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Abstract: The aim of the current paper is to present a mimetic algorithm called the chaotic evolu-
tionary programming Powell’s pattern search (CEPPS) algorithm for the solution of the multi-fuel
economic load dispatch problem. In the CEPPS algorithm, the exploration process is maintained by
chaotic evolutionary programming, whereas exploitation is taken care off by a pattern search. The
proposed CEPPS has two variants based on the Gauss map and the tent map. Seven generalized
benchmark test functions and six cases of the multi-fuel economic load dispatch problem are consid-
ered for the performance analysis. It is observed from the analysis that the CEPPS solution procedure
based on the tent map exhibits superiority to obtain an excellent solution and better convergence
characteristics than traditional chaotic evolutionary programming. Further, the performance in-
vestigation for the considered economic load dispatch shows that the Gauss map CEPPS solution
procedure performs better than the tent map based CEPPS to obtain the solution of the multi-fuel
economic dispatch problem.

Keywords: chaotic evolutionary programming; Gauss map; Powell’s pattern search; robustness test;
tent map

1. Introduction

The electric power system is a complex engineering system. The planning, operation
and control of the interconnected electric power system is a challenging task. Economic
load dispatch (ELD) of the power system is one such task, which means planning, schedul-
ing, and operating generators in an economical manner. The transmission losses form
an inherent part of the economic operation of the power system. Today’s ELD problem
posses nonlinear behavior, due to imposed equality and inequality constraints [1]. The ELD
of a multi-fuel system involves power generators that utilize more than one type of fuel.
Depending on the power demand, the generator can switch the fuel type [2]. The ELD prob-
lem has been identified as a multimodal problem, which is a challenge to solve. Since the
practical problems are multimodal in nature, the gradient approaches are not suitable for
them. In this respect, the solution of nonlinear economic dispatch problems has been effec-
tively obtained using random search algorithms irrespective of the shape of the solution
hyperspace. Although these heuristic methods provide a faster and reasonable solution,
these do not ensure a global optimal solution in a finite time. The complex dispatch and
scheduling problems require effective and efficient optimization algorithms for a beneficial
solution [3]. In effect, the global optimization algorithms have been extensively used as a
solution procedure for ELD problem having a multi-fuel generator.
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In the previous decade, global optimization techniques such as genetic algorithm or
simulated annealing, which is a form of probabilistic heuristic algorithm, have been used
to solve the ELD problem. The other widely accepted stochastic search algorithms are evo-
lutionary programming (EP) [4], particle swarm optimization (PSO) [5], genetic algorithm
(GA) [6], simulated annealing (SA), etc. The population based algorithms, also called evo-
lutionary algorithms (EAs), have been widely employed to solve the practical constrained
ELD optimization problems. The derivative free mechanism, parallel processing nature,
fast convergence rate, performance independent of the hyperspace, etc., are the key factors
for the superiority of these methods.

In the 1990s, EP dominated the field of optimization algorithms. The features of the
EP mechanism are: firstly, the utilization of real-valued variables and parameters; secondly,
mutation and selection are the sole operators, i.e., EP uses a single evolution operator.
The computational resources required by EP are much less compared to other EAs; hence,
it may result in a smaller computational time. The maturity phase of EP consists of classical
EP [7], self-adaptive EP [8], fast EP [9], scaled Gaussian mutation EP [10], EP with the mean
of Gaussian and Cauchy mutations with an empirical learning rate [7], EP with Gaussian
mutation with empirical learning [11] and EP with the better of Gaussian and Cauchy
mutations with an empirical learning rate [12]. The objective of all these modifications
is to elevate the limitations of multimodal problem solving [12]. Liu et al. [13] showed
empirically that EP with cooperative convolution cab be used to solve large-scale problems
with superior performance. Further, a fast EP algorithm based on a Levy probability
distribution based mutation operator has shown a performance advantage [14]. It has been
observed from the literature survey that the modifications of EP are random number or
mutation operator oriented.

Recently, the application of non-linear dynamics has been suggested for the selection of
algorithm control parameters [15] and search algorithm tuning [16,17]. A random sequence
inheriting features of long periodicity and uniformity is suitable to enhance the search
ability of the stochastic search algorithm. The random numbers generated by the chaotic
map exhibit ergodicity, non-repetitiveness, and non-linearity and are dynamic in nature [18].
The random number sequence possesses an element of regularity and exhibits sensitive
dependence on initial conditions [19]. Since different chaotic maps lead to diverse behavior,
the chaos maps are potential alternatives to pseudo random sequences. Gandomi et al. [20]
provided an in-depth analysis of different chaos maps as an alternative to conventional
pseudo random numbers. The investigation of chaotic bat algorithm using generalized
benchmark test functions leads to a conclusion that the use of chaos is advantageous.
Similarly, chaotic practical swarm optimization [21], chaotic differential evolution [22],
and crisscross differential evolution [23] have been used to solve engineering problems.
Hui et al. [24] investigated the performance of chaos based multi-objective evolutionary
algorithms and concluded that chaotic maps improved the performance of evolutionary
algorithms to solve a problem. An advancement in the field of chaotic numbers involves
the application of adaptive symmetry to create chaos [25] and digital chaotic systems [26].
The use of chaos map based random numbers in EP may be advantageous to ensure that
the algorithm generates diverse solutions and potentially explores the multimodal objective
landscape. An algorithm with these properties can result in better exploration and a better
convergence rate [27].

On the basis of the above facts and arguments, it is necessary to empirically investigate
the performance of the EP by incorporating a chaotic sequence. Therefore, a hybrid algo-
rithm, chaotic evolutionary programming and pattern search (CEPPS), has been proposed
by implementing the following steps:

1. Introduction of the chaotic sequence based population initialization process.
2. A chaotic mutation operator is proposed and employed.
3. A chaos guided tournament selection operator is considered to select better candidates.
4. The Powell’s pattern search is applied to enhance the exploitation of the proposed

algorithm.
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The standard benchmark test function and a practical problem of ELD for a multi-fuel
generator problem are used to analyze the performance of CEPPS. The results are compared
with the results of available algorithms from the past.

The paper is organized into seven parts. Section 2 presents the formation of the
multi-fuel ELD problem. Section 3 presents the mathematical foundation of evolutionary
programming algorithms. Section 4 discusses the mathematical foundation of the chaotic
EP algorithm. Section 5 presents the details of various generalized benchmark functions
and the multi-fuel economic dispatch problem considered in the study. Section 6 presents
the numerical results by CEPPS and comparisons with recently published work. Finally,
Section 7 concludes the paper.

2. Economic Load Dispatch Problem

The economic load dispatch problem aims to minimize the power generation’s cost
while satisfying the constraints of expected load demand and the generator’s operation. In
the case of the multi-fuel load dispatch problem, the power generators have the option of
multiple fuels, and each unit represents several piece-wise, quadratic functions reflecting
the effect of fuel change. The multiple fuel options and valve point loading effect result
in the multimodal and discontinuous nature of the problem. A multi-fuel ED problem is
mathematically expressed as follows:

Minimize the operating cost:

F(P) =
Ng

∑
j=1

(ajmP2
j + bjmPj + cjm+|djm sin ejm(Pmin

jm − Pj)|) (Pmin
jm ≤ Pj ≤ Pmax

jm ) (1)

where Pj is the generated real power and P= [P1, P2,. . . , PNg]T . Ng is the number of
generators. ajm, bjm, cjm, djm, and ejm are the thermal generators’ cost coefficients of the
jthgenerator’s mth fuel option. Pjm

min and Pjm
max are the generator’s lower and upper

limits for the mth fuel option.
The cost objective function is subject to:

(i) The power balance equality constraint:
Ng

∑
j=1

Pj − (PD + PL) = 0 (2)

(ii) The generator operating limits:

Pmin
j ≤ Pj ≤ Pmax

j (j = 1, 2, . . . , Ng) (3)

(iii) The ramp rate limit.

• As generation increases:

Pj − P0
j ≤ URj

(
j = 1, 2, . . . , Ng

)
(4)

• As generation decreases:

P0
j − Pj ≤ DRj

(
j = 1, 2, . . . , Ng

)
(5)

(iv) Prohibited operating zone constraint:

Pmin
j ≤ Pj ≤ PL

j,1
(

j = 1, 2, . . . , Ng
)

PU
j,i−1 ≤ Pj ≤ PL

j,i
(
i = 1, 2, . . . , Nzj; j = 1, 2, . . . , Ng

)
(6)

PU
j,Nzj ≤ Pj ≤ Pmax

j
(

j = 1, 2, . . . , Ng
)
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where PD and PL are the forecasted demand and transmission loss of the network, re-
spectively. Nzj the is number of prohibited zones of the jth generator. P0

j is the previously
generated power. URj and DRj are the up-ramp limit and down-ramp limit of the jth
generator. PL

j,i and PU
j,i are the lower and upper range of the jth prohibited zone respectively

of the jth generator

3. Evolutionary Programming

The evolution process of EP has two steps: (i) mutate the current population; (ii) select
best one out of the current solution and the mutated solution. A real-valued vector (xi, ηi)
is used for each individual in the population. Here, xi is the decision variable, and ηi is the
associated strategy parameter. The generation of a new solution xk

i at kth iteration is based
on the mutation operator. The selection operation decides the survival of a solution in the
future generation population. Mathematically, this concept is illustrated as below:

xk+1
ij = xk

ij + ηk
ijNj(0, 1) (i = 1, 2, . . . , NP, j = 1, 2, . . . , ND) (7)

ηk+1
ij = ηk

ijexp(χ1N(0, 1) + χ2Nj(0, 1)) (i = 1, 2, . . . , NP, j = 1, 2, . . . , ND) (8)

where Nj(0, 1) is the normally distributed random number with mean zero and one as
the standard deviation, generated for the jth component. Np is the population size and
ND represents the components for ithe individual. The parameters χ1 and χ2 are given by(√

2ND − 1
)−1 and

(√
2
√

ND − 1
)−1

[28].

The strategy parameter ηk
ij and offspring xk

ij are updated using the repetitious process

mentioned above along with the selection operation to decide the parents for the k + 1th

generation. The process repeats until the termination criteria are satisfied.

4. Proposed Algorithm

The proposed algorithm blends the chaotic evolutionary programming (CEP) ap-
proach and Powell’s pattern search (PS), to solve the various benchmark test problems.
CEP aims at the exploration, whereas PS focuses on the exploitation of the search area
around the solution located by CEP. The process is explained in the following subsections.

4.1. Chaotic Evolutionary Programming

In chaotic evolutionary programming, a pre-selected chaotic sequence is used to
replace the conventional random number generator. The Gauss map and the tent map
are used in the iterative process. Therefore, in an ND-dimensional search space, an ith
individual vector (xi, ηi) is a possible solution of the problem. Mathematically, the evolution
concept of chaotic EP to generate offspring is illustrated as follows:

xt+1
ij = xk

ij + ηijφj(0, 1) (i = 1, 2, . . . , NP, j = 1, 2, . . . , ND) (9)

ηt+1
ij = ηk

ijexp(χt+1φ(0, 1) + χφj(0, 1)) (i = 1, 2, . . . , NP, j = 1, 2, . . . , ND) (10)

where φj(0, 1) ∈ [0, 1] is a chaos generated random number for the jth individual.
In this work, the Gauss map and the tent map sequence are used as these have the

advantage of a uniform distribution and are one-dimensional maps. These maps generate
numbers that help the algorithm converge faster.

A Gauss map based chaotic sequence is represented as [20]:

φn+1 =

{
0 ; φn < 0
1

φn
− [ 1

φn
] ; otherwise

(11)
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and the tent map chaotic sequence follows [20]:

φn+1 =

{
φn
0.7 ; φn < 0.7
10
3 (1− φn) ; otherwise

(12)

The time series plot of the tent map and the Gauss map are shown in Figure 1a,b, respec-
tively. The selected maps generates chaos numbers that are well in the acceptable range of
the EP algorithm. The correctness of the range of chaotic sequences is another deciding
factor for the selection of the chaotic map [24]. After the offspring generation at the kth
generation, the combined population (parents and offspring) compete with each other
to survive in the (k + 1)th generation. For the selection, an individual’s score ζi in the
stochastic competition is given by:

ζ =
NP

∑
n=1

wn (i = 1, 2, . . . , NP) (13)

with:

wn =

{
1 ; φ1 < fm

fi+ ft

0 ; otherwise
(14)

where fm is the fitness of the mth randomly selected competitor in the combined population;
m = int(2Lφ2 + 1); fi is the fitness value of the ith individual; φ1, φ2 ∈ [0, 1] are random
numbers generated by the chaotic sequence.

(a) Tent map (b) Gauss map

Figure 1. Time series plot of the tent and Gauss maps, respectively [20].

4.2. Powell’s Pattern Search Method

Powell’s method is a numerical technique based on a direct search to obtain the
solution of the problem in hand. If the quality of the solution improves, the newly generated
solution will be a success. The pattern-move accelerates the search process in an ascertained
direction. The PS is represented mathematically as follows:

Initialize ND-dimensional linearly independent search direction S:

Sij =

{
1; i = j
0; otherwise

(i, j = 1, 2, . . . , ND) (15)

In each direction, a unidirectional search is performed using xi as the best point
described as follows:

xj =

{
xj + λ∗i Sij ; f (xj + λ∗i Sij) < f (xj)

xj ; otherwise
(16)
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where λ∗i ∈ [λmin
i , λmax

i ] is a randomly generated step size.
A pattern search direction is given by following equation:

Sij = xj − xj−N (j = 1, 2, . . . , ND) (17)

5. Simulation Test Problems

In order to prove the capability and efficacy of the CEPPS solution approach, the gen-
eralized benchmark test functions, as well as standard real-world problems related to
power system operation are undertaken. The Gauss and tent map sequences are applied to
investigate their behavior while implementing CEP and CEPPS. Using the Gauss map and
the tent sequence, the CEP method is termed CEP-1 and CEP-2, respectively. A similar no-
tation is used for the CEPPS procedures. The generalized test functions are taken from [29]
and are described in the following subsection.

5.1. Generalized Test Functions

The standard test functions considered to prove the ability to solve optimization
problems are non-differentiable, non-separable, discontinuous, and multimodal in nature
and are described below:

1. Griewank function: This is described mathematically as:

F1(x) =
n

∑
i=1

x2
i

4000
−∏ cos(

xi√
i
) (18)

subject to (−600 ≤ xi ≤ 600).

The above function is multimodal, non-separable, differentiable, scalable, and contin-
uous in nature. The global minimum is f (x∗) = 0, x∗ = f (0, . . . , 0).

2. Rastrigin’s function: This is described mathematically as:

F2(x) =
n

∑
i=1

[x2
i − 10cos(2πxi)] (19)

subject to (−10 ≤ xi ≤ 10).

The above function is non-differentiable and highly multimodal. The global minimum
is located at x∗ = f (0, . . . , 0), f (x∗) = 0.

3. Rosenbrock’s function: This is described mathematically as:

F3(x) =
n−1

∑
i=1

[(xi − 1)2 + 100(xi+1 − x2
i )

2] (20)

subject to (−30 ≤ xi ≤ 30).

The global minimum is located at x∗ = f (1, . . . , 1), f ∗ = 0.

4. Schwefel 2.22 function: This is described mathematically as:

F4(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi| (21)

subject to (−10 ≤ xi ≤ 10).

5. Sphere function: This is one of the simplest of De Jong’s functions. It is described
mathematically as:

F5(x) =
n

∑
i=1

x2
i (22)
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subject to (−10 ≤ xi ≤ 10) (i = 1, 2, . . . , n).

The above function is differentiable, continuous, scalable, separable, and unimodal in
behavior. The global minimum is x∗ = f (0, . . . , 0), f (x∗) = 0.

6. Step function: This is described mathematically as:

F6(x) =
n

∑
i=1
b|xi|c (23)

subject to (−10 ≤ xi ≤ 10).

The above function is unimodal, discontinuous, separable, non-differentiable, and
scalable. The global minimum is x∗ = f (0, . . . , 0) = 0, f (x∗) = 0.

7. Step 2 function: This is described mathematically as:

F7(x) =
n

∑
i=1
b|xi + 0.5|c (24)

subject to (−10 ≤ xi ≤ 10)

The above function is uni-modal, separable, discontinuous, non-differentiable, and
scalable in nature. The global minimum is x∗ = f (0.5, . . . , 0.5) = 0, f (x∗) = 0.

5.2. Multi-Fuel Economic Load Dispatch Problem

The practical problem considered is the ELD problem having multi-fuel generators.
The generators have additional associated complexities such as prohibited operating zone,
valve point loading, etc., as shown in Table 1. In total, six cases of the multi-fuel economic
dispatch problem, listed in Table 1, are used in this study.

Table 1. Multi-fuel system undertaken for the study, PD = 2700 MW [30].

Case Valve Point Loading Ramp Rate Prohibited Operating Zone Transmission Loss

1 × × × ×
2 X × × ×
3 × × X ×
4 × × × X
5 X × X X
6 × × X X

6. Results and Discussion

The standard test functions were considered to analyze the ability of the CEPPS
solution approach. The results obtained by the proposed CEPPS variants were compared
with that obtained from CEP. To compare the performance, seven standard test functions
were solved using CEP and CEPPS variants. Table 2 shows the worst (W), average (A), and
best (B) results for each test function after 30 trials.

The comparison of the convergence plots for the investigated standard test functions
is shown in Figure 2 using the log scale. Figure 2a represents the convergence behavior
of Griewank’s function, which exhibits that CEPPS-1 and CEP-1 converge quickly in the
starting phase, but result in premature convergence. However, CEPPS-2 and CEP-2 result
in much better solutions, although initially, these were slow to converge. Finally, CEPPS-2
obtains the best solution compared to the others.
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(a) Griewank function (b) Rastrigin function

(c) Rosenbrock function (d) Schwefel’s 2.22 function

(e) Sphere function (f) Step function

(g) Step 2 function

Figure 2. Convergence behaviors of the different test functions.
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The convergence behavior of Rastrigin’s function is depicted in Figure 2b. It shows the
same trend as in the case of Griewank’s function. However, for the Rastrigin function, it is
found that CEPPS-2 performs significantly better than CEP-2 and provides a better solution.

The convergence behavior in Figure 2c shows that in the case of Rosenbrock’s function,
both CEPPS-1 and CEP-1 result in premature convergence, while the performance of CEP-2
is significantly better than CEPPS-2. Furthermore, the behavior of Schwefel’s function
in Figure 2d shows that CEPPS-1 results in the best solution of the problem, whereas
both CEP-1 and CEP-2 are the worst performers. The result of the sphere function in
Figure 2e shows that the CEPPS-2 algorithm has the best convergence rate. Furthermore,
the convergence behavior comparison in Figure 2f,g for the step and Step 2 function,
respectively, indicates that CEP-2 and CEPPS-2 have better performance than the others.
Even CEP-2 performs better than CEPPS-2 for the Step 2 function.

Thus, the convergence behavior plots show that the CEP-2 and CEPPS-2 variants
perform better than CEP-1 and CEPPS-1. Their performance is judged either on the basis of
the convergence rate or solution quality. It is also observed that CEPPS-1 performs better
on some of the standard test problems, whereas CEP-2 and CEPPS-2 show supremacy for
other standard test functions.

Table 2. Performance analysis of the fitness value of generalized benchmark test functions [29].

Test Function Fitness CEP-1 CEP-2 CEPPS-1 CEPPS-2

Worst 4.61 1.08 11.05 9.29 × 10−1

Griewank function Average 4.61 1.08 11.05 9.29 × 10−1

Best 4.61 1.08 5.48 0.01 × 10−1

Worst 21,893.57 305.44 40,041.02 97.11
Rastrigin function Average 21,893.57 305.44 40,041.02 61.70

Best 21,893.57 305.44 15,691.13 61.70

Worst 7.54 × 108 222.46 1.00 × 1010 43,304.03
Rosenbrock function Average 7.54 × 108 22.36 1.00 × 1010 7300.95

Best 7.54 × 108 22.36 2.91 × 108 7300.95

Worst 48.16 68.45 7.57 27.71
Schwefel’s 2.22 function Average 48.16 68.45 7.57 27.71

Best 48.16 68.45 7.57 27.71

Worst 13,094.38 8.23 50,471.00 4.79 × 10−19

Sphere function Average 13,094.38 8.23 50471.00 9.40 × 10−20

Best 13,094.38 8.23 18,642.14 9.40 × 10−20

Worst 670.00 37.00 969.00 28.00
Step function Average 670.00 37.00 969.00 28.00

Best 670.00 15.00 532.00 15.00

Worst 15,349.00 6.00 39,277.00 8.00
Step 2 function Average 15,349.00 6.00 39,277.00 5.00

Best 15,349.00 6.00 17,381.00 5.00

The system depicted in Table 1 was solved for ELD by applying CEPPS-2. This system
was considered for six different cases. In all the cases, the population size NP were fixed
at 50, and the number of iterations ITmax was fixed at 2000. The cost comparison was
performed with other published work and is presented in Table 3. The results of bio-
geography based optimization (BBO), composite PSO (CPSO), GA with mutation update
(CGA-MU), differential evolution (DE), the improved gravitational search algorithm (IGA),
the improved genetic algorithm with multiplier update (IGA-MU), the enhanced aug-
mented Hopfield neural network (ELHN), the hybrid of DE and BBO (DEBBO), krill herd
optimization (KHA), the quadratic programming augmented Hopfield neural network
(QP-ALHN), PSO, and synergic predator pey optimization (SPPO) were considered for the
comparison of the solution quality.
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The comparison of the results show that in Case 1, CEPPS-1 and CEPPS-2 had a lesser
cost in comparison to all others, and both obtained a solution with a cost of 623.75 $/h.
Similarly, in Case 2, the cost for the generation schedule by CEPPS variants was better
than the others except CPSO, where it was comparable. The cost was a little bit higher
by 0.05 $/h and 0.06 $/h than CPSO. Further, in Cases 4 and 5, the generation cost for
both CEPPS variants was better than the other contenders. Moreover, in these two cases,
CEPPS-1 had the advantage of obtaining a lesser generation cost schedule. Lastly, in Case
6, CEPPS-2 obtained a better quality generation schedule than SPPO, whereas CEPPS-1
was able to obtain a somewhat deteriorated solution. To summarize, both CEPPS variants
obtained a power generation schedule either with lesser than or comparable generation
cost as the others. In addition to this, the generation cost comparison between CEPPS-1 and
CEPPS-2 shows that CEPPS-1 was able to obtain a generation schedule with a lesser cost.

Table 3. Test Power System 1, comparison of economic load dispatch (ELD) (PD = 2700 MW). BBO,
biogeography based optimization; DE, differential evolution; ELHN, enhanced augmented Hopfield
neural network; IGA, improved gravitational search algorithm; KHA, krill herd optimization; QP-
ALHN, quadratic programming augmented Hopfield neural network.

Algorithm Cost ($/h)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

BBO [31] 624.51 – – – – –
CPSO [32] – 623.82 – – – –
CGA-MU [33] 623.80 624.71 – – – –
DE [33] 623.80 624.46 – – – –
DEBBO [34] 624.51 – – – – –
ELHN [35] 624.51 – – – – –
IGA [30] 624.51 – – – – –
IGA-MU [30] 623.80 624.51 – – – –
KHA [36] 624.51 – – – – –
PSO [33] 623.80 624.24 – – – –
QP-ALHN [37] 623.80 – 624.32 – – –
SPPO 623.80 623.82 624.32 700.29 700.77 700.48
CEPPS-1 623.75 623.87 623.76 699.70 699.54 704.94
CEPPS-2 623.75 623.88 623.77 699.77 699.73 700.60

7. Conclusions

In this manuscript, chaotic evolutionary programming and pattern search have been
proposed as a solution for the economic load dispatch problem of multi-fuel power gen-
erators. The CEPPS employs achaotic map based stochastic population initialization.
Secondly, the chaos based mutation and selection operators have been proposed. In order
to enhance the exploration capability, Powell’s pattern is introduced in the search process
under stochastic control. The well accepted chaos map, viz. the Gauss map and the tent
map based CEPPS variants, were analyzed for performance. Computer simulations have
been performed on generalized test functions and a load dispatch problem to verify the
effectiveness of the CEPPS variants. The numerical results of the generalized benchmark
problems reveal that tent map based CEPPS has a better search capability to find the
optimal solution in the majority of the test problems. The experimentation on the ELD
problem of multi-fuel generators clearly indicates that CEPPS variants have the ability to
provide very competitive results in terms of generation cost as compared with the existing
literature. Lastly, it has been observed that the Gauss map based CEPPS variants have an
advantage in providing a better solution for multi-fuel systems.
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