LP Rounding

Linear Programming

Linear Programming

Instance

Objective function $z = c_1x_1 + c_2x_2 + ... + c_nx_n$ Constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

Objective

Find values of the variables that satisfy all the constraints and maximize the objective function

Weighted Vertex Cover

Weighted vertex cover

Instance

An undirected graph G = (V, E) with vertex weights $w_i \ge 0$ Objective

Find a minimum weight subset of nodes S such that every edge is

incident to at least one vertex in S

total weight = 55

Weighted Vertex Cover: IP Formulation

Integer programming formulation.

– Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

Vertex covers in 1-1 correspondence with 0/1 assignments:

$$S = \{i \in V : x_i = 1\}$$

- Objective function: minimize $\Sigma_i w_i x_i$.
- Must take either i or j: $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

$$\begin{array}{ll} (\mathit{ILP}) \text{min} & \sum_{i \in V} w_i x_i \\ \\ \text{such that} & x_i + x_j & \geq 1 & (i,j) \in E \\ \\ & x_i & \in \{0,\!1\} & i \in V \end{array}$$

Observation.

If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover.

Integer Programming

Integer Programming

Given integers a_{ij} and b_i , find integers x_j that satisfy:

Observation.

Vertex cover formulation proves that integer programming is NP-hard search problem. \

even if all coefficients are 0/1 and at most two variables per inequality

Compare to Linear Programming

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover: Linear programming formulation.

$$(LP) \min \sum_{i \in V} w_i x_i$$
 such that $x_i + x_j \ge 1 \quad (i, j) \in E$
$$x_i \ge 0 \quad i \in V$$

Observation.

Optimal value of (LP) is less than or equal to the optimal value of (ILP).

Proof

LP has fewer constraints.

Weighted Vertex Cover: LP Relaxation

Note: LP is not equivalent to vertex cover.

How can solving LP help us find a small vertex cover?

Solve LP and round fractional values.

Weighted Vertex Cover

Theorem

If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Proof.

S is a vertex cover:

Consider an edge $(i, j) \in E$.

Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge 1$ or $x_j^* \ge 1$ implying (i, j) covered.

S has desired cost:

Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \ge \sum_{i \in S} w_i x_i^* \ge \frac{1}{2} \sum_{i \in S} w_i$$

LP is a relaxation

Weighted Vertex Cover

Theorem

Linear Programming gives a 2-approximation algorithm for weighted vertex cover.

Theorem [Dinur-Safra, 2001]

If P \neq NP, then no ρ -approximation for ρ < 1.3607, even with unit weights.

10 √5 - 21

Open research problem.

Close the gap.

Generalized Load Balancing

Generalized Load Balancing

Instance

Set of m machines M; set of n jobs J.

Job j must run continuously on an authorized machine in $M_i \subseteq M$.

Job j has processing time t_i.

Each machine can process at most one job at a time.

Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

The makespan is the maximum load on any machine = $\max_{i} L_{i}$.

Objective

Assign each job to an authorized machine to minimize makespan.

GLB: Integer Linear Program

ILP formulation: x_{ii} denotes the time machine i spends processing job j.

$$(IP) \text{min} \quad L$$
 such that
$$\sum_{i} x_{ij} = t_{j} \quad \text{for all } j \in J$$

$$\sum_{j} x_{ij} \leq L \quad \text{for all } i \in M$$

$$x_{ij} \in \{0, t_{j}\} \quad \text{for all } j \in J \text{ and } i \in M_{j}$$

$$x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_{j}$$

GLB: Linear Program Relaxation

LP relaxation.

```
(LP) \text{min} \quad L such that \sum_{i} x_{ij} = t_{j} \quad \text{for all} \ j \in J \sum_{i} x_{ij} \leq L \quad \text{for all} \ i \in M x_{ij} \geq 0 \quad \text{for all} \ j \in J \ \text{and} \ i \in M_{j} x_{ij} = 0 \quad \text{for all} \ j \in J \ \text{and} \ i \notin M_{j}
```

GLB: Lower Bounds

Lemma 1

Let L be the optimal value to the LP. Then, the optimal makespan $L^* \ge L$.

Proof.

LP has fewer constraints than IP formulation.

Lemma 2

The optimal makespan $L^* \ge \max_i t_i$.

Proof.

Some machine must process the most time-consuming job.

GLB: Structure of LP Solution

Lemma 3

Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. Then G(x) is acyclic.

Proof. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x

G(x) acyclic

O job

G(x) cyclic

GLB: Rounding

Rounded solution: Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

If job j is a leaf node, assign j to its parent machine i.

If job j is not a leaf node, assign j to one of its children.

Lemma 4.

Rounded solution only assigns jobs to authorized machines.

Proof.

If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machine

GLB: Lower Bounds

Lemma 5

If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_{j}$.

Proof.

Since i is a leaf, $x_{ii} = 0$ for all $j \neq parent(i)$.

LP constraint guarantees $\Sigma_i x_{ii} = t_i$.

Lemma 6

At most one non-leaf job is assigned to a machine.

Proof.

The only possible non-leaf job assigned to machine i is parent(i).

GLB: Analysis

Theorem

Rounded solution is a 2-approximation algorithm

Proof.

Let J(i) be the jobs assigned to machine i.

By Lemma 6, the load L_i on machine i has two components:

• leaf nodes
$$\sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ is a leaf}}} \sum_{\substack{j \in J(i) \\ j \text{ emma 2}}} \sum_{\substack{j \in J(i) \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{optimal value of LP}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 2}}}} \sum_{\substack{k \in I \text{ lemma 2} \\ \text{ lemma 3}}} \sum_{\substack{k \in I \text{ lemma 3} \\ \text{ lemma 4}}}} \sum_{\substack{k \in I \text{ lemma 3} \\ \text{ lemma 4}}}} \sum_{\substack{k \in I \text{ lemma 4} \\ \text{ lemma 5}}} \sum_{\substack{k \in I \text{ lemma 4} \\ \text{ lemma 5}}}} \sum_{\substack{k \in I \text{ lemma 4} \\ \text{ lemma 5}}}} \sum_{\substack{k \in I \text{ lemma 4} \\ \text{ lemma 5}}}} \sum_{\substack{k \in I \text{ lemma 5} \\ \text{ lemma 6}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}}} \sum_{\substack{k \in I \text{ lemma 6} \\ \text{ lemma 9}}} \sum_{\substack{k$$

Thus, the overall load $L_i \le 2L^*$.

GLB: Flow Formulation

Flow formulation of LP.

 $x_{ij} = 0$ for all $j \in J$ and $i \notin M_j$

Observation.

Solution to feasible flow problem with value L are in one-to-one correspondence with LP solutions of value L.

GLB: Structure of Solution

Lemma 3.

Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Proof. Let C be a cycle in G(x).

- Augment flow along the cycle C.
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic.

Conclusions

Running time:

The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark.

Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L*.

Extensions:

unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ii} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless P = NP.