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Preface to the Third Edition

This third edition of Applied Logistic Regression comes 12 years after the 2000
publication of the second edition. During this interval there has been considerable
effort researching statistical aspects of the logistic regression model—particularly
when the outcomes are correlated. At the same time, capabilities of computer soft-
ware packages to fit models grew impressively to the point where they now provide
access to nearly every aspect of model development a researcher might need. As is
well-recognized in the statistical community, the inherent danger of this easy-to-use
software is that investigators have at their disposal powerful computational tools,
about which they may have only limited understanding. It is our hope that this third
edition will help bridge the gap between the outstanding theoretical developments
and the need to apply these methods to diverse fields of inquiry.

As was the case in the first two editions, the primary objective of the third edition
is to provide an introduction to the underlying theory of the logistic regression
model, with a major focus on the application, using real data sets, of the available
methods to explore the relationship between a categorical outcome variable and a
set of covariates. The materials in this book have evolved over the past 12 years
as a result of our teaching and consulting experiences. We have used this book to
teach parts of graduate level survey courses, quarter- or semester-long courses, as
well as focused short courses to working professionals. We assume that students
have a solid foundation in linear regression methodology and contingency table
analysis. The positive feedback we have received from students or professionals
taking courses using this book or using it for self-learning or reference, provides
us with some assurance that the approach we used in the first two editions worked
reasonably well; therefore, we have followed that approach in this new edition.

The approach we take is to develop the logistic regression model from a regres-
sion analysis point of view. This is accomplished by approaching logistic regression
in a manner analogous to what would be considered good statistical practice for
linear regression. This differs from the approach used by other authors who have
begun their discussion from a contingency table point of view. While the contin-
gency table approach may facilitate the interpretation of the results, we believe
that it obscures the regression aspects of the analysis. Thus, discussion of the inter-
pretation of the model is deferred until the regression approach to the analysis is
firmly established.

xiii



xiv preface to the third edition

To a large extent, there are no major differences between the many software
packages that include logistic regression modeling. When a particular approach
is available in a limited number of packages, it will be noted in this text. In
general, analyses in this book have been performed using STATA [Stata Corp.
(2011)]. This easy-to-use package combines excellent graphics and analysis rou-
tines; is fast; is compatible across Macintosh, Windows and UNIX platforms; and
interacts well with Microsoft Word. Other major statistical packages employed
at various points during the preparation of this text include SAS [SAS Institute
Inc. (2009)], OpenBUGS [Lunn et al. (2009)] and R [R Development Core Team
(2010)]. For all intents and purposes the results produced were the same regard-
less of which package we used. Reported numeric results have been rounded from
figures obtained from computer output and thus may differ slightly from those that
would be obtained in a replication of our analyses or from calculations based on
the reported results. When features or capabilities of the programs differed in an
important way, we noted them by the names given rather than by their bibliographic
citation.

We feel that this new edition benefits greatly from the addition of a number of
key topics. These include the following:

1. An expanded presentation of numerous new techniques for model-building,
including methods for determining the scale of continuous covariates and
assessing model performance.

2. An expanded presentation of regression modeling of complex sample survey
data.

3. An expanded development of the use of logistic regression modeling in
matched studies, as well as with multinomial and ordinal scaled responses.

4. A new chapter dealing with models and methods for correlated categorical
response data.

5. A new chapter developing a number of important applications either miss-
ing or expanded from the previous editions. These include propensity score
methods, exact methods for logistic regression, sample size issues, Bayesian
logistic regression, and other link functions for binary outcome regression
models. This chapter concludes with sections dealing with the epidemiologic
concepts of mediation and additive interaction.

As was the case for the second edition, all of the data sets used in the text are
available at a web site at John Wiley & Sons, Inc.

http://wiley.mpstechnologies.com/wiley/BOBContent/searchLPBobContent.do

In addition, the data may also be found, by permission of John Wiley &
Sons Inc., in the archive of statistical data sets maintained at the University of
Massachusetts at http://www.umass.edu/statdata/statdata in the logistic regression
section.

We would like to express our sincere thanks and appreciation to our colleagues,
students, and staff at all of the institutions we have been fortunate to have been
affiliated with since the first edition was conceived more than 25 years ago. This
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includes not only our primary university affiliations but also the locations where we
spent extended sabbatical leaves and special research assignments. For this edition
we would like to offer special thanks to Sharon Schwartz and Melanie Wall from
Columbia University who took the lead in writing the two final sections of the book
dealing with mediation and additive interaction. We benefited greatly from their
expertise in applying these methods in epidemiologic settings. We greatly appreci-
ate the efforts of Danielle Sullivan, a PhD candidate in biostatistics at Ohio State,
for assisting in the preparation of the index for this book. Colleagues in the Division
of Biostatistics and the Division of Epidemiology at Ohio State were helpful in
their review of selected sections of the book. These include Bo Lu for his insights
on propensity score methods and David Murray, Sigrún Alba Jóhannesdóttir, and
Morten Schmidt for their thoughts concerning the sections on mediation analysis
and additive interaction. Data sets form the basis for the way we present our mate-
rials and these are often hard to come by. We are very grateful to Karla Zadnik,
Donald O. Mutti, Loraine T. Sinnott, and Lisa A. Jones-Jordan from The Ohio
State University College of Optometry as well as to the Collaborative Longitudinal
Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group for making
the myopia data available to us. We would also like to acknowledge Cynthia A.
Fontanella from the College of Social Work at Ohio State for making both the
Adolescent Placement and the Polypharmacy data sets available to us. A special
thank you to Gary Phillips from the Center for Biostatistics at OSU for helping
us identify these valuable data sets (that he was the first one to analyze) as well
as for his assistance with some programming issues with Stata. We thank Gordon
Fitzgerald of the Center for Outcomes Research (COR) at the University of Mas-
sachusetts / Worcester for his help in obtaining the small subset of data used in
this text from the Global Longitudinal Study of Osteoporosis in Women (GLOW)
Study’s main data set. In addition, we thank him for his many helpful comments
on the use of propensity scores in logistic regression modeling. We thank Turner
Osler for providing us with the small subset of data obtained from a large data set
he abstracted from the National Burn Repository 2007 Report, that we used for the
burn injury analyses. In many instances the data sets we used were modified from
the original data sets in ways to allow us to illustrate important modeling tech-
niques. As such, we issue a general disclaimer here, and do so again throughout
the text, that results presented in this text do not apply to the original data.

Before we began this revision, numerous individuals reviewed our proposal
anonymously and made many helpful suggestions. They confirmed that what we
planned to include in this book would be of use to them in their research and teach-
ing. We thank these individuals and, for the most part, addressed their comments.
Many of these reviewers suggested that we include computer code to run logistic
regression in a variety of packages, especially R. We decided not to do this for
two reasons: we are not statistical computing specialists and did not want to have
to spend time responding to email queries on our code. Also, capabilities of com-
puter packages change rapidly and we realized that whatever we decided to include
here would likely be out of date before the book was even published. We refer
readers interested in code specific to various packages to a web site maintained
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by Academic Technology Services (ATS) at UCLA where they use a variety of
statistical packages to replicate the analyses for the examples in the second edition
of this text as well as numerous other statistical texts. The link to this web site is
http://www.ats.ucla.edu/stat/.

Finally, we would like to thank Steve Quigley, Susanne Steitz-Filler, Sari Fried-
man and the production staff at John Wiley & Sons Inc. for their help in bringing
this project to completion.

David W. Hosmer, Jr.
Stanley Lemeshow

Rodney X. Sturdivant∗
Stowe, Vermont
Columbus, Ohio
West Point, New York
January 2013

∗The views expressed in this book are those of the author and do not reflect the official policy or
position of the Department of the Army, Department of Defense, or the U.S. Government.



C H A P T E R 1

Introduction to the Logistic
Regression Model

1.1 INTRODUCTION

Regression methods have become an integral component of any data analysis
concerned with describing the relationship between a response variable and one
or more explanatory variables. Quite often the outcome variable is discrete, tak-
ing on two or more possible values. The logistic regression model is the most
frequently used regression model for the analysis of these data.

Before beginning a thorough study of the logistic regression model it is important
to understand that the goal of an analysis using this model is the same as that of
any other regression model used in statistics, that is, to find the best fitting and most
parsimonious, clinically interpretable model to describe the relationship between
an outcome (dependent or response) variable and a set of independent (predictor
or explanatory) variables. The independent variables are often called covariates.
The most common example of modeling, and one assumed to be familiar to the
readers of this text, is the usual linear regression model where the outcome variable
is assumed to be continuous.

What distinguishes a logistic regression model from the linear regression model
is that the outcome variable in logistic regression is binary or dichotomous. This
difference between logistic and linear regression is reflected both in the form of
the model and its assumptions. Once this difference is accounted for, the methods
employed in an analysis using logistic regression follow, more or less, the same
general principles used in linear regression. Thus, the techniques used in linear
regression analysis motivate our approach to logistic regression. We illustrate both
the similarities and differences between logistic regression and linear regression
with an example.

Applied Logistic Regression, Third Edition.
David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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2 introduction to the logistic regression model

Example 1: Table 1.1 lists the age in years (AGE), and presence or absence of
evidence of significant coronary heart disease (CHD) for 100 subjects in a hypo-
thetical study of risk factors for heart disease. The table also contains an identifier
variable (ID) and an age group variable (AGEGRP). The outcome variable is CHD,
which is coded with a value of “0” to indicate that CHD is absent, or “1” to indicate
that it is present in the individual. In general, any two values could be used, but
we have found it most convenient to use zero and one. We refer to this data set as
the CHDAGE data.

It is of interest to explore the relationship between AGE and the presence or
absence of CHD in this group. Had our outcome variable been continuous rather
than binary, we probably would begin by forming a scatterplot of the outcome
versus the independent variable. We would use this scatterplot to provide an impres-
sion of the nature and strength of any relationship between the outcome and the
independent variable. A scatterplot of the data in Table 1.1 is given in Figure 1.1.

In this scatterplot, all points fall on one of two parallel lines representing the
absence of CHD (y = 0) or the presence of CHD (y = 1). There is some tendency
for the individuals with no evidence of CHD to be younger than those with evidence
of CHD. While this plot does depict the dichotomous nature of the outcome variable
quite clearly, it does not provide a clear picture of the nature of the relationship
between CHD and AGE.

The main problem with Figure 1.1 is that the variability in CHD at all ages is
large. This makes it difficult to see any functional relationship between AGE and
CHD. One common method of removing some variation, while still maintaining
the structure of the relationship between the outcome and the independent variable,
is to create intervals for the independent variable and compute the mean of the
outcome variable within each group. We use this strategy by grouping age into the
categories (AGEGRP) defined in Table 1.1. Table 1.2 contains, for each age group,
the frequency of occurrence of each outcome, as well as the percent with CHD
present.

By examining this table, a clearer picture of the relationship begins to emerge. It
shows that as age increases, the proportion (mean) of individuals with evidence of
CHD increases. Figure 1.2 presents a plot of the percent of individuals with CHD
versus the midpoint of each age interval. This plot provides considerable insight
into the relationship between CHD and AGE in this study, but the functional form
for this relationship needs to be described. The plot in this figure is similar to what
one might obtain if this same process of grouping and averaging were performed
in a linear regression. We note two important differences.

The first difference concerns the nature of the relationship between the outcome
and independent variables. In any regression problem the key quantity is the mean
value of the outcome variable, given the value of the independent variable. This
quantity is called the conditional mean and is expressed as “E(Y |x)” where Y

denotes the outcome variable and x denotes a specific value of the independent
variable. The quantity E(Y |x) is read “the expected value of Y , given the value x”.
In linear regression we assume that this mean may be expressed as an equation
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Table 1.1 Age, Age Group, and Coronary Heart Disease
(CHD) Status of 100 Subjects

ID AGE AGEGRP CHD

1 20 1 0
2 23 1 0
3 24 1 0
4 25 1 0
5 25 1 1
6 26 1 0
7 26 1 0
8 28 1 0
9 28 1 0
10 29 1 0
11 30 2 0
12 30 2 0
13 30 2 0
14 30 2 0
15 30 2 0
16 30 2 1
17 32 2 0
18 32 2 0
19 33 2 0
20 33 2 0
21 34 2 0
22 34 2 0
23 34 2 1
24 34 2 0
25 34 2 0
26 35 3 0
27 35 3 0
28 36 3 0
29 36 3 1
30 36 3 0
31 37 3 0
32 37 3 1
33 37 3 0
34 38 3 0
35 38 3 0
36 39 3 0
37 39 3 1
38 40 4 0
39 40 4 1
40 41 4 0
41 41 4 0
42 42 4 0
43 42 4 0
44 42 4 0

(continued)
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Table 1.1 (Continued)

ID AGE AGEGRP CHD

45 42 4 1
46 43 4 0
47 43 4 0
48 43 4 1
49 44 4 0
50 44 4 0
51 44 4 1
52 44 4 1
53 45 5 0
54 45 5 1
55 46 5 0
56 46 5 1
57 47 5 0
58 47 5 0
59 47 5 1
60 48 5 0
61 48 5 1
62 48 5 1
63 49 5 0
64 49 5 0
65 49 5 1
66 50 6 0
67 50 6 1
68 51 6 0
69 52 6 0
70 52 6 1
71 53 6 1
72 53 6 1
73 54 6 1
74 55 7 0
75 55 7 1
76 55 7 1
77 56 7 1
78 56 7 1
79 56 7 1
80 57 7 0
81 57 7 0
82 57 7 1
83 57 7 1
84 57 7 1
85 57 7 1
86 58 7 0
87 58 7 1
88 58 7 1
89 59 7 1
90 59 7 1
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Table 1.1 (Continued)

ID AGE AGEGRP CHD

91 60 8 0
92 60 8 1
93 61 8 1
94 62 8 1
95 62 8 1
96 63 8 1
97 64 8 0
98 64 8 1
99 65 8 1
100 69 8 1

0

0.2

0.4

0.6

0.8

1

C
or

on
ar

y 
he

ar
t d

is
ea

se

20 30 40 50 60 70
Age (years)

Figure 1.1 Scatterplot of presence or absence of coronary heart disease (CHD) by AGE for 100
subjects.

linear in x (or some transformation of x or Y ), such as

E(Y |x) = β0 + β1x.

This expression implies that it is possible for E(Y |x) to take on any value as x

ranges between −∞ and +∞.
The column labeled “Mean” in Table 1.2 provides an estimate of E(Y |x). We

assume, for purposes of exposition, that the estimated values plotted in Figure 1.2
are close enough to the true values of E(Y |x) to provide a reasonable assessment of
the functional relationship between CHD and AGE. With a dichotomous outcome
variable, the conditional mean must be greater than or equal to zero and less than
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Table 1.2 Frequency Table of Age Group by CHD

Coronary Heart Disease

Age Group n Absent Present Mean

20–29 10 9 1 0.100
30–34 15 13 2 0.133
35–39 12 9 3 0.250
40–44 15 10 5 0.333
45–49 13 7 6 0.462
50–54 8 3 5 0.625
55–59 17 4 13 0.765
60–69 10 2 8 0.800

Total 100 57 43 0.430
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Figure 1.2 Plot of the percentage of subjects with CHD in each AGE group.

or equal to one (i.e., 0 ≤ E(Y |x) ≤ 1). This can be seen in Figure 1.2. In addition,
the plot shows that this mean approaches zero and one “gradually”. The change in
the E(Y |x) per unit change in x becomes progressively smaller as the conditional
mean gets closer to zero or one. The curve is said to be S-shaped and resembles a
plot of the cumulative distribution of a continuous random variable. Thus, it should
not seem surprising that some well-known cumulative distributions have been used
to provide a model for E(Y |x) in the case when Y is dichotomous. The model we
use is based on the logistic distribution.

Many distribution functions have been proposed for use in the analysis of a
dichotomous outcome variable. Cox and Snell (1989) discuss some of these. There
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are two primary reasons for choosing the logistic distribution. First, from a mathe-
matical point of view, it is an extremely flexible and easily used function. Second,
its model parameters provide the basis for clinically meaningful estimates of effect.
A detailed discussion of the interpretation of the model parameters is given in
Chapter 3.

In order to simplify notation, we use the quantity π(x) = E(Y |x) to represent
the conditional mean of Y given x when the logistic distribution is used. The
specific form of the logistic regression model we use is:

π(x) = eβ0+β1x

1 + eβ0+β1x
. (1.1)

A transformation of π(x) that is central to our study of logistic regression is the
logit transformation. This transformation is defined, in terms of π(x), as:

g(x) = ln

[
π (x)

1 − π(x)

]
= β0 + β1x.

The importance of this transformation is that g(x) has many of the desirable prop-
erties of a linear regression model. The logit, g(x), is linear in its parameters, may
be continuous, and may range from −∞ to +∞, depending on the range of x.

The second important difference between the linear and logistic regression
models concerns the conditional distribution of the outcome variable. In the linear
regression model we assume that an observation of the outcome variable may be
expressed as y = E(Y |x) + ε. The quantity ε is called the error and expresses an
observation’s deviation from the conditional mean. The most common assumption
is that ε follows a normal distribution with mean zero and some variance that is
constant across levels of the independent variable. It follows that the conditional
distribution of the outcome variable given x is normal with mean E(Y |x), and a
variance that is constant. This is not the case with a dichotomous outcome vari-
able. In this situation, we may express the value of the outcome variable given x

as y = π(x) + ε. Here the quantity ε may assume one of two possible values. If
y = 1 then ε = 1 − π(x) with probability π(x), and if y = 0 then ε = −π(x) with
probability 1 − π(x). Thus, ε has a distribution with mean zero and variance equal
to π(x)[1 − π(x)]. That is, the conditional distribution of the outcome variable
follows a binomial distribution with probability given by the conditional mean,
π(x).

In summary, we have shown that in a regression analysis when the outcome
variable is dichotomous:

1. The model for the conditional mean of the regression equation must be
bounded between zero and one. The logistic regression model, π(x), given
in equation (1.1), satisfies this constraint.

2. The binomial, not the normal, distribution describes the distribution of the
errors and is the statistical distribution on which the analysis is based.
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3. The principles that guide an analysis using linear regression also guide us in
logistic regression.

1.2 FITTING THE LOGISTIC REGRESSION MODEL

Suppose we have a sample of n independent observations of the pair (xi, yi),
i = 1, 2, . . . , n, where yi denotes the value of a dichotomous outcome variable and
xi is the value of the independent variable for the ith subject. Furthermore, assume
that the outcome variable has been coded as 0 or 1, representing the absence or the
presence of the characteristic, respectively. This coding for a dichotomous outcome
is used throughout the text. Fitting the logistic regression model in equation (1.1)
to a set of data requires that we estimate the values of β0 and β1, the unknown
parameters.

In linear regression, the method used most often for estimating unknown param-
eters is least squares. In that method we choose those values of β0 and β1 that
minimize the sum-of-squared deviations of the observed values of Y from the pre-
dicted values based on the model. Under the usual assumptions for linear regression
the method of least squares yields estimators with a number of desirable statistical
properties. Unfortunately, when the method of least squares is applied to a model
with a dichotomous outcome, the estimators no longer have these same properties.

The general method of estimation that leads to the least squares function under
the linear regression model (when the error terms are normally distributed) is
called maximum likelihood. This method provides the foundation for our approach
to estimation with the logistic regression model throughout this text. In a general
sense, the method of maximum likelihood yields values for the unknown parameters
that maximize the probability of obtaining the observed set of data. In order to apply
this method we must first construct a function, called the likelihood function. This
function expresses the probability of the observed data as a function of the unknown
parameters. The maximum likelihood estimators of the parameters are the values
that maximize this function. Thus, the resulting estimators are those that agree most
closely with the observed data. We now describe how to find these values for the
logistic regression model.

If Y is coded as 0 or 1 then the expression for π(x) given in equation (1.1)
provides (for an arbitrary value of β = (β0, β1), the vector of parameters) the
conditional probability that Y is equal to 1 given x. This is denoted as π(x).
It follows that the quantity 1 − π(x) gives the conditional probability that Y is
equal to zero given x, Pr(Y = 0|x). Thus, for those pairs (xi, yi), where yi = 1,
the contribution to the likelihood function is π(xi), and for those pairs where
yi = 0, the contribution to the likelihood function is 1 − π(xi), where the quantity
π(xi) denotes the value of π(x) computed at xi . A convenient way to express the
contribution to the likelihood function for the pair (xi, yi) is through the expression

π(xi)
yi [1 − π(xi)]

1−yi . (1.2)
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As the observations are assumed to be independent, the likelihood function is
obtained as the product of the terms given in equation (1.2) as follows:

l(β) =
n∏

i=1

π(xi)
yi [1 − π(xi)]

1−yi . (1.3)

The principle of maximum likelihood states that we use as our estimate of β

the value that maximizes the expression in equation (1.3). However, it is easier
mathematically to work with the log of equation (1.3). This expression, the log-
likelihood, is defined as

L(β) = ln[l(β)] =
n∑

i=1

{yi ln[π(xi)] + (1 − yi) ln[1 − π(xi)]}. (1.4)

To find the value of β that maximizes L(β) we differentiate L(β) with respect to
β0 and β1 and set the resulting expressions equal to zero. These equations, known
as the likelihood equations, are∑

[yi − π(xi)] = 0 (1.5)

and ∑
xi[yi − π(xi)] = 0. (1.6)

In equations (1.5) and (1.6) it is understood that the summation is over i varying
from 1 to n. (The practice of suppressing the index and range of summation, when
these are clear, is followed throughout this text.)

In linear regression, the likelihood equations, obtained by differentiating the
sum-of-squared deviations function with respect to β are linear in the unknown
parameters and thus are easily solved. For logistic regression the expressions in
equations (1.5) and (1.6) are nonlinear in β0 and β1, and thus require special
methods for their solution. These methods are iterative in nature and have been
programmed into logistic regression software. For the moment, we need not be
concerned about these iterative methods and view them as a computational detail
that is taken care of for us. The interested reader may consult the text by McCullagh
and Nelder (1989) for a general discussion of the methods used by most programs.
In particular, they show that the solution to equations (1.5) and (1.6) may be
obtained using an iterative weighted least squares procedure.

The value of β given by the solution to equations (1.5) and (1.6) is called
the maximum likelihood estimate and is denoted as β̂. In general, the use of the
symbol “̂” denotes the maximum likelihood estimate of the respective quantity.
For example, π̂(xi) is the maximum likelihood estimate of π(xi). This quantity
provides an estimate of the conditional probability that Y is equal to 1, given that
x is equal to xi . As such, it represents the fitted or predicted value for the logistic
regression model. An interesting consequence of equation (1.5) is that

n∑
i=1

yi =
n∑

i=1

π̂(xi).
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Table 1.3 Results of Fitting the Logistic Regression Model
to the CHDAGE Data, n = 100

Variable Coeff. Std. Err. z p

Age 0.111 0.0241 4.61 <0.001
Constant −5.309 1.1337 −4.68 <0.001

Log-likelihood = −53.676546.

That is, the sum of the observed values of y is equal to the sum of the predicted
(expected) values. We use this property in later chapters when we discuss assessing
the fit of the model.

As an example, consider the data given in Table 1.1. Use of a logistic regres-
sion software package, with continuous variable AGE as the independent variable,
produces the output in Table 1.3.

The maximum likelihood estimates of β0 and β1 are β̂0 = −5.309 and β̂1 =
0.111. The fitted values are given by the equation

π̂(x) = e−5.309+0.111×AGE

1 + e−5.309+0.111×AGE
(1.7)

and the estimated logit, ĝ(x), is given by the equation

ĝ(x) = −5.309 + 0.111 × AGE. (1.8)

The log-likelihood given in Table 1.3 is the value of equation (1.4) computed using
β̂0 and β̂1.

Three additional columns are present in Table 1.3. One contains estimates of the
standard errors of the estimated coefficients, the next column displays the ratios of
the estimated coefficients to their estimated standard errors, and the last column
displays a p-value. These quantities are discussed in the next section.

Following the fitting of the model we begin to evaluate its adequacy.

1.3 TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS

In practice, the modeling of a set of data, as we show in Chapters 4, 7, and 8, is
a much more complex process than one of simply fitting and testing. The methods
we present in this section, while simplistic, do provide essential building blocks
for the more complex process.

After estimating the coefficients, our first look at the fitted model commonly
concerns an assessment of the significance of the variables in the model. This
usually involves formulation and testing of a statistical hypothesis to determine
whether the independent variables in the model are “significantly” related to the
outcome variable. The method for performing this test is quite general, and differs
from one type of model to the next only in the specific details. We begin by
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discussing the general approach for a single independent variable. The multivariable
case is considered in Chapter 2.

One approach to testing for the significance of the coefficient of a variable in
any model relates to the following question. Does the model that includes the vari-
able in question tell us more about the outcome (or response) variable than a model
that does not include that variable? This question is answered by comparing the
observed values of the response variable to those predicted by each of two models;
the first with, and the second without, the variable in question. The mathematical
function used to compare the observed and predicted values depends on the partic-
ular problem. If the predicted values with the variable in the model are better, or
more accurate in some sense, than when the variable is not in the model, then we
feel that the variable in question is “significant”. It is important to note that we are
not considering the question of whether the predicted values are an accurate rep-
resentation of the observed values in an absolute sense (this is called goodness of
fit). Instead, our question is posed in a relative sense. The assessment of goodness
of fit is a more complex question that is discussed in detail in Chapter 5.

The general method for assessing significance of variables is easily illustrated
in the linear regression model, and its use there motivates the approach used for
logistic regression. A comparison of the two approaches highlights the differences
between modeling continuous and dichotomous response variables.

In linear regression, one assesses the significance of the slope coefficient by
forming what is referred to as an analysis of variance table. This table partitions
the total sum-of-squared deviations of observations about their mean into two parts:
(1) the sum-of-squared deviations of observations about the regression line SSE
(or residual sum-of-squares) and (2) the sum-of-squares of predicted values, based
on the regression model, about the mean of the dependent variable SSR (or due
regression sum-of-squares). This is just a convenient way of displaying the com-
parison of observed to predicted values under two models. In linear regression, the
comparison of observed and predicted values is based on the square of the distance
between the two. If yi denotes the observed value and ŷi denotes the predicted
value for the ith individual under the model, then the statistic used to evaluate this
comparison is

SSE =
n∑

i=1

(yi − ŷi )
2.

Under the model not containing the independent variable in question the only
parameter is β0, and β̂0 = y, the mean of the response variable. In this case, ŷi = y

and SSE is equal to the total sum-of-squares. When we include the independent
variable in the model, any decrease in SSE is due to the fact that the slope coefficient
for the independent variable is not zero. The change in the value of SSE is due to
the regression source of variability, denoted SSR. That is,

SSR =
[

n∑
i=1

(
yi − yi

)2

]
−

[
n∑

i=1

(
yi − ŷi

)2

]
.
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In linear regression, interest focuses on the size of SSR. A large value suggests
that the independent variable is important, whereas a small value suggests that the
independent variable is not helpful in predicting the response.

The guiding principle with logistic regression is the same: compare observed
values of the response variable to predicted values obtained from models, with and
without the variable in question. In logistic regression, comparison of observed to
predicted values is based on the log-likelihood function defined in equation (1.4).
To better understand this comparison, it is helpful conceptually to think of an
observed value of the response variable as also being a predicted value resulting
from a saturated model. A saturated model is one that contains as many parameters
as there are data points. (A simple example of a saturated model is fitting a linear
regression model when there are only two data points, n = 2.)

The comparison of observed to predicted values using the likelihood function is
based on the following expression:

D = −2 ln

[
(likelihood of the fitted model)

(likelihood of the saturated model)

]
. (1.9)

The quantity inside the large brackets in the expression above is called the likelihood
ratio. Using minus twice its log is necessary to obtain a quantity whose distribution
is known and can therefore be used for hypothesis testing purposes. Such a test is
called the likelihood ratio test. Using equation (1.4), equation (1.9) becomes

D = −2
n∑

i=1

[
yi ln

(
π̂i

yi

)
+ (1 − yi) ln

(
1 − π̂i

1 − yi

)]
, (1.10)

where π̂i = π̂(xi).
The statistic, D, in equation (1.10) is called the deviance, and for logistic

regression, it plays the same role that the residual sum-of-squares plays in lin-
ear regression. In fact, the deviance as shown in equation (1.10), when computed
for linear regression, is identically equal to the SSE.

Furthermore, in a setting as shown in Table 1.1, where the values of the outcome
variable are either 0 or 1, the likelihood of the saturated model is identically equal
to 1.0. Specifically, it follows from the definition of a saturated model that π̂i = yi

and the likelihood is

l(saturated model) =
n∏

i=1

y
yi

i × (1 − yi)
(1−yi ) = 1.0.

Thus it follows from equation (1.9) that the deviance is

D = −2 ln(likelihood of the fitted model). (1.11)

Some software packages report the value of the deviance in equation (1.11) rather
than the log-likelihood for the fitted model. In the context of testing for the signif-
icance of a fitted model, we want to emphasize that we think of the deviance in
the same way that we think of the residual sum-of-squares in linear regression.
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In particular, to assess the significance of an independent variable we compare
the value of D with and without the independent variable in the equation. The
change in D due to the inclusion of the independent variable in the model is:

G = D(model without the variable) − D(model with the variable).

This statistic, G, plays the same role in logistic regression that the numerator of
the partial F -test does in linear regression. Because the likelihood of the satu-
rated model is always common to both values of D being differenced, G can be
expressed as

G = −2 ln

[
(likelihood without the variable)

(likelihood with the variable)

]
. (1.12)

For the specific case of a single independent variable, it is easy to show that
when the variable is not in the model, the maximum likelihood estimate of β0 is
ln(n1/n0) where n1 = ∑

yi and n0 = ∑
(1 − yi) and the predicted probability for

all subjects is constant, and equal to n1/n. In this setting, the value of G is:

G = −2 ln

⎡⎢⎢⎢⎢⎣
(n1

n

)n1
(n0

n

)n0

n∏
i=1

π̂
yi

i (1 − π̂i)
(1−yi )

⎤⎥⎥⎥⎥⎦ , (1.13)

or

G = 2

{
n∑

i=1

[
yi ln

(
π̂i

) + (1 − yi) ln(1 − π̂i)
]

− [
n1 ln

(
n1

) + n0 ln(n0) − n ln(n)
]}

. (1.14)

Under the hypothesis that β1 is equal to zero, the statistic G follows a chi-square
distribution with 1 degree of freedom. Additional mathematical assumptions are
needed; however, for the above case they are rather nonrestrictive, and involve
having a sufficiently large sample size, n, and enough subjects with both y = 0
and y = 1. We discuss in later chapters that, as far as sample size is concerned,
the key determinant is min(n0, n1).

As an example, we consider the model fit to the data in Table 1.1, whose
estimated coefficients and log-likelihood are given in Table 1.3. For these data the
sample size is sufficiently large as n1 = 43 and n0 = 57. Evaluating G as shown
in equation (1.14) yields

G = 2{−53.677 − [43 ln(43) + 57 ln(57) − 100 ln(100)]}
= 2[−53.677 − (−68.331)] = 29.31.
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The first term in this expression is the log-likelihood from the model contain-
ing age (see Table 1.3), and the remainder of the expression simply substitutes
n1 and n0 into the second part of equation (1.14). We use the symbol χ2(ν) to
denote a chi-square random variable with ν degrees of freedom. Using this nota-
tion, the p-value associated with this test is P [χ2(1) > 29.31] < 0.001; thus, we
have convincing evidence that AGE is a significant variable in predicting CHD.
This is merely a statement of the statistical evidence for this variable. Other impor-
tant factors to consider before concluding that the variable is clinically important
would include the appropriateness of the fitted model, as well as inclusion of other
potentially important variables.

As all logistic regression software report either the value of the log-likelihood
or the value of D, it is easy to check for the significance of the addition of new
terms to the model or to verify a reported value of G. In the simple case of a
single independent variable, we first fit a model containing only the constant term.
Next, we fit a model containing the independent variable along with the constant.
This gives rise to another log-likelihood. The likelihood ratio test is obtained by
multiplying the difference between these two values by −2.

In the current example, the log-likelihood for the model containing only a con-
stant term is −68.331. Fitting a model containing the independent variable (AGE)
along with the constant term results in the log-likelihood shown in Table 1.3 of
−53.677. Multiplying the difference in these log-likelihoods by −2 gives

−2 × [−68.331 − (−53.677)] = −2 × (−14.655) = 29.31.

This result, along with the associated p-value for the chi-square distribution, is
commonly reported in logistic regression software packages.

There are two other statistically equivalent tests: the Wald test and the Score test.
The assumptions needed for each of these is the same as those of the likelihood
ratio test in equation (1.14). A more complete discussion of these three tests and
their assumptions may be found in Rao (1973).

The Wald test is equal to the ratio of the maximum likelihood estimate of the
slope parameter, β̂1, to an estimate of its standard error. Under the null hypothesis
and the sample size assumptions, this ratio follows a standard normal distribution.
While we have not yet formally discussed how the estimates of the standard errors
of the estimated parameters are obtained, they are routinely printed out by computer
software. For example, the Wald test for the coefficient for AGE in Table 1.3 is
provided in the column headed z and is

W = β̂1

ŜE(β̂1)
= 0.111

0.024
= 4.61.

The two-tailed p-value, provided in the last column of Table 1.3, is P(|z| > 4.61) <

0.001, where z denotes a random variable following the standard normal distribu-
tion. Some software packages display the statistic W 2 = z2, which is distributed
as chi-square with 1 degree of freedom. Hauck and Donner (1977) examined the
performance of the Wald test and found that it behaved in an aberrant manner, often
failing to reject the null hypothesis when the coefficient was significant using the
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likelihood ratio test. Thus, they recommended (and we agree) that the likelihood
ratio test is preferred. We note that while the assertions of Hauk and Donner are
true, we have never seen huge differences in the values of G and W 2. In prac-
tice, the more troubling situation is when the values are close, and one test has
p < 0.05 and the other has p > 0.05. When this occurs, we use the p-value from
the likelihood ratio test.

A test for the significance of a variable that does not require computing the
estimate of the coefficient is the score test. Proponents of the score test cite this
reduced computational effort as its major advantage. Use of the test is limited by
the fact that it is not available in many software packages. The score test is based
on the distribution theory of the derivatives of the log-likelihood. In general, this
is a multivariate test requiring matrix calculations that are discussed in Chapter 2.

In the univariate case, this test is based on the conditional distribution of
the derivative in equation (1.6), given the derivative in equation (1.5). In this
case, we can write down an expression for the Score test. The test uses the
value of equation (1.6) computed using β0 = ln(n1/n0) and β1 = 0. As noted
earlier, under these parameter values, π̂ = n1/n = y and the left-hand side of
equation (1.6) becomes

∑
xi(yi − y). It may be shown that the estimated variance

is y(1 − y)
∑

(xi − x)2. The test statistic for the score test (ST) is

ST =

n∑
i=1

xi(yi − y)√√√√y(1 − y)

n∑
i=1

(xi − x)2

.

As an example of the score test, consider the model fit to the data in Table 1.1.
The value of the test statistic for this example is

ST = 296.66√
3333.742

= 5.14

and the two tailed p-value is P(|z| > 5.14) < 0.001. We note that, for this example,
the values of the three test statistics are nearly the same (note:

√
G = 5.41).

In summary, the method for testing the significance of the coefficient of a
variable in logistic regression is similar to the approach used in linear regression;
however, it is based on the likelihood function for a dichotomous outcome variable
under the logistic regression model.

1.4 CONFIDENCE INTERVAL ESTIMATION

An important adjunct to testing for significance of the model, discussed in
Section 1.3, is calculation and interpretation of confidence intervals for parameters
of interest. As is the case in linear regression we can obtain these for the slope,
intercept and the “line” (i.e., the logit). In some settings it may be of interest to
provide interval estimates for the fitted values (i.e., the predicted probabilities).
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The basis for construction of the interval estimators is the same statistical theory
we used to formulate the tests for significance of the model. In particular, the confi-
dence interval estimators for the slope and intercept are, most often, based on their
respective Wald tests and are sometimes referred to as Wald-based confidence inter-
vals. The endpoints of a 100(1 − α)% confidence interval for the slope coefficient
are

β̂1 ± z1−α/2ŜE(β̂1) (1.15)

and for the intercept they are

β̂0 ± z1−α/2ŜE(β̂0) (1.16)

where z1−α/2 is the upper 100(1 − α/2)% point from the standard normal dis-
tribution and ŜE(·) denotes a model-based estimator of the standard error of the
respective parameter estimator. We defer discussion of the actual formula used for
calculating the estimators of the standard errors to Chapter 2. For the moment, we
use the fact that estimated values are provided in the output following the fit of a
model and, in addition, many packages also provide the endpoints of the interval
estimates.

As an example, consider the model fit to the data in Table 1.1 regressing
AGE on the presence or absence of CHD. The results are presented in Table 1.3.
The endpoints of a 95 percent confidence interval for the slope coefficient from
equation (1.15) are 0.111 ± 1.96 × 0.0241, yielding the interval (0.064, 0.158). We
defer a detailed discussion of the interpretation of these results to Chapter 3. Briefly,
the results suggest that the change in the log-odds of CHD per one year increase
in age is 0.111 and the change could be as little as 0.064 or as much as 0.158 with
95 percent confidence.

As is the case with any regression model, the constant term provides an estimate
of the response at x = 0 unless the independent variable has been centered at some
clinically meaningful value. In our example, the constant provides an estimate of
the log-odds ratio of CHD at zero years of age. As a result, the constant term, by
itself, has no useful clinical interpretation. In any event, from equation (1.16), the
endpoints of a 95 percent confidence interval for the constant are −5.309 ± 1.96 ×
1.1337, yielding the interval (−7.531,−3.087).

The logit is the linear part of the logistic regression model and, as such, is most
similar to the fitted line in a linear regression model. The estimator of the logit is

ĝ(x) = β̂0 + β̂1x. (1.17)

The estimator of the variance of the estimator of the logit requires obtaining the
variance of a sum. In this case it is

V̂ar[ĝ(x)] = V̂ar(β̂0) + x2V̂ar(β̂1) + 2xĈov(β̂0, β̂1). (1.18)

In general, the variance of a sum is equal to the sum of the variance of each
term and twice the covariance of each possible pair of terms formed from the
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Table 1.4 Estimated Covariance Matrix of the Estimated
Coefficients in Table 1.3

Age Constant

Age 0.000579
Constant −0.026677 1.28517

components of the sum. The endpoints of a 100(1 − α)% Wald-based confidence
interval for the logit are

ĝ(x) ± z1−α/2ŜE[ĝ(x)], (1.19)

where ŜE[ĝ(x)] is the positive square root of the variance estimator in
equation (1.18).

The estimated logit for the fitted model in Table 1.3 is shown in equation (1.8). In
order to evaluate equation (1.18) for a specific age we need the estimated covariance
matrix. This matrix can be obtained from the output from all logistic regression
software packages. How it is displayed varies from package to package, but the
triangular form shown in Table 1.4 is a common one.

The estimated logit from equation (1.8) for a subject of age 50 is

ĝ(50) = −5.31 + 0.111 × 50 = 0.240,

the estimated variance, using equation (1.18) and the results in Table 1.4, is

V̂ar[ĝ(50)] = 1.28517 + (50)2 × 0.000579 + 2 × 50 × (−0.026677) = 0.0650

and the estimated standard error is ŜE[ĝ(50)] = 0.2549. Thus the end points of a
95 percent confidence interval for the logit at age 50 are

0.240 ± 1.96 × 0.2550 = (−0.260, 0.740).

We discuss the interpretation and use of the estimated logit in providing estimates
of odds ratios in Chapter 3.

The estimator of the logit and its confidence interval provide the basis for the
estimator of the fitted value, in this case the logistic probability, and its associated
confidence interval. In particular, using equation (1.7) at age 50 the estimated
logistic probability is

π̂(50) = eĝ(50)

1 + eĝ(50)
= e−5.31+0.111×50

1+e−5.31+0.111×50
= 0.560 (1.20)

and the endpoints of a 95 percent confidence interval are obtained from the
respective endpoints of the confidence interval for the logit. The endpoints of the
100(1 − α)% Wald-based confidence interval for the fitted value are

eĝ(x)±z1−α/2ŜE[ĝ(x)]

1 + eĝ(x)±z1−α/2ŜE[ĝ(x)]
. (1.21)
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Using the example at age 50 to demonstrate the calculations, the lower limit is

e−0.260

1 + e−0.260
= 0.435,

and the upper limit is
e0.740

1 + e0.740
= 0.677.

We have found that a major mistake often made by data analysts new to logis-
tic regression modeling is to try and apply estimates on the probability scale to
individual subjects. The fitted value computed in equation (1.20) is analogous to a
particular point on the line obtained from a linear regression. In linear regression
each point on the fitted line provides an estimate of the mean of the dependent
variable in a population of subjects with covariate value “x”. Thus the value of
0.56 in equation (1.20) is an estimate of the mean (i.e., proportion) of 50-year-old
subjects in the population sampled that have evidence of CHD. An individual 50-
year-old subject either does or does not have evidence of CHD. The confidence
interval suggests that this mean could be between 0.435 and 0.677 with 95 percent
confidence. We discuss the use and interpretation of fitted values in greater detail
in Chapter 3.

One application of fitted logistic regression models that has received a lot of
attention in the subject matter literature is using model-based fitted values similar
to the one in equation (1.20) to predict the value of a binary dependent value in
individual subjects. This process is called classification and has a long history in
statistics where it is referred to as discriminant analysis. We discuss the classifica-
tion problem in detail in Chapter 4. We also discuss discriminant analysis within
the context of a method for obtaining estimators of the coefficients in the next
section.

The coverage∗† of the Wald-based confidence interval estimators in
equations (1.15) and (1.16) depends on the assumption that the distribution of the
maximum likelihood estimators is normal. Potential sensitivity to this assumption
is the main reason that the likelihood ratio test is recommended over the Wald test
for assessing the significance of individual coefficients, as well as for the overall
model. In settings where the number of events (y = 1) and/or the sample size
is small the normality assumption is suspect and a log-likelihood function-based
confidence interval can have better coverage. Until recently routines to compute
these intervals were not available in most software packages. Cox and Snell
(1989, p. 179–183) discuss the theory behind likelihood intervals, and Venzon
and Moolgavkar (1988) describe an efficient way to calculate the end points.

∗The remainder of this section is more advanced material that can be skipped on first reading of the
text.
†The term coverage of an interval estimator refers to the percent of time confidence intervals computed
in a similar manner contain the true parameter value. Research has shown that when the normality
assumption does not hold, Wald-based confidence intervals can be too narrow and thus contain the true
parameter with a smaller percentage than the stated confidence coefficient.



confidence interval estimation 19

Royston (2007) describes a STATA [StataCorp (2011)] routine that implements
the Venzon and Moolgavkar method that we use for the examples in this text. The
SAS package’s logistic regression procedure [SAS Institute Inc. (2009)] has the
option to obtain likelihood confidence intervals.

The likelihood-based confidence interval estimator for a coefficient can be con-
cisely described as the interval of values, β∗, for which the likelihood ratio test
would fail to reject the hypothesis, Ho : β = β∗, at the stated 1 − α percent signif-
icance level. The two end points, βlower and βupper, of this interval for a coefficient
are defined as follows:

2[l(β̂) − lp(βupper)] = 2[l(β̂) − lp(βlower)] = χ2
1−α(1), (1.22)

where l(β̂) is the value of the log-likelihood of the fitted model and lp(β) is the
value of the profile log-likelihood. A value of the profile log-likelihood is computed
by first specifying/fixing a value for the coefficient of interest, for example the slope
coefficient for age, and then finding the value of the intercept coefficient, using the
Venzon and Moolgavkar method, that maximizes the log-likelihood. This process
is repeated over a grid of values of the specified coefficient, for example, values of
β∗, until the solutions to equation (1.22) are found. The results can be presented
graphically or in standard interval form. We illustrate both in the example below.

As an example, we show in Figure 1.3 a plot of the profile log-likelihood for the
coefficient for AGE using the CHDAGE data in Table 1.1. The end points of the
95 percent likelihood interval are βlower = 0.067 and βupper = 0.162 and are shown
in the figure where the two vertical lines intersect the “x” axis. The horizontal line
in the figure is drawn at the value

−55.5964 = −53.6756 −
(

3.8416

2

)
,

where −53.6756 is the value of the log-likelihood of the fitted model from Table 1.3
and 3.8416 is the 95th percentile of the chi-square distribution with 1 degree of
freedom.

The quantity “Asymmetry” in Figure 1.3 is a measure of asymmetry of the
profile log-likelihood that is the difference between the lengths of the upper part
of the interval, βupper − β̂, to the lower part, β̂ − βlower, as a percent of the total
length, βupper − βlower. In the example the value is

A = 100 × (0.162 − 0.111) − (0.111 − 0.067)

(0.162 − 0.067)
∼= 7.5%.

As the upper and lower endpoints of the Wald-based confidence interval in
equation (1.15) are equidistant from the maximum likelihood estimator, it has
asymmetry A = 0.

In this example, the Wald-based confidence interval for the coefficient for age
is (0.064, 0.158). The likelihood interval is (0.067, 0.162), which is only 1.1%
wider than the Wald-based interval. So there is not a great deal of pure numeric
difference in the two intervals and the asymmetry is small. In settings where there
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Figure 1.3 Plot of the profile log-likelihood for the coefficient for AGE in the CHDAGE data.

is greater asymmetry in the likelihood-based interval there can be more substantial
differences between the two intervals. We return to this point in Chapter 3 where
we discuss the interpretation of estimated coefficients. In addition, we include an
exercise at the end of this chapter where there is a pronounced difference between
the Wald and likelihood confidence interval estimators.

Methods to extend the likelihood intervals to functions of more than one coef-
ficient such as the estimated logit function and probability are not available in
current software packages.

1.5 OTHER ESTIMATION METHODS

The method of maximum likelihood described in Section 1.2 is the estimation
method used in the logistic regression routines of the major software packages.
However, two other methods have been and may still be used for estimating the
coefficients. These methods are: (1) noniterative weighted least squares, and (2)
discriminant function analysis.

A linear models approach to the analysis of categorical data proposed by Grizzle
et al. (1969) [Grizzle, Starmer, and Koch (GSK) method] uses estimators based on
noniterative weighted least squares. They demonstrate that the logistic regression
model is an example of a general class of models that can be handled by their meth-
ods. We should add that the maximum likelihood estimators are usually calculated
using an iterative reweighted least squares algorithm, and are also technically “least
squares” estimators. The GSK method requires one iteration and is used in SAS’s
GENMOD procedure to fit a logistic regression model containing only categorical
covariates.
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A major limitation of the GSK method is that we must have an estimate of π(x)

that is not zero or 1 for most values of x. An example where we could use both
maximum likelihood and GSK’s noniterative weighted least squares is the data in
Table 1.2. In cases such as this, the two methods are asymptotically equivalent,
meaning that as n gets large, the distributional properties of the two estimators
become identical. The GSK method could not be used with the data in Table 1.1.

The discriminant function approach to estimation of the coefficients is of histor-
ical importance as it was popularized by Cornfield (1962) in some of the earliest
work on logistic regression. These estimators take their name from the fact that the
posterior probability in the usual discriminant function model is the logistic regres-
sion function given in equation (1.1). More precisely, if the independent variable,
X, follows a normal distribution within each of two groups (subpopulations) defined
by the two values of Y and has different means and the same variance, then the
conditional distribution of Y given X = x is the logistic regression model. That is,
if

X|Y ∼ N(μj , σ
2), j = 0, 1

then P(Y = 1|x) = π(x). The symbol “∼” is read “is distributed” and the
“N(μ, σ 2)” denotes the normal distribution with mean equal to μ and variance
equal to σ 2. Under these assumptions it is easy to show [Lachenbruch (1975)]
that the logistic coefficients are

β0 = ln

(
θ1

θ0

)
− 0.5(μ2

1 − μ2
0)/σ

2 (1.23)

and
β1 = (μ1 − μ0)/σ

2, (1.24)

where θj = P(Y = j), j = 0, 1. The discriminant function estimators of β0 and β1
are obtained by substituting estimators for μj , θj , j = 0, 1 and σ 2 into the above
equations. The estimators usually used are μ̂j = xj , the mean of x in the subgroup
defined by y = j, j = 0, 1, θ1 = n1/n the mean of y with θ̂0 = 1 − θ̂1 and

σ̂ 2 = [(n0 − 1)s2
0 + (n1 − 1)s2

1 ]/(n0 + n1 − 2),

where s2
j is the unbiased estimator of σ 2 computed within the subgroup of the data

defined by y = j, j = 0, 1. The above expressions are for a single variable x and
multivariable expressions are presented in Chapter 2.

It is natural to ask why, if the discriminant function estimators are so easy to
compute, they are not used in place of the maximum likelihood estimators? Halpern
et al. (1971) and Hosmer et al. (1983) compared the two methods when the model
contains a mixture of continuous and discrete variables, with the general conclusion
that the discriminant function estimators are sensitive to the assumption of normal-
ity. In particular, the estimators of the coefficients for non-normally distributed vari-
ables are biased away from zero when the coefficient is, in fact, different from zero.
The practical implication of this is that for dichotomous independent variables (that
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occur in many situations), the discriminant function estimators overestimate the
magnitude of the coefficient. Lyles et al. (2009) describe a clever linear regression-
based approach to compute the discriminant function estimator of the coefficient
for a single continuous variable that, when their assumptions of normality hold,
has better statistical properties than the maximum likelihood estimator. We discuss
their multivariable extension and some of its practical limitations in Chapter 2.

At this point it may be helpful to delineate more carefully the various uses
of the term maximum likelihood, as it applies to the estimation of the logistic
regression coefficients. Under the assumptions of the discriminant function model
stated above, the estimators obtained from equations (1.23) and (1.24) are maximum
likelihood estimators. The estimators obtained from equations (1.5) and (1.6) are
based on the conditional distribution of Y given X and, as such, are technically
“conditional maximum likelihood estimators”. It is common practice to drop the
word “conditional” when describing the estimators given in equations (1.5) and
(1.6). In this text, we use the word conditional to describe estimators in logistic
regression with matched data as discussed in Chapter 7.

In summary there are alternative methods of estimation for some data configu-
rations that are computationally quicker; however, we use the maximum likelihood
method described in Section 1.2 throughout the rest of this text.

1.6 DATA SETS USED IN EXAMPLES AND EXERCISES

A number of different data sets are used in the examples as well as the exercises
for the purpose of demonstrating various aspects of logistic regression modeling.
Six of the data sets used throughout the text are described below. Other data sets
are introduced as needed in later chapters. Some of the data sets were used in
the previous editions of this text, for example the ICU and Low Birth Weight
data, while others are new to this edition. All data sets used in this text may be
obtained from links to web sites at John Wiley & Sons Inc. and the University of
Massachusetts given in the Preface.

1.6.1 The ICU Study

The ICU study data set consists of a sample of 200 subjects who were part of a
much larger study on survival of patients following admission to an adult intensive
care unit (ICU). The major goal of this study was to develop a logistic regression
model to predict the probability of survival to hospital discharge of these patients.
A number of publications have appeared that have focused on various facets of
this problem. The reader wishing to learn more about the clinical aspects of this
study should start with Lemeshow et al. (1988). For a more up-to-date discussion
of modeling the outcome of ICU patients the reader is referred to Lemeshow and
Le Gall (1994) and to Lemeshow et al. (1993). The actual observed variable values
have been modified to protect subject confidentiality. A code sheet for the variables
to be considered in this text is given in Table 1.5. We refer to this data set as the
ICU data.
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Table 1.5 Code Sheet for the Variables in the ICU Data

Variable Description Codes/Values Name

1 Identification code ID number ID
2 Vital status at hospital discharge 1 = Lived

0 = Died
STA

3 Age Years AGE
4 Gender 0 = Male

1 = Female
GENDER

5 Race 1 = White
2 = Black
3 = Other

RACE

6 Service at ICU admission 0 = Medical
1 = Surgical

SER

7 Cancer part of present problem 0 = No
1 = Yes

CAN

8 History of chronic renal failure 0 = No
1 = Yes

CRN

9 Infection probable at ICU
admission

0 = No
1 = Yes

INF

10 CPR prior to ICU admission 0 = No
1 = Yes

CPR

11 Systolic blood pressure at ICU
admission

mm Hg SYS

12 Heart rate at ICU admission Beats/min HRA
13 Previous admission to an ICU

within 6 months
0 = No
1 = Yes

PRE

14 Type of admission 0 = Elective
1 = Emergency

TYPE

15 Long bone, multiple, neck, single
area, or hip fracture

0 = No
1 = Yes

FRA

16 PO2 from initial blood gases 0 = >60
1 = ≤60

PO2

17 PH from initial blood gases 0 = ≥7.25
1 = <7.25

PH

18 PCO2 from initial blood gases 0 = ≤45
1 = >45

PCO

19 Bicarbonate from initial blood
gases

0 = ≥18
1 = <18

BIC

20 Creatinine from initial blood gases 0 = ≤2.0
1 = >2.0

CRE

21 Level of consciousness at ICU
admission

0 = No coma or
deep stupor

1 = Deep stupor
2 = Coma

LOC
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Table 1.6 Code Sheet for the Variables in the Low Birth Weight Data

Variable Description Codes/Values Name

1 Identification code 1–189 ID
2 Low birth weight 0 = ≥2500 g

1 = <2500 g
LOW

3 Age of mother Years AGE
4 Weight of mother at last menstrual period Pounds LWT
5 Race 1 = White

2 = Black
3 = Other

RACE

6 Smoking status during pregnancy 0 = No
1 = Yes

SMOKE

7 History of premature labor 0 = None
1 = One
2 = Two, etc.

PTL

8 History of hypertension 0 = No
1 = Yes

HT

9 Presence of uterine irritability 0 = No
1 = Yes

UI

10 Number of physician visits during the first
trimester

0 = None
1 = One
2 = Two, etc.

FTV

11 Recorded birth weight Grams BWT

1.6.2 The Low Birth Weight Study

Low birth weight, defined as birth weight less than 2500 grams, is an outcome
that has been of concern to physicians for years. This is because of the fact that
infant mortality rates and birth defect rates are higher for low birth weight babies.
A woman’s behavior during pregnancy (including diet, smoking habits, and receiv-
ing prenatal care) can greatly alter the chances of carrying the baby to term, and,
consequently, of delivering a baby of normal birth weight.

Data were collected as part of a larger study at Baystate Medical Center in
Springfield, Massachusetts. This data set contains information on 189 births to
women seen in the obstetrics clinic. Fifty-nine of these births were low birth weight.
The variables identified in the code sheet given in Table 1.6 have been shown
to be associated with low birth weight in the obstetrical literature. The goal of
the current study was to determine whether these variables were risk factors in
the clinic population being served by Baystate Medical Center. Actual observed
variable values have been modified to protect subject confidentiality. We refer to
this data set as the LOWBWT data.

1.6.3 The Global Longitudinal Study of Osteoporosis in Women

The Global Longitudinal Study of Osteoporosis in Women (GLOW) is an interna-
tional study of osteoporosis in women over 55 years of age being coordinated at the
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Table 1.7 Code Sheet for Variables in the GLOW Study

Variable Description Codes/Values Name

1 Identification code 1–n SUB_ID
2 Study site 1–6 SITE_ID
3 Physician ID code 128 unique codes PHY_ID
4 History of prior fracture 1 = Yes

0 = No
PRIORFRAC

5 Age at enrollment Years AGE
6 Weight at enrollment Kilograms WEIGHT
7 Height at enrollment Centimeters HEIGHT
8 Body mass index kg/m2 BMI
9 Menopause before age 45 1 = Yes

0 = No
PREMENO

10 Mother had hip fracture 1 = Yes
0 = No

MOMFRAC

11 Arms are needed to stand from
a chair

1 = Yes
0 = No

ARMASSIST

12 Former or current smoker 1 = Yes
0 = No

SMOKE

13 Self-reported risk of fracture 1 = Less than others of the
same age

2 = Same as others of the same
age

3 = Greater than others of the
same age

RATERISK

14 Fracture risk score Composite risk scorea FRACSCORE
15 Any fracture in first year 1 = Yes

0 = No
FRACTURE

aFRACSCORE = 0 × (AGE ≤ 60) + 1 × (60 < AGE ≤ 65) + 2 × (65 < AGE ≤ 70) + 3 × (70 <

AGE ≤ 75) + 4 × (75 < AGE ≤ 80) + 5 × (80 < AGE ≤ 85) + 6 × (AGE > 85) + (PRIORFRAC
= 1) + (MOMFRAC = 1) + (WEIGHT < 56.8) + 2 × (ARMASSIST = 1) + (SMOKE = 1).

Center for Outcomes Research (COR) at the University of Massachusetts/Worcester
by its Director, Dr. Frederick Anderson, Jr. The study has enrolled over 60,000
women aged 55 and older in ten countries. The major goals of the study are to use
the data to provide insights into the management of fracture risk, patient experience
with prevention and treatment of fractures and distribution of risk factors among
older women on an international scale over the follow up period. Complete details
on the study as well as a list of GLOW publications may be found at the Center
for Outcomes Research web site, www.outcomes-umassmed.org/glow.

Data used here come from six sites in the United States and include a few
selected potential risk factors for fracture from the baseline questionnaire. The
outcome variable is any fracture in the first year of follow up. The incident first-
year fracture rate among the 21,000 subjects enrolled in these six sites is about 4
percent. In order to have a data set of a manageable size, n = 500, for this text
we have over sampled the fractures and under sampled the non-fractures. As a
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result associations and conclusions from modeling these data do not apply to the
study cohort as a whole. Data have been modified to protect subject confidentiality.
We thank Dr. Gordon Fitzgerald of COR for his help in obtaining these data sets.
A code sheet for the variables is shown in Table 1.7. This data set is named the
GLOW500 data.

1.6.4 The Adolescent Placement Study

Fontanella et al. (2008) present results from a study of determinants of aftercare
placement for psychiatrically hospitalized adolescents and have made the data, suit-
ably modified to protect confidentiality, available to us. It is not our intent to repeat

Table 1.8 Code Sheet for Variables in the Adolescent Placement Study

Variable Description Codes/Values Name

1 Identification code 1–508 ID
2 Placement 0 = Outpatient

1 = Day treatment
2 = Intermediate residential
3 = Residential

PLACE

3 Placement combined 0 = Outpatient or day treatment
1 = Intermediate residential
2 = Residential

PLACE3

3 Age at admission Years AGE
4 Race 0 = White

1 = Nonwhite
RACE

5 Gender 0 = Female
1 = Male

GENDER

6 Neuropsychiatric disturbance 0 = None
1 = Mild
2 = Moderate
3 = Severe

NEURO

7 Emotional disturbance 0 = Not severe
1 = Severe

EMOT

8 Danger to others 0 = Unlikely
1 = Possible
2 = Probable
3 = Likely

DANGER

9 Elopement risk 0 = No risk
1 = At risk

ELOPE

10 Length of hospitalization Days LOS
11 Behavioral symptoms scorea 0–9 BEHAV
12 State custody 0 = No

1 = Yes
CUSTD

13 History of violence 0 = No
1 = Yes

VIOL

aBehavioral symptom score is based on the sum of three symptom subscales (oppositional behavior,
impulsivity, and conduct disorder) from the CSPI.



data sets used in examples and exercises 27

the detailed analyses reported in their paper, but rather to use the data to motivate
and describe methods for modeling a multinomial or ordinal scaled outcome using
logistic regression models. As such, we selected a subset of variables, which are
described in Table 1.8. This data set is referred to as the APS data.

1.6.5 The Burn Injury Study

The April 2008 release (Version 4.0) of the National Burn Repository research
dataset (National Burn Repository 2007 Report, Dataset Version 4.0 accessed on
12/05/2008 at: http://www.ameriburn.org/2007NBRAnnualReport.pdf) includes
information on a total of 306,304 burn related hospitalizations that occurred
between 1973 and 2007. Available information included patient demographics,
total burn surface area, presence of inhalation injury, and blinded trauma center
identifiers. The outcome of interest is survival to hospital discharge. Osler et al.
(2010) selected a subset of approximately 40,000 subjects treated between 2000
and 2007 at 40 different burn facilities to develop a new predictive logistic
regression model (see the paper for the details on how this subset was selected).
To obtain a much smaller data set for use in this text we over sampled subjects
who died in hospital and under sampled subjects who lived to obtain a data set
with n = 1000 and achieve a sample with 15 percent in hospital mortality. As
such, all analyses and inferences contained in this text do not apply to the sample
of 40,000, the original data from the registry or the population of burn injury
patients as a whole. These data are used here to illustrate methods when prediction
is the final goal as well as to demonstrate various model building techniques. The
variables are described in Table 1.9 and the data are referred to as the BURN1000
data.

Table 1.9 Code Sheet for Variables in the Burn Study

Variable Description Codes/Values Name

1 Identification code 1–1000 ID
2 Burn facility 1–40 FACILITY
3 Hospital discharge status 0 = Alive

1 = Dead
DEATH

4 Age at admission Years AGE
5 Gender 0 = Female

1 = Male
GENDER

6 Race 0 = Non-White
1 = White

RACE

7 Total burn surface area 0–100% TBSA
8 Burn involved inhalation injury 0 = No

1 = Yes
INH_INJ

9 Flame involved in burn injury 0 = No
1 = Yes

FLAME
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Table 1.10 Code Sheet for Variables in the Myopia Study

Variable Variable Description Values/Labels Variable Name

1 Subject identifier Integer (range 1–1503) ID
2 Year subject entered the study Year STUDYYEAR
3 Myopia within the first 5 yr of

follow upa

0 = No
1 = Yes

MYOPIC

4 Age at first visit Years AGE
5 Gender 0 = Male

1 = Female
GENDER

6 Spherical equivalent refractionb Diopter SPHEQ
7 Axial lengthc mm AL
8 Anterior chamber depthd mm ACD
9 Lens thicknesse mm LT
10 Vitreous chamber depthf mm VCD
11 How many hours per week

outside of school the child
spent engaging in
sports/outdoor activities

Hours per week SPORTHR

12 How many hours per week
outside of school the child
spent reading for pleasure

Hours per week READHR

13 How many hours per week
outside of school the child
spent playing video/computer
games or working on the
computer

Hours per week COMPHR

14 How many hours per week
outside of school the child
spent reading or studying for
school assignments

Hours per week STUDYHR

15 How many hours per week
outside of school the child
spent watching television

Hours per week TVHR

16 Composite of near-work
activities

Hours per week DIOPTERHR

17 Was the subject’s mother
myopic?g

0 = No
1 = Yes

MOMMY

18 Was the subject’s father
myopic?

0 = No
1 = Yes

DADMY

aMYOPIC is defined as SPHEQ <= −0.75D.
bA measure of the eye’s effective focusing power. Eyes that are “normal” (don’t require glasses or
contact lenses) have spherical equivalents between −0.25 diopters (D) and +1.00 D. The more negative
the spherical equivalent, the more myopic the subject.
cThe length of eye from front to back.
dThe length from front to back of the aqueous-containing space of the eye between the cornea and the
iris.
eThe length from front to back of the crystalline lens.
f The length from front to back of the aqueous-containing space of the eye in front of the retina.
gDIOPTERHR = 3 × (READHR + STUDYHR) + 2 × COMPHR + TVHR.
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Table 1.11 Variables in the Modified NHANES Data Set

Variable Description Code/values Name

1 Identification code 1–6482 ID
2 Gender 0 = Male,

1 = Female
GENDER

3 Age at screening Years AGE
4 Marital status 1 = Married

2 = Widowed
3 = Divorced
4 = Separated
5 = Never married
6 = Living together

MARSTAT

5 Statistical weight 4084.478–153810.3 SAMPLEWT
6 Pseudo-PSU 1, 2 PSU
7 Pseudo-stratum 1–15 STRATA
8 Total cholesterol mg/dl TCHOL
9 HDL-cholesterol mg/dl HDL
10 Systolic blood pressure mm Hg SYSBP
11 Diastolic blood pressure mm Hg DBP
12 Weight kg WT
13 Standing height cm HT
14 Body mass index kg/m2 BMI
15 Vigorous work activity 0 = Yes,

1 = No
VIGWRK

16 Moderate work activity 0 = Yes,
1 = No

MODWRK

17 Walk or bicycle 0 = Yes,
1 = No

WLKBIK

18 Vigorous recreational activities 0 = Yes,
1 = No

VIGRECEXR

19 Moderate recreational activities 0 = Yes,
1 = No

MODRECEXR

20 Minutes of sedentary activity
per week

Minutes SEDMIN

21 BMI > 35 0 = No,
1 = Yes

OBESE

1.6.6 The Myopia Study

Myopia, more commonly referred to as nearsightedness, is an eye condition where
an individual has difficulty seeing things at a distance. This condition is primarily
because the eyeball is too long. In an eye that sees normally, the image of what is
being viewed is transmitted to the back portion of the eye, or retina, and hits the
retina to form a clear picture. In the myopic eye, the image focuses in front of the
retina, so the resultant image on the retina itself is blurry. The blurry image creates
problems with a variety of distance viewing tasks (e.g., reading the blackboard,
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Table 1.12 Code Sheet for the Variables in the Polypharmacy Data Set

Variable Description Codes/Values Name

1 Subject ID ID number 1–500 ID
2 Outcome; taking drugs from

more than three different
classes

0 = Not taking drugs
from more than three
classes

1 = Taking drugs from
more than three classes

POLYPHARMACY

3 Number of outpatient mental
health visits (MHV)

0 = None
1 = One to five
2 = Six to fourteen
3 = Greater than 14

MHV4

4 Number of inpatient mental
health visits (MHV)

0 = None
1 = One
2 = More than one

INPTMHV3

5 Year 2002–2008 YEAR
6 Group 1 = Covered families and

children (CFC)
2 = Aged, blind or

disabled (ABD)
3 = Foster care (FOS)

GROUP

7 Location 0 = Urban
1 = Rural

URBAN

8 Comorbidity 0 = No
1 = Yes

COMORBID

9 Any primary diagnosis (bipolar,
depression, etc.)

0 = No
1 = Yes

ANYPRIM

10 Number of primary diagnosis 0 = None
1 = One
2 = More than one

NUMPRIMRC

11 Gender 0 = Female
1 = Male

GENDER

12 Race 0 = White
1 = Black
2 = Other

RACE

13 Ethnic category 0 = NonHispanic
1 = Hispanic

ETHNIC

14 Age Years and months (two
decimal places)

AGE

doing homework, driving, playing sports) and requires wearing glasses or contact
lenses to correct the problem. Myopia onset is typically between the ages of 8 and
12 years with cessation of the underlying eye growth that causes it by age 15–16
years.

The risk factors for the development of myopia have been debated for a long
time and include genetic factors (e.g., family history of myopia) and the amount
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and type of visual activity that a child performs (e.g., studying, reading, TV watch-
ing, computer or video game playing, and sports/outdoor activity). There is strong
evidence that having myopic parents increases the chance that a child will become
myopic, and weaker evidence that certain types of visual activities (called near
work, e.g., reading) increase the chance that a child will become myopic.

These data are a subset of data from the Orinda Longitudinal Study of Myopia
(OLSM), a cohort study of ocular component development and risk factors for
the onset of myopia in children, which evolved into the Collaborative Longitudinal
Evaluation of Ethnicity and Refractive Error (CLEERE) Study, and both OLSM and
CLEERE were funded by the National Institutes of Health/National Eye Institute.
OLSM was based at the University of California, Berkeley [see Zadnik et al. (1993,
1994)]. Data collection began in the 1989–1990 school year and continued annually
through the 2000–2001 school year. All data about the parts that make up the eye
(the ocular components) were collected during an examination during the school
day. Data on family history and visual activities were collected yearly in a survey
completed by a parent or guardian.

The dataset used in this text is from 618 of the subjects who had at least five
years of followup and were not myopic when they entered the study. All data are
from their initial exam and includes 17 variables. In addition to the ocular data
there is information on age at entry, year of entry, family history of myopia and
hours of various visual activities. The ocular data come from a subject’s right eye.
A subject was coded as myopic if they became myopic at any time during the first
five years of followup. We refer to this data set, in Table 1.10, as the MYOPIA data.

1.6.7 The NHANES Study

The National Health and Nutrition Examination Survey (NHANES), a major effort
of the National Center for Health Statistics, was conceived in the early 1960s to
provide nationally representative and reliable data on the health and nutritional
status of adults and children in the United States. NHANES has since evolved
into a ongoing survey program that provides the best available national estimates
of the prevalence of, and risk factors for, targeted diseases in the United States
population. The survey collects interview and physical exam data on a nationally
representative, multistage probability sample of about 5,000 persons each year, who
are chosen to be representative of the civilian, non-institutionalized, population in
the US.

For purposes of illustrating fitting logistic regression models to sample sur-
vey data in Section 6.4 we chose selected variables, shown in Table 1.11, from
the 2009–2010 cycle of the National Health and Nutrition Examination Study
[NHANES III Reference Manuals and Reports (2012)] and made some modifica-
tions to the data. We refer to this data set as the NHANES data.

1.6.8 The Polypharmacy Study

In Chapter 9, we illustrate model building with correlated data using data on
polypharmacy described in Table 1.12. The outcome of interest is whether the
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patient is taking drugs from three or more different classes (POLYPHARMACY),
and researchers were interested in identifying factors associated with this outcome.
We selected a sample of 500 subjects from among only those subjects with obser-
vations in each of the seven years data were collected. Based on the suggestions of
the principal investigator, we initially treated the covariates for number of inpatient
and outpatient mental health visits (MHVs) with categories described in Table 1.12.
In addition we added a random number of months to the age, which was recorded
only in terms of the year in the original data set. As our data set is a sample, the
results in this section do not apply to the original study. We refer to this data set
as the POLYPHARM data.

EXERCISES

1. In the ICU data described in Section 1.6.1 the primary outcome variable is
vital status at hospital discharge, STA. Clinicians associated with the study felt
that a key determinant of survival was the patient’s age at admission, AGE.
(a) Write down the equation for the logistic regression model of STA on

AGE. Write down the equation for the logit transformation of this logistic
regression model. What characteristic of the outcome variable, STA, leads
us to consider the logistic regression model as opposed to the usual linear
regression model to describe the relationship between STA and AGE?

(b) Form a scatterplot of STA versus AGE.
(c) Using the intervals (15, 24), (25, 34), (35, 44), (45, 54), (55, 64), (65, 74),

(75, 84), (85, 94) for age, compute the STA mean over subjects within
each age interval. Plot these values of mean STA versus the midpoint of
the age interval using the same set of axes as was used in 1(b). Note: this
plot may done “by hand” on a printed copy of the plot from 1(b).

(d) Write down an expression for the likelihood and log-likelihood for the
logistic regression model in Exercise 1(a) using the ungrouped, n = 200,
data. Obtain expressions for the two likelihood equations.

(e) Using a logistic regression package of your choice obtain the maximum
likelihood estimates of the parameters of the logistic regression model in
Exercise 1(a). These estimates should be based on the ungrouped, n = 200,
data. Using these estimates, write down the equation for the fitted values,
that is, the estimated logistic probabilities. Plot the equation for the fitted
values on the axes used in the scatterplots in 1(b) and 1(c).

(f) Using the results of the output from the logistic regression package used
for 1(e), assess the significance of the slope coefficient for AGE using the
likelihood ratio test, the Wald test, and if possible, the score test. What
assumptions are needed for the p-values computed for each of these tests
to be valid? Are the results of these tests consistent with one another?
What is the value of the deviance for the fitted model?

(g) Using the results from 1(e) compute 95 percent confidence intervals for the
slope coefficient for AGE. Write a sentence interpreting this confidence.
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(h) Obtain from the package used to fit the model in 1(e) the estimated covari-
ance matrix. Compute the logit and estimated logistic probability for a
60-year-old subject. Evaluate the endpoints of the 95 percent confidence
intervals for the logit and estimated logistic probability. Write a sentence
interpreting the estimated probability and its confidence interval.

2. In the Myopia Study described in Section 1.6.2, one variable that is clearly
important is the initial value of spherical equivalent refraction.(SPHREQ).
Repeat steps (a)–(g) of Exercise 1, but for 2(c) use eight intervals containing
approximately equal numbers of subjects (i.e., cut points at 12.5%, 25%, . . . ,
etc.).

3. Using the data from the ICU study create a dichotomous variable NONWHITE
(NONWHITE = 1 if RACE = 2 or 3 and NONWHITE = 0 if RACE = 1).
Fit the logistic regression of STA on NONWHITE and show that the 95 per-
cent profile likelihood confidence interval for the coefficient for nonwhite has
asymmetry of −13% and that this interval is 26% wider than the Wald-based
interval. This example points out that even when the sample size and number
of events are large n = 200, and n1 = 40 there can be substantial asymmetry
and differences between the two interval estimators. Explain why this is the
case in this example.



C H A P T E R 2

The Multiple Logistic Regression
Model

2.1 INTRODUCTION

In Chapter 1 we introduced the logistic regression model in the context of a model
containing a single variable. As in the case of linear regression, the strength of the
logistic regression model is its ability to handle many variables, some of which may
be on different measurement scales. In this chapter, we generalize the model to one
with more than one independent variable (i.e., the multivariable or multiple logistic
regression model). Central to the consideration of the multiple logistic models
is estimating the coefficients and testing for their significance. We use the same
approach discussed in Chapter 1 for the univariable setting. An additional modeling
consideration, which is introduced in this chapter, is using design variables for
modeling discrete, nominal scale, independent variables. In all cases, we assume
that there is a predetermined collection of variables to be examined. We consider
statistical methods for selecting variables in Chapter 4.

2.2 THE MULTIPLE LOGISTIC REGRESSION MODEL

Consider a collection of p independent variables denoted by the vector x ′ =
(x1, x2, . . . , xp). For the moment we assume that each of these variables is at
least interval scaled. Let the conditional probability that the outcome is present be
denoted by Pr(Y = 1|x) = π(x). The logit of the multiple logistic regression model
is given by the equation

g(x) = ln

(
π (x)

1 − π(x)

)
= β0 + β1x1 + β2x2 + · · · + βpxp (2.1)

Applied Logistic Regression, Third Edition.
David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant.
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where, for the multiple logistic regression model,

π(x) = eg(x)

1 + eg(x)
. (2.2)

If some of the independent variables are discrete, nominal scale variables such
as race, sex, treatment group, and so forth, it is inappropriate to include them in
the model as if they were interval scale variables. The numbers used to represent
the various levels of these nominal scale variables are merely identifiers, and have
no numeric significance. In this situation, the method of choice is to use a col-
lection of design variables (or dummy variables). Suppose, for example, that one
of the independent variables is race, which has been coded as “white,” “black,”
and “other.” In this case, two design variables are necessary. One possible coding
strategy is that when the respondent is “white,” the two design variables, D1 and
D2, would both be set equal to zero; when the respondent is “black,” D1 would
be set equal to 1 while D2 would still equal 0; when the race of the respondent is
“other,” we would use D1 = 0 and D2 = 1. Table 2.1 illustrates this coding of the
design variables.

Every logistic regression software package we use has the capability to generate
design variables, and some provide a choice of several different methods. We
discuss different strategies for creation and interpretation of the coefficients for the
design variables in detail in Chapter 3.

In general, if a nominal scaled variable has k possible values, then k − 1 design
variables are needed. The reason for using one less than the number of values
is that, unless stated otherwise, our models have a constant term. To illustrate the
notation used for design variables in this text, suppose that the jth independent
variable xj has kj levels. The kj − 1 design variables will be denoted as Djl and the
coefficients for these design variables will be denoted as βjl , l = 1, 2, . . . , kj − 1.
Thus, the logit for a model with p variables, with the jth variable being
discrete is

g(x) = β0 + β1x1 + · · · +
kj −1∑
l=1

βjlDjl + βpxp.

With a few exceptions, we suppress the summation and double subscripting
needed to indicate when design variables are being used when discussing the
multiple logistic regression model.

Table 2.1 An Example of the Coding of the
Design Variables for Race, Coded at Three
Levels

RACE D1 D2

White 0 0
Black 1 0
Other 0 1
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2.3 FITTING THE MULTIPLE LOGISTIC REGRESSION MODEL

Assume that we have a sample of n independent observations (xi , yi), i =
1, 2, . . . , n. As in the univariable case, fitting the model requires that we obtain
estimates of the vector β′ = (β0, β1, . . . , βp). The method of estimation used in
the multivariable case is the same as in the univariable situation – maximum
likelihood. The likelihood function is nearly identical to that given in equation
(1.3) with the only change being that π(x) is now defined as in equation (2.1).
There will be p + 1 likelihood equations that are obtained by differentiating the
log-likelihood function with respect to the p + 1 coefficients. The likelihood
equations that result may be expressed as follows:

n∑
i=1

[yi − π(xi )] = 0

and
n∑

i=1

xij [yi − π(xi )] = 0

for j = 1, 2, . . . , p.
As in the univariable model, the solution of the likelihood equations requires

software that is available in virtually every statistical software package. Let β̂

denote the solution to these equations. Thus, the fitted values for the multiple
logistic regression model are π̂(xi ), the value of the expression in equation (2.2)
computed using β̂ and xi .

In the previous chapter only a brief mention was made of the method for estimat-
ing the standard errors of the estimated coefficients. Now that the logistic regression
model has been generalized, both in concept and notation to the multivariable case,
we consider estimation of standard errors in more detail.

The method of estimating the variances and covariances of the estimated coeffi-
cients follows from well-developed theory of maximum likelihood estimation [see,
e.g., Rao, (1973)]. This theory states that the estimators are obtained from the
matrix of second partial derivatives of the log-likelihood function. These partial
derivatives have the following general form

∂2L(β)

∂β2
j

= −
n∑

i=1

x2
ij πi(1 − πi) (2.3)

and
∂2L(β)

∂βj∂βl

= −
n∑

i=1

xij xilπi(1 − πi) (2.4)

for j, l = 0, 1, 2, . . . , p where πi denotes π(xi ). Let the (p + 1) × (p + 1) matrix
containing the negative of the terms given in equations (2.3) and (2.4) be denoted
as I(β). This matrix is called the observed information matrix. The variances and
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covariances of the estimated coefficients are obtained from the inverse of this
matrix, which we denote as Var(β) = I−1(β). Except in very special cases it is not
possible to write down an explicit expression for the elements in this matrix. Hence,
we will use the notation Var(βj ) to denote the j th diagonal element of this matrix,
which is the variance of β̂j , and Cov (βj , βl) to denote an arbitrary off-diagonal
element, which is the covariance of β̂j and β̂l . The estimators of the variances and
covariances, which will be denoted by V̂ar(β̂), are obtained by evaluating Var (β)

at β̂. We use V̂ar (β̂j ) and Ĉov (β̂j , β̂l), j, l = 0, 1, 2, . . . , p to denote the values
in this matrix. For the most part, we only use the estimated standard errors of the
estimated coefficients, which we denote as

ŜE(β̂j ) = [V̂ar(β̂j )]
1/2 (2.5)

for j = 0, 1, 2, . . . , p. We use this notation in developing methods for coefficient
testing and confidence interval estimation.

A formulation of the information matrix that is useful when discussing model
fitting and assessment of fit is Î(β̂) = X′V̂X where X is an n by p + 1 matrix
containing the data for each subject and V is an n by n diagonal matrix with
general element π̂i(1 − π̂i). That is, the matrix X is

X =

⎡
⎢⎢⎢⎣

1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...

1 xn1 xn2 . . . xnp

⎤
⎥⎥⎥⎦

and the matrix V is

V̂ =

⎡
⎢⎢⎢⎣

π̂1

(
1 − π̂1

)
0 · · · 0

0 π̂2(1 − π̂2) · · · 0
... 0

. . .
...

0 · · · 0 π̂n(1 − π̂n)

⎤
⎥⎥⎥⎦ ,

where π̂i = π̂(xi ) is value of equation (2.2) using β̂ and the covariates of
subject i, xi .

Before proceeding further, we present an example that illustrates the formula-
tion of a multiple logistic regression model and the estimation of its coefficients
using a subset of the variables from the data for the Global Longitudinal Study of
Osteoporosis in Women (GLOW) study described in Section 1.6.3. The code sheet
for the full data set is given in Table 1.7. As discussed in Section 1.6.3, one goal
of this study is to evaluate risk factors for fracture during follow up.

The GLOW data set used in this text has information on 500 women, n1 = 125
of whom had a fracture during the first year of follow up and n0 = 375 who did
not have a fracture. As an example, we consider five variables thought to be of
importance that are age at enrollment (AGE), weight at enrollment (WEIGHT), his-
tory of a previous fracture (PRIORFRAC), whether or not the woman experienced
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Table 2.2 Fitted Multiple Logistic Regression Model of Fracture in the First Year of
Follow Up (FRACTURE) on Age, Weight, Prior Fracture (PRIORFRAC), Early
Menopause (PREMENO), and Self-Reported Risk of Fracture (RATERISK) from the
GLOW Study, n = 500

Variable Coeff. Std. Err. z p 95% CI

AGE 0.050 0.0134 3.74 <0.001 0.024, 0.076
WEIGHT 0.004 0.0069 0.59 0.556 −0.009, 0.018
PRIORFRAC 0.679 0.2424 2.80 0.005 0.204, 1.155
PREMENO 0.187 0.2767 0.68 0.499 −0.355, 0.729
RATERISK2 0.534 0.2759 1.94 0.053 −0.006, 1.075
RATERISK3 0.874 0.2892 3.02 0.003 0.307, 1.441
Constant −5.606 1.2207 −4.59 <0.001 −7.998, −3.213

Log-Likelihood = −259.03768

menopause before or after age 45 (PREMENO) and self-reported risk of fracture
relative to women of the same age (RATERISK) coded at three levels: less, same
or more risk. In this example, the variable RATERISK is modeled using the two
design variables in Table 2.1. The results of fitting the multiple logistic regression
model to these data are shown in Table 2.2.

In Table 2.2 the estimated coefficients for the two design variables for
RATERISK are indicated by RATERISK2 and RATERISK3. The estimated logit
is given in the following equation:

ĝ(x) = − 5.606 + 0.050 × AGE + 0.004 × WEIGHT

+ 0.679 × PRIORFRAC + 0.187 × PREMENO

+ 0.534 × RATERISK 2 + 0.874 × RATERISK 3

and the associated estimated logistic probabilities are found by using equation (2.2).

2.4 TESTING FOR THE SIGNIFICANCE OF THE MODEL

Once we have fit a particular multiple (multivariable) logistic regression model,
we begin the process of model assessment. As in the univariable case presented
in Chapter 1, the first step in this process is usually to assess the significance
of the variables in the model. The likelihood ratio test for overall significance
of the p coefficients for the independent variables in the model is performed in
exactly the same manner as in the univariable case. The test is based on the statis-
tic G given in equation (1.12). The only difference is that the fitted values, π̂ ,
under the model are based on the fitted model containing p + 1 parameters, β̂.
Under the null hypothesis that the p “slope” coefficients for the covariates in the
model are equal to zero, the distribution of G is chi-square with p degrees of
freedom.
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Consider the fitted model whose estimated coefficients are given in Table 2.2.
For that model, the value of the log-likelihood, shown at the bottom of the table, is
L = −259.0377. The log-likelihood for the constant only model may be obtained
by evaluating the numerator of equation (1.13) or by fitting the constant only
model. Either method yields the log-likelihood L = −281.1676. Thus the value of
the likelihood ratio test is, from equation (1.12),

G = −2[−281.1676 − (−259.0377)] = 44.2598

and the p-value for the test is P [χ2(6) > 44.2598] ≤ 0.0001, which is significant
at well beyond the α = 0.05 level. We reject the null hypothesis in this case and
conclude that at least one or more of the p coefficients are different from zero, an
interpretation analogous to the F -test used in multiple linear regression.

Before concluding that any or all of the coefficients are nonzero, we may look
at the univariable Wald test statistics,

Wj = β̂j

ŜE(β̂j )
.

These are shown in the fourth column, labeled z, in Table 2.2. Under the hypothesis
that an individual coefficient is zero, these statistics will follow the standard normal
distribution. The p-values computed under this hypothesis are shown in the fifth
column of Table 2.2. If we use a level of significance of 0.05, then we would
conclude that the variables AGE, history of prior fracture (PRIORFRAC) and self-
reported rate of risk (RATERISK) are statistically significant, while WEIGHT and
early menopause (PREMENO) are not significant.

As our goal is to obtain the best fitting model while minimizing the number of
parameters, the next logical step is to fit a reduced model containing only those
variables thought to be significant and compare that reduced model to the full
model containing all of the variables. The results of fitting the reduced model are
given in Table 2.3.

The difference between the two models is the exclusion of the variables
WEIGHT and early menopause (PREMENO) from the full model. The likelihood

Table 2.3 Fitted Multiple Logistic Regression Model of Fracture in the First Year of
Follow Up (FRACTURE) on AGE, Prior Fracture (PRIORFRAC), and Self-Reported
Risk of Fracture (RATERISK) from the GLOW Study, n = 500

Variable Coeff. Std. Err. z p 95% CI

AGE 0.046 0.0124 3.69 <0.001 0.022, 0.070
PRIORFRAC 0.700 0.2412 2.90 0.004 0.228, 1.173
RATERISK2 0.549 0.2750 1.99 0.046 0.010, 1.088
RATERISK3 0.866 0.2862 3.02 0.002 0.305, 1.427
Constant −4.991 0.9027 −5.53 <0.001 −6.760, −3.221

Log-Likelihood = −259.4494
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ratio test comparing these two models is obtained using the definition of G

given in equation (1.12). It has a distribution that is chi-square with 2 degrees of
freedom under the hypothesis that the coefficients for both excluded variables are
equal to zero. The value of the test statistic comparing the model in Table 2.3 to
the one in Table 2.2 is

G = −2[−259.4494 − (−259.0377)] = 0.8324

which, with 2 degrees of freedom, has a p-value of P [χ2(2) > 0.8324] = 0.663.
As the p-value is large, exceeding 0.05, we conclude that the full model is no better
than the reduced model. That is, there is little statistical justification for including
WEIGHT and PREMENO in the model. However, we must not base our models
entirely on tests of statistical significance. As we discuss in Chapters 4 and 5, there
are numerous other considerations that influence our decision to include or exclude
variables from a model.

Whenever a categorical independent variable is included (or excluded) from a
model, all of its design variables should be included (or excluded); to do otherwise
implies that we have recoded the variable. For example, if we only include design
variable D1 as defined in Table 2.1, then the self-reported risk of fracture is entered
into the model as a dichotomous variable coded as 0 (for less risk than others of
the same age) and 1 (for the same or more risk than others of the same age). If k is
the number of levels of a categorical variable, then the contribution to the degrees
of freedom for the likelihood ratio test for the exclusion of this variable is k − 1.
For example, if we exclude self-reported risk from the model and it is coded at
three levels using the design variables shown in Table 2.1, then there are 2 degrees
of freedom for the test, one for each design variable.

Because of the multiple degrees of freedom we must be careful in our use of the
Wald (W ) statistics to assess the significance of the coefficients. For example, if
the W statistics for both coefficients exceed 2, then we could reasonably conclude
that the design variables are significant. Alternatively, if one coefficient has a W

statistic of 3.0 and the other a value of 0.1, then we cannot be sure about the
contribution of the variable to the model. As both design variables for RATERISK
are significant we can be fairly certain that the 2 degree of freedom test is also
significant. We leave the details as an exercise, but for now it suffices to report that
the p < 0.001 for the likelihood ratio test for the removal of RATERISK from the
model in Table 2.3.

In the previous chapter we described, for the univariable model, two other tests
equivalent to the likelihood ratio test for assessing the significance of the model:
the Wald test and the Score test. At this point, we briefly discuss the multivariable
versions of these tests, as their use appears occasionally in the literature. These
tests are available in some software packages. For example, SAS computes both
the likelihood ratio and score tests for a fitted model and STATA has the capability
to easily perform the Wald test. For the most part we use likelihood ratio tests
in this text because, as noted earlier, the quantities needed to carry it out may be
obtained from all computer packages.
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The multivariable analog of the Wald test is obtained from the following vector-
matrix calculation:

W = β̂′[V̂ar(β̂)]−1β̂

= β̂′(XV̂X)β̂,

which is distributed as chi-square with p + 1 degrees of freedom under the hypoth-
esis that each of the p + 1 coefficients is equal to zero. The multivariable Wald
test, equivalent to the likelihood ratio test for the significance of the fitted model,
is based on just the p slope coefficients and is obtained by eliminating β̂0 from
β̂ and the relevant row (first or last) and column (first or last) from (X ′ V̂X).
As the evaluation of this test requires an extra step to perform vector-matrix opera-
tions and to obtain β̂, there is no gain over the likelihood ratio test for determining
the significance of the model. Extensions of the Wald test that can be used to
examine functions of the coefficients are quite useful and are illustrated in sub-
sequent chapters. The value of the multivariable Wald test for the fitted model
in Table 2.3 is W = 39.88, which, with 4 degrees of freedom, corresponds to
p < 0.001. Hence, both the likelihood ratio test and the Wald test reject the hypoth-
esis that the model is not significant. In this particular example the value of the
multivariable Wald test is smaller than the likelihood ratio test, but this is not always
the case.

The multivariable analog of the Score test for the significance of the model
is based on the distribution of the p derivatives of L(β) with respect to β. The
computation of this test is of the same order of complication as the Wald test. To
define it in detail would require introduction of additional notation that would find
little use in the remainder of this text. Thus, we refer the interested reader to Cox
and Hinkley (1974) or Dobson (2002). We do note that the score test is computed
by some statistical packages (e.g., the logistic procedure in SAS).

2.5 CONFIDENCE INTERVAL ESTIMATION

We discussed confidence interval estimators for the coefficients, the logit and the
logistic probabilities for the univariable logistic regression model in Section 1.4.
The methods used for confidence interval estimators for a multivariable model are
essentially the same.

The endpoints for a 100(1 − α)% Wald-based confidence interval for the coef-
ficients are obtained from equation (1.15) for slope coefficients and from equation
(1.16) for the constant term. For example, using the fitted model presented in
Table 2.3, the 95 percent confidence interval for the coefficient of AGE is

0.046 ± 1.96 × 0.0124 = (0.022, 0.070),

which are exactly the values in the last column of Table 2.3, labeled “95% Conf.
Int.”. The interpretation of this interval is that we are 95 percent confident that the
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increase in the log-odds per one-year increase in age is between 0.022 and 0.070.
As we noted in Section 1.4 many software packages (e.g., STATA) automatically
provide confidence intervals for all model coefficients in the output. Confidence
intervals for the other coefficients shown in Table 2.3 are calculated in a similar
manner. We also calculated the profile likelihood confidence interval estimator
discussed at the end of Section 1.4 for each of the variables in Table 2.3, and
they differed from their respective Wald-based confidence intervals at most by 0.3
percent and as a result, are not shown.

The confidence interval estimator for the logit is a bit more complicated for the
multiple variable model than the result presented in equation (1.19). The basic idea
is the same; only there are now more terms involved in the summation. It follows
that a general expression for the estimator of the logit for a model containing p

covariates is
ĝ(x) = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp. (2.6)

An alternative way to express the estimator of the logit in equation (2.6) is
through the use of vector notation as ĝ(x) = x ′β̂, where the vector β̂′ = (β̂0, β̂1,

β̂2, . . . , β̂p) denotes the estimator of the p + 1 coefficients and the vector
x ′ = (x0, x1, x2, . . . , xp) represents a set of values of the p-covariates in the
model and the constant, x0 = 1.

It follows from equation (1.18) that an expression for the estimator of the vari-
ance of the estimator of the logit in equation (2.6) is

V̂ar[ĝ(x)] =
p∑

j=0

x2
j V̂ar(β̂j) +

p∑
j=0

p∑
k=j+1

2xjxkĈov(β̂j , β̂k). (2.7)

We can express this result much more concisely by using the matrix expression
for the estimator of the variance of the estimator of the coefficients. From the
expression for the observed information matrix, we have that

V̂ar(β̂) = (X ′ V̂X)−1. (2.8)

It follows from equation (2.8) that an equivalent expression for the estimator in
equation (2.7) is

V̂ar[ĝ(x)] = x ′V̂ar(β̂)x

= x ′(X ′ V̂X)−1x. (2.9)

Fortunately, all good logistic regression software packages provide the option for
the user to create a new variable containing the estimated values of equation (2.9)
or the standard error for all observed values of the covariates of subjects in the data
set. This feature eliminates the computational burden associated with the matrix
calculations in equation (2.9) and allows the user to routinely calculate fitted values
and confidence interval estimates. However, it is useful to illustrate the details of
the calculations.
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Using the model in Table 2.3, the estimated logit for a 65-year-old woman with
a prior fracture (PRIORFRAC = 1) who thinks that her risk is the same as other
women of her age is

ĝ(AGE = 65, PRIORFRAC = 1, RATERISK = 2)

= −4.991 + 0.046 × 65 + 0.700 × 1 + 0.549 × 1 + 0.866 × 0

= −0.752

and the estimated logistic probability is

π̂(AGE = 65, PRIORFRAC = 1, RATERISK = 2) = e−0.752

1 + e−0.752
= 0.320.

The interpretation of this fitted value is that the estimated proportion of 65-year-old
women with a prior fracture, who rate their risk of fracture as the same as women
of their age having a facture in the next year is 0.320.

In order to use equation (2.7) to estimate the variance of this estimated logit we
need the estimated covariance matrix, which is shown in Table 2.4. The expression
for the estimated variance of the logit is

V̂ar[ĝ(AGE = 65, PRIORFRAC = 1, RATERISK = 2)]

= V̂ar(β̂0) + (65)2 × V̂ar(β̂1) + (1)2 × V̂ar(β̂2) + (1)2 × V̂ar(β̂3) + 2 × 65

× Ĉov(β̂0, β̂1) + 2 × 1 × Ĉov(β̂0, β̂2) + 2 × 1 × Ĉov(β̂0, β̂3) + 2 × 65 × 1

× Ĉov(β̂1, β̂2) + 2 × 65 × 1 × Ĉov(β̂1, β̂3) + 2 × 1 × 1 × Ĉov(β̂2, β̂3),

which when evaluated using the values in Table 2.4 is

V̂ar[ĝ(AGE = 65, PRIORFRAC = 1, RATERISK = 2)]

= 0.81487 + (65)2 × 0.00015 + 1 × 0.05816 + 1 × 0.07563

+ 2 × 65(−0.01089) + 2 × 1 × 0.04450 + 2 × 1 × (−0.06039) + 2 × 65

× 1 × (−0.00083) + 2 × 65 × 1 × 0.00022 + 2 × 1 × 1 × (−0.00313)

= 0.04937.

Table 2.4 Estimated Covariance Matrix of the Estimated Coefficients in Table 2.3

AGE PRIORFRAC RATERISK2 RATERISK3 Constant

AGE 0.00015
PRIROFRAC −0.00083 0.05816
RATERISK2 0.00022 −0.00313 0.07563
RATERISK3 0.00054 −0.01184 0.04624 0.08191
Constant −0.01089 0.04450 −0.06039 −0.08055 0.81487
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The standard error is

ŜE[ĝ(AGE = 65, PRIORFRAC = 1, RATERISK = 2)] =
√

0.04937 = 0.22220

and the 95 percent confidence interval for the estimated logit is

−0.752 ± 1.96 × 0.22220 = (−1.18751,−0.31648).

The associated confidence interval for the fitted value is (0.234, 0.422). We defer
discussion and interpretation of the estimated logit, fitted values and their respective
confidence intervals until Chapter 3.

2.6 OTHER ESTIMATION METHODS

In Section 1.5, we discussed the discriminant function estimators of the coefficients
of the logistic regression model and note here that it may also be employed in the
multivariable case. This approach to estimation of the logistic regression coeffi-
cients is based on the assumption that the distribution of the independent variables,
given the value of the outcome variable, is multivariate normal. Two points should
be kept in mind: (i) the assumption of multivariate normality is rarely, if ever,
satisfied in practice because of the frequent occurrence of categorical independent
variables, and (ii) the discriminant function estimators of the coefficients for non-
normally distributed independent variables, especially dichotomous variables, will
be biased away from zero when the true coefficient is nonzero. For these rea-
sons, in general, we do not recommend the use of this method. However, these
estimators are of historical importance as a number of the classic papers in the
applied literature [such as Truett et al. (1967)] used them. These estimators are
easily computed and in the absence of a logistic regression program, could be
used as a first approximation to parameter estimates. Thus, it seems worthwhile to
include the relevant formulae for their computation. An exception to the general
recommendation is when the focus is on the effect of a single continuous variable
and all other variables in the model are there for adjustment, a concept we discuss
in the next chapter. In this special setting Lyles et al. (2009) show how one may
compute the discriminant function estimator of this single coefficient through an
easily performed linear regression.

Specifically, the assumptions for the discriminant function approach are that the
conditional distribution of X (the vector of p covariate random variables) given the
outcome variable, Y = y, is multivariate normal with a mean vector that depends
on y, but a covariance matrix that does not. Using notation defined in Section
1.5 we have that (X|y = j) ∼ N(μj ,�) where μj contains the means of the p

independent variables for the subpopulation defined by y = j and � is the p ×
p covariance matrix of these variables. Under these assumptions, Pr(Y = 1|x) =
π(x), where the coefficients are given by:

β0 = ln

(
θ1

θ0

)
− 0.5(μ1 − μ0)

′�−1(μ1 + μ0) (2.10)
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and
β = (μ1 − μ0)

′�−1, (2.11)

where θ1 = Pr(Y = 1) and θ0 = 1 − θ1 denote the proportion of the population with
y equal to 1 or 0, respectively. Equations (2.10) and (2.11) are the multivariable
analogs of equations (1.23) and (1.24).

The discriminant function estimators of β0 and β are found by substituting esti-
mators for μj , j = 0, 1, �, and θ1 into equations (2.10) and (2.11). The estimators
most often used are the maximum likelihood estimators under the multivariate
normal model. That is, we let

μ̂j = xj ,

the mean of x in the subgroup of the sample with y = j, j = 0, 1.
The estimator of the covariance matrix, �, is the multivariable extension of the

pooled sample variance given in Section 1.5. This may be represented as

S = (n0 − 1)S0 + (n1 − 1)S1

(n0 + n1 − 2)
,

where Sj , j = 0, 1 is the p × p matrix of the usual unbiased estimators of the
variances and covariances computed within the subgroup defined by y = j,

j = 0, 1.
Because of the bias in the discriminant function estimators when normality

does not hold, they should be used only when logistic regression software is not
available, and then only in preliminary analyses. Any final analyses should be based
on the maximum likelihood estimators of the coefficients.

EXERCISES

1. In Section 2.4 we stated, but did not provide details for, the likelihood ratio
test for the addition of weight and early menopause to the model containing
AGE, prior fracture (PRIORFRAC) and self-reported risk (RATERISK).

(a) Using the GLOW500 data and a logistic regression package verify the
values of the coefficients for the models shown in Table 2.2 and Table 2.3.

(b) Perform the likelihood ratio test comparing these two models [i.e., the test
for the contribution of WEIGHT and early menopause (PREMENO) to
a model containing AGE, prior fracture (PRIORFRAC) and self-reported
risk (RATERISK)].

2. Use the ICU data described in Section 1.6.1 and consider the multiple logistic
regression model of vital status, STA, on age (AGE), cancer part of the present
problem (CAN), CPR prior to ICU admission (CPR), infection probable at ICU
admission (INF), and race (RACE).
(a) The variable race is coded at three levels. Prepare a table showing the

coding of the two design variables necessary for including this variable in
a logistic regression model.
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(b) Write down the equation for the logistic regression model of STA on
AGE, CAN, CPR, INF, and RACE. Write down the equation for the logit
transformation of this logistic regression model. How many parameters
does this model contain?

(c) Write down an expression for the likelihood and log-likelihood for the
logistic regression model in Exercise 2(b). How many likelihood equations
are there? Write down an expression for a typical likelihood equation for
this problem.

(d) Using a logistic regression package, obtain the maximum likelihood esti-
mates of the parameters of the logistic regression model in Exercise 2(b).
Using these estimates write down the equation for the fitted values (i.e.,
the estimated logistic probabilities).

(e) Using the results of the output from the logistic regression package used
in Exercise 2(d), assess the significance of the slope coefficients for the
variables in the model using the likelihood ratio test. What assumptions
are needed for the p-values computed for this test to be valid? What is the
value of the deviance for the fitted model?

(f) Use the Wald statistics to obtain an approximation to the significance of the
individual slope coefficients for the variables in the model. Fit a reduced
model that eliminates those variables with nonsignificant Wald statistics.
Assess the joint (conditional) significance of the variables excluded from
the model. Present the results of fitting the reduced model in a table.

(g) Using the results from Exercise 2(f), compute 95 percent confidence inter-
vals for all coefficients in the model. Write a sentence interpreting the
confidence intervals for the nonconstant covariates.

(h) Obtain the estimated covariance matrix for the final model fit in Exercise
2(f). Choose a set of values for the covariates in that model and estimate
the logit and logistic probability for a subject with these characteristics.
Compute 95 percent confidence intervals for the logit and estimated logistic
probability. Write a sentence or two interpreting the estimated probability
and its confidence interval.

3. Use the Myopia Study data described in Section 1.6.6 and use MYOPIC as
the outcome and as possible variables for a model: AGE, GENDER, family
history of myopia (MOMMY and DADMY), number of hours playing sports
(SPORTHR) and number of hours watching television (TVHR).

(a) Repeat parts 2(b)–2(h) of Exercise 2.

(b) Verify that there is little difference between the Wald-based and profile
likelihood intervals for the variables in the model in part 3(a).



C H A P T E R 3

Interpretation of the Fitted Logistic
Regression Model

3.1 INTRODUCTION

In Chapters 1 and 2 we discussed the methods for fitting and testing for the sig-
nificance of the logistic regression model. After fitting a model the emphasis shifts
from the computation and assessment of significance of the estimated coefficients to
the interpretation of their values. Strictly speaking, an assessment of the adequacy
of the fitted model should precede any attempt at interpreting it. In the case of
logistic regression, the methods for assessment of fit are rather technical in nature
and thus are deferred until Chapter 5, at which time the reader should have a good
working knowledge of the logistic regression model. Thus, we begin this chapter
assuming that a logistic regression model has been fit, that the variables in the
model are significant in either a clinical or statistical sense, and that the model fits
according to some statistical measure of fit.

The interpretation of any fitted model requires that we be able to draw
practical inferences from the estimated coefficients in the model. The question
being addressed is: What do the estimated coefficients in the model tell us about
the research questions that motivated the study? For most statistical models this
involves the estimated coefficients for the independent variables in the model.
In most instances, the intercept coefficient is of little interest. The estimated
coefficients for the independent variables represent the slope (i.e., rate of change)
of a function of the dependent variable per unit of change in the independent
variable. Thus, interpretation involves two issues: determining the functional
relationship between the dependent variable and the independent variable, and
appropriately defining the unit of change for the independent variable.

The first step is to determine what function of the dependent variable yields a
linear function of the independent variables. This is called the link function [see

Applied Logistic Regression, Third Edition.
David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant.
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McCullagh and Nelder (1989), or Dobson (2002)]. In the case of a linear regression
model, the link function is the identity function as the dependent variable, by
definition, is linear in the parameters. (For those unfamiliar with the term identity
function, it is the function y = y.) In the logistic regression model the link function
is the logit transformation g(x) = ln{π(x)/[1 − π(x)]} = β0 + β1x.

For a linear regression model recall that the slope coefficient, β1, is equal to the
difference between the value of the dependent variable at x + 1 and the value of the
dependent variable at x, for any value of x. For example, the linear regression model
at x is y(x) = β0 + β1x. It follows that the slope coefficient is β1 = y(x + 1) −
y(x). In this case, the interpretation of the slope coefficient is that it is the change
in the outcome variable corresponding to a one-unit change in the independent
variable. For example, in a regression of weight on height of male adolescents
if the slope is 5 then we would conclude that an increase of 1 inch in height is
associated with an increase of 5 pounds in weight.

In the logistic regression model, the slope coefficient is the change in the logit
corresponding to a change of one unit in the independent variable [i.e., β1 =
g(x + 1) − g(x)]. Proper interpretation of the coefficient in a logistic regression
model depends on being able to place meaning on the difference between two
values of the logit function. This difference is discussed in detail on a case-by-
case basis as it relates directly to the definition and meaning of a one-unit change
in the independent variable. In the following sections of this chapter we consider
the interpretation of the coefficients for a univariable logistic regression model for
each of the possible measurement scales of the independent variable. We discuss
interpretation of the coefficients from multivariable models and the probabilities
from a fitted logistic model. We also compare the results of a logistic regression
analysis to a stratified contingency table analysis that is common in epidemiological
research. We conclude the chapter with a discussion of the construction, use and
interpretation of the propensity score.

3.2 DICHOTOMOUS INDEPENDENT VARIABLE

We begin by discussing the interpretation of logistic regression coefficients in the
situation where the independent variable is nominal scaled and dichotomous (i.e.,
measured at two levels). This case provides the conceptual foundation for all the
other situations.

We assume that the independent variable, x, is coded as either 0 or 1. The
difference in the logit for a subject with x = 1 and x = 0 is

g(1) − g(0) = (β0 + β1 × 1) − (β0 + β1 × 0) = (β0 + β1) − (β0) = β1.

The algebra shown in this equation is rather straightforward. The rationale for
presenting it in this level of detail is to emphasize that four steps are required to
obtain the correct expression of the coefficient(s) and hence, the correct interpre-
tation of the coefficient(s). In some settings, like the current one, these steps are
quite straightforward, but in the examples in Section 3.3 they are not so obvious.
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The first three of the four steps are: (1) define the two values of the covariate
to be compared (e.g., x = 1 and x = 0); (2) substitute these two values into the
equation for the logit [e.g., g(1) and g(0)], and (3) calculate the difference in the
two equations [e.g., g(1) − g(0)]. As shown, for a dichotomous covariate coded
0 and 1 the result at the end of step 3 is equal to β1. Thus, the slope coefficient,
or logit difference, is the difference between the log of the odds when x = 1 and
the log of the odds when x = 0. The practical problem is that change on the scale
of the log-odds is hard to explain and it may not be especially meaningful to a
subject-matter audience. In order to provide a more meaningful interpretation we
need to introduce the odds ratio as a measure of association.

The possible values of the logistic probabilities from a model containing a
single dichotomous covariate coded 0 and 1 are displayed in the 2 × 2 table,
shown in Table 3.1. The odds of the outcome being present among individuals
with x = 1 is π(1)/[1 − π(1)]. Similarly, the odds of the outcome being present
among individuals with x = 0 is π(0)/[1 − π(0)]. The odds ratio, denoted OR, is
the ratio of the odds for x = 1 to the odds for x = 0, and is given by the equation

OR =
π(1)

[1 − π(1)]
π(0)

[1 − π(0)]

. (3.1)

Substituting the expressions for the logistic regression model probabilities in
Table 3.1 into equation (3.1) we obtain

OR =

(
eβ0+β1

1 + eβ0+β1

)
(

1

1 + eβ0+β1

)
(

eβ0

1 + eβ0

)
(

1

1 + eβ0

)

= eβ0+β1

eβ0

= e(β0+β1)−β0

= eβ1 .

Hence, for a logistic regression model with a dichotomous independent variable
coded 0 and 1, the relationship between the odds ratio and the regression coeffi-
cient is

OR = eβ1 . (3.2)

This illustrates the fourth step in interpreting the effect of a covariate, namely
exponentiate the logit difference computed in step 3 to obtain an odds ratio.
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Table 3.1 Values of the Logistic Regression Model when the Independent Variable Is
Dichotomous

Independent Variable (x)

Outcome Variable (y) x = 1 x = 0

y = 1 π(1) = eβ0+β1

1 + eβ0+β1
π(0) = eβ0

1 + eβ0

y = 0 1 − π(1) = 1

1 + eβ0+β1
1 − π(0) = 1

1 + eβ0

Total 1.0 1.0

The odds ratio is widely used as a measure of association as it approximates how
much more likely or unlikely (in terms of odds) it is for the outcome to be present
among those subjects with x = 1 as compared to those subjects with x = 0. For
example, if the outcome, Y, denotes the presence or absence of lung cancer and if
X denotes whether the subject is a smoker, then an OR = 2 is interpreted to mean
that the odds of lung cancer among smokers is two times greater than the odds of
lung cancer among the nonsmokers in this study population. As another example,
suppose that the outcome, Y, is the presence or absence of heart disease and X
denotes whether or not the person engages in regular strenuous physical exercise.
If the odds ratio is OR = 0.5, then the odds of heart disease among those subjects
who exercise is one-half the odds of heart disease for those subjects who do not
exercise in the study population. This simple relationship between the coefficient
and the odds ratio is the fundamental reason logistic regression has proven to be
such a powerful analytic research tool.

In certain settings, the odds ratio can approximate another measure of association
called the relative risk, which is the ratio of the two outcome probabilities, RR =
π(1)/π(0). It follows from equation (3.1) that the odds ratio approximates the
relative risk if [1 − π(0)]/[1 − π(1)] ≈ 1. This holds when π(x) is small for both
x = 0 and x = 1, often referred to in medical/epidemiological research as the rare
disease assumption.

Readers who have not had experience with the odds ratio as a measure of
association would be advised to spend some time reading about this measure in one
of the following texts: Breslow and Day (1980), Rothman et al. (2008), Aschengrau
and Seage (2008), Lilienfeld and Stolley (1994), and Oleckno (2008).

An example from the GLOW study described in Section 1.6.3 and used in
Chapter 2 may help clarify how the odds ratio is estimated from the results of a
fitted logistic regression model and from a 2 × 2 contingency table. To review, the
outcome variable is having a fracture (FRACTURE) in the first year of follow-up.
Here we use having had a fracture between the age of 45 and enrollment in the
study (PRIORFRAC) as the dichotomous independent variable. The result of cross-
classifying fracture during follow-up by prior fracture is presented in Table 3.2.

The frequencies in Table 3.2 tell us that there were 52 subjects with values
(x = 1, y = 1), 73 with (x = 0, y = 1), 74 with (x = 1, y = 0), and 301 with
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Table 3.2 Cross-Classification of Prior Fracture and
Fracture During Follow-Up in the GLOW Study, n = 500

Fracture During Prior Fracture (x)

Follow-Up (y) Yes (1) No (0) Total

Present (1) 52 73 125
Absent (0) 74 301 375

Total 126 374 500

Table 3.3 Results of Fitting the Logistic Regression Model of Fracture
(FRACTURE) on Prior Fracture (PRIORFRAC) Using the Data in Table 3.2

Variable Coeff. Std. Err. z p 95% CI

PRIORFRAC 1.064 0.2231 4.77 <0.001 0.627, 1.501
Constant −1.417 0.1305 −10.86 <0.001 −1.672, –1.161

Log-likelihood = −270.03397.

(x = 0, y = 0). The results of fitting a logistic regression model containing the
dichotomous covariate PRIORFRAC are shown in Table 3.3.

The estimate of the odds ratio using equation (3.2) and the estimated coeffi-
cient for PRIORFRAC in Table 3.3 is ÔR = e1.064 = 2.9. Readers who have had
some previous experience with the odds ratio undoubtedly wonder why we used a
logistic regression package to estimate the odds ratio, when we easily could have
computed it directly as the cross-product ratio from the frequencies in Table 3.2,
namely,

ÔR = 52 × 301

74 × 73
= 2.897.

The tremendous advantage of using logistic regression will surface when additional
independent variables are included in the logistic regression model.

Thus, we see that the slope coefficient from the fitted logistic regression model
is β̂1 = ln[(52 × 301)/(74 × 73)] = 1.0638. This emphasizes the fact that logistic
regression is, even in the simplest possible case, a regression analysis. The fact
that the data may be presented in terms of a contingency table just aids in the
interpretation of the estimated coefficients as the log of the odds ratio.

Along with the point estimate of a parameter, it is always a good idea to use a
confidence interval estimate to provide additional information about the parameter
value. In the case of the odds ratio from a 2 × 2 table (corresponding to a fitted
logistic regression model with a single dichotomous covariate) there is an extensive
literature focused on the problem of confidence interval estimation for the odds ratio
when the sample size is small. The reader who wishes to learn more about the
available exact and approximate methods should see the papers by Fleiss (1979),
and Gart and Thomas (1972). Breslow and Day (1980), Kleinbaum et al. (1982),
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and Rothman et al. (2008) discuss inference with small samples. We discuss the
small sample setting in Section 10.3.

As we noted earlier, the odds ratio is usually the parameter of interest derived
from a fitted logistic regression due to its ease of interpretation. However, its
estimator, ÔR, tends to have a distribution that is highly skewed to the right. This
is due to the fact that its range is between 0 and ∞, with the null value equaling 1.
In theory, for extremely large sample sizes, the distribution of ÔR would be normal.
Unfortunately, this sample size requirement typically exceeds that of most studies.
Hence, inferences are usually based on the sampling distribution of ln(ÔR) = β̂1,
which tends to follow a normal distribution for much smaller sample sizes. We
obtain a 100 × (1 − α)% confidence interval estimator for the odds ratio by first
calculating the endpoints of a confidence interval estimator for the log-odds ratio
(i.e., β1) and then exponentiating the endpoints of this interval. In general, the
endpoints are given by the expression

exp[β̂1 ± z1−α/2 × ŜE(β̂1)].

As an example, consider the estimation of the odds ratio for the dichotomized
variable PRIORFRAC. Using the results in Table 3.3 the point estimate is ÔR = 2.9
and the 95% confidence interval is

exp(1.064 ± 1.96 × 0.2231) = (1.87, 4.49).

This interval is typical of many confidence intervals for odds ratios when the point
estimate exceeds 1, in that it is skewed to the right from the point estimate. This
confidence interval suggests that the odds of a fracture during follow-up among
women with a prior fracture could be as little as 1.9 times or much as 4.5 times
the odds for women without a prior fracture, at the 95% level of confidence.

We discussed the profile likelihood confidence interval estimator for a logistic
regression coefficient in Section 1.4. The resulting profile likelihood confidence
interval for the odds ratio in this example is nearly identical to the Wald based
interval given earlier and thus is not presented. There is an exercise at the end of
the chapter where this is not the case.

Because of the importance of the odds ratio as a measure of association, many
software packages automatically provide point and confidence interval estimates
based on the exponentiation of each coefficient in a fitted logistic regression model.
The user must be aware that these automatically reported quantities provide esti-
mates of odds ratios of interest in only a few special cases (e.g., a dichotomous
variable coded 0 and 1 that is not involved in any interactions with other variables),
a point we return to in the next section. One major goal of this chapter is to show,
using the four steps noted earlier, that one may obtain point and confidence interval
estimates of odds ratios, regardless of the complexity of the fitted model.

Before concluding the dichotomous variable case, it is important to consider
the effect that coding has on computing the estimator of odds ratios. In the pre-
vious discussion we noted that the estimator is ÔR = exp(β̂1) and that this is
correct as long as one codes the independent variable as 0 or 1 (or any two values
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that differ by one). Any other coding requires that one calculate the value of the
logit difference for the specific coding used and then exponentiate this difference,
essentially following the four steps, not just blindly exponentiating the estimator
of the coefficient.

We illustrate the setting of alternate coding in detail, as it helps emphasize the
four steps in the general method for computing estimators of odds ratios from a
fitted logistic regression model. Suppose that our dichotomous covariate is coded
using values a and b and that, at Step 1, we would like to estimate the odds
ratio for the covariate at level a versus b. Next, at Step 2, we substitute the two
values of the covariate into the equation for the logit to obtain ĝ(a) = β̂0 + β̂1a

and ĝ(b) = β̂0 + β̂1b. For Step 3, we compute the difference in the two equations
and algebraically simplify to obtain the expression for the log-odds as

ln[ÔR(a, b)] = ĝ(x = a) − ĝ(x = b)

= (β̂0 + β̂1 × a) − (β̂0 + β̂1 × b)

= β̂1 × (a − b). (3.3)

At Step 4 we exponentiate the equation obtained in Step 3, shown in this case in
equation (3.3), to obtain our estimator of the odds ratio, namely

ÔR(a, b) = exp[β̂1 × (a − b)]. (3.4)

In equations (3.3) and (3.4) the notation ÔR(a, b) denotes the specific odds ratio

ÔR(a, b) =
π̂(x = a)

[1 − π̂(x = a)]
π̂(x = b)

[1 − π̂(x = b)]

. (3.5)

In the usual case when a = 1 and b = 0 we suppress a and b and simply use ÔR.
Some software packages offer a choice of methods for coding design variables.

The “0–1 coding” is the one most often used and is referred to as reference cell
coding. The reference cell method typically assigns the value of 0 to the lower
code for x and 1 to the higher code. For example, if gender was coded as 1 = male
and 2 = female, then the resulting design variable under this method, D, would be
coded 0 = male and 1 = female. Exponentiation of the estimated coefficient for D
would estimate the odds ratio of female relative to male. This same result would
have been obtained had sex been coded originally as 0 = male and 1 = female, and
then treating the variable gender as if it were interval scaled.

Another coding method is frequently referred to as deviation from means coding.
This method assigns the value of −1 to the lower code, and a value of 1 to the
higher code. The coding for the variable gender discussed earlier is shown in
Table 3.4. Suppose we wish to estimate the odds ratio of female versus male when
deviation from means coding is used. We do this by using the results of the general
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Table 3.4 Illustration of the Coding of the Design
Variable Using the Deviation from Means Method

Gender (Code) Design Variable (D)

Male (1) −1
Female (2) 1

four-step method that results in equations (3.3) and (3.4),

ln[ÔR(female,male)] = ĝ(female) − ĝ(male)

= ĝ(D = 1) − ĝ(D = −1)

= [β̂0 + β̂1 × (D = 1)] − [β̂0 + β̂1 × (D = −1)]

= 2β̂1,

and the estimated odds ratio is ÔR(female,male) = exp(2β̂1). Thus, if we had
exponentiated the coefficient from the computer output we would have obtained
the wrong estimate of the odds ratio. This points out quite clearly that we must
pay close attention to the method used to code the design variables.

The method of coding also influences the calculation of the endpoints of the con-
fidence interval. For the example using deviation from means coding, the estimated
standard error needed for confidence interval estimation is ŜE(2β̂1) = 2ŜE(β̂1).
Thus the endpoints of the confidence interval are

exp[2β̂1 ± z1−α/22ŜE(β̂1)].

In general, the endpoints of the confidence interval for the odds ratio given in
equation (3.5) are

exp[β̂1(a − b) ± z1−α/2|a − b| × ŜE(β̂1)],

where |a − b| is the absolute value of (a − b). (This is necessary because a might
be less than b.) As we have control of how we code our dichotomous variables,
we recommend that, when interest focuses on the odds ratio, they be coded as 0
or 1 for analysis purposes.

In summary, for a dichotomous variable the parameter of interest in most, if not
all, applied settings is the odds ratio. An estimate of this parameter may be obtained
from a fitted logistic regression model by exponentiating the estimated coefficient.
In a setting where the coding is not 0 or 1, the estimate may be found by simply
following the four steps described in this section. The relationship between the
logistic regression coefficient and the odds ratio provides the foundation for our
interpretation of all logistic regression results.

3.3 POLYCHOTOMOUS INDEPENDENT VARIABLE

Suppose that instead of two categories the independent variable has k > 2 distinct
values. For example, we may have variables that denote the county of residence
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within a state, the clinic used for primary health care within a city, or race. Each of
these variables has a fixed number of discrete values and the scale of measurement
is nominal. We saw in Chapter 2 that it is inappropriate to model a nominal scale
variable as if it were an interval scale variable. Therefore, we must form a set of
design variables to represent the categories of the variable. In this section we present
methods for creating design variables for polychotomous independent variables.
The choice of a particular method depends to some extent on the goals of the
analysis and the stage of model development.

We begin by extending the method shown in Section 3.2 for a dichotomous
variable. In the GLOW study the covariate self-reported risk is coded at three levels
(less, same, and more). The cross tabulation of it with fracture during follow-up
(FRACTURE) is shown in Table 3.5. In addition we show the estimated odds ratio,
its 95% confidence interval and log-odds ratio for same and more versus less risk.
The extension to a situation where the variable has more than three levels is not
conceptually different so all the examples in this section use k = 3.

At the bottom of Table 3.5, the odds ratio is given for the groups “same risk”
and “more risk,” as compared to the reference group, “less risk.” For example,
for the “same risk” group the estimated odds ratio is ÔR(Same, Less) = (48 ×
139)/(28 × 138) = 1.73. The log of each odds ratio is given in the last row of
Table 3.5. The example in this table is typical of what is found in the literature
presenting univariable results for a nominal scaled variable. Note that the reference
group is indicated by a value of 1 for the odds ratio. These same estimates and
confidence intervals for the odds ratio are also easily obtained from a logistic
regression program with an appropriate choice of design variables. The method
for specifying the design variables involves setting all of them equal to 0 for the
reference group, and then setting a single design variable equal to 1 for each of the
other groups. This is illustrated in Table 3.6. As noted in Section 3.2 this method
is usually referred to as reference cell coding and is the default method in many
statistical software packages. However, not all packages use the lowest code as the
referent group. In particular, the SPSS [SPSS for Windows, Release 20.0 (2012)]
package’s default coding is to use the highest code as the referent value.

Table 3.5 Cross-Classification of Fracture During Follow-Up
(FRACTURE) by Self-Reported Rate of Risk (RATERISK) from the
GLOW Study, n = 500

RATERISK

FRACTURE Less Same More Total

Yes 28 48 49 125
No 139 138 98 375

Total 167 186 147 500

Odds Ratio 1 1.73 2.48
95% CI (1.02, 2.91) (1.46, 4.22)
ln(ÔR) 0.0 0.55 0.91
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Table 3.6 Specification of the Design Variables for RATERISK
Using Reference Cell Coding with Less as the Reference Group

RATERISK (Code) RATERISK2 RATERISK3

Less (1) 0 0
Same (2) 1 0
More (3) 0 1

Table 3.7 Results of Fitting the Logistic Regression Model to the Data in Table 3.5
Using the Design Variables in Table 3.6

Variable Coeff. Std. Err. z p 95% CI

RATERISK2 0.546 0.2664 2.05 0.040 0.024, 1.068
RATERISK3 0.909 0.2711 3.35 0.001 0.378, 1.441
Constant −1.602 0.2071 −7.74 <0.001 −2.008, –1.196

Log-likelihood = −275.28917

Use of any logistic regression program with design variables coded as shown in
Table 3.6 yields the estimated logistic regression coefficients given in Table 3.7.

When we compare the estimated coefficients in Table 3.7 to the log-odds ratios
in Table 3.5 we find that

ln[ÔR(Same, Less)] = β̂1 = 0.546,

and
ln[ÔR(More, Less)] = β̂2 = 0.909.

Did this happen by chance? We can check this by using the first three of the
four-step procedure, described in Section 3.2, as follows:

Step 1: We want to compare levels Same to Less;

Step 2: The logit for Same is

ĝ(Same) = β̂0 + β̂1 × (RATERISK2 = 1) + β̂2 × (RATERISK3 = 0),

and the logit for Less is

ĝ(Less) = β̂0 + β̂1 × (RATERISK2 = 0) + β̂2 × (RATERISK3 = 0);

Step 3: The logit difference is

ln[ÔR(Same, Less)] = ĝ(Same) − ĝ(Less)

= [β̂0 + β̂1 × 1 + β̂2 × 0] − [β̂0 + β̂1 × 0 + β̂2 × 0]

= β̂1.
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Similar calculations demonstrate that the estimated coefficient for RATERISK3
from the logistic regression in Table 3.7 is equal to the log-odds ratio computed
from the data in Table 3.5.

A comment about the estimated standard errors may be helpful at this point. In
the univariable case the estimates of the standard errors found in the logistic regres-
sion output are identical to the estimates obtained using the cell frequencies from
the contingency table. For example, the estimated standard error of the estimated
coefficient for the design variable RATERISK2 is

ŜE(β̂1) =
[

1

48
+ 1

139
+ 1

28
+ 1

138

]0.5

= 0.2664.

Confidence limits for the odds ratios are obtained using the same approach used
in Section 3.2 for a dichotomous variable. We begin by computing the confidence
limits for the log-odds ratio (the logistic regression coefficient) and then exponen-
tiate these limits to obtain limits for the odds ratio. In general, the limits for a
100(1 − α)% confidence interval for the jth coefficient, βj , are of the form

β̂j ± z1−α/2 × ŜE(β̂j ).

These are shown in the right most column of Table 3.7. The corresponding limits
for the odds ratio, obtained by exponentiating these limits, are as follows:

exp[β̂j ± z1−α/2 × ŜE(β̂j )]. (3.6)

The confidence limits given in Table 3.5 in the row beneath the estimated odds
ratios are obtained using equation (3.6) with the estimated coefficients and standard
errors in Table 3.7 for j = 1, 2 with α = 0.05.

Reference cell coding is the most commonly employed coding method appearing
in the literature. The primary reason for the widespread use of this method is the
interest in estimating the odds of an “exposed” group relative to that of a “control”
or “unexposed” group.

As discussed in Section 3.2 a second method of coding design variables is called
deviation from means coding. This coding expresses an effect as the deviation of
the “group mean” from the “overall mean.” In the case of logistic regression, the
“group mean” is the logit for the group and the “overall mean” is the average
logit over all groups. This method of coding is obtained by setting the value of
all the design variables equal to −1 for one of the categories, and then using the
0, 1 coding for the remainder of the categories. Use of the deviation from means
coding for RATERISK shown in Table 3.8 yields the estimated logistic regression
coefficients in Table 3.9.

In order to interpret the estimated coefficients in Table 3.9 we need to refer to
Table 3.5 and calculate the logit for each of the three categories of RATERISK.
These are:

ĝ1 = ln

⎛
⎜⎝

28

167
139

167

⎞
⎟⎠ = ln

(
28

139

)
= −1.602,
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Table 3.8 Specification of the Design Variables for RATERISK Using
Deviation from Means Coding

Design Variables

Rate Risk (Code) RATERISK2D RATERISK3D

Less (1) −1 −1
Same (2) 1 0
More (3) 0 1

Table 3.9 Results of Fitting the Logistic Regression Model to the Data in Table 3.5
Using the Design Variables in Table 3.8

Variable Coeff. Std. Err. z p 95% CI

RATERISK2D 0.061 0.1437 0.43 0.671 −0.221, 0.343
RATERISK3D 0.424 0.1466 2.89 0.004 0.137, 0.711
Constant −1.117 0.1062 −10.51 <0.001 −1.325, –0.909

Log-likelihood = −275.28917

ĝ2 = ln

⎛
⎜⎝

48

186
138

186

⎞
⎟⎠ = ln

(
48

138

)
= −1.056,

ĝ3 = ln

⎛
⎜⎝

49

147
98

147

⎞
⎟⎠ = ln

(
49

98

)
= −1.056,

and the average of these three logits

g =
3∑

i=1

ĝi

3
= −1.117.

The estimated coefficient for design variable RATERISK2D in Table 3.9 is ĝ2 −
g = (−1.056) − (−1.117) = 0.061 and for RATERISK3D it is ĝ3 − g =
(−0.693) − (−1.117) = 0.424. The general expression for the estimated
coefficient for the jth design variable using deviation from means coding is
ĝj − g.

The interpretation of the estimated coefficients from deviation from means cod-
ing is not as easy or clear as when reference cell coding is used. Exponentiation
of the estimated coefficients yields the ratio of the odds for the particular group to
the geometric mean of the odds. Specifically, for RATERISK2D in Table 3.9 we
have

exp(0.061) = exp(ĝ2 − g)
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= exp(ĝ2)

exp
(∑

ĝj /3
)

= (48/138)

[(28/139) × (49/138) × (49/98)]0.333

= 1.06.

This number, 1.06, is not a true odds ratio because the quantities in the numerator
and denominator do not represent the odds for two distinct categories. The expo-
nentiation of the estimated coefficient expresses the odds relative to the geometric
mean odds. The interpretation of this value depends on whether the geometric mean
odds is at all meaningful in the context of the study.

The estimated coefficients obtained using deviation from means coding can be
used to estimate the odds ratio for one category relative to a reference category.
The equation for the estimate is more complicated than the one obtained using the
reference cell coding. However, it provides an excellent example of how application
of the four-step method can always yield the odds ratio of interest.

Step 1: Suppose we want to estimate the odds ratio of RATERISK = 2 (Same)
versus RATERISK = 1 (Less).

Step 2: Using the coding for design variables given in Table 3.8 the logit at
RATERISK = 2 is

ĝ(RATERISK = 2) = β̂0 + β̂1 × (RATERISK2D = 1)

+ β̂2 × (RATERISK3D = 0),

and the logit at RATERISK = 1 is

ĝ(RATERISK=1) = β̂0 + β̂1 × (RATERISK2D = −1)

+ β̂2 × (RATERISK3D = −1).

Step 3: The difference between the two logit functions is

ĝ(RATERISK = 2) − ĝ(RATERISK = 1) =
[β̂0 + β̂1 × (RATERISK2D = 1) + β̂2 × (RATERISK3D = 0)]

− [β̂0 + β̂1 × (RATERISK2D = −1) + β̂2 × (RATERISK3D = −1)]

= 2β̂1 + β̂2. (3.7)

Step 4: The estimator of the odds ratio is obtained as the exponentiation of the
logit difference calculated in Step 3 and is

ÔR(Same, Less) = e2β̂1+β̂2 .
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To obtain a confidence interval we must estimate the variance of the logit dif-
ference in equation (3.7). In this example, the estimator is

V̂ar[ĝ(RATERISK = 2) − ĝ(RATERISK = 1)]

= 4 × V̂ar(β̂1) + V̂ar(β̂2) + 4 × Ĉov(β̂1, β̂2). (3.8)

Values for each of the estimators in equation (3.8) may be obtained from the
output from logistic regression software. Confidence intervals for the odds ratio
are obtained by exponentiating the endpoints of the confidence limits for the logit
difference in equation (3.7). Evaluation of equation (3.7) for the current example
gives

ĝ(RATERISK = 2) − ĝ(RATERISK = 1) = 2 × 0.061 + 0.424

= 0.546.

The estimate of the variance is obtained by evaluating equation (3.8), which, for
the current example, yields

V̂ar[ĝ(RATERISK = 2) − ĝ(RATERISK = 1)]

= 4 × 0.02065 + 0.02149 − 4 × 0.00828 = 0.07097,

and the estimated standard error is

ŜE[ĝ(RATERISK = 2) − ĝ(RATERISK = 1)] = 0.2664.

We note that the values of the estimated logit difference (i.e., the log-odds
ratio), 0.546, and the estimated standard error, 0.2664, are identical to the values
of the estimated coefficient and standard error for RATERISK2D in Table 3.7.
This is expected, as the design variables used to obtain the estimated coefficients
in Table 3.7 were formulated specifically to yield the log-odds ratio of Same
versus Less.

It should be apparent that, if the objective is to obtain odds ratios, use of devia-
tion from means coding for design variables is computationally much more complex
than reference cell coding. However, if the objective is to flag (through the Wald
tests) which of the subgroups differ from the average, the deviation from means
strategy can be extremely effective.

In summary, we have shown that discrete nominal scale variables are included
properly into the analysis only when they have been recoded into design variables.
The particular choice of design variables depends on the application, though the
reference cell coding is the easiest to interpret, has a direct relationship to the odds
ratio, and thus is the one used in the remainder of this text.

3.4 CONTINUOUS INDEPENDENT VARIABLE

When a logistic regression model contains a continuous independent variable, inter-
pretation of the estimated coefficient depends on how it is entered into the model
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and the particular units of the variable. For purposes of developing the method
to interpret the coefficient for a continuous variable, we assume that the logit is
linear in the variable. We note that this linearity assumption is key and methods
for examining this assumption are presented in Chapter 4.

Under the assumption that the logit is linear in the continuous covariate, x,
the equation for the logit is g(x) = β0 + β1x. Application of the four steps to
obtain the estimator of the odds ratio yields the following: (1) suppose that we are
interested in the odds ratio for a one-unit increment in the covariate, i.e., x + 1
versus x; (2) it follows from the equation for the logit at x that the logit at x + 1
is g(x + 1) = β0 + β1(x + 1); (3) hence the estimator of the logit difference is

ĝ(x + 1) − ĝ(x) = β̂1;

and (4) the estimator of odds ratio is ÔR = exp(β̂1). This estimator has exactly
the same form as the estimator in equation (3.2) for a dichotomous covariate.
The problem is that a value of “1” is not likely to be clinically interesting for a
continuous covariate. For example, a 1-year increase in age or a 1-pound increase in
body weight for adults is probably too small to be considered an important change.
A change of 10 years or 10 pounds might be more interesting. On the other hand,
if the range of a covariate is only from 0 to 1, then a change of 1 is too large and
a change of 0.01 or 0.05 is more realistic. Hence, to provide a useful interpretation
for continuous covariates we need to develop a method for point and interval
estimation of the odds ratio for an arbitrary change of “c” units in the covariate.

Following the first three steps, we find that the estimator of the log-odds ratio for
a change of c units in x is ĝ(x + c) − ĝ(x) = cβ̂1 and (5) the estimator odds ratio
is ÔR(x + c, x) = exp(cβ̂1), more concisely denoted as ÔR(c). The estimator of
the standard error of cβ̂1 is ŜE(cβ̂1) = |c|ŜE(β̂1), where “|c|” denotes the absolute
value of c. We need to use the absolute value as c could be negative. Hence, the
endpoints of the 100(1 − α)% confidence interval estimate are

exp[cβ̂1 ± z1−α/2|c|ŜE(β̂1)].

As both the point estimate and endpoints of the confidence interval depend on
the choice of c, the particular value of c should be clearly specified in all tables
and calculations. The rather arbitrary nature of the choice of c may be troublesome
to some. For example, why use a change of 10 years when 5 or 15 or even 20
years may be equally good? We, of course, could use any reasonable value; but
the goal must be kept in mind: to provide the reader of your analysis with a clear
indication of how the odds of the outcome change with the variable in question.
For most continuous covariates changes in multiples of 2, 5, or 10 may be most
meaningful and easily understood.

As an example, we show the results in Table 1.3 of a logistic regression of
AGE on CHD status using the data in Table 1.1. The estimated logit is ĝ(AGE) =
−5.310 + 0.111 × AGE. The estimated odds ratio for an increase of 10 years in
age is ÔR(10) = exp(10 × 0.111) = 3.03. Thus, for every increase of 10 years
in age, the odds of CHD being present is estimated to increase 3.03 times. The
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validity of this statement is questionable, because the increase in the odds of CHD
for a 40-year-old compared to a 30-year-old may be quite different from the odds
for a 60-year-old compared to a 50-year-old. This is the unavoidable dilemma
when a continuous covariate is modeled linearly in the logit and motivates the
importance of examining the linearity assumption for continuous covariates. As
already noted, we consider this in detail in Chapter 4. The endpoints of a 95%
confidence interval for this odds ratio are

exp(10 × 0.111 ± 1.96 × 10 × 0.024) = (1.90, 4.86).

In summary, the interpretation of the estimated odds ratio for a continuous
variable is similar to that of nominal scale variables. The main difference is that a
meaningful change must be defined for the continuous variable.

3.5 MULTIVARIABLE MODELS

In the previous sections in this chapter we discussed the interpretation of an esti-
mated logistic regression coefficient in the case when there is a single variable in
the fitted model. Fitting a series of univariable models, although useful for a pre-
liminary analysis, rarely provides an adequate or complete analysis of the data in
a study because the independent variables are usually associated with one another
and may have different distributions within levels of the outcome variable. Thus,
one generally uses a multivariable analysis for a more comprehensive modeling of
the data. One goal of such an analysis is to statistically adjust the estimated effect
of each variable in the model for differences in the distributions of and associa-
tions among the other independent variables in the model. Applying this concept
to a multivariable logistic regression model, we may surmise that each estimated
coefficient provides an estimate of the log-odds adjusting for the other variables in
the model.

Another important aspect of multivariable modeling is to assess to what extent, if
at all, the estimate of the log-odds of one independent variable changes, depending
on the value of another independent variable. When the odds ratio for one variable
is not constant over the levels of another variable, the two variables are said to have
a statistical interaction. In some applied disciplines statistical interaction is referred
to as effect modification. This terminology is used to describe the fact that the log-
odds of one variable is modified or changed by values of the other variable. In this
section we consider, in considerable detail, the concepts of statistical adjustment and
interaction and illustrate estimation of odds ratios under each case with examples.

A full understanding of estimating the log-odds or coefficients from a multi-
variable logistic regression model requires that we have a clear understanding of
what is actually meant by the term adjusting, statistically, for other variables in
the model. In some fields variables that are used to adjust the effects of others are
called confounders and adjustment for them is called controlling for confounding.
We begin by examining statistical adjustment in the context of the usual linear
regression model, and then extend the concept to the logistic regression model.
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To begin, we consider a multivariable model that contains two independent
variables: one dichotomous and one continuous, but primary interest is focused on
estimating the effect of the dichotomous variable on the outcome variable. This
situation is frequently encountered in epidemiological and medical research when
an exposure to a risk factor is recorded as being either present or absent, and we
wish to adjust for a continuous variable such as age. The analogous situation in
linear regression is called analysis of covariance.

Suppose we wish to compare the mean weight of two groups of boys. It is
known that weight is associated with many characteristics, one of which is age.
Assume that on all characteristics, except age, the two groups have nearly identical
distributions. If the age distribution is also the same for the two groups, then a
univariable analysis of group comparing the mean weight of the two groups would
suffice. This analysis would provide us with a correct estimate of the difference
in the mean weight of the two groups. However, if one group was, on average,
much younger than the other group, then a comparison of the two groups would
be meaningless, because a portion of any difference observed would be due to the
differences in mean age. It would not be possible to determine the effect of group
without first eliminating the discrepancy in the distribution of age in the two groups.

This situation is described graphically in Figure 3.1. In the figure it is assumed
that the true relationship between age and mean weight is linear, with the same
significant nonzero slope in each group. Both of these assumptions would usually
be tested in an analysis of covariance before making any inferences about group
differences. We defer a discussion of methods to examine these assumptions until
Chapter 4, as they are an integral part of modeling with logistic regression. Here, we
proceed as if these assumptions have been checked and are supported by the data.
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w = β0 + β1 + β2a

w = β0 + β2a

Figure 3.1 Figure describing the model for mean weight of two groups of boys as a function of age.
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The statistical model that describes the situation in Figure 3.1 states that the value
of mean weight, w, may be expressed as w = β0 + β1x + β2a, where x = 0 for
group 1 and x = 1 for group 2 and “a” denotes age. In this model the parameter
β1 represents the true difference in weight between the two groups, as it is the
vertical distance between the two lines at any age. The coefficient β2 is the change
in weight per year of age. Suppose, as shown in Figure 3.1, that the mean age of
group 1 is a1 and the mean age of group 2 is a2. Comparison of the mean weight
of group 1 to the mean weight of group 2 amounts to a comparison of w1 to w2.
In terms of the model this difference is

(w2 − w1) = (β0 + β1 + β2a1) − (β0 + β2a0)

= β1 + β2(a1 − a0).

This comparison involves not only the true difference between the groups, β1, but
a component, β2(a2 − a1), which reflects the difference between the mean ages of
the groups and the association of age and weight.

The process of statistically adjusting for age involves comparing the two groups
at some common value of age. The value usually used is the overall mean of the two
groups, which, for the example, is denoted by a in Figure 3.1. Hence, comparing
group 2 to group 1 at the mean age is, in terms of the model, a comparison of w4
to w3. This difference is

(w4 − w3) = (β0 + β1 + β2a) − (β0 + β2a)

= β1 + β2(a − a)

= β1,

which is the true difference between the mean weight of two groups. In theory any
common value of age could be used, as it would yield the same difference, β1. The
choice of the overall mean makes sense for two reasons: it is clinically reasonable
and lies within the range where we believe the association between age and weight
is linear and constant within each group.

Consider the same situation shown in Figure 3.1, but instead of weight being
the outcome variable, assume it is a dichotomous variable and that the vertical axis
now denotes the logit or log-odds of the outcome (i.e., in the figure w denotes
the log-odds). That is, the logit of the outcome is given by the equation g(x, a) =
β0 + β1x + β2a. Under this logit model the univariable comparison of the log-odds
of the two groups is approximately (w2 − w1) = β1 + β2(a2 − a1). This would
incorrectly estimate the effect of group on the log-odds due to the difference in
the distribution of age. To account or adjust for this difference, we include age in
the model and calculate the logit difference at a common value of age, such as the
combined mean, a. This logit difference is, using the figure,

(w4 − w3) = g(x = 1, a = a) − g(x = 0, a = a)

= (β0 + β1 + β2a) − (β0 + β2a)

= β1.
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The natural question to ask is: What conditions are required for the unadjusted
difference (w2 − w1) to be the same as the adjusted difference (w4 − w3)? Stated
in terms of the model, the question is, under what conditions is β1 + β2(a2 − a1) =
β1? This is true if age is not associated with the outcome, β2 = 0, or if the mean
age of the two groups is the same, (a2 − a1) = 0. Conversely, the unadjusted and
adjusted logit differences are not the same if β2(a2 − a1) �= 0, which only happens
when both β2 and (a2 − a1) are nonzero.

As the amount of statistical adjustment or control for confounding is a function
of two quantities β2 and (a2 − a1) we cannot determine whether x is a confounder
simply by using a significance test of β2. Also, in an applied setting it is impractical
to calculate (a2 − a1) or its equivalent for every possible pair of variables. Instead,
we use some approximations. First, we fit a model containing only d (i.e., the model
excludes the adjustment covariate, a). Denote the estimate of the coefficient of d

from this model as θ̂1. Next, we fit a model containing d along with the adjustment
covariate, a. Denote the estimates of the coefficients from this model as β̂1 and
β̂2 respectively. Under the model the estimate θ̂1 should be approximately equal
to β̂1 + β̂2(a2 − a1). Hence the difference between the unadjusted and adjusted
estimates of the effect of d, (θ̂1 − β̂1), should approximate the theoretical amount
of adjustment, β2(a2 − a1). As the amount of adjustment is more of a relative than
an absolute quantity, we scale it by dividing by β̂1 to obtain a measure we call
delta-beta-hat-percent, defined as

�β̂% = 100
(θ̂1 − β̂1)

β̂1

. (3.9)

Thus, the amount of adjustment is expressed as a percentage of the adjusted log-
odds ratio. Some colleagues we have worked with scale differently, preferring to
divide by θ̂1. The disadvantage of this scaling is that both numerator and denom-
inator now contain the amount of adjustment. The rule of thumb that we use in
practice to conclude that a covariate is needed in the model to adjust the effect of
another covariate is �β̂% > 20. Some of our colleagues prefer to use 10% whereas
others use 25%. What is important is that one calculate �β̂% and make some sort
of assessment as to whether it is large enough to make a practical difference in
the estimate of the log-odds ratio. Examples of the calculation and interpretation
of �β̂% may be found at the end of this section and in Chapter 4.

Statistical adjustment when the variables are all dichotomous, polychotomous,
continuous, or a mixture of these is identical to that just described for the case
of one dichotomous and one continuous variable. The advantage of the setting
we described is that it lends itself nicely to the graphical description shown in
Figure 3.1.

One point must be kept clearly in mind when interpreting statistically adjusted
log-odds ratios and odds ratios. The effectiveness of the adjustment is entirely
dependent on the assumptions of linearity in each covariate and constant slopes.
Departures from either or both of these assumptions may render the adjustment
useless. One commonly occurring departure is the setting where there is a statistical
interaction.
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Figure 3.2 Plot of the logit under models showing the presence and absence of statistical interaction.

The simplest and most commonly used model for including a statistical inter-
action is one in which the logit is also linear in the second group, but with a
different slope. Alternative models can be formulated that allow for a nonlinear
relationship within each group. Regardless, a statistical interaction is incorporated
by the inclusion of product terms of the general form “d × x.”

In order to more easily explain statistical interaction we plot three different
logit functions in Figure 3.2, where 4 has been added to make the plotting more
convenient. Suppose the plotted functions come from a setting where the outcome
variable is the presence or absence of CHD, the risk factor is GENDER, and the
covariate is AGE. Suppose that the line labeled l1 corresponds to the logit for
females as a function of age and l2 represents the logit for males. These two lines
are parallel to each other, indicating that the relationship between AGE and CHD
is the same for males and females. In this situation there is no interaction and the
log-odds ratio for GENDER (male versus female), controlling for AGE, is given
by the difference between line l2 and l1, l2 − l1. This difference is equal to the
vertical distance between the two lines, which, because the lines are parallel, is the
same for all ages.

Suppose instead that the logit for males is the line l3. This line is steeper than
the line l1, for females, indicating that the relationship between AGE and CHD for
males is different from that of females. When this occurs we say that there is an
interaction between AGE and GENDER. The estimate of the log-odds ratios for
GENDER (males versus females) controlling for age is still given by the vertical
distance between the lines, l3 − l1, but this difference now depends on the age
at which the comparison is made. Thus, we cannot estimate the odds ratio for
GENDER without first specifying the AGE at which the comparison is being made.
In other words, age modifies the effect of gender, so in this terminology age is called
an effect modifier.
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Suppose we continue to consider models with the pair of independent variables
d (dichotomous) and x (continuous). The role of x with respect to the effect of d
in the model can be one of three possibilities.

1. There is no statistical adjustment or interaction. The covariate, x, is not a
confounder or an effect modifier.

2. There is statistical adjustment but no statistical interaction. The covariate, x,
is a confounder but not an effect modifier.

3. There is statistical interaction. The covariate, x, is an effect modifier.

We present an example of each of the three possibilities using data from the
studies described in Section 1.6. In each example we fit three models: (i) a model
that contains only d; (ii) a model that contains d and x; and (iii) a model that
contains d, x and their statistical interaction, d × x. We use the results of the three
fitted models to decide which model is the best one to use in practice.

We begin with an example where there is neither statistical adjustment nor
statistical interaction. The data we use come from the GLOW study described in
Section 1.6.3. The outcome variable is having a fracture during the first year of
follow up (FRACTURE). For the dichotomous variable, we use variable history of
prior fracture (PRIORFRAC) and for the continuous covariate, we use height in
centimeters (HEIGHT). The results from the three fitted models are presented in
Table 3.10. In discussing the results from the examples we use significance levels
from the Wald statistics. In all cases the same conclusions would be reached had
we used likelihood ratio tests.

The Wald Statistic for the coefficient of PRIORFRAC in Model 1 is significant
with p < 0.001. When we add HEIGHT to the model the Wald statistics are sig-
nificant at the 1% level for both covariates. Note that there is little change in the

Table 3.10 Estimated Logistic Regression Coefficients, Standard Errors, Wald
Statistics, p-Values and 95% CIs from Three Models Showing No Statistical
Adjustment and No Statistical Interaction from the GLOW Study, n = 500

Model Variable Coeff. Std. Err. z p 95% CI

1 PRIORFRAC 1.064 0.2231 4.77 <0.001 0.627, 1.501
Constant −1.417 0.1305 −10.86 <0.001 −1.672, −1.161

2 PRIORFRAC 1.012 0.2254 4.49 <0.001 0.570, 1.454
HEIGHT −0.045 0.0174 −2.61 0.009 −0.079, −0.011
Constant 5.785 2.7980 2.07 0.039 0.301, 11.269

3 PRIORFRAC −3.055 5.7904 −0.53 0.598 −14.404, 8.294
HEIGHT −0.054 0.0219 −2.49 0.013 −0.097, −0.012
PRIORFRAC ×

HEIGHT
0.025 0.0361 0.70 0.482 −0.045, 0.096

Constant 7.361 3.5102 2.10 0.036 0.481, 14.241
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estimate of the coefficient for PRIORFRAC as

�β̂% = 100 × (1.064 − 1.012)

1.012

= 5.1,

indicating that inclusion of HEIGHT does not statistically adjust the coefficient
of PRIORFRAC. Thus we conclude that, in these data, height it is not a con-
founder of prior fracture. The fact that the coefficient for HEIGHT is signifi-
cant, β̂2 �= 0, implies that the mean HEIGHT for the two PRIORFRAC groups
must be similar. In fact they are with values of 161.7 and 161.2 cm. Under the
dichotomous–continuous covariate model we showed that the univariable model
coefficient should be approximately β̂1 + β̂2(x1 − x0). Evaluating this expression
we obtain a value of

1.08 = 1.012 − 0.045(160.2 − 161.7),

which is quite close to the value of the estimate from the univariable model of
1.064.

The statistical interaction of prior fracture (PRIORFRAC) and height (HEIGHT)
is added to Model 2 to obtain Model 3. The Wald statistic for the added product
term has p = 0.492, and thus is not significant. In these data height is not an effect
modifier of prior fracture. Hence, the choice is between Model 1 and Model 2.
Even though the estimate of the effect of prior fracture is basically the same for
the two models, we would choose Model 2 as height (HEIGHT) is not only statis-
tically significant in Model 2, but is an important clinical covariate as well. One
would estimate the odds ratio for prior fracture using the results from Model 2 and
follow the methods discussed in Section 3.2 for a dichotomous covariate coded
0 or 1.

In the next example we illustrate a setting where there is statistical adjustment
but no statistical interaction. The data come from the Myopia study described in
Section 1.6.6. The outcome variable is becoming myopic in the first 5 years of
follow-up (MYOPIC). We use gender (GENDER) as the dichotomous variable and
spherical equivalent refraction at enrollment (SPHEQ) as the continuous covariate.
The results of the three fitted models are presented in Table 3.11.

The Wald test for the coefficient of GENDER in Model 1 is not significant with
p = 0.127, which presents an interesting dilemma that occurs reasonably often in
practice. We know that gender can be an important covariate, but it is not significant
in the univariable model. Thus, under some model building methods it might not
be considered for a multivariable model. We address this situation explicitly in
Chapter 4 where we discuss purposeful selection of covariates. For this example,
suppose we proceed on to Model 2 where we add SPHEQ. The Wald test for
SPHEQ is significant with p < 0.001. We note that the value of the estimated
coefficient for GENDER has increased from 0.366 to 0.558. In addition, it is now
significant with a Wald statistic significance level of p = 0.050. The percentage
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Table 3.11 Estimated Logistic Regression Coefficients, Standard Errors, Wald
Statistics, p-Values and 95% CIs from Three Models Showing Statistical Adjustment
and No Statistical Interaction from the Myopia Study, n = 618

Model Variable Coeff. Std. Err. z p 95% CI

1 GENDER 0.366 0.2404 1.52 0.127 −0.105, 0.838
Constant −2.083 0.1792 −11.62 <0.001 −2.434, −1.732

2 GENDER 0.558 0.2851 1.96 0.050 −0.001, 1.117
SPHEQ −3.845 0.4171 −9.22 <0.001 −4.662, −3.027
Constant −0.226 0.2527 −0.89 0.371 −0.721, 0.269

3 GENDER 0.492 0.4157 1.18 0.237 −0.323, 1.306
SPHEQ −3.948 0.6353 −6.21 <0.001 −5.193, −2.703
GENDER × SPHEQ 0.185 0.8422 0.22 0.826 −1.466, 1.836
Constant −0.191 0.2999 −0.64 0.524 −0.779, 0.397

difference in the two estimated coefficients is

�β̂% = 100
(0.366 − 0.588)

0.588

= −37.6.

Why did this happen? The mean value of SPHEQ for males is 0.781 and the mean
for females is 0.821, which, although not identical, are similar in value. However,
the estimated coefficient for SPHEQ is quite large and negative. Putting the two
parts together under the dichotomous–continuous covariate model, the univariable
estimated coefficient for GENDER is approximately

0.430 = 0.588 − 3.845(0.822 − 0.781),

which is larger than the actual univariable estimated value of 0.366. Thus we
conclude that the univariable coefficient underestimates the effect of GENDER
due to the fact that females tended to have larger values of spherical equivalent
refraction and it is strongly negatively related to myopia.

When we add the statistical interaction of gender and spherical equivalent refrac-
tion, GENDER × SPHEQ, to the model, its estimated coefficient by Wald test is
not significant with p = 0.185, as shown in the last row of Table 3.11. We use the
estimated coefficient from Model 2 and the methods from Section 3.2 to estimate
the odds ratio of gender. In this case we use Model 2 as it adjusts for SPHEQ.

In the third example we illustrate a setting where there is statistical interaction.
The data we use come from the GLOW study, used earlier in the first example.
Again, we use as the dichotomous variable history of prior fracture (PRIORFRAC).
In this example the continuous covariate is age (AGE). The results of the three
fitted models are presented in Table 3.12.

In this example we are going to see that age could be described as being both
a confounder and an effect modifier. To describe age in this way is somewhat
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Table 3.12 Estimated Logistic Regression Coefficients, Standard Errors, Wald
Statistics, p-Values and 95% CIs from Three Models Showing Statistical Adjustment
and Statistical Interaction from the GLOW Study, n = 500

Model Variable Coeff. Std. Err. z p 95% CI

1 PRIORFRAC 1.064 0.2231 4.77 <0.001 0.627, 1.501
Constant −1.417 0.1305 −10.86 <0.001 −1.672, −1.161

2 PRIORFRAC 0.839 0.2342 3.58 <0.001 0.380, 1.298
AGE 0.041 0.0122 3.38 0.001 0.017, 0.065
Constant −4.214 0.8478 −4.97 <0.001 −5.876, −2.553

3 PRIORFRAC 4.961 1.8102 2.74 0.006 1.413, 8.509
AGE 0.063 0.0155 4.04 <0.001 0.032, 0.093
PRIORFRAC × AGE −0.057 0.0250 −2.29 0.022 −0.106, −0.008
Constant −5.689 1.0841 −5.25 <0.001 −7.814, −3.565

misleading and some would argue it is incorrect. So we qualify this by noting
that if the analysis stopped, incorrectly, at Model 2 there is evidence of statistical
adjustment. However, in Model 3 we show that there is a significant statistical
interaction, whereupon Model 2 is no longer relevant. In many, if not all, practical
analyses of data a vital step in modeling is deciding which model is best: the
adjustment model, Model 2, or the interaction model, Model 3. We discuss this in
detail in Chapter 4.

The Wald test for prior fracture (PRIORFRAC) in Model 1 is highly signif-
icant with p < 0.001. When we add age (AGE), Model 2, the coefficient for
PRIORFRAC continues to be highly significant with p = 0.006. The percentage
change in the coefficient for PRIORFRAC from Model 1 to Model 2 is

�β̂% = 100
(1.064 − 0.839)

0.839

= 26.8.

Thus the coefficient from the univariable model overestimates the effect by
26.8%. Hence, at this point, we could conclude that adding age (AGE) to the
model provides an important statistical adjustment to the effect of prior fracture
(PRIORFRAC). Looking at the two factors required for adjustment, the mean age
of those without a prior fracture is 67.0 whereas the mean for those with a prior
fracture is 73.1 and the coefficient for AGE is statistically significant. Under the
dichotomous–continuous covariate model, the univariable estimated coefficient
for PRIORFRAC is approximately

1.089 = 0.839 + 0.041(73.1 − 67.0),

which is quite close to the univariable value from Model 1 of 1.064.
When the interaction term, PRIORFRAC×AGE, is added to Model 2 to obtain

Model 3 we see that the Wald statistic for its coefficient is statistically significant
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with p = 0.022. Thus, there is considerable evidence of a statistical interaction
between these two covariates. We are commonly asked if it is appropriate to drop
the main effects and include only the interaction term in the model. In our opinion
this is not appropriate, as the model must contain both main effects when the
interaction is significant in order to correctly estimate odds ratios of interest.

Another commonly asked question is whether the change in the main effect
coefficient for the dichotomous covariate from Model 2 to Model 3 is evidence
of confounding or statistical adjustment? The answer is “no,” because once an
interaction is included in a model one is no longer able to estimate an adjusted
odds ratio that applies to all values of the adjusting covariate. Odds ratios, as we
show shortly, are estimated at specific values of the interacting covariate. In the
interaction model the main effect coefficient provides an estimate of the log-odds
at the value of 0 for the other covariate.

When a model contains an interaction term the only sure way to obtain the
correct expression of model coefficients to estimate an odds ratio is to carefully
follow the four-step method. As the estimates depend on the values of the adjusting
covariate one has the option to present them graphically or in a table. We illustrate
both. Although the four-step process is more complicated when an interaction term
is present than it is for an adjustment model (i.e., Model 2), the results may be
more interesting for subject-matter scientists.

To start, suppose we would like to estimate the odds ratio for prior fracture at
some arbitrary choice of age, say “a.” The four steps are as follows:

Step 1: The two sets of values of the covariates are (PRIORFRAC = 1, AGE =
a) compared to (PRIORFRAC = 0, AGE = a).

Step 2: Substituting these values into the general expression for the estimated
logit under Model 3 we obtain:

ĝ(PRIORFRAC = 1, AGE = a) = β̂0 + β̂1 × 1 + β̂2 × a + β̂3 × 1 × a,

and

ĝ(PRIORFRAC = 0, AGE = a) = β̂0 + β̂1 × 0 + β̂2 × a + β̂3 × 0 × a

= β̂0 + β̂2 × a.

Step 3: Taking the difference in the two functions in Step 2 and algebraically
simplifying we obtain:

[ĝ(PRIORFRAC = 1, AGE = a) − ĝ(PRIORFRAC = 0, AGE = a)]

= [(β̂0 + β̂1 × 1 + β̂2 × a + β̂3 × 1 × a) − (β̂0 + β̂2 × a)]

= β̂1 + β̂3 × a. (3.10)

This is the correct function of the coefficients to exponentiate in Step 4
to estimate the odds ratio for prior fracture, specifically at AGE = a. Note
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that this expression involves the coefficients for both the main effect and
interaction terms.

Step 4: Exponentiating the result of Steps 3 we obtain

ÔR[(PRIORFRAC = 1, AGE = a), (PRIORFRAC = 0, AGE = a)]

= exp[β̂1 + β̂3 × a]. (3.11)

Following a point made earlier, we see from equation (3.11) that exp(β̂1) is the
AGE = 0 estimate of the odds ratio for PRIORFRAC (a quantity that is obviously
not clinically relevant in a study of women 55 and older).

As noted earlier, we have the choice at this point to either tabulate or graph the
results. As this is our first example of a model with an interaction we delve into it
in more detail than one might typically do in practice. The easiest way to see the
nature of the interaction is to plot the two logit functions in Step 2 as a function
of age, which we present in Figure 3.3.

The upper line in Figure 3.3 is a plot of the log-odds for subjects with a prior
fracture, which from Model 3 in Table 3.12 and equation (3.10) is

ĝ(PRIORFRAC = 1, AGE = a)

= −5.689 + 4.961 × 1 + 0.063 × a − 0.057 × a × 1 = −0.728 + 0.006 × a.

The lower line is the logit for subjects without a prior fracture and is

ĝ(PRIORFRAC = 0, AGE = a)

= −5.689 + 4.961 × 0 + 0.063 × a − 0.057 × a × 0 = −5.689 + 0.063 × a.
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Figure 3.3 Plot of the estimated logit as a function of age for subjects with PRIORFRAC = 1 and
PRIORFRAC = 0.
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The log-odds ratio is given in equation (3.10) and is the vertical distance between
the two lines in Figure 3.3 at a specific age, a, and is equal to

ln{ÔR[(PRIORFRAC = 1, AGE = a), (PRIORFRAC = 0, AGE = a)]}
= 4.961 − 0.057 × a.

This function is plotted in Figure 3.4.
We have included the 95% confidence bands in Figure 3.4. These are calculated,

using equation (3.10), at each observed value of age as

(β̂1 + β̂3 × a) ± 1.96 × ŜE(β̂1 + β̂3 × a), (3.12)

where

ŜE(β̂1 + β̂3 × a) = [V̂ar(β̂1) + a2V̂ar(β̂3) + 2aĈov(β̂1, β̂3)]
0.5. (3.13)

The actual plotted values in Figure 3.4 are obtained by substituting the estimates
of the coefficients from Model 3 in Table 3.12 and the values of the estimated
covariance matrix of the estimated coefficients (not shown) into equations (3.12)
and (3.13). One should note that the form of the plot in Figure 3.4 is similar to
the plot of a linear regression model with its confidence bands being narrower in
the middle at about the mean age, 68.6, and wider at the extremes. We added a
line at log-odds ratio of 0 to the figure to aid interpretation. We see that the lower
confidence limit crosses the 0-line at 78 years. This means that the log-odds ratio
is not significantly different from 0 for ages greater than or equal to 78.
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Figure 3.4 Plot of the estimated log-odds ratio for PRIORFRAC = 1 versus PRIORFRAC = 0 as a
function of age, with 95% confidence bands.
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Figure 3.5 Plot of the estimated odds ratio for PRIORFRAC = 1 versus PRIORFRAC = 0 as a
function of age, with 95% confidence bands.

Figure 3.5 presents the plot of the estimated odds ratio and its confidence limits.
This is accomplished by exponentiating the values on the three lines in Figure 3.4.
A horizontal line at 1.0 is added to aid interpretation. We see that the estimated
odds ratio decreases from a value of about 6 at 55 years and becomes insignificant
at 78 years, where the lower confidence limit line drops below 1.0. The problem
with the plot is that the upper confidence limits are so large at ages below about
60 that the rest of the lines become compressed and are difficult to read with any
accuracy. This is often the case in an interaction model with a continuous covariate
and for this reason, in practice, we prefer a plot of the log-odds ratio.

The advantage of a plot is that it describes, in a general way, how the estimated
log-odds ratios or odds ratios change as a function of the plotted covariate. It
is, however, not as useful as a table for obtaining specific values. We show in
Table 3.13 estimates of the odds ratio and confidence intervals at ages 55, 60, 65,
70, and 80 years of age. These values are obtained by first evaluating equations
(3.12) and (3.13) at each of the ages and then exponentiating the values.

The values in Table 3.13 provide more detail on how the odds ratio for prior
fracture decreases as a function of age from 6.1 at age 55 to the point where
it becomes not statistically significant at age 80 (actually 78). Note that had we
incorrectly used Model 2 we would have stated that the “age-adjusted” odds ratio
is 2.3 = exp(0.839), implying that this estimate was valid for all ages. In fact, we
can see from the results in Table 3.13, this is only true for age approximately equal
to 72.

In summary, the examples in this section demonstrate that evidence for a covari-
ate being necessary in a model to adjust for the effect of another variable cannot
be determined by a statistical test. It is a judgmental decision based on the change



presentation and interpretation of the fitted values 77

Table 3.13 Estimated Odds Ratios for Prior Fracture
as a Function of Age from Model 3 in Table 3.12

Age Odds Ratio 95% CI

55 6.1 2.38, 15.53
60 4.6 2.20, 9.49
65 3.4 1.96, 5.99
70 2.6 1.63, 4.06
75 1.9 1.20, 3.11
80 1.4 0.79, 2.65

in the estimate of a coefficient. When there is a statistically significant interaction
statistical adjustment is no longer an issue as one must estimate the odds ratio
at specific values of the covariate. These are most easily calculated by carefully
following the four-step method.

3.6 PRESENTATION AND INTERPRETATION OF THE FITTED
VALUES

In previous sections of this chapter we discussed using the logistic regression model
coefficients to estimate odds ratios and construct confidence intervals in a number
of settings typically encountered in practice. In our experience this accounts for the
vast majority of the use of logistic regression modeling in applied settings. How-
ever, there are situations where the fitted values (i.e., the estimated probabilities)
from the model are equally, if not more, important. For example, Groeger et al.
(1998) used logistic regression modeling methods to estimate a patient’s probabil-
ity of hospital mortality after admission to an intensive care unit. We discussed in
Sections 1.4 and 2.5 the methods for computing a fitted value and its confidence
interval estimate. In this section, we expand this work to include graphical pre-
sentations of fitted values. In addition we discuss prediction of the outcome for a
subject not in the estimation sample.

Settings where predicted probabilities are of interest tend be those where there is
a reasonably wide range in the values. Conversely, if the range is too narrow graphs
of fitted values tend to look like straight lines and thus are not much different,
though on a different scale, than plots of fitted logits shown in Section 3.5 and add
little to the analysis. Among the data sets described in Section 1.6 the Burn Study
(Section 1.6.5) has the widest range of fitted values and we use it for the example
in this section.

Suppose we fit a model containing the total burn surface area (TBSA) and burn
involved an inhalation injury (INH_INJ). Furthermore, suppose we are interested
in describing, graphically, the effect of these two covariates on the estimated prob-
abilities. We encourage the reader to review the details in Section 1.6.5 on how
these data were sampled from a much larger data set. The results of the fit are
shown in Table 3.14.
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Table 3.14 Fitted Multiple Logistic Regression Model of Death from a Burn Injury
(DEATH) on TBSA and Inhalation Injury Involved (INH_INJ) from the Burn Study,
n = 1000

Variable Coeff. Std. Err. z p 95% CI

TBSA 0.073 0.0072 10.11 <0.001 0.059, 0.087
INH_INJ 1.290 0.2926 4.41 <0.001 0.716, 1.863
Constant −3.380 0.1776 −19.03 <0.001 −3.728, −3.031
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Figure 3.6 Plot of the fitted values from the model in Table 3.14 and their 95% confidence bands.

Both burn area and inhalation injury are highly significant and, after controlling
for TBSA, the estimated odds ratio for inhalation injury is 3.63 (95% confidence
interval: 2.05, 6.45). Clearly, involvement of an inhalation injury greatly increases
the odds of dying, but how could we express the effect of this variable on the
probability of dying? In this example, the model is not complicated and contains
the continuous covariate TBSA, thus a plot of the fitted values versus burn area for
those with and without inhalation injury involvement provides a simple graphical
summary of the effect of the two covariates. This is shown in Figure 3.6 along
with the 95% confidence bands.

The plotted curves in Figure 3.6 show that the estimated probability of death
from a burn injury ranges from about 0.03 (3%) for a small burn with no inhalation
injury involvement to almost 1.0 (100%) for subjects with a burn area of more than
95%. The plotted confidence bands for two fitted value curves show that inhalation
injury involvement greatly increases the estimated probability of death, particularly
when the burn area is between 20% and 60%. For burn area greater than 70% the
estimated probability curves converge and approach 1.0. In this range the estimated
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probabilities are so large that inhalation injury cannot add much. Note that we have
described the difference in the two curves as an additive difference rather than a
relative difference. Under the fitted model the relative difference (i.e., the estimated
odds ratio) for inhalation injury involvement is 18.7 at all estimated probabilities.
We discuss summary measures that use fitted values to describe model performance
in Chapter 5.

Using the methods described at the end of Section 2.5 and the results in
Table 3.14 the required calculations to obtain the values plotted in Figure 3.6
are as follows. First, we calculate the two fitted logit functions:

ĝ1(a) = ĝ(TBSA = a, INH_INJ = 1)

= −3.380 + 0.073 × a + 1.290 × 1

= −2.090 + 0.046 × a,

ĝ0(a) = ĝ(TBSA = a, INH_INJ = 0)

= −3.380 + 0.073 × a + 1.290 × 0

= −3.380 + 0.073 × a.

Next, we compute the estimator of the variance of each estimated logit:

V̂ar[ĝ1(a)] = 0.03154 + (a2) × 0.00005199 + (12) × 0.08561 − 2 × a

× 0.0008339 − 2 × 1 × 0.007801 × 1 − 2 × a × 1 × 0.0006466

= 0.1093 − a × 0.01727 + (a)2 × 0.00005199,

and

V̂ar[ĝ0(a)] = 0.03154 + (a2)×0.00005199 + (02)×0.08561 − 2×a ×0.0008339

− 2 × 0 × 007801 × 0 − 2 × a × 0 × 0.0006466

= 0.03154 − a × 0.00001667 + (a)2 × 0.00005199,

where the values of the various estimated variances and covariances are obtained
from the estimated covariance matrix of the estimated parameters in the fitted model
(not shown but available from all software packages). Hence the two sets of fitted
values as a function of burn area are

π̂j (a) = eĝj (a)

1 + eĝj (a)
, j = 0, 1, (3.14)

and their lower (l) and upper (u) confidence bands are obtained from

π̂ l
j (a), π̂u

j (a) = eĝj (a)±1.96ŜE(ĝj (a))

1 + eĝj (a)±1.96ŜE(ĝj (a))
, j = 0, 1, (3.15)

where ŜE(g) =
√

V̂ar(g).
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We now focus our attention on the fitted value and confidence interval for the
single set of values (TBSA = 30, INH_INJ = 1). As these two values are among
those in the data set we can obtain them from those used in the plot in Figure 3.6.
In fact, the estimated probability is 0.52 with 95% confidence interval (0.41, 0.64).
The interpretation is that among patients admitted with a burn area of 40% and
inhalation injury involvement the model estimates that 52% would die and it could
be between 41% and 64% with 95% confidence.

If the covariate values that we would like estimates for are within the
range of those in the observed data set but not specifically present (e.g.,
TBSA = 64, INH_INJ = 1) then we use the expressions for ĝ1(a) and V̂ar[ĝ1(a)]
with these values and use the results to evaluate equations (3.14) and (3.15).

The fitted model in Table 3.14 is much simpler than one typically uses to
model data in a practical multivariable data set. To extend the bivariable example
in Table 3.14 we show in Table 3.15 the fit of a model that adds age (AGE),
gender (GENDER), race (RACE) and flame involved in the burn injury (FLAME)
to the model. Suppose that all variables are kept in the model for either clinical
or statistical reasons. We would like to plot the estimated probability of death as a
function of burn area (same as Figure 3.6) and inhalation injury but now controlling
for the other four covariates in the model.

In order to control for the additional covariates we could choose “typical” values
for each (e.g., median age and 0 for the three dichotomous covariates). However,
these values may not provide a logit that is, in some sense, at the median or middle
of the log-odds of death for these covariates. What we propose is to calculate a
modified logit that subtracts the contribution of burn area and inhalation injury
from the logit and uses its median value as a way to control for the additional
model covariates. Specially, the logit for the fitted model in Table 3.15 is

ĝ(x) = −7.695 + 0.089 × TBSA + 1.365 × INH_INJ + 0.083 × AGE

− 0.201 × GENDER + 0.583 × FLAME − 0.701 × RACE.

Table 3.15 Fitted Multiple Logistic Regression Model of Death from a Burn Injury
(DEATH) on Total Body Surface Area (TBSA), Inhalation Injury (INH_INJ), Age
(AGE), Gender (GENDER), Race (RACE), and Flame Involved (FLAME) from the
Burn Study, n = 1000

Variable Coeff. Std. Err. z p 95% CI

TBSA 0.089 0.0091 9.83 <0.001 0.072, 0.107
INH_INJ 1.365 0.3618 3.77 <0.001 0.656, 2.074
AGE 0.083 0.0086 9.61 <0.001 0.066, 0.100
GENDER −0.201 0.3078 −0.65 0.513 −0.805, 0.402
FLAME 0.583 0.3545 1.64 0.100 −0.112, 1.277
RACE −0.701 0.3098 −2.26 0.024 −1.309, −0.094
Constant −7.695 0.6912 −11.13 <0.001 −9.050, −6.341
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Our proposed modified logit is

ĝm(x) = ĝ(x) − (+0.089 × TBSA + 1.365 × INH_INJ),

and the median value of ĝm(x) over the 1000 subjects is ĝm50 = −5.349. Here
we use x to generically denote the covariates. Next we calculate the adjusted logit
for the two inhalation injury groups as a function of burn area as

ĝ1(a) = ĝm50 + 0.089 × TBSA + 1.365 × 1

= −5.349 + 0.089 × TBSA + 1.365

= −3.984 + 0.089 × TBSA,

and
ĝ0(a) = ĝm50 + 0.089 × TBSA + 1.365 × 0

= −5.349 + 0.089 × TBSA + 0

= −5.349 + 0.089 × TBSA.

The estimated probabilities are computed using equation (3.14) and are plotted in
Figure 3.7.

The plot in Figure 3.7 shows, quite clearly, how having an inhalation injury
increases the probability of death over the range of burn area. A specific value is
easily obtained by substituting in values for TBSA and INH_INJ into the equation
for the logit. For example, for the pair (TBSA = 40, INH_INJ = 0) the value of
the logit is

ĝ0(a) = −5.349 + 0.089 × 40

= −1.789,
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Figure 3.7 Plot of the covariate adjusted fitted values from the model in Table 3.15.
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and the covariate adjusted probability is

π̂0(40) = e−1.789

1 + e−1.789

= 0.143.

Using the modified logit ĝm(x) avoids having to choose specific values for
the covariates. Using its median value adjusts at a middle level of log-odds for
these covariates. However, as we have not used specific covariate values, an
extension of the expression for V̂ar[ĝj (a)] can no longer be evaluated and thus
confidence bands based on it are not possible to compute. Confidence bands can
be obtained with some additional programming and using a resampling method
called bootstrapping. As this topic is beyond the technical level of this text, we
do not consider it further here.

As is the case with any regression model we must take care not to extend
model-based inferences beyond the observed range of the data. It is also important
to keep in mind that any estimate is only as good as the model upon which it is
based. In this section we did not attend to many of the important model building
details that are discussed in Chapter 4. We have implicitly assumed that these
steps have been performed.

3.7 A COMPARISON OF LOGISTIC REGRESSION AND STRATIFIED
ANALYSIS FOR 2 × 2 TABLES

Many users of logistic regression, especially those coming from a background
in epidemiology, have performed stratified analyses of 2 × 2 tables to assess
interaction and to control confounding. The essential objective of such analyses
is to produce an adjusted odds ratio. This is accomplished by first determining
whether the odds ratios are constant, or homogeneous, over a number of strata.
If the odds ratios are constant, then a stratified odds ratio estimator such as the
Mantel–Haenszel estimator or the weighted logit-based estimator is computed.
This same analysis may also be performed using the logistic regression modeling
techniques discussed in Sections 3.5 and 3.6. In this section we compare these
two approaches. An example from the Burn Study illustrates the similarities and
differences in the two approaches.

Consider an analysis of the risk factor whether a flame was involved in the
burn injury (FLAME) on the outcome variable vital status at hospital discharge
(DEATH). The crude (or unadjusted) odds ratio computed from the 2 × 2 table
shown in Table 3.16, cross-classifying the outcome variable DEATH with FLAME,
is ÔR = 7.35.

As we have seen earlier in this chapter, total body surface area burned (TBSA)
is an important determinant of patient survival. Examination of the distribution of
TBSA shows that the 25th, 50th, and 75th percentiles of body surface area are
2.5%, 6%, and 16%, respectively. Using these quartiles, Table 3.17 presents the
cross tabulation of DEATH by FLAME within each of the four quartiles of TBSA.
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Table 3.16 Cross-Classification of Vital Status at
Hospital Discharge (DEATH) by Whether a Flame
Was Involved in the Burn Injury (FLAME)

FLAME

0 1 Total

DEATH 0 451 399 850
1 20 130 150

Total 471 529 1000

Table 3.17 Cross-Classification of DEATH by FLAME Stratified by TBSA Quartile
Groups

FLAME

TBSA 0 1 Total

TBSA < 2.5% DEATH 0 168 73 241
1 3 2 5

Total 171 75 246
2.5% ≤ TBSA < 6% DEATH 0 124 101 225

1 2 6 8
Total 126 107 233

6% ≤ TBSA < 16% DEATH 0 117 134 251
1 5 14 19

Total 122 148 270
TBSA ≥ 16% DEATH 0 42 91 133

1 10 108 118
Total 52 199 251

We can use these tables as the basis for computing either the Mantel–Haenszel
estimate or the logit-based estimate of the odds ratio.

The Mantel–Haenszel estimator is a weighted average of the stratum specific
odds ratios, ÔRi = (ai × di)/(bi × ci), where ai, bi, ci, and di are the observed cell
frequencies in the 2 × 2 table for stratum i. For example, in stratum 1, a1 = 168,
b1 = 73, c1 = 3, and d1 = 2, and the total number of subjects is N1 = 246. The
Mantel–Haenszel estimator of the odds ratio is defined in this case as follows:

ÔRMH =

∑ ai × di

Ni∑ bi × ci

Ni

. (3.16)

Evaluating equation (3.16) using the data in Table 3.17 yields the Mantel–Haenszel
estimate

ÔRMH = 28.697

7.864
= 3.65.
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Table 3.18 Tabulation of the Estimated Odds Ratios, ln(Estimated Odds Ratios),
Estimated Variance of the ln(Estimated Odds Ratios), and the Inverse of the
Estimated Variance, w, for FLAME Within Each Quartile of TBSA

Quartile of TBSA

1 2 3 4

ÔR 1.534 3.683 2.445 4.985
ln(ÔR) 0.428 1.304 0.894 1.606
V̂ar[ln(ÔR)] 0.853 0.685 0.287 0.144
w 1.172 1.461 3.479 6.942

The logit-based summary estimator of the odds ratio is a weighted average of
the stratum specific log-odds ratios where each weight is the inverse of the variance
of the stratum specific log-odds ratio,

ÔRL = exp

⎡
⎣

∑
wi ln

(
ÔRi

)
∑

wi

⎤
⎦ . (3.17)

Table 3.18 presents the estimated odds ratio, log-odds ratio, estimate of the variance
of the log-odds ratio and the weight, w.

The logit-based estimator based on the data in Table 3.18 is

ÔRL = exp

(
16.667

13.054

)
= 3.585,

which is slightly smaller than the Mantel–Haenszel estimate. In general, the
Mantel–Haenszel estimator and the logit-based estimator are similar when the
data are not too sparse within the strata. One considerable advantage of the
Mantel–Haenszel estimator is that it may be computed when some of the cell
entries are 0.

It is important to note that these estimators provide a correct estimate of the
effect of the risk factor only when the odds ratio is constant across the strata. Thus,
a crucial step in the stratified analysis is to assess the validity of this assumption.
Statistical tests of this assumption are based on a comparison of the stratum specific
estimates to an overall estimate computed under the assumption that the odds ratio
is, in fact, constant. The simplest and most easily computed test of the homogeneity
of the odds ratios across strata is based on a weighted sum of the squared deviations
of the stratum specific log-odds ratios from their weighted mean. This test statistic,
in terms of the current notation, is

X2
H =

∑
{wi[ln(ÔRi ) − ln(ÔRL)]2}. (3.18)

Under the hypothesis that the odds ratios are constant, X2
H has a chi-square distri-

bution with degrees of freedom equal to the number of strata minus 1. Thus, we
would reject the homogeneity assumption when X2

H is large.
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Using the data in Table 3.18 we have X2
H = 2.11 which, with 3 degrees of

freedom, yields a p-value of 0.5492. Thus, the logit-based test of homogene-
ity indicates that the four groups, based on the quartiles of the distribution of
TBSA, are within sampling variation of each other. It should be noted that the
p-value calculated from the chi-square distribution is accurate only when the sam-
ple sizes are not too small within each stratum. This condition holds in this
example.

Another test that also may be calculated by hand, but not as easily, is discussed
in Breslow and Day (1980) and is corrected by Tarone (1985). This test compares
the value of ai to an estimated expected value, êi , calculated under the assumption
that the odds ratio is constant in all strata. As noted by Breslow (1996) the correct
formula for the test statistic is

X2
BD =

∑ (ai − êi )
2

ν̂i

−
[∑ (

ai

) −
∑

(êi)
]2

∑
(v̂i)

. (3.19)

We note that some packages, for example, STATA, calculate the first part of
equation (3.19) as the Breslow–Day test and the entire expression in equation
(3.19) as the Tarone test. The quantity êi is one of the two solutions to the following
quadratic equation:

ÔR = (êi)(n1i − m0i + êi )

(n0i − êi )(m0i − êi )
, (3.20)

where n0i = ai + bi , m0i = ai + ci , and n1i = ci + di . The two solutions for êi in
equation (3.20) are found by evaluating the following expressions

−si +
√

s2
i − 4 × r × ti

2 × r
and

−si −
√

s2
i − 4 × r × ti

2 × r
, (3.21)

where r = 1 − ÔR, si = (n1i − m0i ) + (ÔR)(m0i + n0i ), and ti = −(ÔR)(n0im0i ),
but only one of them yields an estimated frequency that is positive and less than
both n0i and m0i .

The quantity ÔR in equation (3.20) is an estimate of the common odds ratio
and either ÔRL or ÔRMH may be used, but the default used in most packages is
the Mantel–Haenszel estimator. The quantity ν̂i is an estimate of the variance of
ai computed under the assumption of a common odds ratio and is

ν̂i =
(

1

êi

+ 1

n0i − êi

+ 1

m0i − êi

+ 1

n1i − m0i + êi

)−1

. (3.22)

If we use the value of the Mantel–Haenszel estimate, ÔRMH = 3.65 to compute
the Breslow–Day test in equation (3.19) then X2

BD = 2.18 (p = 0.5366), which is
similar to the value of the logit-based test.

The same analysis may be performed much more easily by fitting three logis-
tic regression models. In model 1 we include only the variable FLAME. We then
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Table 3.19 Estimated Logistic Regression Coefficients for the Variable FLAME,
Log-Likelihood, the Likelihood Ratio Test Statistic (G), and Resulting p-Value for
Estimation of the Stratified Odds Ratio and Assessment of Homogeneity of Odds
Ratios across Strata Defined by Quartiles of TBSA

Model FLAME Log-Likelihood G df p

1 1.994 −258.34
2 1.296 −288.64 178.17 3 <0.001
3 −287.57 2.14 3 0.545

add the three design variables representing the four quartiles of TBSA to obtain
model 2. For model 3 we add the three TBSA × FLAME interaction terms.
The results of fitting these models are shown in Table 3.19. As we are primar-
ily interested in the estimates of the coefficient for FLAME, the estimates of the
coefficients for TBSA and the FLAME × TBSA interactions are not shown in
Table 3.19.

Using the estimated coefficients in Table 3.19 we have the following estimated
odds ratios. The crude odds ratio is ÔR = exp(1.994) = 7.35. Adjusting for TBSA,
the stratified estimate is ÔR = exp(1.2958) = 3.65. This value is the maximum
likelihood estimate of the estimated odds ratio, and it is similar in value to both
the Mantel–Haenszel estimate, ÔRMH = 3.65, and the logit-based estimate, ÔRL =
3.59. The change in the estimate of the odds ratio from the crude to the adjusted
is 7.35 to 3.65, indicating considerable confounding due to TBSA.

Assessment of the homogeneity of the odds ratios across the strata is based on
the likelihood ratio test of model 2 versus model 3. The value of this statistic from
Table 3.19 is G = 2.14. This statistic is compared to a chi-square distribution with
3 degrees of freedom, as three interaction terms were added to model 2 to obtain
model 3. This test statistic is comparable to the ones from the logit-based test, X2

H
(=2.11), and the Breslow–Day test, X2

BD (=2.18), each with 3 degrees of freedom.
The previously described analysis based on likelihood ratio tests may be used

when the data have either been grouped into contingency tables in advance of the
analysis, such as those shown in Table 3.17, or have remained in casewise form.
When the data have been grouped, as we did in the example from the burn data, it is
possible to point out other similarities between classical analysis of stratified 2 × 2
tables and an analysis using logistic regression. Day and Byar (1979) have shown
that the 1 degree of freedom Mantel–Haenszel test of the hypothesis that the stratum
specific odds ratios are 1 is identical to the Score test for the exposure variable when
added to a logistic regression model already containing the stratification variable.
This test statistic may be easily obtained from a logistic regression package with
the capability to perform Score tests such as SAS.

Thus, use of the logistic regression model provides a fast and effective way
to obtain a stratified odds ratio estimator and to assess easily the assumption of
homogeneity of odds ratios across strata.
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EXERCISES

1. Consider the ICU data described in Section 1.6.1 and use as the outcome
variable vital status (STA) and infection probable at ICU admission (INF) as
a covariate.
(a) Demonstrate that the value of the log-odds ratio obtained from the cross-

classification of STA by INF is identical to the estimated slope coefficient
from the logistic regression of STA on INF. Verify that the estimated
standard error of the estimated slope coefficient for INF obtained from the
logistic regression package is identical to the square root of the sum of the
inverse of the cell frequencies from the cross-classification of STA by INF.
Use either set of computations, contingency table, or logistic regression,
to obtain the 95% confidence interval for the odds ratio.

(b) For purposes of illustration, use a data transformation statement to recode,
for this problem only, the variable INF as follows: 4 = No and 2 = Yes.
Perform the logistic regression of STA on INF (recoded). Use the four-
step method to calculate the estimate of the odds ratio of INF = Yes versus
INF = No. Use the results from the fitted logistic regression model to
obtain the 95% confidence interval for the odds ratio. Note that they are
the same limits as obtained in Exercise 1(a).

2. Consider data from the Low Birth Weight Study described in Section 1.6.2 and
use as the outcome variable low birth weight (LOW) and race of the mother
(RACE) as the covariate.
(a) Prepare a table showing the coding of the two design variables for RACE

using the value RACE = 1, white, as the reference group. Show that the
estimated log-odds ratios obtained from the cross-classification of LOW by
RACE, using RACE = 1 as the reference group, are identical to estimated
slope coefficients for the two design variables from the logistic regres-
sion of LOW on RACE. Verify that the estimated standard errors of the
estimated slope coefficients for the two design variables for RACE are
identical to the square root of the sum of the inverse of the cell frequen-
cies from the cross-classification of LOW by RACE used to calculate the
odds ratio. Use either set of computations to compute the 95% confidence
interval for the odds ratios. Note that in this example the results are sig-
nificant at the 10 but not 5% level of significance. Explain circumstances
under which you would choose to keep RACE in a statistical model and
ones when you might not keep it.

(b) Create design variables for RACE using the deviation from means coding
typically employed in ANOVA. Perform the logistic regression of LOW
on RACE. Use the four-step method to compute the estimate of the odds
ratio RACE = 2 versus RACE = 1 and RACE = 3 versus RACE = 1. Are
these estimates the same as those computed in 2(a)? Use the results of the
logistic regression to obtain the 95% confidence interval for the odds ratios
and verify that they are the same limits as obtained in 2(a). In this example
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you need the estimated covariance matrix for the estimated coefficients to
obtain the estimated variances of the two log-odds ratios.

3. In the ICU data vital status at discharge (STA) is the outcome variable and
consider history of chronic renal failure (CRN) as the factor of interest. Using
logistic regression, demonstrate and then explain why age (AGE) is needed to
adjust the effect of CRN. Using logistic regression modeling, demonstrate that
there is no statistical interaction between age (AGE) and history of chronic
renal failure (CRN).

4. Repeat problem 3 using cancer part of the present problem (CAN) as the
factor of interest and type of admission (TYP) as a potential adjustment and
interaction variable.

5. In the Burn Injury Data described in Section 1.6.5 vital status at hospital
discharge (DEATH) is the outcome variable.
(a) Show that age (AGE) is not a confounder of the effect of inhalation injury

(INH_INJ) but is an effect modifier.
(b) Using the interactions model from part 5(a) and the four-step method

prepare a table with estimates of the odds ratio and 95% confidence interval
for inhalation injury for ages 20, 40, 60, and 80.

(c) Using the interaction model from part 5(a) prepare a graph of the estimate
of the odds ratio for inhalation injury as a function of age.

(d) Add 95% confidence bands to the graph in part 5(c).

6. The outcome variable in the Myopia Study described in Section 1.6.6 is
becoming myopic during the first five years of follow up (MYOPIC). Con-
sider a logistic regression model containing spherical equivalent refraction
(SHPQ), gender (GENDER), sports hours (SPORTHR), reading hours (RES-
DHR), computer hours (COMPHR), study hours (STUDYHR) and television
hours (TVHR). Graph the fitted logistic probability of becoming myopic for
males and females as a function of spherical equivalent refraction (SHPQ)
adjusted for all other variables in the model.

7. In the Low Birth Weight Study described in Section 1.6.2, determine the crude
odds ratio of smoking (SMOKE) on the outcome low birthweight (LOW).
Stratify on RACE and note the odds ratios within the three strata. Do the odds
ratios appear to be homogeneous across strata? Compute the Mantel–Haenszel
and logit-based estimates of the odds ratio. How do these compare to the crude
estimate? Determine whether homogeneity of the odds ratios across strata holds
through the use of the chi-square test of homogeneity and the Breslow–Day
test. Finally, use a logistic regression analysis to compute the adjusted odds
ratio and to determine whether the odds ratios were homogeneous across strata.
How do these results compare to the ones you obtained using the more classical
categorical data approach?



C H A P T E R 4

Model-Building Strategies and
Methods for Logistic Regression

4.1 INTRODUCTION

In previous chapters we focused on estimating, testing, and interpreting the coeffi-
cients and fitted values from a logistic regression model. The examples discussed
were characterized by having few independent variables, and there was perceived
to be only one possible model. While there may be situations where this is the case,
it is more typical that there are many independent variables that could potentially
be included in the model. Hence, we need to develop a strategy and associated
methods for handling these more complex situations.

The goal of any method is to select those variables that result in a “best” model
within the scientific context of the problem. In order to achieve this goal we must
have: (i) a basic plan for selecting the variables for the model and (ii) a set of
methods for assessing the adequacy of the model both in terms of its individual
variables and its overall performance. In this chapter and the next we discuss
methods that address both of these areas.

The methods to be discussed in this chapter are not to be used as a substitute,
but rather as an addition to clear and careful thought. Successful modeling of a
complex data set is part science, part statistical methods, and part experience and
common sense. It is our goal to provide the reader with a paradigm that, when
applied thoughtfully, yields the best possible model within the constraints of the
available data.

4.2 PURPOSEFUL SELECTION OF COVARIATES

The criteria for including a variable in a model may vary from one problem to
the next and from one scientific discipline to another. The traditional approach to
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statistical model building involves seeking the most parsimonious model that still
accurately reflects the true outcome experience of the data. The rationale for min-
imizing the number of variables in the model is that the resultant model is more
likely to be numerically stable, and is more easily adopted for use. The more vari-
ables included in a model, the greater the estimated standard errors become, and the
more dependent the model becomes on the observed data. Epidemiologic method-
ologists suggest including all clinically and intuitively relevant variables in the
model, regardless of their “statistical significance.” The rationale for this approach
is to provide as complete control of confounding as possible within the given data
set. This is based on the fact that it is possible for individual variables not to exhibit
strong confounding, but when taken collectively, considerable confounding can be
present in the data, see Rothman et al. (2008), Maldonado and Greenland (1993),
Greenland (1989), and Miettinen (1976). The major problem with this approach is
that the model may be “overfit,” producing numerically unstable estimates. Overfit-
ting is typically characterized by unrealistically large estimated coefficients and/or
estimated standard errors. This may be especially troublesome in problems where
the number of variables in the model is large relative to the number of subjects
and/or when the overall proportion responding (y = 1) is close to either 0 or 1.
In an excellent tutorial paper, Harrell et al. (1996) discuss overfitting along with
other model building issues.

The following seven steps describe a method of selecting variables that we call
purposeful selection. The rationale behind the method is that it follows the steps
that many applied investigators employ when examining a set of data and then
building a multivariable regression model.

Step 1: Purposeful selection begins with a careful univariable analysis of each
independent variable. For categorical variables we suggest doing this via a
standard contingency table analysis of the outcome (y = 0, 1) versus the k

levels of the independent variable. The usual likelihood ratio chi-square test
with k − 1 degrees of freedom is exactly equal to the value of the likelihood
ratio test for the significance of the coefficients for the k − 1 design variables
in a univariable logistic regression model that contains that single independent
variable. Since the Pearson chi-square test is asymptotically equivalent to the
likelihood ratio chi-square test, it may also be used. In addition to the overall
test, it is a good idea, for those variables exhibiting at least a moderate level
of association, to estimate the individual odds ratios (along with confidence
limits) using one of the levels as the reference group.

Particular attention should be paid to any contingency table with a zero
(frequency) cell, since in that situation, most standard logistic regression
software packages will fail to converge and produce a point estimate for
one of the odds ratios of either zero or infinity. An intermediate strategy for
dealing with this problem is to collapse categories of the independent variable
in some sensible fashion to eliminate the zero cell. If the covariate with the
zero cell turns out to be statistically significant, we can revisit the problem
at a later stage using one of the special programs discussed in Section 10.3.
Fortunately, the zero cell problem does not occur too frequently.
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For continuous variables, the best univariable analysis involves fitting a
univariable logistic regression model to obtain the estimated coefficient, the
estimated standard error, the likelihood ratio test for the significance of the
coefficient, and the univariable Wald statistic. An alternative analysis, which
is nearly equivalent at the univariable level and that may be preferred in
an applied setting, is based on the two-sample t-test. Descriptive statistics
available from this analysis generally include group means, standard devia-
tions, the t statistic, and its p-value. The similarity of this approach to the
logistic regression analysis follows from the fact that the univariable linear
discriminant function estimate of the logistic regression coefficient is

(x1 − x0)

s2
p

= t

sp

√
1

n1
+ 1

n0

and that the linear discriminant function and the maximum likelihood esti-
mate of the logistic regression coefficient are usually quite close when the
independent variable is approximately normally distributed within each of the
outcome groups, y = 0, 1, [see Halpern et al. (1971)]. Thus, the univariable
analysis based on the t-test can be used to determine whether the variable
should be included in the model since the p-value should be of the same
order of magnitude as that of the Wald statistic, Score test, or likelihood ratio
test from logistic regression.

Through the use of these univariable analyses we identify, as candidates
for a first multivariable model, any variable whose univariable test has a
p-value less than 0.25 along with all variables of known clinical importance.

Our recommendation for using a significance level as high as 0.20 or 0.25
as a screening criterion for initial variable selection is based on the work by
Bendel and Afifi (1977) on linear regression and on the work by Mickey and
Greenland (1989) on logistic regression. These authors show that use of a
more traditional level (such as 0.05) often fails to identify variables known
to be important. Use of the higher level has the disadvantage of including
variables that are of questionable importance at this initial stage of model
development. For this reason, it is important to review all variables added to
a model critically before a decision is reached regarding the final model.

Step 2: Fit the multivariable model containing all covariates identified for inclu-
sion at Step 1. Following the fit of this model, we assess the importance of
each covariate using the p-value of its Wald statistic. Variables that do not
contribute, at traditional levels of statistical significance, should be eliminated
and a new model fit. The new, smaller, model should be compared to the old,
larger, model using the partial likelihood ratio test. This is especially impor-
tant if more than one term has been removed from the model, which is always
the case when a categorical variable with more than two levels has been
included using two or more design variables that appear to be not significant.
Also, one must pay attention to make sure that the samples used to fit the
larger and smaller models are the same. This becomes an issue when there are
missing data. We discuss strategies for handling missing data in Section 10.4.
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Step 3: Following the fit of the smaller, reduced model we compare the values
of the estimated coefficients in the smaller model to their respective values
from the larger model. In particular, we should be concerned about any
variable whose coefficient has changed markedly in magnitude [e.g., having
a value of �β̂ > 20%, see equation (3.9)]. This indicates that one or more
of the excluded variables are important in the sense of providing a needed
adjustment of the effect of the variables that remained in the model. Such
variable(s) should be added back into the model. This process of deleting,
refitting, and verifying continues, cycling through Step 2 and Step 3, until it
appears that all of the important variables are included in the model and those
excluded are clinically and/or statistically unimportant. In this process we
recommend that one should proceed slowly by deleting only a few covariates
at a time.

Step 4: Add each variable not selected in Step 1 to the model obtained at the
conclusion of cycling through Step 2 and Step 3, one at a time, and check
its significance either by the Wald statistic p-value or the partial likelihood
ratio test, if it is a categorical variable with more than two levels. This step is
vital for identifying variables that, by themselves, are not significantly related
to the outcome but make an important contribution in the presence of other
variables. We refer to the model at the end of Step 4 as the preliminary main
effects model.

Step 5: Once we have obtained a model that we feel contains the essential
variables, we examine more closely the variables in the model. The
question of the appropriate categories for categorical variables should
have been addressed during the univariable analysis in Step 1. For each
continuous variable in this model we must check the assumption that the logit
increases/decreases linearly as a function of the covariate. There are a number
of techniques and methods to do this and we discuss them in Section 4.2.1.
We refer to the model at the end of Step 5 as the main effects model.

Step 6: Once we have the main effects model, we check for interactions among
the variables in the model. In any model, as discussed and illustrated with
examples in Section 3.5, an interaction between two variables implies that
the effect of each variable is not constant over levels of the other variable.
As noted in Section 3.5, the final decision as to whether an interaction term
should be included in a model should be based on statistical as well as
practical considerations. Any interaction term in the model must make sense
from a clinical perspective.

We address the clinical plausibility issue by creating a list of possible pairs
of variables in the model that have some realistic possibility of interacting
with each other. The interaction variables are created as the arithmetic prod-
uct of the pairs of main effect variables. This can result in more than one
interaction term. For example, the interaction of two categorical variables,
each with three levels (i.e., two dummy variables), generates four interaction
variables. We add the interactions, one at a time, to the main effects model
from Step 5. (This may involve adding more than one term at a time to the
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model.) We then assess the statistical significance of the interaction using a
likelihood ratio test. Unlike main effects where we consider adjustment as
well as significance, we only consider the statistical significance of interac-
tions and as such, they must contribute to the model at traditional levels,
such as 5% or even 1%. Inclusion of an interaction term in the model that is
not significant typically just increases the estimated standard errors without
much change in the point estimates of effect.

Following the univariable analysis of the interaction terms we add each
interaction that was significant to the model at the end of Step 5. We then
follow Step 2 to simplify the model, considering only the removal of the
interaction terms, not any main effects. At this point we view the main effect
terms as being “locked” and they cannot be removed from the model. One
implication of “locking the main effects” is that we do not consider statistical
adjustment, �β̂%, when winnowing insignificant interactions.

We refer to the model at the conclusion of Step 6 as the preliminary final
model.

Step 7: Before any model becomes the final model we must assess its adequacy
and check its fit. We discuss these methods in Chapter 5. Note that regardless
of what method is used to obtain a multivariable statistical model, purposeful
selection or any of the other methods discussed in this chapter, one must
perform Step 7 before using the fitted model for inferential purposes.

Bursac et al. (2008) studied the properties of purposeful selection compared to
stepwise selection via simulations. The results showed that purposeful selection
retained significant covariates and also included covariates that were confounders
of other model covariates in a manner superior to stepwise selection.

As noted above, the issue of variable selection is made more complicated by
different analytic philosophies as well as by different statistical methods. One
school of thought argues for the inclusion of all scientifically relevant variables
into the multivariable model regardless of the results of univariable analyses.
In general, the appropriateness of the decision to begin the multivariable model
with all possible variables depends on the overall sample size and the number
in each outcome group relative to the total number of candidate variables. When
the data are adequate to support such an analysis it may be useful to begin the
multivariable modeling from this point. However, when the data are inadequate,
this approach can produce a numerically unstable multivariable model, discussed
in greater detail in Section 4.5. In this case the Wald statistics should not be used
to select variables because of the unstable nature of the results. Instead, we should
select a subset of variables based on results of the univariable analyses and refine
the definition of “scientifically relevant.”

Another approach to variable selection is to use a stepwise method in which
variables are selected either for inclusion or exclusion from the model in a sequen-
tial fashion based solely on statistical criteria. There are two main versions of the
stepwise procedure: (i) forward selection with a test for backward elimination and
(ii) backward elimination followed by a test for forward selection. The algorithms
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used to define these procedures in logistic regression are discussed in Section 4.3.
The stepwise approach is useful and intuitively appealing in that it builds models
in a sequential fashion and it allows for the examination of a collection of models
that might not otherwise have been examined.

“Best subsets selection” is a selection method that has not been used extensively
in logistic regression. With this procedure a number of models containing one, two,
three variables, and so on, are examined to determine which are considered the
“best” according to some specified criteria. Best subsets linear regression software
has been available for a number of years. A parallel theory has been worked out for
nonnormal errors models [Lawless and Singhal (1978, 1987a, 1987b)]. We show
in Section 4.4 how logistic regression may be performed using any best subsets
linear regression program.

Stepwise, best subsets, and other mechanical selection procedures have been crit-
icized because they can yield a biologically implausible model [Greenland (1989)]
and can select irrelevant, or noise, variables [Flack and Chang (1987); Griffiths and
Pope (1987)]. They may also fail to select variables that narrowly fail to achieve
the pre-designated threshold for inclusion into a model. The problem is not the
fact that the computer can select such models, but rather that the judgment of the
analyst is taken out of the process and, as a result, has no opportunity to scru-
tinize the resulting model carefully before the final, best model is reported. The
wide availability and ease with which stepwise methods can be used has undoubt-
edly reduced some analysts to the role of assisting the computer in model selection
rather than the more appropriate alternative. It is only when the analyst understands
the strengths, and especially the limitations of the methods that these methods can
serve as useful tools in the model-building process. The analyst, not the computer,
is ultimately responsible for the review and evaluation of the model.

4.2.1 Methods to Examine the Scale of a Continuous Covariate in the Logit

An important step in refining the main effects model is to determine whether the
model is linear in the logit for each continuous variable. In this section we discuss
four methods to address this assumption: (i) smoothed scatter plots, (ii) design
variables, (iii) fractional polynomials and (iv) spline functions.

As a first step, it is useful to begin checking linearity in the logit with a smoothed
scatterplot. This plot is helpful, not only as a graphical assessment of linearity but
also as a tool for identifying extreme (large or small) observations that could
unduly influence the assessment of linearity when using fractional polynomials or
spline functions. One simple and easily computed form of a smoothed scatterplot
was illustrated in Figure 1.2 using the data in Table 1.2. Other more complicated
methods that have greater precision are preferred at this stage.

Kay and Little (1986) illustrate the use of a method proposed by Copas (1983).
This method requires computing a smoothed value for the response variable for
each subject that is a weighted average of the values of the outcome variable over
all subjects. The weight for each subject is a continuous decreasing function of the
distance of the value of the covariate for the subject under consideration from the
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value of the covariate for all other cases. For example, for covariate x for the ith
subject we compute the smoothed value as

ysi =

iu∑
j=il

w(xi, xj )yj

iu∑
j=il

w(xi, xj )

,

where w(xi, xj ) represents a particular weight function. For example, if we use
STATA’s scatterplot lowess smooth command, with the mean option and bandwidth
k, then

w(xi, xj ) =
[

1 −
(∣∣xi − xj

∣∣3

�

)]3

,

where � is defined so that the maximum value for the weight is ≤1 and the two
indices defining the summation, il and iu, include the k percent of the n subjects
with x values closest to xi . Other weight functions are possible as well as additional
smoothing using locally weighted least squares regression, which is actually the
default in STATA.

In general, when using STATA, we use the default bandwidth of k = 0.8 and
obtain the plot of the triplet (xi, yi, ysi ), that is, the observed and smoothed values
of y on the same set of axes. The shape of the smoothed plot should provide some
idea about the parametric relationship between the outcome and the covariate.
Some packages, such as STATA’s lowess command, provide the option of plotting
the smoothed values, (xi, lsi ) where lsi = ln[ysi /(1 − ysi )], that is, plotting on
the logit scale, thus making it a little easier to make decisions about linearity in the
logit. The advantage of the smoothed scatter plot is that, if it looks linear then
the logit is likely linear in the covariate. One disadvantage of the smoothed scatter
plot is that if it does not look linear, most of us lack the experience to guess, with
any reliability, what function would satisfactorily reflect the displayed nonlinearity.
The parametric approaches discussed below are useful here since they specify a
best nonlinear transformation. Another disadvantage is that a smoothed scatterplot
does not easily extend to multivariable models.

The second suggested method is one that is easily performed in all statistical
packages and may be used with a multivariable model. The steps are as follows:
(i) using the descriptive statistics capabilities of your statistical package, obtain
the quartiles of the distribution of the continuous variable; (ii) create a categorical
variable with four levels using three cutpoints based on the quartiles. We note that
many other grouping strategies can be used but the one based on quartiles seems
to work well in practice; (iii) fit the multivariable model replacing the continuous
variable with the four-level categorical variable. To do this, one includes three
design variables that use the lowest quartile as the reference group; (iv) following
the fit of the model, plot the three estimated coefficients versus the midpoints
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of the upper three quartiles. In addition, plot a coefficient equal to zero at the
midpoint of the first quartile. To aid in the interpretation connect the four plotted
points with straight lines. Visually inspect the plot. If it does not look linear then
choose the most logical parametric shape(s) for the scale of the variable.

The next step is to refit the model using the possible parametric forms suggested
by the plot and choose one that is significantly different from the linear model and
makes clinical sense. It is possible that two or more different parameterizations
of the covariate may yield similar results in the sense that they are significantly
different from the linear model. However, it is our experience that one of the possi-
ble models will be more appealing clinically, thus yielding more easily interpreted
parameter estimates.

The advantage of the first two methods is that they are graphical and easily
performed. The disadvantage, as noted, is that it is sometimes difficult to postulate
a parametric form from either a somewhat noisy plot (method 1) or from only four
points (method 2).

The third method is an analytic approach based on the use of fractional poly-
nomials as developed by Royston and Altman (1994). Since that key paper, Roys-
ton and colleagues have researched this method extensively and have written
numerous papers providing guidance to applied investigators. For example, see
Royston et al. (1999) and Sauerbrei and Royston (1999). The recent text on the
method by Royston and Sauerbrei (2008) provides a detailed and highly read-
able account of the method along with its extensions and contains numerous
numerical examples. Readers looking for more details are urged to consult this
reference.

The essential idea is that we wish to determine what value of xp yields the
best model for the covariate. In theory, we could incorporate the power, p, as an
additional parameter in the estimation procedure. However, this greatly increases
the numerical complexity of the estimation problem. Royston and Altman (1994)
propose replacing full maximum likelihood estimation of the power by a search
through a small but reasonable set of possible values. The method is described in
the second edition of this text, Hosmer and Lemeshow (2000) and Hosmer et al.
(2008) provide a brief, but updated introduction to fractional polynomials when
fitting a proportional hazards regression model. This material provides the basis
for the discussion.

The method of fractional polynomials may be used with a multivariable logistic
regression model, but for the sake of simplicity, we describe the procedure using
a model with a single continuous covariate. The equation for a logit, that is linear
in the covariate, is

g(x, β) = β0 + β1x,

where β, in general, denotes the vector of model coefficients. One way to generalize
this function is to specify it as

g(x, β) = β0 +
J∑

j=1

βj × Fj (x),
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where the functions Fj (x) are a particular type of power function. The value of the
first function is F1(x) = xp1 . In theory, the power, p1, could be any number, but
in most applied settings it makes sense to try to use something simple. Royston
and Altman (1994) propose restricting the power to be among those in the set =
{−2, −1,−0.5, 0, 0.5, 1, 2, 3}, where p1 = 0 denotes the log of the variable.
The remaining functions are defined as

Fj (x) =
{
xpj , pj �= pj−1
Fj−1 (x) ln(x), pj = pj−1

for j = 2, . . . , J and restricting powers to those in . For example, if we chose
J = 2 with p1 = 0 and p2 = −0.5, then the logit is

g(x, β) = β0 + β1 ln(x) + β2
1√
x

.

As another example, if we chose J = 2 with p1 = 2 and p2 = 2, then the logit is

g(x, β) = β0 + β1x
2 + β2x

2 ln(x).

The model is quadratic in x when J = 2 with p1 = 1 and p2 = 2. Again, we
could allow the covariate to enter the model with any number of functions, J , but
in most applied settings an adequate transformation is found if we use J = 1 or 2.

Implementation of the method requires, for J = 1, fitting 8 models, that is
p1 ∈ . The best model is the one with the largest log-likelihood (or smallest
deviance). The process is repeated with J = 2 by fitting the 36 models obtained
from the distinct pairs of powers (i.e., (p1, p2) ∈ × ) and the best model is
again the one with the largest log-likelihood (or smallest deviance).

The relevant question is whether either of the two best models is significantly
better than the linear model. Let L(1) denote the log-likelihood for the linear
model (i.e., J = 1 and p1 = 1) and let L(p1) denote the log-likelihood for the best
J = 1 model and L(p1, p2) denote the log-likelihood for the best J = 2 model.
Royston and Altman (1994) and Ambler and Royston (2001) suggest, and verify
with simulations, that each term in the fractional polynomial model contributes
approximately 2 degrees of freedom to the model, effectively one for the power
and one for the coefficient. Thus, the partial likelihood ratio test comparing the
linear model to the best J = 1 model,

G(1, p1) = −2{L(1) − L(p1)},
is approximately distributed as chi-square with one degree of freedom under the null
hypothesis that the logit is linear in x. The partial likelihood ratio test comparing
the best J = 1 model to the best J = 2 model,

G[p1, (p1, p2)] = −2{L(p1) − L(p1, p2)},
is approximately distributed as chi-square with 2 degrees of freedom under the
hypothesis that the J = 2 model is not significantly different from the J = 1 model.
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Similarly, the partial likelihood ratio test comparing the linear model to the best
J = 2 model is distributed approximately as chi-square with 3 degrees of freedom.
(Note: to keep the notation simple, we use p1 to denote the best power both when
J = 1 and as the first of the two powers for J = 2. These are not likely to be the
same numeric value in practice.)

In an applied setting we can use the partial likelihood ratio test in two ways to
determine whether a transformation is significantly better than the linear model: a
closed test and a sequential test [see Sauerbrei et al. (2006) and cited references].
We note that Sauerbrei, Meier-Hirmer, Benner, and Royston consider a model that
does not contain x as the base model. We use the linear model as the base model
since, at the end of step 3, we have eliminated all statistically nonsignificant or
clinically unimportant covariates.

The closed test procedure begins by comparing the best two-term fractional poly-
nomial model to the linear model using G[1, (p1, p2)]. If this test is not significant,
at a typical level such as 0.05, then we stop and use the linear model. If the test
is significant then the best two-term fractional polynomial model is compared to
the best one-term fractional polynomial model using G[p1, (p1, p2)]. If this test is
significant then we select the two-term model; otherwise select the one-term model.

The sequential test procedure begins by comparing the best two-term frac-
tional polynomial model to the best one-term fractional polynomial model using
G[p1, (p1, p2)]. If this test is significant we select the two-term model. If it is not
significant then we compare the best one-term fractional polynomial model to the
linear model using G[1, (p1, p2)]. If the test is significant then we select the best
one-term model; otherwise we use the linear model.

Ambler and Royston (2001) examined the type I error rates of the two test-
ing methods via simulations and concluded that the closed test is better than the
sequential test at maintaining the overall error rate. Thus, we use the closed test
method in this text.

Whenever a one or two-term model is selected we highly recommend that the
resulting functional form be critically examined for subject matter plausibility.
The best way to do this is by plotting the fitted model versus the covariate. We
explain how to do this and illustrate it with the examples later in this chapter. One
should always ask the obvious question: Does the functional form of the fractional
polynomial transformation make sense within the context of the study? If it really
does not make sense then we suggest using the linear model or possibly another
fractional polynomial model. In almost every example we have encountered, where
one of the two best fractional polynomial models is better than the linear model
there is another fractional polynomial model that is also better whose deviance
is trivially larger than the selected best model. This other model may provide a
more clinically acceptable transformation. For example, assume that the closed test
procedure selects the two-term model with powers (2, 3). This transformation may
have a deviance that is not much smaller than that of the two-term quadratic model
(1, 2). From a subject matter perspective the quadratic model may make more
sense and be more easily explained than the best model. In this case we would not
hesitate to use the quadratic model.
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The only software package that has fully implemented the method of fractional
polynomials within the distributed package is STATA. In addition to the method
described above, STATA’s fractional polynomial routine offers the user consid-
erable flexibility in expanding the set of powers, , searched; however, in most
settings the default set of values should be more than adequate. STATA’s implemen-
tation also includes valuable graphical displays of the transformed model. Sauerbrei
et al. (2006) provide links to obtain macros for SAS and R code that can be used
to perform all the fractional polynomial analyses done with STATA in this text.

So far the discussion of fractional polynomials has been in the setting of a simple
univariable logistic regression model. In practice, most models are multivariable
and can contain numerous continuous covariates, each of which must be checked
for linearity. The approach we described above, where we checked for linearity
one variable at a time, is the one we use in Step 5 of purposeful selection.

Royston and Ambler (1998, 1999) extended the original fractional polynomial
software to incorporate an iterative examination for scale with multivariable models.
The default method incorporates recommendations discussed in detail in Sauerbrei
and Royston (1999). Multivariable modeling using fractional polynomials is avail-
able in distributed STATA and can be performed in SAS and R using the macros
and code that can be obtained from links in Sauerbrei et al. (2006). We describe
model building using multivariable fractional polynomials in Section 4.3.3.

We have found, in our practice, a level of reluctance by applied investigators to
use fractional polynomial transformations, regardless of how much clinical sense
they might make, because they think the model is too complicated to estimate odds
ratios. We showed in Section 3.5 that by carefully following the four-step procedure
for estimating odds ratios, one is able to obtain the correct expression involving
the model coefficients to estimate any odds ratio, no matter how complicated the
model might be.

The fourth method of checking for linearity in the logit is via spline func-
tions. Spline functions have been used in statistical applications to model nonlinear
functions for a long time; well before the advent of computers and modern sta-
tistical software brought computer intensive methods to the desk top [see, for
example, Poirier (1973), who cites pioneering work on these functions by Schoen-
berg (1946)]. Harrell (2001, pp. 18–24) presents a concise mathematical treatment
of the spline function methods we discuss in this section. Royston and Sauerbrei
(2008, Chapter 9) compare spline functions to fractional polynomials.

The basic idea behind spline functions is to mathematically mimic the use of
the draftsman’s spline to fit a series of smooth curves that are joined at specified
points, called “knots”. In this section we consider linear and restricted cubic spines
as these are the ones commonly available in statistical packages (e.g., STATA and
SAS).

We begin our discussion by considering linear splines based on three knots.
We discuss how to choose the number of knots and where these knots should be
placed shortly. The linear spline variables used in the fit can be parameterized with
coefficients representing the slope in each interval, or alternatively, by the slope in
the first interval and the change in the slope from the previous interval. We use the
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former parameterization, in which case the definitions of the four spline variables
formed from three knots are as follows:

x1 = min(X, k1)

and
xj = max[min(X, kj ), kj−1] − kj−1, j = 2, . . . , 4

where k1, k2 and k3 are the three knots. The four linear spline variables used in the
fit are as follows:

xl1 =
{
X, if X < k1,

k1, if k1 ≤ X,

xl2 =
⎧⎨⎩

0, if X < k1,

X − k1, if k1 ≤ X < k2,

k2 − k1, if k2 ≤ X,

xl3 =
⎧⎨⎩

0, if X < k2,

X − k2, if k2 ≤ X < k3,

k3 − k2, if k3 ≤ X,

xl4 =
{

0, if X < k3,

X − k3, if k3 ≤ X,

where the subscript “l” stands for linear spline.
The equation of the logit is

g(xl , βl ) = βl0 + βl1xl1 + βl2xl2 + βl3xl3 + βl4xl4. (4.1)

Under the model in equation (4.1) the equation of the logit in the four intervals
defined by the three knots is as follows:

g(xl , βl )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βl0 + βl1X if X < k1,

βl0 + βl1k1 + βl2

(
X − k1

)
= [βl0 + βl1k1 − βl2k2] + βl2X

if k1 ≤ X < k2,

βl0 + βl1k1 + βl2(k2 − k1) + βl3(X − k3)

= [βl0 + βl1k1 + βl2(k2 − k1) − βl3k3] + βl3X
if k2 ≤ X < k3,

βl0 + βl1k1 + βl2(k2 − k1) + βl3(k3 − k2) + βl4(X − k3)

= [βl0 +βl1k1 +βl2(k2 −k1)+βl3(k3 −k2)−βl4k3] + βl4X
if k3 ≤ X.

Thus, the slopes of the lines in the four intervals are given by βlj , j = 1, 2, 3, 4
and the four intercepts are functions of βlj , j = 0, 1, 2, 3, 4 and the three knots.

While linear spline functions, like those in equation (4.1), are relatively easy and
simple to describe they may not be sufficiently flexible to model a complex non-
linear relationship between an outcome and a covariate. In these settings restricted
cubic splines are a good choice. In this approach the spline functions are linear
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in the first and last intervals and are cubic functions in between, but join at the
knots. Restricting the functions to be linear in the tails serves to eliminate wild
fluctuations than can be a result of a few extreme data points. The definitions of
the restricted cubic spline variables, used by STATA, formed from three knots are
as follows:

xc1 = X,

and

xc2 = 1

(k3 − k1)
2

×
{(

X − k1

)3
+ − (k3 − k2)

−1
[(

X − k2

)3
+ (k3 − k1)

− (
X − k3

)3
+ (k2 − k1)

]}
= 1

(k3 − k1)
2

×
{(

X − k1

)3
+ − (X − k2)

3+(k3 − k1)

(k3 − k2)
+ (X − k3)

3+(k2 − k1)

(k3 − k2)

}
,

where the function (u)+ is defined as

(u)+ =
{

0, u ≤ 0
u, u > 0

and the logit is
g(xc, βc) = βc0 + βc1xc1 + βc2xc2. (4.2)

The restricted cubic spline covariate, xc2, is obviously much more complex and
more difficult to understand from its formula than the linear spline covariates. The
value of this covariate in each of the four intervals is as follows:

xc2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X < k1,

(X−k1)3

(k3−k1)2 = X3∗
c2 if k1 ≤ X < k2,

1
(k3−k1)2

{(
X − k1

)3 − (X−k2)3(k3−k1)

(k3−k2)

}
= − a

bc2 {X3∗ − 3cX2∗ + 3acX∗ − a2c} if k2 ≤ X < k3,

1
(k3−k1)2

{(
X − k1

)3 − (X−k2)3(k3−k1)

(k3−k2)
+ (X−k3)3(k2−k1)

(k3−k2)

}
= a

c
[3X∗ − (a + c)]

if k3 ≤ X,

where
X∗ = X − k1, a = k2 − k1, b = k3 − k2, and c = a + b. (4.3)

Obviously, one could use as many or as few knots as one wished. The more knots
one chooses the more flexible the resulting fit, but at a price of more parameters to
estimate. In most applications three to five knots are sufficient. One could choose
the knots to be equally spaced over the range of the covariate. For example, if the
range of the covariate was from 0 to 50 and one wanted four knots then one could
choose values 10, 20, 30, and 40. One might choose equally spaced percentiles,
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Table 4.1 Distribution Percentiles Defining Placement of
Knots for Splines

# of Knots Percentiles

3 10 50 90
4 5 35 65 95
5 5 27.5 50 73.5 95
6 5 23 41 59 77 95
7 2.5 18.33 34.17 65.83 81.67 97.5
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Figure 4.1 Lowess smooth on the log-odds scale of outcome Y versus the covariate X, n = 500.

for example, the 25th, 50th and 75th for three knots. Alternatively, Harrell (2001)
provides percentiles, for three to seven knots, that have been shown in simulations
to provide a good fit to wide range of shapes. These are given in Table 4.1.

Before we use purposeful selection with one of our data sets to build a model
we present an example illustrating each of the four methods to examine the scale
of a continuous covariate. The data are hypothetical and have been generated
with a slightly asymmetric but quadratic-like shape. The data are available as
Scale_Example and contain 500 observations of a continuous covariate, X, ranging
from 20 to 70 and a binary outcome, Y , coded 0 and 1.

The first method discussed in this section is the graphical presentation of the
lowess smooth of the outcome versus the covariate. This was computed in STATA
and is shown in Figure 4.1. Recall that the lowess smooth provides a nonparametric
description of the relationship between the logit or log-odds and the covariate.
Hence, if there is any nonlinearity in the relationship it should be apparent in
this plot. In fact, in this example, the departure from linearity is easily seen in
Figure 4.1. The relationship is clearly asymmetric in shape. However, describing its
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shape mathematically from the figure would represent a challenge that is beyond the
capabilities of most readers (and even the authors) of this book. Hence, the lowess
smooth, while quite useful for displaying nonlinearity in the logit does not lend
itself well to modeling decisions about what the correct scale might actually be.

When faced with a complex relationship like the one shown in Figure 4.1 subject
matter investigators might decide to categorize the covariate into four groups, effec-
tively using the quartile design variables. We categorized X into four groups using
cutpoints of 32, 44, and 56, which are the quartiles rounded to whole numbers. The
estimated coefficients and standard errors for this logistic model are presented in
Table 4.2. As described earlier, to check linearity in the logit we would plot each
of the coefficients versus the midpoint of the interval, using 0.0 as the coefficient
for the first quartile. Were we to present this plot it would show the log-odds ratios
[each point comparing the log-odds for each quartile to the log-odds for the first
quartile (i.e., the reference group)]. However, to compare the lowess smooth to
the fitted model in Table 4.2 we need to plot its linear predictor (i.e., the logit, or
log-odds). To plot the fitted logit values computed from the model in Table 4.2 we
compute the following:

logit(X) = β0 + β1 × (X_2) + β2 × (X_3) + β3 × (X_4)

=

⎧⎪⎪⎨⎪⎪⎩
0.754 − 2.213 (0) − 4.451(0) − 1.992(0) if X < 32
0.754 − 2.213(1) − 4.451(0) − 1.992(0) if 32 ≤ X < 44
0.754 − 2.213(0) − 4.451(1) − 1.992(0) if 44 ≤ X < 56
0.754 − 2.213(0) − 4.451(0) − 1.992(1) if 56 ≤ X.

This provides the values needed for the step function seen in Figure 4.2.
Next, we fit the model using linear splines with knots at 32, 44, and 56. The

fit of the model using four linear splines in equation (4.1) is shown in Table 4.3.
Due to the way the spline variables were created the coefficients estimate the slope
of the logit in each interval. The magnitude of the slopes agrees with the plot in
Figure 4.1, in that they become progressively less negative and then positive.

In order to compare the three approaches illustrated so far, we plot each on the
same set of axes in Figure 4.2. In addition, we plot the value of the linear spline
fit at each of the three knots. In order to better compare the linear spline fit to the
fit from the quartile design variables, we plot the mean value of the logit from the
linear spline fit within each quartile versus the midpoint of the quartile. In looking

Table 4.2 Results of Fitting the Logistic Regression Model with Quartile
Design Variables (X_ j), n = 500

Variable Coeff. Std. Err. z p

X_2 −2.213 0.3006 −7.36 <0.001
X_3 −4.451 0.6151 −7.24 <0.001
X_4 −1.992 0.2850 −6.99 <0.001
Constant 0.754 0.1917 3.93 <0.001
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Figure 4.2 Plot of the fitted model using quartiles (—), linear splines (– –), and the lowess smooth
(--). Also shown are the three knots (Knotj, �) and the mean of the linear spline fit within each
quartile (gmnj, •), n = 500.

Table 4.3 Results of Fitting the Logistic Regression Model with Linear
Spline Variables at Knots 32, 44, and 56, n = 500

Variable Coeff. Std. Err. z p

xl1 −0.280 0.0552 −5.08 <0.001
xl2 −0.191 0.0542 −3.52 <0.001
xl3 −0.055 0.0673 −0.81 0.418
xl4 0.302 0.0591 5.12 <0.001
Constant 8.263 1.5619 5.29 <0.001

at the plot several things become apparent: The fits from the linear splines and
quartile design variables follow the lowess smooth to the extent that their inherent
discreteness allows. The fit from the quartile design variables approximates quite
closely the mean of the fit from the linear splines. So, in essence, one might say
that using quartile design variables is a “poor man’s” linear spline fit. Lastly, both
fits are just too discrete to help suggest a model that could capture the nonlinearity
seen in the lowess smooth.

In order to better explore the complicated nonlinear relationship between the
logit of Y and X we display the results of using fractional polynomials in Table 4.4.
The values in the column “Dev. Dif.” present the difference between the deviance
from the model defined by the row and that of the two-term model in the last row.
This is the closed test procedure. The fact that the p-values are <0.001 in each
row tells us that the two-term fractional polynomial (2, 2) is significantly different
(better) than the model fit in each row. In particular, it is better than both the
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Table 4.4 Results of the Fractional Polynomial Analysis

X df Deviance Dev. Dif. p Powers

Not in model 0 592.953 206.085 <0.001
Linear 1 521.007 134.14 <0.001 1
m = 1 2 452.668 65.8 <0.001 −2
m = 2 4 386.868 2 2

linear fit and the one-term fractional polynomial model with power −2. Hence,
from a purely statistical view point we would choose the two-term model. Recall
the powers (2, 2) means that this model contains X2 and X2 × ln(X). The fit of
this model is shown in Table 4.5.

The results in Table 4.5 indicate that the coefficients for both fractional poly-
nomial variables are significant, but it is difficult to tell what the shape of the
resulting logit as a function of the covariate X would be by simply looking at the
coefficients. (Note that we divided X by 10 in calculating Xfp1 and Xfp2 so that
the estimated coefficients are not excessively small.) The best and easiest way to
make some judgment about shape is to examine the plot of the function. This is
shown as the solid line in Figure 4.3.

Next, we fit the model with restricted cubic splines. The results are presented in
Table 4.6. The first thing we note about the fit in Table 4.6 is that both estimated
coefficients are significant, but are of a completely different magnitude than those
for the fractional polynomial model in Table 4.5. Again, the only way to really
understand the fit is via a plot. Figure 4.3 now includes the fit from the restricted
cubic spline model and the lowess smooth in addition to the fractional polynomial
model described earlier.

It is difficult to see from the plots in Figure 4.3 which of the two models fits better
in the sense of mimicking the lowess fit. However, the deviance of the fractional
polynomial model is 386.868 while that of the restricted cubic spline model is
395.128, a difference of 8.260, which suggests that the fractional polynomial model
has the better fit. We also note that the fractional polynomial model appears to
model the asymmetry better than the restricted cubic spline model. The knots
used correspond to the quartiles and not the 10th, 50th, and 90th percentiles as
suggested in Table 4.1. The fit using these knots (24, 44, and 66) had just a slightly

Table 4.5 Results of Fitting the Two-Term Fractional Polynomial (2, 2)

Model, n = 500

Variable Coeff. Std. Err. z p

Xfp1 −1.883 0.1751 −10.75 <0.001
Xfp2 0.892 0.0843 10.58 <0.001
Constant 7.959 0.7874 10.11 <0.001

Xfp1 = (X/10)2 and Xfp2 = (X/10)2 × ln(X/10)



106 model-building strategies and methods for logistic regression

−4

−2

0

2

4

6

Lo
g-

od
ds

20 30 40 50 60 70
X

Two term FP
Cubic spline
Lowess smooth

Figure 4.3 Plot of the fitted model using the two-term fractional polynomial (—), restricted cubic
splines (– –), and the lowess smooth (--).

Table 4.6 Results of Fitting the Restricted Cubic Spline
Model with Knots at 32, 33, and 56, n = 500

Variable Coeff. Std. Err. z p

xc1 −0.292 0.0274 −10.67 <0.001
xc2 0.298 0.0313 9.51 <0.001
Constant 8.639 0.8706 9.92 <0.001

smaller deviance, 391.646. Using four knots placed at the percentiles in Table 4.1
yields a model with effectively the same deviance as the fractional polynomial
model, but at a cost of more parameters and much more complex parameterization
of X. Hence our conclusion is that, based on statistical considerations, the two-
term fractional polynomial model provides the better nonlinear fit from among the
models explored. The phrase “statistical considerations” is an important qualifier, as
the resulting shape of the logit must make clinical sense before it is used in further
modeling. One other point, which we do not illustrate here, is that estimating
odds ratios is considerably easier with fractional polynomial models than it is
with restricted cubic spline models. Thus, if the goal is to model a nonlinear logit
and to then estimate odds ratios for this covariate we highly recommend using
fractional polynomials over restricted cubic splines. On the other hand if the goal
is simply to model nonlinearity in the logit to control for confounding without odds
ratio estimation then restricted cubic splines offer the possibility to model a quite
complex relationship without actually having to specify its parametric form.

One special type of “continuous” variable that occurs reasonably often in practice
is one that has many values at “zero”. Consider a study in which subjects are asked
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to report their lifetime use of cigarettes. All the nonsmokers report a value of zero.
A one-half pack-a-day smoker for 20 years has a value of approximately 73,000
cigarettes. What makes this covariate unusual is the fact that the zero value occurs
with a frequency much greater than expected for a fully continuous distribution.
In addition, the nonzero values typically exhibit right skewness. Robertson et al.
(1994) show that the correct way to model such a covariate is to include two
terms, one that is dichotomous recording zero versus nonzero and one for the
actual recorded value. Thus, the logit for such a model is

g(x, β) = β0 + β1d + β2x,

where d = 0 if x = 0 and d = 1 if x > 0. The advantage of this parameterization
is that it allows us to model two different odds ratios. The odds ratio comparing a
nonsmoker to a smoker with x∗ lifetime cigarettes is

OR(x = x∗, x = 0) = eβ1+β2x∗

and the odds ratio for an increase of c in lifetime cigarettes is

OR(x = x + c, x = x) = eβ2c.

Note that during the modeling process we still need to check the scale in the
logit for the positive values of the covariate. Since the distribution of x is typically
skewed, fractional polynomial analysis often suggests using the one-term transfor-
mations ln(x) or

√
x. As noted above, odds ratios can be estimated by following

the four step method discussed in Chapter 3.

4.2.2 Examples of Purposeful Selection

Example 1: The GLOW Study. For our first example of purposeful selection we
use the GLOW500 data. This study is described in detail in Section 1.6.3 and
the variables are described in Table 1.7. Before beginning, we remind the reader
that these data are a sample from the much larger GLOW study. In particular, we
over sampled fractures to obtain a modest sized data set where meaningful model
building would be possible. This analysis provides a good example of an analysis
designed to identify risk factors for a specified binary outcome. In this example,
the outcome is fracture during the first year of follow up. Among the 500 women
in this data set 125 (25%) had an incident fracture.

Step 1: The first step in purposeful selection is to fit a univariable logistic
regression model for each covariate. The results of this analysis are shown
in Table 4.7. Note that in this table, each row presents the results for
the estimated regression coefficient(s) from a model containing only that
covariate.
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Table 4.7 Results of Fitting Univariable Logistic Regression Models in the GLOW
Data, n = 500

Coeff. Std. Err. ÔR 95% CI G p

AGE 0.053 0.0116 1.30a 1.16, 1.46 21.27 <0.001
WEIGHT −0.0052 0.0064 0.97b 0.91, 1.04 0.67 0.415
HEIGHT −0.052 0.0171 0.60c 0.43, 0.83 9.53 0.002
BMI 0.006 0.0172 1.03d 0.87, 1.22 0.11 0.738
PRIORFRAC 1.064 0.2231 2.90 1.87, 4.49 22.27 <0.001
PREMENO 0.051 0.2592 1.05 0.63, 1.75 0.04 0.845
MOMFRAC 0.661 0.2810 1.94 1.12, 3.36 5.27 0.022
ARMASSIST 0.709 0.2098 2.03 1.35, 3.07 11.41 0.001
SMOKE −0.308 0.4358 0.74 0.31, 1.73 0.53 0.469
RATERISK
RATERISK_2 0.546 0.2664 1.73 1.02, 2.91 11.76 0.003
RATERISK_3 0.909 0.2711 2.48 1.46, 4.22

aOdds Ratio for a 5-year increase in AGE.
bOdds Ratio for a 5 kg increase in WEIGHT.
cOdds Ratio for a 10 cm increase in HEIGHT.
dOdds Ratio for a 5 kg/m2 increase in BMI.

Table 4.8 Results of Fitting the Multivariable Model with All Covariates Significant
at the 0.25 Level in the Univariable Analysis in the GLOW Data, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.034 0.0130 2.63 0.008 0.009, 0.060
HEIGHT −0.044 0.0183 −2.40 0.016 −0.080, −0.008
PRIORFRAC 0.645 0.2461 2.62 0.009 0.163, 1.128
MOMFRAC 0.621 0.3070 2.02 0.043 0.020, 1.223
ARMASSIST 0.446 0.2328 1.91 0.056 −0.011, 0.902
RATERISK_2 0.422 0.2792 1.51 0.131 −0.1253, 0.969
RATERISK_3 0.707 0.2934 2.41 0.016 0.132, 1.282
Constant 2.709 3.2299 0.84 0.402 −3.621, 9.040

Step 2: We now fit our first multivariable model that contains all covariates that
are significant in univariable analysis at the 25% level. The results of this fit
are shown in Table 4.8. Once this model is fit we examine each covariate
to ascertain its continued significance, at traditional levels, in the model.
We see that the covariate with the largest p-value that is greater than 0.05
is for RATERISK2, the design/dummy variable that compares women with
RATERISK = 2 to women with RATERISK = 1. The likelihood ratio test
for the exclusion of self-reported risk of fracture (i.e., deleting RATERISK_2
and RATERISK_3 from the model) is G = 5.96, which with two degrees of
freedom, yields p = 0.051, nearly significant at the 0.05 level.

Step 3: Next we check to see if covariate(s) removed from the model in Step 2
confound or are needed to adjust the effects of covariates remaining in the



purposeful selection of covariates 109

model. In results not shown, we find that the largest percent change is 17%
for the coefficient of ARMASSIST. This does not exceed our criterion of
20%. Thus, we see that while self-reported rate of risk is not a confounder
it is an important covariate. No other covariates are candidates for exclusion
and thus, we continue using the model in Table 4.8.

Step 4: On univariable analysis the covariates for weight (WEIGHT), body mass
index (BMI), early menopause (PREMENO) and smoking (SMOKE) were
not significant. When each of these covariates is added, one at a time, to the
model in Table 4.8 its coefficient did not become significant. The only change
of note is that the significance of BMI changed from 0.752 to 0.334. Thus
the next step is to check the assumption of linearity in the logit of continuous
covariates age and height.

Before moving to step 5 we consider another possible model. Since the
coefficient for RATERISK_2 is not significant, one possibility is to combine
levels 1 and 2, self-reported risk less than or the same as other women, into
a new reference category. The advantage of this is that the new covariate is
dichotomous, but we loose information about the specific log-odds of cat-
egories 1 and 2. On consultation with subject matter investigators, it was
thought that combining these two categories is reasonable. Hence we fit this
model and its results are shown in Table 4.9. In this model, the coefficient
for the covariate RATERISK_3 now provides the estimate of the log of the
odds ratio comparing the odds of fracture for individuals in level 3 to that of
the combined group consisting of levels 1 and 2.

Step 5: At this point we have our preliminary main effects model and must now
check for the scale of the logit for continuous covariates age and height. We
presented four different methods in Section 4.2.1: the lowess smooth, quartile
design variables, fractional polynomials and spline functions. In most applied
settings we would always use the lowess smooth and fractional polynomials
and also do so here. We also illustrate the design variable approach, as it
is always an option. We reserve use of spline functions to settings where
the best two-term fractional polynomial model does not seem to provide an
adequate representation of the what we see in the lowess smooth.

Table 4.9 Results of Fitting the Multivariable Model after Collapsing
Rate Risk into Two Categories, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.033 0.0129 2.56 0.010 0.008, 0.059
HEIGHT −0.046 0.0181 −2.55 0.011 −0.082, −0.011
PRIORFRAC 0.664 0.2452 2.71 0.007 0.184, 1.145
MOMFRAC 0.664 0.3056 2.17 0.030 0.065, 1.263
ARMASSIST 0.473 0.2313 2.04 0.041 0.019, 0.926
RATERISK_3 0.458 0.2381 1.92 0.054 −0.009, 0.925
Constant 3.407 3.1770 1.07 0.284 −2.820, 9.633
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Figure 4.4 Lowess smooth on the log-odds scale of the outcome, fracture during the first year of
follow-up, versus AGE, n = 500.

Table 4.10 Results of the Quartile Design Variable Analyses of AGE (x) from the
Multivariable Model Containing the Variables Shown in the Model in Table 4.9

Quartile 1 2 3 4

Range x < 62 62 ≤ x < 68 68 ≤ x < 77 77 ≤ x

Midpoint 58.5 65 72.5 83.5
Coeff. 0.0 0.610 0.590 0.970
95% CI −0.059, 1.278 −0.050, 1.229 0.311, 1.629

The lowess smooth for the outcome fracture versus age on the logit or log-odds
scale is shown in Figure 4.4. Other than an inconsequential wiggle over age less
than about 58, the plotted lowess smooth appears nearly linear, suggesting that
there is no reason to suspect that the logit is not linear in age.

Next we examine the scale of age in the logit using quartile design variables.
The results of the fit for age when it is replaced with quartile design variables in
the multivariable model (Table 4.9) are shown in Table 4.10 and are plotted in
Figure 4.5.

The confidence intervals for the coefficients in Table 4.10 for quartiles two and
three each contain one, while that for the fourth quartile does not contain one.
This suggests that the log-odds for fracture does not seem to increase significantly
until after about age 72. Based on these results one might be tempted to replace
age, as represented by a continuous variable, with a dichotomous variable that uses
the design variable for the fourth quartile. This portrays a slightly different picture
than that seen in Figure 4.4, where the lowess smoothed logit increases gradually
over the entire range of age. We return to this point after performing the fractional
polynomial analysis of age.
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Figure 4.5 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of AGE.

Table 4.11 Results of the Fractional Polynomial Analysis of AGE

df Deviance Dev. dif. p Powers

Not in Model 0 516.421 7.468 0.113
Linear 1 509.818 0.865 0.834 1
m = 1 2 509.257 0.304 0.859 −2
m = 2 4 508.953 3 3

The results of the fractional polynomial analysis are shown in Table 4.11. In
general, when we perform a fractional polynomial analysis we proceed under the
assumption that we have already decided that it is important to have the covariate
in the model. Hence, we tend to ignore the results in the first row that compares
the best two-term fractional polynomial model to the model not containing the
covariate. The first test we look at is the one in the second row that compares the
best two-term fractional polynomial model to the model treating the covariate as
linear in the logit, indicated by “1” in the Powers column. In Table 4.11 the value
of the likelihood ratio test is given in the “Dev. Dif.” column and its p-value is
in the “p” column. In this case, the test is not significant as p = 0.834, leading to
the conclusion that the best fractional polynomial transformation is not better than
the linear model. While the closed test procedure stops at this point, we always
examine the results in the last two rows to see what transformations have been
selected and to make sure we have not missed anything. In this case, all signs
point toward treating age as linear in the logit.

The fact that the lowess smooth looks quite linear and that the supporting results
from the factional polynomial analysis suggest that nothing new could be learned



112 model-building strategies and methods for logistic regression

about the scale of the logit in AGE from a spline variable analysis. Hence, we
choose not to use it.

We remarked in discussing the plot of the quartile design variables that one might
elect to dichotomize AGE at the fourth quartile. Categorization of a continuous
covariate is, unfortunately, a relatively common practice in many applied fields.
The temptation of its simplicity seems, in the minds of proponents, to outweigh the
considerable loss of information about the covariate in such a strategy. See Royston
et al. (2006) for a full discussion of the pitfalls of dichotomizing a continuous
covariate. In results we do not show, but leave as an exercise, the deviance from
the model using the dichotomous version of AGE is larger than that of the model
in Table 4.9. Thus our decision is to treat AGE as continuous and linear in the
logit.

Next we examine the continuous variable HEIGHT to determine whether it is
linear in the logit. The plots of two lowess smooths on the logit scale are shown in
Figure 4.6. The solid line corresponds to the smooth using all 500 subjects, while
the dashed line is the smooth when one subject with a height of 199 cm is excluded.
We excluded this subject to see what effect she had on the shape of the smooth.
Neither smooth appears to be linear for heights less than 180 cm. The question
is whether this represents a “significant” departure from linear. We examine this
question using both quartile design variables and fractional polynomials (as shown
in Figure 4.7).

The plot of the estimated coefficients from the quartile design variables for height
shown in Figure 4.7 are based on fitting a model with n = 500, as the 199 cm tall
woman has little effect on the coefficient in the last column of Table 4.12. The plot
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Figure 4.6 Lowess smooth on the log-odds scale of the outcome, fracture during the first year of
follow up, versus HEIGHT, n = 500 (solid) and n = 499 (dashed).
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Figure 4.7 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of HEIGHT.

Table 4.12 Results of the Quartile Design Variable Analyses of HEIGHT from the
Multivariable Model Containing the Variables Shown in the Model in Table 4.9

Quartile 1 2 3 4

Range x ≤ 157 157 < x ≤ 161.5 161.5 < x ≤ 165 x > 165
Midpoint 145.5 159.25 163.25 182
Coeff. 0.0 −0.266 −0.369 −0.628
95% CI −0.861, 0.329 −0.964, 0.226 −1.255, −0.001

Table 4.13 Results of the Fractional Polynomial Analysis of HEIGHT

df Deviance Dev. Dif. p Powers

Not in Model 0 516.558 8.574 0.073
Linear 1 509.818 1.834 0.608 1
m = 1 2 509.137 1.154 0.562 −2
m = 2 4 507.984 −2 −2

is strikingly linear, giving a different impression of the parametric form than what
is seen in Figure 4.6.

We turn to fractional polynomials to sort out the discrepancies seen in Figure 4.6
and Figure 4.7. These results are shown in Table 4.13 where we see that the two-
term fractional polynomial with powers (−2,−2) is far from significantly different
from the linear model. We ran the analysis excluding the 199 cm woman and the
results are not appreciably different from those in Table 4.13. Hence our conclusion
is to treat HEIGHT as linear in the logit. For the time being, we are going to retain
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Table 4.14 Log-Likelihood, Likelihood Ratio Test (G , df = 1), and p-Value for the
Addition of the Interactions to the Main Effects Model

Interaction Log-Likelihood G p

Main Effects Model −254.9089
AGE*HEIGHT −254.8422 0.13 0.715
AGE*PRIORFRAC −252.3921 5.03 0.025
AGE*MOMFRAC −254.8395 0.14 0.710
AGE*ARMASSIST −254.8358 0.15 0.702
AGE*RATERISK3 −254.3857 1.05 0.306
HEIGHT*PRIORFRAC −254.8024 0.21 0.645
HEIGHT*MOMFRAC −253.7043 2.41 0.121
HEIGHT*ARMASSIST −254.1112 1.60 0.207
HEIGHT*RATERISK3 −254.4218 0.97 0.324
PRIORFRAC*MOMFRAC −253.5093 2.80 0.094
PRIORFRAC*ARMASSIST −254.7962 0.23 0.635
PRIORFRAC*RATERISK3 −254.8476 0.12 0.726
MOMFRAC*ARMASSIST −252.5179 4.78 0.029
MOMFRAC*RATERISK3 −254.6423 0.53 0.465
ARMASSIST*RATERISK3 −253.7923 2.23 0.135

the 199 cm woman in the analysis, waiting until we examine her influence using
diagnostic statistics in Chapter 5. Hence our final main effects model is the one
whose fit is shown in Table 4.9.

Step 6: The next step in the purposeful selection procedure is to explore possible
interactions among the main effects. The subject matter investigators felt that
each pair of main effects represents a plausible interaction. Hence, we fit
models that individually added each of the 15 possible interactions to the main
effects model. The results are summarized in Table 4.14. Three interactions
are significant at the 10 percent level: Age by prior fracture (PRIORFRAC),
prior fracture by mother had a fracture (MOMFRAC) and mother had a
fracture by arms needed to rise from a chair (ARMASSIST). We note that
prior fracture and mother having had a fracture are involved in two of the
three significant interactions.

The next step is to fit a model containing the main effects and the three
significant interactions. The results of this fit are shown in Table 4.15. The
three degree of freedom likelihood ratio test of the interactions model in
Table 4.15 versus the main effects model in Table 4.9 is G = 11.03 with p =
0.012. Thus, in aggregate, the interactions contribute to the model. However,
one interaction, prior fracture by mother’s fracture, is not significant with a
Wald statistic p = 0.191. Next, we fit the model excluding this interaction
and the results are shown in Table 4.16.

The estimated coefficients in the interactions model in Table 4.16 are, with
one exception, significant at the five percent level. The exception is the esti-
mated coefficient for the dichotomized self-reported risk of fracture, RATERISK3
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Table 4.15 Results of Fitting the Multivariable Model with the Addition of Three
Interactions, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.058 0.0166 3.49 0.000 0.025, 0.091
HEIGHT −0.049 0.0184 −2.65 0.008 −0.085, −0.013
PRIORFRAC 4.598 1.8780 2.45 0.014 0.917, 8.278
MOMFRAC 1.472 0.4229 3.48 0.000 0.644, 2.301
ARMASSIST 0.626 0.2538 2.46 0.014 0.128, 1.123
RATERISK3 0.474 0.2410 1.97 0.049 0.002, 0.947
AGE*PRIORFRAC −0.053 0.0259 −2.05 0.040 −0.104, −0.002
PRIORFRAC*MOMFRAC −0.847 0.6475 −1.31 0.191 −2.116, 0.422
MOMFRAC*ARMASSIST −1.167 0.6168 −1.89 0.058 −2.376, 0.042
Constant 1.959 3.3272 0.59 0.556 −4.562, 8.481

Table 4.16 Results of Fitting the Multivariable Model with the Significant
Interactions, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.057 0.0165 3.47 0.001 0.025, 0.090
HEIGHT −0.047 0.0183 −2.55 0.011 −0.083, −0.011
PRIORFRAC 4.612 1.8802 2.45 0.014 0.927, 8.297
MOMFRAC 1.247 0.3930 3.17 0.002 0.476, 2.017
ARMASSIST 0.644 0.2519 2.56 0.011 0.150, 1.138
RATERISK3 0.469 0.2408 1.95 0.051 −0.003, 0.941
AGE*PRIORFRAC −0.055 0.0259 −2.13 0.033 −0.106, −0.004
MOMFRAC*ARMASSIST −1.281 0.6230 −2.06 0.040 −2.502, −0.059
Constant 1.717 3.3218 0.52 0.605 −4.793, 8.228

(1 = more, 0 = same or less) with p = 0.051. We elect to retain this in the model
since the covariate is clinically important and its significance is nearly five percent.
Hence the model in Table 4.16 is our preliminary final model. Its fit, adherence
to model assumptions and assessment for influence of individual subjects is exam-
ined in Chapter 5. Following this assessment we present the results of the model in
terms of odds ratios for estimates of the effect of each covariate on fracture during
the first year of follow up.

In summary, our first example of model building using purposeful selection with
the GLOW data illustrated: selecting variables, examining the scale in the logit for
two continuous covariates and selecting and refining interactions. The resulting
model in Table 4.16 is, in a sense, relatively simple in that it contains only two
interactions. There was no statistical evidence of nonlinearity in the logit for the
two continuous covariates.

Example 2: The Burn Injury Study. The second example is one where the goal is
to obtain a model that could be used for estimating the probability of the response,
as well as, to some extent, for quantifying the effect of individual risk factors. We



116 model-building strategies and methods for logistic regression

use the Burn Injury Study data described in Section 1.6.5 and Table 1.9. The data,
BURN1000, contain information on a burn injury for 1000 subjects, 150 of whom
died. As noted in Section 1.6.5 these data were sampled from a much larger data
set and deaths were over sampled. Since the goal is to develop a model to estimate
the probability of death from burn injury we would like a parsimonious model that
would be likely to perform well in another data set. As we show later, these data
illustrate some of the challenges that one can face when modeling a continuous
covariate that is nonlinear in the logit. There are only six covariates and we have
a large total sample size (1000) and number of outcomes (150), so rather than
perform steps 1 and 2, we begin by fitting the model containing all covariates. The
results of this fit are shown in Table 4.17.

In Table 4.17 the Wald test for the coefficient for GENDER is not significant
with p = 0.513 and that of FLAME has p = 0.100. When we delete GENDER and
refit the model the significance of the Wald test for FLAME becomes p = 0.094
and there is no evidence of confounding by GENDER. After consultation with an
experienced burn surgeon, we decided to remove FLAME from the model for the
reason that there are many different ways that flame could be involved with a burn
injury and using simple yes or no coding is not precise enough to be helpful. In
addition, we are striving for a model that is as parsimonious as possible. Thus
our preliminary main effects model contains only four covariates: age (AGE),
burn surface area (TBSA), race (RACE: 0 = non-white, 1 = white) and inhalation
injury involved (INH_INJ, 0 = no, 1 = yes). The results of this fit are shown in
Table 4.18.

Table 4.17 Results of Fitting a Multivariable Model to the Burn Injury Data
Containing All Available Covariates, n = 1000

Coeff. Std. Err. z p 95% CI

AGE 0.083 0.0086 9.61 <0.001 0.066, 0.100
TBSA 0.089 0.0091 9.83 <0.001 0.072, 0.107
GENDER −0.201 0.3078 −0.65 0.513 −0.805, 0.402
RACE −0.701 0.3098 −2.26 0.024 −1.309, −0.094
INH_INJ 1.365 0.3618 3.77 <0.001 0.656, 2.074
FLAME 0.583 0.3545 1.64 0.100 −0.112, 1.277
Constant −7.695 0.6912 −11.13 <0.001 −9.050, −6.341

Table 4.18 Preliminary Main Effects Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGE 0.084 0.0085 9.95 <0.001 0.068, 0.101
TBSA 0.090 0.0091 9.95 <0.001 0.073, 0.108
RACE −0.624 0.2989 −2.09 0.037 −1.209, −0.038
INH_INJ 1.523 0.3512 4.34 <0.001 0.835, 2.211
Constant −7.595 0.6090 −12.47 <0.001 −8.788, −6.401
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Table 4.19 Results of the Quartile Design Variable Analyses of the Scale of AGE

Quartile 1 2 3 4

Range x ≤ 10.8 10.8 < x ≤ 31.9 31.9 < x ≤ 51.2 51.2 < x

Midpoint 5.45 21.35 41.55 70.45
Coeff. 0.0 −0.483 1.139 3.770
95% CI −1.994, 1.029 −0.066, 2.343 2.629, 4.912
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Figure 4.8 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of AGE.

The next step is to examine the scale in the logit for age and burn surface
area. We begin by considering age in the multivariable model in Table 4.18. The
estimated coefficients for the quartile design variables are presented in Table 4.19
and plotted versus the quartile midpoints in Figure 4.8.

Only the estimated coefficient for the fourth versus the first quartile is significant.
However, the plot shows that the log-odds of dying decreases and then increases,
which makes clinical sense as subjects between 15 and 25, all things being equal,
are known to have better outcomes than those who are younger or older. Next, we
explore this in detail using the lowess smooth, fractional polynomials and restricted
cubic splines.

The results of the fractional polynomial analysis of age are presented in
Table 4.20. The p-values show that the two-term fractional polynomial model is
better than the linear model at the 10% level but not different from the one-term
fractional polynomial model. We know that a one-term fractional polynomial
model is monotonic, so cannot be of the shape seen in Figure 4.8. Hence, at this
point, we are going to consider both the one-term (m = 1) and two-term (m = 2)
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Table 4.20 Results of the Fractional Polynomial Analysis of AGE

df Deviance Dev. Dif. p Powers

Not in Model 0 520.362 187.147 <0.001
Linear 1 339.785 6.569 0.087 1
m = 1 2 336.849 3.634 0.163 2
m = 2 4 333.215 3 3

fractional polynomial models as possible parameterizations of the scale of age in
the logit.

Before moving on, we offer a few further comments on the models in Table 4.20.
First, the model in the m = 2 row is the one with the numerically smallest deviance
among the 36 two-term models fit. By using the “log” option in STATA we can
obtain the value of the deviance for all models fit. Using this feature (output not
shown) we find that there are three other two-term models [powers: (1, 0.5), (1, 1),
and (2, 3)] with a deviance that differs by at most 0.7 from the best model. Note
that the powers of these three models are, in a sense, no more easily interpreted
than the best model’s powers of (3, 3). Thus, there is no compelling reason to use
any one of those as an alternative to the (3, 3) model. A natural follow up question
is: If the best one-term model uses power 2, then, is the quadratic model (1, 2) an
option? In this case, the deviance for the quadratic model is 335.368, which is not
significantly different from the deviance for the power 2 model as G = 1.47 and
p = 0.225. Also, the second best one-term model is the linear model.

Hence, by using STATA’s log option we have found another model, powers
1 and 2, that may be more easily interpreted than the best fractional polynomial
model. If the goal of the analysis is to estimate measures of effect for risk factors for
death following a burn injury then it would make good sense to use the quadratic
model as it is more easily interpreted than the power 2 model by a subject matter
audience. However, our modeling goal is not effect estimation but rather estimation
of the probability of death following a burn injury. For the latter goal the smaller
model, power 2, may be better than the larger model, powers 1 and 2. Also, we still
have additional steps in model building to perform: examining the scale of percent
body surface area burned in the logit and assess the need to include interactions.
In practice we would likely perform the remaining steps for both parameterizations
of age. Then we would assess model adequacy and performance using the methods
discussed in Chapter 5 and choose the better of the two models. This is not practical
in a text so we are going to proceed with the smaller, power 2 model and leave
parallel model development and evaluation, using the quadratic parameterization
of age as an exercise for the reader.

Next, we try modeling age using restricted cubic splines. We found (in work we
do not show here but leave as an exercise) that the best spline model is one with
four knots at the percentiles in Table 4.1. The values of these four knots are: 1.1,
19, 44.37, and 78.87 years of age. The fit of this model is shown in Table 4.21,
where AGESPL1, AGESPL2, and AGESPL3 are the three restricted cubic splines
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Table 4.21 Fit Modeling AGE with Restricted Cubic Splines Formed from Four
Knots at 1.1, 19, 44.37 and 78.87 Years, n = 1000

Coeff. Std. Err. z p 95% CI

AGESPL1 −0.063 0.0608 −1.04 0.297 −0.182, 0.056
AGESPL2 0.507 0.2644 1.92 0.055 −0.011, 1.026
AGESPL3 −0.921 0.5208 −1.77 0.077 −1.941, 0.100
TBSA 0.091 0.0092 9.92 <0.001 0.073, 0.109
RACE −0.562 0.3065 −1.83 0.067 −1.163, 0.039
INH_INJ 1.516 0.3565 4.25 <0.001 0.817, 2.215
Constant −5.721 0.7578 −7.55 <0.001 −7.206, −4.236

in AGE created from the four knots using an extension of the three-knot spline
variable shown in equation (4.3).

In order to compare the shape of the logit in AGE for the two fractional poly-
nomial models and the cubic spline model compared to the lowess smooth we plot
all four logit functions versus age. The three parametric logit functions were scaled
so that their average is the same as the average of the lowess smoothed logit. The
purpose of this is to obtain a plot where the four curves are more easily compared.
As an example, what we calculated to plot for the cubic spline is

gspl = −0.063 × AGESPL1 + 0.507 × AGESPL2 − 0.921 × AGESPL3.

We calculated the mean of gspl and then added a constant to it so its mean would
be equal to the mean of the lowess smooth. Similar calculations were performed
using the estimated coefficient of AGE2 to obtain gfp1, the mean adjusted one-
term fractional polynomial model in AGE2 and for gfp2, the mean adjusted two-
term fractional polynomial model in AGE3 and AGE3 × ln(AGE). These are
shown in Figure 4.9.

We begin by comparing the four functions in the neighborhood of 20 years of
age. The upper most of the four curves is the lowess smoothed logit, followed by the
one-term fractional polynomial and the two-term fractional polynomial model. The
lowest value results from the fit of the restricted cubic spline model. We see that
the lowess smooth is nearly linear. The two fractional polynomial models are both
increasing functions of age and are similar to each other, supporting p = 0.163
from Table 4.20. The plot of the restricted cubic spline fit has a dip, reaching
its minimum at about 17 years of age and then it increases and nearly coincides
with the two-term fractional polynomial model for age greater than 40. The plot
of the restricted cubic spline also has the same form as the plot of the estimated
coefficients from the quartile design variables in Figure 4.8.

The plots in Figure 4.9 leave us with some difficult choices. The most reasonable
clinical model is the one using restricted cubic splines. However, it comes at the
cost of having to use the three complex spline variables that are not easily explained,
except in a figure, to clinicians. Thus, the effect of age would have to be estimated
using the four-step procedure discussed in Chapter 3. The algebra necessary to
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Figure 4.9 Plot of estimated logit from fits based on one (- - -) and two-term (—) fractional poly-
nomials, restricted cubic spline (– – –), and the lowess smooth (−ċ − ċ−) of AGE. All fitted logistic
regression models contain TBSA, RACE and INH_INJ.

obtain the difference in the logits is quite complicated and would yield an extremely
complex equation in the spline variables and the three estimated coefficients in
Table 4.21. Hence, although this is a problem that has a solution and the method
for obtaining it is straightforward, the work involved is formidable. We note that
once done it could be programmed. Thus, if our goal was simply to model these
data we would choose to proceed with the restricted cubic splines. However, from
a practical point of view, our goal is to obtain a clinically interpretable model to
estimate the probability of death following a burn injury for potential use with
new data. Hence our decision is to use the simple one-term fractional polynomial
model as it is better than the linear model and as good as the two-term fractional
polynomial model.

Before we leave consideration of the functional form in age we discuss a statis-
tical measure that is commonly used to compare models with different numbers of
parameters, the Akaike Information Criterion (AIC), Akaike (1974). This measure
is defined as

AIC = −2 × L + 2 × (p + 1), (4.4)

where L is the log-likelihood of the fitted model and p is the number of regres-
sion coefficients estimated for nonconstant covariates. Note that in Chapters 1
and 2 we defined the deviance of the fitted model as D = −2 × L, thus AIC =
D + 2 × (p + 1). In general, lower values of AIC are preferred to larger ones. In
the current example, the deviance from the fitted one-term fractional polynomial
model is D = 336.842. The model has five coefficients: an intercept and one each
for AGE2, TBSA, RACE, and INH_INJ. For testing purposes the transformation,
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Table 4.22 Results of the Quartile Design Variable Analyses of the Scale of TBSA

Quartile 1 2 3 4

Range x ≤ 2.5 2.5 < x ≤ 6 6 < x ≤ 16 x > 16
Midpoint 1.3 4.25 11.0 57.0
Coeff. 0.0 0.512 1.216 3.851
95% CI −0.729, 1.752 0.059, 2.372 2.758, 4.943

power 2, is also considered as an estimated parameter. Hence, in this case we
need to add 12 = 2 × (4 + 1 + 1) to the deviance not 10 = 2 × (4 + 1), yielding
AIC = 348.842. The value of the deviance for the spline model is D = 331.923.
This model contains seven parameters, thus AIC = 345.923, which is smaller than
the AIC for the one-term factional polynomial model. Hence, all things being
equal, we would prefer the spline to the one-term fractional polynomial model.
However, all things are not really equal so the considerably greater complexity of
the spline model leads us to choose the one-term fractional polynomial model, even
though it has a larger value of AIC. There is no statistical test to compare values
of AIC.

Now that we have decided what transformation to use for age we apply the same
methods to check the scale of burn area (TBSA) in the logit. At this point, we are
often asked if it is better to use the transformed version of a previously examined
covariate or the untransformed form. In our practice, we have not seen a set of
data where using different forms gives different results. We discuss a multivariable
fractional polynomial selection method in Section 4.5 that uses an iterative pro-
cess using all transforms from previous iterations. So, in the current example, we
follow the guidelines for purposeful selection and use AGE (untransformed) when
examining the scale of burn area.

We begin by replacing TBSA in the model with the quartile-based design vari-
ables. Results for the estimated coefficients are given in Table 4.22 and plotted
versus the quartile midpoint in Figure 4.10. The plot shows some departure from
linearity over the first three quartiles, from 0 to 11%. Since the fourth quartile
covers such a wide range we cannot see any nonlinearity in the plot beyond 11%.

The next step is to use fractional polynomials, the results of which are shown
in Table 4.23. The best two-term fractional polynomial has powers −2 and 0.5. It
is significantly better than the linear model with p = 0.013 but is not better than
the one-term fractional polynomial with power 0.5, the square root (p = 0.772).
Hence, we select the one-term transformation as best. We note that the shape of
the plot in Figure 4.10 in the region less than 11% looks like a square root plot.
The shape also is consistent with the burn surgeon’s clinical impression of the
effect of the size of burn area on mortality. The fit of this model is presented in
Table 4.24.

With such straightforward and clinically plausible results from the fractional
polynomial analysis we would, likely, not bother with a restricted cubic splines
analysis. However, as another opportunity to demonstrate this method, we include
this analysis. For TBSA, splines from three knots at the 10th (1%), 50th (6%),
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Figure 4.10 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of TBSA.

Table 4.23 Results of the Fractional Polynomial Analysis of
TBSA

df Deviance Dev. Dif. p Powers

Not in Model 0 532.483 203.409 <0.001
Linear 1 339.785 10.711 0.013 1
m = 1 2 329.592 0.518 0.772 .5
m = 2 4 329.074 — — −2 .5

Table 4.24 Fit of the Model Using TBSAFP1 = √
TBSA, the One-Term Fractional

Polynomial Transformation, n = 1000

Coeff. Std. Err. z p 95% CI

TBSAFP1 0.922 0.0871 10.59 <0.001 0.751, 1.092
AGE 0.085 0.0086 9.84 <0.001 0.068, 0.101
RACE −0.623 0.3031 −2.05 0.040 −1.217, −0.029
INH_INJ 1.595 0.3463 4.60 <0.001 0.916, 2.273
Constant −9.526 0.7544 −12.63 <0.001 −11.005, −8.048

and 90th (34.45%) percentiles of the distribution of burn area perform better (i.e.,
smaller deviance and AIC) than from four knots.

The results of the fit of the model using the two spline variables are shown in
Table 4.25. In Figure 4.11 we plot the lowess smoothed logit and the mean adjusted
logit from the one-term fractional polynomial fit,

gfp1 = 0.922 ×
√

TBSA − 5.468
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Table 4.25 Fit Modeling TBSA with Restricted Cubic Splines Formed from Three
Knots at 1.0, 6.0 and 34.45 Percent Burn Area, n = 1000

Coeff. Std. Err. z p 95% CI

TBSASPL1 0.217 0.0441 4.90 <0.001 0.130, 0.302
TBSASPL2 −0.331 0.1103 −3.00 0.003 −0.549, −0.116
AGE 0.085 0.0086 9.82 <0.001 0.068, 0.102
RACE −0.637 0.3033 −2.10 0.036 −1.232, −0.043
INH_INJ 1.610 0.3506 4.59 <0.001 0.923, 2.297
Constant −8.592 0.7387 −11.63 <0.001 −10.039, −7.143
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Figure 4.11 Plot of estimated logit from fits based on one-term (—) fractional polynomial, restricted
cubic spline (· · ·) and the lowess smooth (– – –) of TBSA. All fitted logistic regression models contain
AGE, RACE, and INH_INJ.

and the spline fit in Table 4.25,

gspl = 0.217 × TBSASPL1 − 0.331 × TBSASPL2 − 4.331,

where the subtracted constants are the mean adjustments.
There is virtually no difference in the plot of the logit based on the square root of

TBSA and the restricted cubic spline model. We note that the lowess smoothed logit
departs from these two models above 40 percent burn area. While covering a large
range there are fewer than 10% of the subjects with burns this severe. The deviance
for the fractional polynomial model is D = 329.589 and, treating the power as
an estimated parameter, yields AIC = 329.589 + 2 × (4 + 1 + 1) = 341.589. The
deviance for the spline model is D = 330.299 and AIC = 330.299 + 2 × (5 + 1) =
342.299. Hence we choose the model containing AGE2, the square root of TBSA,
RACE and INH_INJ as our main effects model and its fit is shown in Table 4.26
where AGEFP1 = (AGE/10)2, and TBSAFP1 = √

TBSA.
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Table 4.26 Main Effects Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.087 0.0082 10.53 <0.001 0.071, 0.103
TBSAFP1 0.936 0.0874 10.71 <0.001 0.765, 1.108
RACE −0.609 0.3096 −1.97 0.049 −1.216, −0.002
INH_INJ 1.433 0.3421 4.19 <0.001 0.763, 2.104
Constant −7.957 0.5967 −13.34 <0.001 −9.127, −6.788

Table 4.27 Preliminary Final Model With Interaction Term for the Burn Injury
Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.096 0.0096 10.02 <0.001 0.077, 0.115
TBSAFP1 0.912 0.0878 10.39 <0.001 0.740, 1.084
RACE −0.623 0.3100 −2.01 0.045 −1.231, −0.015
INH_INJ 2.420 0.5452 4.44 <0.001 1.351, 3.488
AFP1xINH −0.034 0.0145 −2.35 0.019 −0.063, −0.006
Constant −8.215 0.6314 −13.01 <0.001 −9.453, −6.978

The next step in the analysis is to select interactions. With only four main effects
we examined all 6 possible interactions by adding one at a time to the model in
Table 4.26. Two were significant at the 10 percent level: AGEFP1 by INH_INJ and
TBSAFP1 by RACE. The interaction of TBSAFP1 by RACE did not make clinical
sense to the burn surgeon and thus we excluded it from further consideration. The
fit of the model with the interaction is shown in Table 4.27, where AFP1xINH
denotes the interaction between AGEFP1 and INH_INJ.

Before leaving this example, let us revisit the goals of the analysis. The inter-
action term in Table 4.27 is highly significant, demonstrating that the presence or
absence of inhalation involvement with the burn injury modifies the effect of age
and, likewise, age modifies the effect of inhalation involvement. Clearly, if we
were interested in estimating the effect of risk factors for death we would prefer
the model in Table 4.27. However, it is not clear that inclusion of the interaction
would improve estimation of the probability of death. Again, simpler is sometimes
better, and so, for the time being, we are going to consider both models (the ones
presented in Tables 4.26 and 4.27) as possible models until we evaluate their fit
and performance in Chapter 5.

4.3 OTHER METHODS FOR SELECTING COVARIATES

In the previous section we discussed purposeful selection, a method that is com-
pletely controlled by the analyst, to select a subset of covariates from a larger
collection. There are other commonly used methods where selection is more auto-
mated and statistically driven. Two approaches have a long history in statistical
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model building: stepwise selection and best subsets selection. A recent addition
combines a version of stepwise selection with fractional polynomial modeling of
continuous covariates. We consider each of these methods in this section and show
how they are related to one another and compare them to purposeful selection in
the context of modeling the GLOW data.

4.3.1 Stepwise Selection of Covariates

Stepwise selection of covariates has a long history in linear regression. All the
major software packages have either a separate program or an option to perform
this type of analysis. Currently, most, if not all, major software packages offer
an option for stepwise logistic regression. At one time, stepwise regression was an
extremely popular method for model building. Over the years there has been a shift
away from deterministic methods for model building to methods like purposeful
selection discussed in the previous section. However, we feel that stepwise meth-
ods may be useful as effective data analysis tools. In particular, there are times
when the outcome being studied is relatively new and the important covariates
may not be known and associations with the outcome not well understood. In these
instances, most studies collect many possible covariates and screen them for sig-
nificant associations. Employing a stepwise selection procedure can provide a fast
and effective means to screen a large number of variables, and to fit a number of
logistic regression equations simultaneously.

Any stepwise procedure for selection or deletion of variables from a model is
based on a statistical algorithm that checks for the “importance” of variables, and
either includes or excludes them on the basis of a fixed decision rule. The “impor-
tance” of a variable is defined in terms of a measure of the statistical significance
of the coefficient, or coefficients when multiple design variables are used, for the
variable. The statistics used depend on the assumptions of the model. In stepwise
linear regression an F -test is used, since the model assumes that the errors are nor-
mally distributed. In logistic regression the errors are assumed to follow a binomial
distribution, and significance can be assessed using any one of the three equivalent
tests discussed in Chapters 1 and 2: likelihood ratio, score, and Wald test. A par-
ticular software package may or may not offer the user a choice of which of the
three tests to use. We use the likelihood ratio test, in what follows, to describe the
methods. The other two tests could be used equally well. In practice, we have not
seen important differences in models identified when the three tests are used on
the same set of data. Given a choice we prefer to use the likelihood ratio test but
use of one of the other tests by a statistical package does not present a problem or
disadvantage.

We discussed in Chapter 3 that a polychotomous variable with k levels is appro-
priately modeled through its k − 1 design variables. Since the magnitude of the
likelihood ratio test, G, depends on its degrees of freedom, any procedure based
on the likelihood ratio test, or one of the other two tests, must account for possible
differences in degrees of freedom between variables. This is done by assessing
significance through the p-value for G.
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We describe and illustrate the algorithm for forward selection followed by back-
ward elimination in stepwise logistic regression. Any variants of this algorithm are
simple modifications of this procedure. The method is described by considering the
statistical computations that the computer must perform at each step.

Step (0): Assume that we have available a total of p possible independent vari-
ables, all of which are judged to be of plausible “clinical” importance in studying
the outcome variable. Step (0) begins by fitting the “intercept only model” and
evaluating its log-likelihood, L0. Next, each of the p possible univariable logistic
regression models is fit and its corresponding log-likelihood computed. Let the
value of the log-likelihood for the model containing variable xj at step zero be
denoted by L

(0)
j . The subscript j refers to the variable that has been added to the

model, and the superscript (0) refers to the step. This notation is used throughout
the discussion of stepwise logistic regression to keep track of both step number
and variables in the model.

Let the value of the likelihood ratio test for the model containing xj versus the
intercept only model, be denoted by G

(0)
j = −2(L0 − L

(0)
j ), and its p-value be

denoted by p
(0)
j . This p-value is equal to the probability Pr[χ2(ν) > G

(0)
j ] = p

(0)
j ,

where ν = 1 if xj is continuous or dichotomous, and ν = k − 1 if xj is
polychotomous with k categories.

The “most important” variable is the one with the smallest p-value. If we denote
this variable by xe1

, then p
(0)
e1 = min(p

(0)
j ), where “min” stands for selecting the

minimum of the quantities enclosed in the brackets. The subscript “e1” is used
to denote that the variable is a candidate for entry at step 1. For example, if
variable x2 had the smallest p-value, then p

(0)
2 = min(p

(0)
j ), and e1 = 2. The fact

that xe1
is the most important variable does not guarantee that it is “statistically

significant”. For example, if p
(0)
e1 = 0.83, we would probably conclude that there

is little point in continuing this analysis because the most important variable is not
related to the outcome. On the other hand, if p

(0)
e1 = 0.003, we would examine the

logistic regression containing this variable and then determine whether there are
other variables that are important given that xe1 is in the model.

A crucial factor when using stepwise logistic regression is the choice of an
“alpha” level to judge the importance of variables. Let pE denote our choice where
the “E” stands for entry. The choice for pE determines how many variables even-
tually are included in the model. Bendel and Afifi (1977) studied the choice of pE
for stepwise linear regression, and Costanza and Afifi (1979) studied the choice for
stepwise discriminant analysis. Lee and Koval (1997) examined the issue of sig-
nificance level for forward stepwise logistic regression. The results of this research
have shown that the choice of pE = 0.05 is too stringent, often excluding important
variables from the model. Choosing a value for pE in the range from 0.15 to 0.20
is highly recommended.

Sometimes the goal of the analysis may be to provide a more complete set
of possible predictors of the response variable. In these cases, use of pE = 0.25
(or even larger) might be a reasonable choice. Whatever the choice for pE, a
variable is judged important enough to include in the model if the p-value for G
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is less than pE. Thus, the program proceeds to step (1) if p
(0)
e1 < pE; otherwise, it

stops.
Step (1): This step begins with a fit of the logistic regression model containing

xe1
. Let L

(1)
e1 denote the log-likelihood of this model. To determine whether

any of the remaining p − 1 variables are important once the variable xe1
is

in the model, we fit the p − 1 logistic regression models containing xe1
and

xj , j = 1, 2, 3, . . . , p and j �= e1. For the model containing xe1
and xj let

the log-likelihood be denoted by L
(1)
e1j , and let the likelihood ratio chi-square

statistic of this model versus the model containing only xe1
be denoted by

G
(1)
j = −2(L

(1)
e1 − L

(1)
e1j ). The p-value for this statistic is denoted by p

(1)
j . Let the

variable with the smallest p-value at step (1) be xe2
where p

(1)
e2 = min(p

(1)
j ). If

this value is less than pE then we proceed to Step (2); otherwise we stop.
Step (2): The step begins with a fit of the model containing both xe1

and xe2
. It

is possible that once xe2
has been added to the model, xe1

is no longer important.
Thus, Step (2) includes a check for backward elimination. In general, this check
is done by fitting models that delete one of the variables added in the previous
steps to assess the continued importance of the variable removed. At Step (2) let
L

(2)
−ej

denote the log-likelihood of the model with xej
removed. In similar fashion

let the likelihood ratio test of this model versus the full model at Step (2) be
G

(2)
−ej

= −2(L
(2)
−ej

− L
(2)
e1e2) and p

(2)
−ej

be its p-value.
To ascertain whether a variable should be deleted from the model the program

selects that variable, which when removed, yields the maximum p-value. Denoting
this variable as xr2

, then p
(2)
r2 = max(p

(2)
−e1

, p
(2)
−e2

). To decide whether xr2
should

be removed, the program compares p
(2)
r2 to a second pre-chosen “alpha” level

pR, which indicates some minimal level of continued contribution to the model
where “R” stands for remove. Whatever value we choose for pR, it must exceed
the value of pE to guard against the possibility of having the program enter and
remove the same variable at successive steps.

If we do not wish to exclude many variables once they have entered, then
we might use pR = 0.9. A more stringent value would be used if a continued
“significant” contribution were required. For example, if we used pE = 0.15, then
we might choose pR = 0.20. If the maximum p-value to remove p

(2)
r2 , exceeds pR,

then xr2
is removed from the model. If p

(2)
r2 is less than pR then xr2

remains in the
model. In either case the program proceeds to the variable selection phase.

At the forward selection step each of the p − 2 logistic regression models are fit
containing xe1

, xe2
and xj for j = 1, 2, 3, . . . p, j �= e1, e2. The program evaluates

the log-likelihood for each model, computes the likelihood ratio test versus the
model containing only xe1

and xe2
and determines the corresponding p-value. Let

xe3
denote the variable with the minimum p-value, that is, p

(2)
e3 = min(p

(2)
j ). If

this p-value is smaller than pE, p
(2)
e3 < pE, then the program proceeds to Step (3);

otherwise, it stops.
Step (3): The procedure for Step (3) is identical to that of Step (2). The program

fits the model including the variable selected during the previous step, performs a
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check for backward elimination followed by forward selection. The process con-
tinues in this manner until the program stops at Step (S).

Step (S): This step occurs when: (i) all p variables have entered the model or
(ii) all variables in the model have p-values to remove that are less than pR, and
the variables not included in the model have p-values to enter that exceed pE. The
model at this step contains those variables that are important relative to the criteria
of pE and pR. These may or may not be the variables reported in a final model. For
instance, if the chosen values of pE and pR correspond to our preferred levels for
statistical significance, then the model at step S may well contain the significant
variables. However, if we have used values for pE and pR that are less stringent,
then we should select the variables for a final model from a table that summarizes
the results of the stepwise procedure.

There are two methods that may be used to select variables from a summary
table; these are comparable to methods commonly used in stepwise linear regres-
sion. The first method is based on the p-value for entry at each step, while the
second is based on a likelihood ratio test of the model at the current step versus
the model at the last step. In most cases we prefer to use the first method as it can
be performed with the output provided by statistical packages.

Let “q” denote an arbitrary step in the procedure. In the first method we compare
p

(q−1)
eq to a pre-chosen significance level such as α = 0.15. If the value p

(q−1)
eq is

less than α, then we move to Step (q). We stop at the step when p
(q−1)
eq exceeds α.

We consider the model at the previous step for further analysis. In this method the
criterion for entry is based on a test of the significance of the coefficient for xeq

conditional on xe1
, xe2

, . . . , xeq−1
being in the model. The degrees of freedom for

the test are 1 or k − 1 depending on whether xeq
is continuous or polychotomous

with k categories.
In the second method, rather than comparing the model at the current step [Step

(q)] to the model at the previous step [Step (q − 1)] we compare it to the model
at the last step [Step (S)]. We evaluate the p-value for the likelihood ratio test of
these two models and proceed in this fashion until this p-value exceeds α. This
tests that the coefficients for the variables added to the model from Step (q) to
Step (S) are all equal to zero. At any given step it has more degrees of freedom
than the test employed in the first method. For this reason the second method, on
occasion, may select a larger number of variables than the first method, but only
when rather liberal, large, values are used for the entry and removal criteria.

It is well known that the p-values calculated in stepwise selection procedures
are not p-values in the traditional hypothesis testing context. Instead, they should
be thought of as indicators of relative importance among variables. We recommend
that one err in the direction of selecting a relatively rich model following stepwise
selection. The variables so identified should then be subjected to the more intensive
analysis described in the previous section.

A common modification of the stepwise selection procedure just described is to
begin with a model at step zero that contains known important covariates. Selection
is then performed from among the other available variables. One instance when
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this approach may be useful is to select interactions from among those possible
from a main effects model.

Freedman (1983) urges caution when considering a model with many variables,
noting that significant linear regressions may be obtained from “noise” variables,
completely unrelated to the outcome variable. Flack and Chang (1987) have shown
similar results regarding the frequency of selection of “noise” variables. Thus, a
thorough analysis that examines statistical and clinical significance is especially
important following any stepwise method.

Other versions of stepwise selection are possible. One might choose to use
the previously described method but only enter variables, allowing no option for
removal at each step. This is called forward selection. Another popular method is to
begin at Step (0) with all p variables in the model and then proceed to sequentially
eliminate nonstatistically significant variables. This is called backward elimination.
We illustrate backward elimination in Section 4.3.2 as a way to approximate best
subset selection.

As an example, we apply the stepwise variable selection procedure to the GLOW
data analyzed using purposeful selection in Section 4.2. The reader is reminded that
this procedure should be viewed as a first step in the model building process—basic
variable selection. Subsequent steps such as determination of scale, as described in
Section 4.2, would follow. The calculations were performed in SAS, which uses
the Score Test for entry and the Wald test for removal of variables. The results are
presented in Table 4.28 in terms of the p-values to enter and remove calculated at
each step. The order of the variables given column-wise in the table is the order in
which they were selected. In each column the values below the horizontal line are
pE values and values above the horizontal line are pR values. The program was
run using pE = 0.15 and pR = 0.20.

We choose to use SAS as it has the option to display the step-by-step details
required for Table 4.28. One disadvantage of SAS is that it does not allow one to
group the design variables formed from a categorical covariate with more than two
levels for entry or removal. STATA does have this feature but has not provided
step-by-step detail. However the models selected by both SAS and STATA are the
same at Step (S).

Step (0): At Step (0) the program selects as a candidate for entry at Step (1) the
variable with the smallest p-value in the first column of Table 4.28. The vari-
able is history of prior fracture (PRIORFRAC). As seen in the table the
p-values of both PRIORFRAC and AGE are <0.0001, but the value of the
Score test (not shown) for PRIORFRAC is 23.8 while that for AGE is 21.6,
each with one degree of freedom. Hence PRIORFRAC was selected for entry
at Step (1).

Step (1): The program begins by fitting the model containing PRIORFRAC.
The program does not remove the variable just entered since we choose
the criterion such that pR > pE. This is true for the variable entered at any
step—not just the first step. The variable with the smallest p-value to enter
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Table 4.28 Results of Applying Stepwise Variable Selection Using the Score Test to
Select Variables and the Wald Test for Removal of Variables in the GLOW Data

Variable/Step 0 1 2 3 4 5 6 7

PRIORFRAC <0.001 <0.001 <0.001 0.002 0.003 0.003 0.007 0.009
AGE <0.001 <0.001 <0.001* <0.001 0.001 0.002 0.010 0.009
RATERISK3 0.006 0.046 0.017 0.018* 0.016 0.028 0.054 0.016
HEIGHT 0.002 0.009 0.0336 0.032 0.033* 0.022 0.011 0.016
MOMFRAC 0.017 0.021 0.027 0.051 0.032 0.034* 0.030 0.043
ARMASSIST 0.001 0.011 0.053 0.099 0.046 0.040 0.041* 0.056
RATERISK2 0.749 0.607 0.649 0.045 0.065 0.094 0.129 0.131*

BMI 0.738 0.745 0.217 0.110 0.128 0.091 0.342 0.333
WEIGHT 0.418 0.482 0.770 0.545 0.166 0.120 0.420 0.412
SMOKE 0.479 0.320 0.533 0.525 0.501 0.512 0.437 0.453
PREMENO 0.845 0.866 0.361 0.389 0.439 0.413 0.586 0.669

At each step the p-values to enter are presented below the horizontal line, and the p-value to remove
are presented above the horizontal line in each column. The asterisk denotes the maximum p-value to
remove at each step.

at step (1) is age at entry in the study (AGE) with p < 0.001, which is less
than 0.15 so the program moves to Step (2).

Step (2): The p-values to remove appear above the solid line in each column of
Table 4.28. We denote the largest p-value to remove with an “*”. The model
containing both PRIORFRAC and AGE is fit and we see that both p-values
to remove are <0.001. Since neither exceeds 0.20, the program moves to the
variable selection phase. The smallest p-value to enter among the remaining
variables not in the model is p = 0.017, for the design variable comparing
level 3 to level 1 of self-reported risk of fracture. Since the value is less than
0.15 the program proceeds to Step (3).

Step (3): At Step (3) Table 4.28 shows that the largest p-value to remove is for
the variable that just entered the model, RATERISK3 and, since this does not
exceed 0.20, the program moves to the variable selection phase. The smallest
p-value to enter among the remaining variables not in the model is for height
at enrollment in the study (HEIGHT) with p = 0.032. This value is less than
0.15 so the program proceeds to Step (4).

Step (4): At Step (4) the program finds that the maximum p-value to remove
is HEIGHT, which just entered the model. Hence it is not removed from the
model. In the selection phase the program finds that the minimum p-value
for entry is 0.032 for the variable mother had a fracture, MOMFRAC. Since
this value is less than 0.15, the program proceeds to Step (5).

Step (5): At Step (5) the largest p-value to remove is for MOMFRAC, which
just entered the model, so it is not removed. Next the program selects for
entry the variable “arms are needed to stand from a chair” (ARMASSIST).
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Since the p-value for entry of 0.040 is less than pE it enters the model at
Step (6).

Step (6): At Step (6) the variable with the largest p-value to remove is, again,
the variable that just entered, so none are removed. The variable with the
smallest p-value to enter is the design variable for self-reported rate of risk
at level 2 versus level 1, RATERISK2, with p = 0.129. Since this value is
less than 0.15 it enters the model at Step (7).

Step (7): The variable with the largest p-value to remove is RATERISK2, which
just entered the model so no variables are removed. At the selection for entry
phase we see that body mass index, BMI, has the smallest p-value, but its
value, 0.333, exceeds the criterion for entry of 0.15. The program stops at
Step (7) as no variables can be removed and none can enter using our chosen
criteria of pE = 0.15 and pR = 0.20.

If, for some reason, we wanted to see every variable enter the model then we
would have to rerun the program with much larger values. For example, at Step (7)
we see that the largest p-value for entry is 0.669 for early menopause, PREMENO.
So choosing pE = 0.80 and pR = 0.85 would probably allow all variables to enter
the model. Having said this, it would be highly unusual to choose a p-value for entry
that exceeds 0.50. The idea behind letting in variables that are unlikely to be in the
final model is to check for the possible confounding effect of marginally significant
variables. We know from practical experience that it is rare for a variable to be a
confounder if its estimated coefficient(s) in a multivariable model are significant at
0.15 or higher.

Before moving on, we note that the model selected by stepwise methods in
Table 4.28 contains the same seven covariates identified by purposeful selection
in Table 4.8. This is often, though not always, the case. The purposeful selection
model was further simplified by excluding RATERISK2, since it was not a con-
founder and subject matter experts felt it was reasonable to pool “same risk” and
“less risk” into a single reference category, thus using only RATERISK3. For the
time being we are going to use the model at Step (7) that includes both design
variables.

We noted that there are two methods to select the final model from a table
summarizing the steps. In our example, the program was run with pE = 0.15, a
value that, we believe, selects variables with significant coefficients; thus, it is not
necessary to go to the summary table to select the variables to be used in a final
model. The second method is based on comparing the model at each step to the
last step that–in work not shown–also selects the model at Step (7). We leave
performing stepwise selection on the GLOW data using pE = 0.80 and pR = 0.85,
with final model selection based on the second method as an exercise.

At the conclusion of the stepwise selection process we have only identified a
collection of variables that seem to be statistically important. If there were known
clinically important variables then these should have been added before proceeding
with stepwise selection of other covariates. If at the end of stepwise election there
are continuous covariates in the model, then at this point, one should determine
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their appropriate scale in the logit. The model contains age and height, both of
which were shown to be linear in the logit in Section 4.2.

Once the scale of the continuous covariates has been examined, and corrected
if necessary, we may consider applying stepwise selection to identify interactions.
The candidate interaction terms are those that seem clinically reasonable given the
main effect variables in the model. We begin at Step (0) with the main effects
model, including any clinically significant covariates, and sequentially select from
among the possible interactions. We can use either method 1 or method 2 to select
the significant interactions. The final model contains previously identified main
effects and significant interaction terms.

The same software may be used for stepwise selection of interactions as was
used for the selection of main effects. The difference is that all main effect variables
are forced into the model at Step (0) and selection is restricted to interactions. In
total there are 15 possible interactions listed in Table 4.29 where they are inverse
rank ordered by the p-values at the last step. We again use SAS to select the
interactions stepwise. We remind the reader that, in SAS, selection for entry is
based on the Score test, and the test for removal is based on the Wald test.

Before proceeding with stepwise selection of interactions we decided to remove
RATERISK2 from the model and keep RATERISK3. Thus, we have chosen to use
the recoded version of the self-reported risk variable from purposeful selection in
the previous section. There are 15 interactions that can be formed from the six main
effects and subject matter experts considered all 15 to be clinically reasonable.

Table 4.29 Results of Applying Stepwise Variable Selection to Interactions from the
Main Effects Model from the GLOW Study Using the Score Test to Select Variables
and the Wald Test to Remove Variables

Variable/Step 0 1 2

AGE*PRIORFRAC 0.024 0.025* 0.033
MOMFRAC*ARMASSIST 0.028 0.038 0.040*

HEIGHT*MOMFRAC 0.112 0.110 0.162
ARMASSIST*RATERISK3 0.135 0.123 0.174
PRIORFRAC*MOMFRAC 0.092 0.123 0.188
HEIGHT*ARMASSIST 0.206 0.184 0.252
HEIGHT*RATERISK3 0.319 0.308 0.0386
PRIORFRAC*ARMASSIST 0.636 0.399 0.423
AGE*RATERISK3 0.304 0.446 0.435
AGE*MOMFRAC 0.708 0.753 0.463
MOMFRAC*RATERISK3 0.465 0.468 0.580
AGE*HEIGHT 0.716 0.803 0.795
HEIGHT*PRIORFRAC 0.644 0.815 0.904
PRIORFRAC*RATERISK3 0.726 0.843 0.959
AGE*ARMASSIST 0.702 0.968 0.999

At each step the p-values to enter are presented below the horizontal line, and the p-value to remove
are presented above the horizontal line in each column. The asterisk denotes the maximum p-value to
remove at each step.
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The results in Table 4.29 show that only two of the interactions were selected. At
Step (1) the interaction of age and history of prior fracture (PRIORFRAC) entered
and at Step (2) the interaction of mother having had a fracture (MOMFRAC)
and need arms to rise from a chair (ARMASSIST) entered. The most significant
interaction among those not selected at Step (2) is that of HEIGHT and MOMFRAC
with p = 0.162, which is not less than the criterion for entry of 0.15 and hence
does not enter the model.

It is worthwhile to point out that the p-values for Step (0) in Table 4.29, which
are based on the Score test, are quite similar to those in the last column of Table 4.14
that are based on the likelihood ratio test.

Adding the two selected interactions to the main effects (all of which were
selected stepwise) yields the same model obtained by purposeful selection shown in
Table 4.16. This may not always be the case. In our experience, models obtained by
these two approaches rarely differ by more than a couple of variables. In a situation
where different approaches yield different models, we recommend proceeding with
a combined larger model via purposeful selection using both confounding and
statistical significance as criteria for model simplification.

Since the stepwise model is shown in Table 4.16 we do not repeat the results
in another table in this section.

In conclusion, we emphasize that stepwise selection identifies variables as candi-
dates for a model solely on statistical grounds. Thus, following stepwise selection of
main effects all variables should be carefully scrutinized for clinical plausibility. In
general, interactions must attain statistical significance to alter the point and inter-
val estimates from a main effects model. Thus, stepwise selection of interactions
using statistical significance can provide a valuable contribution to model identifi-
cation, especially when there are large numbers of clinically plausible interactions
generated from the main effects.

4.3.2 Best Subsets Logistic Regression

An alternative to stepwise selection of variables for a model is best subset selection.
This approach to model building has been available for linear regression for many
years and makes use of the branch and bound algorithm of Furnival and Wilson
(1974). Typical software implementing this method for linear regression identifies
a specified number of “best” models containing one, two, three variables, and
so on, up to the single model containing all p variables. Lawless and Singhal
(1978, 1987a, 1987b) proposed an extension that may be used with any nonnormal
errors model. The crux of their method involves application of the Furnival-Wilson
algorithm to a linear approximation of the cross-product sum-of-squares matrix
that yields approximations to the maximum likelihood estimates. Selected models
are then compared to the model containing all variables using a likelihood ratio
test. Hosmer et al. (1989) show that, for logistic regression, the full generality of
the Lawless and Singhal approach is not needed. Best subsets logistic regression
may be performed in a straightforward manner using any program capable of best
subsets linear regression. Also, some packages, including SAS, have implemented
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the Lawless and Singhal method in their logistic regression modules. The advantage
of these two approaches is that one may examine, and hence compare, several
different models selected by some criterion. If, however, one is merely interested
in obtaining the best model from the best subsets method, then a quick route to this
end is to employ a method described in Royston and Sauerbrei (2008, Chapter 2).
They discuss results showing that the model selected using stepwise backward
elimination with pR = 0.157 yields a model that agrees, in content, quite closely
with the best of the best subset selected models using a criterion such as AIC
from equation (4.4). The disadvantage of this quicker approach is that one is not
able to see the content of other best models. We illustrate best subsets selection
using the GLOW data. An important caveat to using best subsets selection is that,
as described, it only identifies a collection of main effects. As described in the
previous two sections, there is considerable work remaining in the model building
process after main effects are selected.

Applying best subsets linear regression software to perform best subsets logistic
regression is most easily explained using vector and matrix notation. In this regard,
we let X denote the n × (p + 1) matrix containing the values of all p independent
variables for each subject, with the first column containing 1 to represent the
constant term. Here the p variables may represent the total number of variables, or
those selected at the univariable stage of model building. We let V denote an n × n

diagonal matrix with general element νi = π̂i(1 − π̂i) where π̂i is the estimated
logistic probability computed using the maximum likelihood estimate, β̂, and the
data for the ith case, xi .

For the sake of clarity of presentation in this section, we repeat the expression
for X and V given in Chapter 2. They are as follows:

X =

⎡⎢⎢⎢⎣
1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

... . . .
...

1 xn1 xn2 · · · xnp

⎤⎥⎥⎥⎦
and

V =

⎡⎢⎢⎢⎣
π̂1

(
1 − π̂1

)
0 · · · 0

0 π̂2(1 − π̂2) · · · 0
... 0

. . .
...

0 · · · 0 π̂n(1 − π̂n)

⎤⎥⎥⎥⎦ .

As noted in Chapter 2, the maximum likelihood estimate is determined itera-
tively. It may be shown [see Pregibon (1981)] that β̂ = (X ′ VX)−1X ′ Vz, where
z = Xβ̂ + V−1r and r is the vector of residuals, r = (y − π̂). This representation
of β̂ provides the basis for use of linear regression software. It is easy to verify that
any linear regression package that allows weights produces coefficient estimates
identical to β̂ when used with zi as the dependent variable and case weights, νi ,
equal to the diagonal elements of V.
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If we wanted to replicate the results of the maximum likelihood fit from a logistic
regression package using a linear regression package, for each case we would first
calculate the value of a dependent variable as follows:

zi = β̂0 +
p∑

j=1

β̂j xij + (yi − π̂i)

π̂i(1 − π̂i)

= ln

(
π̂i

1 − π̂i

)
+ (yi − π̂i)

π̂i(1 − π̂i)

(4.5)

and a case weight
νi = π̂i(1 − π̂i). (4.6)

Note that all we need is access to the fitted values, π̂i , to compute the values of
zi and νi . Next, we would run a linear regression program using the values of zi

for the dependent variable, the values of xi for our vector of independent variables,
and the values of νi for our case weights.

Proceeding further with the linear regression, it can be shown that the residuals
from this fit are

(zi − ẑi ) = (yi − π̂i)

π̂i(1 − π̂i)

and the weighted residual sum-of-squares produced by the program is

n∑
i=1

νi(zi − ẑi )
2 =

n∑
i=1

(yi − π̂i)
2

π̂i(1 − π̂i)
,

which is X2, the Pearson chi-square statistic from a maximum likelihood logis-
tic regression program. It follows that the mean residual sum-of-squares is s2 =
X2/(n − p − 1). The estimates of the standard error of the estimated coefficients
produced by the linear regression program are s times the square root of the diag-
onal elements of the matrix (X ′ VX)−1. Thus, to obtain the correct values given in
equation (2.5) we would have to divide the estimates of the standard error produced
by the linear regression program by s, the square root of the mean square error (or
standard error of the estimate).

The ability to duplicate the maximum likelihood fit in a linear regression package
forms the foundation of the suggested method for performing best subsets logistic
regression. In particular, Hosmer et al. (1989) show that use of any best subsets
linear regression program with values of zi in equation (4.5) for the dependent
variable, case weights νi shown in equation (4.6), and covariates xi , produces for
any subset of q variables, the approximate coefficient estimates of Lawless and
Singhal (1978). Hence, we may use any best subsets linear regression program to
execute the computations for best subsets logistic regression. One practical dif-
ficulty is that there is not much software available that actually implements the
traditional best subsets linear regression. A recent user-supplied contribution to the
STATA package by Lindsey and Sheather (2010) does perform this analysis but
only provides the content of the best model of each size.
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The subsets of variables selected for “best” models depend on the criterion
chosen for “best.” In best subsets linear regression a number of different criteria
have been used to select variables. Two are based on the concept of the proportion of
the total variation explained by the model. These are R2, the ratio of the regression
sum-of-squares to the total sum-of-squares, and adjusted R2 (or AR2), the ratio
of the regression mean squares to the total mean squares. Since the adjusted R2

is based on mean squares rather than sums-of-squares, it provides a correction for
the number of variables in the model. This is important, as we must be able to
compare models containing different variables and different numbers of variables.
If we use R2, the best model is always the model containing all p variables, a result
that is not at all helpful. An obvious extension for best subsets logistic regression
is to base the R2 measures, in a manner similar to that shown in Chapter 5, on
deviance rather than Pearson chi-square. However, we do not recommend the use
of the R2 measures for best subsets logistic regression. Instead, we prefer to use
Cq , a measure developed by Mallows (1973) or the Akaike Information Criterion
(AIC) developed by Akaike (1974) and defined in equation (4.4).

Mallows’ Cq is a measure of predictive squared error. We note that the measure
is denoted as Cp by other authors. We chose to use “q” instead of “p” in this text
since we use p to refer to the total number of possible variables, while q refers to
some subset of variables.

A summary of the development of the criterion Cq in linear regression may be
found in many texts on this subject, for example, Ryan (1997). Hosmer et al. (1989)
show that when best subsets logistic regression is performed via a best subsets linear
regression package in the manner described previously in this section, Mallows’
Cq has the same intuitive appeal as it does in linear regression. In particular they
show that for a subset of q of the p variables

Cq = X2 + λ∗

X2/(n − p − 1)
+ 2(q + 1) − n,

where
X2 =

∑
{(yi − π̂i)

2/[π̂i(1 − π̂i)]},

the Pearson chi-square statistic for the model with p variables and λ∗ is the mul-
tivariable Wald test statistic for the hypothesis that the coefficients for the p − q

variables not in the model are equal to zero. Under the assumption that the model fit
is the correct one, the approximate expected values of X2 and λ∗ are (n − p − 1)

and p − q, respectively. Substitution of these approximate expected values into
the expression for Cq yields Cq = q + 1. Hence, models with Cq near q + 1 are
candidates for a best model. The best subsets linear regression program selects as
best that subset with the smallest value of Cq .

The Akaike Information Criterion (AIC) does not have a reference standard
based on the number of variables, in or out of the model. The best model is simply
the one with the smallest value of

AICq = −2 × Lq + 2 × (q + 1). (4.7)
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We modified the definition in equation (4.6) by adding the subscript “q” to
denote the fact that AIC is being computed over models of different sizes.

Some programs, for example, SAS’s PROC LOGISTIC, provide a best subsets
selection of covariates based on the Score test for the variables in the model.
For example, the best two variable model is the one with the largest Score test
among all two variable models. The output lists the covariates and Score test for
a user specified number of best models of each size. The difficulty one faces
when presented with this output is that the Score test increases with the number
of variables in the model. Hosmer et al. (2008) show how an approximation to
Mallows’ Cq can be obtained from Score test output in a survival time analysis.
A similar approximation can be obtained from Cq for logistic regression. First, we
assume that the Pearson chi-square statistic is equal to its mean, that is X2 ≈ (n −
p − 1). Next we assume that the Wald statistic for the p − q excluded covariates
may be approximated by the difference between the values of the Score test for
all p covariates and the Score test for q covariates, namely λ∗

q ≈ Sp − Sq . This
results in the following approximation

Cq = X2 + λ∗

X2/(n − p − 1)
+ 2(q + 1) − n

≈ (n − p − 1) + (Sp − Sq)

1
+ 2(q + 1) − n

≈ Sp − Sq + 2q − p + 1. (4.8)

The value of Sp is the Score test for the model containing all p covariates and
is obtained from the computer output. The value of Sq is the Score test for the
particular subset of q covariates and its value is also obtained from the output. Use
of the best subsets linear regression package should help identify, in the same way
its application in linear regression does, a core of important covariates from the
p possible covariates. After identifying the important variables, we suggest that
further modeling proceed in the manner described in Section 4.2 for purposeful
selection of covariates. Users should not be lured into accepting the variables
suggested by a best subset strategy without considerable critical evaluation.

We illustrate best subsets selection using the Score test method implemented in
SAS with the GLOW data. The variables used were the 10 indicated in Table 1.7,
with the exception of the fracture risk score, since it is a composite formed from
many individual covariates. Self-reported rate of risk is modeled using two design
variables RATERISK2 and RATERISK3. In Table 4.30 we present the results of
the five best models selected using Cq in (4.8) as the criterion. In addition to the
variables selected, we show the values of Cq and the values of Sq for each model
and the value of AICq from (4.7).

Using only the summary statistics, we would select Model 1 as the best model
since it has the smallest values of both Cq and AICq . It is interesting to note that
this model is different from the model selected by purposeful selection (Model 5),
and stepwise (Model 4), in that height is not in the model, but weight and BMI are
included. The differences in the values of both Cq and AICq over the five models
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Table 4.30 Five Best Models Identified Using the Score Test Approximation of
Mallow’s Cq , Table Lists Model Covariates, Approximate Cq, Sq , and
AICq (S11 = 59.1672)

Model Model Covariates Sq Cq AICq

1 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, ARMASSIST, RATERISK2,
RATERISK3

57.4602 7.707 523.1954

2 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, ARMASSIST, RATERISK3

55.4424 7.724 523.5289

3 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, RATERISK2, RATERISK3

55.2662 7.901 523.1987

4a PRIORFRAC, AGE, HEIGHT, MOMFRAC,
ARMASSIST, RATERISK2, RATERISK3

55.2657 7.902 523.5004

5b PRIORFRAC, AGE, HEIGHT, MOMFRAC,
ARMASSIST, RATERISK3

53.2400 7.927 523.8178

aMain effects model identified by stepwise selection.
bMain effects model identified by purposeful selection.

are negligible. Thus choice among the five models comes down, as it should, to
subject matter considerations.

Note that all five models contain PRIORFRAC, AGE, and MOMFRAC. Four of
the five contain ARMASSIST. Three models contain WEIGHT and BMI and two
contain HEIGHT. Three models contain both RATERISK2 and RATERISK3 and
two contain only RATERISK3. Hence, we conclude that the core of important
variables in these five models is PRIORFRAC, AGE, MOMFRAC, ARMAS-
SIST, RATERISK2, and RATERISK3, with body composition modeled either by
WEIGHT and BMI or by HEIGHT.

In using purposeful selection in Section 4.2 we found that the estimated coeffi-
cient for RATERISK2 was not significant and, in consultation with experts, decided
to only use RATERISK3, which is a design variable for level 3 versus 1 and
2. Now the choice is between model 2 and model 5. Further analysis showed
that the estimated coefficient for ARMASSIST is not significant, p = 0.125, in
model 2. Deleting it yields a sixth best model (not shown) with Cq = 8.182 and
AICq = 523.87. Thus, the choice is now between two models, each with six covari-
ates. The more important difference between the two models is that one contains
HEIGHT and the other contains WEIGHT and BMI. We leave further comparison
of these two models as an exercise.

In practice, once we have finalized the main effects model, we could employ best
subsets selection to decide on possible interactions. We leave this as an exercise.

Application of the backwards elimination approach described by Royston and
Sauerbrei (2008, Sections 2.6.3 and 2.9.3) with pR = 0.157 to the GLOW data
yields the same best subsets model, Model 1 in table 4.30. This is not always going
to be the case, but this easy to use approach should always identify a reasonable
set of model covariates for further evaluation.
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The advantage of the proposed method of best subsets logistic regression is
that more models can be quickly screened than is possible with the other variable
selection methods. There is, however, one potential disadvantage with the best
subsets approach: we must be able to fit the model containing all of the possi-
ble covariates. In analyses that include a large number of variables this may not
be possible. Numerical problems can occur when we overfit a logistic regression
model. If the model has many variables, we run the risk that the data are too thin to
be able to estimate all the parameters. If the full model proves to be too rich, then
some selective weeding out of obviously unimportant variables with univariable
tests may remedy this problem. Another approach is to perform the best subsets
analysis using several smaller “full” models. Numerical problems are discussed in
more detail in the next section.

In summary, the ability to use weighted least squares best subsets linear regres-
sion software or the Score test approximation method to identify variables for
logistic regression should be kept in mind as a possible aid to variable selection.
As is the case with any statistical selection method, the clinical basis of all variables
should be addressed before any model is accepted as the final model.

4.3.3 Selecting Covariates and Checking their Scale Using Multivariable
Fractional Polynomials

Sauerbrei et al. (2006) describe software for SAS, STATA and R that imple-
ments a multivariable fractional polynomial method. Royston and Sauerbrei (2008,
Chapter 6) describe the method in detail and it is now available in distributed
STATA. The method combines elements of backward elimination of nonsignificant
covariates with an iterative examination of the scale of all continuous covariates
and can be used with either the closed or sequential test procedures described in
Section 4.2.

The multivariable fractional polynomial procedure requires that two significance
levels be specified: the first, α1, for the test for exclusion from or addition to, the
model and the second, α2, to assess the significance of the fractional polyno-
mial transforms of a continuous covariate. We use the same notation as Royston
and Sauerbrei (2008) to denote the method and its significance levels, namely
mfp(α1, α2).

The method begins, cycle 1, by fitting a multivariable model that contains the
user-specified covariates. This initial collection, ideally, would include all study
covariates. However, we may have a setting where this is not possible, for any
one of a number of numerical problems. If this occurs, a reasonable solution is
to choose a subset of covariates that includes the clinically important covariates
and those significant at, say, the 25 percent level on univariable analysis. This is,
basically, the starting point of purposeful selection.

The initial fit at cycle 1 includes all covariates as linear terms in the logit. In sub-
sequent fits, each covariate is modeled according to a specified number of degrees
of freedom. All dichotomous and design variables have one degree of freedom,
meaning they are not candidates for fractional polynomial transformation. Contin-
uous covariates may be forced to be modeled linearly by specifying one degree
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of freedom, or may be candidates for a one- or two-term fractional polynomial by
specifying 2 or 4 degrees of freedom, respectively.

Following the initial multivariable linear fit, variables are considered in descend-
ing order of their Wald statistics. For covariates modeled with one degree of
freedom, a partial likelihood ratio test is used to assess their contribution to the
model, and its significance relative to the chosen level of significance, α1, is noted.
Continuous covariates are modeled using either the closed or sequential test method,
noting whether the covariate should be removed using α1, kept linear, or trans-
formed using α2. In keeping with our approach to stepwise selection and best
subsets we set the level of significance for staying in the model at α1 = 0.15. We
use the five percent level of significance, α2 = 0.05, for testing the need to trans-
form. In the example, we use the closed test procedure, which is the default method
in STATA. This completes the first cycle.

The second cycle begins with a fit of a multivariable model containing the
significant covariates from cycle one (i.e., the model with significant continuous
covariates, that may be transformed and significant dichotomous covariates). All
covariates, examined in descending order of significance, are considered again
for possible transformation, inclusion or exclusion from the model. Continuous
covariates with a significant fractional polynomial transformation are entered trans-
formed, which becomes their null model. The point of this step is twofold: (1)
does the transformation “linearize” the covariate in the logit? and (2) does the
transformation affect scaling of other covariates? Each covariate’s level of sig-
nificance is noted as well as the need to transform. This completes the second
cycle.

The procedure stops when the results of two consecutive cycles are the same. The
minimum number is two. More than two cycles occur if additional transformations
of continuous covariates are suggested in cycle two and beyond, or if the level
of significance of the partial likelihood ratio test for contribution to the model,
changes the decision to include or exclude a covariate.

We use mfp(0.15, 0.05) on the GLOW500 data from the GLOW Study with the
same 10 covariates used in the previous three sections and model self-reported risk
of fracture with two design variables. We note that in STATA one may consider
design variables formed from a categorical covariate with more than two levels
as a group or separately. In the example, we consider the two design variables
for self-reported risk of fracture separately, as that is how they were modeled in
stepwise and best subsets. The method took two cycles to converge. We present
the results from cycle 1 in Table 4.31, and cycle 2 in Table 4.32.

The cycle begins by fitting the model containing all 11 covariates. In Table 4.31,
the first covariate processed is having had a prior fracture, PRIORFRAC, so we
know it had the largest Wald statistic. Because PRIORFRAC is dichotomous the
first test, line∗ 1, compares the 10 covariate model not containing PRIORFRAC to
the 11 covariate model containing PRIORFRAC. This is indicated in the last two

∗The STATA output does not include line numbers. We included them in Table 4.31 and Table 4.32 to
help in discussing the results.
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Table 4.31 Results from the Cycle 1 Fit of MFP Applied to the GLOW500 Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 PRIORFRAC null lin. 511.004 7.167 0.007∗ . 1
2 Final 503.837 1
3 AGE null FP2 510.869 7.629 0.106∗ . 3 3
4 lin. 503.837 0.598 0.897 1
5 Final 503.837 1
6 RATERISK3 null lin. 510.335 6.498 0.011∗ . 1
7 Final 503.837 1
8 MOMFRAC null lin. 507.944 4.107 0.043∗ . 1
9 Final 503.837 1

10 RATERISK2 null lin. 506.123 2.286 0.131∗ . 1
11 Final 503.837 1
12 BMI null FP2 506.098 4.524 0.340 . −2 1
13 Final 506.098 .
14 ARMASSIST null lin. 508.155 2.058 0.151 . 1
15 Final 508.155 .
16 WEIGHT null FP2 510.209 6.103 0.192 . −2 –2
17 Final 510.209 .
18 HEIGHT null FP2 514.905 6.689 0.153 . −2 –2
19 Final 514.905 .
20 SMOKE null lin. 515.296 0.391 0.532 . 1
21 Final 515.296 .
22 PREMENO null lin. 515.844 0.547 0.459 . 1
23 Final 515.844 .

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

columns of line 1 where “.” denotes that the covariate is not in the model and “1”
denotes that it is modeled linearly in the logit. The value in the Deviance column,
511.004, in line 1 is for the model that excludes PRIORFRAC. The value in the
G column of line 1, 7.167, is the difference between 511.004 and the Deviance
for the model containing PRIORFRAC. The value in the p column in line 1 is the
significance level using one degree of freedom, Pr[χ2(1) ≥ 7.167] = 0.007. The
“*” denotes that the test is significant at the specified significance level for inclusion
in the model, α1 = 0.15. Because the test is significant and since PRIORFRAC is
dichotomous the final model in line 2 is the one that includes PRIORFRAC. Hence,
in this case, the value of the Deviance in line 1 is the sum of the Deviance in line 2
and G in line 1 and the “1” in the “Powers” column means it enters as a single-term
(i.e., linear in the logit).

The second covariate processed is age, AGE, as it had the second largest Wald
statistic. This variable is continuous and, as such, it is first modeled using the best
two-term fractional polynomial transformation with the powers shown in the last
column of line 3, (3, 3), that is [AGE3, AGE3 × ln(AGE)]. The partial likelihood
ratio test comparing this best two-term fractional polynomial modeling of age to
the 10 covariate model that excludes age is, from line 3, G = 7.269 which, with 4
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Table 4.32 Results from the Cycle 2 Fit of MFP Applied to the GLOW500 Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 PRIORFRAC null lin. 524.264 8.42 0.004∗ . 1
2 Final 515.844 1
3 AGE null FP2 529.003 13.744 0.008∗ . 3 3
4 lin. 515.844 0.584 0.9 1
5 Final 515.844 1
6 RATERISK3 null lin. 523.740 7.897 0.005∗ . 1
7 Final 515.844 1
8 MOMFRAC null lin. 518.899 3.055 0.080∗ . 1
9 Final 515.844 1

10 RATERISK2 null lin. 519.360 3.517 0.061∗ . 1
11 Final 515.844 1
12 BMI null FP2 515.844 4.433 0.351 . −2 –2
13 Final 515.844 .
14 ARMASSIST null lin. 515.844 2.41 0.121∗ . 1
15 Final 513.434 1
16 WEIGHT null FP2 513.434 3.611 0.461 . −2 –2
17 Final 513.434 .
18 HEIGHT null FP2 513.434 7.749 0.101∗ . −2 –2
19 lin. 507.500 1.816 0.612 1
20 Final 507.500 1
21 SMOKE null lin. 507.500 0.587 0.444 . 1
22 Final 507.500 .
23 PREMENO null lin. 507.500 0.181 0.67 . 1

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

degrees of freedom, yields Pr[χ2(4) ≥ 7.629] = 0.106. Since this is significant at
the 0.15 level the two-term fractional polynomial model is compared to the linear
model in line 4. The partial likelihood ratio test in line 4 is G = 0.598, which with
3 degrees of freedom, yields p = 0.897. Since two different parameterizations of
age are being compared, the p-value is compared to α2 = 0.05 and the test is
not significant. Hence, there is no further modeling of age with the final model,
age linear, given in line 5. Had the two-term fractional polynomial model been
significantly different from the linear model the best one-term fractional polynomial
model would have been found and compared to the two-term model, again at the
α2 level of significance.

The next three variables examined are the dichotomous covariates RATERISK3,
MOMFRAC and RATERISK2. Each is significant at the α1 = 0.15 level and thus
will be retained in the model fit at cycle 2.

The covariate BMI is next examined in line 12. The partial likelihood ratio test
comparing the best two-term fractional polynomial model, powers (−2, 1), with
the model that excludes BMI is G = 4.524 which, with four degrees of freedom,
results in p = 0.340. This is not significant at the α1 = 0.15 level, so BMI is not
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included in the model fit in cycle 2. The remaining five covariates, ARMASSIST,
WEIGHT, HEIGHT, SMOKE, and PREMENO, are individually not significant at
the 0.15 level. However, the significance of the partial likelihood ratio tests for
ARMASSIST and HEIGHT have p-values that are close to the threshold of 0.15.
It is possible that these two could be selected for inclusion in cycle 2 when a
smaller model is fit.

The model fit at cycle two contains the first five covariates in Table 4.31, namely
PRIORFRAC, AGE, RATERISK3, MOMFRAC and RATERISK2. The results of
cycle 2 are shown in Table 4.32.

The results in the first 13 lines of Table 4.32 are similar to those in Table 4.31 for
these covariates. The difference between these tables is that the partial likelihood
ratio tests in Table 4.32 are based now, not on the full 11 covariate model, but
on a five covariate model. In line 14 we see that ARMASSIST contributes to the
model at the 0.15 level with p = 0.121. In line 18 we see that HEIGHT also is
significant (p = 0.101). Hence at the next cycle a seven covariate model is fit: the
five in lines 1–10 plus ARMASSIST and HEIGHT. The decisions based on this
fit are similar to those in Table 4.31. Hence the procedure converges at cycle 2.

We note that application of mfp(0.15, 0.05) to the GLOW500 data yields exactly
the same model identified by purposeful selection and stepwise selection. The model
obtained using best subsets was similar but selected BMI and WEIGHT in place of
HEIGHT. Much of the congruence between the various methods can be attributed
to the fact that, in this example, none of the continuous covariates had significant
fractional polynomial transformations.

To provide an example when continuous covariates are transformed we apply
mfp(0.15, 0.05) to the Burn Study data analyzed in Section 4.2. The covariates
modeled (see Table 1.9) are total burn surface (TBSA), age (AGE), burn involv-
ing an inhalation injury (INH_INJ), race (RACE, 0 = non-white, 1 = white),
burn involving a flame (FLAME) and gender (GENDER, 0 = female, 1 = male).
The procedure converged in two cycles and we show the results from cycle 2 in
Table 4.33.

The results for TBSA and AGE in Table 4.33 provide good examples of when
fractional polynomial transformations are found to be significant with the mfp
method.

The first variable processed is TBSA. The results in line 1 show that the two-
term fractional polynomial model, powers (−2, 0.5), is significant when compared
to the model not containing TBSA with p < 0.001. Hence the procedure now
compares the two-term fractional polynomial model to the model linear in TBSA
in line 2. With p = 0.001, the test is significant at the α2 = 0.05 level, as indicated
by the “+”. Next, the two-term model is compared to the best one-term fractional
polynomial model [power (0.5)]. The significance level, computed with 2 degrees
of freedom is p = 0.520. Since this is not significant at the 0.05 level the process
stops and the one-term fractional polynomial model is the final model for TBSA,
shown in line 4.

The results for age in lines 5–8 are similar to those for TBSA in that the final
model is the one-term fractional polynomial model with power (2). The results for
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Table 4.33 Results from the Cycle 2 Fit of MFP Applied to the Burn Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 TBSA null FP2 528.892 208.263 <0.001∗ . −2 .5
2 lin. 336.842 16.213 0.001† 1
3 FP1 321.935 1.306 0.52 0.5
4 Final 321.935 0.5
5 AGE null FP2 505.022 184.862 <0.001∗ . 1 1
6 lin. 329.589 9.429 0.024† 1
7 FP1 321.935 1.775 0.412 2
8 Final 321.935 2
9 INH_INJ null lin. 339.521 17.586 0.000∗ . 1

10 Final 321.935 1
11 RACE null lin. 325.869 3.934 0.047∗ . 1
12 Final 321.935 1
13 FLAME null lin. 321.935 1.838 0.175 . 1
14 Final 321.935 .
15 GENDER null lin. 321.935 0.129 0.719 . 1
16 Final 321.935 .

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

inhalation injury in lines 9 and 10 show it is significant as is race in lines 11 and
12. The last two covariates processed, FLAME and GENDER, do not contribute
to the model with significance levels of p = 0.175 and p = 0.719 respectively.
As noted the mfp procedure converged at two cycles. The resulting model with
four covariates,

√
TBSA, AGE2, INH_INJ and RACE, is the same model initially

obtained using purposeful selection in Section 4.2. As we noted there, we added
AGE to the model for purposes of ease of interpretation, even though its coefficient
was not significant when added to the model containing AGE2.

The mfp(α1, α2) method is clearly an extremely powerful analytic modeling
tool, which on the surface, would appear to relieve the analyst of having to think
too hard about model content. This is not the case, of course. We recommend
that, if one uses this approach then its model be considered as a suggestion for
a possible main effects model, much in the way that stepwise and best subsets
identify possible models. The model needs a thorough evaluation to be sure all
covariates and transformations make clinical sense, that transformations are not
caused by a few extreme observations and, importantly, that excluded covariates
are not confounders of model covariate estimates of effect. We highly recom-
mend that you spend time with Royston and Sauerbrei (2008, Chapter 6), Sauer-
brei et al. (2006) and the host of other excellent papers cited that describe in
detail, the development and use of both fractional polynomials and the mfp(α1, α2)

procedure.
In summary, stepwise, best subsets and multivariable fractional polynomials

have their place as covariate selection methods, but it is always the responsibility
of the user to choose the content and form of the final model.
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4.4 NUMERICAL PROBLEMS

In previous chapters we have occasionally mentioned various numerical problems
that can occur when fitting a logistic regression model. These problems are caused
by certain structures in the data coupled with the lack of appropriate checks in some
logistic regression software. The goal of this section is to illustrate these structures
in certain simple situations and illustrate what can happen when the logistic regres-
sion model is fit to such data. The issue here is not one of model correctness or
specification, but the effect certain data patterns have on the computation of param-
eter estimates. Some of these problems are due to “thin” data, namely not enough
outcomes, usually y = 1, and/or small frequencies for a categorical covariate. In
some settings use of exact logistic regression methods, discussed in Section 10.3
can provide correctly estimated coefficients and standard errors. In this section we
present results from running various example data in several different packages.

For some of the examples we do not state which package produced the results.
The reason is that packages are revised and the results we get in one version with
these ill conditioned data might well change in the next release. Also different
packages might provide different output from the same ill conditioned data. The
point of the examples is to learn the numerical signs and symptoms that indicate a
numerical problem in the data.

Perhaps the simplest and thus most obvious situation is when we have a fre-
quency of zero in a contingency table. An example of such a contingency table is
given in Table 4.34. The estimated odds ratios and log-odds ratios using the first
level of the covariate as the reference group are given in the first two rows below
the table. The point estimate of the odds ratios for level 3 versus level 1 is infinite
since all subjects at level 3 responded. The results of fitting a logistic regression
model to these data are given in the last two rows. The estimated coefficient in
the first column is the intercept coefficient. The particular package used does not
really matter as many, but not all, packages produce similar output. One program
that does identify the problem is STATA. It provides an error message that x = 3
perfectly predicts the outcome and the design variable for x = 3 is not included

Table 4.34 A Contingency Table with a Zero Cell Count
and the Results of Fitting a Logistic Regression Model to
these Data

Outcome / x 1 2 3 Total

1 7 12 20 39
0 13 8 0 21

Total 20 20 20 60

ÔR 1 2.79 inf
ln(ÔR) 0 1.03 inf
β̂ −0.62 1.03 11.7
ŜE 0.47 0.65 34.9
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in the fit of the model. Other programs may or may not provide some sort of
error message indicating that convergence was not obtained or that the maximum
number of iterations was used. What is rather obvious, and the tip-off that there is
a problem with the model, is the large estimated coefficient for the second design
variable and especially its large estimated standard error.

A common practice to avoid having an undefined point estimate is to add one-
half to each of the cell counts. Adding one-half may allow us to move forward
with the analysis of a single contingency table, but such a simplistic remedy is
rarely satisfactory with a more complex data set.

As a slightly more complex example we consider the stratified 2 by 2 tables
shown in Table 4.35. The stratum-specific point estimates of the odds ratios are
provided below each 2 by 2 table. The results of fitting a series of logistic regression
models are provided in Table 4.36.

In the case of the data shown in Table 4.35 we do not encounter problems until
we include the stratum z, by risk factor x, and interaction terms, x × z_2 and x × z_3
in the model. The addition of the interaction terms results in a model that is equiva-
lent to fitting a model with a single categorical variable with six levels, one for each
column in Table 4.35. Thus, in a sense, the problem encountered when we include
the interaction is the same one illustrated in Table 4.34. As was the case when fitting
a model to the data in Table 4.34, the presence of a zero cell count is manifested
by an unbelievably large estimated coefficient and estimated standard error.

The presence of a zero cell count should be detected during the univariable
screening of the data. Knowing that the zero cell count is going to cause problems

Table 4.35 Stratified 2 by 2 Contingency Tables with a Zero
Cell Count Within One Stratum

Stratum (z) 1 2 3

Outcome / x 1 0 1 0 1 0

1 5 2 10 2 15 1
0 5 8 2 6 0 4

Total 10 10 12 8 15 5
ÔR 4 15 inf

Table 4.36 Results of Fitting Logistic Regression Models to the Data in Table 4.35

Model 1 2

Variable Coeff. Std. Err. Coeff. Std. Err.

x 2.77 0.72 1.39 1.01
z_2 1.19 0.81 0.29 1.14
z_3 2.04 0.89 0.00 1.37
x × z_2 1.32 1.51
x × z_3 11.54 50.22
Constant −2.32 0.77 −1.39 0.79
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in the modeling stage of the analysis we could collapse the categories of the variable
in a meaningful way to eliminate it, eliminate the category completely, or if the
variable is at least ordinal scale, treat it as continuous.

The type of zero cell count illustrated in Table 4.35 results from spreading
the data over too many cells. This problem is not likely to occur until we begin
to include interactions in the model. When it does occur, we should examine
the three-way contingency table equivalent to the one shown in Table 4.35. The
unstable results prevent us from determining whether, in fact, the interaction is
important. To assess the interaction we first need to eliminate the zero cell count.
One way to do this is by collapsing categories of the stratification variable. For
example, in Table 4.35 we might decide that values of z = 2 and z = 3 are similar
enough to pool them. The stratified analysis would then have two 2 by 2 tables
the second of which results from pooling the tables for z = 2 and z = 3. A second
approach is to define a new variable equal to the combination of the stratification
variable and the risk factor and to pool over levels of this variable and model it as
a main effect variable. Using Table 4.35 as an example, we would have a variable
with six levels corresponding to the six columns in the table. We could collapse
levels five and six together. Another pooling strategy would be to pool levels
three and five, and four and six. This pooling strategy is equivalent to collapsing
over levels of the stratification variable. The net effect is the loss of degrees of
freedom commensurate with the amount of pooling. Twice the difference in the
log-likelihood for the main effects only model, and the model with the modified
interaction term added, provides a statistic for the significance of the coefficients
for the modified interaction term.

The fitted models shown in Tables 4.34 and 4.36 resulted in large estimated coef-
ficients and estimated standard errors. In some examples we have encountered, the
magnitude of the estimated coefficient was not large enough to suspect a numerical
problem, but the estimated standard error always was. Hence, we believe that the
best indicator of a numerical problem in logistic regression is the estimated stan-
dard error. In general, any time that the estimated standard error of an estimated
coefficient is large relative to the point estimate, we should suspect the presence
of one of the data structures described in this section.

A second type of numerical problem occurs when a collection of the covariates
completely separates the outcome groups or, in the terminology of discriminant
analysis, the covariates discriminate perfectly. For example, suppose that the age
of every subject with the outcome present was greater than 50 and the age of all
subjects with the outcome absent was less than 49. Thus, if we know the age of a
subject we know with certainty the value of the outcome variable. In this situation
there is no overlap in the distribution of the covariates between the two outcome
groups. This type of data has been shown by Bryson and Johnson (1981) to have
the property of monotone likelihood. The net result is that the maximum likelihood
estimates do not exist [see Albert and Anderson (1984); Santner and Duffy (1986)].
In order to have finite maximum likelihood estimates we must have some overlap
in the distribution of the covariates in the model.
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Table 4.37 Estimated Slope (β̂x), Constant (β̂0), and Estimated Standard Errors
(̂SE) when the Data Have Complete Separation, Quasicomplete Separation, and
Overlap

Estimates/x6 5.5 6.0 6.05 6.10 6.15 6.20 8.0

β̂x 20.3 7.5 3.7 3.0 2.6 2.3 0.2

ŜE 36.0 42.4 6.3 4.4 3.6 3.0 0.7

β̂0 −116.6 −44.0 −22.2 −17.9 −15.3 −13.5 −0.1

ŜE 208.1 254.3 38.2 27.1 22.1 189.1 5.8

A simple example illustrates the problem of complete separation and the results
of fitting logistic regression models to such data. Suppose we have the following 12
pairs of covariate and outcome, (x, y) : (1,0), (2,0), (3,0), (4,0), (5,0), (x6 = 5.5,
or 6.0, or 6.05, or 6.1, or 6.2, or 8.0, y6 = 0), (6,1), (7,1), (8,1), (9,1), (10,1),
(11,1). The results of fitting logistic regression models when x6 takes on one of the
values 5.5, 6.0, 6.05, 6.1, 6.2, or 8, using SAS version 9.2 are given in Table 4.37.
When we use x6 = 5.5 we have complete separation and all estimated parameters
are huge, since the maximum likelihood estimates do not exist. SAS provides a
warning but at the same time provides the values of the estimates at the last iteration,
leaving the ultimate decision about how to handle the output to the user. Similar
behavior occurs when the value of x6 = 6.0 is used. SAS notes this fact and again
provides estimates. When overlap is at a single or a few tied values the configuration
was termed by Albert and Anderson (1984) as quasi complete separation. As the
value of x6 takes on values greater than 6.0 the overlap becomes greater and the
estimated parameters and standard errors begin to attain more reasonable values.
The sensitivity of the fit to the overlap depends on the sample size and the range
of the covariate. The tip-off that something is amiss is, as in the case of the zero
cell count, the very large estimated coefficients and especially the large estimated
standard errors. Other programs, including STATA, do not provide output when
there is complete or quasicomplete separation, for example, x6 = 5.5 or x6 = 6. In
the remaining cases STATA and SAS produce similar results.

The occurrence of complete separation in practice depends on the sample size,
the number of subjects with the outcome present, and the number of variables
included in the model. For example, suppose we have a sample of 25 subjects and
only five have the outcome present. The chance that the main effects model demon-
strates complete separation increases with the number of variables we include in the
model. Thus, the modeling strategy that includes all variables in the model is par-
ticularly sensitive to complete separation. Albert and Anderson (1984) and Santner
and Duffy (1986) provide rather complicated diagnostic procedures for determining
whether a set of data displays complete or quasicomplete separation. Albert and
Anderson (1984) recommend that in the absence of their diagnostic, if one looks at
the estimated standard errors and if these tend to increase substantially with each
iteration of the fit, then one can suspect the presence of complete separation. As



numerical problems 149

Table 4.38 Data Displaying Near Collinearity Among the
Independent Variables and Constant

Subject x1 x2 x3 y

1 0.225 0.231 1.026 0
2 0.487 0.489 1.022 1
3 −1.080 −1.070 1.074 0
4 −0.870 −0.870 1.091 0
5 −0.580 −0.570 1.095 0
6 −0.640 −0.640 1.010 0
7 1.614 1.619 1.087 0
8 0.352 0.355 1.095 1
9 −1.025 −1.018 1.008 0

10 0.929 0.937 1.057 1

noted in Chapter 3 the easiest way to address complete separation is to use some
careful univariable analyses. The occurrence of complete separation is not likely
to be of great clinical importance as it is usually a numerical coincidence rather
than describing some important clinical phenomenon. It is a problem we must work
around.

As is the case in linear regression, model fitting via logistic regression is also
sensitive to collinearities among the independent variables in the model. Most soft-
ware packages have some sort of diagnostic check, like the tolerance test employed
in linear regression. Nevertheless it is possible for variables to pass these tests
and have the program run, but yield output that is clearly nonsense. As a simple
example, we fit logistic regression models using STATA to the data displayed in
Table 4.20. In the table x1 ∼ N(0, 1) and the outcome variable was generated by
comparing a U(0, 1) variate, u, to the true probability π(x1) = ex1/(1 + ex1) as
follows: if u < π(x1) then y = 1, otherwise y = 0. The notation N(0, 1) indicates
a random variable following the standard normal (mean = 0, variance = 1) distri-
bution and U(a, b) indicates a random variable following the uniform distribution
on the interval [a, b]. The other variables were generated from x1 and the con-
stant as follows: x2 = x1 + U(0, 0.1) and x3 = 1 + U(0, 0.01). Thus, x1 and x2
are highly correlated and x3 is nearly collinear with the constant term. The results
of fitting logistic regression models to various subsets of the variables shown in
Table 4.38 are presented in Table 4.39.

The model that includes the highly correlated variables x1 and x2 has both very
large estimated slope coefficients and estimated standard errors. For the model
containing x3 we see that the estimated coefficients are of reasonable magnitude
but the estimated standard errors are much larger than we would expect. The model
containing all variables is a composite of the results of the other models. In all cases
the tip-off for a problem comes from the aberrantly large estimated standard errors.

In a more complicated data set, an analysis of the associations among the covari-
ates using a collinearity analysis similar to that performed in linear regression
should be helpful in identifying the dependencies among the covariates. Belsley
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Table 4.39 Estimated Coefficients and Standard Errors from Fitting Logistic
Regression Models to the Data in Table 4.38

Var. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

x1 1.4 1.0 104.2 256.2 79.8 272.6
x2 −103.4 256.0 −78.3 272.5
x3 1.8 20.0 −11.1 206.6
Cons. −1.0 0.8 −0.3 1.3 −2.7 21.1 11.4 27.8

et al. (1980) discuss a number of methods that are implemented in many linear
regression packages. One would normally not employ such an in-depth investiga-
tion of the covariates unless there was evidence of degradation in the fit similar
to that shown in Table 4.39. An alternative is to use the ridge regression methods
proposed by Schaefer (1986).

In general, the numerical problems of a zero cell count, complete separation, and
collinearity, are manifested by extraordinarily large estimated standard errors and
sometimes by a large estimated coefficient as well. New users and those without
much computer experience are especially cautioned to look at their results carefully
for evidence of numerical problems. In many settings all is not lost. Heinze and
Schemper (2002) and Heinze (2006) discuss and illustrate the use of methods that
can produce valid parameter estimates and confidence intervals with data contain-
ing zero frequency cells and/or separation. These methods include exact logistic
regression and penalized likelihood methods, which we discuss and illustrate in
Section 10.3.

EXERCISES

1. Show algebraically and with a numerical example of your choice that the
restricted cubic spline functions in equation (4.3) meet at the three knots.

2. In the modeling of the GLOW500 data using purposeful selection age was
modeled as linear in the logit. We noted that the estimated coefficients for
the quartile design variables for age in Table 4.10 suggested an alternative
parameterization: using the design variable for the fourth quartile AGE_4.
This parameterization of age was not pursued further. Proceed with purposeful
selection using AGE_4. To save time, assume that your main effects model is
the one in Table 4.9 but with AGE replaced by AGE_4. Compare your model
to the one in Table 4.15 that resulted when age was modeled as linear in the
logit. Which model do you think is the better one for estimating risk factors
for fracture?

3. In the modeling of the Burn Injury data questions came up as to how to model
age. There were essentially three choices: linear (power 1), quadratic (powers
1 and 2) and the best fractional polynomial model (power 2). In the text we
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proceeded with power 2. Perform selection of interactions for the other two
parameterizations and save your work for an exercise on model evaluation in
Chapter 5.

4. Demonstrate best subset selection of interactions by beginning with the main
effects model from the GLOW500 data.

5. The restricted cubic spline analysis for age in the Burn Injury Study shown
in Table 4.21 used four knots at the 5th, 35th, 65th, and 95th percentiles (see
Table 4.1). Verify that spline functions formed from these four knots provide a
better model than using three or five knots placed at the respective percentiles
in Table 4.1.

6. Consider the data from the Myopia Study described in Section 1.6.6 whose
variables are described in Table 1.10. The binary outcome variable is MYOPIC
(0 = Yes, 1 = No). Consider as independent variables all others in Table 1.10
except spherical equivalent refraction (SPHEQ) as it is used to define the
outcome variable, the composite of near-work hours (DIOPTERHR) and study
year (STUDYYEAR).

(a) Use purposeful selection to obtain what you feel is the best model for
estimating the effect of the risk factors on myopia. This analysis must
include identification of the scale in the logit of all continuous covariates
and selection of interactions. Assume that all possible interactions among
your main effects are clinically reasonable.

(b) Repeat problem 6(a) using stepwise selection of covariates (main effects
and then interactions among main effects forcing in the main effects).

(c) Repeat problem 6(a) using best subset selection of covariates with Mal-
lows’ Cq (main effects and then interactions among main effects forcing
in the main effects).

(d) Repeat problem 6(a) using multivariable fractional polynomial selection
of main effects followed by purposeful selection of interactions.



C H A P T E R 5

Assessing the Fit of the Model

5.1 INTRODUCTION

We begin our discussion of methods for assessing the fit of an estimated logistic
regression model with the assumption that we are, at least preliminarily, satisfied
with our efforts at the model building stage. By this we mean that, to the best
of our knowledge, the model contains those variables (main effects as well as
interactions) that should be in the model and that variables have been entered in
the correct functional form. Now we would like to know whether the probabilities
produced by the model accurately reflect the true outcome experience in the data.
This is referred to as its goodness of fit.

If we intend to assess the goodness of fit of the model, then we should have
some specific ideas about what it means to say that a model fits. Assume that we
denote the observed sample values of the outcome variable, in vector form, as y,
where y ′ = (y1, y2, y3, . . . , yn). We denote the values estimated by the model, or
fitted values, as ŷ, where ŷ ′ = (ŷ1, ŷ2, ŷ3, . . . , ŷn). We conclude that the model
fits if: (1) summary measures of the distance between y and ŷ are small and (2) the
contribution of each pair, (yi, ŷi ), i = 1, 2, 3, . . . , n, to these summary measures is
unsystematic and small relative to the error structure of the model. Thus, a complete
assessment of the fitted model involves both the calculation of summary measures
and a thorough examination of the individual components of these measures.

Before getting into the details of assessing model fit we discuss some approaches
that have been used that supposedly assess model fit, but actually do not. The model
building techniques discussed in Chapter 4 compare competing fitted models that
are based on hypothesis tests that one or more of the model coefficients are equal
to zero. For example, does weight contribute to a model containing age and history
of fracture? Stated in other words: Is the model with weight better than the model
without weight? Thus, we are really comparing two sets of different fitted values.
While we do not include references here, we have read numerous subject matter
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papers over the years where authors state something like “we added the square of
age to the model and it was not significant so we conclude that the model fits”.
This test merely asserts that the model with age squared is not better than the
model without age squared. Assessing goodness of fit is not a relative comparison,
it is an absolute comparison. When we assess goodness of fit we are comparing
the fitted values to the observed values, where we can think of the observed values
as being from the best possible (saturated) model. Another way to describe this
is to consider a sequence of progressively larger (more covariates) models. The
smallest model contains only the constant term, β0. The process of model building
adds variables to the model and the significance of added covariates is assessed
by referring backward, to a smaller model, one without the added covariates. In
assessing goodness of fit we compare the fitted model to the largest possible model,
the saturated model, not a smaller model.

In summary, the components of our proposed approach to assess model fit and
adequacy are: (1) computation and evaluation of overall measures of fit, (2) exam-
ination of the individual components of the summary statistics, often graphically,
and (3) examination of other measures of the difference or distance between the
observed and fitted values.

5.2 SUMMARY MEASURES OF GOODNESS OF FIT

We begin with the summary measures of goodness of fit, as many are routinely
provided as output by statistical software and give an indication of the overall fit
of the model. Summary statistics, by nature, may not provide information about
the individual model components. A small value for one of these statistics does
not rule out the possibility of some substantial and thus interesting deviation from
fit for a few subjects. On the other hand, a large value for one of these statistics is
a clear indication of a substantial problem with the model.

Before discussing specific goodness of fit statistics, we consider the effect the
fitted model has on the degrees of freedom available for the assessment of model
performance. We use the term covariate pattern to describe a particular configura-
tion of values for the covariates in a model. For example, in a data set containing
values of age, race, sex and weight for each subject, the combination of these fac-
tors may result in as many different covariate patterns as there are subjects. On the
other hand, if the model contains only race and sex, each coded at two levels, there
are only four possible covariate patterns. We note that during model development
it is not necessary to be concerned about the number of covariate patterns. The
degrees of freedom for tests are based on the difference in the number of param-
eters in competing models, not on the number of covariate patterns. However, the
number of covariate patterns may be an issue when the fit of a model is assessed.

Goodness of fit is assessed over the fitted values determined by the covariates
in the model, not the total collection of available covariates. For instance, suppose
that our fitted model contains p independent variables, x ′ = (x1, x2, x3, . . . , xp),
and let J denote the number of distinct values of x observed. If some subjects
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have the same value of x then J < n. We denote the number of subjects with
x = xj by mj, j = 1, 2, 3, . . . , J . It follows that

∑
mj = n. Let yj denote the

number of responses, y = 1, among the mj subjects with x = xj . It follows that∑
yj = n1, the total number of subjects with y = 1. The statistical distributions of

the summary goodness of fit statistics are obtained by letting n become large while
holding the number of parameters, coefficients, in the model fixed. If the number
of covariate patterns also increases with n then each value of mj tends to be small.
For example, if we have age in the model, then increasing n will likely increase the
distinct ages in the sample. Distributional results obtained under the condition that
only n becomes large are said to be based on n-asymptotics. If we fix J < n and
let n become large then each value of mj also tends to become large. Distributional
results based on each mj becoming large are said to be based on m-asymptotics.
The difference between these asymptotics and the need to distinguish between them
should become clearer as we discuss summary statistics in greater detail.

Initially, we assume that J ≈ n. This is the case most frequently encountered in
practice when there is at least one continuous covariate in the model. It also presents
the greatest challenge in developing distributions of goodness of fit statistics.

5.2.1 Pearson Chi-Square Statistic, Deviance, and Sum-of-Squares

In linear regression, summary measures of fit, as well as diagnostics for
casewise effects on the fit, are functions of a residual defined as the difference
between the observed and fitted value (y − ŷ). In logistic regression there are
several possible ways to measure the difference between the observed and fitted
values. To emphasize the fact that the fitted values in logistic regression are
calculated for each covariate pattern and depend on the estimated probability for
that covariate pattern, we denote the fitted value for the jth covariate pattern as ŷj

where

ŷj = mj π̂j = mj

{
eĝ(xj )

1 + eĝ(xj )

}

where ĝ(xj ) = β̂0 + β̂1xj1 + β̂2xj2 + · · · + β̂pxjp is the estimated logit.
We begin by considering three measures of the difference between the observed

and the fitted values: the Pearson residual, the deviance residual and the residual
used in linear regression. For a particular covariate pattern the Pearson residual is

r(yj , π̂j ) = (yj − mj π̂j )√
mj π̂j (1 − π̂j )

. (5.1)

The summary statistic based on these residuals is the Pearson chi-square statistic

X2 =
J∑

j=1

[
r
(
yj , π̂j

)]2
. (5.2)
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The deviance residual is

d(yj , π̂j ) = ±
{

2

[
yj ln

(
yj

mj π̂j

)
+ (mj − yj ) ln

( (
mj − yj

)
mj(1 − π̂j )

)]}1/2

, (5.3)

where the sign + or − is the same as the sign of (yj − mj π̂j ). For covariate
patterns with yj = 0 the deviance residual is

d(yj , π̂j ) = −
√

2mj |ln(1 − π̂j ) |

and the deviance residual when yj = mj is

d(yj , π̂j ) =
√

2mj |ln(π̂j )| .

The summary statistic based on the deviance residuals is the deviance

D =
J∑

j=1

d(yj , π̂j )
2. (5.4)

In a setting where J = n, this is the same quantity shown in equation (1.10).
The linear regression-like residual is defined as the difference between the

observed and predicted outcome (as determined by the model), namely

s(yj , π̂j ) = (yj − mj π̂j ) (5.5)

and the fit statistic is the sum-of-squares

S =
J∑

j=1

s(yj , π̂j )
2. (5.6)

The distribution of the statistics X2 and D under the assumption that the fitted
model is correct in all aspects is supposed to be chi-square with degrees of freedom
equal to J − (p + 1). For the deviance this statement follows from the fact that
D is the likelihood ratio test statistic of a saturated model with J parameters
versus the fitted model with p + 1 parameters. Similar theory provides the null
distribution of X2. The problem is that when J ≈ n, the distribution is obtained
under n-asymptotics, and hence the number of parameters is increasing at the same
rate as the sample size. Thus, p-values calculated for these two statistics when
J ≈ n, using the χ2(J − p − 1) distribution, are incorrect. We describe below a
method that centers and scales the Pearson chi-square statistic so that the standard
normal distribution may be used to obtain a correct p-value. The distribution of S

is a little more complex, but an approximation is discussed later in this section.
One way to avoid the above noted difficulties with the distributions of X2 and

D when J ≈ n is to group the data in such a way that m-asymptotics can be used.
To understand the rationale behind the various grouping strategies that have been
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proposed, it is helpful to think of X2 as the Pearson chi-square statistic and D as
the log-likelihood chi-square statistic that result from a 2 × J table. The rows of the
table correspond to the two values of the outcome variable y = 1, 0. The J columns
correspond to the J possible covariate patterns. The estimate of the expected value
under the hypothesis that the logistic model in question is the correct model for the
cell corresponding to the y = 1 row and jth column is mj π̂j . It follows that the
estimate of the expected value for the cell corresponding to the y = 0 row and jth
column is mj(1 − π̂j ). The statistics X2 and D are calculated in the usual manner
from this table.

Thinking of the statistics as arising from the 2 × J table gives some intuitive
insight as to why we cannot expect them to follow the χ2(J − p − 1) distribution.
When chi-square tests are computed from a contingency table the p-values are
correct under the null hypothesis when the estimated expected values are “large” in
each cell. This condition holds under m-asymptotics. In practice, minimum required
expected frequencies have been proposed (e.g., among others, mj π̂j > 5). Although
this is an oversimplification of the situation, it is essentially correct. In the 2 × J

table described above the expected values are always quite small since the number
of columns increases as n increases. One way to avoid this problem is to collapse
the columns into a fixed number of groups g, and then calculate observed and
expected frequencies. By fixing the number of columns, the estimated expected
frequencies become large as n becomes large. Thus, m-asymptotics hold.

The theory required to derive the distribution of the statistics based on a col-
lapsed table is not quite so straightforward, but the intuitive appeal of thinking
in this manner is helpful. The relevant distribution theory presented in a series of
papers by Moore (1971), and Moore and Spruill (1975), considers what happens to
chi-square goodness of fit tests when the boundaries forming the cells are functions
of random variables, namely the estimated coefficients.

5.2.2 The Hosmer–Lemeshow Tests

Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) proposed group-
ing based on the values of the estimated probabilities. Assume, for the sake of
discussion, that J = n. In this case we think of the n columns as corresponding
to the n values of the estimated probabilities, with the first column correspond-
ing to the smallest value, and the nth column to the largest value. Two grouping
strategies were proposed as follows: (i) collapse the table based on percentiles of
the estimated probabilities and (ii) collapse the table based on fixed values of the
estimated probability.

With the first method, use of g = 10 groups results in the first group containing
the n′

1 = n/10 subjects having the smallest estimated probabilities, and the last
group containing the n′

10 = n/10 subjects having the largest estimated probabili-
ties. With the second method, use of g = 10 groups results in cutpoints defined at
the values k/10, k = 1, 2, . . . , 9 and the groups contain all subjects with estimated
probabilities between adjacent cutpoints. For example, the first group contains all
subjects whose estimated probability is less than or equal to 0.1, while the tenth
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group contains those subjects whose estimated probability is greater than 0.9. For
the y = 1 row, estimates of the expected values are obtained by summing the esti-
mated probabilities over all subjects in a group. For the y = 0 row, the estimated
expected value is obtained by summing, over all subjects in the group, one minus
the estimated probability. For either grouping strategy, the Hosmer-Lemeshow
goodness of fit statistic, Ĉ, is obtained by calculating the Pearson chi-square statis-
tic from the g × 2 table of observed and estimated expected frequencies. A formula
defining the calculation of Ĉ is as follows:

Ĉ =
g∑

k=1

[(
o1k − ê1k

)2
ê1k

+ (o0k − ê0k)
2

ê0k

]
, (5.7)

where

o1k =
ck∑

j=1

yj ,

o0k =
ck∑

j=1

(mj − yj ),

ê1k =
ck∑

j=1

mj π̂j ,

ê0k =
ck∑

j=1

mj(1 − π̂j )

and ck is the number of covariate patterns in the kth group. With a bit of algebra
one may show that

Ĉ =
g∑

k=1

(o1k − n′
kπk)

2

n′
kπk(1 − πk)

, (5.8)

where πk is the average estimated probability in the kth group,

πk = 1

n′
k

ck∑
j=1

mj π̂j .

Using an extensive set of simulations, Hosmer and Lemeshow (1980) demon-
strated that, when J = n and the fitted logistic regression model is the correct
model, the distribution of the statistic Ĉ is well approximated by the chi-square
distribution with g − 2 degrees of freedom χ2(g − 2). While not specifically exam-
ined, it is likely that χ2(g − 2) also approximates the distribution when J ≈ n.

An alternative to the denominator shown in equation (5.8) is obtained if we
consider o1k to be the sum of independent nonidentically distributed random vari-
ables. This suggests that we should standardize the squared difference between the
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observed and estimated expected frequency by

ck∑
j=1

mj π̂j (1 − π̂j ).

It is easy to show that

ck∑
j=1

mj π̂j (1 − π̂j ) = n′
kπk(1 − πk) −

ck∑
j=1

mj(π̂j − πk)
2.

In a series of simulations Xu (1996) showed that use of

ck∑
j=1

mj π̂j (1 − π̂j )

results in a trivial increase in the value of the test statistic. Pigeon and Heyse
(1999a, 1999b) proposed an adjustment that is the ratio of two estimators

φk =

ck∑
j=1

mj π̂j (1 − π̂j )

n′
kπk(1 − πk)

yielding the statistic

Ĉp =
g∑

k=1

1

φk

[(
o1k − ê1k

)2
ê1k

+ (o0k − ê0k)
2

ê0k

]

=
g∑

k=1

1

φk

(o1k − n′
kπk)

2

n′
kπk(1 − πk)

=
g∑

k=1

⎡⎢⎢⎢⎢⎢⎣
(
o1k − n′

kπk

)2
ck∑

j=1

mj π̂j (1 − π̂j )

⎤⎥⎥⎥⎥⎥⎦,

which is the statistic examined by Xu (1996). Pigeon and Heyse report in their
simulations that the distribution of ĈP , under the hypothesis that one has fit the
correct model with a sufficiently large sample, is approximated by the χ2(g − 1)

distribution. This appears to contradict Xu who showed in her simulations that the
distribution of ĈP could be well approximated by χ2(g − 2). In a recent simula-
tion study Canary (2012) showed that the distribution of ĈP was much closer to
χ2(g − 2) than χ2(g − 1). Since the modified statistic ĈP is not readily available
in software packages, we use Ĉ calculated using equation (5.7) or (5.8).
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Additional research by Hosmer et al. (1988) has shown that the grouping method
based on percentiles of the estimated probabilities is preferable to the one based
on fixed cutpoints in the sense of better adherence to the χ2(g − 2) distribution,
especially when many of the estimated probabilities are small (i.e., less than 0.2).
Thus, unless stated otherwise, Ĉ is based on the percentile-type of grouping, usually
with g = 10 groups. These groups are often referred to as the “deciles of risk”. This
term comes from health sciences research where the outcome y = 1 often represents
the occurrence of some disease. Most if not all logistic regression software packages
provide the capability to obtain Ĉ and its p-value, usually based on 10 groups. In
addition many packages provide or have the option to obtain a 10 × 2 table listing
the observed and estimated expected frequencies in each decile.

The results of applying the decile of risk grouping strategy to the estimated
probabilities computed from the model for the GLOW Study in Table 4.16 are
shown in Table 5.1. For example, the observed frequency in the fracture group,
(FRACTURE = 1), for the sixth decile of risk, 0.208 < π̂j ≤ 0.249, is 13. This
value is obtained from the sum of the observed outcomes for the 50 subjects
in this group. The corresponding estimated expected frequency for this decile is
11.4, which is the sum of the 50 estimated probabilities for these subjects. The
observed frequency for the no fracture on follow up group (FRACTURE = 0) is
50 − 13 = 37, and the estimated expected frequency is 50 − 11.4 = 38.6.

The value of the Hosmer–Lemeshow goodness of fit statistic computed from
the frequencies in Table 5.1 is Ĉ = 6.39 and the corresponding p-value computed
from the chi-square distribution with 8 degrees of freedom is 0.603. This indicates
that the model seems to fit quite well. A comparison of the observed and expected
frequencies in each of the 20 cells in Table 5.1 shows close agreement within each
decile of risk.

Since the distribution of Ĉ depends on m-asymptotics, the appropriateness of
the p-value depends on the validity of the assumption that the estimated expected

Table 5.1 Observed (Obs) and Estimated Expected (Exp) Frequencies
Within Each Decile of Risk for FRACTURE = 1 and FRACTURE = 0 Using
the Fitted Logistic Regression Model for the GLOW Study in Table 4.16

FRACTURE = 1 FRACTURE = 0

Decile Cut Point Obs Exp Obs Exp Total

1 0.085 3 3.3 47 46.7 50
2 0.111 4 4.9 46 45.1 50
3 0.141 7 6.3 43 43.7 50
4 0.176 11 8.1 40 42.9 51
5 0.208 7 9.4 42 39.6 49
6 0.249 13 11.4 37 38.6 50
7 0.323 9 14.3 41 35.7 50
8 0.389 19 17.6 31 32.4 50
9 0.483 25 21.8 25 28.2 50
10 0.747 27 28.0 23 22.0 50
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frequencies are large. Examining Table 5.1 we see that only two of the estimated
expected frequencies is less than five and none are less than one. In general, our
point of view is a bit more liberal than those who maintain that with tables of this
size (about 20 cells), all expected frequencies must be greater than 5. In this case,
we feel that there is reason to believe that the calculation of the p-value is accurate
enough to support the hypothesis that the model fits. If one is concerned about the
magnitude of the expected frequencies, selected adjacent rows of the table may be
combined to increase the size of the expected frequencies, while at the same time,
reducing the number of degrees of freedom.

A few additional comments about the calculation of Ĉ are needed. When the
number of covariate patterns is less than n, we have the possibility that one or
more of the empirical deciles will occur at a pattern with mj > 1. If this happens
then the value of Ĉ will depend, to some extent, on how these ties are assigned
to deciles. The fitted model in Table 4.16 has 457 covariate patterns, but only two
deciles have frequencies that differ from 50. This indicates that the tied values did
not occur exactly at a cut point. The results presented in Table 5.1 were obtained
from STATA where ties are assigned to the same decile in such as way as to make
the column totals as close to n/10 as possible. Other statistical packages may use
different strategies to handle ties. For example, fitting the same model in SAS
version 9.2 yielded the same fitted model shown in Table 4.16, but with Ĉ = 5.658
the corresponding p-value is 0.686. The use of different methods to handle ties
by different packages is not likely to be an issue unless the number of covariate
patterns is so small that assigning all tied values to one decile results in a huge
imbalance in decile size, or worse, considerably fewer than 10 groups. In this case
the computed value of Ĉ may be quite different from one package to the next. In
addition, when too few groups are used to calculate Ĉ, we run the risk that we do
not have the sensitivity needed to distinguish observed from expected frequencies.
It has been our experience that when Ĉ is calculated from fewer than 6 groups, it
almost always indicates that the model fits.

As a second example we evaluate the model fit to the Burn Study data shown
in Table 4.27. The value of the goodness of fit statistic based on deciles of risk
is Ĉ = 8.630 and, with 8 degrees of freedom yields p = 0.374, which supports
model fit. The table of observed and estimated expected frequencies in each decile
of risk is shown in Table 5.2.

Results similar to those in Table 5.2 are not unlike many others we have seen
in practice and present an interesting question: Does a small value of Ĉ and large
p-value support model fit when so many (in this case seven) of the 20 cells have
extremely small expected frequencies (in this case <5, and in five instances, <1)?
We must remember that the goal of this analysis is to determine whether there is
evidence of model fit, in the sense of agreement between the observed values of the
outcome variable and the estimated probabilities of the outcome based on the model.
While the estimated number of deaths in each of the first seven deciles of risk is
small, the observed number is also small and agrees well with the estimated number.
The largest difference between the two among the 20 cells is in the seventh decile.
One measure of the difference that we use in practice comes from contingency
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Table 5.2 Observed (Obs) and Estimated Expected (Exp) Frequencies
Within Each Decile of Risk for DEATH = 1 and DEATH = 0 Using the
Fitted Logistic Regression Model for the Burn Study in Table 4.27

DEATH = 1 DEATH = 0

Decile Cut Point Obs Exp Obs Exp Total

1 0.0007 0 0.1 100 99.9 100
2 0.0013 0 0.1 100 99.9 100
3 0.0023 0 0.2 100 99.8 100
4 0.0041 0 0.3 100 99.7 100
5 0.0080 0 0.6 100 99.4 100
6 0.0182 3 1.2 97 98.8 100
7 0.0535 0 3.3 100 96.7 100
8 0.2273 15 11.4 85 88.6 100
9 0.7122 43 43.5 57 56.5 100

10 0.9986 89 89.4 11 10.6 100

table analysis methods and is

|ô − ê|√
ê

= |0 − 3.3|√
3.3

= 1.82.

When the estimated expected frequency is large and we have fit the correct model
the standardized difference should follow a standard normal distribution. Hence a
number exceeding 1.96 might be used as evidence of a significant difference. (We
typically use 2.0 in practice.) Hence our conclusion is that the data in Table 5.2 do
support model fit. The actual p-value may not be 0.374, but it is highly unlikely
that with such close agreement, it could be smaller than 0.05.

The advantage of any summary goodness of fit statistic, for example Ĉ, is that it
provides a single and easily interpretable number that can be used to assess fit. The
disadvantage is that in the process of grouping we may miss an important deviation
from fit due to a small number of individual data points. Hence we advocate that,
before finally accepting that a model fits, an analysis of the individual residuals
and relevant diagnostic statistics be performed. These methods are presented in the
next section.

Our experience is that a table like the one presented in Table 5.1 or Table 5.2 con-
tains valuable descriptive information for assessing the adequacy of the fitted model
over the deciles of risk. Comparison of observed to expected frequencies within
each cell may indicate regions where the model does not perform satisfactorily.

One frequently cited disadvantage of the decile of risk grouping is that subjects
within each decile may have quite different values for the covariates. The only
thing they may have in common is that their estimated probabilities are similar.
For this reason Pigeon and Heyse (1999a) suggest that different groupings be used
to assess the sensitivity of Ĉ to this choice. The magnitude of Ĉ is certain to vary.
However, if the correct model is fit then there still should be agreement between
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the observed and estimated expected frequencies regardless of the grouping used
and the test should support model fit.

Other grouping strategies have been proposed that lead to statistics similar to
Ĉ. Pulkstenis and Robinson (2002) suggest that, when the model contains one
or more continuous covariates, groups be formed by first using the values of the
categorical covariates in the model. Within each of these groups partitioning the
observations at the median of the estimated probabilities forms two more subgroups.
Then a two group table is formed and Ĉ is calculated as in equation (5.7). This
strategy does provide better insights into how fit might change over the categorical
covariates, but some of the same criticism holds unless all the continuous covariates
have either positive or negative coefficients. When the signs of the coefficients are
different one can have similar estimated probabilities, but widely different values
for the continuous covariates. Since this grouping strategy is not readily available
in software packages and, in our view, offers only a small advantage over the decile
of risk grouping, we typically do not use it.

Tsiatis (1980) suggested a goodness of fit statistic based on an explicit partition
of the covariates into g regions. This new categorical variable with g levels is intro-
duced into the model. The goodness of fit test is the Score test of the coefficients
for the new grouping variable. Tsiatis showed that the Score test for this variable is
based on a comparison of the observed frequency to estimated expected frequency
within each of the g groups. The test has g − 1 degrees of freedom. This test can
be easily carried out in SAS and other packages with Score test capabilities. An
alternative in packages not having the capability to perform the Score test is to use
the maximum partial likelihood test for the coefficients for the addition of the g − 1
design variables to the model. With a complicated model like the one in Table 4.16
containing two continuous, four dichotomous covariates and two interactions, it
is not a simple task to form groups. If we dichotomize at the median of age and
height and use the four dichotomous covariates this would generate g = 26 = 64
groups. In settings like this where it is difficult or unclear how to partition the
covariate space into meaningful groups, an alternative to explicit partitioning is to
use deciles of risk. Application of the likelihood ratio test to assess the fit of the
model in Table 4.16 using the deciles of risk shown in Table 5.1 yields a value
of 4.56 which, with 9 degrees of freedom, gives a p-value of 0.871. Hence, this
test also supports the fit of the model. One disadvantage of using the maximum
partial likelihood or Score test is that actual values of the observed and estimated
expected frequencies need not be obtained. These quantities may be useful, when
there is evidence of lack of fit, in indicating those deciles where it is occurring.
Canary (2011), using simulations, compares the Tsiatis statistic, Ĉ and ĈP , and
concludes that the performance of the three was similar in that each attained the
nominal alpha level when the correct model was fit and had about the same power
to detect model misspecification.

Testing goodness of fit using the Pearson chi-square statistic with J − (p + 1)

degrees of freedom has generated quite a bit of work in recent years. Osius
and Rojek (1992) extended the work by McCullagh (1985a, 1985b, 1986) and
derived an easily computed large sample normal approximation to the distribution
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of the Pearson chi-square statistic. Farrington (1996) proposed a modification of
the Pearson chi-square that has better sparse data properties. However, the value
of the statistic is identically equal to n when J = n. Kuss (2002) simulated the
performance of these two versions as well as Ĉ and found that with sparse data
Farrington’s modification out performed Ĉ. From a practical stand point the Far-
rington test is not easy to use as it is not calculated by software packages and its
moments are complex. Thus we do not consider it further.

Su and Wei (1991) propose a test based on cumulative sums of residuals whose
p-value must be determined by complicated and time consuming simulations.
Le Cessie and van Houwelingen (1991, 1995) propose tests based on sums-of-
squares of smoothed residuals whose p-values may be evaluated using either a
normal approximation or an easily computed scaled chi-square distribution. How-
ever, neither test is available in software packages at this time.

Stukel (1988) proposes a test that is not a goodness of fit test in the sense
of explicitly comparing observed outcomes to predicted outcomes based on the
model, but instead determines whether the basic form of the model is consistent
with the shape and symmetry of the logistic function. The test statistic has 1 or 2
degrees of freedom, and tests whether a generalized logistic model is better than
a standard model fit to the data. Hosmer et al. (1997) examined the distributional
properties of these tests via simulations. They recommend that overall assessment
of fit be examined using a combination of tests: the Hosmer-Lemeshow decile of
risks test, the Osius and Rojek normal approximation to the distribution of the
Pearson chi-square statistic, and Stukel’s test.

A large sample normal approximation to the distribution of the Pearson chi-
square statistic derived by Osius and Rojek (1992) may be easily computed in any
package that has the option to save the fitted values from the logistic regression
model and do a weighted linear regression. The essential steps in the procedure
when we have J covariate patterns are as follows:

1. Save the fitted values from the model, denoted as π̂j , j = 1, 2, 3, . . . , J .

2. Create the variable vj = mj π̂j (1 − π̂j ), j = 1, 2, 3, . . . , J .

3. Create the variable cj = (1−2π̂j )

vj
, j = 1, 2, 3, . . . , J .

4. Compute the Pearson chi-square statistic shown in equation (5.2), namely,

X2 =
J∑

j=1

(yj − mj π̂j )
2

vj

.

5. Perform a weighted linear regression of c, defined in step 3, on x the model
covariates, using weights v defined in step 2. Note that the sample size for
this regression is J , the number of covariate patterns. Let RSS denote the
residual sum-of-squares from this regression. Some packages, for example
STATA, scale the weights to sum to 1.0. In this case the reported residual
sum-of-squares must be multiplied by the mean of the weights to obtain the
correct RSS.
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6. Compute the correction factor for the variance, denoted for convenience as
A, as follows:

A = 2

⎛⎝J −
J∑

j=1

1

mj

⎞⎠ .

7. Compute the standardized statistic

zX2 = [X2 − (J − p − 1)]√
A + RSS

(5.9)

8. Compute a two-tailed p-value using the standard normal distribution.

Application of the eight-step procedure using the model in Table 4.16 yields
X2 = 442.3392, RSS = 170.7262, A = 39.6667 and

z = 442.3392 − (457 − 8 − 1)√
39.6667 + 170.7262

= −0.3903.

The two-tailed p-value is p = 0.6963. Again, we cannot reject the null hypoth-
esis that the model fits.

To carry out the above analysis it is necessary to form an aggregated data set.
This is easy to do in some software packages and impossible in others. In these
latter packages we suggest using a second package to create the aggregated data
set and then returning to the logistic regression package with this new data set.
The essential steps in any package are: (i) Define the main effects as aggregation
variables in the model. This defines the covariate patterns. (ii) Calculate the sum
of the outcome variable and the number of terms in the sum over the aggregation
variables. This produces yj and mj for each covariate pattern. (iii) Output a new
data set containing the values of the aggregation variables, covariate patterns, and
the two calculated variables, yj and mj .

The same approach may be used to obtain a normal approximation to the dis-
tribution of S. The standardized statistic is

zS =

⎛⎝S −
J∑

j=1

mj π̂j

(
1 − π̂j

)⎞⎠
√

A + RSS∗ , (5.10)

where A is defined in Step 6 above, and RSS∗ is the residual sum-of-squares of
the weighted linear regression of dj = (1 − 2π̂j ) on the covariates in the model
with weights vj = mj π̂j (1 − π̂j ).

Application of the procedure using the model in Table 4.16 yields S = 82.2760,∑
mj π̂j (1 − π̂j ) = 82.0790, RSS∗ = 0.2176, A = 39.6667 and

z = 82.2760 − 82.0790√
39.6667 + 0.2176

= 0.0312.
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The two-tailed p-value is p = 0.975. Again, we cannot reject the null hypothesis
that the model fits.

Hosmer et al. (1997) compared the normalized Pearson chi-square, zX2 and the
normalized sum-of-squares zS by simulation and showed that, in most settings, the
two statistics performed similarly. The exception is in settings having extremely
small and/or large estimated probabilities and when the outcome “went against the
model” (i.e., y = 0 when π̂ is large or y = 1 when π̂ is small). In these cases,
the Pearson residual in equation (5.1) can become extremely large resulting in an
aberrantly large value of X2. In fact, the value of a single squared Pearson residual
can be large enough to reject fit. Another adverse affect is just the opposite. Namely,
such pairs can inflate the variance to the point that even a quite large value of X2

is declared to be not significant. In these settings we prefer to use S. In most other
applied settings we have found little difference in the p-values computed from zX2

and zS .
Weesie (1998) has written a STATA program implementing a method proposed

by Windmeijer (1990) for computing the significance of the Pearson chi-square
statistic using the standard normal distribution. The approach is similar to the
above eight-step procedure, but is only appropriate in settings when there are n

covariate patterns. Thus it is less general than the above method.
Windmeijer (1990) points out that both the Pearson chi-square and the estimator

of its variance used to form z in step 7 are quite sensitive, as noted above, to
large or small estimated probabilities. Both values are inflated. He suggests that
subjects with very small or large fitted values, near 0 or 1, be excluded when using
the Pearson chi-square statistic. The default exclusion criteria in Weesie’s STATA
program are π̂ < 1.0 × 10−5 or π̂ > (1 − 1.0 × 10−5). In general, we think this is
good advice, but urge considerable caution and complete honesty in reporting what
is done so as to avoid possible criticism that the data have been tinkered with in
order to obtain a good fitting model.

As described above, Stukel (1988) proposed a 1 or 2 degree of freedom statistic
to test whether the parameters of a generalized logistic model are equal to zero.
Briefly, the additional parameter(s) allow the tails of the logistic regression model
(i.e., the small and large probabilities) to be either heavier/longer or lighter/shorter
than the standard logistic regression model. It tests a basic logistic regression model
assumption and in that sense we feel it is a useful adjunct to the Hosmer–Lemeshow
and Osius–Rojek goodness of fit tests. The test has not been implemented in any
package; but it can be easily obtained from the following procedure:

1. Save the fitted values from the model, denoted as π̂j , j = 1, 2, 3, . . . , J .

2. Compute the estimated logits,

ĝj = ln

(
π̂j

1 − π̂j

)
= x ′

j β̂, j = 1, 2, 3 . . . , J .

3. Compute two new covariates:

z1j = 0.5 × ĝ2
j × I (π̂j ≥ 0.5)
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and
z2j = −0.5 × ĝ2

j × I (π̂j < 0.5),

for j = 1, 2, 3, . . . , J , where I (arg) = 1 if arg is true and zero if arg is
false. Note that in a setting when all the fitted values are either less than or
greater than 0.5 only one variable is created.

4. Perform the Score test for the addition of z1 and/or z2 to the model. If a
package does not perform the Score test then the partial likelihood ratio test
can be used.

Application of the four-step procedure to the fitted model in Table 4.16 yields a
value for the partial likelihood ratio test of 5.202, and with 2 degrees of freedom,
yields p = 0.074. Further examination of the results showed that the estimated coef-
ficient for z1 was large, negative, and marginally significant, Wald test p = 0.045.
This indicates that the upper tail could possibly be longer than that of the fitted
logistic model. However, there are only 41 subjects with estimated probabilities
that exceed 0.5. For the moment, we choose not to modify the fitted model. This
allows us to accommodate, for the time being, a longer upper tail, until we are
able to examine in detail the case wise diagnostic statistics, as we do in the next
section.

Application of the eight-step procedure for the Pearson chi-square to the model
shown in Table 4.27 fit to the Burn Study data yielded p = 0.443. The likelihood
ratio test version of Stukel’s test also was not significant with p = 0.311. Hence
we conclude that there is evidence that the model fits.

We leave further assessment of goodness of fit of the model fit to the Burn
Study in Table 4.27 as an exercise.

Before moving on to consider other measures of model performance we conclude
the discussion of summary tests of model fit with a few comments based on our
experience using these tests in practice. When one uses one or more of these tests to
assess model fit, the obvious, desirable outcome is to obtain small value(s) for the
test statistic(s) and large p-value(s). In hypothesis testing terminology, our decision
is “fail to reject that the model fits”. In other words, we cannot say that the model
does not fit. Hence, the hypothesis testing error that we could be making is the
Type II error. Thus, the power of the test used becomes an issue. Unfortunately,
as borne out in numerous simulations, none of the grouped decile of risk type
tests have particularly high power with small to moderate sample sizes to detect
small misspecifications of the model. For example, the simulation results reported
in Hosmer et al. (1997) and Canary et al. (2012) indicate that none of the overall
goodness of fit tests is especially powerful for sample sizes n < 400. For high
power one needs both a large sample size as well as a frequently occurring outcome
(e.g., n ≥ 500 and 0.25 ≤ n1/n ≤ 0.75). The reason can be seen in Figure 1.1 where
the relationship between age and the outcome is not at all obvious from the data.
There is just too much variability for it to be seen. The ungrouped tests, such as
the Pearson chi-square test, do have much higher power than the grouped tests to
detect model misspecification, but they provide no visual evidence.
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In practice, we typically begin by computing the decile of risk test and carefully
examine the table of observed and expected frequencies to confirm that the p-value
for the test statistic is supported by either their agreement or difference. In settings
where the test is either significant or there are seemingly important departures in
some deciles we go to the trouble to compute the standardized Pearson and sum-of-
squares tests and their p-values. If the differences between observed and expected
values are limited to upper and/or lower deciles we use Stukel’s test to assess this
departure. Note: We discuss alternatives to the logit link function in Chapter 10.

We noted the need for a large sample, and most applications with modeling
problems we have seen generally fall into the “too small a sample” class. However,
over the years users have contacted us with the opposite problem. They have such
a large sample, usually thousands, if not hundreds of thousands of observations that
fit is rejected by all tests for a model that seems quite reasonably and clinically
plausible. The problem is too much power, enough so that even small differences
between observed and expected values are judged to be statistically large. For
example, the value of Ĉ from Table 5.1 is 6.39 with p = 0.603. Assuming that we
replicate each subject in the GLOW Study so that the sample size is now 1000 and
then fit the model in Table 4.16, we obtain exactly the same estimated coefficients,
but now Ĉ = 12.78 with p = 0.120. If we replicate each subject twice to increase
the sample size to 1500 and fit the model, then Ĉ = 19.18 and p = 0.014. If we
replicate each subject three times to obtain a sample size of 2000 and fit the model,
then Ĉ = 25.57 and p = 0.001. In all cases the estimates of the coefficients are
unchanged. The table of observed and expected frequencies in each setting is the
appropriate multiple of the values in Table 5.1. All 20 cells still display good
agreement and yet as n, n1, and n0 increase Ĉ increases to the point where we
reject the null hypothesis that the model fits.

In these cases we have suggested that the user consider partitioning their data
into a developmental data set and a validation data set. The presumption is that the
developmental data set will be smaller and thus not have extremely high power to
detect trivial departures from fit. If this is not feasible then we suggest making an
empirical assessment of fit. A modeling corollary to the “too large a sample” prob-
lem is that virtually every covariate may have a statistically significant coefficient.
This can lead to a model that is too specific to the data (i.e., overfitting). Again,
there is no one solution to the problem. In these settings we tend to exclude cate-
gorical covariates that have one or more values that are infrequent, less than 10%,
and covariates whose estimated odds ratios are clinically small and uninteresting,
for example, a 1% increase in the odds due to exposure.

Recently Prabasaj et al. (2012) studied methods for specifying the number of
groups so that the power would equal what one would have for a sample of size
1000. They suggest that, for samples sizes from 1000 to 25,000, the number of
groups g should be equal to

g = max

(
10, min

{
n1

2
,
n − n1

2
, 2 + 8 ×

( n

1000

)2
})

. (5.11)
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For example, if one has a sample with n = 10, 000 and n1 = 1000 then g = 500
groups are suggested. With an extremely large number of groups one is unable to
visually examine the table of observed and estimated expected frequencies to find
departures from model fit. In these cases a plot of observed versus the estimated
expected frequencies is recommended, where departure from a line of slope 1
through the origin is the reference for lack of fit. Also as the number of groups
gets large the decile test begins to approach the Pearson chi-square test. Hence
one practical solution is to calculate the number of groups using equation (5.11),
and if g seems unmanageably large use the standardized Pearson chi-square test
in equation (5.9). Prabasaj et al. (2012) do not recommend the decile of risk type
test for sample sizes exceeding 25,000, and for sample sizes less than 1000 they
recommend using 10 groups.

At the end of the day one must use all the information available to make an
informed decision about the fit of the model. If the decision is that the model fits,
then one should still consider evaluating the model using the other measures and
diagnostic statistics described in the sections following this chapter. If the decision
is that the model does not fit and one has at least an inkling of the reason, then
one might go back and revisit model building. If the reason for lack of fit is not
clear then the other techniques in this chapter may help ferret out the reasons.

We want to emphasize that examining the observed and expected frequencies
in each of the 20 cells of the 2 × 10 table is extremely important and may provide
invaluable clues as to why the goodness of fit test is rejecting the fit of a model
that seems to be good. Instances, where observed counts are small but expected
counts are even smaller (i.e., 1 or less), can result in unreasonably large values of
Ĉ. For example, if oij = 4 while êij = 1, then this cell contributes 9 to the value
of Ĉ, certainly enough to adversely influence a decision about the ability of the
model to produce probabilities that accurately reflect the true outcome experience in
the data.

Two final comments on goodness of fit tests: (1) We feel quite strongly that they
should not be used to build models as the likelihood ratio tests for significance
of coefficients are much more powerful and appropriate. (2) One should not use
the p-value from goodness of fit tests of different models to decide that one is
better than another. For example, suppose we have one model with p = 0.5 and
a different model has p = 0.7, our conclusion would be that both models fit and
that the choice between the two should be based on subject matter considerations.
However, in a setting where p = 0.02 for one model and p = 0.6 for the other
model, we would prefer the latter model. Even in this case, clinical considerations
as to the plausibility of the competing models is an important factor.

Next we consider other summary measures of model performance that are often
useful in their own right and can supplement the overall tests of fit just discussed.

5.2.3 Classification Tables

An intuitively appealing way to summarize the results of a fitted logistic regression
model is via a classification table. This table is the result of cross-classifying the
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outcome variable, y, with a dichotomous variable whose values are derived from
the estimated logistic probabilities. In this application the coefficients produced by
the model are used for predicting the outcome (in a binary way) rather than for
estimating the probability of the event.

To obtain the derived dichotomous variable we must define a cutpoint, c, and
compare each estimated probability to c. If the estimated probability exceeds c

then we let the derived variable be equal to 1; otherwise it is equal to 0. The most
commonly used value for c is 0.5. The appeal of this type of approach to model
assessment comes from the close relationship of logistic regression to discriminant
analysis when the distribution of the covariates is multivariate normal within the
two outcome groups. However, it is not limited to this model [e.g., see Efron
(1975)].

In this approach, estimated probabilities are used to predict group membership.
Presumably, if the model predicts group membership accurately according to some
criterion, then this is thought to provide evidence that the model fits. Unfortunately,
this may or may not be the case. For example, it is easy to construct a situation
where the logistic regression model is, in fact, the correct model and thus fits, but
classification is poor. Suppose that Pr(Y = 1) = θ1 and that X ∼ N(0, 1) in the
group with Y = 0 and X ∼ N(μ, 1) in the group with Y = 1. In this discriminant
analysis model the slope coefficient for the logistic regression model is (see equation
(1.24)) β1 = μ and the intercept is (see equation (1.23))

β0 = ln

[
θ1(

1 − θ1

)]− μ2

2
.

Under these assumptions, the probability of misclassification (PMC), may be
shown to be

PMC = θ1�

{
1

β1
ln

[(
1 − θ1

)
θ1

]
− β1

2

}

+ (1 − θ1)�

{
1

β1
ln

[
θ1(

1 − θ1

)]− β1

2

}
,

where � is the cumulative distribution function of the N(0,1) distribution. Thus,
the expected error rate is a function of the magnitude of the slope, not necessarily
of the fit of the model. Accurate or inaccurate classification does not address our
criteria for goodness of fit: that the distances between observed and expected values
be unsystematic and small, relative to the variation of the model. However, the
classification table may be a useful adjunct to other measures based more directly
on residuals.

The results of classifying the observations of the GLOW Study using the fitted
model given in Table 4.16 are presented in Table 5.3 and are fairly typical of those
seen in many logistic regression applications. The overall rate of correct classi-
fication is estimated as 75.6% = 100[(22 + 356)/500]%, with 94.93% (356/375)
correct classification of the no fracture (i.e., FRACTURE = 0) group (specificity),
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Table 5.3 Classification Table Based on the Logistic Regression Model
for the GLOW Study in Table 4.16 Using a Cutpoint of 0.5

Observed

Classified FRACTURE = 1 FRACTURE = 0 Total

FRACTURE = 1 22 19 41
FRACTURE = 0 103 356 459

Total 125 375 500

Sensitivity = 22/125 = 17.6%; Specificity = 356/375 = 94.93%.

but only 17.6% (22/125) correct classification in the group that actually experi-
enced fracture (i.e., FRACTURE = 1) (sensitivity). Classification is sensitive to
the relative sizes of the two component groups and always favors classification
into the larger group, a fact that is also independent of the fit of the model. This
is easily seen by considering the expression for PMC as a function of θ1. The
disadvantage of using PMC as a criterion is that it reduces a probabilistic model,
where outcome is measured on a continuum, to a dichotomous model where pre-
dicted outcome is binary. For practical purposes there is little difference between
the values of π̂ = 0.48 and π̂ = 0.52, yet use of a 0.5 cutpoint would establish
these two individuals as markedly different.

An important reason why measures derived from a 2 × 2 classification table
(such as sensitivity and specificity) should not be used as measures of model fit
is that they depend heavily on the distribution of the estimated probabilities in the
sample. Thus, if two models are being compared, differences between them with
respect to sensitivity and specificity may depend entirely on “patient mix” rather
than on the superiority of one model over another.

In the discussion that follows we must keep in mind the meaning of probability.
Specifically, among n subjects, each having the same probability of the outcome of
interest, π̂ , the number who are expected to develop the outcome is n × π̂ and the
number expected to not develop the outcome is n × (1 − π̂). (This logic formed
the basis of the discussion in Section 5.2.2 on goodness of fit testing.) Assume that
0.50 is the cutpoint being used for classification purposes and that 100 subjects
had a probability π̂ = 0.51. All of these subjects would be predicted to have the
outcome present, but assuming the model is well calibrated, only 51 of the subjects
would actually develop the outcome. The remaining 49 subjects would not have
developed the outcome. Thus 49 of the 100 patients would be misclassified.

Consider again the 2 × 2 classification table from the GLOW Study presented
in Table 5.3. An examination of the estimated probabilities of fracture in the two
classification groups reveals that among the 41 subjects predicted to have a fracture
on follow up, probabilities ranged from 0.5002 to 0.746, with a mean of 0.574.
Among the 459 subjects predicted not to have a fracture on follow up, probabilities
ranged from 0.0208 to 0.49998, with a mean of 0.221. Clearly, because so many
of the subjects in this study have probabilities close to the cutpoint, we expect a
considerable amount of misclassification. In Table 5.3 we see that 356 of the 459
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subjects predicted not to have a fracture on follow up actually did not have a frac-
ture, whereas 19 of the 41 subjects predicted to have a fracture on follow up were
misclassified. Thus, of the total 125 subjects who actually had a fracture on follow
up, only 22 of them were correctly predicted (i.e., sensitivity = 22/125 = 17.6%).

Assume now that we keep the prediction unchanged for each subject but alter
the distribution of the estimated probabilities as follows:

if π̂< 0.50, then let π̂ = 0.05

and if π̂ ≥ 0.50, then let π̂ = 0.95.

Clearly, this modification would reflect a population that was very polarized with
respect to their probability of having a fracture on follow up. If the model was well
calibrated (i.e., probabilities reflecting the true outcome experience in the data),
then only 5% of those predicted to have a fracture on follow up would actually be
misclassified, that is, 2 	 0.05 × 41, and similarly, only 5% of those predicted to
not have a fracture on follow up would be misclassified, that is, 23 	 0.05 × 459.
The resulting 2 × 2 table would be as presented in Table 5.4. Note that both the
sensitivity and specificity are considerably greater than they were for the actual
population seen in Table 5.3, where there was a wide range of probabilities. The
reason for the sensitivity being moderate even in this polarized population is that
there were relatively few subjects whose probabilities of having a fracture on follow
up were above 0.50.

Now consider a second hypothetical population where

if π̂< 0.50, then let π̂ = 0.45

and if π̂ ≥ 0.50, then let π̂ = 0.55.

This homogenous population is one where a great deal of misclassification would
be expected. Assuming the probabilities accurately reflect the outcome experience
in these data, the 2 × 2 table would be presented as in Table 5.5. Note that the
sensitivity is much worse and specificity slightly worse than was the case with the
actual, heterogeneous, population.

Table 5.4 Expected Classification Table Based on the Logistic
Regression Model for the GLOW Study in Table 4.16 Using a
Cutpoint of 0.5, but All Probabilities π̂ < 0.50 Are Replaced with
π̂ = 0.05 and All Probabilities π̂ ≥ 0.50 Are Replaced with π̂ = 0.95

Observed

Classified FRACTURE = 1 FRACTURE = 0 Total

FRACTURE = 1 39 2 41
FRACTURE = 0 23 436 459

Total 62 438 500

Sensitivity = 39/62 = 62.9%; Specificity = 436/438 = 99.5%.
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Table 5.5 Expected Classification Table Based on the Logistic
Regression Model for the GLOW Study in Table 4.16 Using a
Cutpoint of 0.5, but All Probabilities π̂ < 0.50 Are Replaced with
π̂ = 0.45 and All Probabilities π̂ ≥ 0.50 Are Replaced with π̂ = 0.55

Observed

Classified FRACTURE = 1 FRACTURE = 0 Total

FRACTURE = 1 23 18 41
FRACTURE = 0 207 252 459

Total 230 270 500

Sensitivity = 23/230 = 10.0%; Specificity = 252/270 = 93.3%.

Table 5.6 Classification Table Based on the Logistic Regression
Model for the Burn Study in Table 4.27 Using a Cutpoint of 0.5

Observed

Classified DEATH = 1 DEATH = 0 Total

DEATH = 1 108 29 137
DEATH = 0 42 821 863

Total 150 850 1000

Sensitivity = 108/150 = 72.0%; Specificity = 821/850 = 96.66%.

For these reasons, one cannot compare models on the basis of measures derived
from 2 × 2 classification tables since these measures are completely confounded
by the distribution of probabilities in the samples upon which they are based. The
same model, evaluated in two populations, could give very different impressions of
performance if sensitivity or specificity was used as the measure of performance.

Classification is a goal for the model fit to the Burn Study data shown in
Table 4.27. The model’s classification table is given in Table 5.6. The specificity
is, not unexpectedly, high at 96.66% and the sensitivity is surprisingly good at
72% and overall 92.9% correctly classified. This model, besides having good fit,
classifies quite well.

In summary, the classification table is most appropriate when classification is
a stated goal of the analysis; otherwise it should only supplement more rigorous
methods of assessment of fit.

5.2.4 Area Under the Receiver Operating Characteristic Curve

Sensitivity and specificity as well as other measures of classification performance
computed from a 2 × 2 table, like Table 5.3, depend on the single cutpoint used to
classify a test result as positive. A better and more complete description of clas-
sification accuracy is the area under the Receiver Operating Characteristic (ROC)
curve. This curve, originating from signal detection theory, shows how the receiver
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detects the existence of signal in the presence of noise. It plots the probability of
detecting true signal (sensitivity) and false signal (1–specificity) for an entire range
of possible cutpoints. This measure has now become the standard for evaluating a
fitted model’s ability to assign, in general, higher probabilities of the outcome to
the subgroup who develop the outcome (y = 1) than it does to the subgroup who
do not develop the outcome (y = 0).

The area under the ROC curve, which ranges from 0.5 to 1.0, provides a measure
of the model’s ability to discriminate between those subjects who experience the
outcome of interest versus those who do not. As an example, consider the model for
estimating the probability that a woman has a fracture on follow up in Table 4.16.
Assuming that we were interested in predicting the outcome for each woman, one
rule we might try is the one shown in Table 5.3, where we predict that the woman
will have a fracture on follow up if Pr(y = 1) ≥ 0.50, and predict that the woman
will not have a fracture on follow up if Pr(y = 1) < 0.50. There are some statistical
benefits associated with using 0.5, but we could consider what happens when we
use other cutpoints. For example, assuming that we used a cutpoint of 0.6 instead,
the resulting classification table is shown in Table 5.7, where the sensitivity is only
3.2% but the specificity is 98.13%. The same can be done for any possible choice
of cutpoint. Table 5.8 summarizes the results of choosing cutpoints between 0.05
and 0.75 in increments of 0.05.

If our objective was to choose an optimal cutpoint for the purposes of classifi-
cation, one might select a cutpoint that maximizes both sensitivity and specificity.
This choice is facilitated through a graph such as the one shown in Figure 5.1,
which plots sensitivity and specificity versus each possible cutpoint. The values in
Table 5.8 provide plotting coordinates for 15 of the points on the two curves, the
remainder of the plotted points come from other possible cutpoints. We see that an
“optimal” choice for a cutpoint might be 0.24 as that is approximately where the
sensitivity and specificity curves cross.

As we described above, the ability of a fitted model to discriminate between
the two outcomes is more a function of the difference between the groups and
magnitudes of the slope coefficients than the logistic model itself. Thus, as noted,
we can have well fitting models that discriminate poorly, just as we could have
models with poor fit that discriminate well. Illustrating how the values in Table 5.8
are obtained from a fitted model can emphasize these points. Histograms of the

Table 5.7 Classification Table Based on the Logistic Regression
Model for the GLOW Study in Table 4.16 Using a Cutpoint of 0.60

Observed

Classified FRACTURE = 1 FRACTURE = 0 Total

FRACTURE = 1 4 7 11
FRACTURE = 0 121 368 489

Total 125 375 500

Sensitivity = 4/125 = 3.2%; Specificity = 368/375 = 98.13%.
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Table 5.8 Summary of Sensitivity, Specificity, and 1–Specificity for
Classification Tables Based on the Logistic Regression Model for the GLOW
Study in Table 4.16 Using a Cutpoint of 0.05 to 0.60 in Increments of 0.05

Cutpoint Sensitivity Specificity 1–Specificity

0.05 100.0 1.6 98.4
0.10 95.2 19.7 880.3
0.15 84.8 38.4 61.6
0.20 76.8 55.2 44.8
0.25 64.0 68.5 31.5
0.30 62.4 76.5 23.5
0.35 48.8 82.9 17.1
0.40 39.2 88.0 12.0
0.45 29.6 92.3 7.7
0.50 17.6 94.9 5.1
0.55 8.8 96.8 3.2
0.60 3.2 98.1 2.9
0.65 2.4 99.5 0.5
0.70 0.0 99.5 0.5
0.75 0.0 100.0 0.0
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Figure 5.1 Plot of sensitivity and specificity versus all possible cutpoints in the GLOW Study.

estimated probabilities from the fitted model in Table 4.16 within the two outcome
groups are shown in Figure 5.2. The cutpoints defining the rectangles in the his-
tograms are the values in the cutpoint column of Table 5.8. The vertical line is
drawn at 0.25.

The histograms have been constructed so that the sum of the areas of the rectan-
gles is 1.0 for each outcome group. Using 0.25 cutpoint, as an example, to classify
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Figure 5.2 Histogram of the estimated probabilities from the GLOW model in Table 4.16 by fracture
status on follow up with vertical line at 0.25.

women to fracture on follow up, the sensitivity is the sum of the areas of the nine
rectangles above 0.25 in the lower histogram (patients experiencing facture). From
Table 5.8 we see that this value is 0.64. The specificity of the model at this cutpoint
is the sum of the areas of the five rectangles below 0.25 in the upper histogram
(patients not experiencing facture), and from Table 5.8, we see that this value is
0.685. Thus, the sum of the areas of the rectangles above the cutpoint of 0.25
for the upper histogram is 0.315 and is 1–specificity. The values in each row of
the Sensitivity and 1–Specificity columns of Table 5.8 are obtained in a similar
manner using the stated cutpoints. Each value is equal to the sum of the areas of
the rectangles lying to the right of the cutpoint in the respective histogram. Thus,
as the cutpoint ranges from zero to one the values decrease from 100% to 0%.

We can see in Figure 5.2 that there is considerable overlap in the two histograms.
The distributions of the estimated probabilities within the two outcome groups are
rather similar. If the two distributions were identical then the areas to the right
of any cutpoint would be identical (i.e., sensitivity = 1–specificity). If the two
distributions had little overlap (i.e., the lower histogram was mostly to the right of
the upper one) then, as 1–specificity decreased from 100% to 0.0% the sensitivity
would remain at nearly 100%. Perfect discrimination occurs if there is no overlap
at all in the two histograms.

A plot of sensitivity versus 1–specificity over all possible cutpoints (i.e., using
each individual estimated probability rather than grouped data) is shown in
Figure 5.3. The curve generated by these points is called the ROC Curve and the
area under the curve provides a measure, whose calculation is described below,
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Figure 5.3 Plot of sensitivity versus 1–specificity for all possible cutpoints in the GLOW Study.

of discrimination that is the estimated probability that, under the fitted model, a
woman who has a fracture on follow up will have a higher π̂(x) than a woman
who does not have a fracture on follow up. As noted, if the distribution of the
model estimated probabilities is the same in the two groups then the ROC curve
would be identical to the straight line shown in Figure 5.3. Since this line bisects
the one by one square the area under it would be 0.5, indicating that one might as
well toss a coin as use the fitted model to predict outcome. As the distributions of
the probabilities estimated by the model become more distinct the plot of the ROC
curve rises more rapidly and the area under it increases from 0.5 to its theoretical
maximum of 1.0.

So, what area under the ROC curve describes good discrimination? Unfortu-
nately there is no “magic” number, only general guidelines. In general, we use the
following rule of thumb:

If

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ROC = 0.5
This suggests no discrimination, so we might as well
flip a coin.

0.5 < ROC < 0.7
We consider this poor discrimination, not much better
than a coin toss.

0.7 ≤ ROC < 0.8 We consider this acceptable discrimination.

0.8 ≤ ROC < 0.9 We consider this excellent discrimination.

ROC ≥ 0.9 We consider this outstanding discrimination.

The ROC curve for the fitted model in Table 4.16 for the GLOW Study is shown
in Figure 5.3. The area under the ROC Curve is 0.7286, which is at the low end
of acceptable discrimination.

Another perhaps more intuitive way to understand the meaning of the area under
the ROC Curve is as follows: recall that we let n1 denote the number of subjects
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with y = 1 and n0 denote the number of subjects with y = 0. We then create
n1 × n0 pairs: each subject with y = 1, is paired with each subject with y = 0. Of
these n1 × n0 pairs, we determine the proportion of pairs where the subject with
y = 1 had the higher of the two probabilities. This proportion may be shown to
be equal to the area under the ROC Curve. For example, in the GLOW Study,
there were 500 subjects. Of these, 125 had a fracture while 375 did not, yielding a
total of 125 × 375 = 46, 875 comparisons. We count the number of times that the
probability of having a fracture is higher for the woman who had a fracture than for
the woman who did not. (This assumes there are no ties.) For these data the count
of the number of times that the subject with y = 1 had a higher probability than
the subject with y = 0 was 34,153. (The reader may recognize that this count is
the Mann–Whitney U statistic for these data.) The ratio 34, 153/46, 875 = 0.7286
is the area under the ROC curve.

Royston and Altman (2010) investigate visual methods for assessing dis-
crimination of fitted logistic regression models. They suggest using the plots in
Figures 5.1–5.3 as well as a scatter plot of the outcome versus the estimated
probabilities from the fitted model. Instead of plotting the y values at 0 or 1
we present jittered values. The jittered values of the outcome are y∗

i = yi + ui ,
where ui is an independently generated value from the Uniform(−0.05, 0.05)

distribution. This plot is shown in Figure 5.4 for the fitted model from the GLOW
Study in Table 4.16.

If the two groups were well separated then the points on the upper band 1 + ui ,
would tend to have larger estimated probabilities (the upper half of the scatter plot)
while those on the lower band 0 + ui , would tend to have lower probabilities.

In order to illustrate the different levels of discrimination we show in Figure 5.5
to Figure 5.8 the four plots obtained from four hypothetical data sets. Each data
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Figure 5.4 Plot of jittered outcome versus estimated probabilities from the fitted model for the GLOW
Study in Table 4.16.
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Figure 5.5 Four diagnostic plots to describe discrimination in a model fit to data with an area under
the ROC of 0.6, n = 500.
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Figure 5.6 Four diagnostic plots to describe discrimination in a model fit to data with an area under
the ROC of 0.75, n = 500.
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Figure 5.7 Four diagnostic plots to describe discrimination in a model fit to data with an area under
the ROC of 0.85, n = 500.

0

0.2

0.4

0.6

0.8

1

Ji
tte

re
d 

ou
tc

om
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimated probability

0

5

10

15

D
en

si
ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimated probability

Outcome = 0

0.00

0.25

0.50

0.75

1.00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00

1 − Specificity

0

2

4

6

8

D
en

si
ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimated probability

Outcome = 1

Figure 5.8 Four diagnostic plots to describe discrimination in a model fit to data with an area under
the ROC of 0.95, n = 500.
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set has 500 observations and exactly 125 with the outcome of interest. The data
in the group with y = 0 are distributed as N(0, 1) and the group with y = 1 as
N(μ, 1). To obtain ROC = 0.6 we used μ = 0.4 (Figure 5.5), for ROC = 0.75
μ = 0.95 (Figure 5.6), for ROC = 0.85 μ = 1.5 (Figure 5.7) and for ROC = 0.95
μ = 2.5 (Figure 5.8). Actually, for each value of μ we kept generating data until
we obtained an ROC close to the stated value, none were exact. One can see,
by comparing the four figures, that in order to have excellent discrimination the
estimated probabilities for the group with y = 0 need to be quite different from the
values for those with y = 1 and for outstanding discrimination the two distributions
are almost completely separated. In all cases the estimated logistic regression model
had good fit.

Now we use the four plots, shown in Figure 5.9, to describe discrimination
for the model fit to the Burn Study data in Table 4.27. The scatterplot of the
jittered outcome versus the estimated probability, top left, shows that subjects who
died tended to have much higher estimated probabilities than subjects who lived.
Note the dense cluster above 0.9 for y = 1 and below 0.1 for y = 0. This is further
supported in the separation seen in the two histograms of the estimated probabilities,
top right and bottom right. The ROC curve is in the bottom left position and
its area is 0.9683. All four graphs support the outstanding discrimination of this
model.

We remind the reader that the data in the Burn Study were sampled from
a much larger set of data and the results of model fitting in this text may not
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Figure 5.9 Four diagnostic plots to describe discrimination for the model fit to the Burn Study data
in Table 4.27. Area under the ROC is 0.9683.
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apply to the larger data set. That being said, the fitted model does display excep-
tional ability to discriminate between patients who died as compared to those who
lived.

In Section 5.4 we use the Burn Study to illustrate methods for model validation
in an external data set.

We recommend that one present the discrimination of the fitted model using
the four plots shown in Figure 5.9, rather than simply reporting the area under the
ROC curve.

5.2.5 Other Summary Measures

For sake of completeness we present a short discussion of R2 measures that have
been proposed for use with logistic regression models. In general, these measures
are based on various comparisons of the predicted values from the fitted model to
those from model(0), the no data or intercept only model and, as a result, do not
assess goodness of fit. We think that a true measure of fit is one based strictly on a
comparison of observed to expected values from the fitted model. However there
may be settings where an R2 like measure might provide useful information for
comparing competing models fit to the same set of data. Mittlböck and Schemper
(1996) study the properties of 12 different measures using the criteria: (i) the mea-
sure has an easily understood interpretation, (ii) the squared measure can attain a
lower bound of 0 and an upper bound of 1 and (iii) the measure is consistent with the
character of logistic regression (i.e., not being changed by a linear transformation of
model covariates). They recommend two for routine use: the squared Pearson cor-
relation coefficient of observed outcome with the estimated probability and a linear
regression like sum-of-squares, R2. All other measures, including some popular
likelihood-based R2 statistics are judged to be inadequate on at least one of their
criteria.

In a setting with n covariate patterns the squared Pearson correlation coeffi-
cient is

r2 =

[
n∑

i=1

(
yi − y

)
(π̂i − π)

]2

[
n∑

i=1

(
yi − y

)2]×
[

n∑
i=1

(
π̂i − π

)2] , (5.12)

where y = π = n1/n. The linear regression-like measure is

R2
ss = 1 −

n∑
i=1

(yi − π̂i)
2

n∑
i=1

(yi − y)2

. (5.13)
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Mittlböck and Schemper (1996) did not consider the case of J < n covariate
patterns. However, the extensions of the two measures to this setting are

r2
c =

⎡⎣ J∑
j=1

(
yj − mjy

)
(mj π̂j − mjπ)

⎤⎦2

⎡⎣ J∑
j=1

(
yj − mjy

)2⎤⎦×
⎡⎣ J∑

j=1

(
mj π̂j − mjπ

)2⎤⎦ (5.14)

and

R2
ssc = 1 −

J∑
j=1

(yj − mj π̂j )
2

J∑
j=1

(yj − mjy)2

. (5.15)

Mittlböck and Schemper (2002) studied two modifications of R2
ss when the

sample size is small and the model contains many covariates. The first is analogous
to the adjusted R2 from linear regression and is defined as

R2
ss,adj = 1 −

J∑
j=1

(yj − mj π̂j )
2

n−p−1

J∑
j=1

(yj − y)2

n−1

. (5.16)

The second adjusts for shrinkage in the estimates, a condition that is typically
present when the model is fit with a small sample (see Section 10.3 for a discussion
of shrinkage), and is defined as

R2
ss,shr = R2 × γ̂ , (5.17)

where

γ̂ = G − p

G
,

and G is the value of the likelihood ratio test for the significance of the model.
Using the fitted model in Table 4.16 and evaluating the squared Pearson corre-

lation coefficient defined in equation (5.12), we obtain r2 = 0.12355. The value of
the linear regression like sum-of-squares measure from equation (5.13) is

R2
ss = 1 −

(
82.167267

93.75

)
= 0.12355.
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The value adjusted for the number of covariates from equation (5.16) is

R2
ss,adj = 1 −

⎛⎜⎜⎝
82.167267

500 − 8 − 1
93.75

500 − 1

⎞⎟⎟⎠ = 0.1093.

The value adjusted for shrinkage is

R2
ss,shr = 0.1235 × 61.838525 − 8

61.838525
= 0.1075.

The fitted model has 521 covariate patterns. Evaluating the covariate pattern
version of the Pearson correlation coefficient in equation (5.14) yields r2

c = 0.1363.
The increase from the value of 0.1135 in the J = n case is due to increased range
of yj (0–2) versus yi (0–1) in the values being correlated. The sum-of-squares
measure is

R2
ssc = 1 −

(
82.2560

95.25

)
= 0.1083.

We obtain another version of R2
ss when we use log-likelihoods in place of sums-

of-squares. Mittlböck and Schemper (1996) do not recommend it for routine use,
as it is not as intuitively easy to explain. However the measure is calculated in
a number of packages under various names (e.g., pseudo R2 in STATA). If we
let L0 and LP denote the log-likelihoods for models containing only the intercept
and the model containing the intercept plus the p covariates respectively, then the
log-likelihood-based R2 is

R2
L = L0 − Lp

L0
= 1 − Lp

L0
. (5.18)

The maximum value for R2
L is obtained when we fit the saturated model. If

J = n then the log-likelihood for the saturated model = Ls = 0 = Lp and we see
that R2

L is equal to 1.0. However, if J < n then Ls = Lp > 0 and the maximum is
less than 1.0. A modification of the statistic that can attain 1.0 in the J < n case is

R2
LS = L0 − Lp

L0 − LS

. (5.19)

The value of the log-likelihood from the saturated model, LS , may be easily
obtained from the deviance for the model with p covariates and its log-likelihood
is computed as

LS = LP + 0.5D,

where D is defined in equation (5.4). Hence, it would seem prudent to calculate
LS whenever J < n and to use R2

LS .
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As an example, we evaluate equation (5.18) using the fitted model in Table 4.16,
and assuming J = 500, we obtain

R2
L = 1 − −250.24831

−281.16757
= 0.1099.

In order to evaluate equation (5.19) we need the value of LS using J = 457
covariate patterns. The value of the deviance from equation (5.4) is D = 469.63124
and from the above expression we obtain

LS = (−250.24831) + 0.5 × (469.63124) = −15.43269

and

R2
LS = [(−281.16757) − (−250.24831)]

[(−281.16757) − (−15.43269)]
= 0.1164.

A recent addition to summary measures of model performance is the coefficient
of discrimination proposed by Tjur (2009). It is a measure of the separation of the
distribution of the estimated probabilities in the two outcome groups, namely

CD = π̂1 − π̂0. (5.20)

Tjur shows that
CD = 0.5 × (R2

ss + R2
mod),

where

R2
mod =

n∑
i=1

(π̂i − y)2

n∑
i=1

(yi − y)2

,

which we leave as an exercise to demonstrate with the GLOW model in Table 4.16.
The average of the fitted values in the two groups are π̂1 = 0.34301 and π̂0 =
0.2190, thus CD = 0.12401. Tjur recommends, as a descriptive analysis, plotting
histograms in the manner shown in Figures 5.5 to 5.9, in which case CD provides
a nice summary measure of their separation.

We leave computing the various R2 measures for the Burn Study data in
Table 4.27 as an exercise.

All the various R2 values for this example are low when compared to R2

values typically encountered with good linear regression models. Unfortunately
low R2 values in logistic regression are the norm and this presents a problem when
reporting their values to an audience accustomed to seeing linear regression values.
As we demonstrate throughout this chapter, the fitted model in Table 4.16 is well
calibrated but does not discriminate well. We always recommend the performing of
a goodness of fit analysis. If the fitted model is to be used to discriminate between
the two outcome groups, then and only then, do we recommend looking at the
ROC and summary measures of discrimination.
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We note here that in some instances, it may not be important to assess the
calibration or discrimination of the model. An example is a case control study
where the number of cases and the number of controls is fixed by the investigator.
In this case the Pr(y = 1) is fixed.

When the focus of the study is on the β̂’s (or odds ratios), calibration is not
important. It is important when the estimated probabilities are meaningful and of
interest to the investigator.

The coefficients of a logistic regression analysis are always the log-odds
ratios—whether the model fits or not. However, if the study’s objective is to
estimate the Pr(y = 1) then we need to assess calibration and discrimination.

5.3 LOGISTIC REGRESSION DIAGNOSTICS

Each of the summary statistics based on the Pearson chi-square residuals described
in the previous section provide a single number that summarizes the agreement
between observed and fitted values. The advantage (as well as the disadvantage)
of these statistics is that a single number is used to summarize considerable infor-
mation. Therefore, before concluding that the model “fits”, it is crucial that other
measures be examined to see if fit is supported over the entire set of covariate pat-
terns. This is accomplished through a series of specialized measures falling under
the general heading of regression diagnostics. We assume that the reader has had
some experience with diagnostics for linear regression. For a brief introduction to
linear regression diagnostics see Kleinbaum et al. (1998). A more detailed presenta-
tion may be found in Cook and Weisberg (1982) and Belsley et al. (1980). Pregibon
(1981) provided the theoretical work that extended linear regression diagnostics to
logistic regression. Since that key paper, work has been focused on refining the use
of logistic regression diagnostics in assessing goodness of fit. We begin by briefly
describing logistic regression diagnostics. In this development we assume that the
fitted model contains p covariates and that they form J covariate patterns. Deriving
the diagnostic statistics requires a higher mathematical level than most of the other
material in this text. However, an understanding of the mathematical development
is not required for the effective application of the diagnostics in practice. Thus,
less sophisticated mathematical readers may want to focus on the applications to
the fitted models from Chapter 4.

The key quantities for logistic regression diagnostics, as in linear regression,
are the components of the “residual sum-of-squares”. In linear regression a key
assumption is that the error variance does not depend on the conditional mean
E(Yj |xj ). However, in logistic regression we have binomial errors, and as a result,
the error variance is a function of the conditional mean:

var(Yj |xj ) = mjE(Yj |xj ) × [1 − E(Yj |xj )]

= mjπ(xj )[1 − π(xj )].

Thus, we begin with residuals as defined in equations (5.1) and (5.3) that have
been “divided” by estimates of their standard errors; this may not be entirely
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obvious in the case of the deviance residual. Let rj and dj denote the values of the
expressions given in equations (5.1) and (5.3), respectively, for covariate pattern
xj . Since each residual has been divided by an approximate estimate of its standard
error, we expect that if the logistic regression model is correct, these quantities have
a mean approximately equal to zero and a variance approximately equal to one.
We discuss their distribution shortly.

In addition to the residuals for each covariate pattern, other quantities central
to the formation and interpretation of linear regression diagnostics are the “hat”
matrix and the leverage values derived from it. In linear regression the hat matrix is
the matrix that provides the fitted values as the projection of the outcome variable
onto the covariate space. Let X denote the J × (p + 1) matrix containing the values
for all J covariate patterns formed from the observed values of the p covariates,
with the first column being one to reflect the presence of an intercept term in the
model. The matrix X is often called the design matrix. In linear regression the
hat matrix is H = X(X′X)−1X′; clearly, ŷ = H y. The linear regression residuals,
(y − ŷ), expressed in terms of the hat matrix are (I − H)y where I is the J × J

identity matrix. Using weighted least squares linear regression as a model, Pregibon
(1981) derived a linear approximation to the fitted values which yields a hat matrix
for logistic regression. This matrix is

H = V1/2X(X′VX)−1X′V1/2, (5.21)

where V is a J × J diagonal matrix with general element

νj = mj π̂(xj )[1 − π̂(xj )].

In linear regression the diagonal elements of the hat matrix are called the lever-
age values and are proportional to the distance of xj to the mean of the data, x. This
concept of distance to the mean is important in linear regression, as points that are
far from the mean may have considerable influence on the values of the estimated
parameters. The extension of the concept of leverage to logistic regression requires
additional discussion and clarification.

Let the quantity hj denote the jth diagonal element of the matrix H defined in
equation (5.21). It may be shown that

hj = mj π̂(xj )[1 − π̂(xj )]x
′
j (X

′ VX)−1xj

= νj × bj (5.22)

where
vj = mj π̂(xj )[1 − π̂(xj )]

is the model based estimator of the variance of yj , and

bj = x ′
j (X

′ VX)−1xj

is the weighted distance of xj from x, where x ′
j = (1, x1j , x2j , . . . xpj ) is the vector

of covariate values defining the j th covariate pattern and x is the vector of means.
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The sum of the diagonal elements of H is, as is the case in linear regression,∑J
j=1 hj = (p + 1), the number of parameters in the model. In linear regression

the dimension of the hat matrix is usually n × n and thus ignores any common
covariate patterns in the data. With this formulation, any diagonal element in the
hat matrix has an upper bound of 1/k where k is the number of subjects with the
same covariate pattern. If we formulate the hat matrix for logistic regression as an
n × n matrix then each diagonal element is bounded from above by 1/mj , where
mj is the total number of subjects with the same covariate pattern. When the hat
matrix is based upon data grouped by covariate pattern, the upper bound for any
diagonal element is 1.

It is important to know whether the statistical package being used calculates the
diagnostic statistics by covariate pattern. For example, STATA’s logistic regres-
sion procedure uses individual subject data to fit models. Following estimation
it computes all diagnostic statistics by covariate pattern but retains the size of
the original data set. Thus all subjects in a particular covariate pattern have the
same covariate values, fitted values and diagnostic statistics, but each subject has
an individual outcome. On the other hand, SAS’s logistic procedure computes
diagnostic statistics based on the data structure in its model statement. If one
assumes that there are n covariate patterns (and the outcome is either 0 or 1) then
diagnostic statistics are based on individual subjects. However, if the data have
been previously collapsed or grouped into covariate patterns and if binomial tri-
als input (yj/mj ) is used, then diagnostic statistics are by covariate pattern. In
general, we recommend that diagnostic statistics be computed taking into account
the covariate patterns. This is especially important when the number of covariate
patterns, J , is much smaller than n, or if some values of mj are larger than 5.
For example, in the final model for the Glow Study shown in Table 4.16 we
have J = 457 covariate patterns among the 500 subjects. There are 419 covari-
ate patterns with m = 1, 33 with m = 2 and five with m = 3. In this situation
we might not bother, in practice, to calculate the diagnostic statistics by covari-
ate pattern. If, on the other hand, we had a model with J = 300 and n = 500
then we should definitely take the trouble of aggregating the data by covariate
patterns.

When the number of covariate patterns is much smaller than n, there is the risk
that we may fail to identify influential and/or poorly fit covariate patterns. Consider
a covariate pattern with mj subjects, yj = 0 and estimated logistic probability π̂j .
The Pearson residual defined in equation (5.1), computed individually for each
subject with this covariate pattern is

ri = (0 − π̂j )√
π̂j (1 − π̂j )

= −
√

π̂j

(1 − π̂j )
,
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while the Pearson residual based on all subjects with this covariate pattern is

ri = (0 − mj π̂j )√
mj π̂j (1 − π̂j )

= −√mj

√
π̂j

(1 − π̂j )
,

which increases negatively as mj increases. If mj = 1 and π̂j = 0.5, then rj = −1,
which is not a large residual. On the other hand, if there were mj = 16 subjects
with this covariate pattern, then rj = −4.0 which is quite large. If we performed
the analysis in STATA then the Pearson residual would be −4.0 for each of the
16 subjects in the covariate pattern. If we performed the analysis in SAS with a
sample of size n then the Pearson residual would be −1.0 for all 16 subjects. Thus
the diagnostic statistics are different even though both packages produce the same
fitted model.

A major point that must be kept in mind when interpreting the magnitude of the
leverage is the combined effect in equation (5.22) of νj and bj , on the value of the
leverage hj . Pregibon (1981) notes that the fit determines the estimated coefficients,
and since the estimated coefficients determine the estimated probabilities, points
with large values of hj are extreme in the covariate space and thus lie far from the
mean. Lesaffre (1986, p.117) refutes this point, where he shows that the term νj

in the expression for hj cannot be ignored. The following example demonstrates
that, up to a point, both Pregibon and Lesaffre are correct.

In Figure 5.10 we plot the values of vj and bj versus the estimated probabilities
for a sample of 100 observations from a logistic model with g(x) = 0.8x and
x ∼ N(0, 9). Recall that the notation N(0, 9) describes a variable following a
normal distribution with mean 0 and variance 9.

We see that the distance, bj , increases as the estimated probability gets further
from 0.5 (x gets further from its mean, nominally zero) while the variance term, vj ,
decreases. The leverage is the product of these two factors and the exact effect of
these opposing factors cannot be seen so we plot the leverage versus the estimated
probabilities in Figure 5.11. In this figure we see that the most extreme points in the
covariate space, ones with estimated probability less than 0.1 or greater then 0.9,
do not have the highest leverage. The reason that the leverage goes to zero as the
estimated probabilities approach zero or one is that vj goes to zero exponentially,
while bj grows large at the slower rate of x2. The practical consequence of this is
that to interpret a particular value of the leverage in logistic regression correctly, one
needs to know whether the estimated probability is small (<0.1) or large (>0.9). If
the estimated probability lies between 0.1 and 0.9 then the leverage gives a value
that may be thought of as distance. When the estimated probability lies outside the
interval 0.1 to 0.9, then the value of the leverage may not measure distance, in the
sense that, further from the mean implies a larger value. We discuss the effect of
leverage on the fit of the model after considering residual-based diagnostics.
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Figure 5.10 Plot of variance estimator (v, —) and the distance portion of leverage (b, - - ) versus
the estimated logistic probability (π̂ ) for a hypothetical univariable logistic regression model.
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Figure 5.11 Plot of the leverage (h) versus the estimated logistic probability (π̂) for a hypothetical
univariable logistic regression model.

If we use the Pregibon (1981) linear regression-like approximation for the resid-
ual for the j th covariate pattern, [yj − mj π̂(xj )] ≈ (1 − hj )yj , then the estimator
of the variance of the residual is approximately

mj π̂(xj )[1 − π̂(xj )](1 − hj ),

which suggests that the Pearson residuals do not have variance equal to 1 unless
they are further standardized. Recall that we denote by rj the Pearson residual
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given in equation (5.1). The standardized Pearson residual for covariate pattern
xj is

rsj = rj√
1 − hj

(5.23)

Another useful diagnostic statistic is one that examines the effect that deleting
all subjects with a particular covariate pattern has on the value of the estimated
coefficients and the overall summary measures of fit X2 and D. The change in
the value of the estimated coefficients is analogous to the measure proposed by
Cook (1977, 1979) for linear regression. It is obtained as the standardized differ-
ence between β̂ and β̂(−j), where these represent the maximum likelihood estimates
computed using all J covariate patterns and excluding the mj subjects with pat-
tern xj respectively, and standardizing via the estimated covariance matrix of β̂.
Pregibon (1981) showed, to a linear approximation, that this quantity for logistic
regression is


β̂j = (β̂ − β̂(−j))
′
(X ′ VX)(β̂ − β̂(−j))

= r2
j hj

(1 − hj )
2

= r2
sj hj

(1 − hj )
. (5.24)

Using similar linear approximations it can be shown that the decrease in the value
of the Pearson chi-square statistic due to deletion of the subjects with covariate
pattern xj is


X2
j = r2

j

(1 − hj )

= r2
sj . (5.25)

A similar quantity may be obtained for the change in the deviance,


Dj = d2
j + r2

j hj

(1 − hj )
.

If we replace r2
j by d2

j this yields the approximation


Dj = d2
j

(1 − hj )
, (5.26)

which is similar in form to the expression in equation (5.25).
These diagnostic statistics are conceptually quite appealing, as they allow us to

identify those covariate patterns that are poorly fit (large values of 
X2
j and/or


Dj ), and those that have a great deal of influence on the values of the estimated
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parameters (large values of 
β̂j ). After identifying these influential patterns (sub-
jects), we can begin to address the role they play in the analysis.

Before proceeding to the use of the diagnostics in an example, we make a few
summary comments on what we might expect their application to tell us. Consider
first the measure of fit, 
X2

j . This measure is smallest when yj and mj π̂(xj ) are
close. This is most likely to happen when yj = 0 and π̂(xj ) < 0.1 or yj = mj

and π̂(xj ) > 0.9. Similarly 
X2
j is largest when yj is furthest from mj π̂(xj ). This

is most likely to occur if we have a value of yj = 0 and π̂(xj ) > 0.9, or with
yj = mj and π̂(xj ) < 0.1. These same covariate patterns are not likely to have a
large 
β̂j as, when π̂(xj ) < 0.1 or π̂(xj ) > 0.9, 
β̂j ≈ 
X2

j hj and the leverage

hj approaches zero. The influence diagnostic 
β̂j is large when both 
X2
j and

hj are at least moderate. This is most likely to occur when 0.1 < π̂(xj ) < 0.3, or
0.7 < π̂(xj ) < 0.9. As we know from Figure 5.11, these are the intervals where
the leverage hj is largest. In the region of fitted values between 0.3 and 0.7 the
chances are not as great that either 
X2

j or hj is large. Table 5.9 summarizes these
observations. This table reports what might be expected, not what may actually
happen in any particular example. Therefore, it should only be used as a guide to
further understanding and interpretation of the diagnostic statistics.

In linear regression essentially two approaches are used to interpret the value
of the diagnostics, often in conjunction with each other. The first is graphical. The
second employs the distribution theory of the linear regression model to develop the
distribution of the diagnostics under the assumption that the fitted model is correct.
In the graphical approach, large values of diagnostics either appear as spikes or
reside in the extreme corners of plots. A value of the diagnostic statistic for a
point appearing to lie away from the balance of the points is judged to be extreme
if it exceeds some percentile of the relevant distribution. This may sound a little
too hypothesis-testing oriented, but under the assumptions of linear regression with
normal errors, there is a known statistical distribution whose percentiles provide
some guidance as to what constitutes a large value. Presumably, if the model is
correct and fits, then no values should be exceptionally large and the plots should
appear as expected under the distribution of the diagnostic statistic.

In logistic regression we have to rely primarily on visual assessment, as the
distribution of the diagnostics under the hypothesis that the model fits is known
only in certain limited settings. For instance, consider the Pearson residual, rj . It is

Table 5.9 Likely Values of Each of the Diagnostic Statistics �X2, �β̂, and h Within
Each of Five Regions Defined by the Value of the Estimated Logistic Probability (π̂)

π̂ 
X2 
β̂ h

<0.1 Large or Small Small Small
0.1–0.3 Moderate Large Large
0.3 − 0.7 Moderate to Small Moderate Moderate to Small
0.7 − 0.9 Moderate Large Large
>0.9 Large or Small Small Small
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often stated that the distribution of this quantity is approximately N(0, 1) when the
model is correct. This statement is only true when mj is sufficiently large to justify
that the normal distribution provides an adequate approximation to the binomial
distribution, a condition obtained under m-asymptotics. For example, if mj = 1
then rj has only two possible values and it can hardly be expected to be normally
distributed. Jennings (1986) has stated this point clearly and with all the necessary
technical details. All of the diagnostics are evaluated by covariate pattern; hence
any approximations to their distributions based on the normal distribution, under
binomial errors, depend on the number of subjects with that pattern. When a fitted
model contains some continuous covariates then the number of covariate patterns
J is of the same order as n, and m-asymptotic results cannot be relied upon.
Thus, in practice, an assessment of “large” is of necessity, a judgment call based
on experience and the particular set of data being analyzed. Using the N(0, 1)

or equivalently, the χ2(1) distribution for squared quantities may provide some
guidance as to what “large” is. However, we urge that these percentiles be used
with extreme caution.

Recently Martin and Pardo (2009) derived the asymptotic distribution of Cook’s
Distance, 
β̂. They suggest using (2p/n) as the critical value for leverage, the
χ2

0.50(p + 1) percentile for 
X2 and hh × χ2
0.95(1) for 
β̂, where hh is the aver-

age of the J values of hj/(1 − hj ). Our experience is that these values identify too
many covariate patterns as being extreme. Instead, we prefer to focus on covariate
patterns whose values for one or more of the diagnostic statistics fall well away
from the rest of the values. We discuss this point further when we use the diag-
nostics to evaluate the fitted models from the Glow and Burn Injury studies. In
the end, there is just no substitute for experience in the effective use of diagnostic
statistics. The only way to gain this kind of experience is to begin by employing
the methods described below, each time one develops a logistic regression model.

We have defined seven diagnostic statistics that may be divided into three cate-
gories: (i) the basic building blocks, which are of interest in themselves, but also are
used to form other diagnostics, (rj , dj , hj ); (ii) derived measures of the effect of
each covariate pattern on the fit of the model, (rsj ,
X2

j ,
Dj); and (iii) a derived
measure of the effect of each covariate pattern on the value of the estimated param-
eters, (
β̂j ). Most logistic regression software packages provide the capability to
obtain at least one of the measures within each group.

A number of different types of plots have been suggested for use, each directed at
a particular aspect of fit. Some are formed from the seven diagnostics while others
require additional computation. For example, see the methods based on grouping
and smoothing in Landwehr et al. (1984) and Fowlkes (1987). It is impractical to
consider all possible suggested plots, so we restrict attention to a few of the more
easily obtained ones that are meaningful in most logistic regression analyses. We
consider them to be the core of an analysis of diagnostics. These consist of the
following:

1. Plot hj versus π̂j .

2. Plot 
X2
j versus π̂j .
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3. Plot 
Dj versus π̂j .

4. Plot 
β̂j versus π̂j .

Other plots that are sometimes useful include:

5. Plot 
X2
j versus hj .

6. Plot 
Dj versus hj .

7. Plot 
β̂j versus hj .

These last three allow direct assessment of the contribution of leverage to the
value of the diagnostic statistic. One additional plot that we have found espe-
cially useful is a plot of 
X2

j versus π̂j where the size of the plotting symbol is

proportional to the size of 
β̂j . This plot is also used in the examples that follow.
To illustrate the use of the diagnostic statistics and their related plots, we consider

the model for the GLOW Study given in Table 4.16. Recall that the summary statis-
tics indicated that the model fits. Thus, we do not expect an analysis of diagnostics
to show large numbers of covariate patterns being fit poorly. We might, however,
uncover a few covariate patterns that do not fit, or that have considerable influence
on the estimated parameters. The key plots are given in Figures 5.12–5.16. We
discuss each plot in turn.

The diagnostics 
X2 and 
D plotted versus the estimated logistic probabilities
are shown in Figures 5.13 and 5.14, respectively. We prefer to use these plots
instead of plots of rj and dj versus π̂j . The reasons for this choice are as follows:
(i) When J ≈ n, most positive residuals correspond to covariate patterns where
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Figure 5.12 Plot of h versus the estimated probability from the fitted model from the GLOW Study
in Table 4.16, J = 547 covariate patterns.
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Figure 5.13 Plot of 
X2 versus the estimated probability from the fitted model from the GLOW
Study in Table 4.16, J = 547 covariate patterns.
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Figure 5.14 Plot of 
D versus the estimated probability from the fitted model from the GLOW Study
in Table 4.16, J = 547 covariate patterns.

yj = mj (e.g., 1) and negative residuals to those with yj = 0. Hence, the sign of
the residual is not useful. (ii) Large residuals, regardless of sign, correspond to
poorly fit points. Squaring these residuals further emphasizes the lack of fit and
removes the issue of sign. (iii) The shape of the plot allows us to determine which
patterns have yj = 0 and which have yj ≥ 1.
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Figure 5.15 Plot of 
β̂ versus the estimated probability from the fitted model from the GLOW Study
in Table 4.16, J = 547 covariate patterns.

0

5

10

15

C
ha

ng
e 

in
 P

ea
rs

on
 c

hi
-s

qu
ar

e

0 0.2 0.4 0.6 0.8
Estimated probability

Figure 5.16 Plot of 
X2 versus the estimated probability from the fitted model from the GLOW
Study in Table 4.16 with size of the plotting symbol proportional to 
β̂, J = 457 covariate patterns.

The shapes of the plots in Figures 5.12 and 5.13 are similar and show quadratic
like curves. The points on the curves going from the top left to bottom right
corner correspond to covariate patterns with yj ≥ 1. The ordinate for these points
is proportional to (1 − π̂j )

2 since mj = 1 for most covariate patterns. The points
on the other curves, going from the bottom left to top right corner, correspond
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to covariate patterns with yj = 0. The ordinate for these points is proportional to
(0 − π̂j )

2. Covariate patterns that are poorly fit generally are typically represented
by points falling in the top left or top right corners of plots like those in Figures 5.12
and 5.13. We look for points that fall some distance from the balance of the data
plotted. Assessment of this distance is partly based on numeric value and partly
based on visual impression.

In Figure 5.13 we see three points (i.e., covariate patterns) that are poorly fit in
the top left corner of the plot. In each case, 
X2 > 10. There is one other point
that lies a bit away from the others with 
X2 ≈ 7 and π̂ ≈ 0.23. These same four
points are seen in Figure 5.14 but note that the point with π̂ ≈ 0.23 has the largest
value of 
D . The range of 
X2 is much greater than 
D . This is a property of
Pearson versus deviance residuals. Whenever possible we prefer to use plots of
both 
X2 and 
D versus π̂ .

Aside from the four points noted, the plots show that the model fits reason-
ably well. Most of the values of 
X2 are less than 6 and 
D less than 4.5. We
use 4 as a crude approximation to the upper ninety-fifth percentile of the distribu-
tion of 
X2 and 
D as, under m-asymptotics, these quantities would be distri-
buted approximately as χ2(1) with χ2

0.95(1) = 3.84.
The influence diagnostic 
β̂ is plotted versus π̂ in Figure 5.15. We see five

points that lie somewhat away from the rest of the data. The values themselves
are not especially large, as all are less than 0.4. In our experience the influence
diagnostic must be larger than 1.0 for an individual covariate pattern to have an
effect on the estimated coefficients. However there are always exceptions and it is
good practice to note outlying values of 
β̂, regardless of the actual magnitude.

We noted in Table 5.9 that the largest values of 
β̂ are most likely to occur when
both 
X2 and leverage are at least moderately large. However large values can
also occur when either component is large. In Figure 5.15 the covariate pattern with
the largest influence diagnostic is the not the one with the largest value of 
X2.
This covariate pattern is in the region of high leverage and moderate lack of fit.
The other points in this same region of estimated probabilities would demonstrate
lower values for leverage, but moderately large values of both 
X2 and 
D .

In Figure 5.16 we plot 
X2 versus π̂ with the size of the symbol proportional
to 
β̂. This plot allows us to more clearly ascertain the contributions of residual
and leverage to 
β̂. The largest circle in the left center of the plot corresponds to
a moderately large value of 
X2, and as can be seen in Figure 5.12, moderately
high leverage. Three other large circles are in the top left and correspond to the
three covariate patterns with the largest values of 
X2. Two other large circles are
seen in the lower right hand corner of the plot and have not especially large values
of 
X2, hence we conclude that high leverage must be a contributing factor.

One problem with the influence diagnostic 
β̂, is that it is a summary measure
of change over all coefficients in the model simultaneously. For this reason it is
important to examine the changes in the individual coefficients due to specific
covariate patterns identified as influential.

Examination of Figures 5.12–5.16 identifies eight covariate patterns with outly-
ing values on one or more of the diagnostics statistics. These include the patterns
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Table 5.10 Covariate Values, Observed Outcome (yj ), Number (mj ), Estimated

Logistic Probability (π̂), and the Value of the Four Diagnostic Statistics �β̂, �X2,
�D , and Leverage (h) for the Eight Covariate Patterns (P#) with at Least One Large
Value

P# 7 39 91 144 187 190 259 332

AGE 56 57 60 63 65 65 70 75
HEIGHT 155 166 162 153 167 168 142 175
PRIORFRAC 0 0 0 1 0 0 1 0
MOMFRAC 0 0 1 1 0 1 1 1
ARMASSIST 0 0 1 0 0 0 0 1
RATERISK3 0 0 1 1 0 0 0 0
yj 1 1 1 0 1 2 0 1
mj 1 1 1 1 1 2 1 1
π̂ 0.089 0.059 0.208 0.736 0.086 0.238 0.747 0.175

X2 10.23 16.10 3.97 2.91 10.67 6.74 3.13 4.93

D 4.86 5.70 3.28 2.79 4.92 6.04 2.92 3.64
h 0.007 0.005 0.043 0.046 0.004 0.051 0.575 0.042

β̂ 0.081 0.075 0.177 0.139 0.048 0.359 0.191 0.217

with large values of 
X2 and/or 
D , and four more with outlying values of

β̂. Information on these patterns is presented in Table 5.10. The quantity P # in
Table 5.10 refers to the covariate pattern number. This number is somewhat arbi-
trary, as its value depends on how the data were aggregated. It should be noted
that P# is not the original study identification code.

The next step in the analysis is to delete each covariate pattern identified (those
in Table 5.10), one at a time, to assess their individual effect on the estimated
coefficients. We leave the details of this step as an exercise. All deletions yielded
percent changes less than 10% except for covariate pattern 190 where the coeffi-
cient for mother having had a fracture (MOMFRAC) changed by 18%. Covariate
pattern 190 has two subjects, both had a fracture, a mother with a fracture, and
not unexpectedly, their removal lowered the estimate. Following deletion of indi-
vidual covariate patterns we usually delete all the patterns identified as poorly fit,
then delete all those identified as being influential, and finally delete all covariate
patterns identified. These results are presented in Table 5.11.

We see, in Table 5.11, that when we delete the four poorest fit patterns the max-
imum change is –15.9% for the dichotomous covariate self-reported risk greater
than others (RATERISK3). Deleting the five most influential patterns produces
greater than 20% changes in the coefficients for height and the “mother fracture by
arm assist” interaction. Examining the data for these patterns, we see that the values
of height for covariate patterns 259 and 332 are, respectively, among the shortest
and tallest in the study. When we deleted just these two patterns we see that 17%
of the 24% is accounted for by these two patterns. On examining the data for the
interaction we find that two of the five patterns (91 and 332) when deleted account
for 24% of the 26% change. These two patterns were among only 25 where both
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Table 5.11 Estimated Coefficients from All Data (Table 4.16), the Percent Change
when the Covariate Patterns Are Deleted, and Values of Model Statistics for Each
Model

Percent Change from All Data Coefficients
when Covariate Patterns Are Deleted

Poorest Fit Largest Influence
All Data 7, 39, 91, 190, 144,

Variable Coefficients 187, 190 259, 332 All Eight

AGE 0.057 −12.6 −3.7 −15.4
HEIGHT −0.047 −8.8 −24.3 −27.4
PRIORFRAC 4.612 −12.3 −8.3 −18.5
MOMFRAC 1.247 8.0 −5.3 −13.0
ARMASSIST 0.644 −8.5 −1.4 −10.1
RATERISK3 0.469 −15.9 −7.1 −16.4
AGE*PRIORFRAC −0.055 −13.3 −7.2 −7.2
MOMFRAC*ARMASSIST −1.281 5.8 −25.8 −31.5
Constant 1.717 −1.6 −56.1 −52.9

Model Statistics
D 500.50 478.34 481.18 464.55
X2 442.33 418.01 437.34 412.41
Ĉ 6.39 5.81 5.23 9.68

“mother fracture” and “arm assist” were present. This is fully consistent with our
experience modeling interactions of dichotomous covariates. Namely, the present-
present cell tends to be least frequent of the four and thus deletion of any of
these patterns tends to have the greatest effect on the estimate of the interaction
coefficient, but not necessarily the main effect coefficients.

The percent changes, when all eight patterns (nine subjects) are deleted, are
shown in the last column of Table 5.11. Three of the coefficients changed by
greater than 25% and four more are greater than 15% (in absolute value). So, in
aggregate, deleting these covariate patterns does have an affect on the estimated
coefficients. We note that the signs are all negative indicating, from the definition
of 
β̂%, and that the coefficients from the deleted model are all larger than the full
data model. So we conclude that we have removed nine subjects whose pattern of
data go against the model in the sense that the estimated probabilities are less than
what would be expected based on the observed data.

The next step is to make a decision on the continued role in the analysis of the
eight covariate patterns. This decision should always be made in conjunction with
subject matter scientists. In this case all of the data were judged to be completely
reasonable and should not be deleted. A phrase we often use when teaching about
diagnostics is: “We use diagnostics statistics to identify subjects and subject matter
considerations to decide on exclusion”. One should not simply lift the rug and
sweep potentially inconvenient data under it, no matter what affect deletion might
have on a fitted model.
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The model for the GLOW data in Table 4.16 is an example where the model
fits well, and use of diagnostics identified only a few covariate patterns where the
model did not fit, and/or the patterns were influential. Also, the model fit statistics
at the bottom of Table 5.11 show that fit does not deteriorate when the stated
covariate patterns are deleted and the model refit. Assume instead that we have a
model where the summary statistics indicate that there is substantial deviation from
fit. In this situation, we have evidence that for more than a few covariate patterns,
yj differs from mj π̂j . One or more of three things has likely happened: (i) the
logistic model does not provide a good approximation to the correct relationship
between the conditional mean E(Y |xj ) and xj , (ii) we have not measured and/or
not included an important covariate into the model, or (iii) at least one of the
covariates in the model has not been entered in the correct scale. We discuss each
of these in turn.

The logistic regression model is remarkably flexible. Unless we are dealing with
a set of data where most of the probabilities are very small or very large, or where
the fit is extremely poor in an identifiable systematic manner, it is unlikely that any
alternative model will provide a better fit. Cox (1970) demonstrates that the logis-
tic and other similar symmetric models are virtually identical in the region from
0.2 to 0.8. If one suspects, based on clinical or other reasons (such as graphical
presentations, or Stukel’s test, described in Section 5.2.2), that the logistic model is
the wrong one, then careful thought should be given to the choice of the alternative
model. Particular attention should be given to issues of interpretation. Are the coef-
ficients clinically interpretable? The approach that tries all other possible models
and selects the “best fitting” one is not recommended, as no thought is given to the
clinical implications of the selected model. In some situations, inadequacy of a fit-
ted logistic model can be corrected by returning to model building and rechecking
variable selection and scale identification. Model fitting is an iterative procedure.
We rarely obtain a final model on the first pass through the data. However, we
must keep in mind the distinction between getting a model to fit and having the
theoretically correct model.

Some interesting theoretical work has been done by White (1982, 1989) and
Hjort (1988, 1999) on the use of maximum likelihood estimation with a misspec-
ified model. These authors show that the fitted logistic regression model is the
one that minimizes the Kullbeck–Leibler information distance between the the-
oretically correct model and the logistic model. In this sense the fitted logistic
regression model is a best approximation to the true model. Maldonado and Green-
land (1993) examine the interpretation of model coefficients in this setting and
conclude that if one follows a thorough model building paradigm, similar to one
presented in Chapter 4 and this chapter, then the estimated coefficients can provide
useful estimates of effect even when the model is somewhat misspecified. Along
these same lines Lin et al. (1998) present a method to quantify the sensitivity of
estimates of effect to unmeasured confounders.

White (1982, 1989) provides a test for the hypothesis that the fitted model
is the theoretically correct one. The test is elegant but is difficult to compute in
practice, and its power has not been adequately studied. Hence, we recommend
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that assessment of the adequacy of the fitted logistic model be performed using the
methods suggested in this chapter. When there is evidence that the logistic model
does not fit the data an alternative model should be selected on the basis of clinical
considerations.

When performing an analysis, we hope that the study was designed carefully so
that data on all major covariates were collected. However, it is possible that the
clinical factors associated with the outcome variable are not well known and, in
this case, a key variable may not be present in the observed data. The potential
biases and pitfalls of this oversight are enormous. Little can be done if this is the
case, except to go back and collect these data. This approach of retroactive data
collection is also impractical in most research situations.

Lack of fit may also occur if the variability in the outcome variable exceeds
what would be predicted by the model and binomial variation. The early work on
this problem is motivated by toxicological experiments where a dependence in the
observations is present due to the outcome being measured on littermates having
the same parentage, see Haseman and Hogan (1975), Haseman and Kupper (1979),
Legler and Ryan (1997), Ryan (1992), and Williams (1975). In this context, source
of lack of fit is often called extrabinomial variation. More recently work on this
problem has focused on settings where the dependence is due to a general clustering
of groups of responses (e.g., when a treatment is randomly assigned to a group of
subjects such as a school or patients of a physician). The clustering can also be due
to repeated observations on subjects over time. This continues to be quite an active
area of methodological research and several software packages now incorporate
the capability to fit appropriately modified logistic regression models. Because of
its practical importance, models and methods for the analysis of clustered binary
data are presented in detail in Chapter 9.

In summary, one should not proceed to presenting the results from a fitted model
until the fit of model has been thoroughly assessed using both summary measures
and diagnostic statistics.

Before leaving this section we report on the results of using diagnostic statistics
to examine the effect of subjects on the fit of the model for the Burn Study data
shown in Table 4.27. The overall fit of the model is shown in Table 5.2 where
Ĉ = 8.63 with p = 0.374. Analyses (that we leave as an exercise to confirm, similar
to that discussed above for the GLOW Study) yielded four poorly fit subjects
(mj = 1) with 
X2 > 40. All had outcomes that went against the model: three
of the subjects who died were middle aged with small burn areas, and the fourth,
who lived,was older with a large burn area. When we refit the model excluding
these four subjects only the estimated coefficients for RACE changed by more than
20%. The fit, as measured by Ĉ, was nearly identical to the fit shown in Table 5.2.
Three subjects (mj = 1) had values of 
β̂ that stood out in the scatter plot versus
the predicted probabilities. When we refit the model excluding these three we
found the estimated coefficient for the interaction of age, fractional polynomial
transformed, and inhalation injury (AGEFP1*INH_INJ) changed by over 50% and
became nonsignificant. Most of this change was due to two older subjects who
had inhalation injury complications and lived (i.e., their outcome went against the
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Table 5.12 New Final Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.087 0.0082 10.52 <0.001 0.071, 0.103
TBSAFP1 0.936 0.0874 10.71 <0.001 0.765, 1.108
RACE −0.609 0.3096 −1.97 0.049 −1.216, −0.002
INH_INJ 1.433 0.3422 4.19 <0.001 0.763, 2.104
Constant −7.957 0.5967 −13.34 <0.001 −9.127, −6.788

model). The third was a younger subject with a small burn area and inhalation
injury complications who died, again an outcome that goes against the model. The
fit of the model deleting these three subjects is Ĉ = 7.75 with p = 0.46.

At this point we began to question the need for the interaction term in the
model. Is it good statistical practice to have a model containing a covariate whose
coefficient is largely determined by 3 of 1000 subjects? We think not and are
thus inclined to remove the interaction from the model. In addition, recall that
a major purpose of the model is to provide predicted probabilities of death for
patients hospitalized for a burn injury at a burn treatment center. In this setting a
simpler model is likely to perform better in an external data set (a topic considered
in Section 5.4) than a more complicated model. Thus, for these two reasons, we
removed the interaction term from the model, and did not delete the three influential
subjects. Consultation with a burn surgeon confirmed this choice. The fit of the new
and smaller Burn Study model is shown in Table 5.12.

Assessing the fit of the model in Table 5.12 yielded Ĉ = 6.97 with p = 0.54.
We leave as an exercise further fit analysis using other goodness of fit tests and
diagnostic statistics.

5.4 ASSESSMENT OF FIT VIA EXTERNAL VALIDATION

In some studies it may be possible to exclude a sub-sample of our observations,
develop a model based on the remaining subjects, and then assess the model in
the originally excluded subjects. In other situations it may be possible to obtain a
new sample of data to assess the goodness of fit and discrimination of a previously
developed model. This type of assessment is often called model validation, and
may be especially important when the fitted model is to be used to predict the
outcome for future subjects. The reason for considering this type of assessment
of model performance is that the fitted model always performs in an optimistic
manner on the developmental data set. Harrel et al. (1996) discuss this within a
general model building context. The use of validation data amounts to an assessment
where the fitted model is considered to be theoretically known, and no estimation
is performed. Some of the diagnostics discussed in Section 5.3 (
X2,
D,
β̂)

mimic this idea by computing, for each covariate pattern, a quantity based on the
exclusion of the particular covariate pattern. With a new data set a more thorough
assessment is possible.
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Obviously, we hope that the analysis supports that the model fits as there are
many reasons why a model might not fit the validation data. Lack of fit could be
due to an incorrectly specified systematic component, such as omitted covariates
(e.g., interactions), incorrect specification of the parametric form for continuous
covariates, the constant term is incorrect (too large or small) due to a large differ-
ence in the proportion of responses in the developmental and validation data and/or
the logit transformation is the incorrect link function. As we demonstrate in this
section, it is possible to repair a slightly broken model, but when this repair fails,
one has little choice but to go back to square one and rebuild the model in the new
data.

The methods for assessment of fit in the validation sample parallel those
described in Sections 5.2 and 5.3 for the developmental sample. The major
difference is that the values of the coefficients in the model are regarded as fixed
constants rather than estimated values.

Assume that the validation sample consists of nν observations (yi, xi ), i =
1, 2, . . . , nν , which may be grouped into Jν covariate patterns. In keeping with
previous notation, let yj denote the number of positive responses among the mj

subjects with covariate pattern x = xj for j = 1, 2, . . . , Jν . The logistic probabil-
ity for the jth covariate pattern is πj , the value of the previously estimated logistic
model using the covariate pattern xj , from the validation sample. These quantities
become the basis for the computation of the summary measures of fit, X2, D, S,
and C, from the validation sample. Each of these is considered in turn.

The computation of the Pearson chi-square statistic follows directly from
equation (5.2), with obvious substitution of quantities from the validation sample.
In this case X2 is computed as the sum of Jv independent terms. If each mjπj is
large enough to use the normal approximation to the binomial distribution, then
X2 is distributed as χ2(Jv) under the hypothesis that the model is correct. We
expect that in practice the observed numbers of subjects within each covariate
pattern is small, with most mj = 1. Hence, we cannot employ m-asymptotics.
In this case we can use results presented in Osius and Rojek (1992) to obtain a
statistic that follows the standard normal distribution under the hypothesis that the
model is correct and Jv is sufficiently large. The procedure is similar to the one
presented in Section 5.2. Specifically one computes the standardized statistic

zX2 = X2 − Jv

σv

(5.27)

where

σ 2
v = 2Jv +

Jv∑
j=1

1

mjπj (1 − πj )
− 6

Jv∑
j=1

1

mj

. (5.28)

The test uses a two-tailed p-value based on zX2 . Note that when mj = 1 the
variance in equation (5.28) simplifies to

σ 2
v =

nv∑
i=1

1

πi(1 − πi)
− 4nv . (5.29)
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The adverse affect of pairs with small or large π and an outcome that is 1 or 0
is the same as that noted in Section 5.2, an aberrantly large value of X2 and / or
σ 2

v . As in Section 5.2 we prefer to use the sum-of-squares statistic

S =
Jv∑

j=1

(yj − mjπj )
2

in these cases. The standardized version for assessing fit in the validation sample is

zS =
S −

Jv∑
j=1

mjπj (1 − πj )

σS

, (5.30)

where

σ 2
S =

Jv∑
j=1

mjπj (1 − πj )[1 + 2mjπj (1 − πj ) − 6πj (1 − πj )] (5.31)

and we use a two tailed p-value. Under the assumption that mj = 1 the expression
in equation (5.31) simplifies to

σ 2
S =

n∑
i=1

πi(1 − πi)(1 − 2πi)
2. (5.32)

Stallard (2009) derives the same expressions for means and variances of X2 and S

under the assumption that mj = 1.
The same line of reasoning discussed in Section 5.2.2 to develop the

Hosmer–Lemeshow test may be used to obtain an equivalent statistic for the
validation sample. Assume that we wish to use 10 groups composed of the deciles
of risk. Any other grouping strategy could be used with obvious modifications in
the calculations. Let nk denote the approximately nv/10 subjects in the kth decile
of risk. Let ok =∑ yj be the number of positive responses among the covariate
patterns falling in the kth decile of risk. The estimate of the expected value of ok

under the assumption that the model is correct is ek =∑mjπj , where the sum is
over the covariate patterns in the decile of risk. The Hosmer–Lemeshow statistic
is obtained as the Pearson chi-square statistic computed from the observed and
expected frequencies (see equations (5.7) and (5.8))

Cv =
g∑

k=1

(ok − ek)
2

nkπk(1 − πk)
(5.33)

where πk =∑mjπj/nk . The subscript v, has been added to C to emphasize that
the statistic has been calculated from a validation sample. Under the hypothesis
that the model is correct, and the assumption that each ek is sufficiently large for
each term in Cv to be distributed as χ2(1), it follows that Cv is distributed as
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χ2(10). In general, if we use g groups then the distribution is χ2(g). In addition
to calculating a p-value to assess overall fit, we recommend that each term in Cv

be examined to assess the fit within each decile of risk. The comments given in
Section 5.2.2 regarding modification of the denominator of the test statistic Ĉ, in
equation (5.8) also apply to Cv in equation (5.33).

The classification table and area under the ROC curve are two other summary
statistics that we are likely to use with the validation sample—but only in instances
where classification is an important use of the model. These two measures are
obtained in exactly the same manner as shown in Section 5.2.3, with the modifi-
cation that probabilities are no longer thought of as being estimated. The resulting
table can be used to compute statistics such as sensitivity, specificity, and positive
and negative predictive values. Interpretation of these quantities depends on the
particular situation.

We use two examples to illustrate model assessment in a validation sample.
In Section 5.2 we developed a prediction model for the Burn Study (shown in
Table 4.27) and assessed its fit in Section 5.2. We used diagnostic statistics in
Section 5.3 to further examine the model where we found that the significance of
an interaction term was largely due to 3–4 subjects. As a result, we excluded the
interaction term and refit the main effects only model (shown in Table 5.12). Now
we would like to see how this model works in a different set of burn injury data.
Using a method similar to the one used to select the Burn Study data described
in Section 1.6.5 we selected two additional data sets of size 500—one where the
model in Table 5.12 fits and one where it does not. We feel that it is important to
see both as one cannot assume that any statistical model, no matter how carefully
built, will perform comparably in a new set of data.

The first data set (we call this BURN_EVAL_1) is available electronically in the
same locations as the data described in Section 1.6. A total of 14.4% of the 500
subjects died. The first step in the evaluation is to compute the fractional polyno-
mial transformations of age, AGEFP1 = (AGE/10)2, and total burn surface area,
TBSAFP1 = √

TBSA. Next we calculate logistic probabilities for all 500 subjects
using the estimated coefficients in Table 5.12. The ten by two decile of risk table of
observed and expected frequencies is shown in Table 5.13. The value of the decile
of risk test is Cv = 5.78, which with 10 degrees of freedom gives p = 0.833. Thus
we cannot conclude that the previously developed model for the Burn Study does
not fit the new data. In short, the decile of risk test suggests that the observed out-
comes of mortality agree with the estimated probabilities from the logistic model.
A few things should be noted about the frequencies in Table 5.13. First the sums of
the expected frequencies within each outcome group are not equal to the observed.
This is due to the fact that the coefficients used to compute the probabilities were
not from a model fit to these data. Second, the estimated expected frequencies are
less than 5 in 8 of the 20 cells. Thus the actual p-value may not be quite equal
to the stated value. Regardless, there is close agreement between observed and
expected frequencies in all 20 cells of Table 5.13. Hence the overall picture is
that of a model that produces estimated probabilities that reflect the true outcome
experience in these data (i.e., fits the data).
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Table 5.13 Observed (Obs) and Estimated Expected (Exp) Frequencies Within
Each Decile of Risk for DEATH = 1 and DEATH = 0 from BURN_EVAL_1
Using the Estimated Coefficients from the Fitted Model in Table 5.12

Death = 1 Death = 0

Decile Obs Exp Obs Exp N

1 0 0.00 50 49.97 50
2 0 0.07 50 49.93 50
3 0 0.12 50 49.88 50
4 0 0.20 50 49.80 50
5 0 0.35 50 49.65 50
6 0 0.66 50 49.34 50
7 2 1.76 48 48.24 50
8 7 7.45 43 42.55 50
9 20 25.32 30 24.68 50

10 43 45.78 7 4.22 50

Total 72 81.71 428 418.26 500

To further examine fit we evaluate the standardized Pearson chi-square statistic
in equation (5.27) and the standardized sum-of-squares statistic in equation (5.30).
There are 497 covariate patterns in the BURN_EVAL_1 data so we did not form
the covariate pattern data, instead computing the statistic using mj = 1. The value
of the Pearson chi-square statisitic is X2 = 257.6541. The estimate of the variance
of X2 from equation (5.29) is σ 2

v = 168428.05 and the value of the standardized
statistic is

zX2 = (257.6541 − 500)√
168428.05

= −0.5905,

yielding a two-tailed p = 0.555. The large variance estimate is due to the fact that
50% of the predicted probabilities are less than 0.01, which contributes 160097.83
to the estimate.

The value of the sum-of-squares statistic is S = 25.1747. The estimate of the
variance from equation (5.31) is σ 2

s = 8.4626 and the value of the standardized
statistic is

zS = (25.1747 − 24.3620)√
8.4626

= 0.279

and the two-tailed p = 0.780.
All three goodness of fit tests support the fit of the model in Table 5.12 to the

validation data set BURN_EVAL_1. The next step is to check and see how well
the model discriminates between those subjects who died and lived through the
area under the ROC curve. Computing the area under the ROC curve using prob-
abilities estimated using the model in Table 5.12 yields the value 0.966, excellent
discrimination. Hence by all measures the model in Table 5.12 has excellent fit and
discrimination in the BURN_EVAL_1 data. One reason for the good performance is
that the distribution of the outcome and also model covariates in BURN_EVAL_1
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Table 5.14 Observed (Obs) and Estimated Expected (Exp) Frequencies Within
Each Decile of Risk for DEATH = 1 and DEATH = 0 from BURN_EVAL_2
Using the Estimated Coefficients from the Fitted Model in Table 5.12

Death = 1 Death = 0

Decile Obs Exp Obs Exp N

1 0 0.03 50 49.97 50
2 1 0.06 49 49.94 50
3 2 0.12 48 49.88 50
4 2 0.21 48 49.79 50
5 0 0.37 50 49.63 50
6 6 0.78 44 49.22 50
7 9 2.52 41 47.47 50
8 17 11.47 33 38.53 50
9 38 31.06 12 18.94 50

10 46 46.33 4 3.67 50

Total 121 92.95 379 407.04 500

are quite similar to the Burn Study data. We leave the details of showing this as
an exercise.

Next we apply the model in Table 5.12 to the BURN_EVAL_2 data. In this
sample of 500 patients with a burn injury 24% died, compared to only 15% in
the Burn Study data. The value of the decile of risk test is Ĉ = 120.19, which
with 10 degrees of freedom, yields p < 0.001. We conclude that the model in
Table 5.12 does not fit the data in BURN_EVAL_2. The observed and estimated
expected frequencies are given in Table 5.14. In general the model underestimates
the number of deaths in all deciles of risk. The estimated expected values are small
in eight of the 20 cells, and thus the p-value may not be accurate, but there is
compelling evidence of poor model fit.

Evaluating the standardized Pearson chi-square statistic in equation (5.27) using
the estimator of the variance when mj = 1 in equation (5.29) yields

zX2 = (2800.1072 − 500)√
181702.76

= 5.396,

corresponding to p < 0.001. The standardized sum-of-squares statistic using the
variance estimator in equation (5.32) is

zS = (43.2009 − 26.7685)√
8.6153

= 5.598,

yielding p < 0.001. We see that all three goodness of fit tests reject model fit.
From our point of view, since the model does not fit, there is no compelling
need to evaluate the model’s discrimination. However, for sake of comparison, we
report the area under the ROC curve as 0.928. Hence the evaluation shows that
while the model can distinguish between patients who die from those who live, the



208 assessing the fit of the model

estimated probabilities do not accurately describe the true outcome experience in
these patients.

Two questions emerge at this point: (i) What is the problem with the model in
Table 5.12? and (ii) Can the model be easily modified to fit the BURN_EVAL_2
data?

At this point we have to make some assumptions about our access to the new
data, BURN_EVAL_2. In the previous analyses we assumed that the researcher
who constructed the two EVAL data sets provided us with a data set containing
only the outcome variable and the estimated probabilities (as calculated from the
model in Table 5.12) for the 500 patients. This is typical information provided
when an investigator is trying to determine whether a new model can be tested
on their data. Alternatively, the data could come from another setting in our own
study. The former case is the more difficult case to deal with, as we do not have
full information. When we do have access to all the data we have the option
of fitting the model to the new data and making direct comparisons of the esti-
mated coefficients from the two (i.e., old and new) models. Since this is essentially
another model building exercise we do not consider it further; instead we focus
on the more difficult case. As Miller et al. (1991) note, before embarking on a
detailed look one should make sure that the range of covariates in the valida-
tion sample is contained within the range to the developmental sample to avoid
inappropriate model extrapolation. This condition holds for both burn validation
data sets.

Question 1: We know, from a frequency table of the outcome, that 24.2% of
the patients in the BURN_EVAL_2 data died, but only 15% of the patients in the
original Burn Study died. Hence, we can be reasonably certain that the intercept
coefficient in Table 5.12 is too small. This observation is further supported by
the fact that the sum of the expected frequencies in Table 5.14 is 93 not 121. As
noted, without access to the BURN_EVAL_ 2 data we cannot make any specific
evaluations of the other individual coefficients in the Table 5.12 model.

Question 2: Under the assumption that we are provided outcome data and the
estimated probabilities from the model based on Table 5.12, it is possible to adjust
the model so that the sum of the expected values is 121; but this is no guarantee
that the adjusted model will fit. Miller et al. (1991) fully develop this approach,
which was first suggested by Cox (1958). The procedure to adjust the model is as
follows:

1. Denote the Table 5.12 model estimated probabilities as π̂M
i . Compute the

logit for each subject in the validation data set,

ĝM
i = ln

(
π̂M

i

1 − π̂M
i

)
, i = 1, . . . , nv. (5.34)

2. Fit the logistic regression model with ĝM
i as the only covariate.
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Let α̂0 denote the estimate of the intercept and α̂1 denote the estimate of the
regression coefficient for ĝM . The estimated probabilities from this fit are

θ̂i = exp(α̂0 + α̂1ĝ
M
i )

1 + exp(α̂0 + α̂1ĝ
M
i )

(5.35)

and it follows from the results in Chapter 1 that
∑nv

i=1 θ̂i = nv1, for example, the
sum of estimated probabilities equals the sum of the observed outcomes,

∑nv

i=1 yi =
nv1. If the fitted model described by the logit ĝM , is identical to within sampling
error of the same model fit to the new data set in 2, then α̂0 should be within
sampling variation of 0.0 and α̂1 should be within sampling variation of 1.0. This
can be easily checked by seeing if 0.0 is contained in the confidence interval for
the constant term and 1.0 in the confidence interval for the regression coefficient.
A Wald test of the joint hypothesis is also not difficult to calculate, although likely
not necessary. Miller et al. (1991) also describe two conditional tests: H0 : α1 =
1|α0 and H0 : α0 = 0|α1. Cox (1958) notes that if α̂1 > 1, the probabilities π̂M

are reasonably positively correlated with the outcome, but have too little variation
(i.e., the range of ĝM may not be wide enough to yield small and large enough
values of π̂M ). If the estimate α̂1 < 1, then there is too much variability in π̂M

(i.e., the range of ĝM is too wide yielding too small and too large values of π̂M ).
If the estimate of the slope is such that α̂1 < 0 then the probabilities, π̂M , go in
the wrong direction. (Note: This is likely to occur only if, by mistake, one reverses
the outcome to y = 0). If the estimate of the constant term α̂0 is positive, then the
probabilities are consistently too small. The opposite is the case when the constant
is negative.

Operationally, we suggest that, following the fit in 2, one examines the confi-
dence intervals to see if they contain the respective null values. If we have rejected
the hypothesis that the model fits the new data, as we have done with the model in
Table 5.12, then we fully expect that at least one of the confidence intervals will
not contain the null value. Next we perform the usual goodness of fit tests using
the model fit in 2. This step checks to see if this simple adjustment α̂0 + α̂1ĝ

M
i ,

provides a model that fits. If the adjusted model fits, then we can apply the correc-
tions to the model coefficients and proceed with the adjusted model. If the adjusted
model does not fit then there is little more we can do as the lack of fit is more
complex, as discussed at the beginning of this section, and cannot be resolved by
the simple regression adjustment.

The results of the fit described in 2 above to the BURN_EVAL_2 data where
ĝM is based on the coefficients in Table 5.12 are shown in Table 5.15.

Table 5.15 Results of the Adjusted Fit to the BURN_EVAL_2 Data

Coeff. Std. Err. z p 95% CI

ĝM 0.730 0.0650 11.22 <0.001 0.602, 0.857
Constant 0.571 0.1908 2.99 0.003 0.196, 0.945
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We see that neither one nor zero is contained in the respective confidence inter-
vals. The fact that estimate of the slope is less than one α̂1 = 0.73, implies that
there is too much variability in the π̂M . The fact that the estimate of the constant
is positive (α̂0 = 0.571) implies, as noted above, that the probabilities π̂M are too
small. Testing goodness of fit using the adjusted probabilities computed using the
results in Table 5.15 in equation (5.35), we obtain Ĉ = 6.85 with p = 0.552, com-
puted with 8 degrees of freedom as the model is estimated. We do not present the
results, but both the standardized Pearson chi-square and the standardized sum-of-
squares statistics are not significant. Hence, in this example, the adjusted model
fits the BURN_EVAL_2 data. The area under the ROC curve using the adjusted
probabilities is 0.928.

Miller et al. (1991) provide expressions to compute casewise diagnostic statistics
of the effect each pair (1, ĝM) has on the departure of α̂0 from zero and α̂1 from 1.
The computations, while not complex, do require matrix manipulations and are not
programmed into STATA or other packages. An alternative is to use the diagnostic
statistics discussed in Section 5.3 computed from the fit in 2 above. The differences
being that these measures have an effect on the estimate and not on the departure
from the null values. Regardless, aberrant and influential values can be identified.

We conclude that the model using the estimates in Table 5.12 does not fit
the BURN_EVAL_2 data, but a simple adjustment of the estimated probabilities,
provides estimates that do fit the data and have good discrimination.

Before concluding this section we present some comparisons in Table 5.16 of the
individual coefficients from three fitted models. The first column repeats the results
from Table 5.12. The second column presents the value of the adjusted estimates
based on the estimated coefficients in Table 5.15. The third column presents the
estimated probabilities from an actual fit to the data in BURN_EVAL_2. In practice
this fit is possible only if we have access to the data. In the fourth column we show
the percent difference between the adjusted estimate and the one from the fit to the
data.

Table 5.16 Comparison of the Estimated Coefficients in Table 5.12 to Adjusted
Coefficients and those from a Model Fit to the BURN_EVAL_2 Data

Table 5.12 Adjusteda Fit to Data 
β̂%b

Coeff. Coeff. Coeff. Adjusted vs. Fit

AGEFP1 0.087 0.064 0.059 7.64
TBSAFP1 0.936 0.683 0.753 −9.26
RACE −0.609 −0.445 0.277c −260.49
INH_INJ 1.433 1.046 0.743 40.79
Constant −7.957 −5.238 −5.813 −9.90

aAdjusted slope = 0.73 × Slope Coeff. from Table 5.12; adjusted Intercept = 0.73 × Constant Coeff.
from Table 5.12 + 0.571.

b
β̂% =
100(β̂Adjusted − β̂Fit )

β̂Fit

.

cEstimate is no longer significant, p = 0.48.
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Figure 5.17 Plot of the estimated probabilities from the adjusted model versus those from the fitted
model.

What is interesting is that despite some large differences between the adjusted
and newly fit coefficients, the adjusted model, in aggregate, performs well in the
BURN_EVAL_2 data. To see why this is the case we show in Figure 5.17, a scatter
plot of the predicted probabilities computed from the adjusted and fitted models.

The plot shows that there is a high level of agreement between the two estimates,
especially in the tails. The largest differences, departure from the solid line of
equality, are the approximately 60 (12%) values between 0.3 and 0.7.

Based on the above analyses, our conclusions are: (1) the model based on
the coefficients in Table 5.12 is not appropriate for use in the new setting, (2) the
adjusted model in Table 5.15 performs well enough to be used in the new setting for
prediction purposes, and (3) we do not recommend using the adjusted model to esti-
mate the effects of model covariates in the new setting. This conclusion is not based
on the results in Table 5.16, but rather on taking a more conservative view that the
adjustment is really to the logit as a whole rather than to its individual coefficients.

In summary, model validation on an external data set should consist of an
evaluation of its fit and an ROC analysis if the model fits. When the model fits the
validation data set one can have some confidence that the values of the individual
coefficients in the model approximate to a good degree the covariate effect in
the validation setting. When the model does not fit, we recommend trying the
simple adjustment procedure described in this section as it can often yield a good
fitting model that can be used for prediction purposes. We do not recommend
using the adjusted model to estimate effects in the validation setting. If the simple
adjustment procedure does not yield a good fitting model the differences between
the developmental and validation settings are more complex and a new custom fit
model is needed.
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5.5 INTERPRETATION AND PRESENTATION OF THE RESULTS
FROM A FITTED LOGISTIC REGRESSION MODEL

Once we are satisfied that the fit of the model is adequate, we are ready to use the
model to address the inferential goals of the particular study. In our experience this
almost always involves using the estimates of model coefficients to obtain estimates
of the adjusted odds ratios for model covariates. For our first example, we use the
model fit to the GLOW Study data presented in Table 4.16, whose fit was checked
earlier in this chapter. After presenting the results of the GLOW Study model we
consider a second example using the model fit to the Burn Study data shown in
Table 5.12.

For convenience we reproduce the fitted model of Table 4.16 in Table 5.17. The
model is fairly typical of models reported in the subject matter literature in that it
contains two continuous covariates (AGE and HEIGHT) that are scaled linearly in
the logit, four dichotomous covariates (PRIORFRAC, MOMFRAC, ARMASSIST
and RATERISK3), an interaction between a continuous and dichotomous covari-
ate (AGE*PRIORFRAC) and an interaction between two dichotomous covariates
(MOMFRAC*ARMASSIST).

As shown in Section 3.2 we obtain estimates of the odds ratios and their confi-
dence intervals for dichotomous covariates (coded zero or one), and polychotomous
covariates not involved in any interactions, with 0/1 reference cell design variables,
by exponentiating their respective coefficients and the end points of their respec-
tive confidence intervals. The odds ratio and confidence interval for RATERISK3
and HEIGHT, obtained by exponentiating the results in Table 5.17, are given in
Table 5.18. As shown in Section 3.4, we obtain the results for height in Table 5.18
by multiplying the estimated coefficient and the end points of the 95% confidence
interval by 5 and then exponentiating.

In the first column of Table 5.18, for self-reported risk of fracture, we indicate
the covariate and each of its levels. The reference level, less or same level of risk,
is indicated by an odds ratio equal to 1.0. Some readers may question the need to
include all levels, preferring instead to indicate the reference level by exclusion.

Table 5.17 Final Model Fit to the Glow Study Data, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.057 0.0165 3.47 0.001 0.025, 0.090
HEIGHT −0.047 0.0183 −2.55 0.011 −0.083, −0.011
PRIORFRAC 4.612 1.8802 2.45 0.014 0.927, 8.297
MOMFRAC 1.247 0.3930 3.17 0.002 0.476, 2.017
ARMASSIST 0.644 0.2519 2.56 0.011 0.150, 1.138
RATERISK3 0.469 0.2408 1.95 0.051 −0.003, 0.941
AGE*PRIORFRAC −0.055 0.0259 −2.13 0.033 −0.106, −0.004
MOMFRAC*ARMASSIST −1.281 0.6230 −2.06 0.040 −2.502, −0.059
Constant 1.717 3.3218 0.52 0.605 −4.793, 8.228
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Table 5.18 Estimated Odds Ratios and 95% Confidence Intervals for
Self-Reported Risk of Fracture and Height in the GLOW Study, n = 1000

Self-Reported Risk of Fracture
Compared to Others Odds Ratio 95% CI

Less or Same 1.00
Greater 1.60 1.00, 2.56
Height 0.79a 0.66, 0.95

aIncrease of 5 cm.

Either approach is acceptable; however, we feel the explicit method shown in
Table 5.18 can be clearer and may make the discussion easier to follow.

The estimate of the odds ratio for self-reported risk is 1.60. The correct inter-
pretation is that the odds of fracture on follow-up for a woman who perceives her
risk as being greater than others is 1.6 times greater than the odds for a similar
woman (with respect to the other covariates in the model) whose self-reported
risk is less or the same as others. In many, if not most subject matter journals,
this interpretation would be stated more concisely, but incorrectly, as the risk of
fracture among women whose self-reported risk is greater than others is 1.6 times
larger than women who rate their risk as the same or less than others.

The second interpretation relies on the “odds ratio approximates relative
risk” argument. We go into this in more detail in Chapter 6 where we discuss
case–control studies, but it is sufficient at this point to indicate that this is
only true when the outcome is “rare”. As a rule of thumb, this argument is
likely to be true when the outcome occurs less than 10% of the time. In our
example, this means that the probability of fracture should be small. This is not
true, since, overall 25% of the women in this data set experienced a fracture
and the estimated probabilities of fracture from the fitted model range from
0.02 to 0.75. Zhang and Yu (1998) examine the extent to which the odds ratio
overestimates the relative risk when the outcome is not rare. Their results show
that the overestimation can be quite pronounced for odds ratios greater than 2.5
or less than 0.5. How important their results are, in practice, depends on how the
estimated odds ratio is going to be used. In our model, both interpretations of
the estimated odds ratio provide a reasonable statement of the fact that the odds
of fracture is higher among women who rate their risk as greater than others.
On the other hand, if it is vitally important to accurately describe the relative
risk from the fit of a logistic regression model, then one should present the
odds ratio results using the correct interpretation and then attempt to correct the
overestimation. One can obtain a crude correction of the odds ratio from Zhang
and Yu (1998). For example, an odds ratio of 1.6 with an “incidence among
the unexposed” of 33% corrects to a relative risk of about 1.25. Zhang and Yu
(1998) proposed this correction method before relative risk regression models,
binary outcome with a log-link function, could be fit in many packages. We
present a short discussion of fitting the log-link model to binary outcome data in
Section 10.7.
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The confidence interval estimate for the odds ratio for self-reported risk in
Table 5.18 suggests that the increase in the “odds for greater risk than others”
could range from no increase (1.0) to as much as 2.56 times the increase with 95%
confidence.

The other main effect not involved in an interaction is height (cm) at enrollment
in the study. A careful analysis of the scale of this covariate in Section 4.2 showed
that it is linear in the logit in these data. We show in Table 5.18 that the estimated
odds ratio for a positive difference of five centimeters is 0.79 with a 95% confi-
dence interval from 0.66 to 0.95. The interpretation is that for every 5 cm increase
in height there is a 0.79-fold decrease in the odds of fracture and the decrease
could be as much as a 0.66-fold or as little as a 0.95-fold decrease. While this
interpretation is correct, subject matter scientists usually find the percent change
from one interpretation easier to understand when the odds ratio is less than one.
Thus the alternative interpretation is: for every increase of 5 cm in height there is
a 21% decrease in the odds of fracture and this decrease could be as much as 34%
or as little as 5% with 95% confidence.

Next we estimate the odds ratios for a mother having had a fracture (MOM-
FRAC) and reports that her arms are needed to stand from a chair (ARMASSIST).
Since there is a significant interaction we must estimate the odds ratio for one
covariate at each of the two levels of the other covariate. We presented and illus-
trated the four step procedure to estimate an odds ratio whose purpose is to yield
exactly the correct function of estimated coefficients and covariate values required
to estimate an odds ratio in Chapter 3. There we noted that, in the presence of
interactions or non-linearity in continuous covariates, it may be the only way one
could obtain the correct estimator. With this in mind, we use the four step method
to estimate the odds ratio for mother having had a fracture. Denote the logit of the
model in Table 5.17, in terms of the two covariates of interest, as

ĝ(x1, x2) = β̂0 + β̂1x1 + β̂2x2 + β̂3x1 × x2 + θ̂
′
z,

where x1 denotes MOMFRAC, x2 denotes ARMASSIST and θ̂
′
z denotes the con-

tribution of the other covariates.

Step 1. Specify the values of the covariates to be compared: women whose
mother had a history of fracture and who do not need arms to rise from a
chair (x1 = 1, x2 = 0), versus women whose mother did not have a history
of fracture and who do not need arms to rise from a chair (x1 = 0, x2 = 0).

Step 2. Substitute these values into the equation for the logit:

ĝ(x1 = 1, x2 = 0) = β̂0 + β̂1 × 1 + β̂2 × 0 + β̂3 × 1 × 0 + θ̂
′
z

= β̂0 + β̂1 + θ̂
′
z

and

ĝ(x1 = 0, x2 = 0) = β̂0 + β̂1 × 0 + β̂2 × 0 + β̂3 × 0 × 0 + θ̂
′
z

= β̂0 + θ̂
′
z.
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Step 3. Take the difference between the two logits and algebraically simplify.

ĝ(x1 = 1, x2 = 1) − ĝ(x1 = 0, x2 = 1) = β̂0 + β̂1 + θ̂
′
z − β̂0 − θ̂

′
z

= β̂1.

Step 4. Exponentiate the value of the simplified expression in Step 3, yielding

ÔR(MOMFRAC = 1, MOMFRAC = 0| ARMASSIST = 0) = eβ̂1 .

In this case the estimator is simply the exponentiation of the main effect coef-
ficient for MOMFRAC in Table 5.17. Hence, we obtain the confidence interval
estimate by exponentiating the ends points of the confidence interval estimate of
the coefficient. These results are shown in the second row of Table 5.19.

Now we repeat the four step procedure for women who do need to use arms to
rise from a chair [i.e., Step 1 with (x1 = 1, x2 = 1) and (x1 = 0, x2 = 1)].

Step 2. Substitute these values into the equation for the logit:

ĝ(x1 = 1, x2 = 1) = β̂0 + β̂1 × 1 + β̂2 × 1 + β̂3 × 1 × 1 + θ̂
′
z

and

ĝ(x1 = 0, x2 = 1) = β̂0 + β̂1 × 0 + β̂2 × 1 + β̂3 × 0 × 1 + θ̂
′
z

= β̂0 + β̂2 + θ̂
′
z.

Step 3. Take the difference between the two logits and algebraically simplify:

ĝ(x1 = 1, x2 = 1) − ĝ(x1 = 0, x2 = 1) = β̂0 + β̂1 + β̂2 + β̂3 + θ̂
′
z

− (β̂0 + β̂2 + +θ̂
′
z)

= β̂1 + β̂3.

Table 5.19 Estimated Odds Ratios and 95% Confidence Intervals for History of
Mother Fracture and Needs Arms to Rise from a Chair in the GLOW Study,
n = 1000

Variable Subgroup Odds Ratio 95% CI

History of mother having
had a fracture

Does not need arms to
rise

3.50 1.61, 7.51

Does need arms to rise 0.97 0.38, 2.49
Need arms to rise from a

chair
Mother does not have a

history of fracture
1.90 1.16, 3.12

Mother does have a
history of fracture

0.53 0.17, 1.64
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Step 4. Exponentiate the value of the simplified expression in Step 3, yielding

ÔR(MOMFRAC = 1, MOMFRAC = 0| ARMASSIST = 1) = eβ̂1+β̂3 .

Now the expression involves two estimated coefficients. Using the estimates in
Table 5.17 the estimate of the odds ratio is

ÔR(MOMFRAC = 1, MOMFRAC = 0| ARMASSIST = 1) = e1.247−1.281

= 0.97.

The estimator of the standard error of the sum of the two coefficients is

ŜE(β̂1 + β̂3) = [V̂ar(β̂1) + V̂ar(β̂3) + 2Ĉov(β̂1, β̂3)]
0.5.

Values of the estimated variances and the covariance term may be easily obtained
from all packages and are: V̂ar(β̂1) = 0.1544, V̂ar(β̂3) = 0.3881, Ĉov(β̂1, β̂3) =
−0.1549 and thus, the estimated standard error is ŜE(β̂1 + β̂3) = 0.4824. The end-
points of the 95% confidence interval for the estimator of the odds ratio are

exp(−0.034 ± 1.96 × 0.4824) = (0.38, 2.49)

and are given in Table 5.19.
The calculations for the estimates and for the odds ratios for need arms for

the two levels of mother fracture history are identical to those shown in detail
for mother fracture history, just substitute β̂2 for β̂1 in the above expressions. As
such, we do not present the details and present the results in the last two rows of
Table 5.19.

The results in Table 5.19 show that both mother’s history and needing arms to
rise from a chair increase the odds of fracture significantly in the absence of the
other factor, with the odds ratio for mother’s history being slightly less than twice
that for needing arms to rise (i.e., 3.5 vs. 1.9). In the presence of the other factor
the odds ratios for mother’s history and needing arms are no longer significant.

The remaining two variables to estimate odds ratios for are age (AGE) and
history of a fracture (PRIORFRAC). We used a model containing just these two
covariates in Section 3.5 as an example of estimating odds ratios in the presence
of interaction. We refer the reader to that section for the relevant expressions that
result from applying the four step procedure. The difference between what we are
doing here and what we did in Section 3.5 is that here we use estimates based on
the model in Table 5.17. A graph illustrating the odds ratio of prior fracture as a
function of age was given in Figure 3.5. In Figure 5.18 we present a comparable
result basing all calculations on the multivariable model in Table 5.17. Tabulated
results similar to those in Table 3.13 are also easily calculated using the expressions
in Section 3.5, but are not shown here.

The results in Figure 5.18 show that history of a prior fracture is increasingly
important to the odds of a current fracture the younger the woman is. The effect
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Figure 5.18 Plot of the estimated odds ratio for PRIORFRAC = 1 versus PRIORFRAC = 0 as a
function of age, with 95% confidence bands.

Table 5.20 Estimated Odds Ratios and 95% CI for Ten Year Positive
Difference in Age for Two Subgroups of Women: Those Without and
Those With a History of a Prior Fracture in the GLOW Study, n = 1000

Variable Subgroup Odds Ratio 95% CI

Age No history of prior fracture 3.47 1.13, 1.57
With history of prior fracture 1.01 0.82, 1.23

of history of prior fracture becomes not significant after about age 75, as this is
where the ÔR = 1 line becomes contained in the confidence interval.

The estimated odds ratios for a 10 year increase in age among women without
and with a history of fracture are given in Table 5.20. Among women without a
history of fracture a 10 year difference in age increases the odds of fracture by
almost 3.5 times, while there is effectively no increase among those with a history.
The conclusion is that history may be more important than age as a risk factor for
fracture.

Since the main purpose of the GLOW Study is to assess risk factors for fracture
as opposed to estimating the probability of fracture we do not present graphs or
plots of estimated probabilities.

The goal of the Burn Injury Study is primarily, to develop a model to estimate
the probability of death following admission to a burn treatment center. Estimation
of effects of risk factors is of secondary importance. However, since the model
contains two nonlinearly scaled covariates it provides the opportunity to illustrate
how to estimate odds ratios in this situation. For convenience, we show the fitted
model in Table 5.21.
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Table 5.21 New Final Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.087 0.0082 10.52 <0.001 0.071, 0.103
TBSAFP1 0.936 0.0874 10.71 <0.001 0.765, 1.108
RACE −0.609 0.3096 −1.97 0.049 −1.216, −0.002
INH_INJ 1.433 0.3422 4.19 <0.001 0.763, 2.104
Constant −7.957 0.5967 −13.34 <0.001 −9.127, −6.788

Table 5.22 Estimated Odds Ratios and 95% Confidence Intervals
for Nonwhite Race and Inhalation Injury Involved in the Burn

Variable Odds Ratio 95% CI

Race 0.544 0.30, 1.00
Inhalation Injury 4.119 2.14, 8.20

Estimating the odds ratios for the dichotomous covariates race (RACE;
0 = White, 1 = Nonwhite) and inhalation injury (INH_INJ; 0 = No, 1 = Yes)
should be routine for most readers by this point, so we only present the results in
Table 5.22.

The results in Table 5.22 are in the abbreviated form where the reference and
exposed categories have either been stated earlier, are assumed known, or are clear
from the definition of the variable. We see that there is an estimated 46% reduction
in the odds of death among whites compared to nonwhites, while involvement
of an inhalation injury results in an estimated 4.1-fold increase in the odds of
death. Since the Wald test p-value for RACE in Table 5.21 is 0.049 it is not
surprising that, to two decimal places, the null value of one is contained in the
confidence interval. The lower endpoint suggests that the decrease could be as
much as 70% with 95% confidence. The increase in the odds of death for inhalation
injury involvement could be as little as 2.1-fold or as much as 8.2-fold with 95%
confidence.

Age and total burn surface area are continuous and each is modeled with a one
term fractional polynomial transformation in the logit. For both of these covariates
subject matter scientists are likely to be more interested in an overall description
of the effect as opposed to accurate estimates of the effect of an increase in the
covariate from a specific covariate value. Hence we choose to provide a graph with
95 percent confidence bands for positive differences of 10 years of age and 10%
in the total burn area. The algebra required to obtain the appropriate expressions
is identical for the two covariates, so we provide the details only for age. Each is
obtained by applying the four step method.

Denote the equation for the four covariate model in Table 5.21 as

ĝ(x, β̂) = β̂0 + β̂1AGEFP1 + β̂2TBSAFP1 + β̂3RACE + β̂4INH _INJ .
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The details of the four step method are:

Step 1: The two covariate values are AGE = a and AGE = a + 10, holding the
values of the other three covariates constant.

Step 2: Substitute the values into the equation for the logit:

ĝ(a, β̂) = β̂0 + β̂1 ×
( a

10

)2
+ β̂2TBSAFP1 + β̂3RACE + β̂4INH _INJ

and

ĝ(a + 10, β̂) = β̂0 + β̂1 ×
(

a + 10

10

)2

+ β̂2TBSAFP1

+ β̂3RACE + β̂4INH _INJ .

Step 3: Take the difference in the two logits and simplify:

ĝ(a + 10, β̂) − ĝ(a, β̂)

=
{

β̂0 + β̂1 ×
(

a + 10

10

)2

+ β̂2TBSAFP1 + β̂3RACE + β̂4INH _INJ

}

−
{
β̂0 + β̂1 ×

( a

10

)2
+ β̂2TBSAFP1 + β̂3RACE + β̂4INH _INJ

}

= β̂1 ×
[(

a + 10

10

)2

−
( a

10

)2
]

= β̂1 × (0.2a + 1).

Step 4: Exponentiate the simplified difference from Step 3:

ÔR(a + 10, a) = exp[β̂1 × (0.2a + 1)].

Since we wish to graph the estimated odds ratio we would compute this expres-
sion for each value of age in the Burn Study. The endpoints of the 95% confidence
interval for a change of 10 years of age at AGE = a are

ÔR(a + 10, a) = exp{β̂1 × (0.2a + 1) ± 1.96 × ŜE(β̂1 × (0.2a + 1))},
where

ŜE(β̂1 × (0.2a + 1)) = ŜE(β̂1) × (0.2a + 1).

The plot of the estimated odds ratio for a difference of 10 years of age and the
95% confidence bands is shown in Figure 5.19.

The plot in Figure 5.19 shows that the odds increase significantly, since the
value 1.0 is always below the lower confidence bound, for a 10-year increase in
age at all ages. The increase in the odds is less than twofold for subjects younger
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Figure 5.19 Plot of the estimated odds ratio for a 10 year difference in age at the plotted value of
age with 95% confidence bands.

than 35 years and increases rapidly after age 35, reaching a maximum of about a
five-fold increase for subjects in their 80s.

The calculations for a 10% increase in the size of the burn area are identical to
those shown for age, but using TBSAFP1 = √

TBSA. If we denote the reference
burn area size as b then the equation to compute the estimated odds ratio is

ÔR(b + 10, b) = exp[β̂2 × (
√

TBSA + 10 −
√

TBSA)]

and the equation for the standard error to compute the confidence bands is

ŜE(β̂2 × (
√

TBSA + 10 −
√

TBSA)) = ŜE(β̂2) × (
√

TBSA + 10 −
√

TBSA).

The plot of the estimated odds ratio and confidence bands is shown in
Figure 5.20. At first glance one might think that something is incorrect as the odds
ratio approaches one as burn size increases. However, what we are estimating is
the odds ratio for a 10% larger burn. What the plot shows is that increasing the
burn size increases the odds of death, but the multiplicative increase in the odds
decreases with size of the burn. The plot essentially shows that once a burn reaches
a certain size, increasing a bit more does not greatly increase the odds of dying.

Since an important objective of the modeling of the Burn Study data is to obtain
a model to estimate the probability of death, it is natural to display some plots of
the model. Here we present two figures with each containing four plots. The four
lines in each plot correspond to the four possible levels of race and inhalation
injury involvement. In Figure 5.21 we plot over age setting total burn surface area
at its median value of 6%. The equations defining the logit functions and estimated
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Figure 5.20 Plot of the estimated odds ratio for a 10% increase in the size of the burn area at the
plotted value of burn area with 95% confidence bands.
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Figure 5.21 Plot of the estimated probability of dying versus age at burn surface area of 6%.

probabilities based on the values of the estimated coefficients in Table 5.21 are

ĝ(AGE )ij = −7.957 + 0.87 × AGEFP1 + 0.936 ×
√

6 − 0.069 × i + 1.433 × j

and

π̂(AGE )ij = exp[ĝ(AGE )ij ]

1 + exp[ĝ(AGE )ij ]

where AGEFP1 = (AGE/10)2, i = 0, 1, and j = 0, 1.
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Figure 5.22 Plot of the estimated probability of dying versus total burn surface area at age 32 years.

In Figure 5.22 we plot over total burn surface area setting age at its median value
of 32 years. The equations for the logit and estimated probabilities are similar to
those shown and plotted in Figure 5.21. Since each line plotted in both Figures 5.20
and 5.21 is a known function of the four covariates we could easily calculate the
95% confidence bands, but chose not to do so as inclusion of these would hopelessly
clutter the figures.

The lower two lines in Figure 5.21 correspond to whites and nonwhites with
no inhalation injury. The upper two are for the same racial groups, but with an
inhalation injury. We see that, at the median burn size (6%), it is not until age 65
that any of the estimated probabilities exceed 0.5, but the four lines rise rapidly
after age 50. Similar lines could be calculated or even tabulated for other values
of total burn surface area. The effect of a larger area would be to move all four
curves higher up in the figure, but retaining the same basic shape plotted over age.

As in Figure 5.21, the lower two lines in Figure 5.22 correspond to whites and
nonwhites with no inhalation injury. The upper two are for the same racial groups,
but with an inhalation injury. We see the rather dramatic effect of increasing burn
size as all four lines rise rapidly after about 10%. Again, similar lines could be
calculated or even tabulated for other values of age with the effect that increasing
age would move all four curves higher up in the figure, but retaining the same
basic shape plotted over total burn surface area.

The plots used in Figures 5.20 and 5.21 to describe the estimated probability
of death following a burn injury should be viewed as just two examples. In any
setting, the choice of plots should be dictated by what would be most informative
to the subject matter scientists.

Before concluding this Chapter we end with a few comments on model building.
Comparatively speaking the models we developed for the GLOW and Burn Study
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data may be a bit more complicated than some logistic regression models we have
encountered in the health sciences literature. The typical model in the literature
has a few continuous covariates modeled linearly, a few design variables, and in
rare instances, an interaction. There seems to be some reluctance on the part of
subject matter scientists to consider more complicated models. We think that the
reason is a lack of confidence in being able to determine when more complicated
non-linear terms are needed, and if they are included, insecurity on how to interpret
the results. What we hope to have accomplished in Chapters 4 and 5 is to provide
a set of methods that can serve as a basic paradigm for model building, model
evaluation, and model presentation that will allow the reader to feel confident that
he/she has developed the best possible model within the constraints of the data, and
to feel secure in his/her ability to present and interpret the results of the model,
regardless of how complicated it may appear to be. In particular, we hope that
through the discussion in this section the reader has developed a firm grasp of the
fundamental principal that the estimate of an odds ratio comes from exponentiating
a logit difference.

EXERCISES

1. Evaluate the goodness of fit for the Burn Study model in Table 4.27 using the
standardized sum-of-squares statistic.

2. Using the diagnostic statistics verify that the significance of the interaction
term in the fitted model for the Burn Study in Table 4.27 is due to only three
covariate patterns.

3. Perform a full evaluation of model assessment for the smaller Burn Study
Model in Table 5.12. This should include all goodness of fit tests, diagnostic
statistics and an ROC analysis.

4. As is the case in linear regression, effective use of diagnostic statistics depends
on our ability to interpret and understand the values of the statistics. The
purpose of this problem is to provide a few structured examples to examine
the effect on the fitted logistic regression model and diagnostic statistics when
data are moved away from the model (i.e., poorer fit), and also toward the
model (i.e., better fit). Table 5.23 lists values of the independent variable x,
and seven different columns of the outcome variable y, labeled “Model”. All
models fit in this problem use the given values of x for the covariate. Different
models are fit using the seven different columns for the outcome variable. The
data for the column labeled “Model 0” are constructed to represent a “typical”
realization when the logistic regression model is correct. In the columns labeled
“ Model 1” to “Model 3” we have changed some of the y values away from
the original model. Namely some cases with small values of x have had y

changed from 0 to 1 and others with large values of x have had the y values
changed from 1 to 0. For models labeled “Model −1” and “Model −2” we have
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Table 5.23 Hypothetical Data to Illustrate the Use of Diagnostic
Statistics to Detect Poorly Fit and Influential Subjects and Complete
Separation

Model

x −i −2 −1 0 1 2 3

−5.65 0 0 0 0 0 0 0
−4.75 0 0 0 0 0 1 1
−3.89 0 0 0 0 0 0 0
−3.12 0 0 0 0 0 0 0
−2.93 0 0 0 0 0 0 0
−2.87 0 0 0 0 0 0 0
−1.85 0 0 0 0 1 1 1
−1.25 0 1 1 1 1 1 1
−0.97 0 0 0 0 0 0 0
−0.19 1 1 1 1 1 1 1
−0.15 1 1 1 1 1 1 1

0.69 1 1 1 1 1 1 1
1.07 1 1 1 1 1 1 1
1.18 1 1 1 1 1 1 1
1.45 1 1 0 0 0 0 0
2.33 1 1 1 0 0 0 0
3.57 1 1 1 1 1 1 1
4.41 1 1 1 1 1 1 1
4.57 1 1 1 1 1 1 0
5.85 1 1 1 1 1 1 1

moved the y values in the direction of the model. That is, we have changed y

from 1 to 0 for some small values of x and have changed y from 0 to 1 for
some large values of x. Fit the six logistic regression models for the data in
columns “Model −2” to “Model 3”. Compute for each fitted model the values
of the leverage, h, the change in chi-square, 
X2, and the influence diagnostic,

b̂. Plot each of these versus the fitted values, predicted logistic probabilities.
Compare the plots over the various models. Do the statistics pick out poorly
fit and influential cases? How do the estimated coefficients change relative to
Model 0? Fit “Model −i”. What happens and why? Refer to the discussion in
Section 4.5 on complete separation.

5. When we built the model for the Burn Study data in Chapter 4 we used the
one-term fractional transformation for age, AGEFP1 = (AGE/10)2. One could
argue, and we often do, that the lower order term, AGE, should also be included
in the model. Perform a full model assessment of the model that adds AGE
to the model in Table 4.27. That is, keep all the other terms and just add age.
Which model, with or without age, would you prefer to present to a panel of
burn surgeons.
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6. Based on the analysis in exercise 5 is there evidence that the interaction is
due to the same three covariate patterns? Would you recommend a model that
excludes the interaction? If so, evaluate its fit.

7. Present and interpret the results of the final model for the Burn Study that
includes AGE and AGEFP1.



C H A P T E R 6

Application of Logistic Regression
with Different Sampling Models

6.1 INTRODUCTION

Up to this point we have assumed that our data have come from a simple random
sample. Considerable progress has been made in recent years to extend the use of
the logistic regression model to other types of sampling. In this chapter we begin
with a review of the classic cohort study. Next we consider the case-control study
and the stratified case-control study. We conclude with a section that deals with
fitting models when data come from a complex sample survey. The goals are to
briefly describe some of the mathematics involved in fitting the model, to indicate
how the model can be fit using available software and to discuss the interpretation
of the estimated parameters. References to the literature for more detailed treatment
of these topics are provided.

Throughout this chapter we assume that the outcome variable is dichotomous,
coded as 0 or 1, and that its conditional probability given a vector of covariates is
the logistic regression model. In addition, we assume that the number of covari-
ate patterns is equal to the sample size. Modifications to allow for replication at
covariate patterns are a notational detail, not a conceptual problem.

6.2 COHORT STUDIES

Several variations of the cohort (or prospective) study are in common use. In the
simplest design, a simple random sample of subjects is chosen and the values of
the covariates are determined. These subjects are then followed for a fixed period
of time and the outcome variable is measured. This type of sample is identical to
what is often referred to as the regression sampling model, in which we assume that

Applied Logistic Regression, Third Edition.
David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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the values of the covariates are fixed and measured without error and the outcome
is measured conditionally on the observed values of the covariates. Under these
assumptions and independence of the observations, the likelihood function for a
sample of size n is simply

l1(β) =
n∏

i=1

Pr(Yi = yi |xi ). (6.1)

When the observed values of y and the logistic regression model are substituted
into the expression for the conditional probability, l1(β) simplifies to the likelihood
function in equation (1.3).

A modification of this situation is a randomized trial where subjects are first cho-
sen via a simple random sample and then allocated independently and with known
probabilities into “treatment” groups. Subjects are followed over time and the out-
come variable is measured for each subject. If the responses are such that a normal
errors model is appropriate we would be naturally led to consider a normal theory
analysis of covariance model which would contain appropriate design variables for
treatment, relevant covariates, and any interactions between treatment and covari-
ates deemed necessary. The extension of the likelihood function in equation (6.1) to
incorporate treatment and covariate information when the outcome is dichotomous
is obtained by including these variables in the logistic regression model.

Another modification is for the design to incorporate a stratification variable such
as location or clinic. In this situation the likelihood function is the product of the
stratum-specific likelihood functions, each of which is similar in form to l1(β). We
would perhaps add terms to the model to account for stratum-specific responses.
These might include a design variable for stratum and interactions between this
design variable and other covariates.

In each of these designs we use the likelihood function l1(β) as a basis for
determining the maximum likelihood estimates of the unknown parameters in
the vector β. Tests and confidence intervals for the parameters follow from well-
developed theory for maximum likelihood estimation [see Cox and Hinkley (1974)].
The estimated parameters may be used in the logistic regression model to estimate
the conditional probability of response for each subject. The fact that the estimated
logistic probability provides a model-based estimate of the probability of response
permits the development of methods for assessment of goodness of fit such as those
discussed in Chapter 5. Chambless and Boyle (1985) extend l1(β) to the setting
where the data come from a stratified simple random sample.

In some prospective studies the outcome variable of interest is the time to the
occurrence of some event. In these studies the time to event nowadays is most
often modeled using the proportional hazards model or another regression model
[see Hosmer et al. (2008)]. In these situations a method of analysis that is sometimes
used is to ignore the actual failure time and model the occurrence or nonoccurrence
of the event via logistic regression. This method of analysis was popular before
easily used software became available in the major software packages to model
time-to-event data. However, now such software is just as available and just as
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easy to use, and as such we see no need to use logistic regression analysis to
model time to event data.

6.3 CASE-CONTROL STUDIES

One of the major reasons the logistic regression model has seen such wide use,
especially in epidemiologic research, is the ease of obtaining adjusted odds ratios
from the estimated slope coefficients when sampling is performed conditional on
the outcome variables, as in a case-control study. Breslow (1996) has written an
excellent review paper. Besides tracing the development of the case-control study he
describes the statistical issues and controversies surrounding some famous studies
such as the first Surgeon General’s report on smoking and health [Surgeon General
(1964)]. He presents some of the newer innovative applications involving nesting
and matching as well as some of the current limitations of this study design. We
encourage any reader not familiar with this powerful and frequently employed
study design to read this paper. We only consider the use of logistic regression in
the simplest case-control designs in this section. More advanced applications may
be found in Breslow (1996) and cited references.

As noted by Breslow (1996), Cornfield (1951) is generally given credit for first
observing that the odds ratio is invariant under study design (cohort or case-control).
However, it was not until the work of Farewell (1979) and Prentice and Pyke
(1979) that the mathematical details justifying the common practice of analyzing
case-control data as if they were cohort data were worked out.

In contrast to cohort studies, the binary outcome variable in a case-control study
is fixed by stratification. The dependent variables in this setting are one or more
primary covariates, exposure variables in x. In this type of study design, samples
of fixed size are chosen from the two strata defined by the outcome variable. The
values of the primary exposure variables and the relevant covariates are then mea-
sured for each subject selected. The covariates are assumed to include all relevant
exposure, confounding, and interaction terms. The likelihood function is the prod-
uct of the stratum-specific likelihood functions and depends on the probability that
the subject was selected for the sample, and the probability distribution of the
covariates.

It is not difficult algebraically to manipulate the case-control likelihood func-
tion to obtain a logistic regression model in which the dependent variable is the
outcome variable of interest to the investigator. The key steps in this development
are two applications of Bayes’ theorem. As the likelihood function is based on
subjects selected, we need to define a variable that records the selection status for
each subject in the population. Let the variable s denote the selection (s = 1) or
nonselection (s = 0) of a subject. The full likelihood for a sample of size n1 cases
(y = 1) and n0 controls (y = 0) is

n1∏
i=1

Pr(xi |yi = 1, si = 1)

n0∏
i=1

Pr(xi |yi = 0, si = 1). (6.2)
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For an individual term in the likelihood function shown in equation (6.2) the
first application of Bayes’ theorem yields

Pr(x|y, s = 1) = Pr(y|x, s = 1) Pr(x|s = 1)

Pr(y|s = 1)
. (6.3)

The second application of Bayes’ theorem is to the first term in the numerator of
equation (6.3). This yields, when y = 1,

Pr(y = 1|x, s = 1)

= Pr(y = 1|x) Pr(s = 1|x, y = 1)

Pr(y = 0|x) Pr(s = 1|x, y = 0) + Pr(y = 1|x) Pr(s = 1|x, y = 1)
. (6.4)

Assume that the selection of cases and controls is independent of the covariates
with respective probabilities τ1 and τ0; then

τ1 = Pr(s = 1|y = 1, x) = Pr(s = 1|y = 1),

and
τ0 = Pr(s = 1|y = 0, x) = Pr(s = 1|y = 0).

Substitution of τ1, τ0 and the logistic regression model, π(x), for Pr(y = 1|x), into
equation (6.4) yields

Pr(y = 1|x, s = 1) = τ1π(x)

τ0[1 − π(x)] + τ1π(x)
. (6.5)

If we divide the numerator and denominator of the expression on the right-hand
side of equation (6.5) by τ0[1 − π(x)], the result is a logistic regression model
with intercept term β∗

0 = ln(τ1/τ0) + β0. To simplify the notation, let π∗(x) denote
the right-hand side of equation (6.5). As we assume that sampling is carried out
independent of covariate values, Pr(x|s = 1) = Pr(x), where Pr(x) denotes the
probability distribution of the covariates. The general term in the likelihood shown
in equation (6.3) then becomes, for y = 1,

Pr(x|y = 1, s = 1) = π∗(x) Pr(x)

Pr(y = 1|s = 1)
. (6.6)

A similar term for y = 0 is obtained by replacing π∗(x) by [1 − π∗(x)] in
the numerator and Pr(y = 1|s = 1) by Pr(y = 0|s = 1) in the denominator of
equation (6.6). If we let

l∗(β) =
n∏

i=1

π∗(xi )
yi [1 − π∗(xi )]

1−yi ,

the likelihood function shown in equation (6.2) becomes

l∗(β)

n∏
i=1

[
Pr

(
xi

)
Pr(yi |si = 1)

]
. (6.7)
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The first term in equation (6.7), l∗(β), is the likelihood obtained when we pretend
the case-control data were collected in a cohort study, with the outcome of interest
modeled as the dependent variable. If we assume that the probability distribu-
tion of x, Pr(x), contains no information about the coefficients in the logistic
regression model, then maximization of the full likelihood with respect to the
parameters in the logistic model, π∗(x), is only subject to the restriction that
Pr(yi = 1|si = 1) = n1/n and Pr(yi = 0|si = 1) = n0/n. The likelihood equation
obtained by differentiating with respect to the parameter β∗

0 assures that this con-
dition is satisfied. Thus, maximization of the full likelihood with respect to the
parameters in π∗(x) need only consider that portion of the likelihood which looks
like a cohort study. The implication of this is that analysis of data from case-control
studies via logistic regression may proceed in the same way and using the same
computer programs as cohort studies. Nevertheless, inferences about the intercept
parameter β0 are not possible without knowledge of the sampling fractions within
cases and controls, τ0 and τ1.

The assumption that the marginal distribution of x contains no information about
the parameters in the logistic regression model requires additional discussion, as
it is not true in one historically important situation, the normal theory discrimi-
nant function model. This model was discussed briefly in Chapters 1 and 2. When
the assumptions for the normal discriminant function model hold, the maximum
likelihood estimators of the coefficients for the logistic regression model obtained
from conditional likelihoods such as those in equations (6.2) and (6.7) are less effi-
cient than the discriminant function estimator shown in equation (2.11) [see Efron
(1975)]. However, the assumptions for the normal theory discriminant function
model are rarely, if ever, attained in practice. Application of the normal discrim-
inant function when its assumptions do not hold may result in substantial bias,
especially when some of the covariates are dichotomous variables. As a general
rule, estimation should be based on equations (6.2) and (6.7), unless there is con-
siderable evidence in favor of the normal theory discriminant function model.

Prentice and Pyke (1979) have shown that the maximum likelihood estimators
obtained by pretending that the case-control data resulted from a cohort sample
have the usual properties associated with maximum likelihood estimators. Specifi-
cally, they are asymptotically normally distributed, with covariance matrix obtained
from the inverse of the information matrix. Thus, percentiles from the N(0, 1) dis-
tribution may be used in conjunction with estimated standard errors produced from
standard logistic regression software to form Wald statistics and confidence interval
estimates. The theory of likelihood ratio tests may be employed to compare models
via the difference in the deviance of the two models, assuming of course that the
models are nested. Scott and Wild (1991) have shown that inferences based on this
approach are sensitive to incorrect specifications of the logit function. They show
that failure to include necessary higher order terms in the logit produces a model
with estimated standard errors that are too small. These results are special cases of
more general results obtained by White (1982).

Modification of the likelihood function to incorporate additional levels of strat-
ification beyond case-control status follows in the same manner as described for
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cohort data (i.e., inclusion of relevant design variables and interaction terms). Thus,
model building and inferences from fitted models for case-control data may pro-
ceed using the methods developed for cohort data, as described in Chapters 4 and
5. However, this approach is not valid for matched or highly stratified data. Appro-
priate methods for the analysis of the latter are presented in detail in Chapter 7.

Fears and Brown (1986) proposed a method for the analysis of stratified
case-control data that arise from a two-stage sample. Breslow and Cain (1988) and
Scott and Wild (1991) provide further discussion and refinement of the method.
This approach requires that we know the sampling rates for the first stage and the
total number of subjects in each stratum. This information is used to define the rel-
ative sampling rates for cases and controls within each stratum. The ratio of these
is included in the model in the form of an additional known constant added to the
stratum-specific logit. Specifically, suppose we let nj be the total number of subjects
with y = j observed out of a possible Nj and let the kth stratum-specific quantities
be njk and Njk , j = 0, 1, and k = 1, 2, . . . , K . The relative stratum-specific
sampling rates are w1k = (n1k/N1k)/(n1/N1) and w0k = (n0k/N0k)/(n0/N0). The
Fears and Brown model uses stratum-specific logits of

gk(x) = ln

(
w1k

w0k

)
+ β0 + β′x,

k = 1, 2, . . . , K . This model may be handled with standard logistic regression soft-
ware by defining a new variable, typically referred to as an offset, which takes on
the value ln(w1k/w0k) and forcing it into the model with a coefficient equal to 1.0.

Breslow and Cain (1988) show that the estimator proposed by Brown and Fears
is asymptotically normally distributed and derive an estimator of the covariance
matrix. Breslow and Zhao (1988) and Scott and Wild (1991) point out that the
estimated standard errors produced when standard logistic regression software is
used to implement the Brown and Fears method overestimate the true standard
errors. They provide expressions for a covariance matrix that yields consistent
estimates of the variances and covariances of the estimated regression coefficients.
The matrix is complicated to compute, as it requires a special purpose program
or a high degree of skill in using a package allowing matrix calculations such as
SAS, STATA, or R [R Development Core Team (2010)]. For these reasons we do
not present the variance estimator in detail. We note that Breslow and Zhao use a
slightly different offset, ln[(n1k/N1k)/(n0k/N0k)], which yields the same estimates
of the regression coefficients but a different intercept.

Before leaving our discussion of logistic regression in the case-control setting,
we briefly consider the application of the chi-square goodness of fit tests for the
logistic regression model presented in Section 5.2. The essential feature of these
tests is that for a particular covariate pattern, the number of subjects with the
response of interest among m sampled is distributed binomially with parameters
m and response probability given by the hypothesized logistic regression model.
Recall that for cohort data, the likelihood function was parameterized directly in
terms of the logistic probability. For case-control data, the function π∗(x) is the
probability P(y = 1|x, s = 1). For a particular covariate pattern, conditioning on
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the number of subjects m observed to have a given covariate pattern is equivalent
to conditioning on the event, (x, s = 1). Thus, for case-control studies in which
the logistic regression model assumption is correct, the conditional distribution of
the number of subjects responding among the m observed to have a particular
covariate pattern is binomial with parameters m and π∗(x). Hence, the results
developed in Chapter 5 based on m-asymptotics also apply. Nagelkerke et al. (2005)
propose a test based on the effect on the estimated coefficients of weighting the
observed outcomes. This test is focused specifically on model misspecification in
the covariates and thus has, in simulations, higher power than the decile of risk test
discussed in Chapter 5 when this is the source of lack of fit. The test is modestly
complicated to calculate and as yet has not found its way into software packages.
As such, we do not consider it further.

It is often the case that data from case-control studies do not arise from simple
random samples within each stratum. For example, the design may call for the
inclusion of all subjects with y = 1 and a sample of subjects with y = 0. For these
designs there is an obvious dependency among the observations. If this dependency
is not too great, or if we appeal to a super-population model [see Prentice (1986)],
then employing a theory that ignores it should not bias the results significantly.

6.4 FITTING LOGISTIC REGRESSION MODELS TO DATA
FROM COMPLEX SAMPLE SURVEYS

Some of the more recent improvements in logistic regression statistical software
include routines to perform analyses with data obtained from complex sample
surveys. These routines may be found in STATA, SAS, SUDAAN [Shah et al.
(2002)], and other less well-known special-purpose packages. Our goal in this
section is to provide a brief introduction to these methods and to illustrate them
with an example data set. The reader who needs more detail is encouraged to see
Korn and Graubard (1990), Roberts et al. (1987), Skinner et al. (1989), and Thomas
and Rao (1987).

The essential idea, as discussed in Roberts et al. (1987), is to set up a function
that approximates the likelihood function in the finite sampled population with a
likelihood function formed from the observed sample and known sampling weights.
Suppose we assume that the population may be broken into k = 1, 2, . . . , K strata,
j = 1, 2, . . . ,Mk primary sampling units in each stratum and i = 1, 2, . . . , Nkj

elements in the kjth primary sampling unit. Suppose our observed data consist of nkj
elements from mk primary sampling units from stratum k. Denote the total number
of observations as n = ∑K

k=1

∑mk

j=1 nkj . Denote the known sampling weight for
the kjith observation as wkji , the vector of covariates as xkji and the dichotomous
outcome as ykji . The approximate log-likelihood function is

K∑
k=1

mk∑
j=1

nkj∑
i=1

[wkji × ykji ] × ln[π(xkji )] + [wkji × (1 − ykji )] × ln[1 − π(xkji )].

(6.8)
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Differentiating this equation with respect to the unknown regression coefficients
yields the vector of p + 1 score equations

X ′ W(y − π) = 0, (6.9)

where X is the n × (p + 1) matrix of covariate values, W is an n × n diagonal
matrix containing the weights, y is the n × 1 vector of observed outcomes, and π =
[π(x111), . . . , π(xKmKnKj

)]′ is the n × 1 vector of logistic probabilities. In theory,
any logistic regression package that allows weights could be used to obtain the
solutions to equation (6.9). The problem comes in obtaining the correct estimator of
the covariance matrix of the estimator of the coefficients. Naive use of a standard
logistic regression package with weight matrix W would yield estimates on the
matrix (X ′ DX)−1 where D = WV is an n × n diagonal matrix with general element
wkji × π̂(xkji )[1 − π̂(xkji )]. The correct estimator is

V̂ar(β̂) = (X ′ DX)−1S(X ′ DX)−1, (6.10)

where S is a pooled within-stratum estimator of the covariance matrix of the left-
hand side of equation (6.9). Denote a general element in the vector in equation
(6.9) as z ′

kji = x ′
kji wkji (ykji − π(xkji )), the sum over the nkj sampled units in the

jth primary sampling unit in the kth stratum as zkj = ∑nkj
i=1 zkji and their stratum-

specific mean as zk = 1/mk

∑mk

j=1 zkj . The within-stratum estimator for the kth
stratum is

Sk = mk

mk − 1

mk∑
j=1

(zkj − zk)(zkj − zk)
′.

The pooled estimator is S = ∑K
k=1(1 − fk)Sk . The quantity (1 − fk) is called the

finite population correction factor, where fk = mk/Mk is the ratio of the number
of observed primary sampling units to the total number of primary sampling units
in stratum k. In settings where Mk is unknown it is common practice to assume it
is large enough that fk is quite small and the correction factor is equal to 1.

The likelihood function in equation (6.8) is only an approximation to the true
likelihood. Thus, inferences about model parameters should be based on univariable
and multivariable Wald statistics rather than likelihood ratio tests. Wald tests are
formed by comparing an estimated coefficient to an estimate of its standard error, or
variance, computed from specific elements of equation (6.10) in the same manner
as described in Chapter 2. However, simulations in Korn and Graubard (1990) as
well as Thomas and Rao (1987) show that when data come from a complex sample
survey from a finite population, use of a modified Wald statistic and the F distri-
bution, described below, yield tests with better adherence to the stated alpha level.
STATA and SUDAAN report results from these modified Wald tests. The prob-
lem is that none of the simulations referred to actually examines logistic regression
models fit using continuous and categorical covariates with estimates obtained from
equation (6.9) and variances from equation (6.10). Korn and Graubard appear to
use a linear regression with normal errors model and refer to theoretical results



data from complex sample surveys 235

in Anderson (1984) that depend on rather stringent assumptions of multivariate
normality. Thomas and Rao examine models with a dichotomous or polychoto-
mous outcome and a few categorical covariates. Another problem, in our opinion,
is the fact that software packages, for example STATA, use the t distribution to
assess significance of Wald statistics for individual coefficients. Given the paucity
of appropriate simulations and theory we are not convinced that there is sufficient
evidence to support the use of the modified Wald statistic with the F distribution
with logistic regression models. One possible justification is that the use of the mod-
ified Wald statistic with the F distribution is conservative in that significance levels
using this approach are, in general, larger than those obtained from treating the Wald
statistics as being multivariate normal for sufficiently large samples (as is assumed
in previous chapters). We present results based on both tests in the example.

The relationship between the Wald test and the modified Wald test is as follows.
Let W denote the Wald statistic for testing that all p slope coefficients in a fitted
model are equal to 0, that is

W = β̂′[V̂ar(β̂)p×p]−1β̂, (6.11)

where β̂ denotes the vector of p slope coefficients and V̂ar(β̂)p×p is the p × p sub-
matrix obtained from the full (p + 1) × (p + 1) matrix in equation (6.10). That is,
one leaves out the row and column for the constant term. The p-value is computed
using a chi-square distribution with p degrees of freedom as Pr[χ2(p) ≥ W ].

The adjusted Wald statistic is

F = (s − p + 1)

sp
W , (6.12)

where s =
(∑K

k=1 mk

)
− K is the total number of sampled primary sampling units

minus the number of strata. The p-value is computed using an F distribution with
p and (s − p + 1) degrees of freedom as Pr[F(p, s − p + 1) ≥ F ].

For purposes of illustration we use selected variables (see Table 1.11) from
the 2009–2010 cycle of the National Health and Nutrition Examination Study
[NHANES III Reference Manuals and Reports (2012)]. We describe the data in
Section 1.6.7. It should be noted that the NHANES, like just about any other large
survey, suffers from the fact that complete data are not available for every subject.
This problem is exacerbated in complex sample surveys because every subject
carries along a unique statistical weight based on the number of individuals in the
population he or she represents. Hence, if that subject is missing a measurement
on just one of the variables involved in a multivariable problem, then that subject
will be eliminated from the analysis and the sum of the statistical weights of the
subjects remaining will not equal the size of the population for which inference is
to be made.

Survey statisticians have studied this problem extensively. Solutions to it range
from redistributing the statistical weights of the dropped subjects among the sub-
jects remaining, to imputing every missing value so that the weights will be
preserved. Another, perhaps simplistic, approach is simply to run the analyses
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with the subjects having complete data and assume that the relationships would
not change had all subjects been used. Because it is our intention in this book to
demonstrate the use of logistic regression analysis with complex survey data rather
than to obtain precise population parameter estimates, we will follow this simple
approach. (NHANES actually advocates this approach if the number of missing
observations is small, less than 10%.)

For purposes of illustrating fitting logistic models to sample survey data in
Section 6.4 we chose selected variables, see Table 1.11, from the 2009–2010
cycle of the NHANES III Reference Manuals and Reports (2012) and made some
modifications to the data. This is a stratified multistage probability sample of the
civilian noninstitutionalized population of the United States.

As an example we fit a logistic regression model to data from the 2009–2010
cycle of the National Health and Nutrition Examination Study [NHANES III Ref-
erence Manuals and Reports (2012)] described in Section 1.6.7. The model, shown
in Table 6.1, contains age in decades (AGE10), diastolic blood pressure (DBP),
gender (GENDER), walk or bike to work (WLKBIK), participates in vigorous
recreational activities (VIGRECEXR), moderate work activity (MODWRK), and
participates in moderate recreational activities (MODRECEXR). The 5858 subjects
used in the analysis represent 204,203,191 individuals between 16 and 80 years of
age living in the United States in 2009–2010.

We assessed the overall significance of the model via the multivariable Wald test
and adjusted Wald test for the significance of the seven regression coefficients in the
model. For the model in Table 6.1 the value of the Wald test in equation (6.11) is

W = β̂′[V̂ar(β̂)7×7]−1β̂ = 179.0189,

where β̂ is the vector of the seven estimated slope coefficients and V̂ar(β̂)7×7 is
the 7 × 7 sub-matrix computed using equation (6.10). The significance level of
the test is Pr[χ2(7) ≥ 179.0189] < 0.001. The value of s for the adjusted Wald

Table 6.1 Estimated Coefficients, Standard Errors, z-Scores, Two-Tailed p-Values,
and 95% Confidence Intervals for a Logistic Regression Model for the Modified
NHANES Study with Dependent Variable OBESE, n = 5858

Coeff. Std. Err. t p 95% CI

AGE10a 0.001 0.0258 0.05 0.962 −0.054, 0.056
DBP 0.019 0.0046 4.09 0.001 0.009, 0.029
GENDER 0.467 0.1240 3.76 0.002 0.202, 0.731
WLKBIK 0.489 0.0920 5.32 <0.001 0.293, 0.685
VIGRECEXR 0.801 0.1100 7.29 <0.001 0.567, 1.036
MODWRK −0.027 0.0923 −0.29 0.773 −0.224, 0.170
MODECEXR 0.330 0.1721 1.92 0.074 −0.037, 0.697
Constant −4.610 0.4237 −10.88 <0.001 −5.513, −3.707

aAGE10 = AGE
10 .
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test is 30 − 15 = 15 and the adjusted Wald test from equation (6.12) is

F = (15 − 7 + 1)

15 × 7
× 179.0189 = 15.3444,

and p = Pr[F(7, 9) ≥ 15.3444] < 0.001. Both tests indicate that at least one of
the coefficients may be different from 0.

The results in Table 6.1 indicate, on the basis of the individual p-values for the
Wald statistics, that age, moderate work activity and moderate recreation may not
be significant at the 5% level. As age ranges from 16 to 80 and there is evidence
that obesity is most prevalent in middle age we suspect that the logit may be
nonlinear in age. Hence, for subject matter reasons we do not consider age for
exclusion from the model at this time. As we noted, the function in equation (6.8)
is not a true likelihood function. Thus, we cannot use the partial likelihood ratio
test to compare a smaller model to a larger model. In this case we must test for the
significance of the coefficients of excluded covariates using a multivariable Wald
test based on the estimated coefficients and estimated covariance matrix from the
8 × 8 larger model.

Application of the Wald test to assess the significance of the coefficients for
MODWRK and MODRECEXR from the model in Table 6.1 uses the vector of
estimated coefficients

β̂′ = (−0.027088, 0.329987),

and the 2 × 2 sub-matrix of estimated variances and covariances obtained from the
full matrix (not shown) computed using equation (6.10)

V̂ar(β̂)2×2 =
[

0.00852197 −0.00873523
−0.00873523 0.02962245

]
.

The Wald test statistic is

W = β̂′[V̂ar(β̂)2×2]−1β̂ = 4.5052,

with a p-value obtained as P [χ2(2) ≥ 4.5052] = 0.1051. The adjusted Wald
test is

F = (15 − 2 + 1)

15 × 2
× 4.5052 = 2.1024,

and p = Pr[F(2, 14) ≥ 2.1024] = 0.1591. We note that the p-value for the adjusted
Wald test is slightly larger than that of the Wald test; however, neither is significant.
Thus, both tests indicate that we do not have sufficient evidence to conclude that the
coefficients for MODWRKL and MODRECEXR are significantly different from 0.
We now fit the reduced model.

The results of fitting the model deleting MODEXR and MODREXEXR are
shown in Table 6.2. The first thing we do is to compare the magnitude of the
coefficients in Table 6.2 to those in Table 6.1 to check for confounding due to the
excluded covariates. As can be seen there is virtually no difference in the two sets
of coefficients suggesting that neither covariate removed is a confounder of the
relationship between any of the remaining covariates and obesity (BMI > 35).
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Table 6.2 Estimated Coefficients, Standard Errors, z-Scores, Two-Tailed p-Values,
and 95% Confidence Intervals for a Logistic Regression Model for the Modified
NHANES Study with Dependent Variable OBESE, n = 5859

Coeff. Std. Err. t p 95% CI

AGE10a 0.001 0.0254 0.03 0.980 −0.054, 0.055
DBP 0.019 0.0045 4.09 0.001 0.009, 0.028
GENDER 0.458 0.1221 3.75 0.002 0.198, 0.718
WLKBIK 0.477 0.0898 5.32 <0.001 0.286, 0.669
VIGRECEXR 0.894 0.1040 8.59 <0.001 0.672, 1.115
Constant −4.474 0.4471 −10.01 <0.001 −5.427, −3.521

aAGE10 = AGE
10 .

Following the guidelines we established in previous chapters, at this point in
the analysis we would:

• Determine whether the continuous covariates in the model are linear in the
logit.

• Determine whether there are any significant interactions among the indepen-
dent variables in the model.

• Assess model calibration and discrimination through goodness of fit tests and
area under the ROC curve.

• Examine the case-wise diagnostic statistics to identify poorly fit and influential
covariate patterns.

Unfortunately, most of these procedures are not easily performed when modeling
data from complex sample surveys. However, there is much that can be done to
approximate the correct analysis by using a weighted ordinary logistic regression.

We can check for nonlinearity in the logit by using fractional polynomials with
weights equal to the sampling weights within the ordinary logistic regression pro-
gram. If a significant nonlinear transformation is found then we can fit the model
accounting for the sample weights and with the correct standard error estimates to
see if the coefficients remain significant. In any case, any nonlinear transformation
must make clinical sense. We applied a weighted fractional polynomial analysis to
age and diastolic blood pressure. We found that the (3, 3) transformation for age
was significantly better than the linear and one term transformation, (3), using the
closed test procedure. There was no evidence for nonlinearity in the logit for dias-
tolic blood pressure. The fit of the model using the m = 2 fractional polynomial
transformation for age is shown in Table 6.3.

We leave as an exercise demonstrating, using methods illustrated in Chapter
4, that the shape of the logit in the two-term fractional polynomial in age rises
gradually from age 16 to its maximum at age 55 and then descends to its minimum
at age 80. We also include in this exercise a demonstration that this transformation
is better statistically and makes more clinical sense than a model quadratic in age
(i.e., one with age and age2).
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Table 6.3 Estimated Coefficients, Standard Errors, z-Scores, Two-Tailed p-Values,
and 95% Confidence Intervals for a Logistic Regression Model for the Modified
NHANES Study with Dependent Variable OBESE, n = 5859

Coeff. Std. Err. t p 95% CI

AGEFP1a 0.019 0.0061 3.12 0.007 0.006, 0.032
AGEFP2a −0.009 0.0029 −3.21 0.006 −0.016, −0.003
DBP 0.014 0.0051 2.66 0.018 0.003, 0.025
GENDER 0.457 0.1224 3.73 0.002 0.196, 0.718
WLKBIK 0.480 0.0928 5.17 <0.001 0.282, 0.677
VIGRECEXR 0.878 0.1014 8.66 <0.001 0.662, 1.094
Constant −4.419 0.4526 −9.76 <0.001 −5.384, –3.454

aAGE10 = AGE
10 , AGEFP1 = (AGE10)3, AGEFP2 = (AGE10)3 × ln(AGE10).

It was decided that the only interactions that made clinical sense were those
involving gender. None of these were found to be significant at the 5% level when
added to the model in Table 6.3. Thus, our preliminary final model is the one
shown in Table 6.3.

We noted earlier that one is able to obtain the correct value of the estimator of
the coefficients by using a weighted ordinary logistic regression program. Some
programs (e.g., STATA) can perform the decile of risk test following this weighted
fit. The problem is that it does not test for fit of the model in the correct way.
When it uses weights, the ordinary logistic regression program assumes that the
value of the weights corresponds to actual observations on subjects, rather than
what they really are: statistical weights. Hence the test statistic has an enormously
large value and the values of the observed and expected frequencies in the 2 ×10
table have no relationship to the actual sample values.

Archer et al. (2007) describe an extension of the decile of risk test to sample
survey data that correctly tests for model fit. Its implementation in STATA’s survey
commands is described in Archer and Lemeshow (2006). The test is calculated as
follows:

1. Ten groups are formed from the sorted estimated probabilities from the fitted
model in such a way that the sum of the sample weights in each group is
approximately 10% of the total sum of the sample weights. Thus, the 10
groups are not deciles of risk in the sense used in Chapter 5.

2. Using the sample weights, calculate the weighted mean of the model’s resid-
uals, (y − π̂), within each of the 10 groups. Denote these means as M̂k, k =
1, 2, . . . , 10. If the model does not fit then we expect the weighted means
of the residuals to be different from 0.

3. A linearized estimator of the covariance matrix derived by Archer (2001),
V̂(M̂), of the M̂ ′s is then used to calculate the Wald test of the hypothesis
that the means are equal to 0:

ŴM̂ = M̂ ′[V̂(M̂)]−1M̂.
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4. The Wald statistic is modified to form an F-corrected test statistic

FM̂ = (s − 10 + 2)

s × 10
ŴM̂ ,

and the associated p-value is calculated as

p = Pr[F(10 − 1, s − 10 + 2, ) > FM̂ ].

We note that this test can be used with any number of groups. It is described
here with 10 groups because that is the default number in STATA. The number of
groups used must be less than s + 2. One disadvantage of this test is that when the
test rejects fit, we do not have a 2 × 10 table of observed and estimated expected
frequencies to assist us in finding areas where the model does not fit.

Evaluating the test for the fitted model in Table 6.3 yields FM̂ = 1.6984 and
p = 0.2487 (i.e., Pr[F(9, 7) > 1.6984] = 0.2487). Hence the test supports model
fit.

Roberts et al. (1987) extend the diagnostics discussed in Chapter 5 to the survey
sampling setting. However, the diagnostic statistics have not, as yet, been imple-
mented into any of the commonly available packages. The computations required to
obtain the measures of leverage and the contribution to fit are not trivial and require
considerable skill in programming matrix calculations. In addition, the version of
Cook’s distance is not an easily computed function of leverage and contribution
to fit.

A “better than doing nothing at all” diagnostics evaluation can be based on
fitting the model using an ordinary logistic regression program and obtaining the
diagnostic statistics described in Chapter 5. An improvement on the values of the
diagnostic statistics can be obtained from the ordinary logistic regression model
using, as an initial guess, the values of the coefficients from Table 6.3 and setting
the number of iterations to 0. This forces the fit to yield the coefficients in Table 6.3.
Options to set the initial guess and control the number of iterations are available in
most logistic regression packages. Diagnostic statistics are then calculated, saved
and plotted as described in Chapter 5. We leave the details of this as an exercise.
The reader might want to take a quick look at Table 6.4 where we show that
the differences between the two possible sets of coefficients that one could use to
calculate the diagnostics statistics differ by 10% or more for five of the seven values.
We did evaluate the diagnostic statistics and found that a few observations are
poorly fit but their deletion did not produce important changes in the coefficients.
Thus we use the model in Table 6.3 as our final model.

Statistical analyses of survey data that take the survey design (stratification and
clustering) and statistical weights into consideration are generally called design-
based. When such features are ignored and the data are handled as if they arose
from a simple random sample, the resulting statistical analyses are termed model-
based. One approach that analysts have used when dealing with survey data is to
estimate parameters using design-based methods but to use model-based methods to
perform other functions. For example, in this analysis, determination of linearity of
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Table 6.4 Coefficients and 95% Confidence Intervals for Covariates in Table 6.3
Using “Design-Based” versus “Model-Based” Analysis

“Design-Based” Analysis “Model-Based” Analysis

Variable Coeff. 95% CI Coeff. 95% CI Pct. Diff.a

AGEFP1 0.019 0.006, 0.032 0.021 0.013, 0.029 11.4
AGEFP2 −0.009 −0.016, –0.003 −0.010 −0.015, –0.006 11.7
DBP 0.014 0.003, 0.025 0.012 0.006, 0.019 −9.0
GENDER 0.457 0.196, 0.718 0.519 0.367, 0.671 13.7
WLKBIK 0.480 0.282, 0.677 0.412 0.233, 0.591 −14.1
VIGRECEXR 0.878 0.662, 1.094 0.665 0.440, 0.890 −24.3
Constant −4.419 −5.384, –3.454 −4.066 −4.583, –3.549 8.0

aPct.Diff. = 100 × (β̂Model−β̂Design)

β̂Design
.

the logit for the continuous covariates in the model, assessment of model calibration
and examination of diagnostic statistics could be carried out by treating the data as if
they resulted from a simple random sample. Any discoveries made in those analyses
would then be implemented in the final design-based analysis. For example, we
used fractional polynomial analysis to find that the logit was not linear in age. This
knowledge, obtained from the model-based analysis may then be implemented into
the more appropriate design-based analysis to obtain the slope coefficients and
estimated odds ratios.

It should also be noted that for linear estimates such as means, totals and pro-
portions, design-based standard errors are typically much larger than model-based
standard errors. In fact, for linear estimates, the design effect (defined as the ratio
of the variance under design-based analysis to the variance under simple random
sampling) is typically much larger than 1. This measure reflects the inflation in
variance that occurs due to homogeneity within clusters and can be expressed as
1 + (n − 1)ρy , where ρy is the intracluster correlation coefficient (ICC) and n is the
average number of units in the sampled cluster. These ICCs can range from small
negative values (when the data within clusters are highly heterogeneous) to unity
(when the data in clusters are highly correlated). Only when the data are highly
heterogeneous within clusters will the design effect be less than 1. However, as
described by Neuhaus and Segal (1993), design effects for regression coefficients
can be expressed as 1 + (n − 1)ρxρy . Note that in this expression the ICC for the
independent variable is multiplied by the ICC for the dependent variable. Both of
these quantities are, by definition, less than 1. As a result, the design effect will
be smaller than what would be observed for means, totals, or proportions. We also
note that because ρx and ρy are not necessarily in the same direction, the product of
the intracluster correlation coefficients could be negative and the resulting design
effect could be smaller than 1.

The estimated coefficients and their 95% confidence intervals under both design-
based and model-based scenarios and the percentage difference in the two sets of
coefficients are presented in Table 6.4. In this example, both modeling approaches
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produce coefficients of the same order of magnitude but they do differ by anywhere
from 8% to 24%.

In summary, we fit logistic regression models to data obtained from complex
sample surveys via an approximate likelihood that incorporates the known sampling
weights. We assess the overall model significance as well as tests of subsets of
coefficients using multivariable F-adjusted Wald tests. However, the interpretation
of odds ratios from a fitted model is the same as for models fit to less complicated
sampling plans. We note that work needs to be done to make available the case-wise
diagnostics obtained from complex sample surveys to the typical user of logistic
regression software.

EXERCISES

1. Fit the model in Table 6.4 using a model quadratic in AGE10. Graph the logit
functions for the (3, 3) model and (1, 2) model using the method shown in
Chapter 5. Which model do you prefer and why? Estimate the odds ratio, with
95% confidence intervals, using the estimated coefficients from the model you
prefer.

2. Using all of the covariates in Table 6.1 build, using purposeful selection, a
model assessing risk factors for obesity, BMI > 35.

3. Assess the fit and evaluate the diagnostics for the model developed in
Problem 2.

4. Estimate the odds ratios and confidence intervals for obesity using your final
model from Problem 2 and interpret them in context.



C H A P T E R 7

Logistic Regression for Matched
Case-Control Studies

7.1 INTRODUCTION

An important special case of the stratified case-control study discussed in Chapter 6
is the matched case-control study. A discussion of the rationale for matched studies
may be found in epidemiology texts such as Breslow and Day (1980), Kleinbaum
et al. (1982), Schlesselman (1985), Kelsey et al. (1986), and Rothman et al. (2008).
In this study design, subjects are stratified on the basis of variables believed to be
associated with the outcome. Age and gender are examples of commonly used
stratification variables. Within each stratum, samples of cases (y = 1) and controls
(y = 0) are chosen. The number of cases and controls need not be constant across
strata, but the most common matched designs include one case and from 1–5
controls per stratum and are thus referred to as 1–M matched studies.

In this chapter we develop the methods for analyzing general matched studies.
We illustrate the methods for both the 1–1 matched study and a 1–3 matched study
(as an example of the more general 1–M design).

We begin by providing some motivation and rationale for the need for special
methods for the matched study. In Chapter 6, it was noted that we could handle the
stratified sample by including the design variables created from the stratification
variable in the model. This approach works well when the number of subjects in
each stratum is large. However, in a typical matched study we are likely to have few
subjects per stratum. For example, in the 1–1 matched design with n case-control
pairs we have only two subjects per stratum. Thus, in a fully stratified analysis
with p covariates, we would be required to estimate n + p parameters consisting
of the constant term, the p slope coefficients for the covariates, and the n − 1
coefficients for the stratum-specific design variables using a sample of size 2n. The
optimality properties of the method of maximum likelihood, derived by letting the
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sample size become large, hold only when the number of parameters remains fixed.
This is clearly not the case in any 1–M matched study. With the fully stratified
analysis, the number of parameters increases at the same rate as the sample size.
For example, with a model containing one dichotomous covariate it can be shown
[see Breslow and Day (1980)] that the bias in the estimate of the coefficient is
100% when analyzing a matched 1–1 design via a fully stratified likelihood. If we
regard the stratum-specific parameters as nuisance parameters, and if we are willing
to forgo their estimation, then we can use methods for conditional inference to
create a likelihood function that yields maximum likelihood estimators of the slope
coefficients in the logistic regression model that are consistent and asymptotically
normally distributed. The mathematical details of conditional likelihood analysis
may be found in Cox and Hinkley (1974).

Suppose that there are K strata with n1k cases and n0k controls in stratum
k, k = 1, 2, . . . , K . We begin with the stratum-specific logistic regression model

πk(x) = eαk+β ′ x

1 + eαk+β ′ x
, (7.1)

where αk denotes the contribution to the logit of all terms constant within the kth

stratum (i.e., the matching or stratification variable(s)). In this chapter, the vector
of coefficients, β, contains only the p slope coefficients, β ′ = (β1, β2, . . . , βp). It
follows from the results in Chapter 3 that each slope coefficient gives the change
in the log-odds for a one unit increase in the covariate holding all other covariates
constant in every stratum. This is important to keep in mind as the steps, to be
described, in developing a conditional likelihood result in a model that does not
look like a logistic regression model, yet it contains the coefficient vector, β. The
fact that the model does not look like a logistic regression model leads new users
to think that estimated coefficients must be modified in some way before they can
be used to estimate odds ratios. This is not the case, and we pay particular attention
in this chapter to estimation and interpretation of odds ratios.

The conditional likelihood for the kth stratum is obtained as the probability of
the observed data conditional on the stratum total and the total number of cases
observed, the sufficient statistic for the nuisance parameter. In this setting, it is
the probability of the observed data relative to the probability of the data for all
possible assignments of n1k cases and n0k controls to nk = n1k + n0k subjects.
The number of possible assignments of case status to n1k subjects among the nk

subjects, denoted here as ck , is given by the mathematical expression

ck =
(

nk

n1k

)
= nk!

n1k!(nk − n1k)!
.

Let the subscript j denote any one of these ck assignments. For any assignment
we let subjects 1 to n1k correspond to the cases and subjects n1k + 1 to nk to the
controls. This is indexed by i for the observed data and by ij for the j th possible
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assignment. The conditional likelihood is

lk(β) =

n1k∏
i=1

P(xi |yi = 1)

nk∏
i=n1k+1

P(xi |yi = 0)

ck∑
j=1

⎧⎨⎩
n1k∏
ij =1

P
(

xjij
|yij

= 1
) nk∏

ij =n1k+1

P(xjij
|yij

= 0)

⎫⎬⎭
. (7.2)

The full conditional likelihood is the product of the lk(β) in equation (7.2) over the
K strata, namely,

l(β) =
K∏

k=1

lk(β). (7.3)

If we assume that the stratum-specific logistic regression model in equation (7.1) is
correct then application of Bayes’ theorem to each Pr(x|y) term in equation (7.2)
yields

lk(β) =

n1k∏
i=1

eβ ′xi

ck∑
j=1

n1k∏
ij =1

eβ ′xjij

. (7.4)

Note that when we apply Bayes’ theorem all terms of the form

exp(αk)

1 + exp(αk + β ′ x)

appear equally in both the numerator and denominator of equation (7.2) and thus
cancel out. Algebraic simplification yields the function shown in equation (7.4)
where β is the only unknown parameter. The conditional maximum likelihood
estimator for β is that value that maximizes equation (7.3) when lk(β) is as shown in
equation (7.4). Except in one special case it is not possible to express the likelihood
in equation (7.4) in a form similar to the unconditional likelihood in equation (1.3).
However, as we noted earlier, the coefficients have not been modified, and thus
have the same interpretation as those in equation (7.1).

The most frequently used matched design is one in which each case is matched
to a single control; thus, there are two subjects in each stratum. It is helpful to
consider this design, not only because it is used frequently in practice, but also
because it helps illustrate some key differences in the effect covariate values have
on the likelihood function in equations (1.3) and (7.4). To simplify the notation,
let x1k denote the data vector for the case and x0k the data vector for the control
in the kth stratum or pair. Using this notation, the conditional likelihood for the kth

stratum from equation (7.4) is

lk(β) = eβ ′x1k

eβ ′x1k + eβ ′x0k
. (7.5)
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Given specific values for β, x1k , and x0k , equation (7.5) is the probability that,
within stratum k, the subject identified as the case is in fact the case under the
assumptions that: (i) we have two subjects, one of whom is the case and (ii)
the logistic regression model in equation (7.1) is the correct model. For example,
suppose we have a model with a single dichotomous covariate and β = 0.8 and
the observed data are x1k = 1 and x0k = 0 then the value of equation (7.5) is

lk(β = 0.8) = e0.8×1

e0.8×1 + e0.8×0
= 0.690.

Thus, the probability is 0.69 that a subject with x = 1 is the case compared to a
subject with x = 0. On the other hand, if x1k = 0 and x0k = 1 then

lk(β = 0.8) = e0.8×0

e0.8×0 + e0.8×1
= 0.310

and the probability is 0.31 that a subject with x = 0 is the case compared to a subject
with x = 1. Thus, we see that the affect of a covariate value is measured relative to
the values in its matched set rather than relative to all values of the covariate, which
is the case with the likelihood in equation (1.3) or its log-likelihood in equation
(1.4).

It also follows from equation (7.5) that if the data for the case and the control
are identical, x1k = x0k , then lk(β) = 0.5 for any value of β (i.e., the data for
the case and control are equally likely under the model). Thus, case-control pairs
with the same value for any covariate are uninformative for estimation of that
covariate’s coefficient. We use the term uninformative to describe the fact that the
value of the covariate does not help distinguish which subject is more likely to be
the case. This tends to occur most frequently with dichotomous covariates where
common values, often called concordant pairs, are most likely to occur. A fact not
discussed in this chapter, which can be found in Breslow and Day (1980), is that
the maximum likelihood estimator of the coefficient for a dichotomous covariate
in a univariable conditional logistic regression model fit to 1–1 matched data is
the log of the ratio of discordant pairs. The practical significance of this is that
the estimator may be based on a small fraction of the total number of possible
pairs. We feel it is good practice to form the 2 × 2 table cross-classifying case
versus control for all dichotomous covariates in order to determine the number
of discordant pairs. This is essentially a univariable logistic regression and, as we
have stated previously, univariable analyses of all covariates should be among the
first steps in any model building process. The reader should be aware that, if both
types of pairs, (x1k = 1, x0k = 0) and (x1k = 0, x0k = 1), are not present in the
data, then the estimator is undefined. In this case, software packages will either
remove the covariate from the model or give an impractically large coefficient and
standard error. This is the same zero cell problem discussed in Section 4.5. The
same type of problem can occur for polychotomous covariates, but it involves more
complex relationships than simply a zero frequency cell in the cross-classification
of case versus control [Breslow and Day (1980)].
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As a few software packages still do not have specific commands for maxi-
mizing the conditional log-likelihood, it is possible, with some data manipulation,
to use a standard logistic regression package to maximize the full conditional log-
likelihood for the 1–1 design. We begin by re-expressing equation (7.5) by dividing
its numerator and denominator by eβ ′x0k yielding

lk(β) = eβ ′(x1k−x0k)

1 + eβ ′(x1k−x0k)

= eβ ′x∗
k

1 + eβ ′x∗
k

. (7.6)

The expression on the right side of equation (7.6) is the usual logistic regression
model with the constant term set equal to zero (β0 = 0) and data vector equal to
the data value of the case minus the data value of the control, x∗

k = (x1k − x0k). It
follows that the full conditional likelihood may be expressed as

l(β) =
K∏

k=1

eβ ′x∗
k

1 + eβ ′x∗
k

=
K∏

k=1

[
eβ ′x∗

k

1 + eβ ′x∗
k

]yk[
1

1 + eβ
′
x∗
k

]1−yk

,

where yk = 1 for all k.
This observation allows one to use standard logistic regression software to com-

pute the conditional maximum likelihood estimates and obtain estimated standard
errors of the estimated coefficients. To do this, one must define the sample size
as the number of case-control pairs, use as covariates the differences x∗

k , set the
values of the response variable equal to one (yk = 1), and exclude the constant
term from the model. Thus, from a computational point of view, the 1–1 matched
design may be fit using any logistic regression program.

Software to perform the necessary calculations using the log of the likelihood in
equation (7.3) is now available in most statistical software packages. For example,
STATA has a special conditional logistic regression command. With SAS and a few
other packages, one must perform a simple modification of the data and perform
the analysis using the package’s proportional hazards regression command. The
calculations for this chapter were performed in STATA.

In summary, the methods for model building for matched data are identical to
those discussed and illustrated in detail for unmatched data in Chapter 4. Hence, we
do not repeat them here, but illustrate them in the examples. There are, however,
important differences when one assesses the fit of the model from matched data.
The ideas are the same as those discussed in Chapter 5 for unmatched data, but
the calculations of the diagnostic statistics are different. These are presented and
discussed in the next section. We conclude the chapter with examples of using
logistic regression to model data from a 1–1 and a 1–3 design.
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7.2 METHODS FOR ASSESSMENT OF FIT IN A 1−M
MATCHED STUDY

Our approach to assessment of fit in the 1–M matched study is based on exten-
sions of regression diagnostics for the unconditional logistic regression model. The
mathematics required to develop these statistics is at a higher level than other
sections of the book. Hence, less sophisticated mathematical readers may wish to
skip this section and proceed to examples where the use of the diagnostic statistics
is explained and illustrated. Moolgavkar et al. (1985) and Pregibon (1984) derive
these diagnostic statistics for a general matched design, but only illustrate their use
in the 1–1 matched design. STATA currently provides access to the diagnostics
following the fit of a logistic model using equation (7.3). To simplify the nota-
tion somewhat we present the results for the setting when M = 3 (i.e., M + 1 = 4
subjects per stratum).

There are no easily computed goodness of fit tests for the matched data setting.
Zhang (1999) discusses a test but it is not available in any software package.
Arbogast and Lin (2005) propose a method based on cumulative sums of residuals
within matched sets with significance and visual assessment based on simulations.
Again, the method is complicated to compute and is not available in software
packages.

Since the diagnostics are not computed in all software packages we describe
them as if one was going to compute them following the fit of a model. The first
step is to transform the observed values of the covariate vector by centering them
about a weighted stratum-specific mean. That is, we compute for each stratum, k,
and each subject within each stratum, j ,

x̃kj = xkj −
4∑

l=1

xkl θ̂kl ,

where

θ̂kj = ex ′
kj β̂

4∑
l=1

ex ′
kj β̂

and note that
∑4

j=1 θ̂kj = 1. Let X̃ be the n = 4K by p matrix whose rows are
the values of x̃kj , k = 1, 2, . . . , K and j = 1, 2, 3, 4. Let U be an n by n diagonal
matrix with general diagonal element θ̂kj . It may be shown that the maximum
likelihood estimator, β̂, once obtained can be re-computed via the equation

β̂ =(X̃ ′ UX̃)−1X̃ ′ Uz,

where z is the vector z = X̃ ′ β̂ + U−1(y − θ̂), y is the vector of values of the
outcome variable (y = 1 for the case and y = 0 for the controls), and θ̂ is the
vector whose components are θ̂kj . Recall that θ̂kj is, under the assumption of a
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logistic regression model, the estimated conditional probability that subject j within
stratum k is a case.

It follows from the above expression for β̂ that we may re-compute the maximum
likelihood estimate for the conditional logistic regression model using a linear
regression program allowing case weights. We use the vector x̃kj as values of the
independent variables,

zkj = x̃ ′
kj β̂ + ykj − θ̂kj

θ̂kj

as the values of the dependent variable, and case weight θ̂kj , for k = 1, 2, . . . , K ,
j = 1, 2, 3, 4. It follows that the diagonal elements of the hat matrix computed by
the linear regression are the leverage values we need, namely

hkj = θ̂kj x̃
′
kj (X̃

′ UX̃)−1x̃kj . (7.7)

We note that the leverage values in equation (7.7) are of the same form as those
in equation (5.22). Here, the “v” part is the conditional probability θ̂kj and the “b”
part is x̃ ′

kj (X̃
′ UX̃)−1x̃kj . The “v” part is not an estimator of the variance as it is in

equation (5.22). However, the leverage in equation (7.7) does go to zero as θ̂kj goes
to zero. The “b” part will be large when the individual covariate values are different
from the matched set weighted mean, as opposed to the overall mean in equation
(5.21). Hence subjects with high leverage will be those whose covariate values
differ from the matched set mean and have an estimated conditional probability
between 0.3 and 0.7.

We note that one must pay close attention to how weights are handled in
the statistical package used for the weighted linear regression. For example,
SAS’s regression procedure outputs the values as defined in equation (7.7).
STATA users need to multiply the leverage values created following the weighted
regression by θ̂kj /θ to obtain the leverage values defined in equation (7.7),
where θ = ∑K

k=1

∑M+1
j=1 θ̂kj /[K(M + 1)] is the mean of the estimated logistic

probabilities.
The Pearson residual is

rkj = (ykj − θ̂kj )√
θ̂kj

,

and the Pearson chi-square is

X2 =
K∑

k=1

M+1∑
j=1

(ykj − θ̂kj )
2

θ̂kj

.

Unfortunately, the large sample approach of Osius and Rojek (1992) cannot be
used in this setting to obtain a standardized statistic and significance level.
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The standardized Pearson residual is

rskj = (ykj − θ̂kj )

[θ̂kj (1 − hkj )]1/2
.

In keeping with the diagnostics for the unmatched design we define the square
of the standardized residual as the lack of fit diagnostic

�X2
kj = r2

skj (7.8)

and the influence diagnostic as

�β̂kj = �X2
kj

hkj

1 − hkj
. (7.9)

We feel that the most informative way to view the diagnostic statistics is via a plot
of their values versus the fitted values, θ̂kj . These plots are similar to those used
in Chapter 5 to assess graphically the fit of the unconditional logistic regression.
Examples of these plots are presented in the next section.

Moolgavkar et al. (1985) and Pregibon (1984) suggest that one should use the
stratum-specific totals of the two diagnostics, �X2 and �β̂ to assess what affect the
data in an entire stratum have on the fit of the model. These statistics are computed
as quadratic forms involving not only the leverage values for the subjects in the
stratum, but also those terms in the hat matrix that account for the correlation
among the fitted values. An easily computed approximation to these statistics is
obtained by ignoring the off diagonal elements in the hat matrix. We feel that the
approximations are likely to be accurate enough for practical purposes. For the kth

stratum these are

�X2
k = r2

sk =
4∑

j=1

r2
skj (7.10)

and

�β̂k =
4∑

j=1

�β̂kj . (7.11)

Strata with large values of these statistics would be judged to be poorly fit and/or
have large influence respectively. One can use a boxplot or a plot of their values
versus stratum number to identify those strata with exceptionally large values. For
these strata, the individual contributions to these quantities should be examined
carefully to determine whether cases and/or controls are the cause of the large
values.

The diagnostic statistics described in this section are similar to the diagnostics
one would obtain in the 1–1 matched setting by fitting the model using the dif-
ference data and computing the diagnostics shown in Chapter 5. For this reason,
some users may prefer the difference data approach to the 1–1 design. Specifically,
the diagnostics based on the difference data are based on one value per stratum,
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while those computed from equations (7.7)–(7.9) yield two values per stratum.
The mathematical relationships between the two diagnostic statistics are complex.
For example, the stratum totals described in equations (7.10) and (7.11) are not
arithmetically equal to the values of �X2 and �β̂ from Chapter 5. While it may
appear that we have two different sets of values of the diagnostic statistics they
do identify the same strata as being poorly fit or influential. Thus from a practical
point of view one may use either the difference data or the results in this section to
assess model adequacy in the 1–1 design. In all other matched designs, one must
use the diagnostics described in this section.

In identifying poorly fit or influential subjects deletion of the case in a stratum,
assuming a 1–M design, is tantamount to deletion of all subjects in the stratum.
Without a case, a stratum contributes no information to the likelihood function.
If some, but not all, controls are deleted in a specific stratum then the stratum
may still have enough information to contribute to the likelihood function. A final
decision on exclusion or inclusion of cases (entire strata) or controls should be
based on the clinical plausibility of the data.

7.3 AN EXAMPLE USING THE LOGISTIC REGRESSION MODEL
IN A 1–1 MATCHED STUDY

For illustrative purposes we created a 1–1 matched data set from the GLOW Study
data by randomly matching each woman who had a fracture to a woman of the
same age who did not have a fracture. It was not possible to exactly match age for
six of the women who had a fracture. Thus, there are 119 matched case-control
pairs. The covariates are the same as those listed in Table 1.7 and are available
from the web site as GLOW11M.

As we noted earlier in this chapter, all model building and evaluation is done
using STATA’s clogit command. Before fitting multivariable models we note that
the “intercept only” model (or base model) for assessing significance with the
likelihood ratio test in the 1–1 design is a model with log-likelihood

L(β = 0) =
K∑

k=1

ln(0.5) = K × ln(0.5),

a value usually not presented in computer output, but easily computed by hand
calculation. However, some packages, for example STATA, report this as the value
of the log-likelihood at the “zero-th” iteration.

The results of fitting univariable models are displayed in Table 7.1. The covari-
ates significant at the 25 percent level are: HEIGHT, PRIORFRAC, PREMENO,
MOMFRAC, and RATERISK. Normally we would fit a multivariable model con-
taining just these covariates. However, the height, weight, and body mass index are
interrelated, and a multivariable model containing two of the three may be better
than a model containing the single variable, HEIGHT, that is significant in a uni-
variable model. Hence, we decided to include all three in the initial multivariable
model.
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Table 7.1 Univariable Conditional Logistic Regression Models for the 1–1 Matched
Data from the GLOW Study, n = 119 Pairs

Discordant Pairs
Variable Coeff. Std. Err. pa ÔR 95% CI (n10, n01)

b

HEIGHT −0.057 0.0238 0.016 0.56c (0.35, 0.90) Not relevant
WEIGHT −0.001 0.0084 0.870 0.99c (0.94, 1.05) Not relevant
BMI 0.019 0.0229 0.405 1.06 (0.93, 1.21) Not relevant
PRIORFRAC 0.838 0.2992 0.005 2.31 (1.29, 4.16) (37, 16)
PREMENO 0.693 0.4629 0.134 2.00 (0.81, 4.96) (14, 7)
MOMFRAC 0.511 0.3651 0.162 1.67 (0.81, 3.41) (20, 12)
ARMASSIST 0.633 0.3001 0.035 1.88 (1.05, 3.39) (32, 17)
SMOKE −0.336 0.5855 0.566 0.71 (0.23, 2.25) (5, 7)
RATERISK2 0.552 0.2909 0.012 1.74 (0.98, 3.07) Not relevant
RATERISK3 1.025 0.3669 2.79 (1.36, 5.72) Not relevant

ap from the likelihood ratio test, −2L(β = 0) = 164.969.
bDiscordant exposures: n10 = frequency of pairs with case exposed and control not, n01 = frequency of
pairs with case not exposed and control exposed and ÔR = n10/n01.
cOdds ratio for a 10 cm increase in height, 3 kg increase in weight, 3 kg/m2 in BMI.

Table 7.2 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics, and Two-Tailed p-Values for the
Model Containing All Covariates Except SMOKE

Variable Coeff. Std. Err. z p

HEIGHT 0.063 0.1220 0.52 0.604
WEIGHT −0.154 0.1310 −1.18 0.239
BMI 0.387 0.3417 1.13 0.258
PRIORFRAC 0.694 0.3538 1.96 0.050
PREMENO 0.218 0.5523 0.39 0.693
MOMFRAC 0.725 0.4326 1.68 0.094
ARMASSIST 0.818 0.3824 2.14 0.032
RATERISK2 0.152 0.3412 0.44 0.657
RATERISK3 0.589 0.4256 1.38 0.166

The results of fitting the initial multivariable model are shown in Table 7.2. The
fitted model is significant at the 0.1 percent level, but several of the covariates
are not significant by the Wald test. Before sorting out height, weight, and body
mass index we remove early menopause (PREMENO) and the two design variables
for self-reported rate of fracture risk (RATERISK2 and RATERISK3). The partial
likelihood ratio test for the removal of the three variables was not significant with
p = 0.493, and none of the coefficients for covariates remaining in the model
changed by more than 20 percent. Hence, we continue with the reduced model.

We fit each of the three models containing two of the three covariates: HEIGHT,
WEIGHT, and BMI. In work not shown, we found the model containing WEIGHT
and BMI had the smallest log-likelihood and both covariates had Wald statistics
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Table 7.3 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics, and Two-Tailed p-Values for the
Reduced Multivariable Model

Variable Coeff. Std. Err. z p

WEIGHT −0.095 0.0299 −3.16 0.002
BMI 0.222 0.0810 2.75 0.006
PRIORFRAC 0.835 0.3396 2.46 0.014
MOMFRAC 0.727 0.4093 1.78 0.076
ARMASSIST 0.889 0.3666 2.42 0.015

for their respective estimated coefficients that were significant at the five percent
level. The results of this fit are shown in Table 7.3.

The model in Table 7.3 contains the continuous covariates WEIGHT and BMI.
We checked for the scale in the logit using fractional polynomials. No fractional
polynomial transformation of either HEIGHT or BMI was significantly better than
the model linear in the logit. Thus, we consider possible interactions using the main
effects model in Table 7.3.

The GLOW Study subject matter experts felt that an interaction between any
pair of variables in the model in Table 7.3 was clinically plausible. The method
we used here is identical to that used in Section 4.2 to select interactions; see
Table 4.14 for presentation details. We began by fitting each of the 10 models by
adding a single interaction to the model in Table 7.3 and evaluated the significance
of the coefficient for the interaction term using the partial likelihood ratio test. No
interaction was significant at the five percent level of significance. By matching
on age we are assured that age cannot confound the main effect associations of
the covariates in the model. However, the matching variable can still be an effect
modifier. Hence, we examined the interaction of the matching variable, age, with
each of the five covariates. Again, no interaction was significant at the five percent
level. Hence we proceed to model evaluation using the model in Table 7.3 as our
preliminary final model.

Casewise diagnostic measures of leverage, lack of fit, and influence were com-
puted using the results in equations (7.7)–(7.9), and the pairwise sum of lack of fit
and influence were computed using equations (7.10) and (7.11). As in Chapter 5,
we think that the most informative way to examine the casewise diagnostic statis-
tics is via a plot versus the estimated probabilities. In the matched pairs setting,
the estimated probabilities within a pair sum up to one, and are estimates of the
probability of being the case. Thus a well fitting pair would be one where the
estimate for the subject that is the case is large, while that of the control is small.

We plot the 238 estimated leverage values in Figure 7.1 using an “x” to indicate
the case and an “o” to indicate a control. There are two controls and two cases with
leverage values that fall well away from the rest of the plotted values. We remind
the reader that leverage in a matched data setting is “distance from the weighted
match set mean”. Once we have examined all the diagnostic statistics we present
a table containing all identified observations and their data.
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Figure 7.1 Plot of all 238 leverages versus the estimated probability from the fitted model from the
GLOW 1–1 Matched Study in Table 7.3.

0

1

2

3

4

C
ha

ng
e 

in
 P

ea
rs

on
 c

hi
-s

qu
ar

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimated probability

Case Control

Figure 7.2 Plot of all 238 values of �X2 versus the estimated probability from the fitted model from
the GLOW 1–1 Matched Study in Table 7.3.

Next we examine the change in Pearson chi-square as a measure of lack of fit.
We plot the 238 values in Figure 7.2. In the plot we see five values, all for cases,
that are large relative to the other plotted values. In Chapter 5, we noted that we
tend to define “large” as a value of �X2 > 4. Here the five values are all between
3 and 4. Regardless, we still think it is important to identify any and all subjects
with potentially extreme values and examine their effect on the fitted model.
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Figure 7.3 Plot of all 238 values of �β̂% versus the estimated probability from the fitted model from
the GLOW 1–1 Matched Study in Table 7.3.

Next we examine the influence statistic �β̂% with all 238 values plotted in
Figure 7.3. We see two values that lie well away from the remainder of the plotted
points and each one corresponds to a case.

In the matched data setting we have two additional diagnostic statistics that
estimate the effect of the matched set (pair here). These are the sum of the change
in Pearson chi-square and influence over the subjects in each matched set. Here,
we are interested in identifying the pair so plots are over the pair or matched set
number rather than the estimated probability for one of the subjects in the matched
set. The plot of the sum of the change in Pearson chi-square is shown in Figure 7.4
where we see 6 pairs with values that lie away from the other plotted values. Until
we identify observations and pairs we cannot tell if these pairs correspond to the
pairs whose individual cases were identified in any of the previous three plots.

We plot the pairwise sum of the Cook’s distance diagnostic in Figure 7.5. We
see only two values that seem to lie away from the rest of the plotted values. The
next step is to identify subjects and pairs with extreme values in one or more of
the figures.

Further examination of the values identified cases in pairs 37, 38, 67, 50, 100,
and 117 as having a relatively large value of either or both �X2 and �β̂%.
These same pairs corresponded to large pairwise sum statistics in Figure 7.4 and/or
Figure 7.5. Of the four pairs with large leverage values in Figure 7.1 only one, the
case in pair 50, was identified in another plot. The data and diagnostic statistics
from the case and the control in the six identified pairs are listed in Table 7.4.

The first thing we notice in Table 7.4 is that the estimated probability of being
the case is larger for the control than the case. There are 39 such pairs among the
119. When this occurs, it is not surprising that the summed measure of fit, sum
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Figure 7.4 Plot of pairwise sum of �X2 versus pair number from the fitted model from the GLOW
1–1 Matched Study in Table 7.3.
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Figure 7.5 Plot of pairwise sum of �β̂% versus pair number from the fitted model from the GLOW
1–1 Matched Study in Table 7.3.

�X2, is large. The most influential of the six pairs is 50 with sum �β̂% = 0.219.
In pair 50 the case weighs over 100 kg with a body mass index over 40 kg/m2

while the control weighs 57 kg with a body mass index of 22 kg/m2. Both sets of
measurements are plausible, but with θ̂ = 0.76 the control looks more like a case
than the case with θ̂ = 0.26.
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Table 7.5 Estimated Coefficients from Table 7.3 (All), Estimated Coefficients when
Pair Is Deleted, and Percent Change from All

Data WEIGHT BMI PRIORFRAC MOMFRAC ARMASSIST

All −0.095 0.222 0.835 0.727 0.889
Delete 37 −0.103 0.243 0.842 0.887 0.925
Pct. change −7.71 −8.38 −0.85 −18.06 −3.94
Delete 38 −0.101 0.231 0.956 0.737 0.925
Pct. change −5.91 −3.62 −12.67 −1041.00 −3.89
Delete 50 −0.098 0.215 0.893 0.861 0.953
Pct. change −2.87 3.50 −6.53 −15.63 −6.57
Delete 67 −0.099 0.230 0.943 0.735 0.913
Pct. change −4.78 −3.27 −11.49 −1.19 −2.68
Delete 100 −0.098 0.234 0.904 0.742 0.976
Pct. change −3.23 −4.94 −7.63 −2.03 −8.94
Delete 117 −0.099 0.228 0.845 0.882 1.022
Pct. Change −4.09 −2.64 −1.21 −17.60 −13.01
Delete all 6 −0.133 0.283 1.334 1.362 1.401
Pct. Change −28.58 −21.48 −37.39 −46.65 −36.55

Pct. Change = 100 × (β̂All −β̂Deleted )

β̂Deleted

The next step is to examine the sensitivity of the fit to these six pairs. In the one
to one matched design, if one deletes either the case or the control then the pair
is deleted. One must have at least one value of each outcome in a pair for it to be
included in the analysis. The values of the estimated coefficients and the percent
change from those in Table 7.3 are given in Table 7.5.

When pairs are deleted one at a time none of the estimated coefficients change by
more than 20 percent from the estimates when data from all 119 pairs are used. The
largest change is −18 percent in the estimate of the coefficient for mother having
had a fracture (MOMFRAC). Recall that when the percent change is negative it
means that the estimate, with the pair removed, is larger than the estimate when
the pair is included. The percent changes in the coefficients when all six pairs are
removed are shown in the last line of Table 7.5. Here changes exceed 20 percent
for each of the coefficients and, for MOMFRAC, it is a −46 percent change. The
magnitude of these changes is not totally unexpected since, in all six pairs, the
control had the larger estimated probability. So, in a sense, all six pairs go against
the effects of the covariates in the fitted model and, when removed, their effects
increase. While collectively the six pairs have a substantial impact on the magnitude
of the estimates of the coefficients the actual values of the covariates are not at
all unusual or extreme. Hence, we cannot, in good conscience, exclude them just
because they happen to go against the model. Thus we proceed with the model in
Table 7.3 as our final model.

The estimated odds ratio for each of the model covariates is given in Table 7.6,
along with its 95 percent confidence interval. The results show that history of prior
fracture, mother having had a fracture, and the need to use arms to rise from a
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Table 7.6 Estimated Odds Ratios and 95 Percent Confidence
Intervals from the Fitted Model in Table 7.3

Variable Odds Ratio 95% CI

Weight 0.62a 0.46, 0.84
Body mass index 3.04b 1.38, 6.72
History of prior fracture 2.30 1.18, 4.48
Mother had a fracture 2.07 0.93, 4.61
Need to use arms to rise from a chair 2.43 1.18, 5.00

aOdds ratio for a 5 kg increase in weight.
bOdds ratio for a 5 kg/m2 increase in body mass index.

chair each result in a more than twofold increase in the odds of fracture with the
associated 95 percent confidence interval suggesting that the increase could be as
little as a 1.2-fold or as much as a 4-fold increase for prior fracture and arm assist.
Mother’s history could be nonsignificant or result in as much as a 4.6-fold increase
in the odds. There is an estimated 38 percent decrease in the odds of fracture for
a 5 kg increase in weight and the decrease could be as small as 16 percent or
as much as 54 percent with 95 percent confidence. Increasing body mass index
by 5 kg/m2 is associated with a 3-fold in the odds of fracture and the increase
in the odds could be as little as 1.4-fold or as much as 6.7-fold with 95 percent
confidence.

In summary, by following the purposeful selection method of main effects,
factional polynomial analysis of continuous covariates and followed by purpose-
ful selection of interactions, we obtained the relatively simple model shown in
Table 7.3. One may also employ stepwise and best subsets selection of covari-
ates described in Chapter 4 by obvious extensions of these methods. Extensions
of the diagnostic statistics from Chapter 5 led us to identify six subjects that were
either poorly fit or influential. The overall goodness of fit tests from Chapter 4 do
not apply as the number of cases and controls are fixed by design. Clearly, once
we account for the matching as a stratification variable and use conditional logis-
tic regression, the modeling process proceeds as in the independent observation
setting.

In closing this section, we note that many investigators break the matched pairs
and proceed with the standard analysis as described in Chapters 4 and 5. Lynn
and McCulloch (1992) provide some theoretical and simulation-based evidence for
breaking the matches when the sample size is large. However, we believe that if
data have been collected using a specific matched sampling design, then the analysis
must have as its foundation the stratum-specific likelihood shown in equation (7.4)
and the full likelihood in equation (7.3).

By ignoring the matching, we believe that investigators have used what is
really an incorrect analysis for two basic reasons. First, the investigator probably
is not comfortable with the conditional likelihood approach. He/she thinks that
somehow the model has been changed and one cannot use estimated coefficients
to estimate odds ratios in the usual manner. Second, until recently the analysis
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had to be performed using difference variables, a cumbersome and tedious data
management task. We hope that the presentation of the example in this section
convinces investigators that a matched analysis is no more difficult to carry out
than an unmatched analysis.

7.4 AN EXAMPLE USING THE LOGISTIC REGRESSION MODEL
IN A 1–M MATCHED STUDY

The general approach to the analysis of the 1–M matched design and, for that
matter, any general matched or highly stratified design, is quite similar to that of
the 1–1 matched design illustrated in the previous section. Again, we use STATA’s
clogit command, and associated diagnostic statistics to fit and analyze the model.

In the 1–1 matched design, the individual contribution of each matched pair to
the likelihood in equation (7.4) is the conditional probability that the subject with
y = 1 is the case among the two possible assignments of case status, the other
being that the subject with y = 0 is the case. In a 1–M design, this same condi-
tional probability is calculated (equation (7.4)) but there are now M + 1 possible
assignments of case status to the matched subjects. Suppose, for example, that we
consider a design where M = 3. Let the value of the covariates for the case in stra-
tum k be denoted by xk1 and the values for the three controls be denoted xk2, xk3,
and xk4. The contribution to the likelihood for this stratum of matched subjects
from equation (7.4) is

lk(β) = eβ ′xk1

eβ ′xk1 + eβ ′xk2 + eβ ′xk3 + eβ ′xk4
. (7.12)

The interpretation of equation (7.12), given the value of the coefficients, is the
probability that the subject with data xk1 is the case relative to three controls with
data xk2, xk3, and xk4. We note that if the covariates are identical for all four subjects
then the stratum is uninformative for estimation of the coefficients as lk(β) = 0.25
for any value of β. For an individual covariate, there must be at least one control that
has a value different from the case or the stratum is uninformative for that specific
coefficient. Unfortunately, there are no simple expressions involving discordant
pairs for the estimator of the coefficient for a dichotomous covariate in a univariable
model. One statistic that is helpful in assessing the potential for “thin data” for a
dichotomous covariate is identifying how many of the matched sets have the sum
of the covariates over the M + 1 subjects equal to 0 or M + 1. As always, we feel
it is good practice to fit univariable models and use the estimated standard errors
and confidence intervals as indirect evaluation for “thin data”.

To provide a data set for an example and exercises we formed a 1–3 matched
data set from the Burn Study data described in Section 1.6.5 and Table 1.9. We
used these data in Chapter 4 for one of the examples of model building. There we
found that increasing age is an important risk factor in surviving a burn injury. In
Chapter 4, we included age in the model. An alternative approach to estimating
the effects of covariates controlling for age is to match cases (subjects who die),
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to controls (subjects who live) on age. Unlike the example in Section 7.3 using the
GLOW Study data we could not match exactly on age. Instead we categorized age
into 5-year intervals and matched each case with three randomly selected controls
from the same age group. For some age groups it was not possible to identify three
controls for the case identified. For these age groups we used only as many cases as
could be matched. This resulted in 97 matched sets or strata. In practice we likely
would have used 1–1 or 1–2 matching in these age groups so as not to loose 28
cases. However, here the goal is to illustrate analyses with the conventional 1–M

design. The covariates are listed in Table 1.9 and data are available at the web site
as BURN13M and the covariate PAIR denotes the matched set.

We found that each of the four dichotomous covariates, race (RACE), gender
(GENDER), inhalation injury (INH_INJ), and flame involved (FLAME) had a
number of strata where the covariate was constant. These are described in Table 7.7.
We felt that for all four covariates there were a sufficient number of strata with a
nonconstant sum to retain the covariate for analysis.

Since there are only five covariates we began with a main effects model con-
taining all five. The results of this fit are shown in Table 7.8. The Wald statistic
p-values suggest that GENDER and FLAME are not significant. Since the p-value
for FLAME is more than twice that of GENDER we next fit a model without
FLAME. In results not shown, the likelihood ratio test comparing the model in
Table 7.8 to one that excluded FLAME was not significant with p = 0.695. The
Wald statistic for GENDER in the smaller model was not significant. We fit a
model without GENDER and FLAME and confirmed that neither one contributed

Table 7.7 Distributions of Strata with Constant Covariate Sum

Covariate Sum Number of Strata

RACE 0 3
4 10

GENDER 0 3
4 25

INH_INJ 0 26
4 0

FLAME 0 1
4 17

Table 7.8 Estimated Coefficients, Estimated Standard Errors,
Wald Statistics, and Two-Tailed p-Values for the Multivariable
Model Containing All Covariates

Variable Coeff. Std. Err. z p

TBSA 0.133 0.0272 4.89 <0.001
GENDER −0.670 0.5825 −1.15 0.250
RACE −1.008 0.5269 −1.91 0.056
INH_INJ 1.500 0.6149 2.44 0.015
FLAME −0.231 0.5869 −0.39 0.694
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Table 7.9 Estimated Coefficients, Estimated Standard Errors,
Wald Statistics, and Two-Tailed p-Values for the Preliminary Main
Effects Model

Variable Coeff. Std. Err. z p

TBSA 0.124 0.0242 5.12 <0.001
RACE −0.959 0.5137 −1.87 0.062
INH_INJ 1.366 0.5254 2.60 0.009

significantly to the model containing the remaining three covariates, nor was there
any evidence of confounding. Hence our preliminary main effects model contains
TBSA, RACE, and INH_INJ and is shown in Table 7.9.

The next step is to examine the scale of the continuous covariate total burn
surface area (TBSA). In Chapter 4 using fractional polynomials we found that a
model in ln(TBSA) was better than the linear model and not different from the best
two term fractional polynomial model. However in this matched data set, fractional
polynomial analysis using the closed test procedure did not yield a significant
transformation. Further inspection of the results showed that the best one-term
fractional polynomial model with power 0.5 did seem to offer some improvement
over the linear model with p = 0.057. However, the simplicity of the linear model
and the fact that the preferred closed test procedure was not significant lead us to
choose modeling TBSA as linear in the logit. We leave modeling using

√
TBSA

as an exercise.
For interactions among model covariates, we only examined the interaction

of TBSA with INH_INJ as a burn surgeon felt there was no clinical basis for
any interactions with RACE. This interaction was not significant with p = 0.167
from the likelihood ratio test of the addition of the interaction to the model in
Table 7.9. As noted in the previous section, the matching variable(s) can be effect
modifiers, and thus it is good statistical practice to test for their interaction with
model covariates. Rather than using the grouped age variable employed to create the
matched case and three controls we used the actual value of age to form interactions
with total burn surface area and inhalation injury. Neither interaction was significant
at the five percent level. The AGE by TBSA interaction was significant at the
10 percent level. We leave as an exercise further analysis of a model with this
interaction included. Hence, we continue using as our preliminary final model the
one shown in Table 7.9.

The next step is to obtain the values of the casewise and stratum sum diagnostic
statistics presented in Section 7.2 and plot them versus a relevant quantity. The
plot shown in Figure 7.6 is of the leverage from equation (7.7) versus the estimated
stratum specific probability, θ̂kj . Recall that this probability estimates the stratum
specific conditional probability that the subject is the case among the four subjects
in the stratum. Hence, the sum of the four probabilities in each stratum is equal to
one. In the figure, the controls are plotted using a small “o” and the cases are plotted
using a small “x”. We see that three controls have leverage values that exceed 0.06
and fall somewhat away from the rest of the data. As in the non-matched setting,
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Figure 7.6 Plot of all 338 leverage values versus the estimated probability from the fitted model from
the BURN 1–3 Matched Study in Table 7.9.
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Figure 7.7 Plot of 336 values of �X2 < 50 versus the estimated probability from the fitted model
from the BURN 1 − 3 Matched Study in Table 7.9.

we see that the leverage goes to zero as the estimated probability approaches zero
or one.

Next, we plot the values of the lack of fit diagnostic, �X2, from equation (7.8)
versus the estimated probability. In doing so, we found that two extremely large
values of 134 and 54, belonging to cases, totally distorted the plot. Hence, we
excluded these two cases and plotted the diagnostic statistic in Figure 7.7. Here
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Figure 7.8 Plot of all 338 values of �β̂% versus the estimated probability from the fitted model from
the BURN 1–3 Matched Study in Table 7.9.

we see that two cases have values exceeding 5 and lie away from the remainder
of the data. So, in total, we found four cases with large values of the lack of fit
diagnostic statistic.

The vales of the influence diagnostic statistic computed from equation (7.9) are
plotted versus the estimated probability in Figure 7.8. The two values that lie well
away from the rest of the data correspond to the two extremely poorly fit cases
that we elected not to plot in Figure 7.7. No other values fall far enough from the
rest of the data to cause concern.

The plot of the sum of the four values of �X2 within 95 strata is shown in
Figure 7.9. We excluded the two strata where the sum would exceed 50. The plot
identifies the two strata containing the two cases identified in Figure 7.7.

Next we plot, for all 97 strata, the sum of the four values of �β̂ in Figure 7.10.
The plot clearly identifies the two strata containing the cases that are poorly fit and
excluded from Figure 7.9.

Use of the diagnostic statistics identified three controls with high leverage. When
we refit the model, in work not shown, excluding these three subjects, none of the
estimated coefficients changed by more than 20 percent. Hence, we do not delete
these controls and consider the poorly fit and/or influential cases.

The data and values of the diagnostic statistics are shown in Table 7.10. Stratum
13 is the most poorly fit and influential. The reason is that the case’s data are more
like a control, moderate burn size with an inhalation injury, and the first control’s
data are more like that of a case, quite large burn size and an inhalation injury.
The same is true, but to a lesser extent, in stratum 73 where the case had only a
two percent burn area while two of the controls had areas greater than 20 percent.
For strata 82 and 87, the case is also poorly fit, but less so than strata 13 and 73,
and the data for the cases look more like those for controls.
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Figure 7.9 Plot of stratum sum of �X2 for values less than 50 versus stratum number from the fitted
model from the BURN 1–3 Matched Study in Table 7.9.
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Figure 7.10 Plot of stratum sum of �β̂% versus stratum number from the fitted model from the BURN
1 − 3 Matched Study in Table 7.9.

The next step is to sequentially delete each stratum, refit the model and compute
the percent change in the coefficients from the estimates in Table 7.9. The results are
shown in Table 7.11. When stratum 13 is deleted, the estimate of the coefficient for
TBSA increases by 21 percent (see the definition of �β̂ at the bottom of Table 7.11).
When we delete stratum 73 the coefficient for RACE increases by 27.8 percent.
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Table 7.10 Stratum, Status, Covariates, and Diagnostic Statistics for Stratum with
the Largest Values of the Diagnostic Statistics

STR Death Ta R I θ̂ h �X2 �β̂ Sum�X2 Sum�β̂

13 0 77.2 1 1 0.992 <0.001 0.992 <0.001 135.298 1.197
0 6 1 0 0.000 <0.001 <0.001 <0.001
0 15 0 0 0.000 0.001 0.000 <0.001
1 30 0 1 0.007 0.009 134.305 1.197

73 0 1.7 0 0 0.045 0.008 0.046 <0.001 54.977 0.553
0 21 0 0 0.497 0.001 0.498 <0.001
0 20 0 0 0.439 <0.001 0.439 <0.001
1 2 1 0 0.018 0.010 53.994 0.552

82 0 18 1 0 0.227 0.041 0.237 0.010 11.798 0.176
0 2 0 1 0.319 0.046 0.335 0.016
0 11 1 1 0.374 0.018 0.381 0.007
1 9.5 1 0 0.079 0.013 10.845 0.143

87 0 3 0 0 0.114 0.038 0.118 0.005 6.620 0.133
0 14.5 1 1 0.714 0.019 0.728 0.014
0 2 1 0 0.039 0.009 0.039 <0.001
1 12 1 0 0.134 0.020 5.734 0.114

aCovariates: TBSA(T), RACE(R), and INH_INJ(I).

Table 7.11 Estimated Coefficients from Table 7.10 (All), Estimated
Coefficients when Strata Are Deleted, and Percent Change from All

Data TBSA RACE INH_INJ

All 0.124 −0.959 1.366
Delete stratum 13 0.157 −0.881 1.420
Pct. change −21.0 8.8 −3.8
Delete stratum 73 0.141 −1.329 1.394
Pct. change −12.1 −27.8 −2.0
Delete stratum 82 0.125 −1.065 1.583
Pct. change −0.8 −9.9 −13.7
Delete stratum 87 0.126 −0.998 1.583
Pct. change −1.6 −3.9 −13.7
Delete all four strata 0.216 −1.648 2.282
Pct. change −42.6 −41.8 −40.1

Pct. change = 100 × (β̂All−β̂Deleted)

β̂Deleted

No coefficient changes by more than 20 percent when either stratum 82 or stratum
87 is deleted. When all four strata are deleted, a total of 16 observations, each
estimate increases by more than 40 percent. Hence the diagnostic statistics have
identified influential cases. The question now is: Are the data for these subjects
clinically implausible or did the subject just die or survive when the model would
have predicted otherwise? The only subject whose result could be suspect is the
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Table 7.12 Estimated Odds Ratios and 95 Percent
Confidence Intervals from the Fitted Model in Table 7.9

Variable Odds Ratio 95% CI

Total body surface area 3.5a 2.2, 5.6
Race: whites verses non-whitesa 0.38 0.14, 1.05
Inhalation injury 3.9 1.4, 11.0

aTotal burn surface area increase of 10%.

first control in stratum 13. On further examination, we find that this subject is quite
young, 21 years old, and while all subjects in this stratum are between 20 and 24
it is unusual to survive when 77 percent of the body is burned. In the end, the burn
surgeon felt that none of the data are implausible and none should be excluded.
Hence, we use the fitted model in Table 7.9 as our final model.

We explore in the exercises alternative modeling of these data that compares
the matched analysis to an unmatched analysis.

The estimated odds ratios and corresponding 95 percent confidence intervals for
the three covariates are given in Table 7.12. Under the assumption that the logit
is linear in burn area we see that for every 10 percent increase in the size of the
burn the odds of dying increases 3.5-fold and the increase could be as little as 2.2
or as much as 5.6 with 95 percent confidence. The model estimates that the odds
of whites dying is 62 percent less than non-whites and is not significant at the five
percent level but is at the 10 percent level. The confidence interval suggests that
the decrease could be as much as 86 percent. Having an inhalation injury involved
in the burn increases the odds of dying by almost 4-fold and could be as little as
a 1.4-fold increase or as much as an 11-fold increase.

The data used for the example in this section does not contain as many covariates
as might be available in practice. However, the analysis presented certainly provides
a template that could be followed for modeling in more complicated data sets.

In summary, we have shown in this chapter that modeling in the matched case-
control study follows the same methods as for unmatched studies discussed in
previous chapters. In particular, the diagnostic statistics are highly useful in iden-
tifying subjects and strata that have high leverage, are poorly fit and/or influential.
However, at this time, there are no overall goodness of fit tests of the type discussed
in Section 5.2.

EXERCISES

1. Using the first control and the case in each of the 97 strata of the BURN 1–3
matched data set, perform a complete 1–1 matched analysis.

2. Repeat the analysis in Section 7.4 using the covariate
√

TBSA in place of
TBSA.
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3. Using the first and third controls and the case in each of the 97 strata of the
Burn 1–3 matched study, perform the analysis in this 1–2 matched data.

4. Repeat the analysis in Section 7.4 as an unmatched case-control study including
age as a covariate. Compare the results of this analysis to those in Section 7.4.
Which analysis yields the more precise estimates of the odds ratios for TBSA,
RACE, and INH_INJ?

5. Continue model building, evaluation, and presenting estimated odds ratios with
the interaction between AGE and TBSA added to the model in Table 7.9.



C H A P T E R 8

Logistic Regression Models for
Multinomial and Ordinal Outcomes

8.1 THE MULTINOMIAL LOGISTIC REGRESSION MODEL

8.1.1 Introduction to the Model and Estimation of Model Parameters

In the previous chapters we focused on the use of the logistic regression model
when the outcome variable is dichotomous or binary. This model can be easily
modified to handle the case where the outcome variable is nominal with more than
two levels. For example, consider a study of choice of a health plan from among
three plans offered to the employees of a large corporation. The outcome variable
has three levels indicating which plan, A, B or C is chosen. Possible covariates
might include gender, age, income, family size, and others. The goal is to estimate
the probability of choosing each of the three plans as well as to estimate the odds
of plan choice as a function of the covariates and to express the results in terms of
odds ratios for choice of different plans. McFadden (1974) proposed a modification
of the logistic regression model and called it a discrete choice model. As a result,
the model frequently goes by that name in the business and econometric literature
while it is called the multinomial, polychotomous, or polytomous logistic regression
model in the health and life sciences. We use the term multinomial in this text.

It would be possible to use an outcome variable with any number of levels to
illustrate the extension of the model and methods. However, the details are most
easily illustrated with three categories. Further generalization to more than three
categories is a problem more of notation than of concept. Hence, in the remainder
of this section, we restrict our attention to the situation where the outcome variable
has three categories.

When one considers a regression model for a discrete outcome variable with
more than two responses, one must pay attention to the measurement scale. In this
section, we discuss the logistic regression model for the case in which the outcome
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is nominal scale. We discuss logistic regression models for ordinal scale outcomes
in the next section.

We assume that the categories of the outcome variable, Y, are coded 0, 1, or 2.
In practice one should check that the software package that is going to be used
allows a 0 code as we have used packages that require that the codes begin with 1.
Recall that the logistic regression model we use for a binary outcome variable is
parameterized in terms of the logit of Y = 1 versus Y = 0. In the three outcome
category model we need two logit functions. We have to decide which outcome
category to use as the referent value. The obvious extension is to use Y = 0 as the
referent, or baseline, outcome and to form logit functions comparing each other
category to it. We show later in this section that the logit function for Y = 2 versus
Y = 1 is the difference between these two logit functions.

To develop the model, assume we have p covariates and a constant term, denoted
by the vector x, of length p + 1, where x0 = 1. We denote the two logit functions as

g1(x) = ln

[
Pr (Y = 1|x)

Pr(Y = 0|x)

]
= β10 + β11x1 + β12x2 + · · · + β1pxp

= x ′β1 (8.1)

and

g2(x) = ln

[
Pr (Y = 2|x)

Pr(Y = 0|x)

]
= β20 + β21x1 + β22x2 + · · · + β2pxp

= x ′β2. (8.2)

It follows that the conditional probabilities of each outcome category given the
covariate vector are

Pr(Y = 0|x) = 1

1 + eg1(x) + eg2(x)
, (8.3)

Pr(Y = 1|x) = eg1(x)

1 + eg1(x) + eg2(x)
, (8.4)

and

Pr(Y = 2|x) = eg2(x)

1 + eg1(x) + eg2(x)
. (8.5)

Following the convention for the binary model, we let πj (x) = Pr(Y = j |x) for
j = 0, 1, 2. Each probability is a function of the vector of 2(p + 1) parameters
β′ = (β′

1, β
′
2).
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A general expression for the conditional probability in the three category
model is

πj (x) = Pr(Y = j |x) = egj (x)

2∑
k=0

egk(x)

,

where the vector β0 = 0 and g0(x) = 0.
To construct the likelihood function we create three binary variables coded 0 or

1 to indicate the group membership of an observation. We note that these variables
are introduced only to clarify the likelihood function and are not used in the actual
multinomial logistic regression analysis. The variables are coded as follows: if
Y = 0 then Y0 = 1, Y1 = 0, and Y2 = 0; if Y = 1 then Y0 = 0, Y1 = 1, and Y2 = 0;
and if Y = 2 then Y0 = 0, Y1 = 0, and Y2 = 1. We note that no matter what value
Y takes on, the sum of these variables is

∑2
j=0 Yj = 1. Using this notation it

follows that the conditional likelihood function for a sample of n independent
observations is

l(β) =
n∏

i=1

[π0(xi )
y0i π1(xi )

y1i π2(xi )
y2i ].

Taking the log and using the fact that
∑

yji = 1 for each i, the log-likelihood
function is

L(β) =
n∑

i=1

y1ig1(xi ) + y2ig2(xi ) − ln(1 + eg1(xi ) + eg2(xi )). (8.6)

The likelihood equations are found by taking the first partial derivatives of L(β)

with respect to each of the 2(p + 1) unknown parameters. To simplify the notation
somewhat, we let πji = πj (xi ). The general form of these equations is:

∂L(β)

∂βjk
=

n∑
i=1

xki (yji − πji ) (8.7)

for j = 1, 2 and k = 0, 1, 2, . . . , p, with x0i = 1 for each subject.
The maximum likelihood estimator, β̂, is obtained by setting these equations

equal to 0 and solving for β̂. The solution requires the same type of iterative
computation that is used to obtain the estimate in the binary outcome case.

The matrix of second partial derivatives is required to obtain the information
matrix and, from it, the estimator of the covariance matrix of the maximum like-
lihood estimator. The general form of the elements in the matrix of second partial
derivatives is as follows:

∂2L(β)

∂βjk∂βjk′
= −

n∑
i=1

xk′ixki πji (1 − πji ) (8.8)
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and
∂2L(β)

∂βjk∂βj ′k′
=

n∑
i=1

xk′ixki πji πj ′i (8.9)

for j and j ′ = 1, 2 and k and k′ = 0, 1, 2, . . . , p. The observed information matrix,
Î(β̂), is the 2(p + 1) by 2(p + 1) matrix whose elements are the negatives of the
values in equations (8.8) and (8.9) evaluated at β̂. The estimator of the covari-
ance matrix of the maximum likelihood estimator is the inverse of the observed
information matrix,

V̂ar(β̂) = [Î(β̂)]−1.

A more concise representation for the estimator of the information matrix may
be obtained by using a form similar to the binary outcome case. Let the matrix X
be the n by p + 1 matrix containing the values of the covariates for each subject;
let the matrix Vj be the n by n diagonal matrix with general element π̂ji (1 − π̂ji )

for j = 1, 2 and i = 1, 2, 3, . . . , n; and let V3 be the n by n diagonal matrix with
general element π̂1i π̂2i . The estimator of the information matrix may be expressed
as

Î(β̂) =
[

Î(β̂)11 Î(β̂)12

Î(β̂)21 Î(β̂)22

]
(8.10)

where

Î(β̂)11 = (X ′V1X),

Î(β̂)22 = (X ′V2X),

and
Î(β̂)12 = Î(β̂)21 = −(X ′V3X).

8.1.2 Interpreting and Assessing the Significance of the Estimated
Coefficients

To illustrate the methods and models in this chapter we use data from a study
described in Fontanella et al. (2008) on determinants of aftercare placement for
psychiatrically hospitalized adolescents. A subset of the data, suitably modified
to protect confidentiality, has been made available to us by the authors. It is not
our intent to repeat the detailed analyses reported in their paper, but rather to use
the data to motivate and describe methods for modeling multinomial and ordinal
scaled outcomes using logistic regression models. Fontanella et al. (2008) model a
four-category outcome variable, PLACE, with the following values/categories: 0 =
Outpatient, 1 = Day Treatment, 2 = Intermediate Residential and 3 = Residential.
To simplify the presentation in this section we combined the first two place-
ment categories, Outpatient and Day Treatment∗ to form a new outcome variable,

∗We performed preliminary analyses, not shown here, that justify pooling these two outcome categories.
We use the four category outcome in the exercises.
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PLACE3, with values/categories as follows: 0 = Outpatient or Day Treatment,
1 = Intermediate Residential and 2 = Residential. The subset of variables from
the main study that we use is described in Table 1.8. The data are available from
the website in the file ALR3_APS.

To simplify the discussion of the estimation and interpretation of odds ratios
in other multinomial outcome settings we need to generalize the notation used in
the binary outcome case to include the outcomes being compared as well as the
values of the covariate. We assume that the outcome labeled with Y = 0 is the
reference outcome. The subscript on the odds ratio indicates which outcome is
being compared to the reference outcome. The odds ratio of outcome Y = j versus
outcome Y = 0 for covariate values of x = a versus x = b is

ORj (a, b) = Pr(Y = j |x = a)/ Pr(Y = 0|x = a)

Pr(Y = j |x = b)/ Pr(Y = 0|x = b)
.

In the special case when the covariate is binary, coded 0 or 1, we simplify the
notation to ORj = ORj (1, 0).

We begin by considering a model containing a single dichotomous covariate
coded 0 or 1. In the binary outcome model the estimated slope coefficient is identi-
cal to the log-odds ratio obtained from the 2 × 2 table cross-classifying the outcome
and the covariate. As we noted, when the outcome has three levels there are two
logit functions. We define these functions in such a way that the two estimated
coefficients, one from each logit function are, respectively, equal to the log-odds
ratios from the pair of 2 × 2 tables obtained by cross-classifying the y = j and
y = 0 outcomes by the covariate, with y = 0 as the reference outcome value.

As a specific example, consider the cross-classification of PLACE3 versus his-
tory of violence (VIOL) displayed in Table 8.1. When we use PLACE3 = 0 as the
reference outcome the two odds ratios calculated from Table 8.1 are

ÔR1 = 104 × 80

179 × 26
= 1.79

and
ÔR2 = 104 × 80

179 × 15
= 3.10.

Table 8.1 Cross-Classification of Placement (PLACE3) by
History of Violence (VIOL) and Estimated Odds Ratios
Using Day or Outpatient as the Reference Outcome Value

History of Violence

PLACE3 No (0) Yes (1) Total ÔR

Day or Outpatient (0) 80 179 259 1.00
Intermediate residential (1) 26 104 130 1.79
Residential (2) 15 104 119 3.10

Total 121 387 508
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The results of fitting a three-category logistic regression model, using STATA’s
mlogit command, to these data are presented in Table 8.2. In this table, the values
labeled ÔR are obtained by exponentiating the estimated slope coefficients, and
they are identical to the odds ratios calculated directly from the cell counts given
in Table 8.1.

As is the case in the binary outcome setting with a dichotomous covariate, the
estimated standard error of the coefficient [i.e., the ln(OR)] is the square root of
the sum of the inverse of the cell frequencies. For example, the estimated standard
error of the coefficient for VIOL in the first logit is

ŜE(β̂11) =
[

1

80
+ 1

179
+ 1

26
+ 1

104

]0.5

= 0.2572,

which is identical to the value in Table 8.2.
The endpoints of the confidence interval for the odds ratio are obtained in exactly

the same manner as for the binary outcome case. First we obtain the confidence
interval for the coefficient and then exponentiate the endpoints of the interval to
obtain the confidence interval for the odds ratio. For example, the 95% confidence
interval for the odds ratio of PLACE3 = 1 versus PLACE3 = 0 shown in Table 8.2
is calculated as follows:

exp(0.581 ± 1.96 × 0.2572) = (1.08, 2.96).

The endpoints for the confidence interval for PLACE3 = 2 versus PLACE3 = 0 in
Table 8.2 are obtained in a similar manner.

We interpret each estimated odds ratio and its corresponding confidence interval
as if it came from a binary outcome setting. In some cases it may further support
the analysis to compare the magnitude of the two estimated odds ratios. This can
be done with or without tests of equality.

The interpretation of the effect of history of violence is as follows: (i) The odds
among adolescents with a history of violence of being placed in an intermediate
residential facility is 1.79 times greater than the odds among adolescents without a
history of violence. The confidence interval indicates that the odds could be a little
as 1.1 times or as much as 3 times larger with 95% confidence. (ii) The odds among
adolescents with a history of violence of being placed in a residential facility is
3.1 times greater than the odds among adolescents without a history of violence.
The odds could be a little as 1.7 times or as much as 5.7 times larger with 95%

Table 8.2 Results of Fitting the Logistic Regression Model to the Data in Table 8.1

Logit Variable Coeff. Std. Err. ÔR 95% CI

1 VIOL 0.581 0.2572 1.79 1.08, 2.96
Constant −1.124 0.2257

2 VIOL 1.131 0.3072 3.10 1.70, 5.66
Constant −1.674 0.2814
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confidence. Thus we see that having a history of violence is a significant factor for
being placed in some type of residential facility.

Although the odds ratio for placement in a residential facility is roughly twice
that for an intermediate facility, the two values may be within sampling variation of
each other. We note that the test of the equality of the two odds ratios, OR1 = OR2,
is equivalent to a test that the log-odds for PLACE3 = 2 versus PLACE3 = 1 is
equal to 0. The simplest way to obtain the point and interval estimate is from
the difference between the two estimated slope coefficients in the logistic regres-
sion model. For example, using the frequencies in Table 8.1 and the estimated
coefficients from Table 8.2 we have

β̂21 − β̂11 = 1.131 − 0.581

= 0.550

= ln

(
104/119

15/119

)
− ln

(
104/130

26/130

)
= ln

(
26

15

)
.

The estimator of the variance of the difference between the two coefficients, β̂21 −
β̂11, is

V̂ar(β̂21 − β̂11) = V̂ar(β̂21) + V̂ar(β̂11) − 2 × Ĉov(β̂21, β̂11).

We obtain values for the estimates of the variances and covariances from a listing of
the estimated covariance matrix, which is an option in most, if not all, packages.
As described in Section 8.1.1 the form of this matrix is a little different from
the covariance matrix in the binary setting. There are two matrices containing
the estimates of the variances and covariances of the estimated coefficients in
each logit and a third matrix containing the estimated covariances of the estimated
coefficients from the different logits. The matrix for the model in Table 8.2 is shown
in Table 8.3, where Logit 1 is the logit function for PLACE3 = 1 versus PLACE3 =
0 and Logit 2 is the logit function for PLACE3 = 2 versus PLACE3 = 0.

Using the results in Table 8.3 we obtain the estimate of the variance of the
difference in the two estimated coefficients as

V̂ar(β̂21 − β̂11) = 0.09437 + 0.06616 − 2 × 0.01809 = 0.12435.

Table 8.3 Estimated Covariance Matrix for the Fitted Model in Table 8.2

Logit 1 Logit 2

VIOL Constant VIOL Constant

Logit 1 VIOL 0.06616
Constant −0.05096 0.05096

Logit 2 VIOL 0.01809 −0.01250 0.09437
Constant −0.01250 0.01250 −0.07917 0.07917
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The endpoints of a 95% confidence interval for this difference are

0.550 ± 1.96 ×
√

0.12435 = (−0.1412, 1.2412).

As the confidence interval includes 0 we cannot conclude that the log-odds ratio for
PLACE3 = 1 is different from the log-odds ratio for PLACE3 = 2. Equivalently,
we can express these results in terms of odds ratios by exponentiating the point and
interval estimates. This yields the odds ratio for PLACE3 = 2 versus PLACE3 = 1
as ÔR = 1.73 and a confidence interval of (0.868, 3.460). The interpretation of this
odds ratio is that the odds of residential placement is 1.73 times larger than the
odds for intermediate residential placement among adolescents with a history of
violence.

In practice, if there was no difference in the separate odds ratios over all model
covariates then we might consider pooling outcome categories 1 and 2 to obtain the
binary outcome: 0 = Outpatient or day treatment and 1 = Residential, intermediate
or full time. We return to this question following model development in the next
section.

We note that in a model with many covariates the extra computations required
for these auxiliary comparisons could become a burden. In this setting, procedures
like STATA’s test or lincom commands are quite helpful.

A preliminary indication of the importance of the variable may be obtained from
the two Wald statistics; however, as is the case with any multi degree of freedom
variable, we should use the likelihood ratio test to assess the significance. For
example, to test for the significance of the coefficients for VIOL we compare the
log-likelihood from the model containing VIOL to the log-likelihood for the model
containing only the two constant terms, one for each logit function. Under the null
hypothesis that the coefficients are 0, minus twice the change in the log-likelihood
follows a chi-square distribution with 2 degrees of freedom. In this example,
the log-likelihood for the constant only model is L0 = −524.37093 and the log-
likelihood of the fitted model is L1 = −515.73225. The value of the statistic is

G = −2 × [−524.37093 − (−515.73225)] = 17.2774,

which yields a p-value of 0.0002. Thus, from a statistical point of view, the
variable VIOL is significantly associated with adolescent placement.

In general, the likelihood ratio test for the significance of the coefficients for a
variable has degrees of freedom equal to the number of outcome categories minus
one times the degrees of freedom for the variable in each logit. For example, if
we were using the four category outcome variable, PLACE, and the four category
covariate danger to others (DANGER) then the degrees of freedom are (4 − 1) ×
(4 − 1) = 9. This is easy to keep track of if we remember that we are modeling
separate logits for comparing the reference outcome category to each other outcome
category.

For a categorical covariate with more than two levels we expand the number of
odds ratios to include comparisons of each level of the covariate to a reference level
for each possible logit function. To illustrate this we consider the danger to others
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(DANGER) modeled via three design variables using the value of 0 (Unlikely) as
the reference covariate value. The cross-classification of PLACE3 by DANGER is
given in Table 8.4.

Using the value of PLACE3 = 0 as the reference outcome category and
DANGER = 0 as the reference covariate value, the six odds ratios are as
follows:

ÔR1(1, 0) = 32 × 42

7 × 46
= 4.174,

ÔR1(2, 0) = 48 × 42

7 × 62
= 4.645,

ÔR1(3, 0) = 43 × 42

7 × 109
= 2.367,

ÔR2(1, 0) = 23 × 42

5 × 46
= 4.2,

ÔR2(2, 0) = 31 × 42

5 × 62
= 4.2

and
ÔR2(3, 0) = 60 × 42

5 × 109
= 4.624.

The results of fitting the logistic regression model to the data in Table 8.4 are
presented in Table 8.5.

Table 8.4 Cross-Classification of Placement (PLACE3) by Danger to Others
(DANGER)

DANGER

PLACE3 Unlikely (0) Possibly (1) Probably (2) Likely (3) Total

Day or Outpatient (0) 42 46 62 109 259
Intermediate Residential (1) 7 32 48 43 130
Residential (2) 5 23 31 60 119

Total 54 101 141 212 508

Table 8.5 Results of Fitting the Logistic Regression Model to the Data
in Table 8.4

Variable Coeff. Std. Err. ÔR 95% CI

Logit 1 DANGER_1 1.429 0.4687 4.174 1.666, 10.459
DANGER_2 1.536 0.4513 4.645 1.918, 11.249
DANGER_3 0.862 0.4462 2.367 0.987, 5.675
Constant −1.792 0.4082

Logit 2 DANGER_1 1.435 0.5376 4.200 1.464, 12.047
DANGER_2 1.435 0.5217 4.200 1.511, 11.677
DANGER_3 1.531 0.4997 4.624 1.737, 12.311
Constant −2.128 0.4731
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We see that exponentiation of the estimated logistic regression coefficients yields
precisely the same odds ratios as were obtained from the cell counts of the 2 × 2
tables formed from the original 3 × 4 contingency table. The odds ratios for logit 1
are obtained from the 2 × 4 table containing the rows corresponding to PLACE3 =
0 and PLACE3 = 1 and the four columns. The odds ratios for logit 2 are obtained
from the 2 × 4 table containing the rows corresponding to PLACE3 = 0 and
PLACE3 = 2 and the four columns.

To assess the significance of the variable DANGER, we calculate minus twice
the change in the log-likelihood relative to the constant only model. The value of
the test statistic is

G = −2 × [−524.37093 − (−510.21286)] = 28.3161,

and, with 6 degrees of freedom, yields a p-value of < 0.001.
Thus, we conclude that an adolescent’s danger to others is significantly asso-

ciated with placement. Before proceeding with further analyses of DANGER it is
worth noting that the estimated standard error of a coefficient is the square root of
the sum of the inverse of the cell frequencies. For example, the standard error of
the log-odds of DANGER = 3 versus DANGER = 0 in the first logit is

ŜE(β̂13) =
[

1

7
+ 1

109
+ 1

43
+ 1

42

]0.5

= 0.4462.

We note that the frequencies in the last two rows of the “Unlikely” response
column in Table 8.4 are small relative to rest of the table (i.e., 7 and 5). As
“Unlikely” is the referent exposure value all standard error estimates contain the
inverse of either 7 or 5. A question we are frequently asked is: “If I change the
reference exposure to the one with the largest frequencies, ‘Likely’ in this case, will
the estimated log-odds ratios have smaller estimated standard errors?” The answer
is not a simple yes or no as the two sets of results are not comparable as they
estimate entirely different odds ratios. Also, the value of the likelihood ratio test
is exactly the same for all parameterizations of the six design variables. We leave
examples showing this as an exercise. In our view, one should define the design
variables to yield estimates of odds ratios that are most clinically meaningful. In
the case of the covariate DANGER we feel that comparisons to “Unlikely” are
most meaningful and are the simplest to interpret.

Any continuous covariate that is modeled as linear in the logit has a single
estimated coefficient for each logit function. Hence exponentiation of the estimated
coefficient gives the estimated odds ratio for a change of one unit in the variable.
Thus, remarks in Chapter 3 about knowing what a single unit is and estimation of
odds ratios for a clinically meaningful change apply directly to each logit function
in the multinomial logistic regression model as well.

8.1.3 Model-Building Strategies for Multinomial Logistic Regression

In principle, the strategies and methods for multivariable modeling with a multi-
nomial outcome variable are identical to those for the binary outcome variable
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discussed in Chapter 4. The theory for stepwise selection of variables has been
worked out and is available in some packages. However, the method is not currently
available in many of the other widely distributed statistical software packages, such
as STATA. To illustrate modeling and interpretation of the results, we proceed with
an analysis of the data from the Adolescent Placement Study.

The data we use for the Adolescent Placement Study has 11 independent vari-
ables and 508 subjects. We could begin model building with a model containing all
11 variables. However two covariates, NEURO and DANGER, have four response
levels and this generates six coefficients each. Thus a model with all 11 covariates
would have 32 estimated coefficients. With only 508 subjects we would almost
certainly risk numeric instability. Hence, we begin by fitting the 11 individual
univariable models with results summarized in Table 8.6.

The variable neuropsychiatric disturbance (NEURO) is not significant at the 0.25
level. Also, none of the Wald tests for the six coefficients are significant. Hence
this variable is not a candidate for inclusion in the multivariable model.

The variable danger to others (DANGER) is highly significant but, as we saw
from the calculations of the six odds ratios in Table 8.5, the values are not especially
different from each other. The multivariable Wald test of the equality of the three
coefficients in the second logit function in Table 8.5 is not significant with p =
0.917. This suggests that one could pool the three categories “Possible”, “Probably”,
and “Likely” into a single category. The 2 degrees of freedom, multivariable Wald
test for the first logit is significant (p = 0.024), but the one degree of freedom Wald
test for the equality of the first two coefficients is not significant (p = 0.721). Hence
there are several options available for pooling categories: (i) Form a dichotomous
covariate with 0 = “Unlikely” and 1 = “Not Unlikely” or (ii) Form a three category
variable with 0 = “Unlikely”, 1 = “Possible”, or “Probable”, and 2 = “Likely”.
We choose option (i) as it results in a much simpler model with little difference
in the first logit function. Thus we proceed using the dichotomous coding and call

Table 8.6 Results of Fitting Univariable Models with Three
Levels of Placement (PLACE3) as the Outcome

Variable Likelihood Ratio Test DF p

AGE 7.52 2 0.023
RACE 4.01 2 0.135
GENDER 3.70 2 0.157
NEURO 3.12 6 0.794
EMOT 7.37 2 0.025
DANGER 28.32 6 <0.001
ELOPE 10.57 2 0.005
LOS 165.85 2 <0.001
BEHAV 60.17 2 <0.001
CUSTD 225.15 2 <0.001
VIOL 17.28 2 <0.001
DANGER_D 18.53 2 <0.001
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Table 8.7 Estimated Coefficients, Estimated Standard Errors, Wald
Statistics, and Two-Tailed p-Values for the Multivariable Model

Variable Coeff. Std. Err. z p

Logit 1 AGE 0.177 0.0938 1.89 0.058
RACE 0.671 0.3111 2.16 0.031
GENDER 0.493 0.3416 1.44 0.149
EMOT 0.515 0.3613 1.42 0.154
DANGER_D 1.226 0.6801 1.80 0.071
ELOPE −0.247 0.3356 −0.73 0.462
LOS 0.055 0.0144 3.81 <0.001
BEHAV 0.056 0.1018 0.55 0.582
CUSTD 4.038 0.3459 11.67 <0.001
VIOL −0.208 0.4922 −0.42 0.673
Constant −7.500 1.6235 −4.62 <0.001

Logit 2 AGE 0.198 0.0981 2.02 0.043
RACE 0.657 0.3232 2.03 0.042
GENDER 0.406 0.3491 1.16 0.245
EMOT 0.431 0.3824 1.13 0.260
DANGER_D 0.208 0.8438 0.25 0.805
ELOPE 0.389 0.3401 1.15 0.252
LOS 0.087 0.0140 6.20 <0.001
BEHAV 0.414 0.1144 3.62 <0.001
CUSTD 2.515 0.3615 6.96 <0.001
VIOL −0.009 0.6049 −0.02 0.988
Constant −9.398 1.7796 −5.28 <0.001

it DANGER_D. Results for the fit of this model containing only DANGER_D are
shown in the last row of Table 8.6.

Hence our first multivariable model is one containing 10 covariates with DAN-
GER recoded. The results of the fit are presented in Table 8.7.

Since the fitted model contains 10 covariates each with two coefficients we
must proceed cautiously with model simplification. We use the p-values from the
Wald tests to identify possible variables to eliminate and then use the two degree
of freedom likelihood ratio test to confirm our decision. Following the fit of the
reduced model we must check that the coefficients for the remaining covariates
have not changed by more than 20–25%.

The least significant variable in Table 8.7 is history of violence (VIOL). The
significance level of the likelihood ratio test for its removal from the model is
p = 0.898 and none of the coefficients changed by more than 20%. In a similar
manner we eliminated ELOPE, EMOT and GENDER. The results for the fit of the
six variable models are shown in Table 8.8.

We see that in this six-covariate model the estimated coefficient for the
dichotomized version of danger to others (DANGER_D) is nearly significant
in the first but not the second logit and the reverse is true for behavioral score
(BEHAV). The two variables confound each other’s association with placement
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Table 8.8 Estimated Coefficients, Estimated Standard Errors, Wald Statistics,
and Two-Tailed p-Values for the Six Variable Multivariable Model

Variable Coeff. Std. Err. z p

Logit 1 AGE 0.174 0.0920 1.89 0.058
RACE 0.623 0.3067 2.03 0.042
DANGER_D 1.135 0.6235 1.82 0.069
LOS 0.055 0.0142 3.87 <0.001
BEHAV 0.058 0.0879 0.66 0.506
CUSTD 3.956 0.3337 11.86 <0.001
Constant −7.229 1.5955 −4.53 <0.001

Logit 2 AGE 0.202 0.0962 2.10 0.036
RACE 0.650 0.3193 2.04 0.042
DANGER_D 0.210 0.7286 0.29 0.773
LOS 0.086 0.0138 6.23 <0.001
BEHAV 0.425 0.1009 4.21 <0.001
CUSTD 2.528 0.3512 7.20 <0.001
Constant −9.070 1.7408 −5.21 <0.001

as the mean behavioral score at level unlikely (DANGER_D = 0) is 3 whereas
the mean is 6 in the not unlikely group (DANGER_D = 1) and the difference is
significant. When we delete one of the variables and perform the likelihood ratio
test we find that it is not significant for deleting DANGER_D with p = 0.15 and
is significant for BEHAV with p < 0.001. After evaluating the role that either of
these variables may play as a confounder we find that none of the coefficients for
AGE, RACE, LOS or CUSTD changed by more than 20% comparing the six to
either five variable model. However, as expected, the coefficients for DANGER_D
and BEHAV did change when the other was deleted. After considering these
details we decided that we need both behavioral score and danger to others in the
model. Hence we consider the model in Table 8.8 as our preliminary main effects
model.

The model in Table 8.8 contains continuous covariates: age, length of stay and
behavioral score. We checked for the scale of each of these covariates using frac-
tional polynomials. This analysis showed that there was no evidence of nonlinearity
in either logit function for both age and behavioral score. For length of stay the best
one-term fractional polynomial transformation, the square root, was significantly
better than the linear model and the best two-term fractional polynomial model
was not better than the square root transformation. The log transformation was the
second-best transformation. Hence our main effects model contains square root of
length of stay, denoted by LOS_5.

The next step in model building is to consider possible interactions between
the main effects. In work not shown, we found that the only significant interaction
was between LOS_5 and CUSTD. The effect of the interactions on the model is to
reduce the slope in the square root of LOS to the point of nonsignificance in the
first logit but not in the second logit function. Since this interaction is clinically
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Table 8.9 Estimated Coefficients, Estimated Standard Errors, Wald Statistics,
and Two-Tailed p-Values for the Preliminary Final Multivariable Model

Variable Coeff. Std. Err. z p

Logit 1 AGE 0.182 0.0942 1.93 0.053
RACE 0.652 0.3144 2.07 0.038
DANGER_D 1.073 0.6369 1.69 0.092
BEHAV 0.080 0.0906 0.89 0.375
LOS_5 0.634 0.1357 4.67 <0.001
CUSTD 6.068 0.8365 7.25 <0.001
LxCa −0.639 0.2293 −2.79 0.005
Constant −8.956 1.7042 −5.26 <0.001

Logit 2 AGE 0.194 0.0968 2.00 0.045
RACE 0.625 0.3211 1.94 0.052
DANGER_D 0.248 0.7408 0.33 0.738
BEHAV 0.410 0.1019 4.03 <0.001
LOS_5 0.834 0.1272 6.56 <0.001
CUSTD 3.086 0.8812 3.50 <0.001
LxCa −0.254 0.2281 −1.11 0.266
Constant −10.546 1.8145 −5.81 <0.001

aLxC = LOS_5 × CUSTD and LOS_5 = √
LOS.

plausible our preliminary final model includes it, yielding the fitted model shown
in Table 8.9.

The model in Table 8.9 contains two logit functions, each with seven covariates
and a constant term. Each logit function is not overly complicated but the fact that
there are two functions complicates presentation of results. However, the model in
Table 8.9 is the preliminary final model. As in the examples in previous chapters,
any model selected by purposeful selection is “preliminary” until we evaluate its
fit and check for influential and poorly fit subjects.

In packages that do not support the full range of methods for assessing the fit of
multinomial logistic models an alternative is to approximate the fit by fitting sepa-
rate binary models. Begg and Gray (1984) proposed this approach. For example, in
a three group problem we would fit a model for Y = 1 versus Y = 0 (ignoring the
Y = 2 data) using a standard logistic regression package for a binary outcome vari-
able and then fit separately a model for Y = 2 versus Y = 0 (ignoring the Y = 1
data). Begg and Gray show that the estimates of the logistic regression coefficients
obtained in this manner are consistent, and under many circumstances the loss in
efficiency is not too great. It has been our experience that the coefficients obtained
from separately fit logistic models are, in general, close to those from the multi-
nomial fit. This suggests that the individualized fitting approach can be useful for
scale selection for continuous covariates in packages that do not support fractional
polynomial analysis when fitting the multinomial model and for diagnostic statis-
tics. We use this approach in the next section to examine the diagnostic statistics.
We compare the estimated coefficients from the multinomial logistic fit in Table 8.9
to estimates obtained from the two separate binary fits in Table 8.10. Out of the
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Table 8.10 Comparison of the Estimated Coefficients from a Multinomial
Logistic Fit and Independent Logistic Regression Fit (ILR)

Coeff.

Variable Multinomial Logistic ILR Pct. Differencea

Logit 1 AGE 0.182 0.137 −24.5
RACE 0.652 0.646 −0.9
DANGER_D 1.073 0.919 −14.4
BEHAV 0.080 0.115 42.7
LOS_5 0.634 0.589 −7.0
CUSTD 6.068 5.899 −2.8
LxCb −0.639 −0.591 −7.5
Constant −8.956 −8.217 −8.2

Logit 2 AGE 0.194 0.200 3.1
RACE 0.625 0.496 −20.5
DANGER_D 0.248 0.203 −18.2
BEHAV 0.410 0.459 11.8
LOS_5 0.834 0.911 9.2
CUSTD 3.086 3.219 4.3
LxCb −0.254 −0.277 9.0
Constant −10.546 −11.120 5.4

a�β̂% = 100 × (β̂ILR−β̂Mult)

β̂Mult
.

bLxC = LOS_5 × CUSTD and LOS_5 = √
LOS.

16 coefficients, 4 differ by more than 20%. The largest difference, 42%, is between
the estimates of the coefficient for BEHAV.

8.1.4 Assessment of Fit and Diagnostic Statistics for the Multinomial
Logistic Regression Model

As with any fitted model, before it can be used to make inferences, the overall fit and
the contribution of each subject to the fit must be assessed. In multinomial logistic
regression, the multiple outcome categories make this a more difficult problem than
was the case with a model for a binary outcome variable. When we model a binary
outcome variable we have a single fitted value, the estimated logistic probability
of the outcome being present, Pr(Y = 1|x). When the outcome variable has three
categories we have two estimated logistic probabilities, the estimated probabilities
of categories 1 and 2, Pr(Y = 1|x) and Pr(Y = 2|x).

Fagerland (2009) and Fagerland et al. (2008) developed an extension, for the
multinomial logistic regression model, of the decile of risk goodness of fit test
discussed in Chapter 5 for the binary case. Fagerland and Hosmer (2012a) presented
a STATA program to calculate the test. Other work includes Goeman and le Cessie
(2006), who developed a smoothed residual based test of goodness of fit, but this
test has not been implemented in commonly available software packages. Fagerland
(2009) extended the normalized Pearson chi-square test discussed in Chapter 5 to
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the multinomial setting. The computations are somewhat complex and the test is
not yet available in current software.

Fagerland’s extension of the decile of risk test forms g groups using the ranked
values of 1 − π̂0, the complement of the estimate of the probability Pr(Y = 0|x).
One forms a table of observed and expected frequencies over the K levels of the
outcome variable and g groups. The test statistic is calculated as

ĈM =
g∑

i=1

K−1∑
j=0

(Oij − Êij )
2

Êij

, (8.11)

where Oij = ∑
l∈�i

ylj , Êij = ∑
l∈�i

π̂lj , and �i denote the subjects in the i th
group. Fagerland (2009) and Fagerland et al. (2008) show by simulations that
when the sample is sufficiently large and the correct model has been fit that ĈM

follows a chi-square distribution with (g − 2) × (K − 1) degrees of freedom. In the
binary outcome setting, K = 2, this test is identical to Ĉ described in Chapter 5. In
settings where the number of covariate patterns is appreciably less than the sample
size ĈM should be calculated by covariate patterns, as shown in Chapter 5.

Lesaffre (1986), Lesaffre and Albert (1989) have proposed extensions of the
logistic regression diagnostics to the multinomial logistic regression model. How-
ever, these methods are not easily calculated using the available software. This is
somewhat surprising given that programs to fit the multinomial logistic regression
model are now widespread. Thus, until software developers add these methods
to their packages we recommend calculating multinomial logistic regression diag-
nostics using the individual logistic regressions approach of Begg and Gray. An
alternative to using the coefficients from the separate logistic regression fit, see
Table 8.10, is to employ the “trick” illustrated in Section 6.4 where one forces the
iterative estimation process to begin using the coefficients from the multinomial
logistic fit in Table 8.9 and the iterations are set to 0. This effectively forces cal-
culation of the diagnostic statistics in Chapter 5 using the multinomial fit. If it is
not possible to use the “trick” in a software package then we recommend using the
separate logistic fit and its diagnostics statistics.

We illustrate the methods by considering assessment of fit of the multinomial
logistic regression model shown in Table 8.9 for the Adolescent Placement Study.
The results are shown in Table 8.11. In this example the number of covariate
patterns is equal to the sample size so we calculate ĈM using equation (8.11).
The value of the goodness of fit test is ĈM = 8.523 and, with 16 = (10 − 2) ×
(3 − 1) degrees of freedom, yields p = 0.932, which supports model fit. We note
that there is quite good agreement between the observed and estimated expected
frequencies. By way of explanation, the observed frequency of 51 in the “Place3 =
0” column and Group = 6 row is the number of subjects with PLACE_3 = 0
and estimated logistic probability π̂0 such that 0.4281 < 1 − π̂0 ≤ 0.7746. The
observed frequency is 23 = ∑

l∈�6
yl0 and the estimated expected frequency is

19.12 = ∑
l∈�6

π̂l0. Other observed and expected values are calculated in a similar
manner.
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Table 8.11 Observed (Obs) and Estimated Expected (Exp) Frequencies Within Each
Group for PLACE_3 = 1, PLACE_3 = 2, and PLACE_3 = 0 Using the Fitted
Logistic Regression Model for the Adolescent Placement Study in Table 8.9

Place_3 = 1 Place_3 = 2 Place_3 = 0

Group Cut Point Obs Exp Obs Exp Obs Exp Total

1 0.0476 0 0.74 0 0.89 51 49.37 51
2 0.092 2 1.77 2 1.81 47 47.41 51
3 0.1389 3 3.22 4 2.8 44 44.99 51
4 0.2042 5 5.33 3 3.3 43 42.37 51
5 0.4281 11 9.08 7 5.08 32 35.84 50
6 0.7746 13 14.1 15 17.78 23 19.12 51
7 0.8606 12 10.09 28 31.59 11 9.32 51
8 0.9003 12 11.74 36 33.22 3 6.05 51
9 0.9536 19 19.33 28 27.9 4 3.78 51

10 1.0 42 43.61 7 5.63 1 0.76 50

The next step is to calculate and examine the diagnostic statistics to check for
poorly fit and influential subjects. In this example we were able, using STATA,
to obtain diagnostics based on the estimates of the coefficients in Table 8.9. We
realize that some readers will not be able to obtain diagnostic statistics based
on the coefficients in Table 8.9, as a result we also calculated diagnostics using
the independent logistic fit (ILR) shown in Table 8.10. The same subjects were
identified using either set of diagnostic statistics. We leave the plots as an exercise
and summarize our findings.

For each plot (see Section 5.3 for our suggestions of plots to assess the diag-
nostic statistics) we selected, for further examination, all subjects with one or more
diagnostic statistics that fell well away from the bulk of the plotted values. These
are summarized in Table 8.12.

The standard procedure at this point is to successively delete each one of these
subjects, refit the model and use �β̂% to evaluate their effect on the magnitude
of the estimated coefficients. The results of the deletions are summarized in the
last column of Table 8.12. There we see that five of the eight identified subjects
have an undue influence on the estimate of the dichotomized version of danger to
others, DANGER_D. The results agree with the diagnostic, except for subject 144
where the effect should have been on logit 1, not logit 2. The diagnostic statistics
are not infallible predictors of effect and that is why it is always a good idea to
delete and refit.

When we delete the five subjects with influence on the coefficient for DAN-
GER_D in the second logit the estimate decreases by 178%. The magnitude of the
change is not totally unexpected as two of the six frequencies in the 3 × 2 table
of PLACE3 by DANGER_D are 7 and 5. In addition, the estimate of BEHAV
increases by 51% in logit 1.

When we examined the data for the eight subjects in Table 8.12 no values
seemed clinically implausible. Thus, based on our assessment of model fit and the
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Table 8.12 Subjects with Large Values for One or More Diagnostic Statistic from
Either or Both Logit 1 or Logit 2 and their Effect on the Fitted Logistic Regression
Model for the Adolescent Placement Study in Table 8.9

Subject Diagnostic Deletion Effect on Estimated Parameters

76 Large �X2 logit 1 No major effect on the estimates
85 Large �β̂ logit 1 and logit 2 Estimate of the coefficient of L × C

decreases by 45%
109 Large �β̂ logit 2 Estimate of the coefficient of DANGER_D

in logit 2 decreases by 105%
144 High leverage and large �β̂ logit 1 Estimate of the coefficient of DANGER_D

in logit 2 decreases by 112%
220 Large �X2 logit 2 Estimate of the coefficient of DANGER_D

in logit 2 decreases by 52%
266 Large �X2 and large �β̂ logit 2 Estimate of the coefficient of DANGER_D

in logit 2 increases by 189%
288 Large �X2 logit 1 No major effect on the estimates
421 Large �X2 logit 2 Estimate of the coefficient of DANGER_D

in logit 2 decreases by 46%

Table 8.13 Estimated Odds Ratios and 95% Confidence Intervals for Age, Race, and
Behavioral Symptoms Score

Intermediate versus Residential versus
Outpatient or Day Outpatient or Day

Variable Odds Ratio 95% CI Odds Ratio 95% CI

AGE 1.44a 0.99, 2.08 1.47 1.01, 2.15
RACE 1.92 1.03, 3.55 1.87 0.99, 3.50
BEHAV 1.17a 0.82, 1.67 2.27 1.52, 3.39

aOdds ratio for a 2-year increase in age or 2-point increase in behavioral symptoms score.

diagnostic statistics we conclude that the final model is the one in presented in
Table 8.9. Estimated odds ratios and 95% confidence intervals for covariates not
involved in an interaction are shown in Table 8.13.

The estimated odds ratios in Table 8.13 show that with a 2-year increase in
age there is a 1.4-fold increase in the odds of being placed in an intermediate
or residential facility. Nonwhites have an approximately 1.9-fold increase in the
odds of an intermediate or residential placement compared to whites. A two-point
increase in the behavioral index score increases the odds of a residential placement
2.3-fold and is significant. However, the increase in the odds of an intermediate
facility placement is not significant.

Length of stay transformed (LOS_5) and state custody (CUSTD) have a signifi-
cant overall interaction using the 2 degrees of freedom likelihood ratio test, but the
Wald test for the coefficient is significant only in logit 1. When we compare the
results for these two covariates we see that, in the main effects model in Table 8.8,
both are significant in each logit function. The fact that the interaction term is
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significant in only one logit function in Table 8.9 makes their combined effect dif-
ficult to discern by simply examining the coefficients. Hence we used the four-step
procedure described in Chapter 4 and the coefficients in Table 8.9 to obtain the
following equations for the log-odds ratio for each logit function:

ln{ÔR(CUSTD = 1, CUSTD = 0|LOS, Logit 1)} = 6.068 − 0.639 × LOS_5

and

ln{ÔR(CUSTD = 1, CUSTD = 0|LOS, Logit 2)} = 3.086 − 0.254 × LOS_5.

These two functions and their 95% confidence bands are plotted in Figure 8.1. We
choose to show the two plots side by side on the same scale for the log-odds ratio to
allow a better comparison. We added a line at 0 to aid in assessing the range of LOS
where the log-odds ratio and hence odds ratio is significant. The general picture that
emerges is: (i) The log-odds ratio decreases as length of stay increases. (ii) Being
in state custody significantly increases the odds of placement in an intermediate
residential facility compared to outpatient or day treatment when the length of stay
is less than about 50 days. (iii) The log-odds ratio for state custody in the logit for
residential placement versus outpatient or day treatment is significant only for LOS
less than 10 days. Note that this is an entirely different conclusion than would have
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Figure 8.1 Plot of the log-odds ratio for State custody versus not in State custody for the placement
in an intermediate residential facility versus outpatient or day treatment and residential facility versus
outpatient or day treatment.
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been reached had we, incorrectly, used the main effects model in Table 8.8. This
is a good opportunity for the reader to reflect back on the differences, discussed in
Chapter 4, between a covariate being a confounder and an effect modifier.

The next step is to estimate the odds ratio for increasing length of stay within
levels of state custody for the two logit functions. The calculations are similar to
those required for Figure 8.1 and we present the results for the log-odds ratio for
a 5-day increase in length of stay in Figure 8.2. In each subfigure there are two
curves each with confidence bands. One set of lines is for subjects in state custody
(CUSTD = 1) and the other set is for subjects not in state custody (CUSTD = 0).
Some of the confidence limit lines are so similar that they cannot be differentiated
in the figure.

Looking at the left sub-figure in Figure 8.2 (intermediate versus outpatient or
day treatment) we see that the log-odds ratio for subjects not in state custody is
significantly different from 0, for example, OR > 1, but the effect of an additional
5 days decreases as the reference length of stay increases. The log-odds ratio for
subjects in state custody is not significant. In fact, the log-odds ratio is nearly equal
to 0 for all values of length of stay.

For the right sub-figure in Figure 8.2 (residential versus outpatient or day treat-
ment) we see that the log-odds ratios at both levels of state custody are quite
similar, as there is little separation between the solid and long dashed lines. At all
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values of length of stay the lower confidence limits exceed 0 (i.e., OR > 1), hence
the log-odds ratios are significant. The estimate of the effect of a 5-day increase
decreases as the reference length of stay increases.

The main goal of the Adolescent Placement Study is to assess the effect of
various subject characteristics on aftercare placement with little or no interest in
estimation of probabilities. Thus an ROC analysis of the type described and illus-
trated in Chapter 5 would not be appropriate. However, if estimation of probabilities
of placement were of interest then the ROC analyses would have to be performed
using separate binary regressions as methods in Chapter 5 have not been extended
to the multinomial logistic regression model.

As the discussion of the results shows, the real challenge when fitting a multi-
nomial logistic regression model is the fact that there are multiple odds ratios
for each model covariate. This certainly complicates the discussion. On the other
hand, using a multinomial outcome can provide a more complete description of
the process being studied. For example, if we had combined the two residential
placements into a single outcome category “not outpatient or day treatment”, we
would have missed the differences in covariates effects in the two logits. From a
statistical point of view, one should not pool the outcome categories unless the
estimated coefficients in the logits are not significantly different from each other.
In the case of the model in Table 8.9 the multivariable Wald test of the equality
of the seven coefficients in the two logits is W = 66.63 which, with 7 degrees of
freedom, yields p < 0.001. Thus we feel that there is strong statistical evidence
that creating a pooled outcome category would not be appropriate.

In summary, fitting and interpreting the results from a multinomial logistic
regression model follow the same basic paradigm as was followed for a binary
model. The difference is that the user should be aware of the possibility that infor-
mative comparative statements may be required for the multiple odds ratios for
each covariate.

8.2 ORDINAL LOGISTIC REGRESSION MODELS

8.2.1 Introduction to the Models, Methods for Fitting, and Interpretation
of Model Parameters

There are occasions when the scale of a multiple category outcome is not nom-
inal but ordinal. Common examples of ordinal outcomes include variables such
as extent of disease (none, some, severe), job performance (inadequate, satisfac-
tory, outstanding), and opinion on a political candidate’s position on some issue
(strongly disagree, disagree, agree, strongly agree). In such a setting one could
use the multinomial logistic model described in Section 8.1. This analysis, how-
ever, would not take into account the ordinal nature of the outcome and hence the
estimated odds ratios may not address the questions asked of the analysis. In this
section we consider a number of different logistic regression models that do take
the rank ordering of the outcomes into account. Each model we discuss can be fit
either directly or with some slight modification of existing statistical software.
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It has been our experience that a problem many users have with ordinal logistic
regression models is that there is more than one model to choose from. In the
next section we describe and then compare through an example three of the most
commonly used models: the adjacent-category, the continuation-ratio and the pro-
portional odds models. There is a fairly large literature considering various aspects
of ordinal logistic regression models. A few of the more general references include
the texts Agresti (2002) and Agresti (2010), which discuss the three models we
consider as well as other more specialized models, and the text by McCullagh
and Nelder (1989). Ananth and Kleinbaum (1997), in a review paper, consider
the continuation-ratio and the proportional odds models as well as three other
less frequently used models: the unconstrained partial-proportional odds model,
the constrained partial-proportional odds model and the stereotype logistic model.
Greenland (1994) also considers the continuation-ratio, the proportional odds mod-
els and the stereotype logistic model.

Assume that the ordinal outcome variable, Y , can take on K + 1 values coded
0, 1, 2, . . . , K . We denote a general expression for the probability that the outcome
is equal to k conditional on a vector, x, of p covariates as Pr[Y = k | x] = φk(x).
If we assume that the model is the multinomial logistic model in Section 8.1 then
φk(x) = πk(x) where, for K = 2, the model is given in equations (8.3)–(8.5). In the
context of ordinal logistic regression models the multinomial model is frequently
called the baseline logit model. This term arises from the fact that the model
is usually parameterized so that the coefficients are log-odds ratios comparing
category Y = k to a “baseline” category, Y = 0. As shown in Section 8.1 the
fully parameterized baseline logistic regression model has K × (p + 1) coefficients.
Under this model the logits, as shown in Section 8.1, are

gk(x) = ln

[
πk (x)

π0(x)

]
= βk0 + x ′βk (8.12)

for k = 1, 2, . . . , K .
When we move to an ordinal model we have to decide what outcomes to compare

and what the most reasonable model is for the logit. For example, suppose that we
wish to compare each response to the next larger response. This model is called the
adjacent-category logistic model. If we assume that the log-odds does not depend
on the response and the log-odds is linear in the coefficients then the adjacent
category logits are as follows:

ak(x) = ln

[
φk (x)

φk−1(x)

]
= αk + x ′β (8.13)

for k = 1, 2, . . . , K . The adjacent-category logits are a constrained version of the
baseline logits. To see this we express the baseline logits in terms of the adjacent-
category logits as follows:

φk(x)

φ0(x)
= φ1(x)

φ0(x)
× φ2(x)

φ1(x)
× · · · × φk(x)

φk−1(x)
,
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thus

ln

[
φk (x)

φ0(x)

]
= ln

[
φ1 (x)

φ0(x)

]
+ ln

[
φ2 (x)

φ1(x)

]
+ · · · + ln

[
φk (x)

φk−1(x)

]
= a1(x) + a2(x) + · · · + ak(x)

= (α1 + x ′β) + (α2 + x ′β) + · · · + (αk + x ′β)

= (α1 + α2 + · · · + αk) + kx ′β. (8.14)

Thus we see that the model in equation (8.14) is a version of the baseline model
in equation (8.12) with intercept βk0 = (α1 + α2 + · · · + αk) and slope coefficients
βk = kβ. As we show shortly in an example, an easy way to fit the adjacent-category
model is via a constrained baseline logistic model.

Suppose instead of comparing each response to the next larger response we
compare each response to all lower responses that is Y = k versus Y < k for
k = 1, 2, . . . , K . This model is called the continuation-ratio logistic model. We
define the logit for this model as follows:

rk(x) = ln

[
Pr (Y = k|x)

Pr(Y < k|x)

]
= ln

[
φk (x)

φ0(x) + φ1(x) + · · · + φk−1(x)

]
= θk + x ′βk (8.15)

for k = 1, 2, . . . , K . Under the parameterization in equation (8.15) the
continuation-ratio logits have different constant terms and slopes for each logit.
The advantage of this unconstrained parameterization is that the model can be fit
via K ordinary binary logistic regression models. We demonstrate this fact via an
example shortly. We can also constrain the model in equation (8.15) to have a
common vector of slope coefficients and different intercepts, namely

rk(x) = θk + x ′β. (8.16)

Special software is required to fit the model in equation (8.16). For example,
Wolfe (1998) has developed a command for use with STATA. We note that it
is also possible to define the continuation ratio in terms of Y = k versus Y >

k for k = 0, 1, . . . , K − 1. Unfortunately the results one obtains from the two
parameterizations are not equivalent. We prefer the formulation given in equations
(8.15) and (8.16) because, if K = 1, each of the models in equations (8.12)–(8.16)
simplifies to the usual logistic regression model where the odds ratios compare
response Y = 1 to response Y = 0.

The third ordinal logistic regression model we consider is the proportional odds
model. With this model we compare the probability of an equal or smaller response,
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Y ≤ k, to the probability of a larger response, Y > k,

ck(x) = ln

[
Pr (Y ≤ k|x)

Pr(Y > k|x)

]
= ln

[
φ0 (x) + φ1(x) + · · · + φk(x)

φk+1(x) + φk+2(x) + · · · + φK(x)

]
= τk − x ′β (8.17)

for k = 0, 1, . . . , K − 1. We note that in the case when K = 1 the model as defined
in equation (8.17) simplifies to the complement of the usual logistic regression
model in that it yields odds ratios of Y = 0 versus Y = 1. We negate the coefficient
vector in equation (8.17) to be consistent with software packages such as STATA
and other references discussing this model.

The method used to fit each of the models, except the unconstrained
continuation-ratio model, is based on an adaptation of the multinomial likelihood
and its log shown in equation (8.6) for K = 2. The basic procedure involves the
following steps: (i) the expressions defining the model-specific logits are used to
create an equation defining φk(x) as a function of the unknown parameters. (ii) The
values of a K + 1 dimensional multinomial outcome, z ′ = (z0, z1, . . . , zK), are
created from the ordinal outcome as zk = 1 if y = k and zk = 0 otherwise. It
follows that only one value of z is equal to 1. The general form of the likelihood
for a sample of n independent observations, (yi, xi ), i = 1, 2, . . . , n, is

l(β) =
n∏

i=1

[φ0(xi )
z0i φ1(xi )

z1i × · · · × φK(xi )
zKi ],

where we use “β” somewhat imprecisely to denote both the p slope coefficients
and the K model-specific intercept coefficients. It follows that the log-likelihood
function is

L(β) =
n∑

i=1

z0i ln[φ0(xi )] + z1i ln[φ1(xi )] + · · · + zKi ln[φK(xi )]. (8.18)

We obtain the MLEs of the parameters by differentiating equation (8.18) with
respect to each of the unknown parameters, setting each of the K + p equations
equal to 0 and solving for “β̂”. We obtain the estimator of the covariance matrix
of the estimated coefficients in the usual manner by evaluating the inverse of the
negative of the matrix of second order partial derivatives at “β̂”.

At this point in the discussion it is not especially worthwhile to show the specific
form of φk(x) for each model, the details of the likelihood equations or the matrix
of second order partial derivatives. Instead, we focus on a simple example to
illustrate the use of the models and to aid in the interpretation of the odds ratios
that result from each of them. As we noted earlier, an ordinal scale outcome
can arise in a number of different ways. For example, we can create an ordinal
outcome by categorizing an observed continuous outcome variable. Alternatively,
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we may observe categories that we hypothesize have come from categorizing a
hypothetical and unobserved continuous outcome. This is often a useful way to
envision outcome scales in categories ranging from strongly disagree to strongly
agree. Another possibility is that the outcome is a composite of a number of other
scored variables. Common examples are health status or extent of disease, which
arise from many individual clinical indicators such as the Apgar score of a baby
at birth. The Apgar score ranges between 0 and 10 and is the sum of 5 variables,
each scored as 0, 1, or 2.

The example we use to initially illustrate each of the models comes from the
Low Birth Weight Study (see Section 1.6.2) where we form a four category out-
come from birth weight (BWT) using cutpoints: 2500g, 3000g, and 3500g. This
example is not typical of many ordinal outcomes that use loosely defined “low,”
“medium,” or “high” categorizations of some measurable quantity. Instead, here
we explicitly derived this variable from a measured continuous variable. We make
use of this fact when we show how the proportional odds model can be derived
from the categorization of a continuous variable. In addition some of the exercises
are designed to extend this discussion. First, we need to give some thought to
the assignment of codes to the outcome variable, as this has implications on the
definition of the odds ratio calculated by the various ordinal models. The obvious
choice is to use the naturally increasing sequence of codes: 0 if BWT ≤ 2500, 1
if 2500 < BWT ≤ 3000, 2 if 3000 < BWT ≤ 3500, and 3 if BWT > 3500. This
coding is appropriate if we want low or lower weight as the reference outcome.
However this is in the opposite direction of how we modeled low birth weight in
earlier chapters. Thus a decreasing sequence of codes might make more sense to
use for some ordinal models namely: 3 if BWT ≤ 2500, 2 if 2500 < BWT ≤ 3000,
1 if 3000 < BWT ≤ 3500, and 0 when BWT > 3500. With this coding, the heav-
iest births are the reference outcome. This is the coding we use for the outcome
variable BWT4 in this section. In truth, the actual coding, for the most part, does
not make much of a difference, as long as one is able to figure out how to correct
the signs of the coefficients obtained by software packages. We illustrate this with
examples.

As a starting point consider the crossclassification of BWT4 versus smoking
status of the mother during the pregnancy shown in Table 8.14.

Table 8.14 Cross-Classification of the Four Category Ordinal
Scale Birth Weight Outcome versus Smoking Status of the Mother

Smoking Status

Birth Weight Category No (0) Yes (1) Total

0: BWT > 3500 35 11 46
1: 3000 < BWT ≤ 3500 29 17 46
2: 2500 < BWT ≤ 3000 22 16 38
3: BWT ≤ 2500 29 30 59

Total 115 74 189
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The odds ratios for the multinomial or baseline logit model defined in equation
(8.12) are

ÔR(1, 0) = 17 × 35

29 × 11
= 1.87,

ÔR(2, 0) = 16 × 35

22 × 11
= 2.31

and
ÔR(3, 0) = 30 × 35

29 × 11
= 3.29,

where we use ÔR(k, 0) to denote the odds ratio of maternal smoking for BWT4 = k

versus BWT4 = 0. The increase in the odds ratio demonstrates an increase in odds
of a progressively lower weight baby among women who smoke during pregnancy.
The adjacent-category model postulates that the log-odds of each successively
higher category compared to the baseline is a constant multiple of the log-odds
of Y = 1 versus Y = 0.

Under the adjacent-category model, the relationship we require is ln[OR(k, 0)] =
k × ln[OR(1, 0)]. The results of fitting the adjacent-category model via a con-
strained baseline model are shown in Table 8.15.

We obtain the equations for the adjacent-category logits by using the algebraic
relationship between the constrained baseline and adjacent-category models shown
in equation (8.14). It follows that the first estimated adjacent-category logit is
identical to the first estimated baseline logit, namely

â1(SMOKE) = −0.110 + 0.370 × SMOKE.

The estimated coefficient for SMOKE in the second adjacent-category logit is the
same as in the first. The estimated coefficient for logit 2 in Table 8.15 is twice
the value in logit 1 and reflects the constraint placed on the fitted baseline logit
model. It follows from equation (8.14) that the estimate of the constant term for the
second adjacent-category logit is equal to the difference between the two estimated
constant terms in Table 8.15,

α̂2 = β̂20 − β̂10 = −0.441 − (−0.110) = −0.331.

Table 8.15 Estimated Coefficients, Standard Errors, z-Scores, and Two-Tailed
p-Values for the Fitted Constrained Baseline Model

Logit Variable Coeff. Std. Err. z p

1 SMOKE 0.370 0.1332 2.77 0.006
Constant −0.110 0.2106 −0.52 0.602

2 SMOKE 0.739 0.2664 2.77 0.006
Constant −0.441 0.2333 −1.89 0.059

3 SMOKE 1.109 0.3996 2.77 0.006
Constant −0.175 0.2495 −0.70 0.483

Log-likelihood = −255.6528
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Hence the equation for the second adjacent-category logit is

â2(SMOKE) = −0.331 + 0.370 × SMOKE.

The equation for the third adjacent-category logit is obtained in a similar manner.
In particular the estimated coefficient for SMOKE shown in the third logit in
Table 8.15 is three times the estimated coefficient for the first logit. It follows from
equation (8.14) that the estimate of constant term is α̂3 = β̂30 − β̂20 = −0.175 −
(−0.441) = 0.266. Hence the third estimated adjacent-category logit is

â3(SMOKE) = 0.266 + 0.370 × SMOKE.

Under the adjacent-category model the estimate of the odds ratio for smoking status
during pregnancy of the mother is

ÔR(k, k − 1) = exp(0.370) = 1.45

for k = 1, 2, 3. The interpretation of this estimate is that the odds of a birth in the
next lower weight category among women who smoke during pregnancy are 1.45
times the odds among women who do not smoke.

Since the adjacent-category model is a constrained baseline model we can test
that the two models are not different from each other via a likelihood ratio test
or multivariable Wald test. The log-likelihood for the fitted baseline model (output
not shown) based on the data in Table 8.14 is −255.4859. Thus, the likelihood
ratio test is

G = −2[−255.6528 − (−255.4859)] = 0.334,

which, with 2 degrees of freedom, gives p = Pr(χ2(2) > 0.334) = 0.846. The
2 degrees of freedom come from the constraints described earlier for adjacent-
category logits 2 and 3. In general the degrees of freedom for this test are [(K +
1) − 2] × p where K + 1 is the number of categories and p is the number of
covariates in each model. In work not shown we obtained the same result with the
Wald test. Thus we cannot say that the adjacent-category model is different from
the baseline model. Since the adjacent-category model summarizes the effect of
smoking into a single odds ratio we might prefer to use this model. However, this
discussion considered only one covariate and the final decision in any practical
setting should consider all model covariates as well as an evaluation of model fit.

Next we consider the continuation-ratio model. As shown in equation (8.15) the
coefficients for this model yield the log-odds for a birth in one of the weight cate-
gories relative to all lighter weight categories. The unconstrained model described in
equation (8.15) can be fit via a set (three in this case) of binary logistic regressions.
Each fit is based on a binary outcome, y∗

k , defined as follows:

y∗
k =

⎧⎨⎩
1 if y = k

0 if y < k

Missing if y > k
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Table 8.16 Estimated Coefficients, Standard Errors, z-Scores, and Two-Tailed
p-Values for the Fitted Unconstrained Continuation-Ratio Model

Logit Variable Coeff. Std. Err. z p Log-Likelihood

1 SMOKE 0.623 0.4613 1.35 0.177 −62.8400
Constant −0.188 0.2511 −0.75 0.454

2 SMOKE 0.508 0.3991 1.27 0.203 −77.7436
Constant −1.068 0.2471 −4.32 0.000

3 SMOKE 0.704 0.3196 2.20 0.028 −114.9023
Constant −1.087 0.2147 −5.06 <0.001

Total log-likelihood −225.4859

for k = 1, 2, 3. The results of fitting the unconstrained continuation-ratio logit
model containing SMOKE are shown in Table 8.16. The results of the three sepa-
rate fits are summarized into one single table for purposes of emphasizing that we
have fit a single multiple-category outcome. This model is, in terms of the number
of parameters and log-likelihood, fully equivalent to the unconstrained baseline
model. Note that, as shown at the bottom of Table 8.16, the sum of the values of
the log-likelihoods from the three separate fits is equal to the log-likelihood from
the unconstrained baseline model.

The three estimated coefficients in Table 8.16 are quite similar (all are approxi-
mately 0.6). The estimates indicate that the odds of a birth in the next lower weight
category relative to higher weight categories among women who smoked during
pregnancy is about 1.8 = exp(0.6) times that of women who did not smoke.

To test for the equality of the three smoking coefficients, we make use of the
fact that, as a result of the definition of the model, the three sets of parameter
estimates are independent. Thus a simple test for equality is the 2 degrees of
freedom chi-square statistic

W 2 = (0.623 − 0.508)2

[(0.4613)2 + (0.3991)2]
+ (0.623 − 0.704)2

[(0.4613)2 + (0.3196)2]
= 0.056

which yields p = Pr[χ2(2) > 0.056] = 0.972. Hence we cannot say, at the 0.05
level, that the three coefficients are different and we consider fitting the constrained
continuation-ratio logit model in equation (8.16).

The results of fitting this model are shown in Table 8.17. The estimate of the
odds ratio for smoking during pregnancy is 1.87 = exp(0.627). The wording of
the interpretation is the same as that given for the approximate value from the
unconstrained model. This odds ratio is a bit larger than the estimate of 1.45
obtained under the adjacent-category model. The reason is that the reference group
for the continuation-ratio model includes all heavier weight categories and not just
the next highest, which is used in the adjacent-category model.

In general, the continuation-ratio model might be preferred over the baseline
and adjacent-category model when the conditioning used in defining and fitting
the model makes clinical sense. A common example is one where the number of



ordinal logistic regression models 297

Table 8.17 Estimated Coefficients, Standard Errors,
z-Scores, and Two-Tailed p-Values for the Fitted Constrained
Continuation-Ratio Model

Variable Coeff. Std. Err. z p

SMOKE 0.627 0.2192 2.86 0.004
Constant1 −0.189 0.2204
Constant2 −1.114 0.2129
Constant3 −1.052 0.1862

Log-likelihood = −255.5594

attempts to pass a test or attain some binary outcome is modeled. The first logit
models the log-odds of passing the test the first time it is taken. The second logit
models the log-odds of passing the test on the second attempt given that it was not
passed on the first attempt. And this process continues until one is modeling the
K th attempt. Since this is not a common setting we do not consider the model in
any more detail. Further elaboration and discussion can be found in the references
cited earlier in this section.

The most frequently used ordinal logistic regression model in practice is the
constrained cumulative logit model (called the proportional odds model) given in
equation (8.17). Each of the previously discussed models for ordinal data compares
a single outcome response to one or more reference responses (e.g., Y = k versus
Y = k − 1, or Y = k versus Y < k). The proportional odds model describes a less
than or equal versus more comparison. For example if the outcome is extent of
disease the model gives the log-odds of no more severe outcome versus a more
severe outcome. The constraint placed on the model is that the log-odds do not
depend on the outcome category. Thus inferences from fitted proportional odds
models lend themselves to a general discussion of direction of response and do
not have to focus on specific outcome categories. The results are much simpler
to describe than those from any of the unconstrained models but are of about the
same order of complexity as results from the other constrained models.

This consistency of effect across response categories in the proportional odds
model is similar to that described for the constrained adjacent-category and
continuation-ratio models and, as such, should always be tested.

Ananth and Kleinbaum (1997) discuss modifications of the proportional odds
model that allow one or more covariates to have category-specific effects. These
“partial” proportional odds models have not, as yet, seen wide use in practice and
we do not consider them further in this text.

One way of deriving the proportional odds model is via categorization of an
underlying continuous response variable. This derivation is intuitively appealing
in that it allows us to use some concepts from linear regression modeling. For
example, the cutpoints used to obtain the four-category variable BWT4 are 2500,
3000 and 3500 grams. Because of the way packages handle the proportional odds
model it turns out to be more convenient to code the ordinal outcome so it increases
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in the same direction as its underlying continuous response. Thus we define the
outcome BWT4N as follows: 0 if BWT ≤ 2500, 1 if 2500 < BWT ≤ 3000, 2
if 3000 < BWT ≤ 3500, and 3 when BWT > 3500 and the specific cutpoints as
cp1 = 2500, cp2 = 3000, and cp3 = 3500.

We show in Figure 8.3 a hypothetical line or model, BWT = λ0 + λ1 × LWT,
that describes mean birth weight as a function of mother’s weight at the last men-
strual period. The particular values used to obtain the line are λ0 = 100 and λ1 = 20
and are for demonstration purposes only. The actual linear regression of BWT on
LWT could have been used; however, the resulting graph would not have had as
large a range in the BWT axis or as steep a slope. It is the idea that is important
not the actual numbers.

Suppose that instead of the usual normal errors linear regression model we have
a model where the errors follow the logistic distribution. The statistical model
for birth weight is then BWT = λ0 + λ1 × LWT + σ × ε, where σ is proportional
to the variance and ε follows the standard logistic distribution with cumulative
distribution function

Pr(ε ≤ z) = ez

1 + ez
. (8.19)

Evans et al. (2000) discuss this distribution.
The regression based on the continuous outcome models the mean of BWT as

a function of LWT. In ordinal logistic regression we model the probability that
BWT falls in the four intervals defined by the three cutpoints shown in Figure 8.3.
For example, we show in Figure 8.4 the underlying logistic distribution for the
regression model in Figure 8.3 at LWT = 125. The mean is 2600 grams. The
probabilities for the four ordinal outcomes are the respective areas under this
curve. The area below 2500 is the largest indicating that, among women who

BWT = λ0 + λ1LWT
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Figure 8.3 Plot of a hypothetical model describing mean birth weight as a function of mother’s weight.
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Figure 8.4 Plot of the hypothetical underlying distribution of birth weight among mothers with
LWT = 125.

weigh 125 pounds, a birth weight less than or equal to 2500 grams (BWT4N = 0)
is the most likely ordinal outcome. However, at 175 pounds the mean from the
regression line is 3600 grams and the probability is largest for the BWT4N = 3
ordinal outcome and smallest for the BWT4N = 0 ordinal outcome. Under the
proportional odds model we model the ratios of cumulative areas defined by the
cutpoints.

Consider women who weigh 125 pounds. Under our coding of the four-category
ordinal variable BWT4N we have

Pr(BWT4N = 0|LWT = 125) = Pr(BWT ≤ cp1|LWT = 125)

= Pr[(λ0 + 125 × λ1 + σ × ε) ≤ cp1]

= Pr

[
ε ≤ cp1 − (

λ0 + 125 × λ1

)
σ

]
= Pr[ε ≤ τ1 − 125 × β] (8.20)

where we let τ1 = (cp1 − λ0)/σ and β = λ1/σ . Under the assumption of errors
with the distribution function in equation (8.19), the probability in equation (8.20)
is

Pr[ε ≤ τ1 − 125 × β] = eτ1−125×β

1 + eτ1−125×β
. (8.21)

It follows from equation (8.21) that

Pr(ε > τ1 − 125 × β) = 1 − Pr(ε ≤ τ1 − 125 × β) = 1

1 + eτ1−125×β
. (8.22)
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Hence the log-odds of a lighter weight baby at this cutpoint among 125 pound
women is

ln

[
Pr (BWT4N ≤ 0|LWT = 125)

Pr(BWT4N > 0|LWT = 125)

]
= ln

[
Pr

(
ε ≤ τ1 − 125 × β

)
Pr(ε > τ1 − 125 × β)

]

= ln

⎡⎣ eτ1−125×β

1+eτ1−125×β

1
1+eτ1−125×β

⎤⎦
= ln[eτ1−125×β ]

= τ1 − 125 × β,

(8.23)

which is the proportional odds model in equation (8.17). If we follow the steps in
equations (8.20)–(8.23) then we obtain identical expressions for the other outcome
categories. For example, at the cutpoint cp3 we have the log-odds

ln

[
Pr (BWT4N ≤ 2|LWT = 125)

Pr(BWT4N > 2|LWT = 125)

]
= ln

[
Pr

(
ε ≤ τ3 − 125 × β

)
Pr(ε > τ3 − 125 × β)

]
= τ3 − 125 × β.

By similar calculations at BWT4N = 1 among 175 pound women the log-odds is

ln

[
Pr (BWT4N ≤ 1|LWT = 175)

Pr(BWT4N > 1|LWT = 175)

]
= ln

[
Pr

(
ε ≤ τ2 − 175 × β

)
Pr(ε > τ2 − 175 × β)

]
= τ2 − 175 × β.

We can follow the same derivation for any covariate, x, and any number of
categories for an ordinal outcome variable, Y , and we obtain as the log-odds for
as small or smaller outcome the equation

ln

[
Pr (Y ≤ k|x)

Pr(Y > k|x)

]
= ln

[
Pr

(
ε ≤ τk+1 − x × β

)
Pr(ε > τk+1 − x × β)

]
= τk+1 − x × β, (8.24)

for k = 0, 1, . . . , K − 1. It follows from equation (8.24) that the log of the odds
ratio for x = x1 versus x = x0 is

ln

[
Pr

(
Y ≤ k|x1

)
Pr(Y > k|x1)

]
− ln

[
Pr

(
Y ≤ k|x0

)
Pr(Y > k|x0)

]
= (τk+1 − x1 × β) − (τk+1 − x0 × β)

= −β(x1 − x0). (8.25)

How we use the results from a package and equation (8.25) to estimate an odds
ratio depends on the package used. For example, the results of fitting the propor-
tional odds model in STATA with outcome BWT4N and covariate LWT are shown
in Table 8.18. Note that the coefficient for LWT in Table 8.18 is positive reflect-
ing the direction of the association seen in Figure 8.3. Hence increasing values of
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Table 8.18 Results of Fitting the Proportional Odds Model to the Four
Category Birth Weight Outcome, BWT4N, with Covariate LWT

Variable Coeff. Std. Err. z p 95% CI

LWT 0.013 0.0043 2.95 0.003 0.004, 0.021
Constant1 0.832 0.5686
Constant2 1.707 0.5782
Constant3 2.831 0.6027

Log-likelihood = −255.1477

LWT are associated with increasing values of BWT4N. Thus the output is consis-
tent with the underlying hypothetical continuous outcome model. The negative sign
in equation (8.25) reflects the fact that, under a positive association, the covariate is
protective (i.e., negatively associated with smaller values of the ordinal outcome).
Hence the estimate of the effect of a 10 pound increase in LWT on the odds ratio
for as light or lighter versus a heavier baby is

ÔR = exp(−0.013 × 10) = 0.88.

This estimate implies a 12% reduction in the odds for a lower weight baby per 10
pound increase in weight.

One feature of the proportional odds model that is identical to the binary logistic
model is that we can reverse the direction of the model by simply changing the
signs of the coefficients. For example, if we are interested in modeling heavier
versus lighter weight babies then the estimate of the odds ratio for a 10 pound
increase in weight is

ÔR = exp(0.013 × 10) = 1.14.

This estimate indicates that there is a 14% increase in the odds of a heavier baby
per 10 pound increase in weight.

The output from SAS’s PROC Logistic is identical to Table 8.18 except that the
reported estimate of the coefficient for LWT is −0.013 as SAS uses a model that
does not negate the coefficient, β, in equation (8.17).

As a second example we fit the model containing smoking status of the mother
during pregnancy. Women who smoke during pregnancy tend to have lower weight
births thus the association in the conceptual underlying continuous model is nega-
tive. The results of fitting this model in STATA are shown in Table 8.19 where the
coefficient for SMOKE is negative.

Hence the estimate of the odds ratio for a lower versus a heavier weight baby
is, from equation (8.25),

ÔR = exp[−(−0.761)] = 2.14.

The interpretation is that women who smoke during pregnancy have 2.1 times the
odds of a lower versus a heavier baby than women who do not smoke. Similar to
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Table 8.19 Results of Fitting the Proportional Odds Model to the Four
Category Birth Weight Outcome, BWT4N, with Covariate SMOKE

Variable Coeff. Std. Err. z p 95% CI

SMOKE −0.761 0.2719 −2.80 0.005 −1.293, −0.228
Constant1 −1.116 0.1984
Constant2 −0.248 0.1819
Constant3 0.867 0.1937

Log-likelihood = −255.6725

the discussion for LWT the estimate of the odds ratio for a heavier versus lighter
weight baby is

ÔR = exp(−0.761) = 0.47.

The interpretation of this estimate is that the odds of a heavier versus lighter weight
baby are 53% less for women who smoke during pregnancy.

As with other constrained ordinal models, one should check to see whether the
assumption of proportional odds is supported by the data. In addition, one should
assess goodness of fit of the model. Several tests have been proposed for testing
for the proportional odds assumption and each in some form compares the model
in equation (8.17) to an augmented model in which the coefficients for the model
covariates are allowed to be different namely

ck(x) = ln

[
Pr (Y ≤ k|x)

Pr(Y > k|x)

]
= τk − x ′βk , (8.26)

where τk < τk+1 for k = 1, . . . , K . Brant (1990) proposed a Wald test that com-
pares estimates of the coefficients from a fit of the model in equation (8.26) to those
from a fit of the model in equation (8.17). The test has degrees of freedom equal
to [(K + 1) − 2] × p. From a practical standpoint fitting the model in equation
(8.26) is complex. Thus, Brant recommends obtaining estimates of the parameters
by approximating the fit with separate binary logistic regression models using the
outcomes

wk =
{

1, y ≤ k

0, y > k
, k = 0, 2, . . . , K − 1.

The fit is approximate, as it cannot be guaranteed that the constant terms and
cumulative probabilities will be monotonic increasing. A command to compute the
Brant test is available for STATA (to locate this command from within STATA run
“findit Brant”). SAS compares the two models via a score test. An approximate
likelihood ratio test is computed in STATA via the command “omodel.”

As an example, to test the proportional odds assumption for the fitted model
in Table 8.19 the value of Brant’s Wald test is W = 0.36 with p = 0.836, the
approximate likelihood ratio test from omodel in STATA is G = 0.38 with p =
0.829 and the score test from SAS yields p = 0.644, each with (4 − 2) × 1 = 2
degrees of freedom. All three tests support the proportional odds assumption.
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Fagerland and Hosmer (2012b) consider goodness of fit tests for the proportional
odds model proposed by Lipsitz et al. (1996) and Pulkstenis and Robinson (2004),
and propose a new test that is an extension of the Hosmer–Lemeshow test for the
multinomial logistic regression model discussed in Section 8.1 [see Fagerland et al.
(2008) and Fagerland and Hosmer (2012a)].

To obtain the new test assume that we have fit the proportional odds model in
equation (8.17) containing, say, p covariates and use it to estimate the cumulative
probabilities

π̂k(x) = eĉk (x)

1 + eĉk (x)
, (8.27)

where ĉk(x) = τ̂k − β̂′x. We use the cumulative probability estimates in equation
(8.27) to estimate the individual outcome probabilities Pr(Y = k|x) as

φ̂k(x) =
⎧⎨⎩

π̂0 (x) , k = 0
π̂k(x) − π̂k−1(x), k = 1, . . . , K − 1.
1 − π̂K−1(x), k = K

(8.28)

We then use these estimated probabilities, as suggested by Lipsitz et al. (1996), to
calculate an ordinal score for each subject

si =
K∑

k=0

k × φ̂k(xi ). (8.29)

Next we create a grouping variable by partitioning the ordinal score ranked subjects
into g equal sized groups. We define g indicator variables for group membership
for each subject as

Iij =
{

1 if si is in group j

0 otherwise
.

Lipsitz et al. (1996) propose assessing goodness of fit by fitting the augmented
model containing g − 1 indicator variables

ck(xi , Ii ) = τk − x ′β +
g−1∑
j=1

γj Iij (8.30)

and performing the likelihood ratio test of the augmented model in equation
(8.30) versus the model in equation (8.17). Under the hypothesis that
γj = 0, j = 1, . . . , g − 1 and a sufficiently large sample, the test follows a
chi-square distribution with g − 1 degrees of freedom. In order to provide adequate
numbers of subjects in each group and enough groups to provide power to detect
departures from model assumptions, they recommend one choose 6 ≤ g ≤ n/5K .
One disadvantage of this Lipsitz test is that it is not based on a comparison of
the observed frequencies to model estimated frequencies within outcome by score
groups as is the case with the goodness of fit test described in Section 8.1. We say
more on this point shortly.
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Fagerland and Hosmer (2012b) propose an extension of the Hosmer-Lemeshow
test for fit of the multinomial logistic regression model. The basis of the test is a
g × (K + 1) table of observed and expected frequencies. The g rows are defined
by the same g groups of ranked ordinal scores used in the Lipsitz test and the
columns by the K + 1 values of the outcome variable. The basic layout is shown
in Table 8.20.

If we denote the subjects in ordinal score group j by �j with

Ojk =
∑
i∈�k

zik ,

and
Êjk =

∑
i∈�k

φ̂k(xi )

then the test statistic is

ĈO =
g∑

l=1

K∑
k=0

(Olk − Êlk )
2

Êlk

. (8.31)

The degrees of freedom for the multinomial goodness of fit test ĈM in equation
(8.11) are (K) × (g − 2), as we have coded the outcome to have K + 1 values.
The test in equation (8.31) has additional degrees of freedom because the individ-
ual column total estimated expected frequencies do not equal the observed total,∑g

l=1 Êlk �= ∑g

l=1 Olk for k = 0, 2, . . . , K . Since the overall totals are the same,
namely

g∑
l=1

K∑
k=0

Êlj =
g∑

l=1

K∑
k=0

Olk = n,

a degree of freedom is lost because of this summing constraint and another is
lost because of the constraint that the estimated constant terms are monotonic
increasing. Hence the distribution of ĈO , under the null hypothesis that the fitted
model is the correct model and assuming a large enough sample, is chi-square
with (K) × (g − 2) + (K − 1) degrees of freedom. (Again, recall that the number
of response levels is K + 1.) See Fagerland and Hosmer (2012b) for supporting
simulation results. We defer illustrating the goodness of fit tests until after the
multivariable example in Section 8.2.2.

Fagerland and Hosmer (2012a) use groups for the multinomial goodness of fit
test ĈM based on the complement of Pr(Y = 0|x). Fagerland and Hosmer (2012b)
show that frequencies based on forming groups based on the values of 1 − φ̂0(x)

are identical to those in Table 8.20 based on ordinal score groups. Lipsitz et al.
(1996) suggest an alternative ordinal score that yields si = φ̂(xi ). Using this score
also yields the same observed and expected frequencies as those in Table 8.20,
although the rows are in reverse order.

Lipsitz et al. (1996) note that their test is based on g − 1 linear combinations
of the (Olj − Êlj ) thus the test has fewer degrees of freedom than ĈO . In addition,



ordinal logistic regression models 305

Table 8.20 Observed and Estimated Expected Frequencies by Ordinal Score Group
and Outcome

Ordinal Score Y = 0 Y = 1 · · · Y = K

Group Obs. Exp. Obs. Exp. · · · Obs. Exp. Total

1 O10 Ê10 O12 Ê12 · · · O1K Ê1K n/g

2 O20 Ê20 O22 Ê22 · · · O2K Ê2K n/g

...
...

...
...

...
. . .

...
...

...

g Og0 Êg0 Og2 Êg2 · · · OgK ÊgK n/g

because there is no table analogous to that shown in Table 8.20 it is difficult to find
regions where there are departures from model fit. Simulations in Fagerland and
Hosmer (2012b) found that the Lipsitz test has better power to detect violations of
the specification of the composition of the model, β ′x, than the ĈO test, but ĈO

has higher power to detect a violation of the proportional odds assumption. Hence
we recommend that both tests be used when evaluating a fitted proportional odds
model.

In this section we considered three different models when the outcome is
ordinal scaled: adjacent-category, continuation-ratio, and proportional odds. The
choice of what model to ultimately use in any setting should consider which odds
ratios are most informative for the problem as well as an assessment of model
adequacy.

8.2.2 Model Building Strategies for Ordinal Logistic Regression Models

The steps in model building for an ordinal logistic regression model are essentially
the same as described in Chapter 4 for the binary logistic regression model and in
Section 8.1 for the multinomial logistic regression model. However, best subsets
selection is not yet available for ordinal models. Following model building one
should assess goodness of fit. For the proportional odds model one should use the
Lipsitz and Fagerland–Hosmer test. For the adjacent-category and continuation-
ratio one may assess fit via separate binary logistic regressions using, if possible,
the coefficients from the ordinal model fit. Casewise diagnostics are, frankly, prob-
lematic as they have not yet been developed for ordinal models. What one must
do is obtain them from separate binary regressions in the same way as illustrated
in Section 8.1 for the multinomial logistic regression model.

To illustrate modeling and assessment of fit we could use any of the ordinal
models but we chose to use the proportional-odds model as it is the one most fre-
quently used in practice. The first example considers neuropsychiatric disturbance
(NEURO) as the outcome variable from the Adolescent Placement data. Recall
that it is coded: 0 = none, 1 = mild, 2 = moderate, and 3 = severe. The goal of
the modeling is to explore what patient factors are associated with progressively
severe disturbance. Using the method of purposeful selection we obtained a model
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containing the following variables: age, the square of age (using fractional polyno-
mials), state custody (CUSTD), race (RACE), and emotional disturbance (EMOT).
We choose to use age centered about its mean (AGE_c) and the square of age
about its mean (AGE2_c) in order to control the magnitude of the three constant
terms. The results of the fit are shown in Table 8.21.

Next we checked for the proportional odds assumption using both the Brant
Wald and the approximate likelihood ratio test. The value of Brant’s Wald test is
W = 14.71 with p = 0.258; the approximate likelihood ratio test from omodel in
STATA is G = 21.64 with p = 0.042. Each statistic is compared to a chi-square
distribution with 12 degrees of freedom. The results are mixed with one p-value
greater and the other slightly less than 0.05. The results of the Fagerland–Hosmer
goodness of fit test are shown in Table 8.22. We used 10 groups as 508/(5 × 4) =
25.4.

Table 8.21 Results of Fitting the Proportional Odds Model to the Four-Category
Outcome, NEURO, in the Adolescent Placement Data

Variable Coeff. Std. Err. z p 95% CI

AGE_c −2.059 0.8738 −2.36 0.018 −3.771, −0.346
AGE2_c 0.071 0.0302 2.36 0.018 0.012, 0.130
CUSTD −0.631 0.2087 −3.02 0.003 −1.040, −0.222
RACE 0.593 0.2336 2.54 0.011 0.135, 1.051
EMOT 1.127 0.3282 3.43 0.001 0.484, 1.770
RxE −0.849 0.4354 −1.95 0.051 −1.702, 0.004
Constant1 1.283 0.2081 0.875, 1.691
Constant2 2.253 0.2274 1.807, 2.699
Constant3 2.810 0.2452 2.329, 3.290

Log-likelihood = −461.7982

Table 8.22 Observed and Estimated Expected Frequencies within Each of the 10
Ordinal Score Groups and Level of Outcome

NEURO = 0 NEURO = 1 NEURO = 2 NEURO = 3

Group Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Total

1 42 42.91 6 4.68 2 1.40 1 2.02 51
2 35 39.96 10 6.21 1 1.95 5 2.89 51
3 43 39.47 4 6.45 2 2.04 2 3.04 51
4 41 39.06 8 7.14 0 2.31 3 3.49 52
5 35 35.29 6 7.42 3 2.48 5 3.82 49
6 32 34.34 10 8.74 5 3.06 4 4.86 51
7 43 33.49 4 9.07 0 3.23 4 5.20 51
8 27 31.59 13 9.77 4 3.63 7 6.01 51
9 27 29.02 14 10.6 4 4.17 6 7.21 51
10 25 24.16 6 11.34 8 4.99 11 9.50 50
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The value of the test statistic is Ĉo = 29.782, which, with 3(8) + 2 = 26 degrees
of freedom, results in p = 0.277. Among the 40 cells in Table 8.22 none of the
estimated expected frequencies are less than 1 and 17 of them are less than 5,
approximately 43% of the total. The significance level for the Lipsitz test is p =
0.065.

In aggregate, we feel that the various tests do support model fit and the assump-
tion of proportional odds. We leave the computation of casewise diagnostic statistics
from separate binary fits as an exercise. Ideally, one should compute these using
the values of the parameter estimates in Table 8.21. See the discussion in Section
8.1 on this point.

The reader should have had considerable practice estimating odds ratios by this
point in the text, so we leave estimation and interpretation of the odds ratios for the
dichotomous covariates in the model as an exercise. The fitted model is quadratic
in age, where age ranges from 11 to 19 with the minimum logit at 14.5 years. This
is a setting where estimating the odds ratio for age versus the age at minimum log-
odds at 14.5 is of clinical interest. As this is a bit more complicated we summarize
the details of applying the four-step procedure discussed in Chapter 4 and then
graph the estimator with 95% confidence intervals in Figure 8.5.

The first step is to write down the model at the “exposed” age, say a, and the
referent age of 14.5. Since the model uses centered age these are centered as well
yielding the following expression for the log-odds ratio

ln[ÔR(a, 14.5)] = [β̂1(a − a) + β̂2(a
2 − a2)] − [β̂1(14.5 − a) + β̂2(14.52 − a2)]

= β̂1(a − 14.5) + β̂2(a
2 − 14.52)

0
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Figure 8.5 Plot of the log-odds ratio for age versus age at minimum log-odds of 14.5 with 95%
confidence bands.
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where the β̂’s denote the estimated coefficients for AGE_c and AGE2_c and
a = 14.2715 is the mean age and a2 = 206.53661 is the mean of age squared.
Simplifying the above expression yields

ln[ÔR(a, 14.5)] = β̂1 × f (a) + β̂2 × g(a),

where f (a) = (a − 14.5) and g(a) = β̂2(a
2 − 14.52). It follows that estimator of

the standard error of the log-odds ratio is

ŜE{ln[ÔR(a, 14.5)]} =
{
f (a)2 × V̂ar(β̂1) + g(a)2 × V̂ar(β̂2)

+2 × f (a) × g(a) × Ĉov(β̂1, β̂2)

}
,

and from output of the fit in Table 8.21 we obtain

V̂ar(β̂1) = 0.76344139, V̂ar(β̂2) = 0.00091291 and Ĉov(β̂1, β̂2) = −0.02634735.

These quantities are used in the usual manner to obtain the 95% confidence bands
plotted in Figure 8.5.

The plot in Figure 8.5 shows that as age decreases and increases from 14.5
the log-odds ratio for increasingly severe neuropsychiatric disturbance increases.
However the increase is only significant for ages younger than about 11.5 years and
older than about 17 years as this is where the lower confidence limit line crosses
the line equal to 0. The results in Figure 8.5 can be displayed on the odds ratio
scale but the exponentiation increases the range on the y-axis to the point where it
is difficult to plot. At this point one might, in practice, prepare a table containing
estimated odds ratios for a few key ages to supplement the results in Figure 8.5.

In practice, the next step would be to obtain case-wise diagnostic statistics and,
as noted earlier, these are not generally available from software packages for ordinal
models. Thus, we would need to compute three sets of diagnostic statistics from
separate binary fits where the binary outcomes are defined as

ỹki =
{

1 if yi ≤ k

0 if yi > k
, k = 0, 1, . . . , K − 1. (8.32)

The process is quite similar to obtaining the diagnostic statistics for a fitted
multinomial model described in Section 8.1. As such, we leave this step as well as
preparing a summary of the results in Table 8.21 as an exercise.

Fitting neuropsychiatric disturbance with a proportional odds model is an
example where the fitted model supported the proportional odds assumption. As a
second example, we consider as the outcome danger to others (DANGER) where
we show that the proportional odds assumption is not supported by the data.

Using the method of purposeful selection we obtained the model shown in
Table 8.23. The covariate violence (VIOL) was selected but ended up causing
numerical problems. There is a zero frequency cell in the cross tabulation of it
with DANGER. There are no subjects with a history of violence that were judged
to be of little danger to others. It may be that this pair of values provides an
example of what is called a structural zero, namely a cell with probability equal
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Table 8.23 Results of Fitting the Proportional Odds Model to the Four
Category Outcome, DANGER, in the Adolescent Placement Data

Variable Coeff. Std. Err. z p 95% CI

WEEKS 0.040 0.0202 1.97 0.049 0.0002, 0.080
BEHAV 0.614 0.0560 10.97 0.000 0.505, 0.724
GENDER 0.645 0.1815 3.55 0.000 0.289, 1.001
CUSTD −0.492 0.1786 −2.76 0.006 −0.842, −0.142
Constant1 1.068 0.2958 0.488, 1.648
Constant2 2.893 0.3238 2.258, 3.527
Constant3 4.435 0.3540 3.741, 5.129

Log-likelihood = −546.8982

to 0 of occurring [see Agresti (2002)]. Trying to account for a structural 0 in
the modeling introduces needless complexity when the point of this example is
assessing the proportional odds assumption and what to do when it is not satisfied.
So we decided not to include VIOL in the model. The preliminary final model is
given in Table 8.23 where we used WEEKS = (LOS/7) to measure length of stay.

The results in Table 8.23 look reasonable and are clinically plausible with
increasing length of stay, behavioral score, and being male associated with more
danger to others while being in state custody is associated with decreasing danger
to others. However, until we assess the model for adherence to model assumptions
and fit it is not appropriate to consider the model in Table 8.23 as the final model.

The results of evaluating the proportional odds assumption using the four differ-
ent tests yielded the following significance levels: Brant’s test p < 0.001, approxi-
mate likelihood ratio test p < 0.001, Fagerland-Hosmer test p = 0.001, and Lipsitz
test p = 0.532. Recall that the simulations in Fagerland and Hosmer (2012b)
demonstrated that the Lipsitz test had the least power in detecting violations of
the proportional odds assumption, doing best on linear predictor misspecification.
Hence we conclude that the fitted model does not satisfy the proportional odds
assumption.

There are several options available when the model does not satisfy the pro-
portional odds assumption. The simplest approach, by far, is to fit a multinomial
logistic regression model. The next simplest approach is to fit three binary logistic
models using the outcomes defined in equation (8.32). The inferences are different
in these two approaches. The multinomial model provides estimates of odds ratios
of the referent outcome (e.g., DANGER = unlikely) versus each of the three higher
levels of danger to others. The three separate binary fits provide estimates of odds
ratios for less versus more danger at the three lowest levels. This latter analysis is
a bit more complicated than the multinomial approach and may not be worth the
effort unless it is vital to keep the outcome ordinal scaled. The most complicated
approach is to fit the partial proportional odds model that modifies the model in
equation (8.17) as follows

ck(x) = ln

[
Pr (Y ≤ k|x, z)
Pr(Y > k|x, z)

]
= τk − x ′β − z ′θk , (8.33)
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where the coefficients for the covariates in x are constant whereas those for the
covariates in z are not constant over the K logit functions. Software to fit this
model is not widely available and thus the model is not recommended at this time.
A compromise model that is possible with current software is to fit the constrained
multinomial logistic regression model

ln

[
Pr (Y = k|x)

Pr(Y = 0|x)

]
= αk − x ′β − z ′θk . (8.34)

Once one chooses which model to fit then model building and evaluation pro-
ceeds as usual, although admittedly not as simply as would be possible if the
proportional odds assumptions held.

In summary, modeling an ordinal outcome with one of the ordinal logistic
regression models described in this section follows the same methods described
in Chapter 4 for binary outcomes and in Section 8.1 for multinomial outcomes.
One should choose that ordinal model that yields estimates of the odds ratios that
are clinically most useful within the context of the problem at hand. The multino-
mial logistic regression model is a good fall back when ordinal model assumptions
do not seem to hold.

EXERCISES

1. The data for the low birth weight study are described in Section 1.6.2. These
data are used in Section 8.2 to illustrate ordinal logistic regression models via
the four-category outcome BWT4,

BWT4 =

⎧⎪⎪⎨⎪⎪⎩
0 if BWT > 3500
1 if 3000 < BWT ≤ 3500
2 if 2500 < BWT ≤ 3000
3 if BWT ≤ 2500

.

However in this problem use the outcome variable BWT4 and fit the multino-
mial or baseline logistic regression model with BWT4 = 0 as the referent out-
come and consider as possible model covariates all other variables in Table 1.6,
except birth weight.

The steps should include: (i) a complete univariate analysis, (ii) an appro-
priate selection of variables for a multivariate model (this should include scale
identification for continuous covariates and assessment of the need for inter-
actions), (iii) an assessment of fit of the multivariate model, (iv) preparation
and presentation of a table containing the results of the final model (this table
should contain point and interval estimates for all relevant odds ratios), and
(v) conclusions from the analysis.

2. The following exercise is designed to enhance the idea expressed in Figure 8.3
and Figure 8.4 that one way to obtain the proportional odds model is via
categorization of a continuous variable.



exercises 311

(a) Form the scatterplot of BWT versus LWT.

(b) Fit the linear regression of BWT on LWT and add the estimated regression
line to the scatterplot in 2(a). Let λ̂0 denote the estimate of the intercept,
λ̂1 the estimate of the slope and s the root mean squared error from the
linear regression.

(c) It follows from results for the logistic distribution that the relationship
between the root mean squared error in the normal errors linear regression
and the scale parameter for logistic errors linear regression is approximately
σ̂ = s

√
3/π . Use the results from the linear regression in 2(b) and obtain σ̂ .

(d) Use the results from 2(b) and 2(c) and show that the estimates presented
in Table 8.18 are approximate, and

(e) By hand draw a facsimile of the density function shown in Figure 8.4
with the three vertical lines at the values 2500, 3000, and 3500. Using the
results in equation (8.20), equation (8.21) and the estimates in Table 8.18
compute the value of the four areas under the hand-drawn curve. Using
these specific areas demonstrate that the relationship shown in equation
(8.23) holds at each cutpoint.

3. Obtain and evaluate the diagnostic statistics for the multinomial logistic regres-
sion model fit to the outcome PLACE3 in Table 8.10.

4. Obtain and evaluate the diagnostic statistics for the proportional odds model
fit to the outcome NEURO shown in Table 8.21. This should use the separate
binary regressions with outcome defined as in equation (8.32). If at all possible
with the software package you are using calculate the diagnostics using the
estimated coefficients in Table 8.21. If this is not possible use the diagnostics
from the usual fit, but comment on any differences in these coefficients and
those in Table 8.21.

5. Estimate and interpret the odds ratios for the dichotomous covariates in
Table 8.21. Be sure to account for the interaction term.

6. Fit the multinomial logistic regression model using the DANGER as the out-
come and covariates in Table 8.23. Compare the results of this fit to the one
shown in Table 8.23.



C H A P T E R 9

Logistic Regression Models for the
Analysis of Correlated Data

9.1 INTRODUCTION

Up to this point in the text we have considered the use of the logistic regression
model in settings where we observe a single dichotomous response for a sample of
statistically independent subjects. However, there are settings where the assump-
tion of independence of responses may not hold for a variety of reasons. For
example, consider a study of asthma in children in which subjects are interviewed
bi-monthly for 1 year. At each interview the date is recorded and the mother is
asked whether, during the previous 2 months, her child had an asthma attack severe
enough to require medical attention, whether the child had a chest cold, and how
many smokers lived in the household. The child’s age and race are recorded at
the first interview. The primary outcome is the occurrence of an asthma attack.
What differs here is the lack of independence in the observations due to the fact
that we have six measurements on each child. In this example, each child repre-
sents a cluster of correlated observations of the outcome. The measurements of the
presence or absence of a chest cold and the number of smokers residing in the
household can change from observation to observation and thus are called cluster-
specific or time-varying covariates. The date changes in a systematic way and is
recorded to model possible seasonal effects. The child’s age and race are constant
for the duration of the study and are referred to as cluster-level or time-invariant
covariates. The terms clusters, subjects, cluster-specific and cluster-level covariates
are general enough to describe multiple measurements on a single subject or single
measurements on different but related subjects. An example of the latter setting
would be a study of all children in a household. Repeated measurements on the
same subject or a subject clustered in some sort of unit (household, hospital, or
physician) are the two most likely scenarios leading to correlated data.

Applied Logistic Regression, Third Edition.
David W. Hosmer, Jr., Stanley Lemeshow, and Rodney X. Sturdivant.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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The goals of the analysis in a correlated data setting are, for the most part,
identical to those discussed in earlier chapters. Specifically, we are interested
in estimating the effect of the covariates on the dichotomous outcome via odds
ratios. However, the models and estimation methods are more complicated in the
correlated data setting. Failure to appropriately handle correlations among the obser-
vations can lead to incorrect inferences on the effects of model covariates [Austin
et al. (2003)].

Methods described earlier in this book were used to handle correlated data prior
to development of new methodology and software tools. This approach has several
potential pitfalls that are avoided by using in the models of this chapter. Returning
to the example given earlier of measurements on each child, we could address this
in a traditional logistic regression model using indicator variables to designate the
visit number. This approach does account for the visit number in the model and may
sometimes produce viable estimates of parameters. However, such a model does
not account for the fact that, within each child, the data are not independent and
this could lead to issues with estimation and inference accuracy. From a practical
standpoint this approach quickly becomes infeasible in the presence of a large
number of observations in each cluster (e.g., suppose the child is measured every
week for a year).

Finally, it is likely that there will be some children with missing data in such
a study design. It is also common for the intervals between observations to differ
between children in such a study. Traditional logistic regression requires additional
methodology, which we discuss in Chapter 10, to handle missing data so that
important information in the data is not lost. The models in this chapter do not
suffer from either issue [Gibbons et al. (2010)]. Thus, when the data are correlated,
models designed to account for the correlation should be used rather than attempting
to account for the effect using traditional modeling approaches.

There is a large and rapidly expanding literature on methods for the analysis
of correlated binary data. The methods and models are referred to by a variety
of terms such as: hierarchical models, multilevel models, mixed models, random
coefficient models, variance components, and latent variable models. Most of the
research in this area is at a mathematical level that is beyond this text. However,
software to fit the more common and established models for correlated binary
data is available in major packages such as SAS and STATA. Thus, the goal of
this chapter is to introduce the models that can be fit with the major software
packages and to discuss the strengths and limitations of these models as well as
the interpretation of the resulting parameter estimates. Software packages designed
specifically for correlated data modeling such as MLwiN [Rasbash et al. (2009)]
and Mplus [Muthen and Muthen (2008)] may have additional options that are not
covered in this chapter.

Several accessible review papers that discuss the models we consider are
Neuhaus et al. (1991), Neuhaus (1992), Diez-Roux (2000), Guo and Zhao (2000),
Goldstein et al. (2002), and Gibbons et al. (2010). Diggle et al. (2002) discuss
methods for the analysis of longitudinal data and consider models for binary data.
Ashby et al. (1992) provide a detailed annotated bibliography on methods for
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analyzing correlated categorical data. Collett’s (2003) text discusses methods for
analyzing correlated binary data at a level comparable to this text. A few texts
that go into a bit more depth, useful for additional study, include Snijders and
Bosker (1999), McCulloch and Searle (2001), Hedeker and Gibbons (2006), and
Rabe-Hesketh and Skrondal (2008). Pendergast et al. (1996) also review methods
for clustered binary data. Breslow and Clayton (1993) consider mixed models for
generalized linear models. Agresti et al. (2000) present a summary of different
methods for the analysis of correlated binary data via random effects models,
one of which we discuss in this chapter. Their paper considers other models
and different data settings where random effects models can be effectively used.
Coull and Agresti (2000) consider extensions of a mixed model considered in this
section. Rosner (1984) and Glynn and Rosner (1994) consider specialized models
for the analysis of paired binary outcomes.

9.2 LOGISTIC REGRESSION MODELS FOR THE ANALYSIS
OF CORRELATED DATA

Two approaches are commonly used to model correlated binary data: a random
effects model and a population average model. The random effects model mimics
the usual normal errors linear mixed effects model, where parameter estimates are
conditional on the subject or cluster. Under the population average model estimates
are, in a sense, averaged over the clusters. A third, more specialized, model is the
transitional model that is, essentially, a random effects model using one or more
of the previously observed values of the outcome as a covariate(s). Although we
do not illustrate the transitional model here, a thorough discussion of the approach
is available in references for longitudinal data analysis such as Molenberghs and
Verbeke (2005). An example of the model is found in Azzalini (1994).

The random effects model is referred to in the literature as a “cluster-specific”
or “conditional” model. Often the clusters are specific subjects, but we will use
the cluster-specific terminology as this term is a bit more general than “subject-
specific.” It describes the case of multiple observations on a single subject and
single observations on related subjects. The cluster-specific binary outcome model
is formulated in the manner of the normal errors linear mixed effects model. Sup-
pose we are in a setting with m clusters and ni observations per cluster. We
denote the dichotomous outcome variable as Yij and the collection of covariates
as x′

ij = (x1ij , x2ij , . . . , xpij ) for the j th observation in the ith cluster. Under the
logistic-normal cluster-specific model the correlation among individual responses
within a cluster is accounted for by adding a random effect term, specific to the
cluster, to the logit. The equation for the logit is

g(xij , αi, βs) = β0 + αi + x ′
ij
βs , (9.1)

where the random effects, αi , are assumed to follow a normal distribution with
mean zero and constant variance, that is, αi ∼ N(0, σ 2

α ). In practice the random
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effect terms are unobserved and this leads to complications when we consider
estimation of the regression coefficients, βs . The subscript s refers to the fact that
the coefficients apply to a logistic regression model that is specific to subjects
with random effect equal to αi . Suppose that in our hypothetical asthma study
the coefficient, βs , for having had a chest cold in the previous 2 months is ln(2).
The interpretation is that having a chest cold doubles the odds of having a severe
asthma attack in the next 2 months, among children with the same value of the
unobserved random effect. The interpretation applies either to a specific child or to
an unobserved group of asthmatic children each with the same value of the random
effect. As the covariate “chest cold” can change from month to month, the within-
subject interpretation provides an easily understood estimate of the increase in the
odds for a specific subject. On the other hand, suppose that race is a dichotomous
covariate coded as either white or non-white and its coefficient is ln(2). The cluster-
specific interpretation is that a nonwhite child with random effect αi has odds of a
severe asthma attack that is twice the odds of a white child with the same random
effect. As both the race and random effect are constant within subject and cannot
change, this odds ratio is not likely to be useful in practice. Thus, these two simple
examples illustrate that the logistic-normal model is most likely to be useful for
inferences about covariates whose values can change at the subject level. We will
describe interpretation of the cluster-specific model in more detail using specific
numeric examples in Section 9.4.

The effect of the term αi in equation (9.1) is to increase the correlation among
responses within a cluster relative to the correlation of the responses among clusters.
The basic idea is that because the logistic model probabilities of the outcome within
a cluster have a common value of αi their outcomes will be more highly correlated
than the outcomes from different clusters where the αi’s are different. The greater
the heterogeneity in the values of the αi’s, the greater the difference in the within-
and between-cluster correlations. The heterogeneity in the αi’s is controlled by the
variance σ 2

α . Thus, as σ 2
α increases the within-cluster correlation increases.

Another way to think of this model is in terms of “levels” or a hierarchy in the
data (the terms multilevel or hierarchical models are commonly used to describe
these models in some fields of inquiry). This is best seen by rewriting the model
in equation (9.1) separating the (random) intercept from the vector of parameter
estimates and defining the model as:

g(xij , β0i , βs) = β0i + xij
′ βs (level 1 model) (9.2)

and
β0i = β0 + αi (level 2 model). (9.3)

Here, expression 9.2 for the logit is level 1, the within-cluster level, but we see
the subscript on the intercept term implies this is a random intercept with clusters
having different values. The expression defining these random intercepts is the level
2 or the cluster level model given in equation (9.3) and shows that each cluster
has intercept equal to the constant plus the cluster random effect. For example,
level 1 might be patients and level 2 might be the hospitals. When we consider
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further extensions to the models (random slopes and more levels of clustering) this
parameterization of the model is sometimes easier to understand.

An alternative to the cluster-specific model in equation (9.1) is the population
average model or “marginal” model. Under this model we average probabilities of
the outcome, in a sense, over the statistical distribution of the random effect and
assume that this process yields the logit

g(xij , βPA) = β0 + xij
′ βPA. (9.4)

Probabilities based on the logit in equation (9.4) represent the proportion of
subjects in the population with outcome present among subjects with covariates xij .
Note that we have not specified the statistical distribution of the random effects,
only that the population proportions have logit function given by equation (9.4).
As we show, the lack of any distributional assumptions presents problems when
trying to estimate βPA. The interpretation of a coefficient equal to ln(2) for having
had a cold during the previous 2 months is that the odds of a severe asthma attack
among those who had a cold is twice the odds among those who did not have a
cold. Thus the coefficient describes the effect of the covariate in broad groups of
subjects rather than in individual subjects. If the coefficient for race is ln(2) then the
log-odds of a severe asthma attack among non-whites is twice that of whites. We
will give specific numeric examples in Section 9.4 of interpreting the population
average model. Note that as specified so far, the logistic regression models covered
earlier in the book that assume independence of the responses are no different from
the population average model. In fact, the standard model may be thought of as
a population average model. However, when we discuss the population average
model we typically refer to models addressing correlation in the responses through
the covariance structure, which will be discussed in the next section.

Both the cluster-specific and population average model may be fit to data con-
taining subject-specific and cluster-level covariates. As a result, the choice of which
model to use should be based on what types of inferences the fitted model is
intended to provide. As described via the two covariates “having had a cold” and
“race,” the cluster-specific model is most useful when the goal is to provide infer-
ences for covariates that can change within cluster, whereas the population average
model is likely to be more useful for covariates that are constant within cluster.
However, model choice is not always this straightforward. As an example, for
clinical trials Lindsey and Lambert (1998) strongly oppose use of population aver-
age models as they may hide the true nature of an effect on each individual—in
extreme cases leading to concluding a positive/negative effect overall when every
individual observed has the opposite effect, negative/positive. By contrast, Diggle
et al. (2002) support the use of a population average model for analyzing clini-
cal trials data as the average effect of a treatment is the measure of interest. The
cluster-specific models offer an advantage, as we see in later sections, in allowing
the researcher to estimate a population average like effect as well as the cluster-
specific effects. Clearly, both models have their place in practice. We return to this
point via examples throughout this chapter.
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9.3 ESTIMATION METHODS FOR CORRELATED DATA LOGISTIC
REGRESSION MODELS

As we alluded to in the previous section, estimation in correlated data models is
not as straightforward or easily described as in the uncorrelated data setting where
a likelihood function can be derived from the binomial distribution. As it is the
simpler model, we begin with the population average model.

In the population average model, estimation is based on generalized estimat-
ing equations (GEE). Liang and Zeger (1986) and Zeger et al. (1988) first used
GEE with the binary data population average model. The GEE approach uses a
set of equations that look like weighted versions of the likelihood equations shown
in Chapters 1 and 2. The weights involve an approximation of the underlying
covariance matrix of the correlated within-cluster observations, which requires an
assumption about the structure of this correlation. The default assumption used by
most packages is called exchangeable (or sometimes compound symmetry) corre-
lation that assumes the correlation between pairs of responses within a cluster
is constant, Cor(Yij , Yil ) = ρ for j �= l. Three other possible correlation struc-
tures that can be specified in most packages are independent, auto-regressive and
unstructured. Under the independent model Cor(Yij , Yil ) = 0 for j �= l and the GEE
equations simplify to the likelihood equations obtained from the binomial likelihood
in Chapter 2. We do not consider this correlation structure further in this chapter.
The auto-regressive structure is appropriate when there is a time or order compo-
nent associated with the observations. The correlation among responses depends
on the lag between the observations and is assumed to be constant for equally
lagged observations. Settings where there is an explicit time component are a bit
specialized and additional approaches to handling such data are covered in texts
such as Diggle et al. (2002) or Hedeker and Gibbons (2006). In the unstructured
correlation case one assumes that the correlation of the possible pairs of responses
is different, Cor(Yij , Yil ) = ρjl for j �= l. At first glance this might seem to be the
best choice. However, it requires estimating a large number of parameters that are,
for the most part, of secondary importance. For example, if we have clusters with
six observations per cluster we must estimate 15 correlations. In most applications
we are only interested in estimating the regression coefficients and need to account
for correlation in responses to obtain correct estimates of the standard errors of the
estimated coefficients. For this reason Liang and Zeger (1986) refer to the choice
of correlation structure to use in the GEE as the “working correlation.” The idea
is that one chooses a correlation structure for estimation that seems plausible for
the setting and then this structure is used in adjusting the estimator of the variance.
We discuss some methods of assessing the choice of correlation structure in later
sections of the chapter. For data that does not have a clear choice of structure,
a reasonable and parsimonious choice is the “exchangeable correlation” structure.
One of the advantages of the GEE approach is the “robustness” of the estimates to
choice of correlation structure [see for example Gardiner et al. (2009) or Goldstein
et al. (2002)]. In other words, even if the correlation structure chosen is not the
true structure the parameter estimates from GEE are often still valid. This property
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holds when the robust (or “sandwich”) estimates discussed later are used. Thus we
use the GEE method for population average models with exchangeable correlation
as the working correlation unless the nature of the data clearly suggests another
choice.

We need some additional notation to fully describe the application of GEE to
the population average model. We denote the logistic probability obtained from the
logit in equation (9.4) as

πPA(xij ) = eg(x,βPA)

1 + eg(x,βPA)
, (9.5)

where g(x, βPA) is the usual linear expression of the logit consisting of the set
of predictors and the corresponding parameters estimated under the population
average model. We use two matrices to describe the within-cluster covariance of
the correlated observations of the outcome variable. The first is an ni × ni (recall
from the previous section that this is the number of observations in the cluster)
diagonal matrix containing the variances under the model in equation (9.4) denoted

Ai = diag[πPA(xij ) × (1 − πPA(xij ))] (9.6)

and the second is the ni × ni exchangeable correlation matrix denoted

Ri (ρ) =

⎡⎢⎢⎢⎣
1 ρ · · · ρ

ρ 1 ρ
...

. . .
...

ρ ρ · · · 1

⎤⎥⎥⎥⎦ . (9.7)

Using the fact that the correlation is defined as the covariance divided by the
product of the standard deviations it follows that the covariance matrix in the ith
cluster is

Vi = A0.5
i Ri (ρ)A0.5

i , (9.8)

where A0.5
i is the diagonal matrix whose elements are the square roots of the ele-

ments in the matrix in equation (9.6). The contribution to the estimating equations
for the ith cluster is D′

iV
−1
i Si where D′

i = X′
iAi , Xi is the ni × (p + 1) matrix

of covariate values and Si is the vector with j th element the residual sij = yij −
πPA(xij ). The full set of estimating equations is

m∑
i=1

Di
′ V−1

i Si = 0 (9.9)

and its solution is denoted as β̂PA. Implicit in the solution of these equations is an
estimator of the correlation parameter, ρ. Typically this is based on the average
correlation among within-cluster empirical residuals and as such it is also adjusted
with each iterative change in the solution for β̂PA.
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Liang and Zeger (1986) show that the estimator, β̂PA, is asymptotically normally
distributed with mean βPA. They derive, as an estimator of the covariance matrix,
the estimator that is often referred to as the information sandwich estimator. The
“bread” of the sandwich is based on the observed information matrix under the
assumption of exchangeable correlation. The “bread” for the ith cluster is

Bi = Di
′ V−1

i Di

= Xi
′ Ai (A

0.5
i Ri (ρ)A0.5

i )−1AiXi
′ .

The “meat” of the sandwich is an information matrix that uses empirical residuals
to estimate the within-cluster covariance matrix. The “meat” for the ith cluster is

Mi = Di
′ V−1

i CiV
−1
i Di

= Xi
′ Ai (A

0.5
i Ri (ρ)A0.5

i )−1Ci (A
0.5
i Ri (ρ)A0.5

i )−1AiXi
′ , (9.10)

where Ci is the outer product of the empirical residuals. Specifically, the jkth
element of this ni × ni matrix is

cjk = [yij − πPA(xij )] × [yij − πPA(xij )].

The equation for the estimator is obtained by evaluating all expressions at the
estimator β̂PA and the respective values of the covariates, namely

Ĉov(β̂PA) =
(

m∑
i=1

B̂i

)−1

×
(

m∑
i=1

M̂i

)
×

(
m∑

i=1

B̂i

)−1

. (9.11)

We note that some packages may offer the user the choice of using the informa-
tion sandwich estimator, also called the robust estimator, in equation (9.11) or one
based only on the observed information matrix for the specified correlation struc-
ture, the “bread” Bi . We recommend that unless there is strong evidence from other
studies or clinical considerations that the working correlation structure is correct,
one should use the estimator in equation (9.11).

One can use the estimated coefficients and estimated standard errors to estimate
odds ratios and to perform tests for individual coefficients. Joint hypotheses must
be tested using multivariable Wald tests because the GEE approach is not based
on likelihood theory. This does make model building a bit more cumbersome,
because in most packages it is more complicated to perform multivariable Wald
tests than likelihood ratio tests. An alternative to Wald tests, available in some
software packages, are Generalized Score statistics [Rotnitzky and Jewell (1990)].
Regardless, the fact that the method does not have a likelihood is a disadvantage
of GEE. We will discuss other available tools for model building and comparison
in later sections.

Unlike the population average model, it is possible to formulate a likelihood
function for the cluster-specific model. If we assume that the random effects follow
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a normal distribution with mean 0 and constant variance, αi ∼ N(0, σ 2
α ), then the

contribution of the ith cluster to the likelihood function as given in Section 1.2 is

f (yi |xi ,αi ) =
ni∏

j=1

eyij ×(αi+xij
′ βs )

1 + eαi+xij
′ βs

. (9.12)

The difference is that now this expression is a function of not only the observed
data but also the unobserved random effect. To obtain a likelihood that does not
include this unknown, we “integrate out” the random effect as follows. First, the
conditional likelihood in equation (9.12) is rewritten so that the conditioning is
only on x by integrating over the distribution of αi given by g(α):

f (y|x) =
∫
α

f (y|x, α)g(α).

Substituting the expression from equation (9.12) and the assumed normal dis-
tribution for g(α) produces the cluster contribution to the likelihood

Pr (βs)i =
∞∫

−∞

⎡⎣ ni∏
j=1

eyij ×(αi+xij
′ βs)

1 + eαi+xij
′ βs

⎤⎦ 1√
2π

1

σα

exp

(
− α2

i

2σ 2
α

)
dαi . (9.13)

The full log-likelihood is then the sum of the log of this likelihood over all
clusters,

L(βs) =
m∑

i=1

ln[Pr (βs)i]. (9.14)

The problem is that complicated numerical methods are needed to evaluate the
log-likelihood, obtain the likelihood equations, and then solve them. These methods
are, in general, well beyond the mathematical level of this text. There are several
approaches we do not discuss, including the use of the EM algorithm [Anderson
and Aitken (1985)] and an empirical Bayesian approach [Wong and Mason (1985);
Stiratelli et al. (1984)]. A fully Bayesian approach using Gibbs sampling (Markov
Chain Monte Carlo, or MCMC, simulation) is discussed in Section 10.6 of this
textbook as this approach has increased in popularity with the improvement in
computing power.

Two classes of estimation method are most commonly used in standard software
packages. The first is to avoid the difficulty of evaluating the integral in equation
(9.13), which is a non-linear function of the parameters, by “linearizing” the model
using a Taylor series approximation. These “linearized” models are then estimated
using methods from linear mixed models. As the likelihood function is not actually
used in the estimation, such procedures are referred to as “quasilikelihood” or
“pseudolikelihood” estimation. The second approach is to evaluate the integral
in the likelihood function using numerical integration techniques [Pinheiro and
Bates (1995); Rabe-Hesketh et al. (2002)], namely quadrature (Gauss–Hermite
quadrature). The basic idea of quadrature is to replace the integral over the
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random effects normal distribution in equation (9.13) with a sum. In other words,
the continuous distribution is approximated by a discrete distribution. We will
illustrate the choices and issues with both approaches using examples in Sections
9.4 and 9.5. The remainder of this section gives some additional details that may be
skipped on the first read or that may be of interest only to more experienced users.

Software packages offer numerous options for the approximation and parameter
estimation algorithms. We will provide recommendations later about selecting from
these choices. For the quasi- and pseudolikelihood (PL) methods, marginal quasi-
likelihood (MQL) [Goldstein (1991)] involves a Taylor series expansion around
random effects of 0 (their theoretical mean value—or in essence expanding around
the fixed effects or marginal model). The Taylor expansion may include a term
for only the first derivative (first-order approximation) or, to improve accuracy,
a second derivative term (second order). The choice of expansion is designated
MQL-1 or MQL-2. Expansion around the current estimates of the random effects
at each iteration is termed penalized quasilikelihood (PQL) estimation [Breslow and
Clayton (1993); Goldstein and Rasbash (1996)] and again, may involve a first or
second order approximation (designated PQL-1 or PQL-2). SAS uses a slight vari-
ation to these methods termed “pseudolikelihood” or PL [Wolfinger and O’Connell
(1993)]. The approach includes two choices for the Taylor series expansion at each
iteration. In the first, known as marginal pseudolikelihood (MPL), the expansion
is around the expected values (corresponds to MQL). In the other, referred to as
subject-specific pseudolikelihood (SPL), expansion is around the estimated random
effects. An additional option with PL methods is to make use of the residuals at
each optimization step, which reduces bias in the estimates. Estimation without
using the adjustment is termed “maximum likelihood” and an “M” is added to the
acronym (MMPL and MSPL). The corresponding methods using the residuals are
RMPL and RSPL.

The primary option for adaptive quadrature estimation involves the choice of the
number of discrete points (known as quadrature points) and their locations. They
are chosen and given weights based upon the underlying normal distribution. With
correlated data, issues with the method arise with large clusters or high intra-cluster
correlation, which can lead to sharp peaks in the continuous distribution that may
fall between the points chosen for the discrete approximation. Adaptive quadrature
improves the approximation by scaling and shifting the locations chosen based
upon the cluster data [Rabe-Hesketh et al. (2005)]. Increasing the number of points
chosen improves the approximation.

The choice of estimation methods (and options—there are many not discussed
here) is an issue in cluster-specific models as different methods will produce differ-
ent results. Although the differences are often small there are examples in real data
sets in which they can be quite striking [Lesaffre and Spiessens (2001); Masaoud
and Stryhn (2010)]. We will discuss some strategies in the context of examples in
later sections of this chapter. Our general preference is to use methods like adaptive
quadrature or MCMC. These methods, in general, appear to suffer the least from
bias in the estimates and offer the added advantage of an estimate of the likelihood
function for use in model building and comparison such as the likelihood ratio
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tests used in earlier chapters [Zhang et al. (2011)]. The methods do have potential
drawbacks however. Quadrature does not always produce the parameter estimates
that truly maximize the likelihood [Lesaffre and Spiessens (2001)]; issues appear to
be most likely in settings with high intra-cluster correlations. Adaptive quadrature
suffers less from potential estimation bias. A more likely problem is the ability of
the numerical methods to converge with a complicated model (i.e., those with more
than two levels or multiple random effects). However, although one would prefer
to use more quadrature points to improve approximations, increasing the number
can lead to numerical convergence issues.

The quasi- or pseudolikelihood methods offer an advantage over numerical
methods in their ability to converge and produce estimates for the parameters.
However, there is substantial evidence [Rodriguez and Goldman (1995, 2001);
Breslow (2003); Heo and Leon (2005); Masaoud and Stryhn (2010)] that they can
suffer from bias in those estimates particularly in settings with small samples in the
clusters or high intra-cluster correlation. PQL-2 seems to suffer less (RSPL for PL)
but, like numerical methods, may not allow estimation computationally. Addition-
ally, options to improve the methods using simulation [see Goldstein and Rasbash
(1996), and Ng et al. (2006), for a review of some] techniques are proposed and
may be available in some software packages.

9.4 INTERPRETATION OF COEFFICIENTS FROM LOGISTIC
REGRESSION MODELS FOR THE ANALYSIS OF CORRELATED DATA

In this section we explore the similarities and differences in the estimates of effect
from marginal (population average) and conditional (cluster-specific) models for
correlated binary data. Specifically, we focus on the GEE model described in the
previous section with exchangeable correlation structure and the corresponding
random effects model using quasilikelihood and adaptive quadrature estimation
methods. These models are available in most standard statistical software packages.
The GEE model, for example, is fit using PROC GENMOD in SAS and XTGEE
or XTLOGIT with the “PA” option in STATA. The random effects models in SAS
are fit using PROC GLIMMIX and in STATA with XTLOGIT. Only quadrature
estimation is available in STATA. In SAS the default method is PL estimation. SAS
has the option to use quadrature, producing estimates very similar to STATA.

To provide an example we created another sampled data set from the GLOW
data, as described in Section 1.6.3 called “GLOW_RAND” with 500 observations
and the same covariates as described in Table 1.7. This data set is different from the
GLOW500 data and was created in order to better illustrate features of correlated
data models. In earlier chapters, the data set described in Section 1.6.3 was analyzed
without accounting for two possible sources of correlation between observations
on study subjects: the physician (PHYS_ID) and the study site (SITE_ID). As
subjects are clustered by physician within sites it may be necessary to consider
a three-level random effects model when analyzing the data. In this section, we
begin by considering two-level models using only sites, SITE_ID, and a random
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intercept. The GLOW_RAND data has 6 sites with as few as 24 subjects in one
site (site 4) and as many as 113 in one site (site 2). There are 124 physicians and
the sizes of physician clusters vary from 1 to 13.

The outcome of interest is, again, whether a fracture occurred in the first year
of follow-up (FRACTURE). In this section, we fit a model using the continu-
ous covariate weight (kg) at enrollment divided by 5 (WEIGHT5), the dichoto-
mous covariate arms needed to stand (ARMASSIST), and the three level categor-
ical covariate self-reported risk of fracture (RATERISK). We divided weight by 5
in order for the coefficient to provide the change in log-odds for a 5 kg increase
in weight (see Section 3.4).

We begin by fitting the standard logistic model that ignores the correlation
among subjects within sites (i.e., SITE_ID). A summary of the results of this fit
are shown in the second column of Table 9.1 under the heading labeled “Standard
Model.” Estimates from models that account for the correlation are presented in
columns 3 and 5 and the percentage differences as compared to the standard model
are calculated and presented in columns 4 and 6. Although not shown, all four
variables are significant in all three models with p-values less than 0.02.

9.4.1 Population Average Model

The results shown from the fit of the population average model with exchangeable
correlation are shown in the third column of Table 9.1. We used STATA’s xtlogit

Table 9.1 Estimated Coefficients and Standard Errors from the Standard Logistic
Regression Model, the Population Average Model, and the Cluster-Specific Model

Standard Population Average Cluster-Specific
Model Model Model

Coeff. Coeff. % Coeff. %
Variable (Std. Err.) (Std. Err.) Change (Std. Err.) Change

WEIGHT5 −0.121 −0.114 5.70 −0.116 4.13
(0.040) (0.025) (−37.50) (0.041) (1.25)

RATERISK_2 0.721 0.678 −5.96 0.683 −5.27
(0.293) (0.128) (−56.31) (0.297) (1.37)

RATERISK_3 0.771 0.734 −4.80 0.745 −3.37
(0.309) (0.248) (−19.74) (0.313) (1.29)

ARMASSIST 0.901 0.903 0.22 0.923 2.33
(0.223) (0.189) (−15.25) (0.228) (2.24)

Constant −0.342 −0.466 −0.471
(0.613) (0.309) (0.642)

/lnsig2u −1.877
(0.927)

Sigma_u 0.391
(0.181)

Rho 0.022 0.044
(0.039)
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command with the “pa” option and the robust or “sandwich” estimates shown
in equation (9.11) for the standard errors (option “vce(robust)”). The percentage
change from the standard logistic model estimates is at most 6%. The small dif-
ferences observed in estimated coefficients are often the case, in particular when
the correlation between clusters is small as in this example where ρ̂ = 0.022. We
discuss this estimate later. However, the estimated standard errors are considerably
smaller, by 15–56%. Interestingly, in this case, by accounting for the correlation
among subjects within sites we have more precision and thus tighter inferences
and narrower confidence intervals. In the example, the overall conclusion about
the significance of covariates is unchanged as the p-values are all less than 0.003.

One danger in ignoring correlation among responses is that the inferences could
change and a covariate that is not significant appears to have statistical signifi-
cance under the standard model, or an insignificant covariate could likewise appear
significant. Rabe-Hesketh and Skrondal (2008) suggest that the type of covariate,
cluster, or subject can determine how statistical inference is affected. For a cluster-
level covariate the estimated standard error will be too small if the model ignores
the correlation. The danger in this case is to conclude significance where none
exists. The opposite is true for subject-level covariates. Austin et al. (2003) give
an example of ignoring the correlation in a three-level model, patients clustered
within physicians who are clustered within hospitals. In their example, failing to
account for the correlation has the general effect of reducing the significance of
physician level effects while increasing the significance of hospital level affects.
These results agree with the opinion that higher (cluster) level covariates are ones
likely to erroneously appear significant when correlation is ignored.

By using the exchangeable correlation structure we assume that the correlation
between pairs of observations for a given subject is the same. Thus, the correla-
tion matrix as given in equation (9.7) involves a single parameter ρ, which we
have added to Table 9.1 as “Rho.” In this case the estimated value ρ̂ = 0.022 is
small suggesting the correlation within sites is not large. In the population average
model, the working correlations are usually of little interest, and as a result tests of
their significance are not typically conducted. We discuss the issue of determining
whether the chosen correlation structure is best in the next two sections.

Estimators of the odds ratios from a fitted population average model are com-
puted using the same steps described for the standard model in Chapter 3. Estimated
odds ratios and their confidence intervals from the fitted models in Table 9.1 are
shown in Table 9.2. For example the estimate of the odds ratio for ARMASSIST is:

e0.9034 = 2.468.

The end points of the 95% confidence interval are computed as in the standard
model and are:

e0.9034±1.96(0.189) = (1.704, 3.575).

The odds ratios from a population average model are based on proportions of
subjects in the population at the different levels of the covariate of interest while
holding all other covariates fixed. As a result, their interpretation is analogous to the
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Table 9.2 Estimated Odds Ratios and Confidence
Intervals from the Population Average Model in
Table 9.1

Variable Odds Ratio 95% CI

WEIGHT5 0.892 0.850, 0.937
RATERISK_2 1.970 1.534, 2.531
RATERISK_3 2.083 1.282, 3.385
ARMASSIST 2.468 1.704, 3.575

interpretation of odds ratios from the standard logistic regression model, discussed
in Chapter 3. Hence, the population average model is likely to be the best model
for correlated data when the objective of the study is to describe, in broad terms,
the effects of the covariates. However, this broad interpretation comes at the cost of
not using information available in repeated measurements of a covariate on study
subjects.

In our example, the estimated population average odds ratio for ARMASSIST
is 2.47. The interpretation is that the odds of a fracture in the first year computed
from the proportion of subjects requiring arm assistance to stand is 2.47 times
that based on the proportion of subjects not requiring arm assistance, holding self-
reported risk of fracture and weight constant. The population average odds ratio for
a 5 kg increase in weight is 0.89. The interpretation is that the odds of a fracture
in the first year computed from the proportion of subjects weighing 5 kg more
than some reference weight is about 11% lower than that based on the reference
weight, holding self-reported risk and arm assistance constant. The fact that weight
is linear in the logit implies this odds ratio holds for a 5 kg increase at any weight.
The population average odds ratio for self-reported risk of fracture involves two
comparisons to the reference group, RATERISK = 1, obtained via reference cell
coding described in Section 3.3. As an example, we compare women who report that
their risk of fracture is greater than other women the same age (RATERISK = 3)

to women who report that their risk of fracture is less than women the same age
(RATERISK = 1). Using the results from the fitted population average model in
Table 9.2 the estimate of this odds ratio is 2.08. The interpretation is that the odds
of fracture in the first year of follow-up computed from the proportion of subjects
reporting higher risk than others in the same age group is 2.08 times the odds
of fracture in the first year of follow-up based on the proportion of subjects who
report lower risk than others in the same age, holding weight and arm assistance
required constant.

9.4.2 Cluster-Specific Model

We next fit a cluster-specific model in STATA using adaptive quadrature with the
same covariates. The results are shown in column 5 of Table 9.1. The estimated
odds ratios and their 95% confidence intervals are shown in Table 9.3. We obtained
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Table 9.3 Estimated Odds Ratios and Confidence Intervals
from the Fitted Cluster-Specific Model Using Adaptive
Quadrature Estimation in Table 9.1

Variable Odds Ratio 95% CI

WEIGHT5 0.891 0.823, 0.964
RATERISK_2 1.980 1.106, 3.544
RATERISK_3 2.107 1.141, 3.890
ARMASSIST 2.516 1.609, 3.933

similar results using adaptive quadrature in SAS. In both packages all other options
are at their default settings.

Table 9.1 contains additional output typically provided for cluster-specific mod-
els. The top panel of output contains results describing the estimates of the coef-
ficients. The bottom panel contains results describing the estimate of the variance
of the random effect due to site. For numerical stability reasons STATA chooses
to estimate the log of the variance described in the row labeled “/lnsig2u” in
Table 9.1. The resulting estimate of the standard deviation, displayed in the row
labeled “sigma,” is obtained as the square root of the exponentiated estimate of
the log variance, for example, 0.391 = √

exp(−1.88). The result in the row labeled
“rho” is an estimate of the intracluster correlation (ICC), a measure of the proportion
of the total variance accounted for by the random effect. The proportion requires
an estimate of the variance at level 1 and the most common practice is to use the
value π2/3, which is the assumed variance for an underlying “threshold” continu-
ous model producing the binary responses [McCullagh and Nelder (1989)]. Based
upon this assumption, the estimated proportion of the total variance explained is

0.044 = 0.3912

π2

3 + 0.3912
.

SAS provides similar or equivalent output for the fitted model. As we observed
in the population average model, the ICC suggests little correlation between
observations within sites.

The percentage differences between cluster-specific estimates and the standard
model estimates are shown in the last column of Table 9.1. The cluster-specific
estimates are similar in this example, differing by less than 6%. We note that
the estimated coefficients from the cluster-specific model are all larger in absolute
value than those from the population average model, a point we return to shortly.
As both coefficient and standard error estimates are similar it is not surprising
that the coefficients are statistically significant with p-values less than 0.03. This
is not always the case with cluster-specific models for correlated data as we will
demonstrate in the next section. Statistical significance for the random effects is
not typically shown in this portion of the computer output. We also discuss tests
for significance of random effects in the next section.

The interpretation of estimated odds ratios from a fitted cluster-specific model
apply to subjects with a common but unobserved value of the underlying random
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effect, αi . This could be a single subject or a group of subjects. For example the
estimate of the cluster-specific odds ratio from Table 9.3 for use of arms in standing
(ARMASSIST) is 2.52. The interpretation is that by needing to use arms to stand
a woman has increased her odds of a fracture in the first year of follow-up by 2.52
times the odds if she did not require arm assistance, holding self-reported risk and
weight constant. In this case the odds ratio makes sense because arm assistance is
probably a modifiable risk factor at the subject level. However, an estimated odds
ratio for a nonmodifiable factor such as race is more difficult to interpret. One
would have to resort to comparisons of hypothetical groups of subjects with the
same random effect who differ in their race holding other covariates constant. We
leave the details as an exercise.

The cluster-specific odds ratio for a 5 kg increase in weight is 0.89. The inter-
pretation is that the odds of having a fracture in the first year of follow up for a
woman who gained 5 kg is 11% less than the odds at the current weight, hold-
ing self-reported risk and arm assistance constant. This odds ratio suggests, likely
incorrectly, that by simply gaining weight a person can substantially reduce the
risk of a fracture. What is needed in the model is a more objective measure of
size of the woman such as body mass index. If the effect of weight gain is similar
for both short and tall subjects then the odds ratio correctly estimates the effect of
body size on fractures for subjects with the same random effect and holding all
other covariates constant. The interpretation for the categorical self-reported risk
odds ratios is similar to that of the dichotomous variable arm assist with each odds
ratio comparing the odds to the reference group and is left as an exercise.

The covariates weight, arm assist and self-reported risk provide good examples
of the strengths and weaknesses of population average and cluster-specific models.
In a sense, the odds ratios for these covariates are easier to interpret from population
average models as they describe effects in broad groups of subjects in the popula-
tion. The clear weakness of the population average model is that it cannot address
effects such as age. The cluster-specific model is best suited for such a covariate,
as one does not have to argue that the inferences apply to some hypothetical and
unobservable group of subjects with the same random effect. For example, an odds
ratio of 2.0 for a 10 year increase in age in a population average model would be
interpreted as the odds of fracture is twice as much for the population of subjects
that is 10 years older than the odds for those in the 10 years younger population.
Both models can be used to address important clinical questions and have their
place in an analysis of clustered binary data.

There are two other estimates of effect that subject matter scientists find useful
when interpreting results of cluster-specific models. These are the Median Odds
Ratio (MOR) and the Interval Odds Ratio (IOR) described in Larsen et al. (2000)
and Larsen and Merlo (2005). Currently, these measures are not calculated in
software packages, but are both simple to compute and are being increasingly used
when reporting results from cluster-specific models for binary outcomes.

The MOR is a measure of how much variability in the outcome exists between
clusters. It compares the odds for randomly selected subjects from two different
clusters holding all covariates in the model constant. Recall that the random effect



interpretation of coefficients from logistic regression models 329

for cluster i is αi . Thus, the odds ratio for two such subjects is defined as exp(|αi −
αj |). The absolute value is used to ensure that the difference between the random
effects is positive; in other words, to compare the subject with higher odds to the
one with lower odds. Hence, these odds ratios are always greater than or equal
to 1. The MOR is the median value of the distribution of odds ratios for all such
randomly chosen pairs. Thus, a value of the MOR near 1 suggests little difference
between clusters as it implies that most of the differences, |αi − αj |, are small.
A value much larger than 1 is indicative of variability in outcome between clusters.
Using results from the standard normal distribution the estimate of the MOR is:

̂MOR = ez0.75
√

2σ̂ 2

= e0.6745
√

2σ̂ 2
,

(9.15)

where z0.75 is the 75th percentile of the Standard Normal distribution function and
σ̂ 2 is the estimator of the cluster variance. Using the results of the fitted cluster-
specific model in Table 9.1 the estimate of the cluster variance is the estimated
variance of the random intercept

σ̂ 2 = exp(−1.877) = 0.152881,

which leads to an MOR estimate of

̂MOR = e0.6745
√

2·0.152881 = 1.45.

The interpretation is that for two randomly chosen subjects from different sites
(i.e., different clusters) with the same values of the covariates in the model (weight,
arm assistance, and self-reported risk) the median odds for the higher risk subject
of a fracture in the first year is 1.45 times that of the lower risk subject in all such
pairs. In other words, for half of the possible pairs of randomly selected subjects
from different sites the odds for the higher risk subject is more than 1.45 times that
of the lower risk subject. The 50% increase in odds for half of the pairs suggests a
difference in the risk of fracture between subjects at different sites. However, there
is no formal test for how large the MOR needs to be to support this conclusion.

The interval odds ratio, IOR, is useful for examining the effect of cluster but not
subject level covariates on risk of the outcome. It is defined as the interval covering
the central 80% of odds ratios between two subjects from different clusters and
with different cluster-level covariate values [note: we use 80% which is the value
recommended by Larsen et al. (2000)]. Unlike the MOR, the distribution of the odds
ratios used to form the IOR does not always involve comparing larger to smaller
odds. Hence, the values used to compute the IOR can be less than 1 as well as
greater than 1. The IOR has a different interpretation than the odds ratio computed
from the coefficient of a cluster level covariate, namely the odds for a change in
the covariate for a subject in a fixed cluster. The IOR considers the difference in
the covariate, but for subjects from different clusters. Note that the IOR is not a
confidence interval for an odds ratio, hence 80% is defined by the percentage of the
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population odds ratios one wishes to cover. For two hypothetical sets of covariate
values, x1 and x2, the equations to estimate the IOR are:

ÎORlower = eβ̂×(x1−x2)−z0.9×
√

2σ̂ 2
(9.16)

and
ÎORupper = eβ̂×(x1−x2)+z0.9×

√
2σ̂ 2

, (9.17)

where z0.9 = 1.28 is the 90th percentile of the Standard Normal distribution.
In our example, we do not have any cluster level variables in the model. For

purposes of illustrating the IOR, suppose that we had the dichotomous variable
URBAN in the model where 1 represented an urban site and 0 a rural site and
we wish to compare subjects from an urban to rural site holding other covariates
constant. If the estimated coefficient for the URBAN variable were 0.8 the IOR
estimate would be:

ÎOR = e0.8×(1−0)±1.28×
√

2(0.391)2

= (1.097, 4.517).

There are two key insights the IOR can provide about the cluster covariate and
cluster correlation. The first is based on the width of the interval. Wide intervals
indicate that the variability between clusters (sites) is large relative to the effect of
the (hypothetical in this case) cluster variable. A narrow interval suggests less vari-
ability between clusters. The second insight is based on whether or not the interval
contains the value one. In this example, the interval does not contain one, which
would suggest that the effect of the cluster-level variable is still significant even in
the presence of the variability, σ 2

α , between clusters. Thus we would conclude the
effect of URBAN is significant relative to the variability in the SITE. The interval
is quite wide, however, suggesting there is additional variability due to SITE.

In cluster-specific models, unlike population average models, the cluster effects,
αi , may be of interest to the researcher. For example, we may wish to know which
sites have larger or smaller probabilities of fracture 1 year after follow-up because
there is some variability across sites as seen in the IOR. Regardless of estimation
method, quadrature, or PL, software packages such as STATA and SAS can produce
estimates and standard errors of the random effects in cluster-specific models. In
most cases, the estimates are, in fact, predictions that are based on conditional
distributions of the random effect for a cluster given the estimated values for the
fixed and random parameters in the model. In Bayesian terminology (see Section
10.6), these are “posterior” distributions and the estimates for the random effect is
usually the mode of that distribution. The predicted values are referred to as BLUPs
(Best Linear Unbiased Predictions) or EBLUPs (Estimated Best Linear Unbiased
Predictions). It is important to understand that due to the way they are calculated
these predicted values are “shrunken” to the mean. In essence, they are shifted
toward the overall population average from the observed value one might obtain
using only the cluster average. The intuition is that the cluster estimate is based on
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a small sample and we would like to take advantage of information from the other
clusters.

In STATA, we use xtmelogit to fit a model and produce the predicted values of
the random effects. We used the xtlogit procedure to fit a model with a random inter-
cept and covariates weight, self-reported risk, and arm assist with results shown in
Table 9.1. The advantage of the xtlogit procedure is that it has an option to fit both
the cluster-specific and population average models we used in this section. How-
ever, for more complicated random effects models the xtmelogit procedure must be
used. The xtmelogit procedure provides the additional output options necessary to
obtain the estimates of the predicted cluster random intercept values. In SAS, one
adds the “solution” option to the random statement to estimate and report the pre-
dicted values within the GLIMMIX procedure. The estimates of the random effects
and standard errors for the model fit in column 4 of Table 9.1 are shown in Table 9.4.

As we are fitting a model with a random intercept only, as shown in equation
(9.3), the posterior predicted values are the estimates, α̂i , for each cluster (site).
When added to the model estimated intercept coefficient of −0.471 shown in
Table 9.1, they provide a predicted value of the intercept for a given cluster (site).
As an example, the predicted random effect for site 1 from Table 9.4 is −0.093.
Thus the predicted intercept for site 1 is −0.471 + (−0.093) = −0.564. As the
intercept acts to shift the fitted logistic function up or down, the random effects
indicate whether the overall probability of a fracture in the first year is higher or
lower than the average for the given cluster (site). For site 1, the probability is
slightly lower as the effect estimate is negative. We see that in this example two
sites (SITE_ID = 5 and 6) appear to differ in terms of predicted intercept from the
other four in that they have higher (positive) predicted intercept values. The pre-
dicted intercept for site 5 adds 0.496 to the estimated fixed effect intercept which,
in turn, raises the estimated probability of a fracture in the first year for subjects
from that site. Likewise, for site 6 there is a positive random effect of 0.3. Among
the other four, site 3 has a much larger negative value and shifts probabilities down.

A useful method of presenting the predicted random effects is the so-called
caterpillar plot [Goldstein and Healy (1995)], which displays the posterior estimates
of the random intercepts with 95% confidence interval error bars. Goldstein and
Healy (1995) suggest a procedure to adjust the error bars so that the average Type 1

Table 9.4 Predicted SITE_ID Random Intercepts, α̂i , Using
Adaptive Quadrature Estimation

Predicted Predicted Intercept
SITE_ID α̂i Std. Err. β̂0 + α̂i

1 −0.093 0.202 −0.564
2 −0.036 0.197 −0.507
3 −0.460 0.254 −0.931
4 −0.164 0.311 −0.635
5 0.496 0.193 0.025
6 0.300 0.214 −0.171
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error rate for comparing pairs of differences between estimates is 0.05. With only
six clusters, the adjustment factor is fairly simple to compute but in cases with
more clusters this becomes more difficult so the standard normal 95% confidence
intervals (i.e., the estimate plus/minus 1.96 times its standard error) may be the
only option. Alternatively, use of a specialized software program [e.g., MLWin,
Rasbash et al. (2009)] that produces this plot with the scaling may be required.
Hence we present in Figure 9.1 the simple 95% confidence interval estimates by
adding and subtracting 1.96 times the standard error from the estimated predicted
values for each random effect.

The plot displays the predicted posterior random intercepts ranked from smallest
to largest for the six sites in the study with error bars to help visually identify sites
that may differ. Although we cannot use these results for inference, it does appear
that there is a significant difference between sites 5 and 3 where the confidence
intervals clearly do not overlap. As the posterior estimates are shrunken toward the
overall mean the conclusion is reasonably conservative.

The predicted random effects allow us to compute predicted probabilities of the
outcome for each subject in the sample accounting for the effect of the cluster.
Predicted probabilities for the first five subjects in the GLOW_RAND data set are
shown in Table 9.5. To illustrate how these values are computed we use subject 3.
As this subject does not use arm assistance and lists RATERISK of 2, the coeffi-
cients for ARMASSIST and RATERISK_3 are multiplied by the covariate value
of 0. Using the values of WEIGHT5 and RATERISK_2 as well as the estimates
for the intercept and the predicted random effect for site 3 in Tables 9.1 and 9.4
the estimated logit is computed:

ĝ(x) = −0.471 − 0.116 × 15.70 + 0.683 × 1 + 0.745 × 0 + 0.923 × 0 − 0.46

= −2.0692
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Figure 9.1 Plot of the ranked six predicted random intercepts, α̂i , with 95% error bars for the six
sites.
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Table 9.5 Predicted Probabilities of FRACTURE for the First Five Subjects

SUBJECT_ID SITE_ID ARMASSIST RATERISK WEIGHT5
Predicted

Probability

1 2 YES 3 14.52 0.373
2 3 YES 3 15.88 0.249
3 3 NO 2 15.70 0.112
4 4 YES 2 14.52 0.329
5 5 NO 3 9.70 0.412

and the probability estimate is

π̂ = e−2.0692

1 + e−2.0692
= 0.112.

Most software packages will also include options to compute the predicted prob-
abilities using only the fixed effects (in STATA the “fixedonly” option for predict).
This produces predicted probabilities setting the random effects to their prior mean
value of 0–in other words the probability for the subject visiting the “average” site
(not the average probability over all sites). For our example with subject 3 using
fixed effects only the logit is computed:

ĝF (x) = −0.471 − 0.116 × 15.70 + 0.683 × 1 + 0.745 × 0 + 0.923 × 0 − 0

= −1.6092

and the probability estimate is

π̂F = e−1.6092

1 + e−1.6092
= 0.167.

We see that this probability is higher as the subject was from site 3, which has
a lower than average probability of a fracture in the first year (as indicated by the
predicted value of the random intercept being negative).

9.4.3 Alternative Estimation Methods for the Cluster-Specific Model

As discussed in Section 9.3, there are several methods for estimating parameters
in cluster-specific models. Some packages may not offer adaptive quadrature or
there may be numerical issues that force the use of a different method. The most
common alternatives are versions of quasi- or pseudolikelihood estimation. The
results for the cluster-specific model using PL estimation from SAS are presented
in Table 9.6. In this example, the results are fairly similar to those obtained using
adaptive quadrature in Tables 9.1 and 9.3. SAS provides the variance estimate of
0.199, which corresponds to a standard deviation (Sigma) of 0.446; same order of
magnitude as the value of 0.391 estimated in Table 9.3. One issue with PL estima-
tion is that the random-effect estimate, σ̂ 2

α , tends to be biased toward zero—we do
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Table 9.6 Estimated Coefficients, Standard Errors, Odds Ratios, and Confidence
Intervals for a Cluster-Specific Model Using Pseudo-Likelihood (PL) Estimation

95% CI
Variable Coeff. Std. Err. Odds Ratio Odds Ratio

WEIGHT5 −0.115 0.040 0.892 0.824, 0.965
RATERISK_2 0.676 0.296 1.966 1.099, 3.519
RATERISK_3 0.738 0.312 2.092 1.133, 3.862
ARMASSIST 0.916 0.227 2.499 1.599, 3.906
Constant −0.477 0.645

Sigma_Squared 0.199 0.182

not observe that in our example as the estimate is actually larger, 0.446 > 0.396,
using PL estimation. In general, the fixed effect estimates tend to be smaller in
absolute value (coefficients closer to zero) for the PL fit. This is fairly common
using the PL/PQL estimation methods—the fixed estimates can also be biased
toward 0, although typically they are less so than the random effect estimates. As
discussed in the previous section, the default method in SAS applies adjustments
that reduce the bias. In our example, the ICC estimate is 0.044, which is small, and
the number of subjects in each cluster is large, hence the estimated effects appear
less impacted by the estimation method. The bias is generally most noted in cases
with high ICC or small cluster sizes.

The adaptive quadrature and PL estimation methods for cluster-specific models
presented here point out a difficulty one may encounter in practice. Software pack-
ages may give parameter estimates that can lead to different interpretation of the
effects. The reason is that the solutions to the likelihood equations depend on the
particular numerical method used. In addition, there are different rules used by the
packages to stop the iteration process or control other parts of the optimization
algorithms. For example, SAS’s GLIMMIX procedure has numerous options and
criteria that the user can specify. However, only expert users should even attempt
to use anything but the default settings. STATA’s xtlogit command uses the same
basic method as SAS, under adaptive quadrature, but has far fewer optimization
options. Again we think that modifying these options should be left to experienced
users. Other packages such as R [R Development Core Team (2010)], MLwiN
[Rasbash et al. (2009)], or SPSS [SPSS, Inc. (2012)] for such models may have an
entirely different set of default settings and options.

9.4.4 Comparison of Population Average and Cluster-Specific Model

Neuhaus et al. (1991) and Neuhaus (1992) present results that compare the mag-
nitude of the coefficients from the cluster-specific model and population average
model. These authors show, for coefficients whose value is near 0, that

βPA ≈ βs[1 − ρ(0)], (9.18)
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where ρ(0) is the intra-cluster correlation among the observations of the binary
outcome. This result demonstrates that we expect the estimates from fitted pop-
ulation average models to be closer to the null value, 0, than estimates from the
fitted cluster-specific model. The shrinkage to the null in equation (9.18) can also
be obtained from results examining the effect of failing to include an important
covariate in the model, see Neuhaus and Jewell (1993) and Chao et al. (1997).

We fit models to computer generated data to illustrate the effect of the intracluster
correlation on the difference between the cluster-specific and population average
coefficients. In each case, the fitted model contained a single continuous covariate
distributed as normal with mean 0, standard deviation 3, and true cluster-specific
coefficient βs = 1. The random effects were generated from a normal distribution
with mean 0 and standard deviation σα = 0, 0.5, 1.0, 1.5, . . . , 10.0. As we noted
earlier in this section, the intracluster correlation increases with increasing σα . In
these examples the resulting intracluster correlations, ρ(0), range from 0 to about
0.84. For each set of parameter values we generated data for 200 clusters of size 4.
Hence the equation of the logit is g(xij , βs) = αi + xij with i = 1, 2, . . . , 200, j =
1, 2, 3, 4, xij ∼ N(0, 9) and αi ∼ N(0, σ 2

α ). We fit cluster-specific and population
average models containing the covariate x. The values of the respective estimated
coefficients are plotted versus the intracluster correlation in Figure 9.2. In addition,
we plot an approximate population average coefficient obtained using equation
(9.18), that is, β̃PA ≈ β̂s[1 − ρ(0)].

The results shown in Figure 9.2 demonstrate that the attenuation to the null
described in equation (9.18) holds in this example. We note that the estimate of
the cluster-specific coefficient tends to fluctuate about the true value of 1.0 with
increased variability for large values of the intracluster correlation. We observed
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Figure 9.2 Plot of the estimated cluster-specific coefficient ( ), estimated population average coeffi-
cient ( ) and approximate estimated population average coefficient ( ) versus the intracluster correlation
obtained from fitting models with 200 clusters of size 4.
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this same general pattern for varying numbers of clusters and observations per
cluster.

Neuhaus (1992) shows that the variability in the estimates of the coefficients
depends on the total sample size and intracluster correlation. In practice, the vari-
ability in the estimates of the population average coefficient depends to a greater
extent on the number of clusters whereas that of the cluster-specific coefficient
depends more on the total sample size and the intracluster correlation. The results
in Neuhaus (1992) also show that the Wald statistics for population average coef-
ficients under exchangeable correlation and the cluster-specific model should be
approximately the same. This result also follows from the approximation shown in
equation (9.18).

Some intuition behind the shrinkage to the null in the population average
model can be gained by looking at an example using the cluster-specific model
fit in this section. Using the estimates in Table 9.1 column 5, we plotted the
probability of fracture in the first year for values of WEIGHT5 for subjects requir-
ing arm assistance (ARMASSIST = 1) and the highest self-reported risk level
(RATERISK_3 = 1). We produced curves for different possible random intercept
values (dashed lines) in Figure 9.3. The random intercept values chosen are from
2 (highest curve) to −2 (lowest curve) by increments of 0.5. The average of these
nine hypothetical clusters is shown with the solid line. We see that averaging across
the clusters results in a curve that is not as steep as those for each cluster. This is
due, mathematically, to the fact that the relationship between x and y is non-linear
for a logistic regression model. More intuitively, we see that the more “extreme”
clusters are “averaged out” by others with the opposite “extreme” (i.e., large pos-
itive and large negative random effects) so that the population average slope is
closer to 0.

When the random effects are assumed to be normally distributed (typically the
case in cluster-specific logistic regression) Zeger et al. (1988) develop a formula
to equate coefficients between the cluster-specific and population average models
that is easily computed from the basic model output and is given by

β̃PA ≈ β̂s

1√
1 + ( 16

15

)2 3
π2 σ̂ 2

. (9.19)

In order to describe the effect of the intra-cluster correlation we calculate the
approximate estimates from equation (9.18), using STATA’s loneway to approxi-
mate the correlation, ρ̂(0), and those from equation (9.19). These approximations
along with the coefficients from the population average model and cluster-specific
(using adaptive quadrature) model are shown in Table 9.7.

The results show that the shrinkage to the null is well described by the approxi-
mation formulas in equations (9.18) and (9.19). The advantage of equation (9.19) is
that one does not need to estimate ρ(0). In this case the approximation in equation
(9.19) is slightly better. We have seen instances where the reverse is the case,
possibly due to violation of the normal assumption for the random effect. In gen-
eral, one can be reasonably confident in the approximate population average effects
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Figure 9.3 Plot of the estimated probability of FRACTURE for values of WEIGHT5 and values of
the random intercept (dashed lines, 2, 1.5, 1, 0.5, 0, −0.5, −1, −1.5, −2) with the average of the
clusters (solid line).

Table 9.7 Estimated Coefficients from the Cluster-Specific Model, Population
Average Model and Two Approximations to the Population Average Model

Cluster-Specific Population Average Approximate Pop. Averages

Variable Coeff., β̂s Coeff., β̂PA Equation (9.18) Equation (9.19)

WEIGHT5 −0.116 −0.114 −0.112 −0.113
RATERISK_2 0.683 0.678 0.658 0.665
RATERISK_3 0.745 0.734 0.717 0.726
ARMASSIST 0.922 0.903 0.887 0.899

computed from a cluster-specific model. If the primary goal of the analysis is pop-
ulation average inferences then one should fit the population average model. In the
next section we discuss variable selection in the correlated binary data setting.

9.5 AN EXAMPLE OF LOGISTIC REGRESSION MODELING
WITH CORRELATED DATA

Model building is as vital for correlated data as it is for uncorrelated data but
has received relatively less attention in the statistical literature and practice than
the uncorrelated case. Model complexity and lack of available tools for model
checking and comparison have perhaps contributed to the problem. However, the
modeling paradigm presented in detail in Chapter 4 may be applied to the models
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discussed in this chapter with only a few minor adjustments. Statistical variable
selection methods such as stepwise and best subsets are not currently available
for fitting correlated data models in software packages. Thus, one must use some
form of purposeful selection using Wald or Score tests with the population average
model and Wald or likelihood ratio tests (depending upon the estimation method)
with the cluster-specific model. Checking the scale of continuous covariates is just
as important with correlated as with non-correlated data models. One can always
use the method of design variables because computer-intensive methods such as
fractional polynomials have not yet been implemented for use with correlated data
models. An alternative approach would be to assume the observations are not
correlated and use spline functions or fractional polynomials to identify a potential
nonlinear transformation. One would then try this transformation when fitting the
appropriate correlated data model. Interactions should be specified and checked
for inclusion in the same manner as described in Chapter 4. Diagnostic statistics,
such as those described in Chapter 5, have not, as yet, all been extended for use
in model checking with correlated data models. However, one could approximate
the analysis by assuming the observations are not correlated and using the methods
in Chapter 5. Although not specifically developed for this situation, this analysis
is better than not doing any model checking. We focus on model building in this
section and discuss ideas for model checking in Section 9.6.

We illustrate model building with correlated data using the polypharmacy data
described in Section 1.6.8 and Table 1.12. The outcome of interest is whether the
patient is taking drugs from three or more different classes (POLYPHARMACY)
and researchers were interested in identifying factors associated with this outcome.
Our purpose and approach to the data is from a model building perspective and,
as such, we created a sample from the original data set useful in illustrating key
points. Thus, the data set used here is a sample of 500 patients from among only
those subjects with observations in each of the 7 years. Based on the suggestions of
the principal investigator, we initially treated the covariates for number of inpatient
and outpatient mental health visits (MHV) with categories described in Table 1.12.
In addition we added a random number of months to the age, which was recorded
only in terms of the year in the original data set. As our data set is a sample, the
results in this section do not apply to the original study. Interested readers should
refer to Fontanella et al. (2012) for results based on the full study.

9.5.1 Choice of Model for Correlated Data Analysis

An important component of analyzing correlated binary data is the choice of model
to use. We tend to prefer cluster-specific models in the clinical trials setting, and
generally feel the population average model is better suited for epidemiological
studies. The key point, however, is that the appropriate model choice is not always
obvious and one should carefully consider this selection prior to analyzing the data.
When there is some doubt as to model choice, the type of inferences one can make
from each model, as discussed in the previous section, may be the deciding factor.
Finally, if the cluster effect is of interest itself (e.g., in this study we might be



an example of logistic regression modeling with correlated data 339

interested in comparing subjects) then a cluster-specific model must be used. If the
goal is to merely account for the correlations that may result from the clusters, a
population average model may be the better choice. In this example we would likely
select the population average approach. For purposes of illustration, we demonstrate
model building for both model types.

9.5.2 Population Average Model

For population average models fit using GEE, the first model building decision is
choice of a correlation structure. We suggest using an exchangeable correlation ini-
tially, unless one has specific knowledge to suggest another choice. As an example,
if the correlation is based upon repeated measures over time then an autoregres-
sive correlation may be appropriate. Estimates from GEE are known to be robust
to choice of correlation structure and the key, in preliminary model building, is
to account for the correlations in some way. Using the “robust” or “sandwich”
estimates for standard errors with the exchangeable correlation structure in model
building is thus a good initial option in the absence of more knowledge about the
correlation structure.

One measure for model comparison and selection that has been suggested for
use with GEE models is the quasilikelihood information criteria (QIC) criteria [Pan
(2001)]. This measure is a modification to the Akaike Information Criteria (AIC)
discussed in Section 4.2 that was defined as

AIC = −2 × L + 2 × (p + 1),

where L is the log-likelihood of the fitted model and p is the number of regression
coefficients estimated for nonconstant covariates. In GEE the likelihood is not
estimated so the QIC is computed using the quasilikelihood function to replace the
likelihood function and adjusts the “penalty” term, 2 × (p + 1), based upon the
use of a correlated model. The QIC is defined

QIC = −2 × QL + 2tr(�̂I V̂R), (9.20)

where QL is the quasilikelihood function [McCullagh and Nelder (1989)] that, for
binary data with dispersion parameter assumed to be 1, is the log-likelihood defined
in equation (1.4) evaluated with the parameters estimated under the working corre-
lation structure. V̂R is the robust estimate of the covariance matrix of the parameters
given in equation (9.11) in Section 9.3, and �̂I is the estimate of the inverse of
the model-based covariance estimates (the “bread” of equation (9.11)) under the
assumption of independence. The latter term is often referred to as the “model
based” estimate of the covariance. If the covariance structure is correct the model
based estimates and robust estimates are the same and the final term is the trace of
the identity matrix of dimension p + 1 and the penalty term is the same used in
QICu described in equation (9.21). As the expression in equation (9.20) involves
the estimates of the covariance matrix, the QIC is potentially useful in variable
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selection as well as choice of working correlation structure. An approximation to
QIC, referred to as QICu, uses the same penalty term as in AIC and is defined as
follows:

QICu = −2 × QL + 2 × (p + 1). (9.21)

QICu is only useful for variable selection and not correlation structure choice
because the penalty term ignores the correlation. As with the AIC measure, smaller
values are indicative of a “better” model. These measures are available in many
software packages. SAS, for example, reports both.

For the polypharmacy data, we start modeling using an autoregressive correlation
structure as the data are observed over time. We begin with the default lag of 1.
(The assumption concerning correlation structure will be discussed later in the
example.) We use robust estimates for the standard errors and purposeful variable
selection (as described in Chapter 4) in building the model. The QIC statistic
can be used to help assess the choice of a correlated data model. Using SAS,
we fit the intercept-only model with the AR(1) correlation structure choice and
then refit assuming exchangeable correlations. The QIC for the AR(1) is slightly
higher at 3816.83 compared to 3815.92. We will discuss the choice further in
the example but, at this point, with the values effectively the same, we opt for
the AR(1) structure due to the repeated measurements that lead to the correlation
in observations. The estimated working correlation in the exchangeable case is
0.45, suggesting there is a fairly strong correlation within subjects. As discussed
in previous sections, we prefer modeling the correlation, even if the estimate is
smaller and the independence model seems preferable statistically, when there is a
clinical reason to believe correlation exists, as is the case in this example.

We begin purposeful model building with univariable analysis using GEE models
with the AR(1) correlation structure at every step. Wald tests are used in determin-
ing whether a variable should be included in the model. Estimates for univariable
analysis are presented in Table 9.8. In SAS the default multivariable test for poly-
tomous covariates is a Score test; so use of the multivariable Wald test requires
an option in the model statement. We present the results using both tests, for each
of the five models, in Table 9.9. We have observed instances when the multivari-
able Score test appeared too conservative as it failed to reject although there were
significant differences between levels of the covariates. We do not observe such
an issue in this example as the two tests produce very similar results. We use
the multivariate Wald option for subsequent model fitting. Note that the results in
Tables 9.8 and 9.9 are based on SAS output because both Score and Wald tests
are available. Wald test results in STATA are comparable although there are slight
differences in estimates of the standard errors. None of the differences alters the
resulting decisions to include or exclude a covariate from the first multivariable
model.

Modeling proceeds as described in Chapter 4. In addition to checking statis-
tical significance of covariates added and removed from the model using Wald
tests, the delta beta hat percentage is also checked to insure that confounding is
not an issue. We leave the details as an exercise. The univariable analysis results
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Table 9.8 Estimates from Fitting the Univariable Analysis Population Average
Logistic Regression Models to the Polypharmacy Data

Variable Coeff. Std. Err. z p

MHV4_1 0.161 0.131 1.22 0.221
MHV4_2 0.601 0.142 4.22 <0.001
MHV4_3 0.925 0.150 6.18 <0.001
INPTMHV3_1 0.447 0.227 1.97 0.049
INPTMHV3_2 0.403 0.340 1.18 0.236
GROUP_2 0.137 0.134 1.02 0.305
GROUP_3 0.331 0.226 1.46 0.143
URBAN_1 0.067 0.153 0.44 0.662
COMORBID_1 −0.171 0.094 −1.71 0.070
ANYPRIM_1 −0.007 0.071 −0.10 0.920
NUMPRIMRC_1 0.002 0.071 0.02 0.983
NUMPRIMRC_2 −0.396 0.211 −1.88 0.060
GENDER_1 0.525 0.201 2.61 0.009
RACE_1 −0.353 0.219 −1.62 0.106
RACE_2 −0.321 1.004 −0.32 0.750
ETHNIC_1 −0.982 0.647 −1.52 0.129
AGE 0.105 0.018 5.95 <0.001

Table 9.9 Wald and Score Tests for Polytomous Covariates from the Univariable
Fits in Table 9.8

Wald Test Score Test

Variable df W p S p

MHV4 3 55.09 <0.001 46.46 <0.001
INPTMHV3 2 4.70 0.095 6.01 0.050
GROUP 2 2.65 0.266 2.69 0.260
NUMPRIMRC 2 3.82 0.148 3.30 0.192
RACE 2 2.69 0.261 3.01 0.222

in Table 9.8 suggest the possibility of collapsing categories for several covari-
ates. One to five outpatient MHV was not statistically different (p = 0.226) from
no outpatient MHV but we chose to maintain the four levels as there is clinical
interest in comparing to no outpatient MHV. Inpatient MHV of 1 is not signifi-
cantly different from more than 1 (p = 0.91) and there are very few observations
in the data set of more than one visit so we created a dichotomous covariate
(INPTMHV2) that is 0 for no inpatient MHV and 1 otherwise. Similarly, we com-
bine BLACK and OTHER to create a dichotomous covariate, RACE2, that is 0 if
WHITE and 1 otherwise. Finally, we combined the 0 and 1 categories of number of
primary diagnoses. The preliminary main effects model includes the five covariates
shown in Table 9.10: gender (GENDER), outpatient MHV (MHV4), age (AGE)
and the dichotomous versions of inpatient MHV (INPTMHV2) and race (RACE2).
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Table 9.10 Preliminary Main Effects Population Average Logistic Regression
Model for the Polypharmacy Data

Variable Coeff. Std. Err. z p

GENDER_M 0.467 0.197 2.37 0.018
AGE 0.110 0.018 6.17 <0.001
MHV4_1 0.151 0.131 1.06 0.289
MHV4_2 0.601 0.153 3.93 <0.001
MHV4_3 0.917 0.163 5.62 <0.001
RACE2_1 −0.435 0.204 −2.14 0.033
INPTMHV2_1 0.368 0.193 1.91 0.056
Constant −3.426 0.305 −11.23 <0.001

Rho = 0.571 ; QIC = 3517.75 ; QICu = 3504.15.
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Figure 9.4 Lowess smooth of the log-odds for age (solid line) and fitted fractional polynomial (m = 1,
natural log) for age (dashed line).

The multivariable Wald tests for the polytomous covariate outpatient MHV is sig-
nificant with p-value less than 0.001.

The next step in model building is to check the scale of the continuous covariate,
age, in the model. The Lowess smoothed plot can help identify potential issues with
scale. The plot for age, shown in Figure 9.4, although reasonably linear, has enough
curvature to suggest not treating the covariate as if it were linear in the logit. We
see that the log-odds of polypharmacy increases with increased age, but eventually
the increase in age has less impact. As discussed in Chapter 4, design variables can
be used as another graphical check with other covariates included in the model.
We leave this as an exercise.

Fractional polynomials can both confirm the graphical evidence and suggest
possible transformations of the variables. In the population average model setting,



an example of logistic regression modeling with correlated data 343

Table 9.11 Fractional Polynomial Results for Age Using the Standard Logistic
Regression Model

AGE df Deviance G p Powers

Not in model 0 3424.368 39.330 <0.001
Linear 1 3387.273 2.235 0.525 1
m = 1 2 3385.345 0.307 0.858 0
m = 2 4 3385.838 −2 .5

however, the likelihood is not estimated making model comparisons more difficult.
The shape of the plot in Figure 9.4 can help suggest a transformation of the covari-
ate. For example, one might try a model using the square root or natural log of age.
Additionally, one can fit the same model using standard logistic regression in order
to produce fractional polynomial model comparisons to obtain ideas for an appro-
priate transformation. As the standard logistic model is, in essence, a population
average model, the results from the fractional polynomial analysis will, generally,
produce reasonable choices. This approach is not as useful in cases where the
parameter estimate changes substantially between the two models. The results of
using fractional polynomials in STATA for age with a standard logistic regression
model are shown in Table 9.11.

Using the closed test method there is no significant improvement using a frac-
tional polynomial transformation of age. The m = 1 transformation using the natu-
ral log improves the deviance by nearly 2 over the linear in the logit model but is not
statistically significant with p-value = 0.16. Given the Lowess plot in Figure 9.4,
we additionally test the proposed transformations suggested by the fractional poly-
nomials by including them in the model fit with GEE estimation. Including the
m = 2 (−2 .5) transformation in the model the inverse quadratic term is not sta-
tistically significant (p < 0.257). The best m = 1 transformation (0) does decrease
both QIC and QICu values. Further, plotting the resulting fitted model with the
Lowess smooth in Figure 9.4, adjusting the values so they have the same mean
on the logit scale as the Lowess smooth, the transformation using the log of age
appears to model the nonlinearity well.

Selection of interactions is performed as in Chapter 4. We first identify clinically
plausible interactions for consideration. In practice this involves consulting subject
matter experts. In this case no clinically meaningful interactions were significant
at the 0.01 level. Hence our preliminary final model, shown in Table 9.12, has the
five covariates inpatient MHV, outpatient MHV, race, gender and the natural log
transformed age (AGEFP1).

We can perform one final check of the assumption about the underlying cor-
relation structure. QICu is not appropriate for comparing correlation structures as
it only involves fixed parameters so we focus on the QIC. For the final model of
Table 9.12, using the exchangeable correlation assumption rather than AR(1), the
QIC decreases from 3514.4 to 3504.1. This again suggests reviewing the choice
of correlation structure and we explore this in Section 9.6. Note that the estimated
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Table 9.12 Preliminary Final Population Average Logistic Regression Model
for the Polypharmacy Data

Variable Coeff. Std. Err. z p

GENDER_M 0.464 0.197 2.35 0.019
AGEFP1 1.267 0.214 5.92 <0.001
MHV4_1 0.155 0.143 1.09 0.277
MHV4_2 0.608 0.153 3.97 <0.001
MHV4_3 0.927 0.163 5.68 <0.001
RACE2_1 −0.442 0.204 −2.17 0.030
INPTMHV2_1 0.366 0.192 1.90 0.057
Constant −5.209 0.571 −9.12 <0.001

Rho = 0.570; QIC = 3514.43; QICu = 3500.43.

correlation with the exchangeable choice is 0.418, which is enough to support the
need for modeling with the correlation.

This example illustrates the issues one encounters in working with population
average models using GEE estimation. The primary difficulty is selecting a corre-
lation structure. Our general approach is to use the correlation structure that seems
most appropriate for the situation and proceed with model building using the meth-
ods of purposeful selection in Section 4.2. When a final model has been selected,
we can perform a sensitivity analysis to the choice of correlation structure with
QIC values. Finally, model checks described in Section 9.6 may suggest problems
with the model that might lead to revisiting the correlation structure choice. If
there are problems and a more complicated correlation structure is contemplated,
then we recommend consulting a statistician experienced in analyzing correlated
data using GEE. We reiterate that an advantage of the population average models
is that parameter estimates and standard errors, particularly robust estimates, are
often unchanged by choosing the incorrect correlation structure [Zeger and Liang
(1986)] and the exchangeable structure, as demonstrated in this example, is often
adequate for addressing the correlation.

9.5.3 Cluster-Specific Model

For cluster-specific models, we also use the purposeful method of covariate selec-
tion from Section 4.2. Here, we select a random-effects structure to account for
the correlated data and then proceed with model building. Generally, the prelim-
inary models are built assuming random intercept(s) only. After a preliminary
main effects model is chosen we explore potentially more complicated correlation
structures.

In the polypharmacy example, we have clustering at only one level, within
subjects, and begin with a single random intercept and fit models using adaptive
quadrature estimation. The first step is a univariable analysis of all covariates.
During this step, we also fit an intercept only model with the random intercept
included to examine the correlation within subjects. STATA output for this model
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Table 9.13 Univariable Analyses of the Random Intercept of a Cluster-Specific
Model Using Quadrature Estimation from Polypharmacy Data, n = 3500

Variable Coeff. Std. Err. z p 95% CI

Constant −2.400 0.162 −14.82 <0.001 −2.718, −2.083

/lnsig2u 2.004 0.126 1.756, 2.252
Sigma_u 2.724 0.172 2.406, 3.083
Rho 0.693 0.027 0.638, 0.743

Likelihood ratio test of rho = 0 : chibar2(01) = 928.41 Prob >= chibar2 = 0.000.

is shown in Table 9.13. In this case the estimate of the fixed intercept is below 0
reflecting that the proportion of observations of polypharmacy in the data set is less
than 50%; the exact value is 23.4%. The estimate of the cluster standard deviation,
σ̂α , is 2.72 with a 95% confidence interval of (2.41, 3.08). STATA also reports the
value of ln(σ̂ 2

α ) as “/lnsig2u”. The corresponding estimate of the ICC (i.e., ρ̂) is
0.69, and its confidence interval is (0.64, 0.74).

The confidence intervals for the ICC and standard deviation of the random effect
do not include 0, which suggests that the ID random effect is significant. As we
proceed in model building, we are interested in testing whether a random effect
is significant. For models fit using numerical integration methods, a likelihood
function is available and, thus, a likelihood ratio test is possible. However, there
is a problem with the test for significance of random effects, as the null value,
0, is on the boundary of the parameter space. A solution proposed by Self and
Liang (1987) is to use a “mixture” distribution placing 50% weight on 0 and 50%
on an assumed normal distribution for positive values truncated at 0. However,
if several random effects are tested simultaneously then the mixture distribution
becomes increasingly complicated and packages such as STATA and SAS report an
approximate p-value. STATA, for example, gives a “conservative” test result—an
upper bound on the p-value meaning the effects are at least as significant as the
reported value and may be more significant, and lets the user know that the results
are not exact. At the bottom of Table 9.13 the likelihood ratio test is output in terms
of “Rho” or the ICC and, in the case of a single random effect, this is equivalent
to testing σα = 0. The “chibar2(01)” term reflects the fact that the test is based on
the mixture distribution. The reported p-value is less than 0.001 suggesting that the
random intercept for the subject is significant. Note that this agrees with the 95%
confidence intervals for both Rho and Sigma, neither of which contains 0. This is
not always the case. When the results lead to different conclusions we prefer the
likelihood ratio test. The significance implies σα > 0 and thus we conclude that
the probability of polypharmacy varies with the subject.

The univariable analysis for the potential predictors, each fit using a random
intercept model, is shown in Table 9.14. In addition to the estimates of the coef-
ficients, standard errors and the associated significance test, we have included the
estimate of the random effect standard deviation from each fit in the last col-
umn. These estimates are all about 2.7. The amount of variability between subjects
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Table 9.14 Estimates from Univariable Analysis Using a Cluster-Specific Logistic
Regression Model Fit to the Polypharmacy Data

Variable Coeff. Std. Err. z p σ̂α

MHV4_1 0.403 0.278 1.45 0.147 2.37
MHV4_2 1.215 0.282 4.31 <0.001
MHV4_3 1.757 0.286 6.15 <0.001
INPTMHV3_1 1.140 0.280 4.07 <0.001 2.65
INPTMHV3_2 0.780 0.439 1.78 0.076
GROUP_2 0.308 0.206 1.50 0.134 2.72
GROUP_3 0.753 0.418 1.80 0.071
URBAN_1 0.081 0.264 0.31 0.760 2.72
COMORBID_1 −0.333 0.201 −1.66 0.098 2.68
ANYPRIM_1 0.059 0.127 0.47 0.641 2.73
NUMPRIMRC_1 0.076 0.128 0.60 0.549 2.72
NUMPRIMRC_2 −0.957 0.641 −1.49 0.135
GENDER_1 0.882 0.346 2.55 0.011 2.70
RACE_1 −0.611 0.393 −1.55 0.120 2.71
RACE_2 −0.826 1.905 −0.43 0.664
ETHNIC_1 −1.068 1.380 −0.77 0.439 2.72
AGE 0.219 0.027 8.15 <0.001 2.86

Table 9.15 Wald and Likelihood Ratio Tests for Polychotomous Covariates in
Univariable Analysis in Table 9.14 for the Polypharmacy Data

Wald Test Likelihood Ratio Test

Variable df W p G p

MHV4 3 60.64 <0.001 59.48 <0.001
INPTMHV3 2 18.18 <0.001 18.48 <0.001
GROUP 2 4.58 0.101 4.44 0.108
NUMPRIMRC 2 2.86 0.239 3.14 0.208
RACE 2 2.56 0.278 2.44 0.295

appears to increase when the age is considered and we may consider a random
effect, or random slope, for this covariate later in the model building. The increase
could also reflect the issue of scale already observed in the population average
modeling. The univariable parameter estimates for the covariates are similar but
of greater magnitude than those produced using the population average model in
Table 9.8, as discussed in Section 9.4. In the random effects model case we have
the ability to use likelihood ratio tests as well as the Wald tests when deciding
whether to include a covariate in the model. For the polychotomous covariates in
Table 9.14 we conduct both tests and display the results in Table 9.15. The results
were similar for all five polychotomous covariates. As discussed previously we
prefer the likelihood ratio test and use it throughout the remainder of this example.

Once the univariable analyses are complete, we begin with a model including the
random intercept and all covariates with p < 0.25 in Tables 9.14 and 9.15. In this
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Table 9.16 Preliminary Main Effects Cluster-Specific Logistic Regression Model for
Polypharmacy Data Fit Using Adaptive Quadrature

Variable Coeff. Std. Err. Z p G p

GENDER_M 0.736 0.329 2.24 0.025
AGE 0.221 0.027 8.27 <0.001
MHV4_1 0.326 0.285 1.15 0.252 56.73 <0.001
MHV4_2 1.190 0.289 4.11 <0.001
MHV4_3 1.722 0.294 5.86 <0.001
RACE2_1 −0.655 0.367 −1.78 0.074
INPTMHV2_1 0.903 0.253 3.56 <0.001
Constant −6.450 0.518 −12.45 <0.001

/lnsig2u 1.777 0.133
Sigma_u 2.431 0.161
Rho 0.642 0.030 662.07 <0.001

case these are the same variables selected in the population average model, with
the exception of one variable, the ethnicity indicator. We collapsed categories of
inpatient MHV, race and number of primary diagnoses as we did in the population
average modeling. All models fit in this stage of variable selection include the
random intercept as we want to build a model while accounting for the potential
correlations between subjects. It is possible that the final model would have differed
had we excluded a random intercept term even when it does not appear significant
in an intermediate analysis. The fit of the preliminary main effects model is shown
in Table 9.16. As the population average and cluster-specific models differ in how
they model the expected value with the cluster-specific model including the subject,
the two models will not always include the same covariates. In this case, the race
is still moderately significant but less so and, as a result, could be removed from
the model at the 0.05 level. We opt to retain the predictor in the model at this
stage. The random intercept is statistically significant (p < 0.001) based on the
likelihood ratio test.

We continue the model building process by checking the scale of the continu-
ous covariates. The method of design variables described in Chapter 4 is an option
for scale checks in random effects models. When using quadrature estimation the
method of fractional polynomials is also an option because the likelihood func-
tion is estimated. As discussed for population average models, smoothed plots and
splines can assist in determining the form of transformation. In cluster-specific
models, one option when the number of clusters is not too large is to produce
smoothed plots for each cluster. A single plot for all clusters is also of interest but
averaging across all clusters could make the form of the transformation more diffi-
cult to assess. In our example, with many subjects and only seven observations in
each cluster, smoothed plots for each subject are not revealing leaving the averaged
Lowess plot of Figure 9.4 as our only option. The fractional polynomial analysis is
presented in Table 9.17. Unlike the standard logistic model fractional polynomial
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Table 9.17 Fractional Polynomial Results for Range to Target in the
Cluster-Specific Model of Table 9.16

RANGE df Deviance G p Powers

Not in model 0 2799.578 85.655 0.000
Linear 1 2725.199 11.276 0.010 1
m = 1 2 2714.428 0.505 0.777 −1
m = 2 4 2713.923 — — −2 0

Table 9.18 Preliminary Final Cluster-Specific Logistic Regression Model for the
Polypharmacy Data

Variable Coeff. Std. Err. z p G p

GENDER_M 0.744 0.331 2.25 0.025
AGEFP1a 0.259 0.030 8.56 <0.001
MHV4_1 0.327 0.287 1.14 0.254 58.47 <0.001
MHV4_2 1.202 0.291 4.13 <0.001
MHV4_3 1.741 0.295 5.90 <0.001
RACE2_1 −0.672 0.370 −1.82 0.069
INPTMHV2_1 0.887 0.254 3.49 <0.001
Constant −10.168 0.866 −11.75 <0.001

/lnsig2u 1.796 0.133
Sigma_u 2.454 0.163
Rho 0.647 0.030 668.63 <0.001

aAGEFP1 = ln(AGE/10).

results shown in Table 9.11, the best m = 1 model is preferred using the closed
test procedure with p-value of 0.001 when compared to the linear choice. The
recommended transformation is the inverse of age (−1). Examining the possible
m = 1 transformations, we find two other choices that produce statistically equiva-
lent Deviance values, −0.5 and the natural log. Based on the shape of the Lowess
smooth of age in Figure 9.4 and subject matter guidance we prefer to model age
using the log transformation as we did for the population average model. The result-
ing model is shown in Table 9.18. Note that we divide age by 10 before applying
the transformation and call this AGEFP1 to keep the coefficient on a similar scale
to others in the model. This aids with numerical issues encountered in additional
model building steps when examining random slopes.

The last step is to check for interactions between variables in the model. In
random effects models we also check the possibility of additional random effects
such as random slopes entering the model during this step. We may also do some
sensitivity analyses of the choice of estimation method, in this case quadrature,
in this final step. In the polypharmacy data, the random intercept is statistically
significant. In cases where the intercept is not significant we must decide whether
it should remain in the model. In addition to the likelihood ratio test, we recommend
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computing delta beta hat percentages of the estimated fixed effects parameters when
removing the random intercept using the formula

�β̂% = 100 × β̂F − β̂R

β̂R

,

where β̂R is the estimate with the random effect in the model and β̂F is with no
random effect. If any of the estimated parameters change substantially (say by more
than 15–20%) we believe that a strong argument could be made for keeping the
random intercept in the model even if it is not significant. Even if the estimates do
not change dramatically we may retain the random intercept as the cluster effects
themselves may be of interest. In general, as we began modeling with a random
intercept to account for clustering in the data we tend toward leaving the random
intercept in the model, regardless of its significance.

An additional modeling detail is to check for potential random slopes. As with
interaction terms, we are interested in only those random slopes that are both
statistically significant and clinically plausible. In Section 9.2, we describe the
random intercept model using equations (9.2) and (9.3). Adding a single random
slope these equations are rewritten as:

g(xij , β0i , β1i , βs) = β0i + β1ix1 + xij
′ βs (level 1 model), (9.22)

β0i = β0 + αi (level 2 model), (9.23)

β1i = β1 + τi (level 2 model). (9.24)

The level-2 portion of the model is now expressed using two equations
[equations (9.23) and (9.24)] for the random intercept and random slope
respectively. The assumption about the distribution of the random slope effect is
similar to the random intercept, namely τi ∼ N(0, σ 2

τ ) and we initially assume
the two random effects, τi and αi , are independent. In this model, the covariate
has an overall slope coefficient, β1, but there is variability in the slope, due to the
clusters. Thus, the question of randomness in the slope is answered by considering
whether the effect of the covariate on the response might differ depending upon
the cluster.

In the preliminary final main effects model for the polypharmacy data in
Table 9.18 there are five covariates to consider for random slopes. Using the
continuous covariate of the natural log of age (AGEFP1) as an example, the
estimated slope coefficient is 2.59. This estimate means that as age increases
the probability of polypharmacy also increases. The question is whether the
relationship differs by subject. In other words, would we expect different subjects
to be more or less influenced by changes in age? If we decide that such variability
is plausible, we test the random slope to determine if the amount of variability
is statistically significant. Smooth plots by subject in cases with a small number
of subjects and large cluster sizes can help determine if variability in slopes
is present in the data. In this case, there are many small clusters making such
graphical analysis impractical. Adding the random slope for transformed age to
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Table 9.19 Tests of Random Slopes Added to Main Effects Cluster-Specific
Logistic Regression Model for the Polypharmacy Data

Random Effect σ̂τ Std. Err. G p

AGEFP1a 3.64 0.581 19.61 <0.001
GENDER <0.0001 0.940 <0.0001 1
MHV4_1 0.787 0.539 0.60 0.437
MHV4_2 0.170 1.574 0.96 0.327
MHV4_3 0.294 0.795 0.04 0.851
RACE2 <0.0001 0.710 <0.0001 1
INPTMHV2 1.90 0.600 6.24 0.012

aAGEFP1 = ln(AGE/10).

the model results in an estimate for the standard deviation, σ̂τ , of 3.64 and the
standard error of this estimate is 0.581. We can test the significance of the estimate
formally using a likelihood ratio test comparing the models with and without the
random slope. The log-likelihoods for the two models differ by 9.805. Thus, the
test statistic is G = 19.61 and p < 0.001 using the chi-square distribution with 1
degree of freedom. The results for the likelihood ratio test of each of the possible
random slopes for all five covariates individually added to the model are shown
in Table 9.19. Note that the categorical variable MHV4 involves three random
slopes and as such is difficult to interpret.

We follow the same procedure for random slopes and interactions, testing each
of those believed clinically plausible from the main effects in the model. In our
example, the only statistically significant interactions are race with inpatient MHV
(p = 0.048) and transformed age with outpatient mental health visits (p = 0.041).
There is no particular clinical justification for considering either interaction, and
neither is significant at the 0.01 level. Further, when added to models including the
random slopes, both lose statistical significance. Thus, we choose not to include
them in the final model. The inpatient MHV random slope is also significant, but
it does not have an obvious clinical interpretation. This is a dichotomous covariate
so the random slope is significant because, although higher inpatient MHV is on
average indicative of higher probability of polypharmacy, some subjects do not
exhibit this relationship. We are not interested in individual subjects here, and the
parameter estimates all change by less than 5% if the random slope is added to the
model, so we include only the random slope for age in the final model. As we added
a random slope to the model we further test the assumption that the random slope
and random intercept are independent by adding a covariance parameter between
the two random effects and use the likelihood ratio test to determine significance.
In this case, the covariance parameter is not significant (p = 0.48) so we do not
include this in the model. Hence the final model, shown in Table 9.20, has the five
covariates: inpatient MHV, outpatient MHV, race, gender, and transformed age with
a random slope and the random intercept. As previously mentioned, we divided age
by 10 prior to applying the fracpoly transformation so the coefficient is of similar
magnitude to the other parameters in the model and to avoid numerical issues.
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Table 9.20 Final Cluster-Specific Logistic Regression Model for the Polypharmacy
Data

Variable Coef. Std. Err. z p G p

GENDER_M 0.742 0.364 2.04 0.041
AGEFP1a 2.659 0.384 6.93 <0.001
MHV4_1 0.378 0.311 1.21 0.225 52.48 <0.001
MHV4_2 1.270 0.319 3.98 <0.001
MHV4_3 1.833 0.324 5.66 <0.001
RACE2_1 −0.783 0.406 −1.93 0.054
INPTMHV2_1 0.883 0.270 3.27 0.001
Constant −4.416 0.432 −10.21 <0.001

Std. Dev. (AGEFP1) 3.643 0.581
Std. Dev. (Cons) 2.575 0.185

aAGEFP1 = ln(AGE/10).

9.5.4 Additional Points to Consider when Fitting Logistic Regression
Models to Correlated Data

One must be careful when fitting cluster-specific models as the numerical methods
are sensitive to the number of clusters and cluster size. Software improvements
in recent years have made adaptive quadrature a more viable alternative, but the
potential for numerical problems still exists. If the intracluster correlation is quite
small then the software may fail to converge to a solution with an estimate of
σ 2

α that is effectively 0. For example, in these settings STATA typically stops and
reports an estimate of the log variance of −14.0. In this case one should abandon
the cluster-specific model in favor of the usual logistic regression model because
the two models are equivalent when σα = 0.

Convergence issues are usually noted in computer output and it is up to the
user to be sure that the solution was reached. A statement in the output such as
“convergence not achieved” implies the results should not be used. Even when the
algorithms converge, checks of the sensitivity of the results to estimation meth-
ods are important. One tool, available in software packages, when models are fit
using quadrature compares the effect of the number of discrete quadrature points
(Q) chosen to approximate the integral in equation (9.13) to maximize the like-
lihood. Using between 5 and 10 points is, in most instances, adequate to achieve
stable estimates. However, examples where even 20 points are insufficient can
occur. leSaffre and Spiessens (2001) note that adaptive quadrature does not seem
as sensitive, but we recommend always checking the sensitivity to the choice of
Q before finalizing a cluster-specific model. In STATA, the default is 12 points
using xtlogit. SAS GLIMMIX uses an algorithm to select the number of points
to use if no number is specified. Both procedures offer the user an automated
method of checking the sensitivity of the estimates to the choice of points: in
SAS the “METHOD = QUAD(QCHECK)” option in the model statement and in
STATA the “quadchk” statement after fitting the model. In models with random



352 logistic regression models for the analysis of correlated data

Table 9.21 Partial Output from Quadrature Point Check for Model of Table 9.20

Quadrature points −2 Log-Likelihood Relative Difference to Converged

7 2685.437
9 2685.320 −0.0000434

11 2685.298 −0.0000517
21 2685.310 −0.0000468
31 2685.311 −0.0000469

slopes, the quadrature check is not available in STATA so Table 9.21 shows partial
output from SAS for our example model of Table 9.20. The procedure compares
the model fit with Q = 7 to those with Q = 9, 11, 21 and 31. The impact of the
choice of Q on the log-likelihood, estimates of the coefficients for all covariates
in the model, and on the estimate of the random effect are provided in the output
in STATA when available. In SAS, as in Table 9.21, only the deviance (−2 times
the log-likelihood) is provided. The relative difference is the ratio of the change
in the deviance to the deviance of the model fit with 7 quadrature points. (Seven
is the default number of quadrature points in STATA for xtmelogit, the procedure
we used to include a random slope in the model.) In this example, the relative
difference is extremely small even when increasing the number of points to 31.
If the computer program does not include changes to parameters in the output of
quadrature checks, we recommend an additional check by refitting the model with
increased points. If the differences are not small when comparing estimates for dif-
ferent Q, such as changes in parameter estimates of more than 5 or 10%, then one
should consider using more points if computationally feasible. We refit the model
of Table 9.20 using Q = 11 and all parameter estimates changed by less than 5%,
and most by less than 1%, so we conclude the choice of seven points is adequate
in this model. The check of quadrature can be performed at any point in the model
building process. In situations where numerical issues occur, such as the algorithm
failing to converge, one option is to reduce the number of quadrature points. In
these instances the check is particularly important. At a minimum it should be used
before presenting final model results.

In the presence of numerical problems with quadrature an option is to use
pseudo- or quasilikelihood (PL or QL) estimation methods. Although these methods
have the potential for bias, recent improvements in the algorithms implemented in
software packages such as SAS have decreased that concern. When pseudo- or
quasi-likelihood methods are used for estimation, the lack of a likelihood function
reduces options for model comparisons. Packages may have tests based upon the PL
function or offer other tests (Score test for example) that, although not as desirable
as the likelihood ratio test, can give the user evidence about the significance of
fixed as well as random effects. Sometimes one can use the PL/QL estimation
to identify preliminary models that can be estimated with quadrature. In some
software packages one can change the options for starting values of estimates and
use PL/QL estimates to improve the ability of the numerical methods to converge.
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Another option is the use of Markov Chain Monte Carlo (MCMC) estimation
described in Chapter 10 under Bayesian methods.

Even when numerical problems do not impact model building there are still
other issues worth noting. One is the type of tests used in variable selection. When
possible, and if there are differences in the inferences from tests, the likelihood
ratio test is preferred. As an example, STATA produces Wald tests of parame-
ter estimates assuming the standard normal distribution for the test statistic. The
default in SAS is a test statistic based on the t distribution. The two tests will
usually coincide but the t-test may produce higher p-values and fail to reject when
the z-test rejects. The difference is greater when the number of clusters is large
when using the default degrees of freedom for the t-test in SAS. The degrees
of freedom computation is complicated so we do not include it here but refer
interested readers to the SAS user’s manual. The exact calculation used is also
complicated and we refer those interested in the details to the help files for the
program. Essentially the formula reduces the degrees of freedom by the number
of clusters even if only a single random effect is added to the model. The loss
of degrees of freedom leads to a t distribution with more variation and is, there-
fore, less likely to reject. When adaptive quadrature estimation is used the degrees
of freedom in this t-test are too conservative as only one parameter was actu-
ally estimated rather than a parameter for each cluster. We recommend using the
“DDFM = none” option in SAS to produce, in essence, a Wald test. Again, the
likelihood ratio test is preferred over other options. PL/QL methods do not allow
the use of the likelihood ratio test so that inference using the Wald tests is the only
option.

Population average models using GEE also have a few potential issues to note.
Likelihood ratio tests are not available so one must use either Wald or Score
tests. These tests are generally similar but we have found examples where they
differ enough to change the model selected. We have observed examples where
the multivariable Score test was too conservative and thus prefer the Wald tests.
In such cases clinical knowledge assists in determining which model to choose.
Additionally, the impact of the covariate on estimates of other parameters in the
model can inform the decision to include or exclude a covariate.

Given the potential for numerical issues in the estimation methods for correlated
data models care in the model building and interpretation is critical. Where possible
we often use several methods of estimation as well as statistical inference in order
to help identify problems if they exist. If methods do not agree then there may
be issues that make these models inappropriate for drawing inference and caution
is in order. Finally, we note that as models become more complicated so too do
the interpretation and statistical issues. For example, random effects models may
include more than two levels or several random effects. In such cases, model
building proceeds as usual but will require care in checking for such effects in the
interaction step. As with interactions, the interpretation of the results is impacted as
clusters have different slope values. Presenting results by cluster using the posterior
predicted slope values is appropriate when this occurs.
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9.6 ASSESSMENT OF MODEL FIT

Diagnostic statistics, such as those described in Chapter 5, are not as readily avail-
able for use in model checking with correlated data models. Summary measures of
overall model fit, in particular, have not been developed or implemented in software
packages. Some case-wise diagnostic tools for individual subjects are available or
could be approximated by assuming the observations are not correlated and using
the methods in Chapter 5. Summary measures using this approach can also be used
but lack power in many correlated data settings [Sturdivant (2005)]. Although not
specifically developed for correlated data models, this analysis is generally regarded
as being better than not doing any model checking at all. In this section, we discuss
the available tools and offer recommendations for model checking with correlated
binary data.

9.6.1 Assessment of Population Average Model Fit

Although methods have not been implemented in many software packages, it is
possible to perform overall tests of fit for population average correlated data models.
Evans and Li (2005) examined the performance of the Hosmer–Lemeshow test and
extensions of the Pearson chi-square and other tests described in Section 5.2.2 to
the correlated data setting. Their results indicate that the usual Hosmer–Lemeshow
test may be used in some settings to assess fit of population average models.
In general, one must avoid using the test when there are many tied or nearly
tied values in the estimated probabilities. This is likely to occur under one or
more of the following conditions: the model contains many cluster-level covariates;
the intracluster correlation among the responses is large; the number of clusters
is small and there are many observations per cluster. In a particular setting if
none of these conditions hold then the test can be used. As an example, the fitted
population average model for the polypharmacy data in Table 9.12 does have a
relatively high intracluster correlation, ρ̂ = 0.57, but there are many clusters (500
subjects) with only seven observations in each cluster. The model contains the
cluster-level covariates gender and race, but the predicted probabilities have few
tied or nearly tied values due to the other covariates in the model. Thus, this
is a setting where the test might be used effectively. Most software packages
do not have the option for the test in population average models but one can
easily obtain the test statistic applying the methods described in Chapter 5. Use of
ten groups for the polypharmacy model of Table 9.12 produces the observed and
expected values for each decile of risk in Table 9.22. The corresponding value of the
Hosmer–Lemeshow test statistic is Ĉ = 40.571 which, with 8 degrees of freedom,
results in p < 0.001 and calls into question model fit. There are differences in
observed and expected counts particularly in the highest risk deciles where the
model underestimates the risk.

Horton et al. (1999) propose a statistic that is related to the Hosmer–Lemeshow
statistic. The test involves forming G groups based on deciles of risk and then creat-
ing G − 1 indicator variables to identify the group membership for each observation
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Table 9.22 Observed (Obs) and Estimated Expected (Exp) Frequencies Within Each
Decile of Risk Using the Fitted Population Average Model of Table 9.12

POLYPHARMACY = 1 POLYPHARMACY = 0

Decile Obs Exp Obs Exp Total

1 18 28.28 332 321.72 350
2 40 43.08 311 307.92 351
3 55 52.60 295 297.40 350
4 40 60.98 309 288.02 349
5 68 69.29 282 280.71 350
6 80 78.28 272 273.72 352
7 95 87.08 254 261.92 349
8 110 99.79 243 253.21 353
9 130 113.50 216 232.50 346

10 183 141.12 167 208.88 350

in the data set. These indicator variables are added to the logistic regression model
with all other predictors and a Score test, a chi-square test with G − 1 degrees of
freedom, of the null hypothesis that the parameters for these indicator variables are
all 0 performed. With ten groups, the resulting test statistic value is Ĉ2 = 7.155,
which, with 9 degrees of freedom, produces p = 0.62 and supports model fit, in the
sense that there is not a significant shift, up or down, in the estimated probabilities
within each decile. The Hosmer–Lemeshow test does not support model fit. How-
ever the two tests address different aspects of model fit and are not numerically
related.

Two residual based statistics for goodness of fit for models fit using GEE were
proposed by Evans (1998), Pan (2002), and Evans and Hosmer (2004). Simulation
results of Evans and Hosmer (2004) showed that the statistics were effective for
assessing overall fit in many settings. The first statistic is an extension of the
normal approximation to the Pearson chi-square test. The moments of the Pearson
chi-square test statistic, defined in equation (5.2), computed using quantities defined
in Section 9.3 for GEE estimation in equations (9.6)–(9.10), are

E(X2 − N) = 0,

V̂ar(X2 − N) = (1 − 2π̂)′A−1(I − HG)VA−1(1 − 2π̂), (9.25)

where HG is a slightly modified version of an analog to the “hat” matrix proposed
for GEE by Hall et al. (1994) and defined as HG = D(D ′V−1D)D ′V−1 and π̂ is
the vector of predicted probabilities from the model. The test proceeds in similar
fashion to the standard logistic model test described in Section 5.2. Specifically,
the standardized statistic is computed using equation (9.25) as

zX2 = X2 − N√
V̂ar(X2 − N)

, (9.26)
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with a two-tailed p-value computed using the standard normal distribution. The
second statistic is based on the unweighted sum-of-squared residuals or

U(yj , π̂j ) =
∑

j

(yj − mj π̂j ).

The moments of the statistic are computed as

Ê(U) = π̂(1 − π̂),

V̂ar(U) = (1 − 2π̂)′(I − HG)V(I − HG)′(1 − 2π̂), (9.27)

leading to the test statistic

zU = U − Ê(U)√
V̂ar(U)

(9.28)

with a two-tailed p-value computed using the standard normal distribution. Pan
(2002) proposes slight modifications to both statistics by using a different variance
estimator. Evans and Li (2005) compare these, and other, goodness of fit statistics
and suggest using more than one test in assessing model fit due to potential lack
of power for any one measure. They also provide SAS code for computing the
statistics.

In this example, the resulting Pearson residual test statistic value is zX2 =
−1.9165, which is marginally supportive of model fit (p = 0.055). The unweighted
sum-of-squares residual test statistic value is zU = −0.4538, which fails to reject
model fit (p = 0.65). The versions of the statistics using Pan’s modification pro-
duce similar values. In our example, one of the tests clearly suggests potential
issues with model fit and a second marginal evidence of issues. This is worth
noting as we continue to assess the model further.

The QIC criteria of Pan (2001) described in the previous section are the only
readily available measures of fit useful for comparing choice of correlation structure
in these models. Zeger and Liang (1986) point out, using empirical results, that the
GEE method of fitting the models is robust to choice of the correlation structure.
The implication is that even if the structure is misspecified the resulting parameter
estimates may be unaffected. However, it is worth checking the sensitivity of the
model to the choice of correlation structure, particularly in cases where it may not
be clear what structure to select.

Vonesh et al. (1996) develop measures similar to R2 for population average
models as well as a chi-square test of the covariance structure choice using the PL
function. However, the R2 measure does not appear to perform well with binary
data and the test is best when dealing with models involving an assumed normal
distribution of the response. Although both statistics are not appropriate in logistic
regression models, Vonesh et al. (1996) do describe useful strategies for checking
the correlation structure without a test statistic. The first approach is to fit the model
using an unstructured covariance and compare the results to those with the chosen
correlation structure using their version of R2. However, this is often not a viable
option as the estimation may fail in settings where the data are unbalanced, with
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differences in cluster sizes, or for data with a large number of observations in each
cluster. Further, an unstructured covariance implies some correspondence between
observations in each cluster to those in other clusters. For example, this is the case
when the observations are repeated measurements over time so that observation
1 in each cluster is the first-time measurement, observation 2 is the second-time
measurement, and so forth. The second approach is to use the PL ratio test to
compare the estimated covariance matrix of the parameter estimates from models
with and without use of the robust or “sandwich” estimation.

As previously noted, the test statistics used by Vonesh et al. (1996) do not
extend to binary data but one can apply the ideas of the tests. The clusters in our
polypharmacy data set include seven observations (one each year) for each subject.
The unstructured covariance matrix assumes a different correlation between each
pair of years leading to the need to estimate 21 parameters. In data sets with more
observations in each cluster the number of parameters may become too large to
make these methods practical.

In approach 1, we fit the same model from Table 9.12 using an unstructured cor-
relation yielding the correlation estimates shown in Table 9.23. We are interested
in determining whether the estimated correlations suggest that the autoregressive
correlation assumption is appropriate. In this case, we observe a pattern of decreas-
ing correlations when the “lag” between years increases. Correlations for 1-year
differences range from 0.45 to 0.624 and are, on average, higher than the corre-
lations for 2-year differences that range from 0.331 to 0.528. The trend continues
with only a few exceptions. The pattern supports an AR correlation structure. The
AR(1) choice led to an estimated ρ̂ = 0.57 for lag 1 correlations. The lag 2 esti-
mate is then ρ̂2 = 0.572 = 0.3249, which is lower than the observed correlation
estimates in Table 9.23 using the unstructured model. The correlations continue to
drop more quickly at higher lags than suggested by the unstructured model. The
one statistical measure we have available to compare the models with different
correlation structures is the QIC. In this case the QIC for the model with unstruc-
tured correlations is 3546.54, which is more than 30 higher than that of the AR(1)
model of Table 9.12. The increase in QIC does not support adopting an unstruc-
tured correlation structure that would add a large number of additional parameters.
Another option is to assume an exchangeable correlation. The QIC for this option is

Table 9.23 Example of Estimated Unstructured Correlation Matrix for Model of
Table 9.12

2002 2003 2004 2005 2006 2007 2008

2002 1.000
2003 0.450 1.000
2004 0.331 0.624 1.000
2005 0.274 0.430 0.620 1.000
2006 0.293 0.367 0.528 0.624 1.000
2007 0.232 0.314 0.390 0.451 0.576 1.000
2008 0.254 0.363 0.421 0.398 0.468 0.556 1.000
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lower at 3504.1 by nearly 9 compared to the AR(1). The choice estimates a single
correlation for all lags at 0.42. We feel the general trend to decrease correlation
with time justifies an AR choice but note that the exchangeable option is defensible
and that there are other more complicated structures possible that could address
the issue with the AR(1) structure to decrease the estimated correlation too much
with increasing lag. An example is the “banded” structure that estimates a separate
correlation for each lag. Verbeke and Molenburghs (2009), as well as many of the
references mentioned in Section 9.1, discuss possible structures.

Our example is the most common situation where this approach is likely to
suggest a correlation structure choice other than exchangeable. The observations
within a cluster become less “similar” from one to the next, in this case when
measurements are taken over time. One disadvantage of this approach is that, even
if feasible for the data set (which occurs only when clusters are small), it may not
always be clear from the estimated unstructured correlation matrix what alternative
is best. However, it is one method of at least checking the chosen structure.

The second approach is to compare the estimated covariance matrix of the
parameter estimates with and without using the robust or “sandwich” estimates
we recommended. The robust estimates “adjust” the standard errors based on the
selected model correlation structure using the observed data. If the data do not sup-
port the choice of correlation structure the adjustments are larger. Thus, although
the robust estimates allow for a degree of error in choosing a correlation structure,
if the adjustment is large it suggests that the true structure has not been modeled
well. Examining the complete covariance matrices for models with many covari-
ates is daunting. We recommend, at a minimum, comparing the variances of the
parameter estimates. For the polypharmacy data set modeled in Table 9.12 the
covariance matrix is 8 × 8 and most of the estimated covariances are near 0 so
we only display the results of the variance comparison in Table 9.24. If there are
large changes, such as exceeding 15 or 20%, there could be reason to consider a
more complicated correlation structure. Table 9.24 presents, for each parameter, the
variance estimates using the robust “sandwich” estimators, the variance estimates
when the robust option is not used, and the percentage change. The inpatient MHV
(INPTMHV2) parameter estimate increases by a large amount, over 77%, when
the robust estimation is used. Gender also changes by more than 20% but all other
estimates change relatively little. A large change may be a concern if inference
about the parameter estimate is affected. In this case we might consider a more
complicated correlation structure. In this example, both the parameter for inpatient
MHV and gender were selected for inclusion in the model using the robust standard
errors and are even more significant with model based standard errors.

In the polypharmacy model, neither approach for checking the correlation struc-
ture is conclusive, and neither reveals enough of an issue to make us consider
adopting a correlation structure with many additional parameters. As discussed,
these checks are only an option in data with small cluster sizes. Regardless, we reit-
erate that the robust estimates are preferable. The impact of issues with the selected
correlation structure concerns the precision of the standard errors of parameters. If
robust standard errors are larger they are more conservative for inferences. In our
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Table 9.24 Estimated Variances for Population Average Polypharmacy Model Using
AR(1) Correlation Structure Using Robust Estimates and Model Based Estimates of
Table 9.12

Parameter Model Based Variance Robust Variance Percent Change

GENDER_M 0.0309 0.0389 25.89
AGEFP1 0.0530 0.0457 −13.77
MHV4_1 0.0220 0.0205 −6.82
MHV4_2 0.0244 0.0235 −3.69
MHV4_3 0.0261 0.0267 2.30
RACE2_1 0.0392 0.0416 6.12
INPTMHV2_1 0.0208 0.0369 77.40
Constant 0.3724 0.3259 −12.49

example, the largest changes, for gender and inpatient MHV, increase the standard
errors using robust estimates. For gender, the increase does not modify significance.
The increase in standard error does lead to inpatient MHV changing from signifi-
cant (p = 0.011) to marginally significant (p = 0.054) with robust estimates. We
retained the covariate in the model so, in this example, the final model is unchanged.

Vonesh et al. (1996) propose several measures for comparing the estimated
covariance matrices explicitly using measures that compare how much two matrices
differ. Using these measures, they compute the concordance correlation, which is
interpreted much like R2 in that it will be close to 0 if the matrices are not close and
nearer to 1 if they are close. Finally, they form a PL ratio test using a discrepancy
function between the two matrices. The measures require mathematical background
beyond the scope of this text and are not currently available in standard software
for models fit using GEE. SAS PROC GLIMMIX does produce the measures in
population average models estimated with PL.

Selecting the appropriate correlation structure, given available tools, is the most
difficult part of model fitting and assessment. In our example, we observed some
evidence that the AR(1) structure may overestimate the reduction in correlation as
lag between years increases but the unstructured choice is not preferable given the
increased number of parameters. We recommend use of exchangeable correlation
and robust estimates for standard errors for most situations, and the AR(1) structure
for data such as the example in which correlations decrease with a variable such
as time. If the analyst, by using the approaches described here, feels there are
indicators that the choice is flawed, further research is required.

Individual subject-specific diagnostic statistics for population average models,
similar to those discussed in Chapter 5, are useful in identifying possible covari-
ate patterns that are poorly fit. Additional statistics for examining clusters have
been developed [Preisser and Qaqish (1996)]. We recommend the same plots of
individual covariate pattern diagnostic statistics discussed in Chapter 5 and similar
plots of the cluster-level statistics. The actual diagnostic measures used will depend
upon the software package. Regardless of the software package the standardized,
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or Pearson residual, is usually produced or easily computed using equation (5.1).
As the likelihood is not estimated in models fit using GEE the deviance residual is
not available.

The residuals for polypharmacy observations are positive and for those without
polypharmacy are negative. The majority of the standardized residuals should fall
between −2 and 2 and those larger than 3 in absolute value are usually considered
outliers. Among the no polypharmacy observations, the largest Pearson residual
is −1.02 and none appears as outlier. There is one extreme Pearson residual for
polypharmacy, with a value of 6.41. The observation is for a female with no
outpatient or inpatient MHV and race non-white; all indicators associated with
reduced risk of polypharmacy. The outlier is the only observed polypharmacy for
the subject and occurred when she was young, 5 years old. Although the value
is somewhat suspicious with no observed polypharmacy in other years, we cannot
exclude it from the data set.

Preisser and Qaqish (1996) propose a slightly different “hat” matrix than that
of equation (9.25) for use in calculating the leverages. The equation, using the
notation of Section 9.3, is given by

H = X(X ′ WX)−1X ′ W, (9.29)

where W is the block diagonal matrix with block for subject i defined as

Wi = D−1
i A−0.5

i Ri
−1(ρ)A−0.5

i D−1
i .

The leverages are the diagonal elements of the “hat” matrix and are produced
in standard software packages. A plot of leverages for our example is shown in
Figure 9.5. None of the leverages falls well away from the rest of the values.
The largest leverage, 0.0126, is a subject who is non-white, male, with more than
0 inpatient MHV and the highest category of outpatient MHV. Less than 1% of
observations in the data set have such a covariate pattern and the observation
belongs to the oldest, age 15, of these.

The influence statistics �β̂j and �X2
j discussed in Chapter 5 are not always

produced in standard software for models estimated using GEE but can be computed
using equations (5.15) and (5.16). The �Dj statistic is not available because a
likelihood is not estimated. Plots of �β̂j and �X2

j are shown in Figures 9.6 and
9.7. As outlined in Chapter 5 we are interested in identifying subjects that appear
to have influence on the overall model fit. There are large �X2

j values above the
approximate cutoff value of 4 suggested in Chapter 5. There are ten observed
values exceeding 10. One observation had a larger value than other subjects at
35.5 that we excluded from Figure 9.6, and a second at 15.4. The first is the
same subject with the largest Pearson residual discussed earlier. The second is
the second youngest subject with observed polypharmacy and the second lowest
outpatient MHV category. The only younger observed polypharmacy corresponded
to a subject with the highest category of outpatient MHV. In both large �X2

j cases
the model based probability of polypharmacy is below 0.07 but the response is a 1.
All of the values of the influence statistic �β̂j are small but three lie away from the
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Figure 9.5 Plot of leverage verses the estimated logistic probability (π̂ ) for the model of Table 9.12.
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Figure 9.6 Plot of �X2
j verses the estimated logistic probability (π̂) for the model of Table 9.12,

excluding one large value.

rest of the values. The second largest, at 0.044, is the largest Pearson residual and
�X2

j already discussed. The largest, 0.046, is the youngest subject with observed
polypharmacy. The third point, at 0.043, is a case of observed polypharmacy in
a relatively young subject who is a non-white female, categories associated with
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Figure 9.7 Plot of �β̂j verses the estimated logistic probability (π̂) for the model of Table 9.12.

lower risk and also moderately high leverage as less than 4% of the observations
are from such subjects.

As discussed in Chapter 5, we recommend removing any points that potentially
indicate lack of fit or influence from the data set and examine their effect on
parameter estimates and model fit. In analyses not shown, we did remove the four
points discussed with the largest values of their Pearson residual, �β̂j or �X2

j and
examined their effect on parameter estimates. On removing all four points, none of
the parameter estimates changed by more than 15% except for the intercept. The
largest change was the estimate of the parameter for race, which decreased by 14%
from −0.442 to −0.504, an increase in effect. The covariate values are reasonable,
and we conclude that these observations should remain in the data set.

The cluster level leverage defined by Preisser and Qaqish (1996) is the sum
of the values on the diagonal of the “hat” matrix of equation (9.29) for a given
cluster. For the polypharmacy model of Table 9.12 the cluster leverages are shown
in Figure 9.8. As the sum of the leverages is the number of parameters in the model
(8 in this example) the average cluster leverage is 8/500 = 0.016. We see that most
of the values are fairly close to the average value but there are a few subjects with
high leverages relative to the others. The subjects with highest cluster leverages are
those with nonzero inpatient MHV and non-white race categories (placing them in
a subgroup comprising less than 1% of the subjects in the data set).

Preisser and Qaqish (1996) propose measures of cluster influence analogous
to influence statistics for individual observations. The first, DCLS i , measures the
influence of removing cluster i on the overall model fit by approximating the
influence of removing the cluster on the linear predictor and therefore the fitted
values. The statistic is defined as:

DCLS i = 1

p
E′

i (W
−1
i − Qi )

−1Qi (W
−1
i − Qi )

−1Ei (9.30)
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Figure 9.8 Plot of cluster leverages for each subject in the fitted model of Table 9.12.

where Qi = Xi (X
′ WX)−1X′

i , Ei = Di (Yi − π̂i ), and p is the number of parame-
ters in the model. A related measure is the “Studentized” version of DCLS i , which
scales the statistic based on the variance estimate of the parameters excluding the
deleted cluster. This measure is a product of scaled residuals and cluster leverage
and is defined as:

MCLS i = 1

p
E′

i (W
−1
i − Qi )

−1HiEi . (9.31)

The DCLS i statistic is scaled using the variance estimate based on all clusters
and, as a result, the statistic may decrease in magnitude and hide the influence to
some extent. This makes the MCLS i , in some instances, the preferable of the two
[Welsch (1986)]. The MCLS i , on the other hand, measures the influence of the
cluster on the parameter estimates and their estimated variances simultaneously.
These two statistics are available in SAS.

Plots of DCLS i and MCLS i in the polypharmacy example are identical with
slight differences in scale. This is often the case in our experience. The DCLS i

plot is shown in Figure 9.9. A possible cutoff for large values of the statistic
is 1.0 [Kleinbaum et al. (1998)] so none of the subjects appears to have undue
influence. A few subjects have large values relative to the others. Two of the
three largest values are the same subjects with second- and third-highest leverages.
The largest value is a relatively older non-white male subject with three observed
polypharmacy events. We note nothing in the data for any of the three subjects that
is suspicious, and removing all three from the data and refitting the model does
not change the inferences or parameter estimates by more than 10% except for the
estimated coefficient of race, which drops from −0.442 to −0.594, or 34%. This
is not surprising as there are only 82 non-white subjects in the data set. The three
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Figure 9.9 Plot of DCLS i for each subject in the fitted model of Table 9.12.

subjects have a polypharmacy percentage of 71% compared to 15.9% for the other
subjects in that race category so removing them lowers the coefficient.

Preisser and Qaqish (1996) also propose a statistic to approximate the effect
of removing a cluster on the parameter estimates, or β̂ − β̂(i) where β̂(i) are the
estimates with cluster i removed. The statistic is computed as:

DBETAC i = (X′WX)−1Xi (W
−1
i − Qi )

−1Ei . (9.32)

The plot of DBETAC values for the subjects in the polypharmacy example
is shown in Figure 9.10. There are three subjects with larger absolute values of
DBETAC . They are all subjects that were young, between 4 and 10 years old, during
the study yet with multiple years with observed polypharmacy. The two highest
have observed polypharmacy all 7 years of the study. The highest corresponds to
the subject with an observation producing the largest Pearson residual and �X2

j

discussed previously. The third largest was also identified in the diagnostics for
individual observations with an observation with a high �β̂j . When these three
subjects are removed only the parameter estimate of the transformed age covariate
changes by more than 10%, increasing by 15.1%. We, again, conclude there is no
reason to remove the subjects from the data set.

After analysis of all the diagnostic statistics we conclude that there are no overly
influential subjects or observations, although a few are poorly fit. We discussed and
illustrated how to compute odds ratios and their confidence intervals for population
average models in Section 9.4. We present these values for the final model only for
one covariate of interest, the outpatient MHV (Mental Health Visits), in Table 9.25.
In our example, 0 outpatient MHV is the reference category. The results suggest
that subjects are significantly more likely to have polypharmacy for more than
5 outpatient MHV. The odds of polypharmacy are 1.8 times as high for 6–14
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Figure 9.10 Plot of DBETAC i for each subject in the model of Table 9.12.

Table 9.25 Estimated Odds Ratios and Confidence Intervals for
Outpatient MHV from the Population Average Model in Table 9.12

Outpatient MHV Odds Ratio 95% CI

0 1 n/a
1–5 1.168 0.883, 1.546
6–14 1.836 1.360, 2.479
>14 2.528 1.836, 3.481

outpatient MHV and 2.5 times for more than 14 outpatient MHV than for no
outpatient MHV. The odds for 1 to 5 visits is not significant. As we modified
the data for this example all conclusions are hypothetical and do not apply to the
original data. However, we note that the results are similar to the analysis with
the original data. Interested readers are referred to Fontanella et al. (2012) for the
conclusions of the study.

9.6.2 Assessment of Cluster-Specific Model Fit

Overall measures of fit for cluster-specific models are limited. The Hosmer–
Lemeshow test may be used with the cluster-specific model using fitted values that
include an estimate of the random effect term, as well as all the regression coeffi-
cients. The cluster-specific fitted values, as described in Section 9.4.2, are available
from statistical software. Thus, one can calculate the test “by hand” using the results
presented in Chapter 5. In STATA, the computation is available in the user cre-
ated hl.ado program which can be found at the Website www.sealedenvelope.com.
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Specifically, equation (5.7) gives a formula for computing the test statistic and the
discussion in that section provides guidance on forming the groups and comput-
ing the corresponding table as shown in Table 5.1. We calculated this test for the
final cluster-specific model of polypharmacy in Table 9.20, yielding Ĉ = 110.01
which, with 8 degrees of freedom, produces p < 0.0001. Sturdivant (2005) con-
ducted extensive simulations showing that the test rejects more than the nominal
level when applied to fitted cluster-specific models. Thus, when interpreting the
Hosmer–Lemeshow test in this setting a significant result does not necessarily
indicate issues with the fitted model. The test statistic is particularly prone to
issues when there are small cluster sizes and moderate to high correlation, which is
exactly the case in our example. Thus, the test is not recommended in this example
and is only presented for illustrative purposes.

Evans (1998) extended the normal approximation to the Pearson chi-square test
for the cluster-specific model. This statistic is not available in software packages.
With X2 as defined in equation (5.2) and N observations in the data set, for
cluster-specific models the moments are:

Ê(X2 − N) = 1 ′Ŵ−1g − 2π ′Ŵ−1g + 2g ′Ŵ−1g − 2 trace [M ′Ŵ−1(I − M)W]
(9.33)

and

V̂ar(X2 − N) = (1 − 2π̂) ′Ŵ−1(I − M)W(I − M) ′Ŵ−1(1 − 2π̂), (9.34)

where 1 is a vector of ones, Ŵ a diagonal matrix with π̂i(1 − π̂i) as diagonal
elements, M = WQ(Q ′ WQ + R)−1Q ′ and g = WQ(Q ′ WQ + R)−1Rδ. In these
expressions, R is a matrix with the inverse covariance matrix of the random effects
in the lower right and zeros elsewhere, Q a matrix with the design matrix for
the fixed effects augmented with the design matrix of the random effects and δ a
vector with fixed parameter estimates augmented with the estimates for the random
effects. Using the estimates of the mean and variance the standardized statistic is
then:

zXc
2 = (X2 − N) − Ê(X2 − N)√

V̂ar(X2 − N)
, (9.35)

which is compared to the standard normal distribution to obtain a p-value. In sim-
ulations by Evans (1998) involving large sample sizes and including a random
intercept only, the proportion of times the null hypothesis was rejected using the
statistic in equation (9.35) was close to the nominal level. However, in further
simulation studies by Sturdivant (2005) of settings with more random effects and
smaller sample sizes, the distribution of the statistic was both biased and skewed so
that it rejected the null hypotheses sometimes more often and sometimes less often
than the nominal level, casting doubt on its usefulness in assessing fit. Sturdivant
and Hosmer (2007) proposed a smoothed version of the statistic with satisfactory
performance in many simulated data settings. The performance of this statistic
appears to hold under different methods of estimation [Sturdivant et al. (2007)].
Unfortunately, the test statistic is quite complicated to compute and is not currently
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implemented in software packages. Hence, we do not discuss it further. Cheng and
Wu (1994) propose a test for choice of link function. As this test has not been
implemented in software, and further study of its performance in binary correlated
data is required, we do not discuss it here. Vonesh et al. (1996) propose use of
their concordance correlation to assess model fit by computing the value with and
without the random effect estimates. In essence this measures how much the ran-
dom effects improve agreement between predicted and actual responses. However,
currently the concordance correlation is only available in SAS GLIMMIX when
fitting a population average model as discussed in the previous section. Further, the
measure has not been adequately tested in cluster-specific models involving binary
responses.

TenHave and Ratcliffe (2004) present an easily implemented approach to test-
ing the assumption that the random effects are normally distributed. In Section
9.4.4 we discussed methods of approximating the population average coefficients
from parameter estimates of a fitted cluster-specific model. They demonstrate that
discrepancies between the approximate coefficients and the actual estimates from
a fitted population average model may indicate two possible problems with the
random effects model: (i) negative intra-cluster correlation and (ii) confounding
between the cluster level random effects and the fixed effect covariates. We illus-
trate this by comparing the two estimates using the GLOW data presented in
Table 9.7. The parameter estimates from the cluster-specific model are shown in
column 2 and estimates from a corresponding population average model fit are dis-
played in column 3 of Table 9.7. The final two columns show the two approximate
population average coefficients we compute from the cluster-specific model using
equations (9.18) and (9.19). In this example, the approximations are both close to
the estimates of the population average model so we do not have reason to suspect
issues with the random effects model. In the examples of TenHave and Ratcliffe
(2004) the differences were marked in cases with the two problems mentioned as
discussed earlier. For example, they observed estimates in the population average
model larger in absolute value than those of the cluster-specific model whereas
the reverse is true when using the equations to convert from cluster-specific to
population average estimates.

In population average models we were concerned with checking the choice for
the covariance structure. The related check in cluster-specific models is the assump-
tions made about the distribution of the random effects in the model. Recall that
for the basic model with a random intercept specified in equation (9.1), we assume
the random intercept is normally distributed, or αi ∼ N(0, σ 2

α ). The assumption
about the distribution of the random slope effect is similar to the random inter-
cept, namely τi ∼ N(0, σ 2

τ ) and we assume the two random effects, τi and αi , are
independent unless a covariance parameter between random effects is significant
statistically.

The best method for assessing the normality assumption of a random effect is
based on the predicted values of the random effects. One can then use standard
tests and plots for normality such as the normal probability (PP) or normal quantile
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(QQ) plots. The predicted random effects are discussed in Section 9.4.2. By appro-
priately standardizing, the estimates should have a standard normal distribution
and it is the standardized values we use in the PP or QQ plots. There are several
choices for estimating the standard error of the predicted random effects. The
standard error produced in most software packages is the one Goldstein (2003)
refers to as the “comparative” standard error. It is based on estimating the vari-
ance in prediction errors, α̂i − αi , of the random effect in a given cluster. These
standard errors are most useful in comparing random effects to see if there are
differences between clusters [Skrondal and Rabe-Hesketh (2009)]. For diagnos-
tic purposes, a better choice is the “diagnostic” standard error [Goldstein (2003)],
which is an estimate of the variance of the predicted random effect, α̂i . Unfortu-
nately, the “diagnostic” standard error is not produced in SAS or STATA. A user
developed routine in STATA, GLLAMM, which produces the estimates can be
downloaded (www.gllamm.org). An additional concern in using the standardized
predicted random effects is when the number of observations and variability differs
in each cluster. Lange and Ryan (1989) offer a method of weighting the estimates
to address this problem. Again, as with many of the methods for correlated binary
data, the method is not implemented in current software.

We illustrate the use of these plots with the model in Table 9.20. In the examples
to follow, we only consider the random slope. The random intercept should be
similarly addressed and we leave this analysis as exercises. The PP plot using the
“diagnostic” residuals is shown in Figure 9.11 and the plot using the “comparative”
residuals in Figure 9.12. In this example, the plot using the comparative standard
error appears less linear but both plots would cause us to question the assumption
of normality for the random effect of subject. In our experience, using the stan-
dardized “comparative” residuals usually leads to similar conclusions about the
normality assumption so that if the software package does not produce “diagnostic”
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Figure 9.11 Normal probability plot of the standardized random slope of age residuals for the
polypharmacy model using the diagnostic standard error estimate.



assessment of model fit 369

0.00

0.25

0.50

0.75

1.00

N
or

m
al

 d
is

tr
ib

ut
io

n

0.00 0.25 0.50 0.75 1.00
Empirical distribution

Figure 9.12 Normal probability plot of the standardized random slope of age residuals for polyphar-
macy model using the comparative standard error estimates.

standard errors, standardizing using the “comparative” standard errors can still lead
to a useful diagnostic tool. This is not always true and issues with plots based on
“comparative” errors do not necessarily mean the normality assumption is question-
able. As we focus on the diagnostic standard errors, we observe that the curve in
Figure 9.11 is reasonably linear but with clear departures from the line. We further
test the normality using the Shapiro–Wilk test, which does reject the hypothesis of
normality with p < 0.001. The test is fairly sensitive to departures from normality
in large samples but the result should be noted and inferences about the random
effects used cautiously. If only the “comparative” residuals were available the
results would clearly suggest that care be exercised when making inferences that
assume the normal distribution for the subjects or clusters in the study based on
the model. If we are concerned with this aspect of the model a more complicated
model for the random effects may be required and an experienced statistician
consulted.

As was done in Chapter 5 for the standard logistic regression model, we should
check for the effect of individual observations on model estimates and fit. We are
interested in identifying subjects with high leverage, large residuals, or a large
degree of influence on the model estimates. In the cluster-specific model we are
also interested in detecting clusters that are poorly fit or exert leverage and influence
on the model estimates. We follow the approach outlined in Langford and Lewis
(1998) and begin with the highest level in the model.

Continuing with the polypharmacy model in Table 9.20 we have a two level
model with the yearly observations (level 1) clustered by the subjects (level 2).
We first look at the level 2 diagnostics for the individual subjects in the study.
The posterior predicted values of the random effects can be considered the level 2
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residuals and, as previously discussed, are more informative if standardized by one
of the standard error estimates. Ideally, they are standardized by the “diagnostic”
standard error, if available, but using the “comparative” standard error will still
help identify poorly fit subjects.

Boxplots of the two types of standardized residuals for the random slopes for
subjects in the polypharmacy data are shown in Figure 9.13. The advantage of
using the diagnostic standardized residuals is that they may be compared with the
standard normal distribution. Thus, we would expect roughly 95% of them to fall
between the values of 2 and −2 as we observe in our example. The comparative
standardization does not allow for this check because the standard error is smaller
(it is based on the variance of the difference between the predicted and actual
random effects). This generally leads to larger standardized residuals although not
in this example. Both may be useful in looking for unusual observations that are
potential outliers. In our example, the two produce different pictures and we focus
on the diagnostic version. We see subjects with slightly higher values although,
with 500 subjects, it is not unusual to have values as large as 3. The largest, in
absolute value, is −2.97 for a white male with observed polypharmacy in the first
3 years, when he was youngest, and none thereafter. This pattern is unusual as
polypharmacy is less likely for young subjects. This leads to the observed large
negative random slope estimate to reverse the predicted probabilities for the subject
so that they are higher when he was young. The large diagnostic random slope is
thus well justified by the data.

Langford and Lewis (1998) proposed formulas to compute leverage and mea-
sures of influence but these have not been implemented in standard software
packages. The previously referred to user written STATA program, GLLAMM,
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Figure 9.13 Boxplot of diagnostic random slope residuals for the fitted polypharmacy model in
Table 9.20 using diagnostic and comparative standard errors.
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Figure 9.14 Boxplot of Langford–Lewis version of Cook’s Distance of subjects for the fitted polyphar-
macy model in Table 9.20.

does compute a measure of influence for the highest level cluster variable in the
model, which is comparable to Cook’s Distance in the standard logistic model.
A boxplot of these values for the polypharmacy model in Table 9.20 is shown in
Figure 9.14. We observe several subjects (clusters) with particularly high values
relative to other subjects in the data set. The largest is the same subject with the
largest standardized slope residual with a value of 0.55. The next largest value of
0.45 is a subject with a similar instance of polypharmacy in the 4 younger years
and not in the 3 oldest years.

We identified potentially influential clusters and, in our example, identified a dif-
ference in these subjects that may be the reason for large cluster-level diagnostic
values. The reason may not always be immediately apparent. In some instances the
subject or cluster may differ in some way from others in the study. Alternatively,
there may just be a few specific observations within the cluster that led to the diag-
nostic results observed. The third to fifth highest observed values in Figure 9.14
may fall into this category. In these subjects, polypharmacy is observed in the
middle years of the study and those observations may lead to the potential influ-
ence. Thus, we also explore diagnostic measures for subject and year, or level 1,
observations within the subjects. Neither SAS or STATA currently has options
for producing measures of leverage or influence for the level 1 observations in
cluster-specific models. Both packages do offer residuals similar to the Pearson
and deviance residuals discussed in Section 5.2. In STATA the GLLAMM proce-
dure is required. A plot of residuals for each individual observation grouped by
cluster is a useful method for examining both the level one diagnostic statistic and
the reasons clusters had high influential values. Such a plot of the Pearson resid-
uals for each observation grouped by the subject is shown in Figure 9.15 for the
subjects with the highest observed values in Figure 9.14. In data sets with fewer
subjects such a plot can be produced for the entire data set. As expected, the two
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Figure 9.15 Scatter plot of level 1 Pearson residuals by subject for largest Cook’s Distance of
Figure 9.14.

subjects with the largest Cook’s Distance do not have large residuals. The reason
they are potentially influential is that they differ from other subjects in the study
in their polypharmacy profile. The next two most influential subjects do have two
large residuals each corresponding to the years they had observed polypharmacy.
In both cases, the polypharmacy occurred in middle years of the study time frame
making the points difficult to model using age and the random slope for age. The
subject with the fifth largest Cook’s Distance has a similar polypharmacy profile
with two occurrences in the middle years of the study but slightly lower residuals
due to an observed polypharmacy in the final year that is the other relatively large
residual observed. In this example, we are able to readily identify the reason for
the large Cook’s Distance. As Cook’s Distance measures influence (a function of
the residuals and leverage) another reason for the large values may be leverage
and not readily apparent. As mentioned, we have no measures of leverage but can
explore each of the covariates in the model by cluster in such cases.

Once a cluster is identified as possibly influential, Langford and Lewis (1998)
suggest two approaches to determining how it impacts model estimates. The first is
to remove the entire cluster and refit the model. In settings with few clusters, with
many observations in each cluster, this approach may delete too much data. This
is not the case in the polypharmacy data. With 500 subjects in the study and only
7 observations per subject deleting a single subject removes only 0.2% of the data.
We refit the model removing the two subjects with the largest values of Cook’s
Distance. The result was small changes in the estimates for the parameters with
none greater than 15%. Thus we do not exclude the entire cluster. In general, the
deletion approach works best for small clusters.

The second method is to include the potential outlying cluster in the fixed part
of the model using an indicator variable to fit a separate intercept while excluding
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the cluster from the random portion of the model. If the results of analysis suggest
the cluster is poorly fit using the random effects and that the model should be
modified to fix the problem, this approach may be more desirable than deleting the
entire cluster. In our example, the influential clusters do not impact the model to
such an extent that we would consider this more complicated model.

In addition to looking at diagnostics in terms of clusters that might be outliers or
influential we also recommend looking at the level 1 residuals for all observations
using plots similar to those discussed in Section 5.3 for standard logistic regression
diagnostics. An example is the plot of squared deviance residuals obtained from the
GLLAMM procedure in STATA against the model predicted probabilities shown in
Figure 9.16. A similar plot may be produced using the squared Pearson residuals.

We see two curves in Figure 9.16, starting small and rising for no polypharmacy
(y = 0) and starting high and falling for polypharmacy (y = 1). We are looking for
extreme values. For no polypharmacy there are three observations with values larger
than 5. The interpretation is that the model based probability of polypharmacy was
high, over 0.88, but the subjects did not have polypharmacy. All three are in the
highest category of outpatient MHV with counts greater than 14 and relatively older
males, factors associated with higher probability of polypharmacy. The subjects
have increased risk based on either their white race or non-zero inpatient MHV
and, in one case, both. The curve for polypharmacy observations in Figure 9.16
also has four values greater than 5.5 with two greater than 6. In these cases, the
observation was polypharmacy when model based probabilities of this response
were less than 8.8%. For all four, the observation is their only polypharmacy in
the 7 years of the study, with indicators of lower risk. The largest is a relatively
young female with no inpatient and only 1 outpatient MHV. The other three are
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Figure 9.16 Scatter plot of level 1 squared deviance residuals by model predicted probabilities for
the fitted polypharmacy model in Table 9.20.
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Table 9.26 Estimated Odds Ratios and Confidence Intervals for
Outpatient MHV from the Cluster-Specific Model in Table 9.20

Outpatient MHV Odds Ratio 95% CI

0 1 n/a
1–5 1.459 0.792, 2.685
6–14 3.560 1.906, 6.648
>14 6.252 3.314, 11.794

also relatively young with no inpatient MHV. One has no outpatient MHV and the
other two, one who is younger, a single outpatient MHV. None of the observed
large observations, for either response or non-response, is particularly suspicious
or alarming.

Analysis of potential outliers proceeds as described in Section 5.3. This typically
involves removing the observations, refitting the model and assessing the change in
model estimated parameters. We leave this as an exercise. One point worth noting
is that, in cluster-specific models, the removal of influential observations at level 1
may impact fit at higher levels in the model so the diagnostic measures for higher
levels should be reexamined if subjects are taken out of the data set.

Once diagnostics are complete we use the final model for estimation and inter-
pretation of covariate effects. In the example, the odds ratios for one covariate
of interest comparing levels of higher outpatient MHV to no visits are shown in
Table 9.26. The subject-specific estimates of the effects, as discussed in Section
9.3, are larger than those of the population average model shown in Table 9.25.
The inferences in terms of the study questions are not changed using the subject-
specific interpretation. For a given subject, outpatient MHV categories above five
lead to significantly higher odds of polypharmacy. As in the population average
model, the odds of 1 to 5 outpatient MHV is not statistically different than none.
We remind the reader that our conclusions are provided as an example as they are
based on a sample and not the actual data set.

9.6.3 Conclusions

In most cases, the cluster-specific or population average models are appropriate
for modeling correlated binary data. The correlation must be due to recognizable
factors in the design of the study that allow one to explicitly identify clusters, or
sets of observations, that are correlated and those that are uncorrelated. The cluster-
specific model is likely to be most useful for describing the effect of covariates
that are repeatedly measured on the same subject. The population average model
is best suited to describe the effect of covariates that are constant within clusters.
However, both models may be fit with both types of covariates. One must pay
particular attention to signs of numerical problems when fitting both models. These
include failure of the program to converge to a solution and a “zero” estimate of
the variance of the random effect.
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Logistic regression models for correlated binary data is an area of active sta-
tistical research with new developments appearing on a regular basis. As these
developments are accepted by the statistical community as sound and worthwhile
modeling tools, developers of software packages can be expected to add them to
their routines.

EXERCISES

1. Suppose that a dichotomous covariate, D, for race comparing WHITE
(D = 1) to OTHER (D = 0) is included in the GLOW models and the
estimated coefficient is 2.

(a) Interpret the odds ratio for race assuming that a population average model
was fit.

(b) Interpret the odds ratio assuming that a cluster-specific model was fit.

(c) If interpretation of the race covariate is the primary study goal, which
model do you think is more appropriate?

2. Show that if the correlation is 0 (i.e., an independent correlation structure is
chosen) that the GEE of equation (9.9) reduces to the likelihood equations
for a standard logistic regression model.

3. Interpret the odds ratios for self-reported risk (RATERISK) produced in the
cluster-specific model of Table 9.3 of Section 9.4.

4. Interpret the odds ratios for a 2-year increase in age and the odds ratio for
gender for the population average model of Table 9.12 and the cluster-specific
model of Table 9.20 in Section 9.5. Are the differences in odds ratios from
the two models what you expect? Explain.

5. Use equation (9.19) to approximate the population average coefficients using
the parameter estimates for the final cluster-specific polypharmacy model of
Table 9.20. Compare these approximations to the parameter estimates pro-
duced by fitting the corresponding population average model in Table 9.12.
If there are large differences, what might this suggest about the assumptions
for the model(s)?

6. Fit the population average model for the polypharmacy data of Table 9.12
using the independent correlation structure, in other words using a standard
logistic regression model. Compare the two models. Does including the cor-
relation due to subjects in the model seem necessary? Explain.

7. Using techniques described in this chapter, as well as design variables, exam-
ine the scale of the age covariate in the population average and cluster-specific
models of Section 9.5. Do you agree with the transformations proposed?
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8. Compute and interpret the MOR for the covariates in the final cluster-specific
model for the polypharmacy data in Table 9.20.

9. Fit a univariable model for the polypharmacy data with the single cluster-level
covariate, race dichotomized to white and other. Using the resulting model
compute and interpret the IOR.

10. Develop a preliminary main effects model for the GLOW_RAND data using
a population average model with exchangeable correlation structure.

11. Develop a preliminary main effects model for the GLOW_RAND data using
a cluster-specific model with random intercept based on the SITE.

12. If you have a software package that can produce the QIC, examine the effect
on the QIC statistics of adding two-way interactions for race by age and
inpatient by outpatient MHV to the final polypharmacy population average
model of Table 9.12. Are the changes in QIC consistent with other indicators
of the significance of the interaction terms?

13. Fit the final polypharmacy cluster-specific model of Table 9.20 then produce
the empirical Bayes predicted random intercept values. What do these values
mean in the context of this model? Compare values for different subjects and
comment on whether they make sense by examining the actual data for each
subject. If possible produce these values using different software packages or
procedures and compare.

14. Use the GLOW_RAND data from Section 9.4 and fit a cluster-specific model
using adaptive quadrature for estimation. Use FRACTURE as the response
and covariates: calculated fracture risk score (FRAC_SCORE), age (AGE),
and self-perception of risk (RATERISK). Include a random intercept for
physician id (PHY_ID).

(a) Does the number of quadrature points appear to impact the model esti-
mates?

(b) What happens if you test each covariate for a random slope?
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Special Topics

10.1 INTRODUCTION

As is likely true in other textbooks there are important topics that should have
been included, but do not seem to logically fit in the existing chapters. In Section
10.2 we provide an overview, with an example, of the use of propensity scores in
logistic regression modeling, where the goal of the analysis is to estimate the effect
of a treatment. Section 10.3 considers fitting a logistic regression model to sparse
data where one cannot rely on large sample assumptions. This is often referred to
as “exact” logistic regression. Throughout the text we have assumed any missing
data would have no effect on the analysis. In Section 10.4 we consider methods
for dealing with missing data. Section 10.5 considers choosing a sample size when
the goal of the analysis is to estimate the effect of one covariate where the effect
of others has been controlled using a logistic regression model. An introduction to
the Bayesian approach to logistic regression modeling is presented in the Section
10.6. In Section 10.7 we consider regression modeling of a binary outcome using
link functions other than the logit. The chapter concludes with sections on effect
mediators and other modes of statistical interaction.

10.2 APPLICATION OF PROPENSITY SCORE METHODS
IN LOGISTIC REGRESSION MODELING

In a typical observational study, subjects who received a particular treatment have
likely not been randomly assigned to treatment. Thus, estimation of a treatment
effect can be confounded by covariates whose distributions differ both with respect
to the treatment groups (assumed to be two here) and the strength of the association
between the covariates and the outcome. Model-based assessment of and adjustment
for confounding is discussed in detail in Section 3.5. In Section 4.2 we explicitly
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incorporated the ideas discussed in Section 3.5 into the Method of Purposeful
Selection (of covariates). The strength of this model building approach is that by
selecting covariates that are associated in a meaningful clinical or statistical manner
with the outcome, and are believed to (or actually do) express statistical evidence
of confounding of the treatment effect, adjusted estimates of the treatment effect
that are assumed to be free of confounding may be obtained. However, the method
does not explicitly balance covariate distributions within levels of the treatment
covariate. Thus, there may be residual confounding and associated bias in the
effect estimate. A method that is increasingly being used in observational studies
that directly addresses the potentially confounding effects of covariate imbalance
is to incorporate the propensity score, for treatment, into the analysis.

The propensity score is a function that models the probability of treatment
assignment conditional on the covariates, namely

e(X) = Pr(Z = 1|X), (10.1)

where Z denotes the treatment indicator variable, assumed to be coded 0 or 1,
and X denotes the collection of study covariates. Rosenbaum and Rubin (1983)
developed many of the statistical properties of the propensity score and followed
with a number of papers studying its application [e.g., Rosenbaum and Rubin
(1984)]. There is quite an extensive literature now on the propensity score. A few
papers the reader may find helpful that supplement the material presented here
include: D’Agostino (1998), Austin and Mamdani (2006), Austin et al. (2007),
Austin (2008), Hill (2008) and Williamson et al. (2011). Extensive citations of
other relevant work may be found in these papers.

Before proceeding further with propensity score methods, we think it is helpful
to review the model-based approach to assess the presence of confounding dis-
cussed in Section 3.5. In that section we considered a logistic regression model
containing a dichotomous exposure/treatment variable, say Z, and a continuous
potential confounder, say X, and assumed that the theoretically correct logit was
linear in X, that is, g(z, x) = β0 + β1 × z + β2 × x. Denote the logit for a model
only containing Z as g(z) = θ0 + θ1 × z. The statistic we proposed, and used in
the Method of Purposeful Selection, to assess the amount of confounding due to
X is

�β̂% = 100 × (θ̂1 − β̂1)

β̂1

, (10.2)

where β̂1 and θ̂1 are the estimators of the coefficients for Z in the two models, and
the criterion we suggested using for evidence of confounding is �β̂% ≥ 10 − 20%.
We showed that, under these model assumptions, the difference between the crude
and adjusted estimate of the effect of Z is

θ̂1 − β̂1
∼= β̂2 × (x1 − x0),

which is an expression that captures the essence of the two dimensions required for
a covariate, X, to confound the effect of another covariate, Z: (i) The association
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between the treatment and confounder and (ii) the association between the
confounder and the outcome. The term (x1 − x0) is a measure of the difference in
the distribution of X in the two groups defined by Z. If the estimators of the sample
mean of X within the two groups are the same, then the covariate does not confound
the effect of Z. Obviously, the potential confounder, X, must also be associated with
the outcome, as measured by β̂2. If treatment is randomly assigned then, in theory,
we expect that (x1 − x0) should be small. In an observational study there is no such
theoretical guarantee. In previous chapters we controlled for confounding by statis-
tically adjusting for X (i.e., including it in the model). An alternative to modeling
approaches, such as Purposeful Selection, is to create the propensity score, use it
to form groups where the distribution of the covariates is balanced, (x1 − x0)

∼= 0,
and then estimate the effect of Z. The important thing to understand at this point
is that the purpose of the propensity score is to explicitly balance the distribution
of covariates, as opposed to handling imbalance via statistical adjustment
(modeling).

The first step in propensity score adjustment is to estimate the probability of
treatment by fitting a logistic regression model with the treatment covariate as the
outcome. Austin et al. (2007) studied the properties of propensity scores formed
from four different classes of covariates: (i) covariates associated with treatment
assignment, basically the (x1 − x0) part; (ii) covariates associated with the outcome,
basically the β̂2 part; (iii) confounders of the effect of the treatment covariate, the
whole of β̂2 × (x1 − x0); and (iv) all measured covariates.

Early users of propensity score methods tended to follow (iv). They included
as many covariates, interactions and higher order terms as the data would support.
The idea is that one should include any covariate that possibly is a confounder.
Here overfitting can be a problem and one may be trying to balance over so many
covariates that the sample finally used for analysis is unnecessarily reduced in size.

Austin et al. (2007) found, using simulations, that propensity scores formed
from covariate classes (i) and (iii) had the best overall performance with respect to
bias and mean squared error of the estimate of treatment effect. For now, assume
that we have an estimate of the propensity score for each of n study subjects:
êi , i = 1, 2, . . . , n.

Before analyses are performed it is recommended, and we agree, that one should
examine the distribution of ê within the two treatment groups to determine the
region of common support. There are two schools of thought on this. Some [e.g.,
Austin and Mamdani (2006)] suggest eliminating subjects on the control treatment,
z = 0, with values of ê less than the smallest value of ê among those receiving the
treatment, z = 1. Leuven and Sianesi (2003), in their STATA program psmatch2,
eliminate subjects with z = 1 and a value of ê that is larger than the largest value
of ê among those with z = 0. Our feeling is that one should drop both groups from
the analysis; this is what we use to define the region of common support. After
common support is determined, one should refit the propensity score model on the
reduced data set before performing any of the analyses described next.

When the outcome of interest is binary and one uses a logistic regression model,
there are essentially three different approaches to using the propensity score. The
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first, and simplest, is to fit the logistic regression model containing the indicator for
treatment, z, and the estimated propensity score, ê. Since the propensity score is
continuous one should carefully determine whether the logit is nonlinear and apply
a transformation to it, if needed. For simplicity, assume that the logit is, indeed,
linear in the estimated propensity score and the estimated logit is

ĝ(z, ê) = β̂0 + β̂1z + β̂2ê. (10.3)

Based on this model, the propensity score adjusted estimate of the odds ratio for
treatment is OR = exp(β̂1). The Wald-based confidence interval estimate uses the
estimator of the standard error of β̂1 from the fit. This adjusted analysis assumes
that two hypothetical subjects with the same value of the propensity score, who
differ only in treatment, have no imbalances in the distribution of covariates used
to obtain ê; that is, by including ê in the model we control for confounding due to
covariate imbalance.

One practical problem is that this analysis does not account for the fact that
ê is also a function of the data. Hence, the estimated standard errors from the fit
of the model in equation (10.3) are likely to be too small. One approach is to
use bootstrap methods. This process is a bit complex, in that, to do it properly
requires that estimating the propensity score be part of the bootstrap process, not
just multiple fits of the model in equation (10.3) with a bootstrap sample. This latter
analysis is much easier to do than the former and it may be better than simply using
the fit of equation (10.3).

The second approach is to fit separate models within each quintile of ê. Rosen-
baum and Rubin (1983) show that if there is no imbalance in the covariates within
the strata, then approximately 90% of the bias due to confounding is removed.
Thus, it is vital to check that this assumption holds within each quintile before
proceeding further with the stratified analysis. If there is imbalance, then practi-
cal solutions are to move the cutpoints defining the groups or use more than five
groups. Assuming there is balance within the quintiles, then one fits stratum-specific
models with estimated logit functions

ĝj (z) = β̂0j + β̂1j z, j = 1, 2, . . . , 5. (10.4)

The combined estimate of the log-odds ratio for treatment effect is

ln(ÔR) = 1

5

5∑
j=1

β̂1j . (10.5)

The five fits are independent of each other, thus the estimated standard error of the
pooled log-odds ratio estimator is

ŜE[ln(ÔR)] =
⎡⎣ 1

25

5∑
j=1

V̂ar
(
β̂1j

)⎤⎦0.5

, (10.6)

which can be used in the usual manner to obtain the Wald-based confidence interval
estimator of the odds ratio.
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An alternative analysis using quintiles is to begin by fitting the model

g(z, s) = β0 +
5∑

k=2

β1k × sk + β2 × z +
5∑

k=2

β3k × sk × z, (10.7)

where s2, s3, s4, s5 are the design variables for the quintiles using the first quintile
as the reference group. Next we fit the model that excludes the four interaction
terms

g(z, s) = β0 +
5∑

k=2

β1k × sk + β2 × z. (10.8)

If the likelihood ratio test comparing the model in equation (10.7) to the model in
equation (10.8) is significant, then estimates of effect are different for each stratum
and we use methods for estimating odds ratios in the presence of interaction. One
hopes that this test is not significant as it points to imbalance and residual con-
founding. If the two models are not significantly different, then we use the results
from the fit of equation (10.8) to estimate treatment effect as ÔR = exp(β̂2). We
think that this model-based stratified analysis is the simpler analysis and may result
in narrower confidence intervals than the group pooled estimator in equation (10.5).

The third approach is to create a matched sample. The matching is driven by
the smaller of the two treatment groups. For discussion purposes, assume that the
number of subjects with z = 1 is less than the number with z = 0. Using one of
several possible metrics, one matches each subject with z = 1 to a subject from
the group with z = 0. In the example, we use the STATA program psmatch2, see
Leuven and Sianesi (2003), with caliper matching based on the logit( ê ). The width
of the caliper controls how many matches one is able make among the controls.
For each subject in the treatment group, all untreated subjects within caliper width
of the treatment subject’s score are identified, and one or more are selected at
random. A problem is that, as one makes the matches, the pool of available controls
shrinks, eventually reaching the point where there may be no controls whose score
is within caliper width of the remaining unmatched treated subjects. One could
solve the problem by using sampling with replacement. Alternatives when using
sampling without replacement are to: (i) increase the caliper width or (ii) not match
all treated subjects. The penalty for increasing the caliper width may be imbalance
in covariates. Regardless of the method one should always check that there is no
imbalance in the covariates over the matched subjects. For example, one can do
this using a paired t-test for 1–1 matched data and a continuous covariate.

Once the matched sample is chosen we believe that any analysis for treatment
effect ought to take into account the correlation due to the matching. Two easily
implemented approaches are: (i) fit the conditional logistic regression model strat-
ifying on the covariate defining matches, as described in Chapter 7 or (ii) fit the
GEE population average model discussed in Chapter 9, clustering on the covariate
defining the matches. One problem with the conditional logistic regression approach
is that matches where the outcome is constant do not contribute to the analysis.
In the example, we illustrate both of these approaches. A third and less desirable
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option, in our opinion, is to use the usual logistic regression model with a robust
estimator of the standard error of the estimated coefficients.

GLOW variables used to this point did not include bone medications. We now
introduce an expanded GLOW data set, ALR3_GLOW_BONEMED, that includes,
in addition to the variables in Table 1.7, information on whether or not a woman was
taking any of 11 bone medications at enrollment, BONEMED (0 = no, 1 = yes),
and at follow-up, BONEMED_FU (0 = no, 1 = yes). Since use is self-reported
we have no information on compliance or dosage. We used these two covariates to
create a new covariate that indicates whether a woman was taking bone medication
at both enrollment and follow-up, BONETREAT (0 = no, 1 = yes). Using this
definition of treatment, 118 women among the 500 were taking bone medications.
We leave propensity score analyses of other definitions of treatment as exercises.

The first step is to build the propensity score logistic regression model. To do this
we focus on identifying covariates in class one, described above, namely factors
associated with who received treatment. First we fit the logistic regression model
with FRACTURE as the outcome and covariate BONETREAT. Denote the model
coefficient for BONETREAT as θ̂1. Next, we add a potential confounder to the
model. Denote the coefficient for BONETREAT from this bivariable fit as β̂1. If
the percent change in the coefficient (see eq. 10.2), for BONETREAT exceeds 10%,
we conclude the added covariate is a confounder of the treatment effect. Following
this process we identified as confounders the covariates: AGE, HEIGHT, BMI and
PRIORFRAC (having had a prior fracture).

Next, we fit the logistic regression model with outcome BONETREAT and
covariates AGE, HEIGHT, BMI and PRIORFRAC. Using the method of fractional
polynomials, we found that the fractional polynomial (3, 3) in age was significant.
Several other transformations yielded a deviance that was trivially larger, including
the quadratic model (1, 2). Hence, for ease of interpretation, we used the quadratic
model in the propensity score. The plot of the estimated logit versus age, done in
a manner similar to that used in Chapter 4, showed that as age increases from age
55 there was an increase in the odds of receiving treatment until age 70 when the
odds decreased. This is consistent with clinical practice. There was no evidence of
a need to transform HEIGHT or BMI. No interactions were significant at the 5%
level.

When we checked for common support we found that there were 43 subjects
who did not take bone medications with an estimated propensity score less than the
smallest value among those who did take bone medications. Three women who took
bone medications had an estimated propensity score larger than the largest value
among the women who did not take bone medications. Among the 454 women
with estimated propensity scores within the region of common support, 115 were
taking bone medications, BONETREAT = 1.

We refit the propensity score model and the results of the fit are shown in
Table 10.1. Examining the fit using the decile of risk statistic we found that Ĉ =
11.26 with p = 0.19. The area under the ROC curve is 0.70. Thus, we conclude
that the model fits and has, at best, modest discrimination between those who did
and those who did not receive bone medications. We feel that it is important to
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Table 10.1 Fitted Propensity Score Model for Treatment Variable BONETREAT,
n = 454

Coeff. Std. Err. z p 95% CI

AGE 0.602 0.2198 2.74 0.006 0.171, 1.033
AGE2 −0.004 0.0015 −2.68 0.007 −0.007, −0.001
HEIGHT −0.060 0.0192 −3.15 0.002 −0.098, −0.023
BMI −0.112 0.0260 −4.29 <0.001 −0.163, −0.061
PRIORFRAC 0.531 0.2581 2.06 0.039 0.026, 1.037
Constant −10.238 8.1124 −1.26 0.207 −26.138, 5.662

check for fit and, especially, the model’s discrimination. A propensity score model
that discriminates well may have a narrow range of common support, which would
reduce the sample available for the analysis of the outcome.

The first, and simplest, propensity score analysis is to fit the model in equation
(10.3). We checked, using fractional polynomials, and found no evidence of a need
to transform the propensity score. Table 10.2 presents results of fitting the model
containing only BONETREAT, and results when the propensity score (PSC) is
included, the model in equation (10.3).

The estimated crude odds ratio for treatment is ÔR = 1.63 and is significant.
The interpretation is, without considering other covariates, that women taking bone
medications have an estimated odds of fracture that is 1.63 times larger than women
not taking bone medications. This result seems counterintuitive, as one would
expect that women on treatment should have lower, not higher, odds of fracture.
Thus, there could be residual confounding of the treatment effect estimate.

At this point we feel it is important to remind the reader that, due to the sampling
used to obtain the GLOW data used in this text, results in no way apply to the
whole GLOW study or women, in this case, taking or not taking bone medications.

When we add the propensity score to the model the estimated odds ratio dropped
to ÔR = 1.48 and, with p = 0.108, is no longer significant. Thus, while still indi-
cating an increased odds of fracture for women on treatment the estimate does not
achieve statistical significance. One problem with this analysis is that there may

Table 10.2 Fitted Models to Assess the Treatment Effect of BONETREAT: Crude
and Propensity Score Adjusted Model, n = 454

Coeff. Std. Err. z p 95% CI

BONETREAT 0.491 0.2346 2.09 0.036 0.032, 0.951
Constant −1.159 0.1274 −9.10 <0.001 −1.408, –0.909

BONETREAT 0.395 0.2462 1.61 0.108 −0.087, 0.878
PSC 1.102 0.8480 1.30 0.194 −0.560, 2.764
Constant −1.417 0.2396 −5.92 <0.001 −1.887, –0.948
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be residual confounding, because we have one large group and there can be imbal-
ances in the distribution of the covariates between treatment groups. In fact, the
two-sample tests of the four covariates over the two treatment groups are signifi-
cant. This analysis is really not terribly different from the covariate-based modeling
approach in previous chapters, since covariates could still remain unbalanced.

The next approach is to model within each quintile of the propensity score, after
checking for balance in the covariates. That is, fitting the models in equation (10.4)
and evaluating the estimator in equation (10.5). We did check for balance in the
covariates and none of the two-sample tests were significant. The results of the fit
of the within quintile models are shown in Table 10.3.

The estimate of the within quintile pooled estimator in equation (10.5) is ÔR =
1.69 with a 95% confidence interval (0.53, 5.07). The estimate shows a 69%
increase in the odds of fracture among women taking bone medications but, as
one is not contained within the confidence interval, the increase is not statistically
significant. The confidence interval is rather wide due to the fact that each quintile
contains slightly more than 90 subjects.

An alternative to the pooled analysis is to use all 454 subjects in the region of
common support and include the quintiles in the model using four design variables.
We fit the interactions model in equation (10.7) and compared it to the main
effects model in equation (10.8) via the likelihood ratio test, yielding G = 3.01
with p = 0.57. We conclude that no interaction exists, and proceed with the main
effects model whose results are shown in Table 10.4.

The estimated odds ratio for bone medications from Table 10.4 is ÔR = 1.49
with a 95% confidence interval (0.92, 2.42). The point estimate shows a 49%
increase in the odds of fracture, but it is not significant as the confidence interval
contains one and the Wald test has p = 0.104. Note that the confidence interval
is considerably narrower than the one from the pooled quintile analysis. The fact
that the interactions between quintiles and treatment are not significant allows

Table 10.3 Fitted Models, within Quintiles of the Propensity Score, to Assess the
Treatment Effect of BONETREAT, n = 454

Quintile Coeff. Std. Err. z p 95% CI

1 BONETREAT 0.872 0.7657 1.14 0.255 −0.628, 2.373
Constant 1.566 0.2939 −5.33 <0.001 −2.142, –0.990

2 BONETREAT 1.070 0.6619 1.62 0.106 −0.227, 2.368
Constant −1.253 0.2673 −4.69 <0.001 −1.777, –0.729

3 BONETREAT 0.548 0.5069 1.08 0.280 −0.446 1.541
Constant −1.059 0.2815 −3.76 <0.001 −1.610, –0.507

4 BONETREAT −0.209 0.4978 −0.42 0.675 −1.185, 0.767
Constant −0.847 0.2817 −3.01 0.003 −1.399, –0.295

5 BONETREAT 0.353 0.4564 0.77 0.440 −0.542, 1.247
Constant −0.972 0.3138 −3.10 0.002 −1.587, –0.357
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Table 10.4 Fitted Models to Assess the Treatment Effect of BONETREAT: Crude
and Propensity Score Adjusted Model, n = 454

Coeff. Std. Err. z p 95% CI

BONETREAT 0.401 0.2461 1.63 0.104 −0.082, 0.883
Q_2 0.351 0.3618 0.97 0.332 −0.358, 1.060
Q_3 0.488 0.3592 1.36 0.174 −0.216, 1.192
Q_4 0.442 0.3618 1.22 0.222 −0.268, 1.151
Q_5 0.507 0.3638 1.39 0.163 −0.206, 1.220
Constant −1.502 0.2713 −5.53 <0.001 −2.034, –0.970

us to conclude that the variability in the estimates of the five coefficients for
BONETREAT seen in Table 10.3 is not significant. We prefer the stratified analysis
in Table 10.4 to the pooled analysis in Table 10.3 since it uses the entire sample in
the region of common support and allows testing for quintile differences in effect.
Regardless of which analysis one chooses, it is critical that a test for covariate
imbalance within quintiles is done.

One may add additional risk factors to any of the models shown in Tables 10.2
to Table 10.4. When we add history of fracture (MOMFRAC), need to use arms
(ARMASSIST), and self-reported risk of fracture (RATERISK, using two design
variables) to the model in Table 10.4, the estimate of the odds ratio for taking
bone medications decreases from 1.47 to ÔR = 1.26 with 95% confidence inter-
val (0.75, 2.10). The change suggests that the propensity score, as calculated in
Table 10.1, may not account for all confounding of the treatment effect. However,
to this point, all estimates of treatment effect that use the propensity score are not
significant.

The final method we discuss most completely balances the distribution of the
covariates used in the propensity score is a 1–1 matched analysis. To obtain the
matched sample we used the STATA program psmatch2 [see Leuven and Sianesi
(2003)] using the logit of the propensity score in Table 10.1 and caliper matching
with width equal 0.2 times the standard deviation of the estimated logit. The pro-
gram matched, using sampling without replacement, 108 of the 115 treated subjects
in the common support region of the propensity score model. In order to match all
115 treated subjects the caliper had to be increased to 1.0 standard deviation of the
logit. This increase seems unwarranted, as it could well result in an imbalance in
the distributions of the covariates in the two treatment groups. Thus, we proceed
with the analysis using a data set that consists of 108 matched pairs. We tested for
balance in the distribution of the four covariates used to estimate the propensity
score with paired-sample tests; no imbalances were found.

Austin (2008) notes that 73% of papers in the medical literature between 1996
and 2003 failed to account for the matching. He recommends using methods specif-
ically designed for matched data. Hill (2008) is at odds with this recommendation,
stating that there are many ways to account for the dependence induced by the pairs.
To provide comparisons we analyzed the data using three different methods: con-
ditional logistic regression, discussed in Chapter 7, stratifying on pairs; the GEE
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population average model, discussed in Chapter 9, clustering on pairs assuming
an exchangeable correlation structure; and the standard logistic regression model
using a robust estimator of the standard errors of estimated coefficients. Within
each approach we fit two models: a “simple” model containing only BONETREAT
and a “risk” model that added history of fracture (MOMFRAC), need to use arms
(ARMASSIST) and self-reported risk of fracture (RATERISK, using two design
variables). After adding the estimated propensity score to these models, its esti-
mated coefficient was nearly infinite. This is expected, since the score is nearly
constant within pairs, hence is collinear with treatment.

To simplify the discussion and to better focus on the primary question of esti-
mating the odds ratio of fracture for BONETREAT, we depart from our preferred
practice of reporting full fitted models and instead report final estimates of the
odds ratio for BONETREAT from the six different fits. These are summarized in
Table 10.5.

The results from the three different approaches are quite consistent. The three
estimated odds ratios from the “simple” fits are about 1.3 each and from the “risk”
fits are about 1.1–1.2 each. The widths of the three confidence intervals from the
“simple” fits are about 1.6 each, while those from the “risk” fits vary from the most
precise, 1.4 (GEE), to the least precise, 1.8 (conditional logistic regression). Based
on these results the GEE model would be a good alternative to the conditional
logistic model in settings, such as this example, where many pairs are deleted
due to a constant outcome within pairs. Results here show that, regardless of
method, when we control for confounding using propensity score matched pairs,
the estimate of the odds ratio of treatment with bone medications is greater than
one, but not significant. Again, we remind the reader that due to the sampling
used to obtain these GLOW data, the inferences only apply to these data and do
not generalize to the study as a whole or treatment with bone medications in the
general population of women 55 and older. One modeling detail that we did not
report on here is assessment of fit and the casewise diagnostics analysis. We leave
this as an exercise.

Table 10.5 Estimates, with 95% CI, of the Odds Ratio for BONETREAT from Six
Different Fitted Logistic Regression Models to the Matched Pairs Data, n = 218

Method Model ÔR 95% CI CI Width

Conditional logistic regressiona Simpleb 1.300 0.726, 2.329 1.603
Riskc 1.085 0.509, 2.311 1.802

GEE population average Simple 1.306 0.723, 2.359 1.636
Risk 1.151 0.614, 2.159 1.436

Ordinary logistic regression Simple 1.306 0.726, 2.350 1.624
Risk 1.158 0.628, 2.134 1.506

aFit based on 46 pairs, outcome constant in 62 pairs.
bSimple: Contains only BONETREAT.
cRisk: Simple plus MOMFRAC, ARMASSIST and RATERISK.
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In summary, propensity score methods provide an alternative to model-based
adjustment for confounding of treatment in observational studies. Currently,
propensity score adjustment can only be used with a dichotomous treatment
covariate in most software packages. The main advantage of a propensity score
approach is that it more directly balances the distributions of confounding
covariates in the two treatment groups. Because the propensity score is a
composite of many covariates, it is vital that the user test for balance in each
covariate. To enhance the possibility of balance, analyses are typically restricted to
a region of common support in the propensity score. A disadvantage is that when
the propensity score has a large area under the ROC curve, that is, discriminates
well, the range of common support may be quite narrow, and thus a large number
of subjects could be eliminated from the analysis of treatment effect. A further
point to emphasize is that the propensity score analysis is not assumption free.
One must be attentive to selection of confounders and model building details at
all stages of the analysis. Once one builds the propensity score model there are
three different approaches to using it: (i) model-based adjustment via its inclusion
as a covariate, (ii) a stratified analysis by quintiles of the score, and (iii) a 1–1,
or other, matched analysis. The potential to balance the confounders increases as
restriction on the analysis increases from (i) to (iii). However, one must keep in
mind that the confounding controlled for is limited to the covariates in the model.
Theoretical properties of a propensity score analysis usually assume that the score
contains all confounders, basically an assumption one cannot test. Regardless
of the approach, one should assess the fit of the final model, and use casewise
diagnostics to assess adverse impact on the model of individual subjects before
using the model for inferential purposes.

10.3 EXACT METHODS FOR LOGISTIC REGRESSION MODELS

The methods used for testing and inference up to this point in the text have required,
in addition to mathematical assumptions, that the sample size is sufficiently large
for parameter estimates to be normally distributed and for the likelihood ratio and
Wald tests to follow chi-square and normal distributions, respectively. Of additional
relevance is the fact that the maximum likelihood estimators can be quite biased
for small samples. For a general discussion of bias in maximum likelihood see Cox
and Hinkley (1974) and for specifics relative to logistic regression see McCullagh
and Nelder (1989).

There may be occasions where one would like to fit a logistic regression model
but the sample size is such that large sample assumptions are clearly not justified.
Recent advances in computational methods now make it possible to fit models
using alternative methods in such settings. We discuss two methods: an exact
method and an approximate method based on a modification of the usual likelihood
function. The “gold standard” is to use the exact method but, as we show, the
computations required are so computer intensive that they may be impractical in
some settings while those for the approximate method are of the same order as
maximum likelihood.

The exact method for fitting a logistic regression model and then making infer-
ences and tests about the parameters when the sample size is small is a complicated
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version of Fisher’s exact test for a 2 × 2 contingency table. Cox and Snell (1989)
note that the extension of the theory of Fisher’s exact test to logistic regression
models has been known since the 1970s. However, the computations required are
extremely complex and were considered impractical until efficient algorithms were
developed by Tritchler (1984), Hirji et al. (1987, 1988) and Hirji (1992). Mehta
and Patel (1995) review the theory and provide a number of insightful examples.
The exact methods have been incorporated into a number of statistical software
packages, including SAS, STATA and the special purpose program LogXact 9 for
Windows (2012). We used SAS and STATA to fit the models in this section.

The central idea behind the theory of exact methods for logistic regression is
to construct a statistical distribution that can, with efficient algorithms, be com-
pletely enumerated. The starting point in this process is to construct a conditional
likelihood similar to that used in Chapter 7 for matched studies. Assume we have
n independent observations of a binary outcome and a vector of p + 1 covariates
(i.e., (yi, xi ), i = 1, 2, . . . , n). We assume that the functional form of the logit is
g(x, β) = ∑p

j=0 xjβj with x0 = 1. In settings where we are primarily interested in
the slope coefficients we consider the intercept, β0, as the nuisance parameter and
condition on its sufficient statistic, n1 = ∑n

i=1 yi . As shown in Mehta and Patel
(1995) the resulting conditional likelihood is

Pr(Y1 = y1, Y2 = y2, . . . , Yn = yn|n1) =
exp

(∑n
i=1 yi × ∑p

j=1 xij βj

)
∑
l∈R

exp
(∑n

l=1 yl × ∑p

j=1 xlj βj

) ,

(10.9)
where R denotes the collection of(

n

n1

)
= n!

[n1!] × [(n − n1)!]

possible allocations of 0 and 1 to (y1, y2, . . . , yn) such that n1 = ∑n
i=1 yi . The

form of the likelihood in equation (10.9) suggests that the sufficient statistic for
βj is

tj =
n∑

i=1

yixij . (10.10)

Cox and Hinkley (1974) present a discussion of sufficient statistics and their role
in conditional inference. Denote the vector of sufficient statistics for the slope
coefficients as t ′ = (t1, t2, . . . , tp). The exact distribution of the collection of p

sufficient statistics is given by the equation

Pr(T1 = t1, T2 = t2, . . . , Tp = tp) =
c(t) exp

(∑p

j=1 tj βj

)
∑
u∈S

c(u) exp
(∑p

l=1 ulβl

) (10.11)

where c(t) denotes the number of possible allocations of 0 and 1 to (y1, y2, . . . , yn)

such that tj = ∑n
i=1 yixij and S denotes the set of allocations of 0 and 1 to
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(y1, y2, . . . , yn) such that n1 = ∑n
i=1 yi and uj = ∑n

l=1 yixlj denotes the resulting
value of the j th sufficient statistic for the lth allocation. The distribution in equation
(10.11) is used to obtain point and confidence interval estimates of the regression
coefficients as well as tests of hypotheses that coefficients are equal to zero. The
calculations required for the multivariable problem are quite complex. Thus, we
present some of the details for the exact methods with a model containing a single
dichotomous covariate.

As an example, suppose that we wish to model risk factors for having a low birth
weight baby among women 30 years or older in the low birth weight study described
in Section 1.6.2. There are 27 such women and four had a low birth weight baby. It
is clear that, with only 27 observations and four LOW = 1 outcomes, we should not
use methods requiring large sample sizes for their validity. Consider the covariate
recording the number of previous pre-term deliveries dichotomized into none (0)
or at least one (1) and denoted PTD. The cross-classification of LOW by PTD is
shown in Table 10.6.

The results in Table 10.6 show that the observed value of the sufficient statistic
for the intercept term is t0 = 4 and for the coefficient for PTD it is t1 = 2. The latter
result follows from the fact that only two subjects had LOW = 1 and PTD = 1
(i.e., 2 = ∑27

i=1 LOWi × PTDi). It follows from equation (10.11) that the exact
probability is

Pr(T1 = t1) = c(t1) exp(t1β1)∑
u∈S

c(u) exp(uβ1)
. (10.12)

The possible values of the sufficient statistic are t1 = 0, 1, 2, 3, 4. Thus, the term
c(t1) describes the number of possible allocations of 23 values of zero and four
values of one to 27 subjects with the resulting value of t1 = ∑27

i=1 LOWi × PTDi .
STATA has the option to save a data set with this exact distribution, which we
used to obtain the results in Table 10.7. We see that there are 5985 sequences
of 23 zeros and four ones, where 0 = ∑27

i=1 LOWi × PTDi . The simplest exact
inferential question is a test of the hypothesis that β1 = 0. The values of equation
(10.12) under the null hypothesis are given in the last column in Table 10.7.

Table 10.6 Cross-Classification of Low Birth Weight
(LOW) by History of Pre-term Delivery (PTD) Among
Women 30 Years of Age or Older

PTD

LOW 0 1 Total

0 19 4 23
1 2 2 4

Total 21 6 27
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Table 10.7 Enumeration of the Exact Probability Distribution of the Sufficient
Statistic for the Coefficient of PTD

t1 Count: c(t) Probability Under H0 : β1 = 0

0 5985 0.34103
1 7980 0.45469
2 3150 0.17949
3 420 0.02393
4 15 0.00086

Total 17550 1.0

These probabilities are calculated using the fact that 1 = exp(t1 × 0) and S

contains 17,550 sequences. Thus, the first probability is

Pr(t1 = 0) = 5985

17550
= 0.34103,

and the others are calculated in a similar manner. We calculate the two tailed
p-value by summing the probabilities in Table 10.7 over values of the sufficient
statistic that are as likely, or less likely, to have a smaller probability than the
observed value of t = 2. Thus, we obtain

p = 0.17949 + 0.02393 + 0.00086 = 0.20428.

We note that the value is identical to the two-sided p-value for Fisher’s exact test
computed from Table 10.6. In this case we cannot conclude that having a history of
pre-term delivery is a significant risk factor for having a low weight birth among
women who are 30 years of age or older. STATA reports the p-value, we think
incorrectly in this case, as twice this value or 0.408.

The exact conditional maximum likelihood point estimate of the coefficient is
the value that maximizes the probability given in equation (10.12) which, given
the counts in Table 10.7, is

Pr(T1 = 2) = c(2) exp(2β1)∑
u∈S

c(u) exp(uβ1)

= 3150 exp(2β1)

5985 exp(0β1) + 7980 exp(1β1) + 3150 exp(2β1)

+ 420 exp(3β1) + 15 exp(4β1)

.

Even in this rather simple example the required computations are lengthy. For
comparative purposes we show the results from fitting the conditional exact max-
imum likelihood estimate (CMLE) as well as those from fitting the usual logistic
regression model (MLE) in Table 10.8. In this example, as shown in Chapter 3,



exact methods for logistic regression models 391

Table 10.8 Results of Fitting the Usual Logistic Model (MLE), the Exact Conditional
Model (CMLE), and the Firth Modified Likelihood to the Data in Table 10.6

Method Coeff. Std.Err. 95% CI

PTD MLE 1.558 1.1413 −0.679, 3.795
CMLE 1.482 1.1059 −1.383, 4.370
Firth 1.466 1.0949 −0.680, 3.612

Constant MLE −2.251 0.7434 −3.708, –0.794
CMLE a a a

Firth −2.054 0.6876 −3.402, –0.706

aNot computed using CMLE in this case.

the usual MLE is simply the log of the odds ratio computed from the frequencies
in Table 10.6.

Both the point estimate of the coefficient for PTD and the estimate of the
associated standard error are slightly smaller when the exact conditional model is
used. The endpoints of the confidence internal for the MLE are obtained in the
usual manner as β̂1 ± 1.96 × ŜE(β̂1). The endpoints of the CMLE are obtained
from the following procedure: Assume that the possible range of the sufficient
statistic, given the observed value of t0, is tmin ≤ t1 ≤ tmax. In our example the
range is 0 ≤ t1 ≤ 4. The lower endpoint of a 100(1 − α)% confidence interval is
the value of β1 such that

α/2 =
tmax∑

k=t1obs

Pr(T1 = k) (10.13)

where t1obs denotes the observed value of t1, 2 in our example, and Pr(T1 = k) is
given in equation (10.12). If t1obs = tmin then the lower limit is set to −∞. The
upper endpoint of a 100(1 − α)% confidence interval is the value of β1 such that

α/2 =
t1obs∑

k=tmin

Pr(T1 = k). (10.14)

If t1obs = tmax then the upper limit is set to +∞. The solutions to equations (10.13)
and (10.14) for a 95% confidence interval in our example are shown in Table 10.8.
We note that the CMLE interval is considerably wider than the MLE interval,
reflecting the increased uncertainty in our estimate due to the small sample size.

Firth (1993) notes that there are two different approaches to correct the bias
in the maximum likelihood estimators in logistic regression: (i) apply a correction
to the usual maximum likelihood estimators of the coefficients or (ii) modify the
likelihood function so that the resulting estimators are less biased. Schaefer (1983)
provides a method for the first approach, which Firth notes is not as effective as
using the second, a more direct approach to remove bias. Firth’s (1993) modified
likelihood function is of the form

l(β)∗ = l(β) × |I(β)|0.5,



392 special topics

where l(β) is the usual likelihood function in equation (1.3) and |I(β)|0.5 is the
square root of the determinant of the information matrix with elements defined
in equations (2.3) and (2.4). Heinze and Schemper (2002) show that the score
equations that must be solved to obtain the Firth estimators are of the form

∂L(β)∗

∂βj

=
n∑

i=1

[yi − πi + hi(0.5 − πi)] × xij = 0,

where L(β)∗ is the log modified likelihood function and hi is the value of the
leverage defined in equation (5.22). Furthermore they show that these score
equations may be obtained from the usual log-likelihood function obtained when
each observation is replaced by two observations: yi with weight 1 + hi/2 and
(1 − yi) with weight hi/2. The attractive feature of this is that computations are no
more complex than those described in Chapters 1 and 2. The Firth estimators are
available in both SAS and STATA. Each package produces the same value for the
estimator but there are slight differences in the estimators of the standard errors of
the estimated coefficients. Results presented in this section are from SAS. The Firth
estimate of the coefficient for PTD in Table 10.8 is slightly closer to the exact value
than the MLE. The confidence interval for the Firth estimate is much narrower
than that for the exact estimate. Bull et al. (2007) show that a profile confidence
interval estimator of the type illustrated in Figure 1.3 has better coverage properties
than the symmetric Wald-based confidence interval in Table 10.8. However, this
confidence interval estimator is not currently available in software packages.

As a second example consider the cross classification of smoking status dur-
ing pregnancy versus low birth weight among women 30 years of age or older
shown in Table 10.9. We note that the table contains a cell with zero frequency.
As shown in Chapter 4, Section 4 conventional logistic regression software cannot
be used in this case. However, we are able to obtain a two-tailed p-value, point
and confidence interval estimate using exact methods.

The exact probability distribution under the hypothesis of no effect due to smok-
ing during pregnancy β1 = 0, is shown in Table 10.10. The p-value in this case is
0.01197 since no other value had as small or smaller probability than the observed
value of 4. Since the observed value of the sufficient statistic is 4 = tmax the upper
limit of the 95% confidence interval is +∞ and the solution to equation (10.13)
is 0.308. In settings where t1obs = tmin or t1obs = tmax the CMLE does not have a

Table 10.9 Cross-Classification of Low Birth Weight (LOW) by Smoking Status of
the Mother During Pregnancy (SMOKE) Among Women 30 Years of Age or Older

SMOKE

LOW 0 1 Total

0 17 6 23
1 0 4 4

Total 21 6 27



exact methods for logistic regression models 393

Table 10.10 Enumeration of the Exact Probability Distribution of the
Sufficient Statistic for the Coefficient of SMOKE

t1 Count: c(t) Probability Under Ho : β1 = 0

0 2380 0.13561
1 6800 0.38746
2 6120 0.34872
3 2040 0.11624
4 210 0.01197

Total 17550 1.0

finite solution and Hirji et al. (1989) suggest using the median unbiased estima-
tor (MUE). This estimator is defined as the average of the endpoints of a 50%
confidence interval estimator. In settings where t1obs = tmin and the lower limit is
−∞ the MUE is set equal to the upper limit of the 50% interval. In settings where
t1obs = tmax and the upper limit is +∞ the MUE is set equal to the lower limit of the
50% interval. In our example we have t1obs = tmax and the lower limit of the 50%
interval is β̂1MUE = 2.510. That is, the solution to equation (10.13) using α = 0.5
is 2.510. Thus use of exact methods yields point and interval estimates as well as
a test of significance when none are computable using the usual MLE. The Firth
estimator of the coefficient for SMOKE is β̂Firth = 3.1889, which is 27% larger
than the exact estimate. The 95% Firth confidence interval is (0.130, 6.245), which
conveys considerably more precision than the exact method confidence interval.

We obtain point and interval estimators of odds ratios in the usual manner by
exponentiating the respective estimators for the coefficient. The odds ratio for smok-
ing during pregnancy obtained from the MUE is ÔR = 12.3 and the endpoints of
the 95% confidence interval are (1.36, +∞). The interpretation is that the odds of
a low birth weight baby among women 30 years or older who smoke during preg-
nancy is 12.3 times higher than the odds among women 30 years or older who do not
smoke during pregnancy and it could be as little as 1.36 times with 95% confidence
interval. Results based on the Firth estimate are obtained in the usual manner.

One can use exact methods as well as Firth’s method to fit multivariable logistic
regression models and perform tests of subsets of parameters. Thus, it is theoreti-
cally possible to use both methods with the modeling paradigm described in detail in
Chapter 4. However, the required computations are extensive for the exact method
and can be quite time consuming, even on a fast computer. Thus, we recommend
that the use of exact analyses be restricted to those settings where the sample sizes
are small enough to question the use of the large sample assumption. The excep-
tion to this recommendation might be a setting where one has a zero frequency
cell in a clinically important dichotomous covariate or a polychotomous covari-
ate, whose categories should not be combined to eliminate the zero frequency. As
noted, Firth’s method does not have these computational issues. The Firth estimates
are closer to the exact than the MLE’s and, in most settings, can provide a useful
estimator, especially when the computations required for the exact method are too
complex for the computer being used.
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The exact methods as described in this section focus on exact CMLE of the slope
coefficients. It is possible to extend the approach to estimation of the intercept,
but in most settings the computations are much more time consuming than those
required to just estimate the slope coefficients.

The basic idea is the same but one estimates each parameter conditioning on the
sufficient statistic for all other parameters. The result is a fitted model similar to
ones discussed in detail in Chapter 4. As an example we present, in Table 10.11, the
results of fitting both the usual and exact logistic models using women 25 years
or older in the low birth weight study. The covariates in the model are weight
at the time of the last menstrual period (LWT), smoking status during pregnancy
(SMOKE) and history of prior pre-term delivery (PTD). There are 69 women in
this subgroup and 19 low birth weight babies.

The estimates of the slope coefficients from all three methods in Table 10.11
are similar and would result in effectively equivalent estimates of their respective
odds ratios. However, the exact confidence intervals are the widest, reflecting the
increased variability due to the small sample size. This variability is not accounted
for in the Firth or MLE Wald confidence interval.

In addition to fitting all parameters, evaluating fit and computing diagnostic
statistics is possible as described in Chapters 5 and 7. However, we do not recom-
mend using the p-value for the Hosmer-Lemeshow test based on g groups using the
chi-square distribution with g − 2 degrees of freedom, as it is based on the large
sample assumption that one is trying to avoid by using exact methods. How many
groups, g, one chooses should depend on the sample size and the distribution of the
outcome. It is highly likely that 10 groups would be too many, yielding a table with
many small frequency cells. For example, the model fit in Table 10.11 has n = 69
and n1 = 19. We would likely use six groups. Regardless of the number of groups,
we suggest that one should visually check the agreement between the observed

Table 10.11 Results of Fitting the Usual Logistic Model (MLE), the Exact
Conditional Model (CMLE), and the Firth Modified Likelihood in the Low Birth
Weight Study to Women 25 Years or Older

Method Coeff. Std.Err. 95% CI

LWT MLE −0.019 0.0117 −0.042, 0.004
CMLE −0.018 0.0113 −0.043, 0.002
Firth −0.017 0.0109 −0.038, 0.004

SMOKE MLE 0.249 0.6087 −0.944, 1.442
CMLE 0.256 0.5933 −1.111, 1.567
Firth 0.273 0.5953 −0.893, 1.439

PTD MLE 1.393 0.6687 0.082, 2.703
CMLE 1.310 0.6440 −0.137, 2.798
Firth 1.302 0.6616 0.005, 2.598

Constant MLE 1.097 1.5599 −1.961, 4.154
CMLE * * *
Firth 0.808 1.4820 −2.096, 3.712



missing data 395

and expected frequencies in the 2 × g table. One should examine the diagnostic
statistics using the plots discussed in Chapter 5. Models can then be refit, deleting
suspect cases. We leave assessing the adequacy of the model in Table 10.11 as an
exercise.

In summary we feel that exact methods for logistic regression should be con-
sidered when one is fitting a model with a small sample size or unbalanced data
that result in zero frequency cells. In settings where computations are an issue we
recommend using the Firth modified likelihood approach.

10.4 MISSING DATA

We have used data sets in all our examples with no missing observations. In
practice, missing data is likely and can impact the analysis. In this section, we aim
to provide a brief introduction to methods of handling missing data that are readily
available in standard software packages, such as SAS and STATA. We focus on
missing values in covariates rather than the outcome or response variable. Missing
data in the response is most prevalent in longitudinal studies, and references dealing
with longitudinal data analysis [e.g., Molenberghs and Verbeke (2005)] discuss how
to handle this problem. Here we illustrate the basic issues and assumptions using
the methods available in SAS and STATA using a modified version of the GLOW
data set described in Section 1.6.3. Specialized software packages are also available
[e.g., see Horton and Lipsitz (2001)].

A great deal of work involving missing data, and in particular the method known
as multiple imputation, has been done, for example, in Rubin (1976, 1987), Little
and Rubin (2002), and Schafer (1997). Introductory presentations are available in
Allison (2001), Schafer (1999), and Schafer and Graham (2002). References on
the topic and an overview of methods found in software packages are available in
Harle and Zhou (2007). The method of multiple imputation that we describe, as
implemented in STATA, is discussed in more detail in Raghunathan et al. (2001)
and Royston (2004, 2005a, 2005b, 2009). White et al. (2011) provide practical
advice for using the method and may be a good place to start for those interested
in learning more.

The framework for missing data established by Rubin (1976) is commonly
used to describe methods for handling missing data and required assumptions.
The strongest assumption about the missing data within this framework is that it is
Missing Completely at Random (MCAR). Under the MCAR assumption, the prob-
ability of a missing value does not depend on the response or on any of the other
observed data. Thus, the estimator for the probability that the value is missing is

Pr(M = 1) = nmis

n
,

where M is the variable denoting whether the observation is missing and is zero if
the observation is not missing and one if it is missing and nmis is the number of
missing values out of the n possible values of the covariate.
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MCAR is not a realistic assumption in most instances. A less stringent assump-
tion is that the probability of a missing value depends on the observed values of
the response and covariates. Data that satisfies this assumption is known as Missing
at Random (MAR) and the probability of a missing value is determined through a
model for

Pr(M = 1|Xobs, Yobs, θ),

where Xobs and Yobs are the observed values of covariate and response respectively
and θ is a vector of parameters for the missing data model. Missing data is known
as ignorable if it is MAR and the parameters for the missing data model and the
model for the response are independent.

The method of multiple imputation described in this section assumes the data
is MAR and treats the models for the missing data and response as ignorable. The
MAR assumption is that missing values do not depend on unobserved values of
the covariates. If this assumption does not hold the data is Not Missing at Random
(NMAR). Thus, the model for the missing data is based upon both observed and
unobserved missing values or

Pr(M = 1|Xmis, Ymis, Xobs, Yobs, θ).

Under NMAR more information about the distribution of the missing values is
required in order to use multiple imputation.

Multiple imputation involves three steps: (i) the imputation step, (ii) the analysis
of the completed data sets, and (iii) pooling the results from the analysis of the
multiple data sets. The imputation step requires specifying a model to predict
values for the missing data (assuming MAR) to obtain a “complete” data set. The
process is repeated m times. Each of the m complete data sets is analyzed using
the data model, in our case a logistic regression model. Finally, the results of
the m analyses are combined to produce summary estimates of model parameters
and standard errors for inference. The strength of multiple imputation is that it
improves efficiency in inference over using only complete cases while accounting
for the uncertainty due to the imputed data.

If data are missing from just one covariate, both SAS and STATA support models
for the missing data that depend on the scale of the covariate. For example, if the
missing data are from a dichotomous covariate the model is a logistic regression
model, while for continuous covariates the model is a linear regression. SAS and
STATA perform the imputations in a slightly different way when data are missing
from more than one covariate. In SAS, unless the missing data are monotone,
which we discuss in the example, the only option is to assume a multivariate
normal (MVN) distribution for the missing data [Schafer (1997)]. As a result, all
covariates are treated as continuous. The MVN distribution is usually difficult to
specify so the actual imputed values are the result of using a Markov Chain Monte
Carlo (MCMC) simulation to sample from the MVN distribution under the MAR
model. We discuss MCMC in more detail in Section 10.6 within the context of
Bayesian logistic regression. The issues discussed in that section about burn-in,
convergence, and length of the simulation hold in this setting and both SAS and
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STATA include options to check and adjust the MCMC that correspond to those
outlined in Section 10.6. Multiple imputation can be approached from the Bayesian
perspective with the missing data modeled using the “posterior” distribution given
the observed values, see Gelman et al. (2004) for details.

In STATA, multivariate missing data are handled using Imputation Chain
equations (ICE) or imputation using fully conditional specifications (FCS) [see van
Buuren et al. (2006)]. This is also referred to as sequential regression multivariate
imputation (SRMI) [see Raghunathan et al. (2001)]. The idea of ICE is to
iteratively produce the imputed values in a univariable model for each covariate,
conditional on the others. The advantage of the approach is that each univariable
model can then be of a form appropriate to the type of data for that covariate.
This iterative algorithm compares to the Gibbs sampler discussed in Section 10.6.
Unlike the Gibbs sampler, however, the univariable conditional distributions are
not formed from a fully specified joint distribution. This is the disadvantage of
ICE in that the selected conditional distributions may not be compatible with the
joint distribution [see Arnold et al. (2001)]. Lee and Carlin (2010) compare the
ICE method to using the MVN distribution.

Once the m complete data sets are created, each is analyzed using the logistic
regression model and the final step is to then combine the results of the m fitted
models. The rules proposed by Rubin (1987) are used by SAS and STATA to
combine the results. If we denote the estimator for a particular logistic regression
coefficient from the fit to the m data sets as β̂i , i = 1, 2, . . . , m and the estimator of
its variance as V̂ i , i = 1, 2, . . . , m, then the combined multiple imputation estimate
of the coefficient is

β = 1

m

m∑
i=1

β̂i (10.15)

and the estimate of the variance of β is

T = V +
(

1 + 1

m

)
B, (10.16)

where

V = 1

m

m∑
i=1

V̂ i

and

B = 1

m − 1

m∑
i=1

(β̂i − β)2.

Inferences are based on a t distribution with degrees of freedom

ν = (m − 1) ×
[

1 + V(
1 + 1

m

)
B

]2

.
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Both SAS and STATA perform the calculations in equations (10.15) and (10.16)
and display the results in the familiar tabular form used for logistic regression.

To illustrate multiple imputation we modified the GLOW500 data by randomly
deleting 20% of the values for age, weight, height, mother had a hip fracture
(MOMFRAC), self-reported risk of fracture (RATERISK), and history of prior
fracture (PRIORFRAC). The replacement of observed with missing values was
done separately for each covariate leading to a data set with only 128 complete
cases designated as GLOW500_MISSING. We then performed five imputations
of the missing data using the chained regression equation approach of STATA
and MCMC in SAS. We discuss the choice of five imputations at the end of the
section. The assumptions made in the multiple imputation process are more likely
valid when as many covariates as possible are included in the missing data model
(i.e., covariates with and without missing values as well as the response) so we
used all available covariates as well as the response variable in the model producing
the imputed values. We list the hypothetical newly observed missing data for three
subjects in Table 10.12. The missing data are denoted by “•”. The imputed values
are shown from both software packages. We note that the imputed values for the
continuous covariates age, weight and height differ between the two packages.
Note that the goal of multiple imputation is not to best predict the true missing
values but rather to produce values from their distribution to improve efficiency
in performing inference when analyzing the data. Since the procedure in SAS
assumes covariates are continuous, imputed values for the dichotomous variables
MOMFRAC and PRIORFRAC lie between user specified values of a and b, usually
set to a = 0 and b = 1 as in this example, while the values in STATA are exactly
0 or 1. Similarly, the categorical covariate RATERISK results in continuous values
rather than ordinal. SAS does have the ability to fit binary and categorical data
in multivariate data sets but only if the pattern of missing values is monotone.
A missing data pattern in Table 10.12 would be monotone if a missing value of
age implies weight is missing, and if weight is missing then height is as well, and
if height is missing then mother fracture is missing, and when mother fracture is
missing the rate risk is as well and finally, a missing rate risk means missing prior
fracture. Since such a pattern does not exist in the example data regardless of the
order the covariates are listed we do not have monotone missing data.

We next fit a logistic regression model to the imputed data sets produced by SAS
and STATA with results shown in the bottom two panels of Table 10.13. The results
from fitting a model to the original data set, n = 500, are shown in the top panel
and from fitting the model to the complete cases, n = 128, in the second panel.
In order to produce comparable models, in SAS we imputed a single continuous
value of self-reported risk and then rounded the nearest possible category, for
example, 1.32 rounds to 1 and 1.67 to 2. The rounded values were then used
to create the two design variables. An alternative approach would be to create
the design variables first and impute the missing values for each of them. The
imputed values that are originally continuous are rounded to form dichotomous
variables. In this case care should be taken to ensure both design variables are not
set to one. Rounding of binary or categorical covariates in multiple imputation is
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Table 10.12 Three Subjects with Missing Data (Obs) and the Five Imputations from
SAS and STATA

Mother Rate Prior
Package ID Age Weight Height fracture risk fracture

Obs 51 • 65.8 157 0 • 0

1 51 63.04 65.8 157 0 2 0
2 51 61.73 65.8 157 0 1 0

STATA 3 51 75.88 65.8 157 0 3 0
4 51 69.68 65.8 157 0 2 0
5 51 55.57 65.8 157 0 2 0

1 51 56.51 65.8 157 0 1.95 0
2 51 47.25 65.8 157 0 1.55 0

SAS 3 51 56.71 65.8 157 0 2.99 0
4 51 59.04 65.8 157 0 1.65 0
5 51 56.84 65.8 157 0 1.90 0

Obs 109 70 110.7 168 • • •

1 109 70 110.7 168 0 1 0
2 109 70 110.7 168 0 1 0

STATA 3 109 70 110.7 168 0 3 1
4 109 70 110.7 168 0 1 0
5 109 70 110.7 168 0 2 1

1 109 70 110.7 168 0.45 2.45 0.30
2 109 70 110.7 168 0.06 2.42 0.62

SAS 3 109 70 110.7 168 0.32 1.61 0.60
4 109 70 110.7 168 0.25 1.41 0.69
5 109 70 110.7 168 0.17 2.31 0.74

Obs 262 • • 160 • 2 1

1 262 72.40 70.10 160 0 2 1
2 262 72.56 77.12 160 0 2 1

STATA 3 262 69.20 85.14 160 0 2 1
4 262 89.52 25.26 160 1 2 1
5 262 73.83 52.98 160 0 2 1

1 262 70.08 69.31 160 0.23 2 1
2 262 64.48 57.07 160 0.20 2 1

SAS 3 262 60.55 55.79 160 0.003 2 1
4 262 81.18 79.98 160 0.40 2 1
5 262 71.87 63.19 160 0.27 2 1

suggested by Schafer (1997) and Ake (2005). This presents no problem when the
covariate is dichotomous but is so when the covariate has more than two levels
and design variables are required. Horton et al. (2003) and Allison (2005) suggest
that this could lead to biased results in some settings and recommend treating such
covariates as continuous in analyzing the SAS imputed data.
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The result of the model fit to the complete cases illustrates the loss of efficiency
as indicated by its larger standard errors compared to the analysis of the imputed
data sets. The statistical significance is less for all covariates and none are significant
in the complete case analysis. The models fit to the imputed data sets from SAS
and STATA produce similar results. However, the standard errors are reduced and
age, history of prior fracture and self-reported risk are correctly determined to be
statistically significant.

As the results of multiple imputations analysis may depend on the number of
imputations we repeated the analysis in Table 10.13 using 10, 20, and 50 imputa-
tions. The results were similar to those reported for five imputations. Rubin (1987)
reported that little additional efficiency is gained beyond five or ten imputations

Table 10.13 Results of Fitting the Logistic Regression Model to the Complete Data
(n = 500), the Complete Cases in the Modified Data (n = 128), and the Imputed Data
from SAS and STATA

Coeff. Std. Err. z/t p 95% CI

COMPLETE
DATA,
n = 500

AGE 0.046 0.013 3.45 0.001 0.020, 0.072
WEIGHT 0.011 0.007 1.51 0.131 −0.003, 0.026
HEIGHT −0.048 0.019 −2.50 0.012 −0.085, –0.010
MOMFRAC 0.639 0.307 2.08 0.038 0.036, 1.241
PRIORFRAC 0.660 0.245 2.69 0.007 0.179, 1.140
RATERISK = 2 0.454 0.278 1.63 0.103 −0.092, 0.999
RATERISK = 3 0.832 0.292 2.84 0.004 0.258, 1.405

COMPLETE
CASE,
n = 128

AGE 0.045 0.028 1.63 0.104 −0.009, 0.100
WEIGHT 0.020 0.014 1.38 0.168 −0.008, 0.048
HEIGHT −0.073 0.047 −1.55 0.120 −0.164, 0.019
MOMFRAC 0.465 0.603 0.77 0.441 −0.716, 1.646
PRIORFRAC 0.229 0.501 0.46 0.648 −0.753, 1.211
RATERISK = 2 0.526 0.562 0.94 0.349 −0.575, 1.627
RATERISK = 3 0.499 0.610 0.82 0.413 −0.696, 1.694

STATA MI
DATA,
n = 500

AGE 0.041 0.015 2.68 0.009 0.010, 0.072
WEIGHT 0.010 0.008 1.25 0.214 −0.006, 0.026
HEIGHT −0.036 0.023 −1.52 0.138 −0.083, 0.012
MOMFRAC 0.617 0.391 1.58 0.125 −0.183, 1.418
PRIORFRAC 0.740 0.258 2.86 0.004 0.232, 1.248
RATERISK = 2 0.458 0.308 1.49 0.139 −0.151, 1.068
RATERISK = 3 0.668 0.307 2.18 0.030 0.065, 1.271

SAS MI DATA,
n = 500

AGE 0.041 0.017 2.43 0.022 0.007, 0.076
WEIGHT 0.012 0.008 1.50 0.135 −0.004, 0.027
HEIGHT −0.046 0.024 −1.94 0.061 −0.094, 0.002
MOMFRAC 0.711 0.360 1.97 0.051 −0.002, 1.423
PRIORFRAC 0.809 0.276 2.93 0.004 0.267, 1.351
RATERISK = 2 0.407 0.289 1.40 0.160 −0.161, 0.974
RATERISK = 3 0.768 0.329 2.33 0.022 0.115, 1.421
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even in data with up to 50% missing cases. In our example, we had a much higher
rate, 74.4%, of cases with missing data and still achieved reasonable results with
only five imputations. However, Royston (2004) suggests an upper bound of 50%
on the amount of missing data when using multiple imputation.

Aspects of model building also become more complex when using multiple
imputation. Features of the model used to analyze the data, such as covariates and
their interactions or transformations, should be included in the model used to create
the imputed data sets or bias in estimates is possible. Unfortunately, some of these
features, such as interactions and transformations, only become apparent during the
model building process after including the imputed values. Imputing values after
the model building process could lead to bias as well, as the modeling would then
include only complete cases. Wood et al. (2008) discuss model building and offer
practical suggestions. One possibility they describe is to perform variable selection
using a data set combining all m imputed data sets and weighting observations
based on the number of missing values for that covariate.

Other aspects of analysis discussed in earlier chapters are also applicable to the
multiple imputation data, although sometimes there are additional considerations.
Predictions, for example, are possible by averaging over the imputed data sets.
One method of producing these predicted values would be to first obtain π̂ij for
observation i in imputed data set j and then average these values over the m

imputed data sets. Alternatively, White et al. (2011) recommend producing an
estimate of the linear predictor for each observation in the imputed data sets and
averaging these values before applying the inverse logit to produce an estimated
probability. Model checking is still important and the approaches described in
Chapter 5 are applicable. White et al. (2011) recommend performing the assessment
of fit on each of the m imputed data sets individually. Issues noted only in a few of
the imputed data sets may indicate issues with the imputation model, while those
observed across most of the m data sets suggest problems in the model selected to
analyze the data. There are other options to assess fit, such as using the averaged
values, making this an area requiring further research.

In conclusion, we have illustrated that application of methods for multiple impu-
tation of missing data in covariates can produce more efficient estimates of model
parameters. We recommend using multiple imputation when a moderate amount of
data are missing and assumptions about the randomness of the missing values are
met. As always, one should pay close attention to issues in model building and, in
the imputation setting, those corresponding to the combination of imputation and
model building.

10.5 SAMPLE SIZE ISSUES WHEN FITTING LOGISTIC REGRESSION
MODELS

In our experience there are two sample size questions, prospective and retrospec-
tive. The prospective question is: How many subjects do I need to observe to
have specified power to detect that the new treatment is significantly better than
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the old or a placebo treatment? The retrospective question is: Do I have enough
data to fit this model? There has been surprisingly little work on sample size for
logistic regression. The available methods to address sample size selection have
been implemented in just a few specialty software packages. The key element in
determining whether one has adequate data to fit a particular model involves the
number of events per covariate. Research by Peduzzi et al. (1996) and Vittinghof
and McCulloch (2006) provides some guidance. In this section we consider methods
for choosing a sample size first and then discuss the issue of events per covariate.

The basic sample size question is as follows: What sample size does one need to
test the null hypothesis that a particular slope coefficient is equal to zero (without
loss of generality we assume it is the first of p covariates in the model) versus the
alternative that it is equal to some specified value, that is, Ho : β1 = 0 versus Ha :
β1 = β∗

1 . If the logistic regression model is to contain only this single dichotomous
covariate, then one may use conventional sample size methods to test for the
equality of two proportions [see Agresti (2002) or Fleiss et al. (2003)]. Alternatively
one may use results in Whitemore (1981) and refinements in Hsieh (1989), Hsieh
et al. (1998), Sheih (2001), and Demidenko (2007) for a logistic regression model
containing a single dichotomous covariate. The difference in the two approaches
is that the former is based on the sampling distribution of the difference in two
proportions and the latter on the sampling distribution of the log of the odds ratio.

We illustrate the two approaches using the data from the GLOW study described
in Section 1.6.3. Suppose that we consider these data as being either pilot data or
data from an earlier study to help determine what sample size would be needed
in a new study to test for a 50% increase in the odds of fracture among women
whose mothers have had a fracture. In terms of the logistic regression model the
null and alternative hypotheses are Ho : β1 = ln(1) = 0 versus Ha : β1 = ln(1.5).
To determine the sample size with either approach we need an estimate of the
probability of fracture among women with no family history, P0 = Pr(Y = 1 | x =
0). Cross-classifying the outcome variable (FRACTURE) by mother’s history of
fracture (MOMFRAC) shows that 23.2% of women whose mother did not have
fracture had one during follow up. We round this to 20% for ease of calculation
and use this as our response probability. The fracture probability yielding an odds
ratio of 1.5 is

P1 = Pr(Y = 1 | x = 1) = 1.5 × 0.20

(1 − 0.20) + 1.5 × 0.20
= 0.2728.

Thus, stated in terms of proportions the null and alternative hypotheses are Ho :
P0 = P1 = 0.20 and Ha : P0 = 0.1, P1 = 0.2728.

Suppose that we plan to use an equal number of women in the two MOMFRAC
groups. The sample size needed in each group for a one-sided test at the α level
of significance of Ho : P0 = P1 and power 1 − θ for the alternative Ha : P0 < P1
is given by the equation

n =

(
z1−α

√
2P

(
1 − P

) + z1−θ

√
P0(1 − P0) + P1(1 − P1)

)2

(P1 − P0)
2

, (10.17)
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where P = (P0 + P1)/2 and z1−α and z1−θ denote the upper α and θ% points
respectively of the standard normal distribution. We use a one-sided test here for
better comparability with the results in Whitemore (1981). For a two-sided test one
would replace z1−α with z1−α/2 in equation (10.17).

Thus, the number we would need in our two treatment groups for a 5% level
test to have power 80% is

n =
(

1.645
√

2 × 0.2364 × 0.7636 + 0.842
√

0.20 × 0.80 + 0.2728 × 0.7272
)2

(0.2728 − 0.20)2

= 420.3,

or 421 women in each group for a total sample size of approximately 842 women.
Whitemore (1981) approaches the sample size problem via the sampling distribu-

tion of the Wald statistic for the estimate of the logistic regression coefficient. For a
univariable logistic regression model containing a single dichotomous covariate, x,
coded 0 or 1 the total sample size needed to test Ho : β1 = 0 versus Ha : β1 = β∗

1 is

n = (1 + 2P0) ×

(
z1−α

√
1

1 − π
+ 1

π
+ z1−θ

√
1

1 − π
+ 1

πeβ∗
1

)2

P0β
∗2
1

, (10.18)

where π = P(X = 0) denotes the fraction of subjects in the study expected to
have x = 0. In our example we want the sample size for an odds ratio of 1.5 or
β∗

1 = ln(1.5) and we plan to use equal numbers of women in the two groups. Thus,
the value of equation (10.18) with π = 0.5 is

n = (1 + 2 × 0.120) ×

(
1.645

√
1

0.5
+ 1

0.5
+ 0.842

√
1

0.5
+ 1

0.5e[ln(1.5)]

)2

0.11 × [ln(1.5)]2

= 1.4 × (1.645 × 2 + 0.842
√

2 + 2 × 0.6667)2

0.10 × 0.1644
= 992.2.

This suggests that, rounding up to be divisible by 2, we would need approximately
994 subjects or 497 in each group, which is 76 more subjects per group than the
sample size given by equation (10.17). The difference in the two sample sizes stems
from a number of assumptions made by Whitemore to obtain equation (10.18). This
equation is derived under the assumption that the logistic probabilities are small.
The lead term in equation (10.18) is proposed as a way to adjust the sample size
when this is not the case. To our knowledge no research has been published that
compares the results from equations (10.17) and (10.18) in a systematic manner.
Our recommendation for univariable models is that one should use equation (10.17)
as it relies on fewer assumptions than equation (10.18).
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Suppose that instead of an equal number of women in the two mothers’ history
groups we decided to use numbers that better reflect the proportions observed in
the pilot study of 13% with mothers who had a fracture and 87% who did not.
Suppose that we round to 15% and 85%, respectively. The ratio of the two sample
sizes would be r = (0.85/0.15) = 5.667. Fleiss et al. (2003) show that the number
in the exposed or women whose mothers did have a fracture is

n1 =
(
z1−α

√
(r + 1) P (1 − P) + z1−θ

√
r × P0(1 − P0) + P1(1 − P1)

)2

r × (P1 − P0)
2

(10.19)

and the number in the unexposed group (or women whose mothers did not have
a fracture) is n0 = r × n1. Under the same null and alternative hypotheses we
find, using equation (10.19), that n1 = 253 and n0 = 1434, for a total sample size
of 1687. This is more than double the sample size needed for equal numbers in
the two groups. One reason to choose the latter allocation is a setting where the
investigators know that they are not going to be able to obtain the additional 168
exposed women needed for an equal allocation. Hsieh et al. (1998) show, in their
Appendix I, a modification of equation (10.18) that handles an unequal allocation
of subjects to two groups.

If the single covariate we plan to include in the model is continuous and modeled
as linear in the logit, then we use results for this setting derived by Whitemore
(1981) and refined by Hsieh (1989) and Hsieh et al. (1998). These results are based
on the assumption that the covariate is standardized to have mean 0 and standard
deviation 1.0. Thus, the logistic regression coefficient is the change in the log-odds
of a one standard deviation increment in the unstandardized covariate. The sample
size needed for a one-sided test, at the α level of significance and power 1 − θ , of
Ho : β1 = 0 versus Ha : β1 = β∗

1 is given by the equation

n = (1 + 2P0δ) × (z1−α + z1−θ e
−0.25β∗2

1 )2

P0β
∗2
1

, (10.20)

where

δ = 1 + (1 + β∗2
1 )e1.25β∗2

1

1 + e−0.25β∗2
1

(10.21)

and P0 is the value of the logistic probability evaluated at the mean of the stan-
dardized covariates, that is,

P0 = eβ0

1 + eβ0
. (10.22)

Again, one replaces z1−α with z1−α/2 in equation (10.20) if one is going to use a
two-sided test.

As an example, suppose that we consider the covariate age in the GLOW study
and ignore all of the other covariates. In these data the mean age of the subjects
is approximately 68.5 years with a standard deviation of 9 years. We would like
to determine the sample size we would need in order to be able to detect that the
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effect of a one standard deviation increase in age is a 50% increase in the odds of
remaining drug free (i.e., β∗

1 = ln(1.5)). To obtain an estimate of P0 in equation
(10.22) we fit a univariable logistic regression model containing the standardized
covariate AGES = (AGE − 68.5)/9. The estimate of the intercept term is β̂0 =
−1.1561 (results not shown) and equation (10.22) becomes

P0 = e−1.1561

1 + e−1.1561
= 0.239,

which, for ease of calculations, we round to 0.24.
The value of equation (10.21) in this example is

δ = 1 + (1 + [ln(1.5)]2)e1.25[ln(1.5)]2

1 + e−0.25[ln(1.5)]2 = 1.24

and the sample size from equation (10.20)

n = (1 + 2 × 0.24 × 1.24) × (1.645 + 0.842e−0.25[ln(1.5)]2
)2

0.24[ln(1.5)]2

= 243.3.

This result suggests that, if the true effect of age is to increase the odds of fracture
for every nine year increase in age by 50%, then we need a total 244 subjects in
our study. This same result may also be obtained from Table II in Hsieh (1989) or
from the PASS 11.0 (2012) software package.

However, it is rare in practice to have final inferences based on a univariable
logistic regression model. Hsieh (1989) and Hsieh et al. (1998) show that a simple
and useful multivariable model adaptation of equation (10.20) simply inflates the
univariable sample size by the inverse of the squared multiple correlation, ρ2, of
the covariate of interest, x1, with the remaining p − 1 covariates in the model,
yielding

n = (1 + 2P0δ)

(1 − ρ2)
× (z1−α + z1−θ e

−0.25β∗2
1 )2

P0β
∗2
1

. (10.23)

This is the equation used by the PASS 11.0 package.
As a first multivariable example we consider the sample size needed to test for an

age effect of ln(1.5) per 9-year increase in age, where we include the other covari-
ates in the fitted model shown in Table 4.9: HEIGHT, PRIORFRAC, MOMFRAC,
ARMASSIST, and RATERISK3. In this example we consider treatment to be just
another potential confounder of the age effect. The results of fitting a logistic regres-
sion model to the GLOW data with age standardized as, AGES = (AGE − 68.5)/9
and height standardized as HEIGHTS = (HEIGHT − 161.4)/6.36 are shown in
Table 10.14.

Based on the results in Table 10.14 the estimated probability of remaining drug
free with all covariates equal to zero is

P0 = e−1.795

1 + e−1.795
= 0.1425.
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Table 10.14 Results of Fitting a Logistic Regression Model to the GLOW Data

Variable Coeff. Std. Err. z p

AGES 0.299 0.1165 2.56 0.010
HEIGHTS −0.295 0.1153 −2.55 0.011
PRIORFRAC 0.664 0.2452 2.71 0.007
MOMFRAC 0.664 0.3056 2.17 0.030
ARMASSIST 0.473 0.2313 2.04 0.041
RATERISK3 0.458 0.2381 1.92 0.054
Constant −1.795 0.1800 −9.98 0.000

In this case, a woman with all covariates equal to zero corresponds to one who is
68.5 years old, is 161.4 cm tall, has not had a prior fracture, has a mother who did
not have a fracture, does not need arm assistance when rising from a chair, and
does not consider herself to be of much greater risk of fracture than other women
of her age.

Suppose that we perform our test at the α = 0.05 level and would like power 1 −
θ = 0.8. Using a multiple linear regression package with AGES as the dependent
variable and the remaining variables as covariates yields R2 = 0.1664. The value of
equation (10.21) is the same as that determined for the univariable model, δ = 1.24,
and the sample size from equation (10.23) is

n = (1 + 2 × 0.1435 × 1.24)

(1 − 0.1664)
× (1.645 + 0.842 × e−0.25[ln(1.5)]2

)2

0.1435 × [ln(1.5)]2
= 166.9.

Thus, the application of the modification of the Whitemore formula suggests that
only about 167 subjects are needed to have 80% power to test for the stated effect
of age. We note that if the average fitted logistic probability is approximately equal
to P0 = 0.1435 then we would expect to have only 24 “events” or subjects who
have a fracture during follow up. We comment on the importance of this number
shortly.

As a second multivariable example we consider sample size for a study where
mother having had a fracture is the main covariate of interest. What sample size
is necessary to have 80% power to detect a treatment coefficient ln(1.5) when
we adjust for the other covariates shown in Table 10.14? Application of Hsieh’s
correction factor for multiple covariates to equation (10.18) yields sample size

n = (1 + 2P0)

1 − ρ2
×

(
z1−α

√
1

1−π
+ 1

π
+ z1−θ

√
1

1−π
+ 1

πe
β∗

1

)2

P0β
∗2
1

. (10.24)

In this example, since the covariate of interest is dichotomous, we suggest using
one of the R2 measures discussed in Chapter 5. One possibility is the squared
correlation between the values of the dichotomous covariate and fitted values from
a logistic regression of this covariate on all other variables in the model (i.e.,
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the value of equation (5.12). In our example this yields ρ2 = (0.1370)2 = 0.0188.
Thus, the multivariable adjusted sample size from equation (10.24) is

n = (1 + 2 × 0.1435)

(1 − 0.0188)
×

(
1.645

√
1

0.5
+ 1

0.5
+ 0.842

√
1

0.5
+ 1

0.5e[ln(1.5)]

)2

0.1436 × [ln(1.5)]2

= 1.312 × (1.645 × 2 + 0.842
√

2 + 2 × 0.6667)2

0.1435 × 0.1644
= 1295.9.

This suggests that, rounding up to be divisible by 2, a total sample size of about
1296, or 648 per treatment group would be required.

There are a number of potential problems with the sample size formula in
equation (10.24). One is the ad-hoc use of the Hsieh’s correction factor to account
for multiple covariates. A second problem involves the earlier noted discrepancy
in sample sizes suggested by equations (10.17) and (10.18). We think that the
sample size suggested by equation (10.24) may be unnecessarily large but could
be the starting point for a more in-depth sample size analysis using pilot data to
do some model fitting. For example, one way to assess the precision obtained from
modeling with a sample of 1296 subjects is to construct a pseudo-study as follows:
expand the original 500 subjects by threefold to obtain 1500 subjects and then take
an 86.4% random sample. We would then fit the proposed multivariable logistic
regression model and examine the estimated coefficient for mother’s fracture, its
estimated standard error, Wald statistic and p-value. These results can be used
to provide guidance as to how significant the results might be in the new, larger
study. Ideally we would repeat the sampling portion of this process a number
of times to obtain approximate sampling distributions of the estimated quantities.
If, in the end, we think the estimated standard error is unnecessarily small with
confidence intervals that are too narrow then we would repeat the process using a
smaller sample size. This could be repeated until we had empirical evidence that
the sample size provides about the desired precision in the multivariable model.

A second consideration, and one relevant to any model being fit, is the issue of
events per covariate. Peduzzi et al. (1996) examine the issue of how many events
per covariate are needed to obtain reliable estimates of regression coefficients when
fitting a logistic regression model. Peduzzi et al. consider single term main effects
models. In order to extend their ideas to more complex models that may have
multiple terms for a number of covariates, we prefer to use the terminology events
per parameter. In general the relevant quantity is the frequency of the least frequent
outcome, m = min(n1, n0). In our experience this is usually the number of subjects
with the event present, y = 1, but it could just as well be the number with the event
absent, y = 0. Peduzzi et al. show that a minimum of 10 events per parameter are
needed to avoid problems of over estimated and under estimated variances and thus
poor coverage of Wald-based confidence intervals and Wald tests of coefficients.
Thus, the simplest answer to the “do I have enough data” question is to suggest that
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the model contain no more than p + 1 ≤ min(n1, n0)/10 parameters. Vittinghof
and McCulloch (2006) examined the question with more extensive simulations
than those used by Peduzzit et al. and conclude that in many applications the
aforementioned “rule of 10” may be too conservative. Vittinghof and McCulloch’s
simulations showed that with 5–9 events per parameter the coverage of confidence
intervals was, in general, acceptable and that bias only contributed about 10% to
mean squared error. They caution that with as few as 5–9 events per parameter
one must be careful when interpreting the results from fitted models.

For example, in the GLOW study we have 125 = min(125, 375) events. The
rule of 10 suggests that models should contain no more than 12–13 parameters.
The model fit in Table 10.14 using the GLOW data contains 6 parameters. Note
that with the sample size of 167 when the goal is to test the coefficient for age
we expect about 24 events. In this case the rule of 10 suggests that models should
contain no more than 2–3 parameters. Using a more liberal rule of five events
would suggest that a model with 4–5 parameters might be able to be fit.

As is the case with any overly simple solution to a complex problem, the rule of
10 (or 5–9) should only be used as a guideline and a final determination must con-
sider the context of the total problem. This includes the actual number of events,
the total sample size and most importantly the mix of discrete, continuous and
interaction terms in the model. Peduzzi et al. considered only discrete covariates
and provide no information about the bivariate distributions of outcome by continu-
ous covariates. However, Vittinghof and McCulloch (2006) consider multivariable
models containing both dichotomous and continuous covariates. We think that the
ten events per parameter rule may be a good conservative working strategy for
models with continuous covariates and discrete covariates with a balanced distri-
bution over its categories. However, we are less certain about its applicability in
settings where the distribution of discrete covariates is weighted heavily to one
value, as often is the case in practice. Here one may require that the minimum
observed frequency be, say, 10 in the contingency table of outcome by covariate.

In summary, having an adequate sample size is just as important when fitting
logistic regression models as any other regression model. However, the performance
of model-based estimates may be determined more by the number of events rather
than the total sample size.

10.6 BAYESIAN METHODS FOR LOGISTIC REGRESSION

Bayesian methods are increasingly used for statistical analysis including logistic
regression. Improvements in computational methods and capabilities have made
these methods viable in practice, and allow estimation of model parameters in set-
tings where other approaches fail, such as some of the more complicated random
effects models described in Chapter 9. As we show in this section, the Bayesian
method is easily adapted to the hierarchical type cluster-specific models for corre-
lated data but this is not its only appeal. Gelman et al. (2004), Greenland (2007) and
Congdon (2010) among others articulate the advantages of Bayesian approaches
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and we highlight a few here. Bayesian models take advantage of the knowledge
gained from observations that are related in some way such as those belonging
to the same group. The framework also allows comparison of models that are not
nested, leading to the possibility of improvements in model selection. The inter-
pretation of the parameters in Bayesian models is often viewed as more natural.
Further, the methods provide an estimated density for the parameters so that there
is no need to assume a distribution in order to perform inference or produce inter-
val estimates. Finally, and perhaps the primary feature that distinguishes Bayesian
methods from standard approaches, is that they allow the analyst to incorporate
additional knowledge, not explicitly contained in the data set, into the model. This
last feature has tremendous appeal in many situations, such as cases where sample
size is small, but it also sparks debate due to the potential for subjective choices
that could impact conclusions. We discuss the issue in more detail in the example
to follow.

Use of Bayesian methods typically requires specialized software or that the user
write their own program to perform the estimation. SAS recently added the ability to
fit these models for logistic regression using PROC GENMOD or PROC MCMC.
In this section we primarily utilized the software package BUGS, or Bayesian
inference Using Gibbs Sampling [Gilks et al. (1994)], a product available for
download in its most current version as OpenBUGS [Lunn et al. (2009)]. BUGS
can be run from R and user contributed packages such as BRugs [Thomas (2004)]
can be installed to provide an interface between the programs. Another package,
similar to BUGS, is JAGS, or Just Another Gibbs Sampler [Plummer (2003)],
designed to interface with R through the package rjags [Plummer (2012)] that has
advantages of portability to more computing platforms.

The goal of this section is to introduce the Bayesian logistic regression model
using a simple example. We cover some of the most salient features so that basic
models can be fit and utilized. The material in the section provides a foundation for
further study for those interested in more advanced topics involving Bayesian logis-
tic regression. Many textbooks on Bayesian data analysis cover regression models
and a few include logistic regression examples. Congdon (2003, 2006, 2010) and
Gelman et al. (2004) offer an applied approach. The most comprehensive cov-
erage of binary data is provided in Congdon (2005). Kruschke (2011) presents
material at a level accessible to those new to Bayesian analysis and includes com-
puter code for fitting models using BUGS and R. Ntzoufras (2009) is another text
focused on methods using BUGS. Gelman and Hill (2007) and Albert (2009) are
more advanced texts, but include code and examples. A review article by Agresti
and Hitchcock (2005) includes a section on logistic regression with references for
further reading. Kass et al. (1998) provides practical advice on many issues asso-
ciated with use of the Markov Chain Monte Carlo (MCMC) methods discussed in
the section.

The remainder of the section is organized into three parts. In Section 10.6.1 we
describe the basic model and introduce the notion of a prior distribution. Section
10.6.2 is devoted to the most popular computational method used with Bayesian
models known as Markov Chain Monte Carlo (MCMC) simulations. In addition to
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an overview of the basic algorithm we discuss some of the issues one must consider
when using MCMC to ensure the simulation has run properly. This section may
be skimmed on a first read. In the final Section 10.6.3 we present example results
from a Bayesian logistic regression model using MCMC simulations. We discuss
the difference in interpreting the results of such a model highlighting some of the
advantages the Bayesian methods provide in this area. We also briefly discuss a
few of the tools available for comparing models and performing diagnostics.

10.6.1 The Bayesian Logistic Regression Model

The basic Bayesian model differs from standard logistic regression by assuming
the model parameters are random variables. As an example, we write the logit
for the standard logistic regression model with a single predictor as

g(xi , β) = β0 + β1xi . (10.25)

The Bayesian version of the model would assume a distribution for the two model
parameters. A common choice [Gelman et al. (2004)] is the normal distribution in
which case one might assume

β0 ∼ N(μ0, σ
2

0) (10.26)

and
β1 ∼ N(μ1, σ

2
1). (10.27)

The distribution chosen for the parameters is called the “prior” distribution and
we discuss it in detail shortly. The word “prior” reflects the fact that distribution is
formulated before analyzing the data observed in the study. Prior distributions are
typically defined using the “tolerance” or “precision” parameters τ0 and τ1 instead
of the variance. The reason for this specification is that tolerance is inversely
related to the variance, as τi = 1/σ 2

i , i = 0, 1. Thus, if the prior variance is large
the tolerance is small. The interpretation is that the prior distribution in such a
case is not “precise” in terms of specifying possible values of the parameter before
the data are analyzed. Conversely, small variances lead to large tolerances and are
highly precise in prior estimates for parameter values.

We would like to determine the distribution of the parameters based on the study
data or the conditional distribution of the parameters given the binary observations
denoted

f (β0, β1|y). (10.28)

In equation (10.28) the vertical line denotes a conditional distribution and the
statement is read the distribution of Beta0 and Beta1 as in (10.28) “given” the
observed binary data. Recall that we can write an expression for the likelihood of
the data given the parameters as

f (y|β0, β1) =
n∏

i=1

π(xi)
yi [1 − π(xi)

yi ]1−yi . (10.29)
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Note that the conditioning in the expressions of equations (10.28) and (10.29) are
reversed. Bayes’ Theorem allows us to relate such conditional distribution expres-
sions. In particular, the distribution of the parameters given the data is known as
the “posterior” distribution, as it is computed after the observed data are considered
and is given by

f (β0, β1|y) = f (β0, β1)f (y|β0, β1)

f (y)
. (10.30)

The numerator in this expression is the joint density of the data and parameters.
The denominator in this expression is the distribution of the observed data and is
computed by integrating the joint density over all possible parameter values, in
essence summing all the probability for the data using the expression

f (y) =
∫∫

f (β0, β1)f (y|β0, β1)dβ0dβ1.

In essence, the “posterior” distribution represents an “updating” of beliefs about
the distribution of the parameters used to form the “prior” distribution based
on the observed data. Unfortunately the expression in equation (10.30), and particu-
larly the integral in the denominator, is computationally difficult to evaluate. Several
approaches have been proposed and utilized. One is to use numerical methods and
approximate the integral involved with a sum. This method becomes infeasible for
large data sets. A second approach is to use an asymptotic approximation for the
posterior distribution, such as the normal distribution. Methodology and computa-
tional power have made simulation methods possible to essentially sample from the
posterior distribution rather than find the exact distribution with results closer to the
true distribution than the asymptotic approximation. This approach is called Markov
Chain Monte Carlo (MCMC) and we focus on these methods for the remainder of
the section.

10.6.2 MCMC Simulation

MCMC methods select a sequence of values from the posterior distribution such
that each depends only on the previous value. The dependence on only the previous
value gives rise to a Markov Chain [Ross (1995)], a “random walk” around the
posterior distribution of the parameters. Since the result is a sample over possible
parameter values, the denominator of equation (10.30) is ignored as it merely acts
as a normalizing constant to ensure the posterior probability totals one. The most
general form of MCMC used in practice is the Metropolis Algorithm [first described
in Metropolis and Ulam (1949) and Metropolis et al. (1953)]. This algorithm is
described in the following steps:

1. Pick starting values for the parameters and set them as the current values,
βcurrent.

2. Use the current parameter values to compute the unstandardized posterior
density f (βcurrent|y) using the numerator of equation (10.30).
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3. Use a “proposal distribution” based on the current parameter values to gen-
erate new proposed parameter values βproposed. As an example, the proposal
distribution might be a normal distribution centered on the current parameter
values.

4. Use the proposed parameter values to compute the unstandardized posterior
density f (βproposed|y) using the numerator of equation (10.30).

5. Compute the “probability of moving” as pmove = min
[

f (βproposed|y)

f (βcurrent|y)
, 1

]
.

6. Generate a random value between 0 and 1, u = U(0, 1).

7. “Move” to the proposed parameter values if u < pmove, otherwise maintain
the current values. In other words the next simulated values are the proposed
value if we “move”. If we do not move, the next simulated parameter values
are the same as the previous iteration.

8. Repeat steps 2–7.

As a simple example of an iteration of the algorithm, suppose that the unstandard-
ized posterior density for the current parameters is 2 and for the proposed param-
eters it is 4. This means that the posterior probability is higher for the proposed
parameters. The probability of moving in step 5 is then pmove = min(4/2, 1) =
min(2, 1) = 1. Thus, we replace the current values with the proposed values in
step 7 since the probability of moving is 1 and any random value between 0 and 1
is less than this probability. Alternatively, suppose that the posterior density value
for the current parameters is 4 and for the proposed parameters it is only 2. In
this case, the probability of moving is pmove = min(2/4, 1) = min(0.5, 1) = 0.5.
In this case we are equally likely to move to the new parameters or just remain at
the current values. The reason we may move even though the current values have
higher probability is that we want to explore the entire distribution of possible val-
ues of the parameters and not just a few. The algorithm would become “stuck” in
certain higher probability portions of the distribution if the probability of moving
in a situation like the second example were zero.

We discuss some of the issues with using MCMC algorithms in an example, but
note here that there are some important considerations in examining the simulation
output to ensure the algorithm runs with reasonable efficiency. The starting values
should be selected so that there is non-zero posterior probability or it may take
a large number of iterations just to reach parameter values that are part of the
distribution. The choice of the “proposal distribution” is also important. A common
choice is the multivariate normal distribution centered on current parameter values.
If the variance or spread of the proposal distribution is large it may take a long time
to move as the proposed values may be far from the current values and therefore
extreme, or low probability, values of the posterior distribution. Alternatively if the
proposal distribution is narrow relative to the posterior distribution it may take a
long time to “explore” the entire posterior distribution as new parameter values are
close to the current values. Fortunately, methods to choose appropriate proposal
distributions have been developed and are automated in software packages [Gilks
et al. (1995)].
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Variations of the Metropolis algorithm are implemented in MCMC software
packages. In the basic algorithm, the proposal distribution is symmetric so that it
is equally likely to move 1 unit left or right from a current value. The implication
of this is that the probability of returning to the previous value is the same as
it was to move to the current value. The Metroplis–Hastings (M–H) algorithm
[Hastings (1970)] uses a proposal distribution that is not symmetric. This may
improve efficiency in the number of simulation iterations required by allowing
the proposal distribution to more closely reflect the target posterior distribution
[Gelman et al. (2004)] but requires a modification to the probability of moving:

pmove,M-H = min

[
f (βproposed |y)

f (βcurrent|y)

f (βcurrent|βproposed)

f (βproposed|βcurrent)
, 1

]
.

The additional term in this expression is the odds of moving to or from the proposed
value added to incorporate the lack of symmetry of the proposal distribution. For
more details about the M–H algorithm see Chib and Greenberg (1995).

The Gibbs Sampler [Geman and Geman (1984)] is a special case of the general
Metropolis algorithm that is often more efficient and avoids the need to “tune”
the proposal distribution. Rather, the proposal distribution is simply chosen as the
conditional distribution of one, or a group, of parameter values given the current
values of the other parameters. Once a sample is taken from the conditional pro-
posal distribution of the parameter(s) they are updated to the new values and the
next parameter or group of parameters is sampled in a similar fashion. When all
parameters in the model are updated a single step of the algorithm is complete. As
an example, in a model with an intercept and one slope parameter, the algorithm
would first select a new intercept value from the conditional distribution of the
intercept given the current slope parameter. Then, the new slope value would be
chosen from the conditional distribution of the slope given the intercept. Note that
this algorithm always uses the proposed values, or always moves. The Gibbs Sam-
pler requires computation of the conditional distributions of parameters, which may
not always be computationally efficient. However, often these conditional distribu-
tions are simpler to compute than the conditional distribution for all parameters.
There is also the potential for the algorithm to take a great deal of time if the
parameters are highly correlated. Gelfand et al. (1990) and Gelfand and Smith
(1990) first extended the method for use in Bayesian data analysis settings. For a
more general discussion of the method see Casella and George (1992).

Software packages such as BUGS, JAGS and SAS include variations and modifi-
cations of the basic methods described here to improve efficiency of the algorithms.
One example is adaptive rejection sampling [Gilks and Wild (1992)]. Details and
additional references are found in the more advanced texts such as Gelman et al.
(2004). For the Bayesian logistic regression model when computational complexity
leads to issues with MCMC, Albert and Chib (1993) describe an approach using
“augmenting” variables in order to approximate the logistic regression model using
a normal or t distribution, which may make computation feasible.

MCMC methods may be useful for models other than those arising from
Bayesian approaches. As mentioned in Chapter 9, complicated random effects
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models for correlated data are often estimated using MCMC algorithms.
The random effects models closely resemble the Bayesian model with prior
distributions for the parameters. In a fully Bayesian implementation, the
parameters of the random effects would themselves have a prior distribution (with
“hyperparameters”). We do not demonstrate this more complicated model in this
section. Gelman and Hill (2007) consider models from this perspective.

We illustrate aspects of Bayesian logistic regression models using the GLOW500
data set used in Chapter 4 and described in Table 1.7. Initially we include a single
predictor, the continuous covariate weight (kg) at enrollment, in order to focus on
the key issues with Bayesian models. Thus, the model fit is described in equation
(10.25) and we use the normal prior distributions for the parameters as defined
in equations (10.26) and (10.27). Initially we use a prior mean of zero and set
the precision parameters to small values so that τ0 = τ1 = 0.00001. Assuming a
prior mean of zero suggests that we do not have any knowledge about the rela-
tionship between the weight and probability of a fracture. Recall that the precision
is inversely related to the variance so the small values mean we are assuming a
prior distribution with a large variance, σ 2 = 100,000. This means we are quite
uncertain about the true values of the parameters and the prior distribution reflects
this and is said to be “diffuse” and “non-informative”.

The first important aspect of fitting the model using MCMC methods involves
checks of performance of the algorithm itself. The MCMC method randomly sam-
ples from the posterior distribution of the parameters. There are, however, three
primary concerns with the resulting sequence of values. All of the concerns play
a role in answering the basic question of how many iterations of the simulation
should be run. The first concern is that if the algorithm does not start with values
in the posterior distribution then early simulations may produce values not repre-
sentative of the true parameter values. The second concern is that the samples in
consecutive iterations are related so that the algorithm may result in many values
taken from one region of the posterior distribution thus producing results that do
not reflect the true probabilities of different values. The third concern is that the
algorithm converges to the posterior distribution and, if so, when convergence is
achieved how many values should be produced after that. We address each of the
concerns in turn.

The first concern about the early values not representing the true posterior dis-
tribution is reduced if the starting values are reasonable. One approach is to first fit
the model using standard logistic regression and use the parameter estimates as the
initial values. Software packages often do this automatically. An additional strategy
is to include a “burn in” period of iterations that are discarded. Gelman et al. (2004)
conservatively recommend discarding half of the iterations. The actual number of
total iterations depends upon tests of convergence that are discussed shortly. Since
the computation time increases with the number of runs, Gelman et al. (2004)
recommend beginning with a small number of runs such as 200 and then increas-
ing as needed. SAS, JAGS, and BUGS all include options to declare the number
of burn-in iterations for exclusion. The trace plot is a simple graphical tool that
can help with several of the MCMC concerns. The trace plot shows the sampled
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Figure 10.1 Trace plot of 800 MCMC iterations of the slope parameter for WEIGHT.

values for a given parameter by iteration. An example for the slope parameter in
our single parameter model is shown in Figure 10.1. In this example, there were
800 iterations run with the first 400 iterations discarded as the burn-in. The plot
shows all 800 simulated values. Using a burn-in of 400 values appears adequate
as the simulated values appear to reach the posterior distribution before iteration
200 after which the samples fluctuate randomly within a band of values roughly
between 0 and −0.03. Notice that for the first 100 to 150 iterations the graph does
not have the tendency to fluctuate randomly, a sign that the early values are not
representative of the posterior distribution.

The second concern involves the relationship between consecutive iterations
leading to the MCMC algorithm spending too much time in small regions of the
posterior distribution. This is known as clumping, a condition caused by high auto-
correlation between sampled values, and is sometimes observable in the trace plot.
In Figure 10.1 we have little evidence of this issue, but do see a few places where
the amount of change in sample values is less over consecutive iterations. The plot
should demonstrate a random fluctuation within the region of sampled values. When
the trace plot does not clearly confirm or dismiss the concern that autocorrelation
is a problem, another plot that may be useful is the autocorrelation function (ACF).
The ACF for the slope parameter in our model is shown in Figure 10.2. Correla-
tions are plotted by their “lag”. “Lag 0” is the correlation of sampled parameter
values to themselves and is therefore always equal to one. As an example, “Lag
20” is the correlation of all sampled values that are 20 iterations apart. A non-zero
lag correlation equal to one means that the sampled parameter values at the given
lag are identical. The ideal ACF quickly drops to low values near zero. In our
example the correlation does drop and is below 0.1 for all lags except one and
two. The autocorrelation is a particular concern if it drops slowly as lag increases
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Figure 10.2 Plot of the autocorrelation function (ACF) for the slope parameter for WEIGHT.

[Albert (2009)]. Note that even with high ACF the MCMC sample could represent
the posterior distribution but likely requires a much longer sequence to achieve
convergence. When high autocorrelation is present, an option is “thinning” the
simulated values. Thinning uses only 1 in every k simulated values to ensure a
sample that is reasonably independent. As an example, if the ACF function did not
drop below 0.1 until after lag twenty we might thin by keeping one in every twenty
values. Note that this would mean that we would need 8000 samples after burn-in
to produce a sample of 400 values. The higher the correlation at higher lags the
more thinning is required. In our example, the autocorrelation does not appear to
be an issue so we do not thin the samples.

The third concern is that the MCMC simulation has not completely converged to
the posterior distribution, or that the samples are drawn too often or too little from
specific areas of the distribution. The trace plot, again, is a useful tool for initially
checking the convergence. If we see a trend in the sampled values, such as a steady
increase in the values, the simulation has not converged. In our example, the values
appear to center on about the same value but we noted some possible “clumping”
that may indicate the simulation has not effectively converged or sampled from the
entire posterior distribution. Burn-in and thinning may mitigate convergence issues.
An additional tool is to produce multiple chains starting at different initial values of
simulated samples. Kass et al. (1998) recommend choosing starting values using the
mean and standard deviation of the prior distribution. For three chains, they suggest
the mean of the prior distribution and then 1 standard deviation above and below
that mean. Software packages allow the user to input initial values themselves
or use default settings that attempt to choose reasonably different values while
ensuring the chains start within the posterior distribution. Trace plots of all the
chains can then indicate if convergence to the posterior distribution occurred as the
simulated values should merge or “mix”. Each chain should center on the same
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Figure 10.3 Plot of the three chains for the slope parameter for WEIGHT.

value with similar random fluctuations around that value. A plot of three chains
for our example, with starting values randomly selected by the BUGS software, is
shown in Figure 10.3. Since the three chains produce similar trace plots we have
some evidence that the chains have converged.

In addition to graphical checks a number of diagnostic statistics have been devel-
oped to help assess convergence of MCMC chains. Many are included in software
packages such as SAS and in BUGS or JAGS with R using the “CODA” pack-
age written by Plummer et al. (2006). One statistic is the Brooks–Gelman–Rubin
(BGR) statistic [Brooks and Gelman (1998); Gelman and Rubin (1992)]. The BGR
statistic is based on the ratio of two sources of variability when multiple chains
are run. One source is variability of the observations within each chain, and the
other is the variability between the chains. If the chains converged on the posterior
distribution, then the variability between the chains should be small relative to the
variation within each chain. Suppose that we run j = 1, . . . , m chains, each with
i = 1, . . . , n sampled values denoted θij . The variance of the parameter values in
a single chain j is given by

s2
j = 1

n − 1

n∑
i=1

(θij − θ ·j )
2

where θ ·j is the average of the parameter values in chain j . The within chain
variability, W , is defined as the average of the variances for the chains run or

W = 1

m

m∑
j=1

s2
j . (10.31)



418 special topics

The between chain variability, B, is defined as

B = 1

m − 1

m∑
i=1

n(θ ·j − θ ··)
2, (10.32)

where θ ·· is the average of all sampled values from all chains. The quantity in
equation (10.32) then compares the average from each chain to the overall average
parameter value. The estimated marginal posterior variance of the parameter is a
weighted average of these two variances defined as

V̂θ = n − 1

n
W + 1

n
B (10.33)

and the BGR statistic is then given by

R̂ =
√

V̂θ

W
. (10.34)

If the chains converge to the same posterior distribution, the between variabil-
ity in equation (10.33) is small relative to the within variability and R̂ in equation
(10.34) should be close to one. If the chains have not “mixed”, the between variabil-
ity is larger and R̂ is greater than one. A rule of thumb [Gelman et al. (2004)] is that
R̂ values above 1.1 are evidence that the chains have not converged. For the three
chains from the example shown in Figure 10.3 the BGR statistic is below 1.10 by
the ninth iteration confirming the graphical evidence that the chains have “mixed”.

Other diagnostic measures are available in some software packages. Spiegelhal-
ter et al. (2002) propose the “effective” sample size computed as

neff = nm
V̂θ

B
. (10.35)

For poorly mixed chains, the between chain variability is higher than the estimated
posterior variability and the quantity in equation (10.35) is smaller than the total
number of samples obtained from the MCMC simulation. Gelman and Hill (2007)
propose a conservative effective sample size of 100 as the minimum to conclude
that sufficient MCMC samples have been obtained. In our example using three
chains the effective sample size is 714.8. The number of samples is sufficient
although we did effectively lose nearly 500 due to the correlation at lags 1 and 2.

The Monte Carlo Standard Error (MCSE) is also reported in software packages.
The MCSE is, in essence, the standard error of the mean of the posterior sampled
values adjusted for the correlation in the Markov chain sampled values. The MCSE
is computed by multiplying the variance of the sampled values by the inverse of
the effective sample size to account for the correlation. A rule of thumb is that the
MCSE should be less than 5% of the standard deviation of the estimated parameter.
We demonstrate this statistic in the example to follow.

Geweke (1992) proposed statistics for checking convergence of each chain. If
the chain has converged on the posterior distribution, the mean of the first runs
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after burn-in should be similar to the mean of the final runs. The Geweke test then
compares the means of the first a runs to the final b runs with a typical choice of
the number of runs being the first 10% and final 50%. If convergence is achieved,
the Geweke statistic computed using the averages and variances of the two sets
of runs,

ZG = θa − θb√
Va + Vb

, (10.36)

follows a standard normal distribution. A two-tailed hypothesis test at the 5% sig-
nificance level rejects the null hypothesis of convergence for values of the statistic
larger than 1.96 in absolute value. In our example the Geweke statistics from
equation (10.36) for the three chains are −1.048, 0.435 and −0.792. All three
statistics are below the 1.96 threshold so we fail to reject the hypothesis that the
chains failed to converge.

Additional diagnostic statistics are proposed and may be available in software
packages. Examples include the Heidelberger–Welch [Heidelberger and Welch
(1981), (1983)] stationarity test of the sampled values and Raftery–Lewis [Raftery
and Lewis (1992), (1996)] tests of the precision of posterior percentiles. In addi-
tion to thinning and burn-in, standardizing the explanatory variables is a common
practice when fitting Bayesian models with MCMC methods that may improve
efficiency and result in convergence with fewer simulations. An additional con-
sideration is the precision of the prior distribution. Choosing a low precision,
non-informative, prior as we did leads to less efficient MCMC simulation. We
discuss the choice of prior distributions later in the section.

After examining convergence diagnostics and plots we conclude the MCMC
samples appear to converge on the posterior distribution using a burn-in of 400
samples and 400 additional samples. We did note moderate correlation at lags 1
and 2 and a corresponding loss of effective samples and so choose to thin by
selecting one of every three sampled values. Running this new MCMC with three
chains reduces the ACF at all lags to below 0.1. The output is not shown and left
as an exercise. We next turn our attention to an example of performing a Bayesian
analysis.

10.6.3 An Example of a Bayesian Analysis and Its Interpretation

In the standard logistic model, we obtain estimates of the parameters in the model,
their standard errors and form confidence intervals and test the null hypothesis that
the true parameter is equal to zero. In the model for GLOW500 data using only
WEIGHT the standard model output is displayed in Table 10.15.

The Bayesian analysis using MCMC is a sample from the posterior distribution
of the parameters given the observed data and choice of prior. Using the three
chains with 400 observations each after burn-in described in the previous section
we thus have 1200 observations from the distribution of each parameter. A plot of
the distribution for the slope parameter based on the 1200 observations is shown in
Figure 10.4. The distribution looks normal, as was our assumed prior distribution.
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Table 10.15 Output from Fit of the Standard Logistic Regression Model with
WEIGHT as Predictor

Coeff. Std. Err. z p 95% CI

WEIGHT −0.0136 0.0069 −1.957 0.0503 −0.0272, 0.0000
Constant −0.1377 0.4961 −0.277 0.7814 −1.1100, 40.8346
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Figure 10.4 Histogram of the posterior distribution of the slope parameter for WEIGHT.

We see that most of the values from the simulation were less than zero, and the
most common values were close to the value of −0.0136, shown as a dashed line
in the figure, obtained from the standard logistic model.

We can also compute the summary statistics for the sampled values from the
posterior distribution. A set of such statistics that are often of interest is shown in
Table 10.16 for both the slope and intercept parameters. Focusing on the parameter
values for the WEIGHT predictor, we see that the mean and median are close
to the value of the parameter estimate in the standard logistic regression model.
Further, the standard deviation from the posterior distribution sample is similar
to the standard error for the standard logistic parameter estimate. The reason for
the similarity is that we used a non-informative prior. The posterior distribution
essentially takes a weighted average of the prior and likelihood. With little pre-
cision for the prior distribution, greater weight is given to the likelihood. If the
MCMC converges and enough samples are obtained the summary statistics from
the posterior distribution should be similar to the maximum likelihood estimates
from standard logistic regression when using such a prior distribution. We discuss
the role of the prior choice in more detail later. Additionally, note that while the
summary statistics are similar there are differences in interpretation of the Bayesian
results that we discuss shortly.
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Table 10.16 Summary Statistics from Posterior Distributions of Intercept and Slope
from 1200 MCMC Samples

Mean Std. Dev. MCSE 2.5% Median 97.5%

WEIGHT −0.0141 0.0070 0.0003 −0.0276 −0.0140 −0.0013
Intercept −0.1125 0.4964 0.0210 −1.0440 −0.1222 0.8951

Additional information presented in Table 10.16 includes the MCSE discussed
earlier. The estimated standard deviation of the slope parameter based on the sim-
ulated posterior distribution, shown in Table 10.16 is 0.0070 and the estimated
MCSE is 0.0003. The ratio of the two is 0.0003/0.007 = 0.043, or 4.3%, which is
less than the 5% rule of thumb suggesting the error due to simulation is not large
enough to warrant concern. The 2.5 and 97.5 percentiles are also shown meaning
that 95% of the sampled values fall in the interval between the resulting values, an
interval known as an equal-tailed credible interval. In the case of the slope parame-
ter, 95% of the sampled values are between −0.0276 and −0.0013. This interval is
similar to a confidence interval from standard logistic regression models but has a
slightly different and perhaps more intuitive interpretation. In the standard logistic
regression case the 95% confidence interval for the WEIGHT parameter is from
−0.0272 to 0. The interpretation is that if we repeated the data collection numerous
times we would expect the interval we construct to contain the true parameter value
95% of the time. Thus, we say, we believe the true parameter falls in the interval
with 95% confidence. The Bayesian credible interval is more directly interpreted
as the probability of the values in the interval, given the observed data, totaling
95%. An additional advantage of the credible interval is that we have the sample
from the posterior distribution for the parameter so the interval need not be con-
structed so that it is symmetric around the parameter estimate. An alternative to
the equal tailed credible interval often used is the Highest Density Interval (HDI)
sometimes referred to as the Highest Posterior Density (HPD) interval. To form the
HDI we select the 95% of parameter values with the highest posterior probability.
Computer software produces the interval automatically. In our example, the HDI
is −0.0276 and −0.0013. This is similar to the equal-tailed credible interval but
shifted slightly to the left to account for the skew in the posterior distribution. The
posterior distribution shown in Figure 10.4 is close to normal but with a slightly
higher probability for lower values than higher in the tails. The histogram of the
posterior distribution in Figure 10.5 illustrates the slight shift of the HDI to the left
due to higher probability of smaller values. The HDI is depicted in the figure with
a heavy bold line.

The HDI and credible intervals are useful in assessing the significance of the
predictor in the same manner as a confidence interval. Since both intervals include
only negative values the probability that the parameter for WEIGHT is positive
is less than 5% and the results suggest that the increase in weight decreases the
probability of a fracture. In standard models we also perform a test of the null
hypothesis that the true parameter value is zero. A small p-value rejects the null
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Figure 10.5 Histogram of the posterior distribution of the slope parameter for WEIGHT showing the
HDI interval in bold on the axis.

hypothesis meaning the probability of observing the estimated slope parameter if
the true slope was zero is small. In a Bayesian analysis, we use the posterior
distribution to directly compute probabilities of parameter values. For example, we
can compute the probability that the parameter is not negative. Using 3 chains of
400 sampled values we have 1200 observations from the posterior distribution of
the parameter. Of these, 17 values are not negative. Thus, the probability is:

Pr(β1 ≥ 0|y) = 17

1200
= 0.0142.

Note that in the traditional hypothesis test we typically use the alternative hypoth-
esis that the parameter is not equal to zero. In the Bayesian approach we compute
a posterior probability that is more like a one-sided test since we do not formulate
the problem in terms of the alternative hypothesis.

An advantage of the Bayesian approach is that it allows us to compute prob-
abilities for outcomes of clinical interest directly from the posterior distribution.
As an example, suppose that a clinician considers decreases of 5% or more in the
odds of fracture relevant. The probability of such a decrease in odds for a 5-kg
gain in weight would be of interest. The exponentiated coefficient represents the
odds ratio for a 1-kg increase in weight. We are interested then in the probability
statement:

Pr(e5β1 < 0.95).

To answer this question we compute exp(5β1) for each of the 1200 sampled param-
eter values and count the number of times the resulting value is less than 0.95. Of
our 1200 sampled values 837, or 69.8%, produce odds ratios below 0.95 for a 5-kg
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increase in weight. Thus, the probability that the odds of a fracture in the first year
decrease by more than 5% for a 5-kg increase in weight is 0.698.

We next turn our attention to the choice of prior distribution. In our example,
we chose a non-informative or “improper” normal prior distribution for the param-
eters. The tolerance was set to a small value so that the variance of the prior
distribution was large. The large variance led to what is known as a “diffuse”
prior distribution placing essentially equal and small probability on all possible
values of the parameters. Such a choice would be appropriate if we had no knowl-
edge about the parameter prior to the modeling effort. As mentioned previously,
increasing the precision of the prior distribution may help improve convergence
of the MCMC simulations. Further, the prior distribution provides an opportunity
to utilize existing knowledge and potentially improve the quality of the model. In
situations where a small sample is obtained this advantage is particularly attractive
as the prior distribution acts as a mechanism to “add data” from other studies and
effectively increase the sample size.

Recall that we used a mean of zero and tolerance of τ0 = τ1 = 0.00001 for the
prior distribution in our example. Recognizing that weight is protective of fractures,
we prefer a prior distribution in which the possibility of positive slope parameters
is removed. To do so we first need to select a mean that is less than zero. The
small tolerance we used corresponds to a variance of slightly more than 100,000
and a standard deviation of 316.2. The slope parameter represents the change in
log-odds for a 1-kg change in weight. Thus, a coefficient of negative 10 would
correspond to an odds ratio for a 1-kg decrease in weight of exp(10) = 22, 026.5,
a completely unrealistic value. The slope parameter value is likely to be smaller in
absolute value. A prior distribution with probabilities only between 0 and negative
two would thus appear more realistic. A normal distribution with mean −1 and
standard deviation 0.5 places approximately 95% of the probability in that range.
The standard deviation of 0.5 corresponds to a tolerance given by

τ1 = 1

0.52
= 4.

The tolerance is the key to how much weight the prior information is given
relative to the observed data. To illustrate the point, we refit the model using a
prior mean of negative one and changing the tolerance used for the slope parameter
prior distribution from 0.0001 to 4 and then to 10,000. The results are shown in
Table 10.17. In the first row, when the tolerance is 0.0001, the summary statistics
are identical to those from the MCMC simulation using a prior mean of zero
shown in Table 10.16. The small tolerance or precision gives no weight to the
prior mean and the result is based completely on the observed data. The second
row results from using a prior standard deviation of 0.5 meaning a variance of
0.25 and tolerance of 4. We see that there is essentially no impact of decreasing
the variance of the prior distribution to 0.25. The mean and median of the posterior
distribution are closer to the prior mean of negative one but only by a small amount.
We can safely use a prior with more precision than in the original example and
not impart any undue knowledge while potentially improving the efficiency of the
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Table 10.17 Summary Statistics from Posterior Distributions of the Slope Parameter
for MCMC Samples with Prior Mean Negative One and Different Prior Tolerances

Prior Tolerance Mean Std. Dev. MCSE 2.5% Median 97.5%

τ1 = 0.00001 −0.0141 0.0070 0.0003 −0.0276 −0.0140 −0.0013
τ1 = 4 −0.0143 0.0070 0.0003 −0.0279 −0.0142 −0.0015
τ1 = 10,000 −0.8147 0.0086 0.0004 −0.8297 −0.8156 −0.7967

MCMC algorithm. The final row results from a run with prior standard deviation
of 0.01. The mean, median, and percentiles are all now closer to the prior mean of
negative one so the prior is weighted more heavily than the observed data.

In changing the prior distributions to create Table 10.17 we were interested
in choosing a more precise prior without placing too much weight on the prior
mean over the data at hand, as the prior mean was chosen arbitrarily. There may
be instances where we wish to take advantage of knowledge about a predictor,
perhaps from previous studies, and essentially include that previous knowledge
with current study data. As an example, suppose that a previous study found weight
to be a strong predictor of fracture with an estimated coefficient of −0.02 for
weight and standard deviation of the parameter of 0.01. We wish to include the
information from the previous study in our results. We incorporate the parameter
estimate from the previous study as the mean of the prior distribution, assuming
β1 ∼ N(−0.02, τ1). The choice of the tolerance parameter could be based on the
standard deviation of the parameter estimate from the previous study of 0.01,
which corresponds to a variance of 0.0001 and tolerance of 10,000. For comparison
and discussion to follow, we also used tolerance values of 1,000 and 100 and
display the summaries of the posterior distribution in Table 10.18. The impact
of choice of prior tolerance is clear in Table 10.18. With higher precision the
mean and standard deviation of the posterior distribution are closer to the prior
distribution.

The dependence on the prior choice as shown Tables 10.17 and 10.18 is one
criticism of Bayesian methods. Simply put, changing the prior distribution led to
substantial changes in results of the analysis. The posterior distribution is essen-
tially a weighted average of the likelihood based on the current data and the prior
distribution. In our example, using only the information from the current data set,
or only the likelihood, the mean of the posterior distribution of the slope parameter

Table 10.18 Summary Statistics from Posterior Distributions of the Slope Parameter
for MCMC Samples from Three Different Prior Distributions Based on Prior Study
Results

Prior Mean Std. Dev. MCSE 2.5% Median 97.5%

τ1 ∼ N(−0.02, 10,000) −0.0158 0.0057 0.0002 −0.0271 −0.0158 −0.0053
τ1 ∼ N(−0.02, 1,000) −0.0142 0.0069 0.0002 −0.0276 −0.0142 −0.0019
τ1 ∼ N(−0.02, 100) −0.0141 0.0070 0.0003 −0.0276 −0.0140 −0.0014
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is −0.014 and the estimate from the previous study used in the prior is −0.02.
When we placed high precision with tolerance 10,000 on the prior distribution,
the posterior mean is shifted closer to the prior mean at −0.0158. Low precision,
or tolerance of 100, led to a posterior mean nearer to the likelihood-based esti-
mate at −0.014. The posterior mean is essentially a weighted average of the prior
mean and the likelihood estimate. The tolerance determines how much weight to
give the prior distribution mean relative to the observed data. The weighting is
related to the sample sizes, as the standard error of a mean is a function of the
sample size. Increasing the sample size reduces the standard error or increases
precision. Thus, when considering how much weight to place on the prior one
consideration is the size of the sample both for the current study and for previ-
ous studies upon which the prior is based. If the current sample is small and the
previous study large, we might weight the prior information more by using more
precision in the prior distribution. Congdon (2003) suggests moderately increasing
the standard error from previous studies to produce the prior tolerance in keeping
with the notion of Browne and Draper (2000) who refer to this approach as “gen-
tly data determined”. Kruschke (2011) similarly argues for a “mildly informative”
prior distribution. The choice of prior distribution should be clearly articulated and
defended when results are published. Further, performing sensitivity analysis to
determine the impact of the choice of prior tolerance is important. If the inferences
do not change for a range of prior tolerance choices it lends credibility to the
analysis. When changing the prior distribution impacts study conclusions reporting
the sensitivity analysis allows readers to see how. Further, the analyst can then
provide support for the prior distribution choice in the context of the sensitivity
analysis.

Including data from previous studies through the prior distribution, when appro-
priate, also illustrates an advantage of the Bayesian approach. In effect, the sample
size of the study increases, which can lead to improved precision of the results.
In our example from Table 10.18 the standard deviation of the sampled values
of the slope parameter is smaller when the precision of the prior increased. The
reduction in standard deviation occurs even when precision increases from 100 to
1,000 and the mean and median of the posterior distribution do not change much.
In situations where a small sample is collected adequate previous research to war-
rant a precise prior distribution on one or more of the parameters may improve
the analysis. In particular, one may use such priors on variables that are not of
primary interest allowing a model with more predictors than otherwise possible
[Kruschke (2011)].

Modeling within the Bayesian framework proceeds in similar fashion to the
standard logistic setting described in Chapter 4. However, the time to run MCMC
simulations and assessing the model output makes the process more difficult and
time consuming than the standard analysis. There are methods proposed to compare
Bayesian logistic regression models, including models that are not nested, useful
for model building and variable selection. Suppose that we have two competing
models, M1 and M2. The posterior probability of the two models given the data,
or Pr(M1|y) and Pr(M2|y) are used to compare the two choices. From equation
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(10.30) the posterior distribution for a given model M is given by:

Pr(M|y) = Pr(M) Pr(y|M)

Pr(y)
. (10.37)

Since the denominator in equation (10.37) is not a function of the model, but only
the data that are the same for both models, we form a ratio of posterior distributions
for the two models as

Pr(M2|y)

Pr(M1|y)
= Pr(M2) Pr(y|M2)

Pr(M1) Pr(y|M1)
= Pr(M2)

Pr(M1)
× Pr(y|M2)

Pr(y|M1)
. (10.38)

The final term in equation (10.38) is known as the Bayes factor (BF ) :

BF21 = Pr(y|M2)

Pr(y|M1)
. (10.39)

The BF is a ratio of conditional likelihoods often used in comparing Bayesian
models and, if the models are nested, is equivalent to the likelihood ratio test used
in standard logistic regression model comparison. Note that solving for the BF in
equation (10.38) yields

BF21 = Pr(y|M2)

Pr(y|M1)
= Pr(M2|y)

Pr(M1|y)
× Pr(M1)

Pr(M2)
. (10.40)

The second ratio in equation (10.40) is the prior probability for each of the two
models being compared. If the two are equally likely a priori, the BF is computed
as the ratio of the posterior probabilities of the two models. In logistic regression,
however, this is rarely the case as typical models differ in terms of number and
types of predictors. A rule of thumb for the BF is that if the log10(BF21) is greater
than 2 there is “decisive support” for M2 compared to M1. Values of log10(BF21)

between 0.5 and 2 suggest some support for M2 and values below 0.5 are deemed
inconclusive [Kass and Raftery (1995)].

Computing the BF is not simple in practice but a variety of approaches to approx-
imate the value from the output of MCMC methods have been proposed. George
and McCulloch (1993) describe Stochastic Search Variable Selection (SSVS), Green
(1995) the reversible jump method and Dellaportas et al. (2000, 2002) the Gibbs
Variable Selection (GVS) method. Carlin and Chib (1995), Chib (1995), Lewis
and Raftery (1997) and Kuo and Mallick (1998) also propose methods. Reviews
of some of the methods are available in Ntzoufras (2002), which includes com-
puter code for BUGS, and in Han and Carlin (2001). All methods require some
computer programming and many are either more complicated than the level of
this book or require the user to carefully consider assumptions such as choice
of “pseudo-priors” or “tuning parameters”. Thus, we present the simplest method
of Kuo and Mallick (1998) here as an example. The KM approach is not always
the most efficient but is easy to implement using BUGS.

The KM approach is to add indicator variables γj , that are either 0 or 1 depend-
ing upon whether the covariate is included in the model. As an example, suppose
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that we are interested in whether to add HEIGHT to our model with WEIGHT.
We could include two indicator variables in the model, one for each predictor,
producing an expression for the logit

g(xi , β, γ) = β0 + β1γ1x1i + β2γ2x2i . (10.41)

In this example, if an indicator variable is a 0 then the covariate is not included in
the model and if it is a 1 the covariate remains in the model. There are four possible
models. The first is when neither predictor is included and both indicator variables
are set to 0. The second includes both predictors with indicator variables both equal
to 1. The remaining two models include one or the other of the two predictors with
one indicator 0 and the other 1. The indicator variables are given Bernoulli prior
distributions with parameter p representing the probability the indicator is 1. In
our example setting p = 0.5 would mean the prior probability of the four models
was equally likely and the BF would then be computed using only the posterior
probability of the models using equation (10.40). The posterior distribution for
a given model involves determining the proportion of MCMC samples when the
indicator variables correspond to a given model. The KM method tends to be
inefficient meaning many MCMC runs are often required to ensure the simulation
has ample opportunity to “visit” the proposed models. An approach to ensure a
less likely model is sampled from is to set the prior probability of that model
higher than the others and use equation (10.40) to compute the BF. Additionally,
Kuo and Mallick (1998) recommend standardizing the covariates in the model by
subtracting the mean value and dividing by the standard deviation for each. They
also recommend prior variances between 0.25 and 16 for the coefficients of the
standardized predictors.

In data with many possible predictors one might not wish to consider all possible
model combinations. Subsets of all possible models are selected by using functions
of the indicator variables. For example, we consider three of the four possible
models involving HEIGHT and WEIGHT. M1 is the model with only WEIGHT,
M2 the model with only HEIGHT, and M3 the model including both predictors.
We set the probability, p1, of first indicator variable, for WEIGHT, to a function
of the second given by

p1 = (1 − γ2) + 0.5γ2.

If HEIGHT is not in the model γ2 = 0 and p1 = (1 − 0) + 0.5 · 0 = 1 so that
WEIGHT is included in the model corresponding to model M1. If HEIGHT is
included in the model γ2 = 1 and p1 = (1 − 1) + 0.5 × 1 = 0.5 so that there is
equal probability of models M2 or M3 depending upon whether the indicator for
WEIGHT is one. By setting the prior probability of the second indicator variable to
2/3, the three models are equally likely a priori. We standardized both covariates,
and chose normal prior distributions for the three coefficients in the model with
mean 0 and variance 16 as recommended by Kuo and Mallick (1998). The results
for 100,000 MCMC samples using BUGS with 500 burn-in runs are shown in
Table 10.19. The model with both covariates included was observed the least of
the three models and we used it as the base model for computing the BFs shown in
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Table 10.19 Results of Kuo and Mallick Model Selection Method Using
100,000 MCMC Runs

Model Prior probability Observed runs BF

M1: WEIGHT 1/3 50,340 13.717
M2: HEIGHT 1/3 45,990 12.531
M3: WEIGHT5 + HEIGHT 1/3 3,670 1.000

the final column of the table. An example of the computation of the BF comparing
M1 to M3 using equation (10.40) is

BF13 = Pr(y|M1)

Pr(y|M3)
= Pr(M1|y)

Pr(M3|y)

Pr(M3)

Pr(M1)
= 0.50340

0.03670

1/3

1/3
= 13.717.

To apply the rule of thumb we compute log10(13.717) = 1.137 meaning we have
modest support for the model with WEIGHT only compared to the model including
both predictors. In a standard logistic regression, the p-value for HEIGHT added
to a model containing WEIGHT is 0.16 so in both approaches we prefer the one
variable model.

Spiegelhalter et al. (2002) proposed the Deviance Information Criteria (DIC) for
Bayesian model comparisons. The DIC is produced by software packages such as
BUGS and SAS. The deviance is a function of the likelihood as in the BF defined:

D(y,M) = −2 log[p(y|M)]. (10.42)

Note that a lower deviance implies a higher likelihood. Using equation (10.42) and
defining θi as the values of the parameters at a given run of the MCMC runs, the
average deviance for all n MCMC simulation runs is

D = 1

n

n∑
i=1

D(y, θi ). (10.43)

The deviance for the average parameter values from the runs is then

D̂ = D(y, θi ). (10.44)

The DIC is the average deviance in equation (10.43) but penalized for the number
of parameters in the model, as adding parameters always decreases the deviance.
The DIC uses an estimate of the “effective number of parameters” defined as

pD = D − D̂ (10.45)

leading to the expression:
DIC = D + pD . (10.46)
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Table 10.20 DIC Results for Models of Table 10.19

Model D D̂ pD DIC

M1: WEIGHT 560.3 558.3 1.975 562.3
M2: HEIGHT 560.4 558.4 1.943 562.3
M3: WEIGHT5 + HEIGHT 559.3 556.4 2.916 562.2

A smaller DIC indicates a better model and a rule of thumb given by Spiegelhalter
et al. (2002) is that changes in DIC greater than 4 offer significant support for the
model with a smaller value.

The DIC and associated values for the three models of Table 10.19 considered
in the BF example are shown in Table 10.20. The conclusions from the DIC
values agree with those obtained from the BF. We see modest differences between
models with the WEIGHT model similar to the model with only HEIGHT. Adding
HEIGHT to the model with WEIGHT does not improve the DIC, suggesting the
single variable model is preferable. Notice that the effective sample size for the
model with only WEIGHT is close to 2, corresponding to the two parameters
actually in the model. For the model adding height, the value is 2.92 so that the
effective number of parameters in the model is not as close to the actual number
of parameters supporting the contention that adding HEIGHT to the model is not
preferred.

Model comparison and variable selection has received a great deal of attention
in Bayesian data analysis literature. More advanced users may wish to explore
additional approaches. One idea is to use a single prior distribution for a set of
coefficients. As an example, one might assume all predictors in the model have
parameters from the same normal prior distribution with mean zero [Kruschke
(2011) discusses this approach]. As most of the distribution is near zero the result
is that insignificant parameters have posterior sampled values that are small in abso-
lute value. A more conservative choice to avoid excluding potentially significant
variables from the model is to use a t distribution, as it has more probability in
the tails of the distribution. A second approach is model averaging [Hoeting et al.
(1999)] in which the BF values are weights used to average over the proposed
models.

Assessing the fit when using Bayesian techniques is just as important as it
was with standard logistic models. In addition to the sensitivity to choice of prior
distribution already discussed we are concerned with how well the final model fits
the observed data. Gelman et al. (2004) proposed “posterior predictive checking”
as a method of assessing fit. The posterior predicted values are simulated values
of the response using draws from the posterior distribution of the parameters for
given values of the predictors. As an example, we return to the model using only
WEIGHT and the MCMC simulation results shown in Table 10.16. We obtained
1200 simulated observations from the posterior distribution of the model intercept
and slope. For each of the 500 observed values in the data set we can simulate 1200
values of the binary response for the given value of WEIGHT. To illustrate, the
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first subject in the data set had a weight equal to 74.4. The first posterior sample
intercept is −0.1223 and the slope is −0.0138. For these values, the posterior
probability of a fracture is computed by first obtaining the estimated logit:

g(74.4) = −0.1223 − 0.0138 × 74.4 = −1.149

and then the probability

π(74.4) = e−1.149

1 + e−1.149
= 0.240.

The probability of 0.24 is then the parameter for a random Bernoulli distribution
used to generate a binary simulated value of whether a fracture occurred.

Once the posterior simulated values are obtained, they are compared to the
observed data. For example, for the first observation in the data set 287 of the
1200, or 23.9%, of simulated values using the posterior sample were fractures.
The observed value was not a fracture. We perform the computation for all 500
observations in the data set and plot the difference between the observed value of
the response and the proportion of simulated responses in Figure 10.6. In the figure,
the upper line of positive values is for responses of one and the other line is for those
without a fracture. A few observations differ from the simulated values obtained
from the model by more than the rest. The largest observed difference of 0.842 is
a subject with observed fracture with WEIGHT of 108.9 kg. The 1200 simulated
values from the posterior distribution produced only 190 fractures, or 15.8%, but
the subject did have a fracture in the first year. The result is not surprising as the
model suggests subjects who weigh more are less prone to fracture. This subject is
the third heaviest in the data set of those who did have a fracture. The simulated
values for the two heavier women with fractures are the next highest predicted
differences at 0.8367 and 0.829. The largest predicted difference for those without
a fracture is a subject weighing 46.7 kg, the sixth lightest in the data set. In this
case, simulations from the posterior distribution predict a fracture is more likely
than for other women in the data set but the subject did not have a fracture.

Posterior predictive checks can be used not just for individual observations but
also for groups. An example using categories of weight is shown in Table 10.21.
We form 10 groups from the subjects weighing the least to the most and compute
the observed proportion in each group with fractures compared to the simulated
posterior predicted values. While the general trend in the observed data is decreas-
ing fractures as weight increases for many deciles the proportion actually increases.
Thus, the model predictions are not as accurate as we would prefer in many deciles.
The results may indicate that other predictors need to be included in the model.

Bayesian residuals are closely related to posterior predictive checks. Chaloner
and Brant (1988) and Chaloner (1991) define residuals in Bayesian linear regression
and they are extended to binary models by Albert and Chib (1995) who describe
two versions of Bayesian residuals. One version is based upon a latent variable
formulation of the model and uses results of Gibbs sampling with augmenting
variables as outlined in Albert and Chib (1993). We focus on the second version
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Figure 10.6 Plot of differences between observed and posterior simulated probabilities of response.

Table 10.21 Posterior Simulated and Observed Proportion of Fractures by Decile of
Weight

Observed Simulated
Decile Subjects Y = 1 Proportion Proportion

WEIGHT5 < 54 47 14 0.298 0.311
54 ≤ WEIGHT < 58.1 57 15 0.263 0.288
58.1 ≤ WEIGHT < 61.2 34 11 0.324 0.275
61.2 ≤ WEIGHT < 65.8 59 19 0.322 0.269
65.8 ≤ WEIGHT < 69.4 49 10 0.204 0.258
69.4 ≤ WEIGHT < 72.6 56 15 0.268 0.247
72.6 ≤ WEIGHT < 77.1 53 13 0.245 0.234
77.1 ≤ WEIGHT < 83.18 45 8 0.178 0.225
83.18 ≤ WEIGHT < 91.65 50 9 0.180 0.204
91.65 ≤ WEIGHT 50 11 0.220 0.178

as it is readily computed using output of the basic MCMC runs we have used in
this section and is similar to residuals from standard logistic regression discussed
in Chapter 5. The residual is defined in terms of the probability of the response
computed as in the standard logistic setting. As an example, for a single predictor
the probability is

πi = eβ0+β1xi

1 + eβ0+β1xi
. (10.47)

The residual is then defined as

ri = yi − πi . (10.48)
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The residual is a function of the parameters and therefore has a distribution
based upon the posterior distributions of the parameters. Given a sample from the
posterior distributions we can produce a sample of the posterior distribution of the
residual for each observation in the data set by computing equation (10.48) for
all simulated values of the parameters. Key quantities of the posterior distribution,
such as percentiles including the median, can be computed and may help identify
outliers or unusual observations. Albert and Chib (1995) discuss several meth-
ods of identifying poorly fit subjects using the posterior residual distribution. We
demonstrate two of these for the example model using WEIGHT from Table 10.16.

Using the MCMC simulated values for the intercept and slope we produce
1200 residuals for each of the 500 subjects in the data set using equations (10.47)
and (10.48). We first graphically display the sampled posterior distributions of the
residuals for each subject using boxplots in Figure 10.7. The boxplots fall into
two lines depending upon the response value with the upper set corresponding
to subjects with fractures and the lower to those without fractures. For subjects
without an observed fracture, the largest residuals occur when the model predicted
probability of response is largest and poorly fit subjects are those with large portions
of the distribution near negative one. In this case, none of these distributions lie
near negative one, but there is one subject with a boxplot further from zero that is
a possible outlier. The subject has a model-based probability of a fracture equal to
0.34. The relatively higher probability is due to the subject being the lightest in the
data set among those without a fracture at 40.8 kg. As increasing weight decreases
the probability that a fracture occurs, this subject is not well modeled when weight
is the only predictor. The distributions of Bayesian residuals are further from zero
for subjects with fractures. There are three times as many subjects in the data
set without a fracture and with only a single predictor in the model none of the
subjects have average probabilities of fracture above 0.5. The subject with the
largest posterior residuals is the heaviest among subjects with a fracture at 113.4 kg.

Plots of the posterior distributions of residuals such as Figure 10.7 can help
identify outliers but the ability to differentiate between subjects even in modest
sized data may be difficult. One option is to look at percentiles, such as the median
or the 90th percentile, of the distributions for each subject. Albert and Chib (1995)
recommend an additional approach that takes full advantage of having a sample
from the entire distribution of the Bayesian residuals. When the response is one,
poorly fit subjects are those with low model-based probabilities leading to residual
values near one. Alternatively for response values of zero the poorly fit subjects are
those with high probabilities and corresponding residual values near negative one.
Thus, poor fit is reflected in a large portion of the posterior residual distribution near
one in absolute value. Identification of subjects with poor fit is accomplished by
computing the posterior probability of residuals exceeding a large absolute value.
Albert and Chib (1995) suggest 0.75 as a possible choice. Using this cutoff, we
compute the posterior probability of residuals exceeding this value for each subject
by determining the proportion of the 1200 Bayesian residuals larger than 0.75 in
absolute value. The ten subjects with the highest probability of a Bayesian residual
above 0.75 are shown in Table 10.22. The heaviest subjects with fractures have
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Figure 10.7 Boxplots for each subject of Bayesian posterior residuals.

Table 10.22 Observations with Highest Posterior Probability of Bayesian
Residuals Greater than 0.75 in Absolute Value

Average Probability Probability
WEIGHT FRACTURE of Fracture Residual > 0.75

113.4 1 0.154 0.978
111.1 1 0.158 0.978
108.9 1 0.162 0.978
108.0 1 0.164 0.977
99.8 1 0.180 0.965
99.3 1 0.181 0.964
98.4 1 0.183 0.963
97.5 1 0.185 0.962
96.6 1 0.187 0.960
95.3 1 0.190 0.953

the highest probability of large residuals. The average probability of a fracture for
these subjects in the model is low, as higher weight is less likely to lead to the
response. The results are not surprising based upon the boxplots in Figure 10.7.

We have presented a simple example to illustrate the Bayesian approach and
discussed some of the issues surrounding such an analysis. The section serves as
an introduction designed to allow readers to fit basic models in a Bayesian frame-
work and provides a foundation for further study. The references throughout the
section offer a wealth of additional information on the subject. Bayesian regression
modeling is an area of active research with advances both in methods and software
implementation likely in the future.
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10.7 OTHER LINK FUNCTIONS FOR BINARY REGRESSION MODELS

Up to this point in the text we have used the logit link/logistic regression function to
model binary, multinomial, and ordinal outcomes. In this section we only consider
a binary outcome as alternative link functions for multinomial and ordinal scaled
outcomes are not as well developed. We motivated the choice of the logit link
model in Chapter 1∗ where we noted that any model for a binary outcome must
have a mean that lies between zero and one. In addition, for ease of estimation,
there should be no constraints on the regression coefficients in the model. Put
another way, this means that all possible values for the regression coefficients
yield a model mean between zero and one. There are several other link functions
that satisfy these two properties and two others that do not but have been used in
practice in some settings. The goals of this section are to introduce each of these
alternative link functions, illustrate their application to real data, compare their fit
to that of the logit link, and suggest settings where these alternative links might
provide a clinically useful analysis.

For ease of notation and to provide a setting where it is easy to compare the
different models graphically we begin by describing and fitting a model containing
a single continuous covariate. In general, let π(x) denote the probability of the
binary outcome being present. Under the logistic regression model

π(x) = eβ0+β1x

1 + eβ0+β1x
(10.49)

and its linearizing transformation is the logit function

g(x) = ln

(
π (x)

1 − π(x)

)
= β0 + β1x. (10.50)

Three of the five alternative link functions we consider are discussed in McCul-
lagh and Nelder (1989, Section 4.3.1) and to a lesser extent in Cox and Snell
(1989, Section 1.5) and Collett (2003, Section 3.5). These are the Probit, comple-
mentary log–log and log–log models. Each of these models has a mean that is
constrained to be between zero and one and have no restrictions on their parameter
values.

The Probit or integrated normal uses the standard normal distribution to model
the probability as

π(x) = �(βP 0 + βP 1x), (10.51)

where the subscript “P ” stands for “Probit” and � denotes the standard normal
distribution function. In this case the linearizing transformation is

gP (x) = �−1(βP 0 + βP 1x), (10.52)

∗We encourage readers to review the material Section 1.1 again to refresh their memory on the rationale
for using the logistic regression model.
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where �−1 is the inverse normal distribution. Unlike the logit transformation in
equation (10.50) it is not a closed form expression of the coefficients. This has
implications for the usefulness of the coefficients for estimating effects of covari-
ates. The Probit model has a long history and predates the logistic regression
model’s use for binary data. Ashton (1972, Chapter 1) provides some of the back-
ground, while the earliest work on the Probit can be found in Bliss (1934).

The expression for the probability or mean for the complementary log–log
model is

πCL(x) = 1 − exp[− exp(βCL0 + βCL1x)] (10.53)

and its linearizing transformation is

gCL(x) = ln[− ln(1 − πCL(x))] = βCL0 + βCL1x, (10.54)

where we use the subscript CL to denote this model. The respective equations for
the log–log model are

πLL(x) = exp{− exp[−(βLL0 + βLL1x)]} (10.55)

and
gLL(x) = − ln[− ln(πLL(x))] = βLL0 + βLL1x, (10.56)

where we use subscript LL to indicate the model. The additional minus sign in the
inner exponentiation in equation (10.55) is required in order to have the coefficients
for the two log–log models to have the same signs.

Epidemiologists favor the log link function as its coefficients may be used to
provide a direct estimate of relative risk. The equations for this link function are

πL(x) = exp(βL0 + βL1x) (10.57)

and
gL(x) = ln(πL(x)) = βL0 + βL1x, (10.58)

where the subscript L is used to denote the log link model. The problem with
this model is that the mean can exceed one and there can be problems attaining
convergence with maximum likelihood estimation. Blizzard and Hosmer (2006)
studied the use of this link function with extensive simulations and note estimation
problems occur when the probability in equation (10.57) approaches one. Their
simulations show that using the estimated probabilities from a fit of a logistic
regression model as the initial guess for the iterative solution of likelihood equations
can improve convergence. They also show that the decile of risk goodness of fit
statistic discussed in Section 5.2 may be used to assess fit.

The final link function considered in this section is the linear or identity function
whose equation is

πI (x) = βI0 + βI1x, (10.59)
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where the subscript I is used to denote this model. This model can yield prob-
abilities less than zero and greater than 1. It has not been studied in as serious
a statistical manner as the other link functions. Its use in applications has been
mostly by epidemiologists to provide an additive measure of effect, the risk dif-
ference, as an alternative to the multiplicative measures of effect from the logistic
regression model discussed in detail in Section 3.5. This point is explored further
in Section 10.9.

Given a sample of data we recommend using maximum likelihood to estimate
the parameters for each of the five link functions. The form of the likelihood,
l(β), and log-likelihood, L(β), functions are given in equations (1.3) and (1.4),
respectively. The likelihood equations for the logistic regression model are given
in equations (1.5) and (1.6). The likelihood equations for the alternative link func-
tions are obtained by differentiating the log-likelihood with respect to the unknown
parameters, replacing the logistic probability in equation (10.49) with the relevant
expression for the alternative link function. The calculus is straightforward and so
we do not present the equations. Estimators of the variances and covariances of the
parameters come from the respective matrices of second order partial derivatives.
We note that these equations are considerably more complex than those given for
the logistic regression model in equations (2.3) and (2.4) and are thus not presented.
The good news for users is that these models may be fit, for the most part, quite
easily in many statistical packages.

Before proceeding to our example, we give our view of the role of the various
alternative link functions in a regression analysis of a binary outcome. If the goal of
the analysis is to obtain estimates of the probability of the outcome and estimates
of effect for individual model covariates are, at best, of secondary importance, then
we recommend that one consider the Probit, complementary log–log or log–log
link models. One of these models may provide better probability estimates when
the logistic regression model seems to have problems. Some guidance on what
alternative model to choose can be obtained from an enhancement to Stukel’s test
discussed in Section 5.2. We discuss and illustrate this in the example to follow. If
the goal of the analysis is to provide an alternative to the odds ratio as a measure
of the effects of model covariates then we recommend using either the log link
or identity link. We illustrate in the example that the estimated coefficients from
the fit of the log link model can be used to estimate relative risk while those from
the identity link can be used to estimate risk difference, where risk is defined as
the probability that the binary outcome takes the value of interest.

As we noted above, one may encounter computational issues when fitting the
log and identity link models. This is particularly true when the model contains
continuous covariates measured over a broad enough range that model probabilities
begin to approach one and/or zero (for the identity model). Unfortunately there is
not much that one can do, short of using approximate estimation procedures, which
we describe but do not recommend. For the log link Zou (2004) shows how one
may use a Poisson regression routine to obtain parameter estimates. Blizzard and
Hosmer (2006) studied this estimator and showed that while convergence is assured,
obtaining probability estimates that are less than one is not. For the identity link
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one may obtain estimates from a linear regression program, but unless one uses
iteratively adjusted weights equal to [πI (x) × (1 − πI (x))]−1 one will not obtain
the same estimated coefficients as obtained from maximum likelihood. In any case
a robust-sandwich type variance estimator should be used.

We use the Burn Study data to provide an example for fitting the Probit, com-
plementary log–log and log–log link functions. For each of these link functions
there are no computational issues. We show, in Table 10.23, the results of fitting
the logistic regression models and the three other link functions containing the
covariate total burn surface area (TBSA). We plot the fitted models versus TBSA
in Figure 10.8.

Table 10.23 Results of Fitting the Logit, Probit, Complementary Log–Log, and
Log–Log Link Function Models Containing the Covariate Total Burn Surface Area
(TBSA) from the Burn Study, n = 1000

Link DEATH Coeff. Std. Err. z p 95% CI

Logit TBSA 0.085 0.0070 12.27 <0.001 0.072, 0.099
Constant −3.345 0.1757 −19.04 <0.001 −3.689, –3.001

Probit TBSA 0.046 0.0032 14.21 <0.001 0.040, 0.052
Constant −1.884 0.0832 −22.64 <0.001 −2.048, –1.721

Comp. Log–log TBSA 0.050 0.0029 17.5 <0.001 0.044, 0.056
Constant −2.880 0.1305 −22.06 <0.001 −3.135, –2.624

Log–log TBSA 0.049 0.0039 12.57 <0.001 0.042, 0.057
Constant −1.432 0.0677 −21.14 <0.001 −1.564, –1.299
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Figure 10.8 Plot of the estimated probabilities from fitted logit, Probit, complementary log–log and
log–log link models containing total burn surface area.
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The results in Table 10.23 show widely different values for the estimated coef-
ficients. This is not unexpected as the link functions have different nonlinear
transformations to the probability scale. We can see in Figure 10.8 that the fits
from logit and Probit links are similar to each other (this is well known and, thus,
expected). Each is symmetric about 0.5 with the Probit having shorter tails than the
logit. The two log–log models are asymmetric with the complementary log–log
model having a long left and short right tail. The log–log model has the reverse
shape. In order to compare the fit of the four models we computed the decile of
risk statistic using 10 groups based on the ranked probabilities from the logit fit.
We do not evaluate the significance of the statistics, as the distributional properties
of the decile of risk test have not been studied for the four alternative link func-
tions. Regardless, the statistic does provide a comparable relative measure of fit.
The values of the statistic from the four models (in the order listed in Table 10.23)
are 14.2, 13.5, 34.8, and 8.7. The results support what we see in Figure 10.8, in
that the logit and Probit models are similar and the complementary log–log model
is different from the other three. What is perhaps surprising is the apparent better
fit of the log–log model, 8.7, versus the logit model, 14.2. Comparing the two
fits, logit versus log–log, in Figure 10.8 we might conclude that the logit model
underestimates the probability of death between 18% and 50% burn area and over
estimates it for burn area exceeding 50%.

The Stukel test discussed in Section 5.2 is based on adding two additional
covariates to the model that measure the tail weight relative to the logit model.
As described in Section 5.2, one uses a score test of the null hypothesis that the
coefficients for the two additional variables are equal to zero. If one rejects this
test then there is evidence that one might obtain a better fit with an alternative link
function. If one is serious about considering an alternative link function then we
suggest that one fits the logistic regression model adding the two covariates z1 and
z2, defined in Section 5.2, as

z1 = 0.5 × [ĝ(x)2] × I[π̂(x) ≥ 0.5]

and
z2 = −0.5 × [ĝ(x)2] × I[π̂(x) < 0.5],

to the model and use their estimated coefficients to guide the choice of an alterna-
tive link function. Stukel (1988) shows that if the two coefficients are about 0.165
then one might choose the lighter tailed and symmetric Probit model. The analysis
supports choosing the log–log model if the coefficients are (−0.037, 0.620) and
the complementary log–log model if they are (0.620,−0.037). Obviously, in any
analysis there is variability in the estimates so one should examine their confidence
interval estimates as well. When we add z1 and z2 to the logit model containing
TBSA their estimated coefficients are (−0.13, 0.38) and their confidence interval
estimates contain −0.037 and 0.62, respectively, suggesting the log–log link func-
tion. The results of including z1 and z2 in the logit model should be viewed as just
adding one more piece of information to the final decision process, which must
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include consideration of the clinical plausibility of any alternative link function as
well as balancing the potential need for estimates of the effects of model covariates.

Next we consider the log and identity link models. In order to successfully fit
these two models on the same set of data we had to restrict total burn surface area
to 5 ≤ T BSA ≤ 60. The results of these two fits as well as the logit model to the
restricted range are shown in Table 10.24 and the fits are plotted in Figure 10.9.

Each of the estimated coefficients for total burn surface area in Table 10.24
expresses the effect on a different scale of the probability of death (respectively,
the log-odds, log and the probability itself). We return to this point after we compare
the shape of the three models.

The shapes of the three models shown in Figure 10.9 are distinctly different from
each other. The logit is, as expected, “S-shaped”, the log is exponential shaped and

Table 10.24 Results of Fitting the Logit, Log, and Identity Link Function Models
Containing the Covariate Total Burn Surface Area (5 ≤ T BSA ≤ 60) from the Burn
Study, n = 542

Link DEATH Coeff. Std. Err. z p 95% CI

Logit TBSA 0.096 0.0104 9.28 <0.001 0.076, 0.117
Constant −3.412 0.2573 −13.26 <0.001 −3.916, –2.908

Log TBSA 0.041 0.0030 13.61 <0.001 0.035, 0.047
Constant −2.623 0.1546 −16.96 <0.001 −2.926, –2.320

Identity TBSA 0.014 0.0011 12.55 <0.001 0.012, 0.017
Constant −0.054 0.0135 −4.00 <0.001 −0.080, –0.028
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Figure 10.9 Plot of the estimated probabilities from fitted logit, log, and identity link models containing
total burn surface area, 5 ≤ T BSA ≤ 60.
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the identity is a straight line. When we evaluate the decile of risk statistic over 10
groups, formed from the ranked estimated logit probabilities computed from the
model in Table 10.24, we obtain values, in the order of the models in Table 10.24,
of 13.2, 29.1, and 14.9. It is clear that the log model fits the least well and the
logit and linear model provide similar fit, at least as measured by the decile of risk
statistic.

The estimate of the odds ratio for a 5% increase in total burn surface area is,
using the estimated coefficient for TBSA for the logit model in Table 10.24,

ÔR = exp(5 × 0.096) = 1.62.

The interpretation is that, for every 5% increase in TBSA, the odds of dying
increases by 62%. It is easy to show, using the four-step procedure, that the estimate
of effect for the log link model is the relative risk that, for a 5% increase in burn
surface area, is

R̂R = π̂L(x + 5)

π̂L(x)
= exp(5 × 0.041) = 1.2.

Here the interpretation is that, for every 5% increase in TBSA, the risk of dying
increases by 20%. This demonstrates that the odds ratio overestimates the relative
risk when the outcome is not “rare”, which is why some subject matter scientists
(e.g., epidemiologists) would prefer to use the log link, when it does not run into
estimation problems. We leave as an exercise fitting the logit and log link models
showing that the two estimates become closer when death becomes a progressively
rarer outcome.

The estimate of effect for the identity link model is the risk difference and, for
a 5% increase in burn surface area, is

R̂D = π̂I (x + 5) − π̂I (x) = 5 × 0.014 = 0.07.

The interpretation is that, for every 5% increase in TBSA, the risk of dying increases
by 7%.

Confidence interval estimates for both the relative risk and risk difference are
easy to obtain from standard output from the model fits. For relative risk one
simply multiplies the end points of the confidence interval for the coefficient by
the clinically relevant change and then exponentiates the two new values. From
Table 10.24 the confidence interval for a 5% increase is

exp(5 × 0.035) ≤ RR ≤ exp(5 × 0.047)

or 0.0175 ≤ RR ≤ 0.235. For the identity link model one multiplies the endpoints
by the change to obtain (5 × 0.012) ≤ RD ≤ (5 × 0.017) or 0.06 ≤ RD ≤ 0.085.
For more complicated models containing interactions or other nonlinear terms we
recommend following the 4-step procedure.

We demonstrated the fit and estimation of effects of the alternative links in
Table 10.24 with the continuous covariate total burn surface area, as it yielded
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fitted models that clearly illustrate the difference in the shape of the probability as
a function of the covariate. We leave as exercises fitting and estimation of effects
for models containing dichotomous covariates and multivariable models.

In summary, we have considered five alternative link functions for regression
models for a binary outcome that may be fit in most software packages. We suggest
that the three link functions, Probit, complementary log–log and log–log, be con-
sidered as an alternative to the logit model when the primary focus of the analysis is
modeling the probability of the outcome and the logit model does not seem to fit the
data well. Estimates of effect from these models are not simple, easily interpreted
functions of model parameters. On the other hand, when estimates of covariate
effect are the primary focus, one can consider the log link model as an alternative
to the logit link when it can be fit.† Likewise, one can use the identity link model
to obtain an additive effect estimate. For the log link, Blizzard and Hosmer (2006)
derive casewise diagnostic statistics for evaluating fit and show that the decile of
risk goodness if fit test may be used to assess model fit. Equivalent work for the
other link functions has yet to be done. Model building steps are the same for the
alternative links as for the logit link described in Chapter 4. Additional detail about
interactions in the logit and identity link models is presented in Section 10.9.

10.8 MEDIATION‡

10.8.1 Distinguishing Mediators from Confounders

In Section 3.5 the motivation for using multivariable models to statistically adjust
the effect of each variable for differences in the distributions of and associations
among the other independent variables was discussed. We suggested that this sta-
tistical adjustment is necessary when two variables, each with an effect on the
outcome, are associated with each other. As an example, we used hypothetical data
on the difference in weight between two groups of boys, who differed in their
age distribution. Because age influences weight, the unadjusted weight difference
between the two groups of boys would reflect not only the effect of group member-
ship, but also the effect of age. To isolate the effect of group membership, we need
to compare boys in the different groups who are of the same age as we described
in that section.§

In interpreting the meaning of these adjusted effects, however, it is important
to distinguish two different types of covariates–confounders and mediators. Both
confounders and mediators are covariates that have an effect on the outcome and
are associated with another independent variable; both produce a change in the
coefficient of the independent variable when entered into a regression model. What

†The log link model is appropriate only for prospectively collected data. It is not useful for binary
outcome regression in case–control studies.
‡Sharon Schwartz from the Department of Epidemiology and Melanie Wall from the Departments of
Psychiatry and Biostatistics at Columbia University are the primary authors of this section.
§Much of the discussion in this section requires familiarity with the material in Section 3.5. As such,
we recommend that readers review that section before proceeding.
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distinguishes them is the process that gives rise to the association between them
and the independent variables.

It is easiest to describe this distinction if we focus on a particular independent
variable of interest. Confounders are variables that cause the independent variable
of interest or share a common cause with it. Mediators in contrast are conse-
quences of the independent variable of interest. These relationships are depicted
in three diagrams in Figure 10.10 where arrows between variables indicate causal
relationships.

From the vantage point of explaining the relationship between the independent
variable, X, and the outcome, Y, Z, is a confounder in diagrams A and B (where
U represents other unmeasured variables) and Z is a mediator in Diagram C. The
dashed arrow between X and Y may or may not be present. A covariate, labeled
“Z” may be associated with an independent variable of interest because Z causes
the independent variable (diagram A), because Z and the independent variable share
a common cause, U , (diagram B) or because the independent variable of interest
causes Z (diagram C). In each of these scenarios there may, but need not, be an
arrow leading directly from the independent variable X to the outcome (indicated
by a dashed arrow).

For example, suppose that we are interested in the effect of physical inactivity
on experiencing a myocardial infarction. There are many other variables that have

(A) (B)

(C)

(Age)

Independent
variable

(Physical inactivity)

Outcome
variable

(MI)

Z

X Y

(Hypertension)

Independent
variable

(Physical inactivity)

Outcome
variable

(MI)

Z

X Y

(Lack of concern
about health)

(Unhealthy eating
behavior)

Independent
variable

(Physical inactivity)

Outcome
variable

(MI)

ZU

X Y

Figure 10.10 Distinction between the role of Z as a confounder or a mediator.
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an effect on myocardial infarction that may be associated with physical inactivity,
such as age, unhealthy eating habits and hypertension. To assess whether these
covariates are confounders or mediators, we need to consider why they are asso-
ciated with physical inactivity. The relationship between physical inactivity and
age is best represented by diagram A. Physical inactivity and age are associated
because as people age they are more likely to become less physically active, older
age causes physical inactivity. The relationship between physical inactivity and
unhealthy eating habits is best represented by diagram B; these two variables are
associated because they share common causes, for example, lack of concern about
health. Physical inactivity and hypertension are likely to be associated because
physical inactivity has an effect on blood pressure as shown in diagram C where
the independent variable, physical inactivity, is a cause of hypertension. So while
age, unhealthy eating habits, and hypertension are all causes of myocardial infarc-
tion that are associated with physical inactivity, age and unhealthy eating habits
are confounders whereas hypertension is a mediator. We emphasize that this dis-
tinction between confounder versus mediator is not made based on data analysis,
but instead is based on subject matter knowledge.

10.8.2 Implications for the Interpretation of an Adjusted Logistic
Regression Coefficient

When a covariate Z is included with another independent variable of interest, X,
in a multivariable model the logit is given by the equation

g(x, z) = β0 + β1x + β2z.

Assuming the goal is to assess the causal effect of X on the outcome, the interpreta-
tion of the logistic regression coefficient, β1, will be very different if the covariate,
Z, is a confounder versus a mediator. If Z is a confounder then we interpret β1 as
the effect of X on the outcome, assuming there are no other confounding variables.
By including the confounder in the model, the estimated β1 is expected to be closer
to the true causal effect than if the confounder were not included. Specifically, β1
represents the change in the logit associated with a one unit change in X, among
subjects with a common value of Z.

If Z is a mediator, however, β1 does not represent the effect of a one unit
change in X on the outcome. Rather it represents only part of the effect of X on
the outcome, the part that does not work through the mediator, Z. In the literature
on mediation, this effect is referred to as the direct effect of X on the outcome.
The effect of X on the outcome is then this direct effect, measured by β1, plus
the indirect effect, the effect of X that works through the mediator. The term total
effect is often used in the context of mediational analysis to distinguish the effect of
X on the outcome through all causal pathways from the direct and indirect effects
that comprise this total effect. Outside the context of mediational analyses, the
term “effect” implies total effect. We elaborate on the reasons for the differences
in these interpretations next.
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A confounder is a variable that leads to an association between the independent
variable of interest and the outcome but is not part of the causal effect of the
independent variable of interest on the outcome. Therefore, if we want to estimate
the effect of the independent variable on the outcome, we need to isolate it from the
effects of the confounders. That is, we want the coefficient to reflect only the effect
of the independent variable and not the effect of differences in the distribution of the
covariate with which it is associated. If the independent variable, X, is dichotomous,
we would like the coefficient for x, β1, in the logit, to be distinct from the effects
z. Using the paradigm discussed in Section 3.5 and illustrated via �β̂% in equation
(3.9), the effects of z amount to β2(z2 − z1) in the current context. In this scenario
the coefficient for the independent variable of interest adjusted for the confounder
provides our best estimate of the total effect of the independent variable. When Z

is a confounder, if β1 in the multivariable model, g(x, z), is closer to zero than the
coefficient, β1

∗, in the unadjusted model, g(x) = β∗
0 + β∗

1x, this would indicate
that part of β1

∗ reflects the mixing of the effect of the confounder, Z, with X; part
of the unadjusted coefficient, β1

∗, includes β2(z2 − z1). If the adjusted coefficient,
β1, is still appreciably greater than zero, this would indicate that the independent
variable, X, does have an effect on the outcome, albeit an effect that is different
than the crude (unadjusted) association, β1

∗. This scenario is consistent with the
presence of the dashed arrow indicated in diagrams A, B, and C in Figure 10.10.
If, however, the adjusted coefficient is not appreciably greater than the null (i.e.,
β1 = 0) we would conclude that there is no effect of the independent variable on the
outcome; there is no dashed arrow going from X to the outcome. The association
between X and the outcome in the unadjusted model was simply a reflection of
the different distribution of the confounder Z between those with and without X.

A mediator, in contrast, is a consequence of the independent variable and there-
fore represents a mechanism through which the independent variable influences
the outcome. If Z is a mediator in the multivariable model, g(x, z), β1 represents
the effect of X on the outcome net of the effect that works through the mediator.
The coefficient, β1, is the direct effect of X on the outcome. If the coefficient β1,
for x, in the adjusted model is close to 0, this indicates that the effect of X on the
outcome works entirely through the effect of X on the mediator, Z. If β1 in the
adjusted model is different from 0 but smaller than the β1

∗ in the unadjusted model,
this would indicate that part, but not all, of the effect of X works through Z; there
is an arrow leading directly from X to the outcome in Figure 10.10, diagram C.

Therefore, the interpretation of β1 = 0 in model g(x, z) is quite different when
Z is a confounder and when it is a mediator. When Z is a confounder, if β1 = 0
we say that X has no effect on the outcome; when Z is a mediator if β1 = 0 we
say that X has an effect on the outcome and we know the mechanism through
which it works, Z.

10.8.3 Why Adjust for a Mediator?

If the coefficient without adjustment for the mediator provides the better estimate
of the total effect of the independent variable on the outcome, why would we ever
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want to adjust for a mediator? The purpose would be to test hypotheses about
how the independent variable causes the outcome, that is, to identify some of the
causal pathways that make up the total effect [Hafeman and Schwartz (2009)]. For
example, a researcher may want to know why individuals with strong social support
networks are less likely to develop depression than those without such support. One
hypothesis is that social networks encourage adherence to healthy lifestyles that are
likely to be protective for the development of depression; there is an indirect effect
of social networks on developing depression that works through the mediator of
healthy lifestyles. An alternative hypothesis is that there is a direct effect of social
networks on depression. By direct, we mean that social support works through some
(unnamed) general mechanism other than encouraging healthy lifestyles. One could
then use logistic regression to test these hypotheses. If the direct effect of social
networks fully explains the association with depression such that there is no indirect
effect through healthy lifestyles, the coefficient adjusted for a measure of healthy
lifestyles, β1, would be appreciably greater than 0 and negligibly different from the
unadjusted effect, β1

∗. To the extent that the effect of social networks on depression
works through the indirect effect of healthy behaviors, the coefficient adjusted for
healthy behaviors, β1, should be appreciably smaller than the unadjusted effect
(β1 < β∗

1) and the adjusted coefficient should be close to 0. Of course it is possible
that there is both an indirect effect through healthy behaviors and a direct effect
of social networks through other mechanisms (as indicated by the inclusion of the
dashed arrow in diagram C in Figure 10.10). In this instance, the adjusted estimate
would be smaller than the unadjusted (β1 < β∗

1), but the adjusted would still be
appreciably greater than 0.

10.8.4 Using Logistic Regression to Assess Mediation: Assumptions

The basic method for assessing mediation and controlling for confounding are
essentially the same and are as described in Section 3.5. The main difference
between estimating effects controlling for confounders and assessing mediation
lies in the interpretation of the controlled coefficients and in the meaning of the
difference between the unadjusted and adjusted coefficients as described above. A
variation of the “delta-beta-hat-percent” useful in this context is

�β̂% = 100 × (β̂∗
1 − β̂1)

β̂∗
1

,

which can be interpreted as the indirect effect of the exposure—the proportion
of the total effect of the independent variable of interest that works through the
measured mediator.

To illustrate how to use logistic regression to test for mediation, we use the
example of the effect of height on the development of a new fracture in the GLOW
data introduced in Section 1.6.3. A reasonable hypothesis about how height influ-
ences the development of a new fracture is through the effect of height on the
history of prior fractures—experiencing a fracture in the past may lead to bone
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Height New fracture
β∗

1 = −0.0512

Prior fracture

Height New fracture
β1 = −0.0447

α = −0.0390 β2 = 1.0122

Figure 10.11 The total effect of height on new fracture is presented in the upper diagram. The indirect
and direct effect of height on new fracture is presented in the lower diagram where the indirect effect
is through prior fracture. All estimates are the on the logit scale.

weakening that leaves the individual more vulnerable to a fracture in the future.
Figure 10.11 presents the assumed causal diagrams.

If the mediational hypothesis is correct then the following should hold:

1. Height should be significantly associated with new fracture in the unadjusted
model,

Pr(new fracture) = eβ̂0+β̂∗
1 ×height

1 + eβ̂0+β̂∗
1 ×height

.

2. Height should be significantly associated with prior fractures in the model,

Pr(prior fracture) = eα̂0+α̂1×height

1 + eα̂0+α̂1×height
.

3. Prior fractures should be significantly associated with new fractures while
controlling for height in the model,

Pr(new fracture) = eβ̂0+β̂1×height+β̂2×prior fracture

1 + eβ̂0+β̂1×height+β̂2×prior fracture

and

4. The association between height and new fractures in a model that includes
prior fractures β̂1, should be smaller than the association between height and
new fractures in the model that does not include prior fractures, β̂∗

1 [Baron
and Kenny (1986)].
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Note that in Step 3 it is not sufficient just to correlate the mediator with the
outcome; the prior fracture and future fracture may be correlated because they are
both caused by the independent variable, height. Thus, height may play the role of a
confounder in the association between prior fracture and new fracture and therefore
must be controlled in establishing the effect of prior fracture on new fracture. The
steps to test this hypothesis are outlined in Table 10.25.

Table 10.25a shows that height is associated with new fractures. Assuming the
causal diagrams in Figure 10.11 are correct, this means there is a significant effect
of height on new fracture. The coefficient −0.0512 says that each centimeter of
height decreases the log-odds of developing a new fracture by 0.0512. Height is
also associated with prior fracture (Table 10.25b)—each centimeter of additional
height decreases the log-odds of a prior fracture by 0.039. Prior fractures are asso-
ciated with new fractures while controlling for height, β̂2 = 1.0122 (Table 10.25c).
Finally, in this model with both prior fracture and height, the direct effect of height
on new fractures is −0.0447. This is a 12.7% decrease from the effect of height in
the model without prior fractures: (0.0512 − 0.0447)/0.0512 = 12.7%. This sug-
gests that approximately 13% of the total effect of height is an indirect effect due
to the mediational pathway of prior fractures.

We have summarized above a commonly used method for assessing mediation.
However, there are several fairly stringent assumptions necessary for this simple
method to validly assess mediation. First, there must be no uncontrolled confound-
ing of the relationship between the independent variable and the outcome. Any
confounding must be controlled before mediation is assessed. Second, there must be
no uncontrolled confounding of the relationship between the mediator and the out-
come [Robins and Greenland (1992); Judd and Kenny (1981)]. Third, there must be
no effect measure modification, or interaction, between the independent variable of
interest and the mediator on the log-odds scale [Robins and Greenland (1992); Hafe-
man (2009)]. Dealing with these complexities goes beyond the scope of this text-
book. For a fuller discussion of these issues in the context of dichotomous outcomes

Table 10.25 Logistic Regression Results for Assessment of Mediation for
the Causal Model in Figure 10.11

Variable Coeff. Std. Err. z p

a: Height as a Predictor of New Fracture
HEIGHT −0.0512 0.0171 2.99 0.003
Constant 7.1350 2.7441 2.60 0.009

b: Height as a Predictor of Prior Fracture
HEIGHT −0.0390 0.0168 2.32 0.020
Constant 5.1842 2.6981 1.92 0.055

c: Height and Prior Fracture as Predictors of New Fracture
HEIGHT −0.0447 0.0174 2.57 0.010
PRIORFRAC 1.0122 0.2254 4.49 <0.001
Constant 5.7851 2.7980 2.07 0.039
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and logistic regression we refer the reader to VanderWeele and Vansteelandt (2010),
Hafeman (2009), Cole and Hernan (2002) and Chapter 11 of Mackinnon (2008).

10.9 MORE ABOUT STATISTICAL INTERACTION¶

In Section 3.5 statistical interaction or effect modification was introduced and
defined to mean that the effect of one predictor variable on the outcome is not
constant over the levels of another predictor variable. In the present section we
will elaborate on the fact that the determination of whether there is effect modifi-
cation or not depends upon the measure used to assess an effect. We will introduce
the use of risk differences as an alternative to the odds ratio as a measure of effect
and show how to assess for interaction directly on the probability scale (risk differ-
ence scale) as compared with the log-odds scale (as was done in Section 3.5). There
is a literature, predominately in epidemiologic methods, that has focused on the
distinctions between these types of interaction assessments [Rothman et al. (2008);
VanderWeele (2009); Darroch (1997); Greenland (1983), (1993); Schwartz (2006);
Elandt-Johnson (1984)]. The assessment of interaction on the probability scale is
often referred to as “additive” or “biological” interaction while the assessment
on the log-odds scale is called “multiplicative” or “statistical” or “public health”
interaction. This is because when we use a probability (risk) scale, we assume
that, absent interaction, risks add in their effects. In contrast, when we use logistic
regression, a log-odds scale, we assume that, absent interaction, odds multiply in
their effects. So interaction (effect modification) is defined to be deviation from
what is expected under no interaction, which is scale dependent.

We will demonstrate that it is possible (even common) to come to different
conclusions regarding whether there is effect modification depending on which
scale is used to assess an effect.

10.9.1 Additive versus Multiplicative Scale – Risk Difference versus Odds
Ratios

Throughout this text, odds ratios (or equivalently differences on the log-odds scale)
are used to estimate effects. In the left hand panel of Figure 10.12 (similar to
Figure 3.2) we show the log-odds of coronary heart disease (CHD; yes/no) by age
for females and males. When comparing the lines for females (F) and for males
(M) we see that there is a constant log-odds difference between these two lines
across all ages (i.e., the lines are parallel on the log-odds scale). We can conclude
that the odds ratio of CHD associated with a one unit increase of age is the same
for females as it is for males; or, equivalently, the increased odds of CHD in men
as compared with women is the same at every age. In other words, in terms of
odds ratios, there is no effect modification by gender on the way age is associated

¶Melanie Wall from the Departments of Psychiatry and Biostatistics and Sharon Schwartz from the
Department of Epidemiology at Columbia University are the primary authors of this section.
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with CHD, nor is there effect modification by age on the way gender is related to
CHD. For example, the odds ratio comparing a 70-year-old with a 35-year-old is
5.7 = exp(1.75) (where 1.75 is the difference in log-odds of CHD between a 70
and 35 year old) and this odds ratio is the same whether we are comparing two
men or two women. The equation for the logit of CHD is

g(x) = β0 + β1age + β2male + β3age × male,

and the cross-product term would have coefficient β3 = 0. Indeed the formula used
to plot the lines on the left panel of Figure 10.12 is

g(x) = β0 + β1age + β2male = −5 + 0.05age + 1.25male,

with no cross-product. But we can also express the relationship among age, gen-
der and CHD using risk, Pr(CHD = 1|age, male), rather than log-odds by back-
transforming the log-odds on the y-axis to the risk, probability, scale using the
inverse logit (i.e., π(x) = eg(x)/1 + eg(x)). When we present the results on the risk
scale (see the right hand panel of Figure 10.12), we find that the lines are no
longer straight and are not parallel. Now when we consider the risk difference
between a 70-year-old female and a 35-year-old female we find the difference to
be 18.2% − 3.7% = 14.5%, and the risk difference between a 70-year-old male
and a 35-year-old male is 43.8% − 11.9% = 31.9%. Thus, the effect of increasing
age in men leads to a larger increase in percentage points of CHD risk (31.9%)
than the effect of increasing age in women that only leads to a 14.5% increase in
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Figure 10.12 Demonstration that parallel lines on the log-odds scale (left) will lead to non-parallel
lines when transformed to the risk scale (right). There is no effect modification (interaction) on the odds
ratio scale (left) but there is effect modification on the risk difference scale (right).
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percentage points of CHD risk. If we consider modeling the risks using the linear
link function, discussed in Section 10.7, rather than the logit link,

π(age, male) = β0 + β1age + β2male + β3age × male (10.60)

where π(age, male) = Pr(CHD = 1|age, male), we would find that the best fitting
linear link model would have β3 not equal to zero. That is, the risk of CHD is
not just a sum of the effects of age and gender separately but also depends on the
specific age by gender combination, such that being male has a stronger effect (in
terms of risk differences) at higher ages.

This simple example illustrates that when there is no effect modification on the
log-odds scale there will be effect modification on the risk difference scale and the
opposite is true as well. This example is one where there was “super-additivity”
meaning that the risk of CHD was larger than the sum of the risks of age and
gender alone, that is, there was additional risk due to the combination of being
male with increasing age. But, it is also an example of “perfect multiplicity (on the
odds scale)” since the odds of CHD associated with increasing age and being male
is simply the product of the odds for increasing age and the odds for being male.

Figure 10.13 provides a comparison of the different ways that two variables A

and B can interact to affect an outcome on the additive (risk difference) versus the
multiplicative (odds ratio or risk ratio) scale. Consider that the effect on the additive
scale is 5 for A and 5 for B. Perfect additivity would mean that the increment in
the risk due to the presence of both A and B would be 5 + 5 = 10. By contrast
on the multiplicative scale the increment in the risk due to the presence of both
A and B, if there was no multiplicative interaction and hence perfect multiplicity,
would be 5 × 5 = 25. The line plot on the bottom of Figure 10.13 represents
the increment in the risk when both A and B are present and the labels indicate
what conclusion would be drawn on the additive or the multiplicative scale. First

No interaction
Perfect additivity

Risk increment
Risk increment
Risk increment

−10 −5 0 5 10 15 20 3025

No interaction
Perfect multiplicativity

PERFECT
ADD.

SUPERMULT.

SUPERADDITIVE
SUBADDITIVE

SUBMULTIPLICATIVE

PERFECT
MULT.

Risk increment
Risk increment
Risk incrementBoth = 10 Both = 25

A = 5
B = 5

A = 5
B = 5

Figure 10.13 Comparison of interaction findings for additive and multiplicative scales. Reprinted
with permission from Figure E-2, Appendix E, p315, of Schwartz (2006), by the National Academy of
Sciences. Courtesy of the National Academies Press, Washington, D.C.
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we note that if the increment in the risk when both A and B are present is <10 or
>25 then we would find interaction on both the additive and multiplicative scale,
albeit negative interaction (i.e., subadditivity and submultiplicativity) on the low
end and positive interaction (i.e., superadditivity and supermultiplicativity) on the
high end. But when the increments in the risk are between 10 and 25 we find
that the answers to whether there is interaction or not and which direction it is
can differ depending on the scale. When there is no multiplicative interaction (i.e.,
effect = 25) there is superadditivity, the scenario described in the example with age
and gender above. When there is no additive interaction (i.e., effect = 10), there will
be a submultiplicative interaction on the log-odds multiplicative scale. Moreover,
for effects between 10 and 25, opposite conclusions about the direction of the
interaction would be made with the additive scale finding positive interaction and
the multiplicative scale finding negative interaction. This demonstration highlights
the importance of choosing which effect measure (risk differences or odds ratios)
is used.

10.9.2 Estimating and Testing Additive Interaction

Given two predictors of a dichotomous outcome, the most common method for
statistically testing for effect modification is to include a cross-product term of the
two predictors in a logistic regression model and test for the statistical significance
of the coefficient of the cross-product term. As described above, this test of the
cross-product coefficients in logistic regression examines whether there is multi-
plicative interaction between the variables in terms of how they affect the odds of
the outcome. If, however, we want to test whether there is an additive interaction,
that is, whether there is an effect modification on the additive risk scale between
the predictors, we need to use the linear link model in equation (10.60).

The linear link binomial regression model can be fit using maximum likelihood
in most statistical software [Spiegelman and Hertzmark (2005)]. For example, using
STATA’s glm command provides results similar to ordinary least squares regression
in that the estimates of the regression coefficients, β0, β1, β2, and β3 are the same
as in ordinary least squares but differ in the estimates of the standard errors. As
shown in Section 10.7 the linear link binomial model fit using maximum likelihood
takes into account the fact that the outcome is Bernoulli distributed rather than
treating the residual errors as if they are normally distributed. A test for additive
interaction is then performed by testing the null hypothesis that β3 = 0, using a
Wald or likelihood ratio test.

Given the simplicity of the linear link binomial model, it might be tempting
to ask why this model rather than the logit link logistic regression model has not
been used throughout this text. The answer is that if the linear link model is used
there is a potential problem, as it can lead to predicted probabilities, π̂ , that are
less than zero or greater than one. As noted in Section 10.7, it is common to
have numerical convergence problems using maximum likelihood estimation for
the linear link binomial model particularly with continuous predictors and data
with risks of outcomes that are near zero or one. Thus, in some sense, application
in practice may not be possible.
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Nevertheless, in the simple case of two dichotomous predictors and their cross-
product, the linear link binomial model can be straightforward to fit. We consider an
example of this simple, yet common, scenario in detail using data from the study of
Myopia in children described in Section 1.6.6. The outcome variable is an indicator
of whether the child became myopic (MYOPIC) in the first 5 years of follow up.
The two dichotomous predictors examined for interaction are whether the father
of the child was himself myopic (DADMY) and whether the baseline spherical
equivalent refraction was less than or greater than 0.50 (SPHEQ.50 coded so that ≤
0.05 = 1 and > 0.50 = 0). Previously, baseline spherical equivalent refraction has
been used as a continuous predictor but here we have dichotomized it for simplicity
of presentation of the method for testing for additive interaction. The value of 0.50
used for dichotomization corresponds to the 25th percentile of the distribution
of baseline spherical equivalent refraction in the sample such that approximately
25% of the sample has values lower than 0.50 at baseline. For this study, myopia
is defined as having any follow-up measurement of spherical equivalent refraction
less than −0.75. None of the children were myopic at baseline. Table 10.26 presents
the 2 × 2 × 2 table of these data and Figure 10.14 plots the associated risks.

Table 10.26 Relating Myopic Outcome in Children with Father’s Myopic Status and
Baseline Spherical Equivalent Refraction (Higher or Lower than 0.50)

Child Becomes Myopic
During Follow-up

DADMY SPHEQ.50 No Yes Risk of myopia Label

Dad is not myopic High SPHEQ 225 7 3.0% R00
Dad is not myopic Low SPHEQ 60 18 23.1% R01
Dad is myopic High SPHEQ 196 14 6.7% R10
Dad is myopic Low SPHEQ 56 42 42.9% R11

Total 537 81 13.1%
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RD = 19.8%
OR = 2.5
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Dad is myopic
Dad not myopic

RD = 3.7%
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Figure 10.14 Plot of risk of myopia by categories of father’s myopic status and whether baseline
SPHEQ is low or high.
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The question of interest is whether there is an interaction effect between father’s
myopic status and baseline SPHEQ.50 on risk for myopia in the child. Modern
epidemiologic textbooks [e.g., Rothman et al. (2008)] define what is called the
interaction contrast by taking the difference in risk differences and comparing it
to zero in order to determine if there is an additive interaction. Specifically, in the
case of two dichotomous predictors, using the risk label notation from Table 10.26,
the interaction contrast (IC) is

IC = (R11 − R01) − (R10 − R00)

= (R11 − R10) − (R01 − R00).

In our myopic example, the interaction contrast is estimated as

IC = (42.9 − 23.1) − (6.7 − 3.0)

= 19.8 − 3.7

= 16.1.

The interaction contrast can be interpreted in the following equivalent ways:

• the effect of having a father who is myopic is 16.1% greater when the child
also has low SPHEQ.50 at baseline,

• the effect of having low SPHEQ.50 at baseline is 16.1% greater when the
child has a father who is also myopic,

• the effect of having both a father who is myopic and a low SPHEQ.50 at
baseline is 16.1% greater than the sum of the independent effects of a myopic
father or low SPHEQ.50 at baseline alone.

If we fit the linear link binomial model,

π(DADMY , SPHEQ .50) = β0 + β1DADMY + β2SPHEQ .50

+ β3DADMY × SPHEQ .50

to this data using STATA’s glm command we obtain the results shown in
Table 10.27.

Table 10.27 Fit of the Linear Link Model Containing DDMY, SPHEQ.50 and Their
Interaction

Variable Coeff. Std. Err. z p 95% CI

DADMY 0.036 0.0206 1.78 0.076 −0.004, 0.077
SPHEQ.50 0.201 0.0490 4.09 <0.001 0.105, 0.297
DADMYxSPHEQ.50 0.161 0.0721 2.24 0.025 0.020, 0.303
Constant 0.030 0.0112 2.69 0.007 0.008, 0.052
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The relationships between the estimates of the coefficients from the fit of the
model in Table 10.27 and the risk estimates in Table 10.26 are (up to round off
error) as follows:

R00 = β̂0 = 0.030,

R01 = β̂0 + β̂2 = 0.030 + 0.201 = 0.231,

R10 = β̂0 + β̂1 = 0.030 + 0.036 = 0.066,

and

R11 = β̂0 + β̂1 + β̂2 + β̂3 = 0.030 + 0.036 + 0.201 + 0.161 = 0.428.

We see that the estimated interaction coefficient is β̂3 = 0.161 (with standard
error equal to 0.0721, Wald 95% confidence interval (0.020, 0.303) and p = 0.025)
indicating that the coefficient for the interaction is significantly different from zero
and, thus, there is a statistically significant additive interaction. Note that the esti-
mate for β3 is equivalent (i.e., 0.161=16.1%) to the estimate of IC obtained by
forming the difference in risk differences.

By comparison, when we consider odds ratios from the fit of the logit link model
shown in Table 10.28, we find that the odds ratio of the father being myopic is
similar for both levels of the child’s SPHEQ.50. Specifically,

ÔR(Male, SPHEQ.50 = 0) = e(0.831) = 2.3

versus
ÔR(Male, SPHEQ.50 = 1) = e(0.831+0.085) = 2.5.

The same results can be obtained from Table 10.26. The odds ratio (OR) for father’s
myopic status being related to the child’s myopic status given the child had low
SPHEQ.50 at baseline is

ÔR(Male, SPHEQ.50 = 1) = R11/(1 − R11)

R01/(1 − R01)
= 2.5,

and the OR when the child had high SPHEQ.50 at baseline is

ÔR(Male, SPHEQ.50=0) = R10/(1 − R10)

R00/(1 − R00)
= 2.3.

Table 10.28 Fit of the Logit Link Model Containing DDMY, SPHEQ.5 and Their
Interaction

Variable Coeff. Std. Err. z p 95% CI

DADMY 0.831 0.4731 1.76 0.079 −0.096, 1.758
SPHEQ.50 2.266 0.4685 4.84 0.000 1.348, 3.185
DADMYxSPHEQ.50 0.085 0.5811 0.15 0.883 −1.054, 1.224
Constant −3.470 0.3838 −9.04 0.000 −4.222, –2.718
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From the logit fit in Table 10.28, the estimate for the interaction coefficient is
β̂3 = 0.085, with standard error of 0.5811 and p = 0.883. This evidence is not
consistent with multiplicative interaction.

The previous example is one where there was a statistically significant additive
interaction that was “superadditive” (i.e., the increased risk due to low SPHEQ.50
was made even stronger by the existence of another risk factor, DADMY), but there
was no evidence of a significant multiplicative interaction. Next, we continue the
example initially presented in Table 3.12 where there was a statistically significant
multiplicative interaction that was “submultiplicative” (i.e., the increased risk of
future fracture due to age was lessened among those who had already had the
risk factor of having a prior fracture) and we will show that it does not have a
significant additive interaction. If we fit the linear link binomial model

π(AGE, PRIORFRAC) = β0 + β1AGE + β2PRIORFRAC

+ β2AGE × PRIORFRAC

to the same data fit in Table 3.12 using STATA’s glm command, we obtain the
results shown in Table 10.29.

In Table 10.29 we see that the additive interaction term, β̂3 = −0.008, with
a p-value of 0.109 indicates that there is not enough statistical evidence to sup-
port effect modification on the additive scale. This is in contrast to the finding in
Table 3.12 where the interaction on the logit scale was −0.057 with a p-value
of 0.022 indicating statistically significant effect modification on the multiplicative
odds scale.

The method for estimating and testing additive interaction from the fit of the
linear link model described above relies on direct estimation of the risk differences
and their standard errors. Other methods for exploring additive interaction have
been considered in the literature including most popularly the Relative Excess Risk
due to Interaction or RERI [Rothman et al. (2008); Hosmer and Lemeshow (1992)].
The RERI is defined by taking the IC and dividing it by the overall baseline risk
when neither risk factor is present, that is,

RERI = IC

R00
= R11

R00
− R01

R00
− R10

R00
+ 1

= RR11 − RR01 − RR10 + 1,

Table 10.29 Fit of the Linear Link Model Containing AGE, PRIORFRAC and Their
Interaction (Compared to Table 3.12)

Variable Coeff. Std. Err. z p 95% CI

PRIORFRAC 0.778 0.3805 2.04 0.041 0.323, 1.524
AGE 0.010 0.0024 4.10 0.000 0.005, 0.014
PRIORFRAC × AGE −0.008 0.0053 −1.60 0.109 −0.019, 0.002
Constant −0.455 0.1533 −2.97 0.003 −0.756, –0.155
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where RRXZ indicates the risk ratio of the outcome given the status of X and Z

compared with neither X nor Z being present. Here we test if RERI = 0, similar
to the test that IC = 0 for the existence of additive interaction. Standard errors for
testing the RERI = 0 have been developed using bootstrapping methods [Assmann
et al. (1996)] as well as with approximations using the delta method [Hosmer and
Lemeshow (1992); Lundberg et al. (1996)]. Implementation of the RERI in the
literature has typically involved substituting the odds ratio, ORXZ , in place of the
risk ratio in the formula [Hosmer and Lemeshow (1992); Richardson and Kaufman
(2009); Knol et al. (2007)]. This approach can lead to misleading results in cases
where the odds ratio is not a good approximation for the risk ratio [Kalilani and
Atashili (2006)].

When statistically exploring effect modification we have demonstrated that scale
matters (i.e., using a logit link can lead to different results than using a linear link).
Although not discussed here, the reader should be aware that the exploration of
interaction also can be influenced by the inclusion (or not) of confounding variables.
The way in which the confounding variables change results can also depend on
whether the logit or linear link is used. For further reading about additive versus
multiplicative interaction in the presence of confounding, the reader is referred to
Rothman et al. (2008), VanderWeele (2009), Darroch (1997), and Skrondal (2003).

EXERCISES

1. In the development of a propensity score for treatment in the GLOW study we
defined treatment as being under treatment on enrollment and during follow
up. Repeat the analysis using treatment on follow up.

2. Perform a full model assessment of the propensity score model in Table 10.1.

3. Perform a full model assessment of the propensity score model in Table 10.2.

4. Use the GLOW500_MISSING data and repeat the analysis of Section 10.4
by producing five imputed data sets using multiple imputations. How do
your results compare to those presented in Section 10.4? If there is a large
difference, why is this case and what does it suggest?

5. Produce diagnostic plots as in Chapter 5 for each of the five logistic regression
models fit to the imputed data sets from Problem 4. Is there evidence of issues
with the imputation models? Is there evidence of issues with the logistic
regression model used to analyze the data?

6. Consider the low birth weight study. What sample size would be needed in
a new study to be able to detect that the odds of a low birth weight baby
among women who smoke during pregnancy is 2.5 times that of women who
do not smoke, using a 5% type I error probability and 80% power?
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7. Consider the low birth weight study. What sample size would be needed
in a new study to be able to detect that the odds of a low birth weight
baby decreases at a rate of 10% per 10 pound increase in weight at the last
menstrual period, using a 5% type I error probability and 80% power?

8. Repeat Problem 6 assuming that you plan to use a model that contains age,
weight of the mother at the last menstrual period and race.

9. Repeat Problem 7 assuming that you plan to use a model that contains age,
smoking status during pregnancy and race.

10. Use MCMC simulation for the GLOW_RAND data set with WEIGHT5 as
the only predictor. Use three chains, a burn-in of 400 and thin every three
steps and check the convergence diagnostics for both intercept and slope. In
particular, consider trace plots, the ACF, the BGR statistic, MCSE and the
Geweke diagnostic statistic to confirm that the samples represent the posterior
distribution.

11. For the MCMC simulation of Problem 10, change the thinning and look at
the impact on the ACF. Explain the results.

12. Perform model building using MCMC and at least two additional predictors
from the GLOW_RAND data set along with WEIGHT and HEIGHT. For the
final model, perform diagnostic checks to ensure you have a viable MCMC
sample and then interpret your results in a Bayesian framework including a
credible interval for the odds ratios.

13. For the model of the Problem 12, use Bayesian residuals and/or posterior
simulated values to examine the model fit.

14. Explore using an alternative link function to predict the probability of death
using the same covariates as in the logit model in Table 4.27. As part of this
process see what model is suggested when you add Stukel’s two additional
covariates. Did prediction improve?

15. Explore using the log link model and the identity link model with the covari-
ates in Table 4.27. Is it possible to fit the model on the full data set? If not
what restrictions are required to be able to fit the models?
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Mittlböck, M., and Schemper, M. (2002). Explained variation for logistic regression – Small
sample adjustments, confidence intervals and predictive precision. Biometrical Journal ,
44, 263–272.



references 471

Molenberghs, G., and Verbeke, G. (2005). Models for Discrete Longitudinal Data, Springer,
New York.

Moolgavkar, S., Lustbader, E., and Venzon, D. J. (1985). Assessing the adequacy of the
logistic regression model for matched case-control studies. Statistics in Medicine, 4,
425–435.

Moore, D. S. (1971). A chi-square test with random cell boundaries. Annals of Mathematical
Statistics , 42, 147–156.

Moore, D. S., and Spruill, M. C. (1975). Unified large-sample theory of general chi-square
statistics for tests of fit. Annals of Statistics , 3, 599–616.

Muthen, B., and Muthen, L. (2008). Mplus User’s Guide, Muthen and Muthen, Los Angeles.

Nagelkerke, N., Smits, J., le Cessie, S., and van Houlwelingen, H. (2005). Testing goodness
of fit of the logistic regression model in case-control studies using sample reweighting.
Statistics in Medicine, 24, 121–130.

Neuhaus, J. M. (1992). Statistical methods for longitudinal and clustered designs with binary
data. Statistical Methods in Medical Research, 1, 249–273.

Neuhaus, J. M., Kalbfleisch, J. D., and Hauck, W. W. (1991). A comparison of cluster-
specific and population-average approaches for analyzing correlated binary data. Inter-
national Statistical Review , 59, 25–35.

Neuhaus, J. M., and Jewell, N. P. (1993). A geometric approach to assess bias due to omitted
covariates in generalized linear models. Biometrika , 80, 807–815.

Neuhaus, J. M., and Segal, M. R. (1993). Design effects for binary regression models fitted
to dependent data. Statistics in Medicine, 12, 1259–1268.

Ng, E., Carpenter, J., Goldstein, H., and Rasbash, J. (2006). Estimation in generalized
linear mixed models with binary outcomes by simulated maximum likelihood. Statistical
Modeling , 6, 23–42.

NHANES III Reference Manuals and Reports. (2012). Centers for Disease Control
and Prevention (CDC). National Center for Health Statistics (NCHS). National
Health and Nutrition Examination Survey Data. U.S. Department of Health and
Human Services, Centers for Disease Control and Prevention, Hyattsville, MD,
http://www.cdc.gov/nchs/nhanes/nhanes2011-2012/nhanes11_12.htm.

Ntzoufras, I. (2002). Gibbs variable selection using BUGS. Journal of Statistical Software,
7, 1–19.

Ntzoufras, I. (2009). Baysian Modeling using WinBUGS , Wiley, Hoboken.

Oleckno, W. A. (2008). Epidemiology: Concepts and Methods , Waveland Press Inc., Long
Grove, Illinois.

Osius, G., and Rojek, D. (1992). Normal goodness-of-fit tests for multinomial models
with large degrees-of-freedom. Journal of the American Statistical Association , 87,
1145–1152.

Osler, T., Glance, L. G., and Hosmer, D. W. (2010). Simplified estimates of the probability
of death after burn injuries: extending and updating the baux score. The Journal of
Trauma , 68, 690–697.

Pan, W. (2001). Akaike’s information criterion in generalized estimating equations. Biomet-
rics , 57, 120–125.

Pan, W. (2002). Goodness of fit tests for GEE with correlated binary data. Scandinavian
Journal of Statistics , 29, 101–110.



472 references

PASS Users Guide. (2012). PASS 11.0: Power and Sample Size for Windows. Number
Cruncher Statistical Software, Kaysville, UT.

Peduzzi, P. N., Concato, J., Kemper, E., Holford, T. R., and Feinstein, A. (1996). A simula-
tion study of the number of events per variable in logistic regression analysis. Journal
of Clinical Epidemiology , 99, 1373–1379.

Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M., and Fisher, M. R.
(1996). A survey of methods for analyzing clustered binary response data. International
Statistical Review , 64, 89–118.

Pigeon, J. G., and Heyse, J. F. (1999a). An improved goodness of fit test for probability
predication models. Biometrical Journal , 41, 71–82.

Pigeon, J. G., and Heyse, J. F. (1999b). A cautionary note on assessing fit of logistic
regression models. Journal of Applied Statistics , 26, 847–853.

Pinheiro, J., and Bates, D. (1995). Approximations to the log-likelihood function in the
non-linear mixed-effects model. Journal of Computational and Graphical Statistics , 4,
12–35.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using
Gibbs sampling. Available at http://mcmc-jags.sourceforge.net/.

Plummer, M. (2012). Package ‘rjags’. Available from http://cran.r-project.org/web/packages
/rjags/rjags.pdf.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence Diagnosis
and Output Analysis for MCMC. R News , 6, 7–11.

Poirier, D. J. (1973). Piecewise regression using cubic splines. Journal of the American
Statistical Association , 68, 515–524.

Prabasaj, P. M., Pennell, M. L., and Lemeshow, S. (2013). Standardizing the power of the
Hosmer-Lemeshow goodness of fit test in large datasets. Statistics in Medicine, 32(1),
67–80.

Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics , 9, 705–724.

Pregibon, D. (1984). Data analytic methods for matched case-control studies. Biometrics ,
40, 639–651.

Preisser, J., and Qaqish, B. (1996). Deletion diagnostics for Generalized Estimating
Equations. Biometrika , 83, 551–562.

Prentice, R. L. (1986). A case-cohort design for epidemiologic cohort studies and disease
prevention trials. Biometrika , 73, 1–11.

Prentice, R. L., and Pyke, R. (1979). Logistic disease incidence models and case-control
studies. Biometrika , 66, 403–411.

Pulkstenis, E., and Robinson, T. J. (2002). Two goodness-of-fit tests for logistic regression
models with continuous covariates. Statistics in Medicine 21, 79–93.

Pulkstenis, E., and Robinson, T. J. (2004). Goodness-of-fit test for ordinal response regres-
sion models. Statistics in Medicine, 23, 999–1014.

R Development Core Team. (2010). R: A Language and Environment for Statistical Com-
puting . R Foundation for Statistical Computing, Vienna, Austria.

Rabe-Hesketh, S., and Skrondal, A. (2008). Multilevel and Longitudinal Modeling Using
Stata , Second Edition, StataCorp LP, College Station, Texas.

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2002). Reliable estimation of generalized
linear mixed models using adaptive quadrature. The Stata Journal , 2, 1–21.



references 473

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2005). Maximum likelihood estimation of
limited and discrete dependent variable models with nested random effects. Journal of
Econometrics , 128, 301–323.

Raftery, A., and Lewis, S. (1992). One long run with diagnostics: implementation strategies
for Markov Chain Monte Carlo. Statistical Science, 7, 493–497.

Raftery, A., and Lewis, S. (1996). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Markov Chain Monte Carlo in Practice, edited by
W. Gilks, D. Spiegelhalter, and S. Richardson, Chapman and Hall, London.

Raghunathan, T., Lepkowski, J., Van Hoewyk, J., and Solenberger, P. (2001). A multivariate
technique for multiply imputing missing values using a sequence of regression models.
Survey Methodology , 27, 85–95.

Rao, C. R. (1973). Linear Statistical Inference and its Application, Second Edition, Wiley
Inc., New York.

Rasbash, J., Charlton, C., Browne, W., Healy, M., and Cameron, B. (2009). MLwiN Version
2.1. Centre for Multilevel Modelling, University of Bristol.

Richardson, D. B., and Kaufman, J. S. (2009). Estimation of the relative excess risk due to
interaction and associated confidence bounds. American Journal of Epidemiology , 169,
756–760.

Roberts, G., Rao, J. N. K., and Kumar, S. (1987). Logistic regression analysis of sample
survey data. Biometrika , 74, 1–12.

Robertson, C., Boyle, P., Hsieh, C. C., Macfarlane, G. J., and Maisonneuve, P. (1994).
Regression using fractional polynomials of continuous covariates: parsimonious para-
metric modeling (with discussion). Applied Statistics , 43, 429–467.

Robins, J. M., and Greenland, S. (1992). Identifiability and exchangeability for direct and
indirect effects. Epidemiology , 3, 143–155.

Rodriguez, G., and Goldman, N. (1995). An assessment of estimation procedures for mul-
tilevel models with binary responses. Journal of the Royal Statistical Society, Series A,
158, 73–90.

Rodriguez, G., and Goldman, N. (2001). Improved estimation procedures for multilevel
models with binary responses. Journal of the Royal Statistical Society, Series A, 164,
339–355.

Rosenbaum, P. R., and Rubin, D. B. (1983). The central role of the propensity score in
observational studies. Biometrika , 70, 41–55.

Rosenbaum, P. R., and Rubin, D. B. (1984). Reducing bias in observational studies using sub-
classification on the propensity score. Journal of the American Statistical Association ,
79, 516–524.

Rosner, B. (1984). Multivariate methods in ophthalmology with application to other paired-
data situations. Biometrics , 40, 1025–1035.

Ross, S. (1995). Stochastic Processes , Wiley, Hoboken.

Rothman, K. J., Greenland, S., and Lash, T.L. (2008). Modern Epidemiology , Third Edition,
Lippincott-Raven, Philadelphia.

Rotnitzky, A., and Jewell, N. (1990). Hypothesis testing of regression parameters in
semiparametric generalized linear models for cluster correlated data. Biometrika, 77,
485–497.

Royston, P. (2004). Multiple imputation of missing values. The Stata Journal , 4, 227–241.



474 references

Royston, P. (2005a). Multiple imputation of missing values: Update. The Stata Journal , 5,
188–201.

Royston, P. (2005b). Multiple imputation of missing values: Update of ice. The Stata Jour-
nal , 5, 527–536.

Royston, P. (2007). Profile likelihood estimation and confidence intervals. The Stata Journal ,
7, 376–387.

Royston, P. (2009). Multiple imputation of missing values: Further update of ice with an
emphasis on categorical variables. The Stata Journal , 9, 466–477.

Royston, P., and Altman, D. G. (1994). Regression using fractional polynomials of continu-
ous covariates: Parsimonious parametric modelling (with discussion). Applied Statistics ,
43, 429–467.

Royston, P., and Altman, D. G. (2010). Visualizing and assessing discrimination in the
logistic regression model. Statistics in Medicine, 29, 2508–2520.

Royston, P., Altman, D. G., and Sauerbrei, W. (2006). Dichotomizing continuous predictors
in multiple regression: A bad idea. Statistics in Medicine, 25, 127–141.

Royston, P., and Ambler, G. (1998). Multivariable fractional polynomials. Stata Technical
Bulletin , STB–43, 24–32.

Royston, P., and Ambler, G. (1999). Multivariable fractional polynomials: update. Stata
Technical Bulletin, STB–49, 17–22.

Royston, P., Ambler, G., and Sauerbrei, W. (1999). The use of fractional polynomials to
model continuous risk variables in epidemiology. International Journal of Epidemiol-
ogy , 28, 964–974.

Royston, P., and Sauerbrei, W. (2008). Multivariable Model Building: A Pragmatic Approach
to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Vari-
ables , John Wiley & Sons Ltd., Chichester.

Rubin, D. (1976). Inference and missing data. Biometrika , 63, 581–592.

Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys , John Wiley & Sons Inc.,
New York.

Ryan, L. M. (1992). Quantitative risk assessment for developmental toxicity. Biometrics ,
48, 163–174.

Ryan, T. (1997). Modern Regression Methods , Wiley Inc., New York.

Santner, T. J., and Duffy, D. E. (1986). A note on A. Albert’s and J. A. Anderson’s condi-
tions for the existence of maximum likelihood estimates in logistic regression models.
Biometrika , 73, 755–758.

SAS Institute Inc. (2009). SAS Guide for Personal Computers, Version 9.2, SAS Institute
Inc., Cary, NC.

Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in
medical statistics. Applied Statistics , 48, 313–329.

Sauerbrei, W., Meier-Hirmer, A., Benner, C., and Royston, P. (2006). Multivariable regres-
sion model building by using fractional polynomials: Description of SAS, STATA and
R programs. Computational Statistics and Data Analysis , 50, 3464–3485.

Sauerbrei, W., and Royston, P. (1999). Building multivariable prognostic and diagnostic
models: Transformations of the predictors using fractional polynomials. Journal of the
Royal Statistical Society, Series A, 162, 71–94.

Schaefer, R. L. (1983). Bias correction in maximum likelihood regression. Statistics in
Medicine, 2, 71–78.



references 475

Schaefer, R. L. (1986). Alternative estimators in logistic regression when the data are
collinear. Journal of Statistical Computation and Simulation, 25, 75–91.

Schafer, J. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall, New York.

Schafer, J. (1999). Multiple imputation: A primer. Statistical Methods in Medical Research,
8, 3–15.

Schafer, J., and Graham, J. (2002). Missing data: Our view of the state of the art. Psycho-
logical Methods , 7, 147–177.

Schlesselman, J. J. (1985). Case-Control Studies: Design, Conduct, Analysis , Oxford Uni-
versity Press, New York.

Schoenberg, I. J. (1946). Contribution to the problem of approximation of equidistant data
by analytic functions. Part A – On the problem of smoothing or graduation. A first
class of approximation formulae. Quarterly Journal of Applied Mathematics , 4, 45–99.

Schwartz, S. (2006). Committee on Assessing Interactions Among Social, Behavioral, and
Genetic Factors in Health. “Appendix E Modern Epidemiologic Approaches to Interac-
tion: Applications to the Study of Genetic Interactions.” Genes, Behavior, and the Social
Environment: Moving Beyond the Nature/Nurture Debate, The National Academies
Press, Washington, D.C.

Scott, A. J., and Wild, C. J. (1991). Fitting models under case-control or choice based
sampling. Journal of the Royal Statistical Association, Series B , 48, 170–182.

Self, S., and Liang, K. (1987). Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. Journal of the American Statistical
Association , 82, 605–610.

Shah, B. V., Barnwell, B. G., and Bieler, G. S. (2002). SUDAAN User’s Manual, Release
8.0.1. Research Triangle Institute, Research Triangle Park, NC.

Sheih, G. (2001). Sample size calculation for logistic and Poisson regression. Biometrika ,
88, 1193–1199.

Skinner, C. J., Holt, D., and Smith, T. M. F. (1989). Analysis of Complex Surveys , Wiley
Inc., New York.

Skrondal, A. (2003). Interaction as departure from additivity in case-control studies: A
cautionary note. American Journal of Epidemiology , 158, 251–258.

Skrondal, A., and Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear mod-
els. Journal of the Royal Statistical Society, Series A, 172, 659–687.

Snijders, T., and Bosker, R. (1999). Multilevel Analysis, An Introduction to Basic and
Advanced Multilevel Modeling , SAGE publications, London.

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures
of model complexity and fit. Journal of the Royal Statistical Society, Series B , 64,
583–639.

Spiegelman, D., and Hertzmark, E. (2005). Easy SAS calculation for risk or prevalence
ratios and differences. American Journal of Epidemiology , 162, 199–200.

SPSS for Windows, Release 20.0. (2012). SPSS Inc., Chicago.

Stallard, N. (2009). Simple tests for the external validation of mortality prediction scores.
Statistics in Medicine, 28, 377–388.

StataCorp. (2011). Stata: Release 12 . Statistical Software Stata Corporation, College Station,
TX.

Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations
with binary response. Biometrics , 40, 961–971.



476 references

Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Asso-
ciation , 83, 426–431.

Sturdivant, R. X. (2005). Goodness-of-fit in hierarchical logistic regression models. Unpub-
lished doctoral dissertation, University of Massachusetts, Amherst, MA.

Sturdivant, R. X., and Hosmer, D. W. (2007). A smoothed residual based goodness-of-fit
statistic for logistic hierarchical regression models. Computational Statistics and Data
Analysis , 51, 3898–3912.

Sturdivant, R. X., Rotella, J. J., and Russell, R. E. (2007). A smoothed residual based
goodness-of-fit statistic for nest survival models. Studies in Avian Biology , 34, 45–54.

Su, J. Q., and Wei, L. J. (1991). A lack-of-fit test for the mean function in a generalized
linear model. Journal of the American Statistical Association , 86, 420–426.

Surgeon General (1964). Smoking and Health. Report on the Advisory Committee to the
Surgeon General of the Public Heath Service, U.S. Department of Health, Education
and Welfare, Washington, DC.

Tarone, R. E. (1985). On heterogeneity tests based on efficient scores. Biometrika , 72,
91–95.

TenHave, T., and Ratcliffe, S. (2004). Deviations from the population-averaged versus
cluster-specific relationship for clustered binary data. Statistical Methods in Medical
Research , 13, 3–16.

Thomas, A. (2004). BRugs User Manual. Available from http://www.openbugs.info/w
/UserContributedCode.

Thomas, D. R., and Rao, J. N. K. (1987). Small-sample comparisons of level and power
for simple goodness-of-fit statistics under cluster sampling. Journal of the American
Statistical Association , 82, 630–636.

Tjur, T. (2009). Coefficients of determination in logistic regression models – A new pro-
posal: The coefficient of discrimination. American Statistician , 63, 366–372.

Tritchler, D. (1984). An algorithm for exact logistic regression. Journal of the American
Statistical Association , 79, 709–711.

Truett, J., Cornfield, J., and Kannel, W. (1967). A multivariate analysis of the risk of coronary
heart disease in Framingham. Journal of Chronic Diseases , 20, 511–524.

Tsiatis, A. A. (1980). A note on a goodness-of-fit test for the logistic regression model.
Biometrika , 67, 250–251.

van Buuren, S., Brand, P., Groothuis-Oudshoorn, C., and Rubin, D. (2006). Fully condi-
tional specification in multivariate imputation. Journal of Statistical Computation and
Simulation , 76, 1049–1064.

VanderWeele, T. J. (2009). Sufficient cause interactions and statistical interactions. Epidemi-
ology , 20, 6–13.

VanderWeele, T. J., and Vansteelandt, S. (2010). Odds ratios for mediation analysis for a
dichotomous outcome. American Journal of Epidemiology , 172, 1339–1348.

Venzon, D. J., and Moolgavkar, S. H. (1988). A method for computing profile-likelihood
based confidence intervals. Applied Statistics , 37, 87–94.

Verbeke, G., and Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data.
Springer, New York.

Vittinghof, E., and McCulloch, C. E. (2006). Relaxing the rule of ten events per variable in
logistic and Cox regression. American Journal of Epidemiology , 165, 710–718.



references 477

Vonesh, E., Chinchilli, V., and Pu, K. (1996). Goodness-of-fit in generalized nonlinear
mixed-effects models. Biometrics , 52, 572–587.

Weesie, J. (1998). Windmeijer’s goodness-of-fit test for logistic regression. Stata Technical
Bulletin , STB–44, 22–27.

Welsch, R. (1986). Discussion of paper by S. Chatterjee and A. S. Hadi. Statistical Science,
1, 403–405.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrika ,
50, 1–25.

White, H. (1989). Estimation Inference and Specification Analysis , Cambridge University
Press, New York.

White, I., Royston, P., and Wood, A. (2011). Multiple imputation using chained equations:
Issues and guidance for practice. Statistics in Medicine, 30, 377–399.

Whitemore, A. S. (1981). Sample size for logistic regression with small response probability.
Journal of the American Statistical Association , 76, 27–32.

Williams, D. (1975). The analysis of binary responses from toxicological experiments involv-
ing reproduction and teratogenicity. Biometrics , 31, 949–952.

Williamson, E., Morely, R., Lucas, A., and Carpenter, J. (2011). Propensity scores: From
naı̈ve enthusiasm to intuitive understanding. Statistical Methods in Medical Research,
21, 273–293.

Windmeijer, F. A. G. (1990). The asymptotic distribution of the sum of weighted squared
residuals in binary choice models. Statistica Neerlandica , 44, 69–78.

Wolfe, R. (1998). Continuation-ratio models for ordinal response data. Stata Technical Bul-
letin , STB-44, 18–21.

Wolfinger, R., and O’Connell, M. (1993). Generalized linear mixed models: a pseudo-
likelihood approach. Journal of Statistical Computation and Simulation, 48, 233–243.

Wong, G., and Mason, W. (1985). The hierarchical logistic regression model for multilevel
analysis. Journal of the American Statistical Association , 80, 513–524.

Wood, A., White, I. and Royston, P. (2008). How should variable selection be performed
with multiply imputed data. Statistics in Medicine, 27, 3227–3246.

Xu, H. (1996). Extensions of the Hosmer-Lemeshow goodness-of-fit test. Unpublished Mas-
ters Thesis, School of Public Health and Health Sciences, University of Massachusetts,
Amherst, MA.

Zadnik, K., Mutti, D. O., Friedman, N. E., and Adams, A. J. (1993). Initial cross-sectional
results from the Orinda Longitudinal Study of Myopia. Optometry and Vision Science,
70, 750–758.

Zadnik, K., Satariano, W. A., Mutti, D. O., Sholtz, R. I., and Adams, A. J. (1994). The
effect of parental history of myopia on children’s eye size. Journal of the American
Medical Association , 271, 1323–1327.

Zeger, S., and Liang, K. (1986). Longitudinal data analysis for discrete and continuous
outcomes. Biometrics , 42, 121–130.

Zeger, S. L., Liang, K-Y., and Albert, P. A. (1988). Models for longitudinal data: A gener-
alized estimating equation approach. Biometrics , 44, 1049–1060.

Zhang, B. (1999). A chi-squared goodness-of-fit for logistic regression models based on
case-control data. Biometrika , 86, 531–539.

Zhang, H., Lu, N., Feng, C., Thurston, S., Yinglin, X., Zhu, L., and Tu, X. (2011). On fitting
generalized linear mixed-effects models for binary responses using different statistical
packages. Statistics in Medicine, 30, 2562–2572.



478 references

Zhang, J., and Yu, K. F. (1998). What’s the relative risk? Journal of the American Medical
Association , 280, 1690–1691.

Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary
data. American Journal of Epidemiology , 154, 702–706.



Index

Academic Technology Services (ATS) web site,
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Acceptable discrimination, 177. See also
Receiver Operating Characteristic (ROC)
curve

Adaptive quadrature, 351
estimation of, 322–323, 326–327

Adaptive rejection sampling, 413
Additive difference, 79
Additive interaction, 448

estimating and testing, 451–456
Additive scale, multiplicative scale vs., 448–451
Adjacent-category logistic model, 290–291,

294–296
Adjusted logistic regression coefficient,

interpretation of, 443–444
Adjustment, statistical, 64–67, 69–73, 76–77,

81–82, 209–211
Adolescent Placement Study (APS)

data set, 26–27
multinomial assessment of fit and

interpretation, 284–289
multinomial modeling, 279–283
ordinal logistic modeling, diagnostics,

proportional odds assumption, 305–310
Aftercare placement study, 272–278
Aggregated data sets, 165
Akaike Information Criterion (AIC), 120–121,

134, 136–339
Algorithm performance checks, 414
Alpha level, choosing, 126–127
Alternate coding, 55. See also Coding
Alternative link functions, roles of, 436
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Alternative ordinal score, 304–305
Analysis of covariance, 65
Analysis of covariance model, 228
Analysis of variance table, 11
Approximate methods, 387
APS data, 26–27. See also Adolescent

Placement Study (APS)
Area under the ROC curve, 173–182, 206. See

also ROC analysis
Assessment-of-fit methods

for multinomial logistic regression model,
283–289

in 1–M matched study, 248–251
Association measure, odds ratio as, 52, 54
Assumed variance, 327
Asymmetry, measurement of, 19–20
Asymptotically equivalent, 21
Asymptotics, 155, 157. See also m-asymptotics;

n-asymptotics
Autocorrelation function (ACF), 415–416
Auto-regressive correlation structure

(AR,AR(1)), 318, 340, 357–358

Backward elimination, 127–129, 134, 138–139
Bands, plotted confidence, 78
Baseline logit model, 290–291

odds ratios for, 294
Bayes factor (BF ), 426–428
Bayesian analysis, 409

example of, 419–433
Bayesian approach, advantage of, 425
Bayesian credible interval, 421
Bayesian framework, modeling within, 425–426
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Bayesian inference Using Gibbs Sampling
(BUGS) software package, 409, 413. See
also OpenBUGS statistical package

Bayesian logistic regression models, 409,
410–411

using GLOW 500 Study data, 414
Bayesian methods

for logistic regression, 408–433
software for, 409

Bayesian perspective, on multiple imputation,
397

Bayesian residuals, 430–433
Bayes’ theorem, 229–230, 245, 411
Best Linear Unbiased Predictions (BLUPs), 330
Best model, choosing a, 89
Best subsets linear regression, 136
Best subsets logistic regression, 133–139

advantage of, 139
applying (weighted least squares) best subsets

linear regression software, 134, 139
Best subsets selection, 94

using Score test method, 137
Between-chain variability (B), in MCMC

simulations, 418
Between-cluster correlation, 316
Bias. See also Best Linear Unbiased Predictions

(BLUPs); Estimated Best Linear Unbiased
Predictions (EBLUPs); Median unbiased
estimator (MUE)

in discriminant function estimators, 45–46
in maximum likelihood, 387
in maximum likelihood estimators, 391

Binary data, correlated, 314–315
Binary models, fitting separate, 282–283

unconstrained continuation-ratio model,
295–296

when proportional odds assumption is not
satisfied, 309

Binary outcome models, 273
cluster-specific, 315

Binary outcome variable, 1, 229, 270, 278, 283
Binary regression models, link functions for,

434–441
linear link, 451–453

Binary variable coding, for the conditional
likelihood function construction, 271

Binomial errors, 186
Biological interaction, 448
Bootstrapping methods, 82, 380, 456
Boxplots, of standardized residuals, 370–371
Brant’s Wald test, 302, 306
Breslow–Day test, 85
Brooks–Gelman–Rubin (BGR) statistic,

417–418

Burn in iterations, 414–416, 419
Burn Injury Study, 27

BURN1000 data, 27
BURN EVAL 1 data set, 205–207
BURN EVAL 2 data, 207–211
classification table for, 173
diagnostic statistics and, 201–202
discrimination for the model fit to, 181
evaluating model fit to, 161–162
for fitting link functions, 437–441
fitting multivariable model to, 116
main effects model for, 124
1–3 matched data set from, 260–267
plots related to, 220–222
using purposeful selection in, 115–124
results from MFP cycle fits applied to,

143–144

Calibration, of models, 186
Case-control

data, analysis of stratified, 232
likelihood function, 229
pairs, uninformative, 246
studies, 229–233

Case-wise
diagnostic measures, computing, 253
diagnostic statistics, 308
diagnostic tools, 354

Categorical independent variables, included or
excluded from models, 41

Categorical variables, examining scale of
continuous covariate, 95–96

Caterpillar plot, 331–332
Cell coding, reference, 55, 57–59. See also

Coding
Cell counts, 145–146
Chain convergence, checking, 418–419
Chi-square (χ2) distribution, 13–14, 158
Chi-square goodness of fit tests, 232
Chi-square random variable, 14
Chi-square (χ2) statistic, Pearson, 135–136,

155–157, 163
Chi-square (χ2) tests, 157

likelihood ratio, 90
Pearson, 90, 157

Classification, 18. See also Cross-classification
sensitivity of, 171–172

Classification tables, 169–173
for GLOW Study, 171–175
sensitivity/specificity for, 175

Closed test method, 343
Closed test procedure, 98, 140
Clumping, in MCMC simulations, 415–416
Cluster effects, 330
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Cluster estimates, 330–331
Cluster influence, measures of, 362–363
Cluster-level covariates, 313, 317, 329,

354
Cluster-level leverage, 362
Cluster-level variables, 330
Clusters, 241

influential, 371–374
outlying, 372–374

Cluster-specific
binary outcome model, 315
coefficients, 335–336
covariates, 313
estimates, 327
fitted values, 365–366

Cluster-specific models, 315–317, 320–321,
326–333, 374

alternative estimation methods for, 333–334
assessment of fit of, 354–365
with correlated data, 344–350
fitting, 351
logistic normal, 315
population average model vs., 334–337
random effects in, 367

Cluster-specific odds ratio, estimate of, 328
Cluster variance estimate, 329
Coded design variables, 58

methods for, 55
Coding. See also Cell coding

alternate, 55
binary variable, 271
deviation from means, 55–56, 59–62
dichotomous, 279–280
effect of, 54–56
of outcome variables, 293

Coefficient of discrimination, 185
Coefficients. See also Intracluster correlation

coefficient (ICC)
adjusted, 210–211
changes in the estimated values of, 191
changing signs of, 301
cluster-specific, 335–336
estimated, 21, 37–39, 58–62, 71, 145–147,

201, 210–211, 241–242, 258, 266, 294
estimated interaction, 454–455
estimated slope, 349
estimates of model, 212
intercept, 208
interpretation of adjusted logistic regression,

443–444
interpreting for correlated-data analysis,

323–337
logistic regression, 403–404
population average, 336

regression, 241
significance of, 237
significance of estimated, 272–278
univariable, 71
univariable estimated, 72
vector of, 244–245
vector of estimated, 237

Coefficient significance
likelihood ratio test for, 276
testing for, 10–15

Cohort studies, 227–229
Collaborative Longitudinal Evaluation of

Ethnicity and Refractive Error (CLEERE)
Study, 31

Collinearities, among independent variables, 149
Common odds ratio assumption, 85
Comparative residuals, 368
Comparative standard errors, 368–369
Complementary log–log model, 435–436, 438
Complete separation problem, 147–149
Complex sample survey data, fitting logistic

regression models to, 233–242
Complex survey data, 236–237
Concordance correlation, 359, 367
Concordant pairs, 246
Conditional distributions

in Bayesian logistic regression models, 411
in MCMC simulations, 413
of outcome variables, 7

Conditional exact maximum likelihood estimate
(CMLE), 390–391, 394

Conditional likelihood, 244–245, 388
full, 247

Conditional likelihood analysis, 244–245
Conditional likelihood function, 271
Conditional log-likelihood, maximizing, 247
Conditional maximum likelihood estimates, 247.

See also Conditional exact maximum
likelihood estimate (CMLE)

Conditional maximum likelihood estimators, 22
Conditional maximum likelihood point estimates,

exact, 390–391
Conditional mean, 2–7

dichotomous outcome variable and, 5–6
estimates of, 5–6

Conditional model, 315
Conditional probability, 260, 270–271

estimated, 249
Confidence bands, 75, 82, 220–222
Confidence interval (CI) endpoints, 63–64

calculating, 56
Confidence interval estimates, 215, 267, 440
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Confidence interval (CI) estimation, 15–20,
53–54

for the multivariable model, 42–45
Confidence interval (CI) estimators, 16

likelihood-based, 19
logit, 43–45
for the multivariable model, 42–45
profile likelihood, 43, 54
Wald-based, 380

Confidence intervals (CIs), 80, 209, 212–213,
258, 269, 392

endpoints of, 16–17, 276
for intracluster correlation, 345
log-likelihood function–based, 18
for odds ratios, 62, 274

Confidence limits, 75–76
for odds ratios, 59

Confounders, 64, 131, 237. See also Controlling
for confounding

mediators vs., 441–443
Confounding, 90, 377–379

controlled, 447
controlling for, 379
residual, 384
uncontrolled, 447

Confounding variables, 456
Conservative effective sample size, in MCMC

simulations, 418
Constant covariates, 261
Constant odds ratios, 82
Constant term, as estimator, 16
Constrained baseline logistic model, 291,

294–295
Constrained multinomial logistic regression

model, 310
Constrained ordinal models, 302
Contingency table(s), 90

approach, xiii
frequency of zero in, 145–146

Contingency table analysis
methods of, 161–162
stratified, 50

Continuation-ratio logistic model, 290–291,
295–297

Continuous covariates, 69–71, 78, 139–140,
253, 278, 281, 324

checking the scale of, 338, 342, 347
dichotomizing, 112

Continuous covariate scale, methods to examine,
94–107

Continuous independent variables, 62–64
Continuous outcome model, 301
Continuous outcomes, regression based on, 298
Continuous response variable, 297–298

Continuous variables, 106–107
univariable analysis of, 91

Contribution to the likelihood function, 8
Controlled confounding, 447
Controlling for confounding, 64, 67
Convergence, of MCMC chains, 417–418. See

also Chain convergence
Convergence issues, 351–352
Cook’s Distance diagnostic, 191–192, 197,

371–372. See also Delta-beta-hat percent
asymptotic distribution of, 193
plotting of, 196, 255

Coronary heart disease (CHD)
frequency by AGE group, 6
table, 3–5

Correlated binary data
analysis of, 314–315
logistic regression models for, 375
modeling, 374

Correlated categorical response data, xiv
Correlated data, 313–315

cluster-specific model with, 344–350
logistic regression modeling with, 337–353
population average model with, 339–344

Correlated-data analysis
choosing model for, 338–339
goals of, 313–314
interpreting coefficients for, 323–337
logistic regression models for, 313–375

Correlated-data logistic regression models,
estimation methods for, 318–323

Correlated-data modeling software, 314–315
Correlated data models, Hosmer–Lemeshow test

and, 354
Correlation(s)

concordance, 359, 367
ignoring, 325
intracluster, 327, 335–336, 351, 354
within- and between-cluster, 316

Correlation estimates, 357
Correlation structures

autoregressive, 340
checking, 358
choosing/selecting, 318–320, 339, 344, 359
exchangeable, 325

Covariance(s)
analysis of, 65
estimators of, 37–38
significance of, 286–287
within-cluster, 319, 320

Covariance matrix estimator, 46
Covariance matrix/matrices, 319

estimated, 17, 275
measures for comparing estimated, 359
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Covariance parameter, 350
Covariate(s), 1

adjusted probability, 82
categorizing, 103
checking the scale of continuous, 342, 374
cluster-level, 313, 317, 329, 354
cluster-specific, 313
collapsing categories for, 341
constant, 261
continuous, 69, 139–140, 253, 278, 281, 324,

338
dichotomous, 198–199, 218, 261, 341
effects, estimating and interpreting, 374
estimated odds ratio for, 258–259
events per, 402, 407–408
identifying dependencies among, 149–150
interactions among, 262
necessity of, 76–77
overlapping distributions of, 147–148
parameterization of, 96
partitioning into g regions, 163
patterns, 154, 157, 188–200, 197–198,

232–233
probability distribution of, 230
purposeful selection of, 70, 89–124
in regression sampling, 227–228
scale, methods to examine continuous, 94–107
selecting/checking scale using multivariable

fractional polynomials, 139–144
subject-specific, 317
time-invariant, 313
time-varying, 313

Covariate selection
alternative methods of, 124–144
methods, purposeful, 344
stepwise, 125–133

Coverage, of an interval estimator, 18
Credible interval

Bayesian, 421
equal-tailed, 421

Cross-classification, 273, 277, 293, 389, 392
of DEATH by FLAME, 83
by vital status, 83

Crude odds ratio, 82, 86
Ĉ statistic. See Hosmer–Lemeshow goodness of

fit statistic (Ĉ)
Cubic spline covariates, restricted, 101
Cubic splines, restricted, 105–106
Cubic splines model, restricted, 118–119
Cubic spline variables, 101
Cumulative distributions, 6
Cumulative distribution function, 298
Cumulative sums of residuals, tests based on,

164

Cutpoints
defining, 170
optimal, 174–176

Data
correlated, 313–315
ignorable, 396
missing, 314, 395–401
unavailable, 235–236

Data analysis, choosing model for correlated,
338–339

Data collection, retroactive, 201
Data sets

aggregated, 165
developmental, 168
imputed, 398
modeling of, 10
used in examples and exercises, 22–32
validation, 168

Data vectors, 245
DBETAC i statistic, 364
DCLS i statistic, 362–363
Decile of risk goodness of fit test, extension of,

283–284
Decile of risk group strategy, 160–162

disadvantage of, 162–163
likelihood ratio test using, 163

Decile of risk statistic, 440
Decile of risk test, 168, 205, 239–240
Decile of risk type tests, grouped, 167
Decile size, imbalance in, 161
Degree of freedom statistic, 166
Degrees of freedom, 41, 139

for assessing model performance, 154
inferences and, 397–398
for multinomial goodness of fit test, 304–305
between variables, 125

Delete/refit procedure, 285
Deletion, of variables, 127
Delta-beta-hat percent, 67, 349, 445
Dependent variables, values of, 135
Design-based methods, 240–242
Design matrix, 187. See also X matrix
Design variable method, 109, 110
Design variable(s), 35, 94–96, 398–399

coding of, 56, 58–62
collections of, 36
for multiple logistic regression model, 35–36
for polychotomous independent variables,

57–58
quartile, 103–104, 110, 112–113, 117
quartile-based, 121
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Design variables method, 338, 347
Developmental data set, 168
Deviance (D), 12–13, 155–157

with and without independent variable, 13
Deviance Information Criteria (DIC), in

Bayesian analysis, 428–429
Deviance residual, 156
Deviation from means coding, 55–56, 59–60, 62

estimated coefficients obtained using, 61
Diagnostic(s)

evaluation, 240
influence, 197, 250
interpreting the value of, 192
logistic regression, 186–292
regression, 186
residuals, 368
standard errors, 368–369
stratum specific totals of, 250

Diagnostic statistics, 191–193, 199, 240, 248,
250–251, 338

Burn Injury Study data and, 201
calculating, 285–286
case-wise, 308
data and values of, 264–265
estimating matched set effect on, 255
for multinomial logistic regression model,

283–289
statistical package calculation of, 188
subject-specific, 359–360

Diagonal matrix, 319
Dichotomous coding, 279–280
Dichotomous–continuous covariate model,

70–71
Dichotomous covariates, 198–199, 261, 341

estimating odds ratios for, 218
Dichotomous independent variables, 21–22,

50–56
Dichotomous outcome variable, 1, 5–8

regression analysis with, 7–8
Dichotomous variable(s), 69–71, 170

odds ratio and, 56
Difference data approach, to 1–1 matched

design, 250–251
Diffuse prior distribution, 423
Direct effect, 443
Discrete choice model, 269. See also

Multinomial logistic regression model
Discrete nominal scale variables, 62
Discriminant analysis, 18
Discriminant analysis model, 170
Discriminant function

analysis, 20–22
approach, assumptions for, 45–46
method, 21

Discriminant function estimate, univariable
linear, 91

Discriminant function estimators
bias in, 45–46
maximum likelihood estimators vs., 21–22
in the multivariable case, 45–46

Discriminant function models, normal theory,
231

Discrimination. See also Coefficient of
discrimination

levels of, 176, 178–181
visual methods for assessing, 178

Distribution functions
cumulative, 298
for use in dichotomous outcome variable

analysis, 6–7
Distributions

in Bayesian logistic regression models,
410–411

of maximum likelihood estimators, 18
mixture, 345

Distribution theory, 192
relevant, 157

D matrix, 234
Due regression sum-of-squares (SSR), 11–12.

See also Sum-of-squares (S)
Dummy variables, 36. See also Design variables

Effect
direct, 443
estimates of, 440–441
of independent variables, 444
indirect, 443, 445
total, 443

Effective number of parameters, in Bayesian
analysis, 428

Effective sample size, in MCMC simulations,
418

Effect modification, 64, 455–456, 448, 450
statistically testing for, 451

Effect modifier, 68
Empirical residuals, 320
Endpoints

of confidence intervals, 16, 56, 63–64, 276
exponentiating, 54
of likelihood intervals, 19
of Wald-based confidence intervals, 19, 42–43

Equality, test for, 296
Equal-tailed credible interval, 421
Error (e), 7

hypothesis testing, 167
Errors, binomial, 186
Estimated Best Linear Unbiased Predictions

(EBLUPs), 330
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Estimated coefficients, 37–39, 49, 58–62, 71,
145–147, 201, 266, 241–242, 258, 294

adjusted coefficients vs., 210–211
changes in the values of, 191
drawing inferences from, 49
obtained using deviation from means coding,

61
significance of, 272–278
vector of, 237

Estimated conditional probability, 249
Estimated covariance matrix/matrices, 17, 275

measures for comparing, 359
Estimated expected risk frequencies, 160–161
Estimated expected value, 85
Estimated frequency, 85
Estimated interaction coefficient, 454–455
Estimated logistic probability, 17, 44
Estimated logistic regression coefficients, 86

exponentiation of, 278
Estimated logit

estimating the variance of, 43–44
95 percent confidence interval for, 45

Estimated odds ratio(s), 56–57, 86, 214,
216–219, 267, 286, 325, 383–384

for covariates, 258–259
tabulation of, 84

Estimated odds ratio interpretation, 327–328
for a continuous variable, 64

Estimated population average odds ratio, 326
Estimated probabilities, 157–158, 170–172, 189,

194–196, 208–209, 210, 222, 303, 333
of death, 80–81, 116, 162
distributions of, 176–181
histograms of, 174–176
importance of, 77
lack of fit diagnostic vs., 263–264
leverage values vs., 262–263

Estimated propensity score, 379–380, 382
Estimated slope coefficients, 275, 349
Estimated standard error(s), 17, 59, 62, 149,

231–232, 274, 278, 325, 327
of pooled log-odds ratio estimator, 380

Estimated stratum-specific probability, 262
Estimates. See also Estimation; Estimation

methods; Estimator(s)
cluster, 330–331
cluster-specific, 327
conditional maximum likelihood, 247
confidence interval, 215, 440
correlation, 357
exact conditional maximum likelihood point,

390–391
fixed, 334
linear, 241

model-based, 339
odds ratio, 440
parameter, 302
random-effects, 333–334
sandwich, 320, 325, 339, 358
shrinkage in, 183–184

Estimates of effect, 440–441
Estimating equations, 319
Estimation

adaptive quadrature, 322–323, 326–327
of covariant effects, 374
Markov Chain Monte Carlo, 353
maximum likelihood, 228
quadrature, 323
of treatment effect, 377–387

Estimation methods
additional, 20–22, 45–46
choice of, 322–323
classes of, 321–322
for cluster-specific models, 333–334
for correlated-data logistic regression models,

318–323
numerical issues in, 353
pseudolikelihood, 321–323, 333–334,

352–353
quasilikelihood, 321, 352–353

Estimator(s)
covariance matrix, 46
discriminant function, 45–46
information matrix, 272
information sandwich, 320, 325
of the logit, 17
logit-based, 83, 86
Mantel–Haenszel, 83–86
maximum likelihood, 46, 231, 244, 248, 271
pooled log-odds ratio, 380
robust, 320, 325, 339, 358–359
stratified odd ratio, 86
Wald-based confidence interval, 380

Events per covariate, 402, 407–408
Events per parameter, 407–408
Exact conditional maximum likelihood point

estimate, 390–391
Exact distribution, of p sufficient statistics,

388–393
Exact logistic models, results of fitting, 394
Exact logistic regression, 377
Exact methods, 393

for logistic regression models, 387–395
in statistical software packages, 388

Examination process, iterative, 284
Excellent discrimination, 177. See also Receiver

Operating Characteristic (ROC) curve
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Exchangeable correlation, 318, 357–358
assumption, 343–344
structure, 318–320, 325

Expected frequencies, 207, 284
Exponentiation

of endpoints, 54
of estimated logistic regression coefficients,

278
of logit difference, 51–52

External validation, assessment of fit via,
202–211

Extrabinomial variation, 201

Fagerland–Hosmer goodness of fit test (statistic),
304–305

APS application, results of, 306
F -corrected test statistic, 240
F distribution, 234–235
Fears–Brown model, 232
Final model, 93

preliminary, 282
Finite population correction factor, 234
Firth estimates, 392–393
Firth’s modified likelihood function, 391–392
Fisher’s exact test, 388
Fit assessment, in Bayesian analysis, 429–430
Fit-assessment methods

for multinomial logistic regression model,
283–289

in 1–M matched study, 248–251
Fitted logistic regression model, 58, 60, 85–86,

104
interpretation of, 49–88
results from, 212–223

Fitted logit functions, 79
Fitted logit values, plotting, 103
Fitted models, 8–14. See also Measure of fit;

Model fit
assessing, 162
to Burn Injury Study data, 181
estimated logits for, 17
interpretation of, 49, 77–82
logistic regression, 18
logits for, 80
log-likelihood of, 19
multiple logistic regression, 37–39, 40–45
plot of, 105–106

Fitted multiple logistic regression model, 77–82
Fitted restricted cubic spline model, 106
Fitted values, 18, 80, 153

graphical presentations of, 77
of multiple logistic regression model, 37, 39
presentation and interpretation of, 77–82
Wald-based confidence intervals for, 17–18

Fitting. See also Goodness of fit; Maximum
likelihood fit; Summed measure of fit

adjusted, 209–210
assessing, 153–225
of cluster-specific models, 351
of exact logistic models, 394
for multiple logistic regression model, 37–39
numerical problems related to, 145–150
reduced model, 40
of separate binary models, 282–283
of separate logistic models, 282–283
of unconstrained continuation-ratio logit

model, 296
of univariable models, 260

Fixed estimates, 334
Forward selection, 127–129
Four-category outcome variable, 272–273
Four-level categorical variable, for examining

scale of continuous covariate, 95–96
Four-step method/process, 50–56, 58, 61, 68,

73–74, 119, 214–216, 218–219, 287, 307,
440

Fractional polynomial analysis, 241, 347–348
results of, 117–118
weighted, 238

Fractional polynomial model
one-term, 98, 117–120, 143, 262
two-term, 98, 104–106, 113, 117–119,

141–143
Fractional polynomial procedure, multivariable,

139–144
Fractional polynomials, 113, 121, 342–343

multivariable models and, 99
results of using, 104–105
selecting/checking scale of covariates using

multivariable, 139–144
Fractional polynomials method, 94, 96–99, 109,

111, 382
STATA software package and, 99

Frequency
estimated, 85
estimated expected risk, 160–161
expected, 207, 284

Full conditional likelihood, 247
Full log-likelihood, for cluster-specific model,

321
Fully conditional specifications (FCS), 397
Furnival–Wilson algorithm, 133

Gauss–Hermite quadrature, 321–322
Generalized estimating equations (GEE), 318

estimation, 343–344
method/model, 319–320, 323, 339, 353,

355–356, 381, 386
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Generalized logistic model, parameters of,
166–167

Generalized Score statistics, 320
Geometric mean odds, 60–61
Geweke test, 418–419
Gibbs sampler, 397, 413
Gibbs sampling, 409
Global Longitudinal Study of Osteoporosis in

Women (GLOW) Study
Bayesian logistic regression models using, 414
GLOW500 data set, 24–26, 38–39
ALR3 GLOW BONEMED data set, 382
classification table for, 171–175
classifying the observations of, 170–173
code sheet for variables in, 25
decile of risk strategy and, 160–162
dichotomous independent variable in, 52–53
1-1 matched data set from, 251–259
mediation testing and, 445–448
model, estimated probabilities from, 176
multiple imputation and, 398
plots related to, 194–196
polychotomous independent variable in, 57–58
using purposeful selection in, 107–115
results from MFP cycle fits applied to,

140–143
ROC Curve for, 176–178
“rule of 10” and, 408
sample size with, 402–408
stepwise variable selection procedure applied

to, 129–132
two-level models and, 323–337

Goodness of fit, 11
assessing, 153–154
summary measures of, 154–186

Goodness of fit statistics
advantage of, 162
Hosmer–Lemeshow, 157–158
Pearson chi-square, modifications of, 163–164
for population average models, 355–356

Goodness of fit tests. See also Goodness of fit
statistics.

chi-square, 232
in 1-1 Matched studies, 259
for the multinomial logistic model, 283–284,

304–305
for proportional odds model, 303
use of, 169

Graphical approach, to diagnostics, 192
Grizzle, Starmer, and Koch (GSK) method,

20–21
Grouped decile of risk type tests, power of, 167
Grouping strategies/methods, for goodness of fit,

157–158, 160, 163

Group mean, 59

Groups

in assessment of population average model fit,

354–355

specifying the number of, 168–169

G statistic, 13, 15, 39–41

Hat matrix (H), 187–188, 249–250, 360, 362

Heidelberger–Welch stationarity test, 419

Hierarchical models, 316

Highest Density Interval (HDI), 421

Highest Posterior Density (HPD) interval, 421

Histograms, of estimated probabilities, 174–176

H matrix. See “Hat” matrix (H)

Homogeneity, assessment of odds ratio, 86

Homogeneity assumption, 84–85

Hosmer, David W., Jr., xvi

Hosmer–Lemeshow goodness of fit statistic (Ĉ),

158–164, 204, 354

calculation of, 161

Hosmer–Lemeshow tests, 157–169, 204

with the cluster-specific model, 365–366

in correlated data setting, 354

extension of, for multinomial model, 303–304

Hsieh’s correction factor, 406–407

Hypothesis testing error, 167

ICU (intensive care unit) study data set, 22–23

Identity function, 50, 435–436

Identity link models, 436–437, 439–440

Ignorable data, 396

Important variables, including, 92

Imputation chain equations (ICE), 397

Imputations, number of, 400–401

Imputed data sets, fitting a model to, 398

Independence assumption, 313

Independent correlation structure, 318

Independent variables, 1, 13, 36

categorical, 41

collinearities among, 149

dichotomous, 21–22, 50–56

estimated coefficients for, 49

estimating effect of, 444

included in models, 89

outcome variable vs., 442–443

polychotomous, 56–62

relationship with outcome variables, 2

univariable analysis of, 90
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Indicator variables
in assessment of population average model fit,

354–355
in Bayesian analysis, 426–427

Indirect effect, 443, 445
Inferences, degrees of freedom and, 397–398
Influence diagnostic, 197, 250
Influence diagnostic statistic, values of, 264
Influence statistics, 255–256, 360–361, 362–363
Influential clusters, 371–374
Information matrix, estimator of, 272
Information sandwich estimator, 320, 325. See

also Sandwich estimates
Interaction model, 72–73, 114–115
Interaction(s). See also Statistical interaction

among covariates, 262
assessments, 448
coefficients, estimated, 454–455
contrast, 453
estimating and testing additive, 451–456
among main effects, 281–282
of matching variables with model covariates,

262
multiplicative, 451
numerical problems with, interaction terms,

146
purposeful selection of, 259
selecting, 124, 343
statistical significance of, 93
stepwise selection of, 132–133
submultiplicative, 455
terms, 92–93, 132
among variables, 253, 348
variables, 92–93

Intercept coefficient, 208
Intercept only model, 126, 251
Intercepts

predicted, 331
random, 316–317, 347, 348–349

Interval estimators, 15–20
Interval Odds Ratio (IOR), 328–330
Intracluster correlation coefficient (ICC), 241,

327, 334–336, 351, 354
confidence intervals for, 345

Iterations, “burn in” period of, 414–415, 419
Iterative examination process, 284
Iterative methods, 9

Jittered values, 178
John Wiley web site, data sets available at, xiv
Joint hypotheses, in population average models,

320
Just Another Gibbs Sampler (JAGS) software

package, 409, 413

Knot placement, distribution percentiles defining,
102

Knots, spline functions and, 99–106
Kuo–Mallick (KM) approach, 426–428

Lag, 415–416
Lawless–Singhal method, 133–134
Least squares estimators, 20
Least squares method, 8
Lemeshow, Stanley, xvi. See also

Hosmer–Lemeshow entries
Leverage(s), 360–362

cluster-level, 362
magnitude of, 189–190

Leverage values, 187, 249, 253–254
estimated probability vs., 262–263

Likelihood, 13
Likelihood-based confidence interval estimator,

19
Likelihood equations, 9, 231, 271, 436

of multiple logistic regression model, 37
Likelihood function(s), 8–9

case-control, 229–230
contribution to, 8
extension of, 228
Firth’s modified, 391–392
modification of, 231–232
of multiple logistic regression model, 37
in regression sampling, 228
stratum-specific, 228–229

Likelihood intervals, 19
endpoints of, 19

Likelihood ratio, 12
Likelihood ratio chi-square test, 90
Likelihood ratio test(s), 12, 14–15, 18, 39–41,

86, 111, 114–115, 125, 231, 261–262, 276,
280, 295, 345, 350, 353

approximate, 302
using deciles of risk, 163
partial, 97–98, 140–143

Linear discriminant function, 91
Linear equations, 9
Linear estimates, 241
Linearity, in the logit, 63, 94, 103
Linearized models, 321
Linear link binomial model, 451–453
Linear link function, 435–436, 450
Linear mixed effects models, random effects

models vs., 315
Linear models, best models vs., 97–98. See also

Linear regression model
Linear regression, 8, 11–12, 249

best subsets, 136, 139
logistic regression vs., 125
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stepwise, 125
weighted, 164–165, 249

Linear regression model, logistic regression
model vs., 1–2, 7

Linear regression software, 134–135
best subsets, 134
weighted least squares best subsets, 139

Linear splines, 99–106
fitting, 103–104

Linear spline variables, 100
Link function(s), 49–50, 203

for binary regression models, 434–441
Burn Injury Study data for fitting, 437–441
linear, 450
maximum likelihood and, 436
roles of alternative, 436
test for choice of, 367

Lipsitz test, 303–305, 309
Log, of odds ratio, 57
Logistic coefficients, 21
Logistic distribution, choosing, 7
Logistic function, model form and, 164
Logistic model(s), 200, 201

binary, 309
fitting separate, 282–283
fitting to sample survey data, 236
parameters of generalized, 166–167

Logistic normal cluster-specific model, 315
Logistic probability, estimated, 44
Logistic regression

advantage of using, 53
for assessing mediation, 445–448
Bayesian methods for, 408–433
best subsets, 133–139
binary, 295–296
exact, 377
guiding principle of, 12
linear regression vs., 125
for matched case-control studies, 243–268
model-building strategies/methods for, 89–151
sampling models for, 227–242
stratified analysis vs., 82–86
underlying theory of, xiii
univariable, 246
model fitting, sample size and, 401–408

Logistic regression analysis
plots in, 193–197
for 2 × 2 tables, 82–86

Logistic regression coefficients, 403–404
estimated, 86
exponentiation of estimated, 278
interpretation of, 50–51
interpretation of adjusted, 443–444

Logistic regression diagnostics, 186–292

extensions of, 284
Logistic regression modeling. See also Logistic

regression models
with correlated data, 337–353
propensity score methods in, 377–387

Logistic regression model(s), 1–33, 127
Bayesian, 409–411
for correlated binary data, 375
for correlated-data analysis, 313–375
developing, xiii
exact methods for, 387–395
fitted multiple, 77–82
fitting, 8–10, 58, 60, 85–86
fitting to complex sample survey data,

233–242
fitting to the CHDAGE data, 10
fitting univariable, 107–108
flexibility of, 200
goal of analysis using, 1
interpretation of coefficients for univariable, 50
interpretation of fitted, 49–88
linear regression model vs., 1–2, 7
in 1–1 matched studies, 251–260
in 1–M matched study, 260–267
maximum likelihood estimate (MLE) of,

390–391
multinomial, 269–289
for multinomial and ordinal outcomes,

269–311
multiple, 35–47
numerical problems when fitting, 145–150
ordinal, 289–310
results of fitting, 104, 212–223
slope coefficient in, 50
specific form of, 7
statistical aspects of, xiii
stratum-specific, 244–245
strength of, 35
univariable, 405
values of, 52
wide use of, 229

Logistic regression software packages. See
Software; Software packages

Logit(s)
baseline, 290–291
calculating adjusted, 81
confidence interval estimator for, 43–45
continuous covariate scale in, 94–107
estimated, 17
estimating the variance of estimated, 43–44
estimator of, 16
first estimated adjacent-category, 294
in fractional polynomials method, 96–97
linearity in, 103
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Logit(s) (Continued )
lowess smoothed, 119, 122–123
modified, 80, 82
of the multiple logistic regression model,

35–36
95 percent confidence interval for

estimated, 45
with population average model, 317
second estimated adjacent-category, 294
third estimated adjacent-category, 295
variance estimators of, 79

Logit assumptions, linear, 63. See also Linearity,
in the logit

Logit-based estimators, 83, 86
Logit difference, 66

exponentiating, 51–52
Logit difference estimator, 63
Logit equation, 449
Logit functions, 61, 270, 273, 282

plotting, 74–75
Logit link model, 434
Logit model(s), 438–440

unconstrained continuation-ratio, 296
Logit transformation [g(x)], 7, 35–37, 50
Logit values, fitted, 103
Log-likelihood, 9–10, 13, 321

for fitted baseline model, 295
profile, 19, 20

Log-likelihood-based R2, 184
Log-likelihood function, 233–234, 271, 292
Log-likelihood function–based confidence

interval, 18
Log-likelihood value, 40
Log link function, 435
Log–log models, 435–436, 438
Log model, 439–440
Log-odds, 300

expression for, 55
estimation of, 64
modification of, 64

Log-odds ratio estimator, estimated standard
error of pooled, 380

Log-odds ratio plot, 307
Log-odds ratios, 288–289

equations for, 287
plots for, 287–288
standard error of, 308

Log transformation, 348
Low Birth Weight Study (LOWBWT)

data, 24
ordinal logistic regression application,

293–303
Lower confidence limit, 76, 79

Lowess (locally weighted scatterplot smoothing)
method, 102–103, 109–110

Lowess smoothed logit, 119, 122–123
Lowess smoothed plots, 112, 342–343

Main effect coefficient, change in, 73
Main effects, interactions among, 281–282
Main effects model(s), 92, 109, 114, 132,

261–262
for burn injury data, 124
“locking,” 93
preliminary, 281, 341, 347
preliminary final, 349
refining, 94

Mallow’s Cq , 136
Score test approximation of, 137–138

Mann–Whitney U statistic, 178
Mantel–Haenszel estimator, 82–86
Marginal model, 317
Marginal pseudolikelihood (MPL), 322
Marginal quasilikelihood (MQL), 322
Markov chain, 411
Markov Chain Monte Carlo (MCMC) estimation,

353
Markov Chain Monte Carlo (MCMC)

simulations, 396–397, 409–419
in Bayesian analysis, 419–433

m-asymptotics, 155, 160
Matched case-control studies, logistic regression

for, 243–268
Matched data

methods designed for, 385–386
model building methods for, 247

Matched designs, 1–1 (one to one), 243–244,
250–251

Matched pairs, breaking, 259
Matched sample creation, 381
Matched set effect, estimating on diagnostic

statistics, 255
Matched studies

1-1, 251–260
1-M, 260–267

Matching variables, interaction with model
covariates, 262

Matrix of second partial derivatives, 271–272
Maximum (M) likelihood (ML), 322

bias in, 387
fit, 135
link functions and, 436
method, 8, 20, 243–244
in multiple logistic regression model, 37
point estimates, exact conditional, 390–391
principle, 9
uses of, 22
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Maximum likelihood estimates (MLEs), 9–10,
13, 134, 393

conditional, 247
Maximum likelihood estimation, 228

with a misspecified model, 200
Maximum likelihood estimation theory, 37
Maximum likelihood estimators, 8, 19–20, 231,

244, 248, 271
bias in, 391
conditional, 22
discriminant function estimators vs., 21–22
distribution of, 18
under the multivariate normal model, 46

MCLS i statistic, 363
MCMC algorithms, 412, 414. See also Markov

Chain Monte Carlo (MCMC) entries
MCMC chains, convergence of, 417
Mean, estimate of, 18
Measure of fit, 192. See also Fitted entries;

Fitting
Median Odds Ratio (MOR), 328–329
Median unbiased estimator (MUE), 393
Mediation, 441–448

assessing, 445–448
Mediational hypothesis, 446
Mediators

adjusting for, 444–445
confounders vs., 441–443
in multivariable model, 444

Method of least squares. See Least squares
method

Method of maximum likelihood. See Maximum
likelihood method

Metropolis Algorithm, 411–412
variations of, 413

Metropolis–Hastings (M–H) algorithm, 413
MFP cycle fits. See Multivariable fractional

polynomial procedure
Missing at random (MAR) assumption, 396
Missing completely at random (MCAR)

assumption, 395–396
Missing data, 91, 314, 395–401

in longitudinal studies, 395
Missing not at random assumption. See Not

missing at random assumption (NMAR)
Misspecified models, maximum likelihood

estimation with, 200
Mittlböck–Schemper criteria, 182–184
Mixture distribution, 345
MLWin software program, 332
Model assessment

of the multiple logistic regression model, 39
in validation samples, 205

Model-based approach, 378–379

Model-based estimates, 339
Model-based estimators, 16
Model-based inferences, 82
Model-based methods, 240–242
Model building, 222–223, 337–338

multiple imputations and, 401
with polypharmacy data, 338
purposeful, 340
traditional approach to, 89–90

Model-building methods/strategies/techniques,
xiv

for logistic regression, 89–151
for matched data, 247
for multinomial logistic regression, 278–283
for ordinal logistic regression models,

305–310
Model building process, 154
Model checking, missing data and, 401
Model coefficients, estimates of, 212
Model covariates, interaction with model

variables, 262
Model fit. See also Fitted models

assessment of, 354–375
assessment via external validation, 202–211
in GLOW Study data, 212
informed decisions about, 169
summary tests of, 167–169
of within-quintile models, 384

Model fit statistics, 200
Model fitting

to imputed data sets, 398
sample size and logistic regression, 401–408

Model form, logistic function and, 164
Modeling

within Bayesian framework, 425–426
of correlated binary data, 374

Model misspecification, 233
Model parameters, inferences about, 234
Models. See also Binary regression models; Data

sets, modeling of; Dichotomous–continuous
covariate model; Fitted logistic regression
model; Linear regression model; Logistic
regression models; Multiple logistic
regression model; Multivariable models;
Sampling models

adjacent-category logistic, 290–291, 294–296
adjusted, 209–211
alternative, 267
assessing the fit of, 153–225
baseline logit, 290, 294
Bayesian, 409, 414
binary logistic, 309
binary outcome, 273
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Models (Continued )
categorical independent variables included or

excluded from, 41
cluster-specific, 315–317, 320–321, 326–337,

344–350, 374
cluster-specific binary outcome, 315
complementary log–log, 435–436, 438
conditional, 315
constrained baseline logistic, 291, 294–295
constrained ordinal, 302
continuation-ratio logistic, 290–291, 295–297
continuous outcome, 301
correlated-data, 314–315, 354
discrete choice, 269
discriminant analysis, 170
final, 93
fitted, 8–10, 11–14, 17–19, 37–39, 40–42,

42–45, 49, 58, 60, 77–82
fitted baseline, 295
fitted restricted cubic spline, 106
fitting exact logistic, 394
fitting multivariable, 108, 116, 252
fitting reduced, 237–238
fitting separate binary, 282–283
fitting univariable, 251–252
fitting univariable logistic regression, 107–108
hierarchical, 316
identity link, 436–437, 439–440
including risk factors in, 389
independent variables included in, 89
independent variables in multivariable, 65
interaction, 72–73, 114–115
intercept only, 126
linearized, 321
linear link binomial, 451–453
linear mixed effects, 315
log, 439–440
logistic, 200–201
logistic normal cluster-specific, 315
logit, 438–440
logit link, 434
log–log, 435–436, 438
main effects, 92–94, 109, 114, 124, 132,

261–262
marginal, 317
maximum likelihood estimation with

misspecified, 200
mediators in multivariable, 444
multilevel, 316
multivariate normal, 46
normal theory discriminant function, 231
one-term fractional polynomial, 120
parameters of generalized logistic, 166–167
parsimonious, 116

polypharmacy, 358–359, 363–365
population average, 315, 317–319, 324–326,

328, 334–337, 339–344, 353–365, 374
preliminary final, 92–93, 115, 124, 282
preliminary final main effects, 349
preliminary main effects, 92, 109, 116, 281,

341, 347
Probit, 434–436, 438
propensity score, 382–383, 387
proportional odds, 290–292, 297–302, 303,

305
purposeful selection, 131
quadratic, 97–98, 382
random effects, 315–316, 323, 348, 367–368,

413–414
regression sampling, 227–228
restricted cubic splines, 118–119
risk, 386
saturated, 12–13, 184
saturation/calibration of, 186
simple, 386
single-dichotomous-covariate, 273
stratum-specific, 380
stratum-specific logistic regression, 244–245
transitional, 315
two-level, 323–337
unconstrained continuation-ratio logit, 296
univariable logistic regression, 50
well established, 172

Model significance, testing for, 39–42
Model simplification, in multinomial logistic

regression, 280
Model validation, 202, 211
Modified logit, 80, 82
Modified Wald statistics, 234–235, 240
Monte Carlo Standard Error (MCSE), 418, 421
Multilevel models, 316
Multinomial likelihood, adaptation of, 292
Multinomial logistic regression model, 269–289

assessment of fit and diagnostic statistics for,
283–289

constrained, 310
goodness of fit test, degrees of freedom for,

304–305
model-building strategies for, 278–283
satisfying proportional odds assumption via,

309
Multinomial outcome setting, odds ratios in,

273–278
Multiple chain production, in MCMC

simulations, 416–417
Multiple imputation method, 395–397

Bayesian perspective on, 397
GLOW 500 data and, 398–400
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model building and, 401
steps in, 396
software packages and, 398

Multiple logistic regression model, 35–47
fitting, 37–39
formulation of, 38

Multiple odds ratios, in multinomial models, 289
Multiplicative interaction, 451, 448
Multiplicative scale, additive scale vs., 448–451
Multiplicity, perfect, 450
Multivariable fractional polynomial procedure,

139–144
applied to Burn Injury Study data, 143–144
applied to GLOW 500 data, 140–143

Multivariable modeling, using fractional
polynomials, 99

Multivariable models, 64–77, 91, 139–140
fitting, 108, 116, 252
independent variables in, 65
mediators in, 444

Multivariable Score test, 42, 340
Multivariable Wald tests, 42, 236–237, 320, 340,

342
Multivariate normal (MVN) distribution, 396
Multivariate normality assumption, 45
Multivariate normal model, maximum likelihood

estimators under, 46
Multivariate test, 15
Myopia study (MYOPIA)

data, 28–31
statistical adjustment illustration, 70–71

n-asymptotics, 155–156
National Burn Repository research data set, 27.

See also Burn Injury Study
National Health and Nutrition Examination

Survey (NHANES) study
complex survey application, 235–242
data, 29, 31

Noise variables, 129
Nominal scale variables, 36
Noniterative weighted least squares method,

20–21
Nonlinear equations, 9
Nonlinearity in the logit, checking for, 238
Normal distribution,

assumption for random effects, 321
standard, 14

Normalized Pearson chi-square, normalized
sum-of-squares vs., 166

Normal probability (PP) plots, 367–369
Normal quantile (QQ) plots, 367–369
Normal theory analysis of covariance model, 228
Normal theory discriminant function model, 231

Not missing at random (NMAR) assumption,
396

Nuisance parameters, 244
Null hypothesis

analogue for Bayesian methods, 421–422
for goodness of fit, 165–166

Numerical integration techniques, 321–323
Numerical problems, in logistic regression model

fitting, 145–150
pooling strategies for, 147

Observed information matrix, 37–38
Observed values, 11–12
Odds, 51. See also Log-odds entries

geometric mean, 60–61
Odds ratio(s) (OR), 51–56, 212–213

adjusted, 82, 229
for baseline logit model, 294
cluster-specific, 328
confidence intervals for, 62, 274
confidence limits for, 59
constant, 82
correction of, 213
crude (unadjusted), 82, 86
dichotomous variables and, 56
estimated population average, 326
expanding the number of, 276–277
interpretation of, 325–326
log of, 57
as a measure of association, 52, 54
in multinomial outcome setting, 273–278
multiple, 289
for prior fracture, 73–74
relationship of regression coefficient to, 51–52
risk difference vs., 448–451

“Odds ratio approximates relative risk”
argument, 213

Odds ratio constancy assumption, 84
Odds ratio estimates, 56–57, 74–76, 107, 214,

216–219, 258–259, 286, 288–289,
300–302, 325, 327–328, 383–384, 440

Odds ratio estimation, 54, 90, 300–302, 307,
288–289

Odds ratio estimator, 54–55, 61–63
stratified, 86

Odds ratio homogeneity, assessment of, 86
1–1 matched data set, from GLOW Study data,

251–259
1–1 matched design, 243–244

difference data approach to, 250–251
1–1 matched studies, logistic regression model

in, 251–260
1–3 matched data set, from Burn Injury Study

data, 260–267
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1–M matched study
fit-assessment methods in, 248–251
logistic regression model in, 260–267

1-specificity, 174–177, 179–181
Open BUGS statistical package, xiv. See also

Bayesian inference Using Gibbs Sampling
(BUGS) software package

Optimal cutpoints, 174–176
Optimality properties, of maximum likelihood

method, 243–244
Ordinal logistic regression models, 289–310

model-building strategies for, 305–310
Ordinal (scale) outcomes, 289–290, 292–293,

299–300, 302
modeling, 310

Ordinal score, alternative, 304
Orinda Longitudinal Study of Myopia (OLSM)

data set, 31. See also Myopia entries
Outcome(s), 179–181

jittered, 178
logistic regression models for multinomial and

ordinal, 269–311
logit of, 66
ordinal (scale), 289–290, 292–293, 299
predicting, 174
reference, 273, 293
regression based on continuous, 298

Outcome categories, pooling, 276, 289
Outcome probabilities, computing in Bayesian

analysis, 422
Outcomes Research, Center for, web site, 25
Outcome variable(s), 1–2

binary, 229, 270, 278, 283
coding, 293
conditional distribution of, 7
independent variables vs., 2, 442–443
nominal, 269, 270
time to event, 228

Outlying clusters, 372–374
Outstanding discrimination, 177. See also

Receiver Operating Characteristic (ROC)
curve

Overall mean, 59, 66
Overestimation, relative risk, 213

Pairs
deletion of, 258
fit sensitivity to, 257–258

Parameter distributions, in Bayesian logistic
regression models, 410–411

Parameter estimates, 302
in Bayesian analysis, 424
computation of, 145

Parameterization. See also Events per parameter

of covariates, 96
unconstrained, 291

Parsimonious model, 116
Partial likelihood ratio test, 97–98, 140–143
Partial proportional odds models, 297, 309–310
Pearson chi-square residuals, 166, 188–193, 249,

250, 356, 360–361, 371
standardized, 191, 250
summary statistics based on, 186
variance estimator of, 190

Pearson chi-square (X2) statistic, 135–136,
155–157, 249

computing the significance of, 166
decrease in the value of, 191
goodness of fit testing with, 163–164
as a measure of lack of fit, 254–255
value of, 206–207

Pearson chi-square (X2) test, 90, 157, 355
for the cluster-specific model, 366

Pearson correlation coefficient (r2), squared,
182–184

Penalized quasilikelihood (PQL), 322
Perfect multiplicity, 450
Plots. See also Boxplots; Scatterplots

advantage of, 76
caterpillar, 331–332
of estimated logistic regression coefficients,

113
of fitted logit values, 103
of fitted models, 105–106
lack of fit diagnostic, estimated probability vs,

263–264
in logistic regression analyses, 193–197
of logit functions, 74–75
for log-odds ratio, 287–288, 307
lowess smoothed, 112, 342–343
normal probability, 367–369
normal quantile, 367–369
of posterior distribution residuals, 432–433
of profile log-likelihood, 20
related to Burn Injury Study data, 220–222
related to GLOW Study, 194–196
of residuals, 371–373
sensitivity/specificity, 175
smoothed, 347
of squared deviance residuals, 373

Plotted confidence bands, 78
Point estimates, exact conditional maximum

likelihood, 390–391
Points, removing, 362
Polychotomous independent variables, 56–62

design variables for, 57–58
Polychotomous logistic regression model, 269
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Polynomials, fractional. See Fractional
polynomial entries

Polypharmacy study (POLYPHARM)
data, 30–32
model building with, 338, 358–365

Polytomous logistic regression model, 269
Pooled log-odds ratio estimator, estimated

standard error of, 380
Poor discrimination, 177. See also Receiver

Operating Characteristic (ROC) curve
Population average coefficients, Wald statistics

for, 336
Population average model(s), 315, 317–319,

324–326, 353–365, 374
assessment of fit of, 354–365
cluster-specific model vs., 334–337
with correlated data, 339–344
weakness of, 328

Population average odds ratio, 326
estimated, 326

Posterior distributions, 330
in Bayesian analysis, 411, 419–420, 424–425,

432
Posterior mean, in Bayesian analysis, 425
Posterior predictive checking, in Bayesian

analysis, 429–430
Posterior probabilities

in Bayesian analysis, 426
in MCMC simulations, 412

Posterior simulated values, in Bayesian
analysis, 430

Power function, 97
Precision parameters, in Bayesian logistic

regression models, 410
Predicted intercept, 331
Predicted probabilities, 332–333
Predicted random effects, 331–332

standard error of, 368
Predicted values, 11–12

missing data and, 401
Predicting outcomes, 174
Predictive squared error, measure of, 136
Pregibon linear regression–like approximation,

190
Preliminary final main effects model, 349
Preliminary final model, 92–93, 115, 124, 282
Preliminary main effects model, 92, 109, 116,

281, 341, 347
Primary sampling units, 233–235
Principle of maximum likelihood. See Maximum

likelihood principle
Prior distributions

in Bayesian analysis, 429
in Bayesian logistic regression models, 410

changing, 424
choice of, 423

Prior information weight, tolerance and, 423–424
Prior mean, in Bayesian analysis, 425
Prior probability, in Bayesian analysis, 426–427
Probability. See also Estimated probabilities

conditional, 260, 270–271
covariate adjusted, 82
estimated, 303, 333
estimated stratum-specific, 262
lack of fit diagnostic vs. estimated, 263–264
leverage values vs..estimated, 262–263
meaning of, 171
population average model and, 317
predicted, 332–333
propensity score and, 378

Probability distributions, of covariates, 230
Probability of miscalculation (PMC), 170–171
Probability of moving, in MCMC simulations,

412
Probit model, 434–438
Profile likelihood confidence interval (CI), 54

estimator of, 43
Profile log-likelihood, 19–20

plot of, 20
Propensity score, 378–380

estimated, 379–380, 382
purpose and properties of, 379

Propensity score methods
advantages and disadvantages of, 387
in logistic regression modeling, 377–387

Propensity score model, 382–383
approaches to using, 387

Proportional odds assumption, 306
not supported by data, 308–310
options for satisfying, 309–310
testing, 302

Proportional odds models, 290–292, 297–302,
305

goodness of fit tests for, 303
partial, 297

Proposal distribution, in MCMC simulations,
412–413

Pseudolikelihood (PL) estimation, 321, 333–334
methods for, 322–323, 352–353

Pseudo-studies, constructing, 407
Public health interaction, 448
Purposeful selection, 89–124, 131, 259,

305–306, 308, 378–379
for cluster-specific models, 344
of covariates, 70
examples of, 107–124
for population average models, 340

p-value removal, 130–131
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p-values, 14, 40–41, 85, 91–92, 127, 240
in Bayesian analysis, 421–422
in stepwise selection procedures, 128
two-tailed, 14–15, 165–166, 203–204, 356,

390
Wald statistic, 261

Quadratic models, 97–98, 382
Quadrature, 321–322

adaptive, 351
Quadrature check, 351–352
Quadrature estimation, 323

adaptive, 322–323, 326–327
Quadrature points, 352
Quartile-based design variables, 121
Quartile design variable analyses, 117

results of, 121
Quartile design variables, 103–104, 110,

112–113
Quasicomplete separation, 148
Quasilikelihood (QL) estimation method, 321,

352–353
Quasilikelihood function, 339
Quasilikelihood information criteria (QIC),

339–340, 343–344, 356–358
Quasilikelihood information criteria

approximation (QICu), 339–340, 343
Quintiles, analysis using, 381

R2 measures, 182–186, 356–357, 406
Raftery–Lewis tests, 419
Random effects, 320–321, 328–330, 336–337,

345
predicted, 331–332
standard error of predicted, 368

Random-effects estimates, 333–334
Random effects models, 315–316, 323, 348,

367–368
linear mixed effects models vs., 315
MCMC simulations and, 413–414

Random effect standard deviation, 345–346
Random intercepts, 316–317, 347–349
Random intercept values, 336
Randomized trials, 228
Random slopes, 349–350
Random variable assumption, in Bayesian

logistic regression models, 410
Random variables, chi-square, 14
Ranges of values, 77
Rare disease assumption, 52
Receiver Operating Characteristic (ROC) curve,

area under, 173–182, 206. See also ROC
analysis

Reduced model fitting, 40, 237–238

Reference cell coding, 55, 57–59
Reference covariate value, 277
Reference levels, 212
Reference outcome, 273, 293
Regression analysis, with dichotomous outcome

variable, 7–8
Regression coefficients, 241

relationship to odds ratio, 51–52
Regression diagnostics, 186
Regression methods, 1
Regression sampling model, 227–228
Relative difference, 79
Relative Excess Risk due to Interaction (RERI ),

455–456
Relative risk, 52

overestimation of, 213
Relevant distribution theory, 157
Replacement, sampling with, 381
Residual confounding, 384
Residuals

Bayesian, 430–433
empirical, 320
likelihood methods using, 322
plots of, 371–373
posterior distribution plots of, 432–433
tests based on cumulative sums of, 164

Residual sum-of-squares (SSE, RSS ), 11–12,
164–165, 186

Response variable
possible predictors of, 126–127
values of, 11

Restricted cubic spline analysis, 121–123
Restricted cubic spline covariate, 101
Restricted cubic spline(s) model, 118–119

results of fitting, 106
Restricted cubic splines, 105–106, 118–120

fit modeling TBSA with, 123
Retroactive data collection, 201
Ridge regression methods, 150
Risk. See also Relative Excess Risk due to

Interaction (RERI )
decile of, 160–163, 167–168, 205
relative, 52

Risk difference, odds ratios vs., 448–451
Risk factors, 68

adding, 385
modeling, 389

Risk overestimation, 213
Risk ratio, 456
R matrix, 319
Robust estimator, 320, 325, 339, 358–359
ROC analysis, 289. See also Receiver Operating

Characteristic (ROC) curve
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R R Development Core Team statistical package,
xiv

“Rule of 10,” 407–408
Rule of thumb, in Bayesian analysis, 428–429
R values, in MCMC simulations, 418

Sampled clusters, 241
Sample distribution, of Wald statistic, 403
Sample size(s), 168–169

logistic regression models and, 401–408
in MCMC simulations, 418

Sample size questions, 401–402
Sample survey data

complex, 233–242
fitting logistic models to, 236
regression modeling of, xiv

Sampling, adaptive rejection, 413
Sampling distribution, 54
Sampling models, for logistic regression,

227–242
Sampling rates, stratum-specific, 232
Sampling units, primary, 233–235
Sampling with replacement, 381
Sandwich estimates, 325, 339, 358. See also

Information sandwich estimator
SAS procedures

GLIMMIX procedure, 331, 334, 352, 367
logistic regression (PROC Logistic), 19, 41,

137
PROC Logistic output, 301

SAS statistical package, xiv, 129, 132, 249, 353,
413. See also Software packages/programs

Bayesian methods software in, 409
diagnostics in, 188
missing data and, 396–400
PL estimation in, 333–334
score test for proportional odds assumption in,

302
Saturated models, 12–13, 184, 186
Scale variables, discrete nominal, 62
Scatterplots, 2

of presence/absence of coronary heart
disease, 5

smoothed, 94–95
Score test, 14–15, 86, 129, 137, 163, 167. See

also Generalized Score statistics
approximation, of Mallow’s Cq , 137–139
multivariable, 340
multivariable analog of, 42

Second partial derivatives, matrix of, 271–272
Sensitivity/specificity, 174–176
Separation

complete, 147–150
quasicomplete, 148

Sequential regression multivariate imputation
(SRMI), 397

Sequential test procedure, 98
Shapiro–Wilk test, 369
Shrinkage, 183–184
Significance levels, 91–92, 140, 309
Single-dichotomous-covariate model, 273
Single independent variables, 14
Single prior distribution, in Bayesian analysis,

429
Slope coefficients, 39, 50–51, 53

estimates of, 275, 394
Slope parameter, 421

in Bayesian analysis, 423
Slopes, random, 349–350
Smoothed plots, 347. See also Lowess entries
Smoothed scatterplots, 94–95
Software packages/programs. See also SAS

entries; STATA entries; SPSS software
package; MLWin software program;
SUDAAN software; Open BUGS statistical
package; Just Another Gibbs Sampler
(JAGS) software package

for Bayesian methods, 409
capabilities of , xiii
complex sample surveys in, 233
conditional logistic regression in, 247
correlated-data modeling, 314–315
design variables in, 55, 57
differences among, xiv
deviance vs. log-likelihood in, 12
exact methods in, 388
handling of weights in, 249
modified Wald statistic in, 234–235
multinomial logistic regression model

diagnostics in, 284
for multivariable fractional polynomial

methods, 139
point and confidence interval estimates in, 54
score test in, 43
weighted least squares best subsets linear

regression, 139
weighted ordinary logistic regression programs

in, 239
zero cells in, 90

Specificity. See also 1-specificity
for classification tables, 175
plots of, 174–176

Spline covariates, restricted cubic, 101. See also
Cubic spline entries

Spline functions, 94, 99–102
knots and, 99–106

Spline functions method, 109
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Splines, restricted cubic, 105–106
Spline variables

cubic, 101
linear, 100

SPSS software package, 57
Squared deviance residuals, plots of, 373
Squared Pearson correlation coefficient (r2),

182–184
S-shaped curve, 6
Standard deviation, random effect, 345–346
Standard error(s), 45

estimated, 17, 59, 62, 149, 231–232, 274, 278,
325, 327

estimation of, 37
estimators of, 16, 63
of log-odds ratio, 308
of pooled log-odds ratio estimator, 380
of predicted random effects, 368

Standardized comparative residuals, 368–369
Standardized Pearson residual, 191
Standardized residuals, boxplots of, 370–371
Standardized Pearson chi-square statistic, 203
Standard normal distribution, 14
STATA commands/procedures/programs

clogit command, 251, 260
GLLAMM procedure, 370–371, 373
for Pearson chi-square statistic, 166
psmatch2 program, 385
test/lincom commands, 276
xlogit procedure, 331
xtmelogit procedure, 331

STATA log option, for fractional polynomial
analysis, 118

STATA software package, xiv, 19, 41, 85, 95,
129, 135, 234–235, 239, 240, 249, 302,
326–327, 333–334, 353. See also Software
packages/programs

conditional logistic regression in, 247
cubic spline variables and, 101
diagnostics in, 188, 248
fractional polynomial method and, 99
lowess smooth via, 102–103
missing data and, 396–400

Stationarity test, Heidelberger-Welch, 419
Statistical adjustment, 64, 66–67, 69,

70–72
mediation and, 441

Statistical analyses, of survey data, 240
Statistical considerations, for fractional

polynomial models, 106
Statistical evidence, for variables, 14
Statistical hypothesis, formulating and testing,

10
Statistical interaction, 64, 69–73, 448–456

presence and absence of, 68–69
Statistically important variables, 131
Statistically significant interaction, 77
Statistical model building, traditional approach

to, 89–90
Statistical packages, xiv. See also SAS entries;

STATA entries; Software packages/programs
Statistical significance, of interactions, 93
Statistical software packages. See Software

packages/programs
Statistics. See also Diagnostic statistics; Model fit

statistics; Pearson chi-square (X2) statistic
goodness of fit, 355–356
influence, 255–256, 360–363
standardized, 203

Stepwise backward elimination, 134. See also
Backward elimination

Stepwise covariate/variable selection, 125–133
of interactions, 132–133
method for, 93–94
for multinomial models, 279
results of applying, 130

Stepwise linear regression, 125
Stepwise selection procedure. See also Four-step

process
applied to GLOW data, 129–132
modification of, 129
p-values in, 128
for variables, 90–93, 128

Stepwise variable selection, 279
results of applying, 130

Strata
accessing, 250
deleting, 265–266
uninformative, 260

Stratification variables, 147, 228, 243–244
Stratified analysis, 385

of case-control data, 232
logistic regression vs., 82–86
for 2 × 2 tables, 82–86

Stratified
contingency table analysis, 50
estimates, 86
odd ratio estimator, 86

Stratum number, stratum sum vs., 265
Stratum-specific

likelihood functions, 228–229
logistic regression model, 244–245
mean, weighted, 248
models, 380
probability, estimated, 262
sampling rates, 232
totals, of diagnostics, 250

Structural zero, 308–309
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Stukel test, 166–167, 436, 438
Sturdivant, Rodney X., xvi
Subject-specific

covariates, 317
diagnostic statistics, 359–360
pseudolikelihood (SPL), 322

Submultiplicative interaction, 455
SUDAAN software, 233–234
Sufficient statistics, exact distribution of p,

388–393
Sum, variance of, 16–17
Summary statistics, 154–155

in Bayesian analysis, 420–421
Summed measure of fit, 255–256
Sum-of-squares (S), 155–156, 183–184, 204

residual, 11–12, 186
total, 11
value of, 206–207
weighted residual, 135

Superadditivity, 450–451, 455
Survey data

complex, 233–242
statistical analyses of, 240

Tarone test, 85
Taylor expansion, 322
t distribution

in Bayesian analysis, 429
in multiple imputation, 397–398

Test statistics
for likelihood ratio test, 12
for score test, 15
for univariable Wald test, 40

Thin data, 260
Time-invariant covariates, 313
Time-to-event data, 228–229
Time-varying covariates, 313
Tolerance, prior information weight and,

423–425
Tolerance parameters, in Bayesian logistic

regression models, 410
Total effect, 443
Total sum-of-squares, 11
Trace plot, 414–417
Transitional model, 315
Treatment effect estimation, 377–387
t-tests

in correlated data, 353
two-sample, 91
univariable analysis based on, 91

Two degree of freedom likelihood ratio test, in
multinomial logistic modeling, 280

Two-level models, GLOW data and, 323–337
Two-sample t-test, 91. See also t-tests.

Two-tailed p-value, 14–15, 165–166, 203–204,
356, 390

2 × 2 classification tables, 171–173
2 × 2 tables, logistic regression vs. stratified

analysis for, 82–86

U matrix, in 1-M matched study diagnostics,
248–249

Unadjusted difference, adjusted difference vs., 67
Unadjusted odds ratio, 82
Unavailable data problem, 235–236
Unconstrained continuation-ratio logit model,

fitting, 296. See also Continuation-ratio
logistic model.

Unconstrained parameterization, 291
Uncontrolled confounding, 447
Uninformative case-control pairs, 246
Uninformative stratum, 260
Univariable analyses, 65, 90–91, 340–341,

344–346
of continuous variables, 91
of independent variables, 90

Univariable (model) coefficient, 70–72
Univariable linear discriminant function, 91
Univariable logistic regression, 246
Univariable logistic regression model, 405

fitting, 107–108
interpretation of coefficients for, 50

Univariable models
fitting, to assess thin data, 260
results of fitting, in 1-1 matched study,

251–252
Unstructured correlation structure, 318
Upper confidence limit, 76, 79
U statistic, Mann-Whitney, 178

Validation data, 168, 202–203. See also External
validation, assessment of fit via

model assessment in, 205
Variable deletion, 127
Variables. See also Design variables; Response

variable
Adolescent Placement, 305–310
binary outcome, 283
categorical, 95
cluster-level, 330
confounding, 456
continuous, 106–107
continuous response, 297–298
cubic spline, 101
dichotomous, 69, 170
grouping, 303
importance of, 125–126
including important, 92
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Variables (Continued )
indicator, 354–355
interaction, 92–93
interactions among, 253, 348
linear spline, 100
minimizing the number of, 90
for multiple logistic regression model, 35–36
ordinal outcome, 290, 300
outcome, 452
quartile design, 103–104, 110, 112–113
removal of, 252
significance of, 39, 279–281
single independent, 14
statistical evidence for, 14
statistically important, 131
stepwise selection of, 279
stratification, 228, 243–244

Variable selection
approaches to, 93–94
criteria for, 136
methods, 128
pitfalls of, 94
steps in, 90–93, 128
tests used in, 353

Variable significance, assessment of, 10–15
Variance

assumed, in cluster-specific model, 327
estimation of, 62
of a sum, 16–17

Variance estimators, 37–38, 207, 232
of logits, 79
of residuals, 190

Variation, extrabinomial, 201
Vector notation, for logit confidence interval

estimator, 43
Vector of coefficients (β), in matched

case-control studies, 244–245
Venzon–Moolgavkar method, for

likelihood-based confidence intervals,
18–19

Visual assessment, of diagnostics, 192–193
Vittinghof–McCulloch simulations, for sample

size determination, 408
V matrix, 38, 134–135, 187, 319

Wald-based confidence interval (CI), 16–17
asymmetry of, 19–20

for coefficients, 16
estimator of odds ratio, 380
for fitted values, 17–18
for logit, 17

Wald statistic, see Wald test statistic
Wald (W) test(s), 14–16, 70, 234, 353

adjusted, 237
Brant’s, 302, 306
equivalence to Score test, 14–15
multivariable, 42, 236–237, 320, 340, 342

Wald (W) test statistic(s), 40–42, 69–70, 72, 237
adjusted, 235–237
approximation, 137
modified, 234–235, 240
for population average coefficients, 336
p-values, 91–92, 261
sample distribution of, 403

Weighted fractional polynomial analysis, 238
Weighted least squares best subsets linear

regression software, 139
Weighted linear regression

used in model fit assessment, 164–165
used in 1-M matched study fit assessment,

249
Weighted ordinary logistic regression program,

239
Weighted residual sum-of-squares, 135
Weighted stratum-specific mean, 248
Weighting, in statistical packages, 249
Whitemore formula for sample size, 403

modifications of, 406
Wiley web site, data sets available at, xiv
Within-chain variability (W), in MCMC

simulations, 417–418
Within-cluster correlation, 316
Within-cluster covariance, 319–320
Within-quintile models, fit of, 384
W (weight) matrix, 234
Working correlation, 318

X matrix (design matrix), 38, 134–135, 187,
234, 248–249

Zero, structural, 308–309
Zero (frequency) cell, in contingency tables, 90,

145–147






















