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2. “An Assignment Model of Knowledge Diffusion and Income Inequality”
Federal Reserve Bank of Minneapolis working paper 715 (Sept 2014)

» see original papers for references to related literature



two models of social learning

1. individuals randomly select others at rate 5 and copy if “better”

DiP(t,z) = —BP(t, 2)[1 — P(t, 2)

2. “students” match 1-on-1 with “teachers” and learn at rate (3

D/P(t,z) = —fmin{P(t,2),1 — P(t, 2)}

» a parabola or a tent



p(t,2)

the ODE for one-on-one knowledge transfer

D P(tX) = - bP(tX)

D P(ty) = - b[1-P(ty)]

X
students

median

teachers



the solution

1. random matching delays
1

P(t,z) = , P

2. random learning delays

( e "P(0, ) z € (—00, x|
P<t7 Z) — %eﬁt[li/pQ(oyz)] Z € [.’Eo,.’]ft]
| 1- e’[1 — P(0,2)] =z € [x4,00)

with a median z; defined by

% — P(t,2;) = e [1 — P(0, 2,)] (")

» in both cases, stationary solutions of the form
P(t,z) = P(0,z — xt) and P(t,z) = P(0, ze ")

for any x positive



individual creativity & social learning

e two independent standard Brownian motions B ¢, Bay,
E[max{oBi;,0By}| = o/t/m

e reset to max at random time 71 > T;

=z, +omax{Bi,,, — Bi,,Bos,, — Bos}

ATt

e reset times arrive randomly at rate /3

k [ZTj+1 o sz|ZTj]

B [7j01— 7j]2 ]

N 1/5/0 (bfm) et
1 > 1
= 50\/6/0 2 (u/m) e "du = 50\/E

» large populations

_ 9 | B o | P T AT 1
trend = o 02/2>0\/B—E[ Tj|z7j]>§a\/g...

Tj+1 —




10K agents: every 2.4 days, someone imitates someone else

-5
0 100 200 300 400 500 600 700 800 900 1000

years

e 0 =0.12, 8 =0.015, implies trend = 0.0147



the random imitation economy

e demography and preferences

/ €_pt hl(Ot)dt
0

— unit measure of dynasties
— generations die randomly at the rate o
— replaced immediately with next generation

— complete markets, interest rate r; = p + DC;/C}

e (Lucas, 1978) manager in state z and [ workers can produce consumption,
o? 11—« / «
c = —
(=) ()

a measure of managers M (t, z)

e economy-wide state at ¢



the human resource constraint

Lt+Et+(1—|—gb)Nt:1

e [, : production workers, one unit of labor per worker
e [, : entrants, trying to become managers

e N, : managers, N; = M (t,00), overhead of ¢ workers per manager

» transitions:

— newborn individuals start in L; + E; + ¢V,
— back and forth between L;, E; and ¢ /N, instantaneously
— N; — L; + E; + ¢ N, instantaneous when manager chooses

— E; — N; after random delay with mean 1/~



production of consumption, as usual

e managerial profit maximization

() (5 f e
max — | —wl p = e
l l — « Qo

wily(2) o o o
Vi€ ]l — o

yields

e factor prices and aggregate consumption

)= [1%] e e (59) T (2)
] = [ e

10

given



as long as a manager continues in a job

dz; = pdt + od B,

e idiosyncratic shock B; is a standard Brownian motion

e add learning jumps later

e must pay flow of ¢ > 0 units of labor to continue

— if not, lose z; and become a worker again
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workers and entrants

e workers supply one unit of labor at wage w;,
e entrants sample incumbent managers at the rate v, and imitate perfectly

e time-{ present value of dynastic earnings

— when worker or entrant: W,

— when manager in state z: V;(2)

» random imitation

9t = Nit/W(Z)M(tad@

» because production workers are essential
we > Y@ — W) wee. if B >0
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Ito, and a piece of convenient notation

dz; = pdt + odB;

e for a sufficiently nice f(t, z),

i B Lf(t+ 8, 20a) = (620l = 2] = Af(t,2)

» where
Af(t,2) = Dif(t,2) + uD-f(t,2) + 50°D..f(t, )

— depends on 1 and o?
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Bellman equations

e workers and entrants
’I“tWt — Wt —+ DtWt

® managers
rVi(z) = ve” — owy + AVi(2) + 6 (W — Vi(2)]

for all z > by,
Vi(br) = W,

» implied managerial surplus

(11 +6) [Vi(z) = W] = we® — (1 + p)wy + A[Vi(2) — W

— effective fixed cost is 1 4+ ¢ units of labor

— managerial opportunity cost

» crucial transversality conditions omitted
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population dynamics

e density m(t, z) of M(t, z)
e Kolmogorov forward equation

1 E
Dim(t,z) = —uD.m(t, z) + 502Dzzm(t, Z) + (b — ) m(t, z)
density and derivatives vanish as z — oo, and

m(t, bt) =0

» this implies

o o 1
DN, = 3/ m(t, z)dz = / Dym(t, z)dz = —=a°D.m(t, b;) + vE, — 6N,
(975 by by 2
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balanced growth

e conjecture growth rate x so that cross-section of z; — kt time-invariant
» notation: z; — kKt — 2
e constant numbers of individuals in various occupations

L+E+(14+¢)N=1

e density of managers
m(t, z + kt) = m(z)

e consumption and factor prices

(Cywy] = [C,w] M= 4y = peo
e value functions

Wi, Vilz + kt)] = [W, V(2)] el
e interest rate r; = r,

r=p+(1—ak

16



level of the balanced growth path

e Cobb-Douglas consumption sector

L Q0 vel  Ke

e stock of managerial knowledge capital
Ke?* 1 /OO _
= — e
N N J,

vE 1 o Dm(b)
R
N 0T37 X Ty

e human resource constraint

L E -1
N — 1
(LeEirsd)

» just need ve’/w and m(b + o) /N

e entry and exit
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stationary value functions

e value of workers and entrants is W = w/p

e the Bellman equation for managers is

(p+0)V(z) =ve” —pw+ (n—r)DV(2) + %O‘QDQV(Z>

with boundary conditions
0=V(®b) —W =DV(b)

» change variables

1 we® 7 1 wvel

T1tow’ O 1t+ow
» the normalized value function
D) = VZ4+In(l+¢)—In(v/w)) — W
(14 ¢)w

z

satisfies

N

(P +OV(E) =&~ 1+ (- mDV(E) + 30DV (3

18



the stationary value function

> ‘A/() and b only depend on growth rate x, and nothing else

e solution for V()
Vi)-W 1 ¢ ( b g 1—6_§(Z_b)>
A+¢w ptol+e\’ 3

for all z > b, where

- b
2 1 we

c :1+¢w

and

5 £ f—k+0?/2 L— K w—r\> p+o
- — 1— pu—
‘ 1+§( p+9 >’ . o2 +\/( o2 > +(72/2

» key implication

’U@b

— is a function only of the growth rate k
w

o 83/ Ok > 0, so incumbent managers quit more easily when « high

19



stationary densities

e from the KFE

0=—(u—r)Dm(z) + %JQDQm(z) + (% — ) m(z)

with m(b) = 0, and density and derivatives vanish as z — oo

» solution must be
m(z) o e S+(z=0) _ p=C-(==D)

where

G = ng“i\/(ﬁazﬂf o

» need (. real and positive,

R>”+02\/WE/N)6

a?/2

20



growth at lower bound

» if initial distribution has bounded support then long-run « at lower bound

e this yields (. — ¢ and

where

a?/2

» hence

R = M+02\/<7E£\;;5

— yet to determine the entry rate yE /N
— anything that raises vF /N increases growth

21



determining the entry rate yE /N

e workers and entrants indifferent

—rla= W), q= W= [ (V) = Wim(ps

N
» yields
1 > —
— = / (V<Z) W) C*(z —b)e*7dz
Y b w
where
w p+0o1+¢&
and

» cquilibrium condition in ¢

22
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the competitive assignment economy

e one-on-one assignment of “students” to “teachers”

— learn to be like teacher, randomly at rate ~y

— teacher-manager in state z charges flow tuition 7;(2)

» necw definition of ¢
vq = sup {7Vi(2) — Th(2) }

e net gain for student-manager in state z
v (@ — Vi(2)) = sup {7y [Vi(2) — Vi(2)] — Ta(2)}

e net gain for entrant same as manager at z = by

Y (g — Wi) = v(q — Vilby))

» same equilibrium condition for entry

Wy > 7((]15 — Wt>, w.e. if E, >0

24



equilibrium tuition
e a positive density of managers on (b;, 00)

» by definition of ¢,
Ti(z) = v (Vi(z) — @) ()

— with equality if students select teachers in state z

» if s — Vi(2) < 0 then manager in state z prefers to teach at any T3(z) > 0
— market clearing: must have students; hence (*) holds with equality
Ty(z) = v (Vi(2) — q)
» if ¢ — Vi(2) > 0 =T;(z)/~ then manager in state z prefers to study
Ti(2) = v [Vi(2) — qi]”

— could raise to v |V;(2) — ¢
e marginal teacher x; > b,
v (@ — Vilw) = 0 < wp = (g — Vilby))

25



av@-q)

CRYAC)

o™ [qV}
(1ogey Jo suun) sureb moyy
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Bellman equations

» workers and entrants r,W; = w; + DW,

e flow gains for teacher/student managers
max {y(q: — Vi(2)), Ti(2)} = v [Vi(2) — i

» surplus of managers

(re +0) [Vi(z) = Wi| = we” = (14 p)wy + 7 [Vi(2) — | + AVi(z) — Wi

— exit and teaching thresholds
0= %(bt> - Wi, ¢ —W;= W(%) - W

e as long as E; > 0
wy = y(qe — W) ()
and hence
VIVi(z) — | = |y (Vi(z) = Wi) — wy (")

27



® again

(re +0) [Vi(z) = Wi] = we” = (14 p)wy + 7 [Vi(2) — ¢ + AVi(z) — Wi

—as long as E; > 0, wy = v(¢: — W;) and hence

YIVi(2) —a| = |y (Vi(z) = Wi) — wy

» therefore, on (b;, z;) and (x¢, 00) respectively,

(re + 0 +7) [Vi(z) = W] — (ve” — ¢ wy)
= AVi(z) — Wy
(re +0 — ) [Vi(z) = Wi] — (ve® — (2 + @)wy)

— ability to learn on the job lowers apparent fixed cost on (b, z;)

— therefore assume ¢ > 0
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population dynamics

e Kolmogorov forward equation

D) = s o0t { G0 2E 0

m(t,b;) =0 and — pum(t,z) + 502Dzm(t, z) continuous

e market clearing

Tt 00
Et+/ m(t, z)dz:/ m(t, z)dz
by Tt

— state x; of marginal teacher and F; can adjust instantaneously

» same implication as before

o [~ > 1
DN; = —/ m(t, z)dz = / Dim(t, z)dz = —=c*D.m(t,b;) + vE; — SN,
at by by 2
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balanced growth (same)

e conjecture growth rate x so that cross-section of z; — xt time-invariant
» notation: z; — kKt — 2
e constant numbers of individuals in various occupations

L+E+(14+¢)N=1

e density of managers
m(t, z + kt) = m(z)

e consumption and factor prices

[Cty wt] = [C, ’w] e(l_o‘)“t) vy = ve ot
e value functions

Wy, Vi(z + kt)] = (W, V(2)] p(1-a)st
e interest rate r; = r,

r=p+(1—ak
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level of the balanced growth path (same)

e Cobb-Douglas consumption sector

L Q0 ve?  Ke

e stock of managerial knowledge capital

Ke™” 1 [
; = ﬁ/b e "'m(2)dz

e entry and exit

» just need ve’/w and m(b + o) /N
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stationary value functions

e the value of workers and entrants is W/w = 1/p, and (¢ — W)/w =1/~

» the Bellman equation for managers is

(1= WDV (z) = W)+ 50°D? [V(2) — W]

_ {(,0+(5+7)[V(z)—W]—(vez— pw), z€ (b
(p+0—=7)[V(z) = W] —(

at the exit threshold

0=V(®b)-—-W
0 = DV(b)
at the teaching threshold
Y (Vie-) =W) = y(V(zy) = W) =w



a familiar change of variables

» define

» the normalized value function

V(@) = (V(Z=In(v/w)) — W) Jw

satisfies
(1 — KDV () + %02D2\7(2)
S+ WVE - (= bw), Ze (D)
(p+6—V(E) = (e =2+ Pw), Z€ (@, 00)

» key implication

S)
|
)

ve’ Jw = e’ andz — b= depend only on conjectured s



15

[72]
(@)
c
€
S
D)
2
o
10
5
1+f
f
0

ve’lw

max[ 9(0-V(2)),T(2)]

34
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average versus marginal ¢q. ..

e in both economies W = w/p and w = v(q — W) gives
W 1 q

11
_+_
woopw p oy

1. random 1matation

q—wW:%/boo (V(?«’)UJ—W> N/ V(b +w)ym(b + u)du

—and V(b + ) and m(b + e) only depend on «

— this condition determines

2. competitive assignment
qg—W V)-W

w w

= V(@)

— used already in the construction of the normalized value function

— this condition holds identically in &

35



stationary densities

e from the KFE: m(b) = 0 and

0=—(u—r)Dm(z)+ %UQDQm(z) - { E_z B g)

» on (b, x)

K — k—p\’ + 0
m(z) o g0+ () _ o=0-(z=b) f. = 2M 4 ( M) n i

» on (x,00)

2
— — — 0
m(z) oc Ape SHET L A e = . 2,u + \/(K 2“) i

must have

o |7 —0 ()

K> W+ o
= H o2/2

36



growth at lower bound

e Kolmogorov-Petrovsky-Piskounov suggests: lower bound, so (. — ¢ and

m(z) o< Uz —b,z—x)e 0 2 e (z,00)
where
¢ = K—p [y —0
o2 a?/2
» hence
_ oy [7—0
K= Uu+Oo 279

— this determines the growth rate x

e could make endogenous by making v depend on effort

» preferences do affect m(z) and level of the balanced growth path

37



an empirical difficulty

e employment size distribution of firms: ( = 1.1

e income distribution: ¢ = 2 in the 1960s, ( = 1.5 now

(US data)

» these are very different distributions

38
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heterogeneous ability

e individuals can learn at rates A € A

— a finite number of learning types, measure M ()\) of type A
— learning ability an attribute of the dynasty
— will specialize to A = {3,~}, withy > 5 >0

» notation of w.p. 715 (Luttmer, 2014)

Si(A) = A () = sgp {AVi(z|A) — Ty(2)}

» a change in assumptions

workers can learn and supply labor at the same time

e this assumption will be replaced by costly worker learning at a later date

40



Bellman equations

» workers sort
TtWt<)\> — Wt + max {O, St()\) — )\%(ZP\)} -+ DWt()\)
» managers study or teach

riVi(z) = ve® — pwy + max {Ty(z), S¢(A) — AVi(z|\)}

+AVi(2|A) + 0 (Wi(A) = Vi(2]N))
for 2 > by(\), Vi(b;(\)) = Wi(\)

— where

SiA) = sup (AVi(=]) = Ti(2))

41



need to guess and verify

e conjecture shape of V;(2)

Vi(by(AN)|A) = Wi(A) for some by(\) > —o0

Vi(z|A) increasing in z > b(A\), lim Vi(z|A) = o0

Z—00

Vi(z|\) increasing in A\

» then equilibrium of the form

SHA) = sup (AVi(2I) = T2}

Ty(z) = max {[AVi(z|A) — S(\)]'}

e will have

Si(\) — AW,(A) >0, A€ A

42



conjecture value functions

10

10

» now consider AV (z|\) — S(\)

43



scenario: S;(v) — YW, > Sy(B) — W, =0

V(9 -S(9

S(9 - gv(zl9

bV(z|b) - S( b)

z

» learning gains S(A\) — AV (z|\) satisfy a single-crossing property

44



thresholds in this diagram

» exit thresholds b(\)

VBN = WA, AeiB )

» type-y managers switch into teaching at x(vy) (type-3 students)

S(y) = AV(z(7)|8) = BV (x(7)|B) — S(B),

» teaching managers switch into teaching type-y students at y > x(7)

YV (yly) = S(v) = BV(y|B) — S(B)

45



a familiar change of variables

PV (2)/w = ™M) _ g 4 max {T(2), S(A) — AV(2|\)} Jw

+A [V (z|N)/w]+ 6 (W(A) —V(2|N) Jw

where

7(z) = max {V(]) - SO))

» normalized Bellman equation in 2 = 2z + In(v/w)

» this determines

as a function of [S(B), S(v)]/w
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the key implication of the Bellman equation

e tuition schedules parameterized by [S(5), S(v)]/w

e scenario of indifferent slow learners pins down

S(8) = BW(B) = %‘”

e the normalized Bellman equation determines a curve

Sty v {ebw)’eb(v),exm’ey

— can invert and take ve? /w as the independent variable

» will use
’Uey/w — [y — b(5>, Yy — b(’Y), Yy — 33(’7)]

47



stationary densities

e forward equations (6 = pu — k)

! Bm(z|5) , 2 € (b(B), (7))
om(z|B) = —9Dm(2|5)+§02D2m(2|5)+ Blm(z]8) + m(z]v)] , 2z € (z(7),y)
0 , 2 € (y,00)
and
1 _Vm(zh/) , 2 € (b(7>7x(7>>
om(z]y) = —0Dm(2ly)+50° D m(z]y)+ 0 ;2 € (z(7),y)
vIm(z|B8) + m(z]v)] , z € (y,00)

e homogeneous system of two piecewise linear ODE

— solve for smooth [m(z|3), m(z|y)] up to scale

— the densities m(y + o|\) only depend on [y — b(3),y — b(y),y — x(7)]
e students assigned to teachers by construction

» but implied type distribution may not match supply

48



10

m(z|b)+m(z| g)

49



market clearing conditions

e supplies M () of type-\ individuals are given

e equating supplies of students and teachers

Y

M) = [Cmloz > [ meAnaz+ [ mehs

(8) b(B) z(7)

Aﬂw—/wm@mw==/ﬂmwm+m@mmZ

» not all type-3 workers choose to be students

» the type-y condition determines the scale of
m(y + o|A), A€ {5, 7} ()

e these conditions depend only on k and [y — b(3),y — b(7y),y — x(7)]

20



the fixed point

e Bellman equation, KFE, type-y workers at corner
vefw — ly —b(B),y — b(y),y —x(y)] = m(y + e|A), A € {5,7}

e this pins down the number of managers

N = / m(z|3) dz+/ m(z|y)dz
b(7)

e implied factor supplies

L = M(B)+ M(y) = (1+¢)N

Ke™ :/ ezym(z|ﬁ)dz—|—/ e Im(z|y)dz
b

(5) b(7)

e Cobb-Douglas
ve  1—a L

w a KeVY

o1



ability rents

40 -
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> 20F
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s =0.125

s =0.250 ||

r =0.10, b =0.035, g=0.060

0.2

0.3

0.4 0.5
MM +M,)
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so why ~ at lower bound?

e ignore entry and exit, integrate the forward equation

—p(t, 2) 2z < a4

1 2
Dip(t, 2) = —uD:p(t, 2) + 507 Doap(t, 2) + { Fyplt,2) 2> 2

— where z; is the median

e the right tail R(t,z) =1 — P(t, z) satisfies

1
D/R(t,z) = —uD.R(t, z) + 5021)223@, 2) +~min {1 — R(t, 2), R(t, 2)}

» a reaction-diffusion equation
» in the case of random imitation
replace min{l — R, R} by (1 — R)R
— parabola instead of a tent

— no explicit solution, but can use phase diagram

23



initial conditions with bounded support

e can construct stationary distribution P(z — kt) for any

KJZ,LL—FO'\/%

» Kolmogorov, Petrovsky, and Piskounov 1937
— and McKean 1975, Bramson 1981, many others

if support P(0, z) bounded then P(t,z — kt) converges for k = p+ o+/27y

e right tail R(t, z + kt) ~ e~ %%, where
2
= K—p K—HY 7 g
o2 o2 a?/2 o2 /2

o4




this is a new interpretation of an old equation

Dif(t,2) = 50°Docf (¢, 2) + 7f (1, 2)[1 — £ (2, 2)]

e R.A. Fisher “The Wave of Advance of Advantageous Genes” (1937)

— f(t, 2) is a population density at the location 2z
—~f(t,2)[1 — f(t, z)] logistic growth of the population at z

— random migration gives rise to a “diffusion” term 162D, f(¢, 2)

e Cavalli-Sforza and Feldman (1981)

— Cultural Transmussion and Evolution: A Quantitative Approach

— Section 1.9 applies Fisher’s interpretation to memes (Dawkins)
e these interpretations differ from random imitation

— Staley (Journal of Mathematical Economics, 2011) also has the random
imitation interpretation

(© Erzo G.J. Luttmer 2014
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