
Aliases
Shell Command: alias [-p] [word[=string]]

If you alias a new command word equal to string, then when
you type the command word the string will be used in its
place

alias prints out all aliases defined

put your aliases in your .bashrc file (why?)

e.g. alias dir=”ls -al”

unalias

1

History
Shell Command: history [-c] [n]

Print out the shell's current command history.

If a numeric value n is specified, show only the last n entries
in the history list.

If "-c" is used, clear the history list.

2

Command Re-execution

3

History Substitution
^string1^string2^

Substitute string2 for string1 in the previous command and
executes it.

$ lp financial_report_july_2003.txt
lp: File not found.
$ ^2003^2004^
lp financial_report_july_2004.txt
request id is lwcs-37 (1 file)
$ _

4

Auto-Completion
Bash can complete a filename, command name,
username or shell variable name

To have Bash attempt to complete the current argument
of your command, type the TAB character.

5

Tilde Substitution

6

Command substitution
$(command)

$ echo there are $(who | wc -l) users on the system
there are 6 users on the system
$ _

7

Arithmetic
+ - Addition, subtraction.

++ -- Increment, decrement.

* / % Multiplication, division, remainder.

** Exponentiation.

Shell command: declare -i name

This form of declare defines the variable name as an integer
value

8

Conditional Expressions
Arithmetic conditional operators

<= >= < > Less than or equal to, greater than or equal to, less
than, greater than comparisons

== != Equal, not equal

! Logical NOT

&& Logical AND

|| Logical OR

9

Conditional Expressions

10

$ cat divisors.sh
#!/bin/bash
#
declare -i testval=20
declare -i count=2 # start at 2, 1 always works

while (($count <= $testval)); do
 ((result = $testval % $count))
 if (($result == 0)); then # evenly divisible
 echo " $testval is evenly divisible by $count"
 fi
 ((count++))
done

$ bash divisors.sh
 20 is evenly divisible by 2
 20 is evenly divisible by 4
 20 is evenly divisible by 5
 20 is evenly divisible by 10
 20 is evenly divisible by 20
$ _

String Comparisons
String conditional operators.

-n string True if length of string is non-zero.

-z string True if length of string is zero.

string1 == string2 True if strings are equal.

string1 != string2 True if strings are not equal.

11

File-Oriented
Expressions

file-oriented
conditional operators
(see Figure 6-29)

12

File-Oriented Expressions
$ cat owner.sh
#!/bin/bash
#

if [-O /etc/passwd]; then
 echo "you are the owner of /etc/passwd."
else
 echo "you are NOT the owner of /etc/passwd."
fi

$ bash owner.sh
you are NOT the owner of /etc/passwd.
$_

13

Control Structures
case .. in .. esac

if .. then .. elif .. then .. else .. fi

for .. do .. done

while/until .. do .. done

trap

14

case .. in .. esac
Shell command: case
case word in
 pattern { | pattern }*) commands ;;
 ...
esac

Execute the commands specified by commands when the
value of word matches the pattern specified by pattern.

The ")" indicates the end of the list of patterns to match. The
";;" is required to indicate the end of the commands to be
executed.

15

if .. then .. elif .. then .. else .. fi
if test1; then
 commands1;
[elif test2; then
 commands2;]
[else commands3;]
fi

test1 is a conditional expression, which, if true, causes the
commands specified by commands1 to be executed.

If test1 tests false, then if an "elif" structure is present, the
next test, test2, is evaluated ("else if"). If test2 evaluates to
true, then the commands in commands2 are executed. The
"else" construct is used when you always want to run
commands after a test evaluated as false.16

for .. do .. done
 Shell command: for
for name in word { word }*
do
 commands
done

Perform commands for each word in list with $name
containing the value of the current word.

17

while/until .. do .. done

In a while statement, perform commands as long as the
expression test evaluates to true.

In an until statement, perform commands as long as the
expression test evaluates to false (i.e., until test is true).

18

until test
do
 commands
done

 Shell command: while/until

while test
do
 commands
done

trap
Shell command: trap [[command] { signal } +]

The trap command instructs the shell to execute command
whenever any of the numbered signals signal are received.

If several signals are received, they are trapped in numeric
order.

If a signal value of 0 is specified, then command is executed
when the shell terminates. If command is omitted, then the
traps of the numbered signals are reset to their original
values. If command is an empty string, then the numbered
signals are ignored. If trap is executed with no arguments, a
list of all the signals and their trap settings is displayed. For
more information on signals and their default actions, see
Chapter 12, "Systems Programming."

19

Functions
Bash allows to define functions that can be invoked as
shell commands

function name
{
 list of commands
}
 or the keyword function may be omitted:
name ()
{
 list of commands.
}

20

Functions
parameters are accessible based on their positions

$ cat func2.sh ...list the script.
f ()
{
 echo parameter 1 = $1 # display first parameter.
 echo parameter list = $* # display entire list.
}
main program.
f 1 # call with 1 parameter.
f cat dog goat # call with 3 parameters.

$ sh func2.sh ...execute the script.
parameter 1 = 1
parameter list = 1
parameter 1 = cat
parameter list = cat dog goat
$ _

21

Functions
return [value] return value

export -f functionname -f option exports function

local name[=value]

defines variable to be local to current function

builtin [command [args]]

runs the named shell built-in command, and passes it args if
present.

22

more ...
select name [in {word }+]
do
 list
done

Directory access and directory stack

pushd

popd

dirs

23

Job Control
jobs [-lrs] display all of the shell’s jobs

bg, fg, kill

24

