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Linear Programming

Linear Programming

Instance
Objective function Z=CqX;t CX, ... +C X,
Constraints:
39Xy +apXy * .+ 81X, S b,
81Xy + AgXp * ...+ 8y X, S by
am1X’| + AmoX2 oot AmnXn S bm
Objective

Find values of the variables that satisfy all the constraints and
maximize the objective function
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Weighted Vertex Cover

Weighted vertex cover

Instance
An undirected graph G = (V, E) with vertex weights w; = 0
Objective

Find a minimum weight subset of nodes S such that every edge is

incident to at least one vertexin S 4 @\<° 9
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Weighted Vertex Cover: IP Formulation

Integer programming formulation.
— Model inclusion of each vertex i using a 0/1 variable x..
B { 0 if vertex i isnotinvertex cover

X; =

1 if vertex i isinvertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:

S={ie V:x =1}
— Objective function: minimize X, w;X;.

— Must take eitheriorj: x +x 2> 1.
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Weighted Vertex Cover: IP Formulation

(ILP)min Z Wi X;

eV
suchthat  x; +x; > 1 (i,j)e E
X; e {01} ieV

Observation.

If x* is optimal solution to (ILP), then S={ie V:x* =1} isamin

weight vertex cover.
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Integer Programming

Integer Programming
Given integers a; and b, find integers x; that satisfy:

max c'x Zazjxj > b 1<i<m
j=1
suchthat Ax > b X; > 0 1< i<n
X integral X, ntegral 1< j<n
Observation.

Vertex cover formulation proves that integer programming is NP-
hard search problem. \

even if all coefficients are 0/1 and
at most two variables per inequality

Compare to Linear Programming
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Weighted Vertex Cover: LP Relaxation

Weighted vertex cover: Linear programming formulation.

(LP)min Z W; X;
eV
suchthat x; +X; 1 ((,))eE

0 ieV

AVARN\V/

Xi

Observation.

Optimal value of (LP) is less than or equal to the optimal value of
(ILP).

Proof
LP has fewer constraints.
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Weighted Vertex Cover: LP Relaxation

Note: LP is not equivalent to vertex cover. " Q\@/O 1,

iz

How can solving LP help us find a small vertex cover?

Solve LP and round fractional values.
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Weighted Vertex Cover

31-9

Theorem
If x* is optimal solution to (LP), then S={ie V :x* 27} isa
vertex cover whose weight is at most twice the min possible weight.

Proof.
S Is a vertex cover:
Consider an edge (i, j) € E.
Since X +x% = 1, either x%,27% or x*;27% implying (i, j)
covered.

S has desired cost: LP is a relaxation
Let S* be optimal vertex cover. Then / /

Zwl- ZZwix;k > %Zwi

eS* €S S

XY =
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Weighted Vertex Cover
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Theorem

Linear Programming gives a 2-approximation algorithm for weighted
vertex cover.

Theorem [Dinur-Safra, 2001]

If P = NP, then no p-approximation for p < 1.3607, even with unit
weights. \

|

105 - 21

Open research problem.
Close the gap.
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Generalized Load Balancing

Generalized Load Balancing
Instance
Set of m machines M; set of n jobs J.
Job | must run continuously on an authorized machine in M, M.
Job | has processing time t;
Each machine can process at most one job at a time.
Let J(i) be the subset of jobs assigned to machine i. The load of
machine i is Li=%_ ju
The makespan is the maximum load on any machine = max; L..
Objective

Assign each job to an authorized machine to minimize makespan.
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GLB: Integer Linear Program

ILP formulation: x; denotes the time machine i spends processing job j.

(/[P)min L
suchthat > x;; = 1; forall jeJ
i
> x; <L forall ie M
J
X;j € {0,7;} forall je J and ieM;
X; = 0 forall jeJ and ig M ;
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GLB: Linear Program Relaxation

LP relaxation.

(LP)min L
suchthat > x;; = ; forall jeJ
l
> x; < L foralieM
J
X; > 0 foral jeJ and ie M ;

X; = 0 forall jeJ andi¢ M ;
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GLB: Lower Bounds

Lemma 1

Let L be the optimal value to the LP. Then, the optimal makespan
L* > L.

Proof.
LP has fewer constraints than IP formulation.

Lemma 2
The optimal makespan L* > max; t,

Proof.
Some machine must process the most time-consuming job.
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GLB: Structure of LP Solution

Lemma 3

Let x be solution to LP. Let G(x) be the graph with an edge from
machine i to job j if x; > 0. Then G(x) is acyclic.
Proof. (deferred) T

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

AR

O O O O
G(x) acyclic O job G(x) cyclic

machine
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GLB: Rounding

Rounded solution: Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.

If job | is a leaf node, assign | to its parent machine |.
If job j is not a leaf node, assign j to one of its children.

O job
machine
Lemma 4. -
Rounded solution only assigns jobs T

to authorized machines.

Proof. f
If job j is assigned to machine i, then

X; > 0. LP solution can only assign ﬁ@

positive value to authorized machine
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GLB: Lower Bounds

Lemma 5

If job j is a leaf node and machine i = parent(j), then x; = t.
Proof.

Since i is a leaf, x; =0 forall j# parent(i).

. O job
LP constraint guarantees ¥, x; = t; .
machine
]
Lemma 6 SN e N

At most one non-leaf job is

assigned to a machine. /( / N\

Proof.

The only possible non-leaf job
assigned to machine i is parent(i).
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GLB: Analysis
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Theorem
Rounded solution is a 2-approximation algorithm

Proof.

Let J(i) be the jobs assigned to machine I.

By Lemma 6, the load L, on machine | has two components:
. Lemma 1 (LP is a relaxation
leaf nodes Lemma 5 pmma 1 ( )

&
Zt D x; < le]SL<L
je J() JeJ @) jed 1
N isaleaf ;j isaleaf optimal value of LP
) parent(|) L — Lemma 2
foarent(i) <L

parent(i

Thus, the overall load L, <2L*.
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GLB: Flow Formulation

Jobs

Flow formulation of LP. oo

Machines

. Supply = ;( Jj L

l
Y x; < L foralieM
J

i v )Demand = Z]- t

X; > 0 forall jeJ and ie M ;

L
X; i = 0 forall jeJ and ig¢ M ;
Observation.

Solution to feasible flow problem with value L are in one-to-one
correspondence with LP solutions of value L.
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GLB: Structure of Solution

Lemma 3.

Let (x, L) be solution to LP. Let G(x) be the graph with an edge
from machine i tojob | if x;>0. We can find another solution
(x', L) such that G(x') is acyclic.
Proof. Let C be acycle in G(x).
— Augment flow along the cycle C.
— Atleast one edge from C is removed (and none are added).

— Repeat until G(x') is acyclic.

3 (O3 SO—S/D\
6

s O< >© 4 O<f >©
5

4 lezz : @4\E/

augment along C G(X)
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Conclusions

Running time:

The bottleneck operation in our 2-approximation is solving one LP
with mn + 1 variables.

Remark.

Can solve LP using flow techniques on a graph with m+n+1 nodes:

given L, find feasible flow if it exists. Binary search to find L*.
Extensions:
unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t; time if processed on machine .
— 2-approximation algorithm via LP rounding.
— No 3/2-approximation algorithm unless P = NP.
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