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Abstract

Industrial implementation of model-based control methods, such
as model predictive control, is often complicated by the lack of
knowledge about the disturbances entering the system. In this pa-
per, we present a new method (ALS) to estimate the variances of
the disturbances entering the process using routine operating data.
A variety of methods have been proposed to solve this problem.
Of note, we compare ALS to the classic approach presented in [12].
This classic method, and those based on it, use a three-step pro-
cedure to compute the covariances. The method presented in this
paper is a one-step procedure, which yields covariance estimates
with lower variance on all examples tested. Furthermore, the for-
mulation used in this paper provides necessary and sufficient con-
ditions for uniqueness of the estimated covariances, previously not
available in the literature. We show that the estimated covariances
are unbiased and converge to the true values with increasing sam-
ple size. We also use semidefinite programming to add positive
semidefiniteness constraints and maintain a convex program, which
none of the classic methods achieve.

0This technical report is an expanded version of [19], and is also included in [18]
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1 Introduction

Model-based control methods, such as model predictive control (MPC), have become
popular choices for solving difficult control problems. Higher performance, however,
comes at a cost of greater required knowledge about the process being controlled. Ex-
pert knowledge is often required to properly commission and maintain the regulator,
target calculator, and state estimator of MPC, for example. This paper addresses the
required knowledge for the state estimator, and describes a technique with which or-
dinary closed-loop data may be used to remove some of the information burden from
the user. Consider the usual linear, time-invariant, discrete-time model

xk+1 = Axk + Buk +Gwk
yk = Cxk + vk

in which A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×g , C ∈ Rp×n, and {wk}Ndk=0 and {vk}Ndk=0
are uncorrelated zero-mean Gaussian noise sequences with covariances Qw and Rv ,
respectively. The sequence {uk}Ndk=0 is assumed to be a known input resulting from
the actions of a controller. State estimates of the system are considered using a linear,
time-invariant state estimator

x̂k+1|k = Ax̂k|k + Buk
x̂k|k = x̂k|k−1 + L[yk − Cx̂k|k−1]

in which L is the estimator gain. The hat on the state estimate denotes the best linear
least-squares estimate of the state using the gain L, which is not necessarily the opti-
mal gain. We denote the residuals of the update equations as the L-innovations when
calcuated using state estimates calculated using a suboptimal gain. In order to use the
optimal filter, we need to know the covariances of the disturbances,Qw , Rv from which
we can calculate the optimal estimator’s error covariance and the optimal, Kalman filter
gain. In most industrial process control applications, however, the covariances of the
disturbances entering the process are not known. To address this requirement, esti-
mation of the covariances from open-loop data has long been a subject in the field of
adaptive filtering, and can be divided into four general categories: Bayesian [1, 8], maxi-
mum likelihood [5, 10], covariance matching [14], and correlation techniques. Bayesian
and maximum likelihood methods have fallen out of favor because of their sometimes
excessive computation times. They may be well suited to a multi-model approach as
in [2]. Covariance matching is the computation of the covariances from the residuals
of the state estimation problem. Covariance matching techniques have been shown to
give biased estimates of the true covariances. The fourth category is correlation tech-
niques, largely pioneered by Mehra [12, 13] and Carew and Bélanger [4, 7], which we
consider further in this paper.
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2 Innovations based correlation techniques and the ALS estima-
tor

With the standard linear state estimator, the state estimation error, εk = xk − x̂k|k−1,
evolves according to

εk+1 = (A−ALC)︸ ︷︷ ︸
Ā

εk +
[
G, −AL

]
︸ ︷︷ ︸

Ḡ

[
wk
vk

]
︸ ︷︷ ︸

w̄k

(3)

We define the state-space model of the L-innovations as

εk+1 = Āεk + Ḡw̄k
Yk = Cεk + vk

in which
Yk = yk − Cx̂k|k−1

and we require subsequently that the system is detectable and the chosen filter is stable.

Assumption 1 (A,C) is detectable

Assumption 2 Ā = A−ALC is stable

A stable filter gain L exists because of Assumption 1. In this formulation, the state and
sensor noises are correlated:

E
[
w̄k(w̄k)T

]
≡ Q̄w =

[
Qw 0
0 Rv

]

E
[
w̄kvTk

]
=
[

0
Rv

]

Effect of initial condition. Assume the initial estimate error is distributed with mean
m0 and covariance P−0 ,

E(ε0) =m0 cov(ε0) = P−0
Propagating the estimate error through the state evolution equation gives an explicit
formula for the mean

E(εk) = Ākm0

and the recursion for the covariance

cov(εk) = P−k
P−j = ĀP−j−1Ā

T + ḠQ̄wḠT , j = 1, . . . , k
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Because the filter is stable (Assumption 2), as k increases, the mean converges to zero
and the covariance approaches a steady state given by the solution to the following
Lyapunov equation

E(εk)→ 0

cov(εk)→ P−

P− = ĀP−ĀT + ḠQ̄wḠT (5)

We therefore assume that we have chosen k sufficiently large so that the effects of
the initial conditions can be neglected, or, equivalently, we choose the steady-state
distribution as the initial condition

Assumption 3 E(ε0) = 0 cov(ε0) = P−

Now consider the autocovariance, defined as the expectation of the data with some
lagged version of itself [9],

Cj = E[YkY T
k+j] (6)

Using Equation 3 and the steady-state initial condition (Assumption 3) gives for the
autocovariance

E(Y kY
T
k ) = CP−CT + Rv (7)

E(Y k+jY
T
k ) = CĀjP−CT − CĀj−1ALRv j ≥ 1 (8)

which are independent of k because of our assumption about the initial conditions.
The autocovariance matrix (ACM) is then defined as

R(N) =


C0 · · · CN−1
...

. . .
...

C T
N−1 · · · C0

 (9)

The number of lags used in the ACM is a user-defined parameter, N. The off-diagonal
autocovariances are not assumed zero, because we do not process the data with the
optimal filter, which is unknown. The ACM of the L-innovations can be written as
follows:

R(N) = OP−OT + Γ

 N⊕
i=1

ḠQ̄wḠT
 ΓT

+Ψ
 N⊕
i=1

Rv

+
 N⊕
i=1

Rv

ΨT + N⊕
i=1

Rv (10)

in which

O =

 C
CĀ

.

.

.
CĀN−1

 Γ =

 0 0 0 0
C 0 0 0
.
.
.

. . .
.
.
.

CĀN−2 · · · C 0

 Ψ = Γ
 N⊕
j=1

(−AL)

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In this result and those to follow, we employ the standard definitions of the Kronecker
product, Kronecker sum and the direct sum [6, 20]. In order to use the ACM relationship
in a standard least-squares problem, we apply the “vec” operator, which is the colum-
nwise stacking of a matrix into a vector [6]. If zk is the kth column of an arbitrary Z
matrix

vec(Z) = Zs =
[
zT1 · · · zTk

]T
Throughout this paper, we use the s subscript to denote the outcome of applying the
vec operator. Applying the vec operator to Equation 10 and using the result of applying
the vec operator on Equation 5

P−s = (Ā⊗ Ā)P−s + (ḠQ̄wḠT )s (11)

yields

[R(N)]s = [(O⊗O)(In2 − Ā⊗ Ā)−1

+ (Γ ⊗ Γ)In,N](G ⊗G)(Qw)s
+ {[(O⊗O)(In2 − Ā⊗ Ā)−1

+ (Γ ⊗ Γ)In,N](AL⊗AL)
+ [Ψ ⊕ Ψ + Ip2N2]Ip,N}(Rv)s (12)

in which Ip,N is a permutation matrix to convert the direct sum to a vector, i.e. Ip,N is
the (pN)2 × p2 matrix of zeros and ones satisfying N⊕

i=1

Rv


s

= Ip,N(Rv)s

Ideally, we would like to compute the autocovariance as the expectation of the prod-
uct YkY

T
k+j . Practically, we approximate the expectation from the data using the time

average, a valid procedure since the process is ergodic [9]. The estimate of the autoco-
variance is computed as

Ĉj =
1

Nd − j

Nd−j∑
i=1

YiY
T
i+j (13)

which is the so-called unbiased autocovariance estimator. The estimated ACM, R̂(N), is
analogously defined using the computed Ĉj . At this point we can define a least-squares
problem to estimate Qw , Rv . We summarize Equation 12 as

Ax = b

in which

A=
[
D(G ⊗G) D(AL⊗AL)+

+[Ψ ⊕ Ψ + Ip2N2]Ip,N

]
(14)

D =
[
(O⊗O)(In2 − Ā⊗ Ā)−1 + (Γ ⊗ Γ)In,N

]
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x =
[
(Qw)Ts (Rv)Ts

]T
b = R(N)s

We define the ALS estimate as

x̂ = arg min
x
‖Ax − b̂‖2

2 (15)

in which

x̂ =
[
(Q̂w)Ts (R̂v)Ts

]T
b̂ = R̂(N)s

The solution for the ALS estimate is the well known

x̂ =A†b̂ A† =
(
ATA

)−1
AT

The uniqueness of the estimate is a standard result of least-squares estimation [11]. The
estimated covariances are symmetric due to the structure of the least-squares problem.

Lemma 1 The ALS estimate (Equation 15) exists and is unique if and only if A has full
column rank.

We note that the ACM could be written in the output form as well, in which the ACM is
computed from the outputs instead of the L-innovations. There are number of reasons
why the output covariance estimator is inadequate in practical applications. In the
output-based formulation, the control law would have to be specified in order to con-
sider closed-loop data. Additionally, output autocovariance methods are not suitable
for estimating integrated white noise disturbances, which are used widely in industrial
MPC implementations to remove steady offset.

Comments on the initial filter gain. In principle, any stable filter gain, L, may be used
to calculate the L-innovations. This initial gain simply parameterizes the L-innovations.
The covariances of the underlying noise sequences are contained in the outputs of the
process. While the choice of the initial filter may impact the number of data points
required to find reliable estimates of the covariances, we show in Section 3 that the
initial choice of the filter is irrelevant for large data sets. The autocovariance matrix in
Equation 9 has nonzero off-diagonal elements for a suboptimal choice of L. Only when
the true covariances (and optimal filter) are employed are the off-diagonal terms zero.

3 Properties of the ALS covariance estimates

In this section we evaluate the mean and variance of the ALS estimator. To this end,
first we require the properties of the estimated autocovariance

Lemma 2 The expectation of the estimated autocovariance (Ĉj) is equal to the autoco-
variance (Cj) for all j, and the variance goes to zero inversely with sample size, Nd

E[Ĉj] = Cj j = 0, . . . ,N

cov
(
Ĉj
)
= O

(
1

Nd − j

)
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Proof.The expectation result follows from taking expectation of Equation 13 and the
definition of the autocovariance, Equation 6. For brevity, the proof of the variance
result is omitted. A derivation can be found in [3]. �

Remark 1 The unbiased result in finite sample size is due to the strong assumption we
have made on the initial conditions, Assumption 3. If we weaken this assumption and
allow nonzero expectation of initial error or covariance of initial error not equal to P−,
then the bias is nonzero with finite sample size, but decreases exponentially to zero with
increasing sample size.

Note that for the types of problems to be solved with this method, we choose Nd�
N, and therefore cov

(
Ĉj
)
→ 0 as Nd →∞, for all j. We can choose large Nd because we

require only routine operating data, not identification testing data with input excitation.
The properties of the autocovariance estimate then imply the ALS estimates of the
covariances are unbiased for all sample sizes, and converge to the true values with
increasing sample size.

Theorem 1 Given A (Equation 14) has full column rank, the ALS noise covariance esti-
mates (Q̂w , R̂v ) (Equation 15) are unbiased for all sample sizes and converge asymptot-
ically to the true covariances (Qw , Rv ) as Nd →∞.

Proof.For compactness, we use the notation of the least-squares problem of Equation 15
in which Ax = b, and

x̂ = arg min
x
‖Ax − b̂‖2

2

The expected value of the estimate is

E
[
x̂
]
=A†E

[
b̂
]

=A†b (by Lemma 2)

=A†Ax = x

The covariance of the estimate is

cov(x̂) =A†cov(b̂(A†)T

From Lemma 2, cov(b̂)→ 0 as Nd →∞. Therefore

cov(x̂)→ 0 as Nd →∞

�

Remark 2 Again, as in Lemma 2, the unbiased result in finite sample size is due to
Assumption 3. If we remove this assumption, the bias is nonzero with finite sample size,
but decreases exponentially to zero with increasing sample size.
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4 Discussion and comparison to previous approaches

4.1 Comparison to correlation based methods

The pioneering work of Mehra [12, 13] and Bélanger [7] has seen successful application
using open-loop data and remains highly cited. Mehra employs a three-step procedure
to estimate (Qw , Rv ): (i) Solve a least squares problem to estimate P−CT from the esti-
mated autocovariances using Equations 7 and 8. (ii) Use Equation 7 and the estimated
P−CT to solve for Rv . (iii) Solve a least-squares problem to estimate Qw from the es-
timated P−CT and Rv using Equation 11. We offer two criticisms of the classic Mehra
approach. Our first comment concerns the conditions for uniqueness of (Q̂w , R̂v ) in
Mehra’s approach. These conditions were stated (without proof) as

1. (A,C) observable

2. A full rank

3. The number of unknown elements in the Qw matrix, g(g + 1)/2, is less than or
equal to np

These conditions were also cited by Bélanger [4]. As a counterexample, consider

A =

0.9 0 0
1 0.9 0
0 0 0.9

 C =
[

0 1 0
0 0 1

]
G = I

The Mehra conditions predict that unique covariances exist, but the A matrix in Equa-
tion 14 does not have full column rank for this case. Thus these conditions are not
sufficient. The problem here is that although P−CT and Rv are uniquely estimatable
from the data, Qw is not. Examining the null space of the stacked version of the P−CT

equation shows that any multiple of the following matrix can be added to an estimate
of Q̂w without changing the fit to the autocovariance data

Q =

 0.117 −0.552 0
−0.552 −0.613 0

0 0 0


Consider a second counterexample,

A =
[

0.1 0
0 0.2

]
G =

[
1
2

]
C =

[
1 δ

]
When δ = 0, this system is not observable, and thus does not meet Mehra’s conditions.
But A has full column rank for δ = 0, the ALS method estimates unique covariances,
and thus Mehra’s conditions are also not necessary. In this example, one can use just
state x1 to uniquely distinguish the process disturbance from the output disturbance.
It makes no difference whether or not the second state is observable.
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Our second comment concerns the large variance associated with Mehra’s method.
This point was first made by Neethling and Young [15], and seems to have been largely
overlooked. First, step (ii) above is inappropriate because the zero-order lag autocor-
relation estimate in Equation 7 is not known perfectly. Second, breaking a single-stage
estimation of Qw and Rv into two stages by first finding P−CT and Rv and then using
these estimates to estimate Qw in steps (i) and (iii) also increases the variance in the
estimated Qw .

To quantify the size of the variance inflation associated with Mehra’s method, con-
sider a third example, which has a well-conditioned observability matrix

A =

0.1 0 0.1
0 0.2 0
0 0 0.3

 G =

1
2
3

 C =
[
0.1 0.2 0

]

Data are generated using noise sequences with covariance Qw = 0.5, Rv = 0.1. The L-
innovations are calculated with a filter gain corresponding to incorrect noise variances
Qw = 0.2 and Rv = 0.4. Mehra’s method and the ALS method are run using Nd = 1000
data points, N = 15. The simulation is repeated 200 times to illustrate the mean
and variances of the estimators. In Figure 1, the estimates of (Qw , Rv) using Mehra’s
method are plotted. The variance of the estimates is large, and many of the estimates
are negative, which is aphysical. In Figure 2, the ALS estimates of (Qw , Rv) are plotted,
on much tighter axes. The variance of the ALS estimates is much smaller than in Mehra’s
method, and none of the estimates are negative. Note that Neethling and Young[15]
discuss other examples with behavior similar to this one.

4.2 Enforcing semidefinite constraints

When dealing with a finite set of measurements and inputs from a closed-loop plant,
the ALS estimate of the covariances from Equation 15 may not be positive semidefinite,
although the variance of the estimates may be smaller than the two-step procedure.
Such estimates are physically meaningless. The constrained ALS estimation problem
is then given by:

Φ = min
Qw ,Rv

∥∥∥∥∥A
[
(Qw)s
(Rv)s

]
− b̂

∥∥∥∥∥
2

2

subject to, Qw ≥ 0 Rv ≥ 0

(16)

A recent ad hoc method of imposing positive semidefiniteness on only the estimates
of Rv is given in [17]. The constraints in Equation 16 are convex in Qw , Rv and the
optimization is in the form of a semidefinite programming (SDP) problem [21]. The
matrix inequalitiesQw ≥ 0, Rv ≥ 0 can then be handled by adding a logarithmic barrier
function to the objective. The optimization in Equation 16 becomes:

Φ = min
Qw ,Rv

∥∥∥∥∥A
[
(Qw)s
(Rv)s

]
− b̂

∥∥∥∥∥
2

2
− µ log

∣∣∣∣∣Qw 0
0 Rv

∣∣∣∣∣ (17)
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Figure 1: Estimates of Qw and Rv using Mehra’s method.
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Figure 2: Estimates of Qw and Rv using proposed ALS method. Notice the axes have
been greatly expanded compared to Fig. 1.
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in which, µ is called the barrier parameter and |·| denotes the determinant of the matrix
[16]. The optimization in Equation 17 is convex with analytical gradients. A simple
path following algorithm based on Newton steps is then enough to find the global
optimum. The details of the algorithm can be found in [22, chap. 10]. The convexity
of the optimization in Equation 16 and Lemma 1 ensure uniqueness of the covariance
estimates. The algorithm generalizes efficiently for large dimension problems.

5 Conclusions

In this paper we have developed a new method (ALS) for using the autocovariance of
the L-innovations to estimate the covariances of the system disturbances, which are re-
quired for optimal state estimation. We have shown that the ALS covariance estimates
are unbiased and converge asymptotically to the true system covariances with increas-
ing sample size. Using the standard properties of least-squares estimation, necessary
and sufficient conditions for unique covariance estimates have been provided. Exam-
ples are provided to show that conditions previously stated in the literature are neither
necessary nor sufficient for uniqueness of these estimates. Previously reported meth-
ods for this estimation have been shown to have unnecessarily large variance. We also
add semidefiniteness constraints on the covariances by solving a convex semidefinite
programming problem.
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