerkin method for Maxwell’s equations, along
with the PML formulation and choice of basis functions. In Section 3, we present the sweeping preconditioner for the finite
element method. Numerical results for 2D are given in Section 4, while numerical results for 3D are given in Section 5. Fi-
nally, we conclude with some remarks and potential for future work in Section 6.
2. Finite element methods for Maxwell’s equations

To avoid redundancies in the formulation, we proceed with the three-dimensional case; for 2D, we consider the trans-
verse electric (TE) mode, where the fields take the form E = (Ex,Ey,0) and H = (0,0,Hz). It is easy to obtain the 2D case by elim-
inating partial derivatives with respect to the z variable and setting the PML stretching variable in the z-direction, sz, to be 1.
We will remark on the 2D formulation when clarification is necessary.
2.1. Perfectly matched layers

Consider the infinite-domain electromagnetic radiation problem in R3 for electric field E = (Ex,Ey,Ez), magnetic field
H = (Hx,Hy,Hz) and current source J = (Jx, Jy, Jz). Maxwell’s equations in the frequency domain are
r� E ¼ �ixl0lrH

r�H ¼ ixe0erEþ J

r � ðe0erEÞ ¼ q
r � ðl0lrHÞ ¼ 0

lim
jrj!1
ðH� r� jrjEÞ ¼ 0

lim
jrj!1
ðE� rþ jrjHÞ ¼ 0;

ð2:1Þ
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where r = (x,y,z) and the last two conditions are the Silver–Müller radiation conditions; they are required to ensure that the
solution radiates away from the source and dissipates to 0 as jrj?1. Here, i ¼

ffiffiffiffiffiffiffi
�1
p

;x is the angular frequency, J is the im-
pressed current distribution, q is the charge distribution satisfying the continuity equation r � J = �ixq, e0 is the permittiv-
ity of free space, and l0 is the permeability of free space. The material parameters er and lr are the relative permittivity and
permeability tensors with entries
er ¼
exx exy exz

eyx eyy eyz

ezx ezy ezz

0B@
1CA; lr ¼

lxx lxy lxz

lyx lyy lyz

lzx lzy lzz

0B@
1CA:
In general, these tensors are functions in R3. Due to computational constraints, it is impossible to solve the full radiation
problem; since we are usually concerned with the fields inside a compact subset of R3, we truncate the problem by intro-
ducing a condition at the boundary of the domain of interest that will emulate the Silver–Müller radiation conditions in (2.1).
Here, the subset we consider will be the box X = (�1,1)3. Absorbing boundary conditions have been well investigated for this
truncation. In this paper, however, we opt for the perfectly matched layer approach [4,6].

Denote the thickness of the PML as ‘; this corresponds to a physical domain [�1 + ‘,1 � ‘]3. Let us define the complex
stretching functions sn for n = x, y, z as
snðnÞ ¼ 1þ irðnÞ;
with r P 0 in the PML region and 0 everywhere else. We normally choose r to be the ramp-like function
rðnÞ ¼
h ‘�1�n

‘

� �2
; n 2 ½�1;�1þ ‘�

0; n 2 ½�1þ ‘;1� ‘�
h n�1þ‘

‘

� �2
; n 2 ½1� ‘;1�

8>><>>: ;
where h is a constant determined by the mesh size and frequency. Given these functions, the resulting PML tensors ~er and ~lr

take the form
~er ¼
exx

sysz

sx
exysz exzsy

eyxsz eyy
sxsz
sy

eyzsx

ezxsy ezysx ezz
sxsy

sz

0BB@
1CCA; ~lr ¼

lxx
sysz

sx
lxysz lxzsy

lyxsz lyy
sxsz
sy

lyzsx

lzxsy lzysx lzz
sxsy

sz

0BB@
1CCA:
Note that within the physical domain, the PML tensors reduce to the original material, i.e. ~er ¼ er and ~lr ¼ lr in
[�1 + ‘,1 � ‘]3. On the outside of the PML, we artificially place a perfectly conducting surface to close the system. This is
a widely accepted practice, as the reflections off the PEC are very small because of the exponential decay inside the PML.

In the 2D TE mode case, Maxwell’s curl equations are reduced to
@Ey

@x
� @Ex

@y
¼ �ixl0lzzHz

@Hz

@y
¼ ixe0ðexxEx þ exyEyÞ þ Jx

� @Hz

@x
¼ ixe0ðeyxEx þ eyyEyÞ þ Jy
Defining the partial derivatives in stretched coordinates exactly the same way as in the 3D case, we can follow the same pro-
cess for deriving the material parameters. The resulting material properties are
~er ¼
exx

sy

sx
exy

eyx eyy
sx
sy

 !
; ~lr ¼ sxsylzz:
2.2. Variational formulation

The truncated PML problem of Maxwell’s equations is
r� E ¼ �ixl0 ~lrH
r�H ¼ ixe0~erEþ J
r � ðe0~erEÞ ¼ q
r � ðl0 ~lrHÞ ¼ 0 in X;

ð2:2Þ

n̂� E ¼ 0
n̂�H ¼ 0 on @X;

ð2:3Þ
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where n̂ is the unit normal vector on @ X. We can eliminate the magnetic field variable H and use the second-order equation
r� ~l�1
r r� E� j2~erE ¼ �ixl0J in X; ð2:4Þ

n̂� E ¼ 0 on @X; ð2:5Þ
where j :¼ x ffiffiffiffiffiffiffiffiffiffil0e0
p ¼ 2p

k is the wavenumber in free space. For a testing function / 2 H0(curl,X), where
H0ðcurl; XÞ ¼ f/ 2 Hðcurl; XÞ : n̂� /ðrÞ ¼ 0;8r 2 @Xg, the weak form of the equation is
~l�1
r r� E;r� /

� �
X � j2ð~erE;/ÞX ¼ �ixl0ðJ;/ÞX; ð2:6Þ
with the inner product ðu;vÞX ¼
R

X u � �vdX. Under certain conditions [16], there exists a unique solution to (2.6) in
H0(curl,X).

2.3. Vector finite elements

To discretize the variational formulation, we represent the domain with a triangular mesh in 2D and a tetrahedral mesh in
3D. Each mesh is constructed so that the element-to-wavelength ratio is kept constant over all frequencies; for a wavelength
k, we choose the mesh size h so that h � k/10. To avoid the possible spurious solutions given by nodal basis functions, we
employ the linear curl-conforming edge functions made famous by Nédélec [17]. These basis functions are divergence-free
and have a constant tangential component along the edge on which they are defined.

Given a quasi-uniform tetrahedral mesh of X with N interior edges (i.e. edges with at most one vertex lying on oX) and
edge length bounded by h, we have the finite element approximation
Eh ¼
XN

i¼1

ciwi;
where wi is the edge function defined on edge i and ci 2 C are the undetermined coefficients. The standard Galerkin formu-
lation yields the sparse linear system
Au ¼ b; ð2:7Þ
with the matrix and vector entries
Aij ¼ ~l�1
r r� wj;r� wi

� �
X
� j2ð~erwj;wiÞX;

uj ¼ cj;

bi ¼ �ixl0ðJ;wiÞX:
3. Preconditioner for FEM

The linear system of equations in (2.7) is highly indefinite and ill-conditioned for high frequency problems. As mentioned
earlier, the iterative solution of such a system is difficult with current preconditioning techniques. In this section, we detail
the sweeping preconditioner for the finite element method, which will allow convergence of a Krylov subspace iterative sol-
ver in a small number of iterations.

3.1. Mesh partitioning

The first step to setting up the preconditioner is to divide the mesh into layers or slabs. Consider the problem for a par-
ticular wavenumber j such that the number K :¼ j

p ¼
x ffiffiffiffiffiffiffil0e0
p

p is an integer; here, K is the width of the domain in wavelengths.
Let us also assume for the sake of simplicity that the PML width is ‘ = k. We can then divide the domain into the subdomains
Xi, i = 1, . . . ,K as
Xi ¼ ½�1;1�d�1 � ½�1þ ði� 1Þk;�1þ ikÞ; for i ¼ 1; . . . ;K � 1

XK ¼ ½�1;1�d�1 � ½�1þ ðK � 1Þk;1�:
The partition occurs in the y-direction for 2D problems and in the z-direction for 3D problems. Clearly, we have X ¼
SK

i¼1Xi

and Xi \ Xj = ; if i – j.
For a tetrahedral mesh T ¼ ft1; . . . ; tNT gwith edges denoted by ej, j = 1, . . . ,N, we define vjk for k = 0, . . . ,d to be the vertices

of tetrahedron tj in d dimensions and denote the centroid of tj with cj ¼ 1
dþ1

Pd
k¼0vjk . Next, we define T i as the union of tet-

rahedra whose centroids are in Xi, i.e.,
T i ¼
[
ftj : cj 2 Xig: ð3:1Þ
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Clearly, X ¼
SK

i¼1T i. Fig. 1 shows an unstructured triangular mesh and tetrahedral mesh partitioned into eight layers, with a
different color for each layer; in general, the boundary of each layer is not a smooth surface. (See Fig. 2)

Once the task of partitioning the mesh is completed, we can construct integer sets E i, which will point to which degrees
of freedom are associated with layer Xi. This organizational structure is necessary to obtain the block LDLt factorization in
the next section. At first, this may seem trivially similar to the algorithms in [8,9], but a conflict occurs at the boundary
between two layers; specifically, when a simplex in T i and a simplex in T i�1 share an edge. This can be avoided by always
choosing to associate boundary edges with the upper layer. If we have @T i as the boundary and T int

i as the interior of the
domain defined by elements in T i, such that T i ¼ @T i [ T int

i , we can categorize the edges ej, j = 1, . . . ,N in the following
manner:
E1 ¼ fj : ej is an interior edge of T1g
Ei ¼ fj : ej is an interior edge of Ti or ej 2 @T i \ @T i�1g for i ¼ 2; . . . ;K:
3.2. Sweeping factorization

With the degrees of freedom in each layer defined by the integer sets E i for i = 1, . . . ,K, we can rewrite the linear system in
(2.7) in block tridiagonal form. Using MATLAB-style notation for indexing matrices and vectors, we can reorder the system
AðE1; E1Þ AðE1; E2Þ

AðE2; E1Þ AðE2; E2Þ . .
.

. .
. . .

.
AðEK�1; EKÞ

AðEK ; EK�1Þ AðEK ; EKÞ

0BBBBB@

1CCCCCA
uðE1Þ
uðE2Þ

..

.

uðEKÞ

0BBBB@
1CCCCA ¼

bðE1Þ
bðE2Þ

..

.

bðEKÞ

0BBBB@
1CCCCA; ð3:2Þ
where uðEiÞ are the unknown coefficients associated with edges in layer i; bðEiÞ is the right hand side computed from basis
functions defined on edges in layer i, and AðEi; EjÞ are the blocks of the stiffness matrix corresponding to the degrees of free-
dom in layer i and layer j. This permits the block LDLt factorization
L1 . . . LK�1

S1

S2

. .
.

SK

0BBBB@
1CCCCALt

K�1 . . . Lt
1; ð3:3Þ
where the Schur complement matrices take the form S1 ¼ AðE1; E1Þ; Si ¼ AðEi; EiÞ � AðEi; E i�1ÞS�1
i�1AðEi�1; EiÞ for i = 2, . . . ,K. De-

fine the index sets Pi for i = 1, . . . ,K as
Pi ¼
Xi�1

s¼1

Ns þ 1; . . . ;
Xi

s¼1

Ns

( )
;

where Ns ¼ jEsj is the cardinality of set Es. The block lower triangular matrices Li are then
LiðPiþ1;PiÞ ¼ AðEiþ1; EiÞS�1
i ; LiðP i;PiÞ ¼ Ið1 6 i 6 KÞ; and zero otherwise:
Explicitly inverting the factorization yields the solution
Fig. 1. Left: triangular mesh partitioned into eight layers. Right: tetrahedral mesh partitioned into eight layers.
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uðE1Þ
uðE2Þ

..

.

uðEKÞ

0BBBB@
1CCCCA ¼ Lt

1

� ��1 � � � Lt
K�1

� ��1

S�1
1

S�1
2

. .
.

S�1
K

0BBBBB@

1CCCCCAL�1
K�1 � � � L

�1
1

bðE1ÞbðE2Þ
..
.

bðEKÞ

0BB@
1CCA: ð3:4Þ
We can summarize the factorization and inversion process in the following algorithms.

Algorithm 3.1. Construct the sweeping factorization of A

1: Set S1 ¼ AðE1; E1Þ and compute S�1
1 .

2: for i = 2, . . . ,K do

3: Set Si ¼ AðEi; EiÞ � AðEi; Ei�1ÞS�1
i�1AðEi�1; EiÞ and compute S�1

i .
4: end for
Algorithm 3.2. Apply the inverse to get u = A�1b

1: Set uðEiÞ ¼ bðEiÞ, for i = 1, . . . ,K.

2: Compute uðE2Þ ¼ uðE2Þ � AðE2; E1ÞS�1
1 uðE1Þ.

3: for i = 2, . . . ,K � 1 do

4: Compute uðEiþ1Þ ¼ uðEiþ1Þ � AðEiþ1; EiÞS�1
i uðEiÞ.

5: end for

6: Compute uðE1Þ ¼ S�1
1 uðE1Þ.

7: for i = 2, . . . ,K do

8: Compute uðEiÞ ¼ S�1
i uðEiÞ.

9: end for
10: for i = K � 1, . . . ,2 do

11: Compute uðEiÞ ¼ uðEiÞ � S�1
i AðEi; Eiþ1ÞuðEiþ1Þ.

12:end for

13:Compute uðE1Þ ¼ uðE1Þ � S�1
1 AðE1; E2ÞuðE2Þ.

The main computational cost comes from inverting the Schur complement blocks Si; note that for i = 2, . . . ,K, these matri-
ces are dense, since each Si is dependent on the inversion of Si�1. For Cartesian finite difference grids, the cost of computing
the inversion of the above factorization has been shown to be O(N2) in 2D and O(N7/3) in 3D [8]. We can make a similar argu-
ment for finite element meshes, as the number of edges varies approximately linearly with the number of simplex elements.
Our aim is to reduce this computational time to linear or almost linear complexity.
3.3. Moving PML method

An important physical observation can be made about each matrix Si. Specifically, let us restrict the full problem to the
first m layers, for m < K; that is, instead of the whole system in (3.2), consider the smaller system of equations
AðE1; E1Þ AðE1; E2Þ

AðE2; E1Þ AðE2; E2Þ . .
.

. .
. . .

.
AðEm�1; EmÞ

AðEm; Em�1Þ AðEm; EmÞ

0BBBBB@

1CCCCCA
uðE1Þ
uðE2Þ

..

.

uðEmÞ

0BBBB@
1CCCCA ¼

bðE1Þ
bðE2Þ

..

.

bðEmÞ

0BBBB@
1CCCCA:
This system corresponds to the discretization of the semi-infinite half-space Maxwell problem with a PEC boundary condi-
tion on the boundary of

Sm
i¼1T i, i.e.
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r� ~l�1
r r� E� j2~erE ¼ �ixl0J in int

[m
i¼1

T i

 !
;

n̂� E ¼ 0 on @
[m
i¼1

T i

 !
:

ð3:5Þ
If we invert the upper m blocks, we obtain
uðE1Þ
..
.

uðEmÞ

0BB@
1CCA ¼ Lt

1

� ��1
. . . Lt

m�1

� ��1

S�1
1

. .
.

S�1
m

0BB@
1CCAL�1

m�1 . . . L�1
1

bðE1Þ
..
.

bðEmÞ

0BB@
1CCA: ð3:6Þ
However, due to the structure of Li for i = 1, . . . ,m, it is noticed that the S�1
m is unaffected by the left and right operators in

(3.6), i.e. the (m,m)-th block in the right hand side is exactly S�1
m . Based on this fact, we can conclude that S�1

m is the discrete
Green’s function for degrees of freedom in the m-th layer for (3.5); solving the half-space problem above implicitly con-
structs an operator for S�1

m . In [8], a proof was given that this matrix is low rank in the 2D case, and that hierarchical matrices
are efficient in representing S�1

m . In [9], a different approach called the moving PML method was introduced as an alternative to
approximate S�1

m efficiently. In this paper, we choose the moving PML approach, as it can be readily applied to general finite
element discretizations.

The central idea behind the moving PML method is to take advantage of the radiation boundary condition. Because each
Sm is a Schur complement for the degrees of freedom in layer m, its inverse only acts on quantities defined in this layer.
Therefore, as an operator, S�1

m only needs to be accurate in this region. Recalling that the PML boundary condition is used
to emulate the Silver–Müller radiation conditions, the half-space problem in (3.5) can be truncated even further by pushing
the PML up to the domain of interest; that is, instead of solving a problem with layers 1, . . . ,m, we can solve an approximate
problem with layers m � 1 and m by placing the PML in layer m � 1. As we will see in the numerical results, solving this
subproblem will serve as a good approximation to the operator S�1

m .
When compared to direct inversion to get S�1

i , the moving PML method has a huge computational advantage. Recall that
Ni ¼ jE ij is the number of degrees of freedom in layer i. Inverting each Ni � Ni matrix Si would take O N3

i

� �
steps because Si is

dense for i = 2, . . . ,K. On the other hand, the truncated half-space problem is a sparse system roughly of size 2Ni � 2Ni. In 2D,
this corresponds to a quasi-1D problem which can be factorized efficiently using an O(Ni)LU decomposition that orders the
short dimension first. In 3D, it corresponds to a quasi-2D problem that can be factorized in O N3=2

i

� �
time using the multi-

frontal method with nested dissection.
To make things more precise, the process of approximating S�1

i for i = 2, . . . ,K in operator form is as follows. Consider the
shifted stretching function for subdomain Xi,
sn;iðnÞ ¼ 1þ iriðnÞ;
where ri is the ramp-like function
riðnÞ ¼
h �1þði�1Þ‘�n

‘

� �2
; n 2 ½�1þ ði� 2Þ‘;�1þ ði� 1Þ‘�

0; n 2 ½�1þ ði� 1Þ‘;1� ‘�
h n�1þ‘

‘

� �2
; n 2 ½1� ‘;1�

8>>><>>>: :
The truncated half-space problem for layer i is then
r� ~l�1
r;i r� E� j2~er;iE ¼ �ixl0J in intðT i�1 [ T iÞ

n̂� E ¼ 0 on @ðT i�1 [ T iÞ;
ð3:7Þ
where the material parameters in 2D are
~er;i ¼
exx

sy;i

sx
exy

eyx eyy
sx
sy;i

 !
; ~lr;i ¼ sxsy;ilzz;
and the tensors in 3D are
~er;i ¼

exx
sysz;i

sx
exysz;i exzsy

eyxsz;i eyy
sxsz;i

sy
eyzsx

ezxsy ezysx ezz
sxsy

sz;i

0BB@
1CCA; ~lr;i ¼

lxx
sysz;i

sx
lxysz;i lxzsy

lyxsz;i lyy
sxsz;i

sy
lyzsx

lzxsy lzysx lzz
sxsy

sz;i

0BB@
1CCA: ð3:8Þ
Clearly, subproblem (3.7) requires only the first two layers of the shifted PML function. Denote the stiffness matrix resulting
from the discretization of (3.7) as Hi; it is crucial that the degrees of freedom in the local subproblem maintain the same
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order as in (3.2). Using the multifrontal method with nested dissection, we can construct the optimal sparse LU factorization
of Hi and are able to apply the inverse operator H�1

i efficiently. Now consider the vector v 2 CNi , where Ni is the number of
degrees of freedom in layer i. If we concatenate a vector of zeros 0 2 CNi�1 with v and apply H�1

i , the result is
H�1
i

0
v

� �
¼

w1

w2

� �
: ð3:9Þ
for vectors w1 2 CNi�1 ;w2 2 CNi . We can then extract the vector w2 from the right hand side of (3.9) to obtain the approxima-
tion of S�1

i v; we define the operator which performs this concatenation/extraction process to be eS�1
i : CNi ! CNi .

We are now ready to present the setup and application algorithms of the sweeping preconditioner with the moving PML
method; we modify Algorithms 3.1 and 3.2 appropriately with the new operator eS�1

i .

Algorithm 3.3. Setup the sweeping preconditioner of A

1: Let H1 ¼ AðE1; E1Þ; construct the sparse LU factorization of H1.
2: for i = 2, . . . ,K do
3: Let Hi be the stiffness matrix of (3.7). Construct the optimal sparse LU factorization of Hi using the multifrontal

method with nested dissection.
4:end for

The setup of the preconditioner requires the solution of each subproblem in (3.7). In the 2D case, each subproblem has
Oð

ffiffiffiffi
N
p
Þ degrees of freedom. The multifrontal method constructs the solution of the quasi-1D problem with linear complexity,

so each subproblem can be solved in Oð
ffiffiffiffi
N
p
Þ time. Since there are Oð

ffiffiffiffi
N
p
Þ subproblems to be solved, the total setup time in 2D

is O(N). In the 3D case, the estimate is slightly worse. Each subproblem in 3D contains O(N1/3) � O(N1/3) = O(N2/3) degrees of
freedom; consequently, the multifrontal method can solve the quasi-2D problem in O((N2/3)3/2) = O(N) time. Since there are
O(N1/3) layers, the total complexity to setup the 3D preconditioner is O(N4/3).
Algorithm 3.4. Apply the approximate inverse to b to get u � A�1b

1: Set uðEiÞ ¼ bðEiÞ, for i = 1, . . . ,K.
2: Compute uðE2Þ ¼ uðE2Þ � AðE2; E1ÞH�1

1 uðE1Þ.
3: for i = 2, . . . ,K � 1 do

4: Compute uðEiþ1Þ ¼ uðEiþ1Þ � AðEiþ1; EiÞeS�1
i uðEiÞ, where the operator eS�1

i is described above.
5: end for

6: Compute uðE1Þ ¼ H�1
1 uðE1Þ.

7: for i = 2, . . . ,K do

8: Compute uðEiÞ ¼ eS�1
i uðEiÞ.

9: end for
10: fori = K � 1, . . . ,2 do

11: Compute uðEiÞ ¼ uðEiÞ � eS�1
i AðEi; Eiþ1ÞuðEiþ1Þ.

12: end for

13: Compute uðE1Þ ¼ uðE1Þ � H�1
1 AðE1; E2ÞuðE2Þ.

The main cost in Algorithm 3.4 is the application of eS�1
i . In 2D, the cost of applying the inverse of the sparse LU factor-

ization is linear; for each layer, this amounts to Oð
ffiffiffiffi
N
p
Þ time. The computation is done Oð

ffiffiffiffi
N
p
Þ times, which results in a total

complexity of O(N). In 3D, applying each inverse can be done in logarithmic linear time, i.e. O(N2/3log N2/3). With O(N1/3) lay-
ers, this results in a total complexity of O(N log N).

Algorithms 3.3 and 3.4 define an inverse operator M�1, which is an approximation of A�1. For stability reasons, it is more
prudent to construct the approximate sweeping factorization for the equation
r� ~l�1
r r� E� ðjþ iaÞ2~erE ¼ �ixl0J; ð3:10Þ
where a is a positive damping constant of O(1). This approach is different from the shifted Laplacian preconditioner, in which
the damping constant is proportional to frequency. With M�1

a being the approximate inverse operator for the discretization
of (3.10), we can solve the preconditioned linear system
M�1
a Au ¼ M�1

a b:
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using a Krylov subspace iterative solver. As we will show in the numerical results, the rate of convergence of the iterative
solver will be either independent or logarithmically dependent on frequency, with a low number of iterations.

A few remarks must be made about practical issues with the algorithm. First, we have presented the moving PML method
in the z-direction for 3D; this choice is arbitrary, as we can also partition the mesh into slabs orthogonal to the x or y axes. For
these cases, the appropriate PML functions must be shifted for the material tensors in (3.8). Second, we have defined each
subdomain to have the same thickness as the PML; this is not a restriction, as one could configure the subdomains so that
each slab is of a different thickness. This is particularly useful when computing on adaptive or locally refined meshes. In
addition, the PML used to back each slab does not need to coincide with the adjacent slab; we choose this simplification
for ease of implementation. Finally, we would like to note that other absorbing boundary conditions (ABC) can be utilized
in place of the PML. The use of an ABC would reduce the memory and computational time, as each subproblem would
not need an extra buffer layer.

4. Numerical results in 2D

In the 2D case, we present several numerical results to support our claims for the accuracy and linear complexity of the
sweeping preconditioner. All of the 2D algorithms are implemented in sequential C++ code on a server equipped with Intel
Xeon E7420 2.13 GHz processors. For the multifrontal method used to solve each subproblem, we employed the sequential
version of MUMPS [1]. For the iterative solver, we have chosen GMRES iteration with a residual tolerance set to 10�3.

4.1. Cartesian PML

For Cartesian PMLs, we have chosen a few examples of heterogeneous media which are of importance to the optics and
photonics community:

1. A converging lens profile. Here, we consider the isotropic, heterogeneous material
er ¼ 1þ e�30ðx2þy2Þ
� � 1 0

0 1

� �
; lr ¼ ð1þ e�30ðx2þy2ÞÞ:
At the center of the lens, the wavespeed is 1
2 c, where c ¼ 1ffiffiffiffiffiffiffil0e0

p is the speed of light in free space.
2. A periodic medium. We use the 2D function
f ðx; yÞ ¼ 1þ 1
4

cos 20
xffiffiffi
2
p þ yffiffiffi

2
p

� �� �
þ 1

4
cos 20

xffiffiffi
2
p � yffiffiffi

2
p

� �� �
ð4:1Þ
to form the isotropic material
er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx; yÞ

q 1 0
0 1

� �
; lr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx; yÞ

q
: ð4:2Þ
In these examples, the current J is a solenoidal vector field in the x–y plane derived from a Gaussian point source oriented in
the z-direction, i.e.
Jðx; yÞ ¼ r� ẑe�j2ðx2þðy�0:5Þ2Þ
� �

: ð4:3Þ
The preconditioner is constructed with a = 1 and PML width ‘ = 2k. For each experiment, we fix the domain [�1,1]2

while simultaneously increasing the wavenumber j, keeping the same resolution for elements per wavelength; we list
the width of the problem in wavelengths K :¼ j

p ¼
x ffiffiffiffiffiffiffil0e0
p

p , the number of degrees of freedom N, the preconditioner setup
time Tsetup in seconds, the iterative solver time Tsolve in seconds, and the number of iterations necessary for convergence
Niter.

From the table in Fig. 3, it is observed that when K doubles, the number of degrees of freedom increases by a factor of 4. At
the same time, Tsetup also increases approximately by a factor of 4, which shows the linear complexity of Algorithm 3.3. The
time per iteration Tsolve

Niter
also grows roughly by a factor of 4; thus, we can infer that the application Algorithm 3.4 is also O(N).

As the number of iterations either remains constant or grows very weakly with frequency, the entire solver has O(N) com-
plexity. The complexity graphs in Fig. 4 support these claims.

4.2. Cylindrical PML

The sweeping preconditioner can also be used with a cylindrical PML; in this case, the computational domain is a circle of
radius 1. Instead of partitioning the domain into equally sized horizontal or vertical layers, a series of concentric shells are



Fig. 3. Real part of the magnetic field Hz at K = 64 with computational results for the converging lens (left) and periodic medium (right).
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Fig. 4. The complexity graphs for setup time of the preconditioner (left) and time per iteration of the iterative method (right) in the 2D case.
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Fig. 2. Material er and lr for the 2D converging lens (left) and periodic medium (right).

P. Tsuji et al. / Journal of Computational Physics 231 (2012) 3770–3783 3779



Fig. 5. Layers of the circular domain for the cylindrical PML.

Fig. 6. Real part of the scattered field Hz at K = 64 for the PEC cylinder (left) and real part of the total field Ex at K = 64 for the transformation optics cloak
(right), with computational results.
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introduced. This organization is natural because the cylindrical PML is a shell surrounding the domain; the sweeping direc-
tion is oriented along the radial direction, towards the center. Fig. 5 illustrates the layer structure for the circle mesh. (See
Fig. 6 and 7)

The following are standard examples in the high-frequency scattering and metamaterial communities:

1. A cylindrical PEC scatterer. Here, we have a PEC cylinder embedded in free space with a radius of 0.25.
2. A transformation optics cloaking device. We consider the cylindrical cloak derived from coordinate transformations [18]

with singular parameters near the inner radius of the cloak; inside the cloak lies a PEC. The material is characterized by
the relative parameters in cylindrical coordinates (q,h,z):
eqq ¼ lqq ¼
q� a

q

ehh ¼ lhh ¼
q

q� a

ezz ¼ lzz ¼
q� a

q
b

b� a

� �2
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where a and b are the inner and outer radii of the cloak, respectively. For our experiments, we choose a = 0.25 and b = 0.5.
This example is particularly interesting for a few reasons: the medium is discontinuous over the boundary of the cloaking
shell, and its material tensor in Cartesian coordinates is anisotropic with off-diagonal entries.

Instead of a current source, we choose a plane wave as the incident field. This requires us to use the scattered field for-
mulation; although the right hand side is altered slightly, this does not change the construction of the stiffness matrices or
preconditioner. Here, the plane wave is
Einc ¼ ŷe�ijx ð4:4Þ
The results for the cylindrical PML examples also show the linear complexity of the 2D algorithm. In this instance, every time
the frequency is doubled, the radius of the domain in terms of wavelength is multiplied by a factor of 2; this yields an in-
crease in the degrees of freedom by a factor of 4. For the PEC scatterer, we see that the setup time grows roughly by a factor
of 4, and the application time also increases by a factor of 4, which is consistent with the O(N) complexity estimate. For the
cloaking device, however, we observe that the setup and solve times increase by a factor of 4.2 instead, implying an O(N log
N) complexity. The reason this example has a less optimal complexity result is because of the dense mesh used to discretize
the cloaking layer. Because the cloaking device relies on transformation optics, the oscillations are condensed inside the out-
er shell; thus, the mesh must be refined to keep the same dispersion relationship. Each subproblem on the cloaking shell
results in a thicker 2D problem instead of a quasi-1D strip, resulting in the increase in computational time. The added DOFs
also increase the memory requirements for each problem, limiting the largest domain to K = 128.

5. Numerical results in 3D

In the 3D case, we present a few examples to show the O(N4/3) complexity of the sweeping preconditioner. The 3D code is
implemented in sequential C++ on a server equipped with 2.2 GHz AMD Opteron 6174 processors. Once again, we choose the
sequential version of MUMPS for the multifrontal method and GMRES iteration with a residual tolerance set to 10�3. We test
the sweeping preconditioner on the following 3D media:

1. A converging lens profile. Here, we consider the isotropic, heterogeneous material
er ¼
3
4

1� 1
2

e�8ðx2þy2þz2Þ
� ��1

I lr ¼
3
4

1� 1
2

e�8ðx2þy2þz2Þ
� ��1

I

where I is the 3 � 3 identity matrix.
2. A periodic medium. Using the 2D function
f ðx; yÞ ¼ 1þ 1
4

cos 20
xffiffiffi
2
p þ yffiffiffi

2
p

� �� �
þ 1

4
cos 20

xffiffiffi
2
p � yffiffiffi

2
p

� �� �
; ð5:1Þ
we can form the oscillatory medium
er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx; yÞ

q
I; lr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx; yÞ

q
I: ð5:2Þ
Note that the function is invariant in the z direction; we should see caustics similar to the 2D case.

The current source in these examples is a Gaussian point source oriented in the z-direction, i.e.
Jðx; y; zÞ ¼ ẑe�
j2

p2ðx
2þðy�0:5Þ2þz2Þ

: ð4:3Þ
Here, the preconditioner is constructed with a = 1 and PML width ‘ � k. In contrast to the 2D case, where ‘ = 2k, we
decrease the thickness of each layer to make the 3D algorithm as efficient as possible. Although having thinner slabs
increases the number of iterations, we observe that the GMRES convergence does not deteriorate significantly for the
problems tested.

The complexity of the 3D algorithm is illustrated in Fig. 8. Keeping the element-to-wavelength ratio constant while dou-
bling the frequency forces the total degrees of freedom to increase by a factor of 8. At the same time, the O(N4/3) complexity
estimate implies that the setup time should increase by a factor of 84/3 = 16. However, we observe an increase in setup time
by a factor of 11 or 13. The cause of this improvement is clear; in practice, the number of subdomains is closer to O(N1/5)
rather than O(N1/3). Thus, we observe complexity that grows as O(N6/5) instead. For the application of the preconditioner,
the O(N log N) estimate implies that the solve time should increase roughly by a factor of 10 given the same number of iter-
ations. Fig. 9 supports our claims.

We finish the numerical results section with a few remarks. When comparing the preconditioner of [9] to this paper, there
are two main challenges that need to be addressed. First, the vector nature of Maxwell’s equations makes it more difficult to
reproduce the Green’s function in each half-space. This is evident through observing the free space dyadic Green’s function,
which contains the Hessian of the Helmholtz Green’s function. Second, the boundaries between two layers are not flat



Fig. 8. Real part of the field Ez in the x–y plane at K = 20 with computational results for the converging lens (left) and the periodic medium (right).
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Fig. 9. The complexity graphs for setup time of the preconditioner and time per iteration of the iterative method in the 3D case.

Fig. 7. Slice plots of er and lr for the 3D converging lens (left) and periodic medium (right).
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planes. The half-space approximation still applies because the algebraic structure of the LDLt factorization remains the same;
however, the convergence is not as fast as on the uniform grid because the half-space Green’s function for a rough surface is
harder to compute accurately. To combat these difficulties, we have decreased the damping parameter a and have refined
the mesh slightly.

6. Conclusions and future work

The sweeping preconditioner with moving PMLs originally developed by Engquist and Ying in [8,9] has been presented for
finite elements on unstructured meshes, in the context of the time-harmonic Maxwell’s equations. The algorithm has been
tested on a variety of problems, including a cloaking example with anisotropic and discontinuous material parameters. It has
been shown that the preconditioner is essentially unaffected by frequency, requiring only a small number of GMRES itera-
tions which remains almost constant as wavenumber increases. This produces a linear complexity solver in 2D and an almost
linear complexity solver in 3D.

A few questions still remain to be answered. First, we have considered low-order finite elements that are standard in
computational electromagnetics. In many applications, however, higher-order basis functions are desirable to minimize
the dispersion error and drastically reduce the number of degrees of freedom. It would be interesting to see the performance
of the algorithm in these situations. Second, there are other physical applications in which frequency domain wave equations
on unbounded regions arise, most notably in linear elasticity. In seismic imaging, many researchers resort to solving the sca-
lar Helmholtz equation; due to computational constraints, they are unable to solve the full elastic wave equation. We believe
that the sweeping preconditioner would allow the efficient solution of such problems. Finally, improvements can be made
for the algorithm in 3D. Instead of using the multifrontal method for each subproblem, one can reuse the sweeping precon-
ditioner within each layer recursively; this would reduce the complexity estimate from O(N4/3) to O(N log N), producing a
logarithmic linear complexity solver in 3D. It would be important to compare the accuracy and complexity tradeoff between
the sparse direct solver and the recursive sweeping preconditioner.

References

[1] P.R. Amestoy, I.S. Duff, J.Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal.
Appl. 23 (1) (2001) 15–41.

[2] I.M. Babuska, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev 42 (3)
(2000) 451–484.

[3] A. Bayliss, C.I. Goldstein, E. Turkel, An iterative method for the Helmholtz equation, J. Comput. Phys. 49 (3) (1983) 443–457.
[4] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2) (1994) 185–200.
[5] Y. Boubendir, X. Antoine, C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, J. Comput. Phys.

231 (12) (2012) 262–280.
[6] W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave Opt. Tech. Lett.

7 (13) (1994) 599–604.
[7] F. Collino, S. Ghanemi, P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation, Comput. Methods Appl. Mech.

Eng. 184 (2-4) (2000) 171–211.
[8] B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation, Commun. Pure Appl. Math. 64 (2011)

697–735.
[9] B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Model. Simul. 9 (2011) 686–

710.
[10] Y.A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation, Arch. Comput. Methods Eng. 15 (1) (2008) 37–66.
[11] Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation, Appl. Numer. Math. 50 (3-4) (2004) 409–425.
[12] Y.A. Erlangga, C. Vuik, C.W. Oosterlee, A comparison of multigrid and incomplete LU shifted Laplace preconditioners for the inhomogeneous Helmholtz

equation, Appl. Numer. Math. 56 (5) (2006) 648–666.
[13] M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput. 24 (1) (2002) 38–60.

electronic.
[14] J. Jin, The Finite Element Method in Electromagnetics, Wiley-IEEE Press, 2002.
[15] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, in: Third International Symposium on Domain

Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1990, pp. 202–223. Houston, TX, 1989.
[16] P. Monk, Finite element methods for Maxwell’s equations, Oxford University Press, 2003.
[17] J.C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (3) (1980) 315–341.
[18] J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (5781) (2006) 1780–1782.


	A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements
	1 Introduction
	2 Finite element methods for Maxwell’s equations
	2.1 Perfectly matched layers
	2.2 Variational formulation
	2.3 Vector finite elements

	3 Preconditioner for FEM
	3.1 Mesh partitioning
	3.2 Sweeping factorization
	3.3 Moving PML method

	4 Numerical results in 2D
	4.1 Cartesian PML
	4.2 Cylindrical PML

	5 Numerical results in 3D
	6 Conclusions and future work
	References


