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OPTIMAL NONPARAMETRIC ESTIMATION OF 
FIRST-PRICE AUCTIONS 

BY EMMANUEL GUERRE, ISABELLE PERRIGNE, AND QUANG VUONG1 

This paper proposes a general approach and a computationally convenient estimation 
procedure for the structural analysis of auctioni data. Considering first-price sealed-bid 
auction models within the independent private value paradigm, we show that the underly- 
ing distribution of bidders' private values is identified from observed bids and the number 
of actual bidders without any parametric assumptions. Using the theoiy of minimax, we 
establish the best rate of uniform convergence at which the latent density of private values 
can be estimated nonparametrically from available data. We then propose a two-step 
kernel-based estimator that converges at the optimal rate. 

KEYWORDS: First-price auctions, independent private value, nonparametric identifica- 
tion, two-stage nonparametric estimation, kernel estimation, minimax theory. 

1. INTRODUCTION 

IN RECENT YEARS THE EMPIRICAL ANALYSIS of auction data has attracted a lot of 
attention (see Porter (1995) and Laffont (1997) for recent surveys). First, 
auctions are frequently used to exchange commodities and to allocate public 
projects through procurements. Thus many auction data are now available. 
Second, the theory of auctions has considerably expanded since Vickrey's (1961) 
seminal paper due to the development of the Bayesian Nash equilibrium 
concept by Harsanyi (1967). Third, after many years of intense theoretical 
developments, modern industrial organization is facing the challenge of its 
empirical usefulness. As argued by Sutton (1993), auction models, which empha- 
size asymmetric information and strategic behavior, are the most favorable case 
for facing this challenge. 

Starting with Paarsch (1992), a few empirical papers have adopted a fully 
structural econometric approach, which has exclusively relied upon a parametric 
specification of the bidders' private values distribution. As is well known, even 
for first-price sealed-bid auctions with independent private values, the structural 
analysis has suffered from the numerical complexity associated with the compu- 

1We are grateful to J. J. Laffont for introducing us to auction models. We thank D. Brown, W. 
Hardle, T. Li, H. Paarsch, M. Simioni, J. Wu, three anonymous referees, the co-editor whose 
comments greatly improved the paper, and H. Raynal for computational assistance. Various versions 
were presented at the Xth Journees de Microeconomie Appliquee, Sfax, June 1993, the Far Eastern 
Meeting of the Econometric Society, Taipei, June 1993, the World Congress of the Econometric 
Society, Tokyo, August 1995, the European Meeting of the Econiometric Society, Toulouse, August 
1997, the University of California (Santa Barbara, Riverside, Berkeley, Los Angeles), Stanford, USC, 
Yale, Cornell, GREMAQ-INRA, Weierstrass Institute and Malinvaud econometric seminars. We 
thank IDEI for its hospitality during the completion of this paper. Financial support from the 
National Science Foundation under Grants SBR-9409569 and SBR-9631212 is gratefully acknowl- 
edged. 
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tation of the Bayesian Nash equilibrium strategy. As a result, only very simple 
parametric specifications of the latent distribution of private values have been 
entertained. More recently, Laffont and Vuong (1993) and Laffont, Ossard, and 
Vuong (1995) have proposed some computationally convenient estimation meth- 
ods based on simulations that allow for general parametric specifications. 

The main purpose of this paper is to address three fundamental issues at the 
heart of the structural analysis: (i) Does a theoretical auction model place any 
restrictions on observable data to be testable? (ii) Does a structural approach 
require a priori parametric information about the structural elements to identify 
the model under consideration? (iii) Can an estimation procedure be proposed 
that does not rely upon parametric assumptions and that is computationally 
feasible? We answer these issues for the symmetric first-price auction model 
within the independent private value (IPV) paradigm. 

In particular, we propose an indirect two-step procedure for estimating the 
distribution of bidders' private values from observed bids, which requires neither 
parametric assumptions nor the computations of the Bayesian Nash equilibrium 
strategy. The crucial idea of our method is that each private value can be 
expressed as a function of the corresponding bid, the distribution of observed 
bids, and the corresponding density function. The first step then consists in 
constructing a sample of pseudo private values based on kernel estimates of the 
distribution and density functions of observed bids. In a second step, this pseudo 
sample is used to estimate nonparametrically the density of bidders' private 
values. We establish the uniform consistency of our estimator and show its 
optimality in the sense that it attains the best uniform convergence rate for 
estimating the latent density of private values from observed bids. 

Our results are important for several reasons. First, on economic grounds, 
policy conclusions based on our fully nonparametric procedure are necessarily 
robust to misspecifications of the underlying distribution. Moreover, because 
economic theory does impose some restrictions on the distribution of observed 
bids, one can test in principle the validity of the theoretical auction model 
without making strong parametric assumptions on its structural elements. Sec- 
ond, from a statistical point of view our estimator applies nonparametric 
techniques in each step of a structural estimation method.2 Our first main 
statistical contribution is to derive the best rate of uniform convergence of 
nonparametric estimates of the density of (unobserved) private values from 
observed bids. To this end, we apply the minimax theory as developed by 
Ibragimov and Has'minskii (1981). To our knowledge, such a theory has been 
seldom applied in econometric work. We show that our two-step nonparametric 
estimator attains this optimal rate using suitably chosen bandwidths. Third, on 
computational grounds, our estimation procedure avoids the numerical diffi- 

2Though in recent years nonparametric techniques have been used in two-step estimation 
procedures, typically the second step concentrates on the estimation of a finite dimensional 
parameter. Only a few authors have used nonparametric techniques in both steps of an estimation 
procedure. For an example in a regression context, see Ahn (1995) who does not characterize the 
lower bound for his problem and whose two-step nonparametric estimator is suboptimal in the 
minimax sense. 
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culties that have plagued the structural analysis of auction data. Indeed, because 
it is indirect and fully parametric, our procedure requires neither the numerical 
determination of the Bayesian Nash equilibrium bid function nor iterative 
optimization algorithms. Such computational advantages are especially crucial 
when the Bayesian Nash equilibrium strategy is the solution of a differential 
equation that cannot be solved explicitly. As a result, the structural analysis of 
many auction models that are known to be untractable become readily accessi- 
ble through our indirect method. 

The paper is organized as follows. In Section 2, we present the first-price 
sealed-bid auction model with independent private values. To present the basic 
ideas, we consider first a nonbinding reservation price, and illustrate our 
procedure with some Monte Carlo experiments. In Section 3, we establish its 
asy-mptotic properties allowing for a varying number of bidders and heterogene- 
ity across auctions. Specifically, we derive the optimal uniform convergence rate 
for estimating the density of private values from observed bids. We prove the 
uniform convergence of the pseudo sample as well as the optimality of our 
two-step nonparametric estimator. In Section 4, we consider the case where the 
reservation price is binding. In Section 5, we stress the generality of our 
procedure and indicate some future lines of research. Three Appendices contain 
the proofs of our results. 

2. MODEL, IDENTIFICATION, ESTIMATION 

2.1. The First-Price Auction Model 

A single and indivisible object is auctioned. All bids are collected simultane- 
ously. The object is sold to the highest bidder who pays his bid to the seller, 
provided the bid is at least as high as a reservation price po. In such an 
institutional framework each bidder does not know others' bids when forming 
his bid. Within the IPV paradigm, each potential buyer i = 1,..., I is assumed to 
have a private value vi for the auctioned object. Each bidder does not know 
other bidders' private values but knows that all private values including his own 
have been drawn independently from a common distribution F(-), which is 
absolutely continuous with density f&) and support [v, v] c 1R,. The distribution 
of private values F(0), the number of potential bidders I, and the reservation 
price po are common knowledge with po E [v, v-]. In particular, all bidders are 
identical ex ante and the game is said to be symmetric. Each bidder is assumed 
to be risk neutral. 

The (unique) symmetric differentiable Bayesian Nash equilibrium of the 
corresponding game of incomplete information was characterized by Riley and 
Samuelson (1981) among others. Specifically, assuming I> 2, the equilibrium 
bid bi of the ith bidder is 

(1) b = s(vu, F, I, M- ( f(F(u)) 
_ 

du 
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if vi >po . If vi <po, then bi can be any value strictly less than the reservation 
price Po This strategy is obtained by solving the first-order differential equation 
in s( ): 

(2) 1=(V -s(v ))(I-1) f(v) 1i 

with boundary condition s(po) =pO. The equilibrium strategy (1) is strictly 
increasing in vi on [Po, v], and expresses the equilibrium bid as a function of the 
bidder's private value, the distribution of private values, the number of bidders, 
and the reservation price. 

In general, bids are observed while private values are unobserved. The 
preceding theoretical model leads to a closely related structural econometric 
model. Specifically, because bi is a function of vi, which is random and 
distributed as F( ), then bi is also random with a distribution G(O) (say) that is 
uniquely determined by (1). This simple observation is the basis of the structural 
analysis of auction data. It has led to the development of maximum likelihood 
estimation methods (see Donald and Paarsch (1993, 1996)) and simulation based 
estimation methods (see Laffont and Vuong (1993), Laffont, Ossard, and Vuong 
(1995), and Li and Vuong (1997)). In particular, simulation based methods are 
convenient and computationally advantageous when moments of bids can be 
simulated without determining numerically the equilibrium strategy s(-, F, I, pO) 
or its inverse s-(., F, I, pO). 

All preceding methods can be viewed as direct methods as they all start from 
a parametric specification for F( ) so as to derive expressions for the distribution 
and moments of observed bids. In contrast, the estimation method proposed in 
this paper is indirect and starts from the estimation of the distribution of 
observed bids so as to construct an estimate of the distribution of bidders' 
private values. The crucial idea upon which our identification result and estima- 
tion procedure rest is to use the differential equation (2) to express each private 
value as a known function of the corresponding bid, its distribution and density, 
the number of bidders, and the reservation price. As a result, an important 
advantage of our procedure is that it requires neither solving the differential 
equation (2) nor computing the equilibrium strategy (1) within each iteration of 
an optimization procedure. To clarify both the conceptual and the technical 
issues, we begin with a nonbinding reservation price, i.e., p0 = v so that s(v) = v 
until Section 4. 

2.2. Nonparametric Identification 

A fundamental issue in structural estimation is whether the structural ele- 
ments of the economic model are identified from available observations. Be- 
cause the reservation price is nonbinding, the number I of potential bidders is 
equal to the number of actual bidders. Hence I and bi, i = 1,..., I, are 
observed. Thus the only unknown structural element of the model is the latent 
distribution F(), and the identification problem reduces to whether this distri- 
bution is uniquely determined from observed bids. 
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Though the equilibrium relation that links the observed bid b1 to the underly- 
ing private value vi is strictly monotonic, the identification problem is nontrivial. 
This is because the distribution GO) of bi depends on the underlying distribu- 
tion FQ) in two ways: directly through vi, which is distributed as F( ), and 
indirectly through the equilibrium strategy sO ), which depends on F() (see (1)). 
The next result solves the identification problem by stating that the distribution 
F(*) is unique whenever it exists. In addition, it gives a necessary and sufficient 
condition on the distribution GO) for the existence of a distribution FQ) of 
bidders' private values that can "rationalize" GO. 

Our result relies upon the fact that the first derivative s'A) and the distribu- 
tion FQ ) with its density ffQ) can be eliminated simultaneously from the 
differential equation (2) by introducing the distribution GO) of bi and its density 
g(O)-. Specifically, for every b E [b, b] = [_, s(-v)] we have G(b) = Pr(b < b) = Pr(v 
?s -1(b)) = F(s-1(b)) = F(v), where the last equality uses b = s(v). It follows 
that the distribution GO is absolutely continuous with support [v, s(v5)] and 
density g(b) = f(v)/s'(v), where v = s-1(b). Taking the ratio gives g(b)/G(b) 
= (1/s'(v))f(v)/F(v). Thus the differential equation (2) becomes 

1 G(bi) 
(3) vi = ~((bi , G v I ) -bi + I~ -1g(b) 

Equation (3) now expresses the individual private value viL as a function of the 
individual's equilibrium bid bi, its distribution G(O), its density g(O), and the 
number of bidders I. Specifically, (3) states that if bi is the equilibrium bid, as it 
is assumed in the structural approach, then the bidder's private value vi 
corresponding to bi must satisfy (3).3 

We define the set Y of probability distributions P() on R+ as 

v = {P(-) is absolutely continuous with an interval support in R+ }.' 

As usual, we restrict ourselves to strictly increasing and differentiable Bayesian 
Nash equilibrium strategies.5 Let G( ) denote the joint distribution of (b1, . . ., b1). 

THEOREM 1: Let I 2 2. Let GO belong to the set I with support [b, b]'. There 
exists a distribution of bidders' private values FQ ) E such that G(O) is the 
distribution of the equilibrium bids in a first-price sealed-bid auction with indepen- 
dent private values and a nonbinding reservation price if and only if: 

C1: G(b1 ... ., b1) = Hfi= 1G(bi). 

3Though equations similar to (3) have appeared in the decision theoretic literature starting with 
Friedman (1956), a fundamental difference is that in decision theoiy each bidder plays as if he/she 
were alone, while (3) is the result of the differential equation (2), where bidders are in a Nash game, 
and each bidder's expectations about how others bid agree with their actual bidding behavior. 
Consequently, in decision theory, F() and G() need not be related by F()= G[s( )], and bidders 
need not be at the Bayesian Nash equilibrium. See Laffont (1997). See also Section 4, where our 
idea of expression vi in terms of observables leads to (25). 

The support is defined as the closure of {x: p(x) > 0) where p0) is a density of P(). As a result, 
any distribution in 3,' is strictly increasing on its support. 

5Throughout we assume that the second-order conditions hold. Thus the Bayesian Nash equilib- 
rium strategy is fully characterized by the first-order condition (2). 
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C2: The function 4k, G, I) defined in (3) is strictly increasing on [b, b] and its 
inverse is differentiable on [ v, -v] - [ (b, G, I), (b, G, I)]. 

Moreover, when FQ ) exists, it is unique with support [v, v] and satisfies F(v) = 

G( - 1 (v, G, I)) for all [ v, v I]. In addition, (%, G, I) is the quasi inverse of the 
equilibrium strategy in the sense that (b, G, I) = s1(b, F, I) for all b E [b, b]. 

Theorem 1 is important for many reasons. First, it shows that the theoretical 
auction model does impose some restrictions on the distribution of observed 
bids. These restrictions can constitute the basis of a formal test of the theory 
(see Section 5 for a discussion). Specifically, Condition Cl says that bids are 
independent and identically distributed as GO. Condition C2 says that, given I, 
the distribution GO of observed bids can be rationalized by a distribution of 
private values F() only if k, G,GI) is strictly increasing. For instance, any 
log-concave distribution G(0), i.e., such that g(b)/G(b) is strictly decreasing, 
satisfies Condition C2 and thus can be rationalized.6 On the other hand, 
densities that exhibit deep U-shaped parts can violate Condition C2. An exam- 
ple is the distribution G(b) = [b/(5 - 4b)]1"5 defined on [0, 1] with I = 2. Other 
examples include some highly peaked multimodal densities. 

Second, assuming that buyers behave as predicted by the model of Section 2.1, 
Theorem 1 establishes that the distribution F( ) of bidders' private values is 
identified from the distribution of observed bids. In particular, it shows that 
identification of the structural model does not require a priori parametric 
specifications. Moreover, because it is nonparametric in nature, our identifica- 
tion result applies to parametric identification as well (see Donald and Paarsch 
(1996) for a recent contribution on parametric identification). As Roehrig (1988) 
has argued, parametric identification may be achieved through misspecified 
parametric specifications, and hence can be misleading.7 

Third, it is useful to note that the function 4(, G, I) is completely determined 
from the knowledge of G(O) and I. Because ((, G, I) is the quasi inverse of 
s(-, F, I), one has neither to solve the differential equation (2) nor to apply 
numerical integration in (1) so as to determine the buyer's equilibrium strategy 
s(., F, I). This remark is important because it underlies the principle and the 
computational advantages of our indirect estimation method presented next. 

2.3. Nonparametric Estimation 

The basic idea of our estimation procedure is straightforward. If one knew the 
distribution G() and density g( ), then one could use (3) to recover every 
bidder's vi so as to estimate fO). Unfortunately, G(-) and g(0) are unknown, but 

6As a matter of fact, by differentiating (3) with respect to bi, it can be shown that Condition C2 is 
equivalent to g(-)/G'() strictly decreasing. 

7Identification of F(-) can be proved from Roehrig's (1988) Condition 3.2 applied to b - s(v, I) = 
0, where (v, I) s(v, F, I), when v and I are independent conditionally upon the exogenous 
variables x in F( I*). The latter independence condition, however, is not used in our proof. 
Moreover, our proof is constructive as it gives F(-). In addition, our identification result is global 
instead of local. 
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they can be estimated from observed bids. This suggests the following two-step 
estimator. In the first step we construct a sample of pseudo private values from 
(3) using nonparametric estimates of the distribution and density functions of 
observed bids. In a second step, this pseudo sample is used to estimate 
nonparametrically the density of bidders' private values. 

To clarify ideas, we consider L homogeneous auctions with the same number 
of bidders I. These assumptions will be relaxed in the next sections. Let I index 
the Ith auction. Our procedure is as follows. In the first step, we use the 
observations {BP,, p = 1,..., I, I = 1,..., L} to estimate nonparametrically G() 
and g(*) by the empirical distribution and the kernel density estimator, respec- 
tively, i.e., by 

1 L I 
(4) G(b) =IL E E l (BP, < MI 

1=1 p=l 

(5) g(b)= IL E 1 Kg h 
ILhg ,=q p= I hgJ 

where hg is a bandwidth and Kg( ) is a kernel with a compact support. The 
kernel density estimator g( ) is, however, biased at the boundaries of the 
support.8 Indeed, let pg < ?? be the length of the support of Kg(.). For b = 

b - Apghg/2 where A E [0, 1), the expectation of (5) gives E[g(b - Apghg/ 
2)] = f (b-b)/hg-pg/2 Kg(u)g(b - Apghg/2 - hgu) du using the change of vari- 
able B = b - Apghg/2 - hgu. Hence E[g(b - Apghg/2)] - g(b - Apghg/ 
2)f Jp /2Kg(u) du goes to zero as L -* oo. Because f +p /2Kg(u) du 7 1, the 

density estimator is asymptotically biased for b E (b - pghg/2, and similarly 
in [b, b + pghg/2). Thus, using (3) to estimate private values corresponding to 
observed bids close to the boundaries is likely to be problematic. 

Let Bniin and Bn ax be the minimum and maximum of the IL observed bids. 
Because b < Bmin< Bnax < b g( ) is asymptotically unbiased on [Bmin + 

pghg/2, B,zax - pghg/2]. This leads to defining the pseudo private value VP 
corresponding to BP, as 

A6 BP, + I-1G(Bpjl )g(Bpj) (6) r'BPI + 1 

PI if B + pghg/2 < BpI < Bnaxpghg/2, 

+ oo otherwise 

for p = 1,...,I and l= 1,...,L. The pseudo sample of private values {VP 
p = 1,..., I, / - 1,..., L} is used to estimate the density of private values by 

A f(v) I L I V- _ V I 
(7) f(v) = - K4 IK 

ILh~, L - h~ 

8The support of g(-) is always finite. Indeed 0 < b < b. Moreover, from Laffont, Ossard, and 
Vuong (1995), L = fJ1'y(I - l)f(y)F'- 2(y) dy < (I- l)Jtyf(y) dy < co because E[vi] < co. 
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where hf is a bandwidth and Kf ) is a kernel. Because our kernels have 
compact supports, (6) in effect trims observed bids that do not belong to 
[BB,l il + pghg/2, B,iza - pghg/2]. 

The asymptotic properties as L -, co and I fixed of such a two-step nonpara- 
metric estimator are obtained in Section 3. When private values are observed 
and when f(.) has R bounded continuous derivatives, the optimal uniform 
convergence rate for estimating f(.) is (L/log L)R/(2R+ 1) (see Stone (1982)). In 
our case, private values are unobserved while bids are observed. As a result, this 
rate cannot be attained. In Theorem 2, we show that the optimal rate is 
(L/log L)R/(2R+3), which is smaller than the optimal rate when private values 
are directly observed. By choosing appropriately the vanishing rates of the 
bandwidths, namely hg = cg(log L/L)'/(2R?3) and ht= cf(log L/L)l/(2R?3), we 
show in Theorem 3 that this optimal rate can be attained by our two-step 
estimator. 

2.4. Monte Caarlo Experiments 

To illustrate our two-step nonparametric procedure, we conduct a limited 
Monte Carlo study. We consider L = 200 auctions, each having I = 5 bidders, 
which gives 1000 observed bids. These numbers correspond to realistic sizes of 
auction data. Our Monte Carlo experiment consists of 1000 replications. The 
true distribution F of private values is log-normal with parameters zero and 
one, truncated at 0.055 and 2.5 to satisfy Assumption A2 of Section 3.1, which 
corresponds to leaving out 20% approximately of the original log-nlormal distri- 
bution. For each replication, we first generate randomly IL private values from 
this truncated distribution. We then compute numerically the corresponding 
bids Bp1 using (1) with p = v. 

Next, we apply our estimation procedure for each replication. First, we 
estimate the distribution function and density of observed bids using (4) and (5). 
In a second step we compute the pseudo private values VP, using (6). From this 
pseudo data we estimate the private values density function using (7). Specifi- 
cally, we consider that the latent density ffQ) is once-continuously differentiable 
so that R = 1. To satisfy Assumption A3 on the kernels in Section 3, we choose 
the triweight kernel (35/32)(1 - u2)3 ]1(IuI < 1) for Kg(-) and Kf ) so -that 

pg = Pf= 2. As indicated above, the orders of the bandwidths are L-l/5. They 
are chosen as hg = 1.06b (IL)1l5 and h = 1.066i,(ILT)1l5, where -b and 6-i, 
are the estimated standard deviations of observed bids and trimmed pseudo 
private values, respectively, and LT is the number of auctions remaining after 
the trimming (6). The factor 1.06 follows from the so-called rule of thumb (see 
Hardle (1991)). The use of I arises because we have I bidders per auction. 

The program is written in FORTRAN. For each replication, the execution 
time lasted less than one minute, which reduces by a factor of 1000 the 
execution time of a parametric method (nonlinear least squares) because the 
latter requires the numerical integration of (1). Each replication gives us two 
estimated functions: (i) the estimated inverse ~(() of the equilibrium strategy 
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to 
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0 

0 12 3 4 
Private value 

FIGURE I.-True and estimated equilibrium strategies. 

function (see (3)) and (ii the estimated density function f(*), each evaluated at 
500 equally spaced points on [b, b] = [ s(0.055), s(2.5)] and [0.055,2.5], respec- 
tively. Our Monte Carlo results are summarized in Figures 1 and 2. 

Figure 1 displays the true equilibrium strategy b = s(v) in plain line. We 
display for each value of b c- [s(0.055), s(2.5)] the mean, the 5% percentile, and 
the 95% percentile of the 1000 estimateS 4(b). This gives the (pointwise) 90% 
confidence interval for W() = s-1 (b). Figure 2 displays the true density of the 
truncated log-normal distribution in plain line, and for each value of v C- 
[0.055,2.5], Athe mean, the 5% percentile, and the 95% percentile of the 1000 
estimateS f(v). This gives the (pointwise) 90% confidence interval for f(v). The 
striking features are that, on the interval bordered by the horizontal/vertical 
lines, (i) the true curve (the equilibrium strategy or the density) falls within the 
confidence band and (ii the mean of the estimates perfectly matches the true 
cuirve.9 

9 In Figure 1, the horizontal lines are defined by B,,,i,, ? hg and B, - /I corresponding to the 
trimming (6). In Figure 2, the lower (upper) vertical line is defined on average by this trimming to 
which one hf is added (subtracted) to eliminate remaining boundary effects. For instance, the lower 

vertical l 

vetia lin corsod.oteaeag f6Bnn+h)h 



534 E. GUERRE, I. PERRIGNE, AND Q. VUONG 
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Estimated private value 

FIGURE 2.-True and estimated densities of private values. 

3. ASYMPTOTIC PROPERTIES 

In practice, the auctioned objects can be heterogeneous and the number of 

potential bidders can vary across auctions. These considerations modify our 
estimator and raise new technical difficulties. In particular, estimation of the 
boundaries and trimming near the boundaries are not as simple as in (6). To 

clarify these issues, we still assume in this section that the reservation price is 

nonbinding.'? 

3. 1. Regularity Assumptions and Key Properties 

Let Xl denote the vector of relevant characteristics for the Ith auctioned 

object, and I, be the number of bidders in the Ith auction."l The distribution of 
bidders' private values V 1 for the lth auction is the conditional distribution 0 ,Iopitvu gv (lI)Sir,hdtbi oosv 

F0IX,I)o rvt ausgvn(l ,) iial,tedsrbto fosre 

10This arises when the reservation price does not constitute an effective screening device such as. 
in Outer Continental Shelf gas and leases auctions (see McAfee and Vincent (1992)). 

11Following the common knowledge of F(-) in the theoretical model, the vector XI is common 
knowledge to all parties. This is frequently justified as the auctioned objects are fully described in a 
freely available booklet. We then assume that none of Xl is omitted to control heterogeneity across 
auctioned objects. Thus unobserved heterogeneity comes only from differences in bidders' private 
values, which are the unobserved random terms in the structural econometric model. 
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bids in the Ith auction is G(QIX1, I,). Thus (1) and (3) become 

-1f'F(v I Xi,I)"1dv, (8) BP l s(VP1' Xi, Id= Vpl -F(V ,IX, II) I'- 1z 

(9) VPI _ ( ( BpjI XI, II ) = BP, + _ g(B X,I) 

where v1 = v(X1, I,) is the lower bound of the support of FQ IXl, I,) and g(l,) 
is the density of G I l, ). 

The next assumptions concern the underlying generating process as well as 
the smoothness of the latent joint distribution of (VP,, Xl, I,) for any p = 1,..., I. 

ASSUMPTION Al: 
(i) The (d + 1)-dimensional vectors (Xl, II), I = 1,2, .. ., are independently and 

identically distributed as F..(Q, ) with density f,..(, ). 
(ii) For each I the variables VP,> p = 1,..., II, are independently and identically 

distributed conditionally upon (X,, I,) as FH I , ) with density ff I , ). 

In particular, privates values are independent across auctions. As is well 
known, dependent private values across auctions introduce dynamic considera- 
tions that invalidate the Bayesian Nash equilibrium solution (1), and hence are 
outside the scope of this paper. Note that we do not assume that XI and I, are 
independent from each other. Thus we allow the number of bidders to depend 
upon the characteristics of the auctioned object. 

Let J be the set of possible values for I,. Throughout we denote by S( *) the 
support of *, and by Si( *) the support when the number of bidders is equal to i. 

ASSUMPTION A2: J is a bounded subset of {2, 3, ... }, and: 
(i) for each i e>, Si(F) = {(v, x): x E [x, x-], v E [_(x), Tvx)]}, with x < x; 

(ii) for (v, x, i) E S(F), f(vIx, i) 2 Cf > 0, and for (x, i) E S(F..), f,(x, i) cf > 
0; 
(iii) for each i eJ, F( l, i) and f1(., i) admit up to R + 1 continuous bounded 

partial derivatives on Si(F) and Si(Fm), with R ? 1. 

Without loss of generality, we can assume that x and x- are known.12 On the 
other hand, the boundary functions v( ) and v( ) are typically unknown. Next, 
because (3) is used to recover private values, it is convenient that g( l, ) be 
bounded away from zero. From Proposition 1 below, this is achieved if the 

12 Because the boundaries x and x? can be estimated at a faster rate than our estimation 
procedure, our statistical results are not affected. To simplify, we assume that X is a vector of 
continuous variables. If some X's are discrete, our results still hold with d replaced by the number 
of continuous variables, and the nonparametric estimators (13), (14), and (20)-(22) modified 
appropriately following Bierens (1987). 
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density fQl,) is bounded away from zero, which is the purpose of A2-(ii).13 
Lastly, standard assumptions in the nonparametric literature deal with the 
smoothness of f l, ). In particular, A2-(iii) implies that f l, i) admits up to R 
bounded continuous partial derivatives on Si(F). Consequently, the best uni- 
form convergence rate for estimating f(-I-,) is (L/log L)R/(2R?d?l) if private 
values were observed (see Stone (1982)). 

Since private values are unobserved, estimation of the density fQl,) must be 
based on observed bids. This is called an inverse or indirect estimation problem; 
see, e.g., Groeneboom (1996). To determine the best uniform convergence rate 
for estimating the latent density f l, ) from observed bids, an important step is 
to study the implied smoothness of the bid density g(Q , This is the purpose 
of the next proposition. 

PROPOSITION 1: Given A2, the conditional distribution G(l,) satisfies: 
(i) its support S(G) is such that Si(G) = {(b, x): x E [x, x], b E [b(x, i), b(x, i)]}, 

with inf x E [x l (b(x, i) - b(x, i)) > 0. Moreover, (b(, i), b(, i)) admit uip to R + 1 
continuous bounded derivatives on [ x, x ] for each i AY, and b(, i) = v ); 

(ii) for (b, x, i) E S(G), g(blx, i) ? cg > 0; 
(iii) for each i eJ, G( l, i) admits up to R + 1 continuous bounded partial 

derivatives on Si(G); 
(iv) for each i &Y, if Wi(B) is a closed subset of the interior S?(G) of Si(G), then 

g( i) admits up to R + 1 continuous bounded partial derivatives on Wi(B). 

The striking feature of Proposition 1 is item (iv). Specifically, because it has 
R + 1 continuous bounded derivatives instead of R, the bid density is smoother 
than the private value density. The intuition behind this result comes from the 
equality 

g(blx, i) = 

G(blx, i) g(bx, ) ( - 1)( ((b, x, i) - b) 

which follows from (9). Since 4(,,i)=s1Q,,i) and s(w,,i) has the same 
smoothness as F( l, i) as suggested by (8), then 4(., , i) has R + 1 continuous 
bounded derivatives. Now, since G( l, i) has also R + 1 continuous bounded 
derivatives from (iii), then (iv) follows. As an important consequence, g( l, ) 
can be estimated uniformly at a faster rate, namely (L/log L)(R+ 1)/(2R+d+3) 

than f(Jl, ) can be. 

3.2. Optimal Uniform Convergence Rate 

In this section, we study the optimal rate at which the latent density of private 
values can be estimated uniformly from observed bids. Indeed, uniform conver- 

13 If A2-(ii) is not tenable, our results still apply provided there exists a known transformation with 
R + 1 continuous bounded derivatives such that the transformed density satisfies A1-A2. In this 
case, one should use the transformed Xl's and V1Kl's in (13)-(14) and (20)-(21) defining our 
estimator. 
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gence results are crucial for recovering the shape of a density. As is well-known, 
however, nonparametric estimators typically converge at different rates depend- 
ing on the choice of their smoothing parameters. An important issue in non- 
parametric statistics is to determine the best rate at which the functional of 
interest can be estimated uniformly. Though the optimal rate of uniform 
convergence is known for density estimation (see Stone (1982)), this rate does 
not apply in our case because private values are unobserved. To our knowledge, 
such a difficult problem has been seldom addressed in structural estimation. 
Hereafter, we focus upon the estimation of the conditional density f(v)lx).14 

We adopt a minimax approach, as developed by Khas'minskii (1976). We 
consider joint densities f(v, x, i) satisfying A2. Let fo(v, x, i) be one such 
density. In order to determine the optimal rate of uniform convergence rZ* for 
estimating the corresponding conditional density fo(vlx), we study the quantity 

(10) inf sup Prg (rL sup If(vlx) -f(vlx)I> K), 
ft( I ) f e Ue (f) (L) x)e F(V) 

where K is a positive constant, W(V) is an arbitrary inner compact subset with 
nonempty interior of the support S(fo(tV, x))= UiSi(Fo) of fo(v, x), and 
Prg(.) denotes the probability distribution of (b, x, i) when the underlying 
density of (v, x, i) is f(, *, *,). 

Because we consider the uniform convergence of estimators, the relevant 
discrepancy measure is the sup norm over M(V) of the difference between an 
arbitrary estimator f(-) and the conditional density f(l) of interest. The latter 
is restricted to belong to the set of densities Uj(f0), which is a neighborhood of 
fto defined as 

Ue ( fo) 

-f(t; SUp fV(v,x,i) -fo(V,x,i)I < E, 1( ,-IIR AM 
( L?, X , i ) E S( Fo) 

where M > 0 and I IIR < M requires densities to have all their derivatives up to 
the Rth order bounded by M uniformly on S(FO). As in the standard theory, 
considering the supremum over such a neighborhood avoids superefficient 
estimators. 

The relevance of (10) in determining the optimal uniform convergence rate rZ 
can be explained as follows. First, consider an arbitrary estimator f l ). Intu- 
itively, if rL diverges to infinity sufficiently fast, the probability in (10) will tend 
to one. On the other hand, if rL does not diverge sufficiently fast, this 
probability will tend to zero. Now, to determine the optimal uniform conver- 

14Though our results also apply to the estimation of the conditional density f(. Ix, i), our interest 
in f(vlx) is justified by the economic model, which assumes that the private values and number of 
bidders are independent conditionally on x so that f(L.x, i) =f(LIx) for eveiy i. If the latter does 
not hold, a more complex bidding model with a game of entry should be considered. 
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gence rate for our problem, we must consider all possible estimators of f(l). 
Suppose that rL diverges to infinity extremely fast; then the probability in (10) 
will converge to one for every possible estimator and hence (10) will be bounded 
away from zero. The optimal rate rL is the infimum of such rLs.15 

The next theorem gives an upper bound for the optimal uniform convergence 
rate for estimating f I ) from observed bids. Its proof adapts the argument used 
in Khas'minskii (1976) to our problem, and crucially relies on Theorem 1 and 
Proposition 1. 

THEOREM 2: Assume that A1-A2 hold and IIf0Q, , )IIR < M. Let F(V) be an 
inner compact subset of S(f0(v, x)) with nonempty interior. There exists a constant 
K > 0 such that 

L R/(2R+d+3) 

lim lim inf sup Pr((LgR(Rd3 
L ? + oo A-nlf fe Uup.f ) Pg log L 

x sup Itf(Vx) -f(vJx)l > K > 0. 
(LJ, x) E /M 

We consider a lower limit (or limit inf) as L -> oc because the simple limit of 
(10) may not exist. Also, because (10) is nondecreasing in E, by taking the limit 
as e -> 0, we establish in fact the desired result for all e. Specifically, Theorem 2 
implies that there exists a strictly positive constant K such that, for any e > 0, 
any L ?LO(E): 

L R/(2 R + d + 3) 

inf sup Prg lg 
) sup If(vlx) -f(vlx)l > K 

f() EE log ) (, x) E v(v) 

? 6 > 0. 

Thus the optimal uniform convergence rate rL and hence the rate of uniform 
convergence of any estimator of fQH) cannot be larger than (L/log L)R/(2R+d+3) 

over F(V). 
Note that this rate is slower than (L/log L)R/(2R+d+ 1), which is the optimal 

rate if private values were observed. This slower rate of convergence is specific 
to our auction problem, where the variables associated with the density of 
interest f( I ) are not observed. Intuitively, this result can be understood as, 
follows. Since gOQ l, ) has R + 1 derivatives (see Proposition 1), gOO l, ) and 
hence 40(, *, *) can be estimated at the rate (L/log L)(R+1)/(2R+d+3) from 

15Hence, in the statistical literature, determining optimal rates is referred as finding lower 
bounds. 
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Stone (1982). But 

(1l) f ( ] i)go( 
W (V, x, 0 Ix, 0 

G~~~~~of 
1) 

fo(vlx,x,) 

Hence the derivative 60 must be estimated.'6 As our results indicate, this is the 
hardest statistical estimation problem when estimating fo(+l), because it re- 
quires to estimate g' in view of (9). Since the best rate for estimating g' and 
hence (t is (L/log L)R/(2R+d+3), this actually gives the best rate at which 
fo( l)can be estimated from observed bids. 

As noted above, Theorem 2 only provides an upper bound to the opti- 
mal uniform convergence rate rL. As usual, such a bound would not be much 
useful if it cannot be attained, i.e., if there does not exist an estimator of 
ff( ) that converges at the rate (L/log L)R/(2R+d+3). In the next subsections, 
we establish that our two-step nonparametric estimator converges at the rate 
(L/log L)R/(2R+d+3) given appropriate choice of the smoothing parameters (see 
Theorem 3). As a consequence, the optimal uniform convergence rate rL for 
estimating the latent density ff I ) from observed bids is (L/log L)R/(2R+d+ 3). It 
also follows that our two-step nonparametric estimator converges at the best 
possible rate, i.e., is optimal. 

3.3. Definition of the Estimator 

The purpose of this section is to generalize the two-step procedure presented 
in Section 2.3 to heterogeneous auctions. At the same time, we make precise the 
assumptions on the kernels and bandwidths, which define our estimator.17 

Note that (9) can be rewritten as 

(12) 1 GOP, I)(B XI) 

where G(b, x, i) = G(blx, i)fm(x, i) = fb(x)g(u, x, i) du. Hence, using the observa- 
tions {(BP,, Xl, I,); p-1,..., I,, / = 1,..., L}, our first step consists in estimating 
the ratio fr(w, )= G( )/g(,,) by =G/g, where 

(13) G(b,xi)=Lh 1-IE (Bpl<b)KG(h 

16Throughout, we use prime to denote a derivative with respect to the first argument of a 
function. 

'An alternative estimator is to use directly (11). Specifically, estimation of g(I,*), and hence of 
), followed by determination of 6'(Q, ) and 5 1(, .) would give an estimate of f(I). The 

major problem of this procedure is that 6(-, ,*) may not be invertible. In addition to converging at 
the optimal rate, our two-step estimator avoids this drawback. 
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1 L 1 b-Bp 1x-X1 i-1\ 
(14) g(b, x, O= Lh d+1 E I Kgt hs hg hg 

which clearly extend (4)-(5). Here h G' hGI hg, and hgj are some bandwidths, 
and KG and Kg are kernels with bounded supports. Following Bierens (1987), 
we apply kernel techniques to the discrete variable I, which allows for averaging 
over values of i. Note that we choose different bandwidths for continuous and 
discrete variables.18 

In view of (12) it would be natural to estimate each private value VP, by 

~~1 - 

(15) V=BP +I 1(BP,Xl,I,), 

and to use these estimates in a second-step estimation of the conditional density 
f(vlx). Unfortunately, it is well-known that t& is an asymptotically biased 
estimator of t& at the boundaries of the support of (B, X, I). Because of this 
boundary effect, we modify slightly (15) by introducing a trimming near the 
boundaries. 

In this aim we estimate the boundary of the support of the joint distribution 
of (B, X, I), which is unknown.19 We focus on the estimation of the support 
[b(x, i), b(x, i)] of the conditional distribution of B given (X, I) since the 
support of (X, I) can be assumed to be known (or can be readily estimated). We 
propose some nonparametric boundary estimators that generalize Geffroy's 
(1984) estimators to the multidimensional case. Let h> 0. We consider the 
following partition of Rd with a generic hypercube of side ha: 

'.. kd = [k1 hd, (k1 + 1)hd) X ... X [kd hd, (kd + 1)hd), 

where (kl,..., kd) runs over Zd. This induces a partition of [x, x]. Given an 
integer i and a value x, the estimate of the upper boundary b(x, i) is the 
maximum of those bids for which I, = i and the corresponding value of Xl falls 
in the hypercube Tkd.k, containing x. The estimate of the lower boundary is 
similarly defined. Formally, our boundary estimates of the support of the 
conditional density of B given (X, I) = (x, i) are 

(16) b(x, i) = sup{Bp p, L. ..,I, =l,., L; Xl E -k .k d I' 

(17) b(x, i) = b(x) = inf{Bp1, p = 1,...,II, = 1, ...,L; XI E 'Tkl,...,kd}* 

Because b(x, i) = v(x) is independent of i, we need not restrict (17) to bids such 

18Because di resembles the hazard rate g/(1 - G), various nonparametric estimators of the latter- 
can be used. See Hassani, Sarda, and Vieu (1986) and Singpurwalla and Wong (1983) for recent 
surveys. Our estimator /i has the characteristic that it takes into account a repeated aspect of our 
data due to the number of bidders I, 2 2. In addition, to minimize boundary effects, we have chosen 
the sum averaging instead of the more common integral averaging for estimating G. 

19 Note that even if the boundary functions v(-) and v(-) were known the upper boundary b(x, i) 
would be unknown since b(x, i) = s(v(x), x, i), which depends on the underlying density fI , ). 
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that I, = i. Our estimator for Si(G) is Si(G) {(b, x): b E [b(x, i), b(x, i)], x E 

[x, x]}. 

We now turn to the trimming. Basically, for each i we will trim out observa- 
tions (BP,, XI, I,) with I, = i that are close to the boundaries of the estimated 

support Si(G) by less than a distance, which is a function of the smoothing 
parameters. Specifically, let S(hG) and S(hg) be the supports of KG( /hG,O) 
and Kg(-/hg, /hg, 0), respectively. For instance, if the supports of KG(, 0) and 
Kg(, , O) are hypercubes of sides equal to 1, then S(hG) and S(hg) are 
hypercubes of sides hG and hg in R d and Rd, 1, respectively. Because we 
consider points (b, x) in Rd, 1, we consider hereafter that S(hG) is {0 x S(h1G) 
C Rd+ 1, Instead of (15), we define the pseudo private value as 

V1) p, = BP, + I (BP,, XI, II), 

where 

( (b, x, i) if (b, x) + S(2hG) c Si(G) and 

(19) qfr(b, x, i (b, x) + S(2hg ) c Si(G), 

+0o otherwise. 

This extends (6) to the heterogeneous case.20 
In the second step we use the pseudo sample 1(',> XI), p = 1,...,II, 1= 

1,..., LI, to estimate nonparametrically the density f(vlx) by f(vlx) =f(v, x)/ 
f(x), where 

1 L 1Ai(-71- 1 
(20) f(V,x)= Lh?1 Kf I 

VP I h 
X 

(21) 1 L (x - XI ) 
(21) f(x) Lh EKx , 

x)=TX l= 1 hX 

hf and hx are bandwidths, and Kf and Kx are kernels. Because the latter have 
compact supports, the contribution of infinite pseudo private values is nil in our 
estimate f(v,x). Hence, (19) can be interpreted as trimming the observations 
(BP,, XI, I,) that are too close to the boundary of the estimated support S4l(G). 

We turn to the choice of kernels and bandwidths defining our two-step 
estimator. 

ASSUMPTION A3: 
(i) The kemnels KG(.,),Kg(.,, ), Kf (, ),I Kx( ) are symmetric with bounded 

hypercube supports and twice continuous bounded (uniformly in I) derivatives with 
respect to their continuous arguments. 

20In fact, as the proof of Proposition 3-(i) shows, the trimming in (19) can be defined using 
(1 + E)hG and (1 + E)hg with E > O instead of 2hG and 2hg, respectively. Moreover, in the simple 
case where there are no exogenous variables X, this proof shows that we can have E= 0 because 
b < B,A,ni and B,Anax < b. This gives the trimming (6). 
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(i) JKG(X, 0)x = 1, fKg(b, x, 0) dbdx = 1, fKf(v, x) dv dx = 1, and 
fKx(x) dx = 1. 

(iii) KG(O, ), Kg(, 0), Kf (,), KX)are of order R + 1, R + 1, R, R + 1. Thus 
moments of order strictly smaller than the given order vanish. 

Assumption A3 is standard. The orders of the kernels have been chosen 
according to the smoothness of the estimated functions. In particular, Kg is of 
order R + 1, since the density g(,,) admits up to R + 1 bounded continuous 
derivatives from Proposition 1. 

ASSUMPTION A4: 
(i) As L -> oo, the "discrete" bandwidths hGI and hgI vanish. 

(ii) The "continuous" bandwidths hG, hg, hf, and hx are of the form: 

hG = A(log L/L)l/ , hg Ag(log L/L) 

h = A (log L/L)1/(2R+d+3) h = A (log L/L)l/(2R+d+2) 

where the A's are strictly positive constants. 
(iii) The "boundaiy" bandwidth is of the form h = Af(log L/L)/(d?l) if d > 0. 

Part (i) combined with A3-(i) implies that averaging over observations 

(BP,, XI, I) such that I, o i will disappear from (13) and (14), as L -o 00. 

The log L arises because we deal with uniform consistency. From this point of 
view, hG, hg, and hx are optimal bandwidths given Proposition 1 and A2-(iii) 
(see, e.g., Hardle (1991)). Hence our kernel estimators (13), (14), and (21) of 
G(,, ), g(,, ), and ffQ) converge uniformly at the best possible rate. If the 
private values were observed, the optimal bandwidth for estimating f(, ) would 
be of order (log L/L)l/(2R+d+1), which is asymptotically smaller than the rate 
for hf given in (ii). Thus our choice of hf implies oversmoothing and would be 
suboptimal in this sense. However, private values are unobserved. As we show 
below, given the optimal rates for hG, hg, and hx, our choice for hf is the only 
rate that achieves the optimal rate of Theorem 2. 

3.4. Uniform Consistency 

Our next main result establishes the uniform consistency of our two-step 
estimator with its rate of convergence. To do so, we need two results, which are 
of independent interests. The first proposition establishes the uniform consis- 
tency with rates of convergence of our nonparametric boundary estimators 
(16)-(7).2 

21 The bandwidth lid in A4-(iii) does not depend upon the smoothness of the upper and lower 
bounds b(,i) and b(,i). Therefore, the rate of convergence of our boundary estimators can be 
improved. See, for instance, Korostelev and Tsybakov (1993). 
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PROPOSITION 2: Let r0 = (L/log L)1/(d+ 1) Under Ai-A2 and A4-(iii), 

SUP b(x, i) - b(x,i) = 0(1/r,) a.s. anid 
(.x,i)e[xr, ]xJ 

sup b(x) - b(x) = 0(1/r,) a.s. 

The second proposition studies the rate at which the pseudo private values V 
converge uniformly to the true values.22 

PROPOSITION 3: Let ra = (L/log L)R/(iR+(1? 3), r = (L/log L)(R? 1)/(2R?d?3) 

Under A1-A4: 
(i) supP1 ,I(JVp, + ?Cc) I< -VI, = 0(i/rg) a.s.; 

(ii) for any closed ininer subset K(V) of S(f(vl, x)), we Iiat'e 

sup IL(v)(J/>,X Vp) l = 0(1/*) a.s. 
X, , I 

Proposition 3 shows that the pseudo private values V, converge uniformly to 
the true private values, with the exception of those corresponding to observa- 
tions (BP,, XI, II) close to the boundaries (see (19)). However, ig is smaller than 

rg*. Hence the rate of convergence in part (i) is slower than in (ii). The reason is 
that (i) considers observations that are arbitrary close to the support S(G) as 
L -> oo, while (ii) deals with observations bounded away from the boundary. 
Moreover, from (12) and (18) the rate of uniform convergence of Vp/ to V 
depends mainly on that of g(, , i) to g(, , i). And we know from Proposition 1 
that g(, , i) is smoother on a closed inner subset of its support. 

We now state the main result of this section. Because kernel estimators suffer 
from boundaiy effects, we restrict uniform convergence to inner closed subsets 
of S(f(WL,x)). 

THEOREM 3: Suppose that A1 -A 4 hlold. We haLve 

sup If(vIx) -fG(7x)1 = 0((log L/L)R/(2R+d+3)) as. 
(, x)e (V) 

for any closed inner subset W(V) of S(f(v, x)). 

In addition to establishing the uniform consistency of our two-step estimator, 
Theorem 3 is important for two reasons. First, it implies that the upper bound 
(L/log L)R/(2R+d+3) of Theorem 2 is in fact the optimal uniform convergence 
rate rL for estimators of the conditional density f(-l-) from observed bids. 

22 Proposition 3 is interesting in itself because it can also be used for the estimation of the 
conditional mean, variance, or quantiles, etc... of private values. 
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Second, it shows that our two-step estimator attains the optimal rate rL, and 
hence is asymptotically optimal. 

We present the proof of Theorem 3 as it helps understand the role of 
Proposition 3 and our bandwidth choices. 

PROOF OF THEOREM 3: We have f(vlx) =f(v, x)/f(x). Given the optimal 
bandwidth choice for hx in A4, we know that f(x) converges uniformly to f(x) 
at the rate (L/log L)(R? 1)/(2R?d?2) on any inner compact subset of its support 
(see Hardle (1991)). Because this rate is faster than that of the theorem and 
f(x) is bounded away from 0 by A2-(ii), it suffices to show that f(v, x) converges 
at the rate (L/log L)R/(2R+d+3). 

Our proof relies upon the (infeasible) nonparametric estimator of the density 
of (V, X) using the unobserved true private values VP: 

1 L 1 " (-J/l x-X1l 
(22) f(v,x) = Lhd+? E - Kf Ih h 

Lemma B2 in Appendix B implies that the suboptimal bandwidth hf leads 
to a uniform convergence of f(v, x) to f(v, x) on W(V) at the rate (L/ 
log L)R/(2R?d?3). Since f(v, x) -f(v, x) = [f(v, x) - f(v, x)] + [f(v, x) - 

f(v, x)], we are left with the first term. 
Let '(V) be an inner closed subset of S(f(v, x)) containing all hypercubes 

of size 3 (small enough) centered at a point (v, x) in W(V). Define W"(V) 
similarly with respect to '(V). Hence W(V) c W'(V) c "(V) c S(f(v, x)). 
Now, for (v, x) E W(V) and L large enough, f(v, x) uses at most observations 

(Vp1, X) in W'(V) and hence for which (VP,, X,) is in W"(V) by Proposition 3-(i). 
Because f(v,x) uses at most (VP,,X,) in W"(V) for any (v,x) in W(V), we 
obtain almost surely for L large enough, 

A 

f(v,x) -f( L,x) 

1 L 1 ", 

d6+F 
1 ? Ei''"(V)(Vpl r XI) 

f 1=1Ip= 

Next, a second-order Taylor expansion gives 

(23) If(u,x) -f(v, x)l 

1 L 1 ", 

d 1h - E I E(V)( J/ri,X)(J/pi vpi) Lhf =I II p=l 

A= 
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1 dKf L v-Vp/ X-Xl 

hf 8 rf 'df h 

+ 1' E E i%l(V)(Vpl, XI)(J< - VP1) 

1 d2K x - XI 
h 2 dSUp 2 h v, 

5UPlL11()(J), 1 j)f 

supp ,iR1(v)(JVj)/ x 
)IJVp 

-V K 1 

1-1 IS p- 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~d I (~3 h VP/f 

< 
2ht Lh(J 

L cYdKflx-V X\ X 

1-E1 ,V du ( h 

log L ) R/(2R+(l? 3)) Lhj1 

+ ((log L )(2R-1)/(2R?d3)) 

X E sup Idv hv [ h 

by Proposition 3-(ii) and the definition of ht in A4-(ii). The two sums appearing 
in (23) may be viewed as kernel estimators, and hence converge uniformly on 
W(V) to 

f(u, x| d ) (u, y y and f(x)f sup X2 dy, 

respectively. Thus they stay bounded almost surely. Since R ? 1 implies (2R - 

1)/(2R + d + 3) ? R/(2R + d + 3), it follows that f(XI, x) - (u, x) = O(log L/ 
L)R/(2R?dl 3) Q.E.D. 
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The above proof shows that, under our bandwidth choice A4, f(v, x) -f(v, x) 
and the first-order term in the Taylor expansion of f(v, x) -f(), x) have the 
same order of magnitude, namely 0((logL/L)R/(2R+d+3)), while the second- 
order term is smaller. In fact, given our choice for hG and hg, it can be shown 
that our choice for h,f, which implies oversmoothing, is the only choice that 
achieves the optimal uniform convergence rate (L/log L)R/(2R+d+3) for esti- 
mating the density f(v', x) for any combination (d, R) of dimension and smooth- 
ness. In particular, the standard "optimal" choice (log L/L)1/(2R+d+ 1) for hf 
would lead to a suboptimal uniform convergence rate for estimating f(v,x). 
There may, however, exist alternative bandwidth choices for (hG, hg, hf) leading 
to the optimal uniform convergence rate (L/log L)R/(2R+d+3). Our choice for 
hG and hg, which corresponds to the optimal bandwidth rates for estimating 
G(, ,i) and g(, , i) (see Hardle (1991)) have the advantage of providing an 
estimate of the inverse equilibrium strategy 4k, ,i) for every i with the best 
uniform convergence rate. 

Theorem 3 is useful in practice only if the support S(f(v, x)) is known so that 
one can choose appropriately the compact set W(V). This support can be 
estimated. Specifically, because v(x) = b(x), then the lower bound v( ) is esti- 
mated from observed bids using (17) directly. Regarding the upper bound -v( ), 
we can use an estimator of the form (17) with inf and Bp, replaced by sup and 

Vi>, respectively. Thus from Proposition 3-(ii) and a proof analogous to that of 
Proposition 2, it can be readily shown that the support S(f(v, x)) can be 
estimated uniformly. 

Lastly, asymptotic normality of our estimator is not covered by Theorem 3. 
The proof of Theorem 3 indicates that classical asymptotic normality results are 
likely to be imprecise because only the leading term in the expansion of 
f(v, x) -f(v, x) is used. In our case, the second order term of the Taylor 
expansion can be close to the first one, especially if the degree of smoothness R 
is small. Such drawbacks can be circumvented by establishing an exponential-type 
inequality for all L of the form 

/ L R/(2 R + d + 3) 

(24) Pr L) sup Jf(ijx)-f(vjx)j>e()) <?P>), 

for t > 0 and some positive functions e (t) and P* (t), analogous to the 
inequalities obtained in Lemma C4. Though we shall not pursue such an issue, 
which is outside the scope of the paper, such an inequality is useful in practice 
for two reasons. 

First, (24) can be used to obtain conservative (uniform) confidence intervals. 
Specifically, choose t such that P7() < a. Hence the probability that f(vIx) is 
in the interval 

[f (u I x) - e"' (t) (log L /L) f/( v3 () 1(ix) + e* (t)(log L/L)R ? 

for all (v, x) E W(V) 
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is larger than 1 - a. Second, (24) can be used to choose the constants A 
appearing in the definitions of the various bandwidths. Indeed, Fubini's Theo- 
rem yields 

E sup xVWX) -f(vLx) f I 
0.), x) E v(v) 

=I Prt sup If(vL7x) -f(V)X) > t) dt. 
O(I,, X) E= W(V) 

Combined with (24), this gives an upper bound for E[sup(,,,x) - I(V)I(vIx)- 

f(vlx)I], which can be used to assess the choice of the A's based on the expected 
supnorm loss function. 

4. Reservation Price and Number of Bidder-s 

Up to now, we have assumed that the reservation price is nonbinding. In 
practice, the seller may announce a reservation price sufficiently high prior to 
the bidding as a screening device for participating in the auction. Though the 
Bayesian Nash equilibrium strategy is still given by (1), a binding reservation 
price raises a new difficulty due to the unobserved number I of potential 
bidders. This number is typically different from the observed number I" of 
actual bidders who have proposed a bid (? po). Hence there is a new structural 
element, namely I, in addition to the latent distribution of bidders' private 
values F(). In this section we show how our results can be extended to this 
situation. 

4.1. Nonparametric Identification 

As in Section 2.2, we first consider one auction only and hence we omit the 
subscript 1. Alternatively, our reasoning can be viewed as conditional upon 
(x, Po, I). Following the derivation leading to (3), we rewrite the differential 
equation (2) in terms of observables. Unlike Section 2, however, a binding 
reservation price po introduces a truncation because a potential bidder with a 
private value lower than po does not bid. Let b* denote the equilibrium bid of 
the ith actual bidder, i = 1, ..., I*, and G*(.) be its distribution. Thus G (b ) = 

Pr(s(v) < b* 1 vpo) = [F(v) - F(po)]/[1 - F(po)] where v = s -(b*). Differ- 
entiating with respect to b* gives the conditional density g*(b*) = (1/ 
s'(v))(9f(v)( - F(po))). Hence, from (2) elementary algebra gives 

(25) vi = ((b*, G*, I, F(po)) 

1[G* (b*) F(po) g 
=b* + - + i I -1 g*(b*) 1- F(po) g* (W4), 
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for i = 1, ..., If. Equation (25) is the analog of (3), but involves I and F(po), 
which are unknown. This complicates the identification and estimation of the 
model. 

The next result solves the identification problem. 

THEOREM 4: Let G*( ) ES with support [po, b], and -r-Q) be a discrete 
distribution. There exist a distribution of buyers' private values F( ) P and a 
number I ? 2 of potential buyers such that (i) G* () is the truncated distribution of 
the equilibrium bid in a first-price sealed-bid auction with reservation price po E (v, -v) 
and (ii) 7r(-) is the distribution of the number of actual bidders I* if and only if the 
following conditions hold: 

Cl: 7rT&) is Binomial with parameters (I, 1 - F(po)), where 0 < F(po) < 1. 
C2: The obseived bids are i.i.d. as G*( ) conditionally upon f* and 

lim bog* (b) = + GO 

C3: The function 4(,G*,I,F(po)) defined in (25) is strictly increasing on 
[po,b] and its inverse is differentiable on [v,-v]-[4(pO,G*,I,F(pO)),(b, G*, 
I, F(po))]. 

Moreover, if Conditions Cl-C3 hold, then I and F(po) are unique while FQ-) is 
uniquely defined on [po, -v] as FQ) = F(po) + [1 - F(po)]G* ( - 1(., G*, I, F(po))). 
In addition, ~(, G*, I, F(po)) is the quasi inverse of the equilibrium strategy 
s(,F,po,I) in the sense that ((b,G*,I,F(po))=s-'(b,F,po,I) for all be 

[p0,b]. 

Theorem 4 parallels Theorem 1. In particular, it shows that the game 
theoretical model imposes some restrictions on the joint distribution of the 
observables (b,.. .,b, I*). Moreover, the number of potential bidders I is 
identified, while the latent private values distribution FQ-) is identified nonpara- 
metrically on [p , ]. 

4.2. Nonparametric Estimation 

As in Section 3 we consider heterogeneous auctioned objects characterized by 
X, with the difference that the reservation price is now binding. The next 
assumption clarifies the nature of the number of potential bidders and the 
reservation price. 

ASSUMPTION AS: 
(i) The number of potential bidders I 2 2 is constant. 
(ii) The reservation price Po is a possibly unknown deterministic (R + 1) contin- 

uously differentiable function h(O) of the characteristics X. 
(iii) For some E > 0, v(x) +,E < h(x) < -v(x) - E for all x E [x, x]. 

By A5-(i), the size of the market is assumed constant across auctions. Though 
known to potential bidders in the theoretic model, I is unknown to the analyst, 
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as is typically the case.23 Assumption A5-(ii) is suited when the seller determines 
the reservation price as a function of the object's characteristics, as it is the case 
in practice. In particular, this is satisfied when the seller's private value VO is a 
function of the object's characteristics, and the reservation price is determined 
optimally (see Riley and Samuelson (1981)).24 Assumption A5-(iii) requires that 
the reservation price be bounded away from v(x) and v(X). This ensures that 
the reservation price is always binding and that there is always a positive 
probability of having at least one actual bidder. For instance, given A2, A5-(iii) 
is satisfied when the reservation price is chosen optimally and v(X) < VO < iv(X). 

Given A5-(ii), the conditional distribution of an observed bid B*, given 

(XI, Po,) is the conditional distribution given X, only, namely G*( IX1) with 
support [h(X,), b(X1)]. Thus, for p = 1,., 1,* and 1 = 1,..., L, (25) becomes 

(26) VP/= (Bp*1, XI) 

I G* (BP*,IXI) ? (X,) I 

I-1 Vg*(BP*IX) 1 - P(XI) g*(Bp*,IX,) 

where (P(X1) F(P011XI). Provided one can estimate I and (P(X,), this equation 
can be used to develop a two-step estimation procedure analogous to that of 
Section 3. A technical difficulty arises as the density g*(.jXi) is unbounded at 
B* = Po, (see C2 of Theorem 4). This is because s*(Po,, X,) = 0. Hence Theo- 
rems 2 and 3 no longer apply. 

In fact, the density g*( X,) behaves as 1/ b* - Po, in the neighborhood of 
Po, since the behavior of s(, X,) - Po, is quadratic in the neighborhood of PO,. 
This leads to considering the transformation B, = (B*P_o)1/2. Hence Bt= 
sG(V, X), where st(V, X) = [s(V, X) - po]1'2 with V? PO and PO = h(X). Thus 
the distribution of Bt is Gt(bt IX) = G*(Po + b 21X) with bounded density 

gt(blIX) = 2btg*(Po + bilX) on its support [0, bt(X)] = [0, (b(X) -F0)1/2]. 
Under A5-(ii), (26) becomes 

(27) VP, = 6t(Btpl, XI) 

2 2B.tpl i G,( Btpl, XI) ( Xd f (XI) Po, ++ 1-P(X + ) 
uig01/ ) GI -1 gt(Btpln X1) 1-?(X,) gt(Btpl,, X) 

using G,(-l -)Igt(-l )=GT(, ' )Igt('''-) and 11g_(kJ -)=f( )1gt(, ) 

23In fact, we only need that I be constant on some known subsets of auctions, in which case our 
estimation method applies to each subset. Tests of the constancy of I can be based on estimates of I 
(see below) for each subset. Because of A5-(i), hereafter I is dropped as an argument from any 
function. 

24If there are many sellers across auctions, A5-(ii) may no longer hold as h(-) may vary across 
sellers. Thus PO given X can be viewed as stochastic, which leads to a random truncation given X 
(see Wang, Jewell, and Tsai (1986)). It can be shown that our two-step estimator is still uniformly 
consistent on compact subsets at the rate (L/log L)R/(2R +d+4). 
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PROPOSITION 4: Given A2 and A5, the conditional distribution Gt(Q) satisfies 
properties (i)-(iv) of Proposition 1, where G( l, ), Si(G), b(x, i), b(x, i), and 
Wi(B) are replaced respectively by G,Ql), S(Gr) = {(bt,,x):x c [x,x ], bt C 

[0, bt(x)]}, 0, bt(x), and W(B,t), which is a closed inner subset of S(Gt). 

Proposition 4 is important as it is analogous to Proposition 1, which is the 
backbone of the optimal rate and uniform consistency of our estimator (Theo- 
rems 2 and 3). 

Analogously to Section 3, (27) suggests a two-step estimation procedure. In 
the first step, ffQ) is estimated by (21), while Gt(w, ) and g(, ) are estimated by 

1 L 1 Ii, (- Xi 
Gt(btx)=7Lhd Ej- E :II (Btpl < bt)KG hG) 

1 L 1 1I* (b -Btpl x-x1\ 
Lhd+1 E * 

h g h 

This follows because the transformed actual bids (B1, ..., B>,) are indepen- 
dent of I,* conditionally upon X, in view of Condition C2 of Theorem 4. 

In the second step, (27) is used to recover the pseudo private values provided 
one can estimate I and P(X,). A natural estimator for I is I= max,1 L I* 

Given Condition Cl of Theorem 4, I = I almost surely. To estimate P(X1), we 
note that E[II* IX] =I[1 - P(X,)]. Solving for P(X,) suggests to estimate it by 
P(X,), where 

A 
I~~ L (x-Xij ?(x = I - iLh d (x ) l II, Kx hl 

ILhxf(x)iEi*K 

using the usual Nadaraya (1964)-Watson (1964) nonparametric regression esti- 
mator with f(x) as in (21). Note that )Q) is always between 0 and 1. 

Let -(w) be given by (27), where I, P0), Af0), G(, ), and g(, ) are 
replaced by their estimators. Following (16), let bL(x) = sup{Btp,, p = 1,..., Il, 
1 = 1,. ..., IL, X1C k,}-The estimated support of Gt(,) is S(Gj)- 
{(b, x): b c [0, b,(x)], x c [x, x]}. The pseudo private values are given by Vp> = 

$t(Btp1, X1), where 

64(bJ, x) if (bt, x) + S(2hG) c S(Gt), 

Af(bJr, x) _ | (bt, x) + S(2hg) c S(Gr), 

x + S(2hf) c [x,xC], 

t +GO otherwise, 

for p = 1,..., g, 1 = 1,..., L. The nonparametric estimator of the conditional 
density f(vlx) is f(vlx)- [1- f(x)]f*(vlx), where f*(vlx) is the estimator of 
the truncated conditional density f*(v Ix) =f(vlx)/[1 - P(x)] and is obtained 
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as in Section 3 with I, replaced by Ii' in (20). Let S* ={(v, x): x z [x, ii, 
v E [h(x), v(x)]} be the support of f*(L). The next result gives the asymptotic 
properties of the estimator f&l). 

THEOREM 5: Suppose that Al-A5 hold. Then f(.l) is uniformly consistent with 
optimal rate (L/log L)R/(2R+d +3) on any closed inner subset of S* with nonempty 
interior. 

In view of Theorem 4 and A5-(ii), St is the largest subset of the support of 
fQl ) where the latter is identified. 

5. CONCLUSION 

For first-price sealed-bid auctions with binding or nonbinding reservation 
prices, we have shown that the underlying distribution of bidders' private values 
within the independent private values paradigm is identified from observables, 
namely, observed bids and the number of actual bidders, without any parametric 
assumptions. Moreover, using the recently developed minimax theory, we have 
established the best rate of uniform convergence at which the latent density of 
private values can be estimated from available data. We then have proposed a 
computationally convenient two-step nonparametric estimator of this density 
that converges at this optimal rate.25 

As a matter of fact, our results go well beyond the auction mechanism and 
paradigm studied here as they can be generalized to other auction models as 
considered by Milgrom and Weber (1982). For instance, as shown by Guerre, 
Perrigne, and Vuong (1995) for the independent private value paradigm, they 
apply to descending or Dutch auctions, where only the winning bid, if any, is 
observed. Alternatively, our results can be extended to the affiliated private 
value paradigm, which is the most general auction model that can be identified 
from observed bids (see Laffont and Vuong (1996)). Li, Perrigne, and Vuong 
(1996, 1999) show how our two-step nonparametric procedure can be modified 
accordingly despite the complexity of the Bayesian Nash equilibrium strategy. 

More generally, because the determination of the equilibrium strategy is 
avoided, our indirect estimation procedure is especially convenient when the 
equilibrium strategy cannot be obtained explicitly. In such situations, direct 
(parametric) estimation methods become cumbersome, if not computationally 

25Alternatively, our general indirect two-step principle can also be used to estimate parametrically 
the distribution of observed bids in the first step and the distribution of private values in the second 
step. Besides some technical difficulties arising from the relationship between G() and F(), such a 
parametric two-step procedure would constitute a powerful alternative to existing parametric 
methods such as the simulation-based method proposed in Laffont, Ossard, and Vuong (1995). 
Specifically, this new parametric method will be computationally much easier when the equilibrium 
strategy cannot be easily simulated or cannot be solved explicitly as in asymmetric auctions. 
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infeasible, since the differential equation must be solved numerically for the 
equilibrium strategy for each trial value of the parameters. An example of such 
a situation arises with a random reservation price. This occurs when the seller 
adopts a random rejection rule of the highest bid, or when the reservation price 
is announced after bidding. Within the independent private values paradigm, 
Elyakime, Laffont, Loisel, and Vuong (1994, 1997) extend our results to the 
latter situation. Another important case arises when bidders are asymmetric ex 
ante due to joint bidding, informational advantages such as in Outer Continen- 
tal Shelf auctions (see Hendricks and Porter (1988), Hendricks, Porter, and 
Wilson (1994)), the large size of a bidder, and more generally collusion among 
some bidders (see Graham and Marshall (1987)). In this case, the equilibrium 
strategies are solutions of a system of differential equations that cannot be 
solved explicitly (see Maskin and Riley (1983)). Using results similar to ours, 
Campo, Perrigne, and Vuong (1998) and Laffont, Li, and Vuong (1999) show 
how to circumvent this difficulty. Asymmetry also arises in procurement actions 
when firms bid in both price and quality. Applying our approach, Laffont, 
Oustry, Simioni, and Vuong (1996) identify and estimate the resulting model. 

Lastly, an important feature of our identification results is that they provide 
necessary and sufficient conditions for the existence of a latent distribution that 
can "rationalize" the observed bid distribution. Because they are the restrictions 
imposed by the game theoretic model on observables, these conditions can 
constitute the basis of a test of the theory. They are of two types. The first type 
deals with independence of bids (see conditions Cl and C2 of Theorems 1 and 4, 
respectively), which relates to the paradigm and can be tested nonparametrically 
using, e.g., the Blum, Kiefer, and Rosenblatt (1961) test. The second type deals 
with the monotonicity of an estimable function (see conditions C2 and C3 of 
Theorem 1 and 4, respectively), which can be used to test whether bidders adopt 
the symmetric Bayesian Nash equilibrium strategy. A major difficulty in develop- 
ing a nonparametric test, however, is to estimate the function 4(k) under 
monotonicity constraint. Though progress has been made in the regression 
context (see, e.g., Wright and Wegman (1980) and Utreras (1985)), the different 
nature of 4(k) calls for further work. 

To conclude, by proposing a general and computationally convenient estima- 
tion principle, this paper contributes to the structural analysis of auction data 
that was plagued by the numerical complexities associated with the equilibrium 
strategies. The estimation of auction models can also be considered as a first 
step in the estimation of asymmetric information models used in the theory of 
regulation and contracts. Hence our paper contributes to the agenda of the new 
empirical industrial organization calling for the data evaluation of game theo- 
retic models (see Laffont and Tirole (1993) and Salanie (1997)). 
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APPENDIX A 

PROOFS OF MATHEMATICAL PROPERTIES 

This Appendix gives (i) the proofs of our identification results (Theorems 1 and 4) and (ii) 
establishes the model's regularity properties (Propositions 1 and 4), when the reselvation price is 
nonbinding and binding respectively. Lemmas are proved in Appendix C. 

A. 1. Proofs of Identification Restults 

PROOF OF THEOREM 1: First, we prove that Conditions Cl and C2 are necessary. Because 

bi = s(vi, F, I) and the vi's are i.i.d., it follows that the bi's are i.i.d. so that Condition Cl must hold. 
To prove Condition C2, let s(, F, I) be the strictly increasing differentiable and symmetric Bayesian 
Nash equilibrium strategy corresponding to F(-) with support [v, Tv] (say). Let G() be the distribu- 
tion defined by G(b) = F(s-1(b, F, I)) for every b e [b, b] - [s(v, F, I), s(v, F, I)]. Note that G() 
must be the distribution of observed (equilibrium) bids. Now, s(-, F, I) must solve the first-order 
differential equation (2). But, because (3) follows from (2), then s(, F, I) must satisfy 6(s(v, F, I), 
G, I) =v for all v e [v, v3]. Making the change of variable b =s(v, F, I), we obtain 6(b, G, I) 
s'1(b, F, I) for all b e [b,b]. Hence Condition C2 must hold because s- 1(, F, I) is strictly 
increasing on [b, b] and s(, F, I) differentiable on [v, v3] =[(b, G, I), 6(b, G, I)]. 

To prove sufficiency, let G() belong to .9A with_support [b, b]'. By Condition Cl, the bi's are 
i.i.d., each distributed as some G( ) with support [b, b]. Now note that 

(A.1) lim 6 (b, G, I ) = b. 
bt b 

This follows from (3) and the fact that (i) b is finite (> 0), (ii) lin,b, b log G(b) - cc,and (iii) 
g(b)/G(b) = d log G(b)/db, so that limb b g(b)/G(b) + 

Next define F( )F( -1( ,G,I)) on [v,vi], where vt -(b,G,I)=b by (A.1) and v - (b,G,I). 
Thus F() is a valid distribution because 6(, G, I) is strictly increasing on [b, b] by Condition C2. 
Moreover, because G() is strictly increasing on [b, b] (see footnote 3), then F(-) is strictly increasing 
on [v, T]. Thus the support of F(-) is [v, T], which is an interval of RF+. Lastly, because 6-1 (, G, I) is 
differentiable and G() is absolutely continuous, then F( ) is absolutely continuous. Therefore F(-) 
belongs to SD as required. 

It remains to show that this distribution F() of buyers' private values can rationalize G() in a 
first-price sealed-bid auction with no reservation price, i.e., that G() =F(s-1 (, F, I)) on [b, b], 
where s(-, F, I) solves (2) with the boundary condition s(v, F, I) =v. By construction of F(-), we 
have G()= F(Q(, G,I)). Thus it suffices to show that -1(., G,I) solves (1) with boundary 
condition C1(v,G,I)=v. It is easy to see that the boundary condition is satisfied. From the 
construction of F() note that f(-)/F(-) = (- (, G, I)g( 6- 1 (, G, I ))/G( 6- 1 (, G, I)) after differen- 
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tiating and taking a ratio. Thus 6-1(I ,G, I) solves (2) if 

(A.2) 1 6l -'(v, G, IM)I- 1) G. V(GI)Yl v-] 

But (A.2) clearly holds by definition of 6(, G, I). This completes the proof of sufficiency. 
It remains to establish the last part of Theorem 1. From the proof of necessity, we know that 

6(, G, I) = s - 1 (, F, I) holds when F() exists. Since F(-) = G(s(-, F, I)), then F(-) = G( 6-1 (, G, I)). 
Because 6(4, G, I) is uniquely determined by G(), it follows that F(-) is unique given GO. 
Moreover, its support must be [ 6b, G, I), 6(b, G, I)] = [b, 6(b, G, I)] by (A.1). Q.E.D. 

PROOF OF THEOREM 4: Consider necessity. Condition Cl must hold since a potential bidder bids 
if and only if his private value is at least po. Thus 0 < Fpo) < 1 follows from po C (v, -). 

Regarding Condition C2, let Bj = 0 if Vj <po for j =1. I. For any (bl,..., bi) E I+, 

Pr(B* < b1 . B* < bi, I* = iII, po) 

E ~ Pr(po <B,1 < bII...Ipo <B,?. < bi, Bj =, j {r1,...,I1}II,pPO) 
1<Z1- ... +j<l 

I! 
(I ! Pr(po < B, < bl,.*., po b Bi-1 bi, Bj+ 1 Bi = 0II, P0) 

I! i 

(I - Pr (Bi+ 1 = OII, po) Jl Pr(po < Br < brII, PO), 

because Bj's are iid given (I, po). Since I* is binomial with parameters (, 1 - F(po)), then 

Pr(p0:!? ~Br ? !brII, po) 
Pr(B* ?bl,..B~ ?biII* =1i, I,po) YI 1F(H 

.- _ - 1F(fpo ) 

iF(s-'(b,.))-F(po) 

H=1 1-F(po) 

as desired. Moreover, because s(po) = po and F(po) > 0 it follows from (2) that lim, I Po s'(v)/f(v) 
=0. Since g*(b)=f(s-1(b))/[s'(s-l(b))(1 -F(po)], then 1imb Pog*(b)= +cc. Regarding the 
necessity of Condition C3, the proof is similar to that of Condition C2 in Theorem 1, noting that 

6(-,G*, I, F(po)) = s-1( F, I,po) on [po,b] = [po, s(, F, I,po)]. 
Turning to sufficiency, choose v <po and 0 < F(po) < 1. The proof then follows that of Theorem 

1 by replacing GO and F() by the truncated distributions G*(.) and F*(-) [F() - F(po)]/[1 - 
F(po)] defined on [po,b] and [po, T], respectively. The condition limb po 6(b,G*,I,F(po))==po, 
which is analogous to (A.1), follows now from (25) and limb P0g*(b)= +oc. In particular, if 

Conditions C1-C3 hold, we can establish that there exists a distribution F(-) on [v,-v] with 
-v = 6(, G*,I, F(po)) that (i) is absolutely continuous on [po, -] and (ii) can rationalize G*(.) in a 
first-price sealed-bid auction with reservation price po. A distribution F(-) is obtained by 
extension in an absolute continuous fashion to the interval [v, po]. 

To prove the last part of Theorem 4, note that I and F(po) are identified from 7T( ). More- 
over, similar to the end of the proof of Theorem 1, we have 6 , G*, I, F(po)) = s (, F, pO) on 
[po, b], and the truncated distribution F*() [F() - F(p0)]/[1 - F(po)] is unique and equal to 

G*(6-1(-,G*,I,F(p0))) with support [p0,vJ=[p0,6(b,G*,I,F(p0))]. Because I and F(po) are 
identified, it follows that F() is uniquely determined on [po, v] and equal to F(po) + [1 - 

F(po)]G* ( - (, G*, I, F(po))) on this inteival. Q.E.D. 

A.2. Proofs of Regulaiity Properties 

To prove Proposition 1 we need two lemmas. Lemma Al studies the regularity of the boundaries 
v( ) and TO() as well as that of the bid function s(, , i). Lemma A2 translates these regularity 
properties into regularity of b(-, i), b(, i), and 6(, *, i). 
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LEMMA Al: Under A2: 
(i) The bouindaries T() and v( ) adntit uip to R + 1 conltinuous bounded derivatives on [x, x], anzd 

inlfx,=- 1 )(X)) > . 
(ii) For each i gY, s(., , i) admits tip to R + 1 contintutolus botunded partial derivatives onz Si(F). 

Moreover, for any (v, x) E Si(F), sA(t, x, i) ? cs > 0. 

LEMMA A2: Unzder A2, for each i eg, we have the followinzg: 
(i) The boundaries b(x, i) and b(x, i) admit up to R + I conZtinullotus bounded derivatives on [x, x], 

anzd inf, E A](b(x, i) - b(x, i)) > 0. 
(ii) 6(-, , i) admits ulp to R + I continuous bounded partial derivatives on Si(G). Moreover, for anzy 

(b, x) (E Si(G), 6'(b, x, i) 2 cf > 0. 

PROOF OF PROPOSITION 1: (i) is Lemma A2-(i) plus the boundary condition. Next, 

(A.3) g(blx, i) - f( 
x, 

) ) 

Because f is bounded away from 0 by A2-(ii) and s' is bounded by Lemma Al-(ii), then (ii) follows. 
To prove (iii), it suffices to note that G(blx, i) = F (b, x, i)lx, i), where F(I , i) and 6(, , i) have 
R + 1 continuous bounded derivatives on Si(F) and Sj(G) by A2-(iii) and Lemma A2-(ii), respec- 
tively. Lastly, to prove (iv) we note that (9) gives 

(A.4) g(blx, i) = Gi- ) (b,lx, i) -b 

with 6(b, x, i) - b > 0 for (b, x) E Fi(B). Because G(Il , i) and 6(, ., i) admit up to R + 1 bounded 
continuous derivatives by (iii) and Lemma A2-(ii), the desired result follows. Q.E.D. 

The proof of Proposition 4 follows that of Proposition 1. In particular, the following lemmas 
similar to Lemmas Al and A2 are needed. As I is constant by A5-(i), then '= {I} below. 

LEMMA A3: Under A2 and A5, properties (i) and (ii) of Lemma Al hold withl Ly(), Si(F) and 
s(v?, x, i) replaced by h(), S* -((V, x): x e [X, X], tv e [h(x), v3(x)]} anzd st,(v, x), respectively. 

LEMMA A4: Under A2 and A5, properties (i) antd (ii) of Lenmnma A2 hold with b(x, i), b(x, i), 
Si(G), and 6(b, x, i) replaced by h(x), bt(X), S(Gt), and 6t(bt, x), respectively. 

PROOF OF PROPOSITION 4: The proof is similar to that of Proposition 1, using F*(lylx) = [F(vlx) 
-F(h(x)lx)]/[l -F(h(x)lx)], Gt(btlx), Lemmas A3 and A4 instead of F(lvx,i),G(blx,i), Lemmas 
Al and A2, respectively. In particular, instead of (A.4) we have from (27) 

2bt 1 /F(p0Ix) 
(A.5) gt(btlx) h G((b lx) + 1I 

with po = h(x). Q.E.D. 

APPENDIX B 

PROOFS OF STATISTICAL PROPERTIES 

This Appendix gives the proofs of Theorem 2, Propositions 2 and 3, and Theorem 5. Lemmas are 
proved in Appendix C. Throughout I K. denotes the supnorm of the r th derivatives of . on the 
set *. 
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B.1. Optimnal Uniifomz Cowvergence Rate 

PROOF OF THEOREM 2: The proof relies on the argument of Khas'minskii (1976), though it is 
somewhat more complicated due to the indirect nature of our statistical problem. The proof is 
divided in 4 steps, where the fourth step uses Fano's lemma. Let rL -(L/log L)R/(2R+d1+ 3). 

Step 1: We show that the rate rL is given by the estimation of the joint density f(i', x). Let ffQ) 
be (say) the kernel density estimator (21) of the density ff() of X. From the triangular inequality, for 
any estimator Al) of the conditional density, we have 

rL |f ( v Ix) f( v I x)I 2 ( |ft( vlx ) f( x) -f ()I x) f ( x)I -f( vI x) If ( x) -f ( x)DI 

2 C1il|f(vIx)f(x) f -f(L, 
x) I Coi*If(x) -f(x)l, a.s. 

for some constants C1 and CO since f(-) and f(-l-) are uniformly bounded above on W(V) by 
definition of Ub(fo), and since f( ) converges uniformly to f( ). In addition, it is well-known (see 
Hardle (1991)) that the uniform rate of convergence of ft) to fQ) is (L/logL)(R+1)/(2R+d+2), 
which is faster than rL. Hence the above second term converges uniformly to zero. Now, f(.l * )f() is 
an estimator of the joint density f(, ). It is easy to show that, if Theorem 2 holds for some positive 
constant K' where f(L,,x) and f(ft,x) replace f(vtx) and f(clx), respectively, then Theorem 2 
would hold for some K. 

Step 2: The set Uj(fo) can be replaced by any subset U c UE(fo) since 

sup Pr (/r* If(, ) -f( )Io,r'(V) > K) ? sup Prg(rjIf(, ) f(, )Io,rv) > K). 

f e U,(fo) f C= U 

The subset U will be discrete and of the form {,mk(Q,-,), k 1..nd+ 1}, where ni is increasing 
with the sample size. To construct the joint density f, k( ,,) for (V, X, I), we consider a 

nonconstant and odd C-function 0, with support [-1, 1]d+ 1, such that 

(B. 1) ; 0(b, x)db =O, ?0(0,0O) =O, 0'(0, O)O+O. 
[-1,0] 

Let Wi(B) s(94(V), F, i) be the image of FAV) by the bidding function associated to fo when 
I= i. Without loss of generality, assume hereafter that Pr0(I = 2) # 0 so that W2(B) is a nonempty 
inner compact subset of S2(Go). Let (bk, Xk), k n1.. d+ 1, be distinct points in the interior 
C?(B) such that the distance between (bk, Xk) and (bj, xj), j =A k, is larger than Al/m. Thus, one can 
choose a constant A2 such that the md+ I functions 

1~~~~~~~~~~~~~~~M+1 
An km(b, x) (+1 4(mA,(b - bk),mA2(x-X)) (k 1. md+1) 

have disjoint hypercube supports S(n, ,k) centered at (bk, Xk) with side equal to 2/(m A,). Hence 
J?,, ,j(b, X)',hk (b, x) dbdx- = 0 for j 5/ k. 

Let C3 be a positive constant (chosen below), and for each k 1. md+ 1 define 

g,m,k(b, x, i) _ go(b, x, 2) - C3 4'7,k(b, x) if i 2, 
go(b,x,i) if i 2. 

That is, g,7,(., , i) is identical to go(-, , i) except when i = 2, in which case it differs from go(, ., 2) 
only on the set S(O,..k). For ni large enough, S(An k) is in S?(Go), while g(, , 2) is bounded away 
from zero on S2(Go) and integrates to Pro(I= 2) as go(-, -, 2) is bounded away from zero (Proposi- 
tion 1-(ii) and A2(ii)) and f[- 1, + 1l14(b, x) db 0. 
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Now consider the function (,..k(b, x, 2) = b + G,.(b,x,2)/g,,k(b,x,2). It is easy to see that 

G,nk(-,*,2), g,,,k(, *, 2), and g,,k(Q, *, 2) converge uniformly on S2(Go) to Go(-, , 2), g0(, *, 2), and 
g * ,2), respectively. Thus ,,k( ,-2) is strictly increasing in b with a differentiable inverse. From 
Theorem 1, it follows that g,m,k(. , 2)/Pro(I = 2) can be interpreted as the bid density associated 
with a unique density f,, .k(-, 2)/Pro(I = 2) of (V, X) when I = 2, namely, 

(B.2) -,,(,x )="*((,kv x, 2), x, 2)/ k ' ( v,(L, X, 2) , x, 2)) 

g3,l((,ks x, 2), x, 2) 

2g,,,k( (,,,*.(U, X,2), x, 2)-G,,k( , x,2), x, 2Gg,( MM..1) x, 2), x,2) 

As g,,k(-, ,i)=g0(-, ,i) for i#2, we have f,,kQ, ,i)=f0Q, ,i) for those i's. This completes the 
construction of the densities f,,.(, ,), n = 1 ..., m 1, which compose the set U. 

It remains to show that U is a subset of Ub(fo), i.e., that all f,..k(, , )'S belong to Ub(fo). For this, 
we use the following lemma. 

LEMMA B1: Given A1-A2, the followinig properties hold for n large enough: 
(i) For any k = 1. md+ 1, the sipports of Gm. and F,,k are S(GO) and S(FO). 
(ii) There is a positive constantt C4 depending iuponZ p, Go, anid F(V) sitch that for] j # k, 

Ifnk f,,1jIo,F(V) 2 C4 AR 

(iii) Unziformlly in k = 1.,n(I+ 1, we have 

,,nk foIr,S(FO) = C3AX l(1/mR-') (2= 0. R . 1), 

Ifnk -foIR,S(F0) = C3A 20(1) + o(l), 

where thze big Of() only depencds liponI + anzd g0. 

As IIfo II < M by assumption, there exists a positive constant A3 such that If0o |,, S(F0) < M - A3 for 
all r = R. As Ifnklr,S(Fo) < If,nk fOIr,S(Fo) + IfOIr,S(FO) < If.k fo lr,S(Fo) + Ml- A3, it follows 
from Lemma B1-(iii) that the first term can be made smaller than A3 as soon as m 2 nzo(E) and C3 
is small enough. Hence, f,k. is in Ub(fo) so that U is a subset of Ub(fo), as desired. As mn is 
increasing with L, we have for L 2 Lo(E): 

sup Prg( If(,)-f(-, )Io,(v) > K) 

f E Ue(fo) 

> max Pr1,,,*(L rf(,X) f,,k(X )Io,s-(v)> K). 
k- 1 

g,,ky. 

Step 3: We now reduce our problem to the model selection problem of deciding which of the 
hypothesis H,.,k: {f=f,,k.} holds. Consider the decision rule that selects H,.,k whenever f,,nk is 
closest to f in the supnorm I lo, j(V). Let Prg k(H,,,k) be the probability of error of this decision 
when H,,,k {f=f,,k} holds. Choose in and K such that 

(B.3) nz = (rL)I/R and K=C4C3A9/2. 

From Lemma B1-(ii), we have rL If ..k -f,,j Io, j (v) 2 2K uniformly in j # k. Thus, from the triangular 

inequality, if r*L f -f,n,kIo, F7(1/) < K, then rL f -f,,1Vo,Y;(v) 2 K, for any j# k, i.e., the decision rule of 

the closest accepts H,, k. Hence, for any estimator f(, ) we have 

max d+ Prg,,z(r'L* I f(v I, x) -f, .. k(L?, x)Io0r(Tv) > K) 2 max P1 I (gH,,, k) 
k=1.i2 k1.i n g,, _ 

k=1 
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Step 4: Assume that the parameter k in g9,nk is uniformly distributed over 1. md+ 1. Thus Pre 
is the Bayesian posterior probability of misclassification of the above decision rule based on the 

closest f,,1k to f. We can bound Pre from below using Fano's Lemma (see Khas'minskii (1976), 
Ibragimov and Has'minskii (1981, p. 323)). Indeed, this lemma gives a lower bound on the probability 
of misclassification for any decision rule that selects a value among a finite number of equally 
probable values. In our case, because of i.i.d. sampling, we obtain 

LP1 ((B, X, I), k) + log2 
Pr_1- log(m d+1 -1) 

where T((B, X, I), k) is the amount of Shannon information in (X, I, Bp, p 1. I) relative to 
the parameter k, i.e., 

M((B, X, I), k) = E(log(g(klB, X, I)/g(k))) = E(log(g(B, X, Ilk)/g(B, X, I))) 

+ J1 g,,,X(B, X, I) 

md+1 E Eflo ( 1 E 
gzk(b,x, O 

) mk(b,x, i)dbdx. 

We now bound 2((B, X, I), k) from above. Using the concavity of the logarithm function, a simple 
second-order expansion, the definition of the g,mk'S, (B.1), the fact that g,nk is bounded away from 0, 
the orthogonality of the ,mk's, and a change of variables, we get: 

((BXI),k) < m 2(d+) E flo(g, (b,x, 2) g,,,k(b, x,2)dbdx 

C m ntd+ 1 

m 2(d + 1 (f 7]j(b, x) - Oin k(b, x)) dbdx 

1d + f 4 +,k(b,X) dbd 

m kj= 1 

C5 111d+ l c2 

m I E f m2R+2 42(A2m(b -bk), A2m(Xxk)) dbdx m~d?l k- krnA 

C5 C32 
= A+ m2R++3 f (b, x) dbdx 

K2 K2 log L 
= (C6rZ*)(2R+d+3)/R 6 L 

by (B.3) and the definition of rL. Thus Fano's Lemma gives 

C6 K 2 log L + log2 
Pr_>1- log(md l 1) 

As m = (rLZ)l/R = (L/log L)1/(2R+d+ 3), taking K (i.e., C3) small enough gives Pre 2 1/2 for 
L 2 Lo(E). As this can be done for any value of E, this completes the proof of Theorem 2. Q.E.D. 
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B.2. Uniiformn Consistenicy of Bolundacy Estimators 

PROOF OF PROPOSITION 2: Because the proof for b(x) is similar, we consider only the upper 
boundary estimator b(x, i). The proof is divided into two steps. 

Step 1: First, we establish an exponential type inequality. Assume that x lies in rTk,. kd T. 

Define b*(x, i) = sup, 1 b(y, i). Using (16), the triangular inequality, and Proposition 1-(i), we have 

Ib(x, i) -b(x, i)l <b*(x, i) -b(x, i) + Ib11hd with b1l = ibil,[,_]xgj. Thus 

(B.4) Pr(lb(x, i) - b(x, i)I > t) < Pr(b(x, i) < b* (x, i) - t + Ibijh;,). 

Let RHS be the right-hand side of (B.4). Using Al we have 

RHS = pr L SUp BPR(X - Tr,I =i) <b* (x, i) - t + IbIhd) 

Provided t and h. are sufficiently small so that b*(x, i) - t + ILbIIhd > 0, then (RHS)l/L equals 

(B.5) [1- PrI = i and X - -,T)] 

+ fPri(B < b* (x, i) - t + ibLih,i X =y, I = i) 1R(y)f(y, i) dy. 

Using Proposition 1-(ii), an upper bound for the second term is 

fPr'(B < b(y, i) - t + 2bIlh;, IX =y, I = i) 1R(y)f(y, i) dy 

<1 - inf g(blx,i)(t-2bILIh;,)) Pr(I=iandXEci-r), 
(b, x, i)e S(G) 

provided t - 21bLhd 2 0 (which is satisfied by our choice of t in Step 2), and provided t and hd are 
sufficiently small to ensure that b(y, i) - t + 2IblIhd 2 b(y, i) and that the term in brackets is strictly 
between 0 and 1. Note that we have used inf(X i)E[l , ]x_(b(x,i) -b(x,i)) > 0, which is ensured by 
Proposition 1-(i). Moreover we have h, inf x f(x, i) < Pr(I = i and X c -) < hd' sup 1 f(x, i). 
Hence, because i > 1, then (B.5) is bounded above by 

1 - h" inf f(x, i) + [1 - inf g(bix,i)(t-21Llh;,) ]hsupf(x,i) 
xer 7 [ (b, x, i) E S(G) .X E IT 

=1 + h"d (sup f (x, i) - inf f (X, i) 

- h" sup f(x, i) inf g(blx, i)(t - 2ILlih,,) 
(X,i)ES(X) (b, x,i)eS(G) 

< 1 + c hd, d c2Ihd4(t- 21blhd) 

< (1 + (c1 + 2cIbLII)h/I)('- 1 + (C1 + 2c2lblDh9 ) 

< 1+C30' )(1-Clt) 

for h9 and t sufficiently small, where ci's are strictly positive constants independent of (x, i), and 
where we have used supx , 1 f(x, i) - infx , 1 f(x, i) < sup(X\, 5, 21f(x, i) -f(y, i)l < clh,,, for (O, i) 
c S(f(x, i)) by A2-(iii). Therefore (B.4) and A4-(iii) give 

Pr(lb(x, i) - b(x, i)l > t) < (1 + c5 log L/L)L(1 - c6t(0og L/L)' /"+ I)) 

< LC5(1 - c6t(log L/L)""('l+ 1))L 

for t sufficiently small and L sufficiently large. 
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Step 2: Let xc- -,. Note that b(x,i)=b(x,, i) whenever xc- - by (16). Thus, using the 
triangular inequality and letting t = A/(2rd) in the above inequality, we have for each i eY 

Pr(ra sup lb(x, i) - b(x, i)l > ) 
x E [.\, A~ I 

<Pr( supjb(x,,i) -b(x,i)l> 1(2r)) 

+ ( sup sup ILb(x, i) - b(x, i)l > AI(2r,)) 
T .x-E 'r 

< , Pr(lb(x7T, i) - b(x,, i)l > 1/(2rd)) 

+ , sup Ib(x, i) - b(x17, i)l > /(2 
T x E 7T 

< card(m)Lc5(1 - c6 ,u(log L/2L))L + card(G) T( bl,rhd > A/2), 

where card(-) is the number of elements in the partition of [x, x~7]. 
Now, take A large enough. The second term vanishes, as *dhd = Ad from A4-(iii). Moreover, the 

first term gives a converging series since 

log(10-c6t(10og L/2L))L = L log(1 -c6 u(log L/2L)) -(c6/2)i flog L, 

while card(T) = O(h-d) = O((L/log L)d /(d+ 1)) by A4-(iii). Hence, by the Borel-Cantelli Lemma, 
we have shown that there exists ,u (sufficiently large) such that 

Pr(limsup {r sup Ib(x,i) -b(x,i)|> =0. 

This establishes the desired result for each i. Since x is finite, the desired result follows. Q.E.D. 

B.3. Unzifoim Conisistenicy of Pseltdo Private Values 

To prove Proposition 3 we need a lemma that gives uniform convergence rates of G, g, f(x), and 
f(Lv, x), where the latter is the infeasible estimator defined in (22). We consider uniform convergence 
on a fixed subset as well as on subsets expanding to the supports. Specifically, let 

FL(B) {(b, x, i) E S(G); {(b, x) + S(hG) U S(hg)} c Sj(G)}-, 

FL(V) {(U, x) E S(f( v, x)); {(v, x) + S(hf)} C S(f(v), x))}, 

FL(X) {X E S(f(x)); {x + S(hx)} cS(f(x))}, 

where S(hf) and S(hx) are defined similarly to S(hG) and S(hg) in the text, i.e., are the supports of 
the kernels Kf (/hf, 7/Ih) and KX( /hX), respectively. Let 

B6L 2 (+I )/(2R+d+2), L 2)R/(2R+d+3) 

(B.6) ZG =ZX = I IO LJ' = I' = Io 

= L )(R+ 1)/(2R+I+3) 

w g the L o u 

which give the rates of uniform consistenc of our estimators. 
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LEMMA B2: Given A1-A4, we have almost sulrely 

(i) 1G(b, x, i) - G(b, x, i)lo1,9'(B) = O(1/G), lg(b, x, i) -g(b, x, i)lo1,'L(B) = 0(1/1rg), 

If(),x) -f(v,x)lo g7L(v) = O(l/r ), If(x) f(x)Io0,L(x) (/x,Y 

GO Ig(b, x, i) - g(b, x, i)lo, (B) = 0(17/ ), 

where WL(B), JL(V) aznd JL(X) ar-e expanding sibsets defined above, whlile W(B) is a (fixed) a-bitraiy 
innier subset of S(G). 

PROOF OF PROPOSITION 3: Let GP1 = G(BP,1, XI, II), GP, = G(BPI, XI, II), gpl =g(Bpl, XI, II), and 

gpl = g(Bpl, XI, II). Define jg = min{lgpl ; =1, .., L, p = ,.., Il, ++x}. 

(i) Because I, ? 2, it follows from (12) and (18) that 

#Wp +c)VlJ%1 -vpll < ? WP +o)Iq;(Bp1, XI, II) - (Bpl, XI, I1)l. 

Hence, using the set JL(B) introduced in Lemma B2, we obtain 

(B.7) ]I(J#VPI + Fo)L3(B)(BpI, XI, I )lq(Bpl, XI, I) - (BpI, XI, d)I 

V (J%I#+c+ )iRL(B)(BpI, X1,I1) - 
Cf CgCgp l(Gpl - GP1)gPl + (gpl - gl)GP-ll 

< (VP' + XC) R@'L(13)( Bpl, XI I |Id llgo GP,-Gpl l+lf,l"l0Igp,-9pilI' 

because G(b, x, i) < G(b(x, i), x, i) = g(x, i) = f,..(x, i) and gp, = g(Bpl I XI, I1)f,..(XI, II) 2 Cf cg by A2- 
(ii) and Proposition 1-(ii). Thus 

(B .8) ]1 ( Vp 
. 

)1 ,-p 

= (Vpl # + o)(Jl L',(B)(Bpl, XI, I) + 1 - FI?L(B)OpI, XI, /1))IJV, - VI,/ 

R (Vp' I + o) iRL(B)(BpI, XI, II) 

CfCgCg IlglolG1, - Gl + l,f,.lol1gpl - gpll 

+ I(VPJ # + ox)(1 - L(B)(Bp , X1, I ))I1JI2 - 'lI 

Now, from A3-(i) S(2hg) (S(2hG)) is a hypercube centered at 0 with edge 2 pghg(2 PGhG). Thus, if 

VP, + xc, Proposition 2 and (19) imply that the distance in supnorm of (BP,, X) to the frontier of 

S1,(G) is at least pghg - t(log L/L)l/('d 1), for some t and L large enough. But, for L large enough, 

pghg - t(log L/L)l/(d?+ 1) > p h /2 because (log L/L)'/('"+) = o(hg) from A4-(ii). Hence, if V' 
+c0, the distance in supnorm of (BP,, X,) to the frontier of S1,(G) is at least pghg/2. Therefore 

(BP,, XI, I,) e F-L(B). Hence we have shown that for any p, 1, 1(JVp I # + co)(1 - K, (B)(BpI, XI, Id)) = 0 
almost surely as L ->D c. It follows that the second term in (B.8) vanishes. Moreover, from Lemma 
B2, we have Jg -Cg> 0 by Proposition 1-(ii) and the first term is O(max{l/rG, 1/rg}) = 0(1/d). 
The desired result follows. 

(ii) Define 9(B) = Ui E g (B) where Wi(B) = {(b, x, i) e Si(G): ( 6(b, x, i), x, i) e W(V)}. Be- 
cause 6 is a strictly increasing continuous function and W(V) is an inner compact subset of 
S(f(v, x)), then Wj(B) is a (fixed) inner compact subset of Si(G). Hence, from (19) and Proposition 
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2, it is easy to see that VPI #E + c if (B1,1, X1, I,) E F(B) for L large enough. Thus 

FYtv,)(JK,, 
Xd)IJ, -Vpl = 

lF,t(B)(Bp1, XI, 
I,)I ,-V 

= 11 (B)(Bp 1, Xi I )I (VI,p I + ?c)IVPI - VP I 

almost surely for L large enough. With W(B) replacing FL(B) in the RHS of (B.7), the desired 
result follows applying Lemma B2-(ii) instead, and noting that l/lG < 1/r*. Q.E.D. 

B.4. Optimality an?d Uniform Consistency With a Binidinig Reservationi Price 

PROOF OF THEOREM 5: Given A2 and A5, it is easy to see that the truncated conditional 
distribution F* ( lx) = [F( Ix) - F(h(x)lx)]/[1 - F(h(x)lx)] satisfies the requirements on F(-H -, i) in 
A2, where the support is now S*. Hence the proof of Theorem 2 with ff , ) replaced by the 
truncated conditional density f * (I ) establishes that the best rate for estimating uniformly the latter 
on inner compact subsets of S* is bounded above by r* = (L/log L)R /(2R +d+ 3)* On the other 
hand, we have E[I* IX] = I[1 - ?(X)]. Because I = I almost surely and P(-) = F(h(-)l *) is (R + 1)- 
continuously differentiable on [x, x] by A2 and A5, it follows from Stone (1982) that the best rate for 
estimating uniformly P() is (L/logL)(R+1)/(2R+d+2), which is larger than rL. Hence, because 
f(vlx) = [1 - P(x)]f*(ulx), the best rate for estimating uniformly f(i) on inner compact subsets of 
S* is bounded above by rL. 

Turning to uniform consistency of our estimator f(vix) = [1 - (x)]f*(vix), consider f*(1 ). 
From Theorem 4-(ii), B* and I* are conditionally independent given X. Using a result analogous to 
Lemma B2 with Bt instead B, it can be shown that Proposition 3 still holds using a similar proof, 
where the pseudo private values are now given by (27) and the new trimming is needed because of 
the presence of f(X1) in 6(,). It follows that Theorem 3 applies with ff(lh) replaced by f*(.I.). 
That is, f* (l*) converges uniformly to f (-I-) on inner compact subsets of S* at the rate rL . On the 
other hand, because I=I almost surely, we know from A4-(ii) and Hardle (1991) that b(-) 
converges uniformly on inner compact subsets of [x,x] at the rate (L/logL)(R+1)/(2R+d+2). The 
desired result follows. Q.E.D. 

APPENDIX C 

PROOFS OF LEMMAS 

This Appendix gives the proofs of all lemmas in Appendices A and B. 

C.1. Proofs of Lemmas in AppendixA 

To prove Lemmas Al and A2 we need a version of the Implicit Function Theorem. 

LEMMA Cl: For evety i a , let a(-, *, i) be a ftunction on Si(a). Let 8(-, , i) be a function on 
Si( /3) such that 3(-, *, i) a Si(a). For some nonanegative real naumber y, assume that 

(C.1) a( /3(b, x,i),x,i)= yb V(b,x)Ea Si(j/)andVi af. 

Moreover, for each i a-7 assume that the following contditions hold: 
(i) The mapping a(-, ., i) admits up to (R + 1) conatinluous bounded partial derivatives on Si(a) 

with a'(v, x, i)ca>0 for all (v, x)aSi(a). 
(ii) Sj( /) = {(b, x): x a [x, x], b a [b(x, i), b(x, i)], where the boundaries b(, i) and bQ, i) are 

continuous on [x, x] anad infx E x (b(x, i) - b(x, i)) > 0. 
Then 3( i) admits up to R + 1 continuious bounded partial derivatives on Si( 3). 



FIRST PRICE AUCTIONS 563 

PROOF OF LEMMA Cl: For (b, x) in Si?( f), (C.1) and the Implicit Function Theorem yield: 

(C.2) f'(b, x, i) = '( f(b X, i), x,i 

(C.3) d8f(b, x, i) 1 da f3 (b, x, i), x, i) 
dXk a'(f (b, x, i), x, i) dXk 

Hence, in view of (i), 3(*, , i) is a Lipschitz function on S?(, ). Thus, by continuity f(, , i) can be 
extended to Si(P ), which is equal to Si(f3) by (ii). Let f(, , i) denote this extension, and note that 
,8(, *, i) solves (C.1). But, because f(b, x, i) is the unique solution of (C.1), then 03, , i) = fQ, ., i). 
Therefore 3(*, , i) is continuous and hence bounded on Si(,f). 

Moreover, since a' is bounded away from 0, (C.2)-(C.3) show that the first partial derivatives of 
,8(, , i) are continuous and bounded on Si(f3,). Proceeding by induction yields that f3(, *, i) admits 
up to R + 1 continuous partial derivatives over Si(f,e). Q.E.D. 

PROOF OF LEMMA Al: (i) Because FQ Ix, i) is strictly increasing by A2-(ii), -v(x) and v(x) are the 
unique solutions in Si(F) of F(v(x)lx, i) = 0 and FOJ(x)Ix, i) - 1 = 0, respectively. Hence, given 
A2, Lemma Cl applies with a(,,) =F FI, ) or F(-l,) -1, f(b, x, i) = v(x) or v-(x), y = 0, 
and Si(f3j) = [-1, 1] x [x, x] (say). Moreover, 1 = F(v(x)Ix, i) - F(v(x)Ix, i) ? 0((x) - 

V(x))sup(L,x)ESj(F)lf(vlx,i)l. Because ffl,i) is bounded above, then infx E [ rx](!3(x) - v(X)) > 0. 

(ii) For the sake of simplicity, we assume that x E R. From (8) and the Lebesgue Dominated 
Convergence Theorem it is immediate that s(- , i) is (R + 1)-times continuously differentiable on 
{(v, x): v E (_(x), -(x)], x E [x, x]}. Thus it remains to show that the derivatives of s(- , i) up to 
order R + 1 are bounded near the lower boundary v(-). 

For each x E [x, x], an (R + 1)th order Taylor series expansion of F(v lx) at (v(x), x) gives 

f(v(X)Ax) f (R)(V(X) I X) 
F(vlx)= t+ tR+1 

1! (R +1)! 

uniformly in x, where t = v - v(x). Hence 

F' 1(v lx) = t> '(ao(x) + -- +aR(x)t + 0(tR)), 

uniformly in x, for each k = 0,..., R, ak(x) is a homogeneous polynomial of degree (i - 1) in 
f(v(x)Ix) and its derivatives f (1)((x)Ix)...,f(k)(V(x)Ix) with respect to v. In particular, ao(x)= 
f(v(x)lx)'- 1, which is nonzero by A2-(ii). It also follows that 

Fi(u 
I 
x) du = i + R it + 

uniformly in x. Therefore 

1 1 
F'-1(vlx) f( Fx-)(ulx)du =t(bo(x) + ** +b1(x)t'R + o(tR)), 

where bk(x), k = O,...,R, is a polynomial in a1(x)/a0(x),...,ak(x)/ao(x) and hence in 

ft0?Q( x)Ix)/f(v(x)Ix),...,f(k)((x)Ix)/tf(v(x)Ix). In particular, it is easy to see that bo(x) = 1/i. 
Thus we obtain an (R + l)th order Taylor series expansion of s(v, x, i) around (v(x), x) as 

s(v, x, i) = v(x) + (1 - bo(x))t - bl(x)t - -bR(x)tR? I - O(tR+ 1), 

uniformly in x. Hence s(v, x, i) is continuous in v at v(x) with R + 1 bounded derivatives with 
respect to v in the neighborhood of v(x). In particular, ds(v(x), x, i)/dv = (i - 1)/i # 0. 

For each r = 1,...,R + 1, it remains to prove that the derivatives d's(, x, i)/ldxP dvr-pp = 

1.., r are bounded in the neighborhood of v(x) for x E [x, x]. The proof is by induction on r. For 
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r = 1, differentiating the boundary condition s(v(x), x, i) = v(x) gives 

s(v (x), x, i) dv(x) ds(v(x),x,i) dv(x) 
+= 

dv dx dx dx 

But ds(v(x), x, i)/d v is bounded, as shown above, while dv(x)/dx is bounded from Part (i). Hence 
ds(v(x), x, i)/dx is bounded. 

Suppose next that all the partial derivatives up to order r of s(, , i) are bounded, 1 < r < R. 
From the above Taylor series expansion of s(, x, i) we obtain the system 

s(v (x), x, i) =_(x), _s((x), x, i) di's((v (x), x, i) 
- d~~~ ~~v 1d-b0x) d' 

Now, differentiate the first equation t + 1 times, the second equation r times,... the last equation 
one time. This is possible because bk(x) is R - k times differentiable (with bounded derivatives). 
Because d` 1s(v(x), x, i)/dL,`? and dv(x)/dx are bounded, differentiation of the last equation 
shows that d' 1s(v(x), x, i)/d v' dx is bounded. Combining this with the twice-differentiation of the 
next to the last equation shows that dO+ ls(v(x) x, i)/ldvr'- 1 dx2 is bounded. Continuing up to the 
first equation shows that 8r` ls(v(x), x, i)/ldx+ 1 is bounded. This completes the proof that s(, ., i) 
admits R + 1 bounded continuous derivatives on its support. 

Lastly, s'(, x, i) can only vanish at v(x) because 

Sf(z x i)= (i - )f( I x) 
-'(uIx)du. xi)= F'(vlx) I 

But, as noted above, s'(v(x), x, i) = (i - 1)/i. Thus s'(, ., i) is bounded away from zero. Q.E.D. 

PROOF OF LEMMA A2: Because b(x, i) = s(v(x), x, i) and b(x, i) = s(v3(x, i), x, i), then (i) follows 
immediately from Lemma Al. To prove (ii), we note that the function 6 solves 

s( 6(b, x, i), x, i) = b V(b, x) E- Si (G). 

The desired result follows from Part (i), Lemma A1-(ii), and Lemma Cl. Moreover, 6'(b, x, i)= 
1/(s'( 6(b, x, i), b, x, i)) is bounded away from 0 by Lemma Al-(ii). Q.E.D. 

PROOF OF LEMMA A3: (i) directly follows from Lemma A1-(i), A5-(ii), and A5-(iii). Regarding (ii), 
because F(vlx) ? F(poIx), which is bounded away from zero by A5-(iii), it is easy to see that 
sT2(.,.) and hence st(,,) have R + 1 continuous partial derivatives on S(F*), except possibly 
near v =Po as st(po, , 0) = 0. However, letting Lvt = v -po, we have 

F(t, + po I x) =F(P0 Ix) ( f (Io) t+ + ... + fII )+) )) I ~~~~F(poIx) 1! F(polIx) (R + 1)!+o(R+)) 

uniformly in (x, po). Similarly to the proof of Lemma A1-(ii), it can be shown that 

s2(V,X) = 2 (x, po) v + + a 2( x,po 2 + O(LvR T2) 

uniformly in (x,po), where ak((x,pO) is a polynomial in f(poIx)/F(poIx). f(k-2)(poIx)/F(poIx) 
for k = 2,. . ., R + 2. In particular, a2(x, PO) = (I - P)f(p 0x)/(2F(p01x)). Hence 

S,(l, x) = bl(x,po)vt + +bRl(X,,Po)Lv.1 +o(vR+1) 

uniformly in (x, po), where bl(x, po)bk(x, PO) is a polynomial in f(pOjx)/F(pOjx),.... 
f(k- 2)(polx)/F(polx) for k = 1.., R + 1. In particular, b1(x,po) = [(I - 1)f(pOjx)/(2F(pOjx))]1/2. 
Because f(polx) is bounded away from zero and infinity on S(F*) by A2, and because 1 2 F(polx), 
which is bounded away from zero by A5-(iii), then st(, x) admits R + 1 bounded derivatives at 
v =pO and hence on S(F*) with s',(, ) bounded away from zero. It remains to show that the cross 
partial derivatives up to order R + 1 are also bounded in the neighborhood of v =pO. This is proved 
as in the end of the proof of Lemma A1-(ii). Q.E.D. 

PROOF OF LEMMA A4: The proof is similar to that of Lemma A.2 Q.E.D. 
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C.2. PrOofs of Lernmae in Appenidix B 

PROOF OF LEMMA B1: (i) The (bk, Xk)'s are bounded away from the boundaries of S2(G0). Thus 
for m large enough, g,..k(, x, 2) = go(, x, 2), G,,,k(-, x, 2) = G0(, x, 2), and 1nk(1, x, 2) = 60(-, x, 2) in 
the neighborhood of bo(x, 2) or b0(x, 2). Because go(-, -, 2) is bounded away from zero on S2(Go), 
then the support of G,nk is A(GO) for m large enough. Moreover, (B.2) implies that the support of 
f *nk(,, 2) is S2(Fo). The desired result follows as f,,?k(, , i) =fo(, ., i) for i # 2. 

To prove (ii), note that f,nk(, )n-f,,1(, ) = -EXis[tAk&, , i) -f,k1( , i)] =f1/k(, ,2) -f71(, 

2). Note also that (bk, Xk) E ?2(B) implies (L'k, Xd) E h'(V), where Fk -o(bk, Xk, 2). Thus it 

suffices to prove that If,7 k(Vk,Xk,2)-f,,7j(Vk,Xk,2)1=C4C3A2/MR. Consider f..k(Vk, Xk, 2). Note 
that (B.1) implies Gn,k(bk,xk,2) = Go(bk,Xk,2) and ,nk(bk Xk,2) =g0(bk Xk,2). Hence F k- 

o0(bk, xk, 2) = 6 .. k(bk, Xk,2), which implies , .. lk (Vk, Xk,2) = bk. Therefore, computing gr7n k (bk I Xk, 2) 
and using (B.2) give 

(C.4) f2( k( Vk Xk, 2) + kA Xk, (O2) 

Consider next f,,.j(Vk, Xk, 2). From (B.1), we have g..j(, * , 2) = go(, *, 2), G,,j(-, *, 2) = Go(, - , 2), and 
hence ,,j(-, -, 2) = 0(-, -,2) except on S(4,,1), which is a hypercube centered at (bj, xj). Moreover, 

for in sufficiently large S(,,nk) and S(4,,1) are disjoint so that (bk, Xk) ( S(4,,1). Hence 

6,1j((bkI Xk, 2) = 0(bk, Xk, 2) = Uk so that 6 .j (Vk, Xk, 2) = bk. Thus (B.2) gives 

(C.5) f,,,I(Fk,U xk, 2) 90 (bk 
4 

Xk, 2)-GO(bk I Xk, 2)g'(b 

Now compare (C.4) and (C.5). As 0'(0, 0) 0 0 and Go(bk, Xk, 2) > c > 0 (because the (bk, Xk)'s are 
far enough from the boundaries), the desired result follows. 

The proof of (iii) is more involved and is divided in three steps of which the first two establish 
properties similar to (iii) for .. k and Sm, k' respectively. 

Step 1: As g,,7k(, *, i) = go(-, -, i) except possibly when i = 2 and (b, x) E' W2(B), then Ig ... ,,* 

-g0(', , )Ir,S(Go)= Ig,,,k(-, ,2)-gO(, ,2)I,, 2(B) and t -zk(, , ) Go(., , )Z,S2(GO) =IG,,zk(, .,2) 

- Go(, ., 2)1,., 2(B) for all r ? 0. Now, using a change of variable, we have 

G,n k (b, x, 2) = Go(b, x, 2) + 1 fA?(b-bk) (t m A (x )) d 
A,m m 7A-x(b(x) bk) 

C3 
= GO(b, x, 2) + A R R+2 P(nA2(b -bk), mA2(x-Xk)) 

where (b, x) -f 1(u, x) dci. Since go admits up to R + 1 bounded continuous derivatives on 
W2(B) by Proposition 1-(iv), we have for any n 0 + nI + - +fa = r, 0 < r < R + 1, 

(C.6) d~~, rGmlk (b, x, 2) c9 
Go (b, x, 2) 

d 'lob d"tlxl .. d @ldXd dl?ob 911tX1 
... 

d"'IbXd 

C3(A2m)' d8'(A,mn(b - bk), A2rn(x -x,1)) 

A2nR+ 2 ..b.d 8"'xd ,x 

d lg7lk(bn x, 2) dg0(b, x, 2) 

d IX ...b d 19 11 d'2x 0"b @l lxl d2 8'lob801x 8Xd ~ .. ,92Xd 

C3(A2m)r 9'0(A2in(b - bk), A,m(x -x,)) 

mR+ 1 d"Ob d'"lxl .'.'iXd 
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for all (b,x)E 'W2(B). Thus (C.6) immediately gives IG,flk -GGOIr,S(GO)= C3A- l0(1/mR+ 2-r) and 
lgfl~k olIrAS(Go) = C3rAO(1/mR+ 1-r). Since fl7k(b,x,i) = 1 + Gnl,k(b,x, i)/(i - 1Xg,,,k(b,x,i)), the 
rth partial derivatives of 6,nzk(. , i) are some polynomial functions in the partial derivatives of order 
less than or equal to r of G,flk and g9nk, divided by gk1. Since g,..k is bounded away from 0, we 
have uniformly in k 

(C.7) mk - r,(GO) = C3Ar0(1/MR+ 1-r) (r = 0,..., R + 1). 

Step 2: We have ..l k(S,..k(V, x, i), x, i) = v for (v, x, i) c S(FO). Lemma Cl and (C.7) show that 
Sn,k admits up to R + 1 bounded continuous derivatives on A(FO). First we consider I S,k - Solo, S(F0) 
and show that 

(C.8) 's,nk - SO o, S(FO) = C3 A20( 1/mR+ 1). 

Since (mzk = ( + C3 A20(1/mR+ 1) uniformly by (C.7) and 6' 2 c, > 0 by Lemma A2, we get 

IS,,k(V, X, i) -SO(V, x, i) 

_ i (s,(v,),,)-0((vxi), x, i) < I 60(S,,zk(V, X, i), X, i)- 60(XO(V, X, ) xi 
ct 

<-I 6'nlk(S,nk(V,X,i),X,i) - 60(sO(V,x,i),x,i)l + C3A20(1/mRl 1) 
C6 

- C3A20(1/mR+ 1) 

Next, letting 5,nk = s,tlk(v, x, i), (C.2)-(C.3) give 

1 dtad mk d6t,nk(Sf,k,X, i)/dxp 

Sm k = 
' k (Sk, Xi) d p 6,zk(Srnik, X,i) 

Differentiating one more time gives 

it mkk( Sm,k, X, i )0Smk 

snik - ( jk(slk,X,i))2 

dxpdxs, (s g:7l(,k x,i) 

8imk 1 ( ik dkni)k(Sink(,1) 

dxq (k (... k- X, -))2 ( 61k(Stnk) k, , ix+ )d x 

2 1~~~~~~~~ 
89X 5X tnkSkk X 

Xpolyomiamkuntio dof tk(S,.k,Xr)) dSnarti dr v 
k 

Sk take (Sk,X,) ( ~ ~ ~ ~ dxp dxq dx dxq( 

dx b6ik(Smk) ''i dx+ dx I 
q q 

An induction argument shows that any rth partial derivative Of Smnk times QmkSm, 
~i 

polynomial function of the (1 rth's partial derivatives of &nik taken at (Smk,f, x, i), and of the 
(1.r - 1)th's partial derivatives of Smk. Thus, a bound for I C(Smk, X, 0 i)-66r)(SO, X, i)O, S(FO) 
(where 6(,rk) is any rth partial derivatives of &,k) shall give a similar bound for 'Srnk - S01r,S(FO), 
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7 = 1,..., R + 1. Thus, using equations (C.7) and (C.8) gives 

1I (,7'k(Sti?7k, x, Xi')- OSO, X, 010u S(Fo) 
- ~~~~r)(soxi)IOs(F)~~~~~~~~~~~r 

i X, i) )(SnkI X5, i)01, S(FO) + I 0r)(Sn,ik, X, i)- (SO X, X,i)So,(Fo) 

< C3 k'2'0 (I /,17R+ 1 -t ) 

{ OI0r+ 1,S(Go)C3A20(1/ml 1R ) (r = 0,..., R), 

SUp(v,X,i)E S(FO)' ()(..k X, i)- ()(SO X, Xi) (r = R + 1). 

Because the sup is o(1), we obtain 

(C,9) | 'Smzk SOIr,S(FO) = C3A20(1l/nlR+ Ir) ( ,.. . I R), 

Cs97 - SOIR+1,S(FO) = C3A R 0(1) + o(1). 

Step 3: By construction, we have f.lk(v, xi) = ,lk(V, x,i)g,,lk(s,0lk(v,x,i),x,i). Thus the rth 
partial derivative of f,n k is a polynomial function of the (0,..., r )th derivatives of 5,. k' g07nk' and S,, k 

By the same argument as in Step 2, (iii) follows from (C.6) and (C.9). Q.E.D. 

Further Lemmas: To prove Lemma B2 we need three lemmas. Lemma C2 studies the uniform 
bias of G, g, fAx), and f(, x), Lemma C3 studies their variances, and Lemma C4 establishes 
exponential-type inequalities. Hereafter, the condition "for L sufficiently large" means: 

(i) for any (b, x), KG(X, (i - j)/hgj) = 0 and Kg(b, x, (i -j)/hgi) = 0 if j # i, and 
(ii) for inner closed possibly expanding subsets W(B) = Ui W,(B), W(V) and 97(X) of S(G), 

S(f(v, x)) and S(f(x)), respectively, we have 

U ((v,x) +5(hIt)) cS(f(v),x)), U (x+S(hx)} cS(f(x)), 
(ti, x\) c- W(V) 

U {(b, x) + S(hO) U S(hG)} c F'(B), 
(b, x) E-Wj (B) 

where W'(B)= Ui,_Wi'(B) is an inner closed subset of S(G). 
Let 11 I be the absolute norm for vectors, and 

1 1 1 
Mg= ! ll(ti,x)llal Kg(ul,x,O)Iduidx, MG = -!JfIXLt K0(x,0)IdA, 

Ml = 7f I(u, x) lla IKf (u, x) I du dx, Mx = !fIIXlr I Kx(x) I duidx, 

where x = (x,. , Xd). The next lemma on uniform bias- considers two cases whether the subset 
W(B) expands to S(G) (part (i)) or is fixed (part (ii)). In particular, given A4, IEg - glo, (B) is of 

order (log L/L)R/(2R+d+3) in (i), and has the optimal magnitude (log L/L)(R+ 1)/(2R+d+3) in (ii). 
The reason is that W(B) can expand to S(G) in (i), while W(B) is fixed in (ii) so that g admits up to 
R + 1 continuous bounded derivatives on W(B) from Proposition 1. 

LEMMA C2: Given A1-A4, we have for L sufficienitly larige 

(i) IEG - GIo, r(B) < AR+ 1MGR+ 'IGIR+ 1,S(G)AGI 

lEg -gl I, (B) < ARMR 11R,S(g)_7g, 

IEf(v, x)-f(v, x)Ioj(v) ? AjRMfI f(V, X) IR S(f)/rf, 

I|Ef(x)- f(x)lIo, y,(x, < AXR+ IMXR |f(x) IR + 1 S(f)/7 X? 
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PROOF OF LEMMA C2: Because the proofs are similar, we prove (ii) only. Using Al, we have 

g [~~hg+ hg hg ) ] 

= ffKg(l, y,O)g(b - hgu, x - hgy, i) dudy. 

Define -y(t) = g(b - thgu, x - thgy, i) - g(b, x, i) for t E [0,1]. Since the supports of kernels are 

intervals, (b - thgU, x - thgY) E (b, x) + S(hg) c Wi"(B) for (b, x, i) E- W(B) and t E [0,1]. Moreover, 
using Proposition 1, -y(t) admits up to R + 1 continuous bounded derivatives with 

sup l(R+ 1(t)I < h"1 II(u,l y) Ila I R+ 1, '(B) 
t E [O, 1] 

Thus a Taylor expansion with integral remainder gives 

1 1(l -t)R 
y(1) - y(O) = y(1)(0) ?+ ... (R)(0) + 1 f(R+ 1)(t) dt 

R R! I (+)()t 

where yy(r)(0) is a polynomial of order r in (i, y). Using A3 it follows that 

IEg (b, x, i) - g(b, x, i) I0, Fi(B) 

f fKg(it, y, 0)(y(1) - y(0)) du dy 

< hR 11g1R+ l,"(B(l 

t 

R! dt) (l(,)ia 1Kg(u,y,0)dudY) 

hR+ 1MR + I 1gsIR+ 1, V'(B)* 

The desired bound follows from A4-(ii) and (B.6). Q.E.D. 

The next lemma obtains uniform variance bounds. Let 

QG = fK2(X,0) dx, Qg = fK2(u, x,0) dudx, 

Q1 = fKf (u, x) dudx, Qx = fKk(x) dK. 

LEMMA C3: Given Al-A4, we have fo7- L sufficienitly large 

IVar( G) I o, QG( s ) S(= IVarQ g)Ilo,F,;- B) < QA/+ (*g9 o'g L 
V 

r0 
(F-(B) A 1?r2 log L d x )()) g(* )2 lo L 

- ~~h2Qf If (v, x)Io, s(f) Qf If(x)Io's(f 
IVar(f(v,x))Io~~~'(v)? IVar(f(x))Io,(x ? d IVa(f( , )) o. ~,( Ad +3i72 log L Ad rj, log L 
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PROOF OF LEMMA C3: We consider G only, since the other bounds are proved similarly. For 
(b, x, i) E F(B), we have by Al and the convexity of the square function, 

Var(G(b, x, )) < - E ( KG ( ? 
L JL D?h( ctUI 

1x - T7-Gp- | (I= 0 
)(B < WKG ,0) 

K2Lh fK(yO)G(bx-h Gyi) dy. 

The desired bound follows from A4-(ii) and (B.6). Note the somewhat different bound for Var(f(v, X)) 
because of the suboptimality of h . Q.E.D. 

The next lemma derives some exponential-type inequalities for the probabilities of deviations of 
G(v,x,i)- G(b,x,i),g(b,x,i)-g(b,x,i),f(v,x) -f(v,x), and f(x)- f(x) in supnorm over Kj(B), 
Wi(B), W(V), and F(X), respectively. To this end, we need to introduce coverings of these sets. For 
instance, Kj(B) is covered by N inner "balls" of the form 

11 -i((bl, ,x, ); A) = {(b, x) E Si(G): b E [b,l - A, b, + A], x E [x, - Ax, ? A]), 

where A > 0, and (b,, Ix,,) E Kj(B) for n = 1. N. Moreover, we consider minimal coverings, i.e., 
coverings for which N is the smallest number denoted N(Wj(B), A). Similar notions apply to the sets 
W(V) and W(X). 

Hereafter, when there is no possible confusion, we simplify the notation by omitting the * in 
I I, when the supnorm is taken over the whole support of the function. Let 

1IG9KGIO logL ?lm+ 
eG (t, T) = t + - 

d t G +MG + GR+ 
G 

+ 7(2dIKG11 + 4hGIKGIolg(b,i)Io), 

e (t, T) = t + 2dlK 11,T+ AgRMgR 11R, 

ef (t, T) = t + 2d IK 11?T + ARMWRI f(Lv, x) IR, 

ex(ti-) =t + 2dIKxIi?T+ Af, 'My f (Xf(x)IR+l, 

e* (t, T) = t + 2dIKgI 11T + AR+ MR+ 1gR 1,R(B), 

where t and i are arbitraiy strictly positive numbers. Define 

/ A" t2 log L 
P(;(t, ) = 2N(W(B), rh~G 1/1G)exp( - 2Q(IGIO j+4tjKGjo/(3rG) )' 

p(; (t, T ) = 2 N( H(B ), 7-hdG1/) G )exp( - 4g bi) h + 1X. 2 t / 

41 g(b, i)) 2Nh( '/GB 
? 

2t 
log 

L/ l/3 
P~(t,~-) =2N(~(), d1? 1(A")exP -ot LoL 

Pg(t, r) = 2N(W&(B),,rh"+2/i> )exp - g 9 9 
~~2QgIgIo ? 4tIKgjo/(3r~ ) 
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pf(t, ) =2N(W( V), Thd+2/rf)exp( - log L)/97f 

f / 2x )expv (x) lo + 4tlKx o/(3rxf) 
= ')AU22(D\ d?2,*\(A11t log L 

PX (t,7) = 2N(W(X), 7-hx /t7g)exp -2QxIlf(1+4tlK xlo/(37*)) 
g \~ I LIY9kIJ,Tug /tICX~ 

2QgIgI0 + 4tIKgIo/1(3r*) 
, 

LEMMA C4: Givenz A1-A4, for any t > 0, r > 0 aid i EJ, we have for L sufficiently laige 

(i) Pr(rGl - Glob,i(B) > eG(t, r)) < PC(t, T) + PG(t T), 

Pr(rgg I g I , j(B) > eg (t, ")) < Pg (t,v 

Pr(0rlfIf-f 10,- v() > ef (t~,T)) < Pf (t~, T), 

Pr(rx I f I0,?,(x) > ef (t, T)) < Px (t, 7-), 

(ii Pr(r* 1 g--g|O,-i(B) > e*8 (t, T)) < Pg* (t, v). 

PROOF OF LEMMA C4: We detail the proof for G, as it is the most involved. 

Step 1: From Lemma C2 and the triangular inequality, we obtain 

(C.10) Pr(rvIG - Gjo,F'j(B) > eG(t, 7)) 

< Pr(rvIG - EG(I, 'i(B) + rGIEG - GIo, (B) > eG(t, T)) 

? Pr(rG E- EG10, ?i(B) > eG(t, 7) - G 1MA M + 11GIR+ 1). 

Note that, for L sufficiently large, G(b, x, i) - EG(b, x, i) = (1/L)Z,>L. 1 ;.lLOb, x, i), where 

fn L(b, x, i) = 
illd (ii( Bp,7 <b)KG( 

X-X 
'?) (,, =i) 

-Et R(B <b)KG ( 0 ) (I =i)) 
~~~Gp~~ 

The ;, L'S, m = 1. L, are i.i.d. centered variables. Moreover, using Lemma C3, we have 

1 -G~ . b x i I<21KGjO'r 2L1KG10 
t1G;,ZlL(b,X, i)l<k rO log L 

LQGIGIo 
Var(rGc, L(b,x,i)) =LrG Var(G(b, x, i)) ? 

A4d log L 

for any (b, x, i) c W(B). Hence, Bernstein inequality (see Serfling (1980, p. 95)) gives 

(C.li) Pr(IGG(b, x, i) - EG(b, x, i)l> t) < 2exp( 2QG- G O 2Ad + (4tLK d I-G) 

PG(t,T) 

NfoB), ThaL+ fnrG) 

for any (b, x, i) C M(B), t, and L, where the equality follows from the definition of PG(t, 7-). 
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Step 2: Consider a minimal covering of Wi(B) for some A > 0. For any (b, x) csi,,, we have 

rGIG(b, x, i) -EG(b, x, i) 

rG L 
< sup L E lniL(b,l X,i)| 

1<?n<N Ltn= 

rG L 

+ sup sup |L E ( 17n Jbtl xX, i) - 7nLO,x, M 
1 < < N (b, x) m, t=I 

This gives 

(C.12) Pr(rGIG -EGIO,F-i(B) > eG(t, 7) -G MG 1IGIR?l) 

< Pr( sup -GIG(b,,,x,,,i)-EG(b,, x,, i)l >t 

+ Pr sup sup | L - L ( ,tn Jb Z,x, fi) L(b,x,i)) 
1?< <N (b,x)efA. ?zI= 1 

> eJR MG (t, T) )- t- AG,1M |G IR+ I 

We now give some bounds for the increments at (b,, x, , i). For any (b, x) c-,W, we have 

| hd G ( hd- ) - b KG ( hX ' ) 
dAIKGII IKGI b 

(b B b +,). 

Using (C.13) twice in the definition of 4,,nL(b, x, i) and the triangular inequality, we obtain 

1n ;17L(bil( xi, i)B- .bLO), X, i) I 

?E[( hd?U ? KGI OKb O-<B <bn+))b I=i)] 

< 
hd +1? hsl (2E[ lK(b,, - A ? B <?b,, ? /)l1(Il= i )] +?Z,,,L(b,,)) 

where we have used (1/i)Ep= ~1(I,,Z = i) ? 1, ELRi(I = i)] ? 1, and 

=1 G 

Z L( b)--- ( E Gb-A < BPG, TbO +)B1 b +, = i) 
hd( I h?B ?1I n 

-E 2dIKI (b- IKGIO A (2[( (I=i)]). )RI=i] 
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Because E[I(b,, - A <B <b, + A)I(I = i)] < 2Ajg(b, i)Io it follows that 

rG 
L 

(C.14) sup sup - L (/ qnL(b,,,X,,)i)-;,nL(b,x,i)) 
1?<z<N (b,x)ej L 171=1 

2drGAIK(;I1 41G AIKGIoI g(b, i) Io rGIKGIO L 
- _ d + 1 h ?d + SUp Lh d L Z,nL(b,). 

IG lG 1<1n<N G =1 

Step 3: We study sup, :,,, < N(1/L) In= 1Z,7,L(b,,). We have IZ,7ZL(b,l)l < 1 while Var(Z, L(b.l)) ? 

Var[V(b,Z - A < B < b,l + A)(I I= i)] < 2A Ig(b, i)lo. Thus Bernstein inequality gives 

(C.15) Pr( 
su | L JbiZ) > ti log L/L L 

Z,N,L n 
,) 

?N LL) 

n = Ill~l Z,|,L )77tL(b,Z ) | > t2log L/L ) 

< 2N(W(B), A)exp( - log L 
41g(b,i)1oA ? 2tV1og L/L /3 J 

Step 4: Let A = Tfd+ 1/IG. Hence, (C.14) and the definition of eG(t, T) imply 

r' L 

Pr sup sup 
G 
L (4,101(b,,X,I,i) -/I(b,x,i) 

1 < II < N (b, x) i,,l )L ? = 1 

> e(t )t -A'+ 'MG' | GIR+ 1| 

( rGIKGIO L 1-GIKGIO 
? Pr sup d LZ,,(, tloLL 

1<n)N LhG G=I 

4Ig(b,)IoTh 
2 

log~ L tlgLL/ 
< 2N(W'(B), Th/dj 1/r.)exp( - 

t o < 2N(W(), rhG tG)exp( 41 g(b, i) 1 oThdI/G + 2tVIgLL/3) 

= P (t, T), 

using (C.15). The desired result now follows from (C.10), (C.12), and (C.li) as 

Pr(rGIG - GIo,'j(B) > eG(t, T)) 

N 

< Pr(r'G 1(k,Z IR xi i) - E(bll I XiZ I i) I > t) + PG (t, T) 
ZI = 1 

PG (t, T) + PG (t, T). 

Proofs of the other inequalities of the lemma are simpler because Step 3 can be dropped. Indeed, 
the corresponding bounds (C.13) only involve the derivative of the kernel. Thus the new bounds in 
(C.14) only depend upon the first term. For instance, we choose A = Thd+ 2/,. to prove the second 
bound, etc. Q.E.D. 

PROOF OF LEMMA B2: The covering number N is of order A -8, where 8 is the dimension of the 
covered set. Hence, in view of A4-(ii) and (B.6), the various covering numbers in the upper bounds of 
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Lemma C4 are of the order (L/logL)7' for some -q>0. For instance, N(?K7(B), Thd+1j / =G) 
O(L/log L)(d )(R+d+2)/(2R+d+2). Thus, by taking t sufficiently large, it is easy to see that the 
series PG(t, T) (say) can be made convergent as L -x cc. The desired result -follows from the 
Borel-Cantelli Lemma and the fact that eG(t, T) = 0(1). Q.E.D. 
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