Aliases

® Shell Command: alias [-p] [word[=string]]

® [f you alias a new command word equal to string, then when
you type the command word the string will be used in 1ts
place

| qlias prints out all aliases defined
® put your aliases in your .bashrc file (why?)
& c.g. alias dir="Is -al”

8 ynalias

History

® Shell Command: history [-c] [n]
® Print out the shell's current command history.

& [f a numeric value 7 is specified, show only the last # entries
in the history list.

| [f"-c" 1s used, clear the history list.

Command Re-execution

Figure 6-17. Command re-execution
metacharacters in Bash.

Form Action

I Replaced with the text of the last command.

lnumber Replaced with command number number in the
history list.

l-number Replaced with the text of the command number
commands back from the end of the list (!-1 is
equivalent to !!).

| prefix Replaced with the text of the last command that
started with prefix.

1?substring? Replaced with the text of the last command that
contained substring.

History Substitution

B "stringl”string2"

® Substitute string? for stringl 1n the previous command and
executes it.

$ 1p financial report july 2003.txt
lp: File not found.

$ 72003720047

lp financial _report july 2004.txt
request id is 1lwcs-37 (1 file)

$

Auto-Completion

® Bash can complete a filename, command name,
username or shell variable name

® To have Bash attempt to complete the current argument
of your command, type the TAB character.

Tilde Substitution

Figure 6-21. Tilde substitutions in Bash.

Tilde sequence

Replaced by

~

~user
~/pathname
~+

n -

$HOME

home directory of user
$HOME/pathname

$PWD (current working directory)
$OLDPWD (previous working directory)

Command substitution

® $(command)

$ echo there are $(who | wc -1) users on the system
there are 6 users on the system

$

Arithmetic

® +- Addition, subtraction.

B ++ -- Increment, decrement.

® * /9% Multiplication, division, remainder.
Bk Exponentiation.

@ Shell command: declare -i name

® This form of declare defines the variable name as an integer
value

Conditional Expressions

® Arithmetic conditional operators

B <=>=<> Less than or equal to, greater than or equal to, less
than, greater than comparisons

A === Equal, not equal
a | Logical NOT
A L& Logical AND

a | Logical OR

Conditional Expressions

$ cat divisors.sh
#!/bin/bash

7
declare -i testval=20
declare -1 count=2 # start at 2, 1 always works

while (($count <= $testval)); do
((result = $testval % $count))
if (($result == 0)); then # evenly divisible

echo " $testval is evenly divisible by $count"
fi
((count++))
done

$ bash divisors.sh
20 is evenly divisible
20 is evenly divisible
20 is evenly divisible
20 is evenly divisible
20 is evenly divisible
$

10

NBEF— U N
ONO)

String Comparisons

® String conditional operators.
B -nstring True if length of string 1s non-zero.
| -zstring True if length of string 1s zero.
| stringl == string2 True if strings are equal.

B stringl = string?2 True 1if strings are not equal.

11

File-Oriented
Expressions

@ file-oriented

conditional operators
(see Figure 6-29)

-a file
-b file

-c file

-d file
-e file
-f file
-g file
-p file
-r file
-s file
-t fd

-u file
-w file
-X file
-0 file

-G file

-L file
-N file

-S file

filel nt file2
filel ot file2
filel ef file2

12

True if the file exists.

True if the file exists and is a block-oriented special
file.

True if the file exists and is a character-oriented
special file.

True if the file exists and is a directory.

True if the file exists.

True if the file exists and is a regular file.

True if the file exists and its "set group ID" bit is set.
True if the file exists and is a named pipe.

True if the file exists and is readable.

True if the file exists and has a size greater than zero.

True if the file descriptor is open and refers to the
terminal.

True if the file exists and its "set user ID" bit is set.
True if the file is writable.
True if the file exists and is executable.

True if the file exists and is owned by the effective
user ID of the user.

True if the file exists and is owned by the effective
group ID of the user.

True if the file exists and is a symbolic link.

True if the file exists and has been modified since it
was last read.

True if the file exists and is a socket.
True if filel is newer than file2.
True if filel is older than file2.

True if filel and file2 have the same device and inode
numbers.

File-Oriented Expressions

$ cat owner.sh
#!/bin/bash
#

if [-0 /etc/passwd]; then
echo "you are the owner of /etc/passwd."
else

echo "you are NOT the owner of /etc/passwd."
fi

$ bash owner.sh
you are NOT the owner of /etc/passwd.

$

13

Control Structures

B case..1n .. esac

B if .. then .. elif .. then .. else .. f1
® for..do .. done

® while/until .. do .. done

@ trap

14

case .. 1n .. esac

® Shell command: case
case word in
pattern { | pattern } *) commands ;;

esdac

® Execute the commands specified by commands when the
value of word matches the pattern specified by pattern.

® The ")" indicates the end of the list of patterns to match. The

;;"" 1s required to indicate the end of the commands to be
executed.

15

if .. then .. elif .. then .. else .. 11

B f testl; then
commands|;
[elif test2; then
commands?2; |
[else commands3;]

fi

B festl 1s a conditional expression, which, if true, causes the
commands specified by commands to be executed.

B [f rest] tests false, then if an "elif" structure is present, the
next test, test2, 1s evaluated ("else 1f"). If test2 evaluates to
true, then the commands 1n commands?2 are executed. The
"else" construct 1s used when you always want to run
commands after a test evaluated as false.

for .. do .. done

® Shell command: for

for name in word { word }*
do
commands

done

B Perform commands for each word in list with $name
containing the value of the current word.

17

while/until .. do .. done

B8 Shell command: while/until

while test until test
do do

commands commands
done done

® [n a while statement, perform commands as long as the
expression test evaluates to true.

® [n an until statement, perform commands as long as the
expression test evaluates to false (1.e., until test is true).

18

trap

® Shell command: trap [[command | { signal } +]

® The trap command instructs the shell to execute command
whenever any of the numbered signals signal are received.

B [f several signals are received, they are trapped in numeric
order.

| [f a signal value of 0 1s specified, then command 1s executed
when the shell terminates. If command 1s omitted, then the
traps of the numbered signals are reset to their original
values. If command 1s an empty string, then the numbered
signals are 1gnored. If frap 1s executed with no arguments, a
list of all the signals and their trap settings 1s displayed. For
more information on signals and their default actions, see
Chapter 12, "Systems Programming."

Functions

@ Bash allows to define functions that can be invoked as
shell commands

® function name

{

list of commands

/

or the keyword function may be omitted:
name ()

{

list of commands.

/

20

Functions

B parameters are accessible based on their positions

$ cat func2.sh
f O
{

echo parameter 1 = $1
echo parameter list = §*

}
main program.
1:

f cat dog goat

$ sh func2.sh
parameter 1 =1
parameter list =1
parameter 1 = cat

...list the script.

display first parameter.
display entire list.

call with 1 parameter.
call with 3 parameters.

...execute the script.

parameter list = cat dog goat

$

21

Functions

® return [value] return value

B export -f functionname -f option exports function

® Jocal name[=value]

B defines variable to be local to current function

® builtin [command [args]]

® runs the named shell built-in command, and passes it args if
present.

22

morce ...

® select name [in {word }+ |
do
list
done
B Directory access and directory stack
| pushd
® popd

A dirs

23

Job Control

® jobs [-Irs] display all of the shell’s jobs

® bg, 18, kill

Figure 6-47. Job specifications in Bash.

Form Specifies
%integer The job number integer.
Y%oprefix The job whose name starts with prefix.
% + The job that was last referenced.
%% Same as %+.
%~ The job that was referenced second to last.
%name Refers to a process whose name begins with name.
%?name Refers to a process where name appears anywhere in the

command line.

24

