Lecture Notes on Knowledge Diffusion, Growth, and Income Inequality

Erzo G.J. Luttmer

University of Minnesota and Toulouse School of Economics

University of Chicago, October 22, 2014

these notes

are based on my

- 1. "Selection, Growth, and the Size Distribution of Firms" Quarterly Journal of Economics, vol. 122, no. 3 (2007), 1103-1144.
- 2. "An Assignment Model of Knowledge Diffusion and Income Inequality"

 Federal Reserve Bank of Minneapolis working paper 715 (Sept 2014)

▶ see original papers for references to related literature

two models of social learning

1. individuals randomly select others at rate β and copy if "better"

$$D_t P(t, z) = -\beta P(t, z)[1 - P(t, z)]$$

2. "students" match 1-on-1 with "teachers" and learn at rate β

$$D_t P(t, z) = -\beta \min \{ P(t, z), 1 - P(t, z) \}$$

► a parabola or a tent

the ODE for one-on-one knowledge transfer

the solution

1. random matching delays

$$P(t,z) = \frac{1}{1 + \left(\frac{1}{P(0,z)} - 1\right)e^{\beta t}}$$

2. random learning delays

$$P(t,z) = \begin{cases} e^{-\beta t} P(0,z) & z \in (-\infty, x_0] \\ \frac{1}{2} \frac{1/2}{e^{\beta t} [1 - P(0,z)]} & z \in [x_0, x_t] \\ 1 - e^{\beta t} [1 - P(0,z)] & z \in [x_t, \infty) \end{cases}$$

with a median x_t defined by

$$\frac{1}{2} = P(t, x_t) = e^{\beta t} \left[1 - P(0, x_t) \right] \tag{!}$$

▶ in both cases, stationary solutions of the form

$$P(t,z) = P(0, z - \kappa t)$$
 and $P(t,z) = P(0, ze^{-\kappa t})$

for any κ positive

individual creativity & social learning

• two independent standard Brownian motions $B_{1,t}, B_{2,t}$,

$$E\left[\max\left\{\sigma B_{1,t}, \sigma B_{2,t}\right\}\right] = \sigma \sqrt{t/\pi}$$

• reset to max at random time $\tau_{j+1} > \tau_j$

$$z_{\tau_{j+1}} = z_{\tau_j} + \sigma \max \left\{ B_{1,\tau_{j+1}} - B_{1,\tau_j}, B_{2,\tau_{j+1}} - B_{2,\tau_j} \right\}$$

• reset times arrive randomly at rate β

$$\frac{\mathrm{E}\left[z_{\tau_{j+1}} - z_{\tau_{j}} | z_{\tau_{j}}\right]}{\mathrm{E}\left[\tau_{j+1} - \tau_{j} | z_{\tau_{j}}\right]} = \frac{1}{1/\beta} \int_{0}^{\infty} \sigma \left(t/\pi\right)^{1/2} \beta e^{-\beta t} dt$$

$$= \frac{1}{2} \sigma \sqrt{\beta} \int_{0}^{\infty} 2 \left(u/\pi\right)^{1/2} e^{-u} du = \frac{1}{2} \sigma \sqrt{\beta}$$

▶ large populations

trend =
$$\sigma^2 \sqrt{\frac{\beta}{\sigma^2/2}} > \sigma \sqrt{\beta} = E\left[\frac{z_{\tau_{j+1}} - z_{\tau_j}}{\tau_{j+1} - \tau_j} \,\middle|\, z_{\tau_j}\right] > \frac{1}{2}\sigma\sqrt{\beta}\dots$$

10K agents: every 2.4 days, someone imitates someone else

• $\sigma = 0.12, \, \beta = 0.015, \, \text{implies trend} = 0.0147$

the random imitation economy

• demography and preferences

$$\int_0^\infty e^{-\rho t} \ln(C_t) \mathrm{d}t$$

- unit measure of dynasties
- generations die randomly at the rate δ
- replaced immediately with next generation
- complete markets, interest rate $r_t = \rho + DC_t/C_t$

 \bullet (Lucas, 1978) manager in state z and l workers can produce consumption,

$$c = \left(\frac{e^z}{1 - \alpha}\right)^{1 - \alpha} \left(\frac{l}{\alpha}\right)^{\alpha}$$

 \bullet economy-wide state at t

a measure of managers M(t,z)

the human resource constraint

$$L_t + E_t + (1 + \phi)N_t = 1$$

- L_t : production workers, one unit of labor per worker
- \bullet E_t : entrants, trying to become managers
- N_t : managers, $N_t = M(t, \infty)$, overhead of ϕ workers per manager

► transitions:

- newborn individuals start in $L_t + E_t + \phi N_t$
- back and forth between L_t , E_t and ϕN_t instantaneously
- $-N_t \rightarrow L_t + E_t + \phi N_t$ instantaneous when manager chooses
- $-E_t \rightarrow N_t$ after random delay with mean $1/\gamma$

production of consumption, as usual

• managerial profit maximization

$$\max_{l} \left\{ \left(\frac{e^z}{1 - \alpha} \right)^{1 - \alpha} \left(\frac{l}{\alpha} \right)^{\alpha} - w_t l \right\} = v_t e^z$$

yields

$$\frac{w_t l_t(z)}{v_t e^z} = \frac{\alpha}{1 - \alpha}, \quad v_t^{1 - \alpha} w_t^{\alpha} = 1$$

• factor prices and aggregate consumption

$$\begin{bmatrix} w_t L_t \\ v_t K_t \end{bmatrix} = \begin{bmatrix} \alpha \\ 1 - \alpha \end{bmatrix} C_t, \quad C_t = \left(\frac{K_t}{1 - \alpha}\right)^{1 - \alpha} \left(\frac{L_t}{\alpha}\right)^{\alpha}$$

given

$$\begin{bmatrix} L_t \\ K_t \end{bmatrix} = \int \begin{bmatrix} l_t(z) \\ e^z \end{bmatrix} M(t, dz)$$

as long as a manager continues in a job

$$dz_t = \mu dt + \sigma dB_t$$

 \bullet idiosyncratic shock B_t is a standard Brownian motion

• add learning jumps later

- must pay flow of $\phi \geq 0$ units of labor to continue
 - if not, lose z_t and become a worker again

workers and entrants

- workers supply one unit of labor at wage w_t
- \bullet entrants sample incumbent managers at the rate γ , and imitate perfectly
- time-t present value of dynastic earnings
 - when worker or entrant: W_t
 - when manager in state z: $V_t(z)$
- ► random imitation

$$q_t = \frac{1}{N_t} \int V_t(z) M(t, dz)$$

▶ because production workers are essential

$$w_t \geq \gamma(q_t - W_t)$$
 w.e. if $E_t > 0$

Ito, and a piece of convenient notation

$$\mathrm{d}z_t = \mu \mathrm{d}t + \sigma \mathrm{d}B_t$$

• for a sufficiently nice f(t, z),

$$\lim_{\Delta \downarrow 0} \frac{1}{\Delta} \mathbb{E}\left[f(t+\Delta, z_{t+\Delta}) - f(t, z_t) | z_t = z\right] = \mathcal{A}f(t, z)$$

▶ where

$$\mathcal{A}f(t,z) = D_t f(t,z) + \mu D_z f(t,z) + \frac{1}{2} \sigma^2 D_{zz} f(t,z)$$

– depends on μ and σ^2

Bellman equations

• workers and entrants

$$r_t W_t = w_t + D_t W_t$$

• managers

$$r_t V_t(z) = v_t e^z - \phi w_t + \mathcal{A}V_t(z) + \delta \left[W_t - V_t(z) \right]$$

for all $z > b_t$,

$$V_t(b_t) = W_t$$

▶ implied managerial surplus

$$(r_t + \delta) [V_t(z) - W_t] = v_t e^z - (1 + \phi) w_t + \mathcal{A} [V_t(z) - W_t]$$

- effective fixed cost is $1 + \phi$ units of labor
- managerial opportunity cost
- ► crucial transversality conditions omitted

population dynamics

- density m(t,z) of M(t,z)
- Kolmogorov forward equation

$$D_t m(t,z) = -\mu D_z m(t,z) + \frac{1}{2} \sigma^2 D_{zz} m(t,z) + \left(\frac{\gamma E_t}{N_t} - \delta\right) m(t,z)$$

density and derivatives vanish as $z \to \infty$, and

$$m(t, b_t) = 0$$

► this implies

$$DN_t = \frac{\partial}{\partial t} \int_{b_t}^{\infty} m(t, z) dz = \int_{b_t}^{\infty} D_t m(t, z) dz = -\frac{1}{2} \sigma^2 D_z m(t, b_t) + \gamma E_t - \delta N_t$$

balanced growth

- conjecture growth rate κ so that cross-section of $z_t \kappa t$ time-invariant
 - \blacktriangleright notation: $z_t \kappa t \rightarrow z$
- constant numbers of individuals in various occupations

$$L + E + (1 + \phi)N = 1$$

• density of managers

$$m(t, z + \kappa t) = m(z)$$

• consumption and factor prices

$$[C_t, w_t] = [C, w] e^{(1-\alpha)\kappa t}, v_t = ve^{-\alpha t}$$

• value functions

$$[W_t, V_t(z + \kappa t)] = [W, V(z)] e^{(1-\alpha)\kappa t}$$

• interest rate $r_t = r$,

$$r = \rho + (1 - \alpha)\kappa$$

level of the balanced growth path

• Cobb-Douglas consumption sector

$$\frac{L}{N} = \frac{\alpha}{1 - \alpha} \times \frac{ve^b}{w} \times \frac{Ke^{-b}}{N}$$

• stock of managerial knowledge capital

$$\frac{Ke^{-b}}{N} = \frac{1}{N} \int_{b}^{\infty} e^{z-b} m(z) dz$$

• entry and exit

$$\frac{\gamma E}{N} = \delta + \frac{1}{2}\sigma^2 \times \frac{\mathrm{D}m(b)}{N}$$

• human resource constraint

$$N = \left(\frac{L}{N} + \frac{E}{N} + 1 + \phi\right)^{-1}$$

▶ just need ve^b/w and $m(b+\bullet)/N$

stationary value functions

- value of workers and entrants is $W = w/\rho$
- the Bellman equation for managers is

$$(\rho + \delta)V(z) = ve^z - \phi w + (\mu - \kappa)DV(z) + \frac{1}{2}\sigma^2D^2V(z)$$

with boundary conditions

$$0 = V(b) - W = DV(b)$$

► change variables

$$e^{\widehat{z}} = \frac{1}{1+\phi} \frac{ve^z}{w}, \quad e^{\widehat{b}} = \frac{1}{1+\phi} \frac{ve^b}{w}$$

▶ the normalized value function

$$\widehat{V}(\widehat{z}) = \frac{V(\widehat{z} + \ln(1+\phi) - \ln(v/w)) - W}{(1+\phi)w}$$

satisfies

$$(\rho + \delta)\widehat{V}(\widehat{z}) = e^{\widehat{z}} - 1 + (\mu - \kappa)D\widehat{V}(\widehat{z}) + \frac{1}{2}\sigma^2D^2\widehat{V}(\widehat{z})$$

the stationary value function

- ▶ $\widehat{V}(\cdot)$ and \widehat{b} only depend on growth rate κ , and nothing else
- solution for $V(\cdot)$

$$\frac{V(z) - W}{(1+\phi)w} = \frac{1}{\rho + \delta} \frac{\xi}{1+\xi} \left(e^{z-b} - 1 - \frac{1 - e^{-\xi(z-b)}}{\xi} \right)$$

for all $z \geq b$, where

$$e^{\hat{b}} = \frac{1}{1+\phi} \frac{ve^b}{w}$$

and

$$e^{\widehat{b}} = \frac{\xi}{1+\xi} \left(1 - \frac{\mu - \kappa + \sigma^2/2}{\rho + \delta} \right), \quad \xi = \frac{\mu - \kappa}{\sigma^2} + \sqrt{\left(\frac{\mu - \kappa}{\sigma^2}\right)^2 + \frac{\rho + \delta}{\sigma^2/2}}$$

▶ key implication

 $\frac{ve^b}{w}$ is a function *only* of the growth rate κ

• $\partial \widehat{b}/\partial \kappa > 0$, so incumbent managers quit more easily when κ high

stationary densities

• from the KFE

$$0 = -(\mu - \kappa) \operatorname{D} m(z) + \frac{1}{2} \sigma^2 \operatorname{D}^2 m(z) + \left(\frac{\gamma E}{N} - \delta\right) m(z)$$

with m(b) = 0, and density and derivatives vanish as $z \to \infty$

► solution must be

$$m(z) \propto e^{-\zeta_{+}(z-b)} - e^{-\zeta_{-}(z-b)}$$

where

$$\zeta_{\pm} = \frac{\kappa - \mu}{\sigma^2} \pm \sqrt{\left(\frac{\kappa - \mu}{\sigma^2}\right)^2 - \frac{(\gamma E/N) - \delta}{\sigma^2/2}}$$

 \blacktriangleright need ζ_+ real and positive,

$$\kappa \ge \mu + \sigma^2 \sqrt{\frac{(\gamma E/N) - \delta}{\sigma^2/2}} \tag{!}$$

growth at lower bound

- \blacktriangleright if initial distribution has bounded support then long-run κ at lower bound
- this yields $\zeta_{\pm} \to \zeta$ and

$$\frac{m(z)}{N} = \zeta^2(z-b)e^{-\zeta(z-b)}$$

where

$$\zeta = \frac{\kappa - \mu}{\sigma^2} = \sqrt{\frac{(\gamma E/N) - \delta}{\sigma^2/2}}$$

▶ hence

$$\kappa = \mu + \sigma^2 \sqrt{\frac{(\gamma E/N) - \delta}{\sigma^2/2}}$$

- yet to determine the entry rate $\gamma E/N$
- anything that raises $\gamma E/N$ increases growth

determining the entry rate $\gamma E/N$

• workers and entrants indifferent

$$w = \gamma(q - W), \quad q - W = \frac{1}{N} \int_{b}^{\infty} (V(z) - W)m(z)dz$$

➤ yields

$$\frac{1}{\gamma} = \int_{b}^{\infty} \left(\frac{V(z) - W}{w} \right) \zeta^{2}(z - b) e^{-\zeta(z - b)} dz$$

where

$$\frac{V(z) - W}{w} = \frac{1 + \phi}{\rho + \delta} \frac{\xi}{1 + \xi} \left(e^{z - b} - 1 - \frac{1 - e^{-\xi(z - b)}}{\xi} \right)$$

and

$$\xi = -\zeta + \sqrt{\zeta^2 + \frac{\rho + \delta}{\sigma^2/2}}$$

 \blacktriangleright equilibrium condition in ζ

the competitive assignment economy

- one-on-one assignment of "students" to "teachers"
 - learn to be like teacher, randomly at rate γ
 - teacher-manager in state z charges flow tuition $T_t(z)$
- \blacktriangleright new definition of q_t

$$\gamma q_t = \sup_{\widetilde{z}} \left\{ \gamma V_t(\widetilde{z}) - T_t(\widetilde{z}) \right\}$$

 \bullet net gain for student-manager in state z

$$\gamma (q_t - V_t(z)) = \sup_{\widetilde{z}} \left\{ \gamma \left[V_t(\widetilde{z}) - V_t(z) \right] - T_t(\widetilde{z}) \right\}$$

• net gain for entrant same as manager at $z = b_t$

$$\gamma (q_t - W_t) = \gamma (q_t - V_t(b_t))$$

► same equilibrium condition for entry

$$w_t \geq \gamma(q_t - W_t)$$
, w.e. if $E_t > 0$

equilibrium tuition

- a positive density of managers on (b_t, ∞)
- \blacktriangleright by definition of q_t

$$T_t(z) \ge \gamma \left(V_t(z) - q_t \right) \tag{*}$$

- with equality if students select teachers in state z
- ▶ if $q_t V_t(z) < 0$ then manager in state z prefers to teach at any $T_t(z) \ge 0$
 - market clearing: must have students; hence (*) holds with equality

$$T_t(z) = \gamma \left(V_t(z) - q_t \right)$$

▶ if $q_t - V_t(z) > 0 = T_t(z)/\gamma$ then manager in state z prefers to study

$$T_t(z) = \gamma \left[V_t(z) - q_t \right]^+$$

- could raise to $\gamma |V_t(z) q_t|$
- marginal teacher $x_t > b_t$

$$\gamma \left(q_t - V_t(x_t) \right) = 0 < w_t = \gamma \left(q_t - V_t(b_t) \right)$$

Bellman equations

- \blacktriangleright workers and entrants $r_t W_t = w_t + DW_t$
- flow gains for teacher/student managers

$$\max \{\gamma(q_t - V_t(z)), T_t(z)\} = \gamma |V_t(z) - q_t|$$

► surplus of managers

$$(r_t + \delta) [V_t(z) - W_t] = v_t e^z - (1 + \phi) w_t + \gamma |V_t(z) - q_t| + \mathcal{A} [V_t(z) - W_t]$$

- exit and teaching thresholds

$$0 = V_t(b_t) - W_t, \quad q_t - W_t = V_t(x_t) - W_t$$

• as long as $E_t > 0$

$$w_t = \gamma(q_t - W_t) \tag{!}$$

and hence

$$\gamma \left| V_t(z) - q_t \right| = \left| \gamma \left(V_t(z) - W_t \right) - w_t \right| \tag{!!}$$

• again

$$(r_t + \delta) [V_t(z) - W_t] = v_t e^z - (1 + \phi) w_t + \gamma |V_t(z) - q_t| + \mathcal{A} [V_t(z) - W_t]$$

- as long as $E_t > 0$, $w_t = \gamma(q_t - W_t)$ and hence

$$|\gamma|V_t(z)-q_t| = |\gamma(V_t(z)-W_t)-w_t|$$

▶ therefore, on (b_t, x_t) and (x_t, ∞) respectively,

$$(r_t + \delta + \gamma) [V_t(z) - W_t] - (v_t e^z - \phi w_t)$$

$$(r_t + \delta - \gamma) [V_t(z) - W_t] - (v_t e^z - (2 + \phi)w_t)$$

$$= \mathcal{A} [V_t(z) - W_t]$$

- ability to learn on the job lowers apparent fixed cost on (b_t, x_t)
- therefore assume $\phi > 0$

population dynamics

• Kolmogorov forward equation

$$D_t m(t,z) = -\mu D_z m(t,z) + \frac{1}{2} \sigma^2 D_{zz} m(t,z) + \begin{cases} (-\gamma - \delta) m(t,z), & z \in (b_t, x_t) \\ (-\gamma - \delta) m(t,z), & z \in (x_t, \infty) \end{cases}$$

$$m(t, b_t) = 0$$
 and $-\mu m(t, z) + \frac{1}{2}\sigma^2 D_z m(t, z)$ continuous

• market clearing

$$E_t + \int_{b_t}^{x_t} m(t, z) dz = \int_{x_t}^{\infty} m(t, z) dz$$

- state x_t of marginal teacher and E_t can adjust instantaneously
- \triangleright same implication as before

$$DN_t = \frac{\partial}{\partial t} \int_{b_t}^{\infty} m(t, z) dz = \int_{b_t}^{\infty} D_t m(t, z) dz = -\frac{1}{2} \sigma^2 D_z m(t, b_t) + \gamma E_t - \delta N_t$$

balanced growth (same)

- conjecture growth rate κ so that cross-section of $z_t \kappa t$ time-invariant
 - \blacktriangleright notation: $z_t \kappa t \rightarrow z$
- constant numbers of individuals in various occupations

$$L + E + (1 + \phi)N = 1$$

• density of managers

$$m(t, z + \kappa t) = m(z)$$

• consumption and factor prices

$$[C_t, w_t] = [C, w] e^{(1-\alpha)\kappa t}, v_t = ve^{-\alpha t}$$

• value functions

$$[W_t, V_t(z + \kappa t)] = [W, V(z)] e^{(1-\alpha)\kappa t}$$

• interest rate $r_t = r$,

$$r = \rho + (1 - \alpha)\kappa$$

level of the balanced growth path (same)

• Cobb-Douglas consumption sector

$$\frac{L}{N} = \frac{\alpha}{1 - \alpha} \times \frac{ve^b}{w} \times \frac{Ke^{-b}}{N}$$

• stock of managerial knowledge capital

$$\frac{Ke^{-b}}{N} = \frac{1}{N} \int_{b}^{\infty} e^{z-b} m(z) dz$$

• entry and exit

$$\frac{\gamma E}{N} = \delta + \frac{1}{2}\sigma^2 \times \frac{\mathrm{D}m(b)}{N}$$

• human resource constraint

$$N = \left(\frac{L}{N} + \frac{E}{N} + 1 + \phi\right)^{-1}$$

▶ just need ve^b/w and $m(b+\bullet)/N$

stationary value functions

- the value of workers and entrants is $W/w = 1/\rho$, and $(q W)/w = 1/\gamma$
- ▶ the Bellman equation for managers is

$$(\mu - \kappa) D [V(z) - W] + \frac{1}{2} \sigma^2 D^2 [V(z) - W]$$

$$= \begin{cases} (\rho + \delta + \gamma) [V(z) - W] - (ve^z - \phi w), & z \in (b, x) \\ (\rho + \delta - \gamma) [V(z) - W] - (ve^z - (2 + \phi)w), & z \in (x, \infty) \end{cases}$$

at the exit threshold

$$0 = V(b) - W$$
$$0 = DV(b)$$

at the teaching threshold

$$\gamma (V(x_{-}) - W) = \gamma (V(x_{+}) - W) = w$$
$$DV(x_{-}) = DV(x_{+})$$

a familiar change of variables

▶ define

$$\left[e^{\widehat{z}}, e^{\widehat{b}}, e^{\widehat{x}}\right] = \frac{v}{w} \times \left[e^z, e^b, e^x\right]$$

▶ the normalized value function

$$\widehat{V}(\widehat{z}) = \left(V(\widehat{z} - \ln(v/w)) - W\right)/w$$

satisfies

$$(\mu - \kappa) D\widehat{V}(\widehat{z}) + \frac{1}{2} \sigma^2 D^2 \widehat{V}(\widehat{z})$$

$$= \begin{cases} (\rho + \delta + \gamma) \widehat{V}(\widehat{z}) - (e^{\widehat{z}} - \phi w), & \widehat{z} \in (\widehat{b}, \widehat{x}) \\ (\rho + \delta - \gamma) \widehat{V}(\widehat{z}) - (e^{\widehat{z}} - (2 + \phi)w), & \widehat{z} \in (\widehat{x}, \infty) \end{cases}$$

▶ key implication

 $ve^b/w = e^{\widehat{b}}$ and $x - b = \widehat{x} - \widehat{b}$ depend only on conjectured κ

average versus marginal $q \dots$

• in both economies $W = w/\rho$ and $w = \gamma(q - W)$ gives

$$\frac{W}{w} = \frac{1}{\rho}, \quad \frac{q}{w} = \frac{1}{\rho} + \frac{1}{\gamma}$$

1. random imitation

$$\frac{q-W}{w} = \frac{1}{N} \int_{b}^{\infty} \left(\frac{V(z)-W}{w}\right) m(z) dz = \frac{1}{N} \int_{0}^{\infty} \widehat{V}(\widehat{b}+u) m(b+u) du$$

- and $\widehat{V}(\widehat{b} + \bullet)$ and $m(b + \bullet)$ only depend on κ
- this condition determines κ
- 2. competitive assignment

$$\frac{q-W}{w} = \frac{V(x)-W}{w} = \widehat{V}(\widehat{x})$$

- used already in the construction of the normalized value function
- this condition holds identically in κ

stationary densities

• from the KFE: m(b) = 0 and

$$0 = -(\mu - \kappa) Dm(z) + \frac{1}{2} \sigma^2 D^2 m(z) + \begin{cases} (-\gamma - \delta) m(z), & z \in (b, x) \\ (-\gamma - \delta) m(z), & z \in (x, \infty) \end{cases}$$

 \blacktriangleright on (b,x)

$$m(z) \propto e^{-\theta_{+}(z-b)} - e^{-\theta_{-}(z-b)}, \qquad \theta_{\pm} = \frac{\kappa - \mu}{\sigma^2} \pm \sqrt{\left(\frac{\kappa - \mu}{\sigma^2}\right)^2 + \frac{\gamma + \delta}{\sigma^2/2}}$$

ightharpoonup on (x,∞)

$$m(z) \propto A_{+}e^{-\zeta_{+}(z-x)} + A_{-}e^{-\zeta_{-}(z-x)}, \quad \zeta_{\pm} = \frac{\kappa - \mu}{\sigma^{2}} \pm \sqrt{\left(\frac{\kappa - \mu}{\sigma^{2}}\right)^{2} - \frac{\gamma - \delta}{\sigma^{2}/2}}$$

must have

$$\kappa \ge \mu + \sigma^2 \sqrt{\frac{\gamma - \delta}{\sigma^2 / 2}} \tag{!}$$

growth at lower bound

 \bullet Kolmogorov-Petrovsky-Piskounov suggests: lower bound, so $\zeta_\pm \to \zeta$ and

$$m(z) \propto \ell(x-b, z-x)e^{-\zeta(z-x)}, \quad z \in (x, \infty)$$

where

$$\zeta = \frac{\kappa - \mu}{\sigma^2} = \sqrt{\frac{\gamma - \delta}{\sigma^2 / 2}}$$

▶ hence

$$\kappa = \mu + \sigma^2 \sqrt{\frac{\gamma - \delta}{\sigma^2 / 2}}$$

- this determines the growth rate κ
- \bullet could make endogenous by making γ depend on effort
- \blacktriangleright preferences do affect m(z) and level of the balanced growth path

an empirical difficulty

• employment size distribution of firms: $\zeta = 1.1$

• income distribution: $\zeta=2$ in the 1960s, $\zeta=1.5$ now

(US data)

▶ these are very different distributions

Lorenz Curves

heterogeneous ability

- individuals can learn at rates $\lambda \in \Lambda$
 - a finite number of learning types, measure $M(\lambda)$ of type λ
 - learning ability an attribute of the dynasty
 - will specialize to $\Lambda = \{\beta, \gamma\}$, with $\gamma > \beta > 0$
- \blacktriangleright notation of w.p. 715 (Luttmer, 2014)

$$S_t(\lambda) = \lambda q_t(\lambda) = \sup_{z} \{\lambda V_t(z|\lambda) - T_t(z)\}$$

▶ a change in assumptions

workers can learn and supply labor at the same time

• this assumption will be replaced by costly worker learning at a later date

Bellman equations

► workers sort

$$r_t W_t(\lambda) = w_t + \max\{0, S_t(\lambda) - \lambda V_t(z|\lambda)\} + DW_t(\lambda)$$

► managers study or teach

$$r_t V_t(z) = v_t e^z - \phi w_t + \max \{ T_t(z), S_t(\lambda) - \lambda V_t(z|\lambda) \}$$

$$+\mathcal{A}V_t(z|\lambda) + \delta\left(W_t(\lambda) - V_t(z|\lambda)\right)$$

for
$$z > b_t(\lambda)$$
, $V_t(b_t(\lambda)) = W_t(\lambda)$

- where

$$S_t(\lambda) = \sup_{z} \left\{ \lambda V_t(z|\lambda) - T_t(z) \right\}$$

need to guess and verify

• conjecture shape of $V_t(z)$

$$V_t(b_t(\lambda)|\lambda) = W_t(\lambda)$$
 for some $b_t(\lambda) > -\infty$
 $V_t(z|\lambda)$ increasing in $z > b_t(\lambda)$, $\lim_{z \to \infty} V_t(z|\lambda) = \infty$
 $V_t(z|\lambda)$ increasing in λ

▶ then equilibrium of the form

$$S_t(\lambda) = \sup_{z} \{\lambda V_t(z|\lambda) - T_t(z)\}$$
$$T_t(z) = \max_{\lambda \in \Lambda} \{ [\lambda V_t(z|\lambda) - S_t(\lambda)]^+ \}$$

• will have

$$S_t(\lambda) - \lambda W_t(\lambda) \ge 0, \ \lambda \in \Lambda$$

conjecture value functions

scenario: $S_t(\gamma) - \gamma W_t > S_t(\beta) - \beta W_t = 0$

▶ learning gains $S(\lambda) - \lambda V(z|\lambda)$ satisfy a single-crossing property

thresholds in this diagram

 \blacktriangleright exit thresholds $b(\lambda)$

$$V(b(\lambda)|\lambda) = W(\lambda), \quad \lambda \in \{\beta, \gamma\}$$

 \blacktriangleright type- γ managers switch into teaching at $x(\gamma)$ (type- β students)

$$S(\gamma) - \gamma V(x(\gamma)|\beta) = \beta V(x(\gamma)|\beta) - S(\beta),$$

 \blacktriangleright teaching managers switch into teaching type- γ students at $y > x(\gamma)$

$$\gamma V(y|\gamma) - S(\gamma) = \beta V(y|\beta) - S(\beta)$$

a familiar change of variables

• write

$$\rho V(z)/w = e^{z + \ln(v/w)} - \phi + \max\left\{T(z), S(\lambda) - \lambda V(z|\lambda)\right\}/w$$

$$+\mathcal{A}\left[V(z|\lambda)/w\right] + \delta\left(W(\lambda) - V(z|\lambda)\right)/w$$

where

$$T(z) = \max_{\lambda \in \{\beta, \gamma\}} \left\{ \left[\lambda V(z|\lambda) - S(\lambda) \right]^{+} \right\}$$

- ightharpoonup normalized Bellman equation in $\widehat{z} = z + \ln(v/w)$
- ▶ this determines

$$\left[e^{\widehat{b}(\beta)}, e^{\widehat{b}(\gamma)}, e^{\widehat{x}(\gamma)}, e^{\widehat{y}}\right] = \frac{v}{w} \times \left[e^{b(\beta)}, e^{b(\gamma)}, e^{x(\gamma)}, e^{y}\right]$$

as a function of $[S(\beta), S(\gamma)]/w$

the key implication of the Bellman equation

- tuition schedules parameterized by $[S(\beta), S(\gamma)]/w$
- scenario of indifferent slow learners pins down

$$S(\beta) = \beta W(\beta) = \frac{\beta w}{\rho}$$

• the normalized Bellman equation determines a curve

$$\frac{S(\gamma)}{w} \mapsto \frac{v}{w} \times \left[e^{b(\beta)}, e^{b(\gamma)}, e^{x(\gamma)}, e^y \right]$$

- can invert and take ve^y/w as the independent variable
- ➤ will use

$$ve^y/w \mapsto [y - b(\beta), y - b(\gamma), y - x(\gamma)]$$

stationary densities

• forward equations $(\theta = \mu - \kappa)$

$$\delta m(z|\beta) = -\theta \mathrm{D} m(z|\beta) + \frac{1}{2} \sigma^2 \mathrm{D}^2 m(z|\beta) + \begin{cases} \beta m(z|\beta) &, z \in (b(\beta), x(\gamma)) \\ \beta [m(z|\beta) + m(z|\gamma)] &, z \in (x(\gamma), y) \\ 0 &, z \in (y, \infty) \end{cases}$$

and

$$\delta m(z|\gamma) = -\theta \mathrm{D} m(z|\gamma) + \frac{1}{2} \sigma^2 \mathrm{D}^2 m(z|\gamma) + \begin{cases} -\gamma m(z|\gamma) &, z \in (b(\gamma), x(\gamma)) \\ 0 &, z \in (x(\gamma), y) \\ \gamma [m(z|\beta) + m(z|\gamma)] &, z \in (y, \infty) \end{cases}$$

- homogeneous system of two piecewise linear ODE
 - solve for smooth $[m(z|\beta), m(z|\gamma)]$ up to scale
 - the densities $m(y+\bullet|\lambda)$ only depend on $[y-b(\beta),y-b(\gamma),y-x(\gamma)]$
- students assigned to teachers by construction
- ▶ but implied type distribution may not match supply

market clearing conditions

- supplies $M(\lambda)$ of type- λ individuals are given
- equating supplies of students and teachers

$$M(\beta) - \int_{b(\beta)}^{\infty} m(z|\beta) dz \ge \int_{b(\beta)}^{y} m(z|\beta) dz + \int_{x(\gamma)}^{y} m(z|\gamma) dz$$
$$M(\gamma) - \int_{x(\gamma)}^{\infty} m(z|\gamma) dz = \int_{y}^{\infty} [m(z|\beta) + m(z|\gamma)] dz$$

- \blacktriangleright not all type- β workers choose to be students
- \blacktriangleright the type- γ condition determines the scale of

$$m(y + \bullet | \lambda), \ \lambda \in \{\beta, \gamma\}$$
 (!)

• these conditions depend only on κ and $[y-b(\beta),y-b(\gamma),y-x(\gamma)]$

the fixed point

• Bellman equation, KFE, type- γ workers at corner

$$ve^y/w \mapsto [y - b(\beta), y - b(\gamma), y - x(\gamma)] \mapsto m(y + \bullet | \lambda), \ \lambda \in \{\beta, \gamma\}$$

• this pins down the number of managers

$$N = \int_{b(\beta)}^{\infty} m(z|\beta) dz + \int_{b(\gamma)}^{\infty} m(z|\gamma) dz$$

• implied factor supplies

$$L = M(\beta) + M(\gamma) - (1 + \phi)N$$

$$Ke^{-y} = \int_{b(\beta)}^{\infty} e^{z-y} m(z|\beta) dz + \int_{b(\gamma)}^{\infty} e^{z-y} m(z|\gamma) dz$$

• Cobb-Douglas

$$\frac{ve^y}{w} = \frac{1 - \alpha}{\alpha} \frac{L}{Ke^{-y}}$$

ability rents

so why κ at lower bound?

• ignore entry and exit, integrate the forward equation

$$D_t p(t,z) = -\mu D_z p(t,z) + \frac{1}{2} \sigma^2 D_{zz} p(t,z) + \begin{cases} -\gamma p(t,z) & z < x_t \\ +\gamma p(t,z) & z > x_t \end{cases}$$

- where x_t is the median
- the right tail R(t,z) = 1 P(t,z) satisfies

$$D_t R(t,z) = -\mu D_z R(t,z) + \frac{1}{2} \sigma^2 D_{zz} R(t,z) + \gamma \min \{1 - R(t,z), R(t,z)\}$$

- ▶ a reaction-diffusion equation
- ▶ in the case of random imitation

replace
$$\min\{1-R,R\}$$
 by $(1-R)R$

- parabola instead of a tent
- no explicit solution, but can use phase diagram

initial conditions with bounded support

• can construct stationary distribution $P(z - \kappa t)$ for any

$$\kappa \ge \mu + \sigma \sqrt{2\gamma}$$

- ► Kolmogorov, Petrovsky, and Piskounov 1937
 - and McKean 1975, Bramson 1981, many others

if support P(0,z) bounded then $P(t,z-\kappa t)$ converges for $\kappa = \mu + \sigma \sqrt{2\gamma}$

• right tail $R(t, z + \kappa t) \sim e^{-\zeta z}$, where

$$\zeta = \frac{\kappa - \mu}{\sigma^2} - \sqrt{\left(\frac{\kappa - \mu}{\sigma^2}\right)^2 - \frac{\gamma}{\sigma^2/2}} = \sqrt{\frac{\gamma}{\sigma^2/2}}$$

this is a new interpretation of an old equation

$$D_t f(t, z) = \frac{1}{2} \sigma^2 D_{zz} f(t, z) + \gamma f(t, z) [1 - f(t, z)]$$

- R.A. Fisher "The Wave of Advance of Advantageous Genes" (1937)
 - -f(t,z) is a population density at the location z
 - $-\gamma f(t,z)[1-f(t,z)]$ logistic growth of the population at z
 - random migration gives rise to a "diffusion" term $\frac{1}{2}\sigma^2 D_{zz} f(t,z)$
- Cavalli-Sforza and Feldman (1981)
 - Cultural Transmission and Evolution: A Quantitative Approach
 - Section 1.9 applies Fisher's interpretation to memes (Dawkins)
- these interpretations differ from random imitation
 - Staley (Journal of Mathematical Economics, 2011) also has the random imitation interpretation
 - © Erzo G.J. Luttmer 2014