
A First Look at Deep Learning Apps on Smartphones
Mengwei Xu

Key Lab of High-Confidence Software
Technologies (Peking University),

MoE, Beijing, China
mwx@pku.edu.cn

Jiawei Liu
Key Lab of High-Confidence Software
Technologies (Peking University),

MoE, Beijing, China
jiaweiliu@pku.edu.cn

Yuanqiang Liu
Key Lab of High-Confidence Software
Technologies (Peking University),

MoE, Beijing, China
yuanqiangliu@pku.edu.cn

Felix Xiaozhu Lin
Purdue ECE

West Lafayette, Indiana, USA
xzl@purdue.edu

Yunxin Liu
Microsoft Research

Beijing, China
yunxin.liu@microsoft.com

Xuanzhe Liu
Key Lab of High-Confidence Software
Technologies (Peking University),

MoE, Beijing, China
xzl@pku.edu.cn

ABSTRACT
To bridge the knowledge gap between research and practice, we

present the first empirical study on 16,500 themost popular Android
apps, demystifying how smartphone apps exploit deep learning in
thewild. To this end, we build a new static tool that dissects apps and
analyzes their deep learning functions. Our study answers threefold
questions: what are the early adopter apps of deep learning, what do
they use deep learning for, and how do their deep learning models
look like. Our study has strong implications for app developers,
smartphone vendors, and deep learning R&D. On one hand, our
findings paint a promising picture of deep learning for smartphones,
showing the prosperity of mobile deep learning frameworks as well
as the prosperity of apps building their cores atop deep learning. On
the other hand, our findings urge optimizations on deep learning
models deployed on smartphones, protection of these models, and
validation of research ideas on these models.

CCS CONCEPTS
• General and reference → Empirical studies; • Human-

centered computing → Ubiquitous and mobile computing.

KEYWORDS
Empirical Study; Deep Learning; Mobile Apps

ACM Reference Format:
Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu,
and Xuanzhe Liu. 2019. A First Look at Deep Learning Apps on Smartphones.
In Proceedings of the 2019 World Wide Web Conference (WWW ’19), May
13–17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3308558.3313591

1 INTRODUCTION
Smartphones are undoubtedly among the most promising plat-

forms for running deep learning (DL) based applications [3, 6, 8, 27].

Xuanzhe Liu is the paper’s corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW’19, May 2019, San Francisco, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313591

Such a huge market is driven by continuous advances in DL, includ-
ing the introduction of latest neural-network (NN) hardware [45,
47, 57, 103], improvements in DL algorithms [53, 77, 82, 89], and
the increased penetration in huge information analytics [49, 54, 79,
81]. The research community has built numerous DL-based novel
apps [44, 68, 69, 76, 83, 102]. The industry has also tried to utilize
DL in their mobile products. For example, in the latest released An-
droid 9 Pie OS, Google introduces a small feed-forward NN model
to enable Smart Linkify, a useful API that adds clickable links when
certain types of entities are detected in text [38].

The year 2017 marked the dawn of DL for smartphones. Almost
simultaneously, most major vendors roll out their DL frameworks
for smartphones, or mobile DL framework for short. These frame-
works include TensorFlow Lite (TFLite) from Google [37] (Nov.
2017), Caffe2 from Facebook [9] (Apr. 2017), Core ML from Ap-
ple [12] (Jun. 2017), ncnn from Tencent [35] (Jul. 2017), and MDL
from Baidu [24] (Sep. 2017). These frameworks share the same goal:
executing the DL inference task solely on smartphones. Compared
to offloading the DL inference from smartphones to the cloud [2, 19,
21], the on-device DL inference better protects user privacy without
uploading sensitive data, continues to operate in the face of poor
Internet connectivity, and relieves app authors from affording the
cost of running DL in the cloud [45, 63, 66, 67, 67, 69, 74, 100, 103].

Following the DL framework explosion, there emerges the first
wave of smartphone apps that embrace DL techniques. We deem it
crucial to understand these apps and in particular how they use DL,
because the history has demonstrated that such early adopters heav-
ily influence or even decide the evolution of new technologies [86]
– smartphone DL in our case.

To this end, we present the first empirical study on how real-
world Android apps exploit DL techniques. Our study seeks to
answer threefold questions: what are the characteristics of apps that
have adopted DL, what do they use DL for, and what are their DL
models. Essentially, our study aims findings on how DL is being
used by smartphone apps in the wild and the entailed implications,
filling a key gap between mobile DL research and practice.

For the study, we have examined an extensive set of Android apps
from the official Google Play appstore. We take two snapshots of the
app market in early Jun. 2018 and early Sep. 2018 (3 months apart),
respectively. Each snapshot consists of 16,500 the most popular apps
covering 33 different categories listed on Google Play. We derive

https://doi.org/10.1145/3308558.3313591
https://doi.org/10.1145/3308558.3313591

insights by inspecting individual apps as well as by comparing
the two snapshots. To automate the analysis of numerous Android
apps, we build a new analyzer tool that inspects app installation
packages, identifies the apps that use DL (dubbed “DL apps”), and
extracts DL models from these apps for inspection. To realize such a
tool, we eschew from looking for specific code pattern and instead
identify the usage of known DL frameworks, based on a rationale
that most DL apps are developed atop DL frameworks.

Our key findings are summarized as follows.
Early adopters are top apps (§4.2) We have found 211 DL apps in
the set of apps collected in Sep. 2018. Only 1.3% of all the apps, these
DL apps collectively contribute 11.9% of total downloads of all the
apps and 10.5% of total reviews. In the month of Sep. 2018, the 211
DL apps are downloaded for around 13,000,000 times and receive
9,600,000 reviews. DL apps grow fast, indicating a 27% increase in
their numbers over the 3 months in our study.
DL is used as core building blocks (§4.3) We find that 81% DL
apps use DL to support their core functionalities. That is, these apps
would fail to operate without their use of DL. The number of such
DL apps grow by 23% over the period of 3 months.
Photo beauty is the top use (§4.3) DL is known for its diverse
applications, as confirmed by the usage discovered by us, e.g. emoji
prediction and speech recognition. Among them, photo beauty is
the most popular use case: 94 (44.5%) DL apps use DL for photo
beauty; 61 (29%) DL apps come from the photography category.
Mobile DL frameworks are gaining traction (§4.4) While full-
fledged DL frameworks such as TensorFlow are still popular among
DL apps due to their momentum, DL frameworks designed and
optimized for constrained resources are increasingly popular. For
instance, the number of DL apps using TFLite has grown by 258%
over the period of 3 months.
Most DL models miss obvious optimizations (§5.2) Despite
well-known optimizations, e.g. quantization which can reduce DL
cost by up to two orders of magnitude with little accuracy loss [58],
we find only 6% of DL models coming with such optimizations.
On-device DL is lighter than one may expect (§5.3) Despite
the common belief that the power of DL models comes from rich
parameters and deep layers, we find that DL models used in apps
are rather small, with the median memory usage of 2.47 MB and
the inference computation of 10M FLOPs, which typically incurs
the inference delay of tens of milliseconds. These models are not
only much lighter than full models designed for cloud/servers (e.g.
ResNet-50 with 200 MB memory and 4G FLOPs inference computa-
tions) but also lighter than well-known models specifically crafted
for smartphones, e.g. MobileNet with 54 MB memory and 500M
FLOPs inference computations.
DL models are poorly protected (§5.4) We find that only 39.2%
discovered models are obfuscated and 19.2% models are encrypted.
The remaining models are a bit trivial to extract and therefore
subject to unauthorized reuse.
Summary of implications: Overall, our findings paint a promis-
ing picture of DL on smartphones, motivating future research and
development. Specifically, the findings show strong implications

for multiple stakeholders of the mobile DL ecosystem. To app de-
velopers: our findings show that DL can be sufficiently affordable
on smartphones; developers, especially individuals or small compa-
nies, should have more confidence in deploying DL in their apps;
interested developers should consider building DL capability atop
mobile DL frameworks; a few app categories, notably photography,
are most likely to benefit from DL techniques. To DL framework
developers: our findings encourage continuous development of
frameworks optimized for smartphones; our findings also show
the urgent need for model protection as the first-class concern of
frameworks. To hardware designers: our findings motivate DL
accelerator designs to give priority to the layers popular among
mobile DL models. To DL researchers: our findings suggest that
new proposal for optimizing DL inference should be validated on
lightweight models that see extensive deployment on smartphones
in the wild.

In summary, our contributions are as follows.
• We design and implement a tool for analyzing the DL adop-
tion in Android apps. Capable of identifying the DL usage
in Android apps and extracting the corresponding DL mod-
els for inspection, our tool enables automatic analysis of
numerous apps for DL.

• We carry out the first large-scale study of 16,500 Android
apps for their DL adoption. Through the empirical analysis,
we contribute new findings on the first wave of apps that
adopt DL techniques. In the dawn of DL explosion for smart-
phones, our findings generate valuable implications to key
stakeholders of the mobile ecosystem and shed light on the
evolution of DL for smartphones. We also publicize our tools
and datasets1.

2 BACKGROUND
DL models and frameworks DL has revolutionized many AI
tasks, notably computer vision and natural language processing,
through substantial boosts in algorithm accuracy. In practice, DL
algorithms are deployed as two primary parts. The first one is
DL models, which often comprise neuron layers of various types,
e.g. convolution layers, pooling layers, and fully-connected lay-
ers. Based on the constituting layers and their organizations, DL
models fall into different categories, e.g., Convolutional Neural Net-
work (CNN) containing convolution layers, and Recurrent Neural
Network (RNN) processing sequential inputs with their recurrent
sub-architectures. The second part is DL frameworks that produce
DL models (i.e. training) and execute the models over input data
(i.e. inference). Since a commodity DL framework often entails
tremendous engineering efforts, most app developers tend to ex-
ploit existing frameworks by major vendors, such as TensorFlow
from Google.
Deploying mobile DL As training models is intensive in both
data and computing [73], smartphone developers often count on
cloud servers for modeling training offline prior to app deployment.
At app installation time, the trained models are deployed as part of
the app installation package. At runtime, apps perform inference

1https://github.com/xumengwei/MobileDL

https://github.com/xumengwei/MobileDL

with the trained models by invoking DL frameworks, and therefore
execute AI tasks such as face recognition and language translation.
Inference: on-cloud vs. on-device Towards enabling DL on
smartphones, model inference can be either offloaded to the cloud
or executed solely on smartphones. Offloading to the cloud is a
classical use case of Software-as-a-Service (SaaS), and has been well
studied in prior work [43, 62, 85, 101]. The mobile devices upload
data and retrieve the inference results, transparently leveraging rich
data center resources as server-class GPU. Yet, we have observed
that the on-device DL inference is quickly gaining large popular-
ity due to its unique advantages of stronger privacy protection,
resilience against poor Internet connectivity, and lower cloud cost
to app developers. We will present more evidence in the paper. In
this work, we focus our empirical study on such on-device deep
learning for smartphones.

3 GOAL AND METHODOLOGY
3.1 Research Goal

The goal of our study is to demystify how smartphone apps
exploit DL techniques in the wild. Our study focuses on two types
of subjects: i) smartphone apps that embrace DL, and ii) the DL
frameworks and models used in practice. Accordingly, we charac-
terize the apps, the frameworks, and the models. We will present
the results in Section 4 and Section 5 respectively.
Scope We focus our analysis on Android apps, as Android rep-
resents a dominant portion of smartphone shipment (88% in the
second quarter of 2018) and hence serves a good proxy for the entire
smartphone app population [18].
Datasets We retrieve from the Google Play store the full dataset
used in this work. We select 16,500 apps in total, which consist of
the top 500 free apps with most downloads from each of the 33
categories defined byGoogle Play2.We have crawled two datasets at
different moments, June 2018 and September 2018, which are three
months apart. The two app datasets have more than 2/3 overlapped
apps. For each app, we download its apk file and crawl its meta
information (e.g. app description and user rating) from the Google
Play web page for analysis. Our analysis primarily focuses on the
newer dataset, i.e., Sep. 2018, and the difference between the two
data sets, unless specified otherwise.

3.2 Workflow Overview
We design and implement an analyzing tool to enable our re-

search goal on large-scale Android apps. The tool runs in a semiau-
tomatic way, as illustrated in Figure 1.

The very first step of the analyzing tool is identifying DL apps
among a given set of Android apps as input. This is achieved via the
module named DL Sniffer. The core idea of DL Sniffer, is detecting
the usage of popular DL frameworks, instead of directly finding
the usage of DL. After identifying DL apps, it performs analysis
on those apps. During analysis, we use the manifest files extracted
from DL apps via tool aapt [4] and the meta information crawled
from the corresponding Google Play web page. The manifest files
include information such as package name, app version, required
2Different app categories on Google Play can be visited via url https://play.google.
com/store/apps/category/XXX, where XXX can be GAME or other category names.

permissions, etc. The web pages include information such as app
description, user rating, app developer, etc.

The analyzing tool further extracts DL models from those DL
apps. This extraction is achieved via a module called Model Ex-
tractor. After extracting DL models, it performs analysis on them.
However, we here face the challenge that the models are mostly
in different formats. Although developers are investing substantial
efforts in integrating different model formats, such as designing
a standardized one [25], the ecosystem of DL frameworks is still
broken and fragmented nowadays. Thus, when looking into the
internal structures of DL models, we substantially leverage the
available tools and source of different frameworks. Fortunately,
most of the frameworks we investigated (details in Table 2) are
open-source and well-documented.

We discuss more details of DL Sniffer and Model Extractor in
Section 4.1 and Section 5.1, respectively.

4 APPLICATION ANALYSIS
This section presents our analysis of smartphone DL apps. We

first describe our methodology in Section 4.1 and then the following
three major aspects of the DL apps:
• The characteristics of DL apps (§4.2): their popularity, their dif-
ference from non-DL apps, and their developers.
• The role of DL (§4.3): the popular usage of DL in apps, the cat-
egories of DL apps, and evidence that DL is already used as core
building blocks of apps.
• An analysis of DL frameworks (§4.4): which frameworks are used,
the cost, and their adoption trend over time.

4.1 Methodology: finding DL apps
As a part of our analyzing tool (Section 3.2), DL Sniffer takes

apk file(s) as input, and outputs which of them use DL technique.
Detecting DL usage is difficult, instead DL Sniffer mainly detects the
usage of popular DL frameworks with Android support. Currently,
DL Sniffer supports the detection of 16 popular DL frameworks,
including TensorFlow, Caffe, TFLite, etc, and the details of those
frameworks will be presented later in Section 4.4 & Table 2. DL
Sniffer uses two ways to mine the usage of DL frameworks: (1) For
those who provide native C++ APIs, DL Sniffer first decomposes
the apk files via Apktool [5], and extracts the native shared libraries
(with suffix “.so”). DL Sniffer then searches for specific strings on
the rodata section of those libraries. Those strings can be regarded as
identifications of corresponding frameworks, and are pre-defined
by us. For example, we notice that the shared libraries that use
TensorFlow always have “TF_AllocateTensor” in its rodata section.
(2) For those who only support Java APIs, DL Sniffer first converts
the apk file into smali code via dex2jar [14]. The smali code, which
is a disassembled version of the DEX binary used by Android’s
Davik VM, enables us to carry out static program analysis. DL
Sniffer statically goes through the class/method names of smali
code and checks whether certain APIs exist. For example, the class
MultiLayerConfiguration is used in almost every app that embeds
DeepLearning4J framework.

Besides detecting the usage of DL frameworks, we also try to
identify DL apps that don’t use the frameworks listed in Table 2

https://play.google.com/store/apps/category/XXX
https://play.google.com/store/apps/category/XXX

Figure 1: The overall workflow of our analyzing tool.

(called “no lib” in this work). Similarly, this is achieved by searching
specific strings on the rodata section of native libraries as men-
tioned above, but the strings we use here are pre-defined such as
“neural network”, “convolution”, “lstm”, etc, rather than extracted
from existing frameworks. We then manually check the detection
correctness through reverse engineering, filtering those don’t really
have DL usage (false positive). This manual check is also performed
on other DL apps detected using the aforementioned approach, to
ensure good accuracy in DL identification.

4.2 Characteristics of DL apps
• Is DL gaining popularity on smartphones? Our study shows:
over our investigation period (June 2018 – Sept. 2018), the total
amount of DL apps has increased by 27.1%, from 166 to 211. We
further investigate the new downloads and reviews of DL apps
within one month of Sept. 2018: in that period, the 211 DL apps
are downloaded for around 13,000,000 times and receive 9,600,000
new reviews. The results indicate that a substantial amount of
smartphones are running DL apps nowadays.
• How are DL apps different from non-DL apps? We investi-
gate the following three aspects with results illustrated in Figure 2.

Downloads and Reviews are typical signal of apps’ popularity [75].
As observed, the median number of downloads and reviews of
DL apps are 5,000,000 and 41,074 respectively, much larger than
non-DL apps, i.e., 100,000 and 1,036 respectively. We also count
the download rankings of each DL apps within the corresponding
category. The median number of such ranking is 89 among total
500 apps for each category. We deem the above statistics as strong
evidences that top apps are early adopters in deploying DL in mobile
apps. Such phenomenon can be explained that making DL work
in the wild, though appealing, takes a lot of engineering efforts.
The cycle of developing DL functionality on smartphones includes
model construction, data collection, model training, offline/online
testing, etc. Thus, many small companies or individual developers
lack the resources to exploit DL on their apps.

Ratings show how much appreciation users give to apps. The
Figure shows that DL apps and non-DL apps have similar ratings
from users, with the same median number 4.3.

Figure 2: Comparisons betweenDL apps andnon-DL apps on
various aspects (a)–(d). Each box shows the 75th percentile,
median, and 25th percentile from top to bottom. We manu-
ally set the y-axis limits for better presentation in (b): the
missed out 75th percentile of DL apps is 324,044.

App size: as shown in Figure 2, DL apps have much larger apk
files than non-DL apps (median number: 35.5MB vs 12.1MB). This
is reasonable since having DL not only adds DL frameworks and
models to the apps, it also confidently indicates that the apps have
much richer features.
• Who are the developers of DL apps? We also study the de-
velopers of DL apps. The results show that the identified 211 DL
apps belong to 172 developers (companies), among which 27 de-
velopers have more than one DL apps. The developers with most
DL apps are “Google LLC” (10) and “Fotoable,Inc” (6). We observe

usage detailed usage as core feature
photo beauty: 97 94 (96.9%)
face detection: 52 44 (84.6%)
augmented reality: 19 5 (26.3%)
face identification: 8 7 (87.5%)
image classification: 11 6 (54.5%)
object recognition: 10 9 (90%)

image: 149

text recognition:11 4 (36.3%)
word&emoji prediction: 15 15 (100%)
auto-correct: 10 10 (100%)
translation: 7 3 (42.8%)
text classification: 4 2 (50%)

text:26

smart reply: 2 0 (0%)
speech recognition: 18 7 (38.9%)audio: 24 sound recognition: 8 8 (100%)
recommendation: 11 2 (18.1%)
movement tracking: 9 4 (44.4%)
simulation: 4 4 (100%)
abnormal detection: 4 4 (100%)
video segment: 2 1 (50%)

other: 19

action detection: 2 0 (0%)
total: 211 171 (81.0%)

Table 1: TheDLusage in different apps. Note: as one appmay
have multiple DL uses, the sum of detailed usage (column 2)
might exceed the corresponding coarse usage (column 1).

many big companies own more than one DL app, including Google,
Adobe, Facebook, Kakao, Meitu, etc. This suggests that those big
companies are pioneers in adopting DL into their products. We also
notice that DL apps from the same developer often have identical
DL frameworks. For example, four products from Fotoable Inc use
the exactly same native library called libncnn_style.0.2.so to support
DL technique. This is because that DL frameworks and even the
DL models are easily reusable: a good nature of DL technique that
can help reduce the engineering efforts of developers.
Implications: The popularity of DL among top smartphone apps,
especially ones developed by big companies, should endow smaller
companies or independent developers with strong confidence in de-
ploying DL in their apps.

4.3 The roles of DL in apps
• What are the popular uses of DL? To understand the roles
played by DL, we manually classify the usage of DL on different
apps. This is achieved by looking into the app description and app
contents. The results are shown in Table 1. Each app has one or
more usages, and the usage is represented in two different levels
(coarse and detailed). 10 apps are left out since we cannot confirm
their DL usage.

Overall, image processing is the most popular usage of DL on
smartphones, far more than text and audio processing (149 vs. 26 &
24). This is not surprising since computer vision is the field where
DL starts the revolution [64], and the progress on this field has
been lasting since then [72]. In more details, photo beauty (97)
and face detection (52) are mostly widely used in DL apps, usually

Figure 3: Distributions of DL apps over categories defined by
Google Play. Numbers on top: the counts of DL apps in the
corresponding categories. Apps in each category are further
broken down by DL usage (see Table 1 for description). Cat-
egories with fewer than 5 DL apps are not shown.

found in photo editing and camera apps to beautify pictures. In text
field, word & emoji prediction (15) and auto-correct (10) are also
popular, usually found in input method apps like GBoard. For audio
processing, DL is mainly used for speech recognition (14). Besides,
there are other types of usage such as recommendation (11) which
is often found in shopping apps.
• Which categories do DL apps come from? Figure 3 summa-
rizes the number of DL apps in different categories. As observed,
almost 29% DL apps (61 out of 211) are in category photograph, all
of which use DL for image processing. Social category is another
hotspot with 23 DL apps in total, 78% of which use DL for image
processing while others use it for text, audio, etc. The category
of productivity also contains 13 DL apps, but most of them (62%)
use DL for text processing. Overall, we can see that the DL us-
age is somehow diverse, with 11 categories has more than 5 DL
apps among the top 500. Such diversity gives credits to the good
generality of DL technique.
Implications: Our findings encourage developers of certain types
of apps, notably the ones with photo beauty, to embrace DL. Our
findings also motivate encapsulating DL algorithms within higher
level abstractions that cater to popular uses in apps. For instance,
companies such as SenseTime already starts to ship DL-based face
detection libraries to app developers. Masking the details of DL models
and frameworks, such abstractions would make DL more friendly to
developers.
• Is DL a core building block? We also manually tag each DL
usage as core feature or not. We define the DL functionality as apps’
core feature if and only if two conditions are satisfied: (1) hot: the
DL functionality is very likely to be invoked every time the apps are
opened and used by users, (2) essential: without the DL functionality,
the apps’ main functionality will be severely compromised or even
become infeasible. For example, DL on text recognition is treated as
core feature in a scanner app (Adobe Scan) that helps users translate
an image into text, but not in a payment app (Alipay) that uses it
to scan ID card for identification. Similarly, DL on photo beauty is

Figure 4: Numbers of DL apps using various mobile DL
frameworks. “other lib”: the DL apps developed on the
frameworks inTable 2 but not itemizedhere, e.g.mace, SNPE,
and xnn. “no lib”: apps with DL functions but using no DL
frameworks fromTable 2. Note that the number in “TOTAL”
is lower than the sum of others since some DL apps have in-
tegrated multiple frameworks.

treated as core feature in a camera app (Meitu), but not in a social
app (Facebook Messenger Kids).

Overall, 171 out of 211 (81%) apps use DL to support core features.
Specifically, since photo beauty (96.9%) and face detection (84.6%)
are primarily used in photo & camera apps, their usage is essen-
tial. Similarly, word & emoji prediction (100%) and auto-correct
(100%) are treated as core features in keyboard apps, helping users
input more efficiently and accurately. However, recommendation
(18.1%) is often provided as complementary feature to others such
as shopping apps, thus not treated as core feature.
Implications: Our findings support future investment on R&D of
mobile DL, as the core user experience on smartphones will probably
depend on DL performance [67] and security [80, 92].

4.4 DL frameworks
As mentioned in Section 2, DL frameworks are critical to DL

adoption, as most developers use those frameworks to build their DL
apps. In this subsection, we investigate into how those frameworks
are used in DL apps: the numbers, the sizes, the practice, etc.
• A glance over popular DL frameworks We first make an in-
vestigation into popular DL frameworks, and the results are summa-
rized in Table 2. We select those 21 frameworks for their popularity,
e.g., forks and stars on GitHub, gained attention on StackOver-
flow and other Internet channels. Among those 21 frameworks, 16
frameworks support Android platform via Java (official language on
Android) and/or C++ (native support via cross-compilation). Most
of them are open-source, while others are either provided to public
as a binary SDK (SNPE, CoreML), or only accessible by the providers’

(collaborators’) own products (xNN, Parrots). Most of them use cus-
tomized format to store and represent the model files, but some
leverage existing approaches, such as ProtoBuf [28]. We also no-
tice a trend on lightweight DL inference frameworks, which are
designed specifically for mobile apps but have no training-support
back-end (ncnn, FeatherCNN, MACE, etc). Those frameworks can-
not train DL models, but can predict with pre-trained models via
other frameworks such as TensorFlow or Caffe. Note that our later
analysis substantially relies on the openness of DL frameworks:
it enables us to use the existing tools to analyze or even visualize
the DL models such as TensorFlow, or build our own interpreting
scripts to analyze them based on the open code such as ncnn.
•What is the adoption of DL frameworks? As summarized in
Figure 4, the most popular DL frameworks used in Sep. 2018 are
TensorFlow (51), TFLite (31), and ncnn (28), as they contribute to
almost 50% of the total number of DL apps. Other popular frame-
works include Caffe, Parrots, and Caffe2. We have made several
observations from those 6 dominant frameworks as following.
(1) All these frameworks are developed by big companies (e.g.
Google), AI unicorns (e.g. SenseTime), or renowned universities
(e.g. Berkeley).
(2) 5 out of these 6 frameworks are open-source, except Parrots
which is provided as SDK to consumers. In fact, it is believed that
openness is already an important feature in machine learning, es-
pecially DL society, as it supposes to [91]. It helps developers re-
produce the state-of-the-art scientific algorithms, customize for
personal usage, etc. As a result, for example, TensorFlow has more
than 1,670 contributors up to Oct. 2018, going far beyond the com-
munity of Google.
(3) Most (4 out of 6) frameworks are optimized for smartphones,
except Caffe and TensorFlow. Those mobile DL frameworks are
designed and developed specifically for mobile devices, usually
without training back-end, so that the resulted libraries can be
faster and more lightweight. As an example, TFLite stems from Ten-
sorFlow, but is designed for edge devices and reported to have lower
inference time and smaller library size than TensorFlow [106]. Be-
sides those popular frameworks, we identify 34 (16.1%) DL apps that
don’t use any framework in Table 2. These apps use self-developed
engines to support DL functionality.
• Are mobile DL frameworks gaining traction? As shown in
Figure 4, DL frameworks optimized for smartphones, such as TFLite
and ncnn, quickly gain popularity: the number of TFLite-based DL
apps has increased from 12 to 31; that of ncnn increases from 21
to 28. We deem it as the trend of mobile DL ecosystem: To train a
model offline, use large, mature, and generic frameworks that focus
on developer friendliness and feature completeness. To deploy a model
on edge devices, switch to mobile-oriented frameworks that focus on
performance (inference latency, memory footprint, and library size).

We also investigate into the DL check-in and check-out behavior
in mobile apps. We define the check-in DL apps as those that have
no DL usage in earlier version (Jun. 2018) but add the DL usage
in newer version (Sep. 2018), and the check-out vice versa. Note
that the app list of our two datasets are not identical since we
crawl the most popular ones, but the popularity is changing. So
we only consider the apps that exist in both lists (11,710 in total),
and conclude the results in Figure 5. As observed, 48 out of the 190

Framework Owner Supported Mobile Platform Mobile API
Is Open-
source

Supported Model
Format

Support
Training

TensorFlow [36] Google Android CPU, iOS CPU Java, C++ ✓ ProtoBuf (.pb, .pbtxt) ✓

TF Lite [37] Google Android CPU, iOS CPU Java, C++ ✓ FlatBuffers (.tflite) ✗

Caffe [65] Berkeley Android CPU, iOS CPU C++ ✓
customized, json
(.caffemodel, .prototxt) ✓

Caffe2 [9] Facebook Android CPU, iOS CPU C++ ✓ ProtoBuf (.pb) ✓

MxNet [46] Apache Incubator Android CPU, iOS CPU C++ ✓
customized, json (.json,
.params) ✓

DeepLearning4J [13] Skymind Android CPU Java ✓ customized (.zip) ✓

ncnn [35] Tencent Android CPU, iOS CPU C++ ✓ customized (.params, .bin) ✗

OpenCV [26] OpenCV Team Android CPU, iOS CPU C++ ✓ TesnorFlow, Caffe, etc ✗

FeatherCNN [16] Tencent Android CPU, iOS CPU C++ ✓ customized (.feathermodel) ✗

PaddlePaddle [24] Baidu Android CPU, iOS CPU & GPU C++ ✓ customized (.tar) ✓

xNN [40] Alibaba Android CPU, iOS CPU unknown ✗ unknown unknown
superid [34] SuperID Android CPU, iOS CPU unknown ✗ unknown unknown
Parrots [30] SenseTime Android CPU, iOS CPU unknown ✗ unknown unknown
MACE [23] XiaoMi Android CPU, GPU, DSP C++ ✓ customized (.pb, .yml, .a) ✗

SNPE [31] Qualcomm Qualcomm CPU, GPU, DSP Java, C++ ✗ customized (.dlc) ✗

CNNDroid [70] Oskouei et al. Android CPU & GPU Java ✓ MessagePack (.model) ✗

CoreML [12] Apple iOS CPU, GPU Swift, OC ✗
customized, ProtoBuf
(.proto, .mlmodel) ✓

Chainer [10] Preferred Networks / / ✓
customized
(.chainermodel) ✓

CNTK [22] Microsoft / / ✓ ProtoBuf (.proto) ✓

Torch [39] Facebook / / ✓ customized (.dat) ✓

PyTorch [29] Facebook / / ✓ customized, pickle (.pkl) ✓

Table 2: An overview of popular deep learning frameworks and their smartphone support at the time of writing (Nov. 2018).

Figure 5: The number of check-in and check-out DL apps.

(25.3%) DL apps in newer version are checked in between Jun. 2018
and Sep. 2018. We also notice that some DL apps in old version
checked out, but the number is much smaller (5). The reasons of
check-out can be that the developers remove the corresponding
functionality or just replace the DL with other approaches. Overall,
the statistics support the fact that DL technique is increasingly
adopted in mobile apps.
•What is the storage overhead of frameworks? Figure 6 shows
the sizes of DL libs, i.e. the physical incarnation of DL frameworks.
As shown, the average size of DL libs is 7.5MB, almost 6 times
compared to the non-DL libs. Here, we only use the non-DL libs
found within DL apps. The results show that DL libs are commonly
heavier than non-DL libs, because implementing DL functionality,
even without training backend, is quite complex. Looking into
different frameworks, using TensorFlow and Caffe results in larger
DL libs, i.e., 15.3MB and 10.1MB respectively, while others are all
lower than 5MB. The reason is that mobile supports of TensorFlow
and Caffe are ported from the original frameworks and substantially
reuse the code base from them. However, these two frameworks

Figure 6: The binary library sizes of DL frameworks.

are designed for distributed on-cloud DL. As comparison, other
frameworks in Figure 6 are specifically designed for mobile devices
to the purpose of good performance.
One app may incorporate multiple DL frameworks. Surpris-
ingly, we find that 24 DL apps integrate more than one DL frame-
work. For example, AliPay, the most popular payment app in China,
has both xnn and ncnn inside. We deem such multi-usage as (po-
tentially) bad practice, since it unnecessarily increases the apk size
and memory footprint when these frameworks need to be loaded
simultaneously. According to our statistics, the overhead is around
5.4MB, contributing to 13.6% to the total apk size on average. Such
overhead can be avoided by running different tasks based on one
framework, since most DL frameworks are quite generic and can
support various types of DL models. Even if not, they can be eas-
ily extended to support the missing features [1]. The reason of

such multi-usage behavior can be twofold. First, one app might be
developed by different engineers (groups), who introduce differ-
ent frameworks for their own DL purpose. Second, the developers
may just reuse existing code and models for specific tasks, without
merging them together in one DL implementation.
Implications: Our findings highlight the advantages and popularity
of mobile DL frameworks, encouraging further optimizations on them.
Our findings also motivate app developers to give these frameworks
priority considerations in choosing the incarnation of DL algorithms.

5 MODEL ANALYSIS
This section focuses on the model-level analysis of DL technique.

We first describe the methodology details, e.g., the design of Model
Extractor in Section 5.1. Then, we show the analysis results on
those DL models from three main aspects.

• The structures of DL models: the model types, layer types,
and optimizations used (Section 5.2).

• The resource footprint of DL models: storage, memory, exe-
cution complexity, etc (Section 5.3).

• The security of DLmodels: using obfuscation and encryption
to protect models from being stolen (Section 5.4).

5.1 Model Extractor: finding DL models
As a part of our analyzing tool (Section 3.2), Model Extractor

takes DL apps which we have already identified as input, and out-
puts the DL model(s) used in each app. Model Extractor scans the
assets folder of each decomposed DL apps, tries to validate each
model file inside. Since DL frameworks use different formats to
store their model files, Model Extractor has a validator for each of
supported framework. However, we observe that many models are
not stored as plaintext inside apk files. For example, some of them
are encrypted on storage, and decrypted when apps running on
devices. For such cases, Model Extractor tries to reverse engineer
the apps, and extract the analyzable models.

Overall resultsWe extract DL models based on the most pop-
ular frameworks, i.e., TFLite, TensorFlow, ncnn, Caffe, or Caffe2. In
summary, we successfully extract 176 DL models, which come from
71 DL apps. The reasons why we cannot extract models from the
other DL apps could be (i) the models are well protected and hidden
in the apk files; (ii) the models are retrieved from Internet during
runtime. Among the extracted models, we can analyze 98 of them,
which come from 42 DL apps. The other extracted models cannot
be parsed via our framework currently because (i) the models are
in format which we have no insights into, such as Parrots-based
models, since the corresponding frameworks are not open-source;
(ii) the models are encrypted.

5.2 Model Structures
• DL model types Among the DL models extracted, 87.7% mod-
els are CNN models, 7.8% models are RNN models, while others
are not confirmed yet. The CNN models are mostly used in im-
age/video processing and text classification. The RNN models are
mostly used in text/voice processing, such as word prediction, trans-
lation, speech recognition, etc. The results are consistent with the
conventional wisdom: CNN models are good at capturing visual

Layer
type

% of
models

in each
model

Layer
type

% of
models

in each
model

conv 87.7 5 / 14.8 relu 51.0 6 / 16.3
pooling 76.5 2 / 2.8 split 46.9 1 / 7.5
softmax 69.1 1 / 1.1 prelu 32.1 4 / 4.6
fc 60.5 3 / 5.6 reshape 28.4 2 / 24.1
add 56.8 9.5 / 23.8 dropout 21.0 1 / 1.0

Table 3: Layers used in DLmodels. “% of models” shows how
many models contain such layer, while “# in each model”
shows the median/mean numbers of occurrences in each
model that contains such layer. “conv” and “fc” are short for
convolution and fully-connect.

1-bit Quan. 8-bit Quan. 16-bit Quan. Sparsity
TF unsupported 4.78% 0.00% 0.00%
TFLite unsupported 66.67% unsupported unsupported
Caffe unsupported 0.00% unsupported unsupported
Caffe2 unsupported 0.00% unsupported unsupported
ncnn unsupported 0.00% unsupported unsupported
Total 0.00% 6.32% 0.00% 0.00%

Table 4: Optimizations applied on DL models.

characteristics from images, while RNN models are powerful at
processing sequential data with temporal relationships such as text
and audio.
• DL layer types We then characterize different types of layers
used in DL models. As shown in Table 3, convolution (conv) is the
most commonly used type. 87.7% models have at least one convolu-
tional layer, and the median (mean) number of convolutional layers
used in those models is 5 (14.8). This is not surprising since convo-
lution is the core of CNN models, and CNN is the dominant model
architecture used in vision tasks. Our previous analysis already
demonstrates that image processing is the most popular use case
of mobile DL. Similarly, pooling is also an important layer type in
CNN models, included in 76.5% DL models. Besides, softmax is also
frequently used (69.1%), but don’t repeatedly show up in one single
model. This is because softmax layer usually resides at the end
of DL models to get the probabilities as output. As a comparison,
fully-connected (fc) layers are less common, only used in 60.5% DL
models. A possible reason is that fully-connected layer is known to
be very parameter- and computation-intensive, and can be replaced
by other layers such as convolution [17]. Other frequently used
layer types include add, split, relu, prelu, dropout, and reshape.
Implications: Our findings motivate framework and hardware ven-
dors who are interested in optimizing mobile DL to focus on the popu-
lar DL layers that we discovered in deployed models, e.g. convolution.

We also notice that a small number (5) of DL models contain
customized layer types. Such customization is made as an extension
to existing DL frameworks [1]. The result indicates that the func-
tionalities of current DL frameworks are mostly complete enough.
• Model optimizations Various techniques have been proposed
to optimize the DL models in consideration of their sizes and com-
putation complexity. Here, we study the usage of two most popular
techniques in the wild: quantization and sparsity. Quantization

Figure 7: The size of DL models in different frameworks.
We leave out Caffe2 since we only successfully extract one
model in Caffe2 format.

compresses DL models by reducing the number of bits required
to represent each weight. The quantization has different levels,
including 16-bit [56], 8-bit [95], and even 1-bit [48, 84], while the
original models are usually presented in 32-bit floating points. Spar-
sity [71, 96] has also been extensively studied in prior literatures as
an effective approach to make compact DL models. It’s mainly used
in matrix multiplication and convolutional layers to reduce parame-
ters. Such optimizations are known to reduce DL cost by up to two
orders of magnitude without compromising model accuracy [58].

Table 4 summarizes the optimizations applied on DL models.
Here we focus on the DL models for 5 popular frameworks, i.e., Ten-
sorFlow (TF), TFLite, Caffe, Caffe2, and ncnn. Overall, most of these
frameworks only support 8-bit quantization, except TensorFlow who
has 16-bit quantization and sparsity support. However, only a frac-
tion of DL models apply the optimization techniques: 6.32% models
are quantized into 8-bit, while others are non-optimized.
Implications: The findings that well-known DL optimizations are
missing in real-world deployment suggest the efficiency potential of
mobile DL is still largely untapped. The findings also urge immediate
actions to fix the missing optimizations.

5.3 Model Resource Footprint
•Model size. Figure 7 illustrates the size of DL models (in storage).
Overall, we find that the extracted DL models are quite small (me-
dian: 1.6MB, mean: 2.5MB), compared to classical models such as
VGG-16 [90] (around 500MB) and MobileNet [63] (around 16MB).
The models in TensorFLow format (median: 3.2MB) are relatively
larger than the models in other formats such as TFLite (median:
0.75MB) and ncnn (median: 0.86MB).
• Runtime overhead.We then study the runtime performance of
DL models. Here, we focus on two aspects: memory and computa-
tions. The memory usage includes both the model parameters and
the generated intermediate results (feature maps). For computation
complexity, we use floating point operations (FLOPs) during one
inference as the metric. Here we use only part of models in Tensor-
Flow and ncnn formats since some others don’t have fixed input
sizes, e.g., image size, so that the computation complexity can only
be determined at runtime [15]. We also include the performance of
some other classical CNN models such as AlexNet, MobileNet, etc.

Figure 8: The cost ofmemory and computation ofDLmodels
extracted from apps. Red dots: classical CNN architectures
as references. Black crosses: extracted DL models.

As illustrated in Figure 8, the black crosses represent the DL
models we have extracted, while the red dots represent the classical
CNN architectures. Overall, the results show that in-the-wild DL
models are very lightweight in consideration of memory usage and
computation complexity, with median value of 2.47 MB and 10M
FLOPs respectively. Running such models on mobile processors is
inexpensive. For example, as estimated on the CPU of Snapdragon
8453, the execution time of 80% models are less than 15ms which
is translated to 67 FPS [32]. To be compared, ResNet-50, one of
the state-of-the-art models in image classification task, has around
200MBmemory usage and 4GFLOPs computations. EvenMobileNet
and SqueezeNet, which are designed and optimized for mobile
scenarios, require more memory usage and computations than 90%
those mobile DL models that we have discovered.
Implications: Our findings of dominant lightweight DL models on
smartphones give app developers a valuable assurance: DL inference
can be as cheap as a few MBs of memory overhead and tens of ms exe-
cution delay. Our findings challenge existing research on DL inference,
which are typically centered on full-blown models (e.g. VGG) and val-
idated on these models. Given the significance of smartphones as DL
platforms, future DL algorithm proposals should consider applicability
on lightweight models and resource constraints concern.

5.4 Model Security
Finally, we investigate into how DL models are protected. We

deem model protection as an important step to AI system/app
security, because if attackers can acquire the model, they can (i)
steal the intellectual property by reusing the model file or re-train
a new model; (ii) easily attack the DL functionality via adversarial
attack [80]. We focus on two practical protection mechanisms.

• Obfuscation is a rather shallow approach to prevent at-
tackers from gaining insights into the model structures by
removing any meaningful text, e.g., layer names.

• Encryption is better in security by avoiding attackers from
getting the model structures/parameters, but also causes in-
evitable overhead for apps to decrypt the models in memory.
Here, we deem encrypted models as always obfuscated too.

3A typical mobile chip used by many popular smartphones such as Galaxy S8.

We investigate into how obfuscation and encryption are employed
on DL models that we have extracted. We analyze the DL models
extracted from apps using TensorFLow, TFLite, ncnn, caffe, andCaffe2.
In total, we confirm the security level of 120 DL models. Note that
here encryption doesn’t necessarily mean encryption algorithm, but
also includes cases where developers customize the model format
so that the model cannot be parsed via the DL framework.

The results show that among the 120 DL models, we find 47
(39.2%) models are obfuscated and 23 (19.2%) models are encrypted.
Note that these two sets of apps are overlapped: encrypted apps
are also obfuscated. The results indicate that most DL models are
exposed without protection, thus can be easily extracted and utilized
by attackers. In fact, only few frameworks in Table 2 support ob-
fuscation, e.g., ncnn can convert models into binaries where text
is all striped [33], and Mace can convert a model to C++ code [11].
What’s worse, no framework provides help in model encryption
as far as we know. Thus, developers have to implement their own
encryption/decryption mechanism, which can impose non-trivial
programming overhead.
Implications: The grim situation of model security urges strong
protection over proprietary models in a way similar to protecting
copyright digital contents on smartphones [41, 78, 87, 104]. This ne-
cessitates a synergy among new tools, OS mechanisms and policies,
and hardware mechanisms such as ARM TrustZone [7].

6 DISCUSSIONS
Limitations of our analyzing tool Although we carefully design
our analyzer to capture as many DL apps as possible, and involve a
lot of manual efforts to validate the results, we can still have false
identifications. For example, those DL apps that neither depend
on any popular DL frameworks, nor have any string patterns in
the native libraries, will be missed out. In addition, the apps that
have integrated DL frameworks but don’t really use them will be
falsely classified as DL apps. For the first case, we plan to mine
the code pattern of DL implementation and use the pattern to
predict more DL apps that might involve DL. For the second one, we
plan to further enhance our analyzer with advanced static analysis
technique [42] so that it can detect whether the API calls (sinks)
of DL libraries will be invoked or not. Our tool can be further
enhanced via dynamic analysis, e.g., running the extracted models
on smartphones and inspecting the system behavior.
More platforms In this work, we only analyze the adoption of
DL on Android apps. Though Android is quite representative of
the mobile ecosystem, more interesting findings might be made by
expanding our study on other platforms such as iOS and Android
Wear. We believe that comparing the DL adoption on different plat-
forms can feed in more implications to researchers and developers.

7 RELATEDWORK
Mobile DL Due to their ubiquitous nature, mobile devices can cre-
ate countless opportunities for DL tasks. Researchers have built
numerous novel applications based on DL [44, 68, 69, 76, 83, 98].
Besides, various optimization techniques have been proposed to
reduce the overhead of DL on resource-constrained mobile devices,
e.g., model compression [50, 59, 67, 74, 97], hardware customiza-
tions [45, 47, 57, 103], and cloud offloading [61, 66, 99, 105]. These

studies are usually carried out under lab environments, based on
classical models such as VGG and ResNet, in lack of real-world
workloads and insights. Thus, our work is motivated by those enor-
mous efforts that try to bring DL to mobile devices, and fill the gap
between the academic literature and industry products.
ML/DL as cloud services Besides on-device fashion, the DL func-
tionality, or in a broader scope of Machine Learning (ML), can also
be accessed as cloud services. The service providers include Ama-
zon [2], Google [19], Microsoft Azure [21], etc. There are some
prior analyzing studies focusing on such MLaaS (machine learning
as a service) platforms. Yao et al. [101] comprehensively investi-
gate into effectiveness of popular MLaas systems, and find that
with more user control comes greater risk. Some other literature
studies [52, 88, 94] focus on the security issues of those platforms
towards different types of attacks.
Empirical study of DL Prior empirical analysis mainly focuses
on assisting developers to build better DL apps/systems/models.
Zhang et al. [107] characterize the defects (bugs) in DL programs
via mining the StackOverflow QA pages and GitHub projects. Con-
sequently, the results are limited in only open-source, small-scale
projects. Fawzi et al. [51] analyze the topology and geometry of the
state-of-the-art deep networks, as well as their associated decision
boundary. These studies mostly focus on classical and small-scale
DL models proposed in previous literature, while our study mine
the knowledge from large-scale in-the-wild mobile apps.
DL Model protection Some recent efforts have been investigated
in protecting DL models. For example, various watermarking mech-
anisms [41, 78, 87, 104] have been proposed to protect intellectual
property of DL models. This approach, however, cannot protect
models from being extracted and attacked. As a closer step, some
researchers [55, 60, 93] secure the DL systems/models based on
secure execution environments (SEE) such as Intel SGX [20]. Some
DL frameworks also provide mechanisms for model protection. For
example, Mace [23] supports developers to convert models to C++
code [11]. However, our results show that a large number of DL
models are exposed without secure protection.

8 CONCLUSIONS
In this work, we have carried out the first empirical study to

understand how deep learning technique is adopted in real-world
smartphones, as a bridge between the research and practice. By min-
ing and analyzing large-scale Android apps based on a static tool,
we have reached interesting and valuable findings. Our findings
also provide strong and valuable implications to multiple stake-
holders of the mobile ecosystem, including developers, hardware
designers, and researchers.

ACKNOWLEDGMENT
The authors affiliated with Peking University were supported

by the National Key R&D Program of China under the grant num-
ber 2018YFB1004800, the Beijing Municipal Science and Technol-
ogy Project under the grant number Z171100005117002, the Na-
tional Natural Science Foundation of China under grant numbers
61725201, 61528201, and 61529201. Felix Xiaozhu Lin was support
in part by a Google faculty award.

REFERENCES
[1] 2018. Add a new op in TensorFlow. https://www.tensorflow.org/guide/extend/

op.
[2] 2018. Amazon Machine Learning. https://aws.amazon.com/machine-learning.
[3] 2018. An Exploration of Mobile First AI. https://medium.com/swlh/

an-exploration-of-mobile-first-ai-576c944efd36.
[4] 2018. Android aapt. http://elinux.org/Android_aapt.
[5] 2018. Apktool: A tool for reverse engineering Android apk files. https://

ibotpeaches.github.io/Apktool/.
[6] 2018. Apple COO: Smartphone is a ’major platform’

for future of AI. https://www.techrepublic.com/article/
apple-coo-smartphone-is-a-major-platform-for-future-of-ai/.

[7] 2018. Arm TrustZone. https://developer.arm.com/technologies/trustzone.
[8] 2018. Artificial Intelligence Next Key Growth Area for Smart-

phones as Numbers Top Six Billion by 2020, IHS Markit
Says. https://news.ihsmarkit.com/press-release/technology/
artificial-intelligence-next-key-growth-area-smartphones-numbers-top-six-bi.

[9] 2018. Caffe2 deep learning framework. https://github.com/caffe2/caffe2.
[10] 2018. Chainer. https://chainer.org/.
[11] 2018. Converting model to C++ code. https://mace.readthedocs.io/en/latest/

user_guide/advanced_usage.html.
[12] 2018. CoreML by Apple. https://developer.apple.com/documentation/coreml.
[13] 2018. Deep Learning for Java. https://deeplearning4j.org/.
[14] 2018. dex2jar. https://github.com/pxb1988/dex2jar.
[15] 2018. Dynamic shapes in TensorFlow. https://www.tensorflow.org/guide/

tensors.
[16] 2018. FeatherCNN. https://github.com/Tencent/FeatherCNN.
[17] 2018. Fully-connected Layers in Convolutional Neural Networks). https://

cs231n.github.io/convolutional-networks/.
[18] 2018. Global mobile OS market share in sales to

end users. https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/.

[19] 2018. Google Prediction API. https://cloud.google.com/prediction.
[20] 2018. Intel Software Guard Extensions. https://software.intel.com/en-us/sgx.
[21] 2018. Microsoft Azure ML Studio. https://azure.microsoft.com/en-us/services/

machine-learning.
[22] 2018. Microsoft Cognitive Toolkit (CNTK). https://github.com/Microsoft/CNTK.
[23] 2018. Mobile AI Compute Engine. https://github.com/XiaoMi/mace.
[24] 2018. Mobile deep learning. https://github.com/baidu/mobile-deep-learning.
[25] 2018. Open neural network exchange format. https://onnx.ai/.
[26] 2018. Open Source Computer Vision Library. https://opencv.org/.
[27] 2018. Over Half of Smartphone Owners Use

Voice Assistants. https://voicebot.ai/2018/04/03/
over-half-of-smartphone-owners-use-voice-assistants-siri-leads-the-pack/.

[28] 2018. Protocol Buffer. https://developers.google.com/protocol-buffers/.
[29] 2018. pytorch. http://pytorch.org/.
[30] 2018. SenseTime. https://www.sensetime.com/?lang=en-us.
[31] 2018. Snapdragon Neural Processing Engine. https://developer.qualcomm.com/

software/snapdragon-neural-processing-engine.
[32] 2018. Snapdragon performance. https://www.anandtech.com/show/12420/

snapdragon-845-performance-preview/2.
[33] 2018. Strip visible string in ncnn. https://github.com/Tencent/ncnn/wiki/

how-to-use-ncnn-with-alexnet.
[34] 2018. SuperID Android SDK. https://github.com/SuperID/superid-android-sdk.
[35] 2018. Tencent ncnn deep learning framework. https://github.com/Tencent/ncnn.
[36] 2018. TensorFlow. https://www.tensorflow.org/.
[37] 2018. TensorFlow Lite. https://www.tensorflow.org/mobile/tflite/.
[38] 2018. The Machine Learning Behind Android Smart Linkify. https://ai.

googleblog.com/2018/08/the-machine-learning-behind-android.html.
[39] 2018. torch. http://torch.ch/.
[40] 2018. xNN deep learning framework. https://myrgzn.gitee.io/rgzn/news/

page100.html.
[41] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.

2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring. arXiv preprint arXiv:1802.04633 (2018).

[42] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[43] Davide Bacciu, Stefano Chessa, Claudio Gallicchio, and Alessio Micheli. 2017.
On the need of machine learning as a service for the internet of things. In
Proceedings of the 1st International Conference on Internet of Things and Machine
Learning, IML 2017. 22:1–22:8.

[44] Michael Barz and Daniel Sonntag. 2016. Gaze-guided Object Classification Using
Deep Neural Networks for Attention-based Computing. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing

(UbiComp’16). 253–256.
[45] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. DianNao: a Small-footprint High-throughput Acceler-
ator for Ubiquitous Machine-Learning. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS’14). 269–284.

[46] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015).

[47] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 43rd
ACM/IEEE Annual International Symposium on Computer Architecture, (ISCA’16).
367–379.

[48] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems. 3123–3131.

[49] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. 191–198.

[50] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting Linear Structure Within Convolutional Networks for Efficient
Evaluation. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems (NIPS’14). 1269–1277.

[51] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano
Soatto. 2018. Empirical study of the topology and geometry of deep networks.
In IEEE CVPR.

[52] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1322–1333.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[54] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization using
Embeddings for Search Ranking at Airbnb. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 311–
320.

[55] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Ankita Lamba, Dimitrios
Pendarakis, and Ian Molloy. 2018. Securing Input Data of Deep Learning Infer-
ence Systems via Partitioned Enclave Execution. arXiv preprint arXiv:1807.00969
(2018).

[56] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learningwith limited numerical precision. In International Conference
on Machine Learning. 1737–1746.

[57] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. In 43rd ACM/IEEE Annual International Symposium on
Computer Architecture, (ISCA’16). 243–254.

[58] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149 (2015).

[59] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wol-
man, and Arvind Krishnamurthy. 2016. MCDNN: An Approximation-Based
Execution Framework for Deep Stream Processing Under Resource Constraints.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys’16). 123–136.

[60] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin,
Michael Backes, andMario Fritz. 2018. MLCapsule: Guarded Offline Deployment
of Machine Learning as a Service. arXiv preprint arXiv:1808.00590 (2018).

[61] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng
Li, Trevor N. Mudge, Ronald G. Dreslinski, Jason Mars, and Lingjia Tang. 2015.
DjiNN and Tonic: DNN as a service and its implications for future warehouse
scale computers. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, Portland, OR, USA, June 13-17, 2015. 27–40.

[62] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright.
2018. Privacy-preserving Machine Learning as a Service. PoPETs 2018, 3 (2018),
123–142.

[63] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017).

[64] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level Accuracy with 50x
Fewer Parameters and <1MBModel Size. arXiv preprint arXiv:1602.07360 (2016).

[65] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional Architecture for Fast Feature Embedding. In Proceedings of the ACM
International Conference on Multimedia, MM ’14, Orlando, FL, USA, November 03

https://www.tensorflow.org/guide/extend/op
https://www.tensorflow.org/guide/extend/op
https://aws.amazon.com/machine-learning
https://medium.com/swlh/an-exploration-of-mobile-first-ai-576c944efd36
https://medium.com/swlh/an-exploration-of-mobile-first-ai-576c944efd36
http://elinux.org/Android_aapt
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.techrepublic.com/article/apple-coo-smartphone-is-a-major-platform-for-future-of-ai/
https://www.techrepublic.com/article/apple-coo-smartphone-is-a-major-platform-for-future-of-ai/
https://developer.arm.com/technologies/trustzone
https://news.ihsmarkit.com/press-release/technology/artificial-intelligence-next-key-growth-area-smartphones-numbers-top-six-bi
https://news.ihsmarkit.com/press-release/technology/artificial-intelligence-next-key-growth-area-smartphones-numbers-top-six-bi
https://github.com/caffe2/caffe2
https://chainer.org/
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://developer.apple.com/documentation/coreml
https://deeplearning4j.org/
https://github.com/pxb1988/dex2jar
https://www.tensorflow.org/guide/tensors
https://www.tensorflow.org/guide/tensors
https://github.com/Tencent/FeatherCNN
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://cloud.google.com/prediction
https://software.intel.com/en-us/sgx
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning
https://github.com/Microsoft/CNTK
https://github.com/XiaoMi/mace
https://github.com/baidu/mobile-deep-learning
https://onnx.ai/
https://opencv.org/
https://voicebot.ai/2018/04/03/over-half-of-smartphone-owners-use-voice-assistants-siri-leads-the-pack/
https://voicebot.ai/2018/04/03/over-half-of-smartphone-owners-use-voice-assistants-siri-leads-the-pack/
https://developers.google.com/protocol-buffers/
http://pytorch.org/
https://www.sensetime.com/?lang=en-us
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
https://www.anandtech.com/show/12420/snapdragon-845-performance-preview/2
https://www.anandtech.com/show/12420/snapdragon-845-performance-preview/2
https://github.com/Tencent/ncnn/wiki/how-to-use-ncnn-with-alexnet
https://github.com/Tencent/ncnn/wiki/how-to-use-ncnn-with-alexnet
https://github.com/SuperID/superid-android-sdk
https://github.com/Tencent/ncnn
https://www.tensorflow.org/
https://www.tensorflow.org/mobile/tflite/
https://ai.googleblog.com/2018/08/the-machine-learning-behind-android.html
https://ai.googleblog.com/2018/08/the-machine-learning-behind-android.html
http://torch.ch/
https://myrgzn.gitee.io/rgzn/news/page100.html
https://myrgzn.gitee.io/rgzn/news/page100.html

- 07, 2014. 675–678.
[66] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N. Mudge,

Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence
Between the Cloud and Mobile Edge. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17). 615–629.

[67] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator
for Low-power Deep Learning Inference on Mobile Devices. In 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN
2016). 23:1–23:12.

[68] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and
Fahim Kawsar. 2015. An Early Resource Characterization of Deep Learning
on Wearables, Smartphones and Internet-of-Things Devices. In Proceedings
of the 2015 International Workshop on Internet of Things towards Applications
(IoT-App’15). 7–12.

[69] Nicholas D. Lane, Petko Georgiev, and Lorena Qendro. 2015. DeepEar: Robust
Smartphone Audio Sensing in Unconstrained Acoustic Environments Using
Deep Learning. In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp’15). 283–294.

[70] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil
Ghiasi. 2016. CNNdroid: GPU-Accelerated Execution of Trained Deep Con-
volutional Neural Networks on Android. In Proceedings of the 2016 ACM on
Multimedia Conference. 1201–1205.

[71] Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise
brain damage. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2554–2564.

[72] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[73] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th international
conference on Knowledge discovery and data mining (KDD’14). 661–670.

[74] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
2018. On-Demand Deep Model Compression for Mobile Devices: A Usage-
Driven Model Selection Framework. In Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys’18).
389–400.

[75] Xuanzhe Liu, Huoran Li, Xuan Lu, Tao Xie, Qiaozhu Mei, Feng Feng, and Hong
Mei. 2018. Understanding Diverse Usage Patterns from Large-Scale Appstore-
Service Profiles. IEEE Trans. Software Eng. 44, 4 (2018), 384–411.

[76] Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, and Narayanan C. Krishnan.
2016. SpotGarbage: Smartphone App to Detect Garbage Using Deep Learning.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp’16). 940–945.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[78] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and ShinâĂŹichi Satoh. 2018.
Digital watermarking for deep neural networks. International Journal of Multi-
media Information Retrieval 7, 1 (2018), 3–16.

[79] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.
Embedding-based news recommendation for millions of users. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1933–1942.

[80] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Ce-
lik, and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
372–387.

[81] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’14). 701–
710.

[82] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[83] Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mascolo, Ma-
hesh K. Marina, and Fahim Kawsar. 2016. Towards Multimodal Deep Learning
for Activity Recognition onMobile Devices. In Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16).
185–188.

[84] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. 525–542.

[85] Mauro Ribeiro, Katarina Grolinger, and Miriam A. M. Capretz. 2015. MLaaS:
Machine Learning as a Service. In 14th IEEE International Conference on Machine
Learning and Applications, ICMLA 2015. 896–902.

[86] Everett M Rogers. 2010. Diffusion of innovations. Simon and Schuster.
[87] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. [n. d.]. DeepSigns:

A Generic Watermarking Framework for Protecting the Ownership of Deep
Learning Models. ([n. d.]).

[88] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership inference attacks against machine learning models. In Security and
Privacy (SP), 2017 IEEE Symposium on. 3–18.

[89] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[90] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[91] SÃk, ren Sonnenburg, Mikio L Braun, Cheng Soon Ong, Samy Bengio, Leon
Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert MÃžller, Fernando Pereira,
Carl Edward Rasmussen, et al. 2007. The need for open source software in
machine learning. Journal of Machine Learning Research (JMLR) 8, Oct (2007),
2443–2466.

[92] Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael WMahoney,
Randy Katz, Anthony D Joseph, Michael Jordan, Joseph M Hellerstein, Joseph E
Gonzalez, et al. 2017. A berkeley view of systems challenges for ai. arXiv
preprint arXiv:1712.05855 (2017).

[93] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. arXiv preprint arXiv:1806.03287
(2018).

[94] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. StealingMachine LearningModels via Prediction APIs.. InUSENIX Security
Symposium. 601–618.

[95] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the
speed of neural networks on CPUs. In Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop, Vol. 1. 4.

[96] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems. 2074–2082.

[97] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized Convolutional Neural Networks for Mobile Devices. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, (CVPR’16). 4820–4828.

[98] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. 2018.
DeepType: On-Device Deep Learning for Input Personalization Service with
Minimal Privacy Concern. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies 2, 4 (2018), 197.

[99] Mengwei Xu, Feng Qian, Mengze Zhu, Feifan Huang, Saumay Pushp, and Xu-
anzhe Liu. 2019. DeepWear: Adaptive Local Offloading for On-Wearable Deep
Learning. IEEE Transactions on Mobile Computing (2019).

[100] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
2018. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking.
129–144.

[101] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. 2017. Complexity vs. performance: empirical analysis of machine
learning as a service. In Proceedings of the 2017 Internet Measurement Conference,
IMC 2017, London, United Kingdom, November 1-3, 2017. 384–397.

[102] Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A Small-Footprint
Mobile Deep Learning System for Recognizing Unconstrained Pill Images. In
Proceedings of the 15th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys’17). 56–67.

[103] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neu-
ral Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA’15). 161–170.

[104] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. 2018. Protecting Intellectual Property of Deep Neural
Networks with Watermarking. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. 159–172.

[105] Qingchen Zhang, Laurence T. Yang, and Zhikui Chen. 2016. Privacy Preserving
Deep Computation Model on Cloud for Big Data Feature Learning. IEEE Trans.
Computers (2016), 1351–1362.

[106] Xingzhou Zhang, Yifan Wang, and Weisong Shi. 2018. pCAMP: Performance
Comparison of Machine Learning Packages on the Edges. (2018).

[107] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An Empirical Study on TensorFlow Program Bugs. (2018).

	Abstract
	1 Introduction
	2 Background
	3 Goal and Methodology
	3.1 Research Goal
	3.2 Workflow Overview

	4 Application Analysis
	4.1 Methodology: finding DL apps
	4.2 Characteristics of DL apps
	4.3 The roles of DL in apps
	4.4 DL frameworks

	5 Model Analysis
	5.1 Model Extractor: finding DL models
	5.2 Model Structures
	5.3 Model Resource Footprint
	5.4 Model Security

	6 Discussions
	7 Related Work
	8 Conclusions
	References

