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Linear Programming

Linear Programming

Instance

Objective function            z = c1x1 + c2x2 + ... + cnxn

Constraints:

a11x1 + a12x2 + ... + a1nxn ≤ b1

a21x1 + a22x2 + ... + a2nxn ≤ b2

:

am1x1 + am2x2 + ... + amnxn ≤ bm

Objective

Find values of the variables that satisfy all the constraints and 

maximize the objective function
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Weighted Vertex Cover

Weighted vertex cover

Instance

An undirected graph G = (V, E) with vertex weights wi ≥ 0

Objective

Find a minimum weight subset of nodes S such that every edge is 

incident to at least one vertex in S

total weight = 55
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Weighted Vertex Cover:  IP Formulation

Integer programming formulation.

– Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:

S = {i ∈ V : xi = 1} 

– Objective function:  minimize  Σi wi xi.

– Must take either i or j:  xi + xj ≥ 1.
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Weighted Vertex Cover:  IP Formulation

Observation.  

If  x*  is optimal solution to (ILP), then  S = {i ∈ V : x*i = 1}   is a min 

weight vertex cover.
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Integer Programming

Integer Programming   

Given integers  aij and  bi,  find integers  xj that satisfy:

Observation.  

Vertex cover formulation proves that integer programming is NP-

hard search problem.

Compare to Linear Programming
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Weighted Vertex Cover:  LP Relaxation

Weighted vertex cover:   Linear programming formulation.

Observation.  

Optimal value of (LP) is  less than or equal to the optimal value of 

(ILP).

Proof  

LP has fewer constraints. 
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Weighted Vertex Cover:  LP Relaxation

Note:  LP is not equivalent to vertex cover. 

How can solving LP help us find a small vertex cover?

Solve LP and round fractional values.
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Weighted Vertex Cover

Proof.  

S  is a vertex cover:

Consider an edge  (i, j) ∈ E.

Since  x*i + x*j ≥ 1,  either  x*i ≥ ½ or   x*j ≥ ½ implying  (i, j) 

covered.

S has desired cost:

Let S* be optimal vertex cover. Then

Theorem

If  x*  is optimal solution to (LP), then  S = {i ∈ V : x*i ≥ ½}  is a 

vertex cover whose weight is at most twice the min possible weight.
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Weighted Vertex Cover

Open research problem.   

Close the gap.

Theorem

Linear Programming gives a 2-approximation algorithm for weighted 

vertex cover.

Theorem [Dinur-Safra, 2001]  

If P ≠ NP, then no ρ-approximation  for ρ < 1.3607, even with unit 

weights. 

10 √5  - 21
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Generalized Load Balancing

Generalized Load Balancing

Instance  

Set of  m  machines  M; set of  n  jobs  J.

Job  j  must run continuously on an authorized machine in  Mj ⊆ M.

Job  j  has processing time  tj.

Each machine can process at most one job at a time.

Let  J(i)  be the subset of jobs assigned to machine  i.  The load of 

machine  i  is  Li = Σj ∈ J(i) tj. 

The makespan is the maximum load on any machine = maxi Li.

Objective

Assign each job to an authorized machine to minimize makespan.
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GLB: Integer Linear Program

ILP formulation:  xij denotes the time machine i spends processing job j.
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GLB:  Linear Program Relaxation

LP relaxation.  
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GLB: Lower Bounds

Lemma 1 

Let L be the optimal value to the LP. Then, the optimal makespan  

L* ≥ L.

Proof.  

LP has fewer constraints than IP formulation.

Lemma 2  

The optimal makespan  L* ≥ maxj tj.

Proof.  

Some machine must process the most time-consuming job.
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GLB: Structure of LP Solution

Lemma 3  

Let x be solution to LP.  Let G(x) be the graph with an edge from 

machine i to job j if xij > 0.  Then G(x) is acyclic.

Proof.  (deferred)

job

machine

can transform x into another LP solution where

G(x) is acyclic if LP solver doesn't return such an x

G(x) acyclic G(x) cyclic

xij > 0
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GLB: Rounding

Rounded solution:  Find LP solution  x  where  G(x)  is a forest.  Root 

forest  G(x)  at some arbitrary machine node r.

If job j is a leaf node, assign j to its parent machine i.

If job j is not a leaf node, assign j to one of its children.

Lemma 4.  

Rounded solution only assigns jobs 

to authorized machines.

Proof.  

If job j is assigned to machine i, then 

xij > 0.  LP solution can only assign 

positive value to authorized machines.
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GLB: Lower Bounds

Lemma 5  

If job j is a leaf node and machine i = parent(j), then xij = tj.

Proof.  

Since i is a leaf,  xij = 0  for all  j ≠ parent(i).   

LP constraint guarantees Σi xij = tj.   

Lemma 6  

At most one non-leaf job is 

assigned to a machine.

Proof.  

The only possible non-leaf job 

assigned to machine i is parent(i).

job

machine
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GLB: Analysis

Proof.

Let J(i) be the jobs assigned to machine i.

By Lemma 6, the load Li on machine i has two components:

• leaf nodes

• parent(i)

Thus, the overall load  Li ≤ 2L*.

Theorem

Rounded solution is a 2-approximation algorithm
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∞

GLB:  Flow Formulation

Flow formulation of LP.

Observation.  

Solution to feasible flow problem with value L are in one-to-one 

correspondence with LP solutions of value L.  
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GLB:  Structure of Solution

Lemma 3.  

Let  (x, L)  be solution to LP.  Let  G(x)  be the graph with an edge 

from machine  i  to job  j  if xij > 0.   We can find another solution     

(x', L)  such that  G(x')  is acyclic.

Proof.      Let C be a cycle in G(x).

– Augment flow along the cycle C. 

– At least one edge from C is removed (and none are added).

– Repeat until G(x') is acyclic.
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Conclusions

Running time:  

The bottleneck operation in our 2-approximation is solving one LP 

with  mn + 1  variables. 

Remark.  

Can solve LP using flow techniques on a graph with  m+n+1  nodes: 

given  L,  find feasible flow if it exists.  Binary search to find  L*.

Extensions:  

unrelated parallel machines.  [Lenstra-Shmoys-Tardos 1990] 

– Job  j  takes  tij time if processed on machine  i.

– 2-approximation algorithm via LP rounding.

– No 3/2-approximation algorithm unless P = NP.


